w0 2019/191083 A1 |0 0000 0000 00 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
03 October 2019 (03.10.2019)

(10) International Publication Number

WO 2019/191083 Al

WIPO I PCT

(51)

International Patent Classification:
G16B 50/40 (2019.01)

(21) International Application Number:
PCT/US20 19/024057
(22) International Filing Date:
26 March 2019 (26.03.2019)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
62/648,201 26 March 2018 (26.03.2018) us
62/745,183 12 October 2018 (12.10.2018) us
62/773,079 29 November 2018 (29.11.2018) US
(71) Applicant: COLORADO STATE UNIVERSITY

(72)

RESEARCH FOUNDATION [US/US]; P. O. Box 483,
Fort Collins, Colorado 80522 (US).

Inventors. PECCOUD, Jean; c/o Colorado State Univer—
sity Research Foundation, P.O.Box 483, Fort Collins, Col-
orado 80522 (US). KAR, Diptendu Mohan; c/o Colorado
State University Research Foundation, P. O.Box 483, Fort
Coallins, Colorado 80522 (US). GALLEGOS, Jenna; clo
Colorado State University Research Foundation, P.O.Box
483, Fort Collins, Colorado 80522 (US). RAY, Indrajit;

(74)

(81)

(84)

c/o Colorado State University Research Foundation, P. O.
Box 483, Fort Coallins, Colorado 80522 (US).

Agent: POULSEN, Nathan W. et a.; Cooley LLP, 1299
Pennsylvania Avenue, NW, Suite 700, Washington, District
of Columbia 20004 (US).

Designated States (unless otherwise indicated, for every
kind d national protection available - AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
Dz, EC, EE, EG, ES, H, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR, KW, KZ, LA, LC, LK, LR, LS LU, LY,MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, K, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind d regional protection available . ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, Sz, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: APPARATUSES, SYSTEMS AND METHODS FOR GENERATING AND TRACKING MOLECULAR DIGITAL SIG-
NATURES TO ENSURE AUTHENTICITY AND INTEGRITY OF SYNTHETIC DNA MOLECULES

1500

(57) Abstract: Systems and methods for generating and tracking molecular

Receive test sequence from user device associated with a user

~

1501

digital signatures to ensure authenticity and integrity of NA molecules are dis-
closed. In some embodiments, a NA authentication system includes a NA au-

] thentication device coupled to one or more user devices. Methods for gener-

i icentify within the test sequence a signed NA seguence 1503 i

!

Extract, from the signed NA sequence, a first NA sequence and &
signaturs NA sequsnce 1805

Convert the NA signature seguence int>
a digital signature 1808

1

Identify, within the

Compute a first
mapped value of the
first NA seguence by

&ppiying a
cryptographic function
10 the first NA
sequence 1507

L__T——J

(Obtain a second mapped value of 2
second NA sequence by decrypting the

encrypted mapped value using a key
generated based on the uniguz identifier

[
hA
Compare the first and second mapped values 1517 |

v
In response 1o a substantial
betweer: the mapped values,
first NA sequenice being subsk
second NA sequance

itive match

FiG. 15

ating a signed NA sequence, validating a signed NA sequence, and detect-
ing/correcting potential errors within a user allowable limit using a NA authen-
tication system are disclosed. Methods for associating a signed NA sequence
1 with a digital representation of the NA sequence, using a NA authentication
system, are disclosed

[Continued on next page]

WO 2019/191083 A1 |10 08P 000 000000 T 0O

TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— asto applicant's entitlement to applyfor and begranted a
patent (Rule 4.17(H))

— asto the applicant's entitlement to claim thepriority d the
earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

— before the expiration d the time limit for amending the
claims and to be republished in the event d receipt d
amendments (Rule 48.2(h))

WO 2019/191083 PCT/US2019/024057

APPARATUSES, SYSTEMS AND METHODS FOR GENERATING AND TRACKING
MOLECULAR DIGITAL SIGNATURES TO ENSURE AUTHENTICITY AND
INTEGRITY OF SYNTHETIC DNA MOLECULES

[0001] This application claims priority to and the benefit of: U.S. Provisional Application No.
62/648,201, filed March 26, 2018, U.S. Provisional Application No. 62/745,183, filed October 12,
2018, and U.S. Provisional Application No. 62/773,079, filed November 29, 2018; the entirety of
each of the aforementioned applications are herein expressly incorporated by reference for all
purposes. This application may contain material that is subject to copyright, mask work, and/or other
intellectual property protection. Therespective owners of such intellectual property have no objection
to the facsimile reproduction of the disclosure by anyone as it appears in published Patent Office

file/records, but otherwise reserve al rights.

Background
[0002] Nucleotides are organic molecules that serve asthe monomer units for forming nucleic acids.
Summary

[0003] This disclosure relates to the security and validation of nucleic acid (NA) molecules and their
seguence data. Theterm "nucleic acid,” asused herein, refers to a molecule comprising one or more
nucleic acid subunits. A nucleic acid can include one or more subunits selected from adenosine (A),
cytosine (C), guanine (G), thymine (T) and uracil (U), and modified versions of the same. NA
molecules can include deoxyribonucleic acid (DNA), ribonucleic acid (RNA), combinations, and/or
derivatives thereof. Example systems and methods for cryptographically signing and authenticating
NA sequences are described herein. In some embodiments, a NA authentication system includes a
NA authentication device coupled to one or more user devices. The NA authentication device
includes, in an interconnected manner, a communicator configured to establish secure channels of
communication between the NA authentication device and the user device(s), input/output unit to
receive and send sequence information between the user device(s) and the NA authentication device,
at least one memory, and at least one processor. Also disclosed herein are methods for generating a
signed NA sequence and validating a signed NA sequence using a NA authentication system. A
signed NA sequence isgenerated by incorporating asignature NA sequence obtained from converting
a digital signature including an encrypted mapped value of the original NA sequence, and a unique

identifier that can later be used to decrypt the mapped value. The validating of atest NA sequence is
1

WO 2019/191083 PCT/US2019/024057

carried out by extracting the digital signature from the signature sequence, and using the unique

identifier to decrypt the mapped value, and comparing the mapped value to the test NA sequence.

Brief Description of the Drawings
10004] FIG. lisaschematic of anucleic acid authentication system, according to an embodiment.
[0005] FIG. 2 is a flowchart describing a method of using a NA system to generate a signed NA
sequence, according to an embodiment.
[0006] FIG. 3 isaflowchart describing an example workflow of generating a signed NA sequence
and validating a signed NA sequence, using a NA system according to an embodiment.
[0007] FIG. 4 is aflowchart describing a method of associating a NA sample with a signed digital
representation of the NA sample using aNA system according to an embodiment.
[0008] FIG. 5isan example view of descriptive information associated with a NA sequence.
[0009] FIG. 6A isan example view of sequence information associated with a NA sample and FIG.
6B isan example view of sequence and descriptive information associated with aNA sample.
[0010] FIG. 7 provides an example view- of asigned digital DNA file.
[0011] FIG. 8A provides an example sign-share- validate workflow, according to some embodiments.
[0012] FIG. 8B provides an example fasta file for some embodiments.
[0013] FIG. 9A provides acomparison of expressi on of areporter construct with and without a digital
signature, according to an implementation.
[0014] FIG. 9B illustrates agorithmic accuracy of algorithms as a percentage, according to an
implementation.
[0015] FIG. 10 illustrates the results of runtime analysis of various algorithms in milliseconds.
[0016]
[0017] FIG. 11 isaschematic of anucleic acid authentication system, according to an embodiment.
[0018] FIG. 12 is a diagram showing interfacing aspects of a nucleic acid authenticating system,
according to an embodiment.
[0019] FIG. 13 isaflowchart describing a method for cryptographically marking a N A sequence to
generate a signed NA sequence.
[0020] FIG. 14 isaflowchart describing a method generating a signature for aNA sequence.
[0021] FIG. 15 isaflowchart describing a method for validating a signed NA sequence.
[0022] FIG. 16 is an example illustration of an interface of a user application, according to an

embodiment.

WO 2019/191083 PCT/US2019/024057

[0023] FIG. 17 isaflowchart describing a workflow' of marking a NA sequence and authenticating
a second NA sequence.

[0024] FIG. 18 isan example illustration of a workflow.

[0025] FIGS. 19A and 19B are illustrations of example origina and signed NA sequences of a
plasmid, respectively.

[0026] FIG. 20 is an example illustration of an interface of a user application, according to an
embodiment.

[0027] FIGS. 21, 22A, 22B, 23, 24A, 24B, and 24C are example illustrations of various aspects of a
user interface of the user application illustrated in FIG. 20.

Detailed Description

0028} Systems, methods and apparatuses of the disclosure relate to providing physical and cyber
security of molecules, for example NA molecules. Methods and apparatus disclosed herein also relate
to authenticating and validating a source of synthetic NA molecules.

[0029] NA synthesis has become increasingly common, and many synthetic NA molecules can be
licensed intellectual property (IP). NA samples are shared between academic labs, ordered from NA
synthesis companies and/or manipulated for a variety' of different purposes, such as research needs
to study their properties and improve upon them. In some instances, N A sequences are configured to
store information in the form of NA samples. However, it is not uncommon for a sample to change
hands many times with very' little accompanying information and no proof of origin or proof of
mishandling. This poses significant challenges to the original source or inventor of a NA molecule,
trying to protect her IP rights. Furthermore, following the anthrax attacks of 2001, there is an
increased urgency to employ microbial forensic technologies to trace and track agent inventories,
especially those created and/or manipulated in laboratories. However, atribution of physical samples
s next to impossible with existing technologies.

[0030] Natural mutations, errors in labelling biological samples, sloppy laboratory processes, or
malicious actions could otherwise jeopardize the integrity of the relation between a physical NA
molecule and its description in the literature, vendor data sheets, or regulatory approval applications.
Undocumented modifications to the NA molecule could result in the loss of its described property.
Alternatively, it could also result in the gain of undocumented and possibly undesirable, even

dangerous, functions.

WO 2019/191083 PCT/US2019/024057

{0031} According to some embodiments, the disclosure provides for establishing the origin and
integrity of NA molecules. In some embodiments, the teachings of the disclosure provide verification
that aNA molecule (e.g. DNA) has not been modified after it has been fully characterized to ensure
that it behaves as expected or as predicted by the characterization studies.

[0032] In some embodiments, the teachings of the disclosure establish the origins of the NA
molecules. Developers of synthetic NA molecule samples can use methods and systems of the
disclosure to confirm and protect their intellectual property. In addition, the teachings of the
disclosure can, in some embodiments, be used by producers to reduce or eliminate liability associated
with derivatives of their NA molecules. By associating molecules with their authors, the disclosed
methods and systems can be used to prove authenticity of a given sample purported to be a certain
NA molecule.

[0033] When modified/synthetic genes are used in agriculture, industry, and/or gene-therapy based
medical treatment, the methods and systems of the disclosure can provide attribution that can (@)
readily inform the user/consumers about maters related to the treatment, product, and/or therapy;
and/or (b) can serve as some measure of the quality of the treatment, product, and/or therapy, e.g., brand
name versus generic drugs. Teaching of the disclosure can also ensure source attribution which can
help mitigate DNA-based attacks, including attacks against DNA sequencers, and/or via DNA
sequencers against smart devices / the Intemet-of-Things (1oT), e.g., of the type of DNA-based
security exploit demonstrated asa proof of concept, where synthetic DNA was used to attack a DNA
sequencer.

[0034] Plasmids are circular DNA molecules widely used in biotechnology to express recombinant
proteins, in several applications such as for example to support new vaccine strategies, or even in
gene therapy applications. Plasmids used in biotechnology often include DNA sequences from
multiple organisms as well as chemically synthesized DNA. These highly' engineered plasmids are
typically designed using software. Plasmid sequences can also be documented electronicaly.
Information can be found in vendor data sheets, bioinformatics databases, the online supplement of
journa articles, or patent applications.

[0035] Tracing DNA with watermarks inserted in the genome have been proposed, for example, to
increase the traceability' of infectious agents to increase their traceability’, and such an approach
includes inserting short watermarks into DNA without introducing significant perturbation to genome
function. The use of watermarks has also been proposed in order to identify genetically modified

organisms (GMOs) or proprietary' strains. The system provides security and reliability’ for traceability'

4

WO 2019/191083 PCT/US2019/024057

and source identification than watermarking because a watermark isindependent of the sequence it
is attached to (only changes tothe watermark itself would be detectable), and watermarks are easily
counterfeited. Some proposals include where a watermark is generated from any binary data and
added tothe original sequence. The watermark isindependent of the original sequence and therefore
provides no integrity of the actual DNA sequence. |f the watermark locations can be found, the
original molecule sequence can be changed by others while keeping the watermark sequence
unaltered but sending the remaining modified sequences to areceiver. The receiver will trust that it
came from the sender whose watermark is present in the DNA. Second, if an attacker or other
legitimate competing user/organization knows the binary data that isused to generate the watermark,

they can generate their own arbitrary DNA and add the watermark to malign the original
user/organization. For these reasons, watermarks of are limited reliability and security. Additionally,

there are proposals that rely on symmetric key encryption like AES/Blowfish to encrypt the binary
data that isused to create the watermark. Such keys have to be transmitted to the receiver who will
validate the watermark. However, the receiver would then have the secret key that was used to
generate the watermark and can masquerade asthe originator of the DNA. The disclosed methods
and digital signatures provide better and stronger security than such proposals.

[0036] The approaches disclosed herein includes various steps such as, for example, the generation

of digital signatures using known algorithms, adaptation of digital signature to NA sequences through
the development of mapping algorithms to convert NA sequences into binary form, the insertion of
synthetic NA sequences in plasmids. The most commonly used plasmids are known to tolerate the
insertion of N A sequences much longer than digital signatures. The process of reconstructing the
sequence of plasmids from raw’ sequencing data is well understood and can achieve a high level of
accuracy at an affordable cost.

Ensuring the origin and integrity g ‘NA molecules

[0037] One strategy to mitigate cyber-physical risks associated with NA molecules would be to
develop adigital signature technology for NA molecules. Digital signatures are used in cyber security
to authenticate the source of a digita file and to confirm that the file has not been changed since the
originator applied the signature. The disclosure herein includes a NA authenticating system
connected to several users, for example a web service, providing digital signature technologies for
synthetic NA molecules.

A NA authentication system

WO 2019/191083 PCT/US2019/024057

0038} FIG. 1 shows a schematic of an example NA authentication system 100. The NA
authentication system (also referred to here as “the authentication system”, “the NA system”, or
simply “the system”) alows users handling NA samples, such as synthetically generated NA
molecules like plasmid DNA, to digitally sign them and/or suitably mark them using signatures
generated though safe and secure encryption methods. These signatures can take the form of aunique’
NA fragment, aso referred to as “NA signature sequence”, or “DNA signature sequence”, that is
inserted into the NA molecule inthe NA sample.

[0039] The NA system 100 includes a Nucleic Acid (NA) authentication device 110 coupled or
suitably connected (through wired or wireless connection methods) to user devices 102 and 104,
though a suitable communication network (not shown).

[0046] The user devices 102 and 104 can be any suitable client device. In some embodiments, the
user devices 102 and 104 can be any suitable hardware-based computing device and/or a multimedia
device, such as, for example, a server, a desktop compute device, a smartphone, atablet, a wearable
device, alaptop and/or the like. The user devices 102 and 104 can include a processor, a memory,
and a communicator. In some embodiments, the user devices 102 and 104 can be, for example, a
personal computer (PC), a persona digital assistant (PDA), a smart phone, a laptop, atablet PC, a
server device, aworkstation, and/or the like. The user devices while not shown in FIG. 1, can include
at least amemory, aprocessor, a network interface, and an output device. While the schematic of the
NA system 100 in FIG. 1 shows two user devices, an NA system can include any number of user
devices as suitable.

[0041] The NA authentication device 110 includes and/or has access to a processor 120, a memory
160 and a communicator 180, each being operatively coupled to the other. in some embodiments, the
NA authentication device 110 can be a server device. In some embodiments, the NA authentication
device 110 can be an enterprise device, such as, for example, a desktop computer, alaptop computer,
a tablet personal computer (PC), and/or the like. In yet other embodiments, portions of the NA
authentication device 110 can be physicaly distributed across, for example, many chassis and/or
modules interconnected by wired or wireless connections. The network can be any type of network
such as a local area network (LAN), a wide area network (WAN), a virtua network, a
telecommunications network, implemented as awired network and/or wireless network.

[0042] The memory: 160 of the NA authentication device 110 can be, for example, arandom access
memory (RAM), a memory. buffer, a hard drive, a read-only memory' (ROM), an erasable
progranmable read-only memory' (EPROM), and/or the like. The memory 160 can store, for

g

WO 2019/191083 PCT/US2019/024057

example, one or more software modules and/or code that can include instructions to cause the
processor 120 to perform one or more processes, functions, and/or the like (e.g., the mapping of a
NA sequence, the generation of a digital signature, the generation of a signature NA sequence, the
validation of a signed NA sequence, etc.). In some embodiments, the memory 160 can include
extendable storage units that can be added and used incrementally. In some implementations, the
memory 160 can be a portable memory (for example, a flash drive, a portable hard disk, and/or the
like) that can be operatively coupled to the processor 120. In other instances, the memory 160 can be
remotely operatively coupled with the compute device. For example, a remote database server can
serve asamemory' and be operatively coupled tothe NA authentication device. The memory 160 can
in some embodiments include a database or alook up table (not shown in FIG. 1) storing information
regarding specific authors or users who may be registered in a system used to exchange information
regarding NA molecules (e.g., authorized users or validated authors of specific synthetic NA
molecules). The memory' 160 can include one or more storage systems for user information
associated tothese specific users through a unique user identifier (e.g., user ID).

[0043] The communicator 180 can be a hardware device operatively coupled to the processor 120
and memory 160 and/or software stored in the memory 160 executed by the processor 120. The
communicator 180 can be, for example, a network interface card (NIC), a Wi-Fi*M module, a
Bluetooth® module and/or any other suitable wired and/or wireless communication device. The
communicator 180 can include or be part of aswitch, arouter, ahub and/or any other network device.
The communicator 180 can be configured to connect the NA authentication device 110 to user
devices 102 and 104 or to remote data sources (not shown) via a communication network. In some
instances, the communicator 180 can be configured to connect to a communication network such as,
for example, the Internet, an intranet, a local area network (LAN), a wide area network (WAN), a
metropolitan area network (MAN), a worldwide interoperability for microwave access network
{WIMAX®), an optical fiber (or fiber optic)-based network, aBluetooth® network, avirtual network,
and/or any' combination thereof. The communicator 180 in the NA Authentication 110 can be
configured to establish one or more secure channels of communication to enable users to access the
Input/Output unit 140 of the NA authentication device 110. In some embodiments, the communicator
180 can be configured to generate and distribute tickets to control access sessions for users to gam
access to the NA authentication device 110. In some embodiments, the communicator 180 can use
the tickets (e.g., tickets containing access codes set to deactivate beyond a specified time period) to

moderate temporary or time limited secure communication channels. The Communicator 180,

7

WO 2019/191083 PCT/US2019/024057

similarly, can be housed in one device in some embodiments, and distributed across many devices in
some other embodiments.

{0044} The processor 120 included in some embodiments of the NA authentication device 110 can
be configured to run one or more applications to support various methods involved in cryptographic
signing and authentication of NA molecules as described herein. In some embodiments, the one or
more applications run in the processor 120 can be part of an enterprise software package. The
processor 120 can for example be equipped with one or more apparatuses that may include one or
more associated programs / software to carryout various portions of marking and authenticating a
NA molecule, the various portions including, for example, generating a mapped value of a NA
molecule, cryptographically encrypting a mapped value, to generate a digital signature, to convert a
digital signature into a signature NA sequence, identifying appropriate insertion points in the NA
sequence to insert the signature NA sequence, etc. Appendix A provides illustrative example
processor-executable code for an embodiment of the disclosure. In some embodiments, the processor
120 can be equipped with apparatuses and associated software to receive an unknown sample and
validate its alleged source, origin or author.

[0045] The NA authentication system 100 and the N A authentication device 110 can be configured
such that user specific information (e.g., identity of users, or molecules/sequences authored by users)
can be stored in a protected fashion by associating the information via the unique user identifiers,
and access to the information can be blocked unless alowed through a process of verifying user
credentias, for example, through secure communication channels mediated by the communicator
180.

[0046] In some embodiments of the system 100 the user devices 102 and 104 can include
apparatus to run suitable applications (e.g., client side application, mobile application, a PC
application, an internet web browser, etc.) installed on the user device) to communicate with one or
more applications on the NA authentication device, via a suitable communication channel mediated
or moderated by the communicator, as discussed herein. The applications can be configured to have
access to aregistry or database of authorized users with the users tabled or organized or indexed by
unique user identifiers (e.g., user 1Ds). In some embodiments, the unique user identifiers can be
generated within the NA authentication system 200. In some other embodiments, the umique
identifiers can be imported from other known sources or systems, for example, other organizations
frequented by users or authors of NA molecules and/or their sequence information (e.g., ORCID). In

some embodiments, the applications can be configured to receive NA sequences with descriptive

8

WO 2019/191083 PCT/US2019/024057

information or have access to information associated with a NA sequence, for example, documented
descriptions of regions of a NA sequence or unique identifiers associated with NA sequences (e.g.,
plasmid I1Ds).

Generating signature sequences
[0047] Generating a signature to be incorporated in a NA molecule can include abiding by certain

criteria. For example, the length of the signature may have to be within arestricted limit, depending
in the size of the NA molecule. Additionally, inserting any extraneous DNA sequences could impact
the function or stability of the NA molecule. For example, the inserted sequences may disrupt existing
functions by interrupting important features, may introduce a new function by encoding cryptic
functional elements and/or may impact the overall stability of the NA molecule (e.g., plasmid) in
terms of propensity for mutations, structural rearrangements or retention in a host organism. The
probability that existing features may be disrupted can be minimized through careful choice of where
within the NA molecule the signature sequence is inserted.
[0048] The probability that the inserted sequence may introduce a new function or impact stability
increases with the length of the inserted sequence. Additionally, the cost of synthesizing the signature
can increase with length. In some instances, signature sequences are configured to be of a
predetermined length to meet security parameters without compromising the security of the signature
itself. For a digital document, a signature of 384 bytes, for example, may be trivial. However, the
same 384 bytes translates to 1536 bases (384 * 8/ 2) of DNA. If aDNA sample originaly includes
2000 bases (not unusual for a plasmid), the addition of a 1536 nucleotide signature would nearly
double the size of the DNA molecule, which may not be feasible. As aternative to using identity-
based signatures that use bilinear pairings, in some embodiments the method 203 uses Shamir’s IBS
scheme (or the like) with modifications, in order to minimize the size of the insertion.
[0049] Inadigitaly signed document, the original message and the signature can be easily identified
and separated using delimiters that separate them. Because the site of insertion may vary depending
on the architecture of the plasmid, delimiters are used to identify where the signature sequence starts
and ends. I n some instances, the method 200 uses an algorithm that identifies subsequences that can
be used as delimiters while embedding a signature sequence in a NA molecule. For example, any
subsequence of 10 base pairs (substring of length 10) that is not present in the original sequence can
beused asa start and end delimiter indicating aportion of the NA sequence that includes the signature
sequence. During verification, all subsequences of 10 base pairs can be identified and only those
subsequences that occur twice within the entire sequence can be identified and used as delimiters.

g

WO 2019/191083 PCT/US2019/024057

{0050f In some embodiments, instead of the algorithm choosing the delimiters, the disclosed systems
and methods alow the user input their own delimiters of 10 base pairs. This approach can be
beneficial to design delimiters that are relevant to their specific project. For example, the delimiters
can be designed in such away asto simplify synthesis/assembly of the DNA. Tools included in the
NA system can check if the sequences are permitted i.e. the 10 base pair subsequence does not already
exist elsewhere inthe plasmid. Example sequences that can beused as start and end delimiters include
ACGCTTCGCA and GTATCCTATGrespectively. These sequences are relatively easy to identify
visually, they are unlikely to develop secondary structures and they can contain balanced numbers of
A, C,G,andT.

