r AN5480
’l life.augmented

Application note

How to build a Sigfox™ application with STM32CubeWL

Introduction

This application note provides guideline to build specific Sigfox™ applications based on STM32WL Series microcontrollers. This
document groups together the most important information and lists the aspects to be addressed.

Sigfox™ is a type of wireless telecommunication network designed to allow long-range communication at very low bit rates, and
to enable the use of long-life battery-operated sensors. The Sigfox Stack™ library manages the channel access and security
protocol that ensures interoperability with the Sigfox™ network.

The application based on the NUCLEO_WL55JC, STM32WL Nucleo-64 boards (order code NUCLEO-WL55JC1 for
high-frequency band), and firmware in the STM32CubeWL MCU Package is Sigfox Verified™.

Sigfox™ application main features are:

e Application integration ready

+ RC1,RC2, RC3c, RC4, RC5, RC6 and RC7 Sigfox Verified™

« Sigfox™ Monarch (STMicroelectronics algorithm patented)

e Extremely low CPU load

* No latency requirements

* Small STM32 memory footprint

» Utilities services provided

The firmware of the STM32CubeWL MCU Package is based on the STM32Cube HAL drivers.

AN5480 - Rev 3 - January 2021

www.st.com

For further information contact your local STMicroelectronics sales office.

https://www.st.com/en/product/stm32cubewl?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5480

m AN5480

Overview

1 Overview

The STM32CubeWL runs on STM32WL Series microcontrollers based on the Arm® Cortex®-M processor.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

Table 1. Acronyms

Cs Carrier sense
DC Duty cycle
FH Frequency hopping
loT Internet of things
LBT Listen before talk
PAC Porting authorization code
POI Point of interest
RC Region configuration
RSA Radio Sigfox analyzer
RSSI Receive signal strength indicator
Rx Reception
SDR Software-defined radio
Tx Transmission

AN5480 - Rev 3 page 2/77

m AN5480

Sigfox standard

2 Sigfox standard

This section provides a general Sigfox overview, focusing, in particular, the Sigfox end-device.

Sigfox is a wireless telecommunication network operator designed to allow long range communication at a low
bit-rate enabling long-life battery operated sensors. The firmware of the STM32CubeWL MCU Package includes
the Sigfox Stack library.

Sigfox limits the use of its network to 144 messages per day and per device. Each message can be from 1 bit up
to 12 bytes.

2.1 End-device hardware architecture
The end device is the STM32WL55JC microcontroller mounted on NUCLEO-WL55JC board.

This MCU, with integrated sub-GHZ radio operating in the150 - 960 MHz ISM band, belongs to the
STM32WL Series that include microcontrollers with different memory sizes, packages and peripherals.

2.2 Regional radio resource

The European, North American and Asian markets have different spectrum allocations and regulatory
requirements. Sigfox has split requirements in various RCs (region configurations) listed in the table below.

Table 2. Region configurations

RC1 Europe, Oman, Lebanon, South Africa, Kenya

RC2 USA, Canada, Mexico

RC3c Japan

RC4 Brazil, Colombia, Peru, New—Zealand, Australia and Singapore
RC5 South Korea

RC6 India

RC7 Russia

AN5480 - Rev 3 page 3/77

‘W AN5480

Rx/Tx radio time diagram

The table below provides an overview of the regulatory requirements for the region configurations.

Table 3. RF parameters for region configurations

Frequency band downlink

(MHz) 869.525 905.2 922.2 922.3 922.3 866.3 869.1

Frequency band uplink (MHz) | 868.130 902.2 923.2 920,8 923.3 865.2 868.8

Uplink modulation DBPSK

Downlink modulation GFSK

Uplink data-rate 100 600 100 600 100 100 100

Down-link data-rate 600

Max output power (dBm) 14 22 13 22 13 13 14

Freque;ncy Frequgncy

Medium access Cyg:tz% M:;F;Fr)\l:i?'r'ne C;:Lrézr M:zzz":i?ne C;:;r;zr Duty cycle 1%
400 ms/20 s 400 ms/20 s

CS center frequency (MHz) 923.2 NA 923.3

CS bandwidth (kHz) NA 200 NA 200 NA

CS threshold (dBm) -80 NA -65

23 Rx/Tx radio time diagram

The end device transmits data to the network in an asynchronous manner. This is due to the fact that
transmission data is only sent per device-report event. The figures below depict the timing sequences with and
without a downlink.

Figure 1. Timing diagram for uplink only

Tx1 Tx2 Tx3
-
I I I I I I I
I I I I I I I
I [[— [—
| ! Interframe Tx Interframe Tx Interframe Tx
I I
I I
I € >
I i
I End timeout

Figure 2. Timing diagram for uplink with downlink

|
: Tx1 Tx2 Tx3 Rx window TxOOB L

| | | | |
[« A ad | >
StartTx Interframe TRx Interframe TRx : OOB_ACK
delay | | delay

| |

I‘ 'I‘ ':

: Rx delay : Rx timeout :

Note: The presence of a downlink only depends on device configuration.

The three transmissions Tx1, Tx2 and Tx3 contain the same payload information. These consecutive
transmissions only maximize the probability of a correct reception by the network. When the device observes
good link quality to the network, it may decide to send only Tx1 to save power consumption only if downlink frame
is requested. The API to select preferred scheme is described in Section 6.1.2 Send frames/bits.

AN5480 - Rev 3 page 4/77

‘,_l AN5480

Listen before talk (LBT)

The timings shown in the previous figures are detailed in the table below for the various regional configurations.

Table 4. Timings

Interframe OOB_ACK
RCA1 NA
Os 500 ms 20s 25s
RC2 10s
100 ms max
RC3c (start LBT) 500 ms + LBT 19s 34s
RC4 10s 500 ms 20s 25s 14s
100 ms max NA
RC5 (LBT) 500 ms + LBT 19s 34s
RC6
Os 500 ms 20s 25s
RC7

The Tx periods depend on the number of bytes sent and on the RC zone:
. It takes 10 ms to send a bit in RC1 and RC3c.
. It takes 1.66 ms to send a bit in RC2 and RC4.

A message can be 26-byte long at the most (including sync word, header, and payload data). Therefore, for RC1,
a Tx period can be maximum 26 x 8 x 10 ms = 2.08 s.

24 Listen before talk (LBT)

In RC3c and RC5, LBT is mandatory before any transmission.

In RC3c, the device must listen and check if the channel is free. The channel is considered as free if the power
within a 200 kHz bandwidth stays below -80 dBm (CS threshold) for 5 ms.

When the channel is free, the device starts a transmission. The transmission is not started otherwise.

2.5 Monarch

Monarch is a Sigfox beacon placed at a point of interest (POI). The signal of the Sigfox beacon is emitted at a
frequency allowed by the region the POI belongs to. The beacon contains region configuration (RC) information
that a Monarch-capable device can demodulate.

Upon reception of this information, the Monarch-capable device is able to switch automatically to the right RC and
send information to the network.

The Monarch feature allows a Sigfox loT device to roam seamlessly across the world.

251 Monarch signal description

The Monarch signal is sent at POI every 5 minutes plus a random back-off period of 10 seconds. The frequency
of the beacon is region specific. The beacon lasts in total 400 ms. If a device clock is set, it is hence possible to
open a scan window only when the Monarch signal is present to reduce current consumption of the end device.

Figure 3. Monarch beacon

I S TR I

Time Time Time Time (ss:mm:ss)
(0:2:30) (0:7:30) (0:12:30) (0:17:30)
|:| Beacon | Beacon time bound

AN5480 - Rev 3 page 5/77

m AN5480

Monarch

The signal is OOK modulated, meaning the signal is either ON or OFF. The modulation frequency is specified to
16384 Hz (half an RTC clock). The signal is ON for one sample and then OFF. It is ON with a periodicity of 11, 13
or 16 (16384 Hz) samples. Hence the following OOK frequency dF are possible:

. dF1=16384 /16 = 1024 Hz
. dF2 =16384 /13 = 1260.3 Hz
. dF3 =16384 /11 = 1489.4 Hz

The 400 ms of the Monarch pattern is composed of two sub-patterns:
. The pattern1 lasts 362 ms at a specific dF.
. The pattern2 lasts 38 ms at another specific dF.

Table 5. Monarch signal characteristics versus RC

Monarch frequency (Hz) Pattern1 dF (Hz) Pattern2 dF (Hz)
RC1

869 505 000
RC2 905 180 000 1024 1260.3
RC3
RC4 922 250 000 1260.3
RC5

1024 1489.4
RC6 866 250 000
RC7 869 160 000 1260.3
25.2 Monarch signal demodulation

When a device starts to scan a Monarch signal, the device sweeps during 5 mn onto all Monarch frequencies
listed in Table 5: this is called the sweep period.

Note: If the time is known, the sweep time may be reduced about 10 s + some clock drift.

During this period, the device tries to match with one of the pattern1. When a match is found, the device exits
the sweep period to enter a second period called the window period during for 400 ms. The device sets its RF
frequency where the pattern1 match occurred. The device then tries to match the pattern2 to confirm a Monarch
beacon is found.

AN5480 - Rev 3 page 6/77

m AN5480

SubGHz HAL driver

3 SubGHz HAL driver

This section focuses on the SubGHz HAL (other HAL functions such as timers or GPIO are not detailed).
The SubGHz HAL is directly on top of the sub-GHz radio peripheral (see Figure 1).

The SubGHz HAL driver is based on a simple one-shot command-oriented architecture (no complete processes).
Therefore, no LL driver is defined.

This SubGHz HAL driver is composed the following main parts:

. Handle, initialization and configuration data structures

. Initialization APls

. Configuration and control APIs

. MSP and events callbacks

. Bus I/0 operation based on the SUBGHZ_SPI (Intrinsic services)

As the HAL APIs are mainly based on the bus services to send commands in one-shot operations, no functional
state machine is used except the RESET/READY HAL states.

3.1 SubGHz resources
The following HAL SubGHz APIs are called at the initialization of the radio:
. Declare a SUBGHZ_HandleTypeDef handle structure.
. Initialize the sub-GHz radio peripheral by calling the HAL _SUBGHZ Init (&¢hUserSubghz) APL
. Initialize the SubGHz low-level resources by implementing the HAL SUBGHZ MspInit () API:
— PWR configuration: Enable wakeup signal of the sub-GHz radio peripheral.
— NVIC configuration:
° Enable the NVIC radio IRQ interrupts.
° Configure the sub-GHz radio interrupt priority.

The following HAL radio interrupt is called in the stm32wlxx it.c file:
. HAL SUBGHZ IRQHandler inthe SUBGHZ_Radio_IRQHandler.

3.2 SubGHz data transfers
The Set command operation is performed in polling mode with the HAL. SUBGHZ ExecSetCmd () ; API.
The Get Status operation is performed using polling mode with the HAL. SUBGHZ ExecGetCmd () ; APL.
The read/write register accesses are performed in polling mode with following APIs:
. HAL SUBGHZ WriteRegister () ;
. HAL SUBGHZ ReadRegister();
. HAL SUBGHZ WriteRegisters();
. HAL SUBGHZ ReadRegisters();
. HAL SUBGHZ WriteBuffer();
. HAL SUBGHZ ReadBuffer();

AN5480 - Rev 3 page 7/77

‘,_l AN5480

BSP STM32WL Nucleo-64 boards

4 BSP STM32WL Nucleo-64 boards

This BSP driver provides a set of functions to manage:

. an application dependent part, implementing external control of on-board components: RF switches, TCXO,
RF losses and LEDs/sensors available on the STM32WL Nucleo-64 board (NUCLEO-WL55JC)

. a fixed part implementing the internal radio accesses (reset, busy and the NVIC radio IRQs)

Note: In the current implementation, due to STM32CubeMX limitation, the firmware does not use BSP files but

radio board if.c/.h forradio related items, and board resources.c/.h for LED and push buttons. The
choice between the two implementations is done into Core/Inc/platform.h by selecting USE_BSP_DRIVER
or MX BOARD PSEUDODRIVER.

4.1 Frequency band
Two types of Nucleo board are available on the STM32WL Series:
. NUCLEO-WL55JC1: high-frequency band, tuned for frequency between 865 MHz and 930 MHz
. NUCLEO-WL55JC2: low-frequency band, tuned for frequency between 470 MHz and 520 MHz
Obviously, If the user tries to run a firmware compiled at 868 MHz on a low-frequency band board, very poor RF
performances are expected.
The firmware does not check the band of the board on which it runs.

4.2 RF switch

The STM32WL Nucleo-64 board embeds an RF 3-port switch (SP3T) to address, with the same board, the
following modes:

. high-power transmission
. low-power transmission
. reception

Table 6. BSP radio switch

int32 t BSP_RADIO Init(void) Initializes the RF switch.
BSP RADIO ConfigRFSwitch (BSP RADIO Switch TypeDef Config) Configures the radio switch.
int32 t BSP RADIO DelInit (void) De-initializes the RF switch.

))) Returns the board configuration:
int32 t BSP RADIO GetTxConfig(void)
- - - high power, low power or both.

The RF states versus the switch configuration are given in the table below.

Table 7. RF states versus switch configuration

m FE_CTRLA FE_CTRL2 FE_CTRL3

High-power transmission High High
Low-power transmission High High High
Reception High Low High

AN5480 - Rev 3 page 8/77

‘,_l AN5480

RF wakeup time

4.3 RF wakeup time

The sub-GHz radio wakeup time is recovered with the following API.

Table 8. BSP radio wakeup time

T T

uint32 t BSP RADIO GetWakeUpTime (void) Returns RF_WAKEUP_TIME value.
The user must start the TCXO by setting the command RADIO SET TCXOMODE with a timeout depending of the
application.

The timeout value can be updated in stm32wlxx nucleo_conf.h. Default template value is defined below.

#define RF _WAKEUP_ TIME 10U

4.4 TCXO

Various oscillator types can be mounted on the user application. On the STM32WL Nucleo-64 boards, a TCXO
(temperature compensated crystal oscillator) is used to achieve a better frequency accuracy.

Table 9. BSP radio TCXO

i T i

uint32 t BSP RADIO IsTCXO (void) Returns IS_TCXO_SUPPORTED value.
The user can change this value in stm32wlxx nucleo_conf.h:

#define IS TCXO SUPPORTED 1U

4.5 Power regulation
Depending on the user application, a LDO or an SMPS (also named DCDC) is used for power regulation.
An SMPS is used on the STM32WL Nucleo-64 boards.

Table 10. BSP radio SMPS

e i T i

uint32 t BSP RADIO IsDCDC (void) Returns IS_DCDC_SUPPORTED value.
The user can change this value in stm32wlxx nucleo conf.h:

#define IS DCDC_SUPPORTED 10

The SMPS on the board can be disabled by setting IS_ DCDC_SUPPORTED to 0.

