

FACTORYTALK HISTORIAN TO HISTORIAN INTERFACE
USER GUIDE

PUBLICATION H2H-UM001A-EN-E–July 2012

 iii

Contact Rockwell Automation

Customer Support Telephone — 1.440.646.3434

Online Support — http://www.rockwellautomation.com/support

Copyright Notice

© 2012 Rockwell Automation Technologies, Inc. All rights reserved. Printed in USA.

© 2010 OSIsoft, Inc. All rights reserved.

This document and any accompanying Rockwell Software products are copyrighted by Rockwell Automation Technologies, Inc.

Any reproduction and/or distribution without prior written consent from Rockwell Automation Technologies, Inc. is strictly

prohibited. Please refer to the license agreement for details.

Trademark Notices

FactoryTalk, Rockwell Automation, Rockwell Software, the Rockwell Software logo are registered trademarks of Rockwell

Automation, Inc.

The following logos and products are trademarks of Rockwell Automation, Inc.:

FactoryTalk Historian Site Edition (SE), FactoryTalk Historian Machine Edition (ME), RSView, FactoryTalk View, RSView

Studio, FactoryTalk ViewStudio, RSView Machine Edition, RSView ME Station, RSLinx Enterprise, FactoryTalk Services

Platform, FactoryTalk Live Data, and FactoryTalk VantagePoint.

The following logos and products are trademarks of OSIsoft, Inc.:

PI System, Sequencia, Sigmafine, gRecipe, sRecipe, and RLINK.

Other Trademarks

ActiveX, Microsoft, Microsoft Access, SQL Server, Visual Basic, Visual C++, Visual SourceSafe, Windows, Windows ME,

Windows NT, Windows 2000, Windows Server 2003, and Windows XP are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

Adobe, Acrobat, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States

and/or other countries.

ControlNet is a registered trademark of ControlNet International.

DeviceNet is a trademark of the Open DeviceNet Vendor Association, Inc. (ODVA).

Ethernet is a registered trademark of Digital Equipment Corporation, Intel, and Xerox Corporation.

OLE for Process Control (OPC) is a registered trademark of the OPC Foundation.

Oracle, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corporation.

All other trademarks are the property of their respective holders and are hereby acknowledged.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in

Technical Data and Computer Software clause at DFARS 252.227-7013.

Warranty

This product is warranted in accordance with the product license. The product‟s performance may be affected by system

configuration, the application being performed, operator control, maintenance, and other related factors. Rockwell Automation is

not responsible for these intervening factors. The instructions in this document do not cover all the details or variations in the

equipment, procedure, or process described, nor do they provide directions for meeting every possible contingency during

installation, operation, or maintenance.

This product‟s implementation may vary among users.

This document is current as of the time of release of the product; however, the accompanying software may have changed since

the release. Rockwell Automation, Inc. reserves the right to change any information contained in this document or the software at

anytime without prior notice. It is your responsibility to obtain the most current information available from Rockwell when

installing or using this product.

FactoryTalk Historian To Historian Interface User Guide iii

Table of Contents

Chapter 1. Introduction .. 1

Interface Limitations .. 1
Interface Requirements ... 2
Reference Manuals ... 3
Supported Operating Systems .. 3
Supported Features... 3
Diagram of Hardware Connection ... 7

Chapter 2. Principles of Operation .. 11

Interface Startup .. 11
How FactoryTalk Historian to Historian Finds Source Points 12
Data Collection .. 13
History Recovery ... 14
Exception Data Collection ... 15

Maximizing Data Throughput .. 15
Archive Data Collection ... 16

Performance Considerations .. 16
Data Timestamps .. 17
Data Type Conversions ... 17
Interface Status Events ... 18
Adding, Removing and Editing Tags ... 18
Error Handling ... 19
Source Historian Server-Level Failover .. 19
Fault Conditions .. 19

Communication Failure ... 19
Detection of Stale Data ... 20

UniInt Failover ... 20
Interface Status Tags .. 20
Internal State Status .. 20
Failover Status .. 21
Deployment Scenarios .. 21
Historian to Historian within a Historian Collective .. 21

Tag Attribute Override Parameters ... 22
Historian to Historian between Historian Collectives 24

Chapter 3. Installation Checklist .. 27

Data Collection Steps .. 27
Interface Diagnostics ... 28
Advanced Interface Features .. 29

Chapter 4. Interface Installation ... 31

Naming Conventions and Requirements .. 31

Table of Contents

iv

Interface Directories .. 32
PIHOME Directory Tree .. 32
Interface Installation Directory .. 32

Interface Installation Procedure .. 32
Installing Interface as a Windows Service... 32
Installing Interface Service with Historian Interface Configuration Utility 33

Service Configuration ... 33
Installing Interface Service Manually .. 35

Chapter 5. PointSource .. 37

Chapter 6. Historian Point Configuration .. 39

Point Attributes .. 39
Tag .. 39
PointSource .. 40
PointType .. 40
Location1 .. 40
Location2 .. 41
Location3 .. 41
Location4 .. 42
Location5 .. 42
InstrumentTag ... 43
ExDesc .. 43
UserInt1 .. 44
Scan .. 45
Shutdown .. 45

Exception and Compression ... 45
Interface Configurations .. 46
Recommended Tag Configurations .. 46
DataAccess, PtAccess .. 47
Zero, Span .. 47

Chapter 7. Interface Status Tag Configuration ... 49

Chapter 8. Startup Command File ... 51

Configuring the interface with ICU .. 51
FactoryTalk Historian to Historian Interface page 54

Configuring Interface Startup Files .. 64
Command-line Parameters ... 64

General Interface Operation ... 65
History Recovery and Archive Data Collection 70
Exception Data Collection ... 71
Tag Attribute Override .. 72
Server-Level Failover .. 72

Sample Startup Configuration Files .. 73
Sample PItoPI.bat File .. 73
Sample PItoPI.ini File ... 74

Chapter 9. UniInt Failover Configuration .. 75

Introduction .. 75
Quick Overview ... 76

Synchronization through a Shared File (Phase 2) .. 77

FactoryTalk Historian To Historian Interface User Guide v

Configuring Synchronization through a Shared File (Phase 2) 78
Configuring UniInt Failover through a Shared File (Phase 2) 81

Start-Up Parameters ... 81
Failover Control Points ... 83
Historian Tags ... 84

Detailed Explanation of Synchronization through a Shared File (Phase 2) 88
Steady State Operation .. 89

Failover Configuration Using ICU .. 91
Create the interface Instance with ICU ... 91
Configuring the UniInt Failover Startup Parameters with ICU 92
Creating the Failover State Digital State Set .. 92

Using the ICU Utility to create Digital State Set 93
Using the SMT 3 Utility to create Digital State Set 93

Creating the UniInt Failover Control and Failover State Tags (Phase 2) 96

Chapter 10. Interface node Clock .. 97

Chapter 11. Security ... 99

Tag and Node Security.. 100
System Manager Responsibilities ... 100

Receiving System Manager .. 100
Source System Manager .. 101

Sample Security Files.. 101
Sample 1 ... 101
Sample 2 ... 101

Chapter 12. Starting / Stopping the interface ... 103

Starting Interface as a Service .. 103
Stopping Interface Running as a Service .. 103

Chapter 13. Buffering ... 105

Which Buffering Application to Use ... 105
How Buffering Works... 106
Buffering and Historian Server Security .. 106
Enabling Buffering on an Interface Node with the ICU 107

Choose Buffer Type .. 107
Buffering Settings.. 108
Buffered Servers ... 110
Installing Buffering as a Service ... 113

Chapter 14. Interface Diagnostics Configuration ... 117

Scan Class Performance Points ... 117
Performance Counters Points ... 120

Performance Counters .. 121
Performance Counters for both (_Total) and (Scan Class x) 121
Performance Counters for (_Total) only ... 122
Performance Counters for (Scan Class x) only 125

Interface Health Monitoring Points .. 126
I/O Rate Point .. 131
Interface Status Point .. 134

Table of Contents

vi

Appendix A. Error and Informational Messages ... 137

Message Logs ... 137
Messages .. 137
Interface Startup Messages .. 137
Scan Summary .. 138
System Errors and Historian Errors .. 138
Historian to Historian Specific Error Messages ... 138
UniInt Failover Specific Error Messages ... 139

Informational ... 139
Errors (Phase 1 & 2) ... 139
Errors (Phase 2) .. 141

Appendix B. PI SDK Options .. 143

Appendix C. Terminology .. 145

Appendix D. Technical Support and Resources ... 149

Technical Support ... 149
Knowledgebase .. 149
Worldwide Support.. 149
Training Programs .. 149
Consulting Services .. 150
TechConnect Support ... 150
Find the Version and Build Numbers .. 150
View Computer Platform Information .. 150

Appendix E. Revision History ... Error! Bookmark not defined.

FactoryTalk Historian To Historian Interface User Guide 1

Chapter 1. Introduction

The Rockwell FactoryTalk Historian to Historian interface copies tag data from one Historian

Server to another. Data is moved in one direction, meaning data is copied from the source to

the receiving Historian Server (also referred to as target Historian Server). The interface must

run on a Windows Intel-based operating system.

Note: The Rockwell FactoryTalk Historian to Historian interface functions and is
configured the same as the standard Rockwell Automation PItoPI interface, with the
exception that this interface can only connect to FT Historians.

Interface tags are created on the receiving Historian Server. Each interface tag is configured

to receive data for a unique source tag. Tags receive either archive or exception data updates

from the source tag. Exception data is data that has not yet been subjected to compression.

The type of data collection, exception or archive, is configured through scan class

assignment. By default, all tags belonging to the first scan class receive exception data. Tags

assigned to any other defined scan class receive archive data.

The interface supports history recovery. History recovery enables users to recover data for

time periods when the interface was not running or otherwise unable to collect data. The

history recovery period is configurable; the default is 8 hours. Users have the option of

performing time-range specific history recovery by specifying a start and end time. In this

configuration the interface collects data for the specified time period then exits.

Both source Historian Server-level failover and UniInt Phase 2 interface level failover are

supported. When running in source Historian Server-level failover mode, the interface obtains

data from one of two available source Historian Servers. The source Historian Servers must

have identical tag definitions and data streams for each interface source tag. This requirement

ensures the interface will obtain the same data regardless of which source server is active.

When running in UniInt Failover mode, two copies of the interface are connected to the

source Historian Server at the same time. When the primary interface stops collecting data,

the backup interface assumes the primary role and continues data collection. Source Historian

Server-level failover and UniInt Phase 2 interface level failover modes can be run

simultaneously. Failover maximizes interface data availability on the receiving Historian

Server(s).

Interface Limitations

The FactoryTalk Historian to Historian interface is not a true data replication tool. It does not

synchronize Historian Server data or perform data validation. It simply provides a method for

copying data from one Historian Server to another in an incremental, time forward manner.

There is no guarantee that an exact archive data match will exist between the source and

receiving Historian Servers. If the goal is to achieve data matching (replication) Rockwell

Introduction

2

Automation recommends using n-way buffering which is supported with PI API v1.6.x and

later. Please see the PI API installation manual for details.

The Historian Archive subsystem may temporarily queue data in memory prior to it being

committed to disk. This can lead to data gaps when using Historian to Historian for real-time

data collection with history recovery enabled. To avoid data gaps the recommended

configuration is to run in history recovery only mode without snapshot updates. Note that this

means current real-time data from the source Historian Server will not be available on the

target Historian Server.

The interface is a PI API based application. It does not currently support tag annotations,

which are only available through the PI SDK. This means it cannot be used to copy Batch

Database data between Historian Servers.

The interface is a single threaded process. This design increases performance dependencies

on the responsiveness of the source and receiving Historian Servers and dependencies on

network quality.

It is highly recommended that users use tools such as Rockwell Automation‟s Performance

Monitor interface and Historian Ping interface to monitor these interface dependencies. These

interfaces are distributed by default with the latest Historian Server setup kit. This

information will be invaluable for troubleshooting Historian to Historian interface issues if

they should arise. Using these tools to monitor system health is also part of Rockwell

Automation‟s Best Practices Recommendations for FactoryTalk Historian System Mangers.

Interface Requirements

PItoPI requires the following software versions:

 Windows Intel-based operating system

 PI API version 1.6.1.5 or greater, which is distributed with the PI SDK installation

kit.

 TCP/IP connections are needed to both receiving and source Historian Servers. This

interface also operates using RAS to connect over dial-up or ISDN connections. Dial-

up connections of 9600 baud have been used successfully.

 To configure Phase 2 failover using the ICU you must use ICU 1.4.6.0 or later.

Note: The value of [PIHOME] variable for the 32-bit interface will depend on whether the

interface is being installed on a 32-bit operating system (C:\Program

Files\Rockwell Software\FactoryTalk Historian\PIPC) or a 64-bit operating

system (C:\Program Files (x86)\PIPC).

The value of [PIHOME64] variable for a 64-bit interface will be C:\Program Files\Rockwell
Software\FactoryTalk Historian\PIPC on the 64-bit Operating system.

In this documentation [PIHOME] will be used to represent the value for either [PIHOME]
or [PIHOME64]. The value of [PIHOME] is the directory which is the common location for
Historian client applications.

FactoryTalk Historian To Historian Interface User Guide 3

Reference Manuals

Rockwell Automation

 Historian Server manuals

 PI API Installation manual

 UniInt Interface User Manual

 Historian Interface Status

Supported Operating Systems

Platforms 32-bit application 64-bit application

Windows XP
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 2003 Server
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 7
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 2008 32-bit OS Yes No

Windows 2008 R2 64-bit OS Yes (Emulation Mode) No

Windows 7
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

The interface is designed to run on the above mentioned Microsoft Windows operating

systems and their associated service packs.

Please contact Rockwell Automation Technical Support for more information.

Supported Features

Feature Support

Interface Part Number Historian-IN-RW-FTPI-NTI

* Auto Creates Historian Points APS Connector

Point Builder Utility No

ICU Control Yes

Historian Point Types Historian 3: Float16 / Float32 / Float64 / Int16 /
Int32 / Digital / String / Blob

Historian 2: R / I / D

Sub-second Timestamps Yes

Sub-second Scan Classes Yes

Automatically Incorporates
Historian Point Attribute Changes

Yes

Exception Reporting Yes

Outputs from Historian No

Introduction

4

Feature Support

Inputs to Historian: Scan-based /
Unsolicited / Event Tags

Scan-based Only

* Supports Questionable Bit No

Supports Multi-character PointSource Yes

Maximum Point Count Unlimited

* Uses PI SDK No

PINet String Support No

* Source of Timestamps Source Historian Server

 History Recovery Yes

UniInt-based

 * Disconnected Startup

 * SetDeviceStatus

Yes

No

Yes

 Failover Source Historian Server-Level

UniInt Phase 2 Interface Level (Warm)

* Vendor Software Required on
Historian interface node / PINet Node

No

Vendor Software Required on Foreign
Device

No

 Vendor Hardware Required No

Additional Historian Software Included
with Interface

No

Device Point Types Real, Integer and Digital.

 Serial-Based Interface No

* See available paragraphs below for further explanation.

APS Connector

The PItoPI APS Connector (PItoPI_APS) is a specific module that communicates with the

Receiving and Source Host FactoryTalk Historian SE‟s, gets tag attribute updates from the

Source Host FactoryTalk Historian System, and locates new and deleted points on the Source

Host FactoryTalk Historian System. The PItoPI APS Connector and its attendant routines are

called with each synchronization scan.

Note: The PItoPI APS Connector contains a separate implementation of the
procedure to identify the source point for an interface point. If an interface instance is
registered with APS, confirm that the PItoPI APS Connector version implements the
same procedure as the interface, which is required to ensure that the PItoPI APS
Connector synchronizes with the same source point as the interface.

Supports Questionable Bit

The interface will copy questionable bit data for a give source point from one PI3 server to

another. However the interface itself does not make this a configurable parameter.

Uses PI SDK

The PI SDK and the PI API are bundled together and must be installed on each interface

node. This Interface does not specifically make PI SDK calls.

FactoryTalk Historian To Historian Interface User Guide 5

Maximum Point Count

While the interface does not have a hard-coded point count limit, there are performance

dependencies that can effectively limit point count. The interface is a single-threaded process.

This design exposes performance dependencies on Historian Server responsiveness and

network quality. For example a high latency network connection will result in a significant

decrease in data transfer rate over a network connection without high latency.

It is highly recommended that users use tools such as Rockwell Automation‟s Performance

Monitor interface and Historian Ping interface to monitor these interface dependencies. These

interfaces are distributed by default with the latest Historian Server setup kit. This

information will be invaluable for troubleshooting Historian to Historian interface issues if

they should arise. Using these tools to monitor system health is also part of Rockwell

Automation‟s Best Practices Recommendations for FactoryTalk Historian System Mangers.

Source of Timestamps

The source Historian Server provides a timestamp for each data event. Timestamps are

automatically adjusted to account for time zone differences if both source and receiving

Historian Servers are Historian 3. Time zone adjustment is optional if either Historian Server

is Historian 2.

The interface can also adjust timestamps for clock drift. Clock drift is the time offset between

Historian Servers after accounting for time zone differences. An offset of 30 minutes or less

is considered clock drift. Adjusting for clock drift means the time offset is added to the source

timestamp adjusting it to receiving Historian Server time.

Timestamp adjustment is configured on a tag-by-tag basis through the Location2 tag

attribute. Note that all computers (interface nodes, source and receiving Historian Servers)

must have the correct system time for their configured time zone.

History Recovery

History recovery enables users to recover archive data for time periods when the interface

was not running or otherwise unable to collect data. History recovery is performed on startup,

after restoring a lost Historian Server connection and after a disruption in exception data

collection. In addition, when a new point is added to the interface, history recovery is

performed on that point. The history recovery period is configurable. The default is to recover

data for the previous 8 hours. History recovery is disabled by setting the time period to 0.

Time range-specific history recovery can be performed by passing a start and end time. When

run in this configuration the interface collects data for the specified time range then exits. It

should be noted that the start and end time will be relative to the node where the interface

runs. This is important if the source Historian Server is in a different time zone than the

machine where the interface is running.

UniInt-based

UniInt stands for Universal Interface. UniInt is not a separate product or file; it is an

Rockwell Automation-developed template used by developers, and is integrated into many

interfaces, including this interface. The purpose of UniInt is to keep a consistent feature set

and behavior across as many of Rockwell Automation‟s interfaces as possible. It also allows

for the very rapid development of new interfaces. In any UniInt-based interface, the interface

uses some of the UniInt-supplied configuration parameters and some interface-specific

parameters. UniInt is constantly being upgraded with new options and features.

The UniInt Interface User Manual is a supplement to this manual.

Introduction

6

SetDeviceStatus

The Historian to Historian Interface is built with UniInt 4.4.4.0. New functionality has been

added to support health tags. The Health tag with the point attribute ExDesc =

[UI_DEVSTAT] represents the status of the source device. The following events can be

written into this tag:

“1 | Starting” - the interface is starting.

 “Good” - the interface is properly communicating and reading data from the server.

 The following event represents a failure to communicate with the server:

o "3 | 1 device(s) in error | Network communication error to source Historian

Server"

o "3 | 1 device(s) in error | Unable to get archive data from source Historian

Server"

o "3 | 1 device(s) in error | Unable to get snapshot data from source Historian

Server"

o "3 | 1 device(s) in error | Unable to write data to receiving Historian Server"

o "3 | 1 device(s) in error | Unable to obtain current data with source Historian

Server failover enabled."

 “4 | Intf Shutdown” - the interface is stopped.

Refer to the UniInt Interface User Manual for more information on how to configure health

points.

Failover

Source Historian Server-Level Failover Support

Source Historian Server-level failover maximizes interface data availability on the receiving

Historian Server(s). It enables the interface to obtain data from one of two source Historian

Servers. Each source server must have identical tag definitions and data streams for interface

source points. Source Historian Server failover is not supported for Historian 2.

The interface will initiate failover if the active source data becomes stale or is not available

due to network issues. The Historian Interface Status utility is required for each source

Historian Server to monitor data quality. The interface uses the utility status tag output to

verify source data is current and has not become stale.

UniInt Interface Failover Support

UniInt Phase 2 Failover provides support for cold, warm, or hot failover configurations. The

Phase 2 hot failover results in a no data loss solution for bi-directional data transfer between

the Historian Server and the Data Source given a single point of failure in the system

architecture similar to Phase 1. However, in warm and cold failover configurations, you can

expect a small period of data loss during a single point of failure transition. This failover

solution requires that two copies of the interface be installed on different interface nodes

collecting data simultaneously from a single data source. Phase 2 Failover requires each

interface have access to a shared data file. Failover operation is automatic and operates with

no user interaction. Each interface participating in failover has the ability to monitor and

determine liveliness and failover status. To assist in administering system operations, the

ability to manually trigger failover to a desired interface is also supported by the failover

scheme.

FactoryTalk Historian To Historian Interface User Guide 7

The failover scheme is described in detail in the UniInt Interface User Manual, which is a

supplement to this manual. Details for configuring this Interface to use failover are described

in the UniInt Failover Configuration section of this manual.

Device Point Types

Real, Integer and Digital.

Diagram of Hardware Connection

The following diagrams illustrate the three basic hardware configurations for PItoPI: the

interface runs on the source Historian Server, the interface runs on the receiving Historian

Server or the interface runs on a separate interface node. The interface must run on a

Windows Intel-based operating system.

Figure 1: Configuration 1 PItoPI runs on the source Historian Server “pushing” data to the
 receiving Historian Server.

Introduction

8

Figure 2: Configuration 2 PItoPI runs on the receiving Historian Server “pulling” data from
the source Historian Server.

FactoryTalk Historian To Historian Interface User Guide 9

Figure 3: Configuration 3 PItoPI runs on a separate interface node.

FactoryTalk Historian To Historian Interface User Guide 11

Chapter 2. Principles of Operation

The FactoryTalk Historian to Historian interface copies tag data from one Historian Server to

another. It consists of a single executable and startup configuration file. No specific tag limit

exists for the interface. However, data throughput (events/second) can be limited by network

quality and/or system resources on the source and receiving Historian Servers. Users can

configure the interface to copy exception (snapshot) or archive data. Although it is possible

for one copy of the interface to do both, it is highly recommended that separate copies are

used for this purpose to ensure a high level of performance.

Interface Startup

On startup, the interface reads its configuration file for site-specific operating parameters.

This file contains required and optional configuration information, such as source and

receiving Historian Server, data update rates, and history recovery settings. Next the interface

establishes a connection to each Historian Server and initializes its tag lists.

Each client connection to a Historian Server is associated with a specific PI user. This PI user

determines what permissions are granted to the client. The source Historian Server must grant

the interface permission to read tag attributes and data for interface source tags. On the

receiving Historian Server the interface requires read access for tag attributes and read and

write data access for its tag list. See the section Tag and Node Security for additional

information.

As the interface initializes its tag lists, tags are grouped internally by scan class assignment.

Each interface tag must be configured for a unique source tag. If an invalid tag configuration

is detected, the tag is either rejected or added to the tag list and marked in error. In either case

a message will be logged with specific information about the error. The interface outputs

messages to pipc.log, which can be found in the local \pipc\dat directory.

After the interface is finished building its tag lists it calculates the time offset between

Historian Servers. The offset is updated every 2 minutes and used for data timestamp

adjustments, if configured, and to timestamp interface status events. It is required that each

participating node has the correct system time for its configured time zone. At this point the

interface is ready to begin data collection.

Principles of Operation

12

How FactoryTalk Historian to Historian Finds Source Points

When the FactoryTalk Historian to Historian Interface loads a point, the interface must

identify the source point from which data will be collected. In other parts of this manual, this

process is referred to as mapping the interface point to a source point.

The interface uses four receiving point attributes as possible links to the source point:

InstrumentTag, ExDesc, UserInt1, and Tag. However, the FactoryTalk Historian to

Historian Interface /tn, /tnex, and /ptid parameters exclude one or more of these

attributes from mapping to the source point. For most interface instances, none of these

parameters are used. The following table summarizes the effect of these parameters on the

search for either source point tag name or point ID. The actual implementation of the search

is described below the table.

Interface parameters
Search order for attribute containing source point tag name or ID

/tn /tnex /ptid

No No No 1. Non-empty InstrumentTag attribute is source point tag name.

2. ExDesc attribute that contains STAG= specifies source point tag.

3. UserInt1 attribute greater than 0 contains source point ID.
(Point rejected if source Historian Server-level failover configured.)

4. Tag of the interface point is also source point tag name.

No No Yes UserInt1 attribute contains source point ID.
(Illegal configuration if source Historian Server -level failover is
configured.)

No Yes No 1. ExDesc attribute that contains STAG= specifies source point tag.

2. Tag of the interface point is also source point tag name.

No Yes Yes

Tag of the interface point is also source point tag name.
Yes N/A N/A

The interface performs the following steps to find the source point:

1. If no /tn parameter and no /tnex parameter and no /ptid parameter and the

InstrumentTag attribute is not a zero-length string, the InstrumentTag value

contains the source tag name and the search ends. Otherwise, proceed to step 2.

2. If no /tn parameter and no /ptid parameter and the ExDesc attribute begins with

case-insensitive “STAG” followed by zero or more spaces followed by “=”, the

source tag name is extracted from the remainder of the ExDesc value (as described

in the following paragraph) and the search ends. Otherwise, proceed to step 3.

To extract the source tag name, the interface ignores any spaces following the “=”. If

the next character is not a double quotation mark ("), it is the first character of the

source tag name which extends to the first comma or to the end of the ExDesc

attribute. If the first non-space following the “=” is a double quotation mark, the

source tag name begins with the following character and extends to the first double

quotation mark or to the end of the ExDesc attribute. The interface extracts the

source tag name from ExDesc and the search ends.

3. If no /tn parameter and no /tnex parameter and either the UserInt1 attribute is

greater than zero or the /ptid parameter is present, the UserInt1 attribute is the

FactoryTalk Historian To Historian Interface User Guide 13

source point ID and the search ends. Otherwise, proceed to the step 4. If the search

ends in this step and either the UserInt1 attribute is not greater than zero or the

interface is configured for source Historian Server-level failover, the interface rejects

the point.

4. The source point tag name is the same as the receiving tag name.

The search for the source point ends with either a source tag name or source point ID. If the

source tag name or point ID does not exist, the interface puts the point into an error state and

logs a message.

Note: The PItoPI APS Connector contains a separate implementation of the search
for source point tag name or ID. If an interface instance is registered with APS,
confirm that the PItoPI APS Connector version implements the same search
procedure as the interface, which is required to ensure that the PItoPI APS
Connector synchronizes with the same source point as the interface. If the latest
release of the PItoPI APS Connector is older than this version of the FactoryTalk
Historian to Historian interface, compare the procedure described in this section with
the “How PItoPI and PItoPI_APS Find Source Points” section in the Historian to
Historian TCP/IP Interface AutoPointSync Connector user manual.

Data Collection

There are two modes of data collection, history recovery and scanning for updates. History

recovery enables users to recover archive data for time periods when the interface was not

running or otherwise unable to collect data. After performing history recovery, the interface

begins scanning for updates. When the interface is scanning for updates each tag recei

Historian to Historian TCP/IP Interface AutoPointSync Connector ves an incremental copy of

either archive or exception data from its configured source tag.

