
(

(51) International Patent Classification: c/o Colorado State University Research Foundation, P . O .
G16B 50/40 (2019.01) Box 483, Fort Collins, Colorado 80522 (US).

(21) International Application Number: (74) Agent: POULSEN, Nathan W. et al.; Cooley LLP, 1299
PCT/US20 19/024057 Pennsylvania Avenue, NW, Suite 700, Washington, District

of Columbia 20004 (US).
(22) International Filing Date:

26 March 2019 (26.03.2019) (81) Designated States (unless otherwise indicated, for every
kind of national protection av ailable) . AE, AG, AL, AM,

(25) Filing Language: English
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
62/648,201 26 March 2018 (26.03.2018) U S KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
62/745,183 12 October 2018 (12. 10.2018) U S MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
62/773,079 29 November 2018 (29. 11.2018) U S OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(71) Applicant: COLORADO STATE UNIVERSITY SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

RESEARCH FOUNDATION [US/US]; P . O . Box 483, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Fort Collins, Colorado 80522 (US). (84) Designated States (unless otherwise indicated, for every
(72) Inventors: PECCOUD, Jean; c/o Colorado State Univer¬ kind of regional protection available) . ARIPO (BW, GH,

sity Research Foundation, P . O . Box 483, Fort Collins, Col¬ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

orado 80522 (US). KAR, Diptendu Mohan; c/o Colorado UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
State University Research Foundation, P . O . Box 483, Fort TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

Collins, Colorado 80522 (US). GALLEGOS, Jenna; c/o EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

Colorado State University Research Foundation, P . O . Box MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

483, Fort Collins, Colorado 80522 (US). RAY, Indrajit;

(54) Title: APPARATUSES, SYSTEMS AND METHODS FOR GENERATING AND TRACKING MOLECULAR DIGITAL SIG¬
NATURES TO ENSURE AUTHENTICITY AND INTEGRITY OF SYNTHETIC DNA MOLECULES

(57) Abstract: Systems and methods for generating and tracking molecular
is¬
u ¬

r¬
ct¬
n¬
ce
on

[Continued on next page]

Declarations under Rule 4.17:
as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(H))
as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4 .17(iii))

Published:
with international search report (Art. 21(3))
before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

APPARATUSES, SYSTEMS AND METHODS FOR GENERATING AND TRACKING
MOLECULAR DIGITAL SIGNATURES TO ENSURE AUTHENTICITY AND

INTEGRITY OF SYNTHETIC DNA MOLECULES

[0001] This application claims priority to and the benefit of: U.S. Provisional Application No.

62/648,201, filed March 26, 2018, U.S. Provisional Application No. 62/745,183, filed October 12,

2018, and U.S. Provisional Application No. 62/773,079, filed November 29, 2018; the entirety of

each of the aforementioned applications are herein expressly incorporated by reference for all

purposes. This application may contain material that is subject to copyright, mask work, and/or other

intellectual property protection. The respective owners of such intellectual property have no objection

to the facsimile reproduction of the disclosure by anyone as it appears in published Patent Office

file/records, but otherwise reserve all rights.

Background

[0002] Nucleotides are organic molecules that serve as the monomer units for forming nucleic acids.

Summary

[0003] This disclosure relates to the security and validation of nucleic acid (A) molecules and their

sequence data. The term "nucleic acid," as used herein, refers to a molecule comprising one or more

nucleic acid subunits. A nucleic acid can include one or more subunits selected from adenosine (A),

cytosine (C), guanine (G), thymine (T) and uracil (U), and modified versions of the same. NA

molecules can include deoxyribonucleic acid (DNA), ribonucleic acid (RNA), combinations, and/or

derivatives thereof. Example systems and methods for cryptographically signing and authenticating

NA sequences are described herein. In some embodiments, a NA authentication system includes a

NA authentication device coupled to one or more user devices. The NA authentication device

includes, in an interconnected manner, a communicator configured to establish secure channels of

communication between the NA authentication device and the user device(s), input/output unit to

receive and send sequence information between the user device(s) and the NA authentication device,

at least one memory, and at least one processor. Also disclosed herein are methods for generating a

signed NA sequence and validating a signed NA sequence using a NA authentication system. A

signed NA sequence is generated by incorporating a signature NA sequence obtained from converting

a digital signature including an encrypted mapped value of the original NA sequence, and a unique

identifier that can later be used to decrypt the mapped value. The validating of a test NA sequence is

carried out by extracting the digital signature from the signature sequence, and using the unique

identifier to decrypt the mapped value, and comparing the mapped value to the test NA sequence.

0004] FIG. 1 is a schematic of a nucleic ac d authentication system, according to an embodiment.

[0005] FIG. 2 is a flowchart describing a method of using a NA system to generate a signed NA

sequence, according to an embodiment.

[0006] FIG. 3 is a flowchart describing an example workflow of generating a signed NA sequence

and validating a signed NA sequence, using a NA system according to an embodiment.

[0007] FIG. 4 is a flowchart describing a method of associating a NA sample with a signed digital

representation of the NA sample using a NA system according to an embodiment.

[0008] FIG. 5 is an example view of descriptive information associated with a NA sequence.

[0009] FIG. 6A is an example view of sequence information associated with a NA sample and FIG.

6B is an example view of sequence and descriptive information associated with a NA sample.

[0010] FIG. 7 provides an example view- of a signed digital DNA file.

[0011] FIG. 8A provides an example sign-share- validate workflow, according to some embodiments.

[0012] FIG. 8B provides an example fasta file for some embodiments.

[0013] FIG. 9A provides a comparison of expressi on of a reporter construct with and without a digital

signature, according to an implementation.

[0014] FIG. 9B illustrates algorithmic accuracy of algorithms as a percentage, according to an

implementation.

[0015] FIG. 0 illustrates the results of runtime analysis of various algorithms in milliseconds.

[0017] FIG. is a schematic of a nucleic acid authentication system, according to an embodiment.

[0018] FIG. 12 is a diagram showing interfacing aspects of a nucleic acid authenticating system,

according to an embodiment.

[0019] FIG. 13 is a flowchart describing a method for cryptographically marking a N A sequence to

generate a signed A sequence.

[0020] FIG. 14 is a flowchart describing a method generating a signature for a NA sequence.

[0021] FIG. 5 is a flowchart describing a method for validating a signed NA sequence.

[0022] FIG. 6 is an example illustration of an interface of a user application, according to an

embodiment.

[0023] FIG. 7 s a flowchart describing a workflow' of marking a NA sequence and authenticating

a second NA sequence.

[0024] FIG. 18 is an example illustration of a workflow.

[0025] FIGS. 19A and 19B are illustrations of example original and signed NA sequences of a

plasmid, respectively.

[0026] FIG. 20 is an example illustration of an interface of a user application, according to an

embodiment.

[0027] FIGS. 21, 22A, 22B, 23, 24A, 24B, and 24C are example illustrations of various aspects of a

user interface of the user application illustrated in FIG. 20.

0028 Systems, methods and apparatuses of the disclosure relate to providing physical and cyber

security of molecules, for example NA molecules. Methods and apparatus disclosed herein also relate

to authenticating and validating a source of synthetic NA molecules.

[0029] NA synthesis has become increasingly common, and many synthetic NA molecules can be

licensed intellectual property (IP). NA samples are shared between academic labs, ordered from NA

synthesis companies and/or manipulated for a variety' of different purposes, such as research needs

to study their properties and improve upon them. In some instances, N A sequences are configured to

store information in the form of NA samples. However, it is not uncommon for a sample to change

hands many times with very' little accompanying information and no proof of origin or proof of

mishandling. This poses significant challenges to the original source or inventor of a NA molecule,

trying to protect her IP rights. Furthermore, following the anthrax attacks of 2001, there is an

increased urgency to employ microbial forensic technologies to trace and track agent inventories,

especially those created and/or manipulated in laboratories. However, atribution of physical samples

s next to impossible with existing technologies.

[0030] Natural mutations, errors in labelling biological samples, sloppy laboratory processes, or

malicious actions could otherwise jeopardize the integrity of the relation between a physical NA

molecule and its description in the literature, vendor data sheets, or regulatory approval applications.

Undocumented modifications to the NA molecule could result in the loss of its described property.

Alternatively, it could also result the gain of undocumented and possibly undesirable, even

dangerous, functions.

0031 According to some embodiments, the disclosure provides for establishing the origin and

integrity of NA molecules. In some embodiments, the teachings of the disclosure provide verification

that a NA molecule (e.g. DNA) has not been modified after it has been fully characterized to ensure

that t behaves as expected or as predicted by the characterization studies.

[0032] In some embodiments, the teachings of the disclosure establish the origins of the NA

molecules. Developers of synthetic NA molecule samples can use methods and systems of the

disclosure to confirm and protect their intellectual property. In addition, the teachings of the

disclosure can, in some embodiments, be used by producers to reduce or eliminate liability associated

with derivatives of their NA molecules. By associating molecules with their authors, the disclosed

methods and systems can be used to prove authenticity of a given sample purported to be a certain

NA molecule.

[0033] When modified/synthetic genes are used in agriculture, industry, and/or gene-therapy based

medical treatment, the methods and systems of the disclosure can provide attribution that can (a)

readily inform the user/consumers about maters related to the treatment, product, and/or therapy;

and/or (b) can serve as some measure of the quality of the treatment, product, and/or therapy, e.g., brand

name versus generic drugs. Teaching of the disclosure can also ensure source attribution which can

help mitigate DNA-based attacks, including attacks against DNA sequencers, and/or via DNA

sequencers against smart devices / the Intemet-of-Things (IoT), e.g., of the type of DNA-based

security exploit demonstrated as a proof of concept, where synthetic DNA was used to attack a DNA

sequencer.

[0034] Plasmids are circular DNA molecules widely used in biotechnology to express recombinant

proteins, in several applications such as for example to support ew vaccine strategies, or even in

gene therapy applications. Plasmids used in biotechnology often include DNA sequences from

multiple organisms as well as chemically synthesized DNA. These highly' engineered plasmids are

typically designed using software. Plasmid sequences can also be documented electronically.

Information can be found vendor data sheets, bioinformatics databases, the online supplement of

journal articles, or patent applications.

[0035] Tracing DNA with watermarks inserted in the genome have been proposed, for example, to

increase the traceability' of infectious agents to increase their traceability', and such an approach

includes inserting short watermarks into DNA without introducing significant perturbation to genome

function. The use of watermarks has also been proposed in order to identify genetically modified

organisms (GMOs) or proprietary' strains. The system provides security and reliability' for traceability'

and source identification than watermarking because a watermark is independent of the sequence it

is attached to (only changes to the watermark itself would be detectable), and watermarks are easily

counterfeited. Some proposals include where a watermark is generated from any binary data and

added to the original sequence. The watermark is independent of the original sequence and therefore

provides no integrity of the actual DNA sequence. If the watermark locations can be found, the

original molecule sequence can be changed by others while keeping the watermark sequence

unaltered but sending the remaining modified sequences to a receiver. The receiver will trust that it

came from the sender whose watermark is present in the DNA. Second, if an attacker or other

legitimate competing user/organization knows the binary data that is used to generate the watermark,

they can generate their own arb itrary DNA and add the watermark to malign the original

user/organization. For these reasons, watermarks of are limited reliability and security. Additionally,

there are proposals that r e ly on symmetric key encryption like AES/Blowfish to encrypt the binary

data that is used to create the watermark. Such keys have to be transmitted to the receiver who will

validate the watermark. However, the receiver would then have the secret key that was used to

generate the watermark and can masquerade as the originator of the DNA. The disclosed methods

and digital signatures provide better and stronger security than such proposals.

[0036] The approaches disclosed herein includes various steps such as, for example, the generation

of digital signatures using known algorithms, adap ta tion of digital signature to NA sequences through

the development of mapping algorithms to convert N A sequences into b inary form, the insertion of

synthetic NA sequences in plasmids. The most commonly used plasmids are known to tolerate the

insertion of N A sequences much longer than digital signatures. The process of reconstructing the

sequence of plasmids from ra w sequencing data is well understood and can achieve a high level of

accuracy at an affordable cost.

Ensuring the origin and integrity oj NA molecules

[0037] One strategy to mitigate cyber-physical risks associated with NA molecules would be to

develop a digital signature technology for NA molecules. Digital signatures are used in cyber security

to authenticate the source of a digital file and to confirm that the file has not been changed since the

originator applied the signature. The disclosure herein includes a NA authenticating system

connected to several users, for example a web service, providing digital signature technologies for

synthetic NA molecules.

A NA authentication system

0038 FIG. shows a schematic of an example NA authentication system 100. The NA

authentication system (also referred to here as “the authentication system”, “the NA system”, or

simply “the system”) allows users handling NA samples, such as synthetically generated NA

molecules like plasmid DNA, to digitally sign them and/or suitably mark them using signatures

generated though safe and secure encryption methods. These signatures can take the form of a unique’

NA fragment, also referred to as “NA signature sequence”, or “DNA signature sequence”, that is

inserted into the NA molecule in the NA sample.

[0039] The NA system 100 includes a Nucleic Acid (NA) authentication device 110 coupled or

suitably connected (through wired or wireless connection methods) to user devices 02 and 104,

though a suitable communication network (not shown).

[004] The user devices 102 and 04 can be any suitable client device. In some embodiments, the

user devices 102 and 04 can be any suitable hardware-based computing device and/or a multimedia

device, such as, for example, a server, a desktop compute device, a smartphone, a tablet, a wearable

device, a laptop and/or the like. The user devices 102 and 04 can include a processor, a memory,

and a communicator. In some embodiments, the user devices 02 and 104 can be, for example, a

personal computer (PC), a personal digital assistant (PDA), a smart phone, a laptop, a tablet PC, a

server device, a workstation, and/or the like. The user devices while not shown in FIG. , can include

at least a memory, a processor, a network interface, and an output device. While the schematic of the

NA system 100 in FIG. shows two user devices, an NA system can include any number of user

devices as suitable.

[0041] The NA authentication device 10 includes and/or has access to a processor 120, a memory

160 and a communicator 180, each being operatively coupled to the other. n some embodiments, the

NA authentication device 110 can be a server device. In some embodiments, the NA authentication

device 0 can be an enterprise device, such as, for example, a desktop computer, a laptop computer,

a tablet personal computer (PC), and/or the like. In yet other embodiments, portions of the NA

authentication device 0 can be physically distributed across, for example, many chassis and/or

modules interconnected by wired or wireless connections. The network can be any type of network

such as a local area network (LAN), a wide area network (WAN), a virtual network, a

telecommunications network, implemented as a wired network and/or wireless network.

[0042] The memory 160 of the NA authentication device 0 can be, for example, a random access

memory (RAM), a memory' buffer, a hard drive, a read-only memory' (ROM), an erasable

programmable read-only memory' (EPROM), and/or the like. The memory 160 can store, for

example, one or more software modules and/or code that can include instructions to cause the

processor 120 to perform one or more processes, functions, and/or the like (e.g., the mapping of a

NA sequence, the generation of a digital signature, the generation of a signature NA sequence, the

validation of a signed NA sequence, etc.). In some embodiments, the memory 160 can include

extendable storage units that can be added and used incrementally. In some implementations, the

memory 160 can be a portable memory (for example, a flash drive, a portable hard disk, and/or the

like) that can be operatively coupled to the processor 120. In other instances, the memory 160 can be

remotely operatively coupled with the compute device. For example, a remote database server can

serve as a memory' and be operatively coupled to the NA authentication device. The memory 60 can

in some embodiments include a database or a look up table (not shown in FIG. 1) storing information

regarding specific authors or users who may be registered in a system used to exchange information

regarding NA molecules (e.g., authorized users or validated authors of specific synthetic NA

molecules). The memory' 160 can include one or more storage systems for user information

associated to these specific users through a unique user identifier (e.g., user ID).

[0043] The communicator 180 can be a hardware device operatively coupled to the processor 120

and memory 160 and/or software stored in the memory 60 executed by the processor 120. The

communicator 180 can be, for example, a network interface card (NIC), a Wi-Fi M module, a

Bluetooth® module and/or any other suitable wired and/or wireless communication device. The

communicator 80 can include or be part of a switch, a router, a hub and/or any other network device.

The communicator 80 can be configured to connect the NA authentication device 110 to user

devices 102 and 04 or to remote data sources (not shown) via a communication network. In some

instances, the communicator 80 can be configured to connect to a communication network such as,

for example, the Internet, an intranet, a local area network (LAN), a wide area network (WAN), a

metropolitan area network (MAN), a worldwide interoperability for microwave access network

WiMAX®), an optical fiber (or fiber optic)-based network, a Bluetooth® network, a virtual network,

and/or a ' combination thereof. The communicator 180 in the NA Authentication 110 can be

configured to establish one or more secure channels of communication to enable users to access the

Input/Output unit 140 of the NA authentication device 110. In some embodiments, the communicator

80 can be configured to generate and distribute tickets to control access sessions for users to gam

access to the NA authentication device 110. In some embodiments, the communicator 180 can use

the tickets (e.g., tickets containing access codes set to deactivate beyond a specified time period) to

moderate temporary or time limited secure communication channels. The Communicator 180,

similarly, can be housed in one device in some embodiments, and distributed across many devices in

some other embodiments.

0044 The processor 120 included some embodiments of the NA authentication device 110 can

be configured to run one or more applications to support various methods involved in cryptographic

signing and authentication of NA molecules as described herein. In some embodiments, the one or

more applications run n the processor 120 can be part of an enterprise software package. The

processor 120 can for example be equipped with one or more apparatuses that may include one or

more associated programs / software to carryout various portions of marking and authenticating a

NA molecule, the various portions including, for example, generating a mapped value of a NA

molecule, cryptographically encrypting a mapped value, to generate a digital signature, to convert a

digital signature into a signature NA sequence, identifying appropriate insertion points in the NA

sequence to insert the signature NA sequence, etc. Appendix A provides illustrative example

processor-executable code for an embodiment of the disclosure. In some embodiments, the processor

120 can be equipped with apparatuses and associated software to receive an unknown sample and

validate its alleged source, origin or author.

[0045] The NA authentication system 100 and the N authentication device 0 can be configured

such that user specific information (e.g , identity of users, or molecules/sequences authored by users)

can be stored in a protected fashion by associating the information via the unique user identifiers,

and access to the information can be blocked unless allowed through a process of verifying user

credentials, for example, through secure communication channels mediated by the communicator

180.

[0046] In some embodiments of the system 100 the user devices 102 and 104 can include

apparatus to run suitable applications (e.g., client side application, mobile application, a PC

application, an internet web browser, etc.) installed on the user device) to communicate with one or

more applications on the NA authentication device, via a suitable communication channel mediated

or moderated by the communicator, as discussed herein. The applications can be configured to have

access to a registry or database of authorized users with the users tabled or organized or indexed by

unique user identifiers (e.g., user IDs). In some embodiments, the unique user identifiers can be

generated within the NA authentication system 200. In some other embodiments, the umque

identifiers can be imported from other known sources or systems, for example, other organizations

frequented by users or authors of NA molecules and/or their sequence information (e.g., OR D). In

some embodiments, the applications can be configured to receive NA sequences with descriptive

information or have access to information associated with a NA sequence, for example, documented

descriptions of regions of a NA sequence or unique identifiers associated with NA sequences (e.g.,

plasmid IDs).

Generating signature sequences
[0047] Generating a signature to be incorporated in a NA molecule can include abiding by certain

criteria. For example, the length of the signature may have to be within a restricted limit, depending

in the size of the NA molecule. Additionally, inserting any extraneous DNA sequences could impact

the function or stability of the NA molecule. For example, the inserted sequences may disrupt existing

functions by interrupting important features, may introduce a new function by encoding cryptic

functional elements and/or may impact the overall stability of the NA molecule (e.g., plasmid) in

terms of propensity for mutations, structural rearrangements or retention in a host organism. The

probability that existing features may be disrupted can be minimized through careful choice of where

within the NA molecule the signature sequence is inserted.

[0048] The probability that the inserted sequence may introduce a new function or impact stability

increases with the length of the inserted sequence. Additionally, the cost of synthesizing the signature

can increase with length. In some instances, signature sequences are configured to be of a

predetermined length to meet security parameters without compromising the security of the signature

itself. For a digital document, a signature of 384 bytes, for example, may be trivial. However, the

same 384 bytes translates to 1536 bases (384 * 8 / 2) of DNA. If a DNA sample originally includes

2000 bases (not unusual for a plasmid), the addition of a 1536 nucleotide signature would nearly

double the size of the DNA molecule, which may not be feasible. As alternative to using identity-

based signatures that use bilinear pairings, in some embodiments the method 203 uses Shamir’s IBS

scheme (or the like) with modifications, in order to minimize the size of the insertion.

[0049] In a digitally signed document, the original message and the signature can be easily identified

and separated using delimiters that separate them. Because the site of insertion may vary depending

on the architecture of the plasmid, delimiters are used to identify where the signature sequence starts

and ends. In some instances, the method 200 uses an algorithm that identifies subsequences that can

be used as delimiters while embedding a signature sequence in a NA molecule. For example, any

subsequence of 10 base pairs (substring of length 10) that is not present in the original sequence can

be used as a start and end delimiter indicating a portion of the NA sequence that includes the signature

sequence. During verification, all subsequences of 10 base pairs can be identified and only those

subsequences that occur twice within the entire sequence can be identified and used as delimiters.

0050 In some embodiments, instead of the algorithm choosing the delimiters, the disclosed systems

and methods allow the user input their own delimiters of 10 base pairs. This approach can be

beneficial to design delimiters that are relevant to their specific project. For example, the delimiters

can be designed in such a way as to simplify synthesis/assembly of the DNA. Tools included in the

NA system can check if the sequences are permitted i.e. the 10 base pair subsequence does not already

exist elsewhere in the plasmid. Example sequences that can be used as start and end delimiters include

ACGCTTCGCA and GTATCCTATGrespectively. These sequences are relatively easy to identify

visually, they are unlikely to develop secondary structures and they can contain balanced numbers of

A, . G, and T.

[0051] When any digitally signed message is shared and verification fails, the sender just resends the

message again. In the domain of NA sharing, this may include resending and likely resynthesizing

the sample (sometimes even batches of samples), which may incur a lot of cost. The presence of a

signature inside the molecule can ensure that any change in the signed DNA results in failed

verification. However, NA molecules can be prone to naturally occurring mutations. Hence after a

failed verification, in some instances, the system is configured to determine or check the location of

the mutation(s) that caused the verification to fail. If there are mutations in any important features,

the receiver may choose to reorder the sample. If there are mutations in any relatively unimportant

part of the NA, the receiver may choose to proceed to work with the NA sample. In order to achieve

this error tolerance, some embodiments of NA systems and methods disclosed include and use error

correction/detection codes, such as, by way of non-limiting example, modified Reed-Solomon Codes,

as described in further detail herein. Reed-Solomon and similar codes are block-based error

correcting codes in which redundant information is added to data so that it can be recovered reliably

despite errors in transmission or storage and retrieval. The encoder takes a block of digital data and

adds extra redundant bits. Errors occur during transmission or storage for a number of reasons. Hie

decoder processes each block and attempts to correct errors and recover the original data. The number

and type of errors that can be corrected depend on the characteristics of the (Reed-Solomon) code. A

Reed-Solomon code can be specified as RS(,) with -bit symbols. This means that the encoder takes

k data symbols of s bits each and adds parity symbols to make a n symbol codeword. There are n —k

parity symbols of s bits each. A Reed-Solomon decoder can correct up to t symbols that contain errors

a codeword, where 2t =n —k .

[0052] For example, one Reed-Solomon code is RS(255,223) with 8-bit symbols. Each codeword

contains 255 codeword bytes, of which 223 bytes are data and 32 bytes are for parity. For this code:

n :::: 255, k = 223, s =: 8, 2t ::: 32, t = 16. The decoder can correct any 16 symbol errors in the code

word: i.e. errors in up to 16 bytes anywhere in the codeword can be automatically corrected. Given

a symbol size s, the maximum codeword length (n) for a Reed-Solomon code is n = 2s - 1.

[0053] For example, the maximum length of a code with 8-bit symbols (s=8) is 255 bytes. The

amount of processing power required to encode and decode Reed-Solomon codes is related to the

number of parity symbols per codeword. A large value of t means that a large number of errors can

be corrected but requires more computational power than a small value of t . One symbol error occurs

when 1 bit in a symbol s wrong or when all the bits in a symbol are wrong. RS(255,223) can correct

16 symbol errors. In a worst case scenario, 16-bit errors may occur, each in a separate symbol (byte)

so that the decoder corrects 16-bit errors. In the best case, 16 complete byte errors occur so that the

decoder corrects 16 x 8-bit errors. Reed-Solomon codes are particularly well suited to correcting

burst errors (where a series of bits in the codeword are received in error). Reed-Solomon codes are

based on an area of mathematics known as Galois fields/finite fields. A finite field has the property

that arithmetic operations (+,-,x,/ etc.) on field elements always have a result the field. A Reed-

Solomon encoder or decoder needs to carry' out these arithmetic operations.

[0054] Embodiments of systems and methods disclosed include methods to associate a NA molecule

with a signature generating a tie between a physical NA sample and its digital representation.

Embodiments disclosed include methods to combine a signed N sequence and its description to

form a combined message and generate a signature on this combined message. This signature of the

combined message can be placed in the digital representation of the NA such as the genbank file

which s shared with the receiver. This can ensure that the explanation of the NA sequences and the

sequences in the NA sample are accurate and related. Any change in the descriptions without

changing the molecule will invalidate this signature. Also, any change n the molecule without

updating the descriptions will invalidate the signature.

[0055] To solve the problem of tracing the source of synthesized DNA molecules and confirming their

identity and integrity, some embodiments of the disclosure include a system for generating digital

signatures for molecules of DNA in living cells. In some embodiments, a signature approach, such

as, by way of non-limiting example, Shamir’s Identity-based Signature (IBS) scheme (see Adi

Shamir. Identity-based cryptosystems and signature schemes. In George Robert Biakley and David

Chaum, editors, Advances in Cryptology, pages 47-53, Berlin, Heidelberg, 1985. Springer Berlin

Heidelberg; the entirety' of w'hich being herein expressly incorporated by reference for all purposes)

can be utilized. According to some embodiments, for the unique identifier string of a/the originator,

an identification, such as Open Researcher and Contributor IDs (ORCID) from a non-profit

organization which uniquely identifies researchers using a 16 digit number, can be used. Many

funding agencies require researchers to register for an ORCID, and scholarly journals request that

authors identify themselves using their ORCID. The generated signature bits are converted to the

four letters A, C, G, and T, which represent the four nucleotide building-blocks of DNA. The

sequence can then be synthesized and inserted nto the original DNA molecule. In some embodiments

when this signed molecule is shared, a receiver can sequence the signed molecule to verify that it

was shared by an authentic sender and that the sequence of the original molecule has not been altered

or tampered with.

[0056] While the use of similar techniques in the digital world is known, applying them to DNA

requires several creative adjustments. For example, one challenge comes from the physical size of

the DNA sequence encoding the signature. Adding extraneous sequences to a DNA molecule can

impact its function or stability. It can be important, in some embodiments, to minimize the size of the

added sequence in order to decrease the likelihood that the biological function of the signed molecule

would be effected and to decrease the cost of synthesizing the signature. For some such embodiments,

the size minimization can restrict the ability to use some known signature schemes, as well as larger

key sizes for signatures.

[0057] Another challenge is accounting for DNA mutations. In a DNA sample, mutations occur

randomly at low frequencies, and, as a result, there is a on-trivial possibility that a signed molecule

could undergo a mutation between the time it is signed and when it s validated. Mutations could

affect not only the original DNA molecule but also the signature. In both cases, the signature

validation would fail even if the molecule were sent by the correct authority and the original sequence

were correct during the process of signature generation. Mutations are beyond the control of any

authority and the relative impact of any given mutation can vary. In some embodiments of the system,

error correction codes are included to detect mutations in the signed DNA molecule. Error correction

codes are prevalent in digital storage such as CD/DVD. It is possible to use the similar techniques to

provide a reliable reconstruction of the original sequence for comparison, provided a small number

of changes have occurred. In some embodiments of the system, the application of error correction

codes to DNA can additionally or alternatively be used to ensure the integrity of information''digital

information stored inDNA molecules.

[0058] While digital signatures as disclosed herein can provide a way to verify the source and

integrity of a DNA sample, there s additional information about the DNA sequence that can be

useful to the recipient of a signed DNA sample. For example, the exact location of features within the

sequence, such as a certain gene, may still be unknown to the recipient. In some embodiments, the

physically-signed DNA molecule is linked with its digital representation, which contains the

sequence and its features designated with explanations.

0059 The system can, according to some embodiments, be configured such that no polynomial-

time adversary can forge a genuine signature provided by the system. For example, assume a

polynomial-time adversary, Mallory/M, is trying to forge the signature of a reputed synthesized DNA

molecule creator, Alice/A . Alice/A distributes DNA molecules, which Alice/A has synthesized and

provided to researcher Bob/B. If the attacker, Mallory/M, is able to forge the signature of Alice/A

then: (a) Mallory/M can replace the actual DNA created by Alice/A with her own but keep the

signature intact; (b) Mallory/M can create her own DNA molecule and masquerade as Alice/A to sign

it; and/or (c) Mallory/M can modify parts of the signed DNA molecule created by ice A . Thus the

system can defeat any of the potential threats by providing a genuine signature that is difficult or

impossible for an polynomial-time adversary' to forge.

[006] FIG. 2 illustrates a method 200 of generating a signed NA sequence. In some

implementations, the method 200 or portions of the method 200 can be substantially similar to

methods of generating a signed NA sequence described in other embodiments.

[0061] At 20 the method 200 includes receiving, from a user device, a NA sequence and information

associated with the NA sequence. In some instances, the NA sequence can be received in a

predetermined format. For example, NA sample can be sequenced by an automated sequencer and

the NA sequence be obtained from the sequencer. The output of a DNA sequencer can for example,

be in a fasta (.fasta) file as shown in FIG. 6A. The fasta file can include the raw DNA sequence of

the DNA molecule in the sample. As another example, a genbank file (.gb) can include the raw NA

sequence along with annotations describing portions of the NA sequence, as shown in example in

FIG. 6B. In FIG. 6B, after the w' d “ORIGIN” the ra NA sequences are denoted and before that

the features are annotated.