[0051] When any digitally signed message is shared and verification fails, the sender just resends the
message again. In the domain of NA sharing, this may include resending and likely resynthesizing
the sample (sometimes even batches of samples), which may incur a lot of cost. The presence of a
signature inside the molecule can ensure that any change in the signed DNA results in failed
verification. However, NA molecules can be prone to naturally occurring mutations. Hence after a
failed verification, in some instances, the system is configured to determine or check the location of
the mutation(s) that caused the verification to fail. If there are mutations in any important features,
the receiver may choose to reorder the sample. If there are mutations in any relatively unimportant
part of the NA, the receiver may choose to proceed to work with the NA sample. In order to achieve
this error tolerance, some embodiments of NA systems and methods disclosed include and use error
correction/detection codes, such as, by way of non-limiting example, modified Reed-Solomon Codes,
as described in further detail herein. Reed-Solomon and similar codes are block-based error
correcting codes in which redundant information is added to data so that it can be recovered reliably
despite errors in transmission or storage and retrieval. The encoder takes a block of digital data and
adds extra redundant bits. Errors occur during transmission or storage for a number of reasons. Hie
decoder processes each block and attempts to correct errors and recover the original data. The number
and type of errors that can be corrected depend on the characteristics of the (Reed-Solomon) code. A
Reed-Solomon code can be specified asR S(#,%) with s-bit symbols. This means that the encoder takes
k data symbols of s bits each and adds parity symbols to make an symbol codeword. There are n—k
parity symbols of shits each. A Reed-Solomon decoder can correct uptot symbolsthat contain errors
in a codeword, where 2t = n —xk.

[0052] For example, one Reed-Solomon code is RS(255,223) with 8-bit symbols. Each codeword
contains 255 codeword bytes, of which 223 bytes are data and 32 bytes are for parity. For this code:

10

WO 2019/191083 PCT/US2019/024057

n = 255, k=223, s=8, 2t = 32, t = 16. The decoder can correct any 16 symbol errors in the code
word: i.e. errors in up to 16 bytes anywhere in the codeword can be automatically corrected. Given
a symbol size s, the maximum codeword length (n) for a Reed-Solomon code isn=2s- 1.

[0053] For example, the maximum length of a code with 8-bit symbols (s=8) is 255 bytes. The
amount of processing power required to encode and decode Reed-Solomon codes is related to the
number of parity symbols per codeword. A large value of t means that alarge number of errors can
be corrected but requires more computational power than a small value of t. One symbol error occurs
when 1 bit in a symbol is wrong or when al the bits in a symbol are wrong. RS(255,223) can correct
16 symbol errors. In aworst case scenario, 16-bit errors may occur, each in a separate symbol (byte)
so that the decoder corrects 16-bit errors. In the best case, 16 complete byte errors occur so that the
decoder corrects 16 x 8-bit errors. Reed-Solomon codes are particularly well suited to correcting
burst errors (where a series of bits in the codeword are received in error). Reed-Solomon codes are
based on an area of mathematics known as Galois fieldg/finite fields. A finite field has the property
that arithmetic operations (+,-,x,/ etc.) on field elements always have aresult in the field. A Reed-
Solomon encoder or decoder needs to carry' out these arithmetic operations.

[0054] Embodiments of systems and methods disclosed include methods to associate a NA molecule
with a signature generating a tie between a physical NA sample and its digital representation.
Embodiments disclosed include methods to combine a signed NA sequence and its description to
form a combined message and generate a signature on this combined message. This signature of the
combined message can be placed in the digital representation of the NA such as the genbank file
which is shared with the receiver. This can ensure that the explanation of the NA sequences and the
sequences in the NA sample are accurate and related. Any change in the descriptions without
changing the molecule will invalidate this signature. Also, any change :n the molecule without
updating the descriptions will invalidate the signature.

[0055] Tosolvethe problem of tracing the source of synthesized DNA molecules and confirming their
identity and integrity, some embodiments of the disclosure include a system for generating digital
signatures for molecules of DNA in living cells. In some embodiments, a signature approach, such
as, by way of non-limiting example, Shamir’s Identity-based Signature (IBS) scheme (see Adi
Shamir. Identity-based cryptosystems and signature schemes. In George Robert Biakley and David
Chaum, editors, Advances in Cryptology, pages 47-53, Berlin, Heidelberg, 1985. Springer Berlin
Heidelberg; the entirety' of w'hich being herein expressly incorporated by reference for all purposes)

can be utilized. According to some embodiments, for the unique identifier string of a/the originator,

11

WO 2019/191083 PCT/US2019/024057

an identification, such as Open Researcher and Contributor IDs (ORCID) from a non-profit
organization which uniquely identifies researchers using a 16 digit number, can be used. Many
funding agencies require researchers to register for an ORCID, and scholarly journals request that
authors identify themselves using their ORCID. The generated signature bits are converted to the
four letters A, C, G, and T, which represent the four nucleotide building-blocks of DNA. The
sequence can then be synthesized and inserted intothe original DNA molecule. In some embodiments
when this signed molecule is shared, a receiver can sequence the signed molecule to verify that it
was shared by an authentic sender and that the sequence of the original molecule has not been altered
or tampered with.

[0056] While the use of similar techniques in the digital world is known, applying them to DNA
requires several creative adjustments. For example, one challenge comes from the physical size of
the DNA sequence encoding the signature. Adding extraneous sequences to a DNA molecule can
impact itsfunction or stability. It can be important, in some embodiments, to minimize the size of the
added sequence in order to decrease the likelihood that the biological function of the signed molecul e
would be effected and to decrease the cost of synthesizing the signature. For some such embodiments,
the size minimization can restrict the ability to use some known signature schemes, as well as larger
key sizes for signatures.

[0057] Another challenge is accounting for DNA mutations. In a DNA sample, mutations occur
randomly at low frequencies, and, as aresult, there isanon-trivial possibility that a signed molecule
could undergo a mutation between the time it is signed and when it is validated. Mutations could
affect not only the origina DNA molecule but also the signature. In both cases, the signature
validation would fail evenif the molecule were sent by the correct authority and the original sequence
were correct during the process of signature generation. Mutations are beyond the control of any
authority and therelative impact of any given mutation can vary. | n some embodiments of the system,
error correction codes are included to detect mutations in the signed DNA molecule. Error correction
codes are prevalent in digital storage such as CD/DVD. It is possible to use the similar techniques to
provide areliable reconstruction of the original sequence for comparison, provided a small number
of changes have occurred. In some embodiments of the system, the application of error correction
codes to DNA can additionally or aternatively be used to ensure the integrity of information”digital
information stored inDNA molecules.

[0058] While digital signatures as disclosed herein can provide a way to verify the source and

integrity of a DNA sample, there is additional information about the DNA sequence that can be

12

WO 2019/191083 PCT/US2019/024057

useful to the recipient of asigned DNA sample. For example, the exact location of features within the
sequence, such as a certain gene, may still be unknown to the recipient. In some embodiments, the
physically-signed DNA molecule is linked with its digital representation, which contains the
sequence and its features designated with explanations.

0059 The system can, according to some embodiments, be configured such that no polynomial-
time adversary can forge a genuine signature provided by the system. For example, assume a
polynomial-time adversary, Mallory/M, istrying to forge the signature of areputed synthesized DNA
molecule creator, Alice/A. Alice/A distributes DNA molecules, which Alice/A has synthesized and
provided to researcher Bob/B. If the attacker, Mallory/M, is able to forge the signature of Alice/A
then: (a) Mallory/M can replace the actual DNA created by Alice/A with her own but keep the
signature intact; (b) Mallory/M can create her own DNA molecule and masquerade asAlice/A to sign
it; and/or (c) Mallory/M can modify parts of the signed DNA molecule created by Alice’A. Thusthe
system can defeat any of the potential threats by providing a genuine signature that is difficult or
impossible for an polynomial-time adversary' to forge.

[0066] FIG. 2 illustrates a method 200 of generating a signed NA sequence. In some
implementations, the method 200 or portions of the method 200 can be substantially similar to
methods of generating a signed NA sequence described in other embodiments.

[0061] At 201 the method 200 includes receiving, from auser device, aN A sequence and information
associated with the NA sequence. In some instances, the NA sequence can be received in a
predetermined format. For example, NA sample can be sequenced by an automated sequencer and
the NA sequence be obtained from the sequencer. The output of a DNA sequencer can for example,
bein afasta (.fasta) file as shown in FIG. 6A. The fasta file can include the raw DNA sequence of
the DNA molecule in the sample. Asanother example, a genbank file (.gb) can include the raw NA
sequence along with annotations describing portions of the NA sequence, as shown in example in
FIG. 6B. In FIG. 6B, after the word “ORIGIN” the raw NA sequences are denoted and before that
the features are annotated.

[0062] In some instances sequence manipulation tools such as software applications like SnapGene
can be used to convert afasta file to a genbank file and vice versa. When afasta file is converted to
a genbank file, the software can search its database for common annotations. The generated
annotations may not be complete or correct every time. The software applications included inthe NA
system can allow the user at the user device to manually add additional annotations that may be used

to describe the sample NA sequence. These manually added annotations can be only available to the

13

WO 2019/191083 PCT/US2019/024057

creator of the NA sequence. When the NA sample is sent to others, they may sequence it and obtain
the fasta file but the genbank file can contain only those annotations that can be automatically
generated. An example view of a genbank file is shown m FIG 5. In some implementations, for the
receiver to extract all the feature information associated with a given NA sample, the creator may
share the genbank file containing the manually added annotations along with a NA sample.

[0063] In some implementations, the NA system may receive the NA sequence and information
associated with the NA sequence to perform preliminary analyses prior to generating a signature
sequence. For example, the NA sample can beaplasmid DNA. Plasmid DNA is circular and double-
stranded, having acyclic permutation property. The sequences represented in afastafile arethe linear
representation of a circular structure. As a consequence, there is no single set representation of the
seguences in a sample. Following sequencing, any cyclic per- mutation of the sequence is possible.
For example, m afasta file if the sequence is - “ACGGTAA”, when the same sample is sequenced
again, thefastafile might read as- “TAAACGG”. The NA system may perform preliminary analyses
to determine a point of origin or otherwise carryout adaptations that can be used for such circular NA
sequences that are linearized during sequencing and usage. An example adaptation procedure is
described below.

[0064] The cyclic permutation property of a plasmid creates a particular problem when validating
the signature since the original sequence which has been signed cannot be extracted properly. Asan
example, if the NA sequence which the signer wants to sign in the genbank file s “ORIGINAL",
When this sequence is synthesized and sent to areceiver, the receiver sequences the plasmid to get
the fasta file. The sequence in the fasta file might not always be ORIGINAL that isto say “in the
same order as the sender sent it”. It might be GINALORI or ALORIGIN i.e. acyclic permutation
of the sender’s sequence. The signer may have generated the signature on ORIGINAL. But the
receiver when validating the signature has no information about the order of the sequences and from
the fasta file there is no information about how to reconstruct the exact same order. Without this
exact same ordering the signature verification may fail as a different order may be inferred as a
different message or a different sequence.

[0065] In some embodiments, the NA system may accommodate this aspect of the cyclic permutation
property of circular NA molecules in the signature generation procedure by shifting the sequence
before signing depending on the location where the signer wants to put the signature. Let ustake the
same example where the signers genbank file has the sequence ORIGINAL which he/she is about

to sign. In some embodiments, the NA system can shift the sequence based on any suitable

14

WO 2019/191083 PCT/US2019/024057

information provided by the user. For example, the NA system can shift the sequence according to
the location of insertion of the signature. As an example, if the user wants to put the signature on
location 4, assuming this location does not have any feature, which is after the letter | and before
letter G, the NA system can shift the sequence accordingly, such that the signature is generated on
the shifted sequence GINALORI. Let us assume the signature sequence is SIGN. The signature is
then wrapped between two tags (e.g., START and END), and placed at location 4 to form the signed
NA sequence, but the genbank content isnot shifted. So the output signed NA sequence can be“OR!

START SIGN END GINAL”. This shift is transparent to the user.

[0066] This sequence “ORI START SIGN END GINAL” is synthesized and sent to the receiver.
The receiver may encounter any cyclic permutation of this sequence. For example, the fasta file
according to the receiver might read “ART SIGN END GINAL ORI ST”. The NA system
configured to validate the received signed NA sequence looks for the tag START, In this example
instance, the NA system may not be able tofind the START tag because the wrapping point iswithin
the tag itself. In such instances, the signed NA sequence is copied until two instantiations are found
i.e. the singed NA sequence after copying looks like “ART SIGN END GINAL ORI ST ART
SIGN END GINAL ORI ST ART SIGN END GINAL ORI ST”. Now the NA system can find 2
instantiations of the START tag. The NA system can retrieve the content between those tags for
example - SIGN END GINAL ORI. The NA system can remove the END tag and obtain SIGN and
GINALORL Thevalidation routine can be invoked on GINAL ORI and if there are no mutations it
can result in successful validation. Thus, in the implementations where the above described
adaptation is carried out, even though the signer’s file had the order as ORIGINAL, as described
above, since the NA system internally shifted the sequence and generated the signature on
GINALORI, the receiver does not have to know the ordering which the receiver generated the
signature on.

[0067] Asanother example, asaDNA molecule is made of two complimentary, anti-parallel strands,
a segquencer can read a sample in both the “sense” and “antisense” direction. The sequence may be
represented in afasta file in either direction. When the sample is sequenced again, the output might
be in the other direction, or what is known as the reverse complement. The reverse complement of
"A” is "T” and vice-versa, and the reverse complement of "C” is "G” and vice- versa. The DNA
molecule has polarity with one end represented as 5’ and the other represented as 3'. One strand
adheres to its reverse compliment in anti-parallel fashion. So if the sequence is“5'-ACGGTAA-3"",

the reverse complement is“3'-TGCCATT-5"\ The fasta file may represent one strand of the DNA

15

WO 2019/191083 PCT/US2019/024057

sequence inthe 5’ to 3’ direction; so the fasta file could read as “ACGGTAA” or “TTACCGT”. The
NA system may perform preliminary’ analyses to account for the variations in reads of the NA
sequence. For example, for aplasmid DNA that has N number of bases, combining the circular and
two complementary' strand properties, the correct representation of the same sample can be 2N - N
cyclic permutations plus each reverse complement. The NA system may preform preliminary’
analyses to determine a suitable reproducible representation of the plasmid DNA given these
considerations.

[0068] At 203, the method 200 includes generating a digital signature. The digital signature can be
generated by encrypting a mapped value that is in turn generated based on the NA sequence. For
example, the mapped value can be generated by applying a cryptographic function to the NA
sequence, and the digital signature can be generated by encrypting the mapped value. An example

procedure is outlined herein.

f0069] In some implementations, for example, a NA authentication device can use a scheme of
generating the digital signature which can be a modification of an identity-based signature scheme
proposed by Shamir using a user ID (e.g. an ORCID (Open Researcher and Contributor ID) as the
unique identifier. Shamir’s IBS is based on the RSA cryptosystem and its security depends on the
difficulty of integer factorization in the RSA problem.
0070} The digital signature generation scheme used in some embodiments of the disclosed systems
and methods can include a setup with the following steps.

I. Generate two distinct primesp and g a random with 2k2—1 <p,q< 2%

2 Calculate the modulus # as# = p - g

3 Calculate the totient @(x) = (o - 1)(q - 1).

4. Choose the master public key eas 1< e < (), such that eisrelatively prime to @(n).

5 Calculate the master private key, d, as el mod @(n) to satisfy the congruent relation
d.e = 1mod @(n).

6.. Publish the public parameters <e, n> and store the private key d. In some
implementations Kk is 1024 bits.
[0071] The digital signature generation at 203 in some embodiments of the disclosed systems and
methods can include a key extraction step. The private key, sp for auser with the identity ID can be
generated as: sp = H (ID) mod #, where His a secure hash function. In some implementations, for
example, SHA-256 can be used as the hash function

18

WO 2019/191083 PCT/US2019/024057

{0072} The digital signature generation used in some embodiments of the disclosed systems and
methods includes a signature generation step. For example, generating the signature for amessage m

e {0, 1}, includes generating the signaturefa) as :
{0, 1} g g g

O=sp""mod n~H (ID/ HWmod n

[0073] Thedigital signature (o) generated by the above procedure using the user identity informaiton
ID can beverified by checking if the following equation holds:

6* Z-n (ID/ ¥ piod 5

[0074] In some other implementations, the digital signature generation for a message m € {0, 1}*
can include the following steps.

@ Chooser exz .

(b) Compute R=rzmod n.
(c} Compute ¢ = H(R \\m) mod n.
(d) Compute t = s, - r°modn.

(e Output signature o = (R, 1)

[0075] The digital signature generated by the above procedure can be verified asfollows

e Lagp) rt R 1M odn

[0076] Asan example, aproof of security using the above described scheme for generating a digital
signature is described below. The digital signature in the original scheme is atuple - R, t. If the
modulus chosen is 1024 bits, the digital signature output will be 2048 bits which is 1024 base pairs.
Shamir’s IBS scheme is secure if no polynomial-time adversary can forge the digital signature on a
given message. For example, to forge a signature, an adversary needs to find sID from the equation
t=9D.Cmodn. Let, » =w. Therefore, ¥ =t w™L In order to find any inverse modulo n, one has
to know @(n) , where ¢ (.} is the Euler totient function. Calculating @(n) from n is equivalent to
factoring n into two distinct primes - a known hard problem. Next, to calculate w1, the random r
has to be calculated. If r can be found, then r° can be found as c is public. ¢ = H(R\\m) mod n. R is

first part of the signature and m is the message which bears the signature. To find the random r , one

17

WO 2019/191083 PCT/US2019/024057

has to know ¢(n) or the secret key d, since R =re,r =Rd.n embodiments using the modified scheme,
the signature o = sio® &, Therefore s@y & »Wherev=H(m)-L.Hence to find y one hasto know ¢(r) which
is equivalent to the RSA problem. Therefore, no polynomial-time adversary can forge a digital
signature in the simplified scheme.

[0077] Following digital signature generation at 203, the digital signature is converted into a NA
signature sequence at 205, using any suitable procedure. For example, the NA system can use a
conversion code such as0->'ac’, |I->'ag’, 2->'at’, 3->'ca, 4->'cg’, 5->'ct’, 6->'ga, 7->'gc’, 8->'gt’,
9->'ta’ to convert the digital signature to a sequence of polynucleotide bases forming the NA
signature sequence. In some implementations any suitable additional associated information can be
included in generating the NA signature sequence, such asa plasmid ID for example.

[0078] At 207, the method includes identifying insertion points in the NA sequence and insertion of
the NA signature sequence within the insertion points to generate a signed NA sequence. In some
implementations, as described previously, the user may specify insertion points. If the specified
insertion points are unusable or incompatible, for example if the insertion points specified are
colliding with any features, the user may be alerted and allowed to specify new insertion points.
Alternatively the NA system may suggest insertion points. In some implementations the user may
also specify start and end delimiters which may be added to the signed NA sequence for ease of
identification of the NA signature sequence within the signed NA sequence. In some implementations
the user may specify additional parameters such asan error tolerance limit which may be incorporated
in the signed NA sequence. The signed NA sequence is then returned to the user at 209. In some
implementations the signed NA sequence may be returned as a genbank file for example. In some
instances the genbank file may include descriptive information that may now' include information
related to the NA signature sequence.

[0079] The recipient of a NA sample with a signed NA sequence may sequence the received NA
sample using an automated DNA sequencer and obtain a fasta file containing the raw sequence of
the received NA sample. The validation portion of the NA system can be invoked on the fasta file.
Validation can be carried out by the NA system using, for example, any suitable procedure disclosed
herein. The recipient can be provided with the start and end tag that is present within the NA sample
by the sender. The NA system can accept the fasta file asinput for validation and locate the signature
sequence within the start and end tags. Within the NA signature sequence, as an example, the first 32
base pairs can encode the ORCID, the next 12 base pairs can encode the plasmid 1D, the following

512 base pairs can encode the digital signature and the remaining sequences before the end tag can

18

WO 2019/191083 PCT/US2019/024057

encode the error correction code. The verification algorithm can be invoked and the user can be
alerted with aresponse if the validation failed or succeeded.

An exampleworkflow d using an NA system

{0080} FIG. 3 illustrates an example work flow of using the NA authentication system 800 for
singing and verifying NA sequences. In the illustrated system, there are three players: 1) the signer
can develop the NA signature and sign a sequence 2) the verifier can use the signature to verify
whether the received NA sequence was sent by the appropriate sender and was unchanged after
signing. 3) a Central Authority (e.g., aNA authentication device) can provide the signer with atoken
that is associated with their identity. The central authority is secure and trusted by all participants in
the system.

[0081] As illustrated in the workflow 300 at step 301 a first user (User A) can generate a NA
sequence that they want to characterize and share with their collaborators or the general public. At
step 303 the user can obtain a signed version of their NA sequence by incorporating a secure
encrypted digital signature in a NA molecule they synthesized using the NA authentication system
(e.g., system 100) through methods such as method 200 and/or methods described in additional
examples and/or embodiments. As such the sequence information is documented at that initial time
point. The user can then share their sample N A molecule, at step 305, in any suitable form with other
users (e.g. User B) or collaborators or with NA databases or NA banks. Any second user (e.g. User
B) who is interested in using the NA segquence generated by the first user (User A), for a specific
functionality of the NA seguence, may obtain a sample of the NA molecule. They may want to know
how closely their sample resembles the original NA sequence that was shown to have their desired
functionality. The second user can sequence their sample at step 307, and access the NA
authentication system and provide the sequence information and ask for a validation (e.g. though
method 500) at step 309. Under circumstances where validation fails at 309, User B can receive
information related to the errors in the sequence in the sample and the potential reasons for failure in
validation.

[0082] At 311 User B can evaluate the source and/or magnitude of errors to determine whether the
NA sample can be used in consideration of the errors. The NA system can offer error correction and
at 3i1 the user may evaluate the use of the NA sample in consideration of the error correction.
[0083] For example, if validation results in failure, the error correction part can be invoked and can

try to correct the sequence depending on the number of errors user A chose to tolerate during signing.

18

WO 2019/191083 PCT/US2019/024057

If no corrections can be made (because the number of mutations in the sample exceeds the threshold
set by user A) user B can be notified with an alert. If corrections can be made, the verification can
start again on the corrected sequence. Upon successful verification on the corrected sequence, user
B can be notified about the errors (mutations) that occurred in the sample she received.

{0084} One source of error can be spontaneous mutations in NA molecules. Mutations are a naturally
occurring phenomenon. Whenever there is any mutation within the signed DNA, the receiver will
not know what changes occurred to invalidate the signature. Mutations can be of three types: 1) Point
mutation - This is the case where one base changes to another base eg. AAGGAA AAGAAA. 2)
Insertion - This is when a subsequence gets added to the original sequence eg. AAGGAA
AAGAGAA. 3) Deletion - This iswhen a subsequence gets deleted from the origina sequence e.g.
AAGGAA AAGG. In any of the above scenarios, the verification or validation process using the
described NA system can, in some embodiments, result in failure. Inthe digital realm, if any message
is not verified, we can always resend the message. But in the NA sharing domain, this requires that
the sample is transported and/or synthesized again, which incurs a lot of cost. Associated with the
problem of mutation lies the problem of sequencing. When the DNA is processed by an automated
DNA sequencer, the output is not always one hundred percent correct. It is dependent on the depth
of sequencing, and increased sequencing depth means higher costs. Sequencing a small plasmid to
sufficient depth isrelatively inexpensive, but for larger sequences, sequencing errors can be an issue.
In order to overcome these limitations, NA systems in some embodiments can include usage of error
correction codes along with signatures. The presence of error correction codes can help the receiver
to locate a limited number of errors in a sample that failed validation.

[0085] In information theory and coding theory, error detection and correction are techniques that
enable reliable delivery of digital data over unreliable communication channels. Many
communication channels are subject to channel noise, and thus errors may be introduced during
transmission from the source to a receiver. Error detection techniques allow such errors to be
detected, and error correction is used to reconstruct the original, error-free data. In error correction,
redundant data, or parity data, is added to a message, such that it can berecovered by areceiver even
with a number of errors (up to the capability of the code being used). Error-correcting codes are
frequently used in lower-layer communication, aswell asfor reliable storage in media such as CDs,
DVDs, and hard disks. It is possible to use the same techniques to provide a reliable reconstruction

of sequences provided a small number of changes have occurred. The application of error correction

20

WO 2019/191083 PCT/US2019/024057

codes to NA sequences described here can aso be used to ensure the integrity of digital information
stored in NA molecules.

{0086§ Some embodiments of the disclosed systems and methods use Reed-Solomon codes for error
detection and correction of NA segquences to correct point mutations. One convention of a Reed-
Solomon code (255, 223, 32) is explained here asan example. According to this example convention,
223 isthe number of data symbols, 32 is the parity symbols and 255 is the total number of symbols
that can be processed at atime or block size. Using tins convention the total number of errors that
can be corrected anywhere in the 255 symbols is 32/2 = 16. This convention uses 8-bit symbols.
Sincethe symbols are 8-hits, the block sizeis28 1 = 255 and with respect to aprogramming language,
each symbol istreated as a byte. So the Reed-Solomon code of (255, 223, 32) can be ssimply put as
255 bytes block size, 223 data bytes, and 32 parity bytes. The total number of errors that can be
corrected is 16 bytes. The parameters are generated from Galois field GF (257).