A tag configured for exception data receives a copy of its source tag‟s current value updates.

A tag‟s current value is also referred to as its snapshot value. A snapshot value is a data event

that has passed the first level of data filtering, the exception test. Every Historian Server

maintains a snapshot table that contains the current value for each tag in its database. When a

new value passes exception filtering, the snapshot table is updated. The existing snapshot

value is then subjected to the compression test. The compression test determines whether or

not a snapshot value is archived. If a value passes compression filtering, it becomes part of

the archive data collection.

Tags are configured for archive or exception data collection through scan class assignment.

Scan classes are update rates that users define in the interface startup configuration file. When

a scan is executed the interface performs an incremental copy of data for each tag in its scan

list. By default, all tags assigned to the first scan class receive exception data. Tags assigned

to any other scan class receive archive data.

Note: Interface performance is maximized when a separate copy of the interface is
used for archive and exception data collection.

All data collected by the interface has already passed exception filtering on the source

Historian Server. Any additional exception filtering can only lead to a data mismatch between

Historian Servers. Additionally we recommend applying source tag compression deviation

settings to interface tags. See the section Exception and Compression for additional

information.

Principles of Operation

14

In general the interface can sustain higher data rates (events/second) when configured for

exception data collection. Exception updates are queued in memory on the source Historian

Server. This is not the case for archive updates. Only the most recently accessed archive data

is stored in memory, specifically the archive data cache. When the interface requests archive

data it is likely a certain percentage is read from disk. Disk reads require more computer

resources than reading from memory. As the interface data rate increases, the source

Historian Server will work harder if the interface is requesting archive versus exception data.

History Recovery

History recovery is executed after each of the following events:

 On interface startup.

 After restoring a lost Historian Server connection.

 Update overflow error recovery.

 For each new point added to the interface.

History recovery is configured through interface startup parameters. Users can specify the

recovery period, time increments within the total recovery period, a pause time between

increments, and the maximum number of archive events returned per data request. These

parameters enable users to manage the performance impact on the source and receiving

Historian Servers by throttling the data collection rate.

The starting point for history recovery is set on a tag-by-tag basis. If the current value for a

tag is more recent than the starting point of the recovery period, history recovery will begin at

the tag‟s current value. This prevents data overlap, streamlines data retrieval, and prevents

out-of-order data. There is one exception: Pt Created is the value given to a tag when it is

created. If the current value of an interface tag is Pt Created, the interface performs history

recovery for the total recovery period.

History recovery is performed independently for each scan class. The interface periodically

prints a message to indicate completion status. Every minute the interface calculates percent

completion. A message will be printed for each 10% completion increment or every 5

minutes, whichever comes first.

If a scan class is configured for exception data collection, the interface transitions from

archive to exception data on the last history recovery increment. As the interface cycles

through its tag list, each tag is added to the exception update list after obtaining its last

recovery increment. By default the interface breaks from history recovery to collect exception

updates every 5 seconds. This time interval is configurable through the /rh_qcheck startup

parameter. As it nears the end of its tag list, more tags are in the update list and the time to

collect exception updates increases. This extra overhead can significantly increase the time

for complete history recovery.

The default behavior is for history recovery data to bypass compression on the receiving

Historian Server. Source data is written to the receiving archive in one of three modes;

append, replace or no replace. This is configured on a tag-by-tag basis. If the /dc interface

startup parameter is specified, this data is subjected to compression. Historian 2 and Historian

3.2 servers will always apply compression to interface data. In this case the data write mode

is effectively disabled.

Time-range history recovery is configured through the interface startup configuration file.

When enabled, the interface starts up, recovers archive data for the specified start and end

FactoryTalk Historian To Historian Interface User Guide 15

time then exits. The times specified are relative to the machine where the interface runs. This

is important if the source Historian Server is in a different time zone than the machine where

the interface runs. Note that backfilling data may require additional server preparations on the

receiving node. For example, there may not be enough space in the target (non-primary)

archive for the recovery data, or non-primary archives may not have space allocated for

newly created tags. See the Historian Server System Management Guide for information on

backfilling data.

Exception Data Collection

Tags assigned to the first scan class receive exception data. An exception is a current value

update (snapshot value). On startup each source tag is registered with the update manager on

the source FactoryTalk Historian System. The update manager then collects snapshot updates

for each registered tag. This data is queued in memory. When the interface executes a scan it

requests and processes these events until the queue is empty. Data update latency is

minimized by configuring a high frequency scan rate for the exception scan class. Exception

and compression should be configured carefully for the interface to avoid data mismatches

between Historian Servers. See the section Exception and Compression for additional

information.

Maximizing Data Throughput

Interface performance is maximized when a separate copy of the interface is used for archive

and exception data collection.

The number of events returned per update request to the source Historian Server is

configurable through the interface startup file. The default is for up to 10,000 exception

events returned per update request. This list of exceptions is given to the interface in time

sequence, oldest to newest. The interface processes the list one event at a time. These events

are temporarily queued by the interface. Only one update is queued per tag at any given time.

Whenever a second event for any one tag is processed within the exception update list, the

interface must first flush its queue, writing this data to the receiving server. This behavior is

required for exception data filtering. As a result, the interface will make many more calls

writing data to the receiving Historian Server than retrieving data from the source.

Note: Whenever possible, users should run the interface on the receiving Historian
Server to minimize the effect of network latency on data throughput.

Network latency will have a significant effect on data throughput. Interface testing over a

WAN connection with 200ms latency showed throughput was reduced by 2/3 when the

interface ran on the source versus the receiving Historian Server. When run on the receiving

Historian Server, the interface was able to sustain 1800 events/second. This was reduced to

600 events/second when the interface ran on the source Historian Server. Testing with a

latency of <1 ms, throughput was not affected. The interface maintained 11,000

events/second when run on the source and receiving Historian Server.

Principles of Operation

16

Archive Data Collection

By default, the first scan class is used for exception data collection. Tags configured for any

other scan class will receive archive data. However, exception data collection can be disabled

entirely by specifying the /hronly interface startup switch. When specified, all scan classes

update with archive data.

When a scan is executed, each tag receives an incremental copy of data. An archive update

begins at the interface tag‟s current value. The source server returns all source tag data

including its current snapshot value. Users have the option of including the current snapshot

value with each scan update. This is configured through the Location3 tag attribute. The

snapshot value is not part of the archive data collection. Including the snapshot value can lead

to a data mismatch between Historian Servers. In this case data compression must be enabled

by specifying the /dc startup switch. If this is not done and a tag is configured to include the

snapshot, a snapshot value will be archived on each scan. This will result in the interface tag

having more archive values than its source.

The default behavior is for archive data collected by the interface to bypass compression on

the receiving Historian Server if its version is PI 3.3 or later. Source data is written to the

receiving archive in one of three modes; append, replace or no replace. This is configured on

a tag by tag basis through the Location5 tag attribute. If the /dc interface startup parameter

is specified, this data is subjected to compression which effectively disables the archive write

mode. Historian 2 and Historian 3.2 servers will always apply compression to interface data.

In this case compression must be managed through interface tag configurations. See the

section Exception and Compression for additional information.

Performance Considerations

Load Distribution

Archive data collection can have a significant impact on Historian Server performance. The

source server will be providing the interface with outgoing data for its tag list in addition to

the normal incoming data rate. This may significantly increase system resource usage. This

performance impact can be minimized by distributing tags among multiple scan classes.

For example, a user configures the interface for 10,000 tags. Instead of assigning these tags to

a single scan class, multiple scan classes are used. The user defines ten scan classes and

assigns 1,000 tags to each one. A 10-minute update rate is chosen with each scan class offset

by one minute. The result is each scan executes one minute after the next distributing the

10,000 tag updates into 10 requests of 1,000 tags each. When compared to having all tags

belong to one scan class, this configuration is a more efficient use of server resources.

Scan Rates

The scan class update frequency can be chosen to minimize the performance impact on the

source Historian Server. Recent archive data is cached in Historian Server memory for each

tag. Historian Server resource usage is minimized when interface updates are obtained by

reading cached data. If the data does not reside in memory it is read from disk. Disk reads

require more hardware resources than a memory read. When possible a scan frequency

should be chosen that minimizes disk access while maximizing the time between scans.

A Historian 3.4 server allocates space for 4 data events per point in the archive read memory

cache. This cache size is a configurable parameter. When the interface performs history

FactoryTalk Historian To Historian Interface User Guide 17

recovery nearly all data is obtained from disk reads. When the interface transitions to

scanning for updates, disk reads should decrease as recent data is obtained from the archive

memory cache. The percentage of data obtained via disk reads versus memory can be

managed through the scan frequency. Increasing the scan rate should increase the percentage

read from memory. Vice versa, decreasing the scan rate increases the percentages of data

obtained from disk reads. With some trial and error users can determine a scan rate that

maximizes the time between scans while minimizing archive disk reads. For Historian 3

source servers, use the Historian Performance Monitor interface to access archive

cache versus disk read data counters. Historian 2 source servers will want to monitor disk

versus cache read ratios.

Data Timestamps

The source Historian Server provides a timestamp for each data event. These timestamps may

be adjusted to account for time zone differences and clock drift between Historian Servers. It

is required that each Historian Server have the correct system time for the configured time

zone.

Timestamps are automatically adjusted for time zone differences when both source and

receiving servers are PI3. PI3 uses Universal Coordinated Time (UTC) to timestamp data.

UTC is based on seconds since Jan.1, 1970 in Greenwich Mean Time. Each UTC time stamp

contains a time offset from Greenwich Mean Time that represents the local time zone setting.

If source and/or receiving Historian Server is PI2, users have the option of adjusting for time

zone differences. PI2 uses local time. Local time is seconds since Jan. 1, 1970 in the local

time zone. PI2 data timestamps do not include a time zone offset. For example, viewing data

from a PI2 server in a time zone two hours behind your local time will appear to be two hours

old. PI3 data includes time zone information that allows for automatic adjustment to local

time.

The interface can also adjust for clock drift between Historian Servers. Clock drift is the time

offset between Historian Servers after accounting for time zone differences. An offset of 30

minutes or less is considered clock drift. When configured to do so, the time offset is added to

the timestamp provided by the source Historian Server adjusting it to receiving Historian

Server time.

Timestamp adjustment is configured on a tag-by-tag basis through the Location2 tag

attribute. Note that all computers (interface node, source and receiving Historian Server) must

have the correct system time for the configured time zone.

Data Type Conversions

The following table displays supported data type conversions between source and receiving

Historian tags.

 Receiving Tag Point Type

S
o

u
rc

e

T
a

g
 P

o
in

t

T
y

p
e

Float
16/32/64

Int16/32 Digital String

Float 16/32/64 Yes Yes No

Principles of Operation

18

Int16/32 Yes Yes No

Digital No Yes No

String No No Yes

Interface Status Events

The FactoryTalk Historian to Historian interface may update a tag to indicate a specific status

event. These status events represent data that is generated by the interface and therefore will

not exist for the source tag.

There are three specific status events generated by the interface:

 IO Timeout status events are triggered when the interface loses a Historian Server

connection. This information informs users that current data is not being collected.

An event is written to indicate the time of disconnection and another event is written

to indicate the time of reconnection.

 Access Denied status events are written whenever the interface is denied access to a

tag‟s data or attribute information.

 Intf Shut status events are enabled through /stopstat startup parameter. When

enabled an event is written when the interface is stopped and again on startup. These

events tell users no data is being collected because the interface is not running. See a

more detailed description in the “Command-line Parameters” section.

To prevent a data mismatch between Historian Servers these status events should be disabled.

If enabled these events create a data gap that will not be filled through history recovery.

Each tag receives an „IO Timeout‟ event at the time of Historian Server disconnection and a

second event at reconnection. Likewise, when the interface is stopped and started a

„Shutdown‟ event is written to each tag. History recovery begins either at the start of the

recovery period or a tag‟s current value, whichever is more recent. The status events are

updated prior to performing history recovery, making them the starting point of the recovery

period for each tag. This results in a gap in data for a time period that might otherwise be

recovered.

Interface status events are configured on a tag-by-tag basis through the Location3 tag

attribute. Interface shutdown events are enabled through the interface startup script. By

default shutdown events are not written by the interface.

Adding, Removing and Editing Tags

Tag definitions can be modified while the interface is running. The interface periodically

checks with the receiving Historian Server for tag configuration updates. These updates

include adding, editing, and removing tags. During normal operation the interface checks for

updates every two minutes. It will only process up to 25 tag updates on any given update.

This is to prevent the processing of tag updates from delaying data collection. If there are

more than 25 tag updates, the interface will check again every 30 seconds until all updates

have been processed. Processing tag updates is a low priority for the interface. If a large

FactoryTalk Historian To Historian Interface User Guide 19

number of tag edits are made, a user may choose to restart the interface. Restarting the

interface will force it to process all edits by rebuilding its tag list.

Error Handling

When the interface encounters an error, it will print a message to the log file. If the error is

tag-specific, the error message will include the tag name along with the specific error code.

The tag is then marked by the interface as being in error and removed from the update list.

The interface will attempt to clear tags in error every 10 minutes. It does this by trying to read

a value from the source tag and then update the interface tag with that value. If this is

successful, the tag is added back to its assigned scan class for data collection. Otherwise, it

remains in error until the next attempt to clear it.

If an error is not tag-specific, the interface verifies server connectivity. Typically system

errors are a result of network upsets. When a system error is encountered, the interface

verifies Historian Server communication and attempts to continue collecting data.

Source Historian Server-Level Failover

Source Historian Server-level failover maximizes interface data availability on the receiving

Historian Server. It requires that two Historian source servers are available that have identical

tag definitions and data streams for interface points. This requirement ensures the interface

will obtain the same data regardless of which source server is active. Source Historian Server-

level failover is not supported for Historian 2.

Failover is enabled by specifying a primary and secondary source server in the interface

startup file. On startup the interface attempts to establish a connection to each source server

then load and initialize its tag list. Data collection begins from the primary source server

making it the active node while the secondary source server assumes the standby role.

However, if one of the source servers is unavailable on startup, the other server is designated

the active source regardless of primary or secondary configuration.

Note: Source tag mapping by point ID is not compatible with server-level failover.
This is because there is no guarantee of a point ID match between two source
Historian Servers unless they are part of a Historian Collective.

Fault Conditions

There are two conditions that will cause the interface to initiate failover: a communication

failure or detection of stale data.

Communication Failure

The first failover condition is when the interface loses communication to the active Historian

source server. This may be the result of a temporary network upset, shutdown of the active

source server, hardware failure, etc. The interface has no way of identifying what causes the

disconnection. A disconnection means the interface did not receive a response from the active

source within the timeout period. The interface may initiate a short wait then attempt to

reconnect to the active source before attempting to failover. The timeout period, pause

Principles of Operation

20

between reconnection, and number of reconnection attempts are all user configurable

parameters.

Note: the default network timeout period is 60 seconds. This is not an interface
configuration parameter. This is configured through the PI API configuration file,
pilogin.ini. Please refer to the PI API Users Manual for information on adjusting the
default timeout period.

Detection of Stale Data

The second failover condition is stale source data. The Historian Interface Status Utility is

required on each source server to track data quality. This utility is a separate program that

monitors updates to a specified watchdog tag. The utility updates a status tag to indicate

whether or not the watchdog tag is being updated. The interface monitors this status tag as an

indicator that source data is current. When configuring the Interface Status Utility users will

want to select a watchdog tag that receives reliable high frequency updates.

Whenever possible the interface is connected to a source Historian Server that is actively

receiving data. If this is not possible, the interface enters a loop where it waits for the first

available source Historian Server receiving data.

Note: The Historian Interface Status Utility is not included as part of the interface
installation. It is available for downloaded on our website;
http://support.rockwellautomation.com

UniInt Failover

This interface supports UniInt Phase 2 failover with warm failover configuration. Refer to

section UniInt Failover Configuration of this document for configuring the interface for

failover.

Interface Status Tags

The interface has the optional functionality of outputting status data to a digital tag. There are

two optional status tags that are mutually exclusive. These are digital tags that are created on

the receiving Historian Server. These tags are useful for tracking performance and assisting

with troubleshooting.

Internal State Status

The interface updates the internal state tag to indicate when it executes specific functions.

Specifically, the status will indicate whether the interface is in startup, performing history

recovery, scanning for data, experiencing network communication errors, denied data or point

access (security permissions) or performing shutdown operations. This functionality is

enabled by specifying an internal state status tag in the interface startup script.

http://techsupport.osisoft.com/

FactoryTalk Historian To Historian Interface User Guide 21

Failover Status

When configured for server-level failover users can specify a status tag. The interface will

update this tag to indicate whether the primary or secondary source server is active. It will

also update this tag when it is in the process of failing over (no active source) or experiencing

network communication errors.

Deployment Scenarios

There are two typical FactoryTalk Historian to Historian interface applications. One is to

isolate users from the source Historian Server. This may be for security requirements, load

distribution, database centralization or to resolve remote access issues. In this scenario users

will want to configure the interface for exception data collection to provide real-time updates

to end users.

The other application is to maintain a copy of archive data on a secondary Historian Server.

For example, in this scenario the receiving Historian Server maybe a backup of the source

Historian Server. This is achieved by running the interface in archive data collection mode

with tag attribute overrides in the startup configuration file. The tag attribute overrides enable

users to configure interface data collection without configuring receiving tags specifically for

PItoPI. This strategy allows receiving tags to be configured for their native interfaces and

eliminates the need for mass tag editing prior to bringing the backup server online, reducing

down time.

Historian to Historian within a Historian Collective

PItoPI can be used to distribute data within a collective. The primary method for data

distribution within a collective is n-way data buffering from the data source. N-way data

buffering provides the best performance and is the most efficient method for data distribution.

However due to system architecture and security restrictions this may not always be possible.

Principles of Operation

22

Historian to Historian is used to transfer data within a collective when the data cannot be sent

directly from the interface node. The following section describes typical configuration and

deployment scenarios when running Historian to Historian within a collective.

Tag Attribute Override Parameters

The interface supports tag attribute override parameters. These startup parameters must be

used when running the interface within a collective. Tag attribute override parameters enable

the interface to collect data for tags that are not actually configured for the Historian to

Historian interface.

Each member of a collective is required to have identical Historian point database definitions.

Using Historian to Historian within a collective will result in the need to have a tag

configured for Historian to Historian on one collective member but these same tags must also

be configured for the native data source interface on a different collective member.

For example, consider a secondary Historian Collective node that sits behind a firewall. The

primary Historian Collective node receives data directly from a Historian OPC and a

Historian ModBus interface node. The points on the secondary Historian Collective node are

defined exactly as they are on the primary Historian Collective node. This means these points

are either configured for the Historian OPC or the Historian ModBus interface

FactoryTalk Historian To Historian Interface User Guide 23

Example Architecture for Historian to Historian within a Historian Collective

Tag attribute override parameters allow users to pass global settings that enable the interface

to identify and build its tag list without requiring the tags to be defined explicitly for

Historian to Historian. A detailed description of the tag attribute override parameters can be

found in section Startup Command File section of this manual.

Firewall Considerations

When a firewall separates the source and receiving Historian Servers for the Historian to

Historian interface users may want to run the interface outside of the firewall network. This

configuration requires that port 5450 be opened for incoming connections to the Historian

Server through the firewall. All outgoing connections from the Historian Server will require

that port 1024+ and greater are opened. Additional configuration information for

implementing a firewall can be found in our knowledge base (KB) article #2820OSI8 which

is available on our TechSupport website (http://support.rockwellautomation.com).

For the best security posture, Historian to Historian should push data out from the most

sensitive Historian Server. Enable buffering to eliminate the latency bottleneck.

http://techsupport.osisoft.com/

Principles of Operation

24

Historian to Historian between Historian Collectives

The following diagram architecture depicts a typical deployment of Historian to Historian for

aggregating data between two Historian Collectives.

Limitations

The following limitations apply to the Historian to Historian interface when aggregating data

between two collectives.

Historian Collective Support

The Historian to Historian interface is not collective aware. While multiple Historian Servers

will compose a collective, the interface will only know about the Historian Servers specified

in its startup file. This means on startup both receiving and source Historian Server(s)

specified in the interface startup file must be available in order for the interface to initialize

its point list.

FactoryTalk Historian To Historian Interface User Guide 25

After the interface is up and running, and if n-way buffering is enabled, the interface will

collect data even if the receiving Historian Server is not available. This means data flow is

not dependent on the receiving Historian Server once the interface has completed is startup

initializations.

Be aware that history recovery can be compromised when the interface is configured for n-

way buffering to a collective. On startup the interface will check the snapshot value on the

receiving Historian Server for each tag in its tag list. The snapshot value is used to determine

the starting point for history recovery. This snapshot check only occurs on the receiving

Historian Server specified in the interface startup file. Therefore if the last value for each tag

assigned to the interface is not the same among Historian Servers in the receiving collective,

it will result in either a data gap or data overlap. The best way to avoid this scenario is to

initialize all Historian Servers in the receiving collective with the same set of data for the

interface tag list prior to implementing the Historian to Historian interface.

Note: The Buffer Subsystem v3.4.375.38 only supports writing to the archive in NO
REPLACE mode. This prevents the Historian to Historian interface from honoring
Location5 archive write options and can lead to data loss. It is recommended users
use a later version of Buffer Subsystem or Historian Bufserv to avoid this issue.
Please check our support website for the latest versions;
http://support.rockwellautomation.com

Data Latency and Source Historian Server Failover

The source Historian Server (or source Historian Server pair if failover is enabled) should

receive data directly from the interface node populating data for the Historian to Historian

source tag list. Not only will this ensure a seamless data transition on failover, it will also

minimize data latency to the receiving Historian Server(s). In this context data latency is the

time it takes between obtaining a value at the data source and having it arrive at the receiving

Historian Server via the Historian to Historian interface.

UniInt Failover

This interface supports UniInt failover. Refer to the UniInt Failover Configuration section of

this document for configuring the interface for failover.

http://techsupport.osisoft.com/

FactoryTalk Historian To Historian Interface User Guide 27

Chapter 3. Installation Checklist

If you are familiar with running FactoryTalk Historian data collection interface programs, this

checklist helps you get the interface running. If you are not familiar with Historian Interfaces,

return to this section after reading the rest of the manual in detail.

This checklist summarizes the steps for installing this Interface. You need not perform a

given task if you have already done so as part of the installation of another interface. For

example, you only have to configure one instance of Buffering for every interface node

regardless of how many interfaces run on that node.

The Data Collection Steps below are required. Interface Diagnostics and Advanced Interface

Features are optional.

Data Collection Steps

1. Confirm that you can use SMT to configure the Historian Server. You need not run

SMT on the same computer on which you run this Interface.

2. If you are running the interface on an interface node, edit the Historian Server‟s Trust

Table to allow the interface to write data.

3. Run the installation kit for the Historian Interface Configuration Utility (ICU) on the

interface node if the ICU will be used to configure the interface. This kit runs the PI

SDK installation kit, which installs both the PI API and the PI SDK.

4. Run the installation kit for this Interface. This kit also runs the PI SDK installation kit

which installs both the PI API and the PI SDK if necessary.

5. If you are running the interface on an interface node, check the computer‟s time zone

properties. An improper time zone configuration can cause the Historian Server to

reject the data that this Interface writes.

6. Run the ICU and configure a new instance of this Interface. Essential startup

parameters for this Interface are

Point Source (/PS=x)

Interface ID (/ID=#)

Historian Server (/Host=host:port)

Scan Class(/F=##:##:##,offset)

7. If you will use digital points, define the appropriate digital state sets on receiving

node. These should correspond to digital state sets assigned to source tags.

8. Choose a point source. If Historian 2 home node, create the point source.

Installation Checklist

28

9. Build input tags and, if desired, output tags for this Interface. Important point

attributes and their use are:

Location1 specifies the interface instance ID

Location2 specifies for timestamp adjustment.

Location3 specifies for configuring interface status events.

Location4 specifies the scan class.

Location5 sets the write mode of archived data on the receiving Historian Server.

InstrumentTag specifies the name of the Source Tag from the Source Historian

Server.

ExDesc is an alternative way to specify the Source Tag. This can be specified with

STAG=<tagname>.

UserInt1 defines Source Tag point ID instead of using source tag name.

10. Start the interface interactively and confirm its successful connection to the Historian

Server without buffering.

11. Confirm that the interface collects data successfully.

12. Stop the interface and configure a buffering application (either Bufserv or PIBufss).

When configuring buffering use the ICU menu item Tools  Buffering… 

Buffering Settings to make a change to the default value (32678) for the Primary and

Secondary Memory Buffer Size (Bytes) to 2000000. This will optimize the

throughput for buffering and is recommended by OSIsoft.

13. Start the buffering application and the interface. Confirm that the interface works

together with the buffering application by either physically removing the connection

between the interface node and the Historian Server Node or by stopping the

Historian Server.

14. Configure the interface to run as a Service. Confirm that the interface runs properly

as a Service.

15. Restart the interface node and confirm that the interface and the buffering application

restart.

Interface Diagnostics

1. Configure Scan Class Performance points.

2. Install the Historian Performance Monitor Interface (Full Version only) on the

interface node.

3. Configure Performance Counter points.

4. Configure UniInt Health Monitoring points

5. Configure the I/O Rate point.

6. Install and configure the Interface Status Utility on the Historian Server Node.

7. Configure the Interface Status point.

FactoryTalk Historian To Historian Interface User Guide 29

Advanced Interface Features

Configure UniInt Failover; see that section in this document for details related to configuring

the interface for failover.

FactoryTalk Historian To Historian Interface User Guide 31

Chapter 4. Interface Installation

Rockwell Automation recommends that interfaces be installed on interface nodes instead of

directly on the Historian Server node. An interface node is any node other than the Historian

Server node where the FactoryTalk Historian application Programming Interface (PI API) has

been installed (see the PI API manual). With this approach, the Historian Server need not

compete with interfaces for the machine‟s resources. The primary function of the Historian

Server is to archive data and to service clients that request data.

After the interface has been installed and tested, Buffering should be enabled on the interface

node. Buffering refers to either PI API Buffer Server (Bufserv) or the PI Buffer Subsystem

(PIBufss). For more information about Buffering see the Buffering section of this manual.

In most cases, interfaces on interface nodes should be installed as automatic services.

Services keep running after the user logs off. Automatic services automatically restart when

the computer is restarted, which is useful in the event of a power failure.

The guidelines are different if an interface is installed on the Historian Server node. In this

case, the typical procedure is to install the Historian Server as an automatic service and install

the interface as an automatic service that depends on the PI Update Manager and PI Network

Manager services. This typical scenario assumes that Buffering is not enabled on the

Historian Server node. Bufserv can be enabled on the Historian Server node so that interfaces

on the Historian Server node do not need to be started and stopped in conjunction with

Historian, but it is not standard practice to enable buffering on the Historian Server node. The

Buffer Subsystem can also be installed on the Historian Server. See the UniInt Interface User

Manual for special procedural information.

Naming Conventions and Requirements

In the installation procedure below, it is assumed that the name of the interface executable is

PItoPI.exe and that the startup command file is called PItoPI.bat.