AN5480 - Rev 3 page 9/77

AN5480
STM32WL Nucleo-64 board schematic

AN5480 - Rev 3

STM32WL Nucleo-64 board schematic

The figure below details the STM32WL Nucleo-64 board, MB1389 reference board schematic, highlighting some
useful signals:

. control switches on PC4, PC5 and PC3
. TCXO control voltage PIN on PBO

. debug lines on PB12, PB13 and PB14
. system clock on PA8

. SCK on PA5

. MISO on PA6

. MOSI on PA7

Figure 4. NUCLEO-WL55JC schematic

PRI il
WARNING voltage applied to VIN <115V
IOREF

sB29
VDD_MCU}
T_NRST L

Data transaction:
SKC, MOSI, MISO

Morpho connector AVDD= Morpho connector
o CN10
vDD_MCU w1 2 }—x CNS S&mi i _Pa0 [£os s> | Control switchs
s a[X 10 200 — 34 FECTRLS | 1 and 2
506 9 —‘f 506
P BOOTO | 7 ¢ —{ CHES § = 7§ [—sv_uss_cHor
SB19 o 10— 1 % PES 9 10— peg
X1 n 2 d 11
iy B S 3 P 74 B o |System clock
15 16 418 3] AT 15 16 ————
T— oo § |2 Mcu i i+ e— | S
! | un IFgew 5 |5 1[E PCY 3% Cmes TCXO control
FCL3 VIV s
FCIT F *- ¢l Socket 10x1 BRI e — voltage
PCLS ZE =l N Socket 81 oNo 55 PB15 25
1 20 30 ‘ - (a7} s ol 20 30 81} ! TEDS
oo L 2 FEY llse A o -3 a4 2 i
VBAT—————————— 1 33 3 2 (88 5 FEpE 7y — !
PAID A7 | g 5 D4 P55 PA1
»¥—1 35 36 32 5 —hwmna] 35 36 = Control
37 B3 13 ER = 37 3 FECIRL itch 3
Heder o2 ANZTH : R —— Header 1022 swite!
/ Socket 6xl !
Socket fx1
Debug line 2 and 3 . Default: USART! from PB6/PB7
Debug line 1 ional: LPUART1/USART? from

page 10/77

m AN5480

Sigfox Stack description

5 Sigfox Stack description

The firmware of the STM32CubeWL MCU Package includes STM32WL resources such as:
. STM32WLxx Nucleo drivers

. STM32WLxx HAL drivers

. Sigfox middleware

. SubGHz physical layer middleware

. Sigfox application example

. Utilities

The Sigfox middleware for STM32 microcontrollers is split into several modules:

. Sigfox Core library layer module

. Sigfox crypto module

. Sigfox Monarch (ST algorithm patent)

The Sigfox Core library implements a Sigfox medium access controller that interfaces with the Cmac library

encrypting uplink payload and verifying downlink payload. The Cmac library interfaces with the Credentials library
holding the cryptographic functions. This medium access controller also interfaces with the ST Monarch library.

The Sigfox Core library interfaces also with 1.e rf api.c.and and mcu_api, cm porting files in the user
directory. It is not advised to modify these files.

The Sigfox Core, Sigfox test, cryptographic and Monarch library modules are provided in compiled object.

The libraries have been compiled with wchar32 and 'short enums'. These settings are used by default in IAR
Embedded workbench and STM32CubelDE.

For pVision Keil, specific care must be taken. Tickbox 'Short enums/wchar' must be unchecked and 'fshort
-enums' must be added in 'Misc Controls' field.

Note: For dual-core applications, these settings must be applied to both cores to guaranty same enum formatting.

5.1 Sigfox certification

The system including the NUCLEO-WL55JC board and the STM32CubeWL firmware modem application has
been verified by Sigfox Test Lab and passed the Sigfox Verified certification.

Nevertheless, the end product based on a STM32WL Series MCU must pass again the Sigfox Verified and the
Sigfox Ready™ certification before the end-product commercialization.

AN5480 - Rev 3 page 11/77

3

AN5480

Architecture

5.2 Architecture

5.21 Static view
The figure below details the main design of the firmware for the Sigfox application.

Figure 5. Static Sigfox architecture

Sigfox application
(AT_Slave or PushButton)

“radioh

Sigfox middleware

sigfox_api.h

Cmac Monarch Sigfox Sigfox test
library library library library

se_api mn_api mcu_api rf_api

rf protocol api.h

Utilities

NVM (E2P)

Timer server

SubGHz_Phy middleware

radio.c

radio_driver.c

Sequencer

Debug trace

Low-power
mode

Board support package (BSP)

Hardware abstraction layer APIs (HAL)

Sub-GHz radio system peripheral

The HAL uses STM32Cube APIs to drive the hardware required by the application.

The RTC provides a centralized time unit that continues to run even in the low-power Stop mode. The RTC alarm
is used to wake up the system at specific times managed by the timer server.

The Sigfox Core library embeds the medium access controller (MAC) as well as some security functions (see
Section 6.1 Sigfox Core library for more details).

The application is built around an infinite loop including a scheduler. The scheduler processes tasks and events.
When nothing remains to be done, the scheduler transitions to idle state and calls the low-power manager.

Typical application examples:
. AT layer to interface with external host (refer to Section 11.2 AT modem application)
. application reading and sending sensor data upon an action (refer to Section 11.3 PushButton application)

AN5480 - Rev 3 page 12/77

AN5480

Architecture

3

5.2.2 Dynamic view
The message sequence chart (MSC) in the figure below depicts the dynamic calls between APIs in Tx mode (for

one transmission).
Figure 6. Transmission MSC

—_— Sigfox Core]
Application a MANUF_API Radio Idle
library
SIGFOX APT RF_API_init
send_frame rf_mode: SFX_RF_MODE_TX|
e — —— —— —— — — —
RF_API_change_ < ———— Return
frequency (frequency Radio.SetCh 1
SeLoronsootle < Interrupt
(frequency)
«——————————— e ———————— — —
Get EEPROM power
Radio.SetTxConfig
(MODEM_SIGFOX_TX,
Power, datarate,
timeout)
e — ——————— ——]
Radio.Send
(stream, size)
e — —— ————— — —]
SEQ [WaitEvt 3 F5
CFG_SEQ_Evt_ TxTimout @ <
_SRQ_pvE_ S flad
(S}
Callback SUBGHZ Radio IRQHandler s
SEQ| SetEvt
CFG_SEQ Evt_ TxTimout
e ——————————— 4 - ————— - ——— =
RF API stop Radio.Sleep ()
- —————————- e ——————————— 4 e ———————————

When a downlink window is requested, an Rx sequence is started after Rxdelay is elapsed (see Figure 2. Timing

diagram for uplink with downlink).
When Rxdelay is elapsed, the sequence detailed in the figure below occurs.

Figure 7. Reception MSC

Sigfox Core .
ol MANUF_API Radio Idle
library
RF_API_init
rf_mode: SFX_RF_MODE_Rx| Radio.SetTxConfig
- - (MODEM_SIGFOX_RX)
e e €————=====-- <———— Return
RF_API change |
frequency (frequency) | frezigiziTzl;:;gE;cy ~¢————— Interrupt
e — e —————
MCU API timer start T25s
onTimerTImoutEvjt
RF_API wait frame CFG_SEQ_Evt_TxTlimout
Radio.RxBoosted (0)
€ — — — — — — — — — — —
SEQ [WaitEvt g 5
2
CFG SEQ Fvt TxTimout » X
_SEQ kvt 8 &
Callback _SUBGHZ_Radio_IRQHandler =
<
SEQ| SetEvt
CFG_SEQ_Kkvt_ TxTimout
e————— e ———
RF_API_stop Radio.Sleep ()
= ———— e———————————
MCU_API_timer_stop T
= — — — — —

page 13/77

AN5480 - Rev 3

m AN5480

Required STM32 peripherals to drive the radio

5.3 Required STM32 peripherals to drive the radio

Sub-GHz radio

The sub-GHz radio peripheral is accessed through the stm32wlxx_hal subghz HAL.

The sub-GHz radio issues an interrupt through SUBGHZ_Radio_IRQHandler NVIC, to notify a TxDone or
RxDone event. More events are listed in the product reference manual.

RTC

The RTC (real-time clock) calendar is used as 32-bit counter running in all power modes from the 32 kHz
external oscillator. By default, the RTC is programed to provide 1024 ticks (sub-seconds) per second. The RTC is
programed once at hardware initialization when the MCU starts for the first time. The RTC output is limited to a
32-bit timer that corresponds to about a 48-day period.

Caution: When changing the tick duration, the user must keep it below 1 ms.

LPTIM

The LPTIM (low-power timer) is used for Monarch only. The LPTIM is set when a Monarch scan is requested,
uses the LSE clock and issues an interrupt at 16384 Hz.

AN5480 - Rev 3 page 14/77

AN5480

Sigfox middleware programming guidelines

Sigfox middleware programming guidelines

6.1

Sigfox Core library

Embedded applications using the Sigfox Core library call SIGFOX_APIs to manage communication.

Table 11. Application level Sigfox APls

o Emew [EmmEw]

sfx error t SIGFOX API get device id
(sfx u8 *dev id);
sfx error t SIGFOX API get initial pac

(sfx u8 *initial pac);

sfx error t SIGFOX API open

(sfx rc t *rc);

sfx error t SIGFOX API close(void);

sfx error t SIGFOX API send frame
(sfx u8 *customer data,

sfx u8 customer data length,

sfx u8 *customer response,

sfx u8 tx repeat,

sfx bool initiate downlink flag);

sfx error t SIGFOX API send bit
(sfx bool bit value,

sfx u8 *customer response,

sfx u8 tx repeat,

sfx bool initiate downlink flag);

sfx error t SIGFOX API set std config
(sfx u32 config words[3],

sfx bool timer enable);

Copies the ID of the device to the pointer given in parameter.
The ID is 4-byte long and in hexadecimal format.

Gets the value of the PAC stored in the device. This value is
used when the device is registered for the first time on the
backend. The PAC is 8-byte long.

Initializes the library and saves the input parameters once
(cannot be changed until SIGFOX_API close() is
called)

— rcis a pointer on the radio configuration zone. It is
mandatory to use already existing defined RCs.

Closes the library and stops the RF.

Sends a standard Sigfox frame with customer payload.
. customer data cannot exceed 12 bytes
. customer data length:length in bytes
. customer response: received response
. tx repeat:
- when 0, sends one Tx.
- when 1, sends three Tx.

. initiate downlink flag:if set, the frame sent
is followed by a receive downlink frame and an out-of-
band Tx frame (voltage, temperature and RSSI).

Sends a standard Sigfox™ frame with null customer payload
(shortest frame that Sigfox library can generate).

. bit value: bit sent
. customer response: received response
. tx repeat:

- when 0, sends one Tx.
- when 1, sends three Tx.
. initiate downlink flag:if set, the frame sent

is followed by a receive downlink frame and an out-of-
band Tx frame (voltage, temperature and RSSI).

Configures specific variables for standard. Parameters have
different meanings whether in FH or LBT mode.

Note: this function has no influence in DC (see
Section 11.2.21 ATS400 - Enabled channels for FCC for
details).

Secondary APIs are described in sigfox_api.h. The library can be found in the

Middlewares\Third Party\SigfoxLib directory.

AN5480 - Rev 3 page 15/77

m AN5480

Sigfox Core library

6.1.1 Open the Sigfox library
ST SIGFOX API open must be called to initialize the Sigfox library before any other operation is performed.

This API requires the RC argument number representing the radio configuration zone (see Section 2.2 Regional
radio resource).

For radio control zones 2 and 4, the FCC (federal communications commission) requires frequency hopping so
the transmission frequency is not fixed (see Section 6.1.3 Set standard configuration for more details on how to
map the macro channels).

6.1.2 Send frames/bits
ST SIGFOX API send frame is the main Sigfox library function. This blocking function handles message
exchange between the end node and the base stations.
An important parameter of this function is the initiate downlink flag that selects different transmission
behaviors:

. initiate downlink flag = 0: The library requests only uplink frame. The sent frame is transmitted
once if tx_repeat = 0, orthreetimesif tx repeat = 1, with a 500 ms pause (see Figure 1).The
transmit payload can be maximum 12-byte long.

. initiate downlink flag = 1: The frame to be sentis transmitted three times with a 500 ms
pause. A 25 s Rx window then opens 20 s after the end of the first repetition (see Figure 2). If the
reception is successful, the received 8-byte downlink frame is stored in the buffer location indicated by the
customer response buffer.

6.1.3 Set standard configuration

The FCC allows the transmitters to choose certain macro channels to implement a frequency-
hopping pattern authorized by the standard. The channel map is specified in the first argument of
SIGFOX API set std config, that consists of an array of three 32-bit configuration words.

A macro-channel consists of six micro channels centered about the center frequency of the macro channel and
separated by 25 kHz. For example, in the 902.2 MHz macro channel, the six micro channels are 902.1375 MHz,
902.1625 MHz, 902.1875 MHz, 902.2125 MHz, 902.2375 MHz, and 902.2625 MHz.

A typical Sigfox frame lasts between 200 ms and 350 ms at 600 bit/s, and FCC mandates a max dwell time of
400 ms. A transmitter cannot return to a given channel before 20 s. Therefore, at least 20 / 0.4 = 50 channels
must be used for continuous transmission.

Actually, a device only transmits a few frames per day (144 messages maximum). Enabling one macro channel
only and inserting 10 s delays between two groups of three repeated frames (one frame per micro channel means
six micro channels) pass the regulation limits.

AN5480 - Rev 3 page 16/77

‘,_l AN5480

Sigfox Core library

Each bit of the config_words[0,1,2] array represents a macro channel according to the mapping described in the
table below.

Table 12. Macro channel mapping

config_words[0] config_words[1] config_words[2]
Frequency mapping (MHz) | Frequency mapping (MHz) | Frequency mapping (MHz)
0

902.2 911.8 921.4
1 902.5 912.1 921.7
2 902.8 912.4 922
3 903.1 912.7 922.3
4 903.4 913 922.6
5 903.7 913.3 922.9
6 904 913.6 923.2
7 904.3 913.9 923.5
8 904.6 914.2 923.8
9 904.9 914.5 924 1
10 905.2 914.8 924.4
1" 905.5 915.1 924.7
12 905.8 915.4 925
13 906.1 915.7 925.3
14 906.4 916 925.6
15 906.7 916.3 925.9
16 907 916.6 926.2
17 907.3 916.9 926.5
18 907.6 917.2 926.8
19 907.9 917.5 9271
20 908.2 917.8 927.4
21 908.5 918.1 927.7
22 908.8 918.4 928
23 909.1 918.7 928.3
24 909.4 919 928.6
25 909.7 919.3 928.9
26 910 919.6 929.2
27 910.3 919.9 929.5
28 910.6 920.2 929.8
29 910.9 920.5 930.1
30 911.2 920.8 930.4
31 911.5 921.1 930.7

A macro channel is only enabled when the corresponding config_words[x] bit is set to 1. For example, bit O of
config_words[0] corresponds to channel 1 while bit 30 of config_words[1] corresponds to channel 63. At least nine
macro channels must be enabled to meet the FCC specifications.