[0087] Applying the Reed-Solomon code of (255, 223, and 32) to NA sample can include certain
modifications. Using the Reed-Solomon code of (255,223,32) to NA sample asis can be cumbersome
in some instances, as treating each nucleotide base as a character or byte, may render an obstacle to
processing the entire sequence in a single block. To circumvent this, one can make blocks of 255
bases. Thus in a block of 255 bases, 223 bases can be the actual sequence and 32 bases can be the
parity sequence for that block. The parity sequences of every block cannot be identified as known
delimiters cannot be used. Considering an example scenario — if a user wants to correct 5 bases in a
plasmid sample which contains atotal of 800 bases, by convention, 800 bases cannot be processed
at atime and can be processed in four blocks (255 bases in each). The user has no prior knowledge
of the distribution of errors in the four blocks asthere isno information regarding where the 5 errors
might be. They may be al in one block or distributed across multiple blocks. Thus assuming the
worst case the goal may be to correct 5 errors in each of the blocks. Therefore the number of parity
bytes for total 800 bases can be 10. 4 = 40. Whereas, if the user could process the entire 800 sequence
at once, there would only be 5.2 = 10 parity bytes used.

[0088] In one example adaptation used by some embodiments of the NA system described herein, a
user can use 16-bit symbols or shorts. Using shorts the block size can be 2'6 -1 = 65535. The sequence
characters which were bytes can now be shorts. The parameters are generated using Galois field GF
(65537). This gives the flexibility to process the entire plasmid sequence at once. The user when
signing provides the number of errors that they would like to detect. The origina plasmid sequence

and the generated sequence are passed to the Reed-Solomon encoder. The Reed-Solomon encoder

21

WO 2019/191083 PCT/US2019/024057

generates 2 K shorts for K error tolerance. The 2K shorts are then converted to sequences. Each parity
short is converted to an 8 base sequence (16/2). Without the error correction incorporation the fina
NA signature sequence may have included- < start >< ORCID + Plasmid ID + Sgnature >< end >
where start and end were 10 base pairs each, ORCID was 32 base pairs, Plasmid ID was 12 base
pairs and Signature was 512 base. With the error correction codes included the parity sequences can
beinserted between the existing NA signature sequence and end sequence. The updated NA signature

sequence can be - < start >< ORCID + Plasmid _ID + Signature + Parity >< end >.

[0089] During the correction phase, the parity sequence isretrieved using the start and end sequences

and the length of the other three parts which is already known. The number of errors that can be
corrected can be determined by the length of the parity sequence. Since each parity short is 8 bases,
16 bases are two shorts and two shorts can correct’ one error, hence the number of errors that can be
corrected are - (parity sequence length) / 16.

[009GF Using the error correction code, the verifier can correct some number of errors (limit is set by
signer) in the digital sequence file. Upon correcting the sequence, the verification is invoked again
on the corrected sequence. The position of the errors and the corrected value are conveyed to the
verifier. The verifier can then decide if the errors are in any valuable feature or not. If a valuable
feature has been corrupted, the verifier can ask for a new shipment, else if the error was in a non-
vauable area inthe plasmid, the verifier can proceed to work with it.

Associating « physical NA sample with « digital representation

[0091] In some embodiments, the systems and methods described herein can beused to form a secure
association between aphysical NA sample and its digital representation. In some instances the digital

representation associated with a NA sample can include a set of descriptive information associated

with the NA sample that may be otherwise unavailable from external sources. For example, when a
user shares a NA sample with another, he manually describes the additional features present in the
sample in its digital representation (genbank file). This file is then shared with the recipient. The
recipient can receive the sample, sequence it and obtain its digita representation. The common

features that are in the sample can be automatically annotated with the help of a sequence-

manipulation software like Snapgene. In some embodiments, additional features and descriptions

that Snapgene or the like is not be able to interpret can be provided by the sender. An example
Snapgene view of a genbank file of a NA sample isshown in FIG 5. In order to associate this digital

DNA file which contains the additional descriptions (e.g., Fsat) with the digital DNA file that receiver

generates after sequencing the sample (eg., Fgen),a NA system can associate them together with a

22

WO 2019/191083 PCT/US2019/024057

combined signature. An example method 400 for generating an association between a sequence file and a
description file isillustrated in FIG. 4 and described below.
§0092} At 401 auser A (eg. the signer) can generate aNA sequence with custom descriptions. The
signer provides the digita NA file containing the appropriate NA sequence and the custom
descriptions. Let the NA seguence be msgqand the description be m gesc. At 403 the user A generates a
signed NA sequence. For example, the user A extracts the sequence and the descriptions. Only the
NA sequence isused for generating the signed NA sequence as described previously. Let the signed
NA sequence be signed sequence bemg,
[0093] At 405 the user A combines the description with the signed NA sequence to generate a
combined message, nicombby calculating the following.

nicomb = H (H {mgJ\ jH (Maese)}
[0094] where H isa secure hash function eg., SHA-256 and j| is a concatenation operation. User A

then generates a signature for the combined message as follows.

g = 5™ mod o= H D} e mod n

[0095] At 407 user A adds the signature to the description information associated with the signed
NA sequence related tothe NA sample. For example user A adds & to agenbank file associated with
the Signed NA sequence. User A then shares the sample with a user B at 409.

[0096] At 411, user B, the recipient, sequences the NA molecule to obtain sequence data associated
with the signed NA sequence. At 413 user B obtains description associated with the sample (Fsent)
and extracts the smgature of the combined message, the description and the signed NA sequence.
User B gets access to descriptions added by the singer (Fgg, from the sample. For example, user B
extracts O ', mgese from Fsenand mg, from Fq,. User B extracts the ID from mg, .User B calculates

Meone as follows.

mcomb: H (H (m3f|> H (mdesc))

[0097] At 415 user B validates the signed NA sequence and the combined message nicomb and
evaluates the use and/or authenticity of the NA molecule based on the results of validation. For

example, user B evaluates the following

()¢ =H (10) =~ mod. n

23

WO 2019/191083 PCT/US2019/024057

0098} Usmg the combined message, the recipient user B can validate that the description file was
sent by the authentic sender, the manually added descriptions have not been changed and these
descriptions belong to the same NA sample that was shared. As an example workflow of using the
NA system, user B can upload the digital NA sequence information file generated after sequencing
the sample shared by user A and also the digital NA sequence file that user A shared (which contains
the additional descriptions). The NA system can match the combined message with the descriptions
generated by the user A and user B can be notified about the association between the two files.
[0099] Embodiments disclosed include apparatuses, systems and methods for generating and
tracking molecular digital signatures to ensure authenticity and integrity: of NA molecules. The
disclosed systems and methods can be used for any suitable NA sample or portions of sample. While
the described methods include incorporating a signature NA sequence with in a NA sequence of a
NA molecule to form a signed NA sequence, any number of signature sequences that may be
applicable to portions of NA sequences can be incorporated into NA mol ecules. For example, when
different portions of a synthetic NA molecule (e.g., portions like promoters, gene region, etc.) may
be generated by different authors each portion may be authenticated by a separate signature NA
sequence. As another example, portions of NA such as genomic DNA of a genetically modified
organism can be authenticated using signature sequences that apply to that region of the NA
molecule. NA molecules that are used to store information (e.g., used as data storage mediums) can
be authenticated usmg the above described systems an:d methods.

Additional Embodiments and Implementations

[(6160] Initially, digital signatures were applied to plasmids. A plasmid is a small DNA
molecule within a cell that is physically separated from the chromosomal DNA and can replicate
independently. They are most commonly found as small circular, double-stranded DNA molecules
in bacteria. In nature, plasmids often carry genes that may benefit the survival of the organism, for
example, antibiotic resistance. While chromosomes are relatively large and contain all the essential
genetic information for living under normal conditions, plasmids usually are very small and contain
only additional genes that may be useful to the organism under certain situations or particular
conditions. Artificial plasmids can be used as vectors in molecular cloning, serving to drive the
replication of recombinant DNA sequences within host organisms. Additionally, plasmids can be
isolated in large quantities, they can be cut and spliced with additional DNA, they can be added to
microorganisms, such as bacteria, where they will replicate along with the bacteria’' s own DNA, and

plasmids can be further isolated to extract the many copies, potentialy in the billions, of the DNA

24

WO 2019/191083 PCT/US2019/024057

inserted into the plasmid prior to replication. Plasmids are generally limited to sizes of 2.5-20
kilobases (each letter of the genetic code A-C-G-T is 1 base).

{00101} The sequences that make up a plasmid can be documented electronically. Automated
DNA sequencers can be used to identify the pattern of bases in aphysical DNA sample and document
the sequence in a digital file called a fasta file (.fasta). The sequences can then be converted to
annotated files such as .dna, or .gb files that include information about what genetic features are
included in the plasmid. Each of these files has a specific format which denotes the sequences
together with other pieces of information including the location of features such as coding sequences
(CDS), origin of replication, etc. Sequence-manipulation software such as SnapGene and/or the like
can be used to convert sequences into maps of plasmid features. Features can be added manually or
identified automatically by searching within the SnapGene database for common features. Not all of
the sequences contain features. There are substrings or subsequences that do not have any known
biological function, and other DNA sequences can beadded in these areas with reasonable confi dence
that the added sequences will not disrupt the activity of any existing features.

[00162] Although the sequences that make up aplasmid can be documented electronicaly, the
electronic sequence file associated with a physical DNA sample is typically not shared aong with
the sample it represents. For example, in many manuscripts, plasmids are generally described one of
four ways. Most often, the main features of the plasmid relevant to the publication are broadly
explained (i.e, "A plasmid containing gene X was used..."). Sometimes there is a more thorough
description of how the plasmid was constructed included in the methods section (i.e., "Gene X was
inserted into acommercial plasmid between Origin Y and antibiotic resistance gene Z"). Full plasmid
maps are very rarely included in published manuscripts, and inclusion of the full sequence - which
would be needed to validate the plasmid - is even more rare. Additionally, it is not uncommon for a
plasmid to be shared multiple times between many labs until the origin of the plasmid is not clear.
Even within alab, it is often difficult totrack down the digital sequence file associated with aplasmid
if the person who constructed it is no longer an active member. The ability: to validate a physical
DNA sample without having access to the digital sequence file associated with it thus provides an
important and valuable tool. In some embodiments of the system, digital signatures are used as a
strategy for encoding the ability to validate a physical DNA sample within the DNA itself. Once the
sequences are in adigital file, digital signatures can be applied on the extracted sequence (message).
The signature bits are then converted to ACGT sequence as A-00, C-01, G-10, and T-I 1and added
tothe original sequence. Once the signed sequence is obtained by adding the signature to the original

25

WO 2019/191083 PCT/US2019/024057

sequence, it can, in some embodiments, be outsourced to a gene synthesis company that will
synthesize the signed DNA and return or send it. In one embodiment, the signature alone can be
synthesized and inserted into the original molecule. In another embodiment, the entire plasmid can
be synthesized including the signature to eliminate the need for any downstream assembly.

{00103} An automated DNA sequencer can provide a digital representation of the sequences
present within the physical sample. The output of a DNA sequencer can beafasta(.f asta) file as
discussed above. This file contains only the raw sequences in the sample. A genbank file (. gb}
contains the same raw sequences along with annotations. Segquence manipulation software such as
SnapGene can be used to convert a fasta file to a genbank file and vice versa. When a fasta file is
converted to a genbank file, the software searches its database for common annotations. The
generated annotations may not be complete or correct every' time. Hence, the user has the flexibility
to manually add additional annotations that may be required to describe the sample sequence. These
manually added annotations are only availableto the creator. When the same sample is sent to others,
they will sequence it and obtain the fasta file but the genbank file will contain only those annotations
that can be automatically generated. In order for the receiver to extract all the feature information for
a given plasmid, the creator would need to share the genbank file containing the manually added
annotations. 1n one embodiment of the disclosure, the genbank file is generated from the fasta file,
eliminating the failure of genbank files to include manually added annotations.

[00104] Plasmid DNA s circular and double-stranded. The sequences represented in a fasta
file are the linear representation of a circular structure. As a consequence, there is no single set
representation of the sequences in a sample. Following sequencing, any cyclic permutation of the
sequence is possible. For example, in afasta file if the sequence is - “ACGGTAA”,when the same
sample is sequenced again, the fasta file might read as -“TAAACGG”.

[00105] Furthermore, since DNA is composed of two complimentary, anti-parallel strands, a
sequencer can read a sample in both the “sense” or “antisense” direction. The sequence may be
represented in afasta file in either direction. When the sample is sequenced again, the output might
be in the other direction, or what is known as the reverse complement. The reverse complement of

“A”is “T” and vice-versa, and the reverse complement of “C” is “G” and vice-versa. The DNA
molecule has polarity' with one end represented as 5 and the other represented as 3. One strand
adheres to its reverse compliment in anti-parallel fashion. So if the sequence is - “ 5-ACGGTAA- 3

", the reverse complement is* 3-TGCCATT- 5 . Thefastafile will represent one strand of the DNA

28

WO 2019/191083 PCT/US2019/024057

sequence inthe 5’ to 3’ direction; so the fasta file could read as“ACGGTAA” or “TTACCGT". By
combining these two properties, for a DNA that contains N number of bases, the correct
representation of the same sample is 2N : N cyclic permutations plus each reverse complement.
[00106] In the digital realm, application of digital signatures nowadays is trivial. Signature
embedding in physicdl DNA faces additional challenges, which the system resolves. Below,
challenges to signature embedding are described and the ways in which the system resolves each
challenge.

Signatare Leagth

[00107] For any digital asset, e.g. adigita document, the length of the signature does not affect
the asset that is being signed. When applying digital signatures to DNA, length is controlled,
depending on the implementation, as a very long signature sequence could impact the properties of
the DNA molecule. Additionally, most embodiments tend not to utilize weak security parameters to
shorten the signature length as this might keep the properties of the molecule intact but instead
compromise the security ofthe signature itself. For adigital document, a signature of 384 bytes (say)
istrivial. But the same 384 bytes translates to 1536 bases(384 * 8/ 2) in a DNA. If aDNA sample
originaly contains say 2000 bases (not unusual for a plasmid), the addition of a 1536 nuclectide
signature would nearly double the size of the DNA molecule. Asa consequence, some embodiments
do not able to apply identity-based signatures that use bilinear pairings, especially where signature
length can present problems (e.g., changes the properties of the plasmid). For some
implementations, a modification of Shamir's IBS scheme, as detailed below.

Signature ldentification

[00108] In a digitally signed document, the origina message and the signature can be easily
identified and separated because there are delimiters that separate them. Inthe DNA domain, there
exists another problem of embedding the signature inside the origina molecule. Because the site of
insertion will vary depending on the architecture of the plasmid, delimiters are needed to identify
where the signature starts and ends. In one embodiment, the system uses an algorithm that identifies
subsequences. Any sub-sequence of 10 base pairs (substring of length 1) that is not present in the
origina sequence can be used as a start and end delimiter which will contain the signature. During
verification, all subsequences of {0 base pairs will be identified and only those subsequences that
occur twice within the entire sequence are the delimiters.

[00109] Although the above technique can be useful, in another embodiment, the system allows the
user input their own delimiters of 10 base pairs. This approach can be beneficial asit |ets the biologist

27

WO 2019/191083 PCT/US2019/024057

design delimiters that are relevant to their specific project. For instance, in one embodiment the
delimiters can be designed in such away asto simplify synthesis/assembly of the DNA. The system
checks if the sequences are permitted i.e. the 10 base pair subsequence does not already exist
elsewhere in the plasmid. In one embodiment, the sequences used by the system as start and end
delimiters are ACGCTTCGCA and GTATCCTATGrespectively. These sequences arerelatively easy
to identify visually, they are unlikely to develop secondary structures and they contain a balanced
number of A’'sC'sG'sand T's.

Error tolerance

[00110] When any digitally signed message is shared and verification fails, the sender just
resends the message again. But in the domain of DNA sharing, which includes shipping of samples,
this implies resending the sample (sometimes even batches of samples). This can incur significant
cost. The presence of a signature inside the molecule can ensure that any change in the signed DNA
will result in failed verification. However, DNA molecules are prone to naturaly occurring
mutations. Hence after afailed verification, it can be useful to check the location of mutation which
caused the verification to fail. If the mutation isin an important feature, the receiver can reorder the
sample. If the mutation isin any relatively unimportant part of the DNA, the receiver can choose to
proceed to work with it. In order to achieve this error tolerance, in one embodiment, the system
employs error detection/correction codes, such as, but not limited to, modified Reed-Solomon Codes.
Some embodiments assume that the start and end tags described above do not mutate. Without the
start and end tags, the location of the signature cannot be identified. Additional details about error
detection/correction codes are described in detail below.

Association between physical DNA molecule and corresponding digital representation

[00111] A variety of methods can be used to achieve/provide an association between the
physical DNA sample and its digital representation. One method isto embed adual signature in the
digital representation. This dual signature combines the signed sequence, the description and the
identity of the signer and generates a signature on this combined message. This signature can be
placed in the digital representation of the DNA (such asthe genbank file) which can be shared with the
receiver along with the physical signed DNA sample. The receiver is able to associate the received
physical DNA sample and this file easily due to the presence of the dual signature. This ensures that
the explanation of the sequences and the sequences in the plasmid are correct and related. Any change

in the descriptions without changing the molecule will invalidate this signature. Also, any change in

28

WO 2019/191083 PCT/US2019/024057

the molecule without updating the descriptions will invalidate the signature. In this approach, the
signer will share two items with the receiver: the signed physical DNA and the associated digital file.
100112} Another method isto embed the features and descriptions of the physical DNA in the
physical DNA itself. In this approach, the signer does not need to send the digital file additionally
since the descriptions are aready embedded in the DNA sequence. The receiver when sequencing
the received DNA sample can reconstruct the features and descriptions related to the sample. The
descriptions are extracted and converted into ACGT sequence, the plasmid DNA sequence is aready
present. The signature is generated from the combination of the description sequence and plasmid
sequence. This ensures that the description sequence and the plasmid sequence are correct and
unaltered. The signature and description sequence are then embedded inthe original DNA sequence.
In one embodiment, the system aso uses error correction codes in conjunction to provide some error
tolerance from mutations. The details of this procedure are provided below'.

Example UNA Signature scheme

[00113] In some embodiments, the system can include method(s) utilizing modifications of
identity-based signature schemes (e.g., as proposed by Shamir), configured with an improved form
suited for the DNA sharing domain. In one embodiment, the unique identifier isthe ORCED(Open
Researcher and Contributor D). Shamir's IBS is based on the RSA cryptosystem and its security
depends on the hardness of integer factorization inthe RSA problem.

[001 14] Setup: For agiven security parameter k, proceed with the following steps

il Setup: For a gives ssaussity parsnisser &, proceed with thefsi ewisg steps -

Lty

{. Generatetwodistinct pomes pand ¢ 2t madom with & v < po g

&
R

A

\| 2, Calculatethemodulus# asx ~p ~q

t| | Calculatethetctises 9{2} ~ (o~ £X(g~ 1} Cloosethemader publickey sas <o wging, |
such that s is relatively primeto iy \

4- Calculatetheinsser privatekey ., ase~ madp{n} ie order tosatisfy theceagreeat refatioa |
g ew {mod of)

| . Publish the public parameters <e, n> sag the keep the private key €.

In onee obodiment, & e 1034 s

28

WO 2019/191083 PCT/US2019/024057

Key Extraction: The private Rey, 8o fora user wah thesdennty ID s generated aw
A
s o= FIRY mod n

whers H ia & sooure hash Yunction, sach as the BHA A8 hash feaction.

&

Signatuve Ganeration: For peneating the sgnature fov a messge 1 € 8,1 geserate the
signatare(o) av e
IR & L 5 . Srer S M e .
g =g - omod 1= BIRY TN el n

} IR

Siguature YVertlivatina: To venfy 2 wgasmtuee o fora susesags w1 and wser wdentay 8, check

if the following egeation hadds:

¢ T grpretten
&% & IRV mod n

[00115] In one embodiment, the system improvesand modifies an existing Shamir IBS scheme for DNA
sharing by removing the random. The random prevents two of the same messages from having the
same signatures. Using the original scheme with the random, the signature length(s) will be 2048
bits or 1024 base pairs for the security parameter™:) of 1024 bits. Removing the random makes the
signature length 1024 bits or 512 base pairs for the same security parameter”) of 1024 bits. In the
realm of DNA sharing, users will be primarily shipping physical samples, not sending digital
information over the internet. A signer will not be sharing the same signed DNA molecule with a
receiver more than once. In one embodiment, the system can remove the random to achieve a shorter
signature length. FIG. 7 depicts a map of the plasmid features of a digitally signed DNA file.
[00116] According to some embodiments, an application software is provided that allows users to
generate signatures from a genbank file and also validate a signature on a genbank file. The details

of the signature generation and verification procedure are detailed below:

Proof of security for DNA signature scheme

30

WO 2019/191083 PCT/US2019/024057

[00117] In one embodiment, the system DNA signature scheme isan improved version of Shamir’ sIBS scheme.

To ensurethe security of the system scheme with improvements, it is demonstrated to achieve the same security

asthe original IBS scheme:

IBS Scheme Setup:
Same as above.

Key Extraction: Same as above.

Signature Generation: For generating the signature for a message m e {0, 1 }* :
1. Choose r gr Zy.

2. Compute B = r*:modn.

3. Compute e = H{R}\m) modn.
4. Compute t=sD-r°modn.

5. Output signature 0 = (R, t)

Signature Verification: To verify a signature ofor a message Mand user identity

I D, check if the following equation holds:

H(R\ \m)

féif(|z>) ‘R modn

31

WO 2019/191083 PCT/US2019/024057

{60118} The system improved scheme is able to provide the same level of security guaranteed asthe original
scheme. The signaturein the original schemeisatuple- (R, t). If the modulus chosen is 1024 bits, the signature
output will be 2048 bits which is 1024 base pairs. Based on the proposed threat model, Shamir’sIBS scheme
is secure if no polynomial-time adversary can forge the signature on a given message. It is readily
shown that this is equivalent to the difficulty' of breaking the RSA public-key cryp- tography. To

forge a signature, the adversary needs to find s;;, from the equation
t=Sp rmod n.Let r°=w. Therefore, s;p =1t -w 1.

Inorder tofind any inverse modulo n, one has to know @n), where @'} iSthe Euler totient function.

Calculating @) from nisequivalent to factoring ninto two distinct prunes - aknown hard problem.

Next, to calculate w! , the random r has to be calculated. If r can be found, then r¢ can be found as
cispublic.

c=H(R\|m) mod n.
R isfirst part of the signature and m isthe message which bears the signature. To find the random r,
one has to know' @{7i) or the secret key d, sinceR = r¢,r = Rd
[80% 19] In one embodiment, the system has improved the original scheme by removing the random R.
The signature becomes 0 = sH™. Therefore, 5;,0= ¢, where y = Hm) 1 Tofindy, @{n) must
be known which is equivalent to the RSA problem. Therefore, no polynomial-time adversary' can
forge aimmature in the smplified scheme.
[00120] In one embodiment, the system will generate the same signature for the same message .
Replay attacks on signatures is of concern in digital message encryption. In DNA sharing, the threat
of replay attacks is negligible since replaying the signed message implies sending the actual signed
DNA tothe receiver again. Asthis isnot adigital message which can be generated by packet crafting
or similar techniques, the attacker would have to actually synthesize the DNA molecule and send it
to the receiver. On the other hand, removing the random will make the signature length 1024 bits or
512 base pairs if the modulus(n) is1024 bits. Although the same DNA plasmid, originating from the
same source, will have the same signature , the practical risk is minimal and is outweighed by the
benefit of minimizing the signature length so asto decrease the likelihood that the functionality or

stability of the plasmid s disrupted.

32

WO 2019/191083 PCT/US2019/024057

J00121[In some embodiments, other identity based signature schemes which generate shorter
signatures may be utilized, for example, due to signature sequences having to be synthesized or
ordered from gene synthesis companies, which can be a per-base-pair cost.

Example Sign-Share- Validate Workflow

[00122] in one embodiment, the system wall facilitate coaction among three entities: 1) The signer
that develops the DNA signature and signs a sequence; 2) The verifier that uses the signature to
verify whether the received DNA sequence was sent by the appropriate sender and was unchanged
after signing; and, 3) A Central Authority that provides the signer with atoken that isassociated with
their identity.

{60123}In one embodiment, the system consists of three discrete stepsm the sign-share- validate
workflow, summarized in FIG. 8A. In one embodiment the system is employed in the following
way: Alice, a signer is developing a new plasmid. She starts in a sequence editor application by
combining sequences from different sources. When Alice (the signer) has finalized the sequence of
the plasmid to assemble in the lab, Alice can use the signature generating service hosted in a server
to create aDNA signature sequence to add to her design. This DNA sequence isthe digital signature.
Inthis embodiment, it is generated using the signature algorithm described above, Alice, the signer,
provides the digita. DNA file to sign, her generated unique identifier (ORCID), a six-digit plasmid
ID, and a start and end sequence that will contain the signature sequence. The digital signature is
inserted in the plasmid sequence between two conserved sequences used to identify the signature
from the rest of the plasmid sequence. Alice can then assemble the signed plasmid by combining
DNA fragments from different sources. Alice can order the DNA fragment corresponding to the
signature from a gene synthesis company. Alice describes her plasmid in a paper and refers to it
using the six-digit number 1D which she used to identify the plasmid in the signature. Alice did not
include the entire plasmid sequence in the online supplement of the article. Alice (signer) sends the
plasmids to afew collaborators.