When Configuring the interface Manually

It is customary for the user to rename the executable and the startup command file when

multiple copies of the interface are run. For example, PItoPI1.exe and PItoPI1.bat

would typically be used for interface number 1, PItoPI2.exe and PItoPI2.bat for

interface number 2, and so on. When an interface is run as a service, the executable and the

command file must have the same root name because the service looks for its command-line

parameters in a file that has the same root name.

Interface Installation

32

Interface Directories

PIHOME Directory Tree

The [PIHOME] directory tree is defined by the PIHOME entry in the pipc.ini configuration

file. This pipc.ini file is an ASCII text file, which is located in the %windir% directory.

For 32-bit operating systems a typical pipc.ini file contains the following lines:

[PIPC]

PIHOME=C:\Program Files\Rockwell Software\FactoryTalk

Historian\PIPC

For 64-bit operating systems a typical pipc.ini file contains the following lines:

[PIPC]

PIHOME=C:\Program Files (X86)\PIPC

The above lines define the root of the PIHOME directory on the C: drive. The PIHOME

directory does not need to be on the C: drive. Rockwell Automation recommends using the

paths shown above as the root PIHOME directory name.

Interface Installation Directory

The interface install kit will automatically install the interface to:

PIHOME\Interfaces\ PItoPI\

PIHOME is defined in the pipc.ini file.

Note: All FactoryTalk Historian to Historian interface files are installed into

PIHOME\Interfaces\PItoPI. If multiple copies of the interface are already

installed with names other than PItoPI, they will not be upgraded. Upgrade of
multiple interfaces should be done by manually copying the executable files and
startup files.

Interface Installation Procedure

The FactoryTalk Historian to Historian Interface setup program uses the services of the

Microsoft Windows Installer. Windows Installer is a standard part of Windows 2000 and

greater operating systems. To install, run the appropriate installation kit.

PItoPI_#.#.#.#_.exe

Installing Interface as a Windows Service

The FactoryTalk Historian to Historian Interface service can be created, preferably, with the

Historian Interface Configuration Utility, or can be created manually.

FactoryTalk Historian To Historian Interface User Guide 33

Installing Interface Service with Historian Interface Configuration
Utility

The Historian Interface Configuration Utility provides a user interface for creating, editing,

and deleting the interface service:

Service Configuration

Service name

The Service name box shows the name of the current interface service. This service name is

obtained from the interface executable.

ID

This is the service ID used to distinguish multiple instances of the same interface using the

same executable.

Display name

The Display Name text box shows the current Display Name of the interface service. If there

is currently no service for the selected interface, the default Display Name is the service name

with a “Historian-” prefix. Users may specify a different Display Name. Rockwell

Automation suggests that the prefix “Historian-” be appended to the beginning of the

interface to indicate that the service is part of the Rockwell Automation suite of products.

Interface Installation

34

Log on as

The Log on as text box shows the current “Log on as” Windows User Account of the

interface service. If the service is configured to use the Local System account, the Log on as

text box will show “LocalSystem.” Users may specify a different Windows User account for

the service to use.

Password

If a Windows User account is entered in the Log on as text box, then a password must be

provided in the Password text box, unless the account requires no password.

Confirm password

If a password is entered in the Password text box, then it must be confirmed in the Confirm

Password text box.

Dependencies

The Installed services list is a list of the services currently installed on this machine. Services

upon which this interface is dependent should be moved into the Dependencies list using the

 button. For example, if API Buffering is running, then “bufserv” should be selected

from the list at the right and added to the list on the left. To remove a service from the list of

dependencies, use the button, and the service name will be removed from the

Dependencies list.

When the interface is started (as a service), the services listed in the dependency list will be

verified as running (or an attempt will be made to start them). If the dependent service(s)

cannot be started for any reason, then the interface service will not run.

Note: Please see the Historian Log and Windows Event Logger for messages that
may indicate the cause for any service not running as expected.

 - Add Button

To add a dependency from the list of Installed services, select the dependency name, and

click the Add button.

 - Remove Button

To remove a selected dependency, highlight the service name in the Dependencies list, and

click the Remove button.

The full name of the service selected in the Installed services list is displayed below the

Installed services list box.

Startup Type

The Startup Type indicates whether the interface service will start automatically or needs to

be started manually on reboot.

FactoryTalk Historian To Historian Interface User Guide 35

 If the Auto option is selected, the service will be installed to start automatically when

the machine reboots.

 If the Manual option is selected, the interface service will not start on reboot, but will

require someone to manually start the service.

 If the Disabled option is selected, the service will not start at all.

Generally, interface services are set to start automatically.

Create

The Create button adds the displayed service with the specified Dependencies and with the

specified Startup Type.

Remove

The Remove button removes the displayed service. If the service is not currently installed, or

if the service is currently running, this button will be grayed out.

Start or Stop Service

The toolbar contains a Start button and a Stop button . If this interface service is not

currently installed, these buttons will remain grayed out until the service is added. If this

interface service is running, the Stop button is available. If this service is not running, the

Start button is available.

The status of the interface service is indicated in the lower portion of the ICU dialog.

Installing Interface Service Manually

Help for installing the interface as a service is available at any time with the command:

PItoPI.exe -help

Open a Windows command prompt window and change to the directory where the

PItoPI1.exe executable is located. Then, consult the following table to determine the

appropriate service installation command.

Windows Service Installation Commands on an interface node or a Historian Server Node
with Bufserv implemented

Manual service PItoPI.exe -install -depend "tcpip bufserv"

Automatic service PItoPI.exe -install -auto -depend "tcpip bufserv"

*Automatic service with
service ID

PItoPI.exe -serviceid X -install -auto -depend "tcpip bufserv"

Status of

the ICU

Service

installed or

uninstalled

Status of the

Interface

Service

Interface Installation

36

Windows Service Installation Commands on an interface node or a Historian Server Node
without Bufserv implemented

Manual service PItoPI.exe -install -depend tcpip

Automatic service PItoPI.exe -install -auto -depend tcpip

*Automatic service with
service ID

PItoPI.exe -serviceid X -install -auto -depend tcpip

*When specifying service ID, the user must include an ID number. It is suggested that this

number correspond to the interface ID (/id) parameter found in the interface .bat file.

Check the Microsoft Windows Services control panel to verify that the service was added

successfully. The services control panel can be used at any time to change the interface from

an automatic service to a manual service or vice versa.

FactoryTalk Historian To Historian Interface User Guide 37

Chapter 5. PointSource

The PointSource is a unique, single or multi-character string that is used to identify the

Historian point as a point that belongs to a particular interface. For example, the string

Boiler1 may be used to identify points that belong to the MyInt Interface. To implement this,

the PointSource attribute would be set to Boiler1 for every Historian Point that is

configured for the MyInt Interface. Then, if /ps=Boiler1 is used on the startup command-

line of the MyInt Interface, the interface will search the Historian Point Database upon startup

for every Historian point that is configured with a PointSource of Boiler1. Before an

interface loads a point, the interface usually performs further checks by examining additional

Historian Point Attributes to determine whether a particular point is valid for the interface.

For additional information, see the /ps parameter. If the PI API version being used is prior to

1.6.x or the Historian Server version is prior to 2.x, the PointSource is limited to a single

character unless the SDK is being used.

Case-sensitivity for PointSource Attribute

The PointSource character that is supplied with the /ps command-line parameter is not case

sensitive. That is, /ps=P and /ps=p are equivalent.

FactoryTalk Historian To Historian Interface User Guide 39

Chapter 6. Historian Point Configuration

The Historian point is the basic building block for controlling data flow to and from the

Historian Server. A single point is configured for each measurement value that needs to be

archived.

The following tag attributes are used for defining interface points on the receiving Historian

Server.

Point Attributes

Use the point attributes below to define the Historian point configuration for the interface,

including specifically what data to transfer.

Tag

The Tag attribute (or tagname) is the name for a point. There is a one-to-one correspondence

between the name of a point and the point itself. Because of this relationship, FactoryTalk

Historian documentation uses the terms “tag” and “point” interchangeably.

Follow these rules for naming Historian Points:

 The name must be unique on the Historian Server.

 The first character must be alphanumeric, the underscore (_), or the percent sign (%).

 Control characters such as linefeeds or tabs are illegal.

 The following characters also are illegal: * ‟ ? ; { } [] | \ ` „ “

Length

Depending on the version of the PI API and the Historian Server, this Interface supports tags

whose length is at most 255 or 1023 characters. The following table indicates the maximum

length of this attribute for all the different combinations of PI API and Historian Server

versions.

PI API Historian Server Maximum Length

1.6.0.2 or higher 2.x or higher 1023

1.6.0.2 or higher Below 2.x 255

Below 1.6.0.2 2.x or higher 255

Below 1.6.0.2 Below 2.x 255

If the Historian Server version is earlier than 2.x or the PI API version is earlier than 1.6.0.2,

and you want to use a maximum tag length of 1023, you need to enable the PI SDK. See

Appendix_B for information.

Historian Point Configuration

40

The Historian 2 tag name attribute LongName is used if it exists.

The receiving and source tag names do not need to be identical. However, unless the

receiving tag attributes InstrumentTag or ExDesc specify the source tag name or the

/ptid interface parameter is used, the receiving tag name is assumed to be the same as the

source tag name. The How PItoPI Finds Source Points section explains how the interface

parameters affect which receiving tag attributes are used for mapping to the source point and

the order that the attributes are searched for a mapping.

Note: If the source tag name length exceeds 80 characters, users must use the
UserInt1 attribute for source point mapping. This is due to a limitation with the PI API
programming library which supports tag names of 80 characters or less for point ID
resolution.

PointSource

The PointSource is a unique, single or multi-character string that is used to identify the

Historian point as a point that belongs to a particular interface. For additional information,

see the /ps command-line parameter and the “PointSource” section.

PointType

The interface supports all Historian point types. Historian 2 point types are R (float16 and

float32), D (digital) and I (int16). Historian 3 point types are float16, float32, float64, int16,

int32, digital, timestamp, string, and blobs. For more information on the individual

PointTypes, see Historian Server manuals.

Users should configure interface tags to be the same PointType as their source tag to maintain

data consistency between Historian Servers. If interface tags have different PointType from

their source tags, the interface will perform point type conversion. Refer to section Data Type

Conversion of this document.

Location1

Location1 indicates to which copy of the interface the point belongs. The value of this

attribute must match the /id startup parameter.

In some cases users may run multiple copies of the interface that share the same point source.

Each instance of the interface is differentiated by its interface ID. The Location1 tag

attribute defines which copy of the interface a tag is assigned to.

FactoryTalk Historian To Historian Interface User Guide 41

Location2

Location2 specifies data timestamp adjustment. The source Historian Server supplies a

timestamp for each data event. Users have the option of adjusting these timestamps to

account for time differences between Historian Servers. It is required that each Historian

Server have the correct system time for its configured time zone. See section Data

Timestamps for a complete discussion.

Location2
Value

Adjust for Time
Zone
Differences

Do Not Adjust for
Time Zone
Differences*

Adjust for
Clock Drift**

Truncate Sub-Second
Timestamps***

0 Yes - -- --

1 -- Yes -- --

2 Yes -- Yes --

3 -- Yes Yes --

4 Yes -- -- Yes

5 -- Yes -- Yes

6 Yes -- Yes Yes

7 -- Yes Yes Yes

* Only available if source and/or receiving Historian Server is a PI2 system.

** Receiving Historian Server is the time master. Timestamps are adjusted to receiving Historian
Server time. An offset of 30 minutes or less is considered clock drift.

***Truncating sub-second timestamps can lead to data loss during history recovery and archive data
scanning if multiple events are stored within the same second. Use with caution.

Location3

Location3 is used to configure what interface status events are written to a tag.

„IO Timeout‟ status events will result in a data gap for periods of Historian Server

disconnection. See section Interface Status Events for a complete discussion.

If a tag is configured for archive data collection, this attribute also specifies whether or not

the snapshot value is included with each scan update.

Location3
Value

Write
“I/O Timeout”

Write
“Access Denied”

Include
Snapshot

Point Level
Debugging

0 Yes Yes -- --

1 -- Yes -- --

2 Yes -- -- --

3 -- -- -- --

4 Yes Yes Yes --

5 -- Yes Yes --

6 Yes -- Yes --

7 -- -- Yes --

8 Yes Yes -- Yes

9 -- Yes -- Yes

10 Yes -- -- Yes

11 -- -- -- Yes

12 Yes Yes Yes Yes

Historian Point Configuration

42

Location3
Value

Write
“I/O Timeout”

Write
“Access Denied”

Include
Snapshot

Point Level
Debugging

13 -- Yes Yes Yes

14 Yes -- Yes Yes

15 -- -- Yes Yes

Location4

Scan-based Inputs

For interfaces that support scan-based collection of data, Location4 defines the scan class

for the Historian point. The scan class determines the frequency at which input points are

scanned for new values. For more information, see the description of the /f parameter in the

Startup Command File section.

Location5

Location5 attribute is used for setting the write mode for sending archive data to the

receiving Historian Server. The following table lists the supported modes for PI3 and PI2

receiving Historian Servers.

Location5 Write Mode Description Supported Historian
Server versions

0 ARCAPPEND

Archive and
Snapshot Data

Add archive event
regardless of existing
events.

Default snapshot
behavior is to append
data if event at
timestamp exists..

PI3 only*

1 ARCNOREPLACE

Archive Events
Only

Add archive event
unless event(s) exist at
same time.

Default snapshot
behavior is to append
data if event at
timestamp exists.

PI2 only

2 ARCREPLACE

Archive Events
Only

Add archive event,
replace if event at same
time.

Default snapshot
behavior is to append
data if event at
timestamp exists.

PI3 & PI2

3 ARCNOREPLACE

Archive and
Snapshot Events

Add archive or
snapshot event unless
event(s) exist at same
time

PI2 only

4 ARCREPLACE

Archive and
Snapshot Events

Add archive or
snapshot event, replace
if event at same time

PI3 & PI2

*Note: PI2 supports Insert (ARCNOREPLACE) or Replace (ARCREPLACE) data write

FactoryTalk Historian To Historian Interface User Guide 43

modes. It is not possible for PI2 to have two values with the same timestamp.

InstrumentTag

Note: If the source tag name length exceeds 80 characters, users must use the
UserInt1 attribute for source point mapping. This is due to a limitation with the PI API
programming library which supports tag names of 80 characters or less for point ID
resolution.

Length

Depending on the version of the PI API and the Historian Server, this Interface supports an

InstrumentTag attribute whose length is at most 32 or 1023 characters. The following table

indicates the maximum length of this attribute for all the different combinations of PI API

and Historian Server versions.

PI API Historian Server Maximum Length

1.6.0.2 or higher 2.x or higher 1023

1.6.0.2 or higher Below 2.x 32

Below 1.6.0.2 2.x or higher 32

Below 1.6.0.2 Below 2.x 32

If the Historian Server version is earlier than 2.x or the PI API version is earlier than 1.6.0.2,

and you want to use a maximum InstrumentTag length of 1023, you need to enable the PI

SDK. See Appendix B for information.

Unless the /tn, /tnex, or /ptid interface parameter is used, the InstrumentTag can be

used to specify the source tag. The ExDesc and Tag attributes can also be used for source tag

name definition. The UserInt1 attribute can be used to specify source tag by point ID

instead of tag name. The How PItoPI Finds Source Points section explains how the interface

parameters affect which receiving tag attributes are used for mapping to the source point and

the order that the attributes are searched for a mapping.

The interface checks the InstrumentTag attribute first. If the InstrumentTag is empty,

the extended descriptor is checked for STAG=<tagname> at the beginning of the ExDesc

value. That is, the ExDesc attribute must begin with the „STAG‟ keyword. If neither

InstrumentTag nor ExDesc has a tag name, the UserInt1 attribute is checked for the

source tag point ID. Finally if none of these three attributes identify a source point, the

receiving tag name is used for the source tag name.

ExDesc

Note: If the source tag name length exceeds 80 characters, users must use the
UserInt1 attribute for source point mapping. This is due to a limitation with the PI API
programming library which supports tag names of 80 characters or less for point ID
resolution.

Length

Depending on the version of the PI API and the Historian Server, this Interface supports an

Extended Descriptor attribute whose length is at most 80 or 1023 characters. The

Historian Point Configuration

44

following table indicates the maximum length of this attribute for all the different

combinations of PI API and Historian Server versions.

PI API Historian Server Maximum Length

1.6.0.2 or higher 2.x or higher 1023

1.6.0.2 or higher Below 2.x 80

Below 1.6.0.2 2.x or higher 80

Below 1.6.0.2 Below 2.x 80

If the Historian Server version is earlier than 2.x or the PI API version is earlier than 1.6.0.2,

and you want to use a maximum ExDesc length of 1023, you need to enable the PI SDK. See

Appendix B for information.

Unless the /tn or /ptid interface parameter is used, the extended descriptor may be used

as an alternative source tag specification by using the keyword STAG=<tag name>. The

How PItoPI Finds Source Points section explains how the interface parameters affect which

receiving tag attributes are used for mapping to the source point and the order that the

attributes are searched for a mapping.

Note that the STAG keyword must be the first four characters of the Exdesc attribute value.

No spaces can precede the STAG keyword. The STAG keyword is case insensitive. If

additional information is included after the STAG specification, the tag name must be

terminated with a comma or enclosed in double quotation marks.

If the source tag name contains a comma within it, it must be enclosed in double quotation

marks. For example, STAG="batchreactor1,temp" is a legitimate way to define a source

tag name.

Performance Points

For UniInt-based interfaces, the extended descriptor is checked for the string

“PERFORMANCE_POINT”. If this character string is found, UniInt treats this point as a

performance point. See the section called Scan Class Performance Points.

UserInt1

Note: If the source tag name length exceeds 80 characters, users must use the
UserInt1 attribute for source point mapping. This is due to a limitation with the PI API
programming library which supports tag names of 80 characters or less for point ID
resolution.

Unless the /tn or /tnex interface parameter is used, the UserInt1 attribute can be used to

specify the source tag point ID. The How PItoPI Finds Source Points section explains how

the interface parameters affect which receiving tag attributes are used for mapping to the

source point and the order that the attributes are searched for a mapping.

If the source tag name is longer than 80 characters then you must use this attribute to specify

the source tag point ID. This is an alternative to using the source tag name. The advantage of

using a point ID is that a tag name can change but the point ID cannot. For example, if the

source tag name is used and that name is changed, the interface point will no longer be able to

find it and will therefore not be able to collect its data. Using the source tag point ID will

prevent a tag rename from stopping data updates.

FactoryTalk Historian To Historian Interface User Guide 45

Scan

By default, the Scan attribute has a value of 1, which means that scanning is turned on for the

point. Setting the Scan attribute to 0 turns scanning off. If the Scan attribute is 0 when the

interface starts, a message is written to the pipc.log and the tag is not loaded by the

interface. There is one exception to the previous statement.

If any Historian point is removed from the interface while the interface is running (including

setting the Scan attribute to 0), SCAN OFF will be written to the Historian point regardless of

the value of the Scan attribute. Two examples of actions that would remove a Historian point

from an interface are to change the point source or set the Scan attribute to 0. If an interface

specific attribute is changed that causes the tag to be rejected by the interface, SCAN OFF

will be written to the Historian point.

Shutdown

It is recommended that shutdown events are disabled for all interface tags. There are two

shutdown events; when the Historian Server is stopped and when the interface is stopped. The

Shutdown tag attribute is used to enable Historian Server shutdown events. See section

Interface Status Events for information regarding interface shutdown events.

Shutdown events are written to tags when the Historian Server is stopped to indicate data is

not being collected. In some cases when the Historian Server is not running it creates a gap in

data. However if interface history recovery is enabled a shutdown does not indicate a period

of lost data.

If a tag is configured for shutdown events one is written when the server is stopped then again

when it is started. Since the shutdown event on startup will be the current value for the

interface tag it is used as the starting for history recovery. This results in a data gap for the

Historian Server shutdown period.

Bufserv and PIBufss

It is undesirable to write shutdown events when buffering is being used. Bufserv and PIBufss

are utility programs that provide the capability to store and forward events to a Historian

Server, allowing continuous data collection when the Server is down for maintenance,

upgrades, backups, and unexpected failures. That is, when Historian is shutdown, Bufserv or

PIBufss will continue to collect data for the interface, making it undesirable to write

SHUTDOWN events to the Historian Points for this Interface. Disabling Shutdown is

recommended when sending data to a Highly Available Historian Server Collective. Refer to

the Bufserv or PIBufss manuals for additional information.

Exception and Compression

Interface data may or may not be subjected to exception and compression depending on

receiving Historian Server version and interface configuration. In either case it is

recommended users configure the interface and tag attributes to prevent compression from

causing data mismatches between Historian Servers.

Historian Point Configuration

46

Interface Configurations

Data collected by the interface has already passed exception on the source Historian Server.

For this reason interface exception filtering should be disabled. This can be done by

specifying the /sn switch in the startup configuration file. This tells the interface to bypass

exception and send data directly to the snapshot table on the receiving Historian Server.

By default the interface will send history recovery and archive update data directly to the

receiving Historian Server archive. The data write mode is configurable through the

Location5 tag attribute. If the /dc switch is specified in the interface startup file, data will

pass through compression on the receiving Historian Server regardless of server version. If

the receiving Historian Server is Historian 3.2 or Historian 2 data is always subjected to

compression whether or not the /dc switch is used.

Note: if a tag configured for archive data updates has its Location3 attribute set so it

receives snapshot updates, data compression must be enabled to eliminate data mismatches

between Historian Servers.

Recommended Tag Configurations

Each tag has attributes that are used to define exception and compression data filtering. These

attributes specify a significant data change and the minimum and maximum time between

events.

The following tag configurations are recommended to prevent data mismatches:

Tag Attribute Value

ExcDev/ExcDevPercent 0

CompDev/CompDevPercent Source Tag Value

ExcMin & CompMin 0

ExcMax & CompMax 32767

The ExcDev/ExcDevPercent and CompDev/CompDevPercent attributes define a

significant data change. A new update must pass this value to pass data filtering.

The ExcMax and CompMax tag attributes set the maximum number of seconds between

updates. When the value of this attribute is exceeded, the next update passes filtering

regardless of whether or not it is a significant change in value. Tags should be configured

with the maximum allowed values.

The ExcMin and CompMin tag attributes set the minimum number of seconds between

updates. If a new value is received and the time difference between the new value and the

current value does not exceed this value the update is filtered. Tags should be configured with

a value of zero to prevent data from being filtered because of the time between updates.

By default, the largest ExcMax and CompMax values the interface supports is 32,767 seconds

(~9hours). If the receiving Historian Server was a new installation of PI 3.3 or later, it is

possible to have ExcMax and CompMax values of 4,294,967,295 seconds. In addition to the

server version, the PI SDK must be enabled in the interface startup file by specifying

/pisdk=1.

FactoryTalk Historian To Historian Interface User Guide 47

DataAccess, PtAccess

Historian 3 nodes use these attributes to control client read/write access to the data and point

attributes. Access may be specified for owner, group and world. The user and groups used

must be created before assignment. Example: dataaccess=o:rw g:rw w:r,

ptaccess=o:rw g:r w:r.

Zero, Span

These attributes should match for the source and receiving points.

FactoryTalk Historian To Historian Interface User Guide 49

Chapter 7. Interface Status Tag Configuration

The following procedure describes how to create and configure interface status tags. These

tags are created on the receiving Historian Server. See section Interface Status Tags for a

complete description of this functionality.

1. Create a digital state set for the status tag. The following tables display the digital

state set definitions.

Internal Status Tag:

Digital State String

0 STARTUP

1 HISTORYRECOVERY

2 SCANNING

3 SHUTDOWN

4 ACCESSDENIED

5 SRCDISCONNECT

6 RCVDISCONNECT

Failover Status Tag:

Digital State String

0 RECONNECTING

1 PRIMARY

2 FAILOVER

3 SECONDARY

2. Create a digital tag on the receiving Historian Server with the following attributes:

Attribute Value

PointSource L

PointType Digital

Compressing 0

ExcDev 0

DigitalStateSet As defined in the receiving
PI3 server digital state
database.

FactoryTalk Historian To Historian Interface User Guide 51

Chapter 8. Startup Command File

Command-line parameters can begin with a / or with a -. For example, the /ps=M and

-ps=M command-line parameters are equivalent.

Command file names have a .bat extension. The Windows continuation character (^) allows

for the use of multiple lines for the startup command. The maximum length of each line is

1024 characters (1 kilobyte). The number of parameters is unlimited, and the maximum

length of each parameter is 1024 characters.

The Historian Interface Configuration Utility (ICU) provides a tool for configuring the

interface startup command file.

Configuring the interface with ICU

Note: ICU requires PI 2.0 and later.

The Historian Interface Configuration Utility provides a graphical user interface for

configuring Historian Interfaces. If the interface is configured by the ICU, the batch file of

the interface (PItoPI.bat) will be maintained by the ICU and all configuration changes will

be kept in that file and the module database. The procedure below describes the necessary

steps for using ICU to configure the FactoryTalk Historian to Historian Interface.

From the ICU menu, select Interface, then New Windows Interface Instance from EXE..., and

then Browse to the PItoPI.exe executable file. Then, enter values for Point Source and

Interface ID#. A window such as the following results:

Startup Command File

52

Interface name as displayed in the ICU (optional) will have Historian- pre-pended to this

name and it will be the display name in the services menu.

Click Add.

The following display should appear:

Note that in this example the Host FactoryTalk Historian System is mkellyD630. To

configure the interface to communicate with a remote Historian Server, select „Interface =>

Connections…‟ item from ICU menu and select the default server. If the remote node is not

present in the list of servers, it can be added.

Once the interface is added to ICU, near the top of the main ICU screen, the interface Type

should be PItoPI. If not, use the drop-down box to change the interface Type to be PItoPI

Click on Apply to enable the ICU to manage this copy of the FactoryTalk Historian to

Historian Interface.

The next step is to make selections in the interface-specific page (that is, PItoPI) that allow

the user to enter values for the startup parameters that are particular to the FactoryTalk

Historian to Historian Interface.

FactoryTalk Historian To Historian Interface User Guide 53

The PItoPI ICU control has 7 tabs for each scan class, plus the All Scan Classes settings. A

yellow text box indicates that an invalid value has been entered, or that a required value has

not been entered.

The next figure shows the All Scan Classes settings.

Notice the box for the Source host. This parameter is required and must be replaced with your

server name, where the Historian to Historian data will be retrieved from.

The Settings for drop down list will always have one entry titled “All Scan Classes”, and will

have one entry for each scan class defined for this interface. The settings defined on the “All

Scan Classes” tab are the settings that are used by the interface if one or more settings for any

of the scan classes is not provided.

Since the FactoryTalk Historian to Historian Interface is a UniInt-based interface, in some

cases the user will need to make appropriate selections in the UniInt pages. These pages

allows the user to access UniInt features through the ICU and to make changes to the

behavior of the interface.

To set up the interface as a Windows Service, use the Service page. This page allows

configuration of the interface to run as a service as well as to starting and stopping of the

interface. The interface can also be run interactively from the ICU. To do that, open the

Interface menu and then click Start Interactive.

For more detailed information on how to use the above-mentioned and other ICU pages and

selections, please refer to the Historian Interface Configuration Utility User Manual. The

next section describes the selections that are available from the PItoPI page. Once selections

have been made on the ICU GUI, press the Apply button in order for ICU to make these

changes to the interface‟s startup file.