AN5480 - Rev 3 page 17/77

‘W AN5480

Sigfox Addon RF protocol library

In the following long message configuration example, channels 1 to 9 are enabled with frequencies ranging from
902.2 MHz to 904.6 MHz:

. config_words[0] = [0x0000 01FF]
. config_words[1] = [0x0000 0000]
. config_words[2] = [0x0000 0000]
By default, the Sigfox application sets one macro channel with timer enable = 1. The macro channel 1in

RC2 has a 902.2 MHz operational frequency and the macro channel 63 in RC4 has a 920.8 MHz operational
frequency). This is the short message configuration operational for Sigfox (see defined RCx SM CONFIG value in

sigfox_api.hfile).
Adelay (timer enable)is implemented to avoid one micro channel to be re-used with an interval lower

than 20 s. When using one macro channel only (six micro channels) performing three repetitions, this delay
corresponds to 10 s. When using two macro channels (12 micro channels), the delay automatically becomes 5 s.

For certification test purposes, timer enable may be set to 0, but must be set to 1 otherwise. The default
settings can nevertheless be modified using the ATS400 command (Section 11.2.21) to speed up the
certification process.

6.2 Sigfox Addon RF protocol library

This library is used to test the device for Sigfox Verified certification. Ultimately, this library can be removed from
the build once certified.

Table 13. Sigfox Addon Verified library

Executes the test modes needed for the

sfx_error_t Sigfox Verified certification:
ADDON SIGFOX RF PROTOCOL API test mode . rc_enum: rc at which the test
mode is run
(sfx rc enum t rc enum, sfx test mode t test mode);
- - - - - - - - . test mode: test mode to run
sfx error t
ADDON SIGFOX RF PROTOCOL API monarch test mode This function executes the Monarch test
modes needed for Sigfox RF and protocol
(sfx rc enum t rc enum, sfx test mode t test mode, tests.

sfx u8 rc capabilities);

This library is located in Middlewares\Third Party\Sgfx\SigfoxLibTest\.

AN5480 - Rev 3 page 18/77

‘7 AN5480

Cmac library

6.3 Cmac library
The Cmac library stores the keys, the PAC and the IDs.

Table 14. Cmac APIs

sfx_u8 SE_API_get_device_id This function copies the device ID in
(sfx_u8 dev_id[ID LENGTH]); dev_id.
sfx u8 SE API get initial pac (sfx u8 *initial pac); Gets the initial PAC.

sfx u8 SE API secure uplink message

(sfx u8 *customer data,

sfx u8 customer data length,

sfx bool initiate downlink frame, Generates an uplink frame bitstream.
sfx se frame type t frame type,

sfx bool *send rcsync,

sfx u8 *frame ptr, sfx u8 *frame length);

sfx_u8 SE_API verify downlink message Authenticates a received message and

(sfx_u8 *frame ptr, sfx bool *valid); decrypts its payload.

The Cmac library is located in directory \Middlewares\Third Party\Sgfx\Crypto.

Note: . This library interfaces the se nvm functions to store/retrieve SFX SE NVMEM BLOCK SIZE bytes from the
non-volatile memory.

. se_api.his the interface to the Sigfox secure element that can be either a physical secure element, or
emulated by firmware with the Cmac library and the Credentials library.

AN5480 - Rev 3 page 19/77

AN5480

Credentials library

6.4 Credentials library

The Credentials library can access the keys, the PAC and the IDs. It can also encrypt data with the Sigfox key.

Table 15. Credentials APIs

void CREDENTIALS get dev id(uint8 t* dev_id);

void CREDENTIALS get initial pac (uint8 t* pac);

sfx bool CREDENTIALS get payload encryption fl
ag(void) ;

Gets the device ID.
Gets the device initial PAC.

Gets the encryption flag. Sets
to false by default (see
Section 11.2.10 ATS411 - Payload

encryption).
Encrypts data with the secret
sfx error t CREDENTIALS aes 128 cbc encrypt key. The secret key can be
o o - o - o setto CMAC KEY PRIVATE
(uint8 t* encrypted data, uint8 t* data to_ encrypt, or CMAC KEY PUBLIC (see
uint8_t block len); Section 11.2.9 ATS410 - Encryption
key).
sfx error t CREDENTIALS wrap session key Derives a session key based on the
(uint8 t *data, uint8 t blocks) Sigfox secret key
sfx error t
CREDENTIALS aes 128 cbc encrypt with session key
Encrypts data with the session key.
(uint8 t *encrypted data,
uint8 t *data to encrypt, uint8 t blocks)
6.5 Monarch library

The Monarch APIs are defined in sigfox _monarch_apis.h.

Table 16. Monarch APIs

Starts a Monarch scan.

sfx error t . sfx u8

SIGFOX MONARCH API execute rc scan rc_capabilities bit mask

s .) . sfx ul6 timer:scan duration
(sfx u8 rc capabilities bit mask, sfx ulé timer, value
sfx timer unit enum t unit, sfx u8 . sfx timer unit enum t

(* app_callback_handler) unit: unit of timer

. app_callback handler:
function called by the Sigfox library
when the scan is completed

(sfx u8 rc bit mask, sfx sl6 rssi));

sfx error t
Stops an ongoing Monarch scan.
SIGFOX MONARCH API stop rc scan(void);

AN5480 - Rev 3 page 20/77

m AN5480

SubGHz_Phy layer middleware description

7 SubGHz_Phy layer middleware description

The radio abstraction layer is composed of two layers:
. high-level layer (radio.c)

It provides a high-level radio interface to the stack middleware. It also maintains radio states, processes
interrupts and manages timeouts. It records callbacks and calls them when radio events occur.

. low-level radio drivers
It is an abstraction layer to the RF interface. This layer knows about the register name and structure, as well
as detailed sequence. It is not aware about hardware interface.
The SubGHz_Phy layer middleware contains the radio abstraction layer that interfaces directly on top of the
hardware interface provided by BSP (refer Section 4 BSP STM32WL Nucleo-64 boards).
The SubGHz_Phy middleware directory is divided in two parts

. radio.c: contains a set of all radio generic callbacks, calling radio_driver functions. This set of APIs is
meant to be generic and identical for all radios.

. radio_driver.c: low-level radio drivers

AN5480 - Rev 3 page 21/77

‘W AN5480

Middleware radio driver structure

71 Middleware radio driver structure

A radio generic structure, struct Radio_s Radio {};, is defined to register all the callbacks, with the fields detailed in
the table below.

Table 17. Radio_s structure callbacks

RadioInit Initializes the radio.

RadioGetStatus Returns the current radio status.
RadioSetModem Configures the radio with the given modem.
RadioSetChannel Sets the channel frequency.

RadioIsChannelFree

Checks if the channel is free for the given time.

RadioRandom Generates a 32-bit random value based on the RSSI readings.
RadioSetRxConfig Sets the reception parameters.
RadioSetTxConfig Sets the transmission parameters.

RadioCheckRfFrequenc

Checks if the given RF frequency is supported by the hardware.

RadioTimeOnAir Computes the packet time on air in ms, for the given payload.

. Sends the buffer of size. Prepares the packet to be sent and sets the radio in
RadioSend L

transmission.

RadioSleep Sets the radio in Sleep mode.
RadioStandby Sets the radio in Standby mode.
RadioRx Sets the radio in reception mode for the given time.
RadioStartCad Starts a CAD (channel activity detection).

RadioSetTxContinuousWave

Sets the radio in continuous wave transmission mode.

RadioRssi Reads the current RSSI value.
RadioWrite Writes the radio register at the specified address.
RadioRead Reads the radio register at the specified address.

RadioSetMaxPayloadLength

RadioSetPublicNetwork

Sets the maximum payload length.

Sets the network to public or private. Updates the sync byte.

RadioGetWakeUpTime Gets the time required for the board plus radio to exit Sleep mode.
RadioIrgProcess Processes radio IRQ.

RadioRxBoosted Sets the radio in reception mode with max LNA gain for the given time.
RadioSetRxDutyCycle Sets the Rx duty-cycle management parameters.

RadioTxPrbs Sets the transmitter in continuous PRBS mode.

RadioTxCw Sets the transmitter in continuous unmodulated carrier mode.

AN5480 - Rev 3 page 22/77

m AN5480

Radio IRQ interrupts

7.2 Radio IRQ interrupts

The possible sub-GHz radio interrupt sources are detailed in the table below.

Table 18. Radio IRQ bit mapping and definition

txDone Packet transmission finished
1 rxDone Packet reception finished LoRa and GFSK
2 PreambleDetected Preamble detected
3 SyncDetected Synchronization word valid GFSK
4 HeaderValid Header valid Rx
LoRa
5 HeaderErr Header error
. Err r;f;:gﬁéfync word, address, CRC or GFSK
CrcErr CRC error
7 CadDone Channel activity detection finished LoRa
8 CadDetected Channel activity detected CAD
9 Timeout Rx or TX timeout LoRa and GFSK Rx and Tx

For more details, refer to the product reference manual.

AN5480 - Rev 3 page 23/77

m AN5480

EEPROM driver

8 EEPROM driver

The EEPROM interface (sgfx_eeprom if.c)is designed above ee. c to abstract the EEPROM driver. The
EEPROM is physically placed at EE_BASE_ADRESS defined in the utilities conf.h.

Table 19. EEPROM APIs

void E2P Init (void); DEFAULT_FACTORY_SETTINGS is written when the EEPROM is empty.

void E2P RestoreFs

. DEFAULT_FACTORY_SETTINGS are restored .
(void); - -
Writes data in the EEPROM. For example:

Void E2P Write XXX
- - void E2P_Write VerboseLevel (uint8 t verboselevel);

Reads XXX from the EEPROM For example:

E2P Read XXX _
- - sfx rc enum t E2P Read Rc(void);

AN5480 - Rev 3 page 24/77

‘,_l AN5480

Utilities description

9 Utilities description

Utilities are located in the \Utilities directory.

Main APIs are described below. Secondary APIs and additional information can be found on the header files
related to the drivers.

9.1 Sequencer

The sequencer provides a robust and easy framework to execute tasks in the background and enters low-power
mode when there is no more activity. The sequencer implements a mechanism to prevent race conditions.

In addition, the sequencer provides an event feature allowing any function to wait for an event (where particular
event is set by interrupt) and MIPS and power to be easily saved in any application that implements “run to
completion” command.

Theutilities conf.h file located in the project sub-folder is used to configure the task and event IDs. The
ones already listed must not be removed.

The sequencer is not an OS. Any task is run to completion and can not switch to another task like a RTOS
would do on RTOS tick. Moreover, one single-memory stack is used. The sequencer is an advanced ‘while loop’
centralizing task and event bitmap flags.

The sequencer provides the following features:

. Advanced and packaged while loop system

. Support up to 32 tasks and 32 events

. Task registration and execution

. Waiting event and set event

. Task priority setting

To use the sequencer, the application must perform the following:

. Set the number of maximum of supported functions, by defining a value for UTIL. SEQ CONF TASK NBR.
. Register a function to be supported by the sequencer with UTIL SEQ RegTask ().
. Start the sequencer by calling UTIL SEQ Run () to run a background while loop.

. Call UTIL SEQ SetTask () when a function needs to be executed.

Table 20. Sequencer APls

void UTIL SEQ Idle(void) Called (in critical section - PRIMASK) when there is nothing to execute.
void UTIL SEQ Run (UTIL SEQ bm t | Requests the sequencer to execute functions that are pending and
mask bm) enabled in the mask mask bm.

void

UTIL SEQ RegTask (UTIL SEQ bm _t Registers a function (task) associated with a signal (task_id bm) in the
task id bm, uint32 t flags, void sequencer. The task id bm must have a single bit set.
(*task) (void))

Requests the function associated with the task id bm to be executed.
void The task prio is evaluated by the sequencer only when a function has
UTIL SEQ SetTask(UTIL SEQ bm t | finished.

taskId bm , uint32 t task Prio) |fgeveral functions are pending at any one time, the one with the highest
priority (0) is executed.

AN5480 - Rev 3 page 25/77

‘,_l AN5480

Timer server

9.2 Timer server
The timer server allows the user to request timed-tasks execution. As the hardware timer is based on the RTC,
the time is always counted, even in low-power modes.

The timer server provides a reliable clock for the user and the stack. The user can request as many timers as the
application requires.

The timer server is located in Utilities\timer\stm32 timer.c.

Table 21. Timer server APIs

UTIL TIMER Status t UTIL TIMER Init(void) Initializes the timer server.

UTIL TIMER Status_t UTIL TIMER Create

(UTIL TIMER Object t *TimerObject, uint32 t PeriodvValue, Creates the timer object and
) associates a callback function
UTIL TIMER Mode t Mode, void (*Callback) when timer elapses.

(void *), void *Argument)

UTIL TIMER Status t .
- - - Updates the period and starts

UTIL TIMER SetPeriod(UTIL TIMER Object t *TimerObject, the timer with a timeout value

: : (milliseconds).
uint32 t NewPeriodValue)

UTIL TIMER Status t UTIL TIMER Start Starts and adds the timer object to

(UTIL TIMER Object t *TimerObject) the list of timer events.

UTIL TIMER Status_t UTIL TIMER Stop Stops and removes the timer

(UTIL TIMER Object t *TimerObject) object from the list of timer events.
9.3 Low-power functions

The low-power utility centralizes the low-power requirement of separate modules implemented by the firmware,
and manages the low-power entry when the system enters idle mode. For example, when the DMA is in use to
print data to the console, the system must not enter a low-power mode below Sleep mode because the DMA
clock is switched off in Stop mode

The APIs presented in the table below are used to manage the low-power modes of the core MCU.

Table 22. Low-power APls

e e

void UTIL LPM EnterLowPower (void) Enters the selected low-power mode. Called by idle state of

the system
void LPM SetStopMode (LPM Id t id, Sets Stop mode. id defines the process mode requested:
LPM SetMode t mode) LPM Enable or LPM Disable.(!
void LPM SetOffMode (LPM Id t id, Sets Stop mode. id defines the process mode requested:
LPM SetMode t mode) LPM Enableor LPM Disable.

UTIL LPM Mode t UTIL LPM GetMode(void) | Returns the selected low-power mode.

1. LPM _Id t are bitmaps. Their shift values are defined in utilities def. h of project sub-folder.

AN5480 - Rev 3 page 26/77

‘,_l AN5480

Low-power functions

The default low-power mode is Off mode, that may be Standby or Shutdown mode (to be defined in void
PWR EnterOffMode (void) from Table 24):

. If Stop mode is disabled and low-power is entered, Sleep mode is selected.
. If Stop mode is not disabled, Off mode is disabled and low-power is entered, the LPStop mode is selected.
. If Stop mode is not disabled, Off mode is not disabled and low-power is entered, low-power Standby or

Shutdown mode is selected.