[0062] In some instances sequence manipulation tools such as software applications like SnapGene

can be used to convert a fasta file to a genbank file and vice versa. When a fasta file s converted to

a genbank file, the software can search its database for common annotations. The generated

annotations may not be complete or correct every time. The software applications included in the NA

system can allow the user at the user device to manually add additional annotations that may be used

to describe the sample NA sequence. These manually added annotations can be only available to the

creator of the NA sequence. When the NA sample is sent to others, they may sequence it and obtain

the fasta file but the genbank file can contain only those annotations that can be automatically

generated. An example view of a genbank file is shown m FIG 5 . In some implementations, for the

receiver to extract all the feature information associated with a given NA sample, the creator may

share the genbank file containing the manually added annotations along with a NA sample.

[0063] In some implementations, the NA system may receive the NA sequence and information

associated with the NA sequence to perform preliminary analyses prior to generating a signature

sequence. For example, the NA sample can be a plasmid DNA. Plasmid DNA is circular and double-

stranded, having a cyclic permutation property. The sequences represented in a fasta file are the linear

representation of a circular structure. As a consequence, there is no single set representation of the

sequences in a sample. Following sequencing, any cyclic per- mutation of the sequence is possible.

For example, m a fasta file if the sequence is - “ACGGTAA”, when the same sample is sequenced

again, the fasta file might read as - “TAAACGG”. The NA system may perform preliminary analyses

to determine a point of origin or otherwise carryout adaptations that can be used for such circular NA

sequences that are linearized during sequencing and usage. An example adaptation procedure is

described below.

[0064] The cyclic permutation property of a plasmid creates a particular problem when validating

the signature since the original sequence which has been signed cannot be extracted properly. As an

example, if the NA sequence which the signer wants to sign in the genbank file s “ORIGINAL”,

When this sequence is synthesized and sent to a receiver, the receiver sequences the plasmid to get

the fasta file. The sequence in the fasta file might ot always be ORIGINAL that is to say “in the

same order as the sender sent it”. It might be GINALORI or ALORIGIN i.e. a cyclic permutation

of the sender’s sequence. The signer may have generated the signature on ORIGINAL. But the

receiver when validating the signature has no information about the order of the sequences and from

the fasta file there s no information about how to reconstruct the exact same order. Without this

exact same ordering the signature verification may fail as a different order may be inferred as a

different message or a different sequence.

[0065] In some embodiments, the NA system may accommodate this aspect of the cyclic permutation

property of circular NA molecules in the signature generation procedure by shifting the sequence

before signing depending on the location where the signer wants to put the signature. Let us take the

same example where the signers genbank file has the sequence ORIGINAL which he/she is about

to sign. In some embodiments, the NA system can shift the sequence based on any suitable

information provided by the user. For example, the NA system can shift the sequence according to

the location of insertion of the signature. As an example, f the user wants to put the signature on

location 4, assuming this location does not have any feature, which is after the letter I and before

letter G, the NA system can shift the sequence accordingly, such that the signature is generated on

the shifted sequence GINALORI. Let us assume the signature sequence is SIGN. The signature is

then wrapped between two tags (e.g., START and END), and placed at location 4 to form the signed

NA sequence, but the genbank content s not shifted. So the output signed NA sequence can be “OR!

START SIGN END GINAL”. This shift is transparent to the user.

[0066] This sequence “ORI START SIGN END GINAL” is synthesized and sent to the receiver.

The receiver may encounter any cyclic permutation of this sequence. For example, the fasta file

according to the receiver might read “ART SIGN END GINAL ORI ST”. The NA system

configured to validate the received signed NA sequence looks for the tag START, In this example

instance, the NA system may not be able to find the START tag because the wrapping point is within

the tag itself. In such instances, the signed NA sequence is copied until two instantiations are found

i.e. the singed NA sequence after copying looks like “ART SIGN END GINAL ORI ST ART

SIGN END GINAL ORI ST ART SIGN END GINAL ORI ST”. Now the NA system can find 2

instantiations of the START tag. The NA system can retrieve the content between those tags for

example - SIGN END GINAL ORI. The NA system can remove the END tag and obtain SIGN and

GINALORL The validation routine can be invoked on GINALORI and if there are no mutations it

can result in successful validation. Thus, in the implementations where the above described

adaptation is carried out, even though the signer’s file had the order as ORIGINAL, as described

above, since the NA system internally shifted the sequence and generated the signature on

GINALORI, the receiver does not have to know the ordering which the receiver generated the

signature on.

[0067] As another example, as a DNA molecule is made of two complimentary, anti-parallel strands,

a sequencer can read a sample in both the “sense” and “antisense” direction. The sequence may be

represented in a fasta file in either direction. When the sample is sequenced again, the output might

be in the other direction, or what is known as the reverse complement. The reverse complement of

"A” is "T” and vice-versa, and the reverse complement of "C” is "G” and vice- versa. The DNA

molecule has polarity with one end represented as 5 ’ and the other represented as 3’. One strand

adheres to its reverse compliment in anti-parallel fashion. So if the sequence is “5’-ACGGTAA-3”’,

the reverse complement s “3’-TGCCATT-5”\ The fasta file may represent one strand of the DNA

sequence in the 5 to 3 ’ direction; so the fasta file could read as “ACGGTAA” or “TTACCGT”. The

NA system may perform preliminary' analyses to account for the variations in reads of the NA

sequence. For example, for a plasmid DNA that has N number of bases, combining the circular and

two complementary' strand properties, the correct representation of the same sample can be 2N - N

cyclic permutations plus each reverse complement. The NA system may preform preliminary'

analyses to determine a suitable reproducible representation of the plasmid DNA given these

considerations.

[0068] At 203, the method 200 includes generating a digital signature. The digital signature can be

generated by encrypting a mapped value that is in turn generated based on the NA sequence. For

example, the mapped value can be generated by applying a cryptographic function to the NA

sequence, and the digital signature can be generated by encrypting the mapped value. An example

procedure is outlined herein.

f0069] In some implementations, for example, a NA authentication device can use a scheme of

generating the digital signature which can be a modification of an identity-based signature scheme

proposed by Shamir using a user ID (e.g. an ORCID (Open Researcher and Contributor ID) as the

unique identifier. Shamir’s IBS is based on the RSA cryptosystem and its security depends on the

difficulty of integer factorization in the RSA problem.

0070 The digital signature generation scheme used in some embodiments of the disclosed systems

and methods can include a setup with the following steps.

. Generate two distinct primes p and q at random with 2 k2 l < p , q < 2 k/2

2 . Calculate the modulus as --- p q

3 . Calculate the totient φ() --- (p - l)(q - 1).

4 . Choose the master public key e as 1 < e < φ(η) , such that e is relatively prime to φ(η)

5 . Calculate the master private key, d, as e 1 mod φ(η) to satisfy the congruent relation

d.e ≡ 1 mod φ(η) .

6.. Publish the public parameters <e, n> and store the private key d. In some

implementations k is 1024 bits.

[0071] The digital signature generation at 203 in some embodiments of the disclosed systems and

methods can include a key extraction step. The private key, SID for a user with the identity ID can be

generated as: SID H (ID) mod , where His a secure hash function. In some implementations, for

example, SHA-256 can be used as the hash function

0072 The digital signature generation used in some embodiments of the disclosed systems and

methods includes a signature generation step. For example, generating the signature for a message m

e 0 , 1}*, includes generating the signaturefa) as :

O SID , mod n ~ H (ID/ H (n mod n

[0073] The digital signature () generated by the above procedure using the user identity informaiton

ID can be verified by checking if the following equation holds:

G ----H (ID/ 1(m) iod

[0074] In some other implementations, the digital signature generation for a message m 0, *

can include the following steps.

(a) Choose r Z„* .

(b) Compute R r mod n .

(Compute c = H(R \ \m) mod n.

(d) Compute t s r o .

(e) Output signature = ,)

[0075] The digital signature generated by the above procedure can be verified as follows

[0076] As an example, a proof of security using the above described scheme for generating a digital

signature is described below. The digital signature in the original scheme is a tuple - R, t . If the

modulus chosen is 1024 bits, the digital signature output will be 2048 bits which is 1024 base pairs.

Shamir’s IBS scheme is secure if no polynomial-time adversary can forge the digital signature on a

given message. For example, to forge a signature, an adversary needs to find sID from the equation

=: SID . C mod n . Let, = w. Therefore, s = t w 1. In order to find any inverse modulo n, one has

to know φ(η) , where φ (. is the Euler totient function. Calculating φ(η) from n is equivalent to

factoring n into two distinct primes - a known hard problem. Next, to calculate w l , the random r

has to be calculated. If r can be found, then r can be found as c is public c --- H(R\ \m) mod n . R is

first part of the signature and m is the message which bears the signature. To find the random r , one

has to know φ(η) or the secret key d, since R = re , r = Rd . In embodiments using the modified scheme,

the signature σ = SID . Therefore ®» ,wherev=H(m)_ 1.Hence to find y one has to know φ(η) which

is equivalent to the RSA problem. Therefore, no polynomial-time adversary can forge a digital

signature in the simplified scheme.

[0077] Following digital signature generation at 203, the digital signature is converted into a NA

signature sequence at 205, using any suitable procedure. For example, the NA system can use a

conversion code such as 0->’ac’, l->’ag’, 2->’at’, 3->’ca’, 4->’cg’, 5->’ct’, 6->’ga’, 7->’gc’, 8->’gt’,

9->’ta’ to convert the digital signature to a sequence of polynucleotide bases forming the NA

signature sequence. In some implementations any suitable additional associated information can be

included in generating the NA signature sequence, such as a plasmid ID for example.

[0078] At 207, the method includes identifying insertion points in the NA sequence and insertion of

the NA signature sequence within the insertion points to generate a signed NA sequence. In some

implementations, as described previously, the user may specify insertion points. If the specified

insertion points are unusable or incompatible, for example if the insertion points specified are

colliding with any features, the user may be alerted and allowed to specify new insertion points.

Alternatively the NA system may suggest insertion points. In some implementations the user may

also specify start and end delimiters which may be added to the signed NA sequence for ease of

identification of the NA signature sequence within the signed NA sequence. In some implementations

the user may specify additional parameters such as an error tolerance limit which may be incorporated

in the signed NA sequence. The signed NA sequence is then returned to the user at 209. In some

implementations the signed NA sequence may be returned as a genbank file for example. In some

instances the genbank file may include descriptive information that may now' include information

related to the NA signature sequence.

[0079] The recipient of a NA sample with a signed NA sequence may sequence the received NA

sample using an automated DNA sequencer and obtain a fasta file containing the raw sequence of

the received NA sample. The validation portion of the NA system can be invoked on the fasta file.

Validation can be carried out by the NA system using, for example, any suitable procedure disclosed

herein. The recipient can be provided with the start and end tag that is present within the NA sample

by the sender. The NA system can accept the fasta file as input for validation and locate the signature

sequence within the start and end tags. Within the NA signature sequence, as an example, the first 32

base pairs can encode the ORCID, the next 2 base pairs can encode the plasmid ID, the following

512 base pairs can encode the digital signature and the remaining sequences before the end tag can

encode the error correction code. The verification algorithm can be invoked and the user can be

alerted with a response if the validation failed or succeeded.

An example workflow of using an NA system

0080 FIG. 3 illustrates an example work flow of using the NA authentication system 800 for

singing and verifying NA sequences. In the illustrated system, there are three players: 1) the signer

can develop the NA signature and sign a sequence 2) the verifier can use the signature to verify

whether the received NA sequence was sent by the appropriate sender and was unchanged after

signing. 3) a Central Authority (e.g., a NA authentication device) can provide the signer with a token

that is associated with their identity. The central authority is secure and trusted by all participants in

the system.

[0081] As illustrated in the workflow 300 at step 301 a first user (User A) can generate a NA

sequence that they want to characterize and share with their collaborators or the general public. At

step 303 the user can obtain a signed version of their NA sequence by incorporating a secure

encrypted digital signature in a NA molecule they synthesized using the NA authentication system

(e.g., system 00) through methods such as method 200 and/or methods described in additional

examples and/or embodiments. As such the sequence information s documented at that initial time

point. The user can then share their sample N molecule, at step 305, in any suitable form with other

users (e.g. User B) or collaborators or with NA databases or NA banks. Any second user (e.g. User

B) who is interested in using the NA sequence generated by the first user (User A), for a specific

functionality of the NA sequence, may obtain a sample of the NA molecule. They may want to know

how closely their sample resembles the original NA sequence that was shown to have their desired

functionality. The second user can sequence their sample at step 307, and access the NA

authentication system and provide the sequence information and ask for a validation (e.g. though

method 500) at step 309. Under circumstances where validation fails at 309, User B can receive

information related to the errors in the sequence in the sample and the potential reasons for failure in

validation.

[0082] At 311 User B can evaluate the source and/or magnitude of errors to determine whether the

NA sample can be used in consideration of the errors. The NA system can offer error correction and

at 3 the user may evaluate the use of the NA sample consideration of the error correction.

[0083] For example, if validation results in failure, the error correction part can be invoked and can

try to correct the sequence depending on the number of errors user A chose to tolerate during signing.

If no corrections can be made (because the number of mutations in the sample exceeds the threshold

set by user A) user B can be notified with an alert. If corrections can be made, the verification can

start again on the corrected sequence. Upon successful verification on the corrected sequence, user

B can be notified about the errors (mutations) that occurred in the sample she received.

0084 One source of error can be spontaneous mutations in NA molecules. Mutations are a naturally

occurring phenomenon. Whenever there is any mutation within the signed DNA, the receiver will

not know what changes occurred to invalidate the signature. Mutations can be of three types: 1) Point

mutation - This is the case where one base changes to another base e.g. AAGGAA AAGAAA. 2)

Insertion - This is when a subsequence gets added to the original sequence e.g. AAGGAA

AAGAGAA. 3) Deletion - This is when a subsequence gets deleted from the original sequence e.g.

AAGGAA AAGG. In any of the above scenarios, the verification or validation process using the

described NA system can, in some embodiments, result in failure. In the digital realm, if any message

is not verified, we can always resend the message. But the NA sharing domain, this requires that

the sample is transported and/or synthesized again, which incurs a lot of cost. Associated with the

problem of mutation lies the problem of sequencing. When the DNA is processed by an automated

DNA sequencer, the output s not always one hundred percent correct. It is dependent on the depth

of sequencing, and increased sequencing depth means higher costs. Sequencing a small plasmid to

sufficient depth is relatively inexpensive, but for larger sequences, sequencing errors can be an issue.

In order to overcome these limitations, N systems in some embodiments can include usage of error

correction codes along with signatures. The presence of error correction codes can help the receiver

to locate a limited number of errors in a sample that failed validation.

[0085] In information theory and coding theory , error detection and correction are techniques that

enable reliable delivery of digital data over unreliable communication channels. Many

communication channels are subject to channel noise, and thus errors may be introduced during

transmission from the source to a receiver. Error detection techniques allow such errors to be

detected, and error correction is used to reconstruct the original, error-free data. In error correction,

redundant data, or parity data, is added to a message, such that it can be recovered by a receiver even

with a number of errors (up to the capability of the code being used). Error-correcting codes are

frequently used in lower-layer communication, as well as for reliable storage in media such as CDs,

DVDs, and hard disks. It is possible to use the same techniques to provide a reliable reconstruction

of sequences provided a small number of changes have occurred. The application of error correction

codes to NA sequences described here can also be used to ensure the integrity of digital information

stored in NA molecules.

0086 Some embodiments of the disclosed systems and methods use Reed-Solomon codes for error

detection and correction of NA sequences to correct point mutations. One convention of a Reed-

Solomon code (255, 223, 32) is explained here as an example. According to this example convention,

223 is the number of data symbols, 32 is the parity symbols and 255 is the total number of symbols

that can be processed at a time or block size. Using t ns convention the total number of errors that

can be corrected anywhere in the 255 symbols is 32/2 = 16. This convention uses 8-bit symbols.

Since the symbols are 8-bits, the block size is 28 = 255 and with respect to a programming language,

each symbol is treated as a byte. So the Reed-Solomon code of (255, 223, 32) can be simply put as

255 bytes block size, 223 data bytes, and 32 parity bytes. The total number of errors that can be

corrected s 6 bytes. The parameters are generated from Galois field GF (257).

[0087] Applying the Reed-Solomon code of (255, 223, and 32) to NA sample can include certain

modifications. Using the Reed-Solomon code of (255,223,32) to NA sample as is can be cumbersome

in some instances, as treating each nucleotide base as a character or byte, may render an obstacle to

processing the entire sequence in a single block. To circumvent this, one can make blocks of 255

bases. Thus in a block of 255 bases, 223 bases can be the actual sequence and 32 bases can be the

parity sequence for that block. The parity sequences of every block cannot be identified as known

delimiters cannot be used. Considering an example scenario if a user wants to correct 5 bases in a

plasmid sample which contains a total of 800 bases, by convention, 800 bases cannot be processed

at a time and can be processed in four blocks (255 bases in each). The user has no prior knowledge

of the distribution of errors in the four blocks as there is no information regarding where the 5 errors

might be. They may be all in one block or distributed across multiple blocks. Thus assuming the

worst case the goal may be to correct 5 errors in each of the blocks. Therefore the number of parity

bytes for total 800 bases can be 0 . 4 = 40. Whereas, if the user could process the entire 800 sequence

at once, there would only be 5.2 = 10 parity bytes used.

[0088] In one example adaptation used by some embodiments of the NA system described herein, a

user can use 16-bit symbols or shorts. Using shorts the block size can be 2 6 - = 65535. The sequence

characters which were bytes can now be shorts. The parameters are generated using Galois field GF

(65537). This gives the flexibility to process the entire plasmid sequence at once. The user when

signing provides the number of errors that they would like to detect. The original plasmid sequence

and the generated sequence are passed to the Reed-Solomon encoder. The Reed-Solomon encoder

generates 2 k shorts for k error tolerance. The 2k shorts are then converted to sequences. Each parity

short is converted to an 8 base sequence (16/2). Without the error correction incorporation the final

N A signature sequence may have included- < start >< ORCID + Plasmid ID + Signature >< end >

where start and end were 10 base pairs each, ORCID was 32 base pairs, Plasmid ID was 12 base

pairs and Signature was 512 base. With the error correction codes included the parity sequences can

be inserted between the existing NA signature sequence and end sequence. The updated NA signature

sequence can be - < start >< ORCID + Plasmid ID + Signature + Parity >< end > .

[0089] During the correction phase, the parity sequence is retrieved using the start and end sequences

and the length of the other three parts which is already known. The number of errors that can be

corrected can be determined by the length of the parity sequence. Since each parity short is 8 bases,

16 bases are two shorts and two shorts can correct one error, hence the number of errors that can be

corrected are - (parity sequence length) / 16.

[009 Θ Using the error correction code, the verifier can correct some number of errors (limit is set by

signer) in the digital sequence file. Upon correcting the sequence, the verification is invoked again

on the corrected sequence. The position of the errors and the corrected value are conveyed to the

verifier. The verifier can then decide if the errors are in any valuable feature or not. If a valuable

feature has been corrupted, the verifier can ask for a new shipment, else if the error was in a non

valuable area in the plasmid, the verifier can proceed to work with it.

Associating physical NA sample with digital representation

[0091] In some embodiments, the systems and methods described herein can be used to form a secure

association between a physical NA sample and its digital representation. In some instances the digital

representation associated with a NA sample can include a set of descriptive information associated

with the NA sample that may be otherwise unavailable from external sources. For example, when a

user shares a NA sample with another, he manually describes the additional features present in the

sample in its digital representation (genbank file). This file is then shared with the recipient. The

recipient can receive the sample, sequence it and obtain its digital representation. The common

features that are in the sample can be automatically annotated w th the help of a sequence-

manipulation software like Snapgene. In some embodiments, additional features and descriptions

that Snapgene or the like is not be able to interpret can be provided by the sender. An example

Snapgene view of a genbank file of a NA sample is shown in FIG 5 . In order to associate this digital

DNA file which contains the additional descriptions (e.g., Fsat) with the digital DNA fi e that receiver

generates after sequencing the sample (e.g., Fgen), a NA system can associate them together with a

combined signature. An example method 400 for generating an association between a sequence file and a

description file is illustrated FIG. 4 and described below.

0092 At 401 a user A (e.g. the signer) can generate a NA sequence with custom descriptions. The

signer provides the digital NA file containing the appropriate NA sequence and the custom

descriptions. Let the NA sequence be m and the description be m . At 403 the user A generates a

signed NA sequence. For example, the user A extracts the sequence and the descriptions. Only the

NA sequence s used for generating the signed NA sequence as described previously. Let the signed

NA sequence be signed sequence be m Sig.

[0093] At 405 the user A combines the description with the signed NA sequence to generate a

combined message, nicombby calculating the following.

nicomb = H (H m Si,J)\ jH (aes)

[0094] where H is a secure hash function e.g., SHA-256 and j | is a concatenation operation. User A

then generates a signature for the combined message as follows.

[0095] At 407 user A adds the signature to the description information associated with the signed

NA sequence related to the N A sample. For example user A adds & to a genbank file associated with

the Signed N A sequence. User A then shares the sample with a user B at 409.

[0096] At 4 11, user B , the recipient, sequences the NA molecule to obtain sequence data associated

with the signed NA sequence. At 413 user B obtains description associated with the sample (Fsent)

and extracts the smgature of the combined message, the description and the signed NA sequence.

User B gets access to descriptions added by the singer (FgSn) from the sample. For example, user B

extracts σ ', de from Fsent and m Sig from Fgen. User B extracts the ID from m Sig .User B calculates

m as follows.

f c
= (H mSifl H (m))

[0097] At 415 user B validates the signed NA sequence and the combined message nicomb and

evaluates the use and/or authenticity of the NA molecule based on the results of validation. For

example, user B evaluates the following

(o’) H (lO) m · mod n

0098 Usmg the combined message, the recipient user B can validate that the description file was

sent by the authentic sender, the manually added descriptions have not been changed and these

descriptions belong to the same NA sample that was shared. As an example workflow of using the

NA system, user B can upload the digital NA sequence information file generated after sequencing

the sample shared by user A and also the digital NA sequence file that user A shared (which contains

the additional descriptions). The NA system can match the combined message with the descriptions

generated by the user A and user B can be notified about the association between the two files.

[0099] Embodiments disclosed include apparatuses, systems and methods for generating and

tracking molecular digital signatures to ensure authenticity and integrity of NA molecules. The

disclosed systems and methods can be used for any suitable NA sample or portions of sample. While

the described methods include incorporating a signature NA sequence with in a NA sequence of a

NA molecule to form a signed NA sequence, any number of signature sequences that may be

applicable to portions of NA sequences can be incorporated into NA mol ecules. For example, when

different portions of a synthetic NA molecule (e.g., portions like promoters, gene region, etc.) may

be generated by different authors each portion may be authenticated by a separate signature NA

sequence. As another example, portions of NA such as genomic DNA of a genetically modified

organism can be authenticated using signature sequences that apply to that region of the NA

molecule. NA molecules that are used to store information (e.g., used as data storage mediums) can

be authenticated usmg the above described systems a d methods.

Additional Embodiments and Implementations

[] Initially, digital signatures were applied to plasmids. A plasmid is a small DNA

molecule within a cell that is physically separated from the chromosomal DNA and can replicate

independently. They are most commonly found as small circular, double-stranded DNA molecules

in bacteria. In nature, plasmids often carry genes that may benefit the survival of the organism, for

example, antibiotic resistance. While chromosomes are relatively large and contain all the essential

genetic information for living under normal conditions, plasmids usually are very small and contain

only additional genes that may be useful to the organism under certain situations or particular

conditions. Artificial plasmids can be used as vectors in molecular cloning, serving to drive the

replication of recombinant DNA sequences within host organisms. Additionally, plasmids can be

isolated in large quantities, they can be cut and spliced with additional DNA, they can be added to

microorganisms, such as bacteria, where they will replicate along with the bacteria’s ow DNA, and

plasmids can be further isolated to extract the many copies, potentially in the billions, of the DNA

inserted into the plasmid prior to replication. Plasmids are generally limited to sizes of 2.5-20

kilobases (each letter of the genetic code A-C-G-T is 1 base).

00101 The sequences that make up a plasmid can be documented electronically. Automated

DNA sequencers can be used to identify the pattern of bases in a physical DNA sample and document

the sequence in a digital file called a fasta file (.fasta). The sequences can then be converted to

annotated files such as .dna, or .gb files that include information about what genetic features are

included in the plasmid. Each of these files has a specific format which denotes the sequences

together with other pieces of information including the location of features such as coding sequences

(CDS), origin of replication, etc. Sequence-manipulation software such as SnapGene and/or the like

can be used to convert sequences into maps of plasmid features. Features can be added manually or

identified automatically by searching within the SnapGene database for common features. Not all of

the sequences contain features. There are substrings or subsequences that do not have any known

biological function, and other DNA sequences can be added in these areas with reasonable confidence

that the added sequences will not disrupt the activity of any existing features.

[001 2] Although the sequences that make up a plasmid can be documented electronically, the

electronic sequence file associated with a physical DNA sample is typically not shared along with

the sample it represents. For example, in many manuscripts, plasmids are generally described one of

four ways. Most often, the main features of the plasmid relevant to the publication are broadly

explained (i.e., "A plasmid containing gene X was used..."). Sometimes there is a more thorough

description of how the plasmid was constructed included in the methods section (i.e., "Gene X was

inserted into a commercial plasmid between Origin Y and antibiotic resistance gene Z"). Full plasmid

maps are very rarely included in published manuscripts, and inclusion of the full sequence - which

would be needed to validate the plasmid - is even more rare. Additionally, it is not uncommon for a

plasmid to be shared multiple times between many labs until the origin of the plasmid is not clear.

Even within a lab, it is often difficult to track down the digital sequence file associated with a plasmid

if the person who constructed t is no longer an active member. The ability to validate a physical

DNA sample without having access to the digital sequence file associated with it thus provides an

important and valuable tool. In some embodiments of the system, digital signatures are used as a

strategy for encoding the ability to validate a physical DNA sample within the DNA itself. Once the

sequences are a digital file, digital signatures can be applied on the extracted sequence (message).

The signature bits are then converted to ACGT sequence as A-00, C-01, G-10, and T-l 1 and added

to the original sequence. Once the signed sequence is obtained by adding the signature to the original

sequence, it can, in some embodiments, be outsourced to a gene synthesis company that will

synthesize the signed DNA and return or send it. In one embodiment, the signature alone can be

synthesized and inserted into the original molecule. In another embodiment, the entire plasmid can

be synthesized including the signature to eliminate the need for any downstream assembly.

00103 An automated DNA sequencer can provide a digital representation of the sequences

present within the physical sample. The output of a DNA sequencer can be a fasta (. f a s ta) file, as

discussed above. This file contains only the raw sequences the sample. A genbank file (. gb

contains the same raw sequences along with annotations. Sequence manipulation software such as

SnapGene can be used to convert a fasta file to a genbank file and vice versa. When a fasta file s

converted to a genbank file, the software searches ts database for common annotations. The

generated annotations may not be complete or correct every' time. Hence, the user has the flexibility

to manually add additional annotations that may be required to describe the sample sequence. These

manually added annotations are only availableto the creator. When the same sample is sent to others,

they will sequence it and obtain the fasta file but the genbank file will contain only those annotations

that can be automatically generated. In order for the receiver to extract all the feature information for

a given plasmid, the creator would need to share the genbank file containing the manually added

annotations. In one embodiment of the disclosure, the genbank file is generated from the fasta file,

eliminating the failure of genbank files to include manually added annotations.

[00104] Plasmid DNA is circular and double-stranded. The sequences represented n a fasta

file are the linear representation of a circular structure. As a consequence, there is no single set

representation of the sequences n a sample. Following sequencing, any cyclic permutation of the

sequence is possible. For example, in a fasta file if the sequence is - “ACGGTAA”, when the same

sample s sequenced again, the fasta file might read as -“TAAACGG”.

[00105] Furthermore, since DNA is composed of two complimentary, anti-parallel strands, a

sequencer can read a sample in both the “sense” or “antisense” direction. The sequence may be

represented in a fasta file in either direction. When the sample is sequenced again, the output might

be in the other direction, or what is known as the reverse complement. The reverse complement of

“A” is “T” and vice-versa, and the reverse complement of “C” is “G” and vice-versa. The DNA

molecule has polarity' with one end represented as 5 and the other represented as 3 . One strand

adheres to its reverse compliment in anti-parallel fashion. So if the sequence is - “ 5 -ACGGTAA- 3

”, the reverse complement is “ 3 -TGCCATT- 5 The fasta file will represent one strand of the DNA

sequence in the 5 to 3 direction; so the fasta file could read as “ACGGTAA” or “TTACCGT”. By

combining these two properties, for a DNA that contains N number of bases, the correct

representation of the same sample is 2N :N cyclic permutations plus each reverse complement.

[00106] In the digital realm, application of digital signatures nowadays s trivial. Signature

embedding in physical DNA faces additional challenges, which the system resolves. Below,

challenges to signature embedding are described and the ways in which the system resolves each

challenge.

[00107] For any digital asset, e.g. a digital document, the length of the signature does not affect

the asset that is being signed. When applying digital signatures to DNA, length is controlled,

depending on the implementation, as a very long signature sequence could impact the properties of

the DNA molecule. Additionally, most embodiments tend not to utilize weak security parameters to

shorten the signature length as this might keep the properties of the molecule intact but instead

compromise the security ofthe signature itself. For a digital document, a signature of 384 bytes (say)

is trivial. But the same 384 bytes translates to 1536 bases(384 * 8 / 2) a DNA. If a DNA sample

originally contains say 2000 bases (not unusual for a plasmid), the addition of a 1536 nucleotide

signature would nearly double the size of the DNA molecule. As a consequence, some embodiments

do not able to apply identity-based signatures that use bilinear pairings, especially where signature

length can present problems (e.g., changes the properties of the plasmid). For some

implementations, a modification of Shamir’s IBS scheme, as detailed below.