Startup Command File

54

FactoryTalk Historian to Historian Interface page

Since the startup file of the FactoryTalk Historian to Historian Interface is maintained

automatically by the ICU, use the PItoPI page to configure the startup parameters and do not

make changes in the file manually. The following is the description of interface configuration

parameters used in the ICU Control and corresponding manual parameters.

Required/General Tab

When All Scan Classes is selected in the Settings for list, the first tab will be titled Required.

This is because the information provided in this first tab is required only for the All Scan

Classes, and not for each scan class.

Required Parameters - Source host

The Source host is the name of the source Historian Server from which this FactoryTalk

Historian to Historian interface is to get its data. (/SRC_HOST=hostname).

Required Parameters - PIx Server

The type of server needs to be selected in the combo box next to the Source host text box.

The options are PI3 Server or PI2 Server.

Required Parameters - Event counter

The Event counter can only be configured for a particular scan class, so the Event counter

box will remain disabled unless a scan class is selected in the Settings for combo box.

(/EC=x).

FactoryTalk Historian To Historian Interface User Guide 55

PI2 Security File – Use PI2 security file

The PI2 Security File section is used only if the source host is a PI2 server. If a security file is

to be used, select the Use PI2 security file check box.

PI2 Security File - Unique Part

The Unique part is the name suffix of tag security file on a Historian 2 system. The full name

on the Historian 2 system is PItoPI<name>.SEC, where <name> is the portion specified in

the Unique part box. (/SF=uniquename).

PI2 Security File - User

The User is the login user name of a PI user on Historian 2 node that the interface is to use.

This is used for Historian 2 source systems. (/LN=username).

PI2 security File - Password

The Password is the login password of the PI user specified in the User box on Historian 2

node. This is used for Historian 2 source systems. (/PW=password).

Additional Parameters

This section is provided for any additional parameters that the current ICU Control does not

support.

Startup Command File

56

History Recovery Tab

Maximum hours of history to recover

Number of hours to recover history for all points. Setting the value to 0 disables history

recovery for all points. See section History Recovery for more information about history

recovery. (/RH=hours)

The Use Default button is used to reset the value to the default setting of 8 maximum hours of

history to recover.

Hours of history to recover per cycle

This is the number of hours of history to recover in each cycle through the point list. If the

number of hours specified in the Hours of history to recover per cycle box is greater than or

equal to the hours of history recovery requested in the Maximum hours of history to recover

box, history will be recovered in one archive call from *- Hours of history to recover per

cycle hours to *. If Maximum hours of history to recover is greater than Hours of history to

recover per cycle, the archive calls to retrieve history will be divided into N calls, where N =

Maximum hours of history to recover / Hours of history to recover per cycle + 1. The calls,

which start from (*-Maximum hours of history to recover), will each span Hours of history to

recover per cycle hours. Each history increment is collected for all tags in the given scan

class before the next time increment is begun. If this field is set to zero, the default 24 hours

will be used. (/RH_INC=hours)

The Use Default button is used to reset the value to the default setting of 24 hours for the

number of Hours of history to recover per cycle.

FactoryTalk Historian To Historian Interface User Guide 57

Millisecond pause between history calls

The number of milliseconds to pause between history recovery calls.

(/HRPAUSE=millisecond)

The Use Default button is used to reset the value to the default setting of 0 milliseconds to

pause between history recovery calls.

Use history recovery only (no snapshot data collection)

If this check box is selected, tags do not sign up for exceptions. Each scheduled scan time

(each scan class), history recovery is done from the last snapshot value to the current time.

This box must be checked if you want to enter a History time range. (/HRONLY)

History time range (dd-mmm-yy:hh:mm:ss,dd-mmm-yy:hh:mm:ss)

Alternately, specifies a range of history to recover before exiting. The times must be specified

using Historian Time string formats with a colon separating the date and the time. For

example:

10-dec-98:10:00:00,10-dec-98:12:00:00

Note that these times are local to where the interface runs.

This will recover two hours of data from the source to receiving system; put it into the

receiving FactoryTalk Historian System snapshot for all points and then exit. This switch will

override the normal checking for the most recent snapshot time in the receiving database, thus

out of order data may result. When time-range history recovery is enabled, the value specified

by the /RH parameter is overridden. (/HRONLY=dd-mmm-yy:hh:mm:ss,dd-mmm-

yy:hh:mm:ss)

Start history recovery beginning with the first value prior to the start time.

This will retrieve history for all the points starting from the value immediately prior to the

start time. The default is to begin with the first value after the start time. This can only be

checked if the Use history recovery only check box has been checked.

Startup Command File

58

Debug Tab

Debug Parameters

The Debug Levels parameter is used to set a debug level for debug messaging per scan class.

Check all types of debug messages that you would like to see logged. Any combination of

debug levels can be applied. (/DB=#,#,#,#...)

Interface Status Tag on Receiving Historian Server:

This is the name of an interface status tag configured on receiving server. Click the Browse

button to browse the point database for this interface status tag using the Tag Search utility.

(/IST=tagname)

FactoryTalk Historian To Historian Interface User Guide 59

Location Tab

Use the Override Tag Location Code Settings check boxes to configure the interface to ignore

individual tag location codes and to apply specific settings for each of the location codes.

Override Location 1

Ignore Location1 for each tag and load all tags configured for the specified point source

regardless of Location1 and interface ID values. (/C1)

Override Location 2

Ignore Location2 for each tag and set Location2 value to be this number for all interface

tags. (/C2=x)

Override Location 3

Ignore Location3 for each tag and set Location3 value to be this number for all interface

tags. (/C3=x)

Override Location 4

Ignore Location4 for each tag. The value used here should be 1, to have all points for the

interface sign up for exceptions, or 2, to have all points retrieve history only. (/C4=x)

Override Location 5

Ignore Location5 for each tag and set all points for the interface to the same value of this

parameter (i.e., 0, 1, 2, or 3). (/C5=x)

Startup Command File

60

Optional Tab

Apply tag’s compression specifications to data retrieved during history
recovery.

Use compression specifications in tag configurations to send data retrieved during history

recovery with compression. Usually data is retrieved from source server and sent to receiving

server without compression during history recovery. (/DC)

Source tag definition attribute.

Use TagName on both (Ignoring ExDesc and InstrumentTag point attributes). Do not check

the InstrumentTag, ExDesc, or UserInt1 attributes for source tag definitions. Use

TagName to identify the point on both source and receiving Historian Servers. (/TN)

Use ExDesc or TagName (Ignoring InstrumentTag point attribute). The source tag definition

will be found in the ExDesc or TagName attribute. Ignore the InstrumentTag and

UserInt1 attributes. This parameter is useful for PI2 to PI3 migrations. (/TNEX)

Use UserInt1 (Ignoring ExDesc and InstrumentTag point attributes). The source tag

definition will be found in the UserInt1 attribute. Ignore the ExDesc, InstrumentTag,

and Tag point attributes. (/PTID)

The How PItoPI Finds Source Points section explains how the interface parameters affect

which receiving tag attributes are used for mapping to the source point and the order that the

attributes are searched for a mapping.

FactoryTalk Historian To Historian Interface User Guide 61

Specify maximum events to retrieve for a single point in each call to get
history.

This parameter is available for PI 2.0 and later receiving servers. It sets the maximum number

of events to retrieve for a single point in each call to get history. With each call to retrieve

history, one call is made to put it into the receiving server. At least one of these calls will be

over the network, so using a small number could result in performance problems. (/MH=x,

default: 1000)

Specify maximum number of exception events retrieved per data request.

This parameter sets the maximum number of exceptions events retrieved per data request. A

large count reduces the number of calls required for acquiring exception updates. A small

count reduces the time to complete each request (for troubleshooting network timeout issues).

(/ME=#, default: 5000)

Set time interval between clearing exception queue during history recovery.

This parameter sets the time interval between clearing the exception queue on the source

Historian Server for exception data scan classes. By default the interface will collect

exceptions from the source Historian Server every 5 seconds during history recovery to

prevent overflowing the queue. Users may want to adjust this time interval to tune history

recovery performance. (/RH_QCKECK=#, default: 5)

Specify the frequency that the interface calculates time offset between
Historian Servers.

This parameter sets the frequency in seconds at which the interface will calculate time offsets

between Historian Servers. By default the interface will calculate time offsets every 30

seconds. (/OC=#, default: 30)

Startup Command File

62

Opt Cont Tab

Source Host reconnection delay.

This parameter sets the time delay for attempting to reconnect to source Historian Server after

a disruption. The number is entered in seconds and converted to milliseconds before being

saved in the batch file. This number must be between 1 second and 8 hours. (/DELAYS=x,

default: 0 seconds)

Receiving Host reconnection delay.

This parameter set the time delay for attempting to reconnect to receiving Historian Server

after a disruption. The number is entered in seconds and converted to milliseconds before

being saved in the batch file. This number must be between 1 second and 8 hours.

(/DELAYR= x, default: 0 seconds)

Suppress writing I/O Timeout to tags upon reestablishment of a lost
connection to the source Historian Server

When setting Location3 to write “I/O Timeout” for any tags, use this parameter to suppress

the I/O Timeout state written to these tags upon reestablishment of a lost connection to the

source Historian Server. If this parameter is not set, the state written at reconnection will

prevent history from being recovered for the period of the disconnection. (/TS)

FactoryTalk Historian To Historian Interface User Guide 63

Source Historian Server Failover Tab

Enable PItoPI Failover

This check box is used to allow the configuration of the failover. Until this box is checked

none of the items on this tab are enabled. Note that having this check makes items 2 and 3

required since they are in yellow.

Source Server Interface Status Utility Tag

This is the name of a Historian Interface Status Utility tag configured on the source server

defined in /SRC_HOST=hostname. Click the Browse button to invoke the Tag Search utility

to browse for this tag. (/SSU1=tagname)

Secondary Source Server Node Name

This is the name of the second source node from which to retrieve data. This must be a

Historian 3.x Historian Server node because the port number of 5450 will be appended to the

end of this name when it is saved in the batch file. (/SEC_SRC=nodename:5450)

Secondary Source Int Status Utility Tag

This the name of a Historian Interface Status Utility tag configured on the source server

defined in /SEC_SRC=hostname. Click the Browse button to invoke the Tag Search utility

to browse for this tag. (/SSU2=tagname)

Startup Command File

64

Number of connection attempts to source server

This parameter is used to specify the number of times to try connecting to source server if

connection fails the first time. It can be used to restrict failover from occurring until after a

certain number of attempts made to connect to the primary server have failed. The default

number of attempts is 1.(/NT=x)

Enable failover status logging.

This check box is used to enable failover status logging. By checking this box, the user is

allowed to enter a Receiving Server Status Tag. This tagname entered in this text box is the

failover status tag configured on receiving server. Click the Browse button to invoke the Tag

Search utility to browse for this tag. (/FST=tagname)

Note: The UniInt Interface User Manual includes details about other command-line
parameters, which may be useful.

Configuring Interface Startup Files

The interface has two startup configuration files; PItoPI.bat and PItoPI.ini. The .bat

file is required and is the primary file for specifying interface configurations. The .ini file

should only be used if configuring one copy of the interface to collect data from multiple

source Historian Servers. In this configuration each scan class can be configured for a unique

source Historian Server. This is not recommended for exception data collection. Interface

performance is maximized by running a separate copy of the interface for each source

Historian Server.

When using the .ini file, global parameters such as point source are defined in the .bat

file. Scan class specific parameters are defined in the .ini file, such as source Historian

Server. When a parameter is set in both the .bat and .ini file, the .ini file takes

precedence.

When configuring the .bat startup file the continuation character ^ can be used to allow

multiple lines for defining parameters. The maximum length for a single line is 1024

characters (1 kilobyte). The number of parameters is unlimited, and the maximum length of

each parameter is 1024 characters.

Command-line Parameters

These parameters are displayed in five groups: General Interface Operation, History

Recovery and Archive Data Collection, Exception Data Collection, Tag Attribute Override,

and Server-level Failover.

FactoryTalk Historian To Historian Interface User Guide 65

General Interface Operation

.BAT .INI Description

/db=#

Optional

DebugFlags /db=1 : Max debug

/db=2 : Startup processing

/db=3 : Historian Server connections

/db=4 : PI2 security validation

/db=5 : Tag additions, edits, deletions

/db=6 : Data read & writes

/db=7 : Failover

Example: /db=2,4,5

/delayr=#

Optional

Default:
/delayr=0

-- Millisecond time delay between reconnection
attempts to the receiving Historian Server.
Units are in milliseconds. Valid values are
between 0 and 28800000ms (8 hours).

/delays=#

Optional

Default:
/delays=0

-- Millisecond time delay between reconnection
attempts to the source Historian Server. Valid
values are between 0 and 28800000ms (8
hours).

/ec=#

Optional

EventCounter The first instance of the /ec parameter on

the command-line is used to specify a
counter number, #, for an I/O Rate point.

Range allowed is 1-34 and 51-200. If the # is

not specified, then the default event counter
is 1. Also, if the /ec parameter is not

specified at all, there is still a default event
counter of 1 associated with the interface. If
there is an I/O Rate point that is associated
with an event counter of 1, each copy of the
interface that is running without
/ec=#explicitly defined will write to the same

I/O Rate point. This means either explicitly
defining an event counter other than 1 for
each copy of the interface or not associating
any I/O Rate points with event counter 1.
Configuration of I/O Rate points is discussed
in the section called I/O Rate Point.

/f=SS.##

or
/f=SS.##,SS.##

or
/f=HH:MM:SS.##

or
/f=HH:MM:SS.##,

hh:mm:ss.##

Required

-- The /f parameter defines the time period

between scans in terms of hours (HH),

minutes (MM), seconds (SS) and sub-seconds

(##). The scans can be scheduled to occur at

discrete moments in time with an optional
time offset specified in terms of hours (hh),

minutes (mm), seconds (ss) and sub-

seconds (##). If HH and MM are omitted, then

the time period that is specified is assumed to
be in seconds.

Each instance of the /f parameter on the

command-line defines a scan class for the
interface. There is no limit to the number of
scan classes that can be defined. The first
occurrence of the /f parameter on the

command-line defines the first scan class of

Startup Command File

66

.BAT .INI Description

the interface; the second occurrence defines
the second scan class, and so on. Historian
Points are associated with a particular scan
class via the Location4 Historian Point
attribute. For example, all Historian Points
that have Location4 set to 1 will receive input
values at the frequency defined by the first
scan class. Similarly, all points that have
Location4 set to 2 will receive input values at
the frequency specified by the second scan
class, and so on.

Two scan classes are defined in the following
example:

/f=00:01:00,00:00:05

/f=00:00:07

or, equivalently:

/f=60,5 /f=7

The first scan class has a scanning frequency
of 1 minute with an offset of 5 seconds, and
the second scan class has a scanning
frequency of 7 seconds. When an offset is
specified, the scans occur at discrete
moments in time according to the formula:

scan times = (reference time) + n(frequency)
+ offset

where n is an integer and the reference time
is midnight on the day that the interface was
started. In the above example, frequency is
60 seconds and offset is 5 seconds for the
first scan class. This means that if the
interface was started at 05:06:06, the first
scan would be at 05:07:05, the second scan
would be at 05:08:05, and so on. Since no
offset is specified for the second scan class,
the absolute scan times are undefined.

The definition of a scan class does not
guarantee that the associated points will be
scanned at the given frequency. If the
interface is under a large load, then some
scans may occur late or be skipped entirely.
See the section “Performance Summaries” in
the UniInt Interface User Manual.doc for more
information on skipped or missed scans.

Sub-second Scan Classes

Sub-second scan classes can be defined on
the command-line, such as

/f=0.5 /f=00:00:00.1

where the scanning frequency associated
with the first scan class is 0.5 seconds and
the scanning frequency associated with the
second scan class is 0.1 of a second.

Similarly, sub-second scan classes with sub-
second offsets can be defined, such as

/f=0.5,0.2 /f=1,0

Wall Clock Scheduling

Scan classes that strictly adhere to wall clock
scheduling are now possible. This feature is
available for interfaces that run on Windows.

FactoryTalk Historian To Historian Interface User Guide 67

.BAT .INI Description

Previously, wall clock scheduling was
possible, but not across daylight saving time.
For example,

/f=24:00:00,08:00:00 corresponds to

1 scan a day starting at 8 AM. However, after
a Daylight Saving Time change, the scan
would occur either at 7 AM or 9 AM,
depending upon the direction of the time shift.
To schedule a scan once a day at 8 AM
(even across daylight saving time), use
/f=24:00:00,00:08:00,L. The ,L at

the end of the scan class tells UniInt to use
the new wall clock scheduling algorithm.

/host=name:port

Required

-- Name or IP address of receiving Historian
Server.

Name is the IP address of the Historian Sever

node or the domain name of the Historian
Server node. Port is the port number for

TCP/IP communication. The port number is
545 (Historian 2) or 5450 (PI3). It is
recommended to explicitly define the host
and port on the command-line with the
/host parameter. Nevertheless, if either the

host or port is not specified, the interface will
attempt to use defaults.

Examples:

The interface is running on an interface node,
the domain name of the Historian home node
is Marvin, and the IP address of Marvin is
206.79.198.30. Valid /host parameters

would be:

/host=marvin

/host=marvin:5450

/host=206.79.198.30

/host=206.79.198.30:5450

/id=x

Required

-- The /id parameter is used to specify the

interface identifier.

The interface identifier is a string that is no
longer than 9 characters in length. UniInt
concatenates this string to the header that is
used to identify error messages as belonging
to a particular interface. See the Appendix A:
Error and Informational Messages for more
information.

UniInt always uses the /id parameter in the

fashion described above. This interface also
uses the /id parameter to identify a

particular interface copy number that
corresponds to an integer value that is
assigned to one of the Location code point
attributes, most frequently Location1. For this
interface, use only numeric characters in the
identifier. For example,

/id=1

Startup Command File

68

.BAT .INI Description

/ist=tagname

Optional

-- Name of interface status tag.

/ist=<tagname>

where < tagname> is a digital tag on the

receiving Historian Server.

/ln=username

Optional

SourceLogin Login name of PI user on Historian 2 node.
This is used when source server is Historian
2.

/oc=#

Optional

Default:
/oc=30

-- Number of seconds between calculating time
offset between the interface and Historian
Server nodes.

/ps=x

Required

-- The /ps parameter specifies the point

source for the interface. X is not case

sensitive and can be any single or multiple
character string. For example, /ps=P and

/ps=p are equivalent.

The point source that is assigned with the
/ps parameter corresponds to the

PointSource attribute of individual Historian
Points. The interface will attempt to load only
those Historian Points with the appropriate
point source.

/pw=password

Optional

SourcePassword Login password of PI user on Historian 2
node. This is used when source server is
Historian 2.

/sf=filename

Required for Historian
2 source

SecurityFile Used for locating the security file on a PI2
source server.

This switch specifies the <name> part of the
file name. Note that the complete file name
must have this format:

PItoPI<name>.SEC

where <name> is the portion specified by
/sf

/src_host=name:

port

Required

SourceHost Name or IP address of source Historian
Server.

/src_host=node_name:tcpip_port

The port number is 545 (Historian 2) or 5450
(Historian 3).

FactoryTalk Historian To Historian Interface User Guide 69

.BAT .INI Description

/stopstat

or
/stopatat=

digstate

Default:
/stopstat=

"Intf shut"

Optional

-- If the /stopstat parameter is present on

the startup command line, then the
digital state Intf Shut will be written to

each Historian Point when the interface is
stopped.

If /stopstat=digstate is present on

the command line, then the digital state,
digstate, will be written to each Historian

Point when the interface is stopped. UniInt
uses the first occurrence in the table.

If neither /stopstat nor

/stopstat=digstate is specified on the

command line, then no digital states will be
written when the interface is shut down.

Note: The /stopstat parameter is

disabled If the interface is running in a UniInt
failover configuration as defined in the UniInt
Failover Configuration section of this manual.
Therefore, the digital state, digstate, will

not be written to each Historian Point when
the interface is stopped. This prevents the
digital state being written to Historian Points
while a redundant system is also writing data
to the same Historian Points. The
/stopstat parameter is disabled even if

there is only one interface active in the
failover configuration.

Examples:
/stopstat=shutdown

/stopstat="Intf Shut"

The entire digstate value should be

enclosed within double quotes when there is
a space in digstate.

/ts

Optional

-- Suppress „IO Timeout‟ events when
reconnecting to source Historian Server.
These events are configured through
Location3 attribute.

If this switch is not set, the event written at
reconnection will prevent history from being
recovered for the period of the disconnection.

Startup Command File

70

History Recovery and Archive Data Collection

.BAT .INI Description

/dc

Optional

-- Apply data compression to history recovery and
archive scan updates. The default behavior is for
this data to bypass compression.

This switch must be specified to prevent data
mismatches if tags are configured to include
snapshot value with archive scan updates.

/hronly=

start,end

Optional

HistOnly Used without "=start,end" to disable exception
data collection.

Also used to specify time range specific history
recovery:

/hronly=starttime,endtime

The times must be specified using Historian Time
string formats with a colon or underscore
separating the date and the time:

/hronly=dd-mmm-yy:hh:mm:ss,dd-

mmm-yy:hh:mm:ss

or

/hronly=dd-mmm-yy_hh:mm:ss,dd-

mmm-yy_hh:mm:ss

For example:
/hronly=10-dec-98:10:00,10-dec-

98:12:00

or

/hronly=10-dec-98_10:00,10-dec-

98_12:00

Note: timestamps are local to

where the interface runs. This is

important if source/receiving

Historian Server are in a

different timezone.

When configured for time range specific history
recovery the interface recovers data then exits.

/hrpause=#

Optional

Default:
/hrpause=0

HistPause Milliseconds to pause between tags during history
recovery. Used to throttle archive data retrieval
during history recovery.

/mh=x

Optional

Default:
/mh=1000

-- Available for PI 3.3 or later receiving Historian
Servers.

Sets the maximum number of archive events
retrieved per data request. During history recovery
and archive data collection, the interface specifies
the maximum number of events to return. If more
than the maximum exist, the interface makes
multiple calls until all events are retrieved for the
time period.

Increasing the default may increase data
throughput for archive data retrieval.

FactoryTalk Historian To Historian Interface User Guide 71

.BAT .INI Description

/ns

Optional

-- Boundary condition for data retrieval with a time-
range specific history recovery.

When specified the interface will start history
recovery beginning with the first value prior to the
start time. The default behavior is to begin with
the first value after the start time.

/rh=#

Optional

Default:
/rh=8

HistRecovery Hours of history recovery to perform.

There is no limit on the number of hours for
history recovery. However special preparations
may be necessary if the recovery period spans
beyond the primary archive. For example there
may not be enough space in the target (non-
primary) archive for the recovery data, or non-
primary archives may not have space allocated for
newly created tags. See the Historian Server
System Management Guide for information on
backfilling data.

/rh_inc=#

Optional

Default:
/rh_inc=24

MaxArcTimespan Time increments within the total /rh recovery

period.

For example, /rh=48 and /rh_inc=24. The

interface will cycle through the tag list twice. On
the first cycle, data recovery is performed for the
first 24-hour period. On the second cycle, the
second 24-hour period is collected to complete
the total 48 hour recovery period.

/rh_qcheck=#

Optional

Default:
/rh_qcheck=5

 For exception data scan classes, sets the time
interval between clearing the exception queue on
the source Historian Server during history
recovery.

By default the interface will collect exceptions
from the source Historian Server every 5 seconds
during history recovery to prevent overflowing the
queue. Users may want to adjust this time interval
to tune history recovery performance.

Exception Data Collection

.BAT .INI Description

/me=#

Optional

Default:
/me=5000

-- Sets the maximum number of exception events
retrieved per data request. A large count reduces the
number of calls required for acquiring exception
updates. A small count reduces the time to complete
each request (for troubleshooting network timeout
issues).

/sn

Optional

-- Bypass exception filtering for data collected from the
source Historian Server. This data has already
passed exception for the source tag so additional
data filtering can only lead to data mismatches
between Historian Servers.

Startup Command File

72

Tag Attribute Override

.BAT .INI Description

/c1

Optional

-- Location1 tag attribute override.

Load all tags configured for the specified point source
regardless of Location1and interface ID values.

/c2=#

Optional

-- Location2 tag attribute override.

Ignore Location2 for each tag and use the

specified value. Valid values are 0-7.

/c3=#

Optional

-- Location3 tag attribute override.

Ignore Location3 for each tag and use the

specified value. Valid values are 0-15.

/c4=#

Optional

-- Location4 tag attribute override.

Ignore Location4 for each tag and use the

specified value. Valid values are 1 (exception data
collection) or 2 (archive data collection).

/c5=#

Optional

-- Location5 tag attribute override.

Ignore Location5 for each tag and use the

specified value. Valid values are 0-3.

/ptid

Optional

-- Source tag point ID is specified in UserInt1

attribute. Ignore InstrumentTag, Exdesc and

Tag name attributes.

Note: this switch is not compatible with source
Historian Server failover since point IDs will not
necessarily match between source Historian Servers.
If the source Historian Servers are part of a Historian
Collective use /tn instead.

/tn

Optional

-- Source tag name is same as interface tag name.
Ignore InstrumentTag, Exdesc and

UserInt1 attributes.

/tnex

Optional

-- Source tag name is located in the Exdesc or Tag

name attribute and the InstrumentTag and

UserInt1 attributes are ignored for identifying

source tag.

Server-Level Failover

.BAT .INI Description

/fst=tag

Optional

-- Name of failover status tag.

/fst=<tagname>

where <tagname> is a digital tag on the receiving
Historian Server.

/nt=#

Optional

Default:
/nt=1

-- Number of reconnection attempts to source Historian
Server before initiating a failover. Valid values are 0
and greater.

Prevents failover flip-flop when experiencing
intermittent network updates.

FactoryTalk Historian To Historian Interface User Guide 73

.BAT .INI Description

/sec_src=

node :port

Required

-- Name or IP address of the secondary source
Historian Server.

/sec_src=node_name:tcpip_port

The port number is 5450 (PI3). PI2 is not supported
for source Historian Server failover.

/ssu1=tag

Required

-- Historian Interface Status Utility tag name for the
/src_host source Historian Server.

/ssu1=<tagname>

Required for monitoring source data quality (current
or stale data).

/ssu2=tag

Required

-- Historian Interface Status Utility tag name for the
/sec_src source Historian Server.

/ssu2=<tagname>

Required for monitoring source data quality (current
or stale data).

Sample Startup Configuration Files

The startup files for the interface reside in the directory PIHOME\Interfaces\PItoPI

where PIHOME is defined in %WINDIR%\pipc.ini by the installation program. Typically,

PIHOME is c:\pipc. The startup files consist of PItoPI.bat and PItoPI.ini.

Sample PItoPI.bat File

REM===
REM
REM PItoPI.bat

REM

REM Sample startup file for the PItoPI TCP/IP Interface

REM

REM===

REM

REM Rockwell Automation strongly recommends using ICU to modify startup

files.