[00124] Ellen, areceiver, isinterested in using Alice's plasmid. Ellen (receiver) can receive
the plasmid from other recipients such that the origin of the plasmid is not known (e.g., via another
graduate student who got it from his advisor a few years ago). Ellen (receiver) has limited
confidence in the plasmid because its origin and transfer sequence cannot be verified by
documentation. If Ellen (receiver) can determine the sample must be sequenced to verify its origin.

In one embodiment, the assembled sequence of the plasmid is uploaded to the server (e.g., by Ellen)

33

WO 2019/191083 PCT/US2019/024057

to verify the plasmid. The signature validation service m the server identifies the signature inserted
between the two signature tags. It will identify a block of 32 bp. to the right of the signature start
signa to extract the plasmid developer ORCID. Using the ORCID value as identity, the server
decrypts the 512 bp signature block. Then validation service can verify the signature (e.g., as
described above) If the two values match, then Ellen (receiver) will know that the plasmid was
signed by Alice (the signer) and that the physical sequence of this plasmid corresponds exactly to
Alice's design. In such an embodiment, even if Alice no longer had access to the plasmid sequence
files, because she was careful enough to sign her plasmid, Ellen can be assured that the plasmid she
intends to use isthe one described in Alice's publication.
Error Detection / Correction Codes
{00125} Limitations of using signed DNA: The presence of adigital signature within aDNA
can guarantee that the original sequence, identity sequence and the signature sequence itself has not
been tampered with since the signer sent the DNA sample. If any of these change, intentionally or
unintentionally, the receiver will not be able to verify the DNA sequence. The sequences inside a
DNA can be prone to mutation. Mutation is a naturally occurring phenomenon. In some
implementations, whenever there isany mutation within the signed DNA, the receiver may not be
able to verify even an untampered with sample.
[00126] Mutations can be of three types; 1) Poimt mutation - Where one base changes to
another base, e.g., AAGGAA ->AAGAAA; 2) Addition - When a subsequence gets added to the
origina sequence, e.g., AAGGAA > AAGAGAA,; 3) Deletion - When a subsequence gets deleted
from the original sequence, eg., AAGGAA -> AAGG. In any of the above scenarios, the
verification process will result in failure. Verification failures of digital messages can be corrected
by the message being resent. Verification failures of DNA cannot as easily be corrected, as the
sample would need to be transported again.. Along with the problem of mutation lies the problem
of sequencing. When the DNA is processed by an automated DNA sequencer, the output is not

always one hundred percent correct. It can be dependent on the depth of sequencing.

34

WO 2019/191083 PCT/US2019/024057

100127] In one embodiment, the system overcomes these limitations by using error detection
[error correction codes along with signatures. The presence of error correction codes can help the
receiver to locate and potentially correct some errors in the sequence. In information theory and
coding theory, error detection and correction are techniques that enable reliable delivery of digital
data over unreliable communication channels. Many communication channels are subject to
channel noise, and thus errors may be introduced during transmission from the source to a
receiver. Error detection techniques allow such errors to be detected, and error correction is used
to reconstruct the original, error-free data. In error correction, redundant data, or parity data, is
added to amessage, such that it can berecovered by areceiver evenwith multiple errors (within the
limits of the error code correction algorithm). Error-correcting codes are frequently used in lower -
layer communication, aswell asfor reliable storage in media such as CDs, DVDs, and hard disks.
In one embodiment, the system modifies and uniquely applies these techniques to DNA sharing,
providing areliable reconstruction of sequences within the parameters of the algorithmic ability
to reconstruct. Inthis embodiment, the application of error correction/detection codes to DNA can

also be used to ensure the integrity of digital information stored in DNA molecules.

[(34128] In one embodiment, the system employs Reed-Solomon codes for error detection. and
correction of DNA sequences, including for point mutations. A convention of a Reed-Solomon
code is(255,223,32) in which 223 isthe number of data symbols, 32 isthe parity symbols and 255
isthe total number of symbols that can be processed at atime or block size. Using tins convention

the total number of errors that can be corrected anywhere in the 255 symbols is 32/2 = 16. This
convention uses 8-bit symbols. Since the symbols are 8-hits, the block size is 28 — 1= 255 and

with respect to aprogramming language, each symbol istreated as a byte. So the Reed-Solomon
code of (255,223,32) can be put as 255 bytes block size, 223 data bytes, and 32 parity bytes. The
total number of errors that can be corrected is 16 bytes. The parameters can be generated from

Gdlois field GF(257).

[00129] A plasmid contains 2500 to 20,000 base pairs. Corresponding each base with abyte

would result in the inability - to process the sequence in a single block. In one embodiment,

35

WO 2019/191083 PCT/US2019/024057

the system creates blocks of 255 bases. Tinsimplies that in ablock of 255 bases, 223 bases are the
actual sequence and 32 bases are the parity sequence for that block. Asoutlined above, while digital
messages can use delimiters, DNA cannot. Therefore, the parity sequences of every block cannot
be identified. If a user wants to correct 5 bases in a plasmid which contains atotal of 800 bases,
these 800 bases cannot be processed at onetime and will be processed in four blocks (255 bases in
each). The distribution of errors in the four blocks is uncertain i.e. there is no guarantee where the
5 errors might be. It can beall in one block or other possible ways but certainly not uniform (1.25

in each block). So assuming the worst case, we need to correct 5 errors in each of the blocks.

Therefore the number of parity bytes for total 800 bases isnow 10 - 4 = 40. If the entire 800
seguence can be processed at once, we would have only 5 - 2 = 10 parity bytes.

{00130} In one embodiment, the system employs 16-bit symbols or shorts. Now the block
Sizeis 216 —1 = 65535. The sequence characters which were bytes are now shorts. The param

eters are generated using Galois field GF(65537). The entire plasmid sequence may be processed
. The signer provides the number of errors that they would like to correct. The origina plasmid

sequence and the generated sequence are passed to the Reed- Solomon encoder. The Reed-
Solomon encoder generates 2 - K shorts for K error tol- erance. The 2k shorts are then converted

to sequences. Each parity short is converted to an 8 base sequence (16/2). Previoudy the final
signature sequence consisted of - < start >< ORCID + Plasmid ID + Sgnature >< end >
where start and end were 10 base pairs each, ORCID was 32 base pairs, Plasmid_ID was 12 base
pairs and Signature was 512 base pairs. Now the parity sequences are inserted between the
signature sequence and end sequence. Updated sig- nature sequence - < start >< ORCID +
Plasmid_ID + Sgnature + Parity >< end >. During the correction phase, the parity sequence
isretrieved using the start and end sequences and the length of other three parts which is already
known. The number of errors that can becorrected can be determined by the length of the parity
sequence. Since each parity short is 8 bases, 16 bases are two shorts and two shorts can correct

one error, hence the number of errorsthat can be corrected are - (parity sequence length) / 16.

36

WO 2019/191083 PCT/US2019/024057

[00131] Using the error correction code, the verifier can correct some number of errors (limit
is set by signer). Upon correcting the sequence, the verification is invoked again on the corrected
sequence. The position of the errors and the corrected value are conveyed to the verifier. In one
embodiment, the sign-share-verify workflow will be updated accordingly as follows. The receiver
will upload the digital DNA file to the server which is obtained after sequencing the plasmid shared
by the signer. The validation sendee will try to validate the sequence. If this validation results in
failure, the error correction part will be invoked will try to correct the sequence depending on how
many errorsthe signer choseto betolerated during signing. If corrections cannot be made the receiver
will be notified with an alert. If corrections can be made, the verification will start again on the
corrected sequence. Upon successful verification on the corrected sequence, the receiver will be

notified about the errors (mutations) that occurred in the received sample.

Associating the DNA sample with its digital representation

[66132] The sequences within a physical DNA molecule can be obtained digitally using an
automated DNA sequencer. The sequencer outputs a digital file - .fasta which contains the ACGT
sequence of the sample. The fastafile can be converted into annotated files like .dna, .gb etc which
contains the genetic features along with its descriptions. Gene-manipulating software like Snapgene
aid in converting these subseguences into maps of plasmid features. Users can add feature
descriptions manually or search within the Snapgene database for any matching features. When the
physical DNA sample is shared, the receiver will also sequence the sample and obtain its sequence.
Now the receiver will be able to view only the features that Snapgene can automatically interpret
from its database. The extrafeatures that the sender manually annotated will not be available to the
receiver. Hence the sender also needs to share the annotated file with the receiver such that the
additional annotations are available to the receiver. Hence, it is essentia to tie the digital file with
the physical sample in some way such that the receiver can be certain that the annotations belong

to the particular physical sample.
Dual signature in the digital DNA file

{60133} In one embodiment, the system enables the sender to share the digital genbank file

along with the physical DNA sample. In order to associate the digital DNA file which contains the
37

WO 2019/191083 PCT/US2019/024057

additional descriptions(let us cal thisF__) with the digital DNA file that receiver generates after

sequencing the sample(iet us cal this Fggn), the system associates them together with a combined

signature. Theassociation between the digital file and the physical sampleis created inthe foll owing

way:

Create association

I.

Signer provides the digital DNA file containing the appropriate sequence and descriptions.
Extract the sequence and the descriptions. Only the sequence is used for signature creation

as described above Let this sequence be 25,5 and the descriptions henidesc-

Generate signature on m s before and place this within the original sequence. Let this

s€q 3

final signed sequence be ;4.

. Combine 17ifes; and Mgy, by calculating thefoilowing:

Meomn = H (H(msig) |\H (Tndesc)}

where H is a secure hash function e.g. SHA-256 and {j is concatenation operation.

. Create signature for this m m, using the same procedure

o =s"mmod n = H(I EIEI);’ Teomb mod 1

. Add 0 to the genbank file with a keyword "ASSOC".

. Share the file with the recipient.

Validate association

Recipient obtains 5., and generates ¥ge, from the received sample. The tool takes both

files asinput.

. Extract o, niges: from Fsen, and 1 from F gen, The I D is extracted from 114q.

Calculate m as:
comt>

Meomp = H(vHGnSiQ) EH(7ndesc))

. Check if the following equation holds:

(62 # H{ID)™m mod n

38

WO 2019/191083 PCT/US2019/024057

[00134] Using this combined signature, the recipient can validate that the description file was
sent by the authentic sender, the manually added descriptions have not been changed and these
descriptions belong to the same DNA sample that was shared. In this embodiment, the sign-share-
verify workflow- wall work as follows. Ellen (the receiver) can upload the digital DNA file she
generated after sequencing the sample shared by Alice (the signer) and also the digital DNA file
that Alice shared (which contains the additional descriptions). The server wall match the combined

signature and Ellen will be notified about the association between the two files.

[66135] A potential limitation of this particular method is that any user who wants to share a
DNA sample must also share the appropriate digital file. But often there are many researchers who
are working together on a sample and each of them makes changes to the physical sample
independently. These subtle changes are not always documented in the digital file. Hence the
digital file might not be a correct representative of the physical sample. The advantage is that the
physical sample is unaltered and hence its properties will remain intact.

Self~-Documenting DNA

{00136} In some embodiments, the system can be configured such that the sender needs to
share only the physical DNA sample. The annotations are embedded within the physical sample
itself. The receiver can sequence the physical DNA as before and from the fasta file, the genbank
file(al! descriptions and sequence) can be generated. One possible drawback is that embedding
additional sequences within the original plasmid will increase its size and will increase a chance
that it might not retain all of its original properties, and retaining the sample’s original properties
can beapriority. In some embodiments, the methods include and/or are integrated with asignature
scheme to produce a physical DNA sample which contains proof of origin, sequence integrity
validation, and/or which contains the description about itself within its sequence. In some such
embodiments, the flow is modified such that given a digital genbank file, the descriptions are

extracted, compressed using any of a variety' of compression techniques, converted to ACGT

39

WO 2019/191083 PCT/US2019/024057

sequence and added to the existing sequence of the DNA. The workflow of tins method is as
follows:

7. User provides the digital DNA file containing the appropriate sequence and descriptions.
The user also provides three conserved tag sequences. These tag sequences are not present
within the original plasmid sequencei.e. they are unique. The user then provides the location
where to put the description sequence and also the number of errorssmutations that will be

tolerated.

8. The sequence and the descriptions are extracted from the provided digital (genbank) file. Only
the sequence isused for signature creation as described above. The descriptions are utilized here,
the descriptions are compressed using a compression algorithm and are converted to ACGT

sequence. This description sequence is placed between tag# and tag#2.

9. The original plasmid segquence is then combined with this description sequence by placing it
within the location specified by the user. We cannot place this in any arbitrary location asthere
might be features existing there and that will change the properties of the plas- mid. If the user
chooses to insert in the beginning of the original sequence the output is < tag#l ><
descriptions >< tag#2 >< original >. If the user chooses to insert in the end of the origina
sequence, the output is - < original >< tag#1 >< descriptions >< tag#2 >. Otherwise, if the
user chooses a location within the original sequence, the output is < originalpartl >< tag#1l

>< descriptions >< tag#2 >< originalpartl >.

10. A checksum is generated on this intermediate sequence. Any existing checksum generating
algorithm can be used. In this embodiment, the system uses CRC32 checksum [20]., in which
the checksum length is always 32 bits or 16 base pairs. This checksum sequence is placed within
tag#2 and tag#3 by appending the checksum and tag#3 after tag#2. The error correction code
isthen generated from this sequence (i.e. the original, description and checksum sequence) and
appended after this checksum, also within tag#2 and tag#3. This subsequence - < tag#} ><
descriptions >< tag#2 >< CHECKSUM >< ECC >< tag#3 > is known as “annotation
sequence” . Similar to the signature sequence, error correction code (ECC) is used to tolerate

some amount of mutation that can occur within the DNA. Without this error correction code,
40

11

WO 2019/191083 PCT/US2019/024057

mutations will lead to corrupted original sequence and description sequence which will result

in an incorrect digital file at the receiver’s end.

_The fina combined sequence output is- < originalpartl >< tag#1 > < descriptions > < tag#2

>< CHECKSUM >< ECC >< tag#3 >< originalpart2 > . Depending ontheuser’ schoice

ofinsertion, either < originalpartl >or< originaipart2> canbe empty.

The final combined sequence, i.e. the origina and the annotation sequence is written to a text
file or .fasta file. This file contains only ACGT sequences. FIG. 8B depicts an example .fasta

file.

.The combined sequence isthen outsourced to agene synthesis company who will create aDNA

fragment containing the combined sequence which can be shared. Otherwise, only the
annotation sequence can be outsourced and the DNA fragment containing the annotation
sequence will be created. The user then combines the original plasmid sequence and the

annotati on sequence in the lab and then it is ready to beshared.

.The recelver upon receiving the shared plasmid, sequences it using an automated DNA

sequencer. The generated .fasta file will have the combined sequence. The receiver then pro-
vides the three tag sequences that the sender provides. Using this information, the digital DNA
file is created aong with the descriptions directly from this fasta file. The receiver does not

need to use any gene manipulation tools to interpret the features and descriptions.

14.The description sequence is present within tag#l and tag#2, the checksum and error

correction sequence is present within tag#2 and tag#3. First, the checksum, error correction,
descriptions and original sequence are extracted and isolated. Then the original sequence and
description sequence are combined and a CRC32 checksum is generated. It is then validated
against the extracted checksum. if these two sequences are equal, this implies the sequences
have not been altered i.e. no mutations occurred. In this case, the genbank file is generated
after this step. If this checksum validation fails, the error correction sequence comes into
action and tries to correct any mutations that may have occurred, provided the number of

error is within the tolerance limit set by the sender. if the number of errors are within the
41

WO 2019/191083 PCT/US2019/024057

tolerance limit, the genbank file is generated with the corrected information and the user is
provided with the position and content of the error. if the number of errors are more than the

tolerance limit, the user isnotified.

{00137} In this implementation, the assumption istag#2 and tag#3 is not corrupt or mutated
asthe corruption of any or both of these tags will result in inability to recover the error correction
sequence. Consequently, due to loss of tag#2, the description sequence end cannot be located and
hence the digital genbank file cannot be reconstructed. In a further embodiment, to address this
issue, the system employs the use of string similarity metrics to identify where the mutated tags
might be located. There are various techniques which address string similarity’, including by way
of non-limiting example, Jaccard Similarity, Dice's Coefficient, Levenshtein distance, Jaro-

Winkler edit distance, etc.
Example Signature generation and verification procedure

[00138] In some embodiments, the system allows a user to generate and validate signatures.

The parameters (i.e, e, d, N) are fixed in the prototype where the modulus N is 1024 bits.

[00139] Signature generation: The user provides the following inputs for signature
generation: The genbank (.gb) file; ORCID - a 16 digit number in XXXX-XXXX-XXXX-XXXX format;

Plasmid ID - a 6 digit number; Location of signature placement; Number of errors to be tolerated.

[00140] All the necessary input checks eg. the file has extension .gb, ORCID format is
correct, ORCID is integers etc. are done. The signature generation procedure begins by splitting
the genbank file by the keyword ORIGIN . Refer to figure 2.2. After the keyword ORIGIN isthe
actual sequence and before it are the descriptions. The sequence is the message to sign and the
descriptions are kept for verifying if the user provided location iscolliding with an existing feature.
Let us assume the sequence to sign is SEQUENCE and there exists a feature from location 1 to 3
which corresponds to SEQ. Next,the location of signature placement is checked. If the location
collides with afeature, the user is alerted to change the location. For our example, if the user had
provided 2, the tool will aert the user that there is already a feature SEQ there and ask for a new
location. If the user chooses 4 which is after the letter Q, it will be alowed. Next, the OCRID and

42

WO 2019/191083 PCT/US2019/024057

Plasmid ID are converted to ACGT sequence by the following conversion method - [0- AC, 1 -
AG,2-AT,3-CA,4-CG,5-CT,6-GA, 7-GC, 8-GT,9-TA]. Thereason for choosing tins
conversion type is that if any ORCID or plasmid ID has repetitions e.g. 0000-0001-4578-9987,

the converted sequence will not have along run of a single base.

{60141 If oneused O - AA, the example ORCID would have AAAAAAAAAAAAAA inthe
beginning, and long runs of a single nucleotide can result in errors during sequencing. In the
chosen conversion method the ORCID would start with ACACACACACACAC. Let the
converted ORCID and Plasmid ID sequence be ORCID and PiD. The signature is generated
according to the scheme described above. The signature bits are then converted to ACGT
sequence.

[00142] Let signature sequence be SIGN. Also, recal that the start and end tag where this
signature :sto be placed ispredefined. Let this start tag be START and end tag be END. The signature
sequence is concatenated with ORCID and plasmid ID and then placed between the start and end -
START ORCID PID SIGN END. This entire string is placed at the position specified by the user.
Aswe chose 4 in our example, the total sequence looks like - SEQ START ORCID PID SIGN END
UENCE. Now this string is passed into the error correction encoder. According to the number of
tolerable errors specified by the user, the parity bits are generated. The parity bits increase with the
number of errors to betolerated. These parity bits are then converted to ACGT sequence. Let this be
ECC. When the encoder output is generated, the string looks like - SEQ START ORCID PID SIGN
END UENCE ECC. Next, the ECC is separated and this is placed before the signature and end tag.
So the final output string is - SEQ START ORCID PID SIGN ECC END UENCE . Note that the
error correction code is generated after generating the signature sequence and combining with
origina sequence. Hence any error m that string can be corrected provided it is within the tolerable
limit. For our example, if we put 2 as our error tolerance limit, then any 2 errors within the string
SEQ START ORCID PID SIGN END UENCE ECC can betolerated. For example if there is 1 error
in SEQ and 1 error in SIGN, or 2 errors in SIGN, or 1 error in SIGN and 1 error in ECC, it can be
corrected. But if there are more than two errors it cannot be tolerated. The final output string - SEQ
START ORCID PID SIGN ECC END UENCE iswritten into another genbank file. The descriptions
are updated i.e. the locations of the signature, start, end, ecc are added and if there are features after

43

WO 2019/191083 PCT/US2019/024057

the signature placement locations they are updated. The output genbank file is shared with the
recipient.

{00143} Signature verification: The user provides the following inputs for signature
verification: 1. The shared genbank (.gb) file; and 2. The fasta ¢ . fasta) file winch the receiver
obtained after sequencing the shared, signed DNA.

[00144] The sequence in the fasta file might not be the in the same order asthe receiver sent
it. That is, after sequencing the shared DNA, the fasta file may look like - ORCID PiD SEGN ECC
END UENCE SEQ START which isacyclic permutation of the final sequence the receiver obtained
after signature generation. The genbank file contains the correct order. The tool aligns the genbank
sequence and the fasta sequence. If there isany mutation in the shared DNA the fasta file will have
some errors but most of it will be aligned correctly. If there are no mutations the file will be aligned.
SEQ START OR{CID PID SIGN ECC END UENCE. The tool looks for start and end tags which
arepredefined. After obtaining the start tag, 32 bases are counted, this is the ORCID sequence, next
12 bases are counted, this isthe plasmid ID sequence, then 512 bases are counted, this isthe signature
sequence. Next the substring after this signature sequence tothe end tag is retrieved, this isthe error
correction sequence. Finally, the portion before start tag and the portion after end tag is concatenated
to reconstruct the message for signature verification. So as of now SEQUENCE, START, ORCID,

PID, SIGN, ECC and END have been retrieved. The SEQUENCE, ORCID and SIGN is used for
signature verification according to the scheme described above If there is no mutation, the signature
verification will succeed and the user is aerted for successful verification. If there is any mutation
;theverification will fail. Inthis casethe extracted parts are used to construct the string - SEQ START
ORCID PID SIGN END UENCE ECC. This was the output of the error correction encoder. If the
error is within the tolerable limit, it will be corrected. If the error is more than the tolerable limit, the
user is alerted that the verification and the error correction both failed. If the error is corrected, the
counting method is again used to retrieve the corrected parts - SEQUENCE, START, ORCID, PID,

SIGN, ECC and END. The verification is invoked on the corrected SEQUENCE, ORCID and
SIGN. If the verification succeeds the second time the user is notified about success. Also, the
corrected parts and the previously extracted parts (before first verification) are compared to display
where the error was. If the verification fails on the corrected parts, the user is notified about failure
after correction and the corrected errors are displayed.

[00145] Although the corrected errors are displayed to the user, the actual content of the DNA
is not changed, only the fasta representation is changed. The physical DNA till contains the error

44

WO 2019/191083 PCT/US2019/024057

i.e. if the sample is sequenced again, the freshly obtained fasta file will again be erroneous. In this
embodiment, the error detection is more apt. The user gets the correction information, and if the
errors are not in any important part of the DNA, the user can choose to work with the shared sample.
If the errors are in an important part of the DNA, the sample can bere-ordered from the sender.
Example Validation and Testing

{00146} To vaidate the ability to verify digital signatures from sequencing data and ensure
that digital signatures do not interfere with the function of plasmids, a senes of experiments were
conducted in three different phases.

[00147] For Phase | and I, two plasmids w3¥xre designed for assembly by the Gibson cloning
method. One of these was the commonly used commercial vector pUC19 The other was a minimal
expression vector consisting only of two antibiotic resistance genes and an origin of replication. For
each of these, the sequences, including the signatures, were ordered in four separate parts from one
of two DNA synthesis companies, TWIST or Integrated DNA Technologies. TWIST offers DNA
synthesis at a lower price ($0.07/bp), but they were not able to synthesize al of the seguence
fragments needed. The total cost of DNA synthesis for the two plasmids was $397.88 and $395.16
with the signature accounting for $48.16 of the total cost in each case.

[00148] Once the four building blocks for each plasmid were received, they were put together
by Gibson assembly and transformed into Escherichia coli cells. The cells were plated on media
containing antibiotics. Three colonies from each plate were grown up in liquid cultures containing
antibiotics, the DNA was extracted, and the expected structure of the plasmids was confirmed by
restriction enzyme digests. The ability of the cells to grow in liquid and solid media containing
antibiotics indicates that the signature did not interfere with the origin of replication or the antibiotic
resistance genes for either plasmid. The entire process from receiving the plasmid building blocks to
confirming the plasmid structures was accomplished in 2 weeks. For one strain transformed with
each plasmid, DNA was extracted and sequenced by Sanger Sequencing, and the resulting reads were
manually assembled into a single fasta file for each plasmid. The fasta files were verified with the
digital signature software.