Signature Identification

[00108] In a digitally signed document, the original message and the signature can be easily

identified and separated because there are delimiters that separate them. In the DNA domain, there

exists another problem of embedding the signature inside the original molecule. Because the site of

insertion will vary depending on the architecture of the plasmid, delimiters are needed to identify

where the signature starts and ends. In one embodiment, the system uses an algorithm that identifies

subsequences. Any sub-sequence of 10 base pairs (substring of length) that is not present in the

original sequence can be used as a start and end delimiter which will contain the signature. During

verification, all subsequences of 0 base pairs will be identified and only those subsequences that

occur twice within the entire sequence are the delimiters.

[00109] Although the above technique can be useful, n another embodiment, the system allows the

user input their own delimiters of 0 base pairs. This approach can be beneficial as it lets the biologist

design delimiters that are relevant to their specific project. For instance, in one embodiment the

delimiters can be designed in such a way as to simplify synthesis/assembly of the DNA. The system

checks if the sequences are permitted i.e. the 10 base pair subsequence does not already exist

elsewhere the plasmid. In one embodiment, the sequences used by the system as start and end

delimiters are ACGCTTCGCA and GTATCCTATGrespectively. These sequences are relatively easy

to identify visually, they are unlikely to develop secondary structures and they contain a balanced

number of A’sC’s G’s and T’s.

Error tolerance

[00110] When any digitally signed message is shared and verification fails, the sender just

resends the message again. But in the domain of DNA sharing, which includes shipping of samples,

this implies resending the sample (sometimes even batches of samples). This can incur significant

cost. The presence of a signature inside the molecule can ensure that any change in the signed DNA

will result in failed verification. However, DNA molecules are prone to naturally occurring

mutations. Hence after a failed verification, it can be useful to check the location of mutation which

caused the verification to fail. If the mutation is in an important feature, the receiver can reorder the

sample. If the mutation is in any relatively unimportant part of the DNA, the receiver can choose to

proceed to work with it. In order to achieve this error tolerance, in one embodiment, the system

employs error detection/correction codes, such as, but not limited to, modified Reed-Solomon Codes.

Some embodiments assume that the start and end tags described above do not mutate. Without the

start and end tags, the location of the signature cannot be identified. Additional details about error

detection/correction codes are described in detail below.

Association between physical DNA molecule and corresponding digital representation

[00111] A variety of methods can be used to achieve/provide an association between the

physical DNA sample and its digital representation. One method s to embed a dual signature in the

digital representation. This dual signature combines the signed sequence, the description and the

identity of the signer and generates a signature on this combined message. This signature can be

placed in the digital representation of the DNA (such as the genbank file) which can be shared with the

receiver along with the physical signed DNA sample. The receiver is able to associate the received

physical DNA sample and this file easily due to the presence of the dual signature. This ensures that

the explanation of the sequences and the sequences in the plasmid are correct and related. Any change

in the descriptions without changing the molecule will invalidate this signature. Also, any change in

the molecule without updating the descriptions will invalidate the signature. In this approach, the

signer will share two items with the receiver: the signed physical DNA and the associated digital file.

00112 Another method is to embed the features and descriptions of the physical DNA in the

physical DNA itself. In this approach, the signer does not need to send the digital fi e additionally

since the descriptions are already embedded in the DNA sequence. The receiver when sequencing

the received DNA sample can reconstruct the features and descriptions related to the sample. The

descriptions are extracted and converted into ACGT sequence, the plasmid DNA sequence is already

present. The signature is generated from the combination of the description sequence and plasmid

sequence. This ensures that the description sequence and the plasmid sequence are correct and

unaltered. The signature and description sequence are then embedded in the original DNA sequence.

In one embodiment, the system also uses error correction codes in conjunction to provide some error

tolerance from mutations. The details of this procedure are provided below'.

Example UNA Signature scheme

[00113] In some embodiments, the system can include method(s) utilizing modifications of

identity-based signature schemes (e.g , as proposed by Shamir), configured with an improved form

suited for the DNA sharing domain. In one embodiment, the unique identifier is the ORCED(Open

Researcher and Contributor ID). Shamir’s IBS is based on the R S cryptosystem and its security

depends on the hardness of integer factorization in the RSA problem.

[001 14] Setup: For a given security parameter k, proceed with the following steps

I Setup: For gives ss it proceed with the i isg steps -

| 2, Calculate the modulus ~ p ~q

| I . Calculate the ti < {? ~ (p~ (. e aste public key n , j

that s relatively prime to . \

- Calculate the s er private key as ~ m d p n ie order to the a eat r atioa j

I . Publish the public parameters <e, n > sa the keep the private key

[00115] In one embodiment, the system improves and modifies an existing Shamir IBS scheme for DNA

sharing by removing the random. The random prevents two of the same messages from having the

same signatures. Using the original scheme w th the random, the signature length() will be 2048

bits or 1024 base pairs for the security parameter^:) of 1024 bits. Removing the random makes the

signature length 1024 bits or 512 base pairs for the same security parameter^) of 1024 bits. In the

realm of DNA sharing, users will be primarily shipping physical samples, not sending digital

information over the internet. A signer will not be sharing the same signed DNA molecule with a

receiver more than once. In one embodiment, the system can remove the random to achieve a shorter

signature length. FIG. 7 depicts a map of the plasmid features of a digitally signed DNA file.

[00116] According to some embodiments, an application software is provided that allows users to

generate signatures from a genbank file and also validate a signature on a genbank file. The details

of the signature generation and verification procedure are detailed below:

[00117] In one embodiment, the system DNA signature scheme is an improved version of Shamir’s IBS scheme.

To ensure the security of the system scheme with improvements, it is demonstrated to achieve the same security

as the original IBS scheme:

IBS Scheme Setup:

Same as above.

Key Extraction: Same as above.

Signature Generation: For generating the signature for a message m e {0, I :

1. Choose r E R Zn*.

2 . Compute = r mod n .

3 . Compute e H R \m) mod n .

4 . Compute t = SID r mod n .

5 . Output signature σ = (R, t)

Signature Verification: To verify a signature σ for a message m and user identity

ID check if the following equation holds:

H(R\ \m)

f i f (I) · R modn

0118 The system improved scheme is able to provide the same level of security guaranteed as the original

scheme. The signature in the original scheme is a tuple - (R, t). If the modulus chosen is 1024 bits, the signature

output will be 2048 bits which is 1024 base pairs. Based on the proposed threat model, Shamir’s IBS scheme

is secure if no polynomial-time adversary can forge the signature on a given message. It is readily

shown that this is equivalent to the difficulty' of breaking the RSA public-key cryp- tography. To

forge a signature, the adversary needs to find from the equation

t = SID mod n . Let, r w . Therefore, s = t w .

In order to find any inverse m odulo n, one has to know φ η), where φ(s the Euler totient function.

Calculating φ(η) from n is equivalent to factoring n into two distinct prunes - a known hard problem.

Next, to calculate w , the random r has to be calculated. If r can be found, then r can be found as

c is public.

c = H R \ |m) mod n .

R s first part of the signature and m is the message which bears the signature. To find the random r ,

one has to know' φ ί) or the secret key d, since R = r , r = R d

[0 19] In one embodiment, the system has improved the original scheme by removing the random R .

The signature becomes o = sH m Therefore, D = , where y = H(m) To find y , φ η) must

be known which is equivalent to the RSA problem. Therefore, no polynomial-time adversary' can

forge a immature in the simplified scheme.

[00120] In one embodiment, the system will generate the same signature for the same message .

Replay attacks on signatures is of concern in digital message encryption. In DNA sharing, the threat

of replay attacks is negligible since replaying the signed message implies sending the actual signed

DNA to the receiver again. As this is not a digital message which can be generated by packet crafting

or similar techniques, the attacker would have to actually synthesize the DNA molecule and send it

to the receiver. On the other hand, removing the random will make the signature length 1024 bits or

512 base pairs if the modulus(n) is 024 bits. Although the same DNA plasmid, originating from the

same source, will have the same signature , the practical risk s minimal and is outweighed by the

benefit of minimizing the signature length so as to decrease the likelihood that the functionality or

stability of the plasmid s disrupted.

]Ό0121 [In some embodiments, other identity based signature schemes which generate shorter

signatures may be utilized, for example, due to signature sequences having to be synthesized or

ordered from gene synthesis companies, which can be a per-base-pair cost.

Example Sign-Share- Validate Workflow

[00122] n one embodiment, the system wall facilitate coaction among three entities: 1) The signer

that develops the DNA signature and signs a sequence; 2) The verifier that uses the signature to

verify whether the received DNA sequence was sent by the appropriate sender and was unchanged

after signing; and, 3) A Central Authority that provides the signer with a token that is associated with

their identity.

0123 In one embodiment, the system consists of three discrete stepsm the sign-share- validate

workflow, summarized in FIG. 8A. In one embodiment the system is employed in the following

way: Alice, a signer is developing a new plasmid. She starts in a sequence editor application by

combining sequences from different sources. When Alice (the signer) has finalized the sequence of

the plasmid to assemble in the lab, Alice can use the signature generating service hosted in a server

to create a DNA signature sequence to add to her design. This DNA sequence is the digital signature.

In this embodiment, it is generated using the signature algorithm described above, Alice, the signer,

provides the digital DNA file to sign, her generated unique identifier (ORCID), a six-digit plasmid

ID, and a start and end sequence that will contain the signature sequence. The digital signature is

inserted in the plasmid sequence between two conserved sequences used to identify the signature

from the rest of the plasmid sequence. Alice can then assemble the signed plasmid by combining

DNA fragments from different sources. Alice can order the DNA fragment corresponding to the

signature from a gene synthesis company. Alice describes her plasmid in a paper and refers to it

using the six-digit number ID which she used to identify the plasmid in the signature. Alice did not

include the entire plasmid sequence in the online supplement of the article. Alice (signer) sends the

plasmids to a few collaborators.

[00124] Ellen, a receiver, is interested in using Alice’s plasmid. Ellen (receiver) can receive

the plasmid from other recipients such that the origin of the plasmid is not known (e.g., via another

graduate student who got it from his advisor a few years ago). Ellen (receiver) has limited

confidence in the plasmid because its origin and transfer sequence cannot be verified by

documentation. If Ellen (receiver) can determine the sample must be sequenced to verify its origin.

In one embodiment, the assembled sequence of the plasmid is uploaded to the server (e.g., by Ellen)

to verify the plasmid. The signature validation service m the server identifies the signature inserted

between the two signature tags. It will identify a block of 32 bp. to the right of the signature start

signal to extract the plasmid developer RC D Using the ORCID value as identity, the server

decrypts the 512 bp signature block. Then validation service can verify the signature (e.g., as

described above) If the two values match, then Ellen (receiver) will know that the plasmid was

signed by Alice (the signer) and that the physical sequence of this plasmid corresponds exactly to

Alice’s design. In such an embodiment, even if Alice no longer had access to the plasmid sequence

files, because she was careful enough to sign her plasmid, Ellen can be assured that the plasmid she

intends to use s the one described in Alice’s publication.

Error Detection / Correction Codes

00125 Limitations of using signed DNA: The presence of a digital signature within a DNA

can guarantee that the original sequence, identity sequence and the signature sequence itself has not

been tampered with since the signer sent the DNA sample. If any of these change, intentionally or

unintentionally, the receiver will not be able to verify the DNA sequence. The sequences inside a

DNA can be prone to mutation. Mutation s a naturally occurring phenomenon. In some

implementations, whenever there is any mutation within the signed DNA, the receiver may not be

able to verify even an untampered with sample.

[00126] Mutations can be of three types;) Poi t mutation - Where one base changes to

another base, e.g., AAGGAA -> AAGAAA; 2) Addition - When a subsequence gets added to the

original sequence, e.g., AAGGAA ~> AAGAGAA; 3) Deletion - When a subsequence gets deleted

from the original sequence, e.g., AAGGAA -> AAGG. In any of the above scenarios, the

verification process will result failure. Verification failures of digital messages can be corrected

by the message being resent. Verification failures of DNA cannot as easily be corrected, as the

sample would need to be transported again.. Along with the problem of mutation lies the problem

of sequencing. When the DNA is processed by an automated DNA sequencer, the output is not

always one hundred percent correct. It can be dependent on the depth of sequencing.

00127] In one embodiment, the system overcomes these limitations by using error detection

/ error correction codes along with signatures. The presence of error correction codes can help the

receiver to locate and potentially correct some errors in the sequence. In information theory and

coding th eory , error detection and correction are techniques that enable reliable delivery of digital

data over unreliable communication channels. Many communication channels are subject to

channel noise, and thus errors may be introduced during transmission from the source to a

receiver. Error detection techniques allow such errors to be detected, and error correction is used

to reconstruct the original, error-free data. In error correction, redundant data, or parity data, is

added to a message, such that it can be recovered by a receiver even with multiple errors (within the

limits of the error code correction algorithm). Error-correcting codes are frequently used in lower-

layer communication, as well as for reliable storage in media such as CDs, DVDs, and hard disks.

In one embodiment, the system modifies and uniquely applies these techniques to DNA sharing,

providing a reliable reconstruction of sequences within the parameters of the algorithmic ability

to reconstruct. In this embodiment, the application of error correction/detection codes to DNA can

also be used to ensure the integrity of digital information stored in DNA molecules.

[8] In one embodiment, the system employs Reed-Solomon codes for error detection and

correction of DNA sequences, including for point mutations. A convention of a Reed-Solomon

code is (255,223,32) which 223 is the number of data symbols, 32 s the parity symbols and 255

s the total number of symbols that can be processed at a time or block size. Using t n s convention

the total number of errors that can be corrected anywhere in the 255 symbols is 32/2 = 16. This

convention uses 8-bit symbols. Since the symbols are 8-bits, the block size is 2 1 255 and

with respect to a programming language, each symbol is treated as a byte. So the Reed-Solomon

code of (255,223,32) can be put as 255 bytes block size, 223 data bytes, and 32 parity bytes. The

total number of errors that can be corrected is 16 bytes. The parameters can be generated from

Galois field GF(257).

[00129] A plasmid contains 2500 to 20,000 base pairs. Corresponding each base with a byte

would result in the inability to process the sequence in a single block. In one embodiment,

the system creates blocks of 255 bases. Tins implies that in a block of 255 bases, 223 bases are the

actual sequence and 32 bases are the parity sequence for that block. As outlined above, while digital

messages can use delimiters, DNA cannot. Therefore, the parity sequences of every block cannot

be identified. If a user wants to correct 5 bases in a plasmid which contains a total of 800 bases,

these 800 bases cannot be processed at one time and will be processed in four blocks (255 bases in

each). The distribution of errors in the four blocks is uncertain i.e. there is no guarantee where the

5 errors might be. It can be all in one block or other possible ways but certainly not uniform (1.25

in each block). So assuming the worst case, we need to correct 5 errors in each of the blocks.

Therefore the number of parity bytes for total 800 bases is now 10 4 = 40. If the entire 800

sequence can be processed at once, we would have only 5 2 = 10 parity bytes.

0013 In one embodiment, the system employs 16-bit symbols or shorts. Now the block

size is 216 — 1 = 65535. The sequence characters which were bytes are now shorts. The param

eters are generated using Galois field GF(65537). The entire plasmid sequence may be processed

. The signer provides the number of errors that they would like to correct. The original plasmid

sequence and the generated sequence are passed to the Reed-Solomon encoder. The Reed-

Solomon encoder generates 2 k shorts for k error tol- erance. The 2k shorts are then converted

to sequences. Each parity short is converted to an 8 base sequence (16/2). Previously the final

signature sequence consisted of - < start >< ORCID + Plasmid ID + Signature >< end >

where start and end were 10 base pairs each, ORCID was 32 base pairs, Plasmid ID was 2 base

pairs and Signature was 512 base pairs. Now the parity sequences are inserted between the

signature sequence and end sequence. Updated sig- nature sequence - < start >< ORCID +

Plasmid_ID +Signature + Parity >< end >. During the correction phase, the parity sequence

is retrieved using the start and end sequences and the length of other three parts which is already

known. The number of errors that can becorrected can be determined by the length of the parity

sequence. Since each parity short is 8 bases, 16 bases are two shorts and two shorts can correct

one error, hence the number of errors that can be corrected are - (parity sequence length) / 16.

[00131] Using the error correction code, the verifier can correct some number of errors (limit

s set by signer). Upon correcting the sequence, the verification is invoked again on the corrected

sequence. The position of the errors and the corrected value are conveyed to the verifier. In one

embodiment, the sign-share-verify workflow will be updated accordingly as follows. The receiver

will upload the digital DNA file to the server which is obtained after sequencing the plasmid shared

by the signer. The validation sendee will try to validate the sequence. If this validation results in

failure, the error correction part will be invoked will try to correct the sequence depending on how

many errors the signer chose to be tolerated during signing. If corrections cannot be made the receiver

will be notified with an alert. If corrections can be made, the verification will start again on the

corrected sequence. Upon successful verification on the corrected sequence, the receiver will be

notified about the errors (mutations) that occurred in the received sample.

Associating the DNA sample with its digital representation

[2] The sequences within a physical DNA molecule can be obtained digitally using an

automated DNA sequencer. The sequencer outputs a digital file - .fasta which contains the ACGT

sequence of the sample. The fasta file can be converted into annotated files like .dna , .gb etc which

contains the genetic features along with its descriptions. Gene-manipulating software like Snapgene

aid in converting these subsequences into maps of plasmid features. Users can add feature

descriptions manually or search within the Snapgene database for any matching features. When the

physical DNA sample is shared, the receiver will also sequence the sample and obtain its sequence.

Now the receiver will be able to view only the features that Snapgene can automatically interpret

from its database. The extra features that the sender manually annotated will not be available to the

receiver. Hence the sender also needs to share the annotated file with the receiver such that the

additional annotations are available to the receiver. Hence, it is essential to t e the digital file with

the physical sample in some way such that the receiver can be certain that the annotations belong

to the particular physical sample.

33 In one embodiment, the system enables the sender to share the digital genbank file

along with the physical DNA sample. In order to associate the digital DNA file which contains the

additional descriptions(let us call this F
sent

) with the digital DNA file that receiver generates after

sequencing the sample(iet us call this F
g

), the system associates them together with a combined

signature. The association between the digital file and the physical sample is created in the foll owing

way:

Create association

. Signer provides the digital DNA file containing the appropriate sequence and descriptions.

Extract the sequence and the descriptions. Only the sequence is used for signature creation

as described above Let this sequence be e and the descriptions henidesc·

2 Generate signature on ms q 3s before and place this within the original sequence. Let this

final signed sequence be / .

3 . Combine rf e and m
S!g

by calculating thefoilowing:

where H is a secure hash function e.g SHA-256 and j is concatenation operation.

4 . Create signature for this m∞ b using the same procedure

5 . Add o to the genbank file with a keyword "ASSOC".

6 . Share the file with the recipient.

Validate association

1. Recipient obtains e nd generates e from the received sample. The tool takes both

files asinput.

2 . Extract , es from Fsen and from Fgen, The I D is extracted from .

3 . Calculate m
comt>

as:

4 . Check if the following equation holds:

(σ - H ID)m∞ mod n

[00134] Using this combined signature, the recipient can validate that the description file was

sent by the authentic sender, the manually added descriptions have not been changed and these

descriptions belong to the same DNA sample that was shared. In this embodiment, the sign-share-

verify workflow- wall work as follows. Ellen (the receiver) can upload the digital DNA file she

generated after sequencing the sample shared by Alice (the signer) and also the digital DNA file

that Alice shared (which contains the additional descriptions). The server wall match the combined

signature and Ellen will be notified about the association between the two files.

[35] potential limitation of this particular method is that any user who wants to share a

DNA sample must also share the appropriate digital file. But often there are many researchers who

are working together on a sample and each of them makes changes to the physical sample

independently. These subtle changes are not always documented in the digital file. Hence the

digital fi e might not be a correct representative of the physical sample. The advantage is that the

physical sample is unaltered and hence its properties will remain intact.

00136 In some embodiments, the system can be configured such that the sender needs to

share only the physical DNA sample. The annotations are embedded within the physical sample

itself. The receiver can sequence the physical DNA as before and from the fasta file, the genbank

file(al! descriptions and sequence) can be generated. One possible drawback is that embedding

additional sequences within the original plasmid will increase its size and will increase a chance

that it might not retain all of its original properties, and retaining the sample’s original properties

can be a priority. In some embodiments, the methods include and/or are integrated w th a signature

scheme to produce a physical DNA sample which contains proof of origin, sequence integrity

validation, and/or which contains the description about itself within its sequence. In some such

embodiments, the flow is modified such that given a digital genbank file, the descriptions are

extracted, compressed using any of a variety' of compression techniques, converted to ACGT

sequence and added to the existing sequence of the DNA. The workflow of tins method is as

follows:

7 User provides the digital DNA file containing the appropriate sequence and descriptions.

The user also provides three conserved tag sequences. These tag sequences are not present

within the original plasmid sequence i.e. they are unique. The user then provides the location

where to put the description sequence and also the number of errors/mutations that will be

tolerated.

8 . The sequence and the descriptions are extracted from the provided digital(genbank) file. Only

the sequence is used for signature creation as described above. The descriptions are utilized here,

the descriptions are compressed using a compression algorithm and are converted to ACGT

sequence. This description sequence is placed between tag#l and tag#2.

9 . The original plasmid sequence is then combined w th this description sequence by placing it

within the location specified by the user. We cannot place this any arbitrary location as there

might be features existing there and that wil change the properties of the plas- mid. If the user

chooses to insert in the beginning of the original sequence the output s < tag#1 > <

descriptions >< tag#2 > < original > . If the user chooses to insert in the end of the original

sequence, the output is - < original > < tag#1 > < descriptions >< tag#2 > . Otherwise, if the

user chooses a location within the original sequence, the output is originalpartl >< tag#1

>< descriptions > < tag#2 >< originalpartl > .

10. A checksum is generated on this intermediate sequence. Any existing checksum generating

algorithm can be used. In this embodiment, the system uses CRC32 checksum [20]., in which

the checksum length is always 32 bits or 16 base pairs. This checksum sequence is placed within

tag#2 and tag#3 by appending the checksum and tag#3 after tag#2. The error correction code

is then generated from this sequence (i.e. the original, description and checksum sequence) and

appended after this checksum, also within tag#2 and tag#3. This subsequence - < tag#} ><

descriptions >< tag#2 > < CHECKSUM > < ECC > < tag#3 > is known as “annotation

sequence” . Similar to the signature sequence, error correction code (ECC) is used to tolerate

some amount of mutation that can occur within the DNA. Without this error correction code,

mutations will lead to corrupted original sequence and description sequence which will result

in an incorrect digital file at the receiver’s end.

The final combined sequence output is - < originalpartl >< tag# > < descriptions >< tag#2

>< CHECKSUM > < ECC >< tag#3 >< originalpart2 > . Depending ontheuser’schoice

of insertion, either < originalpartl >or< originaipart2> canbe empty.

The final combined sequence, i.e. the original and the annotation sequence is written to a text

file or .fasta file. This file contains only ACGT sequences. FIG 8B depicts an example .fasta

file.

The combined sequence is then outsourced to a gene synthesis company who will create a DNA

fragment containing the combined sequence which can be shared. Otherwise, only the

annotation sequence can be outsourced and the DNA fragment containing the annotation

sequence will be created. The user then combines the original plasmid sequence and the

annotati on sequence in the lab and then it is ready to be shared.

The receiver upon receiving the shared plasmid, sequences t using an automated DNA

sequencer. The generated .fasta file will have the combined sequence. The receiver then pro

vides the three tag sequences that the sender provides. Using this information, the digital DNA

file is created along with the descriptions directly from this fasta file. The receiver does not

need to use any gene manipulation tools to interpret the features and descriptions.

The description sequence is present within tag#l and tag#2, the checksum and error

correction sequence is present within tag#2 and tag#3. First, the checksum, error correction,

descriptions and original sequence are extracted and isolated. Then the original sequence and

description sequence are combined and a CRC32 checksum is generated. It is then validated

against the extracted checksum if these two sequences are equal, this implies the sequences

have not been altered i.e. no mutations occurred. In this case, the genbank file is generated

after this step. If this checksum validation fails, the error correction sequence comes into

action and tries to correct any mutations that may have occurred, provided the number of

error is within the tolerance limit set by the sender if the number of errors are within the

tolerance limit, the genbank file is generated with the corrected information and the user is

provided with the position and content of the error if the number of errors are more than the

tolerance limit, the user isnot if ied

00137 In this implementation, the assumption is tag#2 and tag#3 is not corrupt or mutated

as the corruption of any or both of these tags will result inability to recover the error correction

sequence. Consequently, due to loss of tag#2, the description sequence end cannot be located and

hence the digital genbank file cannot be reconstructed. In a further embodiment, to address this

issue, the system employs the use of string similarity metrics to identify where the mutated tags

might be located. There are various techniques which address string similarity', including by way

of non-limiting example, Jaccard Similarity, Dice’s Coefficient, Levenshtein distance, Jaro-

in er edit distance, etc.

Example Signature generation and verification procedure

[00138] In some embodiments, the system allows a user to generate and validate signatures.

The parameters (i.e., e, d, N) are fixed in the prototype where the modulus N is 1024 bits.

[00139] Signature generation: The user provides the following inputs for signature

generation: The genbank (gb file; ORCID - a 16 digit number in xxxx-xxxx-xxxx-xxxx format;

Plasmid ID - a 6 digit number; Location of signature placement; Number of errors to be tolerated.

[00140] All the necessary input checks e.g. the file has extension gb, ORCID format s

correct, ORCID is integers etc. are done. The signature generation procedure begins by splitting

the genbank file by the keyword ORIGIN . Refer to figure 2.2. After the keyword ORIGIN is the

actual sequence and before it are the descriptions. The sequence is the message to sign and the

descriptions are kept for verifying if the user provided location is colliding with an existing feature.

Let us assume the sequence to sign is SEQUENCE and there exists a feature from location to 3

which corresponds to SEQ Next, he location of signature placement is checked. If the location

collides with a feature, the user is alerted to change the location. For our example, if the user had

provided 2, the tool will alert the user that there is already a feature SEQ there and ask for a new

location. If the user chooses 4 which is after the letter Q, t will be allowed. Next, the OCRID and

Plasmid ID are converted to ACGT sequence by the following conversion method - [0 - AC, -

AG, 2 - AT, 3 - CA, 4 - CG, 5 - CT, 6 - GA, 7 - GC, 8 - GT, 9 - TA . The reason for choosing t ns

conversion type is that if any ORCID or plasmid ID has repetitions e.g 0000-0001-4578-9987,

the converted sequence will not have a long run of a single base.

41 If one used 0 - AA, the example ORCID would have AAAAAAAAAAAAAA in the

beginning, and long runs of a single nucleotide can result in errors during sequencing. In the

chosen conversion method the ORCID would start with ACACACACACACAC. Let the

converted ORCID and Plasmid ID sequence be ORCID and P D. The signature is generated

according to the scheme described above. The signature bits are then converted to ACGT

sequence.

[00142] Let signature sequence be SIGN. Also, recall that the start and end tag where this

signature s to be placed s predefined. Let this start tag be START and end tag be END. The signature

sequence s concatenated with ORCID and plasmid ID and then placed between the start and end -

START ORCID PID SIGN END. This entire string is placed at the position specified by the user.

As we chose 4 in our example, the total sequence looks like - SEQ START ORCID PID SIGN END

UENCE. Now this string is passed into the error correction encoder. According to the number of

tolerable errors specified by the user, the parity bits are generated. The parity bits increase with the

number of errors to be tolerated. These parity bits are then converted to ACGT sequence. Let this be

ECC. When the encoder output is generated, the string looks like - SEQ START ORCID PID SIGN

END UENCE ECC. Next, the ECC is separated and this is placed before the signature and end tag.

So the final output string is - SEQ START ORCID PID SIGN ECC END UENCE . Note that the

error correction code is generated after generating the signature sequence and combining with

original sequence. Hence any error m that string can be corrected provided it is within the tolerable

limit. For our example, if we put 2 as our error tolerance limit, then any 2 errors within the string

SEQ START ORCID PID SIGN END UENCE ECC can be tolerated. For example if there is error

in SEQ and error SIGN, or 2 errors in SIGN, or error in SIGN and error in ECC, it can be

corrected. But if there are more than two errors it cannot be tolerated. The final output string - SEQ

START ORCID PID SIGN ECC END UENCE is written into another genbank file. The descriptions

are updated i.e. the locations of the signature, start, end, ecc are added and if there are features after

the signature placement locations they are updated. The output genbank file is shared with the

recipient.

00143 Signature verification: The user provides the following inputs for signature

verification: 1. The shared genbank (.gb) file; and 2 . The fasta . fasta) file winch the receiver

obtained after sequencing the shared, signed DNA.

[00144] The sequence in the fasta file might not be the in the same order as the receiver sent

it. That is, after sequencing the shared DNA, the fasta file may look like - ORCID P D S GN ECC

END UENCE SEQ START which is a cyclic permutation of the final sequence the receiver obtained

after signature generation. The genbank file contains the correct order. The tool aligns the genbank

sequence and the fasta sequence. If there is any mutation the shared DNA the fasta file will have

some errors but most of it will be aligned correctly. If there are no mutations the file will be aligned.

SEQ START O D PID SIGN ECC END UENCE. The tool looks for start and end tags which

are predefined. After obtaining the start tag, 32 bases are counted, this is the ORCID sequence, next

12 bases are counted, this is the plasmid ID sequence, then 512 bases are counted, this is the signature

sequence. Next the substring after this signature sequence to the end tag is retrieved, this is the error

correction sequence. Finally, the portion before start tag and the portion after end tag is concatenated

to reconstruct the message for signature verification. So as of now SEQUENCE, START, ORCID,

PID, SIGN, ECC and END have been retrieved. The SEQUENCE, ORCID and SIGN is used for

signature verification according to the scheme described above If there is no mutation, the signature

verification will succeed and the user is alerted for successful verification. If there is any mutation

,the verification will fail. In this case the extracted parts are used to construct the string - SEQ START

ORCID PID SIGN END UENCE ECC. This was the output of the error correction encoder. If the

error is within the tolerable limit, it will be corrected. If the error is more than the tolerable limit, the

user is alerted that the verification and the error correction both failed. If the error is corrected, the

counting method is again used to retrieve the corrected parts - SEQUENCE, START, ORCID, PID,

SIGN, ECC and END. The verification is invoked on the corrected SEQUENCE, ORCID and

SIGN. If the verification succeeds the second time the user is notified about success. Also, the

corrected parts and the previously extracted parts (before first verification) are compared to display

where the error was. If the verification fails on the corrected parts, the user is notified about failure

after correction and the corrected errors are displayed.