REM

REM Sample command line

REM

 .\PItoPI.exe ^

 /host=XXXXXX:5450 ^

 /src_host=XXXXXX:5450 ^

 /ps=PItoPI ^

 /id=1 ^

 /f=10

REM End of PItoPI.bat File

Startup Command File

74

Sample PItoPI.ini File

; Sample PItoPI.ini

;

;--

; Purpose:

; This file should be used in conjunction with PItoPI.bat. It is only

; required when a user wishes to collect data from multiple source

; servers with a single copy of the interface.

;

; the headings read [FT-PItoPI-x.y] where;

; x = interface id

; y = scan class (if specified)

;--

;

[FT-PItoPI-1]

;EventCounter=1

;MaxArcTimespan=24

;

[FT-PItoPI-1.1]

;SourceHost=XXXXXX:5450

;HistRecovery=48

;

[FT-PItoPI-1.2]

;SourceHost=XXXXXX:5450

;HistRecovery=72

;

;---

; List of possible parameters

;

;SourceHost=XXXXXX:5450 Name of source Historian Server,

; port=5450 for PI3 and 545 for PI2. This

; field MUST BE an IP address.

;ReceivingHost=XXXXXX:5450 Name of the receiving Historian Server,

; port=5450 for PI3 and 545 for PI2. This

; field MUST BE an IP address.

;SecurityFile=securityfile Required if PI2, <name> part of security file

; PItoPI<name>.SEC

;SourceLogin=userid PI2 PI user name

;SourcePassword=password PI2 PI user password

;EventCounter=# Number of event counter defined in

; \dat\iorates.dat file

;HistRecovery=# total hours of history recovery, default=8hrs

;MaxArcTimespan=# history recovery increment, divided into total

; hours of history recovery (HistRecovery),

; default=24hrs

;HistPause=# pause between history recovery increments in

; milliseconds

;HistOnly=# flag to disable exception data collection

; (0=off, 1=on)

;DebugFlags=#,#,#,#... Generates additional messages for

troubleshooting

; comma separated list: 1,2,3,4,5,6,7

;---

; end of sample PItoPI.ini

FactoryTalk Historian To Historian Interface User Guide 75

Chapter 9. UniInt Failover Configuration

Introduction

To minimize data loss during a single point of failure within a system, UniInt provides two

failover schemas: (1) synchronization through the data source and (2) synchronization

through a shared file. Synchronization through the data source is Phase 1, and

synchronization through a shared file is Phase 2.

Phase 1 UniInt Failover uses the data source itself to synchronize failover operations and

provides a hot failover, no data loss solution when a single point of failure occurs. For this

option, the data source must be able to communicate with and provide data for two interfaces

simultaneously. Additionally, the failover configuration requires the interface to support

outputs.

Phase 2 UniInt Failover uses a shared file to synchronize failover operations and provides for

hot, warm, or cold failover. The Phase 2 hot failover configuration provides a no data loss

solution for a single point of failure similar to Phase 1. However, in warm and cold failover

configurations, you can expect a small period of data loss during a single point of failure

transition.

Note: This interface supports only Phase 2 failover.

You can also configure the UniInt interface level failover to send data to a High Availability

(HA) Historian Server collective. The collective provides redundant Historian Servers to

allow for the uninterrupted collection and presentation of Historian Time series data. In an

HA configuration, Historian Servers can be taken down for maintenance or repair. The HA

Historian Server collective is described in the Historian Server Reference Guide.

When configured for UniInt failover, the interface routes all FactoryTalk Historian data

through a state machine. The state machine determines whether to queue data or send it

directly to Historian depending on the current state of the interface. When the interface is in

the active state, data sent through the interface gets routed directly to Historian. In the backup

state, data from the interface gets queued for a short period. Queued data in the backup

interface ensures a no-data loss failover under normal circumstances for Phase 1 and for the

hot failover configuration of Phase 2. The same algorithm of queuing events while in backup

is used for output data.

UniInt Failover Configuration

76

Quick Overview

The Quick Overview below may be used to configure this Interface for failover. The failover

configuration requires the two copies of the interface participating in failover be installed on

different nodes. Users should verify non-failover interface operation as discussed in the

Installation Checklist section of this manual prior to configuring the interface for failover

operations. If you are not familiar with UniInt failover configuration, return to this section

after reading the rest of the UniInt Failover Configuration section in detail. If a failure occurs

at any step below, correct the error and start again at the beginning of step 6 Test in the table

below. For the discussion below, the first copy of the interface configured and tested will be

considered the primary interface and the second copy of the interface configured will be the

backup interface.

Configuration

 One Data Source

 Two Interfaces

Prerequisites

 Interface 1 is the Primary interface for collection of FactoryTalk Historian data from

the data source.

 Interface 2 is the Backup interface for collection of FactoryTalk Historian data from

the data source.

 You must set up a shared file.

 Phase 2: The shared file must store data for five failover tags: (1) Active ID,

(2) Heartbeat 1, (3) Heartbeat 2, (4) Device Status 1 and (5) Device Status 2.

 Each interface must be configured with two required failover command line

parameters: (1) its FailoverID number (/UFO_ID); (2) the FailoverID number of its

Backup interface (/UFO_OtherID). You must also specify the name of the Historian

Server host for exceptions and Historian tag updates.

 All other configuration parameters for the two interfaces must be identical.

FactoryTalk Historian To Historian Interface User Guide 77

Synchronization through a Shared File (Phase 2)

Business Network

Process Network

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Data register 0

.

.

.

Data register n

FileSvr

.\UFO\Intf_PS_1.dat

Figure 4: Synchronization through a Shared File (Phase 2) Failover Architecture

The Phase 2 failover architecture is shown in Figure 4 which depicts a typical network setup

including the path to the synchronization file located on a File Server (FileSvr). Other

configurations may be supported and this figure is used only as an example for the following

discussion.

For a more detailed explanation of this synchronization method, see Detailed Explanation of

Synchronization through a Shared File (Phase 2)

UniInt Failover Configuration

78

Configuring Synchronization through a Shared File (Phase 2)

Step Description

1. Verify non-failover interface operation as described in the Installation Checklist section of
this manual

2. Configure the Shared File

Choose a location for the shared file. The file can reside on one of the interface nodes but
Rockwell Automation strongly recommends that you put the file on a dedicated file server
that has no other role in data collection.

Setup a file share and make sure to assign the permissions so that both Primary and
Backup interfaces have read/write access to the file.

3. Configure the interface parameters

Use the Failover section of the Interface Configuration Utility (ICU) to enable failover and
create two parameters for each interface: (1) a Failover ID number for the interface; and
(2) the Failover ID number for its backup interface.

The Failover ID for each interface must be unique and each interface must know the
Failover ID of its backup interface.

If the interface can perform using either Phase 1 or Phase 2 pick the Phase 2 radio button
in the ICU.

Select the synchronization File Path and File to use for Failover.

Select the type of failover required (Cold, Warm, Hot). The choice depends on what types
of failover the interface supports.

Ensure that the user name assigned in the “Log on as:” parameter in the Service section
of the ICU is a user that has read/write access to the folder where the shared file will
reside.

All other command line parameters for the primary and secondary interfaces must be
identical.

If you use a Historian Collective, you must point the primary and secondary interfaces to
different members of the collective by setting the SDK Member under the PI Host
Information section of the ICU.

[Option] Set the update rate for the heartbeat point if you need a value other than the
default of 5000 milliseconds.

4. Configure the Historian tags

Configure five Historian tags for the interface: the Active ID, Heartbeat 1, Heartbeat2,
Device Status 1 and Device Status 2. You can also configure two state tags for monitoring
the status of the interfaces.

Do not confuse the failover Device status tags with the UniInt Health Device Status tags.
The information in the two tags is similar, but the failover device status tags are integer
values and the health device status tags are string values.

Tag ExDesc digitalset

UniInt does not
examine the
remaining attributes,
but the PointSource
and Location1 must
match

ActiveID [UFO2_ACTIVEID]

IF1_Heartbeat

(IF-Node1) [UFO2_HEARTBEAT:#]

IF2_Heartbeat

(IF-Node2) [UFO2_HEARTBEAT:#]

IF1_DeviceStatus

(IF-Node1) [UFO2_DEVICESTAT:#]

IF2_DeviceStatus

(IF-Node2) [UFO2_DEVICESTAT:#]

IF1_State

(IF-Node1) [UFO2_STATE:#] IF_State

IF2_State

(IF-Node2) [UFO2_STATE:#] IF_State

FactoryTalk Historian To Historian Interface User Guide 79

Step Description

5. Test the configuration.

After configuring the shared file and the interface and Historian tags, the interface should
be ready to run.

See Troubleshooting UniInt Failover for help resolving Failover issues.

1. Start the primary interface interactively without buffering.

2. Verify a successful interface start by reviewing the pipc.log file. The log

file will contain messages that indicate the failover state of the interface. A
successful start with only a single interface copy running will be indicated by

an informational message stating “UniInt failover: Interface in

the “Primary” state and actively sending data to

Historian. Backup interface not available.” If the interface has

failed to start, an error message will appear in the log file. For details relating
to informational and error messages, refer to the Messages section below.

3. Verify data on the Historian Server using available Historian tools.

 The Active ID control tag on the Historian Server must be set to the

value of the running copy of the interface as defined by the /UFO_ID

startup command-line parameter.

 The Heartbeat control tag on the Historian Server must be changing
values at a rate specified by the /UFO_Interval startup command-

line parameter.

4. Stop the primary interface.

5. Start the backup interface interactively without buffering. Notice that this copy
will become the primary because the other copy is stopped.

6. Repeat steps 2, 3, and 4.

7. Stop the backup interface.

8. Start buffering.

9. Start the primary interface interactively.

10. Once the primary interface has successfully started and is collecting data,
start the backup interface interactively.

11. Verify that both copies of the interface are running in a failover configuration.

 Review the pipc.log file for the copy of the interface that was started

first. The log file will contain messages that indicate the failover state of
the interface. The state of this interface must have changed as

indicated with an informational message stating “UniInt failover:
Interface in the “Primary” state and actively sending

data to Historian. Backup interface available.” If the

interface has not changed to this state, browse the log file for error
messages. For details relating to informational and error messages,
refer to the Messages section below.

 Review the pipc.log file for the copy of the interface that was started

last. The log file will contain messages that indicate the failover state of
the interface. A successful start of the interface will be indicated by an

informational message stating “UniInt failover: Interface in

the “Backup” state.” If the interface has failed to start, an error

message will appear in the log file. For details relating to informational
and error messages, refer to the Messages section below.

12. Verify data on the Historian Server using available Historian tools.

 The Active ID control tag on the Historian Server must be set to the
value of the running copy of the interface that was started first as

UniInt Failover Configuration

80

Step Description

defined by the /UFO_ID startup command-line parameter.

 The Heartbeat control tags for both copies of the interface on the
Historian Server must be changing values at a rate specified by the
/UFO_Interval startup command-line parameter or the scan class

which the points have been built against.

13. Test Failover by stopping the primary interface.

14. Verify the backup interface has assumed the role of primary by searching the

pipc.log file for a message indicating the backup interface has changed to

the “UniInt failover: Interface in the “Primary” state and
actively sending data to Historian. Backup interface not

available.” The backup interface is now considered primary and the

previous primary interface is now backup.

15. Verify no loss of data in Historian. There may be an overlap of data due to
the queuing of data. However, there must be no data loss.

16. Start the backup interface. Once the primary interface detects a backup

interface, the primary interface will now change state indicating “UniInt
failover: Interface in the “Primary” state and actively

sending data to Historian. Backup interface available.” In

the pipc.log file.

17. Verify the backup interface starts and assumes the role of backup. A
successful start of the backup interface will be indicated by an informational

message stating “UniInt failover: Interface in “Backup

state.” Since this is the initial state of the interface, the informational

message will be near the beginning of the start sequence of the pipc.log

file.

18. Test failover with different failure scenarios (e.g. loss of Historian connection
for a single interface copy). UniInt failover guarantees no data loss with a
single point of failure. Verify no data loss by checking the data in Historian
and on the data source.

19. Stop both copies of the interface, start buffering, start each interface as a
service.

20. Verify data as stated above.

21. To designate a specific interface as primary. Set the Active ID point on the
Data Source Server of the desired primary interface as defined by the
/UFO_ID startup command-line parameter.

FactoryTalk Historian To Historian Interface User Guide 81

Configuring UniInt Failover through a Shared File (Phase 2)

Start-Up Parameters

Note: The /stopstat parameter is disabled If the interface is running in a UniInt

failover configuration. Therefore, the digital state, digstate, will not be written to

each Historian Point when the interface is stopped. This prevents the digital state
being written to Historian Points while a redundant system is also writing data to the
same Historian Points. The /stopstat parameter is disabled even if there is only

one interface active in the failover configuration.

The following table lists the start-up parameters used by UniInt Failover Phase 2. All of the

parameters are required except the /UFO_Interval startup parameter. See the table below

for further explanation.

Parameter Required/
Optional

Description Value/Default

/UFO_ID=# Required Failover ID for IF-Node1

This value must be different from
the failover ID of IF-Node2.

Any positive, non-
zero integer / 1

Required Failover ID for IF-Node2

This value must be different from
the failover ID of IF-Node1.

Any positive, non-
zero integer / 2

/UFO_OtherID=# Required Other Failover ID for IF-Node1

The value must be equal to the
Failover ID configured for the
interface on IF-Node2.

Same value as
Failover ID for
IF-Node2 / 2

Required Other Failover ID for IF-Node2

The value must be equal to the
Failover ID configured for the
interface on IF-Node1.

Same value as
Failover ID for
IF-Node1 / 1

/UFO_Sync=

path/[filename]

Required for
Phase 2
synchronization

The Failover File Synchronization
Filepath and Optional Filename
specify the path to the shared file
used for failover synchronization
and an optional filename used to
specify a user defined filename in
lieu of the default filename.

The path to the shared file
directory can be a fully qualified
machine name and directory, a
mapped drive letter, or a local path
if the shared file is on one of the
interface nodes. The path must be

terminated by a slash (/) or

backslash (\) character. If no

terminating slash is found, in the
/UFO_Sync parameter, the

interface interprets the final
character string as an optional
filename.

The optional filename can be any
valid filename. If the file does not

Any valid pathname /
any valid filename

The default filename
is generated as
executablename_

pointsource_

interfaceID.dat

UniInt Failover Configuration

82

Parameter Required/
Optional

Description Value/Default

exist, the first interface to start
attempts to create the file.

Note: If using the optional
filename, do not supply a

terminating slash or backslash
character.

If there are any spaces in the path
or filename, the entire path and
filename must be enclosed in
quotes.

Note: If you use the backslash

and path separators and enclose
the path in double quotes, the final
backslash must be a double

backslash (\\). Otherwise the

closing double quote becomes
part of the parameter instead of a
parameter separator.

Each node in the failover
configuration must specify the
same path and filename and must
have read, write, and file creation
rights to the shared directory
specified by the path parameter.

The service that the interface runs
against must specify a valid logon
user account under the “Log On”
tab for the service properties.

/UFO_Type=type Required The Failover Type indicates which
type of failover configuration the
interface will run. The valid types
for failover are HOT, WARM, and
COLD configurations.

If an interface does not supported
the requested type of failover, the
interface will shutdown and log an

error to the pipc.log file stating

the requested failover type is not
supported.

COLD|WARM|HOT /
COLD

/UFO_Interval=# Optional Failover Update Interval

Specifies the heartbeat Update
Interval in milliseconds and must
be the same on both interface
computers.

This is the rate at which UniInt
updates the Failover Heartbeat
tags as well as how often UniInt
checks on the status of the other
copy of the interface.

50 - 20000 / 1000

FactoryTalk Historian To Historian Interface User Guide 83

Parameter Required/
Optional

Description Value/Default

/Host=server Required Host Historian Server for
Exceptions and Historian tag
updates

The value of the /Host startup

parameter depends on the
Historian Server configuration. If
the Historian Server is not part of a
collective, the value of /Host

must be identical on both interface
computers.

If the redundant interfaces are
being configured to send data to a
Historian Server collective, the
value of the /Host parameters

on the different interface nodes
should equal to different members
of the collective.

This parameter ensures that
outputs continue to be sent to the
Data Source if one of the Historian
Servers becomes unavailable for
any reason.

For IF-Node1

PrimaryPI / None

For IF-Node2

SecondaryPI / None

Failover Control Points

The following table describes the points that are required to manage failover. In Phase 2

Failover, these points are located in a data file shared by the Primary and Backup interfaces.

Rockwell Automation recommends that you locate the shared file on a dedicated server that

has no other role in data collection. This avoids potential resource contention and processing

degradation if your system monitors a large number of data points at a high frequency.

Point Description Value / Default

ActiveID Monitored by the interfaces to determine which
interface is currently sending data to Historian.
ActiveID must be initialized so that when the

interfaces read it for the first time, it is not an
error.

ActiveID can also be used to force failover. For

example, if the current Primary is IF-Node 1 and
ActiveID is 1, you can manually change
ActiveID to 2. This causes the interface at IF-

Node2 to transition to the primary role and the
interface at IF-Node1 to transition to the backup
role.

From 0 to the highest
Interface Failover ID
number / None)

Updated by the
redundant Interfaces

Can be changed
manually to initiate a
manual failover

Heartbeat 1 Updated periodically by the interface on
IF-Node1. The interface on IF-Node2 monitors
this value to determine if the interface on
IF-Node1 has become unresponsive.

Values range between
0 and 31 / None

Updated by the
interface on IF-Node1

Heartbeat 2 Updated periodically by the interface on IF-
Node2. The interface on IF-Node1 monitors this
value to determine if the interface on IF-Node2
has become unresponsive.

Values range between
0 and 31 / None

Updated by the
interface on IF-Node2

UniInt Failover Configuration

84

Historian Tags

The following tables list the required UniInt Failover Control Historian tags, the values they

will receive, and descriptions.

Active_ID Tag Configuration

Attributes ActiveID

Tag <Intf>_ActiveID

ExDesc [UFO2_ActiveID]

Location1 Match # in /id=#

Location5 Optional, Time in minutes to wait for
backup to collect data before failing
over.

Point Source Match x in /ps=x

Point Type Int32

Shutdown 0

Step 1

Heartbeat and Device Status Tag Configuration

Attribute Heartbeat 1 Heartbeat 2 DeviceStatus 1 DeviceStatus 2

Tag <HB1> <HB2> <DS1> <DS2>

ExDesc

[UFO2_Heartbeat:#]

Match # in
/UFO_ID=#

[UFO2_Heartbeat:#]

Match # in
/UFO_OtherID=#

[UFO2_DeviceStat:#]

Match # in
/UFO_ID=#

[UFO2_DeviceStat:#]

Match # in
/UFO_OtherID=#

Location1 Match # in /id=# Match # in /id=# Match # in /id=# Match # in /id=#

Location5 Optional, Time in
minutes to wait for
backup to collect
data before failing
over.

Optional, Time in
minutes to wait for
backup to collect
data before failing
over.

Optional, Time in
minutes to wait for
backup to collect
data before failing
over.

Optional, Time in
minutes to wait for
backup to collect
data before failing
over.

Point
Source

Match x in /ps=x Match x in /ps=x Match x in /ps=x Match x in /ps=x

Point Type int32 int32 int32 int32

Shutdown 0 0 0 0

Step 1 1 1 1

Interface State Tag Configuration

Attribute Primary Backup

Tag <Tagname1> <Tagname2>

DigitalSet UFO_State UFO_State

ExDesc [UFO2_State:#]

(Match /UFO_ID=# on primary node)

[UFO2_State:#]

(Match /UFO_ID=# on backup node)

Location1 Match # in /id=# Same as for Primary node

PointSource Match x in /ps=x Same as for Primary node

PointType digital digital

Shutdown 0 0

Step 1 1

FactoryTalk Historian To Historian Interface User Guide 85

The following table describes the extended descriptor for the above Historian tags in more

detail.

Historian Tag ExDesc Required /
Optional

Description Value

 [UFO2_ACTIVEID] Required Active ID tag

The ExDesc must start with the
case sensitive string:
[UFO2_ACTIVEID].

The PointSource must match the
interfaces‟ point source.

Location1 must match the ID for the
interfaces.

Location5 is the COLD failover retry
interval in minutes. This can be
used to specify how long before an
interface retries to connect to the
device in a COLD failover
configuration. (See the description
of COLD failover retry interval for a
detailed explanation.)

0 - highest
Interface Failover
ID

Updated by the
redundant
Interfaces

 [UFO2_HEARTBEAT:#]

(IF-Node1)

Required Heartbeat 1 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_HEARTBEAT:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node1.

The PointSource must match the
interfaces‟ point source.

Location1 must match the ID for the
interfaces.

0 - 31 / None

Updated by the
interface on
IF-Node1

 [UFO2_HEARTBEAT:#]

(IF-Node2)

Required Heartbeat 2 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_HEARTBEAT:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node2.

The PointSource must match the
interfaces‟ point source.

Location1 must match the ID for the
interfaces.

0 - 31 / None

Updated by the
interface on
IF-Node2

UniInt Failover Configuration

86

Historian Tag ExDesc Required /
Optional

Description Value

 [UFO2_DEVICESTAT :#]

(IF-Node1)

Required Device Status 1 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_HEARTBEAT:#]

The value following the colon (:)
must be the Failover ID for the
interface running on IF-Node1

The PointSource must match the
interfaces‟ point source.

Location1 must match the ID for the
interfaces.

A lower value is a better status and
the interface with the lower status
will attempt to become the primary
interface.

The failover 1 device status tag is
very similar to the UniInt Health
Device Status tag except the data
written to this tag are integer
values. A value of 0 is good and a
value of 99 is OFF. Any value
between these two extremes may
result in a failover. The interface
client code updates these values
when the health device status tag is
updated.

0 - 99 / None

Updated by the
interface on
IF-Node1

 [UFO2_DEVICESTAT :#]

(IF-Node2)

Required Device Status 2 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_HEARTBEAT:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node2

The PointSource must match the
interfaces‟ point source.

Location1 must match the ID for the
interfaces.

A lower value is a better status and
the interface with the lower status
will attempt to become the primary
interface.

0 - 99 / None

Updated by the
interface on
IF-Node2

 [UFO2_STATE:#]

(IF-Node1)

Optional State 1 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_STATE:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node1

The failover state tag is
recommended.

The failover state tags are digital
tags assigned to a digital state set
with the following values.

0 = Off: The interface has been
shut down.

1 = Backup No Data Source: The

0 - 5 / None

Normally updated
by the interface
currently in the
primary role.

FactoryTalk Historian To Historian Interface User Guide 87

Historian Tag ExDesc Required /
Optional

Description Value

interface is running but cannot
communicate with the data source.

2 = Backup No Historian
Connection: The interface is
running and connected to the data
source but has lost its
communication to the Historian
Server.

3 = Backup: The interface is
running and collecting data
normally and is ready to take over
as primary if the primary interface
shuts down or experiences
problems.

4 = Transition: The interface stays
in this state for only a short period
of time. The transition period
prevents thrashing when more than
one interface attempts to assume
the role of primary interface.

5 = Primary: The interface is
running, collecting data and
sending the data to Historian.

 [UFO2_STATE:#]

(IF-Node2)

Optional State 2 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_STATE:#]

The number following the colon (:)
must be the Failover ID for the
interface running on IF-Node2

The failover state tag is
recommended.

Normally updated
by the interface
currently in the
Primary state.

Values range
between 0 and 5.
See description of
State 1 tag.

UniInt Failover Configuration

88

Detailed Explanation of Synchronization through a Shared File
(Phase 2)

In a shared file failover configuration, there is no direct failover control information passed

between the data source and the interface. This failover scheme uses five Historian tags to

control failover operation, and all failover communication between primary and backup

interfaces passes through a shared data file.

Once the interface is configured and running, the ability to read or write to the Historian tags

is not required for the proper operation of failover. This solution does not require a

connection to the Historian Server after initial startup because the control point data are set

and monitored in the shared file. However, the Historian tag values are sent to the Historian

Server so that you can monitor them with standard Rockwell Automation client tools.

You can force manual failover by changing the ActiveID on the data source to the backup

failover ID.

Business Network

Process Network

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Data register 0

.

.

.

Data register n

FileSvr

.\UFO\Intf_PS_1.dat

The figure above shows a typical network setup in the normal or steady state. The solid

magenta lines show the data path from the interface nodes to the shared file used for failover

synchronization. The shared file can be located anywhere in the network as long as both

interface nodes can read, write, and create the necessary file on the shared file machine.

Rockwell Automation strongly recommends that you put the file on a dedicated file server

that has no other role in the collection of data.

The major difference between synchronizing the interfaces through the data source (Phase 1)

and synchronizing the interfaces through the shared file (Phase 2) is where the control data is

located. When synchronizing through the data source, the control data is acquired directly

from the data source. We assume that if the primary interface cannot read the failover control

FactoryTalk Historian To Historian Interface User Guide 89

points, then it cannot read any other data. There is no need for a backup communications path

between the control data and the interface.

When synchronizing through a shared file, however, we cannot assume that loss of control

information from the shared file implies that the primary interface is down. We must account

for the possible loss of the path to the shared file itself and provide an alternate control path

to determine the status of the primary interface. For this reason, if the shared file is

unreachable for any reason, the interfaces use the Historian Server as an alternate path to pass

control data.

When the backup interface does not receive updates from the shared file, it cannot tell

definitively why the primary is not updating the file, whether the path to the shared file is

down, whether the path to the data source is down, or whether the interface itself is having

problems. To resolve this uncertainty, the backup interface uses the path to the Historian

Server to determine the status of the primary interface. If the primary interface is still

communicating with the Historian Server, than failover to the backup is not required.

However, if the primary interface is not posting data to the Historian Server, then the backup

must initiate failover operations.

The primary interface also monitors the connection with the shared file to maintain the

integrity of the failover configuration. If the primary interface can read and write to the

shared file with no errors but the backup control information is not changing, then the backup

is experiencing some error condition. To determine exactly where the problem exists, the

primary interface uses the path to Historian to establish the status of the backup interface. For

example, if the backup interface controls indicate that it has been shutdown, it may have been

restarted and is now experiencing errors reading and writing to the shared file. Both primary

and backup interfaces must always check their status through Historian to determine if one or

the other is not updating the shared file and why.

Steady State Operation

Steady state operation is considered the normal operating condition. In this state, the primary

interface is actively collecting data and sending its data to Historian. The primary interface is

also updating its heartbeat value; monitoring the heartbeat value for the backup interface,

checking the active ID value, and checking the device status for the backup interface every

failover update interval on the shared file. Likewise, the backup interface is updating its

heartbeat value; monitoring the heartbeat value for the primary interface, checking the active

ID value, and checking the device status for the primary interface every failover update

interval on the shared file. As long as the heartbeat value for the primary interface indicates

that it is operating properly, the ActiveID has not changed, and the device status on the

primary interface is good, the backup interface will continue in this mode of operation.

An interface configured for hot failover will have the backup interface actively collecting and

queuing data but not sending that data to Historian. An interface for warm failover in the

backup role is not actively collecting data from the data source even though it may be

configured with Historian tags and may even have a good connection to the data source. An

interface configured for cold failover in the backup role is not connected to the data source

and upon initial startup will not have configured Historian tags.