Table 23. Low-power truth table

Low-power idle mode LPM_SetStopMode LPM_OffStopMode

LPSleep UTIL LPM DISABLE Enable or disable
LPStop UTIL LPM ENABLE UTIL LPM DISABLE
LP Off UTIL LPM ENABLE

Low-level APls must be implemented to define what the system must do to enter/exit a low-power mode. These
functions are implemented in stm32 1pm if.c of project sub-folder.

Table 24. Low-level APlIs

o mEmw [Eeme]

void PWR EnterSleepMode (void) API called before entering Sleep mode
void PWR ExitSleepMode (void) API called on exiting Sleep mode
void PWR EnterStopMode (void) API called before Stop mode

void PWR ExitStopMode (void) API called on exiting Stop mode
void PWR_EnterOffMode (void) AP called before entering Off mode
void PWR ExitOffMode (void) API called on exiting Off mode

AN5480 - Rev 3 page 27/77

AN5480

System time

AN5480 - Rev 3

System time

The MCU time is referenced to the MCU reset. The system time is able to record the UNIX® epoch time.
The APIs presented in the table below are used to manage the system time of the core MCU.

Table 25. System time functions

Based on an input UNIX epoch in seconds and sub-
void SysTimeSet (SysTime t sysTime) seconds, the difference with the MCU time is stored in the
backup register (retained even in Standby mode).!")

SysTime t SysTimeGet (void) Gets the current system time. (")

uint32 t SysTimeMkTime

) Converts local time into UNIX epoch time. (?)
(const struct tm* localtime)

void SysTimeLocalTime

(const uint32 t timestamp, Converts UNIX epoch time into local time.®)

struct tm *localtime)

1. The system time reference is UNIX epoch starting January 1st 1970.

2. SysTimeMkTime and SysTimeLocalTime are also provided in order to convert epoch into tm structure as specified by
the time. h interface.

To convert UNIX time to local time, a time zone must be added and leap seconds must be removed. In 2018,
18 leap seconds must be removed. In Paris summer time, there are two hours difference from Greenwich time,
assuming time is set, local time can be printed on terminal with the code below.

{

SysTime t UnixEpoch = SysTimeGet () ;

struct tm localtime;

UnixEpoch.Seconds-=18; /*removing leap seconds*/
UnixEpoch.Seconds+=3600*2; /*adding 2 hours*/

SysTimeLocalTime (UnixEpoch.Seconds, & localtime);

PRINTF ("it's %02dh%02dm%02ds on %02d/%02d/%04d\n\r",
localtime.tm hour, localtime.tm min, localtime.tm sec,
localtime.tm mday, localtime.tm mon+l, localtime.tm year + 1900);

}

page 28/77

AN5480

Trace

AN5480 - Rev 3

Trace

The trace module enables to print data on a COM port using DMA. The APlIs presented in the table below are

used to manage the trace functions.

Table 26. Trace functions

UTIL ADV TRACE Status t
UTIL ADV TRACE Init(void)

UTIL ADV TRACE Status t

UTIL ADV TRACE FSend(uint32 t Verboselevel,
uint32 t Region,

uint32 t TimeStampState, const char
*strFormat, ...)

UTIL ADV_TRACE Status t

UTIL ADV_TRACE Send(uint8 t *pdata, uintl6_t len)
UTIL ADV_TRACE Status t

UTIL ADV_TRACE Z%CSend

(uint32 t VerboseLevel, uint32 t Region,
uint32 t TimeStampState, uint32 t length,
void (*usercb) (uint8 t*, uintl6 t, uintlé t))

TraceInit must be called at the application
initialization. Initializes the com or vcom
hardware in DMA mode and registers the
callback to be processed at DMA transmission
completion.

Converts string format into a buffer and posts it to
the circular queue for printing.

Posts data of length = 1en and posts it to the
circular queue for printing.

Writes user formatted data directly in the
FIFO (Z-Cpy).

The status values of the trace functions are defined in the structure UTIL _ADV_TRACE Status_t as follows.

typedef enum {
UTIL ADV TRACE OK =0,

UTIL ADV TRACE INVALID PARAM = -1,
UTIL ADV TRACE HW ERROR = -2,
UTIL ADV TRACE MEM ERROR = -3,
UTIL ADV_TRACE UNKNOWN ERROR = -4,

} UTIL ADV TRACE Status t;

/*Operation terminated successfully*/
/*Invalid Parameter*/

/*Hardware Error*/

/*Memory Allocation Error*/
/*Unknown Error*/

page 29/77

m AN5480

Trace

The UTIL ADV TRACE FSend (..) function can be used:

. in polling mode when no real time constraints apply: for example, during application initialization
#define PRINTF(...) do{} while (0!= UTIL ADV_TRACE FSend (0, NO MASK , TS ON,
__VA ARGS__)) //Polling Mode

. in real-time mode: when there is no space left in the circular queue, the string is not added and is not printed
out in com port

#define TPRINTF(...) do {

UTIL ADV_TRACE FSend (0, NO_MASK , TS ON, _ VA ARGS_);} while(0)
where:

— UTIL ADV TRACE FSend (..) isthe Verboselevel of the trace.

— The application verbose level, TraceVerbose (VLEVEL OFF, VLEVEL L, VLEVEL Mor VLEVEL H)is
setin the sys_app.nh file.

UTIL ADV_TRACE FSend (..) is displayed only if TraceVerbose > Verboselevel.

— The third parameter of UTIL_ADV TRACE FSend (..) is TS _ONor TS _OFF, and allows a timestamp
to be added to the trace.

The buffer length can be increased in case it is saturated in the stm32 adv_trace. c file with:

#define UTIL ADV TRACE TMP BUF SIZE 256U

The utility provides hooks to be implemented in order to forbid the system to enter Stop or lower modes while the

DMA is active:

. void UTIL_ADV_TRACE PreSendHook (void) { UTIL_LPM SetStopMode ((1 <<
CFG _LPM UART TX Id) , UTIL LPM DISABLE); }

. void UTIL ADV_TRACE PostSendHook (void){ UTIL_ LPM SetStopMode ((1 <<

CFG LPM UART TX Id) , UTIL LPM ENABLE);}

AN5480 - Rev 3 page 30/77

AN5480

Memory section

3

10 Memory section

The code is placed at 0x0800 0000. The sigfox_data (Credentials) is placed at 0x0803 E500 (can be modified
in the scatter file).

Also the EEPROM is emulated at address 0x0801 DOOO (EE_BASE ADRESS) to store the NVM data that must be
retained even if the power supply is lost.

Figure 8. Memory mapping

Sigfox data
0x803 E500

EEPROM

data
0x801 D000

Code

0x800 0000

AN5480 - Rev 3 page 31/77

m AN5480

Application description

1 Application description

1.1 Firmware package

When the user unzips the firmware of the STM32CubeWL MCU Package, the folder structure is the one shown in
the figure below.

Figure 9. Package overview

_htmresc

Documentation

v Drivers
> BSP
> CMSIS

» STM32WLso_HAL_Driver
v Middlewares
> 5T
v Third_Party
> FatFs
» FreeRTOS
» LeRaWAN
> mbed-crypto
> Sigfox
» SubGHz_Phy
v Projects
v NUCLEQ-WL53IC
v Applications
> BFU_1_lmage

> FatFs
> FreeRTOS
> KMS

> LoRaWAN
» LoRaWAMN_FUOTA
> SBSFU_2_Images_DualCore
v Sigfox
> Sigfox_AT_Slave
> Sigfox_AT_Slave_DualCore
> Sigfox_PushButton
> Sigfox_PushButton_DualCore
> SubGHz_Phy
> Demaonstrations
> Examples
» Examples_LL
> Examples_MIX
> Templates
» Templates_LL
> Utilities

The firmware of the STM32CubeWL contains two Sigfox applications: Sigfox_AT_Slave and Sigfox_PushButton.

AN5480 - Rev 3 page 32/77

m AN5480

AT modem application

11.2 AT modem application

The purpose of this application is to implement a Sigfox modem controlled though the AT command interface
over UART by an external host that can be a host-microcontroller embedding the application and the AT driver or
simply a computer executing a terminal. The AT_Slave application implements the Sigfox Stack that is controlled
through the AT command interface over UART. The modem is always in Stop mode unless it processes an AT
command from the external host.

In order to launch the AT_Slave project, the user must go to the folder

\Projects\NUCLEO-WL55JC\Applications\Sigfox\Sigfox AT Slave and choose one toolchain folder
(in the IDE environment).

11.2.1 UART interface
In this example, the LPUART is used at 9600 baud. The device can receive a character while in Stop 2 mode .
Tera Term is used as terminal to control the Sigfox modem, with the settings of the figure below.

Figure 10. Tera Term serial port setup

Port: COMb54 - 0K

Baud rate: 9600 v

Data: m Cancel
Parity:
Stop: Help
Flow control:

Transmit delay

0 msecichar 0 msec/line

The available commands are given in Section 11.2.3 to Section 11.2.24 with the following format:
. All commands setting parameters are in the form ATXX=Y<CR>.
. All commands getting parameters are in the form ATXX=?<CR>.

11.2.2 Default parameters
The default parameters when the program starts for the first time (EEPROM empty) are:
. RC1 default values for the region configuration
. 13 dBm output power
. default key to private
These default values can be changed by modifying E2P RestoreFs inthe sgfx_eeprom_if.c configuration
file.

The default private key and private ID are the test keys described in the Sigfox Test specification. They are stored
inthe sigfox_data.h file.

AN5480 - Rev 3 page 33/77

m AN5480

AT modem application

11.2.3 AT? - Available commands

Attention is used to check if the link is working properly.

Description
AT? provides the short help of all supported commands.
Syntax AT? <CR>
Arguments None
Response None
Result code <CR><LF> OK <CR><LF>

General format of the AT commands is described below:

. AT+<CMD> runs the <CMD>\r\n".

. AT+<CMD>? provides a short help of a given command.

. AT+<CMD>=<value> sets the value or runs with parameters \r\n".
. AT+<CMD>=? is used to get the value of a given command.

Possible error status are:

. OK: command run correctly without error.

. AT ERROR: Generic error

. AT PARAM ERROR: parameter of the command is wrong.

. AT BUSY_ ERROR: Sigfox modem busy, so the command could not complete.
* AT TEST PARAM OVERFLOW: parameter is too long.

. AT LIB ERROR: Sigfox library generic error

. AT TX TIMEOUT: Tx not possible due to CS (LBT regions only)

. AT RX TIMEOUT: no Rx frame received during downlink window

. AT RX ERROR: error detection during the reception of the command
* AT RECONF ERROR

11.2.4 ATZ - Reset
Description Generates a NVIC reset impacting the whole system (including radio and microprocessor).
Syntax ATZ<CR>
Arguments None
Response None
Result code None

This command only resets the device. The EEPROM data is maintained (see Section 11.2.5 AT$RFS - Factory
settings).

AN5480 - Rev 3 page 34/77

m AN5480

AT modem application

11.2.5 ATS$RFS - Factory settings
Description Restores the factory setting defined in sgfx_eeprom if.cinE2P RestoreFs function.
Syntax ATSRFS <CR>
Arguments None
Response None
Result code <CR><LF>OK<CR><LFE>

11.2.6 AT+VER - Firmware and library versions
Description Gets the version of firmware and libraries.
Syntax AT+VER <CR>
Arguments None
Response Version of firmware and libraries
Result code <CR><LF>OK<CR><LF>

11.2.7 ATS$ID - Device ID
Description Gets the 32-bit device ID.
Syntax ATSID<CR> or AT$SID=?<CR>
Arguments None
Response Id<CR><LF: Id on 4 bytes from MSB to LSB (8 ASCII)
Result code <CR><LEF>OK<CR><LE>

11.2.8 AT$PAC - Device PAC
Description Gets the 8-bit device PAC.
Syntax ATSPAC<CR> or ATSPAC=?<CR>
Arguments None
Response PAC<CR><LF: PAC on 8 bytes (16 ASCII)
Result code <CR><LEF>OK<CR><LE>

AN5480 - Rev 3 page 35/77

m AN5480

AT modem application

11.2.9 ATS410 - Encryption key
Description Sets or gets the configuration of the device encryption key.
Syntax ATS410= Arguments<CR>or ATS410=2?<CR>
0 : use private key
Arguments
1: use public key
Response Encryption Key Configuration <CR><LF
Result code <CR><LF>OK<CR><LE>

By default, the payload encryption is OFF.

11.2.10 ATS411 - Payload encryption

Description Sets or gets the device payload encryption mode.
Syntax ATS411= Arguments<CR>orATS411=7?<CR>
0 : payload encryption OFF
Arguments
1: payload encryption ON
Response Payload Encryption Configuration <CR><LF
Result code <CR><LF>OK<CR><LF>

11.2.11 AT$SB - Bit status

Description Sends a bit to the Sigfox network.
Syntax ATS$SB=<bit value>{,<Optional ResponseWaited>}{,<Optional
NbTxFlag>}<CR>
<bit value>:0or1
<Optional ResponseWaited>=0:no response waited (default)
Arguments <Optional ResponseWaited>=1:response waited
<Optional NbTxFlag>=0:one Tx frame sent
<Optional NbTxFlag>=1:three Tx frame sent (default)
Response None
Result code <CR><LF>OK<CR><LE>
Examples:

. ATS$SB=1 sends bit 1 with no response waited.
. ATS$SB=0, 1 sends bit 0 with a response waited.
. ATS$SB=0, 1, 1 sends bit 0 with a response waited and with three Tx frames sent.

AN5480 - Rev 3 page 36/77

m AN5480

AT modem application

11.2.12 AT$SF - ASCII payload in bytes

Description Sends a frame to the Sigfox network.
ATS$SF=<payload data>{, <Optional ResponseWaited>}
Syntax {,<Optional NbTxFlag> }<CR> to send payload
<payload data>: 12 bytes maximum in ASCII format (24 ASCII characters max)
<Optional ResponseWaited>=0:no response waited (default)
Arguments <Optional ResponseWaited>=1:response waited
<Optional NbTxFlag>=0:one Tx frame sent
<Optional NbTxFlag>=1:three Tx frames sent (default)
Response None
Result code <CR><LF>OK<CR><LFE>
Examples:

. ATS$SF=313245 sends 0x31 0x32 0x45 payload with no response waited.
. ATS$SF=010205, 1 sends 0x01 0x02 0x05 payload with a response waited.