[00145] Although the corrected errors are displayed to the user, the actual content of the DNA

is not changed, only the fasta representation is changed. The physical DNA still contains the error

i.e. if the sample is sequenced again, the freshly obtained fasta file will again be erroneous. In this

embodiment, the error detection is more apt. The user gets the correction information, and if the

errors are not in any important part of the DNA, the user can choose to work with the shared sample.

If the errors are in an important part of the DNA, the sample can be re-ordered from the sender.

Example Validation and Testing

00146 To validate the ability to verify digital signatures from sequencing data and ensure

that digital signatures do not interfere with the function of plasmids, a senes of experiments were

conducted in three different phases.

[00147] For Phase I and II, two plasmids w¾re designed for assembly by the Gibson cloning

method. One of these was the commonly used commercial vector pUC 9 The other was a minimal

expression vector consisting only of two antibiotic resistance genes and an origin of replication. For

each of these, the sequences, including the signatures, were ordered in four separate parts from one

of two DNA synthesis companies, TWIST or Integrated DNA Technologies. TWIST offers DNA

synthesis at a lower price ($0. 07/bp), but they were not able to synthesize all of the sequence

fragments needed. The total cost of DNA synthesis for the two plasmids was $397.88 and $395.16

with the signature accounting for $48. 6 of the total cost in each case.

[00148] Once the four building blocks for each plasmid were received, they were put together

by Gibson assembly and transformed into Escherichia co i cells. The cells were plated on media

containing antibiotics. Three colonies from each plate were grown up in liquid cultures containing

antibiotics, the DNA was extracted, and the expected structure of the plasmids was confirmed by

restriction enzyme digests. The ability of the cells to grow in liquid and solid media containing

antibiotics indicates that the signature did not interfere with the origin of replication or the antibiotic

resistance genes for either plasmid. The entire process from receiving the plasmid building blocks to

confirming the plasmid structures was accomplished in 2 weeks. For one strain transformed with

each plasmid, DNA was extracted and sequenced by Sanger Sequencing, and the resulting reads were

manually assembled into a single fasta file for each plasmid. The fasta files were verified with the

digital signature software.

[00149] In Phase III, the potential impact of digital signatures on sequence function was

further tested using a different strategy. Sequences were designed for a minimal expression construct

for the reporter gene Lac-Z, which, in the presence of the chemicals Isopropyl β-D-l-

thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolyl-P-D-galactopyranoside (X-gai),

results in the production of a blue precipitate. A plasmid including the Lac-Z expression construct

was ordered from TWIST with and without the addition of a digital signature. The sequences were

synthesized by TWIST within one of their predefined vector backbones. The cost of the sequences

was $76.82 without the signature and $ 131.72 with the signature.

00150 E . coll transformed with the plasmid with the signature “SIGNED” and the plasmid

without the signature “CONTROL” were grown on media with and without antibiotics, IPTG, and

X-gal. Both plasmids resulted equivalent numbers of blue colonies suggesting that the

performance of the origin of replication, the Lac-Z construct, and the antibiotic resistance marker

were all unaffected by the presence of the digital signature. The “SIGNED” plasmid was also

extracted from cells, sequenced by Sanger Sequencing, the sequence was manually assembled into a

single fasta file from the reads, and the fasta file was verified using the digital signature software.

This entire process took approximately one week. FIG. 9A shows that the addition of signature does

not change the behavior or function of the plasmid. The two samples on the left are the signed

plasmids and the two samples on the right are the control plasmids.

[00151] Additional tests include preparing plasmids with mutation in different parts e.g.,

mutation in signature, mutation in GRCID, mutation in the original sequence, and conducting the

same test cases to confirm/check if the verification fails at first and if the error correction/detection

code assists detection of mutations and provide information to the user about the mutations.

Allowing mutations in identifying tags

[00152] In examples above, two identifying tags weredefinedwhich contains the signature in one

embodiment of the system. The start tag was chosen as ACGCTTCGCA and end tag as

GTATCCTATG Also, when initially incorporating error correction code to tolerate mutations within

the DNA, it was assumed that the start and end tag do not mutate. Otherwise, t will not be possible

to locate the signature and consequently, it will not be possible to locate the error correction code

itself. Without the ability to locate the error correction code, error correction may not be invoked at

all. In one embodiment, after signature generating is complete the DNA is of the form - SEQ START

ORCID PH) SIGN ECC END UENCE. This form is synthesized and sent to the receiver. The

receiver while validating looks for the start and end tag to extract the information between them. If

there is any mutation within the tags itself, for example, SEQ SMART ORCID D SIGN ECC

END UENCE (the T in the start has mutated to M) this first step will fai and the user wi l come up

with an alert message that the tags cannot be located.

[00153] In one embodiment, the system uses partial matching techniques such that the start

and end tag can be located approximately. Since the start and end tags are fixed, tags that are v ery

near matches for in the DNA molecule can be searched. As per the example, the keyword START

is searched for within the mutated string SEQ SMART ORC PI SIGN ECC END HENCE.

Although there is no concrete match, the partial matching techniques can be used to output the closest

match to START, which in this example is SMART. The approximate matching technique breaks

the searchable string into substrings of the length of the input string. Each of the broken substrings

the larger string is assigned a score based on how similar it is to the input string. The match is

inferred using the highest score. Now in the real DNA, sequences are of A, C, G, and T, so there

might be a case that there are multiple close matches. In some embodiments, the system uses the end

tags to narrow the results. The following steps describe how the approximate matching technique

works, according to some embodiments. There are each of four examples as described.

[00154] Example 1 : No mutation in both start and end tags. In this case, the location of the

extract locations of the tags is known and approximate matching techniques are not needed. There

can be mutations in any other place which will be handled by the error correction code.

[00155] Example 2 : Mutation in START tag only. In this case, only the start tag has mutated,

the end tag is found directly. The tool looks for the closest match to START. If there is asingle match

with the highest score then the system determines the start tag has been located. However, in the

substring of A, C, G and T, there can be multiple matches with close scores i.e. there is no single

stand out high score. In this example,, the system uses the end tag for further elimination of choices.

The content within the start tag and the end tag is more than 556 base pairs (Signature is 5 2, ORCID

is 32 and Plasmid ID is 2). Therefore those matches which are of distance 556 base pairs/characters

or more apart from the end tag can be start tags. The logic s set to 556 or more because the length

of the error correction can be 0 if the user chooses no error correction.

[00156] Example 3 : Mutation in END tag only. In this case, only the end tag has mutated, the

start tag is found directly. The tool looks for the closest match to END. If there s a single match with

a highest score the system determines that the end tag has been located. For multiple matches with

close scores, the system applies the same method as above: the distance between the start and end

tag is more than or equal to 556 base pairs

[00157] Example 4 : Mutation in both START and END tags. In this case, the system locates

the closest match for both tags. If there is a single match with a highest score for both of them then,

the system has located both the start and end tags. Also, the criteria of length more than or equal to

556 between them raises the certainty. In case of multiple start and end tags, the system checks the

length criteria for each start and end tag pair possible from the obtained results.

00158] Various techniques can be utilized for matching of similar strings, and can include

methods that measure the distance between strings using a distance equation (similar to Euclidean

distance) to do so, for example, using the Levenshtein distance. The Levenshtein distance is the

distance between two words based on the minimum number of single-character edits (insertions,

deletions or substitutions) required to change one word into the other. Levenshtein distance s

generally considered to be very accurate, but can become computationally intensive with very long

strings. Similar to Levenshtein, Damerau-Levenshtein distance with transposition (also sometimes

calls unrestricted Damerau-Levenshtein distance) is the minimum number of operations needed to

transform one string into the other, where an operation is defined as an insertion, deletion, or

substitution of a single character, or a transposition of two adjacent characters. The Optimal String

Alignment variant of Damerau-Levenshtein (sometimes called the restricted edit distance) computes

the number of edit operations needed to make the strings equal under the condition that no substring

is edited more than once, whereas the true Damerau-Levenshtein presents no such restriction. The

difference from the algorithm for Levenshtein distance is the addition of one recurrence for the

transposition operations. Jaro-Winkier is a string edit distance that was developed in the area of

record linkage (duplicate detection). The Jaro-Winkler distance metric is designed and best suited

for short strings such as person names, and to detect typos. Jaro-Winkler computes the similarity

between 2 strings, and the returned value lies in the interval [0.0, 1.0] It s (roughly) a variation of

Damerau-Levenshtein, where the substitution of 2 close characters is considered less important than

the substitution of 2 characters that a far from each other. The distance is computed as - 1 - (Jaro

Winkler similarity).

[00159] A fe algorithms work by converting strings into sets of n-grams (sequences of n

characters, also sometimes called k-shingles). The similarity or distance between the strings is then

the similarity or distance between the sets. Jaccard index is one such method which works on n-

grams.

[00160] In some embodiments, each of the five algorithms are incorporated into the system

for approximate start and end tag matching. For testing, the fasta file is taken as input and the start

and end tag within the fasta file are manually changed. Then the location of the defined start and end

tags within the mutated fasta file is determined. The cases considered were single substitution, single

deletion, single insertion, double substitution, double deletion, double insertion, triple substitution,

triple deletion, and triple insertion.

[00161] The results for each algorithm are summarized on a case by case basis in FIG. 9B.

The raw results are presented in Table A . As can be seen from the Figures the Jaro algorithm was

fairly inaccurate with an average accuracy of only 35.12 % . The Jaccard algorithm fared much better

but was still imperfect with an average accuracy of only 95.18 % . Ail three Levenshtein variants

were perfectly accurate in their assessment. In embodiments where accuracy is the primary goal of

partial matching, the system utilizes the Levenshtein variants.

Table A : Correct matches out of total reviewed strings by algorithm for each case.

00162 Another consideration in algorithm selection is speed. While an algorithm may be

perfectly accurate in its selection of a closest match to a string this means little practice if the

algorithm has an untenab!y long run time. To this end the speed of the algorithms were compared.

To accomplish this, each method was used to compare a series of one million random strings of a set

length. The distance metric was calculated between each of these strings against a separate tag string

of equal length. The amount of time it took for all of the strings to be compared was recorded. This

was done for each algorithm with strings ranging in size from 4 characters to 100 characters. A graph

of the time in milliseconds (ms) for each algorithm is shown in FIG. 10.

[00163] As can be seen in FIG. 10, there were noticeably different rates of growth for each

algorithm. The Jaro and Optimal String Alignment algorithms were the quickest, each growing at

very slow rates with Jaro being slightly faster overall. Jaro never surpassed 9000ms while Optimal

String Alignment remained below' 13000 ms (milliseconds). There did not appear to be an appreciable

difference in the rate of growth between these two. The rates of growth for the Jaccard, Levenshtein,

and Damerau-Levenshtein algorithms appeared to be exponential. However, their growth seemed to

be occurring at different exponential rates. Damerau-Levenshtein was increasing the most rapidly

overall. Run times for very long strings exceeded 150,000 ms. Jaccard was not far behind, taking up

to 100,000ms for lengthy strings. Levenshtein was improved, never exceeding 75,000 ms. In

embodiments where speed is the primary goal of partial matching, the system incorporates the Jaro

or Optimal String Alignment. In embodiments where both speed and accuracy are competing

considerations and which neither takes precedence, the system incorporates the Optimal String

Alignment Algorithm

Shorter Signatures

[00164] The length of the signature plays an important role in tins domain. As mentioned

earlier, shorter signatures imply less cost of synthesizing the signature and shorter signatures will be

less likely to impact the existing functionality and stability of the plasmid during signature embedding.

In some embodiments, the system improved the identity-based signature(IBS) to gam signature

length. The Shamir’s IBS scheme and the modified system scheme is based on multiplicative groups

over integers. There is no other identity-based signature scheme that is based on multiplicative groups

over integers. Other IBS schemes are based on elliptic curve cryptography and pairing-based

cryptography. In one embodiment of the system, elliptic curve cryptography is used to generate relatively

shorter signatures. In one embodiment of the system, pairing-based cryptography is used to generate

shorter signatures. One benefit provide by utilizing elliptic curve cryptography is a smaller key size,

reducing storage and transmission requirements, i.e., that an elliptic curve group could provide the

same level of security' afforded by an RSA-based system with a large modulus and

correspondingly larger key: for example, a 256-bit elliptic curve public key should provide

comparable security to a 3072-bit RSA public key. Elliptic Curve cryptography is particularly suited

to applications where security' is needed and where power, storage and computational pow¾r may be

lacking or is at a premium. Table B illustrates the key size needed in elliptic curves compared to

traditionalRSA/DSA.

Table B - Comparison of key -size required in different cryptography schemes

[65

Identity -based signature schemes using pairings

[00166] There are a variety of identity-based digital signature schemes using pairings,

including, by way of non-limiting example, Sakai-Kasahara, Sakai-Ohgishi-Kasahara, Paterson,

Cha-Cheon, and Xun Yi. The Sakai-Kasahara scheme includes two types of identity-based signatures:

an El-Gamal type and a Schnorr type. In some embodiments, the system incorporates both or one of

these schemes (e.g., using a jPBC library). In one implementation, it was determined that the Sakai-

Kasahard Scnorr scheme was optimal for signature size, and cost of signature generation and

verification.

Sakai-Kasahara Identity-based S ignature

[00167] In some embodiments, the system employs a Sakai-Kasahara Schnorr type scheme,

and can include four steps: setup, extract, sign and verify.

[00168] Setup: The setup generates the curve parameters. The different curves provided in the

jPBC library' can be used to load the parameters. Let g be the generator of G , g be the generator

of ¾ . A random x G Z is chosen to be the master secret. Two public keys P i and Py are calculated

as - i = x g and Py —x · g . An embedding function H is chosen such that H Q, 1)* —· G .

[00169] Extract: Takes as input the curve parameters, the master secret key x, and a user’s

identity and returns the users identity-based secret key. This step is performed by the central authority

for each user with identity 1DA.

[00170] For an identity ID , calculate CA — H I D A) . Thismaps the identity string to an

element of i .

[00171] Calculate VA = x CA.

[00172] User A’s secret key is (CA, VA) and s sent to the user via a secure channel

[00173] Sign: To sign a message m , a user A with the curve parameters and the secret key

(CA, VA) does the following:

Choose a random r GZ . Compute Z — gy.

2 . Compute e = en CA, ZA), where en is the pairing operation.

3 . Compute// =H m e), w he re is a secure cryptographic hash function such as S A-

256and I istheconcatenation operation.

4 Compute S = hVA + rCA .

A's signature for the message m is - (h, S)

Verify: The verification procedure is as follows:

1. Compute w = en(S,g2) * en CA, hP2)

2 . C eckH m v) h
The above equation works because:

= en CA, gif

Hence, h — {m Ie) = Hi(m w .

[00175] The signature s a tuple (h, S) where h is the result of a hash function. This length is

dependent on the choice of the hash function. If SHA-1 is used, then h is 20 bytes and if SHA-256 is

used the length is 32 bytes. The value S is an element of the group GI, therefore its length will he

dependent on the curve type and the length of the prime. The following is the comparison of the

signature length using the different curves without using any point compression.

Table C: Signature size using different curves for the Sakai-Kasabara scheme.

Tuning to further shorten signature size

[00176] Since S is a point on the curve, in one embodiment point compression technique can

shorten its length. The jPBC library does not have this built-in, and the system can incorporate this

technique to shorten the signature size. So if the size of S is 2n bytes - the point compression

technique will result in n + 1 bytes.

[00177] When computing the verification step - en C - P). Here h is the negative hash

value integer and scalar multiplication is performed with the point Pi. There s only one integer group

involved and that is Z . where r is the order of the curve. So when performing that seal ar multiplication

- h P JPBC can internally convert the hash value to an element ofZr by modulo r . Instead of writing

the signature as (h, S) t can be rewritten as (R ,S) where R h mod r . Thesignature is now of the

form (R, S), where R is an element of the group Zr.

[00178] Additionally, if SHA-1 is used, then it may not make a significant difference in the size,

but SHA-1 has been replaced by SHA-256 in some embodiments, and in some such embodiments,

length is gained as SHA-256 is 32 bytes. However, this tuning may degrade the signature length for

type A curves as the element in Z s 128 bytes. So, in some implementati ons, if using the A curve,

the signature can be kept in the form (h, S). For other types converting the signature to (R, S) can

b preferable. The following table represents the signature sizes using different curves after tuning

the signature to (R, S):

Table D: Signature size using different curves for the Sakai-Kasahara scheme before and after tuning.

00179 In this example, based on the signature size, the best performance is provided by

the dl59, f, and gl49 curves. However, the length of the primes are different and also the

embedding degree is different. In the dl59 curve, the prime is 159 bits and the embedding degree

is 6 . In the f curve, the prime is 58 bits and the embedding degree is 12. In the gl49 curve, the

prime is 49 bits and the embedding degree is 0 . In the context of the small difference signature

sizes and the security related to each type, the better choice is the f curve.

[00180] The time to generate the signature and verify can also depends on the type of the

curve because of curve properties. The following table denotes the time to sign and verify using

the different types of curves. The times are measured after tuning the signature because it involves

additional computation of point compression and decompression.

Table E : Average time taken to sign and verify for different types of curves for the Sakai-Kasahara scheme.

00181 From a speed perspective, the a type curve is the fastest while generating and

verifying the signature. But the size of the signature is significantly larger. The short signature size

generating curves i.e. dl59, f and gl49 take additional time. The dl59 curve takes around 100 ms

for both signature generation and verification. The f curve takes around 150 ms to sign and 250

ms to verify, and the g!49 curve takes around 200 ms to sign and verify. It is, therefore, a matter

of priority - signature size over speed. If we need to sign and verify a lot of messages and we do

not care about the signature size then type A curve is a good choice. However, in embodiments

where the size of the signature is higher priority' than speed , the f type curve is used.

[00182] Additionally, the f type curve has both speed and short signature size , second only

to the gl49 curve. With respect to speed it offers almost the same performance as the gl49 and the

d 59 curve. Of the three, the f type curve offers the best security as its embedding degree is higher.

[00183] In one embodiment, the system incorporates 512 base pair signatures using the

improved IBS scheme. In another embodiment, elliptic curve based signature schemes were used,

resulting in a signature size of 244 base pairs at the same security level. I a further embodiment,

the signature size is 292 base pairs for improved security. In another embodiment, pairing-based

cryptography was used and the length of the signature can be reduced to just 164 base pairs for the

same security' level.

00184 Synthetic DNA molecules are frequently shared physically. There s a need to

bestow origin attribution properties to these molecules which are often licensed intellectual

property. However, recent efforts to provide this property using watermarking techniques suffer

from the problem that the watermark is independent of the DNA molecule (although it is embedded

in the molecule). Thus, the watermark can potentially be removed from a physical DNA and

embedded m another sample or replaced with another entity’s watermark. The system provides

more secure origin attribution properties using digital signatures.

[00185] As a proof of concept, signatures were generated in the laboratory and inserted into

two plasmids. The first, 401734, is a synthetic plasmid composed of two antibiotic resistance genes

and an origin of replication. The second, 190691, s the commonly used standard vector pUC19.

Experiments were performed to determine if the addition of the signature would impact the

characteristic and the function of the original plasmid. From the experiments, it was determined

that the addition of the signature does not impact the characteristic of the plasmid. In one

embodiment, the signature was based on the improved IBS . In further embodiments, newer

cryptographic schemes are used that provide smaller signature sizes (e.g., 164 bp). As the larger

signature sizes did not impact the characteristics and functionality of the plasmid, smaller

signatures generally also not impact the characteristics and the functionality of the plasmid.

[00186] In some embodiments, choices of parameters for the digital signatures and/or for

the error detection/ correction codes are based on mathematical models of properties of the DNA

vis-a-vis its size. In some embodiments, choices of parameters for the digital signatures and/or for

the error detection/correction codes are based on domain knowledge and experimental analysis.

Models of DNA properties can be used in determining optimal parameter choices to trade off the

size of the sequences encoding signatures, security strengths of signatures and degree of error

resiliency for a given implementation.

[00187] In additional embodiments, embedding signatures is applied for naturally occurring

DNA a d for DNA sequences larger than plasmids such as microbial or even plant or animal

genomes, as, depending on the implementation, there is typically leeway in DNA molecules that

allows for the addition of a signature without altering function or stability. Current knowledge

indicates that large portions of genomes probably do not play a functional role, and it is possible

to embed a signature in these regions. However, in some implementations, from an evolutionary

standpoint, sequences which do not play a functional role may be less likely to be retained

unchanged m the genome. Additionally, the sheer size of a genome means that mutations are more

likely to occur, and sequencing technologies evolve, they will increasingly be able to provide near

error-free, substantially error-free, error-free, or completely error-free whole genome sequences.

In some embodiments, the system can apply digital signatures only to portions of larger sequences

that are significant, such as those parts of a microbial genome which have been re-engmeered for

a specific purpose. Additionally, alternate signature schemes can be configured such that they are

suited to whole genomes.

00188 Some embodiments include signing and verifying the same DNA molecule multiple

times by different users, e.g.,: Alice signs and sends a DNA sample to Bob and Bob validates

Alice’s DNA. Then Bob continues to modify it, signs it and sends it to Mallory. In such

implementations, Mallory can verify Bob’s signature, and can additionally have a way for Mallory

to track the entire pathway starting from Alice. Aggregate signatures can be utilized some

embodiments. In some embodiments, the system utilizes one or more distributed ledgers to manage

signatures and track modifications. In some embodiments a signature is placed on top of an existing

signature. In some embodiments, the system can remove a signature, and the molecule is signed

again with a new signature such that the removal and addition do not substantially alter the function

of the molecule.

Example NA Authentication System

[00189] FIG show's a schematic of an example system 1100, according to some

embodiments. The system allows users developing new synthetic NA, such as plasmid DNA, to

digitally sign them or suitably mark them using signatures generated though safe and secure,

encryption methods. These signatures will take the form of a unique’ NA fragment, also referred

to as “NA signature sequence”, or “DNA signature sequence”, that is inserted in the NA molecule

[00190] By using a digital signature, it becomes possible to ensure the origin and integrity

of NA molecules. Someone interested in using this molecule can use the system 100 to validate

a second sample purported to be of the original molecule, to identify the scientist or organization

that signed the molecule and verify that the molecule has not been altered since it was signed.

[00191] The system 1100 provides benefits both to the developer of a NA molecule and to

the user. Digitally signing NA molecules would help genetic engineers assert the rights associated

with their authorship. Digitally signing NA molecules could limit liability exposure by allowing

companies to distance themselves from modified sequences. For instance, a company could

guarantee the function of a NA molecule but not its derivatives. In a regulated environment,

digitally signed NA molecules could be used to demonstrate the stability of the genetic systems

used to produce biologic drugs and other biotechnology products. These signatures would also

provide evidence that the proteins produced by biomanufacturing facilities come from the clients

they are working with and that they have not been modified.

00192 An organization receiving a plasmid from a third party could develop security

policies that prevent them from working with plasmids whose signature cannot be verified. Such

policies would be similar to security features of modern operating systems that prevent users from

installing software from unknown developers. Verifying the signature of NA molecules would

positively impact the productivity of life science research by allowing users to quickly detect

genetic drift or undocumented modifications of a molecule.

[00193] The system 1100 includes a Nucleid Acid (NA) authentication device 1110 coupled

or suitably connected (through wired or wireless connection methods) to one or more user

device(s) such as devices 1102 and 1104, though a communication network 1106. The

communication network 106 can support wired or wireless connectivity. In some embodiments,

the system 1100 can be an enterprise system at least partially hosted m an enterprise server, such

as, for example a web server, an application server, a proxy server, a telnet server, a file transfer

protocol (FTP) server, a mail server, a list server, a collaboration server and/or the like.

[00194] The NA authentication device 0, in some embodiments, can include and/or have

access to a processor 20, an Input/Output (I/O) unit 140, a memory 160 and a communicator

1180, each being interconnected to the other. In some embodiments, the A authentication device

0 can be a server device. In some embodiments, the NA authentication device 0 can be an

enterprise device, such as, for example, a desktop computer, a laptop computer, a tablet personal

computer (PC), and/or the like. In yet other embodiments, portions of the NA authentication device

1110 can be physically distributed across, for example, many chassis and/or modules

interconnected by wired or wireless connections. The network can be any type of network such as

a local area network (LAN), a wide area network (WAN), a virtual network, a telecommunications

network, implemented as a wired network and/or wireless network. The Input/Output Unit 40,

for example, or the memory 60, can be housed in one device or in some embodiments, can be

distributed across many devices. The Communicator 80, similarly, can be housed in one device

in some embodiments, and distributed across many devices in some other embodiments.

00195 The processor 1120 included in some embodiments of the NA authentication device

1110 can be configured to run one or more applications to support various methods involved in

cryptographic signing and authentication of NA molecules as described herein. In some

embodiments, the one or more applications run in the processor 1120 can be part of an enterprise

software package. The processor 1120 can for example be equipped with one or more apparatuses

that may include one or more associated software to carryout various portions of marking and

authenticating a NA molecule, the various portions including, for example, to generate a mapped

value of a NA molecule, to cryptographically encrypt a mapped value, to generate a digital

signature, to convert a digital signature into a signature NA sequence, to identify appropriate

portions of the NA molecule to insert the signature NA sequence. In some embodiments, the

processor 120 can be equipped with apparatuses and associate software to receive an unknown

sample and validate its purported source or origin or author.

[00196] The NA authentication device 0 can include a memory' 160. The memory' 1160

can in some embodiments include a database or a look up table storing information regarding

specific authors or users who may be registered a system used to exchange information

regarding NA molecules (e.g., authorized users or validated authors of specific synthetic NA

molecules). The memory 60 may include one or more storage systems for user information

associated to these specific users through a unique user identifier (e.g., user ID).

[00197] The Input/Output unit 40 can be configured to receive information sent from the

one or more user devices such as 1 02 and/or 1104, via the communication network 106. The

communication network 1106 can support a wired or wireless method of communication. The

Communication network 106 can for example be the internet. The Communicator 1180 in the

NA Authentication 0 can be configured to establish one or more secure channels of

communication to enable users to access the Input/Output unit 40 of the NA authentication

device 0 . In some embodiments, the communicator 1180 can be configured to generate and

distribute tickets to control access sessions for users to gain access to the NA authentication device

1110. In some embodiments, the communicator 80 can use the tickets (e.g., tickets containing

access codes set to deactivate beyond a specified time period) to moderate temporary or time

limited secure communication channels.

[00198] The NA authentication system 00 and the NA authentication device 10 can be

configured such that user specific information (e.g., identity of users, or molecules/sequences

authored by users) can be stored in a protected fashion by associating the information via the

unique user identifiers, and access to the information may be blocked unless allowed through a

process of verifying user credentials, for example, through secure communication channels

mediated by the communicator 1180.

[00199] The user devices 1102 and / r 1104 can be any suitable client device. For example,

some embodiments, the electronic device can be, for example, a personal computer (PC), a

personal digital assistant (PDA), a smart phone, a laptop, a tablet PC, a server device, a

workstation, and/or the like. The user devices while not shown in FIG.l, can include at least a

memory, a processor, a network interface, and an output device.

[00200] FIG. 12 illustrates a schematic of an NA authentication system 1200 according to

an embodiment. The systems 1200 can be substantially similar or the same as the system 1100

described above. For example, the NA authentication system 1200 can include one or more users

device(s) 1202 and a NA authentication device 1210. As described above with respect to the NA

authentication device 1110, the NA authentication device 1210 can include an Input/Output Unit,

a Processor, at least one memory and a communicator. Accordingly, portions of the system 1200

that are substantially similar to the system 00 are not described in further detail here.

[00201] In some embodiments of the system 200 and/or system 00, the user devices can

include apparatus to run suitable applications (e.g., client side application, mobile application, a

PC application, an internet web browser, etc.) installed on the user device) to communicate with

one or more applications on the NA authentication device, via a suitable communication channel

mediated or moderated by the communicator. In some embodiments of the system 1200, as shown

in FIG. 12, the user device 202 can be capable of supporting a user application 1212 that includes

a user interface to communicate, via the internet 1206, with a server-side application 1214 in the

N authentication device 12 10

[00202] In some embodiments of the system 1200 (and/or system 100), the applications

2 2 a d 1214 can be protected and accessible only through a process of verifying user credentials

(e.g., a secure login system). The applications 1212 and 1214 can be configured to have access to

a registry or database of authorized users with the users tabled or organized or indexed by unique

user identifiers (e.g., user IDs). In some embodiments, the unique user identifiers can be generated

within the NA authentication system 1200. In some other embodiments, the unique identifiers can

be imported from other known sources or systems, for example, other organizations frequented by-

users or authors of NA molecules and/or their sequence information (e.g., ORCID).

A User Application with an interface to mark and authenticate Nucleic Acid Sequences

00203 The application 1212 shown in FIG. 12, for example, can be configured to allow

users to input their credentials and securely access the NA authentication device 1210 and/or the

application 1214. The application 1212 can include a user interface designed to support several

aspects of sending and receiving information between then user device 1202 and the NA

authentication device 1210. For example, some embodiments, the application 1212 can include

an interface to upload sequence information of a designed NA molecule. The application 1212 can

be configured to be compatible to files and /or file formats of one or more suitable applications

such as sequence editors. The application 1212 can, in some embodiments, be configured to carry

out several functions such as initiate and/or generate a secure communication channel with the NA

authentication device 1210, to send a NA sequence, to receive a signed NA sequence, to receive

validation results from the NA authentication device 1210. FIG. 16 illustrates an example

application 6 2 that can be part of a NA authentication system 1600 that is substantially similar

or the same as systems 1100 and 1200. The application 1612 can be substantially similar to or the

same as the application 1212 illustrated in FIG. 12.