The interaction between the interface and the shared file is fundamental to failover. The

discussion that follows only refers to the data written to the shared file. However, every value

written to the shared file is echoed to the tags on the Historian Server. Updating of the tags on

the Historian Server is assumed to take place unless communication with the Historian Server

UniInt Failover Configuration

90

is interrupted. The updates to the Historian Server will be buffered by Bufserv or PIBufss in

this case.

In a hot failover configuration, each interface participating in the failover solution will queue

three failover intervals worth of data to prevent any data loss. When a failover occurs, there

may be a period of overlapping data for up to 3 intervals. The exact amount of overlap is

determined by the timing and the cause of the failover and may be different every time. Using

the default update interval of 5 seconds will result in overlapping data between 0 and 15

seconds. The no data loss claim for hot failover is based on a single point of failure. If both

interfaces have trouble collecting data for the same period of time, data will be lost during

that time.

As mentioned above, each interface has its own heartbeat value. In normal operation, the

Heartbeat value on the shared file is incremented by UniInt from 1 - 15 and then wraps

around to a value of 1 again. UniInt increments the heartbeat value on the shared file every

failover update interval. The default failover update interval is 5 seconds. UniInt also reads

the heartbeat value for the other interface copy participating in failover every failover update

interval. If the connection to the Historian Server is lost, the value of the heartbeat will be

incremented from 17 - 31 and then wrap around to a value of 17 again. Once the connection

to the Historian Server is restored, the heartbeat values will revert back to the 1 - 15 range.

During a normal shutdown process, the heartbeat value will be set to zero.

During steady state, the ActiveID will equal the value of the failover ID of the primary

interface. This value is set by UniInt when the interface enters the primary state and is not

updated again by the primary interface until it shuts down gracefully. During shutdown, the

primary interface will set the ActiveID to zero before shutting down. The backup interface

has the ability to assume control as primary even if the current primary is not experiencing

problems. This can be accomplished by setting the ActiveID tag on the Historian Server to

the ActiveID of the desired interface copy.

As previously mentioned, in a hot failover configuration the backup interface actively collects

data but does not send its data to Historian. To eliminate any data loss during a failover, the

backup interface queues data in memory for three failover update intervals. The data in the

queue is continuously updated to contain the most recent data. Data older than three update

intervals is discarded if the primary interface is in a good status as determined by the backup.

If the backup interface transitions to the primary, it will have data in its queue to send to

Historian. This queued data is sent to Historian using the same function calls that would have

been used had the interface been in a primary state when the function call was received from

UniInt. If UniInt receives data without a timestamp, the primary copy uses the current

Historian Time to timestamp data sent to Historian. Likewise, the backup copy timestamps

data it receives without a timestamp with the current Historian Time before queuing its data.

This preserves the accuracy of the timestamps.

FactoryTalk Historian To Historian Interface User Guide 91

Failover Configuration Using ICU

The use of the ICU is the recommended and safest method for configuring the interface for

UniInt failover. With the exception of the notes described in this section, the interface shall

be configured with the ICU as described in the Configuring the interface with ICU section of

this manual.

Note: With the exception of the /UFO_ID and /UFO_OtherID startup command-

line parameters, the UniInt failover scheme requires that both copies of the interface
have identical startup command files. This requirement causes the ICU to produce a
message when creating the second copy of the interface stating that the “PS/ID
combo already in use by the interface” as shown in Figure 5 below. Ignore this
message and click the Add button.

Create the interface Instance with ICU

If the interface does not already exist in the ICU it must first be created. The procedure for

doing this is the same as for non-failover interfaces. When configuring the second instance

for UniInt Failover the Point Source and Interface ID will be in yellow and a message will be

displayed saying this is already in use. This should be ignored.

Figure 5: ICU configuration screen shows that the “PS/ID combo is already in use by the

interface.” The user must ignore the yellow boxes, which indicate errors, and click the

Add button to configure the interface for failover.

UniInt Failover Configuration

92

Configuring the UniInt Failover Startup Parameters with ICU

There are three interface startup parameters that control UniInt failover: /UFO_ID,

/UFO_OtherID, and /UFO_Interval. The UFO stands for UniInt Failover. The /UFO_ID

and /UFO_OtherID parameters are required for the interface to operate in a failover

configuration, but the /UFO_Interval is optional. Each of these parameters is described in

detail in Configuring UniInt Failover through a Shared File (Phase 2) section and Start-Up

Parameters.

Figure 6: The figure above illustrates the ICU failover configuration screen showing the

UniInt failover startup parameters (Phase 2). This copy of the interface defines its

Failover ID as 2 (/UFO_ID=2) and the other interfaces Failover ID as 1

(/UFO_OtherID=1). The other failover interface copy must define its Failover ID as 1

(/UFO_ID=1) and the other interface Failover ID as 2 (/UFO_OtherID=2) in its ICU

failover configuration screen. It also defines the location and name of the

synchronization file as well as the type of failover as COLD.

Creating the Failover State Digital State Set

The UFO_State digital state set is used in conjunction with the failover state digital tag. If

the UFO_State digital state set has not been created yet, it can be using either the Failover

page of the ICU (1.4.1.0 or greater) or the Digital States plug-in in the SMT 3 Utility (3.0.0.7

or greater).

FactoryTalk Historian To Historian Interface User Guide 93

Using the ICU Utility to create Digital State Set

To use the UniInt Failover page to create the UFO_State digital state set right-click on any of

the failover tags in the tag list and then select the Create UFO_State Digital Set on Server

XXXXXX…, where XXXXXX is the Historian Server where the points will be or are create

on.

This choice will be grayed out if the UFO_State digital state set is already created on the

XXXXXX Historian Server.

Using the SMT 3 Utility to create Digital State Set

Optionally, Export UFO_State Digital Set (.csv) can be selected to create a comma separated

file to be imported via the System Management Tools (SMT3) (version 3.0.0.7 or higher) or

use the UniInt_Failover_DigitalSet_UFO_State.csv file included in the installation

kit.

The procedure below outlines the steps necessary to create a digital set on a Historian Sever

using the “Import from File” function found in the SMT3 application. The procedure

assumes the user has a basic understanding of the SMT3 application.

1. Open the SMT3 application.

2. Select the appropriate Historian Server from the Historian Servers window. If the

desired server is not listed, add it using the Connection Manager. A view of the SMT

application is shown in Figure 7 below.

3. From the System Management Plug-Ins window, select Points then Digital States. A

list of available digital state sets will be displayed in the main window for the

selected Historian Server. Refer to Figure 7 below.

4. In the main window, right-click on the desired server and select the Import from File

option. Refer to Figure 7 below.

UniInt Failover Configuration

94

Figure 7: SMT application configured to import a digital state set file. The Historian

Servers window shows the “localhost” Historian Server selected along with the System

Management Plug-Ins window showing the Digital States Plug-In as being selected. The

digital state set file can now be imported by selecting the Import from File option for the

localhost.

5. Navigate to and select the UniInt_Failover_DigitalSet_UFO_State.csv file

for import using the Browse icon on the display. Select the desired Overwrite

Options. Click on the OK button. Refer to Figure 8 below.

Figure 8: SMT application Import Digital Set(s) window. This view shows the

UniInt_Failover_DigitalSet_UFO_State.csv file as being selected for import.

Select the desired Overwrite Options by choosing the appropriate radio button.

6. The UFO_State digital set is created as shown in Figure 9 below.

FactoryTalk Historian To Historian Interface User Guide 95

Figure 9: The SMT application showing the UFO_State digital set created on the

“localhost” Historian Server.

UniInt Failover Configuration

96

Creating the UniInt Failover Control and Failover State Tags (Phase 2)

The ICU can be used to create the UniInt Failover Control and State Tags.

To use the ICU Failover page to create these tags simply right-click any of the failover tags

in the tag list and select the Create all points (UFO Phase 2) menu item.

If this menu choice is grayed out it is because the UFO_State digital state set has not been

created on the Server yet. There is a menu choice Create UFO_State Digitial Set on Server

xxxxxxx… which can be used to create that digital state set. Once this has been done then the

Create all points (UFO Phase2) command should be available.

Once the failover control and failover state tags have been created the Failover page of the

ICU should look similar to the illustration below.

FactoryTalk Historian To Historian Interface User Guide 97

Chapter 10. Interface node Clock

Make sure that the time and time zone settings on the computer are correct. To confirm, run

the Date/Time applet located in the Windows Control Panel. If the locale where the interface

node resides observes Daylight Saving Time, check the Automatically adjust clock for

daylight saving changes box. For example,

In addition, make sure that the TZ environment variable is not defined. All of the currently

defined environment variables can be viewed by opening a Command Prompt window and

typing set. That is,

C:> set

Confirm that TZ is not in the resulting list. If it is, run the System applet of the Control

Panel, click the Environment Variables button under the Advanced tab, and remove TZ from

the list of environment variables.

FactoryTalk Historian To Historian Interface User Guide 99

Chapter 11. Security

The Historian Firewall Database and the Historian Proxy Database must be configured so that

the interface is allowed to write data to the Historian Server. See “Modifying the Firewall

Database” and “Modifying the Proxy Database” in the Historian Server manuals.

Note that the Trust Database, which is maintained by the Base Subsystem, replaces the Proxy

Database used prior to Historian version 3.3. The Trust Database maintains all the

functionality of the proxy mechanism while being more secure.

 See “Trust Login Security” in the chapter “Managing Security” of the Historian Server

System Management Guide.

If the interface cannot write data to the Historian Server because it has insufficient privileges,

a -10401 error will be reported in the pipc.log file. If the interface cannot send data to a

PI2 Server, it writes a -999 error. See the section Appendix A: Error and Informational

Messages for additional information on error messaging.

Historian Server v3.3 and Higher

Security configuration using piconfig

For Historian Server v3.3 and higher, the following example demonstrates how to edit the

Trust table:

C:\PI\adm> piconfig

@table pitrust

@mode create

@istr Trust,IPAddr,NetMask,PIUser

a_trust_name,192.168.100.11,255.255.255.255,piadmin

@quit

For the above,

Trust: An arbitrary name for the trust table entry; in the above example,

a_trust_name

IPAddr: the IP Address of the computer running the interface; in the above example,

192.168.100.11

NetMask: the network mask; 255.255.255.255 specifies an exact match with IPAddr

PIUser: the PI user the interface to be entrusted as; piadmin is usually an appropriate user

Security

100

Security Configuring using Trust Editor

The Trust Editor plug-in for System Management Tools 3.x may also be used to edit the Trust

table.

See the System Management chapter in the Historian Server manual for more details on

security configuration.

Historian Server v3.2

For Historian Server v3.2, the following example demonstrates how to edit the Historian

Proxy table:

C:\PI\adm> piconfig

@table pi_gen,piproxy

@mode create

@istr host,proxyaccount

piapimachine,piadmin

@quit

In place of piapimachine, put the name of the interface node as it is seen by Historian

Server.

Tag and Node Security

The receiving Historian Server must allow the interface tag attribute read access and data

read and write access. The source Historian Server must allow the interface tag attribute read

access and data read access for source tags.

System Manager Responsibilities

Securing the source archive data requires that both the source and receiving system managers

perform the following tasks.

Receiving System Manager

1. Give the source system manager a copy of the FactoryTalk Historian to Historian

Interface manual.

2. Edit the PItoPI.ini file and add the keys SecurityFile, SourceLogin, SourcePassword

under the section [PITOPI-#] where “#” is the interface identification number. The

three security keys may be listed under a particular scan class if the scan is retrieving

data from a PI 2 server different from the default source server (use section name

[PITOPI-#.*] where “*” is the scan class number).

Alternately, edit the startup script to contain the parameters /ln=pidemo /pw=pidemo

replacing pidemo with the PI user name and password under which the data will be

accessed. Set the name of the security file: for example /sf=test.

FactoryTalk Historian To Historian Interface User Guide 101

Source System Manager

1. The file PISysDat:PIServer.dat will be used to provide overall security for the

FactoryTalk Historian database. In this file, the receiving node must be given at least

read-login access.

2. Create and maintain a security file for each FactoryTalk Historian to Historian

interface that will read data from the source system. This file is

PISYSDAT:PITOPITEST.SEC, where TEST is the file name specified on the

receiving node PIToPI command line.

3. A PI username and password must be provided which the interface will use as its

Historian login.

Note: Revisions to the security file are checked every 30 minutes.

Sample Security Files

Sample 1

I! Mode is set to include.

T! Specification type set to tag masks.

! Default to including all points in system.*

X! Reset mode to exclude.

T!

! All tags ending in „.al‟ are excluded.

*.al

unit?flow.*
S! Point source specifications.

? ! All fractal tags are excluded.

E!

Sample 2

X! Mode is set to exclude.

T! Tag specifications.

! Default to excluding all tags not explicitly matched.*

I!

T!

! Some tag masks with wildcards.

! multiple wildcards may be used.

cd*

unit1

! Match two of any characters.

reactor1.??

! Some tag names.

Sinusoid

le420

S! Point source specifications.

! All PE tags included.

C

! Only point source „P‟ with Location1 = 2 included.

P2

Security

102

E!

FactoryTalk Historian To Historian Interface User Guide 103

Chapter 12. Starting / Stopping the interface

This section describes starting and stopping the interface once it has been installed as a

service. See the UniInt Interface User Manual to run the interface interactively.

Starting Interface as a Service

If the interface was installed as service, it can be started from ICU, the Services control panel

or with the command:

PItoPI.exe -start

To start the interface service with ICU, use the button on the ICU toolbar.

A message will inform the user of the status of the interface service. Even if the message

indicates that the service has started successfully, double check through the Services control

panel applet. Services may terminate immediately after startup for a variety of reasons, and

one typical reason is that the service is not able to find the command-line parameters in the

associated .bat file. Verify that the root name of the .bat file and the .exe file are the

same, and that the .bat file and the .exe file are in the same directory. Further

troubleshooting of services might require consulting the pipc.log file, Windows Event

Viewer, or other sources of log messages. See the section Appendix A: Error and

Informational Messages for additional information.

Stopping Interface Running as a Service

If the interface was installed as service, it can be stopped at any time from ICU, the Services

control panel or with the command:

PItoPI.exe -stop

The service can be removed by:

PItoPI.exe -remove

To stop the interface service with ICU, use the button on the ICU toolbar.

FactoryTalk Historian To Historian Interface User Guide 105

Chapter 13. Buffering

Buffering refers to an interface node‟s ability to temporarily store the data that interfaces

collect and to forward these data to the appropriate Historian Servers. Rockwell Automation

strongly recommends that you enable buffering on your interface nodes. Otherwise, if the

interface node stops communicating with the Historian Server, you lose the data that your

interfaces collect.

The PI SDK installation kit installs two buffering applications: the PI Buffer Subsystem

(PIBufss) and the PI API Buffer Server (Bufserv). PIBufss and Bufserv are mutually

exclusive; that is, on a particular computer, you can run only one of them at any given time.

If you have Historian Servers that are part of a Historian Collective, PIBufss supports n-way

buffering. N-way buffering refers to the ability of a buffering application to send the same

data to each of the Historian Servers in a Historian Collective. (Bufserv also supports n-way

buffering, but Rockwell Automation recommends that you run PIBufss instead.)

Which Buffering Application to Use

You should use PIBufss whenever possible because it offers better throughput than Bufserv.

In addition, if the interfaces on an interface node are sending data to a Historian Collective,

PIBufss guarantees identical data in the archive records of all the Historian Servers that are

part of that collective.

You can use PIBufss only under the following conditions:

 the Historian Server version is at least 2.x.x; and

 all of the interfaces running on the interface node send data to the same Historian

Server or to the same Historian Collective.

If any of the following scenarios apply, you must use Bufserv:

 the Historian Server version is earlier than 2.x.x; or

 the interface node runs multiple interfaces, and these interfaces send data to multiple

Historian Servers that are not part of a single Historian Collective.

If an interface node runs multiple interfaces, and these interfaces send data to two or more

Historian Collectives, then neither PIBufss nor Bufserv is appropriate. The reason is that

PIBufss and Bufserv can buffer data only to a single collective. If you need to buffer to more

than one Historian Collective, you need to use two or more interface nodes to run your

interfaces.

It is technically possible to run Bufserv on the Historian Server Node. However, Rockwell

Automation does not recommend this configuration.

Buffering

106

How Buffering Works

A complete technical description of PIBufss and Bufserv is beyond the scope of this

document. However, the following paragraphs provide some insights on how buffering

works.

When an interface node has buffering enabled, the buffering application (PIBufss or Bufserv)

connects to the Historian Server. It also creates shared memory storage.

When an interface program makes a PI API function call that writes data to the Historian

Server (for example, pisn_sendexceptionqx()), the PI API checks whether buffering is

enabled. If it is, these data writing functions do not send the interface data to the Historian

Server. Instead, they write the data to the shared memory storage that the buffering

application created.

The buffering application (either Bufserv or PIBufss) in turn

 reads the data in shared memory, and

 if a connection to the Historian Server exists, sends the data to the Historian Server;

or

 if there is no connection to the Historian Server, continues to store the data in shared

memory (if shared memory storage is available) or writes the data to disk (if shared

memory storage is full).

When the buffering application re-establishes connection to the Historian Server, it writes to

the Historian Server the interface data contained in both shared memory storage and disk.

(Before sending data to the Historian Server, PIBufss performs further tasks such data

validation and data compression, but the description of these tasks is beyond the scope of this

document.)

When PIBufss writes interface data to disk, it writes to multiple files. The names of these

buffering files are PIBUFQ_*.DAT.

When Bufserv writes interface data to disk, it writes to a single file. The name of its buffering

file is APIBUF.DAT.

As a previous paragraph indicates, PIBufss and Bufserv create shared memory storage at

startup. These memory buffers must be large enough to accommodate the data that an

interface collects during a single scan. Otherwise, the interface may fail to write all its

collected data to the memory buffers, resulting in data loss. The buffering configuration

section of this chapter provides guidelines for sizing these memory buffers.

When buffering is enabled, it affects the entire interface node. That is, you do not have a

scenario whereby the buffering application buffers data for one interface running on an

interface node but not for another interface running on the same interface node.

Buffering and Historian Server Security

After you enable buffering, it is the buffering application—and not the interface program—

that writes data to the Historian Server. If the Historian Server‟s trust table contains a trust

entry that allows all applications on an interface node to write data, then the buffering

application is able write data to the Historian Server.

FactoryTalk Historian To Historian Interface User Guide 107

However, if the Historian Server contains an interface-specific Trust entry that allows a

particular interface program to write data, you must have a Trust entry specific to buffering.

The following are the appropriate entries for the Application Name field of a Trust entry:

Buffering Application Application Name field for Trust

Buffer Subsystem PIBufss.exe

PI API Buffer Server APIBE (if the PI API is using 4 character process
names)

APIBUF (if the PI API is using 8 character process
names)

To use a process name greater than 4 characters in length for a trust application name, use the

LONGAPPNAME=1 in the PIClient.ini file.

Enabling Buffering on an Interface Node with the ICU

The ICU allows you to select either PIBufss or Bufserv as the buffering application for your

interface node. Run the ICU and select Tools > Buffering.

Choose Buffer Type

To select PIBufss as the buffering application, choose Enable buffering with PI Buffer

Subsystem.

To select Bufserv as the buffering application, choose Enable buffering with API Buffer

Server.

If a warning message such as the following appears, click Yes.

Buffering

108

Buffering Settings

There are a number of settings that affect the operation of PIBufss and Bufserv. The

Buffering Settings page allows you to set these parameters. If you do not enter values for

these parameters, PIBufss and Bufserv use default values.

PIBufss

For PIBufss, the paragraphs below describe the settings that may require user intervention.

Please contact Rockwell Automation Technical Support for assistance in further optimizing

these and all remaining settings.

Primary and Secondary Memory Buffer Size (Bytes)

This is a key parameter for buffering performance. The sum of these two memory buffer sizes

must be large enough to accommodate the data that an interface collects during a single scan.

A typical event with a Float32 point type requires about 25 bytes. If an interface writes data

to 5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a

result, the size of each memory buffer should be 62,500 bytes.

The default value of these memory buffers is 32,768 bytes. Rockwell Automation

recommends that these two memory buffer sizes should be increased to the maximum of

2000000 for the best buffering performance.

FactoryTalk Historian To Historian Interface User Guide 109

Send rate (milliseconds)

Send rate is the time in milliseconds that PIBufss waits between sending up to the Maximum

transfer objects (described below) to the Historian Server. The default value is 100. The valid

range is 0 to 2,000,000.

Maximum transfer objects

Maximum transfer objects is the maximum number of events that PIBufss sends between

each Send rate pause. The default value is 500. The valid range is 1 to 2,000,000.

Event Queue File Size (Mbytes)

This is the size of the event queue files. PIBufss stores the buffered data to these files. The

default value is 32. The range is 8 to 131072 (8 to 128 Gbytes). Please see the section

entitled, “Queue File Sizing” in the pibufss.chm file for details on how to appropriately size

the event queue files.

Event Queue Path

This is the location of the event queue file. The default value is [PIHOME]\DAT.

For optimal performance and reliability, Rockwell Automation recommends that you place

the PIBufss event queue files on a different drive/controller from the system drive and the

drive with the Windows paging file. (By default, these two drives are the same.)

Bufserv

For Bufserv, the paragraphs below describe the settings that may require user intervention.

Please contact Rockwell Automation Technical Support for assistance in further optimizing

these and all remaining settings.

Buffering

110

Maximum buffer file size (KB)

This is the maximum size of the buffer file ([PIHOME]\DAT\APIBUF.DAT). When Bufserv

cannot communicate with the Historian Server, it writes and appends data to this file. When

the buffer file reaches this maximum size, Bufserv discards data.

The default value is 2,000,000 KB, which is about 2 GB. The range is from 1 to 2,000,000.

Primary and Secondary Memory Buffer Size (Bytes)

This is a key parameter for buffering performance. The sum of these two memory buffer sizes

must be large enough to accommodate the data that an interface collects during a single scan.

A typical event with a Float32 point type requires about 25 bytes. If an interface writes data

to 5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a

result, the size of each memory buffer should be 62,500 bytes.

The default value of these memory buffers is 32,768 bytes. Rockwell Automation

recommends that these two memory buffer sizes should be increased to the maximum of

2000000 for the best buffering performance.

Send rate (milliseconds)

Send rate is the time in milliseconds that Bufserv waits between sending up to the Maximum

transfer objects (described below) to the Historian Server. The default value is 100. The valid

range is 0 to 2,000,000.

Maximum transfer objects

Maximum transfer objects is the maximum number of events that Bufserv sends between

each Send rate pause. The default value is 500. The valid range is 1 to 2,000,000.

Buffered Servers

The Buffered Servers page allows you to define the Historian Servers or Historian Collective

that the buffering application writes data.

PIBufss

PIBufss buffers data only to a single Historian Server or a Historian Collective. Select the

Historian Server or the Historian Collective from the Buffering to collective/server drop down

list box.

The following screen shows that PIBufss is configured to write data to a standalone Historian

Server named starlight. Notice that the Replicate data to all collective member nodes

check box is disabled because this Historian Server is not part of a collective. (PIBufss

automatically detects whether a Historian Server is part of a collective.)

FactoryTalk Historian To Historian Interface User Guide 111

The following screen shows that PIBufss is configured to write data to a Historian Collective

named admiral. By default, PIBufss replicates data to all collective members. That is, it

provides n-way buffering.

You can override this option by not checking the Replicate data to all collective member

nodes check box. Then, uncheck (or check) the Historian Server collective members as

desired.

Buffering

112

Bufserv

Bufserv buffers data to a standalone Historian Server, or to multiple standalone Historian

Servers. (If you want to buffer to multiple Historian Servers that are part of a Historian

Collective, you should use PIBufss.)

If the Historian Server to which you want Bufserv to buffer data is not in the Server list, enter

its name in the Add a server box and click the Add Server button. This Historian Server name

must be identical to the API Hostname entry:

The following screen shows that Bufserv is configured to write to a standalone Historian

Server named etamp390. You use this configuration when all the interfaces on the interface

node write data to etamp390.

The following screen shows that Bufserv is configured to write to two standalone Historian

Servers, one named etamp390 and the other one named starlight. You use this

configuration when some of the interfaces on the interface node write data to etamp390 and

some write to starlight.

FactoryTalk Historian To Historian Interface User Guide 113

Installing Buffering as a Service

Both the PIBufss and Bufserv applications run as a Service.

Buffer Subsystem Service

Use the Buffer Subsystem Service page to configure PIBufss as a Service. This page also

allows you to start and stop the PIBufss service.

PIBufss does not require the logon rights of the local administrator account. It is sufficient to

use the LocalSystem account instead. Although the screen below shows asterisks for the

LocalSystem password, this account does not have a password.

Buffering

114

API Buffer Server Service

Use the API Buffer Server Service page to configure Bufserv as a Service. This page also

allows you to start and stop the Bufserv Service

Bufserv version 1.6 and later does not require the logon rights of the local administrator

account. It is sufficient to use the LocalSystem account instead. Although the screen below

shows asterisks for the LocalSystem password, this account does not have a password.

FactoryTalk Historian To Historian Interface User Guide 115

FactoryTalk Historian To Historian Interface User Guide 117

Chapter 14. Interface Diagnostics Configuration

The Interface Point Configuration chapter provides information on building Historian Points

for collecting data from the device. This chapter describes the configuration of points related

to interface diagnostics.

Note: The procedure for configuring interface diagnostics is not specific to this
Interface. Thus, for simplicity, the instructions and screenshots that follow refer to an
interface named ModbusE.

Some of the points that follow refer to a “performance summary interval”. This interval is 8

hours by default. You can change this parameter via the Scan performance summary box in

the UniInt - Debug parameter category page:

Scan Class Performance Points

A Scan Class Performance Point measures the amount of time (in seconds) that this Interface

takes to complete a scan. The Interface writes this scan completion time to millisecond

resolution. Scan completion times close to 0 indicate that the interface is performing

optimally. Conversely, long scan completion times indicate an increased risk of missed or

skipped scans. To prevent missed or skipped scans, you should distribute the data collection

points among several scan classes.

Interface Diagnostics Configuration

118

You configure one Scan Class Performance Point for each Scan Class in this Interface. From

the ICU, select this Interface from the Interface drop-down list and click UniInt-Performance

Points in the parameter category pane:

Right-click the row for a particular Scan Class # to bring up the context menu:

You need not restart the interface for it to write values to the Scan Class Performance Points.

To see the current values (snapshots) of the Scan Class Performance Points, right-click and

select Refresh Snapshots.

Create / Create ALL

To create a Performance Point, right-click the line belonging to the tag to be created, and

select Create. Click Create All to create all the Scan Class Performance Points.

Delete

To delete a Performance Point, right-click the line belonging to the tag to be deleted, and

select Delete.

FactoryTalk Historian To Historian Interface User Guide 119

Correct / Correct All

If the “Status” of a point is marked “Incorrect”, the point configuration can be automatically

corrected by ICU by right-clicking on the line belonging to the tag to be corrected, and

selecting Correct. The Performance Points are created with the following Historian attribute

values. If ICU detects that a Performance Point is not defined with the following, it will be

marked Incorrect: To correct all points click the Correct All menu item.