[00149] In Phase IlI, the potential impact of digital signatures on sequence function was
further tested using a different strategy. Sequences were designed for aminimal expression construct
for the reporter gene Lac-Z, which, in the presence of the chemicas Isopropyl [(-D-I-
thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolyl-P-D-galactopyranoside (X-gai),

results in the production of a blue precipitate. A plasmid including the Lac-Z expression construct

45

WO 2019/191083 PCT/US2019/024057

was ordered from TWIST with and without the addition of a digital signature. The sequences were
synthesized by TWIST within one of their predefined vector backbones. The cost of the sequences
was $76.82 without the signature and $131.72 with the signature.

{00150} E. coll transformed with the plasmid with the signature “SIGNED” and the plasmid
without the signature “CONTROL” were grown on media with and without antibiotics, IPTG, and
X-ga. Both plasmids resulted in equivalent numbers of blue colonies suggesting that the
performance of the origin of replication, the Lac-Z construct, and the antibiotic resistance marker
were all unaffected by the presence of the digital signature. The “SIGNED” plasmid was also
extracted from cells, sequenced by Sanger Sequencing, the sequence was manualy assembled into a
single fasta file from the reads, and the fasta file was verified using the digita signature software.
This entire process took approximately one week. FIG. 9A shows that the addition of signature does
not change the behavior or function of the plasmid. The two samples on the left are the signed
plasmids and the two samples on the right are the control plasmids.

[00151] Additional tests include preparing plasmids with mutation in different parts e.qg.,
mutation in signature, mutation in GRCID, mutation in the original sequence, and conducting the
same test cases to confirm/check if the verification fails at first and if the error correction/detection
code assists detection of mutations and provide information to the user about the mutations.
Allowing mutations in identifying tags

[00152] In examples above, two identifying tags weredefinedwhich contains the signature in one
embodiment of the system. The start tag was chosen as ACGCTTCGCA and end tag as
GTATCCTATG Also, when initially incorporating error correction code to tolerate mutations within
the DNA, it was assumed that the start and end tag do not mutate. Otherwise, it will not be possible
to locate the signature and consequently, it will not be possible to locate the error correction code
itself. Without the ability to locate the error correction code, error correction may not be invoked at
all. In one embodiment, after signature generating is complete the DNA isof the form - SEQ START
ORCID PH) SIGN ECC END UENCE. This form is synthesized and sent to the receiver. The
receiver while validating looks for the start and end tag to extract the information between them. If
there is any mutation within the tags itself, for example, SEQ SMART ORCID #ID SIGN ECC
END UENCE (the T inthe start has mutated to M) this first step will fail and the user will come up
with an alert message that the tags cannot belocated.

[00153] In one embodiment, the system uses partial matching techniques such that the start
and end tag can be located approximately. Since the start and end tags are fixed, tags that are very

46

WO 2019/191083 PCT/US2019/024057

near matches for in the DNA molecule can be searched. As per the example, the keyword START

is searched for within the mutated string SEQ SMART ORCIED PIEF SSIGN ECC END HENCE.

Although there isno concrete match, the partial matching techniques can be used to output the closest
match to START, which in this example is SMART. The approximate matching technique breaks
the searchable string into substrings of the length of the input string. Each of the broken substrings
i the larger string is assigned a score based on how similar it is to the input string. The match is
inferred using the highest score. Now in the real DNA, sequences are of A, C, G, and T, so there
might be a case that there are multiple close matches. 1n some embodiments, the system uses the end
tags to narrow the results. The following steps describe how the approximate matching technique
works, according to some embodiments. There are each of four examples as described.

[00154] Example 1: No mutation in both start and end tags. In this case, the location of the
extract locations of the tags is known and approximate matching techniques are not needed. There
can be mutations in any other place which will be handled by the error correction code.

[00155] Example 2: Mutation in START tag only. In this case, only the start tag has mutated,
the end tag isfound directly. Thetool looks for the closest match to START. If there isasingle match
with the highest score then the system determines the start tag has been located. However, in the
substring of A, C, G and T, there can be multiple matches with close scores i.e. there is no single
stand out high score. In this example,, the system uses the end tag for further elimination of choices.
The content within the start tag and the end tag is more than 556 base pairs (Signature is 5t 2, ORCID
is 32 and Plasmid ID is t2). Therefore those matches which are of distance 556 base pairs/characters

or more apart from the end tag can be start tags. The logic is set to 556 or more because the length
of the error correction can be O if the user chooses no error correction.

[00156] Example 3: Mutation in END tag only. In this case, only the end tag has mutated, the
start tag isfound directly. The tool looks for the closest match to END. If there isasingle match with
a highest score the system determines that the end tag has been located. For multiple matches with
close scores, the system applies the same method as above: the distance between the start and end
tag is more than or equal to 556 basepairs

[00157] Example 4: Mutation in both START and END tags. In this case, the system locates
the closest match for both tags. If there is a single match with a highest score for both of them then,
the system has located both the start and end tags. Also, the criteria of length more than or equal to
556 between them raises the certainty. In case of multiple start and end tags, the system checks the

length criteria for each start and end tag pair possible from the obtained results.

47

WO 2019/191083 PCT/US2019/024057

100158] Various techniques can be utilized for matching of similar strings, and can include
methods that measure the distance between strings using a distance equation (similar to Euclidean
distance) to do so, for example, using the Levenshtein distance. The Levenshtein distance is the
distance between two words based on the minimum number of single-character edits (insertions,
deletions or substitutions) required to change one word into the other. Levenshtein distance is
generally considered to be very accurate, but can become computationally intensive with very long
strings. Similar to Levenshtein, Damerau-Levenshtein distance with transposition (also sometimes
calls unrestricted Damerau-Levenshtein distance) is the minimum number of operations needed to
transform one string into the other, where an operation is defined as an insertion, deletion, or
substitution of a single character, or atransposition of two adjacent characters. The Optimal String
Alignment variant of Damerau-Levenshtein (sometimes called the restricted edit distance) computes
the number of edit operations needed to make the strings equal under the condition that no substring
is edited more than once, whereas the true Damerau-Levenshtein presents no such restriction. The
difference from the algorithm for Levenshtein distance is the addition of one recurrence for the
transposition operations. Jaro-Winkier is a string edit distance that was developed in the area of
record linkage (duplicate detection). The Jaro-Winkler distance metric is designed and best suited
for short strings such as person names, and to detect typos. Jaro-Winkler computes the similarity
between 2 strings, and the returned value lies in the interval [0.0, 1.0]. It is (roughly) avariation of
Damerau-Levenshtein, where the substitution of 2 close characters is considered less important than
the substitution of 2 characters that afar from each other. The distance is computed as- 1- (Jaro —
Winkler similarity).

[00159] A few agorithms work by converting strings into sets of n-grams (sequences of n
characters, also sometimes called k-shingles). The similarity or distance between the strings is then
the similarity or distance between the sets. Jaccard index is one such method which works on n-
grams.

[00160] In some embodiments, each of the five algorithms are incorporated into the system
for approximate start and end tag matching. For testing, the fasta file istaken asinput and the start
and end tag within the fasta file are manually changed. Then the location of the defined start and end
tags within the mutated fasta file is determined. The cases considered were single substitution, single
deletion, single insertion, double substitution, double deletion, double insertion, triple substitution,

triple deletion, and triple insertion.

48

WO 2019/191083 PCT/US2019/024057

[00161] The results for each algorithm are summarized on a case by case basis in FIG. 9B.
The raw results are presented in Table A. As can be seen from the Figures the Jaro algorithm was
fairly inaccurate with an average accuracy of only 35.12 %. The Jaccard algorithm fared much better
but was still imperfect with an average accuracy of only 95.18 %. Ail three Levensntein variants
were perfectly accurate in their assessment. In embodiments where accuracy is the primary goal of

partial matching, the system utilizes the Levenshtein variants.

49

WO 2019/191083

PCT/US2019/024057

Jaro - Winkler | Jaccard index | Levenshiein | Dameran-Levenshtein | Optimal Alignment
1 Substitution 10/30 30/30 30/30 30/30 30/30
i Deletion 6/9 S/9 9/9 9/9 S/9
1 Insertion 28/34 34734 34/34 34734 34734
2 Substitution 50/435 408/435 435/435 435/435 435/438
2 Deletions 19/44 41/44 44/44 44/44 44/44
2 Insertions 212/663 665/663 665/665 6653/665 665/663
3 Substitution 11873675 321673675 3675/3675 | 3675/3675 3675/3675
3 Deletions 42/123 161/123 1237123 123/123 1237123
3 Insertions 900/9129 9129/9129 9129/9129 | 9129/9129 9128/9129
Average Accuracy | 35.12% 95.18% 160.00% 100.00% 166.00%

Table A: Correct matches out of total reviewed strings by algorithm for each case.

100162} Another consideration in algorithm selection is speed. While an algorithm may be
perfectly accurate in its selection of a closest match to a string this means little in practice if the
algorithm has an untenab!y long run time. To this end the speed of the algorithms were compared.
To accomplish this, each method was used to compare a series of one million random strings of a set
length. The distance metric was calculated between each of these strings against a separate tag string
of equal length. The amount of time it took for all of the strings to be compared was recorded. This
was done for each agorithm with strings ranging in size from 4 characters to 100 characters. A graph
of the time in milliseconds (ms) for each algorithm is shown in FIG. 10.

[00163]

algorithm. The Jaro and Optimal String Alignment algorithms were the quickest, each growing at

As can be seen in FIG. 10, there were noticeably different rates of growth for each

very slow rates with Jaro being dightly faster overall. Jaro never surpassed 9000ms while Optimal
String Alignment remained below' 13000 ms (milliseconds). There did not appear to be an appreciable
difference in the rate of growth between these two. The rates of growth for the Jaccard, Levenshtein,
and Damerau-Levenshtein algorithms appeared to be exponential. However, their growth seemed to
be occurring at different exponential rates. Damerau-Levenshtein was increasing the most rapidly
overall. Run times for very long strings exceeded 150,000 ms. Jaccard was not far behind, taking up
to 100,000ms for lengthy strings. Levenshtein was improved, never exceeding 75,000 ms. In
embodiments where speed is the primary goal of partial matching, the system incorporates the Jaro
or Optima String Alignment. In embodiments where both speed and accuracy are competing
considerations and which neither takes precedence, the system incorporates the Optimal String

Alignment Algorithm,

Shorter Signatures

50

WO 2019/191083 PCT/US2019/024057

[00164] The length of the signature plays an important role in tins domain. As mentioned
earlier, shorter signatures imply less cost of synthesizing the signature and shorter signatures will be
less likely toimpact the existing functionality and stability of the plasmid during signature embedding.
In some embodiments, the system improved the identity-based signature(IBS) to gam signature
length. The Shamir's IBS scheme and the modified system scheme is based on multiplicative groups
over integers. There isno other identity-based signature scheme that isbased on multiplicative groups
over integers. Other IBS schemes are based on dliptic curve cryptography and pairing-based
cryptography. In one embodiment of the system, elliptic curve cryptography is used to generate relatively
shorter signatures. In one embodiment of the system, pairing-based cryptography is used to generate
shorter signatures. One benefit provide by utilizing elliptic curve cryptography isasmaller key size,
reducing storage and transmission requirements, i.e., that an dliptic curve group could provide the
same level of security' afforded by an RSA-based system with a large modulus and
correspondingly larger key: for example, a 256-bit €lliptic curve public key should provide
comparable security to a 3072-bit RSA public key. Elliptic Curve cryptography is particularly suited
to applications where security' is needed and where power, storage and computational pow¥ar may be
lacking or is a a premium. Table B illustrates the key size needed in dliptic curves compared to
traditional RSA/DSA.

Table B - Comparison of key-size required in different cryptography schemes

[00165]

51

WO 2019/191083 PCT/US2019/024057

Identity -based signature schemes using pairings

[00166] There are a variety of identity-based digital signature schemes using pairings,
including, by way of non-limiting example, Sakai-Kasahara, Sakai-Ohgishi-Kasahara, Paterson,
Cha-Cheon, and Xun Yi. The Sakai-Kasahara scheme includes two types of identity-based signatures:
an El-Gamal type and a Schnorr type. In some embodiments, the system incorporates both or one of
these schemes (e.g., using ajPBC library). In one implementation, it was determined that the Sakai-
Kasahard Scnorr scheme was optimal for signature size, and cost of signature generation and
verification.

Sakai-Kasahara |dentity-based Signature

[00167] In some embodiments, the system employs a Sakai-Kasahara Schnorr type scheme,
and can include four steps: setup, extract, sign and verify.

[00168] Setup: The setup generates the curve parameters. The different curves provided inthe
jPBC library' can be used to load the parameters. Let gy be the generator of G;, g2 be the generator

of ¢(%. A random X GZ} is chosen to bethe master secret. Two public keys Pi and Py are calculated
as- Pi = x - gyand Py=-xX - gz. An embedding function H is chosen such that H{Q 1)* — G;.
[00169] Extract: Takes as input the curve parameters, the master secret key X, and a user’s

identity and returns the users identity-based secret key. This step isperformed by the central authority

for each user A with identity 1D ,.

[00170] For an identity 1D4, calculate CA=-H{ID,). Thismaps the identity string to an
element of Gi.

[00171] Calculate VA= X - C,.

[00172] User A’s secret key is (C,, VA) and 1s sent to the user via a secure channel

[00173] Sign: To sign a message M, a user A with the curve parameters and the secret key

(Ca, V,) does the following:

I. Choose arandom r GZ /. Compute Z 4 == gy.
2. Compute e = €,(C,, Z,), where €, is the pairing operation.
3. Compute// =H{me), wheref{; isasecure cryptographic hash function such asSHA-

256and |istheconcatenation operation.

4. Compute S=hV,+ rC,.
A's signature for the message m is - (h, S)

52

WO 2019/191083 PCT/US2019/024057

(60174} Verify: The verification procedure isasfollows:

1. ComputeW = €,(S0,) * €{Cp —hPy)
2. GheckH (miw)=h

The above equation works because:

e = ex{Ca, Za) = ea(Ca, 7> g2) = en(Ca, g2} |
w = eS8, g2} % ep{Ca, —hP;)

en{hVa+ rCa, g2} * en{Ca, —hx - g2}

= en(hD{ . (/YA + r(jA, gz) * en(CA; gz.)rﬁhx

en{(fx + 1) - Ca, g2> % e4{Ca, g2>——hx

= en((zﬁ\; gZ)hx+r * en(CA; qz) o
= e (C,, gif

Hence, h=+;{mle) = Hi(m i w).

[00175] The signature is atuple (h, S) where h isthe result of a hash function. This length is
dependent on the choice of the hash function. If SHA-1 is used, then h is 20 bytes and if SHA-256 is
used the length is 32 bytes. The value Sis an element of the group Gl, therefore its length will he
dependent on the curve type and the length of the prime. The following is the comparison of the

signature length using the different curves without using any point compression.

Signatare Size using SHA-1 Signature Size using SHA-256

Curve Name

{Bytes)

{Bytes)

a.properties

(20, 128) = 148

{32, 128) = 160

al.properties

(20, 260) = 280

{32,260) = 292

d159 properties

(20, 40) = 60

(32,40)="T2

d201 properties

(20.52)="72

(32,52)= 84

d224 properties

(20, 56 =76

(32.56) = 88

53

WO 2019/191083 PCT/US2019/024057

c.properties {20,256 =276 (32, 256) = 288
f.propertics {20, 40y = 60 {32,406y =72
g149 propertiss (20,38} = 58 {32,38y=76

Table C: Signature size using different curves for the Sakai-Kasabara scheme.

Tuning to further shorten signature size

[00176] Since Sisapoint on the curve, in one embodiment point compression technique can
shorten its length. The jPBC library does not have this built-in, and the system can incorporate this
technique to shorten the signature size. So if the size of Sis 2n bytes - the point compression

technique will result in n+ 1bytes.
[00177] When computing the verification step - €{C;, -#P:). Here —h isthe negative hash

value integer and scalar multiplication is performed with the point Pi. There isonly one integer group

involved and that isz .where r isthe order of the curve. Sowhen performing that seal a& multiplication
- h-P;JPBC caninternally convert the hash valueto an element of Z by modulo r . Instead of writing

the signature as(h, S) it can berewritten as(R,S) where R =hmod r.Thesignature isnow of the
form (R, S),where R isan element of the group Z,

[00178] Additionally, if SHA-1 isused, then it may not makeasignificant difference in the size,
but SHA-1 has been replaced by SHA-256 in some embodiments, and in some such embodiments,
length is gained as SHA-256 is 32 bytes. However, this tuning may degrade the signature length for
type Al curves asthe element in Z.is 128 bytes. So, in someimplementati ons, if using the At curve,
the signature can be kept in the form (h, S). For other types converting the signature to (R, S) can
be preferable. The following table represents the signature sizes using different curves after tuning

the signature to (R, S):

54

WO 2019/191083

PCT/US2019/024057

Curve Name

Signature size before tuning and using

Signature size after tuning and using

SHA-256 SHA-256
{Bytes) {Bytes)
a.properiies (32, 128) = 160 {20, 65y =85

al.properties

{32,260y =292

(128, 131) = 259

d159 properiics

(32, 40)="72

(20,21)=41

4201 propertics

23,27y =50

d224 properiies

(32, 56) = 88

(28,29) =57

c.properties

(32, 256) = 288

(20, 129) = 149

f properties

(32, 46)="T2

(20,21) = 41

2149 propertics

(32.38)=70

(19, 20y =39

Table D: Signature size using different curves for the Sakai -Kasahara scheme before and after tuning.

{00179} In this example, based on the signature size, the best performance is provided by

the dI59, f, and gl49 curves. However, the length of the primes are different and aso the
embedding degree is different. Inthe dI59 curve, the prime is 159 bits and the embedding degree
is 6. In the f curve, the prime is 158 bits and the embedding degree is 12. In the gl49 curve, the
primeis 149 bits and the embedding degree is 1 0. Inthe context of the small difference in signature
sizes and the security related to each type, the better choice isthe f curve.

[00180] The time to generate the signature and verify can also depends on the type of the
curve because of curve properties. The following table denotes the time to sign and verify using
the different types of curves. Thetimes are measured after tuning the signature because it involves
additional computation of point compression and decompression.

55

WO 2019/191083 PCT/US2019/024057

Average Time to sign Average Time to verify
Curve Name
{milliscconds) {milliseconds)

a.properties 56 60
al.properties 594 448
d159 properties 102 98
d201 properties 121 138
d224 properties 129 131
e.properties 262 214
fproperties 133 251
gl49 properties 170 219

Table E: Average time taken to sign and verify for different types of curves for the Sakai-Kasahara scheme.

{00181 From a speed perspective, the a type curve is the fastest while generating and
verifying the signature. But the size of the signature is significantly larger. The short signature size
generating curves i.e. di59, f and gl49 take additional time. The dI59 curve takes around 100 ms
for both signature generation and verification. The f curve takes around 150 ms to sign and 250
msto verify, and the g'49 curve takes around 200 msto sign and verify. It is, therefore, a matter
of priority - signature size over speed. If we need to sign and verify alot of messages and we do
not care about the signature size then type A curve is agood choice. However, in embodiments
where the size of the signature is higher priority* than speed , the f type curve is used.

[00182] Additionally, the f type curve has both speed and short signature size , second only
tothe gl49 curve. With respect to speed it offers ailmost the same performance asthe gl49 and the
di59 curve. Of the three, the f type curve offers the best security asits embedding degree is higher.
[00183] In one embodiment, the system incorporates 512 base pair signatures using the
improved IBS scheme. In another embodiment, elliptic curve based signature schemes were used,
resulting in a signature size of 244 base pairs & the same security level. In afurther embodiment,
the signature size is 292 base pairs for improved security. In another embodiment, pairing-based
cryptography was used and the length of the signature can bereduced tojust 164 base pairs for the

same security' level.

56

WO 2019/191083 PCT/US2019/024057

{00184} Synthetic DNA molecules are frequently shared physically. There is a need to
bestow origin attribution properties to these molecules which are often licensed intellectual
property. However, recent efforts to provide this property: using watermarking techniques suffer
from the problem that the watermark is independent of the DNA molecule (although it is embedded
in the molecule). Thus, the watermark can potentially be removed from a physical DNA and
embedded m another sample or replaced with another entity’s watermark. The system provides
more secure origin attribution properties using digital signatures.

[00185] Asaproof of concept, signatures were generated in the laboratory and inserted into
two plasmids. Thefirst, 401734, isasynthetic plasmid composed of two antibiotic resistance genes
and an origin of replication. The second, 190691, is the commonly used standard vector pUC19.
Experiments were performed to determine if the addition of the signature would impact the
characteristic and the function of the original plasmid. From the experiments, it was determined
that the addition of the signature does not impact the characteristic of the plasmid. In one
embodiment, the signature was based on the improved IBS . In further embodiments, newer
cryptographic schemes are used that provide smaller signature sizes (e.g., 164 bp). Asthe larger
signature sizes did not impact the characteristics and functionality of the plasmid, smaller
signatures generally also not impact the characteristics and the functionality of the plasmid.
[00186] In some embodiments, choices of parameters for the digital signatures and/or for
the error detection/ correction codes are based on mathematical models of properties of the DNA
vis-a-Vvis its size. In some embodiments, choices of parameters for the digital signatures and/or for
the error detection/correction codes are based on domain knowledge and experimental analysis.
Models of DNA properties can be used in determining optimal parameter choices to trade off the
size of the sequences encoding signatures, security strengths of signatures and degree of error
resiliency for a given implementation.

[00187] Inadditional embodiments, embedding signatures is applied for naturally occurring
DNA and for DNA sequences larger than plasmids such as microbia or even plant or animal
genomes, as, depending on the implementation, there istypically leeway in DNA molecules that
allows for the addition of a signature without altering function or stability. Current knowledge
indicates that large portions of genomes probably do not play a functional role, and it is possible
to embed a signature in these regions. However, in some implementations, from an evolutionary

standpoint, sequences which do not play a functional role may be less likely to be retained

57

WO 2019/191083 PCT/US2019/024057

unchanged m the genome. Additionally, the sheer size of agenome means that mutations are more
likely to occur, and sequencing technologies evolve, they will increasingly be able to provide near
error-free, substantially error-free, error-free, or completely error-free whole genome sequences.
In some embodiments, the system can apply digital signatures only to portions of larger sequences
that are significant, such asthose parts of a microbial genome which have been re-engmeered for
a specific purpose. Additionally, alternate signature schemes can be configured such that they are
suited to whole genomes.

{00188} Some embodiments include signing and verifying the same DNA molecule multiple
times by different users, e.g.;; Alice signs and sends a DNA sample to Bob and Bob validates
Alice's DNA. Then Bob continues to modify it, signs it and sends it to Mallory. In such
implementations, Mallory can verify Bob’s signature, and can additionally have away for Mallory
to track the entire pathway starting from Alice. Aggregate signatures can be utilized in some
embodiments. I n some embodiments, the system utilizes one or more distributed ledgers to manage
signatures and track modifications. 1n some embodiments a signature is placed ontop of an existing
signature. In some embodiments, the system can remove a signature, and the molecule is signed
again with anew signature such that the removal and addition do not substantially alter the function
of the molecule.

Example NA Authentication System

[00189] FIG 11 show's a schematic of an example system 1100, according to some
embodiments. The system allows users developing new synthetic NA, such as plasmid DNA, to
digitally sign them or suitably mark them using signatures generated though safe and secure,
encryption methods. These signatures will take the form of a unique’ NA fragment, also referred
to as“NA signature sequence’, or “DNA signature sequence”, that isinserted in the NA molecule
[00190] By using a digital signature, it becomes possible to ensure the origin and integrity
of NA molecules. Someone interested in using this molecule can use the system 1 100 to validate
a second sample purported to be of the original molecule, to identify the scientist or organization
that signed the molecule and verify that the molecule has not been atered since it was signed.
[00191] The system 1100 provides benefits both to the developer of aNA molecule and to
the user. Digitally signing NA molecules would help genetic engineers assert the rights associated
with their authorship. Digitaly signing NA molecules could limit liability exposure by allowing

companies to distance themselves from modified sequences. For instance, a company could

58

WO 2019/191083 PCT/US2019/024057

guarantee the function of a NA molecule but not its derivatives. In a regulated environment,
digitally signed NA molecules could be used to demonstrate the stability of the genetic systems
used to produce biologic drugs and other biotechnology products. These signatures would also
provide evidence that the proteins produced by biomanufacturing facilities come from the clients
they are working with and that they have not been modified.

{00192} An organization receiving a plasmid from a third party could develop security
policies that prevent them from working with plasmids whose signature cannot be verified. Such
policies would be similar to security features of modern operating systems that prevent users from
installing software from unknown developers. Verifying the signature of NA molecules would
positively impact the productivity of life science research by alowing users to quickly detect
genetic drift or undocumented modifications of a molecule.