Generating Nucleic Acid Sequence with an encrypted signature

[00204] As described above, there is a pressing need for secure systems and methods to

establish the origin and authenticity of NA molecules. In the digital world, the problem of

authenticating a document or web page while still withholding proprietary or sensitive information

is solved by encryption. Encrypted digital signatures are used in cybersecurity to authenticate the

source of a digital file and to confirm that the file has not been changed since the originator applied

the signature. To solve the problem of tracing the source of NA molecules and confirming their

identity, disclosed herein is a system and method for encrypting molecules of NA in living cells

using digital signatures.

[00205] FIG. 13 illustrates a method 1300 of generating a signed NA sequence including a

signature NA sequence based on a digital signature, from the perspective of a user device (e.g.,

user devices 1102 and 104 of system 00 shown in FIG. . In some embodiments, one or more

steps of the method 1300 can be accomplished by manipulating user control items in a user

interface provided through a user application (e.g., application 112). Method 1300 includes a step

1301 of obtaining / receiving a desired NA sequence. This step 1301 can in some instances include

generating a new sequence for a synthetic NA molecule, for example, through a sequence editor

application n some other instances, the step 1301 can include identifying and obtaining the

sequence information of a pre-exiting NA molecule that is desired to be signed.

002 6 In step 1303, the method 1300 includes inputting the sequence information of the

NA molecule (also referred to herein as the original NA sequence, or the unsigned NA sequence,

or as the NA sequence) into a NA authentication device (e.g. the NA authentication device 1110

of the system 1100). In some embodiments, as described above, this inputting can be done through

the user interface in the application (e.g. application 1 1 12). In some embodiments, at step 1305,

the user can initiate the generation of an encrypted signature NA sequence and the incorporation

of the signature NA sequence into the original NA sequence to form the signed NA sequence. In

some embodiments, the user can initiate this processing at step 1305 through one or more control

actions at the user interface (e.g., button press with a key or signature generation functionality). In

some embodiments, step 1305 can be implemented automatically following step 303 without user

intervention.

[002 7] Following suitable processing by the NA authentication device and the generation

of the signed NA sequence, at step 1307, the method 300 includes the user device receiving the

cryptographically signed NA sequence corresponding to the original NA sequence or the unsigned

NA sequence. This signed NA sequence can then be used to generate or synthesize the NA

molecule using a suitable NA synthesis procedure, as shown step 1309 of the method 1300.

Thus, the generated molecule will include the signed NA sequence, propagating not just the NA

sequence but also an encrypted signature with the captured or documented sequence information

of the original NA sequence. In some instances, when the synthesized NA molecule (e.g.,

synthesized plasmid DNA) s incorporated into vectors (e.g., viral vectors, bacterial vectors, fungal

vectors, insect vectors, mammalian vectors, plant vectors, and/or vectors for other suitable

organisms) the documented and encrypted sequence information of the original NA sequence is

also carried along, regardless of how or when the molecule and/or its sequence (outside of the

signature NA sequence) may be manipulated in the time period following the generation of the

signed NA sequence.

Generating digital signatures and marking nucleic acid sequences with the signatures

00208 FIG. 14 illustrates a method 1400 of receiving an original NA sequence, generating

and incorporating an encrypted signature NA sequence to form a signed NA sequence, using a NA

authentication system like the system 1100 described above. The method 1400 can be implemented

with a NA authentication system such as the system 00 described above. According to some

embodiments, one or more steps in the method 1400 can be implemented through manipulation of

control items (e.g., button presses, radio button activations, toggle presses etc.,) the user

interface of the application (e.g. application 1112) installed in a user device. For example, the user

interface can include one or more button for uploading

[00209] The method 1400 includes step 1401 of receiving the sequence information of a

NA molecule from a user device. In some embodiments, the sequence information can be sent to

the NA authentication device of a system (e.g. NA authentication device 1110 of system 1100) by

a user operating an application like the application 1112 through a user interface. The step 1401

can also, in some instances include receiving user information associated with the user operating

the user device or operating the user interface of the application 1112. In some embodiments, the

user information can be automatically generated or retrieved for repeat users. In some other

embodiments, the user information can be retrieved from the user credentials used to securely gain

access to the NA authentication device (e.g., credentials like username, user ID, password, etc.,).

[0021Θ] As shown in the flow chart in FIG. 14, the method involves defining or forming at

least two portions of the digital signature. Steps 1403 and 1405 involve formation of the first

portion, while step 1407 involves the formation of the second portion. The first and second portions

of the digital signature can be generated either in parallel as illustrated in method 400 in FIG. 14,

or sequentially with one portion (first or second) formed before the other. At step 1403 the system

computes a mapped value of the original NA sequence. The mapped value can be generated by

applying a cryptographic function (e.g., a hash function or a cryptographic hash function) to the

original NA sequence. The mapped value can, in some embodiments, have a fixed size irrespective

of the size of the original NA sequence.

[00211] In step 1405, following the generation of the mapped value in step 403, the NA

authentication system can form the first portion of the digital signature by encrypting the mapped

valise of the original NA sequence using an encryption key specific to the user who is the author

or source of this signed NA sequence.

00212 At step 1407, a second portion of the digital signature can be generated based on

the unique identifier of the user (e.g., the users ORCID). In some embodiments, the digital

signature can include additional portions such as third or a fourth portion. For example, in some

embodiments, the digital signature can include a 6-digit user-generated numerical ID (generated

within the NA authentication system or elsewhere) which can be assigned to the original NA

sequence that is being signed. In this way, NA sequences described in a publication, for example,

can be identified using the 6-digit ID. If at a later time point a second user sequences a NA

molecule purported to be a sample of a specific signed NA sequence, they will be able to determine

who constructed it using the unique identifier (e.g., ORCID), and which NA molecule (e.g.,

plasmid) it is by matching the 6 digit ID with the publication.

[00213] At step 1409, the various portions of the digital signature are combined and at step

4 1 the completed digital signature is converted into a signature NA sequence. Following which,

at step 4 3 specific insertion points are identified for the insertion of the signature NA sequence

without detrimental effects to the expression of the NA sequence. In some embodiments, the

system can be configured to automatically find optimal insertion points. In some other

embodiments the system can be configured to query the user (e.g., the author of the original NA

sequence) for suggested or desired insertion points. For example, the application and user interface

can provide for the inputting of information regarding desired insertion points. Following the

insertion of the signature NA sequence at step 4 3, the signed NA sequence can then be sent to

the user device at step 4 5.

Validating a marked nucleic acid sequence

[00214] The NA authentication system disclosed herein can be used to validate the

authenticity of a sample NA sequence also referred to herein as the test NA sequence or a test

“signed NA sequence” to be validated. FIG. 15 illustrates a method 500 of validating a test NA

sequence using an embodiment of the system.

[00215] The method 500 includes the step 501 of the NA authentication system (e.g., the

NA authentication device 10 of the system 1100) receiving a test sequence from a user (also

referred to as a second user) who is not the author or source of the original NA sequence, but is

interested in the authenticity of the sample and the purported source data. The test sequence can

be uploaded or inputted into the NA authentication system via a secure communication channel

through a user application and interface (e.g., application 1112 shown in FIG. 12).

00216 The system, at step 1503 of method 1500, then can search for and/or identify

regions in the test sequence that may correspond to a signed NA sequence. In some embodiments,

the step 503 can also include verifying if the test sequence contains a valid signature (e.g., that it

is a valid signed NA sequence) and send appropriate messages to the user through the interface in

the event that the test sequence does not include a valid signature sequence. Following a positive

identification of a signed NA sequence, at step 1505 the system can identify and extract from

within the signed NA sequence, a first NA sequence and a signature NA sequence.

[00217] Following the extraction of the first NA sequence (to be tested for validity), at step

1507 the system computes a mapped value of the first NA sequence, which is referred to herein as

the first mapped value. The mapped value may be calculated by applying cryptographic function

to the first NA sequence, for example, by applying a hash function to the first NA sequence to

obtain the hash value which becomes the first mapped value.

[00218] Upon extraction of the signature NA sequence from the signed NA sequence the

system, at step 509, converts the signature sequence in the form of nucleotide bases (or base pairs)

into a digital signature. The digital signature is then examined to identify, (a) an encrypted mapped

value of a second NA sequence (the original NA sequence), at step 151 1, and (b) a unique identifier

associated with a user (e.g. the original author or source of the original NA sequence), at step 1513.

In some embodiments, the digital signature can include additional portions such as a 6 digit

identifier of the original NA sequence, or the like. In such embodiments, the system can suitably

identify these portions and extract the appropriate information from them.

[00219] At step 1515, the system generates a decryption key using the unique identifier,

and/or the additional portions of the digital signature, and decrypts the encrypted portion of the

digital signature to obtain the second mapped value of the original NA sequence documenting the

sequence information at the time of signing the NA sequence. While the method 500 illustrates a

parallel process of obtaining the first and second mapped values, the steps indicated in method 500

can suitably performed in any manner, e.g., in sequential order.

[00220] Following which, at step 1517, the first and second mapped values are compared to

evaluate if the first NA sequence (or the NA sequence as obtained by the user who wants to test

its authenticity) s substantially similar to the original NA sequence it purports to be a sample of.

If the comparison results in a positive or negative match the system, at step 5 9, can send

appropriate response to the user desiring the test of validation. In some embodiments, the system

ay be configured to provide intermediate results, for example that the test NA sequence is

substantially similar, or the test NA sequence is similar in specific portions in some embodiments,

the system at step 5 9 may also send a quantification of the degree of similarity or a comparison

chart from results of the analysis of the test and original NA sequences.

Example Interface

00221 FIG. 16 Illustrates an image of a user interface m an application 1612, according to

an embodiment. The application 1612 can be substantially similar to or the same as the application

1212 illustrated in FIG. 12. The application 1612, as shown in FIG. 6 has a user interface one or

more panels with suitable control items. For example the user interface of application 1612 can

include a main panel 1620 that includes one or more control items such as, for example, the push

buttons 1622, 1624, and 1626. The user interface of application 1612 can include any number

and/or form of control and/or communication, for example, using panels, tabs, messages or alerts

or the like. An operator or user may communicate and/or transfer information between a user

device and a NA authentication device via the user interface in application 1612. For example, as

described in further detail herein, in some instances, the user may activate the buttons 1622

(“KeyGen”) and 1624 (“Sign Message”) to communicate with a NA authentication device and

initiate one or more processes to generate a digital signature and/or a signature NA sequence. As

another example, the user may use button 626 (“Verify Signature”) to authenticate or validate a

given sequence. FIGS. 20-24 illustrate additional example aspects of an application 1612,

according to another embodiment.

Demonstrative experimental NA authentication system

[00222] A demo system with software including a user interface was constructed with a

simulated a central authority based on the disclosed teachings and similar to some embodiments

of the NA authentication device of the systems described herein. The system operated in the

following manner.

Example process of marking a NA sequence

initialization

00223] The parameters (public key and private key) are fixed and are passed while signing

and verifying. The parameters are generated by clicking a “Keygen” button in the main screen of

the software’s user interface. This operation is required to be performed before proceeding with

sign or verify.

00224 The central authority creates the public key and private key pair using the RSA

public key cryptosystem. The public key will be used by all participants in the system for

verification of signatures. The private key will be used by the central authority to create a token or

ticket for the signer (or the user who wants to sign their NA sequence). The input is a security7

parameter w nch is set to 1024 bits. The output consists of a public key (e), a private key (d), and

a public modulus (n).

[00225] Each of the above three parameters are 1024 bits in length. The public parameters

<e,n> are known to all participants in the system. The private key <d> is kept secret. The pair <e,

d> is called a key pair because there is only one <e> associated with one <d> using a specific

mathematical relationship [e * d = 1 mod cp(n)]. Although, <e> is public, and there is only one <d>

associated with it, t s computationally hard to derive <d>using <e>. In December 2009, Lenstra

et a demonstrated the factoring even a 768-bit RSA modulus took 1000 cores and 2 years of

calculations. It is estimated that factoring a 1024-bit RSA modulus w7ould be about 1,000 times

harder, taking approximately 2,000 years.

[00226] The 1024 bit parameter generation is handled by Java’s Biglnteger class, which

supports large integer numbers. The parameter public modulus (n) is around 300 decimal digits.

Signature generation

[00227] The user clicks the “Sign Message” button in the main screen of the software to

open the sign message frame. The sign message frame prompts the user to enter the following

fields:

a) Input file a genebank file of the plasmidfor which the signature will he created

h) ORCID in xxxx~xxxx~xxxx~xxxx format e.g. 1234-1234-1234-1234

c Plasmid ID 6 digit number

d) Signature start sequence —to identify that signature starts after this.

e) Signature end sequence —to identify end of the signature.

[00228] After the details are provided by the user, necessary error checks are performed (i.e.

validity of ORCID and plasmid ID formats), and the ORCID of the signer is sent to the central

authority. The central authority7verifies the authenticity of the signer and provides a ‘token’ which

is tied to the private key <d> and the signer’s identity (ORCID). Since the token is a combination

of both <d> and signer’s ORCID, it cannot be forged by any adversary without knowing <d>. This

token, we call it ORCID, is used by the signer for creating signatures. Since every signer’s ORCID

is unique, their ORCID is also unique.

00229 Since a central authority is simulated, the token is calculated locally. In a real-

world application, the ORCID will be shared w th the central authority over a secure channel and

the central authority will respond with the ORCID over the same secure channel.

[0023] The ORCID is calculated as - ORCID = (H(ORCID)) d mod n , where H is a hash

function. We have used ‘SHA-256’[17] as the hashing algorithm. Here, although the ORCID of

any participant ,say A, is known to others as well, no adversary can forge the token - ORCID of A

as he has to compute <d>. This is called the ‘Discrete-logarithm ’ problem [18] and it s proven to

be computationally hard.

[00231] After receiving the ORCID , the N A sequence is extracted from the input Genbank

file. The generated signature is a function of the extracted NA sequence m) and ORCID. Hence

any change in either or both of the two will result in a completely different signature. Since we are

us g 1024 bit keys, the signature length s always 1024 bits and the probability7 of forging the

signature is - 7 7 . The signature is n binary7 format; we cover the signature into a NA sequence

as - ‘00’ -> a , ‘0 -> e , ‘10’ -> g , and Ί -> t Hence the length of the signature is always 512

base pairs irrespective of the extracted sequence size.

The O C D sequence is 32 base pairs (16 numeric digits) and the plasmid ID

sequence is 12 base pairs (6 numeric digits). The final signature sequence is generated by

concatenating the ORCID sequence, plasmid id sequence and signature sequence. The total length

of the signature sequence with the ORCID and plasmid ID is 556 base pairs. This entire sequence

m) is wrapped within the signature start sequence and end sequence which the user provided.

[00233] The user is then prompted to provide a location where the signature will be inserted.

From the previ ously extracted descriptions we can determine if the provided location is colliding

with a feature location. If so, then the user is provided with an alert. The signature s placed in the

specified location, shifting the location of existing features downstream. The descriptions of the

features are updated with the new locations, and three new features are added which contain the

locations of the signature start sequence, the signature and the signature end sequence. This new

file s saved as a Genbank file in the same location as the input file with “output” added to the file

name.

[00234] When the input file is parsed, the extracted plasmid sequence is in normal text

format. The text is then converted to a byte array. This byte array is passed to the hashing

algorithm. The hashing algorithm internally converts this byte array into bits. The output is a so in

the form of a byte array (64 bytes = 64 *8 = 256 bits). This byte array hash output is converted to

a Biglnteger in order to calculate the exponents and modulo operations via the signature algorithm.

The output of the signature algorithm is a Biglnteger (a large number). This Biglnteger is converted

to bits and then the bit string is parsed by taking two bits at a time and converting to ACGT as -

00 -> A , 0 1 -> C, 10 -> G and 11 -> T.

[00235] For example, consider the text - “Hello”. This text is stored as String in Java. When

it is converted to a byte array, the output is - [72, 101, 108, 108, 111] This byte array is then

converted to bits, the output is - 0100100001 10010101 10 10001 0 10001 101 111. Now the bits

can also be converted to an integer number (based on a 0-decimal number system). The converted

Biglnteger for the bit string is 310939249775. The bit string can also be converted to ACGT as

“cagacgcecgtacgtacgt” (00 -> A , 0 1 -> C, 10 -> G and 11 -> T). Therefore, 3 0939249775 is the

numerical representation and “cagacgcecgtacgtacgtt” is the sequence representation of the text

“Hello”.

00236 The user clicks the “Verify Signature” button in the main screen of the software to

open the verification frame. The input to this frame is the signed Genbank file. The sequence s

extracted from this signed file. Using the signature start and end sequences, the signature and

original sequence are separated. The ORCID and plasmid ID are converted back to numeric values

by reversing the procedure described in the preceding step. The verifier contacts the central

authority to receive the public parameters or they can be saved locally beforehand.

[00237] The verification(yes/no) is calculated m the following steps:

4. If the output of step 2 the output of step 3, then signature is valid (yes), otherwise it is invalid

[00238] When the signed file is parsed, the sequence is extracted as text. From these

sequences a bit string is calculated by applying the reverse procedure (a -> 00, c ~> 0 , g -> 10, t -

> 11). The bit string is then converted to a Biglnteger value to calculate the exponents and modulus

during the verification procedure. Finally, the output alert valid/invalid is displayed.

[00239] FIG. 17 illustrates a workflow 1700 for signing a NA sequence and then validating

a NA sequence as similar to the signed sequence. As illustrated in the workflow 700 at step 1701

a first user (User A) can generate a NA sequence that they want to characterize and share with

their collaborators or the general public. At step 1703 the user can obtain a signed version of their

NA sequence by incorporating a secure encrypted digital signature in a NA molecule they

synthesized/designed through methods such as those discussed above. As such the sequence

information is documented at that initial time point. The user can then share their sample NA

molecule, at step 705, any suitable form with other users (e.g. User B) or collaborators or with

NA databases or NA banks. Any second user (e.g. User B) who is interested in using the NA

sequence generated by the first user (User A), for a specific functionality of the NA sequence, may

obtain a sample of the NA molecule. They may want to know how closely their sample resembles

the original NA sequence that w¾s shown to have their desired functionality . The second user can

sequence their sample at step 1707, and access the NA authentication system and provide the

sequence information and ask for a validation (e.g. though method 1500) at step 1709.

00240 FIG. 18 illustrates an example work flow of using the NA authentication system

1800 for singing and verifying NA sequences. The NA authentication system 1800 includes a NA

authentication device 1810 and user devices 1802 and 1804 as illustrated FIG. 8, and can be

similar to the systems described above, and accordingly, such similar portions of the NA

authentication system 800 and/or aspects are not described in further detail herein.

[00241] In the illustrated system, there are three players: 1) the signer will develop the NA

signature and sign a sequence 2) the verifier will use the signature to verify whether the received

NA sequence was sent by the appropriate sender and was unchanged after signing. 3) a Central

Authority (e.g., a NA authentication device) will provide the signer with a token that s associated

with their identity. The central authority s secure and trusted by a l participants m the system.

[00242] There are also three steps to the sign-share- validate workflow, summarized n FIG.

8 . n this example, Alice is developing a new plasmid. She starts in a sequence editor application

by combining sequences from different sources. When she has finalized the sequence of the

plasmid she wants to assemble in the lab, she uses the NA authentication system 800, following

methods disclosed herein to create a signature NA sequence she wall add to her design. This

signature NA sequence is the sequence conversion of a digital signature. It is generated by applying

a cryptography hash function to the plasmid sequence. This maps the entire NA sequence to a

sequence of predetermined length, the hash value. The hash function is such that minor variations

of the input sequence result in a different hash value in such a way that it is not possible to infer

the input sequence from the hash value. In the second step of the signing process, the hash value

is encrypted using Alice’s secrete key. Finally, the encrypted hash value is converted to NA

sequences to generate the signature along with Alice’s unique identifier, her O C D, and a six

digit plasmid ID. The digital signature is inserted in the plasmid sequence between two conserved

sequences used to identify the signature from the rest of the plasmid sequence. Alice will then

assemble the signed plasmid by combining NA fragments from different sources. She may have

to order the N A fragment corresponding to the signature from a gene synthesis company. She

describes her plasmid in a paper and refers to it using the six digit number ID which she used to

identify the plasmid in the signature. She did not include the entire plasmid sequence in the online

supplement of the article. She sends the plasmids to a few collaborators.

[00243] Ellen is interested in using Alice’s plasmid. She gets the plasmid from another

graduate student who got it from his advisor a few years ago. Ellen has limited confidence in the

plasmid because it came in a hand-labelled tube. So, she decides to get it sequenced completely

before doing anything with it. She uploads the assembled sequence of the plasmid to the N A

authentication device 8 0 of the system 1800 (e.g., a server) to verify the plasmid.

[00244] The system 800 identifies the signature inserted between the two signature tags. It

will identify a block of 32 bp. to the right of the signature start signal to extract the plasmid

developer ORCID. Using the ORCID value as public key, the system 1800 decrypts the 5!2bp

signature block. Then system 1800 will calculate the hash value of the plasmid sequence and

compare it to the decrypted signature. If the two values match, then Ellen will know that the

plasmid was signed by Alice and that the physical sequence of her plasmid corresponds exactly to

Alice’s design. She had asked Alice for the plasmid sequence to align with her sequencing data.

Unfortunately, Alice had moved on with her life and she no longer had access to the plasmid

sequence files. Nonetheless, because she was careful enough to sign her plasmid, Ellen can be

assured that the plasmid she intends to use is the one described in the publication.

00245 It is also possible that system 800 did not validate the plasmid signature. Several

hypotheses could lead to this situation. It is possible that Alice was sloppy and did not manage to

assemble the plasmid corresponding to the sequence she had designed. It is also possible that her

advisor handed Ellen a derivative of the plasmid described by Alice. One could also not rule out

the possibility of spontaneous mutations or accidental/careless labelling error. In this situation,

Ellen may decide to proceed with the plasmid based on the similarity of the plasmid sequence and

the information available in the Methods section of the paper describing the plasmid.

Example adaptations in embodiments of NA authentication system

[00246] The procedures for signature generation and verification have been simplified to

suit the needs of the life sciences community in documenting shared NA sequences. In Shamir’s

scheme, the signature length when using a 1024 bit security parameter is 2048 bits which translates

to 1024 base pairs. In this scheme, the signature is a function of the message, the identity token

and a random number. The utility of the random number is that, when two copies of the same

messages are signed by the same signer, the signatures are different. This is useful for sending

messages over the internet where users exchange similar messages quite often. If a hacker

intercepts the messages, without the random number, they could deduce and plagiarize the signer’ s

unique signature.

[00247] In the case of NA samples, users will be primarily shipping physical samples, not

sending digital information over the internet. We can also assume that a single user is very unlikely

to share the same signed plasmid with another user more than once. The removal of the random

number gives us the advantage of having a shorter signature length without compromising the

security. This is important as embedding long signatures could potentially affect the function of

the signed NA. In our procedure the signature length is exactly half, 512 base pairs, compared to

Shamir’s scheme.

Adaptation for self-documenting plasmids

00248 Any digital information can be stored as a NA sequence (each base as two bits).

Hence it is possible to embed the annotated features of a plasmid along with its signature, the

original sequence, and identifiers (ORCID and plasmid ID). This will enable the receiver to

sequence the signed plasmid, and automatically generate an annotated map with feature

descriptions from the assembled sequence. This will ensure that even if the original digital

documentation of the plasmid is lost, the user will have all of the most pertinent information they

need.

[00249] From an input file (e.g., a Genbank file), the descriptions -the names and locations

of annotated features- are extracted. The text descriptions (i.e. “promoter” or “ampiciilin-

resistanee gene”) can be converted to a byte array, then from byte array to binary code, and finally

from binary to ACGT. Because the descriptions contain several repeated characters (letters and

spaces), we use lossless compression techniques to shorten the length of the final sequence.

[00250] For example, consider the following text from Chapter 1 of Darwin’s Origin of

Species:

[00251] “When we look to the individuals of the same variety or sub-variety of our older

cultivated plants and animals, one of the first points which strikes us, is, that they generally differ

much more from each other, than do the individuals of any one species or variety' in a state of

nature”

[00252] The total number of characters including whitespaces is 285. When converted to

byte array the length is also 285. After converting from byte array to binary, the binary string

length will be 285 * 8 ::: 2280. Hence the ACGT representation will contain 2280 / 2 = 140 base

pairs. With the use of compression techniques, it is possible to reduce the length of the final ACGT

sequence. For the same example, we use deflater compression which s provided by Java under

java. util.zip.Deflater package [19] (other compression techniques could be used similarly). The

original paragraph is converted to a byte array as before, but after passing through a compression

algorithm, the byte array is reduced to 75 bytes in length. This new compressed byte array can be

represented by ((75 * 8) / 2) ::: 700 base pairs. This compressed form can be easily translated back

to the original form without any loss of information.

[00253] After converting the descriptions into ACGT sequence, we now have two encoded

messages - the original sequence and the descriptions associated with that sequence. Let us call

the sequence ml and the descriptions m2. Previously, the signature was a function of the signer’s

ORCID and ml. But now we are introducing the descriptions of the sequence as well, and we

would ideally like to verify that the sequence encoding the descriptions has also not been altered.

To do this, w tie the descriptions, the plasmid sequence and the ORCID of the signer together.

Without descriptions: sig(m) = (ORCID)H(m) mod n. and H(m) is the hash output of the

sequence.

With descriptions: sig(m) = (()RC! H(m) mod n. and H(m’) is calculated as H(m’)

H(H(ml) \ \ H(m2)) .

When descriptions are included , two hashes are generated; one for the original sequence, ml,

and one for the encoded descriptions, m2. Then, they are concatenated together, and a . hash is

generated for this concatenated string, i n this way, we tie the descriptions of the sequence with

the signature which implies that any change in the sequence encoding the descriptions will

cause signature verification to fail The sequence encoding the description will have its own-

descriptor start and end tags which the user willprovide.

[00254] During the verification process, the sequence of the signature and the sequence of

the descriptions is extracted based on their start and end delimiters. The original sequence can be

retrieved using this information and verified using the previously described approach with a slight

change: the final hash generated in the output is a concatenation of the hash outputs of the original

sequence and of the sequence encoding the descriptions (names and locations of annotated

features). The locations of the features will be updated after embedding the signature in the original

sequence as they will change depending on where the signature is inserted.

Error correction codes enable tolerance of minor sequence changes

[00255] The NA signature scheme described above ensures that the plasmid is sent by an

authentic user and also that the signed sequence has not been altered. Even if the original sequence

or the identity token s altered by a single base pair, the verification will fail. This alteration could

include an intentional change or a naturally occurring mutation. Depending on the application of

the sequence, a user may be willing to tolerate a small number of changes. Additionally, it is

possible for sequencing to introduce a small number of errors f the sequencing depth s

insufficient. In order to allow for a small number of mismatches, an error correction code can be

introduced to the sequence along with the signature. FIG. 22 shows an example image of a user

interface showing error correction via an application run on a user device as a part of a NA

authentication system.

Example illustrations

00256 As a proof of concept signatures were generated and inserted into two plasmids.

The first, 431734, s a synthetic plasmid composed of two antibiotic resistance genes and an origin

of replication. The second, 192623, is the commonly used standard vector pUC!9. FIG. 19A

illustrates an unsigned plasmid and FIG. 19B illustrates a signed p C 9 plasmid.

[00257] Each signature is flanked by the same start and end delimiter sequences:

ACGCTTCGCA and GTATCCTATG respectively. These sequences were designed to be easy to

identify visually and unlikely to develop secondary' structure. Each signature includes one of the

author’s ORCID’s as a public key: 0000-0003-4875-8163. Each plasmid was given a relatively

arbitrary' six-digit identifier (431734 and 192623), so they could be easily differentiated during the

verification step. In each case, the signature was synthesized and sequence-verified by Integrated

DNA Technologies, Inc.

[00258] 431734 was constructed from four separate parts in a single Gibson assembly

reaction. The parts included the pUCl 9 origin of replication, a gene for resistance to the antibiotic

Chloramphenicol, a gene for resistance to the antibiotic Ampiciilin, and the signature. Each

adjacent part has analogous ends such that digestion with a 5 ’ exonuclease yields overlaps that can

be annealed together.

[00259] The signature was also inserted into pUCI9 to produce 192623 using the Gibson

assembly method. The pUC19 plasmid was linearized with the hlunt-end restriction enzyme Zral.

Primers were used to amplify the signature such that the 3 ’ overhangs matched the sequence of the

pUCl9 plasmid on either side of the Zral restriction site. In this way, the signature and plasmid

would have complimentary overhangs following 5 exonuclease digestion. Insertion of the

signature thus destroyed the Zra site. Transformants were screened for the presence of an insertion

in the correct orientation by restriction digests.

[00260] To determine if the signatures interfered with growth, replication, or marker gene

expression, the performance of cells transformed with the signed plasmids (431734 and 192623)

were compared to that of cells transformed with control plasmids. In the case of 192623, the control

was the pUC19 vector for which the signature was generated. In the case of 431734, the control

was a vector that was identical except that the signature was replaced with 500 base pairs of

random sequence. This enabled us to test if inserting a signature into a standard vector has any

effect on plasmid function, and if designing a synthetic plasmid with a signature would be any

different from a random spacer sequence.

[00261] Cells were plated on media with increasing concentrations of antibiotics to

determine if the antibiotic resistance genes were equivalently expressed. To compare growth and

replication, the optical density of liquid cultures inoculated with equivalent amounts of cells

originating from a single colony was monitored every 1-2 hours for 14 hours. After 4 hours of

growth, NA extractions w¾re performed to determine if the plasmid concentration was equivalent

for signed and unsigned plasmids at similar culture densities.