11.2.13 AT$SH - Hexadecimal payload in bytes

Description Sends a frame to the Sigfox network.
ATS$SH=<payload length><payload data>{,<Optional ResponseWaited>}
Syntax {,<Optional NbTxFlag> }<CR> to send payload
<payload length>:length in bytes
<payload data>: 12 bytes maximum in hexadecimal format
<Optional ResponseWaited>=0:no response waited (default)
Arguments
<Optional ResponseWaited>=1:response waited
<Optional NbTxFlag>=0:one Tx frame sent
<Optional NbTxFlag>=1:three Tx frames sent (default)
Response None
Result code <CR><LF>OK<CR><LFE>
Examples:

. AT$SH=1, A sends 0x41 payload with no response waited.
. ATS$SH=1, A, 1 sends 0x41 payload with a response waited.

AN5480 - Rev 3 page 37/77

m AN5480

AT modem application

11.2.14 AT$CW - Continuous wave (CW)

Description Starts/stops a continuous unmodulated carrier for test.
Syntax ATSCW=<frequency> <CR>

< frequency >:frequency (in Hz or MHz)
Arguments

When < frequency >=0, the testis stopped.
Response None
Result code <CR><LF>0OK<CR><LFE>

The ATSCW=<input> <CR>command sends a continuous unmodulated carrier.

Note: . Default power is 14 dBm in RC1 and can be modified with ATS302 - Radio output power.
. This command is mandatory for certification of the device for CE.
. Power is stored in EEPROM for the region selected.
Examples:
. ATS$CW=868 starts a CW at 868 MHz.
. ATS$CW=902000000 starts a CW at 902 MHz.
. ATSCW=0 stops a CW.

11.2.15 ATS$PN - PRBS9 BPBSK test mode

Description Sends a continuous modulated carrier for test.
Syntax ATSPN= < input >,<bitrate><CR>

< frequency >:frequency (in Hz or MHz)
Arguments When < frequency >=0, the test is stopped.

< bitrate >=100 or 600 when input within center frequency

Response None
Result code <CR><LF>OK<CR><LF>
Note: . Default power is 14 dBm in RC1 and can be modified with ATS302 - Radio output power.

. This command is mandatory for certification of the device for CE.
. Power is stored in EEPROM for the region selected.

Examples:

. ATSPN=868, 100 starts a BPSK modulated continuous carrier at 868 MHz with data rate 100 CW
at 868 MHz.

. ATSPN=902000000, 600 starts a BPSK modulated continuous carrier at 902 MHz with data rate 600 CW
at 868 MHz

. ATS$SPN=0 stops a CW.

AN5480 - Rev 3 page 38/77

m AN5480

AT modem application

11.2.16 AT$MN - Monarch scan

Description Runs a Monarch scan.
Syntax ATSMN= {< Optional time >}<CR><CR>
Arguments < Optional time >:scan duration in seconds (default=5s)

No RC found
RC1 found
RC2 found

RC3c found
Response
RC4 found

RC5 found
RC6 found
RC7 found

Result code <CR><LF>OK<CR><LE>

Examples:
. ATSMN runs a Monarch scan for 5 s.
. ATSMN=10 runs a Monarch scan for 10 s.

11.2.17 AT$TM - Sigfox test mode

The modem must implement this command. This test mode can be used in front of the Sigfox RSA (radio signal
analyzer) and the SDR dongle (more details in Sigfox RSA user guide on https://resources.sigfox.com).

This command is for test-mode purposes only and cannot be used to connect to the Sigfox network.
Sigfox RSA tester must be configured as follows (RSA version 2.0.1):

Open Device Configuration.

Set Radio Configuration.

Set Payload Encryption Configuration to Payload Encryption Capable.

Set Oscillator Aging to1.

Set Oscillator Temperature Accuracy to 1.

Apply Settings.

Open (to start the tester).

No oo RN~

Description Starts a Sigfox test mode.
Syntax ATSTM=<rc>, <mode><CR>
Argument <rc> rc=1,2,3c, 4,5, 6or7 for the RC at which the test must run.

+ SFX TEST MODE TX BPSK=0

Sends only BPSK 26-byte packets including synchro bit and PRBS synchro frame at the
Tx_frequency uplink frequency defined in Table 3. The uplink frequency is RC dependent.

RSA test: press start after selecting UL-RF Analysis then launch the AT$TM=x, 0 command.

Argument <mode>

AN5480 - Rev 3 page 39/77

m AN5480

AT modem application

. SFX TEST MODE TX PROTOCOL=1

Full protocol with internal Sigfox key that sends all Sigfox protocol frames with all possible length
available with hopping (sends bit with downlink flag set and unset, sends out-of-band frame, sends
frame with downlink flag set and unset with all possible payload length 1 to 12 bytes.

config: number of times the test is done
RSA test:
- Press start after select UL-Protocol then launch the AT$TM=x, 1 command.
- Press start after select UL-Protocol w/Encrypted Payload, then set ATS411=1 prior
launching the AT$TM=x, 1 command. Do not forget to reset ATS411=0 before next tests.
. Mode =SFX TEST MODE RX PROTOCOL=2
Full protocol with internal Sigfox key that sends all Sigfox protocol frames with all possible lengths
available with hopping (sends bits with downlink flag set and unset, sends out-of-band frames,
sends frames with downlink flag set and unset with all possible payload lengths from 1 to 12
bytes).
Caution: This test lasts several minutes.
RSA test

- Press start after select DL-Protocol then launch the AT$TM=x, 2 command.

- Press start after select RSA test w/Encrypted Payload, then set ATS411=1 prior launching
the AT$TM=x, 2 command. Do not forget to reset ATS411=0 before next tests.

- Press start after select Start of listening window then launch the AT$TM=x, 2 command.
- Press start after select End of listening window then launch the AT$TM=x, 2 command.

. SFX_TEST MODE RX GFSK=3
Rx mode in GFSK with expected pattern = AA AA B2 27 1F 20 41 84 32 68 C5 BA 53 AE 79 E7 F6
DD 9B sent at the Rx_frequency downlink frequency defined in Table 3. The downlink frequency is
RC dependent. The test lasts 30 seconds.

Argument <mode> RSA test: Press start send GSK after selecting DL-GFSK Receiver then launch the AT$TM=x, 3
(cont'd) command. This test is only informative, not mandatory.

+ SFX _TEST MODE RX SENSI=4
This test is used to measure the real sensitivity of device and requests one uplink and one
downlink frame with the Sigfox key, with specific timings.
RSA test: Press start after selecting DL-Link Budget then launch the AT $TM=x, 4 command

+ SFX TEST MODE TX SYNTH =5
Does one uplink frame on each Sigfox channel frequency. This test takes a couple of minutes.
RSA test: Press start after selecting UL-Frequency Synthesis then launch the AT$TM=x, 5
command.

+ SFX TEST MODE TX FREQ DISTRIBUTION=6
This test consists in calling SIGFOX API send xxx functions to test the complete protocol in
uplink mode only, with uplink data from 0x40 to 0x4B.
RSA test: Press start after selecting UL-Frequency-Distribution then launch the AT$TM=x, 6
command.

Caution: This test lasts several minutes.

. SFX TEST MODE RX MONARCH PATTERN LISTENING SWEEP=7
This test consists in setting the device in pattern scan for 30 s in LISTENING SWEEP mode and
report status TRUE or FALSE depending on the pattern found against the expected pattern.
RSA test: not available on RSA.

. SFX TEST MODE RX MONARCH PATTERN LISTENING WINDOW=8
This test consists in setting the device in pattern scan for 30 s in LISTENING WINDOW mode
and report status TRUE or FALSE depending on the pattern found against the expected pattern.
RSA test: not available on RSA.

. SFX TEST MODE RX MONARCH BEACON=9

RSA test: not available on RSA SDR dongle. Press start after selecting Monarch Link Budget then
launch the AT$TM=x, 10 command.

AN5480 - Rev 3 page 40/77

m AN5480

AT modem application

. SFX_TEST MODE RX MONARCH SENSI=10
RSA test: not available on RSA SDR dongle.
- Press start after selecting Monarch signal at high power then launch the AT$TM=x, 10
command.
Press start after selecting High Power Level interferer for Monarch then launch the
ATS$TM=x, 10 command.
Press start Robustness to Low Power Level interferer for Monarch then launch the
AT$TM=x, 10 command.
+ SFX TEST MODE TX BIT=11
This test consists in calling SIGFOX API send bit function twice to test part of the protocol
in uplink only and LBT.
. SFX TEST MODE PUBLIC KEY=12
Sends Sigfox frame with public key activated. The uplink frequency is RC dependent.
RSA test: Press start after select UL-Public Key, then launch the AT$TM=x, 12 command.
. SFX_TEST MODE PUBLIC KEY=13
This test consists in calling functions once with the PN of the NVM data and verifies NVM storage.
RSA test: Press start after select UL-Non-Volatile Memory, then launch the AT$TM=x, 13
command, then remove supply and resend the AT$TM=x, 13 command.

Response None

Result code <CR><LE>0OK<CR><LE>

11.2.18 AT+BAT? - Battery level

Description Gets the battery level (in mV).
Syntax AT+BAT?<CR>

Arguments None

Response Returns the battery level (in mV).
Result code <CR><LF>OK<CR><LFEF>

11.2.19 ATS300 - Out-of-band message

Description Sends one keep-alive out-of-band message.
Syntax ATS300<CR>
Arguments None
Response None
Result code <CR><LF>OK<CR><LFEF>
Note: Out-of-band messages have Sigfox network well known format. They can be sent every 24 hours.

AN5480 - Rev 3 page 41/77

m AN5480

AT modem application

11.2.20 ATS302 - Radio output power

Description Sets/gets the radio output power.
Syntax ATS302=<power> <CR>orATS302=?<CR>
Arguments <power>indBm
Response None
Result code <CR><LF>OK<CR><LFE>
Note: . Default power is 13 dBm for RC1.

. This command is mandatory for certification of the device for CE.
. Power is saved in EEPROM for the region selected with ATSRC (one power per region).
. Firmware does not prevent the user to enter higher power than the recommended ones.

11.2.21 ATS400 - Enabled channels for FCC

Description Configure the enabled channels for FCC

ATS400=<8 digit word0><8 digit wordl><8 digit word2>,<timer enable><
Syntax CR>
0 to disable and 1 to enable

<8_digit_word0>
<8_digit wordl>

Arguments <8 digit word2>
<timer_enable>
Response None
Result code <CR><LF>OK<CR><LFEF>
Note: Default value = <000003FF><00000000><00000000>, 1
Example

ATS400=<000001FF><00000000><00000000>, 1

The timer between consecutive Tx frames is enabled and the following macro channels are enabled: 902.8 MHz,
903.1 MHz, 903.4 MHz, 903.7 MHz, 904.0 MHz, 904.3 MHz, 904.6 MHz, 904.9 MHz and 905.2 MHz.

Note: At least nine macro channels must be enabled to ensure the minimum of 50 FCC channels (9 * 6 = 54). The
configured default sigfox channel must be at least enabled in configuration word (see Section 6.1.3 Set
standard configuration).

AN5480 - Rev 3 page 42/77

m AN5480

AT modem application

11.2.22 AT$RC - Region configuration

Description Sets/gets the region configuration (RC).
Syntax ATSRC=<rc><CR> or AT$SRC=?<CR>
<rc>
RC1
RC2
RC3c
Arguments
RC4
RC5
RC6
RC7
RC1
RC2
RC3c
Response RC4
RC5
RC6
RC7

Result code <CR><LF>OK<CR><LE>

The AT$SRC=<zone><CR> command can be used to set the current zone (response 0OK<CR>)

11.2.23 ATE - Echo mode
Not used except to set echo mode.

11.2.24 AT+VL - Verbose level

Description Sets/gets the verbose level.

Syntax AT$VL=<verbose level><CR>or ATSVL=?<CR>
Arguments <verbose level>:0,1,20r3

Response 0,1,20r3

Result code <CR><LF>OK<CR><LF>

The verbose level is stored in the EEPROM.

AN5480 - Rev 3 page 43/77

m AN5480

PushButton application

1.3 PushButton application

The PushButton application is a standalone example. On a user push-button event, this application reads the
temperature and battery voltage (mV) and sends then in a message to the Sigfox network.

In order to launch the Sigfox PushButton project, go to
Projects\NUCLEO-WL55JC\Applications\Sigfox\Sigfox PushButton and choose a toolchain folder.

Note: The device is always in Stop 2 mode unless the user button 1 is pressed.

1.4 Static switches
Static defines are used to switch optional features such as debug, trace or disable low power.
To modify the static switches, go to one of the following:
. Projects\NUCLEO-WL55JC\Applications\Sigfox\Sigfox AT Slave\Core\Inc\sys conf.h
. Projects\NUCLEO-WL55JC\Applications\Sigfox\Sigfox PushButton\Core\Inc\sys conf.h
With #define DEBUG, the debug mode enables the DBG GPIO SET and DBG_GPIO RST macros as well as the
debugger mode, even when the MCU goes in low-power.
To force the STM32 to remain in Sleep mode, LOW POWER DISABLE must be defined to 1 to help the debugging.

AN5480 - Rev 3 page 44/77

m AN5480

Dual-core management

12 Dual-core management

In the STM32WL5x devices, the choice of a dual core is done to separate the application part mapped on
Cortex-M4 (CPU1), from the stack and firmware low layers mapped on Cortex-M0+ (CPU2).

In a dual-core proposed model, two separated binaries are generated: CPU1 (CM4) binary is placed at

0x0800 0000 and CPU2 (CMOPLUS) binary is placed at 0x0802 0000.

A function address from one binary is not known from the other binary: this is why a communication model must
be put in place. The aim of that model is that the user can change the application on CPU1 without impacting the
core stack behavior on CPU2. However, ST still provides the implementation of the two CPUs in open source.
The interface between cores is done by the IPCC peripheral (inter-processor communication controller) and the
inter-core memory, as described in Section 12.1 .

This dual-core implementation has been designed to behave the same way as the single-core program execution,
thanks to a message blocking handling through a mailbox mechanism.

121 Mailbox mechanism

The mailbox is a service implementing a way to exchange data between the two processors. As shown in the

figure below, the mailbox is built over two resources:

. IPCC: This hardware peripheral is used to trigger an interrupt to the remote CPU, and to receive an interrupt
when it has completed the notification. The IPCC is highly configurable and each interrupt notification may
be disabled/enabled. There is no memory management inside the IPCC.

. Inter-core memory: This shared memory can be read/written by both CPUs. It is used to store all buffers
that contain the data to be exchanged between the two CPUs.

Figure 11. Mailbox overview

CPU2

CPU1
features

features

MBMUX

The mailbox is specified in such way that it is possible to make some changes of the buffer definition to some
extend, without breaking the backward compatibility.

1211 Mailbox multiplexer

As described in Figure 12, the data to be exchanged need to communicate via the 12 available IPCC channels
(six for each direction). This is done via the MBMUX (mailbox multiplexer) that is a firmware component in charge
to route the messages.

The data type has been divided in groups called features. Each feature interfaces with the MBMUX via its own
MBMUXIF (MBUX interface).

The mailbox is used to abstract a function executed by another core.