The Performance Points are created with the following Historian attribute values:

Attribute Details

Tag Tag name that appears in the list box

PointSource Point Source for tags for this interface, as specified on the first tab

Compressing Off

ExcMax 0

Descriptor Interface name + “ Scan Class # Performance Point”

Rename

Right-click the line belonging to the tag and select Rename to rename the Performance Point.

Column descriptions

Status

The Status column in the Performance Points table indicates whether the Performance Point

exists for the scan class in column 2.

Created - Indicates that the Performance Point does exist

Not Created - Indicates that the Performance Point does not exist

Deleted - Indicates that a Performance Point existed, but was just deleted by the user

Scan Class #

The Scan Class column indicates which scan class the Performance Point in the Tagname

column belongs to. There will be one scan class in the Scan Class column for each scan class

listed in the Scan Classes box on the General page.

Tagname

The Tagname column holds the Performance Point tag name.

PS

This is the point source used for these performance points and the interface.

Location1

This is the value used by the interface for the /ID=# point attribute.

Exdesc

This is the used to tell the interface that these are performance points and the value is used to

corresponds to the /ID=# command line parameter if multiple copies of the same interface

are running on the interface node.

Interface Diagnostics Configuration

120

Snapshot

The Snapshot column holds the snapshot value of each Performance Point that exists in

Historian. The Snapshot column is updated when the Performance Points/Counters tab is

clicked, and when the interface is first loaded. You may have to scroll to the right to see the

snapshots.

Performance Counters Points

When running as a Service or interactively, this Interface exposes performance data via

Windows Performance Counters. Such data include items like:

 the amount of time that the interface has been running;

 the number of points the interface has added to its point list;

 the number of tags that are currently updating among others

There are two types or instances of Performance Counters that can be collected and stored in

Historian Points. The first is (_Total) which is a total for the Performance Counter since the

interface instance was started. The other is for individual Scan Classes (Scan Class x) where

x is a particular scan class defined for the interface instance that is being monitored.

Rockwell Automation‟s Historian Performance Monitor Interface is capable of reading these

performance values and writing them to Historian Points. Please see the Performance

Monitor Interface for more information.

If there is no Historian Performance Monitor Interface registered with the ICU in the Module

Database for the Historian Server the interface is sending its data to, you cannot use the ICU

to create any Interface instance‟s Performance Counters Points:

After installing the Historian Performance Monitor Interface as a service, select this Interface

instance from the Interface drop-down list, then click Performance Counters in the parameter

categories pane, and right-click on the row containing the Performance Counters Point you

wish to create. This will bring up the context menu:

FactoryTalk Historian To Historian Interface User Guide 121

Click Create to create the Performance Counters Point for that particular row. Click Create

All to create all the Performance Counters Points listed which have a status of Not Created.

To see the current values (snapshots) of the created Performance Counters Points, right-click

on any row and select Refresh Snapshots.

Note: The Historian Performance Monitor Interface - and not this Interface - is
responsible for updating the values for the Performance Counters Points in Historian.
So, make sure that the Historian Performance Monitor Interface is running correctly.

Performance Counters

In the following lists of Performance Counters the naming convention used will be:

“PerformanceCounterName” (.PerformanceCountersPoint Suffix)

The tagname created by the ICU for each Performance Counter point is based on the setting

found under the Tools  Options  Naming Conventions  Performance Counter Points.

The default for this is “sy.perf.[machine].[if service]” followed by the Performance Counter

Point suffix.

Performance Counters for both (_Total) and (Scan Class x)

“Point Count” (.point_count)

A .point_count Performance Counters Point is available for each Scan Class of this Interface

as well as a Total for the interface instance.

The .point_count Performance Counters Point indicates the number of Historian Points per

Scan Class or the total number for the interface instance. This point is similar to the Health

Point [UI_SCPOINTCOUNT] for scan classes and [UI_POINTCOUNT] for totals.

Interface Diagnostics Configuration

122

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).point_count” refers to Scan Class

1, “(Scan Class 2)” refers to Scan Class 2, and so on. The tag containing “(_Total)” refers to

the sum of all Scan Classes.

“Scheduled Scans: % Missed” (.sched_scans_%missed)

A .sched_scans_%missed Performance Counters Point is available for each Scan Class of this

Interface as well as a Total for the interface instance.

The .sched_scans_%missed Performance Counters Point indicates the percentage of scans the

interface missed per Scan Class or the total number missed for all scan classes since startup.

A missed scan occurs if the interface performs the scan one second later than scheduled.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_%missed” refers

to Scan Class 1, “(Scan Class 2)” refers to Scan Class 2, and so on. The tag containing

“(_Total)” refers to the sum of all Scan Classes.

“Scheduled Scans: % Skipped” (.sched_scans_%skipped)

A .sched_scans_%skipped Performance Counters Point is available for each Scan Class of

this Interface as well as a Total for the interface instance.

The .sched_scans_%skipped Performance Counters Point indicates the percentage of scans

the interface skipped per Scan Class or the total number skipped for all scan classes since

startup. A skipped scan is a scan that occurs at least one scan period after its scheduled time.

This point is similar to the [UI_SCSKIPPED] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_%skipped” refers

to Scan Class 1, “(Scan Class 2)” refers to Scan Class 2, and so on. The tag containing

“(_Total)” refers to the sum of all Scan Classes.

“Scheduled Scans: Scan count this interval” (.sched_scans_this_interval)

A .sched_scans_this_interval Performance Counters Point is available for each Scan Class of

this Interface as well as a Total for the interface instance.

The .sched_scans_this_interval Performance Counters Point indicates the number of scans

that the interface performed per performance summary interval for the scan class or the total

number of scans performed for all scan classes during the summary interval. This point is

similar to the [UI_SCSCANCOUNT] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_this_interval”

refers to Scan Class 1, “(Scan Class 2)” refers to Scan Class 2, and so on. The tag containing

“(_Total)” refers to the sum of all Scan Classes.

Performance Counters for (_Total) only

“Device Actual Connections” (.Device_Actual_Connections)

The .Device_Actual_Connections Performance Counters Point stores the actual number of

foreign devices currently connected and working properly out of the expected number of

FactoryTalk Historian To Historian Interface User Guide 123

foreign device connections to the interface. This value will always be less than or equal to the

Expected Connections.

“Device Expected Connections” (.Device_Expected_Connections)

The .Device_Expected_Connections Performance Counters Point stores the total number of

foreign device connections for the interface. This is the expected number of foreign device

connections configured that should be working properly at runtime. If the interface can only

communicate with 1 foreign device then the value of this counter will always be one. If the

interface can support multiple foreign device connections then this is the total number of

expected working connections configured for this Interface.

“Device Status” (.Device_Status)

The .Device_Status Performance Counters Point stores communication information about the

interface and the connection to the foreign device(s). The value of this counter is based on the

expected connections, actual connections and value of the /PercentUp command line

option. If the device status is good then the value is „0‟. If the device status is bad then the

value is „1‟. If the interface only supports connecting to 1 foreign device then the

/PercentUp command line value does not change the results of the calculation. If for

example the interface can connect to 10 devices and 5 are currently working then the value of

the /PercentUp command line parameter is applied to determine the Device Status. If the

value of the /PercentUp command line parameter is set to 50 and at least 5 devices are

working then the DeviceStatus will remain good (i.e. have a value of zero).

“Failover Status” (.Failover_Status)

The .Failover_Status Performance Counters Point stores the failover state of the interface

when configured for UniInt interface level failover. The value of the counter will be „0‟ when

the interface is running as the „Primary‟ interface in the failover configuration. If the interface

is running in backup mode then the value of the counter will be „1‟.

“Interface up-time (seconds)” (.up_time)

The .up_time Performance Counters Point indicates the amount of time (in seconds) that this

Interface has been running. At startup the value of the counter is zero. The value will

continue to increment until it reaches the maximum value for an unsigned integer. Once it

reaches this value then it will start back over at zero.

“IO Rate (events/second)” (.io_rates)

The .io_rates Performance Counters Point indicates the rate (in event per second) at which

this Interface writes data to its input tags. (As of UniInt 4.5.0.x and later this performance

counters point will no longer be available.)

 “Log file message count” (.log_file_msg_count)

The .log_file_msg_count Performance Counters Point indicates the number of messages that

the interface has written to the log file. This point is similar to the [UI_MSGCOUNT]

Health Point.

Interface Diagnostics Configuration

124

“Historian Status” (PI_Status)

The .PI_Status Performance Counters Point stores communication information about the

interface and the connection to the Historian Server. If the interface is properly

communicating with the Historian Server then the value of the counter is „0‟. If the

communication to the Historian Server goes down for any reason then the value of the

counter will be „1‟. Once the interface is properly communicating with the Historian Server

again then the value will change back to „0‟.

 “Points added to the interface” (.pts_added_to_interface)

The .pts_added_to_interface Performance Counter Point indicates the number of points the

interface has added to its point list. This does not include the number of points configured at

startup. This is the number of points added to the interface after the interface has finished a

successful startup.

“Points edited in the interface”(.pts_edited_in_interface)

The .pts_edited_in_interface Performance Counters Point indicates the number of point edits

the interface has detected. The Interface detects edits for those points whose PointSource

attribute matches the Point Source (/ps=) parameter and whose Location1 attribute

matches the interface ID (/id=) parameter of the interface.

“Points Good” (.Points_Good)

The .Points_Good Performance Counters Point is the number of points that have sent a good

current value to Historian. A good value is defined as any value that is not a system digital

state value. A point can either be Good, In Error or Stale. The total of Points Good, Points In

Error and Points State will equal the Point Count. There is one exception to this rule. At

startup of an interface, the Stale timeout must elapse before the point will be added to the

Stale Counter. Therefore the interface must be up and running for at least 10 minutes for all

tags to belong to a particular Counter.

“Points In Error” (.Points_In_Error)

The .Points_In_Error Performance Counters Point indicates the number of points that have

sent a current value to Historian that is a system digital state value. Once a point is in the In

Error count it will remain in the In Error count until the point receives a new, good value.

Points in Error do not transition to the Stale Counter. Only good points become stale.

 “Points removed from the interface” (.pts_removed_from_interface)

The .pts_removed_from_interface Performance Counters Point indicates the number of points

that have been removed from the interface configuration. A point can be removed from the

interface when one of the tag properties for the interface is updated and the point is no longer

a part of the interface configuration. For example, changing the PointSource, Location1, or

Scan attribute can cause the tag to no longer be a part of the interface configuration.

“Points Stale 10(min)” (.Points_Stale_10min)

The .Points_Stale_10min Performance Counters Point indicates the number of good points

that have not received a new value in the last 10 minutes. If a point is Good, then it will

remain in the good list until the Stale timeout elapses. At this time if the point has not

FactoryTalk Historian To Historian Interface User Guide 125

received a new value within the Stale Period then the point will move from the Good count to

the Stale count. Only points that are Good can become Stale. If the point is in the In Error

count then it will remain in the In Error count until the error clears. As stated above, the total

count of Points Good, Points In Error and Points Stale will match the Point Count for the

interface.

“Points Stale 30(min)” (.Points_Stale_30min)

The .Points_Stale_30min Performance Counters Point indicates the number of points that

have not received a new value in the last 30 minutes. For a point to be in the Stale 30 minute

count it must also be a part of the Stale 10 minute count.

“Points Stale 60(min)” (.Points_Stale_60min)

The .Points_Stale_30min Performance Counters Point indicates the number of points that

have not received a new value in the last 60 minutes. For a point to be in the Stale 60 minute

count it must also be a part of the Stale 10 minute and 30 minute count.

“Points Stale 240(min)” (.Points_Stale_240min)

The .Points_Stale_240min Performance Counters Point indicates the number of points that

have not received a new value in the last 240 minutes. For a point to be in the Stale 240

minute count it must also be a part of the Stale 10 minute, 30 minute and 60 minute count.

Performance Counters for (Scan Class x) only

“Device Scan Time (milliseconds)” (.Device_Scan_Time)

A .Device_Scan_Time Performance Counter Point is available for each Scan Class of this

Interface.

The .Device_Scan_Time Performance Counters Point indicates the number of milliseconds

the interface takes to read the data from the foreign device and package the data to send to

Historian. This counter does not include the amount of time to send the data to Historian.

This point is similar to the [UI_SCINDEVSCANTIME] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1 (Scan Class 1).device_scan _time” refers to

Scan Class 1, “(Scan Class 2) refers to Scan Class 2, and so on.

“Scan Time (milliseconds)” (.scan_time)

A .scan_time Performance Counter Point is available for each Scan Class of this Interface.

The .scan_time Performance Counter Point indicates the number of milliseconds the interface

takes to both read the data from the device and send the data to Historian. This point is

similar to the [UI_SCINSCANTIME] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).scan_time” refers to Scan Class 1,

“(Scan Class 2)” refers to Scan Class 2, and so on.

Interface Diagnostics Configuration

126

Interface Health Monitoring Points

Interface Health Monitoring Points provide information about the health of this Interface. To

use the ICU to configure these points, select this Interface from the Interface drop-down list

and click Health Points from the parameter category pane:

Right-click the row for a particular Health Point to display the context menu:

Click Create to create the Health Point for that particular row. Click Create All to create all

the Health Points.

To see the current values (snapshots) of the Health Points, right-click and select Refresh

Snapshots.

FactoryTalk Historian To Historian Interface User Guide 127

For some of the Health Points described subsequently, the interface updates their values at

each performance summary interval (typically, 8 hours).

 [UI_HEARTBEAT]

The [UI_HEARTBEAT] Health Point indicates whether the interface is currently running.

The value of this point is an integer that increments continuously from 1 to 15. After reaching

15, the value resets to 1.

The fastest scan class frequency determines the frequency at which the interface updates this

point:

Fastest Scan Frequency Update frequency

Less than 1 second 1 second

Between 1 and 60
seconds, inclusive

Scan frequency

More than 60 seconds 60 seconds

If the value of the [UI_HEARTBEAT] Health Point is not changing, then this Interface is in

an unresponsive state.

[UI_DEVSTAT]

The Historian to Historian Interface is built with UniInt 4.4.4.0. New functionality has been

added to support health tags. The Health tag with the point attribute ExDesc =

[UI_DEVSTAT] represents the status of the source device. The following events can be

written into this tag:

 “1 | Starting” - the interface is starting.

 “Good” - the interface is properly communicating and reading data from the server.

 The following event represents a failure to communicate with the server:

o "3 | 1 device(s) in error | Network communication error to source Historian

Server"

o "3 | 1 device(s) in error | Unable to get archive data from source Historian

Server"

o "3 | 1 device(s) in error | Unable to get snapshot data from source Historian

Server"

o "3 | 1 device(s) in error | Unable to write data to receiving Historian Server"

o "3 | 1 device(s) in error | Unable to obtain current data with source Historian

Server failover enabled."

 “4 | Intf Shutdown” - the interface is stopped.

Refer to the UniInt Interface User Manual for more information on how to configure health

points.

Interface Diagnostics Configuration

128

[UI_SCINFO]

The [UI_SCINFO] Health Point provides scan class information. The value of this point is a

string that indicates

 the number of scan classes;

 the update frequency of the [UI_HEARTBEAT] Health Point; and

 the scan class frequencies

An example value for the [UI_SCINFO] Health Point is:

3 | 5 | 5 | 60 | 120

The Interface updates the value of this point at startup and at each performance summary

interval.

[UI_IORATE]

The [UI_IORATE] Health Point indicates the sum of

1. the number of scan-based input values the interface collects before it performs

exception reporting; and

2. the number of event-based input values the interface collects before it performs

exception reporting; and

3. the number of values that the interface writes to output tags that have a SourceTag.

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

value of this [UI_IORATE] Health Point may be zero. A stale timestamp for this point

indicates that this Interface has stopped collecting data.

[UI_MSGCOUNT]

The [UI_MSGCOUNT] Health Point tracks the number of messages that the interface has

written to the pipc.log file since start-up. In general, a large number for this point indicates

that the interface is encountering problems. You should investigate the cause of these

problems by looking in pipc.log.

The Interface updates the value of this point every 60 seconds. While the interface is running,

the value of this point never decreases.

[UI_POINTCOUNT]

The [UI_POINTCOUNT] Health Point counts number of Historian tags loaded by the

interface. This count includes all input, output and triggered input tags. This count does NOT

include any Interface Health tags or performance points.

The interface updates the value of this point at startup, on change and at shutdown.

 [UI_OUTPUTRATE]

After performing an output to the device, this Interface writes the output value to the output

tag if the tag has a SourceTag. The [UI_OUTPUTRATE] Health Point tracks the number of

these values. If there are no output tags for this Interface, it writes the System Digital State No

Result to this Health Point.

FactoryTalk Historian To Historian Interface User Guide 129

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

Interface resets the value of this point to zero at each performance summary interval.

[UI_OUTPUTBVRATE]

The [UI_OUTPUTBVRATE] Health Point tracks the number of System Digital State values

that the interface writes to output tags that have a SourceTag. If there are no output tags for

this Interface, it writes the System Digital State No Result to this Health Point.

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

Interface resets the value of this point to zero at each performance summary interval.

[UI_TRIGGERRATE]

The [UI_TRIGGERRATE] Health Point tracks the number of values that the interface writes

to event-based input tags. If there are no event-based input tags for this Interface, it writes the

System Digital State No Result to this Health Point.

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

Interface resets the value of this point to zero at each performance summary interval.

[UI_TRIGGERBVRATE]

The [UI_TRIGGERRATE] Health Point tracks the number of System Digital State values

that the interface writes to event-based input tags. If there are no event-based input tags for

this Interface, it writes the System Digital State No Result to this Health Point.

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

Interface resets the value of this point to zero at each performance summary interval.

 [UI_SCIORATE]

You can create a [UI_SCIORATE] Health Point for each Scan Class in this Interface. The

ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class IO Rate.sc1) refers to Scan Class 1, “.sc2” refers to

Scan Class 2, and so on.

A particular Scan Class‟s [UI_SCIORATE] point indicates the number of values that the

interface has collected. If the current value of this point is between zero and the

corresponding [UI_SCPOINTCOUNT] point, inclusive, then the interface executed the scan

successfully. If a [UI_SCIORATE] point stops updating, then this condition indicates that an

error has occurred and the tags for the scan class are no longer receiving new data.

The Interface updates the value of a [UI_SCIORATE] point after the completion of the

associated scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not

applicable to this Interface.

[UI_SCBVRATE]

You can create a [UI_SCBVRATE] Health Point for each Scan Class in this Interface. The

ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Bad Value Rate.sc1) refers to Scan Class 1,

“.sc2” refers to Scan Class 2, and so on.

Interface Diagnostics Configuration

130

A particular Scan Class‟s [UI_SCBVRATE] point indicates the number System Digital State

values that the interface has collected.

The Interface updates the value of a [UI_SCBVRATE] point after the completion of the

associated scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not

applicable to this Interface.

[UI_SCSCANCOUNT]

You can create a [UI_SCSCANCOUNT] Health Point for each Scan Class in this Interface.

The ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Scan Count.sc1) refers to Scan Class 1, “.sc2”

refers to Scan Class 2, and so on.

A particular Scan Class‟s [UI_ SCSCANCOUNT] point tracks the number of scans that the

interface has performed.

The Interface updates the value of this point at the completion of the associated scan. The

Interface resets the value to zero at each performance summary interval.

Although there is no “Scan Class 0”, the ICU allows you to create the point with the suffix

“.sc0”. This point indicates the total number of scans the interface has performed for all of its

Scan Classes.

[UI_SCSKIPPED]

You can create a [UI_SCSKIPPED] Health Point for each Scan Class in this Interface. The

ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Scans Skipped.sc1) refers to Scan Class 1, “.sc2”

refers to Scan Class 2, and so on.

A particular Scan Class‟s [UI_SCSKIPPED] point tracks the number of scans that the

interface was not able to perform before the scan time elapsed and before the interface

performed the next scheduled scan.

The Interface updates the value of this point each time it skips a scan. The value represents

the total number of skipped scans since the previous performance summary interval. The

Interface resets the value of this point to zero at each performance summary interval.

Although there is no “Scan Class 0”, the ICU allows you to create the point with the suffix

“.sc0”. This point monitors the total skipped scans for all of the interface‟s Scan Classes.

 [UI_SCPOINTCOUNT]

You can create a [UI_SCPOINTCOUNT] Health Point for each Scan Class in this Interface.

The ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Point Count.sc1) refers to Scan Class 1, “.sc2”

refers to Scan Class 2, and so on.

This Health Point monitors the number of tags in a Scan Class.

The Interface updates a [UI_SCPOINTCOUNT] Health Point when it performs the associated

scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not

applicable to this Interface.

FactoryTalk Historian To Historian Interface User Guide 131

[UI_SCINSCANTIME]

You can create a [UI_SCINSCANTIME] Health Point for each Scan Class in this Interface.

The ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Scan Time.sc1) refers to Scan Class 1, “.sc2”

refers to Scan Class 2, and so on.

A particular Scan Class‟s [UI_ SCINSCANTIME] point represents the amount of time (in

milliseconds) the interface takes to read data from the device, fill in the values for the tags,

and send the values to the Historian Server.

The Interface updates the value of this point at the completion of the associated scan.

[UI_SCINDEVSCANTIME]

You can create a [UI_SCINDEVSCANTIME] Health Point for each Scan Class in this

Interface. The ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Device Scan Time.sc1) refers to Scan Class 1,

“.sc2” refers to Scan Class 2, and so on.

A particular Scan Class‟s [UI_ SCINDEVSCANTIME] point represents the amount of time

(in milliseconds) the interface takes to read data from the device and fill in the values for the

tags.

The value of a [UI_ SCINDEVSCANTIME] point is a fraction of the corresponding

[UI_SCINSCANTIME] point value. You can use these numbers to determine the percentage

of time the interface spends communicating with the device compared with the percentage of

time communicating with the Historian Server.

If the [UI_SCSKIPPED] value is increasing, the [UI_SCINDEVSCANTIME] points along

with the [UI_SCINSCANTIME] points can help identify where the delay is occurring:

whether the reason is communication with the device, communication with the Historian

Server, or elsewhere.

The Interface updates the value of this point at the completion of the associated scan.

I/O Rate Point

An I/O Rate point measures the rate at which the interface writes data to its input tags. The

value of an I/O Rate point represents a 10-minute average of the total number of values per

minute that the interface sends to the Historian Server.

When the interface starts, it writes 0 to the I/O Rate point. After running for ten minutes, the

interface writes the I/O Rate value. The Interface continues to write a value every 10 minutes.

When the interface stops, it writes 0.

The ICU allows you to create one I/O Rate point for each copy of this Interface. Select this

Interface from the Interface drop-down list, click IO Rate in the parameter category pane, and

check Enable IORates for this Interface.

Interface Diagnostics Configuration

132

As the preceding picture shows, the ICU suggests an Event Counter number and a Tagname

for the I/O Rate Point. Click the Save button to save the settings and create the I/O Rate point.

Click the Apply button to apply the changes to this copy of the interface.

You need to restart the interface in order for it to write a value to the newly created I/O Rate

point. Restart the interface by clicking the Restart button:

(The reason you need to restart the interface is that the PointSource attribute of an I/O Rate

point is Lab.)

To confirm that the interface recognizes the I/O Rate Point, look in the pipc.log for a

message such as:

Historian-ModBus 1> IORATE: tag sy.io.etamp390.ModbusE1 configured.

To see the I/O Rate point‟s current value (snapshot), click the Refresh snapshot button:

Enable IORates for this Interface

The Enable IORates for this interface check box enables or disables I/O Rates for the current

interface. To disable I/O Rates for the selected interface, uncheck this box. To enable I/O

Rates for the selected interface, check this box.

FactoryTalk Historian To Historian Interface User Guide 133

Event Counter

The Event Counter correlates a tag specified in the iorates.dat file with this copy of the

interface. The command-line equivalent is /ec=x, where x is the same number that is

assigned to a tag name in the iorates.dat file.

Tagname

The tag name listed under the Tagname column is the name of the I/O Rate tag.

Tag Status

The Tag Status column indicates whether the I/O Rate tag exists in Historian. The possible

states are:

 Created - This status indicates that the tag exist in Historian

 Not Created - This status indicates that the tag does not yet exist in Historian

 Deleted - This status indicates that the tag has just been deleted

 Unknown - This status indicates that the ICU is not able to access the Historian

Server

In File

The In File column indicates whether the I/O Rate tag listed in the tag name and the event

counter is in the IORates.dat file. The possible states are:

 Yes - This status indicates that the tag name and event counter are in the IORates.dat

file

 No - This status indicates that the tag name and event counter are not in the

IORates.dat file

Snapshot

The Snapshot column holds the snapshot value of the I/O Rate tag, if the I/O Rate tag exists

in Historian. The Snapshot column is updated when the IORates/Status Tags tab is clicked,

and when the interface is first loaded.

Right Mouse Button Menu Options

Create

Create the suggested I/O Rate tag with the tag name indicated in the Tagname column.

Delete

Delete the I/O Rate tag listed in the Tagname column.

Rename

Allow the user to specify a new name for the I/O Rate tag listed in the Tagname column.

Add to File

Add the tag to the IORates.dat file with the event counter listed in the Event Counter Column.

Interface Diagnostics Configuration

134

Search

Allow the user to search the Historian Server for a previously defined I/O Rate tag.

Interface Status Point

The Historian Interface Status Utility (ISU) alerts you when an interface is not currently

writing data to the Historian Server. This situation commonly occurs if

 the monitored interface is running on an interface node, but the interface node cannot

communicate with the Historian Server; or

 the monitored interface is not running, but it failed to write at shutdown a System

state such as Intf Shut.

The ISU works by periodically looking at the timestamp of a Watchdog Tag. The Watchdog

Tag is a tag whose value a monitored interface (such as this Interface) frequently updates.

The Watchdog Tag has its ExcDev, ExcMin, and ExcMax point attributes set to 0. So, a non-

changing timestamp for the Watchdog Tag indicates that the monitored interface is not

writing data.

Please see the Interface Status Interface for complete information on using the ISU. Historian

Interface Status Utility runs only on a Historian Server Node.

If you have used the ICU to configure the Historian Interface Status Utility on the Historian

Server Node, the ICU allows you to create the appropriate ISU point. Select this Interface

from the Interface drop-down list and click Interface Status in the parameter category pane.

Right-click on the ISU tag definition window to bring up the context menu:

FactoryTalk Historian To Historian Interface User Guide 135

Click Create to create the ISU tag.

Use the Tag Search button to select a Watchdog Tag. (Recall that the Watchdog Tag is one of

the points for which this Interface collects data.)

Select a Scan frequency from the drop-down list box. This Scan frequency is the interval at

which the ISU monitors the Watchdog Tag. For optimal performance, choose a Scan

frequency that is less frequent than the majority of the scan rates for this Interface‟s points.

For example, if this Interface scans most of its points every 30 seconds, choose a Scan

frequency of 60 seconds. If this Interface scans most of its points every second, choose a Scan

frequency of 10 seconds.

If the Tag Status indicates that the ISU tag is Incorrect, right-click to enable the context

menu and select Correct.

Note: The Historian Interface Status Utility - and not this Interface - is responsible for
updating the ISU tag. So, make sure that the Historian Interface Status Utility is
running correctly.