[00262] The plasmid NA was then sequenced at ~90x coverage and de novo assembly was

performed. The resulting contig was used to verify the signatures. To test the accuracy of the

signature validation, the 431734 plasmid was randomly mutagemzed by PCR amplification with a

low-fidelity polymerase. E . coli cells were transformed with the amplified plasmids and plated on

media containing Ampicillin and Chloramphenicol. NA was extracted from a dozen colonies and

sequenced at 90x coverage. Signature validation was performed. The assembled contigs were also

aligned with the 431734 plasmid map to confirm that plasmids for which the signature was valid

were not mutated and plasmids which could not be validated contained one or more mutation. This

procedure was repeated for a second variation of the 431734 plasmid in which an error correction

code was included to confirm that those plasmids which were not mutated beyond the tolerance

threshold dictated by the error correction code could still be validated even if they contained some

mutations

[00263] FIGS. 20-24C are images illustrating example aspects of the user interface in an

application 1912 run on a user device that is part of an NA authentication system 900 that may¬

be substantially similar to or the same as the systems 1100, 200. The example user interface of

application 1912 can be substantially similar to or the same as applications 1212, and/or 1612

described above. For example the user interface of application 19 2 can include a main panel 920

that includes one or more control items (e.g. push buttons) 922, 1924, 1926, that allow a user to

control and or communication with the NA authentication system, for example by communicating

with a NA authentication device. As described above with respect to application 1612 illustrated

in FIG. 16, some embodiments, the button 922 may be used by a user to generate a digital

signature, the button 1924 may be used to generate a signature NA sequence and/or button 1926

ay be used by a user verify or validate the authenticity of an unknown NA sample claiming to

be of a particular origin.

[0264 The user interface can, in some embodiments, include one or more communication

or control items in addition to the main panel. For example the additional communication and/or

control items can be inputs dialogs, ρορ-up message alerts, helpful menus, help with procedural

information (e.g. help messages) or the like. One or more of the additional control and/or

communication ems can be presented to the user any suitable manner. For example, some of

the control and/or communications items may be presented upon the activation of some other

control elements (e.g. a help menu when summoned by activation of a help button, not shown).

FIG. 2 1 shows an input dialog 1932 that may for a portion of a control item presented to a user in

the process of generating a signature NA sequence. For example, when a user activates the button

1924 (“Sign Message”) the application 1912 and/or the NA authentication system 1900 may

summon or present the input dialog 1932 inviting the user to input information such as the file

path of the sequence data to be uploaded, the unique identifier associated with the user (e.g.

ORCID), the name or identifier of the plasmid, etc. I some embodiments, as shown in FIG. 21, the

input dialog may also accept a user specified selection of a start and end sequence of the signature

NA sequence. The user may input the suitable information and use one or more control items such

as the “Submit” button to submit the information and/or the request to generate a signature

sequence or a signed NA sequence to the NA authentication system.

[00265] In some embodiments the application 9 2 can include additional input dialogs,

such as the dialog 1942 shown in FIG. 22A, to permit the user to specify the location of insertion

of the signature NA sequence within the original NA sequence. In some embodiments, the dialog

942 can also additionally accept the number of nucleotide bases that can be corrected if in error.

As described above the user can use the “Submit” button to submit and/or initiate one or more

processes associated with generating a signature sequence or generating a signed version of the

original NA sequence. The application 9 2 can present a message panel, for example, the panel

946 in FIG. 22B, alerting or confirming the status of the submission or the request and/or the

results of the submission. For example, the generated signature can be automatically saved a

local folder in the user device and the message may provide the file path or location of the file

containing the signature sequence or the signed version of the NA sequence. In case of error

correction being carried out by the NA authentication system, m some embodiments, the system

ay provide a listing of the various nucleotide bases that were corrected. The system may in some

instance generate a summary listing the correction carried in various nucleotide sequences

including the original NA sequence, the ORCID sequence, the signature NA sequence and/or the

signed NA sequence. FIG. 23 illustrates and example panel 1956 of the application 1912, listing

the errors corrected during generation of a signed NA sequence, according to an example instance.

00266 As disclosed above, the user can use the application 1912 to upload an unknown

NA sequence claiming to be of a particular, known source or author, and use the NA authentication

system to validate the claim. In some instances the system may reject the claim by identifying then

sample sequence to be invalid or not similar to the sequence of the particular source or author.

FIG. 24A illustrates an example control panel 1962 that can be configured to accept a sample

sequence claiming to be signed by the known author. For example, a file containing the sample

sequence can be uploaded by locating a filepath using suitable control items (e.g. button “Signed

File”) and initiating the verification process (e.g. by activating the “Verify Signature” button). The

application 1912 may find the signed NA sequence invalid as indicated by the message 1966 in

FIG. 24B In some instances, however, the system may successfully validate the authenticity' of

the signed NA sequence to be matching the expected sequence, such that the application may-

report the successful verification through a message panel such as the panel 1968 in FIG. 24C.

[00267] As used in this specification, the singular forms “a,” “an,” and “the” include plural

referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is

intended to mean a single member or a combination of members, “a material” is intended to mean

one or more materials, or a combination thereof.

[00268] As used herein, the term “sample” refers to a composition that contains an analyte

or analytes to be analyzed or detected or used otherwise. A sample can be heterogeneous,

containing a variety of components (e.g., different NA molecules) or homogenous, containing one

component. In some instances, a sample can be naturally occurring, a biological material, and/or

a man-made material. Furthermore, a sample can be in a native or denatured form. In some

instances, a sample can be a single cell (or contents of a single cell) or multiple cells (or contents

of multiple cells), a blood sample, a tissue sample, a skin sample, a urine sample, a water sample,

and/or a soil sample. In some instances, a sample can be from a living organism, such as a

eukaryote, prokaryote, mammal, human, yeast, and/or bacterium or the sample can be from a virus.

In some instances, a sample can be one or more stem cells (e.g., any cell that has the ability to

divide for indefinite periods of time and to give rise to specialized cells). Suitable examples of

stem cells can include but are not limited to embryonic stem cells (e.g., human embryonic stem

cells (hES)), and non-embryonic stems cells (e.g., mesenchymal, hematopoietic, induced

pluripotent stem cells (PS cells), or adult stem cells (MSC)).

[00269] The user devices or central authority devices or NA authentication devices

disclosed herein can be any suitable electronic devices. For example, in some embodiments, the

electronic device can be a personal computer (PC), a personal digital assistant (PDA), a smart

phone, a laptop, a tablet PC, a server device, a workstation, and/or the like. The electronic device

can include at least a memory, a processor, a network interface, and an output device. For example,

some embodiments, the output device can be any suitable display that can provide at least a

portion of a user interface for a software application (e.g., a mobile application, a PC application,

an internet web browser, etc.) installed on the electronic device. In such embodiments, the display

can be, for example, a cathode ray tube (CRT) monitor, a liquid crystal display (LCD) monitor, a

light emiting diode (LED) monitor, and/or the like. In other embodiments, the output device can

be an audio device, a haptic device, and/or any other suitable output device. The network interface

can be, for example, a network interface card and/or the like that can include at least an Ethernet

port and/or a wireless radio (e.g., a WiFi® radio, a Bluetooth® radio, etc.). The memory can be,

for example, a random access memory (RAM), a memory buffer, a hard drive, a read-only memory

(RDM), an erasable programmable read-only memory (EPROM), and/or the like. The processor

can be any suitable processing device configured to run or execute a set of instructions or code.

For example, the processor can be a general purpose processor, a central processing unit (CPU),

an accelerated processing unit I . and Application Specific Integrated Circuit (ASIC), and/or

the like. The processor can be configured to run or execute a set of instructions or code stored in

the memory associated with using, for example, a PC application, a mobile application, an internet

web browser, a cellular and/or wireless communication (via a network), and/or the like, as

described in further detail herein.

[00270] Various terms are used herein and in the appended claims to describe, for example,

various parts, portions, layers, etc. of an interaction between a user of an electronic device and a

user of a different electronic dev ice. For example, the terms “communication” and “message” and

“information” can be used interchangeably and refer generally to data being sent, in substantially

one direction, from a user of an electronic device to a user of another electronic device. By way of

example, a communication or message from a user of a first electronic device to a user of a second

electronic device can be an email, a voice message, an instant message (IM), an SMS, and/or the

like, as described herein. A response to the email from the user of the second electronic device to

the user of the first electronic device can similarly be referred to as a communication or message

or information.

00271 As used herein, the terms “modality,” “communication mode,” and “channel” can

be used interchangeably and refer generally to one or more modes of communication using, for

example, one or more electronic devices. Such modes of communication can be associated with a

specific format (e.g., a data unit format) that, in some instances, can be unique to that mode of

communication (e.g., a different protocol, a different data unit structure or arrangement, etc.). For

example, a cellular telephone (e.g., a smart phone) can send a communication to another cellular

telephone using a short message service (SMS) modality. Thus, when referring to a modality or

channel it should be understood that the modality or channel includes, defines, and/or otherwise is

associated with a data unit format suitable for transmission of data via that communication mode.

[00272] As used herein the term “data processing unit” or “processor” or “Input/Output

unit” or a “Communicator” can refer to, for example, any computer, electronic switch, switch

fabric, portion of a switch fabric, router, host device, data storage device, line card, backplane or

the like used to process, transmit and/or convey electrical and/or optical signals. An I/O unit or a

communicator can include, for example, a component included within an electronic

communications network. In some embodiments, for example, a data processing unit can be a

component included within or forming a portion of a core switch fabric of a data center. In other

embodiments, a processor or I/O unit can be an access switch located at an edge of a data center,

or a host or peripheral device (e.g., a server) coupled to the access device. For example, an access

switch can be located on top of a chassis containing several host devices

[00273] As described herein, the term "nucleic acid," refers to a molecule comprising one

or more nucleic acid subunits. In some embodiments, a “nucleic acid molecule” refers to the

phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidme;

“RNA molecules”) or deoxynbonucleosides (deoxyadenosine, deoxyguanosme, deoxythymidine,

or deoxycytidme: “DNA molecules”), or any phosphoester analogs thereof. Such as

phosphorothioates and thioesters, in either single stranded form, or a double-stranded helix. In

other words, a nucleic acid may be single-stranded and/or double-stranded. Nucleic acids comprise

"nucleotides", which, as used herein, can include those moieties that contain purine and pyrimidine

bases, and modified versions of the same. Such modifications can, for example, include methylated

purines or pyrimidines, acylated purines or pyrimidines, alkylated riboses or other heterocycles.

In addition, the term "nucleotide" or "polynucleotide” includes those moieties that contain hapten

or fluorescent labels and may contain not only conventional ribose and deoxynbose sugars, but

other sugars as well.

00274 A "polynucleotide' or “nucleotide sequence' is a series of nucleotide bases (also

called “nucleotides' in a nucleic acid, such as DNA and RNA, and means any chain of two or more

nucleotides. A nucleotide sequence typically carries genetic information, including the information

used by cellular machinery' to make proteins and enzymes. These terms include double or single

stranded genomic and cDNA, RNA, any synthetic and genetically manipulated polynucleotide,

and both sense and anti-sense polynucleotide (although only sense stands are being represented

herein). This includes single- and double-stranded molecules, i.e., DNA-DNA, DNA-RNA and

RNA-RNA hybrids, as well as “protein nucleic acids’ (PNA) formed by conjugating bases to an

amino acid backbone. This also includes nucleic acids containing modified bases, for example

thio-uracil, thio-guanine and fluoro-uracil.

[00275] Modified nucleosides, nucleotides or polynucleotides can also include

modifications on the sugar moiety, e.g., wherein one or more of the hydroxyl groups are replaced

with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like. Double

stranded DNA-DN A, DN A-RNA and RN A-RNA helices are possible. The term nucleic acid (NA)

molecule, and in particular DNA or RNA molecule, refers only to the primary and secondary

structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term

includes double-stranded DNA found, inter alia, in linear (e.g., restriction fragments) or circular

DNA molecules, plasmids, and chromosomes. In discussing the structure of particular double-

stranded DNA molecules, sequences may be described herein according to the normal convention

of giving only the sequence in the 5' to 3' direction along the non-transeribed strand of DNA (i.e.,

the strand having a sequence homologous to the mRNA) “recombinant DNA molecule” is a

DNA molecule that has undergone a molecular biological manipulation.

[00276] The terms "polynucleotide", "nucleotide”, "nucleotide sequence", "nucleic acid",

“NA sequence” , “sequence” and "oligonucleotide" are used interchangeably. They refer to a

polymeric form of nucleotides of a ' length, either deoxyribonucleotides or ribonucleotides, or

analogs thereof. Polynucleotides may have any three dimensional structure, and may perform any

function, known or unknown. The following are non-limiting examples of polynucleotides: coding

or non-codmg regions of a gene or gene fragment, loci (locus) defined from linkage analysis,

exons, intrans, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA

(siRNA), short-hairpm RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant

polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence,

isolated RNA of any sequence, nucleic acid probes, and primers. The term also encompasses

nucleic-acid-like structures with synthetic backbones. As disclosed above, a polynucleotide may

compnse one or more modified nucleotides, such as methylated nucleotides and nucleotide

analogs. If present, modifications to the nucleotide structure may be imparted before or after

assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide

components. A polynucleotide may be further modified after polymerization, such as by

conjugation with a labeling component.

00277 As used this specification, a “sequence” refers to any suitable portion of data

related to sequence information regarding a nucleic acid molecule. For example, sequence can

refer to a DNA or RNA sequence, such as, information about the sequence of nucleotide bases or

sequence of base pairs, and/or the like. In some instances, the verb form “sequence” or

“sequencing” used in this specification refers to the act of obtaining the sequence information of a

nucleic acid molecule.

[00278] A netw'ork can be, for example, a local area network (LAN), a wide area network

(WAN), a metropolitan area network (MAN), a worldwide interoperability for microwave access

network (WiMAX), a telephone network (such as the Public Switched Telephone Network (PSTN)

and/or a Public Land Mobile Network (PLAIN)), an intranet, the Internet, an optical fiber (or fiber

optic)-based network, a virtual network, a cellular network, and/or any other suitable network.

Moreover, the network can be implemented as a wired and/or wireless network. In some

embodiments, the network can include one or more networks of any type such as, for example, a

LAN and the Internet.

[00279] A communication device or communicator can be any suitable device that can

communicate with the network (e.g., any or the data processing units described above, and/or any

combination or part thereof). Moreover, the communication device can include one or more wared

and/or wireless interfaces, such as, for example, Ethernet interfaces, optical carrier (OC) interfaces,

and/or asynchronous transfer mode (ATM) interfaces. In some embodiments, the communication

device can be, for example, a network interface card and/or the like that can include at least an

Ethernet port and/or a wireless radio (e.g., a WiFi ® radio, a Bluetooth ® radio, etc.).

00280 A memory can be, for example, a random access memory (RAM), a memory buffer,

a hard drive, a read-only memory (ROM), an erasable programmable read-only memory

(EPROM), and/or the like. In some embodiments, the memory can be configured to store, for

example, one or more modules that can include instructions that can cause a processor to perform

one or more processes, functions, and/or the like.

[00281] A processor can be any suitable processing device configured to run or execute a

set of instructions or code such as, for example, a general purpose processor (GPU), a central

processing unit (CPU), an accelerated processing unit (APU), an application specific integrated

circuit (ASIC), a network processor, a front end processor, a field programmable gate array

(FPGA), and/or the like. As such, a memory can store instructions to cause the processor to execute

modules, processes, and/or functions associated with NA authentication, for example.

[00282] A database can be, for example, a table, a repository, a relational database, an

object-oriented database, an object-relational database, a structured query language (SQL)

database, an extensible markup language (XML) database, and/or the like. In some embodiments,

the database can be configured to store data such as, for example, unique user identifiers within a

NA authentication system, user information indexed by user identifiers, sequence information,

cryptographic function information, cryptographic mapped values, and the like.

[00283] Some embodiments described herein relate to a computer storage product with a

non-transitory computer-readable medium (also can be referred to as a non-transitory processor-

readable medium) having instructions or computer code thereon for performing various computer-

implemented operations. The computer-readable medium (or processor-readable medium) is non-

transitory in the sense that it does not include transitory propagating signals per se (e.g., a

propagating electromagnetic wave carrying information on a transmission medium such as space

or a cable). The media and computer code (also can be referred to as code) may be those designed

and constructed for the specific purpose or purposes. Examples of non-transitory computer-

readable media include, but are not limited to, magnetic storage media such as hard disks, floppy

disks, and magnetic tape; optical storage media such as Compact Disc/Digital Video Discs

(CD/DVDs), Compact Disc-Read Only Memories (CD-ROMs), and holographic devices;

magneto-optical storage media such as optical disks; carrier wave signal processing modules; and

hardware devices that are specially configured to store and execute program code, such as

Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-

Only Memory (ROM) and Random-Access Memory (RAM) devices. Other embodiments

described herein relate to a computer program product, which can include, for example, the

instructions and/or computer code discussed herein.

00284 Some embodiments and/or methods described herein can be performed by software

(executed on hardware), hardware, or a combination thereof. Hardware modules may include, for

example, a general-purpose processor, a field programmable gate array (FPGA), and/or an

application specific integrated circuit (ASIC). Software modules (executed on hardware) can be

expressed in a variety of software languages (e.g., computer code), including C, C++, Java™,

Ruby, Visual Basic™, and/or other object-oriented, procedural, or other programming language

and development tools. Examples of computer code include, but are not limited to, micro-code or

micro-instructions, machine instructions, such as produced by a compiler, code used to produce a

web service, and files containing higher-level instructions that are executed by a computer using

an interpreter. For example, embodiments may be implemented using imperative programming

languages (e.g., C, Fortran, etc.), functional programming languages (Haskell, Erlang, etc.), logical

programming languages (e.g., Prolog), object-oriented programming languages (e.g., Java, C++,

etc.) or other suitable programming languages and/or development tools. Additional examples of

computer code include, but are not limited to, control signals, encrypted code, and compressed

code.

[00285] While various embodiments have been described and illustrated herein, it is to be

understood that a variety of other tools, means, and/or structures for performing the functions

and/or obtaining the results and/or one or more of the advantages described herein, and each of

such variations and/or modifications, is within the scope of the disclosure and example

embodiments described herein. More generally, it is to be understood that all parameters,

dimensions, materials, and configurations described herein are provided as illustrative examples,

and that the actual parameters, dimensions, materials, and/or configurations can depend upon the

specific application or applications for which the disclosed teachings is/'are used/implemented.

Many equivalents to the specific example embodiments described herein are readily recognizable

and/or can be ascertained using no more than routine experimentation. It is, therefore, to be

understood that the foregoing embodiments are presented by way of example only and that, within

the scope of the disclosure and equivalents thereto, and further embodiments within the scope of

the disclosure can be practiced otherwise than as specifically described and/or claimed.

Embodiments of the present disclosure are directed to each individual feature, system, article,

material, kit, and/or method described herein. In addition, any combination of two or more such

features, systems, articles, materials, kits, and/or methods, if such features, systems, articles,

materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the

present disclosure.

00286 The above-described embodiments can be implemented in any of numerous ways.

For example, the embodiments or portions thereof can be implemented using hardware, software,

and/or a combination thereof. When implemented in software, the software code can be executed

on any suitable processor or collection of processors, whether provided in a single computer or

distributed among multiple computers/servers/compute devices. Such computers may be

interconnected by one or more networks in any suitable form, including a local area network or a

wide area network, such as an enterprise network, and intelligent network (IN) or the Internet.

Such networks may be based on any suitable technology and may operate according to any suitable

protocol and may include wireless networks, wired networks or fiber optic networks.

[00287] The various methods or processes outlined herein may be coded as software that is

executable on one or more processors that employ any one of a variety of operating systems or

platforms. Additionally, such software may be written using any of a number of suitable

programming languages and/or programming or scripting tools, and also may be compiled as

executable machine language code or intermediate code that is executed on a framework or virtual

machine.

[00288] In this respect, various disclosed concepts can be embodied as a computer readable

storage medium (or multiple computer readable storage media) (e.g., a computer memory, one or

more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit

configurations in Field Programmable Gate Arrays or other semiconductor devices, or other non-

transitory medium or tangible computer storage medium) encoded with one or more programs that,

when executed on one or more computers or other processors, perform methods that implement

the various embodiments of the invention discussed above. The computer readable medium or

media can be transportable, such that the program or programs stored thereon can be loaded onto

one or more different computers or other processors to implement various aspects of the disclosure

as discussed above.

[00289] The terms “program” or “software” are used herein can refer to any type of

computer code or set of computer-executable instructions that can be employed to program a

computer or other processor to implement various aspects of embodiments as discussed above.

Additionally, it should be appreciated that according to one aspect, one or more computer

programs that when executed perform methods of the present invention need not reside on a single

computer or processor, but may be distributed in a modular fashion amongst a number of different

computers or processors to implement various aspects of the present.

[00290] Processor-executable instructions can be in many forms, such as program modules,

executed by one or more compute devices, and can include routines, programs, objects,

components, data structures, etc. that perform particular tasks or implement particular data types,

and the functionality can be combined and/or distributed as appropriate for various embodiments.

[00291] Data structures can be stored in processor-readable media in a number of suitable

forms. For simplicity of illustration, data structures may be shown to have fields that are related

through location in the data structure. Such relationships can likewise be achieved by assigning

storage for the fields with locations in a processor-readable medium that conveys relationship

between the fields. However, any suitable mechanism/tool can be used to establish a relationship

between information in fields of a data structure, including through the use of pointers, tags, and/or

other mechanisms/tools that establish relationship between data elements.

[00292] Various disclosed concepts can be embodied as one or more methods, of which

examples have been provided. The acts performed as part of a particular method can be ordered in

any suitable way. Accordingly, embodiments can be constructed in which acts are performed in

an order different than illustrated/discussed, which can include performing some acts

simultaneously, even though shown as sequential acts in illustrative embodiments.

[00293] All definitions, as defined and used herein, should be understood to control over

dictionary definitions, definitions in documents incorporated by reference, and/or ordinary

meanings of the defined terms. The use of flow' diagrams and/or “step” language/terminology is

not meant to be limiting with respect to the order of operations performed. The herein described

subject matter sometimes illustrates different components contained within, or connected with,

different other components t is to be understood that such depicted architectures are exemplary'

and not limiting, and that any other architectures can be implemented which achieve the same or

similar functionality and are within the scope of the disclosure. In a conceptual sense, any

arrangement of components to achieve the disclosed functionality is effectively “associated” such

that the desired functionality is achieved. Hence, any two components herein combined to achieve

a particular functionality can be seen as “associated with” each other such that the desired

functionality is achieved, irrespective of architectures or intermediate components. Likewise, any

two components so associated can also be viewed as being “operabiy connected,” or “operably

coupled,” to each other to achieve the desired functionality, and any two components capable of

being so associated can also be viewed as being “operably eouplable,” to each other to achieve the

desired functionality. Specific examples of operably eouplable include but are not limited to

physically mateable and/or physically interacting components and/or wirelessly interactable

and/or wirelessly interacting components and/or logically interacting and/or logically interactable

components. The indefinite articles “a” and “an,” as used herein in the specification and in claims,

unless clearly indicated to the contrary, should be understood to mean “at least one.”

[00294] The phrase “and/or,” as used herein, is to be understood to mean “either or both”

of the elements so conjoined, i.e., elements that are conjunctively present in some cases and

disjunctively present other cases. Multiple elements listed with “and/or” should be construed in

the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally

be present other than the elements specifically identified by the “and/or” clause, whether related

or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference

to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can

refer, in one embodiment, to A only (optionally including elements other than B); in another

embodiment, to B only (optionally including elements other than A); in yet another embodiment,

to both A and B (optionally including other elements); etc.

[00295] As used herein, “or” is to be understood to have the same meaning as “and/or” as

defined above, unless context clear indicates otherwise. For example, when separating items in a

list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but

also including more than one, of a number or list of elements, and, optionally, additional unlisted

items. Only terms clearly indicated to the contrary , such as “only one of’ or “exactly one of,” or,

when used in claims, “consisting of,” will refer to the inclusion of exactly one element of a number

or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating

exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity,

such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when

used in the claims, shall have its ordinary meaning as used in the field of patent law.

00296 As used herein, the phrase “at least one,” in reference to a list of one or more

elements, is to be understood to mean at least one element selected from any one or more of the

elements in the list of elements, but not necessarily including at least one of each and every element

specifically listed within the list of elements and not excluding any combinations of elements in

the list of elements. This definition also allows that elements can optionally be present other than

the elements specifically identified within the list of elements to winch the phrase “at least one”

refers, whether related or unrelated to those elements specifically identified. Thus, as a non

limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or,

equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally

including more than one, A, with no B present (and optionally including elements other than B);

in another embodiment, to at least one, optionally including more than one, B, with no A present

(and optionally including elements other than A); in yet another embodiment, to at least one,

optionally including more than one, A, and at least one, optionally including more than one, B

(and optionally including other elements); etc. It is to be understood that all transitional phrases,

such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,”

“composed of,” and the like are open-ended, i.e., to mean including but not limited to. Only the

transitional phrases “consisting of” and “consisting essentially of’ shall be closed or semi-closed

transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent

Examining Procedures, Section 2 .03

[00297] Although various embodiments and/or instances have been described as having

particular features, concepts, and/or combinations of components, other embodiments and/or

instances are possible having any combination or sub-combination of any features, concepts.

and/or components from any of the embodiments/instances described herein. For example, in some

instances the digital signature generated can have a plasmid ID but no author ID based on a unique

identifier. In some other instances, the signature NA sequence can include an error correction code

to account for potential errors, and an author ID or a unique identifier, but no plasmid ID. In some

embodiments, the signature NA sequence and/or the NA authentication system can be configured

to identify the information incorporated in the signature NA sequence. In some embodiments, the

system can use one or more suitable methods of marking a signature NA sequence to communicate

the format and content of the signature sequence. For example, the signature sequence can include

a marking that differentiates signature sequences including a plasmid ID, an author ID and an error

correction code from signature sequences including a plasmid ID and an error correction code, or

from those including an author ID and error correction code.

00298 While various embodiments have been described above, it should be understood

that they have been presented by way of example only, and not limitation. Where methods and

steps described above indicate certain events occurring in certain order, the ordering of certain

steps can be modified. Additionally, certain of the steps can be performed concurrently in a parallel

process when possible, as well as performed sequentially as described above. Although various

embodiments have been described as having particular features and/or combinations of

components, other embodiments are possible having any combination or sub-combination of any

features and/or components from any of the embodiments described herein. Where methods and/or

events described above indicate certain events and/or procedures occurring in certain order, the

ordering of certain events and/or procedures can be modified. Additionally, certain events and/or

procedures can be performed concurrently in a parallel process when possible, as well as

performed sequentially as described above.

APPENDIX -A

private String errStart null;
private String correctStart = null;

private String errFlasmidID = null;
private String correctPlasmidi — null;

private String errSign null;
private String correctSign ~ null;

private String errEnd = null;
private String correctEnd - null;

errStart — oidStart;
correctStart = newStart;

err las id D — oldplasrnid;
correctP Jas id -- nev;p asm ;

errSign = oldsign;
correctSign — newsign;

errECC — oldecc;
correctECC — newecc;

errEnd — oldEnd;
correctEnd = newEnd;

JTextArea textArea new extA re ()
textArea ,setBounds (10, 0, 413, 394) ;
contentPan .add (textArea);

return err is ;

noS gn en S n 1 . uc dK r iect 5537

package test;
public class EucildReturnObj ct6 537 {

// nu of errors
int nErr;

// abErrorLoc
short [] abErrLoc;

/ / ablambdaR

short [] abLambdaR;

// abOmegfa

short [abOmega;

public short [] getAbOmegfa () {
return abOmega;

public void setAbOmega (shor [] abOmega) {
this .abOmega — abOmega;

public short [J getAbErrLoc) {
return abErrLoc;

public short [j gfetAbLambdaR (

re t urn ab Lamb da R ;

e o g n G en o 3 ign , : a ra te 3 gn a t u re

p a c ka ge te st ;

i p ort jav x .swing.JFrame;

imp ort javax .swing .JPa e ;
i p ort java . i g.border .EmptyBorder ;
i p ort javax .swing. filechooser .FileSystemView;
imp ort javax. swing. JButton;
imp ort avax .sw in .JFileChooser ;
imp ort javax .swing .J ext ield;

p ort javax .swing.J abe1;
i p ort j va . g.JOpt o n ;
imp ort java .swing .SwingCons tants ;
i p ort java. awt. event .ActionListener;
im p ort java .io .File ;
imp ort ava .io .lOException ;
imp ort java w .event .ActionEvent ;

p ort o g . pa he .commons . a g3.StringUt il ;

p i ate static final o n g serialVersionUID — 1L;

i te JPan e 1 co n te t a n ;

riv e JTextField FileTextField;
riva e JT ex tF ie 1d DTe x tF ie 1d ;

private JLa ib S ig na tu re S ta r t ;

private JTextField sign 1a F e ;
pr ate JLab e 1 lblSignatureEn d ;
p i te JT ex tF ie Id sign End F e 1d ;

private JButton btnSubmit;

p riv e Biglnteger priv = null;
r va e E g te ge mod ll ;

privat JLab b N ew Lab e ;
private JTextField plasmidIDField;

}
);

btnSeieetFile .setBounds (0 , 3 , 9, 23) ;
contentPane .add (btnSeieetFile);

// Enter ORC of signer.
JLabel lblEnterld = new JLabel ("Enter ORCID") ;
IblEnterld. setHorizontalAl ignment (SwingConstants .CENTER) ;
lblEnterld. setBounds (10, 97, 89, 23) ;
contentPane. ad (lblEnterld) ;

// Enter signature end sequence
IblSignatureEnd new JLabel ("Signature End")
lblSignatureEnd. setHorizontalAlignment (SwingConstants .CENTER) ;
IblSignatureEnd .setBounds (10, 276, 89, 20) ;
contentPane. add (IblSignatureEnd) ;

signEndField new JTextField () ;

ignEndField . e t ound (3 , 276, 416, 20) ;
contentPane. add (signEndField)
signEndField .setColumns (10) ;

/ SUBMIT button
btnSubmit ~ new JButton ("SUBMIT");
btnSubmit. setBounds (259, 320, 89, 23) ;
contentPane. dd (btnSubmit) ;

IblNewLabel ne 7 JLabel("ID format : xxxx-xxxx-xxxx-xxxx");
IblNewLabel .setBounds (136, 128, 315, 14) ;
contentPane. add (IblNewLabel) ;

// Enter Plasmid ID
JLabel IblPlasmidlD new JLabel ("Enter PLASMID ID") ;
lbIPlasmidID. setBounds (20, 161, 102, 33) ;
contentPane .add (IblPlasmidlD) ;

plasmidlDField = new JTextField ();
plasmidlDField. setBounds (136, 167, 416, 20) ;
contentPane, add (plasmidlDField) ;
plasmidlDField. etC lumn (10) ;

/ error checks -- if fields are empty
if (FileTextField. getText () .isEmpty ()

JOptionPane .showMessageDialog (null , "NO FILE SELECTED",
"alert", JOptionPane .ERROR MESSAGE) ;

else if (IDTextField. getText () .isEmpty ()) {
JOptio e .showMes sage ia og (nu , "NO DENT Y PROVI DED" ,

"alert", JOptionPane .ERROR MESSAGE) ;
else if (plasmidlDField .getText () .isEmpty ())

JOpti onPane .showMessageDialog (nul , " O PLASMID ID
PROVIDED", "alert", JOptionPane .ERROR MESSAGE) ;

else if (signS artField .getText () . sEmpty () {
JO io e .showM sage D g (null , "NO A RT SEQUENCE

PROVIDED", a e r

JOptionPane. ERROR MESSAGE) ;
e se i (ignEndField ,getText () . Empty ())

JOpt onPane .shcwMess ageDialog (u , "NO END SEQUENCE
PROVIDED", "alert", JOptionPane .ERROR MESSAGE) ;

e e
i (!getFi ieExtens ion (leTextField .getText (),trim()).contains ("gb")) [

JOptionPane .showMessageDialog (null, "EXPECTED GENBANK FILE
.GB"

"\n PROVIDED FILE HAS EXTENSION
."AcfetFileExtension (FileTextField. getText ().trim!)), "alert", JOptionPane .ERROR MESSAGE) ;

/! error -- proceed
else (

String identity = IDTextField. getText () .tri);
tring f eContent - "";

Str i.ng start_seq =
signS tartField. getText ().trim().toLowerCase ();

String end seq =
ignEndFi eld .getText ().trim ().toLowerCase ();

String pia mid D -- plasmidlDField. getText () .trim) ;

/ fi e read and content is not empty

if (!fiieContent isEmpty (

/ extractDNASequence method to extract plasmid
sequence and descriptions fro

// ile .