AN5480 - Rev 3 page 45/77

‘,_l AN5480

Mailbox mechanism

12.1.2 Mailbox features
In STM32WL5x devices, the CPU2 has the following features:
. System, supporting all communications related to the system

This includes messages, that are either related to one of the supported stacks or none of them. The CPU1
channelO (fixed at channel 0) is used to notify the CPU2 that a command has been posted, and to receive
the response of that command from the CPU2. The CPU2 channel0 is used to notify the CPU1 that an
asynchronous event has been posted.

The following services are mapped on system channel:

— System initialization

- IPCC channels versus feature registration

— Information exchanged on feature attributes and capabilities

— Possible additional system channels for high-priority operations (such RTC notifications)
. Trace

The CPU2 fills a circular queue for information or debug, that is sent to CPU1 via the IPCC. the CPU1 is
in charge to handle this information, by outputting it on the same channel used for CPU1 logs (such as the

USART).
. KMS (key management services)
. Radio

It is possible to interface directly to the sub-GHz radio without passing by the stack in CPU2. A dedicated
mailbox channel is used.

. Protocol stack

This channel is used to interface all the protocol stack commands (such as Init or request) and events
(response/indication) related to the stack implemented protocol.

Figure 12. MBMUX - Multiplexer between features and IPCC channels

System KMS Trace Protocol stack Other
application application application application application
System KM'S Tracé Protocol stack Other
MBMUXIF MBMUXIF MBMUXIF MBMUXIF MBMUXIF
MBMUX
IPCC_IF
-}——— CPU1 to CPU2 communication direction
l T l T --f—— CPU2 to CPU1 communication direction
IPCC (6 channels x direction)

In order to use the MBMUX, a feature needs to be registered (except the system feature that is registered
by default and always mapped on IPCC channel 0). The registration dynamically assigns to the feature, the
requested number of IPCC channels: typically one for each direction (CPU1 to CPU2 and CPU2 to CPU1).

AN5480 - Rev 3 page 46/77

m AN5480

Inter-core memory

In the following cases, the feature needs just a channel in one direction:
. Trace feature is only meant to send debug information from CPU2 to CPU1.
. KMS is only used by CPU1 to request functions execution to CPU2.

Note: . The RTC Alarm A transfers the interrupt using one IPCC IRQ, not considered as a feature.
. The user must consider adding KMS wrapper to be able to use it as a feature.

12.1.3 MBMUX messages

The mailbox uses the following types of messages:

. cmd command sent by the Cortex-M4 to the Cortex-M0+, composed of:
— Msg ID identifies a function called by the Cortex-M4 but implemented on the Cortex-MO+.
— Ptr buffer params points to the buffer containing the parameters of the above function
- Number of params

. Resp, response sent by the Cortex-M0+ to the Cortex-M4, composed of:
— Msg ID (same value as Cmd Msg ID)
— Return value contains the return value of the above function.

. Notif, notification sent by the Cortex-M0+ to the Cortex-M4, composed of:
— Msg IDidentifies a callback function called by the Cortex-M0+ but implemented on the Cortex-M4.
- Ptr buffer params points to the buffer containing the parameters of the above function.
- Number of params

. Ack, acknowledge sent by the Cortex-M4 to the Cortex-M0+, composed of:
— Msg ID(same value as Notif Msg ID)
— Return value contains the return value of the above callback function.

Figure 13. Mailbox messages through MBMUX and IPCC channels

Cortex-M4 application Cortex-M0+ application

A A

Cmd Resp Notif] |Ack

€—— Notiff/Ack communication
channel message

—— Cmd/Response communication
channel message

MBMUX

IPCC

12.2 Inter-core memory

The inter-core memory is a centralized memory accessible by both cores, and used by the cores to exchange
data, function parameters, and return values.

AN5480 - Rev 3 page 47/77

m AN5480

Inter-core memory

12.2.1 CPU2 capabilities

Several CPU2 capabilities must be known by the CPU1 to detail its supported features (such as protocol stack
implemented on the CPU2, version number of each stack, of regions supported).

These CPU2 capabilities are stored in the features_info table. Data from this table are requested at initialization
by the CPU1 to expose CPU2 capabilities, as shown in Figure 16.

The features_info table is composed of:
. Feat Info Feature Id:feature name
. Feat Info Feature Version:feature version number used in current implementation

MB_MEM?2 is used to store these CPU2 capabilities.

12.2.2 Mailbox sequence to execute a CPU2 function from a CPU1 call

When the CPU1 needs to call a CPU2 feature func X (), a feature func_ X () with the same APl must be
implemented on the CPU1:

1. The CPU1 sends a command containing feature func_X () parameters in the Mapping table:

a. func_ X IDthatwas associated to feature func_ X () atinitialization during registration, is added
in the Mapping table. func_X_ID has to be known by both cores: this is fixed at compilation time.

b. The CPU1 waits the CPU2 to execute the feature func X () and goes in low-power mode.
c. The CPU2 wakes up if it was in low-power mode and executes the feature func X().
2. The CPU2 sends a response and fills the Mapping table with the return value:
a. The IPCC interrupt wakes up the CPU1.
b. The CPU1 retrieves the return value from the Mapping table.

Conversely, when the CPU2 needs to call a CPU1 feature func X 2(),a feature func X 2() with the
same API must be implemented on the CPU2:

1. The CPU2 sends a notification containing feature func X 2 () in the Mapping table.
2. The CPU1 sends an acknowledge and fills the Mapping table with the return value.

AN5480 - Rev 3 page 48/77

m AN5480

Inter-core memory

The full sequence is shown in the figure below.

Figure 14. CPU1 to CPU2 feature_func_X() process

CPU1 | CPU2

application feature_mbwrapper.c | feature_mbwrapper.c | stack

| |

a_ function()

{

... feature func X(a,b,c) I
k = { I
feature func X(a,b,c); stores:

func X ID, a, b ,c —>
in MappingTable
}

feature_ func_ X wrap ()
{
k =

feature_ func _X(a,b,c);

}

feature func X(a,b,c)

{

y
-k

CPU1
waits

return k;

}

process continues
return;
} /* end of a function */

AN5480 - Rev 3 page 49/77

m AN5480

Inter-core memory

12.2.3 Mapping table

The Mapping table is common structure in the MBMUX area of Figure 14. In Figure 16, the memory mapping is
referenced as MAPPING_TABLE.
The MBMUX communication table, MBSYS_RefTable, is described in the figure below.

Figure 15. MBMUX communication table

MBSYS_RefTable —

MBCmdRespParam[0] MsgTd
MBCmdRespParam[1] void (*MsgCm4Cb) (void ComObj) ;
MBCmdRespParam[2] void (*MsgCmOplusCb) (void ComObj) ;
MBCmdRespParam[3] BUfSize
MBCmdRespParam[4] ParamCnt
MBCmdRespParam[5] *ParamBuf
MBNotifAckParam[O0] Returnval
MBNotifAckParam[1] L
MBNotifAckParam[2]
MBNotifAckParam[3]
MBNotifAckParam[4]
MBNotifAckParam[5]
MBMUXMapping
[FEAT INFO CNT][2];
SynchronizeCpusAtBoot
ChipRevId Legend: init at registration

This MBSYS_RefTable includes:

. two communication parameters structures for both Command/Response and Notification/Acknowledge
parameters for each of the sic IPCC channels.

Each communication parameter, as shown in MBMUX Mapping table area of Figure 14, is composed of:
- MsgId: message ID of feature func X ()
- *MsgCm4Cb: pointer to CPU1 callback feature func X()
— *MsgCmOplusCb: pointer to CPU2 callback feature func X ()
— Bufsize: buffer size
— ParamCnt: message parameter number
- ParamBuf: message pointer to parameters
- ReturnVal: return value of feature func X()
. MBMUXMapping: chart used to map channels to features

This chart is filled at the initialization of MBMUX during the registration. For instance, if the radio
feature is associated to Cmd/Response channel number = 1,then MBMUXMapping must associate
[FEAT INFO RADIO ID][1].

. SynchronizeCpusAtBoot: flags used to synchronise CPU1 and CPU2 processing as shown in Figure 17
sequence chart.

. ChipRevId: stores the hardware revision ID.

AN5480 - Rev 3 page 50/77

AN5480

Inter-core memory

3

MB_MEM1 is used to send command/response set () parameter and to get the return values for the CPU1.

12.2.4 Option byte warning

A trap is placed in the code to avoid erroneous option byte loading (due to an issue reported in the product errata
sheet in section ‘Option byte loading failure at high MSI system clock frequency'). The trap can be removed if the
system clock is set below or equal to 16 MHz.

12.2.5 RAM memory mapping
The figure below shows the mapping of both CPU1 and CPU2 RAM memory areas and the inter-core memory.

Figure 16. STM32WL5x RAM memory map

0x2000 FFFF

RAM2_PRIV
0x2000 C000
RAM2 SH2 0x2000 BFFF featuﬁs_mfg '\Eme +
0x2000 B00O —
MAPPING_TABLE+
RAM2_SH1 v
RAM1

CPU2 memory

AN5480 - Rev 3 page 51/77

m AN5480

Startup sequence

12.3 Startup sequence
The startup sequence for CPU1 and CPU2 is detailed in the figure below.

Figure 17. Startup sequence

CPU1

boot

v

Platform init
® HAL
® System clock config
® L PM iNit
® Trace/USART config

CPU2

\ 4
MBMUX system init #define CPUS BOOT SYNC PREVENT CPU2 TO START OxFFFF
#define CPUS BOOT SYNC ALLOW CPU2 TO START 0x5555
® Allocate memory for shared table. — — — - —
ocale memory for sha ed table #define CPUS BOOT SYNC CPU2 INIT COMPLETED OxAARA
® Store table addr in #define CPUS_BOOT_ SYNC RTC REGISTERED 0x9999

OPTIONBYTE_IPCC_BUF_ADDR.
® [PCC init.
® Registers system to channel 0 C/R.
® SynchronizeCpusAtBoot = OxXFFFF
® PR CR4 C2BOOT = 1

Boot

A
Core init

® HAL init
® RTC init
® | PM init

v

Retrieve shared table addr in
OPTIONBYTE_IPCC_BUF_ADDR

v

MBMUX system init
® Allocate memory for features INFO.

\ 4
Wait
SynchronizeCpusAtBoot = 0xAAAA

® Register system to channel N/Ack.
® SynchronizeCpusAtBoot = 0xAAAA

v<7SynchronizeCpusAtBoot = OxAAAA
1

AN5480 - Rev 3 page 52/77

m AN5480

Startup sequence

The various steps are the following:
1. The CPU1, that is the master processor in this init sequence:

a. executes the platform initialization.

b. initializes the MBMUX system.

c. setsthe PWR CR4 C2BOOT flag to 1, which starts the CPU2.

d. waits that CPU2 sets the SynchronizeCpusAtBoot flag to OXAAAA.
2. The CPU2 boots and:

a. executes the core initialization.

b. retrieves the shared table address.
c. initializes the MBMUX system.
d

sets the SynchronizeCpusAtBoot to OXAAAA to inform the CPU1 that he has ended its init
sequence and that he is ready.

3. The CPU1 acknowledges this CPU2 notification.
Then both cores are initialized, and the initialization goes on via MBMUX, as shown in the figure below.

Figure 18. MBMUX initialization

CPU1 | CPU2
|
5 '
93]
E: Sequencer run (idle)
S —
D
Request to Cortex-M0O+] o
feature list pointer | cna
I '
. I Respond to Command/()
N Resp I Sequencer_run (idle)
Y I
Register high-Priority [O
channel for RTC : cmd
: r
| Register high priority channel for RTC
- Respond to Command ()
: Resp | Sequencer run (idle)
Wait !
SynchronizeCpusAtBoot = 0x9999 : Ccmd A

< |

SynchronizeCpusAtBoot = 0x9999
v I

Register channel for chosen feature

Cmd

Y

Register channel for chosen feature
Respond to Command ()
Sequencer run (idle)

v

Resp

AN5480 - Rev 3 page 53/77

m AN5480

Key management services (KMS)

13 Key management services (KMS)

Key management services (KMS) provide cryptographic services through the standard PKCS#11 APIs (developed
by OASIS), are used to abstract the key value to the caller (using object ID and not directly the key value).

KMS can be executed inside a protected/isolated environment in order to ensure that key value cannot be
accessed by an unauthorized code running outside the protected/isolated environment, as you can see in the
figure below.

Figure 19. KMS overall architecture

KEY1

STM32 device (VALUE1)

User application

[PKCS11 APIs (Tokens and object ID based APIs
(Token = STM32
Secure key update
(import{BLOB())
AES RSA/ Obiect
decrypt/ ECDSA Digest)
: . managem
encrypt sign/verify

e
Static ID

el

Dynamic

NVM storage

Static embedded keys

T T
NSNS EEEEEEE
LI I O I O B R

Isolated/protected environment
| 1]
I 1T

|
|
T

For more details, refer to KMS section in the user manual Getting Started with the SBSFU of STM32CubeWL
(UM2767) .

To activate the KMS module, KMS_ENABLE must be set to 1 in C/C++ compiler project options.
KMS only supports a subset of PKCS #11 APlIs:

. Object management functions: creation/update/deletion

. AES encryption/decryption functions: CBC, CCM, ECB, GCM, CMAC algorithms

. Digesting functions

. RSA and ECDSA signing/verifying functions

. Key management functions: key generation/derivation

AN5480 - Rev 3 page 54/77

m AN5480

KMS key types

13.1 KMS key types
KMS manages three types of keys, only the two following types are used:
. Static embedded keys
— predefined keys embedded within the code that cannot be modified
— immutable keys
NVM_DYNAMIC keys:
— runtime keys
— keys IDs may be defined when keys are created using KMS: DeriveKey () or CreateObject ()

— keys can be deleted, defined as mutable

13.2 KMS keys size

Static and dynamic keys used by Sigfox stack occupies different sizes. As described in the figure below, each
static key size is 148 bytes = header(20) + blob(128).

Figure 20. KMS static key size

Header 20

Static key 1
Blob 128
Header 20

Static key 2
Blob 128

AN5480 - Rev 3 page 55/77

m AN5480

Sigfox keys

As described in the figure below, at the top of KMS key storage, there is a KMS generic header (32 bytes), then
each dynamic keys size is 160 bytes = header(32) + blob(128).

Figure 21. KMS dynamic key size

Generic header 32
Header 32
Dynamic key 1
Blob 128
Header 32
Dynamic key 2
Blob 128

13.3 Sigfox keys

In the STM32CubeWL application list, the KMS are used on Cortex-CMO0+ only, on dual-core application. The root
keys are chosen to be static embedded keys. All derived keys are NVM_DYNAMIC keys.

For Sigfox stack, there is one static root key: Sigfox Key.
Sigfox pacand sigfox id are stored in the KMS but cannot be used as crypto keys.
There is one volatile NVM_DYNAMIC generated key: Sigfox Public Key.