[00193] The system 1100 includes aNucleid Acid (NA) authentication device 1110 coupled
or suitably connected (through wired or wireless connection methods) to one or more user
device(s) such as devices 1102 and 1104, though a communication network 1106. The
communication network 1106 can support wired or wireless connectivity. In some embodiments,
the system 1100 can be an enterprise system at least partially hosted m an enterprise server, such
as, for example a web server, an application server, a proxy server, atelnet server, afile transfer
protocol (FTP) server, amail server, alist server, a collaboration server and/or the like.

[00194] The N A authentication device 1110, in some embodiments, can include and/or have
access to a processor 1120, an Input/Output (1/0) unit 1140, amemory | 160 and a communicator
1180, each being interconnected to the other. In some embodiments, the N A authentication device
1110 can be a server device. In some embodiments, the NA authentication device 1110 can bean
enterprise device, such as, for example, a desktop computer, alaptop computer, a tablet persona
computer (PC), and/or the like. Inyet other embodiments, portions of the N A authentication device
1110 can be physically distributed across, for example, many chassis and/or modules
interconnected by wired or wireless connections. The network can be any type of network such as
alocal area network (LAN), awide area network (WAN), avirtual network, atelecommunications
network, implemented as a wired network and/or wireless network. The Input/Output Unit 1140,
for example, or the memory 1160, can be housed in one device or in some embodiments, can be
distributed across many devices. The Communicator 1180, similarly, can be housed in one device

in some embodiments, and distributed across many devices in some other embodiments.

59

WO 2019/191083 PCT/US2019/024057

{00195} The processor 1120 included in some embodiments of the NA authentication device
1110 can be configured to run one or more applications to support various methods involved in
cryptographic signing and authentication of NA molecules as described herein. In some
embodiments, the one or more applications run in the processor 1120 can be part of an enterprise
software package. The processor 1120 can for example be equipped with one or more apparatuses
that may include one or more associated software to carryout various portions of marking and
authenticating a NA molecule, the various portions including, for example, to generate a mapped
value of a NA molecule, to cryptographicaly encrypt a mapped value, to generate a digital
signature, to convert a digital signature into a signature NA sequence, to identify appropriate
portions of the NA molecule to insert the signature NA sequence. In some embodiments, the
processor 120 can be equipped with apparatuses and associate software to receive an unknown
sample and validate its purported source or origin or author.

[00196] The NA authentication device 1110 can include amemory" 1 160. The memory' 1160
can in some embodiments include a database or a look up table storing information regarding
specific authors or users who may be registered in a system used to exchange information
regarding NA molecules (e.g., authorized users or validated authors of specific synthetic NA
molecules). The memory 1160 may include one or more storage systems for user information
associated to these specific users through a unique user identifier (e.g., user ID).

[00197] The Input/Output unit {40 can be configured to receive information sent from the
one or more user devices such as 1102 and/or 1104, via the communication network 106. The
communication network 1106 can support a wired or wireless method of communication. The
Communication network 106 can for example be the internet. The Communicator 1180 in the
NA Authentication 1110 can be configured to establish one or more secure channels of
communication to enable users to access the Input/Output unit 1140 of the NA authentication
device 1110. In some embodiments, the communicator 1180 can be configured to generate and
distribute tickets to control access sessions for users to gain access to the NA authentication device
1110. In some embodiments, the communicator 1180 can use the tickets (e.g., tickets containing
access codes set to deactivate beyond a specified time period) to moderate temporary or time
limited secure communication channels.

[00198] The NA authentication system 1100 and the NA authentication device 11 10 can be

configured such that user specific information (e.g., identity of users, or molecules/sequences

&0

WO 2019/191083 PCT/US2019/024057

authored by users) can be stored in a protected fashion by associating the information via the
unique user identifiers, and access to the information may be blocked unless allowed through a
process of verifying user credentials, for example, through secure communication channels
mediated by the communicator 1180.

[00199] The user devices 1102 and /or 1104 can be any suitable client device. For example,
m some embodiments, the electronic device can be, for example, a personal computer (PC), a
personal digital assistant (PDA), a smart phone, a laptop, a tablet PC, a server device, a
workstation, and/or the like. The user devices while not shown in FIG.l, can include at least a
memory, a processor, a network interface, and an output device.

[00200] FIG. 12 illustrates a schematic of an NA authentication system 1200 according to
an embodiment. The systems 1200 can be substantially similar or the same as the system 1100
described above. For example, the NA authentication system 1200 can include one or more users
device(s) 1202 and a NA authentication device 1210. As described above with respect to the NA
authentication device 1110, the NA authentication device 1210 can include an Input/Output Unit,
aProcessor, at least one memory and a communicator. Accordingly, portions of the system 1200
that are substantially similar to the system {100 are not described in further detail here.

[00201] In some embodiments of the system 1200 and/or system 1100, the user devices can
include apparatus to run suitable applications (e.g., client side application, mobile application, a
PC application, an internet web browser, etc.) installed on the user device) to communicate with
one or more applications on the NA authentication device, via a suitable communication channel
mediated or moderated by the communicator. In some embodiments of the system 1200, as shown
in FIG. 12, the user device 1202 can be capable of supporting a user application 1212 that includes
auser interface to communicate, via the internet 1206, with a server-side application 1214 in the
NA authentication device 1210,

[00202] In some embodiments of the system 1200 (and/or system 1100), the applications
1212 and 1214 can be protected and accessible only through a process of verifying user credentials
(e.g., asecure login system). The applications 1212 and 1214 can be configured to have access to
aregistry or database of authorized users with the users tabled or organized or indexed by unique
user identifiers (e.g., user IDs). In some embodiments, the unique user identifiers can be generated

within the NA authentication system 1200. In some other embodiments, the unique identifiers can

61

WO 2019/191083 PCT/US2019/024057

be imported from other known sources or systems, for example, other organizations frequented by-
users or authors of NA molecules and/or their sequence information (e.g., ORCID).

A User Application with an interface to mark and authenticate Nucleic Acid Sequences
{00203} The application 1212 shown in FIG. 12, for example, can be configured to allow
users to input their credentials and securely access the NA authentication device 1210 and/or the
application 1214. The application 1212 can include a user interface designed to support several
aspects of sending and receiving information between then user device 1202 and the NA
authentication device 1210. For example, in some embodiments, the application 1212 can include
an interface to upload sequence information of adesigned NA molecule. The application 1212 can
be configured to be compatible to files and /or file formats of one or more suitable applications
such as sequence editors. The application 1212 can, in some embodiments, be configured to carry
out several functions such asinitiate and/or generate a secure communication channel with the NA
authentication device 1210, to send a NA sequence, to receive asigned NA sequence, to receive
validation results from the NA authentication device 1210. FIG. 16 illustrates an example
application 1612 that can be part of a NA authentication system 1600 that is substantially similar
or the same as systems 1100 and 1200. The application 1612 can be substantially similar to or the
same asthe application 1212 illustrated in FIG. 12.

Generating ¢ Nucleic Acid Sequence with an encrypted signature

[00204] As described above, there is a pressing need for secure systems and methods to
establish the origin and authenticity of NA molecules. In the digital world, the problem of
authenticating a document or web page while still withholding proprietary or sensitive information
is solved by encryption. Encrypted digital signatures are used in cybersecurity to authenticate the
source of adigital file and to confirm that the file has not been changed since the originator applied
the signature. To solve the problem of tracing the source of NA molecules and confirming their
identity, disclosed herein is a system and method for encrypting molecules of NA in living cells
using digital signatures.

[00205] FIG. 13 illustrates a method 1300 of generating a signed NA sequence including a
signature NA sequence based on a digital signature, from the perspective of a user device (e.g.,
user devices 1102 and 1 104 of system 1100 shown in FIG. 11}. In some embodiments, one or more
steps of the method 1300 can be accomplished by manipulating user control items in a user

interface provided through auser application (e.g., application 1112). Method 1300 includes a step

62

WO 2019/191083 PCT/US2019/024057

1301 of obtaining / receiving adesired N A sequence. This step 1301 can in some instances include
generating a new sequence for a synthetic NA molecule, for example, through a sequence editor
application. In some other instances, the step 1301 can include identifying and obtaining the
sequence information of a pre-exiting NA molecule that is desired to be signed.

100266} In step 1303, the method 1300 includes inputting the sequence information of the
NA molecule (also referred to herein asthe origina NA sequence, or the unsigned NA sequence,
or asthe NA sequence) into a NA authentication device (e.g. the NA authentication device 1110
of the system 1100). In some embodiments, asdescribed above, this inputting can be done through
the user interface in the application (e.g. application 1112). In some embodiments, at step 1305,
the user can initiate the generation of an encrypted signature NA sequence and the incorporation
of the signature NA sequence into the original NA sequence to form the signed NA sequence. In
some embodiments, the user can initiate this processing at step 1305 through one or more control
actions at the user interface (e.g., button press with akey or signature generation functionality). In
some embodiments, step 1305 can be implemented automatically following step 303 without user
intervention.

[00267] Following suitable processing by the NA authentication device and the generation
of the signed NA sequence, at step 1307, the method 1300 includes the user device receiving the
cryptographically signed NA sequence corresponding to the original NA sequence or the unsigned
NA sequence. This signed NA sequence can then be used to generate or synthesize the NA
molecule using a suitable NA synthesis procedure, as shown in step 1309 of the method 1300.
Thus, the generated molecule will include the signed NA sequence, propagating not just the NA
sequence but also an encrypted signature with the captured or documented sequence information
of the origina. NA sequence. In some instances, when the synthesized NA molecule (eg.,
synthesized plasmid DNA) isincorporated into vectors (e.g., viral vectors, bacterial vectors, fungal
vectors, insect vectors, mammalian vectors, plant vectors, and/or vectors for other suitable
organisms) the documented and encrypted sequence information of the original NA sequence is
also carried aong, regardless of how or when the molecule and/or its sequence (outside of the
signature NA sequence) may be manipulated in the time period following the generation of the
signed NA sequence.

Generating digital signatures and marking nucleic acid sequences with the signatures

63

WO 2019/191083 PCT/US2019/024057

{00208} FIG. 14 illustrates amethod 1400 of receiving an original NA sequence, generating
and incorporating an encrypted signature NA sequence to form asigned NA sequence, using aNA
authentication system like the system 1100 described above. The method 1400 can be implemented
with a NA authentication system such as the system 1100 described above. According to some
embodiments, one or more steps in the method 1400 can be implemented through manipulation of
control items (e.g., button presses, radio button activations, toggle presses etc.,) in the user
interface of the application (e.g. application 1112) installed in auser device. For example, the user
interface can include one or more button for uploading

[00209] The method 1400 includes step 1401 of receiving the sequence information of a
NA molecule from a user device. In some embodiments, the sequence information can be sent to
the NA authentication device of a system (e.g. NA authentication device 1110 of system 1100) by
a user operating an application like the application 1112 through a user interface. The step 1401
can also, in some instances include receiving user information associated with the user operating
the user device or operating the user interface of the application 1112. In some embodiments, the
user information can be automatically generated or retrieved for repeat users. In some other
embodiments, the user information can beretrieved from the user credentials used to securely gain
access to the NA authentication device (e.g., credentials like username, user ID, password, €tc.,).

[0021G Asshown inthe flow chart in FIG. 14, the method involves defining or forming at
least two portions of the digital signature. Steps 1403 and 1405 involve formation of the first
portion, while step 1407 involves the formation of the second portion. Thefirst and second portions
of the digital signature can be generated either in parallel asillustrated in method 1400 in FIG. 14,
or sequentialy with one portion (first or second) formed before the other. At step 1403 the system
computes a mapped value of the original NA sequence. The mapped value can be generated by
applying a cryptographic function (e.g., a hash function or a cryptographic hash function) to the
original NA segquence. The mapped value can, in some embodiments, have afixed size irrespective
of the size of the original NA sequence.

[00211] In step 1405, following the generation of the mapped value in step 403, the NA
authentication system can form the first portion of the digital signature by encrypting the mapped
valise of the original NA sequence using an encryption key specific to the user who is the author

or source of this signed NA sequence.

64

WO 2019/191083 PCT/US2019/024057

{00212} At step 1407, a second portion of the digital signature can be generated based on
the unique identifier of the user (e.g., the users ORCID). In some embodiments, the digital
signature can include additional portions such asthird or a fourth portion. For example, in some
embodiments, the digital signature can include a 6-digit user-generated numerical 1D (generated
within the NA authentication system or elsewhere) which can be assigned to the original NA
sequence that is being signed. Inthis way, NA segquences described in a publication, for example,
can be identified using the 6-digit ID. If a a later time point a second user sequences a NA
molecule purported to be a sample of a specific signed NA sequence, they will be able to determine
who constructed it using the unique identifier (e.g., ORCID), and which NA molecule (e.g.,
plasmid) it is by matching the 6 digit ID with the publication.

[00213] At step 1409, the various portions of the digital signature are combined and at step
141 1the completed digital signature is converted into asignature NA sequence. Following which,
at step 141 3 specific insertion points are identified for the insertion of the signature NA sequence
without detrimental effects to the expression of the NA sequence. In some embodiments, the
system can be configured to automatically find optimal insertion points. In some other
embodiments the system can be configured to query the user (e.g., the author of the original NA
sequence) for suggested or desired insertion points. For example, the application and user interface
can provide for the inputting of information regarding desired insertion points. Following the
insertion of the signature NA sequence at step 1413, the signed NA sequence can then be sent to
the user device at step 1415.

Validatinga marked nucleic acid sequence

[00214] The NA authentication system disclosed herein can be used to validate the
authenticity of a sample NA sequence aso referred to herein as the test NA sequence or a test
“signed NA sequence’ to be validated. FIG. 15 illustrates a method 1500 of validating atest NA
sequence using an embodiment of the system.

[00215] The method 1500 includes the step 1501 of the NA authentication system (e.g., the
NA authentication device 1110 of the system 1100) receiving a test sequence from a user (also
referred to as a second user) who is not the author or source of the original NA sequence, but is
interested in the authenticity of the sample and the purported source data. The test sequence can
be uploaded or inputted into the NA authentication system via a secure communication channel

through a user application and interface (e.g., application 1112 shown in FIG. 12).

65

WO 2019/191083 PCT/US2019/024057

{00216} The system, at step 1503 of method 1500, then can search for and/or identify
regions in the test sequence that may correspond to a signed NA sequence. In some embodiments,
the step 1503 can aso include verifying if the test sequence contains avalid signature (e.g., that it
isavalid signed NA sequence) and send appropriate messages to the user through the interface in
the event that the test sequence does not include a valid signature sequence. Following a positive
identification of a signed NA sequence, at step 1505 the system can identify and extract from
within the signed NA sequence, afirst NA sequence and a signature NA sequence.

[00217] Following the extraction of the first NA sequence (to betested for validity), at step
1507 the system computes a mapped value of the first NA sequence, which isreferred to herein as
the first mapped value. The mapped value may be calculated by applying cryptographic function
to the first NA sequence, for example, by applying a hash function to the first NA sequence to
obtain the hash value which becomes the first mapped value.

[00218] Upon extraction of the signature NA sequence from the signed NA sequence the
system, at step 1509, converts the signature sequence in the form of nucleotide bases (or base pairs)
into adigital signature. The digital signature isthen examined to identify, (&) an encrypted mapped
value of asecond NA sequence (the original NA sequence), at step 151 1, and (b) aunique identifier
associated with auser (e.g. the original author or source of the original NA sequence), at step 1513.
In some embodiments, the digital signature can include additional portions such as a 6 digit
identifier of the original NA sequence, or the like. In such embodiments, the system can suitably
identify these portions and extract the appropriate information from them.

[00219] At step 1515, the system generates a decryption key using the unique identifier,
and/or the additional portions of the digital signature, and decrypts the encrypted portion of the
digital signature to obtain the second mapped value of the original NA sequence documenting the
sequence information at the time of signing the NA sequence. While the method 500 illustrates a
parallel process of obtaining the first and second mapped values, the steps indicated in method 500
can suitably performed in any manner, e.g., in sequentia order.

[00220] Following which, at step 1517, the first and second mapped values are compared to
evaluate if the first NA sequence (or the NA sequence as obtained by the user who wants to test
its authenticity) is substantially similar to the original NA sequence it purports to be a sample of.
If the comparison results in a positive or negative match the system, at step 1519, can send

appropriate response to the user desiring the test of validation. In some embodiments, the system

66

WO 2019/191083 PCT/US2019/024057

may be configured to provide intermediate results, for example that the test NA sequence is
substantially similar, or thetest NA sequence is similar in specific portions i n some embodiments,
the system at step 519 may also send a quantification of the degree of similarity or a comparison
chart from results of the analysis of the test and original NA sequences.

Example Interface

100221} FIG. 16 Illustrates an image of auser interface im an application 1612, according to
an embodiment. The application 1612 can be substantially similar to or the same asthe application
1212 illustrated in FIG. 12.The application 1612, as shown in FIG. 16 has a user interface one or
more panels with suitable control items. For example the user interface of application 1612 can
include amain panel 1620 that includes one or more control items such as, for example, the push
buttons 1622, 1624, and 1626. The user interface of application 1612 can include any number
and/or form of control and/or communication, for example, using panels, tabs, messages or alerts
or the like. An operator or user may communicate and/or transfer information between a user
device and aNA authentication device viathe user interface in application 1612. For example, as
described in further detail herein, in some instances, the user may activate the buttons 1622
(“KeyGen”) and 1624 (“Sign Message’) to communicate with a NA authentication device and
initiate one or more processes to generate a digital signature and/or a signature NA sequence. As
another example, the user may use button 626 (“Verify Signature”) to authenticate or validate a
given sequence. FIGS. 20-24 illustrate additional example aspects of an application 1612,
according to another embodiment.

Demonstrative experimental NA authentication system

[00222] A demo system with software including a user interface was constructed with a
simulated a central authority based on the disclosed teachings and similar to some embodiments
of the NA authentication device of the systems described herein. The system operated in the
following manner.

Exampleprocessd marking aNA sequence

initialization

100223] The parameters (public key and private key) are fixed and are passed while signing
and verifying. The parameters are generated by clicking a “Keygen” button in the main screen of
the software’s user interface. This operation is required to be performed before proceeding with

sign or verify.

WO 2019/191083 PCT/US2019/024057

{00224} The central authority creates the public key and private key pair using the RSA
public key cryptosystem. The public key will be used by all participants in the system for
verification of signatures. The private key will be used by the central authority: to create atoken or
ticket for the signer (or the user who wants to sign their NA sequence). The input is a security’
parameter wirich is set to 1024 bits. The output consists of a public key (e), a private key (d), and
apublic modulus (n).

[00225] Each of the above three parameters are 1024 bits in length. The public parameters
<g,n> are known to all participants in the system. The private key <d> iskept secret. The pair <e,
d> is called a key pair because there is only one <e> associated with one <d> using a specific
mathematical relationship [e* d = 1 mod cp(n)]. Although, <e> ispublic, and there isonly one <d>
associated with it, it is computationally hard to derive <d>using <e>. In December 2009, Lenstra
et al demonstrated the factoring even a 768-bit RSA modulus took 1000 cores and 2 years of
caculations. It is estimated that factoring a 1024-bit RSA modulus would be about 1,000 times
harder, taking approximately 2,000 years.

[00226] The 1024 bit parameter generation is handled by Java's Biginteger class, which
supports large integer numbers. The parameter public modulus (n) isaround 300 decimal digits.
Sgnature generation

[00227] The user clicks the “Sign Message” button in the main screen of the software to
open the sign message frame. The sign message frame prompts the user to enter the following
fields:

a Input file — agenebankfile d theplasmidfor which the signature will he created

H ORCID — in XXXX~Xxxx~xaxx~xxxxformat e.g. 1234-1234-1234-1234

¢ Plasmid ID — 6 digit number

d Sgnature start sequence —to identify that signature starts after this.

e Sgnature end sequence —to identify end d the signature.

[00228] After the details are provided by the user, necessary error checks are performed (i.e.
validity of ORCID and plasmid ID formats), and the ORCID of the signer is sent to the central
authority. The central authority?verifies the authenticity of the signer and provides a ‘token’ which
istied to the private key <d> and the signer's identity (ORCID). Since the token isa combination
of both <d> and signer's ORCID, it cannot beforged by any adversary without knowing <d>. This

68

WO 2019/191083 PCT/US2019/024057

token, we call it ORCID, is used by the signer for creating signatures. Since every signer’'s ORCID
isunique, their ORCID isalso unique.

{00229} Since a central authority is simulated, the token is calculated locally. In a real-
world application, the ORCID will be shared with the central authority: over a secure channel and
the central authority will respond with the ORCID over the same secure channel.

[00238] The ORCID is calculated as- ORCID = (H(ORCID)) 9 mod n , where H is a hash
function. We have used ‘SHA-256'[17] asthe hashing algorithm. Here, although the ORCID of

any participant ,say A, isknown to others aswell, no adversary can forge the token - ORCID of A
as he has to compute <d>. This is called the ‘Discrete-logarithm ’ problem [18] and it 1s proven to

be computationaly hard.
[00231] After receiving the ORCID , the N A sequence is extracted from the input Genbank

file. The generated signature is afunction of the extracted NA sequence {m) and ORCID. Hence
any change in either or both of the two will result in a completely different signature. Since we are

using 1024 bit keys, the signature length is always 1024 bits and the probability’ of forging the
signature is - 5—;77. The signature is in binary’ format; we cover the signature into a NA sequence

as- ‘00 ->a,‘'0l’->e,'10 ->g,and 1 1" ->t. Hence the length of the signature is always 512
base pairs irrespective of the extracted sequence size.

The signature is calcalated as: sig(m) = (ORCIDY™ mod n.

Next, the QRCID of the signer and the 6 digit plasmid 1D is converted to ACGT as —

8->’aq’, I->"ac’, 2->’qg’, 3->"at’, 4=>"ca’, 5->’cc’, 8->"cg’, T->'cl’, 8-> ga’, 9> go’.

[60232] The ORCID sequence is 32 base pairs (16 numeric digits) and the plasmid 1D
sequence is 12 base pairs (6 numeric digits). The final signature sequence is generated by
concatenating the ORCID sequence, plasmid id sequence and signature sequence. The total length
of the signature sequence with the ORCID and plasmid 1D is 556 base pairs. This entire sequence
{m”) iswrapped within the signature start sequence and end sequence which the user provided.
[00233] The user isthen prompted to provide alocation where the signature will be inserted.
From the previously extracted descriptions we can determine if the provided location is colliding
with afeature location. If so, then the user is provided with an aert. The signature is placed in the

specified location, shifting the location of existing features downstream. The descriptions of the

69

WO 2019/191083 PCT/US2019/024057

features are updated with the new locations, and three new features are added which contain the
locations of the signature start sequence, the signature and the signature end sequence. This new
file is saved asa Genbank file in the same location as the input file with “output” added to the file
name.

[00234] When the input file is parsed, the extracted plasmid sequence is in normal text
format. The text is then converted to a byte array. This byte array is passed to the hashing
algorithm. The hashing algorithm internally converts this byte array into bits. The output isalsoin
the form of abyte array (64 bytes = 64 *8 = 256 bits). This byte array hash output is converted to
aBiglnteger in order to calculate the exponents and modulo operations viathe signature agorithm.
The output of the signature algorithm isaBiglnteger (alarge number). ThisBiginteger isconverted
to bits and then the bit string is parsed by taking two bits a atime and converting to ACGT as -
00->A,01->C,10->Gand 11->T.

[00235] For example, consider the text - “Hello”. Thistext is stored as String in Java. When
it is converted to a byte array, the output is - [72, 101, 108, 108, 111]. This byte array is then
converted to bits, the output is- 0100100001 10010101 101 10001 101 10001 101 111. Now the bits
can also be converted to an integer number (based on a t 0-decimal number system). The converted
Biglnteger for the bit string is 310939249775. The bit string can also be converted to ACGT as
“cagacgcecgtacgtacgt” (00 -> A ,01->C, 10-> G and 11->T). Therefore, 310939249775 isthe
numerical representation and “cagacgcecgtacgtacgtt” is the sequence representation of the text
“Hello”.

An example process of signature verification

{00236} The user clicks the “Verify Signature” button in the main screen of the software to
open the verification frame. The input to this frame is the signed Genbank file. The sequence s
extracted from this signed file. Using the signature start and end sequences, the signature and
original sequence are separated. The ORCID and plasmid ID are converted back to numeric values
by reversing the procedure described in the preceding step. The verifier contacts the central
authority to receive the public parameters or they can be saved locally beforehand.