String [] fileParts
extractDNASequence (fiieContent) ;

Soring content UptoOrigin = fileParts [0] ;
String sourceDNASequence ~ fileParts [1] ;

// provided signature scant sequence is not
present within plasmid sequence

if (sourceDNASequence ,contains (start seq)) {
Opt a e , h Mes ge ia1og (u 1

"START SEQUENCE IS ALREADY
PRESENT , CHOOSE DIFFERENT" , “alert

JOptionPane .ERROR MESSAGE} ;

// provided signature end sequence is not
present within plasmid sequence

else if (o rceDNASequence .contains (end seq)

JOptionPane. showMessageDiaiog (nul "END
SEQUENCE S ALREADY PRESENT. CHOOSE DIFFERENT

alert

JOptionPane. ERROR_MESSAGE) ;

proceed if above passed
e1se {

/ / start the signature algorithm

Messa e gest d ges
ry {

/ check for plasmid id -- numbers
y

int p smi idi t --

Integfer ,par e t (p as id ;
// pecify the hash fun ion " A -

2 6"
digest —

Mes sageDiges t .get Ins tance (" A -256" ;

digest, digest (sourceDNASequence. gfetBytes (

digest, digest (identity, getBytes } ;

Biglnteger msgHashlnt new
Biglnteger (1, msgHash)

Biglnteger idllashlnt = new

Biglnteger (1, idHash) ;

// extract the token for sigfning

from provided ORCID. ID d mod n
// Thi s ep done by CA, The

user wi l receive the token from CA
Biglnteger extractedPrivKey =

idHashIn .modPow (priv , mod ;

// signing step - (ID d
(m mod n

Biglnteger signaturelnt -
extracted rivKey .modPow (sgHashIntf m d

signaturelnt .toStrmg (2 };

// p dd g ext bits i f t
if needed

if in rySignatureString , engt ()
mod.bitLength ()) {

StringfBuilder sb ~ new
StringBuilder ();

for fint i = ; i <

(mod. bitLength () - binarySignatureString, length ()); i++)
s .append (" ");

String padding --

sb .toString ();
binarySignatureString =

paddin ,concat (b narySigna tureString);
1

// convertSignaturetoACGT converts
the signbature bits to ACGT

String dnaSignatureString —
convertSignat ret C T (binarySignatureString) ;

System, out , rin tl ("SIGNATURE
S EQU EN C E -- " + dnaSignatureString)

System. ou .println (" GNA E

SEQUENCE LENGTH = " + dnaSignatureString .length ());

// Convert RC D to ACGT

String identitySequence =
conver1 dentitytoAC-GT (iden tity ;

conve rtP asm id DtoACGT (p1asm id D ;

Sequence --- " + identitySequence) ;
System. out .println ("ORC ID

Sequence length = " + identitySequence .length ();
Sys tern .out .pr nt (" LA SM I

Sequence -- " + piasmidIDSequence) ;
System, ut .println "PLASMID ID

Sequence length " + piasmidIDSequence .length ());

// create the final string by
combining ORCID PLASMID ID SIGNATURE SEQUENCE

String dnaIdSignatureString —

identitySequence .concat (piasmidIDSequence)

.concat (dnaSignatureString) ;

+ SIGNATURE SEQUENCE- " dnaldSignatureString) ;
System, u .println ("ORC ID +

PLASMID ID + SIGNATURE SEQUENCE LENGTH - "

dnaldSignatureString. length ());*/

ing input file -
Ei eTextEie .getText (). rim ();

// Opens the Signature Placement
ame where us wi provide position

// auto open, no clicks needed,

// pass sourceDNASequence,
start seq , dnaIdSignatureString

// end se , conten Upto0rigi ,
identity, inputfile to the frame

SignaturePlacement sp new
Signature iacement (urceDNA Sequenc , start seq

pIasm id , end se ,
contentUptoOrigin .identity, input i e ,pri v ,mod)

sp.setVisible (true)
// close the current sign message

ame .
w .dispose

. DOES NOT CONTAIN KEYWORD ORIGIN
"alert ",

JOptionPane. ERROR_MESSAGE) ;
}

// file read successfully but no content / empty file,
else

JOptionPane .showMessageDialog (ul , "EMPTY F E",
alert", JOptionPane. ERROR MESSAGE) ;

}

/ / Match keyword "ORIGIN"
while (match .find ())

System, ou .println ("Found ORIGIN at index + match, start () + " -- " +
(match, end () - 1));

/ temporary main sequence

tempSeq — fileContent .substring (match. end f leContent .length ());
// descriprions
contentuproorigin = fileContent .subs tring (, match .start ());

String validSeq = StringUtils .substringBefore (tempSeq, "//") ;

char[] seqarray ~ validSeq .toCharArray);

St g u Ider sb new StringBuilder);

String [output == new String 2] ;
output [0] — contentuptoorigin;
output [1] = equence ;

return output;

private static String getFileSxtension (String fileName)
if (i eName . astlndexOf (".") != - & fi eNarne . astlndexOf ("."))

r t rn fileName .s bs ring (fileName .las tlndexOf (".";+!) ;
e1se return "’;

ac age tes ;
public class GenLambdaReturnOb ect 3 ί

int nDLambda;

short [j abDLambda ;

public int getnDLarnbda ({
return nDLambda:

public void setnDLambda (int nDLambda) {
this .nDLambda -- nDLambda ;

public short [J getAbDLambda {) {
return abDLambda ;

}

ac age es ;

m p ort java . t .Event-Queue

i p ort javan .swing ,JFram ;

i p t j va . w g .JOpt io ;

i p ort javax, swing. JButton;

i p ort java. awt. event .ActionListener;

i ip ort java .mat . gIntege ;

m p o t v .awt .event . ct nEve t

/ *

* ^author Diptendu
*

Mai App 1i a i .

* Contains 3 buttons - Keygen, Sign Message and Verify Signature

V
public class GenoSIGNDemoApp i

public Bigflnteger rsa private null;
public Big Integer rsa modulus = nu
pub c Big teger a public -- nu l

private JFrame frmSamplelbsScheme;

* Launch the application.

pub ic sta tic vo d ma n (tri g [] args) {

System. u .println ("START"); / for logging and error tracing
ventQueu . nvok ate (new Runnable ({

public vo d ru (
try {

GenoSIGNDernoApp v n d o v; new GenoSIGNDemoApp ();
window. frmSamplelbsScheme .setVisible (true) ;

catch (Exception e)

e printStackTrace ();

}

Create the app i on .

public GenoSIGNDemoApp () {
initialize ();

/**
* Initialize the contents of the frame. 3 buttons "KEYGEN", "SIGN" and "VERIFY".

private void initialize () i
frmSamplelbsScheme --- new JFrame ();
frmSamplelbsScheme .setTitle "GenoSIGN 2 .0 V4 ");
frmSamplelbsScheme .setBounds (100, 0 , 469, 310);
f m S m e sScheme . tDefaul tCl e p o (JFrame .EX _ON_CLO ;
frmSamplelbsScheme. getContentPane ().setLayout (null) ;

// KEYGEN SIMULATES THE CENTRAL AUTHORITY. PARAMETERS ARE FIXED FOR POC PURPOSE.

JButton btnKeygen -- new JButton ("KeyGen");
btnKeygfen. addActionLis tener (new ActionListener ()

public void actionPerformed (ActionEvent e)

System. out. rintl ("IN KEY GEN") :
rsa private = new Biglnteger(

GenoSi GenoSig 2 . s 55 7

pac ge test

import ava .util. ArrayLis t;

p rt a a .ut .A ays;
import java .uti .List ;

/*DO NOT CHANGE ANY PARAMETER VALUES* /

public class rs60537 {

static final int POLY --- x l Ob ; // G (553) p y o 1

static final short ALPHA ~ 0x02; // alpha for GF(65536)
st t c fi al ho t F R = 01 ; // first consecutive root 1 o r ALPHA)

shor encodedBytes Encode (NPARITY, data, paramlist) ;

System. u .println ("\ S ENCODED BYTES \n");
Sy tern. out p i t n (A ays .t t i encodedBytes));

//System, ut .println " \nRS ENCODED DATA STRING T new St ring (encodedBytes);

long endtime System, currentTimeMillis () ;
Sy tem. ut .println ("Time to complete - "+ {endtime ~ starttime)÷ ms") ;

//
// InitGF initialize Ga i s Stuff //

static short[] RootPPoiy (short] abGenPoly, short] abGenRoots, short[] abExp, short[]
abLog, int NPARITY) {

int , j ;

A rrays .fi 1 (abGenPo y, (short) 0);
abGen o y 0] -- J
for (j - G; j < NPARITY; ++)

for (i = ; i >= 0 ; i—)
abGenPoly [i 0x1] = GFSub (abGenPoly [i + 0x1], GFMpy (abGenPoly [i],

abGenRoots [], abExp, abLog));

ί

return abGenPoly;

// ii
/./ GFAdd(bO, bl) b +b //
ii II

static short GFAcid (short bO, short bl) i
return ((short) (bO bl) ;

static short GFSub (short bO, short bl) i
return ((short) (bO bl) ;

static short [] Encode (int NPARITY, Soring data, Listdshoro > paramlist)
int i , j ;

int NDATA = data .length () ;
short bQuot; quotient byte
short [i abCdWrd ~ new short (NPARITY + NDATA.];

byte tempDataba = d ta ,g tes ();

for (int d 0 ; d < NDATA; d++) {
abCdWrd [d] = tempDataba [d] ;

shor [] abParities = ne short [NPARITY] ;
short bRemO, bReml; // partial remainders
Arrays fill (abParities , (short) 0); // generate parities
short abGenPoly - paramlist get (3);

abParities [i] = bReml;

for (i = 0 ; i < NPARITY; i++) // append parities
abCdWrd [NDATA i] = GFSub ((short) 0 , abPa rities i]);

return abCdWrd;

// //
// Decode //

// //
static short [Decode (short] abCdWrd, int NPARITY, List<short []> paramlist)

syndromes

EuclidReturnObject65537 ero Euclid (NPARITY, abSyndromes, paramlist, NCDWRD) ;//
Euclid

GenLambdaReturnOb ject65L37 gro -- GenLambda (ero. getnErr (), ero .getAbLambdaR (),
A R TY)

short [abForney = Forney (paramlist , NPARITY, ero, gro) ; // Forney

i) param is get (0), par rnl is .ge ()),

p am ge (0) ,

paramlist „qet (1)));

return bForney;

FM p y (abGenKoo t [j , a Syndromes [j] , p .get (),

paramlist .get ()));

}

retur ab Syn d o e

// / /
// Euclid extended Euclid division algorithm //

// generates a series of polynomials: //

// A [i]S (+ B [i] (t) R [//

/ / where the degree of R[iJ decreases with each iteration //

// until degree <— M¾XERR, then A[iJ ~ Lambda, R [Omega //

// abEO, abEl: left side contains R [//

// abEO, ab right de conta s reversed A[] //
// iEO, iEl: index to end of R[], start of A [//

// //
static EuclidReturnObject.65537 Euclid (int NPARITY, short!] abSyndromes, List sho t []>

paramlist, int NCDWRD)
int i ;

short bQuot; // quotient
// E0.R [-J] x MAX ERR, E0.A[0] 1
int NP1 = NPARITY + 1 ;

int NP2 NPARITY 4 2 ;

int iEO NP1;

short!] abET;
int iE ;
short [] abLambdaR = n e v short [NP1];
short [abOmega — nev; o t NP];
int MAX ERR NPARITY 2 ;

short[] abErrLoc = nev; short [NPARITY] ;
short!] abEO = new short [NP2];
short!] abEl = nev; short N 2 ;

// //
// GFDiv (bO, bl) bO/bl /
// //

static short GFDivishort bO, short bl, short] abE p , short:] abLog) {
f (bl 0)

System. u .println ("divide by zero") ;
return ((short) 0 ;

if (bO == 0)

return ((short) 0) ;
return (abExp [(abLog ib & ffffJ & Oxffff) - (abLog[bl Cxffff] & Oxffff

n o

i t i , j ;

s t // cu e t locator
short m ; // current sum

return null;
iDst = 0 ;

o 1 ;

for (j = C ; j < CDW D ++)
bSum ~ 0 ; // sum up terms
for (i = 0 ; i <= n ; i++) {

bSum = GFMpy (bSum, bLoc, p ramlist .get (ϋ paramlist .get ());
bSum GFAdd(bSum, abSrc i])

if (b n ===== 0) // if a root
if (iDst > n) { // exit f too many roots

return (null)

abDst [iDst oc ; // append at r
iDst++;

}
bLoc GFMpy (L c , ALPHA, pa am li t. e (), paramlist, get (1));

} // advance locator
if (iDst != n // exit if not enough roots

return (null) ;
return abDst; / / indicate s c ce s

)

G en o i g n G e n o 3 gn 0\ n a tu re 1 a c ernen t

ρ a c a g t s t

im p o java .aw .Window;

import avax .sw in .JFrame ;

i p o r t avax .s ing ,JPanel ;

import va . wi g ,b de , mp y o de ;

im p o - java . i g .J a e ;

import javax, swing. JOptionPane;

imp r t javax, swing. JTextField;

im p o t javax .s ing .JButton

import ava a v t ,event .A c istener ;

import java =i . i e ;

import java ,io .Fi1eWrite ;

import- java .io .IGException ;

import ja a .m h . ig teger;

i p o r t jav . e y . essageD gest;

import java .security. NoSuchAlgorithmException;

import ava , til .ArrayLis t ;

import ava .util. rray

import java ut .LinkedKashSe ;

import- java .uti .List ;

import java .util .Set ;

i p o r t jav . t 1 . ege . atc e ;

import java . t .regex . atter

import ava ,a t .event .A ct Event ;

import avax .swing , Manage ;

import javax . wi g ,JTextPane ;

Sys ern . ut p rin I (" N SIGN PLACEMENT") ; / debug
origina DNA Sequen e — o r gD A ;
plasmidid ~ piasmidID;

signStartDelim = start .toLowerCase (;

signEndDelim end. toLowerCase ();
contentuptoo r g in content

orcid signer!D;

JLabei IblNewLabel -- new JLabel ("Enter the location where you want to put the
signature ." ;

IblNewLabel. e B ds (10, 11, 395, 42) ;
contentPane .add (IblNewLabel)

JLabel IblNewLabel I = new JLabel (

"The original sequence contai r originalDNASequence .lengt +

base pairs .") ;
IblNewLabel .setBounds 10, 48, 395, 14) ;

contentPane .add (blNew abe 1);

JTextPane errorCorrectionText -- new JTextPane ()
errorCorrectionText .setBackground (UIManager .getCoior ("Button .background"));
errorCorrectionTex setEditab e (fa1 se);
errorCorrectionText .setContentType "text/html ");
errorCorrectionText .setText ("<htmlxb>Enter the number of bases that you want to

be corrected .
+ "The error tolerance limit is up to this number of

bases .</html>");
errorCorrecti onText .setBounds (1 , 213, 1 , 92) ;
contentPane ,add (errorCorrectionText);

numofErrorField new JTextField () ;
numofErrorField .setBounds (5 , 316, 86, 20) ;
contentPane. add (numofErrorField) ;
numofErrorField. setColumns (10) ;

JButton btnSubmit new JButton ("SUBMIT”);
btnSubrnit .setBounds (, 382 , 89, 23) ;
contentPane. dd (btnSubmit) ;

int errornum — integer .parselnt (numberofErr);
position is within the range of bases in the

p asm i
i (ignatu e oca ion > signat Locati

<= originalDNASequence .length () T 1)

(e num ----)

JOptionPane . ho sage Dialog (u
"You have selected 0

error tolerance. C i k OK to proceed.”, " f "

JOptionPane .INFORMATION MESSAGE) ;

origrmalDNASequence .length () (
// get e re location om

des c tio
// feature location pattern -

12 ..240 i .e . int ..int
St] l e upt ig -

contentuptoorigin .split \n" ;
ArrayList<String> linesasList =

new A rra t<S r gs

Arrays asLi ne uptoOrigin);
int featureLocation = 0 ;

/ rem ov g the l es which
contains the keyword "source"

A ay t<Str g>

]. nesasListwosource = ne A .rray ist<String>);

inesas Listw’os our ce .add s);

/ print to check the updated
content

String annotationsWOsource =
S ri g, i (\n" inesas Lis twos ou);

System. ut .println ("\n
ANNOTATIONS WITHOUT KEYWORD source *** \n") ;

Sys te .out .println (annotationsWOs ource

Pattern pattern =
Pattern .compile " [0-9] +\\. \\ .[0-9] +") ;

L < t ng> tFeaturesAll new
A y t<St ng> ()

Matcher m ~

pattern .matcher (annotationsWOsource) ;

wh e (m. fi d () {

i tFeaturesAll add (m. group ());

Sys te .out .println lis tFeatures ll);

// de-duplicating feature list

Set<String> hsl = new
LinkedHashSe l s eat e All ;

List<String> listFeatures = new
ArrayLis to hs1);

y tem . .println "After de l ate
removal: \n" + listFeatures ;

boolean is o a nCo ision —
e

boolean isLocationSameAsStart =

//isolate start and end location

o f each feature for collision detection 'with

//p rovided position

for (String f : listFeatures) {
String [] feature

. i (). p t "\\ ..");
int start —

Integer .parselnt (eatur [0] ;
i end —

ntege .parselnt (feature [1])

if ((start == 1 && end ==

origins IDNASequence .length ())

originalDNASequence length (ά & end ~ ~ 1) {

// ip e total

no. f ba es fea ur
co t ue ;

} else {

if
{signatu relocation > start signa tu reLocation <-- end)

else if

(sigrnatureLocation ~ ~ start) {

isLocationSameAsSta t tru ;

}
}
// position co iding with a

feature location

if (isLocationCollision) {

JOp tion ane .show essageDia Iog (u

’’THE PROVIDED

Opt o Pa . o M age ia og (nu

T

PROVIDED POSITION IS SAME A S START O ’ A FEATURE\n CLICK OK TO PROCEE

"alert", JOpti n an .ERROR MESSAGE) ;

// GENE PAT E ERROR

CORRECTION SEQUENCE

// ADD THE ECC SEQUENCE

WITHIN THE SIGNATURE PART

l NOW THE S GN SEQUENCE

CONTAIN -- ORCID i PLASMID ID + SIGNATURE + E
// ALL ΤΗ S WILL BE PLACED

WITHIN THE DELIMITERS

t i g finaiSign w h e1
- nu

String eccACGTString =
null;

String sequencer oSign —
null

// t g the o i
quence r s gna e generation

// hi i due t the
c rc a rotation property

conver1 dentitytoACGT (rcid).trim ();
l Convert PLASMID ID to

ACGT
String plasmidlDSequence —

convertPlasmidIDtoACGT (piasmidid) .trim(

// sig is placed a
start or end of original sequence, no shift is needed

// concating plasmid ID f

because if only plasmid ID sequence is corrupt it needs to e detected

// CHECK

Svstern .out . rintin "ORIGINAL MSG - " o ri ina DMAS eq en e co at (piasrnidIDSeouence));

System. out .p int "SHI FT D
MSG "fsequencetoSign) ;

y tem . u print ("SHI F D
LENGTH = ' -s equence toSign . n th (});

// generating signature on
the s i ted sequence

Mess age Digest digest;

try {
// check for plasmid

id -- numbers only
int plasmididint —

Integer. arse t (p as id D

/ specify the hash
functi n " HA- "

d g st ---

MessageDiges .getlnstance ("SHA-256");

// hash the
sequence

byte [] msgilash =

diges t .digest (sequence o g . e 3ytes () ;

digest.digestiorcid.getBytes ());

Big teg

m sgHashIn - new B gInteger , m sgHash
BigI eger id ashInt

- new Biglnteger (r d a);

// extract the token

for signing from provided ORCID. ID d mod n

// This step is done

by CA.. The use r w i receive the token from C

Big eger
extracted?rivKey - idHash nt .m odPow {p r vateKey r modulus ;

/ signing step -- (

d) H(rn) mod n
Bigflnteger

signaturelnt = extractedPrivKey .modPow (msgHashlnt modulus) ;

St i g

binarySignatureString = signaturelnt. toString (2) ;

// padding extra
bits in front if needed

(binarySignatureString. engt () < modulus . tLength ())

StringBuilder

sb = ew StringBuilder

for (i t i —
; i < (modulus .bitLength () - binarySignatureString. length () ; i÷+)

sb append (" ");

String padding

sb. toString () ;

binarySigrnatureString ~ padding .concat (binarySignatureStringr)

//

convertSignaturetoACGT converts the signbature bits t ACGT

dnaSignatureString - convertS i.g ature oA CGT (bina ryS gnatureString);

System. out .println ("SIGNATURE SEQUENCE LENGTH = " dnaSignatu eString. ngth ());

// debug purpose

System. out .println ("ORC ID Sequence = " + identitySequence} ;

Sy te . ut .println ("ORC ID Sequence length = " identitySequence .length ());

Sys tern, out println ("PLASMID ID Sequence " !- plasmidIDSequence) ;

System, out .println ("PLASMID ID Sequence length - -I- plasmidIDSequence .length () ;

. / c re e the fin
soring by combining O C + P ID + SIGNATURE SEQUENC

dnaIdSignatureString
identity e ence .con a (asm id Seq enc)

.concat (dnaSignatureStrrng) ;

!/ deb g p rpose

System. out p rint (

"ORC ID
PLASMID ID SIGNATURE SEQUENCE- " dnaldSigna tureSt ing);

System, out. printlnf "ORC ID f PLASMID ID + SIGNATURE SEQUENC I

+

dnaidSignatureString. engt))

(NoSuchAlgorithmException el) {

e l .printStackTrace ();

plasmid id s n a number.

eaten

(N mb e For a Exception r f e) {

JOptionPane s o M essage Dialog (null LASMID D S 6 DIGIT NUMBERS ONLY”, "alert",

JOptionPane ERROR_MES SAGE);

}

pa y bytes can be c re ed ,
// user provides nu

of errors parity 2 errors
i

numofpa ri yS orts -- (* errornuin)

List<short]>

paramlist = r 553 ,Ini G (numofparityShorts)

// generate ECC on

original + ORCID + PLASMID ID + SIGNATURE

Sys tern .out . ri t n ("MSG STRING = "4- ginalDNA u nc

t g m eq —

sequencetoSign . eplac (plasmidlDSequence,).t ri ()

g d ta bring —

sg eq .co at (co edS g t i)

System. out. println ("DATA STRING - "+dataString) ;

Sys tern, ut rintl ("ECC INPUT LE TH "4-d a S tring engt ();

short []

Sys tern, ou p rin1 r ECC OUTPUT short ARRAY length - " -rsEncodedData .length);

short [] eccShorts ~

new short [numofpari tyShorts]

for tint i=0;i <

numo fparityShorts ;i++)

eccShorts [i] =

rsEncodedData [dataString .1ength () + i]

Sys tern .out .print ("ECC ONLY - "+Arrays .t ri g (eccShorts }};

Sy te . ut .p ti ("ECC ONLY LENGTH ~ "+eccShorts .length) ;

else {

finalSign with Deli s
- s g StartDel im on at (dnaIdSignat reSt 1n). oncat s gnEndDe1im

Strin signpiussourceSeq —
nu ;

// in e t the gn t e
quence w thi e o igin p sm id sequence

if (signatureLocation == 1 }

signp ussou rceSeq =
fInaiSignwithDelims .concat (originalDNASequence) ;

} else if
(signatureLocation — originalDNASequence . engt ()

sigrnplussourceSeq ~

originalDNASequence .concat (inaiSig wi hDelim };

originalDNASequence .substring (,

{signatureLocation ~));
String origpartl —

originalDNASequence .substring (signatureLocation --

originalDNASequence length));
signpiussourceSeq —

rig .concat i a ign ithDelirns)

onca (origpart2);

SEQUENCE " + signplus sources eq) ;

// now o gan i g the
output genebank file accordingly

update descriptors,
format final sequence

f r (int
formattedtempSign. length; i+÷)

formattedf inalDNASignatureS tring [i] = String, orma (" s ", signlinenum)
" -h

forma 11edtemp S j.gn {]
signlinenum =

sign nenum + 0

Str g fi a 0 tp z g ature
-- String. join ("\n",

forrna tzedfina NA Signaz reS rin ;

Strin corfbinedSecondPart —
" R N n " . onca (finalOutputSignature)

.concat ("\n//");
/ second part formatted

e

Sys tern. out p i t (combinedSecondPart);

/ Updating e
descriptions, new feature locations

String o i a1DN eq e h

- String ,vaiueOf (originalDNASequence , eng t ())

String outputDNASeqLength --

String. va ueO (signplussourceSeq. length ());

S ing signwi thdeiimLength
String. vaiueOf (finalSignvrithDelirns .length ())

for (String s :

li esas ist {
if

(.contains ("FEATURES ")) {

featureLocation = linesasList .indexOf ()

if
(s. contains (riginal A Se Lengt } && s ,contains ("bp") {

St ng temp --

s .replace (originalDNASeqLength, outputDNASeqLength) ;

1 nesasL st t (1inesasList .index0f (, te);

(s .contains (originalDNASeqLength) && contains ("base")

.replace (originalDNASeqLength, outputDNASeqLength)

linesasList, set (linesasList, indexOf () temp ;

for (Strin range :
istFea tures) i

(s, contains (range) {

Strings] limits range tri () p ("\\ ");
try

nt start1irnit — In teger parseInt (1 m i ts [0 - rim ());

int endlimit integer .parselnt (limits [1] ,tr ());

// update the new total base pairs

if ((startlimit ==)

&& (endlimit ----- originalDNASequer.ee .length ())) (

String newrange = "l. " + outputDNASeqLength;

String temp -- s .replace (range, newrange) ;

ne a is . e (lines asList . ndexO () temp);

else if ((startlimit < originalDNASequence length ())

&& (endlimit <= originalDNASequer.ee .length ())) {

/ / provided l t n > feat e position - skip t e

feature

// no need to update

if ((signatureLocation > startiimit)

&& (signatureLocation > endlimit) {

// update those feature location which are after provided

else if ((startiimit >= signatureLocation)

&& (endlimit > signatureLocation))

String newstart = String .vaiueOf (startiimit

÷ Integer .parselnt (signwithdelimLength));

String newend String vaiueOf (endlimit

+ Integer .parselnt (signwithdelimLength));

String temp = s .replace (range ,

newstart + ",," + newend) ;

iinesasList. set (IinesasList. indexOf (s), temp) ;

// can never go here still adding as safety

el e {

JOptionPane. shov essa eDialo (null,

"THIS IS UNEXPECTED. SIGN LOCATION COLLIDE WITH FEATURE LOCATION " ,

"alert", JOptionPane . RROR MESSAGE) ;

} catch
(NumberFormatException nfe) {

e .r: r n ac Trace ();

// insert the descriptions
f r signature, i - rt, --end

int insertLocation -- 0 ;

if (featureLocation != 0)

if
(iinesasList .get (featureLocation +) .contains (''source")

r i t i

eaturelocation ÷ 2 ; i < linesasList. iz (; i++)

g

con e — linesas Lis t .ge (i .trim() ;

i
(content .indexOf (/ '} !~ 0 {

se r Lo a tion — i ;

break

if (inser Location !~)

// sig-start

LinesasList. ad in ertLo t n " misc featu gnat reLocation

t (signatureLocation t siqriStartDelim. length (} --))

linesasList. dd (insertLocation + ,

1abe1= ig-start"

linesasList. add (insertLocation + 2

/note— \"star t of the signature delimiter \"");

// orcid sequence

i nesasL st.add (insertLocation + 3

raise feature "

- (signatureLocation signStartDelira, length ()

+ (e ati + sig tartDe -1e t ()

+ 32 - 1) ;

linesasList. dd (insertLocation + 4 ,

/label=orcid");

i nesasL st.add insertLocation +

/note— "Signer ORCID sequence/ ;

sequence

i nesasL st.add insertLocation +

r s feature

- (signatureLocation signStartDelira. length (

+ 32} ",."