13.4 KMS key memory mapping for user applications

Static embedded keys correspond to USER _embedded Keys (used for root keys). They are placed in a
dedicated data storage memory in Flash memory/ROM. The linker files for user applications locate them from
0x0803 E500 to 0x0803 E7FF, as shown in the figure below.

NVM_DYNAMIC keys are placed in KMS key data storage area, KMS_DataStorage.

AN5480 - Rev 3 page 56/77

m AN5480

How to size the NVM for KMS data storage

The total data storage area must be 4 Kbytes, as explained in How to size NVM for KMS data storage. They have
been placed from: 0x0803 D000 to 0x0803 DFFF, as shown in the figure below. This size may be increased if
more keys are necessary.

Figure 22. ROM memory mapping

0x0803 FFFF

0x0803 E7FF

USER_embedded_Keys

Cortex-MO+ 0x0803 E500

0x0803 DFFF

KMS_DataStorage

0x0803 D000

ROM (FLASH)

0x0802 0000

13.5 How to size the NVM for KMS data storage

The NVM is organized by pages of 2 Kbytes. Due to the double buffering (flip/flop EEPROM emulation
mechanism), each page needs a “twin”. So the minimum to be allocated for NVM is 4 Kbytes. The size of
the allocation is defined in the linker file.

The linker files proposed by the user applications use the minimum allowed size (2 * 2 Kbytes). The associated
limitations/drawbacks are explained below. The user must size NVM depending on the application specific need.

User applications use the NVM only to store the KMS keys. A Sigfox key and the related chosen KMS attributes
occupy 128 bytes. As described in Figure 21, the KMS header takes 32 bytes for each key and a global header
common to all keys takes 32 bytes. Given the above values, it is possible to calculate how many keys can be
stored in 2 Kbytes:

(2048 - 32) / (32 + 128) = 12,6 ==> 12 KMS keys (KMS key meaning key value, key attributes, and header).

User applications are configured such that only NvM DYNAMIC is used. NVM_STATIC can be filled via blob, but
not covered by user applications.

NVM_DYNAMIC can host derived keys (via C_DeriveKey ()) and root keys (via C_CreateObject ()).

Sigfox applications use NVM_DYNAMIC only for derived keys. Sigfox_ PushButton generates one derived key
each time a data is sent (uplink) when payload encryption is set.

Smaller is the NVM size, more the NVM is written and erased, shorter becomes its life expectation.

Destroy a key does not mean that a key is erased but that is tagged as destroyed. This key is not copied at the
next flip-flop switch. A destroy flag also occupies some NVM bytes.

AN5480 - Rev 3 page 57/77

m AN5480

KMS configuration files to build the application

The estimation of the life expectation given below corresponds to the case of payload encryption set (one key is
generated at each uplink and previous key is destroyed):

. Up to 12 encrypted keys can be generated before a flip-flop transfer is necessary. At the 13! uplink, the
derived key is stored at page 2, and page 1 is erased.

. After 24 encrypted uplinks, the key is stored back on page 1 and page 2 is erased.

. After a 240 000 uplinks, the two NVM pages have been erased 10 000 times, which is the estimated lifetime
of the Flash sector.

. Since the maximum amount of Sigfox uplinks is 144 messages per day, the expected lifetime is about 4.5
years. Lifetime can be doubled by doubling the NVM size.
Note: . This calculation is not valid when payload encryption is disabled.

. Obsolete keys must be destroyed otherwise, if page 1 is fully filled by active keys, the flip-flop switch
cannot be done and an error is generated.

13.6 KMS configuration files to build the application
The KMS are used in the Sigfox example by setting
SIGFOX_KMS = 1in CMOPLUS/Sigfox/App/app sigfox.h.
The following files must filled with the SubGhz stack keys information:
. The embedded keys structures are defined in CMOPLUS/Core/Inc/ kms platf objects config.h.
. The embedded object handles associated to SubGhz stack keys. The use of KMS modules is defined in
CMOPLUS/Core/Inc/kms platf objects interface.h

13.7 Embedded keys

The embedded keys of the SubGHz protocol stack chosen, must be stored in a ROM region in which a

secure additional software, like the SBSFU (Secure Boot and Firmware Update), can ensure data confidentiality
and integrity. For more details on the SBSFU, refer to the application note Integration guide of SBSFU on
STM32CubeWL (AN5544).

The positioning of these embedded keys in the ROM are indicated in Figure 22.

AN5480 - Rev 3 page 58/77

‘,_l AN5480

Personalization and activation

14 Personalization and activation

When compiling and loading the firmware using the default sigfox data.h, default Sigfox credentials are
loaded in the device. This allows to test the Sigfox device locally in the lab in front of the RSA.

The following steps are needed for the Sigfox device to send data to the Sigfox backend server:

1. Personalization: Every Sigfox device must be loaded with the ID, PAC and private key credentials, that are
necessary to activate the device and send data to the Sigfox data server.

2. Activation: Once the device is personalized, it needs to be recorded by the Sigfox backend server. This step
requires to log-on the Sigfox backend server.

Note: Steps below require STM32CubeProgrammer version 2.6.0 minimum.
14.1 Personalization
As soon as the user connects the STM32WL device, a button Sigfox Credentials is added on the main menu.

Figure 23. STM32CubeProgrammer Sigfox panel button

E STM32CubeProgrammer

S

AN5480 - Rev 3 page 59/77

‘,_l AN5480

Personalization

After opening the Sigfox Credentials window, the chip certificate is extracted automatically with 136-byte size and
displayed in chip certificate area. This certificate can be saved in a binary file and copied to clipboard to be used
in the ST web interface to get Sigfox credentials (see Section 14.1.1). The user have access to the ST web
interface using Open Sigfox page button integrated in the window.

Figure 24. STM32CubeProgrammer Sigfox panel - Getting certificate

s F T el g

Lo v - Ly

BB BT 30 0L D NG S 00D 80 8% 8 DA PR 29 CA MR PR 19 R B T AN OO BB 3D W 00
A GBI Tkl G0 00 e 0 R 200 30 T B D3 13 3 DD K
T I W AN R %) AF D &3 DO B B3 4 B TT B8 5 FA S8 D6 B BN BT &4 T3 AL
3 A 75 88 0-CF 5243 FJ 0L 07 05 D0 00 74 RS 29 70 57 0F D67 C3 00 A 5C 06 38 % &)
B B D L3R L A
e g Bl ety g L
Lag Verbousty leesl @ 1
Ly . ol
Bapd o ingm
(=]
' —a g ~ e
H§ o
i ¥ 4 B o
=] L LB 4
M Nawg pragress
i Tomap phageind ot - X 0

AN5480 - Rev 3 page 60/77

Personalization

The command line used to save the chip certificate in a binary file:
. Command: -ssigfoxc

. Description: This command allows the user to save the chip certificate to a binary file.

. Syntax: -ssigfoxc <binary file path>

. Example: STM32 Programmer CLI.exe -c port=swd -ssigfoxc /local/user/
chip certif.bin

ST-LINK SN
ST-LINK FW
Board

Device name
Flash size
Device type
Device CPU

STM32CubeProgrammer Sigfox CLI - Getting certificate

STM32WL xx
256 KBytes
MCU

Cortex-M4

SigFox certificate File : C:\test\sigfox.bin

Getting the credentials
ST provides a web interface on my.st.com, where the user can get the sigfox trial credentials.

The credentials are delivered as a zip file containing the following fi

. sigfox data XXXXXXxX.h defining the credentials that can be integrated into the application source

code

. sigfox data XXXXXXXX.bin to flash the credentials onto the chip, thanks to STM32CubeProgrammer

AN5480

Personalization

3

Follow the steps below to get the credentials:
1. Go to https://my.st.com/sfxp and register on my.st.com to create a specific user account (if not existing yet).

Figure 26. Login on my.st.com

Wiglcome back! HEw user?

Fastmd

s & Techroiagy ‘zevmren

2. Paste the certificate extracted with STM32CubeProgrammer into the form.

Figure 27. Sigfox credential page

sigfox Kys

STM32WL

Follow this online process to enable your NUCLED-WL55JC1 board on Sigfox network (for more details check this application note).

Please refer to www.sigfox.com to check Sigfox network coverage

Use STM32CubeProgrammer software to obtain the certificate for the STM32WL MCU, and copy/paste it in this online tool. The download of a
ZIP file containing your Sigfox credentials will start automatically.

-

&
Mow you e ok lo procesd

3. Click on the download button.

Figure 28. Download button

Sigfox credentials |1-|

AN5480 - Rev 3 page 62/77

AN5480

Personalization

3

4. Azipfile is automatically downloaded on the user computer.

Figure 29. Sigfox_credetentials download

AL RR AR AL AR AL RR LR RR FL RR AL AR LF FF AR AR FF AR FR FR
AF AA FA AF AF AA AF FA FA AF AF AR FA AF FF AA FF AF AR FA FA |
FA AF FA AF FA FA AR AF FA FF AF AR FF AR AA FF FF FA FA FF AR
AN FF AR AF FF FA RA FF FA RA FA AR AR AR FF AF AR FA AR AR AA |

AF FF AF AR AA AF FF AR

sigfox_credentials.zip ~ e

AN5480 - Rev 3 page 63/77

‘,_l AN5480

Personalization

14.1.2 Loading the credentials in the device
As soon as the user gets the Sigfox credential from the ST web interface, the user can load them in the
STM32WL device, at 0x0803 E500, using the Sigfox credential provisioning area in STM32CubeProgrammer.
. Case 1: Binary-Raw:
The binary file returned by the ST web interface must be used. This file must be 48-byte size and is written
at the default address 0x080 3E500.
. Case 2: Binary KMS:
The header file returned by the ST web interface must be used. It is written at the default address
0x0803 E500.

Figure 30. STM32CubeProgrammer Sigfox panel - Flashing credentials

[STMINCukeProgrammaer - (u] s

ST S N7

34 39 37 30 31 30 30 35 07 07 60 &5 96 24 FE 36 29 CA 58 F3 D5 29 98 09 F7 A3 4E COEE 15 5FDL
10 B2 F4 BA 84 13 J0/D3 O3 JA QA 02 €10 9808 10 FC 20 23 BC 4C BA 3£ 5E 15 E5 B0 8D BD
SN | o0 4003 44 9 1t 74 £B AB FC 3 51 AF 4741 DD BE B3 64 BE 14 74 48 D6 36 B8 57 44 F5 41
sl | 61/ CA 76 €0 DB AT B0 CF ED 61 F3 04 07 05 DO BC T4 F6 25 23 17 8F BD £7 O3 CB 34 50 0F 58 58 A2
BC DCED 1K 9T 18 4B 53

Coy

yrlfiguraticen Brary Faw = riddmex Dx0803EN0D

Log Vorbosity level @ 1 2 1

The command line used to write the credentials in the device is defined as follows:
. Command: -wsigfoxc

. Description: This command allows the user to write the sigfox credentials at the default address
0x0803 E500.

. Syntax: -wsigfoxc <sigfox credential file path> <address>
— <address> is optional (by default 0x0803 E500).
— <sigfox _credential file path> can be a binary file (see example 1) or an header file (see
example 2 below).

AN5480 - Rev 3 page 64/77

"l Personalization

Example 1
STM32 Programmer CLI.exe -c port=swd -wsigfoxc “/local/user/sigfox data.bin”
0x0803E500

STM32CubeProgrammer Sigfox CLI - Flashing raw credentials

SigFox credential file : C:\SOFT_DOCS\KmsCredentials\sigfox data.bin

Memory Programming ...

Opening and parsing file: sigfox_data.bin
File : sigfox_data.bin
Size : 48 Bytes
Address : @x0803E500

Erasing memory corresponding to segment 9:
Erasing internal memory sector 31

Jownload in Progress:
100%

Time elapsed during download operation: 00:00:00.045

erifying

Read progress:

Example 2

Personalization

STM32 Programmer CLI.exe -c port=swd -wsigfoxc “/local/user/sigfox data.h”

STM32CubeProgrammer Sigfox CLI - Flashing KMS credentials

SigFox credential file : C:\SOFT_DOCS\KmsCredentials\sigfox data.h

Memory Programming

Opening and parsing file: Sigfox EmbKey.bin
File : Sigfox EmbKey.bin
Size : 592 Bytes
Address : Ox0803E500

Erasing memory corresponding to segment @:
Erasing internal memory sector 31
Download in Progress:

108%

Time elapsed during download operation: ©0:00:00.052

erifying ...

Read progress:

100%

m AN5480

Activation

14.2 Activation

Follow these steps:
1. Use ATSID?<CR>and ATSPAC?<CR> commands to get Sigfox ID and PAC.

2. Go on https://buy.sigfox.com/activate/ and login.
3. Copy the device ID and PAC into the activate page (see the figure below) and click Next.

Figure 33. Device activation (1/2)

Provide your DevKit's details for identification

DIEETEOA

U o B umiers and intiers e A& fo F)

DevKit available for
CCB0BICDBIBF 14D @ activation.

Erwcty 18 munbers and kaiters from & f F)

Tell us about your project
Prototype x =

whal you want 1o write!

4. The browser loads the page shown below for the example.

Figure 34. Device activation (2/2)

Congratulations'!

Your device 0TEE7B0A has been successfully registered on Sigfox Cloud.

To finalize its activation your device must send a first frame. After this first
message, your device will be able to send a maximum of 140 messages per day
during 1 year

Do you want to start an loT project? Get technical support online and apply to the
Starter Program (Free and open to everyone).

5. The device is now activated on the Sigfox network for 1 year (evaluation activation).

AN5480 - Rev 3 page 67/77

m AN5480

See the message

14.3 See the message

Go to https://backend.sigfox.com/devicellist to see the device listed (click on DEVICE). Data can be sent using
the ATS$SF command for example on the terminal. The device sends data to the Sigfox network and messages
are visible on the backend (click on the device /d and the go on the MESSAGES tab).

Caution: The Sigfox backend records a sequence number matching the device sequence number. This sequence number
is incremented on both sides every time a new message is sent/received. The backend accepts messages
only if the device sequence number is greater or equal to the sequence number of the backend. The device
sequence number is stored in the EEPROM emulation of the device on the Flash memory. When the application
is in development, the EEPROM may be erased, for example with the cube programmer. In this case the device
sequence number is reset to 0, then smaller than the sequence number of the backend. Messages are not
displayed but uplinks can still be seen the EVENTS tab. In order to see messages again, press on Disengage
sequence number. This resets the sequence number of the backend, allowing the backend to accept new
messages.