[00237] The verification(yes/no) is calculated m the following steps:

1. Separase sigaature (sig{m)) and original sequence(ny) from the signed sequence.

2. Calculate - H{ORCID) 9" mod n, where H is a hash function (SHA-256).

3. Calculate —(sig{n}})° mod n.

70

WO 2019/191083 PCT/US2019/024057

4.1f the output d step 2 =the output d step 3, then signature is valid (yes), otherwise itisinvalid
(no}: sig(m} © mod n = ((ORCID)T} ¢ mod n = { HIORCIDY 7) ¢ mod n = (H(ORCID) ™
B9 snod n= H{ORCID) T™mod n

[00238] When the signed file is parsed, the sequence is extracted as text. From these
sequences a bit string is calculated by applying the reverse procedure (a-> 00, ¢~ 01,9 -> 10, t -
> 11). The bit string isthen converted to aBiglinteger value to calculate the exponents and modulus
during the verification procedure. Finally, the output alert valid/invalid is displayed.

[00239] FIG. 17 illustrates aworkflow 1700 for signing a NA sequence and then validating
a NA sequence assimilar tothe signed sequence. Asillustrated in the workflow 1700 at step 1701
afirst user (User A) can generate a NA sequence that they want to characterize and share with
their collaborators or the genera public. At step 1703 the user can obtain a signed version of their
NA sequence by incorporating a secure encrypted digital signature in a NA molecule they
synthesized/designed through methods such as those discussed above. As such the sequence
information is documented at that initial time point. The user can then share their sample NA
molecule, at step 1705, in any suitable form with other users (e.g. User B) or collaborators or with
NA databases or NA banks. Any second user (e.g. User B) who is interested in using the NA
sequence generated by the first user (User A), for aspecific functionality of the NA sequence, may
obtain a sample of the NA molecule. They may want to know how closely their sample resembles
the original NA sequence that w¥s shown to have their desired functionality-. The second user can
sequence their sample at step 1707, and access the NA authentication system and provide the
sequence information and ask for avalidation (e.g. though method 1500) at step 1709.

An exammple workflow

{00240} FIG. 18 illustrates an example work flow of using the NA authentication system
1800 for singing and verifying NA sequences. The NA authentication system 1800 includes a NA
authentication device 1810 and user devices 1802 and 1804 as illustrated in FIG. 18, and can be
similar to the systems described above, and accordingly, such similar portions of the NA
authentication system 1800 and/or aspects are not described in further detail herein.

[00241] Inthe illustrated system, there are three players: 1) the signer will develop the NA
signature and sign a sequence 2) the verifier will use the signature to verify whether the received

NA sequence was sent by the appropriate sender and was unchanged after signing. 3) a Central

71

WO 2019/191083 PCT/US2019/024057

Authority (e.g., aNA authentication device) will provide the signer with atoken that is associated
with their identity. The central authority is secure and trusted by all participants m the system.
[00242] There are also three steps to the sign-share- validate workflow, summarized in FIG.
8.1In this example, Alice is developing anew plasmid. She starts in a sequence editor application
by combining sequences from different sources. When she has finalized the sequence of the
plasmid she wants to assemble in the lab, she uses the NA authentication system 1800, following
methods disclosed herein to create a signature NA sequence she wall add to her design. This
signature NA sequence isthe sequence conversion of adigital signature. It isgenerated by applying
a cryptography hash function to the plasmid sequence. This maps the entire NA sequence to a
sequence of predetermined length, the hash value. The hash function is such that minor variations
of the input sequence result in a different hash value in such a way that it is not possible to infer
the input sequence from the hash value. Inthe second step of the signing process, the hash value
is encrypted using Alice's secrete key. Finaly, the encrypted hash value is converted to NA
sequences to generate the signature along with Alice’s unique identifier, her ORCID, and a six-
digit plasmid ID. The digital signature isinserted inthe plasmid sequence between two conserved
sequences used to identify the signature from the rest of the plasmid sequence. Alice will then
assemble the signed plasmid by combining NA fragments from different sources. She may have
to order the NA fragment corresponding to the signature from a gene synthesis company. She
describes her plasmid in a paper and refers to it using the six digit number ID which she used to
identify the plasmid in the signature. She did not include the entire plasmid sequence in the online
supplement of the article. She sends the plasmids to afew collaborators.

[00243] Ellen is interested in using Alice's plasmid. She gets the plasmid from another
graduate student who got it from his advisor afew years ago. Ellen has limited confidence in the
plasmid because it came in a hand-labelled tube. So, she decides to get it sequenced completely
before doing anything with it. She uploads the assembled sequence of the plasmid to the NA
authentication device 1810 of the system 1800 (e.g., a server) to verify the plasmid.

[00244] The system 800 identifies the signature inserted between the two signature tags. It
will identify a block of 32 bp. to the right of the signature start signal to extract the plasmid
developer ORCID. Using the ORCID value as public key, the system 1800 decrypts the 5!2bp
signature block. Then system 1800 will calculate the hash value of the plasmid sequence and

compare it to the decrypted signature. If the two values match, then Ellen will know that the

72

WO 2019/191083 PCT/US2019/024057

plasmid was signed by Alice and that the physical sequence of her plasmid corresponds exactly to
Alice's design. She had asked Alice for the plasmid sequence to align with her sequencing data.
Unfortunately, Alice had moved on with her life and she no longer had access to the plasmid
sequence files. Nonetheless, because she was careful enough to sign her plasmid, Ellen can be
assured that the plasmid she intends to use is the one described in the publication.

{00245} It is also possible that system 1800 did not validate the plasmid signature. Several
hypotheses could lead to this situation. It is possible that Alice was sloppy and did not manage to
assemble the plasmid corresponding to the sequence she had designed. It is aso possible that her
advisor handed Ellen a derivative of the plasmid described by Alice. One could aso not rule out
the possibility of spontaneous mutations or accidental/careless labelling error. In this situation,
Ellen may decide to proceed with the plasmid based on the similarity of the plasmid sequence and
the information available in the Methods section of the paper describing the plasmid.

Example adaptations in embodiments d NA authentication system

[00246] The procedures for signature generation and verification have been simplified to
suit the needs of the life sciences community in documenting shared NA sequences. In Shamir’'s
scheme, the signature length when using a 1024 bit security parameter is 2048 bits which tranglates
to 1024 base pairs. In this scheme, the signature is a function of the message, the identity token
and a random number. The utility of the random number is that, when two copies of the same
messages are signed by the same signer, the signatures are different. This is useful for sending
messages over the internet where users exchange similar messages quite often. If a hacker
intercepts the messages, without the random number, they could deduce and plagiarize the signer’ s
unique signature.

[00247] In the case of NA samples, users will be primarily shipping physical samples, not
sending digital information over the internet. We can also assume that a single user isvery unlikely
to share the same signed plasmid with another user more than once. The removal of the random
number gives us the advantage of having a shorter signature length without compromising the
security. This is important as embedding long signatures could potentially affect the function of
the signed NA. In our procedure the signature length is exactly half, 512 base pairs, compared to
Shamir’s scheme.

Adaptationfor self-documenting plasmids

73

WO 2019/191083 PCT/US2019/024057

{00248} Any digital information can be stored as a NA sequence (each base as two bits).
Hence it is possible to embed the annotated features of a plasmid along with its signature, the
original sequence, and identifiers (ORCID and plasmid ID). This will enable the receiver to
sequence the signed plasmid, and automatically generate an annotated map with feature
descriptions from the assembled sequence. This will ensure that even if the original digita
documentation of the plasmid is lost, the user will have al of the most pertinent information they
need.

[00249] From an input file (e.g., a Genbank file), the descriptions -the names and locations
of annotated features- are extracted. The text descriptions (i.e. “promoter” or “ampiciilin-
resistanee gene”) can be converted to abyte array, then from byte array to binary code, and finally
from binary to ACGT. Because the descriptions contain several repeated characters (letters and

spaces), we use lossless compression techniques to shorten the length of the final sequence.

[00250] For example, consider the following text from Chapter 1 of Darwin’s Origin of
Species:
[00251] “When we look to the individuals of the same variety or sub-variety of our older

cultivated plants and animals, one of the first points which strikes us, is, that they generally differ
much more from each other, than do the individuals of any one species or variety' in a state of
nature”

[00252] The total number of characters including whitespaces is 285. When converted to
byte array the length is also 285. After converting from byte array to binary, the binary string
length will be 285 * 8+ 2280. Hence the ACGT representation will contain 2280 / 2 = 1 140 base
pairs. With the use of compression techniques, it ispossible to reduce the length of the final ACGT
sequence. For the same example, we use deflater compression which is provided by Java under
java util.zip.Deflater package [19] (other compression techniques could be used similarly). The
original paragraph is converted to a byte array as before, but after passing through a compression
algorithm, the byte array isreduced to 175 bytes in length. This new compressed byte array can be
represented by ((175* 8) / 2) = 700 base pairs. This compressed form can be easily translated back
to the original form without any loss of information.

[00253] After converting the descriptions into ACGT sequence, we now have two encoded
messages - the original sequence and the descriptions associated with that sequence. Let us call

the sequence ml and the descriptions m2. Previously, the signature was a function of the signer’s

74

WO 2019/191083 PCT/US2019/024057

ORCID and ml. But now we are introducing the descriptions of the sequence as well, and we
would ideally like to verify that the sequence encoding the descriptions has also not been altered.
To do this, w tie the descriptions, the plasmid sequence and the ORCID of the signer together.
Without descriptions: sig(m) = (T ORCID)H(m) mod n. and H(m) is the hash output d the
sequence.

With descriptions: sigim) = (()RC!#3jH (Mm% mod n. and H(m') is calculated as H(m') =
HH(mI) wH(m2))

When descriptions are included , two hashes are generated; onefor the original sequence, ml,
and onefor the encoded descriptions, m2. Then, they are concatenated together, and a. hash is
generated for this concatenated string, i n this way, wetie the descriptions of the sequence with
the signature which implies that any change in the sequence encoding the descriptions will
cause signature verification tofail The sequence encoding the description will have its own-
descriptor start and end tags which the user will provide.

[00254] During the verification process, the sequence of the signature and the sequence of
the descriptions is extracted based on their start and end delimiters. The original sequence can be
retrieved using this information and verified using the previously described approach with a slight
change: the final hash generated in the output is a concatenation of the hash outputs of the original
sequence and of the segquence encoding the descriptions (names and locations of annotated
features). The locations of the features will be updated after embedding the signature in the original
sequence asthey will change depending on where the signature is inserted.

Error correction codes enable tolerance d minor sequence changes

[00255] The NA signature scheme described above ensures that the plasmid is sent by an
authentic user and also that the signed sequence has not been altered. Even if the original sequence
or the identity token is altered by a single base pair, the verification will fail. This alteration could
include an intentional change or a naturally occurring mutation. Depending on the application of
the sequence, a user may be willing to tolerate a small number of changes. Additionally, it is
possible for sequencing to introduce a smal number of errors if the sequencing depth is
insufficient. In order to alow for a small number of mismatches, an error correction code can be
introduced to the sequence along with the signature. FIG. 22 shows an example image of a user
interface showing error correction via an application run on a user device as a part of a NA

authentication system.

75

WO 2019/191083 PCT/US2019/024057

Example illustrations

{00256} As a proof of concept signatures were generated and inserted into two plasmids.
Thefirst, 431734, isasynthetic plasmid composed of two antibiotic resistance genes and an origin
of replication. The second, 192623, is the commonly used standard vector pUC!9. FIG. 19A
illustrates an unsigned plasmid and FIG. 19B illustrates a signed ptyC19 plasmid.

[00257] Each signature is flanked by the same start and end delimiter sequences:
ACGCTTCGCA and GTATCCTATG respectively. These sequences were designed to be easy to
identify visually and unlikely to develop secondary" structure. Each signature includes one of the
author’'s ORCID’s as a public key: 0000-0003-4875-8163. Each plasmid was given a relatively
arbitrary" six-digit identifier (431734 and 192623), sothey could be easily differentiated during the
verification step. In each case, the signature was synthesized and sequence-verified by Integrated
DNA Technologies, Inc.

[00258] 431734 was constructed from four separate parts in a single Gibson assembly
reaction. The parts included the pUCI 9 origin of replication, agene for resistance to the antibiotic
Chloramphenicol, a gene for resistance to the antibiotic Ampiciilin, and the signature. Each
adjacent part has analogous ends such that digestion with a5’ exonuclease yields overlaps that can
be annealed together.

[00259] The signature was also inserted into pUCI9 to produce 192623 using the Gibson
assembly method. The pUC19 plasmid was linearized with the hlunt-end restriction enzyme Zral.
Primers were used to amplify the signature such that the 3’ overhangs matched the sequence of the
pUCI9 plasmid on either side of the Zral restriction site. In this way, the signature and plasmid
would have complimentary overhangs following 5’ exonuclease digestion. Insertion of the
signature thus destroyed the Zral site. Transformants were screened for the presence of an insertion
in the correct orientation by restriction digests.

[00260] To determine if the signatures interfered with growth, replication, or marker gene
expression, the performance of cells transformed with the signed plasmids (431734 and 192623)
were compared tothat of cellstransformed with control plasmids. Inthe case of 192623, the control
was the pUC19 vector for which the signature was generated. In the case of 431734, the control
was a vector that was identical except that the signature was replaced with 500 base pairs of

random sequence. This enabled usto test if inserting a signature into a standard vector has any

75

WO 2019/191083 PCT/US2019/024057

effect on plasmid function, and if designing a synthetic plasmid with a signature would be any
different from a random spacer sequence.

[00261] Cells were plated on media with increasing concentrations of antibiotics to
determine if the antibiotic resistance genes were equivalently expressed. To compare growth and
replication, the optical density of liquid cultures inoculated with equivalent amounts of cells
originating from a single colony was monitored every 1-2 hours for 14 hours. After 14 hours of
growth, NA extractions w¥re performed to determine if the plasmid concentration was equivalent

for signed and unsigned plasmids at similar culture densities.

[00262] The plasmid NA was then sequenced at ~90x coverage and de novo assembly was
performed. The resulting contig was used to verify the signatures. To test the accuracy of the
signature validation, the 431734 plasmid was randomly mutagemzed by PCR amplification with a
low-fidelity polymerase. E. coli cells were transformed with the amplified plasmids and plated on
media containing Ampicillin and Chloramphenicol. NA was extracted from a dozen colonies and
sequenced at 90x coverage. Signature validation was performed. The assembled contigs were also
aligned with the 431734 plasmid map to confirm that plasmids for which the signature was valid
were not mutated and plasmids which could not bevalidated contained one or more mutation. This
procedure was repeated for a second variation of the 431734 plasmid in which an error correction

code was included to confirm that those plasmids which were not mutated beyond the tolerance
threshold dictated by the error correction code could still bevalidated even if they contained some
mutations

[00263] FIGS. 20-24C are images illustrating example aspects of the user interface in an
application 1912 run on a user device that is part of an NA authentication system 1900 that may~
be substantially similar to or the same as the systems 1100, 1200. The example user interface of
application 1912 can be substantially similar to or the same as applications 1212, and/or 1612
described above. For example the user interface of application 192 can include amain panel 1920
that includes one or more control items (e.g. push buttons) 1922, 1924, 1926, that allow a user to
control and or communication with the NA authentication system, for example by communicating

with aNA authentication device. As described above with respect to application 1612 illustrated

in FIG. 16, in some embodiments, the button 1922 may be used by a user to generate a digital

signature, the button 1924 may be used to generate a signature NA sequence and/or button 1926

WO 2019/191083 PCT/US2019/024057

may be used by a user verify or validate the authenticity of an unknown NA sample claiming to
be of a particular origin.

(80264} The user interface can, in some embodiments, include one or more communication
or control items in addition to the main panel. For example the additional communication and/or
control items can be inputs dialogs, pop-up message aerts, helpful menus, help with procedural
information (e.g. help messages) or the like. One or more of the additional control and/or
communication items can be presented to the user in any suitable manner. For example, some of
the control and/or communications items may be presented upon the activation of some other
control elements (e.g. a help menu when summoned by activation of a help button, not shown).
FIG. 21 shows an input dialog 1932 that may for a portion of a control item presented to auser in
the process of generating a signature NA sequence. For example, when a user activates the button
1924 (“Sign Message”’) the application 1912 and/or the NA authentication system 1900 may
summon or present the input dialog 1932 inviting the user to input information such as the file
path of the sequence data to be uploaded, the unique identifier associated with the user (e.g.
ORCID), the name or identifier of the plasmid, etc. | some embodiments, as shown in FIG. 21, the
input dialog may also accept a user specified selection of a start and end sequence of the signature
NA sequence. The user may input the suitable information and use one or more control items such
as the “Submit” button to submit the information and/or the request to generate a signature
sequence or a signed NA sequence to the NA authentication system.

[00265] In some embodiments the application 1912 can include additional input dialogs,
such asthe dialog 1942 shown in FIG. 22A, to permit the user to specify the location of insertion
of the signature N A sequence within the original NA segquence. In some embodiments, the dialog
942 can aso additionally accept the number of nucleotide bases that can be corrected if in error.
As described above the user can use the “Submit” button to submit and/or initiate one or more
processes associated with generating a signature sequence or generating a signed version of the
original NA sequence. The application 1912 can present a message panel, for example, the panel
946 in FIG. 22B, aerting or confirming the status of the submission or the request and/or the
results of the submission. For example, the generated signature can be automaticaly saved in a
local folder in the user device and the message may provide the file path or location of the file
containing the signature sequence or the signed version of the NA sequence. In case of error

correction being carried out by the NA authentication system, im some embodiments, the system

78

WO 2019/191083 PCT/US2019/024057

may provide alisting of the various nucleotide bases that were corrected. The system may in some
instance generate a summary listing the correction carried in various nucleotide sequences
including the original NA sequence, the ORCID sequence, the signature NA sequence and/or the
signed NA sequence. FIG. 23 illustrates and example panel 1956 of the application 1912, listing
the errors corrected during generation of asigned NA sequence, according to an example instance.
{00266} As disclosed above, the user can use the application 1912 to upload an unknown
NA sequence claiming to be of aparticular, known source or author, and use the NA authentication
system to validate the claim. In some instances the system may reject the claim by identifying then
sample sequence to be invalid or not similar to the sequence of the particular source or author.
FIG. 24A illustrates an example control panel 1962 that can be configured to accept a sample
sequence claiming to be signed by the known author. For example, a file containing the sample
sequence can be uploaded by locating afilepath using suitable control items (e.g. button “Signed
File") and initiating the verification process (e.g. by activating the “Verify Signature” button). The
application 1912 may find the signed NA sequence invalid as indicated by the message 1966 in
FIG. 24B. In some instances, however, the system may successfully validate the authenticity' of
the signed NA sequence to be matching the expected sequence, such that the application may-
report the successful verification through a message panel such asthe pand 1968 in FIG. 24C.

[00267] Asused in this specification, the singular forms “a,” “an,” and “the” include plural
referents unless the context clearly dictates otherwise. Thus, for example, the term “amember” is
intended to mean a single member or a combination of members, “amaterial” isintended to mean
one or more materials, or a combination thereof.

[00268] As used herein, the term “sample’ refers to a composition that contains an analyte
or analytes to be analyzed or detected or used otherwise. A sample can be heterogeneous,

containing avariety of components (e.g., different NA molecules) or homogenous, containing one
component. In some instances, a sample can be naturaly occurring, abiological material, and/or
a man-made material. Furthermore, a sample can be in a native or denatured form. In some
instances, a sample can be a single cell (or contents of a single cell) or multiple cells (or contents
of multiple cells), ablood sample, atissue sample, a skin sample, a urine sample, a water sample,
and/or a soil sample. In some instances, a sample can be from a living organism, such as a

eukaryote, prokaryote, mammal, human, yeast, and/or bacterium or the sample can be from avirus.

In some instances, a sample can be one or more stem cells (e.g., any cell that has the ability to

79

WO 2019/191083 PCT/US2019/024057

divide for indefinite periods of time and to give rise to specialized cells). Suitable examples of
stem cells can include but are not limited to embryonic stem cells (e.g., human embryonic stem
cells (hES)), and non-embryonic stems cells (e.g., mesenchymal, hematopoietic, induced
pluripotent stem cells (1PS cells), or adult stem cells (MSC)).

[00269] The user devices or central authority devices or NA authentication devices
disclosed herein can be any suitable electronic devices. For example, in some embodiments, the
electronic device can be a personal computer (PC), a personal digital assistant (PDA), a smart
phone, a laptop, atablet PC, a server device, a workstation, and/or the like. The electronic device
can include at least amemory, aprocessor, anetwork interface, and an output device. For example,
in some embodiments, the output device can be any suitable display that can provide at least a
portion of a user interface for a software application (e.g., a mobile application, a PC application,
an internet web browser, etc.) installed on the electronic device. In such embodiments, the display
can be, for example, a cathode ray tube (CRT) monitor, aliquid crystal display (LCD) monitor, a
light emiting diode (LED) monitor, and/or the like. In other embodiments, the output device can
be an audio device, a haptic device, and/or any other suitable output device. The network interface
can be, for example, a network interface card and/or the like that can include at least an Ethernet
port and/or a wireless radio (e.g., aWiFi® radio, a Bluetooth® radio, etc.). The memory can be,
for example, arandom access memory (RAM), amemory buffer, ahard drive, aread-only memory
(RDM), an erasable programmable read-only memory (EPROM), and/or the like. The processor
can be any suitable processing device configured to run or execute a set of instructions or code.
For example, the processor can be a general purpose processor, a central processing unit (CPU),
an accelerated processing unit { AP11}, and Application Specific Integrated Circuit (ASIC), and/or
the like. The processor can be configured to run or execute a set of instructions or code stored in
the memory associated with using, for example, a PC application, amobile application, an internet
web browser, a cellular and/or wireless communication (via a network), and/or the like, as
described in further detail herein.

[00270] Various terms are used herein and in the appended claims to describe, for example,
various parts, portions, layers, etc. of an interaction between a user of an electronic device and a
user of adifferent electronic device. For example, the terms “communication” and “message” and
“information” can be used interchangeably and refer generally to data being sent, in substantially

one direction, from a user of an electronic device to a user of another electronic device. By way of

80

WO 2019/191083 PCT/US2019/024057

example, acommunication or message from auser of afirst electronic device to auser of a second
electronic device can be an email, a voice message, an instant message (IM), an SMS, and/or the
like, as described herein. A response to the email from the user of the second electronic device to
the user of the first electronic device can similarly be referred to as a communication or message
or information.

{00271} As used herein, the terms “modality,” “communication mode,” and “channel” can
be used interchangeably and refer generally to one or more modes of communication using, for
example, one or more electronic devices. Such modes of communication can be associated with a
specific format (e.g., a data unit format) that, in some instances, can be unique to that mode of
communication (e.g., adifferent protocol, a different data unit structure or arrangement, etc.). For
example, a cellular telephone (e.g., a smart phone) can send a communication to another cellular
telephone using a short message service (SMS) modality. Thus, when referring to a modality or
channel it should be understood that the modality or channel includes, defines, and/or otherwise is
associated with a data unit format suitable for transmission of data via that communication mode.
[00272] As used herein the term “data processing unit” or “processor” or “Input/Output
unit” or a “Communicator” can refer to, for example, any computer, electronic switch, switch
fabric, portion of a switch fabric, router, host device, data storage device, line card, backplane or
the like used to process, transmit and/or convey electrical and/or optical signas. An /O unit or a
communicator can include, for example, a component included within an electronic
communications network. In some embodiments, for example, a data processing unit can be a
component included within or forming a portion of a core switch fabric of a data center. In other
embodiments, a processor or 1/0O unit can be an access switch located at an edge of a data center,
or ahost or peripheral device (e.g., aserver) coupled to the access device. For example, an access
switch can be located on top of achassis containing several host devices

[00273] As described herein, the term "nucleic acid,” refers to a molecule comprising one
or more nucleic acid subunits. In some embodiments, a “nucleic acid molecule” refers to the
phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidme;
“RNA molecules’) or deoxynbonucleosides (deoxyadenosine, deoxyguanosme, deoxythymidine,
or deoxycytidme: “DNA molecules’), or any phosphoester analogs thereof. Such as
phosphorothioates and thioesters, in either single stranded form, or a double-stranded helix. In

other words, anucleic acid may be single-stranded and/or double-stranded. Nucleic acids comprise

81

WO 2019/191083 PCT/US2019/024057

"nucleotides”, which, asused herein, can include those moieties that contain purine and pyrimidine
bases, and modified versions of the same. Such modifications can, for example, include methylated
purines or pyrimidines, acylated purines or pyrimidines, akylated riboses or other heterocycles.

In addition, the term "nucleotide" or "polynucleotide” includes those moieties that contain hapten
or fluorescent labels and may contain not only conventional ribose and deoxynbose sugars, but
other sugars aswell.

{00274} A "polynucleotide’ or “nucleotide sequence' is a series of nucleotide bases (also
called “nuclectides inanucleic acid, such asDNA and RNA, and means any chain of two or more
nucleotides. A nucleotide sequence typically carries genetic information, including the information
used by cellular machinery' to make proteins and enzymes. These terms include double or single
stranded genomic and cDNA, RNA, any synthetic and genetically manipulated polynucleotide,

and both sense and anti-sense polynucleotide (although only sense stands are being represented

herein). This includes single- and double-stranded molecules, i.e, DNA-DNA, DNA-RNA and
RNA-RNA hybrids, aswell as“protein nucleic acids (PNA) formed by conjugating bases to an
amino acid backbone. This also includes nucleic acids containing modified bases, for example
thio-uracil, thio-guanine and fluoro-uracil.