FactoryTalk Historian To Historian Interface User Guide 137

Appendix A. Error and Informational Messages

A string NameID is pre-pended to error messages written to the message log. Name is a non-

configurable identifier that is no longer than 9 characters. ID is a configurable identifier that

is no longer than 9 characters and is specified using the /id parameter on the startup

command-line.

Message Logs

The location of the message log depends upon the platform on which the interface is running.

See the UniInt Interface User Manual for more information.

Messages are written to PIHOME\dat\pipc.log at the following times.

 When the interface starts many informational messages are written to the log. These

include the version of the interface, the version of UniInt, the command-line

parameters used, and the number of points.

 As the interface retrieves points, messages are sent to the log if there are any

problems with the configuration of the points.

 If the /dbUniInt is used on the command-line, then various informational messages

are written to the log file.

Messages

Interface Startup Messages

When the interface is started, the log file will contain informational messages that describe

the settings that will be used from the startup script and the PItoPI.ini file. The interface

will then print a message stating the receiving Historian Server and a message for each source

Historian Server. The message for each source Historian Server also states the time offset

between source and receiving Historian Server along with time zone differences. Note that

the PItoPI.ini can be used to configure a different source server for each scan class. In

addition each source server (and therefore scan class) can have different history recovery

parameters. Finally the PItoPI.ini can be used to specify which scan class signs up for

exceptions (default is scan class 1 gets exception data unless /hronly is specified in

PItoPI.bat). After printing a message specifying the receiving and source Historian

Servers it prints a message for each scan class stating if it will collect archive or exception

data, the source Historian Server for that scan class and the history recovery parameters.

Error and Informational Messages

138

Scan Summary

After a scan class has finished history recovery, the interface logs messages indicating the

number of tags in error for the scan class.

PItoPI- 1> Scan class 1: History recovery completed successfully.

PItoPI- 1> Scan class 1: 0 of 385 points in error.

The messages above indicate the number of points successfully registered with the update

manager on the source node and the number of errors encountered in the given scan class.

System Errors and Historian Errors

System errors are associated with positive error numbers. Errors related to Historian are

associated with negative error numbers.

Error Descriptions

Descriptions of system and Historian errors can be obtained with the pidiag utility:

Syntax: \PI\adm\pidiag -e error_number

Historian to Historian Specific Error Messages

Message 16-May-06 17:29:06

PItoPI 1> Error -77 returned from pisn_evmexceptions cll

to source Historian Server.

Cause Update manager queue limit has been reached on the source Historian Server.

Resolution Increase PI Update Manager queue size limits on source Historian Server as described
in Exception Data Collection section: Historian 3 Update Queue Size Limits.

Message 16-May-06 17:29:06

PItoPI 1> Tag SINUSOID rejected.Source tag already

configured for tag SINUSOID.

Cause UniInt tag loading behavior. When UniInt is disconnected from /host Historian

Server on startup it will does not resume tag loading where it left off. Instead it reloads
the tag list from the beginning. Any tag that was loaded before the disconnection will be
rejected after reconnection with the stated error message. This error message can
safely be ignored. The tag is loaded and will receive data.

Resolution See PLI 19689OSI8. This issue will be addressed in a future UniInt/PItoPI release.

FactoryTalk Historian To Historian Interface User Guide 139

UniInt Failover Specific Error Messages

Informational

Message 16-May-06 10:38:00

PItoPI 1> UniInt failover: Interface in the “Backup”

state.

Meaning Upon system startup, the initial transition is made to this state. While in this state the
interface monitors the status of the other interface participating in failover. When
configured for Hot failover, data received from the data source is queued and not sent
to the Historian Server while in this state. The amount of data queued while in this state
is determined by the failover update interval. In any case, there will be typically no more
than two update intervals of data in the queue at any given time. Some transition chains
may cause the queue to hold up to five failover update intervals worth of data.

Message 16-May-06 10:38:05

PItoPI 1> UniInt failover: Interface in the “Primary”

state and actively sending data to Historian. Backup

interface not available.

Meaning While in this state, the interface is in its primary role and sends data to the Historian
Server as it is received. This message also states that there is not a backup interface
participating in failover.

Message 16-May-06 16:37:21

PItoPI 1> UniInt failover: Interface in the “Primary”

state and actively sending data to Historian. Backup

interface available.

Meaning While in this state, the interface sends data to the Historian Server as it is received.
This message also states that the other copy of the interface appears to be ready to
take over the role of primary.

Errors (Phase 1 & 2)

Message 16-May-06 17:29:06

PItoPI 1> One of the required Failover Synchronization

points was not loaded.

 Error = 0: The Active ID synchronization point was not

loaded.

The input Historian tag was not loaded

Cause The Active ID tag is not configured properly.

Resolution Check validity of point attributes. For example, make sure Location1 attribute is valid

for the interface. All failover tags must have the same PointSource and

Location1 attributes. Modify point attributes as necessary and restart the interface.

Error and Informational Messages

140

Message 16-May-06 17:38:06

PItoPI 1> One of the required Failover Synchronization

points was not loaded.

Error = 0: The Heartbeat point for this copy of the

interface was not loaded.

The input Historian tag was not loaded

Cause The Heartbeat tag is not configured properly.

Resolution Check validity of point attributes. For example, make sure Location1 attribute is valid
for the interface. All failover tags must have the same PointSource and Location1
attributes. Modify point attributes as necessary and restart the interface.

Message 17-May-06 09:06:03

PItoPI > The Uniint FailOver ID (/UFO_ID) must be a

positive integer.

Cause The UFO_ID parameter has not been assigned a positive integer value.

Resolution Change and verify the parameter to a positive integer and restart the interface.

Message 17-May-06 09:06:03

PItoPI 1> The Failover ID parameter (/UFO_ID) was found

but the ID for the redundant copy was not found

Cause The /UFO_OtherID parameter is not defined or has not been assigned a positive

integer value.

Resolution Change and verify the /UFO_OtherID parameter to a positive integer and restart

the interface.

FactoryTalk Historian To Historian Interface User Guide 141

Errors (Phase 2)

Unable to open synchronization file

Message 27-Jun-08 17:27:17

Historian Eight Track 1 1> Error 5: Unable to create file

„\\georgiaking\GeorgiaKingStorage\UnIntFailover\\PIEightT

rack_eight_1.dat‟

Verify that interface has read/write/create access on

file server machine.

Intializing uniint library failed

Stopping Interface

Cause This message will be seen when the interface is unable to create a new failover
synchronization file at startup. The creation of the file only takes place the first time
either copy of the interface is started and the file does not exist. The error number
most commonly seen is error number 5. Error number 5 is an “access denied” error
and is likely the result of a permissions problem.

Resolution Ensure the account the interface is running under has read and write permissions for
the folder. The “log on as” property of the Windows service may need to be set to an
account that has permissions for the folder.

Error Opening Synchronization File

Message Sun Jun 29 17:18:51 2008

Historian Eight Track 1 2> WARNING> Failover Warning:

Error = 64

Unable to open Failover Control File

„\\georgiaking\GeorgiaKingStorage\Eight\PIEightTrack_eigh

t_1.dat‟

The interface will not be able to change state if

Historian is not available

Cause This message will be seen when the interface is unable to open the failover
synchronization file. The interface failover will continue to operate correctly as long as
communication to the Historian Server is not interrupted. If communication to Historian
is interrupted while one or both interfaces cannot access the synchronization file, the
interfaces will remain in the state they were in at the time of the second failure, so the
primary interface will remain primary and the backup interface will remain backup.

Resolution Ensure the account the interface is running under has read and write permissions for
the folder and file. The “log on as” property of the Windows service may need to be set
to an account that has permissions for the folder and file.

FactoryTalk Historian To Historian Interface User Guide 143

Appendix B. PI SDK Options

To access the PI SDK settings for this Interface, select this Interface from the Interface drop-

down list and click UniInt - PI SDK in the parameter category pane.

Disable PI SDK

Select Disable PI SDK to tell the interface not to use the PI SDK. If you want to run the

interface in Disconnected Startup mode, you must choose this option.

The command line equivalent for this option is /pisdk=0.

Use the Interface’s default setting

This selection has no effect on whether the interface uses the PI SDK. However, you must not

choose this option if you want to run the interface in Disconnected Startup mode.

Enable PI SDK

Select Enable PI SDK to tell the interface to use the PI SDK. Choose this option if the

Historian Server version is earlier than 2.x or the PI API is earlier than 1.6.0.2, and you want

to use extended lengths for the Tag, Descriptor, ExDesc, InstrumentTag, or

PointSource point attributes. The maximum lengths for these attributes are:

Attribute Enable the interface to use
the PI SDK

Historian Server earlier than 2.x or PI
API earlier than 1.6.0.2, without the
use of the PI SDK

Tag 1023 255

Descriptor 1023 26

ExDesc 1023 80

InstrumentTag 1023 32

PointSource 1023 1

However, if you want to run the interface in Disconnected Startup mode, you must not choose

this option.

The command line equivalent for this option is /pisdk=1.

FactoryTalk Historian To Historian Interface User Guide 145

Appendix C. Terminology

To understand this interface manual, you should be familiar with the terminology used in this

document.

Buffering

Buffering refers to an interface node‟s ability to store temporarily the data that interfaces

collect and to forward these data to the appropriate Historian Servers.

N-Way Buffering

If you have Historian Servers that are part of a Historian Collective, PIBufss supports n-way

buffering. N-way buffering refers to the ability of a buffering application to send the same

data to each of the Historian Servers in a Historian Collective. (Bufserv also supports n-way

buffering to multiple Historian Server however it does not guarantee identical archive records

since point compressions specs could be different between Historian Servers. With this in

mind, Rockwell Automation recommends that you run PIBufss instead.)

ICU

ICU refers to the Historian Interface Configuration Utility. The ICU is the primary

application that you use to configure Historian interface programs. You must install the ICU

on the same computer on which an interface runs. A single copy of the ICU manages all of

the interfaces on a particular computer.

You can configure an interface by editing a startup command file. However, Rockwell

Automation discourages this approach. Instead, Rockwell Automation strongly recommends

that you use the ICU for interface management tasks.

ICU Control

An ICU Control is a plug-in to the ICU. Whereas the ICU handles functionality common to

all interfaces, an ICU Control implements interface-specific behavior. Most Historian

Interfaces have an associated ICU Control.

Interface Node

An interface node is a computer on which

 the PI API and/or PI SDK are installed, and

 Historian Server programs are not installed.

PI API

The PI API is a library of functions that allow applications to communicate and exchange

data with the Historian Server. All Historian Interfaces use the PI API.

Terminology

146

Historian Collective

A Historian Collective is two or more replicated Historian Servers that collect data

concurrently. Collectives are part of the High Availability environment. When the primary

Historian Server in a collective becomes unavailable, a secondary collective member node

seamlessly continues to collect and provide data access to your Historian clients.

PIHOME

PIHOME refers to the directory that is the common location for Historian 32-bit client

applications.

On a 32-bit operating system

A typical PIHOME is C:\Program Files\Rockwell Software\FactoryTalk

Historian\PIPC.

On a 64-bit operating system

A typical PIHOME is C:\Program Files (x86)\PIPC.

Historian Interfaces reside in a subdirectory of the Interfaces directory under PIHOME.

For example, files for the Modbus Ethernet Interface are in

[PIHOME]\PIPC\Interfaces\ModbusE.

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64

directory. For example, ICU files in [PIHOME]\ICU.

PIHOME64

PIHOME64 will be found only on a 64-bit operating system and refers to the directory that is

the common location for Historian 64-bit client applications.

A typical PIHOME64 is C:\Program Files\Rockwell Software\FactoryTalk

Historian\PIPC.

Historian Interfaces reside in a subdirectory of the Interfaces directory under PIHOME64.

For example, files for a 64-bit Modbus Ethernet Interface would be found in

 C:\Program Files\Rockwell Software\FactoryTalk

Historian\PIPC\Interfaces\ModbusE.

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64

directory. For example, ICU files in [PIHOME]\ICU.

PI SDK

The PI SDK is a library of functions that allow applications to communicate and exchange

data with the Historian Server. Some Historian Interfaces, in addition to using the PI API,

require the use of the PI SDK.

Historian Server Node

A Historian Server Node is a computer on which Historian Server programs are installed. The

Historian Server runs on the Historian Server Node.

FactoryTalk Historian To Historian Interface User Guide 147

SMT

SMT refers to System Management Tools. SMT is the program that you use for configuring

Historian Servers. A single copy of SMT manages multiple Historian Servers. SMT runs on

either a Historian Server Node or an interface node.

pipc.log

The pipc.log file is the file to which OSIsoft applications write informational and error

messages. When a Historian interface runs, it writes to the pipc.log file. The ICU allows

easy access to the pipc.log.

Point

The PI point is the basic building block for controlling data flow to and from the Historian

Server. For a given timestamp, a PI point holds a single value.

A PI point does not necessarily correspond to a “point” on the foreign device. For example, a

single “point” on the foreign device can consist of a set point, a process value, an alarm limit,

and a discrete value. These four pieces of information require four separate Historian Points.

Service

A Service is a Windows program that runs without user interaction. A Service continues to

run after you have logged off from Windows. It has the ability to start up when the computer

itself starts up.

The ICU allows you to configure a PI interface to run as a Service.

Tag (Input Tag and Output Tag)

The tag attribute of a PI point is the name of the PI point. There is a one-to-one

correspondence between the name of a point and the point itself. Because of this relationship,

FactoryTalk Historian System documentation uses the terms “tag” and “point”

interchangeably.

Interfaces read values from a device and write these values to an Input Tag. Interfaces use an

Output Tag to write a value to the device.

FactoryTalk Historian To Historian Interface User Guide 149

Appendix D. Technical Support and Resources

Rockwell provides dedicated technical support internationally, 24 hours a day, 7 days a week.

You can read complete information about technical support options, and access all of the

following resources at the Rockwell Automation Support Web site

(http://www.rockwellautomation.com/support/).

Technical Support

Please visit Rockwell Automation Customer Support Center

(http://www.rockwellautomation.com/support/) for access to user forums, sample code,

software and firmware updates, product manuals, and other downloads.

Knowledgebase

The Customer Support Center offers an extensive online knowledgebase that includes

frequently asked questions (FAQs) and the latest patches. Please visit the support site

(http://www.rockwellautomation.com/resources/support.html) and select the Knowledgebase

link located under Tools & Resources to:

 View technical and application notes.

 Obtain software patches and firmware updates.

 Subscribe to product and service e-mail notifications.

 Ask questions.

Worldwide Support

If you are not located in North America and want to contact Rockwell Automation Support,

use the Worldwide Locator (http://www.rockwellautomation.com/locations/) for worldwide

contact information.

Training Programs

Rockwell Automation offers a wide range of training programs that include e-learning,

regularly scheduled and custom-tailored classes, self-paced training, and certificate programs.

If you would like more information on training, visit the Rockwell Automation Training site

(http://www.rockwellautomation.com/services/training/) or call 1.440.646.3434.

http://www.rockwellautomation.com/support/
http://www.rockwellautomation.com/support/
http://www.rockwellautomation.com/resources/support.html
http://www.rockwellautomation.com/locations/
http://www.rockwellautomation.com/services/training/

Technical Support and Resources

150

If you are not located in North America and want to contact Rockwell Automation Support,

use the Worldwide Locator (http://www.rockwellautomation.com/locations/) for worldwide

contact information.

Consulting Services

If you are not located in North America and want to contact Rockwell Automation Support,

use the Worldwide Locator (http://www.rockwellautomation.com/locations/) for worldwide

contact information.

TechConnect Support

With TechConnect Support, your site has unlimited, real-time access to Rockwell

Automation's global network of Customer Support Centers and technical resources.

TechConnect service levels are provided at the TechConnect site

(http://www.rockwellautomation.com/services/onlinephone/techconnect/).

When you contact Rockwell Technical Support, please provide:

 Product name, version, and/or build numbers.

 Computer platform (CPU type, operating system, and version number).

 Exact wording of any messages that appeared on your screen.

 The message log(s) at that time.

 Descriptions of:

o What happened and what you were doing when the problem occurred.

o How you tried to solve the problem.

Find the Version and Build Numbers

To find version and build numbers for each Historian Server subsystem (which vary

depending on installed upgrades, updates or patches), use either of the following methods:

To check the numbers with System Management Tools (SMT):

1. Go to Start > All Programs > Rockwell Software > FactoryTalk Historian SE

> System Management Tools. The <STM> dialog box appears.

1. Under Collectives and Servers, select the name of the server you want to check.

2. Under System Management Tools, select Operation > PI Version.

The Version in Memory and Version on Disk columns display information on

versions of all the server subsystems.

View Computer Platform Information

To view platform specifications, right-click My Computer and select Properties. For more

detailed information, choose Start > Run, and type msinfo32.exe.

http://www.rockwellautomation.com/locations/
http://www.rockwellautomation.com/locations/
http://www.rockwellautomation.com/services/onlinephone/techconnect/

	Table of Contents
	Chapter 1. Introduction
	Interface Limitations
	Interface Requirements
	Reference Manuals
	Rockwell Automation

	Supported Operating Systems
	Supported Features
	APS Connector
	Supports Questionable Bit
	Uses PI SDK
	Maximum Point Count
	Source of Timestamps
	History Recovery
	UniInt-based
	SetDeviceStatus
	Failover
	Device Point Types

	Diagram of Hardware Connection

	Chapter 2. Principles of Operation
	Interface Startup
	How FactoryTalk Historian to Historian Finds Source Points
	Data Collection
	History Recovery
	Exception Data Collection
	Maximizing Data Throughput

	Archive Data Collection
	Performance Considerations
	Load Distribution
	Scan Rates

	Data Timestamps
	Data Type Conversions
	Interface Status Events
	Adding, Removing and Editing Tags
	Error Handling
	Source Historian Server-Level Failover
	Fault Conditions
	Communication Failure
	Detection of Stale Data

	UniInt Failover
	Interface Status Tags
	Internal State Status
	Failover Status
	Deployment Scenarios
	Historian to Historian within a Historian Collective
	Tag Attribute Override Parameters
	Example Architecture for Historian to Historian within a Historian Collective
	Firewall Considerations

	Historian to Historian between Historian Collectives
	Limitations
	Historian Collective Support
	Data Latency and Source Historian Server Failover
	UniInt Failover

	Chapter 3. Installation Checklist
	Data Collection Steps
	Interface Diagnostics
	Advanced Interface Features

	Chapter 4. Interface Installation
	Naming Conventions and Requirements
	When Configuring the interface Manually

	Interface Directories
	PIHOME Directory Tree
	Interface Installation Directory

	Interface Installation Procedure
	Installing Interface as a Windows Service
	Installing Interface Service with Historian Interface Configuration Utility
	Service Configuration
	Service name
	ID
	Display name
	Log on as
	Password
	Confirm password
	Dependencies
	- Add Button
	- Remove Button
	Startup Type
	Create
	Remove
	Start or Stop Service

	Installing Interface Service Manually

	Chapter 5. PointSource
	Case-sensitivity for PointSource Attribute

	Chapter 6. Historian Point Configuration
	Point Attributes
	Tag
	Length

	PointSource
	PointType
	Location1
	Location2
	Location3
	Location4
	Scan-based Inputs

	Location5
	InstrumentTag
	Length

	ExDesc
	Length
	Performance Points

	UserInt1
	Scan
	Shutdown
	Bufserv and PIBufss

	Exception and Compression
	Interface Configurations
	Recommended Tag Configurations
	DataAccess, PtAccess
	Zero, Span

	Chapter 7. Interface Status Tag Configuration
	Chapter 8. Startup Command File
	Configuring the interface with ICU
	FactoryTalk Historian to Historian Interface page
	Required/General Tab
	Required Parameters - Source host
	Required Parameters - PIx Server
	Required Parameters - Event counter
	PI2 Security File – Use PI2 security file
	PI2 Security File - Unique Part
	PI2 Security File - User
	PI2 security File - Password
	Additional Parameters

	History Recovery Tab
	Maximum hours of history to recover
	Hours of history to recover per cycle
	Millisecond pause between history calls
	Use history recovery only (no snapshot data collection)
	History time range (dd-mmm-yy:hh:mm:ss,dd-mmm-yy:hh:mm:ss)
	Start history recovery beginning with the first value prior to the start time.

	Debug Tab
	Debug Parameters
	Interface Status Tag on Receiving Historian Server:

	Location Tab
	Override Location 1
	Override Location 2
	Override Location 3
	Override Location 4
	Override Location 5

	Optional Tab
	Apply tag’s compression specifications to data retrieved during history recovery.
	Source tag definition attribute.
	Specify maximum events to retrieve for a single point in each call to get history.
	Specify maximum number of exception events retrieved per data request.
	Set time interval between clearing exception queue during history recovery.
	Specify the frequency that the interface calculates time offset between Historian Servers.

	Opt Cont Tab
	Source Host reconnection delay.
	Receiving Host reconnection delay.
	Suppress writing I/O Timeout to tags upon reestablishment of a lost connection to the source Historian Server

	Source Historian Server Failover Tab
	Enable PItoPI Failover
	Source Server Interface Status Utility Tag
	Secondary Source Server Node Name
	Secondary Source Int Status Utility Tag
	Number of connection attempts to source server
	Enable failover status logging.

	Configuring Interface Startup Files
	Command-line Parameters
	General Interface Operation
	History Recovery and Archive Data Collection
	Exception Data Collection
	Tag Attribute Override
	Server-Level Failover

	Sample Startup Configuration Files
	Sample PItoPI.bat File
	Sample PItoPI.ini File

	Chapter 9. UniInt Failover Configuration
	Introduction
	Configuration
	Prerequisites

	Synchronization through a Shared File (Phase 2)
	Configuring Synchronization through a Shared File (Phase 2)
	Configuring UniInt Failover through a Shared File (Phase 2)
	Start-Up Parameters
	Failover Control Points
	Historian Tags
	Active_ID Tag Configuration
	Heartbeat and Device Status Tag Configuration
	Interface State Tag Configuration

	Detailed Explanation of Synchronization through a Shared File (Phase 2)
	Steady State Operation

	Failover Configuration Using ICU
	Create the interface Instance with ICU
	Configuring the UniInt Failover Startup Parameters with ICU
	Creating the Failover State Digital State Set
	Using the ICU Utility to create Digital State Set
	Using the SMT 3 Utility to create Digital State Set

	Creating the UniInt Failover Control and Failover State Tags (Phase 2)

	Chapter 10. Interface node Clock
	Chapter 11. Security
	Historian Server v3.3 and Higher
	Security configuration using piconfig
	Security Configuring using Trust Editor

	Historian Server v3.2
	Tag and Node Security
	System Manager Responsibilities
	Receiving System Manager
	Source System Manager

	Sample Security Files
	Sample 1
	Sample 2

	Chapter 12. Starting / Stopping the interface
	Starting Interface as a Service
	Stopping Interface Running as a Service

	Chapter 13. Buffering
	Which Buffering Application to Use
	How Buffering Works
	Buffering and Historian Server Security
	Enabling Buffering on an Interface Node with the ICU
	Choose Buffer Type
	Buffering Settings
	PIBufss
	Primary and Secondary Memory Buffer Size (Bytes)
	Send rate (milliseconds)
	Maximum transfer objects
	Event Queue File Size (Mbytes)
	Event Queue Path

	Bufserv
	Maximum buffer file size (KB)
	Primary and Secondary Memory Buffer Size (Bytes)
	Send rate (milliseconds)
	Maximum transfer objects

	Buffered Servers
	PIBufss
	Bufserv

	Installing Buffering as a Service
	Buffer Subsystem Service
	API Buffer Server Service

	Chapter 14. Interface Diagnostics Configuration
	Scan Class Performance Points
	Create / Create ALL
	Delete
	Correct / Correct All
	Rename
	Column descriptions
	Status
	Scan Class #
	Tagname
	PS
	Location1
	Exdesc
	Snapshot

	Performance Counters Points
	Performance Counters
	Performance Counters for both (_Total) and (Scan Class x)
	“Point Count” (.point_count)
	“Scheduled Scans: % Missed” (.sched_scans_%missed)
	“Scheduled Scans: % Skipped” (.sched_scans_%skipped)
	“Scheduled Scans: Scan count this interval” (.sched_scans_this_interval)

	Performance Counters for (_Total) only
	“Device Actual Connections” (.Device_Actual_Connections)
	“Device Expected Connections” (.Device_Expected_Connections)
	“Device Status” (.Device_Status)
	“Failover Status” (.Failover_Status)
	“Interface up-time (seconds)” (.up_time)
	“IO Rate (events/second)” (.io_rates)
	“Log file message count” (.log_file_msg_count)
	“Historian Status” (PI_Status)
	“Points added to the interface” (.pts_added_to_interface)
	“Points edited in the interface”(.pts_edited_in_interface)
	“Points Good” (.Points_Good)
	“Points In Error” (.Points_In_Error)
	“Points removed from the interface” (.pts_removed_from_interface)
	“Points Stale 10(min)” (.Points_Stale_10min)
	“Points Stale 30(min)” (.Points_Stale_30min)
	“Points Stale 60(min)” (.Points_Stale_60min)
	“Points Stale 240(min)” (.Points_Stale_240min)

	Performance Counters for (Scan Class x) only
	“Device Scan Time (milliseconds)” (.Device_Scan_Time)
	“Scan Time (milliseconds)” (.scan_time)

	Interface Health Monitoring Points
	[UI_HEARTBEAT]
	[UI_DEVSTAT]
	[UI_SCINFO]
	[UI_IORATE]
	[UI_MSGCOUNT]
	[UI_POINTCOUNT]
	[UI_OUTPUTRATE]
	[UI_OUTPUTBVRATE]
	[UI_TRIGGERRATE]
	[UI_TRIGGERBVRATE]
	[UI_SCIORATE]
	[UI_SCBVRATE]
	[UI_SCSCANCOUNT]
	[UI_SCSKIPPED]
	[UI_SCPOINTCOUNT]
	[UI_SCINSCANTIME]
	[UI_SCINDEVSCANTIME]

	I/O Rate Point
	Enable IORates for this Interface
	Event Counter
	Tagname
	Tag Status
	In File
	Snapshot

	Right Mouse Button Menu Options
	Create
	Delete
	Rename
	Add to File
	Search

	Interface Status Point

	Appendix A. Error and Informational Messages
	Message Logs
	Messages
	Interface Startup Messages
	Scan Summary
	System Errors and Historian Errors
	Error Descriptions

	Historian to Historian Specific Error Messages
	UniInt Failover Specific Error Messages
	Informational
	Errors (Phase 1 & 2)
	Errors (Phase 2)
	Unable to open synchronization file
	Error Opening Synchronization File

	Appendix B. PI SDK Options
	Disable PI SDK
	Use the Interface’s default setting
	Enable PI SDK

	Appendix C. Terminology
	Buffering
	N-Way Buffering
	ICU
	ICU Control
	Interface Node
	PI API
	Historian Collective
	PIHOME
	PIHOME64
	PI SDK
	Historian Server Node
	SMT
	pipc.log
	Point
	Service
	Tag (Input Tag and Output Tag)

	Appendix D. Technical Support and Resources
	Technical Support
	Knowledgebase
	Worldwide Support
	Training Programs
	Consulting Services
	TechConnect Support
	Find the Version and Build Numbers
	View Computer Platform Information