AN5480 - Rev 3 page 68/77

AN5480

System performance

3

15 System performance

15.1 Memory footprint

The values of the figure below have been extracted from the map file using the following configuration of the IAR
compiler (EWARM compiler 8.30.1):

. Optimization: optimized for size level 3
. Debug option: off

Figure 35. Memory footprint

Total=59193bytes

Module Type -
=app

m Cmais

= MAL

= 5FX_ADDOM_FFP_Wi.6.0_SE_FDL_MON.a:
W5FY_LB_W2.80_SE_FOL_MOMN.3:

o Sgf-Cmac 1. 0.0-Ch0-03 a:

W Sgix-Monarch-V20.0-CM0-03.4:

Uk

m Microlib

15.2 Real-time constraints
Real-time constraints apply when the Monarch algorithm runs.

15.3 Power consumption

The power consumption has been measured on the STM32WL Nucleo-64 board (NUCLEO-WL55JC) with the
following setup:

. No DEBUG
. No TRACE

In these conditions, the typical consumption in Stop mode is 2 pA.

AN5480 - Rev 3 page 69/77

m AN5480

Revision history

Table 27. Document revision history

one ron | e

20-May-2020 1 Initial release.
Updated:
. Section 10 Memory section
. Section 11.1 Firmware package
. Intro of Section 11.2 AT modem application
. Section 11.2.3 AT? - Available commands

. Section 11.2.9 ATS410 - Encryption key
. Section 11.2.10 ATS411 - Payload encryption

17-Nov-2020 2 . Section 11.2.22 AT$RC - Region configuration

. Section 11.3 PushButton application

. Section 11.4 Static switches

. Section 14.1 Personalization

Added:

. Section 12 Dual-core management

. Section 13 Key management services (KMS)

Updated:

. Nucleo-73 corrected in Nucleo-64 in the whole document

. RCS5 in Table 3. RF parameters for region configurations
18-Jan-2021 3)) .

. Intro of Section 5 Sigfox Stack description

. Intro of Section 14 Personalization and activation

. Step 5 of Section 14.2 Activation

AN5480 - Rev 3 page 70/77

m AN5480

Contents
Contents
1 0 7= T 2
2 Sigfoxstandard.............ciiiii i i 3
2.1 End-device hardware architecture 3
2.2 Regional radio reSOUICEo e 3
2.3 Rx/Tx radio time diagram e e 4
2.4 Listenbefore talk (LBT) 5
25 MONarCh . .o 5
251 Monarch signal description 5
2.5.2 Monarch signal demodulation 6
3 SUBGHZ HAL driVer. ...t i eass i s e a s nnnnnnannnnnns 7
3.1 SUDGHZ re€SOUICESttt e e e e e 7
3.2 SubGHz datatransfers. 7
4 BSP STM32WL Nucleo-64 boardscoiiiiiiiiiiiii ittt innnnannnnns 8
4.1 Frequency band 8
4.2 RF SWItCh . . oo 8
4.3 RF wakeup time 9
1 9
4.5 Power regulation 9
4.6 STM32WL Nucleo-64 board schematic 10
5 Sigfox Stack description........ ...l i it it i a i a e 1"
5.1 Sigfox certification. e 11
5.2 ArChitectUre 12
5.21 StatiC ViEW. . . 12
5.2.2 DynamiC VIEW 13
5.3 Required STM32 peripherals to drive theradio. 14
6 Sigfox middleware programming guidelines................ccoiiiiiiiiiiiiiii i 15
6.1 Sigfox Core library. 15
6.1.1 Openthe Sigfox library 16
6.1.2 Send frames/bits. 16
6.1.3 Set standard configuration 16

AN5480 - Rev 3 page 71/77

m AN5480

Contents

6.2 Sigfox Addon RF protocol library. 18

6.3 Cmac library. 19

6.4 Credentials library 20

6.5 Monarch [brary e 20

7 SubGHz_Phy layer middleware descriptionc.cccvviiiiiiiiiiiiiiiiin. 21
7.1 Middleware radio driver structure 22

7.2 Radio IRQ INtermupts 23

8 EEPROM driver.ottt it eee st ias st nanasssnnnnsannnnssnnnnnnns 24
9 Utilities descriptiont i i i i teet e eana s eanaaennnnnns 25
9.1 7= Yo [1= o Y 25

9.2 TIMBI SBIVET . . o . ottt ittt e e e e e 26

9.3 Low-power fUNCHIONS e 26

9.4 SySteM tiMe e 28

9.5 TraCE. . o 29

10 Memory SECtIONttt ittt it 31
11 Application description ...t i i ittt e et et iaanaa s 32
111 Firmware package. oo 32

11.2 AT modem application 33
11.21 UARTINterfaceo 33

11.2.2 Default parameters 33

11.2.3 AT?-Available commands 34

1124 ATZ - Resetl. . .. 34

11.2.5 ATSRFS - Factory settings e 35

11.2.6 AT+VER - Firmware and library versions. 35

11.2.7 ATSID-Device ID 35

11.2.8 ATSPAC - Device PAC o 35

11.2.9 ATS410-Encryption Key.o 36

11.2.10 ATS411 - Payload encryption 36

11.211 ATSSB - Bitstatus. 36

11.212 AT$SF - ASCllpayload inbytes e e 37

11.2.13 AT$SH - Hexadecimal payload inbytes 37

AN5480 - Rev 3 page 72/77

m AN5480

Contents

11.2.14 ATSCW - Continuous wave (CW) i e e 38

11.215 AT$PN -PRBS9BPBSKtestmode 38

11.216 ATSMN - MoNarch SCan.t e et 39

11.2.17 ATSTM - Sigfox test mode. 39

11.2.18 AT+BAT? - Battery level 41

11.2.19 ATS300 - Out-of-band messaget 41

11.2.20 ATS302 - Radio OUtpUL POWETo e e e e 42

11.2.21 ATS400 - Enabled channels for FCC. e 42

11.2.22 AT$RC - Region configuration. 43

11.2.23 ATE-Echomode 43
11.2.24 AT+VL-Verbose level. 43

11.3 PushButton application. 44
114 Static switChes. 44
12 Dual-coremanagementooiiiiiiii ittt iiain i anaa s 45
12,1 Mailbox mechanism 45
1211 Mailbox multiplexer 45

12.1.2 Mailbox features 46

1213 MBMUX MESSA0ES . .« o o it ittt et e e e e e 47

122 INer-COre MEMOTY . . o ottt e e e e e e e e 47
12.21 CPU2capabilities 48

12.2.2 Mailbox sequence to execute a CPU2 function froma CPU1call 48

12.2.3 Mappingtable 50

12.2.4 Option byte warning 51

12.2.5 RAM MEMOrYy MappPinNg . . . v vt e e et et e e e e e e e e e 51

123 Startup SEQUENCE o e 52
13 Key management services (KMS) ...t iiinnnannnnns 54
131 KMS KeY fYPeS. . o oo e e 55
13.2 KMS KeYS SIzZe. . . oot e e 55
13,3 SIgiOX KEYS. . oot 56
13.4 KMS key memory mapping for user applications 56
13.5 How to size the NVM forKMS datastorage. 57
13.6 KMS configuration files to build the application........... 58

AN5480 - Rev 3 page 73/77

m AN5480

Contents

13.7 Embedded Keys. e 58

14 Personalization and activation i 59
141 Personalization 59
1411 Gettingthecredentials e 61

14.1.2 Loading the credentialsinthedevice 64

4.2 ACHVAtiON . ..o 67

14.3 Seethemessageot 68

15 System performance. ...ttt i ittt i it 69
15.1 Memory footprint 69

15.2 Real-time constraints 69

15.3 POWer CONSUMPLiON e e 69
ReVISiON RiStOory i ettt i s 70
L0 o T 1 =T 3| 71
Listof tableso e 75
List Of fiQUIres. . ..o i i 76

AN5480 - Rev 3 page 74/77

m AN5480

List of tables

List of tables

Table 1. ACTONYMIS . . . oo 2
Table 2. Region configurations. 3
Table 3. RF parameters for region configurations e 4
Table 4. TIMINGS. o 5
Table 5. Monarch signal characteristics versus RC 6
Table 6. BSPradio switCh 8
Table 7. RF states versus switch configuration. e 8
Table 8. BSPradiowakeup time e 9
Table 9. BSPradio TCXOo e 9
Table 10. BSPradio SMPS 9
Table 11. Application level Sigfox APIs 15
Table 12. Macro channel mapping oot 17
Table 13. Sigfox Addon Verified library 18
Table 14, Cmac APIs o 19
Table 15. Credentials APIs 20
Table 16, Monarch APIs 20
Table 17. Radio_s structure callbacks. e 22
Table 18. Radio IRQ bit mapping and definition 23
Table 19. EEPROM APIs . . . o 24
Table 20. Sequencer APIS. 25
Table 21. Timer server APIs 26
Table 22, Low-power APIS . . . o 26
Table 23. Low-power truth table. 27
Table 24, Low-level APIs. 27
Table 25. Systemtime functions 28
Table 26. Trace fUNCHIONS 29
Table 27. Document revision history 70

AN5480 - Rev 3 page 75/77

m AN5480

List of figures

List of figures

Figure 1. Timing diagram for uplink only 4
Figure 2. Timing diagram for uplink with downlink 4
Figure 3. Monarch beacon. 5
Figure 4. NUCLEO-WL55JC schematiC. e e e e 10
Figure 5. Static Sigfox architecture 12
Figure 6. Transmission MSC 13
Figure 7. Reception MSC 13
Figure 8. MeMOry MappPiNg oo e 31
Figure 9. Package OVervieW. 32
Figure 10. Tera Term serial port SEtUP. o 33
Figure 11. Mailbox OVervieW 45
Figure 12. MBMUX - Multiplexer between features and IPCC channels. 46
Figure 13. Mailbox messages through MBMUX and IPCC channels i 47
Figure 14. CPU1 to CPU2 feature_func_X() ProCess. ottt e e e e e 49
Figure 15. MBMUX communication table. 50
Figure 16. STM32WL5X RAM MEMOIY MaAP. . . o o o o ot ot e 51
Figure 17. Startup SeqQUENCE o 52
Figure 18. MBMUX initialization e e 53
Figure 19. KMS overall architecture 54
Figure 20. KMS static key Size. 55
Figure 21. KMS dynamiC Key Size. 56
Figure 22. ROM MEMOrY MapPING . . . ¢ .t vt et e e e e e e e e e e e e e e e e e e 57
Figure 23. STM32CubeProgrammer Sigfox panel button. 59
Figure 24. STM32CubeProgrammer Sigfox panel - Getting certificate. 60
Figure 25. STM32CubeProgrammer Sigfox CLI - Getting certificate 61
Figure 26. Login ON MY.St.COM L e 62
Figure 27. Sigfox credential page 62
Figure 28. Download button. e e 62
Figure 29. Sigfox_credetentials download 63
Figure 30. STM32CubeProgrammer Sigfox panel - Flashing credentials 64
Figure 31. STM32CubeProgrammer Sigfox CLI - Flashingraw credentials 65
Figure 32. STM32CubeProgrammer Sigfox CLI - Flashing KMS credentials. 66
Figure 33. Device activation (1/2) 67
Figure 34. Device activation (2/2) 67
Figure 35. Memory footprint. 69

AN5480 - Rev 3 page 76/77

m AN5480

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

AN5480 - Rev 3 page 77/77

http://www.st.com/trademarks

	Introduction
	1 Overview
	2 Sigfox standard
	2.1 End-device hardware architecture
	2.2 Regional radio resource
	2.3 Rx/Tx radio time diagram
	2.4 Listen before talk (LBT)
	2.5 Monarch
	2.5.1 Monarch signal description
	2.5.2 Monarch signal demodulation

	3 SubGHz HAL driver
	3.1 SubGHz resources
	3.2 SubGHz data transfers

	4 BSP STM32WL Nucleo-64 boards
	4.1 Frequency band
	4.2 RF switch
	4.3 RF wakeup time
	4.4 TCXO
	4.5 Power regulation
	4.6 STM32WL Nucleo-64 board schematic

	5 Sigfox Stack description
	5.1 Sigfox certification
	5.2 Architecture
	5.2.1 Static view
	5.2.2 Dynamic view

	5.3 Required STM32 peripherals to drive the radio

	6 Sigfox middleware programming guidelines
	6.1 Sigfox Core library
	6.1.1 Open the Sigfox library
	6.1.2 Send frames/bits
	6.1.3 Set standard configuration

	6.2 Sigfox Addon RF protocol library
	6.3 Cmac library
	6.4 Credentials library
	6.5 Monarch library

	7 SubGHz_Phy layer middleware description
	7.1 Middleware radio driver structure
	7.2 Radio IRQ interrupts

	8 EEPROM driver
	9 Utilities description
	9.1 Sequencer
	9.2 Timer server
	9.3 Low-power functions
	9.4 System time
	9.5 Trace

	10 Memory section
	11 Application description
	11.1 Firmware package
	11.2 AT modem application
	11.2.1 UART interface
	11.2.2 Default parameters
	11.2.3 AT? - Available commands
	11.2.4 ATZ - Reset
	11.2.5 AT$RFS - Factory settings
	11.2.6 AT+VER - Firmware and library versions
	11.2.7 AT$ID - Device ID
	11.2.8 AT$PAC - Device PAC
	11.2.9 ATS410 - Encryption key
	11.2.10 ATS411 - Payload encryption
	11.2.11 AT$SB - Bit status
	11.2.12 AT$SF - ASCII payload in bytes
	11.2.13 AT$SH - Hexadecimal payload in bytes
	11.2.14 AT$CW - Continuous wave (CW)
	11.2.15 AT$PN - PRBS9 BPBSK test mode
	11.2.16 AT$MN - Monarch scan
	11.2.17 AT$TM - Sigfox test mode
	11.2.18 AT+BAT? - Battery level
	11.2.19 ATS300 - Out-of-band message
	11.2.20 ATS302 - Radio output power
	11.2.21 ATS400 - Enabled channels for FCC
	11.2.22 AT$RC - Region configuration
	11.2.23 ATE - Echo mode
	11.2.24 AT+VL - Verbose level

	11.3 PushButton application
	11.4 Static switches

	12 Dual-core management
	12.1 Mailbox mechanism
	12.1.1 Mailbox multiplexer
	12.1.2 Mailbox features
	12.1.3 MBMUX messages

	12.2 Inter-core memory
	12.2.1 CPU2 capabilities
	12.2.2 Mailbox sequence to execute a CPU2 function from a CPU1 call
	12.2.3 Mapping table
	12.2.4 Option byte warning
	12.2.5 RAM memory mapping

	12.3 Startup sequence

	13 Key management services (KMS)
	13.1 KMS key types
	13.2 KMS keys size
	13.3 Sigfox keys
	13.4 KMS key memory mapping for user applications
	13.5 How to size the NVM for KMS data storage
	13.6 KMS configuration files to build the application
	13.7 Embedded keys

	14 Personalization and activation
	14.1 Personalization
	14.1.1 Getting the credentials
	14.1.2 Loading the credentials in the device

	14.2 Activation
	14.3 See the message

	15 System performance
	15.1 Memory footprint
	15.2 Real-time constraints
	15.3 Power consumption

	Revision history
	Contents
	List of tables
	List of figures