(signatureLocation sign tar tDeli .length (

+ 32 + 12 -);

linesasList .add (insertLocation H- 1

/ abe = 1asm id

nesasLis t.add (n rtLoca ion -f

/note ~ \"Plasmid ID sequence/""} ;

// Signature
Sequence

i nesasL st .add insertLocation + ,

raise feature "

÷ (signatureLocation signStartDelim. engt (

+ 32 + 12) -f

÷ (signatureLocation ÷ signStartDelira. length ()

+ 32 + 12 512 -- 1));

IinesasList .add (insertLocation H- 1 ,

/ abe =signatu ");

/note -·/ "This fi e was signed by "+ signerl D+ " "");

if (errornum !- 0) {

// ECC S q ence

iinesasList .add (insertLocation + 12,

raise feature "

+ (gnatu re o ation + signStartDe ra . ength ()

e 2 - ±2 + 2 ..

÷ (ignature ocati ÷ signStartDeiiru. length (

t 32 -l- 12 + 512 t eceACGTString. length ()

nesasL st .add (nsertLocation + 13,

/label-error correction code") ;

IinesasList. add (msertLocation + 14,

/no e \ Error correction code sequence/" ") ;

// sig-end

iinesasList. dd (insertLocation + 15, " featu r

+

(signatureLocation i sign ar De i .length ()

H- 32 +

12 + 512 + eceACGTString. engt))

(signatureLocation signStartDe1i . en l·. ()

+ +

/ abe i end ");

/note -·/ "end of signature delimiter/"") ;

else if (error nura

0
// no c o y

// sig-end

iinesasList. add (insertLocation + 12 feature

ignature ca ion signStartDelim. length ()

+ 32 ÷ 2 + 2)

÷ f (signatureLocation ÷ signStartDelim. length (

f 32 f 12 + 12 + signEndDe 1i .length () - 1));

IinesasList. add (msertLocation + 13, /labei ~ sig-end");

i nesasL st .add (insertLocation + 4 ,

" /note=\"end o f signature de im iter ,"" ;

Sys tern, out .p rintin (esasList)
Strine

combinedf tPart = String . oi ("\n", iinesasList);

// his i the file
genebank output file

n iGene Ban k i e -- combinedf irst a rt .c cat ("\n")

.ccncat (combinedSecondPart);

Sys tern, out .printin (finalGeneBankFile)

fiiepaths are different for windows and inux ac

Strincr OS —

System. getProperty ("o .name").toLowerCase ();

Sys tern. out . rinti ("Detected OS — " ÷ 0);

if

(OS .contains ("nux") !| O .contains ("nix |j OS .contains ("aix")

O .contains ("NUX") || O .contains ("NIX") |j O .contains ("AIX” ;)

p ti

inputFile. substring (, inputFiie. ast ndexO '/));
filename

p Fi e .subs tring (i p . a t dex ('/ '),

inputFile .lastlndexOf (.));

else if

(OS. contains ("win") |j O ,contains ("WIN"))
parti --

inputFile .subs ring (inputFiie .lastlndexOf (\\));

filename —

p t il . bst g (I pu F e . ast dexO (\\) f

inputFiie, lastlndexOf (.));

else if

(OS .contains ("mac") |j OS .contains ("MAC") j OS .contains ("osx")

OS .contains ("OSX”) {

inputFile. substring (. inputFiie, lastlndexOf ());

filename

inputFi le . bstring (pu i e . astIndexOf { / '')

inputFiie. lastlndexOf (.));

e e {

JOptionPane. show! ageDialog (null, "CANNOT DETECT OPERATING SYSTEM",

"alert", JOptionPane .ERROR_MESSAGE) ;
ί

// utput ilename =
input ilena e output. gb

/ save in same
d e t y i put file

r g o tp tfile =
parti .concat (filename).concat (" output .gb");

y {
File file

new File (output! le);
FileWriter

fileWriter = new FileWriter (file) ;

ileW it .’write finalGene Bank File)

i1e i e sh)

fileWriter .close ();
catch (Exception

ex printStackTrace);

// message to user
about completion and output fi e path

JOptionPane .s owMes sage ial g (null ,

"SIGNATURE GENERATED\n OUTPUT FILE - " + outpu f le };
s . sp s ();

else {

JOptionPane .showMes sage Dialog (null
OU

NOT FIND KEYWORD FEATURE. \n CANNOT INSERT SIG START, SIG, SIG END TAGS

alert", JOptionPane . RROR MESSAGE) ;

/ / nu be n t w th m it the

el e f

JOptionPane .showMes sage ial g (null ,
'NUMBER OF ERROR

TOLERANCE MUST BE WITHIN 0 and " H- (original DNASequence engt)),
'a t",

JOptionPane. ERROR MESSAGE) ;

} else
OptionPane. showMessageDialog (null,

"SIGNATURE POSITION MUST BE
WITH N 1 and " (originaiDNASequence length () T 1) ,

aIert
JOptionPane. ERROR MESSAGE) ;

}

"ENTER A NUMBER FOR ERROR
T RA E\n TER 0 TO NOTIFY NO ERROR TOLERANCE", alert ",

JOptionPane RROR_ME AGE);
}

StringBuilder sb = new StringBuilder () ;

r (int i = 0 ; i < temp. length; i++)

String [output — s .toString () split (”\n");

ret n output ;

p b g Shortto a (short:] o t)

{
StringBuilder sb new StringBuilder (shorts length * Short. SIZE);
fori int i = 0 ; i < Short. IZE shorts .length; i++)

sb. append (shorts i / Short, SIZE << i % Shorn, IZE & 0x 00 == 0

return sb .toString ();

i

Convert digit plasmid id to ACGT
* input -- 1 34 6 output -- ac gatca cg
* p am p smid i
+ return plasmid ID in ACGT format

return s ,toString ();
e e {

JOptionPane .s wMes ageDialog null ’’ERROR IN PLASMID ID -

private String convertBinarytoACGT (String binarystring) {
chart] binsign = binarystring .toCharArray () ;
StringBuilder dnaf ormatsrgn ~ new StringfBuilder ();

return dnaformatsign .toString ();

nary string into sequence
100 11 ,... output - aget. ,.,

ry gnat re ri g

nature string in ACG format

convertSignaturetoACGT (tring b narySignatureString) {
binsign -- binarySignatureString. toCharArray) ;
uiider dnaformatsign ~ new StringBuiider ();

return dnaformatsign .toString ();

}

port javax. swing, JFrame;
imp ort navax. swinge, JPanei
imp ort va .swing ,border ,EmptyBorder

i p or t java ,sw ing .fi echoose .F eSystemV e ;

p ort javax. swing. JButton;

imp ort avax .swing JFileChooser;

i p ort javax .swing ,JTextField;

i p ort java . g .JTextPane ;

i p ort javax. swing. JOptionPane;

imp ort java. awt. event .ActionListener;

i p ort java .i . ile ;

p ort java .i .IOException;

imp ort ava .awt .event .ActionEvent ;

i p ort o g . pache .commons a gS .Str ingUt i s ;

int returnValue — j .showOpenuialog (ul);

// int returnValue = c .showSaveDiaiog (u);

if (returnValue JFileChooser .APPROVE_OPTTON) i

File selectedFile = c ,getSelectedFile ();
Sys tern. out .print I (selectedFile .get lute Path (});

F eText e d .setText (selectedFile .ge tAbsolutepath ());

btnFile .setBounds (1 , 105, 110, 31 ;
co tentPane .add (b tnFi e);

if (leTextFieid. getText ().i pty ())
JOptionPane .showMessageDialog (nu l , O FILE SELECTED",

"alert”, JOptionPane. ERROR MESSAGE) ;
e e i

(ge eE e io (i eTextF e d . etTe t ().trim ()).conta (" a ”))
JOp i a e .showMessageDialog (u l,

"EXPECTED FASTA FILE" r ”\n PROVIDED FILE HAS
EXTENSION ."

+

getFileExtension (FileTextField .getText (),trim()),
"alert", JOptionPane. ERROR MESSAGE) ;

e se

List<String> fiieContentLis = new ArrayList<String> ();
// y to read the f e
try {

fileContentList —
Files .read?'.11Lines (hs .get (eText ield .getText (),trim ()));

} catch (IOException el)

JOptionPane. showMessageDialog (null, "CANNOT READ E

FILE”, "alert", JOptionPane .ERROR MESSAGE) ;

/ file read and content is not empty
if (!fileContentList . mpt ())

if (fileContentList .get (). ri ().startsWith (">")) [
System, out .println ("FASTA FILE START SYMBOL OK

StringBuilder sb new StringBuilder ();
for (String s :fileContentList)

i (!s .tr).startsWith (">"))
s . ppen (."rim ());

}
String filecontent =

sb. t S i g () toLov;erCase ();

"+f ilecontent. engt ());

genera teRe vers eComp lenient (filecontent) ;

i (filecontent .contains (startTag) |j
filecontent. contains (endTag)

isNorma true ;
}

f ilecontentRevComp . ai a Tag ||
ilecontentRevComp .contains (endTag)) (

isRevCo p = true;

if sRevCo p ji isNormai) {
i (isNormai) {

String repeatMsg —
iiec te t . at (econ te t).c c (o ent). i ()

if (repeatMsg. indexOf (stai g

repeatMsg . a tIndexOf (startTag)) {

Strin temp ~

StringUtils .subs tringBe tween (repeatMsg, startTag, startTag) ;

temp ubstr ng (32) ;
p s id DSeq =

te , ubs r g (32,);
si.g tureSeq =

temp .substring (44, 5);

eccSeq =
StringUtils . ub tringBe ee (temp, signa tureSeq, endTag) ;

o igi a Seq =
StringUtils ,substringAfterLast (temp, endTag) ;

e se

JOptionPane. s owMe sageDialog (null, "CANNOT EXTRACT PARTS , ONLY ONE INSTANCE OF START

String temp --

StringUtils .subs tringBe wee (repeatMsg, startTag, startTag) ;
orcidSeq —

temp . ubstring (, 32);
plasmidIDSeq —

temp , ub tring (32 , 44) ;
signature eq —

temp .sub r g (44, 55);
eccSeq ~

StringUtils . ub tringBe wee (temp, signa tureSeq, endTag) ;
o g na Seq =

StringUtils ,substringA.fterLast (temp, endTag) ;

}
e se

JOptionPane. showMes sageDialog (null, "CANNOT EXTRACT PARTS , ONLY ONE INSTANCE OF START

IN COMBINED MSG",
"a e "r

JOptionPane, ERROR MESSAGE) ;

}

System, out .println ("Identity = " i
den ty);

System. ou . rintl ("PLASMID ID = "
+ plasmidID) ;

System, u , rint ("Signature

System. . rintl (Signature
en t - " + g ureSeq . ngth ()

(e . e !--
!eccSeq .tr () .isEmpty()) {

System, out .println ("ECC =

eccSeq) ;
System. out . int ("ECC

LENGTH - -I- eccSeq. length ());

String signedSeq =
originalSeq. concat (plasmidIDSeq) ;

if (signatureSeq. engt () == 12)

t

byte [] msgHash ~

diges t.diges t (signedSeq .ge tBytes ());

!/ hash o extracted
C D

byte [] idHash =

diges t .diges t (identity .getBytes));

Biglnteger

msgilashlnt = new Biglnteger (. msgHash) ;
B gInteger idHashInt

- new Biglnteger (1, idKash) ;

/! hs of verify .

extracted H(m)

Biglnteger lhsVerify

— idHashlnt .modPov; (sg ash n t mod) ;

// convert signature

string from A C to binary

String

arySig St g = convert CG t nary (ign ureS

!/ from binary to

Bigint

Bigflnteger

signaturelnt = new Big n ege (binaryS ignS in f 2);

// rhs verify.
Sign public ke

BigInteger rhsVerify

--- signaturelnt . od o (pub, mod) ;

/ check - debug

Sys tern . ut . ri (rhsVe i y)

Sys e n ,out p rint1n (sV erify);

// if sign valid

then Ihs — rhs , inform user about success

(ihsVerif . om pare (rhsVeri fy) ==) {

JOptionPane . essage Dial g (u , EXTRACTED DENT Y --- + identity

+ "\nE PACT PLASMID ID = " + plasm id D

+ "\nS GNATU RE VALID \n THIS FILE WAS SIGNED BY + identity

“SUCCESS", JOptionPane .INFORMATION MESSAGE) ;
// close fra e
.di o e);

LhsVerify compareTo (rhsVerify) !~ 0

sccSeq -- null i eccSeq. im).i mpt ())) {

JOptionPane ,showMes sageDialog (null, " X RA C D IDENTITY + identity

+ EXTRACTED PLASMID ID = " + plasmidID

f "\n IGNATU RE INVALID ! \n THIS F E WAS NOT SIGNED BY "

identity + \n THERE IS NO ERROR CORRECTION SEQUENCE PRESENT ."

+ "\nCANNOT ATTEMPT TO CORRECT AND RE VERIFY,", "ALERT",

JOptionPane . RROR MESSAGE) ;
else if

(hsV f -compareTo (rhsVeri ! 0

eccSeq. ri ().isEmpty ()) {

JOptionPane. showMes sageDialog (nul , "EXTRACTED IDENTITY --- " + identity

"\nEXT PACT ED PLASMID D = " + plasmidID

+ "\nS GNA T RE INVALID ! \n THIS FILE WAS NOT SIGNED BY "

+ identity

"\n THE ERROR CORRECTION CODE PRESENT IN THE SEQUENCE CAN CORRECT UPTO "

÷ (eccSeq. engt () /)

+ " ERRORS. nCL CK OK TO PROCEED.", "ALERT",

JOptionPane. ERROR_MES SAGE) ;

System. ou .println ("INVOKING REED - SOLOMON ECO :D") ;

int

numofpa ty h rts — (eccSeq, engt) / 8) ;

eccBinaryString = convertACGTtoBinary (eccSeq)

eccShorts -- BinarytoShort (eccBinaryString)

System. out . rintl ("ECC ONLY SHORTS - " + Arrays .toString (eccShorts))
L txshort [

paramlist = r 37 .Ini tGF (nuraofparityShorts)
String

erro Sequence — originalSeq. concat (startTag) .concat orcidSeq

.concat (p asmid Seq).concat (srgnatureSeq) concat (endTag) .trim(} ;

System. u .println ("ERROR SEQ = " + erro rSequence)

System. out .println ("LENGTH of err seq - " errorSequence .length ())

odi iedDatashorts = new short [errorSequence. length

byte [

rnodi edBat Bytes -- errorSequence .getBytes () ;

0 ; i < error Sequence .length () ; i++) {

modif iedDatashorts [ij ~ modi fiedDataBytes [i

0 ; i < mod edD t p cc .length; ir+) {

modif iedDatapluseccshortsCopy [i] = modif iedDatapluseccshorts [i]

Sys tern. u .println (

"INPUT TO DECODE - " + modif iedDatapluseccshorts .length)

correctedShorts -- rs S3 .Decode (modi fiedDatapiuseccshorts ,

nu ar tyShorts , paramlist)

Sys ter .out .p i (

Arrays .equals od i iedDatapluseccshortsCopy, co rrecteaShorts)

i

(orrectedSho rts --= nu 1 j| A rrays

.equals (modifiedDatapiuseccshortsCopy, correctedShorts)) {

JOp tion ane .showidessageDia og (u

"CANNOT CORRECT ERROR SEQUENCE. TOO MANY ERRORS , "alert",

JOptionPane. ERROR MESSAGE) ;

ls

System. out .println (" V OK G RE VERIFICATION PROCESS") ;

Sys tern. u rintl (Arrays .toString (re tedSh r));
/

extract corrected sequence

correctedByteSequence new byte correctedShorts length -- numofparityShorts] ;

or
(int i = ; i < correctedByteSequence .length ; i-H-)

correctedByteSequence [i] = (byte) correctedShorts [i] ;

String

orrecteaTota1Str ng String (correctedByteSequence) ;

ing

1edMe s a eSe e e correctedTotalString. substring (,originalSeq. engt ()

ng

corrected SignSequence --

correctedTotalString. substring (originaiSeq. length ()fcorrectedTotalS rin .length () ;
S ng

correcteds tSequence -- correctedl DSig Sequence .subs tr g (ϋ startTag . ngt ());
String

s ort [

correctedECCShorts — new short [numofparityShorts] ;

i --- ϋ iCcorrectedECCShorts .length: ill)

cor ec edECCShorts [i] co rrectedShorts [(co r rectedShorts - ength

numofpari tyShorts)

)

System. out .pri t ("CORRECTED ECC SHORTS - "lArrays toStringf (correctedECCShorts} ;

String
correctedECCBi ry = Shortt inary (correctedECCShorts ;

String
correctedeccSequence = convertBina ytoAC (correctedECCBinary)

Sys e .out .printin ("PREV ECC SEQ -- "leccSeq) ;

System. out .printin ("CORRECT ECC SEQ - "lcorrectedeccSequence) ;

//
convert the extracted OR D fro ACGT to OCR format

String

correctedident ity -- ext ractl entity {correctedORCI DSequence)

//
convert the extracted plasmid id from ACGT to numbers

String

correctedpiasmidID ~ extractPlasmidlD (

e asmi d e e);

String

correcteds ig edSe — correctedMes sage Sequence .con car (o rrectedP asmidl DSequence);

if

(correctedSignaf ureSequence ,length () == 12) {

try [

e sageDiges newdigest — MessageDiges t

,getlnstance ("3HA-256");

// hash f t e original sequence (o -- gn)

byte[] correctedmsglIash = newdigest

.digest (correcteds ignedSeq. getBytes ())

// hash of extracted O C D

byte [] cor rected ash — d igest

.digest (correctedidentity. etBytes ()

Biglnteger correctedmsgHashlnt = new B g age I

rrected sgHas);

B f nteger corrected! DHashlnt ~ new Biglnteger (.

correc ted DHash);

// hs ve i y . extr ed Him)

B f nteger newihsVerify ~ correctedlDHashlnt

. odPo (o e tedm g a t , mod) ;

// convert signature string from ACGT to binary

String correctedbinarySignString ~ convertACGTtoBinary (

correc tedS gnature e uence ;

// from bina ry to Bigint

B f nteger cerreetedsignaturelnt ~ new Biglnteger (

correctedbinarySignString, 2)

// rhs o f verify. Sign public key

B f nteger newrhsVerify ~ correctedsigrnaturelnt .modPow (pub.

od);

// check -- debug

Sys tern, ou print in (newrhsVerif y);

Sys tern. t .print (newihsVerif y

if (newihsVerify. o pareT (newrhsVerify)) {

JOp tion ane .s w essageDiaIog (n u1 ,

"EXTRACTED IDENTITY = " + correctedidentity

H- ”\nEXTRACTED PLASMID ID "

+ rectedp asm id D

-f "\n NA U RE VALID ON CORRECTED Q ENC ! \n THIS

F E WAS S N D BY

+ correcte diden tit

"SUCCESS" , JOptionPane .IN FOR A ONJVIES SA);

// close a e

t response -- JOptionPane . owCon r Dia o nul

"Do you want to see where the ERROR was "

"Confirm" JOptionPane . ES NO OPTION,

JOptionPane , ES ON_ ESSAGE);

if (response == JOptionPane .NO_OPTION)

System. ou .println ("No button clicked")

) else f (response JOptionPane .YES OPTION)

System. ou .print! n ("Yes button clicked") ;

DisplayErrors display-window ~ new DispiayErrors (

o g na c e ted ssa eS q e ce

s f correc teds tart Sequence ,

or Seq, cor ectedORCID Seq en e,

piasmidIDSeq, corrected l s id DSequence ,

srgnatureSeq, correctedSignature Sequence,

eccSeq, correcte ccSequence,

endTag, correctedendSequence) ;

dispiaywind .s tVisib e (rue);

else if (response == JOptionPane. CL0SED_0PTI0N)

System. out .println ("JOptionPane closed") ;

} e se {

JOptionPane. showMessagfeDiaiogf (nul ,

"CANNOT VALIDATE SIGNATURE AFTER ERROR CORRECTION"

"aler ", JOptionPane . RROR MESSAGE) ;

catch (NoSuchAIgorithrriException el)

// TODO Auto-generated catch block

el.printStackTrace ()

Opt onPane, owMe ge ia1 g 1

"ERROR IN CORRECTING SIGNATURE SEQUENCE. NOT 5 2 BP"

"alert", JOptionPane .ERROR_MESSAGE)
}

catch
(NoSuchAlgorlthmException el)

// TODO uto-
generated catch block

el.printStackTrace ();

}

s

JOptionPane . e ag ia og (u ,
ERROR IN

RETRIEVING SIGNATURE SEQUENCE, MOT 512 BP" , "alert",

JOptionPane. ERROR MESSAGE) ;

e se {

JOptionPane. showMessageDialog (null, "ANY ONE OF TRIE SEQUENCE IS MISSING FOR
VALIDATION",

"alert”
JOptionPane. ERROR_MES SAGE) ;

Op t on an .shov;Message ia og (u ,
START TAG +sta tTag " and END TAG en g NOT FOUND !",

a ert",
JOptionPane. ERROR MESSAGE) ;

e se {

JOptionPane. showMessageDialog (null, "WRONG FILE
, FILE DOES NOT START WITH SYMBOL

"alert".
JOptionPane. ERROR MESSAGE) ;

}
// empty file concent

e se
JOptionPane .showMessageDialog (null , "EMPTY FILE /

CANNOT PARSE FILE " , "alert

JOptionPane. ERROR_MESSAGE) ;

}
) ;

tnVerif ySignature . etB und (14 , 20 , 136, 23) ;
contentPane. add (btr.VerifySignature) ;

binarystring. append ("t);
j eise if (dnasign [] == c |j dnasign:!: == C) {

binarystring .append ("g ;
} e se if idnasign[i] -- ’g’ j| dnasign [i] == ’G')

binaryString. appen ("c ') ;
} eise if (dnasign [i] == 't' j| dnasign [i] ==)

binarystring. append ("a Ϊ ;

return StringUtils .reverse (complement ;

char te id h s = te p .toCharArray () ;

tempSeq — leCon en .substring (atc .end ()) fi eC nten ,length ()
contentuptoorigin -- leC nte t .substring (match .start ());

System, ut .println ("EXTRACT ~ " sequence);

return binarystring. toString ();

public String ShorttoBina y (short[] shorts)

ΐ

private String convertBina ACGT (String binarySignatureString)
c ar] insign = b rySignat t ing.t C Array (;
StringBuilder dnaformatsign ~ new StringBuilder };

return dnaformatsign, toStringf ();

)

200662S06 v 1

Claims

1 A processor-implemented nucleic acid crypto-signing method, comprising:

receiving a nucleic acid sequence from a user device associated with a user;

generating, via at least one processor, a first portion of a digital signature by encrypting a

mapped value of the NA sequence using a private key associated with the user;

generating a second portion of the digital signature based on at least one of a unique

identifier associated with the user, a unique identifier associated with the nucleic acid sequence,

and an error detection code;

identifying at least two conserved portions of the nucleic acid sequence;

forming a completed digital signature by combining the first and second portions of the

digital signature;

converting the completed digital signature into nucleic acid signature sequence data;

providing the converted nucleic acid signature sequence data for generation of a signed

nucleic acid sequence by insertion of the nucleic acid signature sequence between identified

conserved portions of the nucleic acid sequence; and

sending digital sequence information corresponding to the generated, signed nucleic acid

sequence to the user device.

2 . The method of claim 1, further comprising:

synthesizing the signed nucleic acid sequence.

3 . The method of claim , further comprising:

synthesizing a plasmid comprising the signed nucleic acid sequence.

4 . The method of claim 1, claim 2, or claim 3, wherein the error detection code includes

error tolerance information.

5 . The method of claim 1, claim 2, or claim 3, wherein the error detection code is a block-

based error detection code.

6 . The method of claim 1, claim 2, or claim 3, wherein the error detection code includes a

modified Reed-Solomon code.

7 . The method of claim , wherein forming the completed digital signature further

comprises combining a third portion with the first and second portions to form the completed

digital signature.

8 . A nucleic acid crypto-signing apparatus, comprising:

at least one processor; and

at least one memory in communication with the at least one processor and storing

processor-executable instructions to perform the method of claim 1.

9 . A processor-implemented nucleic acid crypto-validation method, comprising:

receiving sequence data;

identifying that the sequence data has a signed nucleic acid sequence including a first

nucleic acid sequence, a nucleic acid signature sequence, and an error detecting code sequence;

converting the nucleic acid signature sequence into a digital signature;

computing a first mapped value of the first nucleic acid sequence by applying a

cryptographic function to the first nucleic acid sequence;

computing, based on decrypting at least a portion of the digital signature, a second

mapped value of a second nucleic acid sequence;

comparing the first mapped value of the first nucleic acid sequence with the second

mapped value of the second nucleic acid sequence;

identifying a mismatch between the first mapped values of the first nucleic acid sequence

and the second mapped value of the second nucleic acid sequence based on a set of errors in the

first nucleic acid sequence; and

generating a notification based on the error detecting code sequence.

10. The method of claim 9, wherein computing a first mapped valise of the first nucleic acid

sequence by applying the cryptographic function to the first nucleic acid sequence includes

applying a hash function to the first nucleic acid sequence to obtain a hash value, the first

mapped value based on the hash valise.

11. A processor-readable non-transitory medium, comprising nucleic acid (NA) crypto-

signing processor-executable instructions to:

receive a NA sequence associated with a user identifier;

determine a mapped value of the NA sequence by applying a cryptographic function to

the NA sequence;

generate a first portion of a digital signature by encrypting the mapped value of the NA

sequence using a private key associated with the user identifier;

generate a second portion of the digital signature based on a unique identifier associated

with the user identifier;

combine the first and second portions of the digital signature to form a completed digital

signature;

output the completed digital signature for conversion into a N A signature sequence and

generation of a signed NA sequence by insertion of the NA signature sequence between

identified conserved portions of the N A sequence; and

provide the signed NA sequence to a compute device associated with the user identifier.

12. A processor-readable non-transitory medium, comprising nucleic acid (NA) crypto-

validation processor-executable instructions to;

receive a sequence data;

identify the sequence data to have a signed NA sequence including a first NA sequence

and a NA signature sequence;

determine a first mapped value of the first NA sequence by application of a cryptographic

function to the first NA sequence;

convert the NA signature sequence into a digital signature;

identify, included in the digital signature, a first portion and a second portion, the first

portion including an encrypted mapped valise of a second NA sequence, and the second portion

being based on a unique identifier associated with a user identifier;

obtain a second mapped value of the second NA sequence in response to a successful

decryption of the first portion of the digital signature using a decryption key based on the unique

identifier associated with the user identifier;

compare the first mapped value of the first NA sequence with the second mapped value

of the second NA sequence; and

validate the first NA sequence as substantially similar to the second NA sequence in

response to successful verification of a substantial match between the first mapped value and the

second mapped value.

13. A nucleic acid (NA) crypto-signing method, comprising:

receiving a NA sequence from a user device associated with a user;

computing a mapped value of the NA sequence by applying a cryptographic function to

the NA sequence;

generating a first portion of a digital signature by encrypting the mapped value of the NA

sequence using a private key associated with the user;

generating a second portion of the digital signature based on a unique identifier

associated with the user and/or a unique identifier associated with the NA and/or an error

detection code and/or other meta data;

combining the first and second portions of the digital signature to form a completed

digital signature;

converting the completed digital signature into a NA signature sequence;

generating a signed NA sequence by inserting the NA signature sequence between

identified conserved portions of the NA sequence; and

sending the signed NA sequence to the user device.

14. A nucleic acid (NA) crypto-signing apparatus, comprising:

at least one processor; and

at least one memory in communication with the at least one processor and storing

processor-executable instructions to:

receive a NA sequence from a user device;

determine a mapped value of the NA sequence by applying a cryptographic

function to the NA sequence;

generate a first portion of a digital signature by encrypting the mapped value of

the NA sequence using a private key associated with the user device;

generate a second portion of the digital signature based on a unique identifier

associated with the user device;

combine the first and second portions of the digital signature to form a completed

digital signature;

output the completed digital signature for conversion into a NA signature

sequence and generation of a signed NA sequence by insertion of the NA signature

sequence between identified conserved portions of the NA sequence; and

provide the signed NA sequence to the user device.

15. A nucleic acid (NA) crypto-signing apparatus, comprising:

at least one processor; and

at least one memory in communication with the at least one processor and storing

processor-executable instructions to:

receive a NA sequence from a user device;

receive, from the user device, a first description associated with the NA sequence;

generate a signed NA sequence based on an encrypted digital signature associated

with the N sequence;

receive information associated with a second description based on the signed NA

sequence;

combine the signed NA sequence with the second description based on the signed

NA sequence to form a combined message;

generate a digital signature based on the combined message;

append the digital signature based on the combined message to the first

description;

associate the first description with the signed NA sequence; and

return the signed NA sequence with the associated first description to the user

device.

16. A nucleic acid (NA) crypto-validation apparatus, comprising:

at least one processor; and

at least one memory in communication with the at least one processor and storing

processor-executable instructions to:

receive a sequence data;

identify the sequence data to have a signed NA sequence including a first NA

sequence and a NA signature sequence;

determine a first mapped value of the first NA sequence by application of a

cryptographic function to the first NA sequence;

convert the NA signature sequence into a digital signature;

identify, included m the digital signature, a first portion and a second portion, the

first portion including an encrypted mapped value of a second NA sequence, and the

second portion being based on a unique identifier associated with a user device;

obtain a second mapped value of the second NA sequence in response to a

successful decryption of the first portion of the digital signature using a decryption key

based on the unique identifier associated with the user device;

compare the first mapped value of the first NA sequence with the second mapped

value of the second NA sequence; and

validate the first NA sequence as substantially similar to the second NA sequence

in response to successful verification of a substantial match between the first mapped

value and the second mapped value.

INTERNATIONAL SEARCH REPORT
International application No

PCT/US2019/024057

A. CLASSIFICATION OF SUBJECT MATTER
INV. G16B50/40
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G16B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , BIOSIS, Sequence Search , EMBASE, WPI Data

* Special categories of cited documents :
"T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered
date and not in conflict with the application but cited to understand

to be of particular relevance
the principle or theory underlying the invention

Έ " earlier application or patent but published on or after the international
filing date

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) orwhich is step when the document is taken alone

rnational search report

or g

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT
International application No

PCT/US2019/024057

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

im No.

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

	abstract
	description
	claims
	drawings
	wo-search-report