[00275] Modified nucleosides, nucleotides or polynucleotides can aso include
modifications on the sugar moiety, e.g., wherein one or more of the hydroxyl groups are replaced
with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like. Double
stranded DNA-DN A, DN A-RNA and RN A-RNA helices are possible. Theterm nucleic acid (NA)
molecule, and in particular DNA or RNA molecule, refers only to the primary and secondary
structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term
includes double-stranded DNA found, inter alia, in linear (e.g., restriction fragments) or circular
DNA molecules, plasmids, and chromosomes. In discussing the structure of particular double-
stranded DNA molecules, sequences may be described herein according to the normal convention
of giving only the sequence in the 5'to 3' direction along the non-transeribed strand of DNA (i.e.,
the strand having a sequence homologous to the mRNA). A “recombinant DNA molecule” is a
DNA molecule that has undergone a molecular biological manipulation.

[00276] The terms "polynucleotide", "nucleotide”, "nucleotide sequence", "nucleic acid”,
“NA sequence” , “sequence” and "oligonucleotide” are used interchangeably. They refer to a

polymeric form of nucleotides of any' length, either deoxyribonucleotides or ribonucleotides, or

82

WO 2019/191083 PCT/US2019/024057

analogs thereof. Polynucleotides may have any three dimensiona structure, and may perform any
function, known or unknown. The following are non-limiting examples of polynucleotides: coding
or non-codmg regions of a gene or gene fragment, loci (locus) defined from linkage analysis,
exons, intrans, messenger RNA (mMRNA), transfer RNA, ribosomal RNA, short interfering RNA
(SRNA), short-hairpm RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant
polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence,
isolated RNA of any sequence, nucleic acid probes, and primers. The term also encompasses
nucleic-acid-like structures with synthetic backbones. As disclosed above, a polynucleotide may
compnse one or more modified nucleotides, such as methylated nucleotides and nucleotide
analogs. If present, modifications to the nucleotide structure may be imparted before or after
assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleoctide
components. A polynucleotide may be further modified after polymerization, such as by
conjugation with a labeling component.

{00277} As used in this specification, a “sequence” refers to any suitable portion of data
related to sequence information regarding a nucleic acid molecule. For example, sequence can
refer toaDNA or RNA sequence, such as, information about the sequence of nucleotide bases or
sequence of base pairs, and/or the like. In some instances, the verb form “sequence” or
“sequencing” used in this specification refers to the act of obtaining the sequence information of a
nucleic acid molecule.

[00278] A netw'ork can be, for example, alocal area network (LAN), a wide area network
(WAN), ametropolitan area network (MAN), aworldwide interoperability for microwave access
network (WiMAX), atelephone network (such asthe Public Switched Telephone Network (PSTN)
and/or aPublic Land Mobile Network (PLAIN)), an intranet, the Internet, an optical fiber (or fiber
optic)-based network, a virtual network, a cellular network, and/or any other suitable network.
Moreover, the network can be implemented as a wired and/or wireless network. In some
embodiments, the network can include one or more networks of any type such as, for example, a
LAN and the Internet.

[00279] A communication device or communicator can be any suitable device that can
communicate with the network (e.g., any or the data processing units described above, and/or any
combination or part thereof). Moreover, the communication device can include one or more wared

and/or wireless interfaces, such as, for example, Ethernet interfaces, optical carrier (OC) interfaces,

83

WO 2019/191083 PCT/US2019/024057

and/or asynchronous transfer mode (ATM) interfaces. In some embodiments, the communication
device can be, for example, a network interface card and/or the like that can include at least an
Ethernet port and/or awireless radio (e.g., a WiFi ® radio, a Bluetooth ® radio, etc.).

{00280} A memory can be, for example, arandom access memory (RAM), amemory buffer,
a hard drive, a read-only memory (ROM), an erasable programmable read-only memory
(EPROM), and/or the like. In some embodiments, the memory can be configured to store, for
example, one or more modules that can include instructions that can cause a processor to perform
one or more processes, functions, and/or the like.

[00281] A processor can be any suitable processing device configured to run or execute a
set of instructions or code such as, for example, a genera purpose processor (GPU), a central
processing unit (CPU), an accelerated processing unit (APU), an application specific integrated
circuit (ASIC), a network processor, a front end processor, a field programmable gate array
(FPGA), and/or the like. Assuch, amemory can store instructions to cause the processor to execute
modules, processes, and/or functions associated with NA authentication, for example.

[00282] A database can be, for example, a table, a repository, a relational database, an
object-oriented database, an object-relational database, a structured query language (SQL)
database, an extensible markup language (XML) database, and/or the like. In some embodiments,
the database can be configured to store data such as, for example, unique user identifiers within a
NA authentication system, user information indexed by user identifiers, sequence information,
cryptographic function information, cryptographic mapped values, and the like.

[00283] Some embodiments described herein relate to a computer storage product with a
non-transitory computer-readable medium (also can be referred to as a non-transitory processor-
readable medium) having instructions or computer code thereon for performing various computer-
implemented operations. The computer-readable medium (or processor-readable medium) is non-
transitory in the sense that it does not include transitory propagating signals per se (eg., a
propagating electromagnetic wave carrying information on atransmission medium such as space
or acable). The media and computer code (also can be referred to as code) may be those designed
and constructed for the specific purpose or purposes. Examples of non-transitory computer-
readable media include, but are not limited to, magnetic storage media such as hard disks, floppy
disks, and magnetic tape; optical storage media such as Compact Disc/Digita Video Discs
(CD/DVDs), Compact Disc-Read Only Memories (CD-ROMSs), and holographic devices,

84

WO 2019/191083 PCT/US2019/024057

magneto-optical storage media such as optical disks; carrier wave signal processing modules; and
hardware devices that are specialy configured to store and execute program code, such as
Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-
Only Memory (ROM) and Random-Access Memory (RAM) devices. Other embodiments
described herein relate to a computer program product, which can include, for example, the
instructions and/or computer code discussed herein.

100284} Some embodiments and/or methods described herein can be performed by software
(executed on hardware), hardware, or a combination thereof. Hardware modules may include, for
example, a general-purpose processor, a field programmable gate array (FPGA), and/or an
application specific integrated circuit (ASIC). Software modules (executed on hardware) can be
expressed in avariety of software languages (e.g., computer code), including C, C++, Java™,
Ruby, Visual Basic™, and/or other object-oriented, procedural, or other programming language
and development tools. Examples of computer code include, but are not limited to, micro-code or
micro-instructions, machine instructions, such as produced by a compiler, code used to produce a
web service, and files containing higher-level instructions that are executed by a computer using
an interpreter. For example, embodiments may be implemented using imperative programming
languages (e.g., C, Fortran, etc.), functional programming languages (Haskell, Erlang, etc.), logical
programming languages (e.g., Prolog), object-oriented programming languages (e.g., Java, C++,
etc.) or other suitable programming languages and/or development tools. Additional examples of
computer code include, but are not limited to, control signals, encrypted code, and compressed
code.

[00285] While various embodiments have been described and illustrated herein, it isto be
understood that a variety of other tools, means, and/or structures for performing the functions
and/or obtaining the results and/or one or more of the advantages described herein, and each of
such variations and/or modifications, is within the scope of the disclosure and example
embodiments described herein. More generally, it is to be understood that all parameters,
dimensions, materials, and configurations described herein are provided asillustrative examples,
and that the actual parameters, dimensions, materials, and/or configurations can depend upon the
specific application or applications for which the disclosed teachings is/are used/implemented.
Many equivalents to the specific example embodiments described herein are readily recognizable

and/or can be ascertained using no more than routine experimentation. It is, therefore, to be

85

WO 2019/191083 PCT/US2019/024057

understood that the foregoing embodiments are presented by way of example only and that, within
the scope of the disclosure and equivalents thereto, and further embodiments within the scope of
the disclosure can be practiced otherwise than as specifically described and/or claimed.
Embodiments of the present disclosure are directed to each individual feature, system, article,
material, kit, and/or method described herein. In addition, any combination of two or more such
features, systems, articles, materias, kits, and/or methods, if such features, systems, articles,
materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the
present disclosure.

100286} The above-described embodiments can be implemented in any of numerous ways.
For example, the embodiments or portions thereof can be implemented using hardware, software,
and/or a combination thereof. When implemented in software, the software code can be executed
on any suitable processor or collection of processors, whether provided in a single computer or
distributed among multiple computers/servers/compute devices. Such computers may be
interconnected by one or more networks in any suitable form, including a local area network or a
wide area network, such as an enterprise network, and intelligent network (IN) or the Internet.
Such networks may be based on any suitable technology and may operate according to any suitable
protocol and may include wireless networks, wired networks or fiber optic networks.

[00287] The various methods or processes outlined herein may be coded as software that is
executable on one or more processors that employ any one of a variety of operating systems or
platforms. Additionally, such software may be written using any of a number of suitable
programming languages and/or programming or scripting tools, and also may be compiled as
executable machine language code or intermediate code that is executed on aframework or virtual
machine.

[00288] Inthis respect, various disclosed concepts can be embodied as a computer readable
storage medium (or multiple computer readable storage media) (e.g., a computer memory, one or
more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit
configurations in Field Programmable Gate Arrays or other semiconductor devices, or other non-
transitory medium or tangible computer storage medium) encoded with one or more programs that,
when executed on one or more computers or other processors, perform methods that implement
the various embodiments of the invention discussed above. The computer readable medium or

media can be transportable, such that the program or programs stored thereon can be loaded onto

86

WO 2019/191083 PCT/US2019/024057

one or more different computers or other processors to implement various aspects of the disclosure
as discussed above.

[00289] The terms “program” or “software” are used herein can refer to any type of
computer code or set of computer-executable instructions that can be employed to program a
computer or other processor to implement various aspects of embodiments as discussed above.
Additionally, it should be appreciated that according to one aspect, one or more computer
programs that when executed perform methods of the present invention need not reside on asingle
computer or processor, but may be distributed in amodular fashion amongst a number of different
computers or processors to implement various aspects of the present.

[00290] Processor-executable instructions can be in many forms, such asprogram modules,
executed by one or more compute devices, and can include routines, programs, objects,
components, data structures, etc. that perform particular tasks or implement particular data types,
and the functionality can be combined and/or distributed as appropriate for various embodiments.
[00291] Data structures can be stored in processor-readable media in a number of suitable
forms. For ssimplicity of illustration, data structures may be shown to have fields that are related
through location in the data structure. Such relationships can likewise be achieved by assigning
storage for the fields with locations in a processor-readable medium that conveys relationship
between the fields. However, any suitable mechanism/tool can be used to establish a relationship
between information in fields of a data structure, including through the use of pointers, tags, and/or
other mechanisms/tools that establish relationship between data elements.

[00292] Various disclosed concepts can be embodied as one or more methods, of which
examples have been provided. The acts performed as part of a particular method can be ordered in
any suitable way. Accordingly, embodiments can be constructed in which acts are performed in
an order different than illustrated/discussed, which can include performing some acts
simultaneously, even though shown as sequential acts in illustrative embodiments.

[00293] All definitions, as defined and used herein, should be understood to control over
dictionary definitions, definitions in documents incorporated by reference, and/or ordinary
meanings of the defined terms. The use of flow' diagrams and/or “step” language/terminology is
not meant to be limiting with respect to the order of operations performed. The herein described
subject matter sometimes illustrates different components contained within, or connected with,

different other components it isto be understood that such depicted architectures are exemplary’

87

WO 2019/191083 PCT/US2019/024057

and not limiting, and that many other architectures can be implemented which achieve the same or
similar functionality and are within the scope of the disclosure. In a conceptual sense, any
arrangement of components to achieve the disclosed functionality is effectively “associated” such
that the desired functionality isachieved. Hence, any two components herein combined to achieve
a particular functionality can be seen as “associated with” each other such that the desired
functionality is achieved, irrespective of architectures or intermediate components. Likewise, any
two components so associated can also be viewed as being “operabiy connected,” or “operably
coupled,” to each other to achieve the desired functionality, and any two components capable of
being so associated can also be viewed as being “operably eouplable,” to each other to achieve the
desired functionality. Specific examples of operably eouplable include but are not limited to
physically mateable and/or physically interacting components and/or wirelessy interactable
and/or wirelessly interacting components and/or logically interacting and/or logically interactable
components. The indefinite articles “a’ and “an,” asused herein in the specification and in claims,
unless clearly indicated to the contrary, should be understood to mean “at least one.”

[00294] The phrase “and/or,” as used herein, isto be understood to mean “either or both”
of the elements so conjoined, i.e., elements that are conjunctively present in some cases and
disunctively present ir: other cases. Multiple elements listed with “and/or” should be construed in
the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally
be present other than the elements specificaly identified by the “and/or” clause, whether related
or unrelated to those elements specifically identified. Thus, asanon-limiting example, areference
to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can
refer, in one embodiment, to A only (optionally including elements other than B); in another
embodiment, to B only (optionaly including elements other than A); in yet another embodiment,
to both A and B (optionally including other elements); etc.

[00295] As used herein, “or” isto be understood to have the same meaning as “and/or” as
defined above, unless context clear indicates otherwise. For example, when separating itemsin a
list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but
also including more than one, of anumber or list of elements, and, optionally, additional unlisted
items. Only terms clearly indicated to the contrary:, such as “only one of’ or “exactly one of,” or,
when used in claims, “consisting of,” will refer to the inclusion of exactly one element of a number

or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating

83

WO 2019/191083 PCT/US2019/024057

exclusive aternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity,
such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when
used in the claims, shall have its ordinary meaning as used in the field of patent law.

{00296} As used herein, the phrase “at least one” in reference to a list of one or more
elements, is to be understood to mean at least one element selected from any one or more of the
elements inthe list of elements, but not necessarily including at least one of each and every element
specifically listed within the list of elements and not excluding any combinations of elements in
the list of elements. This definition also alows that elements can optionally be present other than
the elements specifically identified within the list of elements to winch the phrase “at least one”
refers, whether related or unrelated to those elements specifically identified. Thus, as a non-
limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or,
equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally
including more than one, A, with no B present (and optionally including elements other than B);
in another embodiment, to at least one, optionaly including more than one, B, with no A present
(and optionally including elements other than A); in yet another embodiment, to at least one,
optionally including more than one, A, and at least one, optionaly including more than one, B
(and optionally including other elements); etc. It isto be understood that al transitional phrases,
such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,”
“composed of,” and the like are open-ended, i.e., to mean including but not limited to. Only the
transitional phrases “consisting of” and “consisting essentially of’ shall be closed or semi-closed
transitional phrases, respectively, as set forth in the United States Patent Office Manua of Patent
Examining Procedures, Section 2111.03,

[00297] Although various embodiments and/or instances have been described as having
particular features, concepts, and/or combinations of components, other embodiments and/or
instances are possible having any combination or sub-combination of any features, concepts.
and/or components from any of the embodiments/instances described herein. For example, in some
instances the digital signature generated can have aplasmid ID but no author ID based on aunique
identifier. In some other instances, the signature NA sequence can include an error correction code
to account for potential errors, and an author ID or a unique identifier, but no plasmid ID. In some
embodiments, the signature N A sequence and/or the NA authentication system can be configured

to identify the information incorporated in the signature NA sequence. In some embodiments, the

89

WO 2019/191083 PCT/US2019/024057

system can use one or more suitable methods of marking asignature NA sequence to communicate
the format and content of the signature sequence. For example, the signature sequence can include
amarking that differentiates signature sequences including aplasmid 1D, an author 1D and an error
correction code from signature sequences including a plasmid ID and an error correction code, or
from those including an author ID and error correction code.

{00298} While various embodiments have been described above, it should be understood
that they have been presented by way of example only, and not limitation. Where methods and
steps described above indicate certain events occurring in certain order, the ordering of certain
steps can be modified. Additionally, certain of the steps can be performed concurrently in aparallel
process when possible, as well as performed sequentially as described above. Although various
embodiments have been described as having particular features and/or combinations of
components, other embodiments are possible having any combination or sub-combination of any
features and/or components from any of the embodiments described herein. Where methods and/or
events described above indicate certain events and/or procedures occurring in certain order, the
ordering of certain events and/or procedures can be modified. Additionally, certain events and/or
procedures can be performed concurrently in a parallel process when possible, as well as
performed sequentially as described above.

g0

WO 2019/191083 PCT/US2019/024057

APPENDI X - A

\\Genolign\Genolign 2.0\DisxlavErrors

..;port
import .
import java.util.ArraylList;

import Java.util.List

swing.JFrame;
swing.JPanel;
er.EmptyBorder;

import
import
import javax.swing.bord
import javax.swing.JT
import javax.swing. JlextArea;

public ¢lass DisplayErrors extends JFrame

private JPaneal contentPane;
private String erxMsg = null;
priva co

private String errStart = null;
private String correctStart = null;
pri String erxORCID

pri String correctORCI

private String errFlasmdiD = null;

private String correctPlasmdi D —null;

private String errSign = null;
private String correctSign = null;

errEIC = aull;
correctECC = null;

private String errEnd = null;
private String correctEnd = null;

/k-,'«-

* Launch the application.

7'(/
/* public static veoid main (String{l args) |
Tvent@ueue.invokelater (new Runnable () |{
public)
isplayErrors{);
}
}
P
PR/
/w*
* Create the frame.
-A-//

public Displgymrr0r°
String oldil, String newll,

String
1) i

oldEnd, String newino

System.out.printin{"IN DISPLAY ERROR3");
errMsg = oldmsg;
correctMsy = newmsg:

errStart —oidStart;
correctStart = newStart;

91

WO 2019/191083 PCT/US2019/024057

errPlasmidID = ol dpl asrni d;

correctpPJasmi dil = nev;plas
errSign = oldsign;
correctSign = newsign;

err ECC - ol decc;
correct ECC = newecc;

errEnd — ol dEnd;
correct End = newEnd,

printin{errMsqg);
printlin{correctisqg);
;

] D)
System,out.println{errPlasmidID};
S f t.printin{correctPlasmidiD};
33 .println{errSign)

. pr lntlv

[}

w

W

System.out

List<String>

o

~e o~ H
e}
e
<
EX‘
5
4
W
i
o
o

JText Area textArea = new extArea ();

text Area,set Bounds (10, 10, 413, 394)
cont ent Pane.add (t extArea);

YUENCE ERRORS.A\n™};
T.isEmpty ()) {

SEQUENCE ERRORS.\n"};
o rr_errI st.isEmpty ()} |

92

PCT/US2019/024057

WO 2019/191083

n

eou

I
I9)
— g
i
- - e
. =
o
— — =
: i S
P = = +
- N o —
7 e "
o~ w, :
- o ol
/”W\ n.m\. —_— T
oo 43 B LO_ =
o~ .V\MA o » "
= m i
o 5%
- s
- 5
vy i
[LagE & ;
[SRNO! s Bt
[o 2]
TN - TN o
SR — Z o S u ole
. e [®] ", = © —~ =
B, — . = - %) - 5a) M o
[S RO o o [-~ 5 -~ B, - U0
Z o0 n m B o o 5 © g — o vy
B OE -2 w2 B3 NG & T i) pr e
wmm & ol =g & kel o o Moo o Lo
¥ O oo ﬂ & Sy i =} = : Mo
v X g9 : o o 9 =g
= = B =, - S0, o] + (SN 3)
= T oo (BN ~ wo Z [. Z 5
H =T o om 5 I z m O oo
e Yo o L) (S = 7 et
g Mo o & U @ g w o o -
o 0 g a g i 9 5 G o - R NN
) a a s N wy g > el
: <, D o o, Ko TN = w i ...
& ¥ 4 3 o e sQ o g o
_ o X ~ o o e B aoG [z
- oo : o . — - G -
o s = Ho - oz og @ o = ;
@ gt i Sl) T a o ,‘w
o i8] .\N_ - 13 \ah. b o U o —— = .\m
% v S 0 200 g >4 ~&5 I 5 z
vt - SN = Qi 4] . [o o
1% i v} .ﬂ_ N “ T 3 2 Lyw © H M 3
4 O s a9 o < 3 g e] o) &
i — [P} _— T oMy Y —~— ¢ i =G + 5
3 © v w S = e
— — HOD — O - =] -l - o
" G5 : < . M
[t W Q@ H @ O 0} © it
@ N~ 173 — u 0))
— O 4 — 1 — — —
- . @ - D — - - — —— -4 — —

[i]+".

Ttarr

93

WO 2019/191083 PCT/US2019/024057

juence -
Itarre

+
+
o
[al
bl
A
5
o
+
o
3
=
o)

0k

n

+arrblil+arrb[i+lid+arrbl{i+2] +arrh|i-
[1+91+"\n"};

Sl+arrali-8i4+arraii-7]+arrali-o6}+

Sl+arrb[i-8l4+arrb{i-7]+arrbl|i-6} +a
Li+arrb[i +”‘P“),
3}+arxa[1"2}+axra{¢-1]~arLa[i]+arxa[1+l}+axra[¢+2]~arLa[
".\nCorrect Segquence will be -~ "tarrbii-
4l +arrb[i-3i+arry b{l"Zl*&flb[]—i}+arfbl7I+€frb{l+1]*aflb[]+3}+rrfbl1+3]+3rfhkl+4]'"\“"),
.
:
§
i
:
1
!
v
!
i
return errijst
i
}

noSign\&ensS:

package test;

public class EucildReturnQj ect695537 {
/'l num of errors
int nErr;

/| abErrorLoc
short 1 abErrLoc;

// abl ambdaR

short [] abLambdaR;
/1 abOmegfa

short [} abOmega;

public short [j getAbOmegfa () {
return abOrega;

N
}
i

public void setAbOrega (short[] abOnega) {
this .abOnega = abOnega;

r

public int getnErr() f
return nkrr;

public

public short (s getAbErrLoc () {
return abErrLoc;

public void setAbErrLoc({shorti{] akErrLoc) |
this.ab&rrloc = abErrLoc;

public short (; gfetAbLambdaR(} ¢

94

WO 2019/191083

return ablanb daR;

public veid setAbLambdaR{short{] abLambdaR}

this.abLambdaR = abLambdaR;

R PR . : s 5
\MwelipgslignyGenoldign < larateldignature

package test;

import
import
import
import

Java.awt.Window;
Java. n
Java,nic
Java.nlo. file. P:
java.security.MessagebDigest;

} .security.NoSuchAlgorithmEzception;
Jjava.utll.regex.Matcher;
Java.utll.regex.Pattern;

e

iwmport
import

import javax.swing.JFrame;
inp Ort javax.swing.JPanel;
import javaxz.swing.border .EnptyBorder ;
import javax.swing. filechooser .FileSystenView,
inp ort javax. swi ng. JButton;
javax .swi ng. JFi | eChooser ;
javax .swing.JlextField;
javax .swi ng.JLabel;
javaz.swing.JOpt ionFane;
javaz.swing.Swi ngConstants ;
import java. awmt. event .ActionLi stener;
import java.io.File;
inmp ort Java.io.l CException ;
inp Ort java.awt.event .ActionEvent ;
import org.apache.conmons .lang3.StringUtils;
/**

* @author Diptendu

* This frame is created by clicking "Sign
* screen. User needs 1. Iile
* signer. 3. 4. Sign
*

* tes the signature seguence from pla
* rturePlacement. java where user prov
* sertion

class GenerateSignature extends JFrame |

and buttons. private key and

commercial app. This frame will

the signing token.

*/

private static final Zlong serial VersionU D
Private JPanel conteltFane;
Private JTextField Fi | eText Fi el d;
private JTextField IDTextField;
private jrLabel iplsignatureStart;
private JTextField signSiartrield;
private jLabel |bl SignatureEn d;
private JTextField signEndField;
private JButton bt nSubni t;

private Biglnteger priv. = null;
privace giglnteger nod = Ul ;

private jLabel lplNewLabel;
private jJTextField pl asmi di DFi el d;

95

PCT/US2019/024057

i
1

Message”

button in the main
for sign. 2., Identity of

and seqguence.
mid sequence and passes to
des position of signature

modulus are passed

connest To Tohe

from KEYGEN.

1L;

WO 2019/191083 PCT/US2019/024057

* Create the frame.

public GenerateSignature (Biginteger d, Biginteger nj} |
priv = d;
mod = 1n;

final Window w = thi
setTitlie ("SIGN MESSAGE™
setDefaultCloselperat

file

// Choese file. te select file.
JButton btnSelec = new JBi
btnSelectFile.addActionlistener (new

public void actionPerfo Pe“(PCLlOQ"VLni

0);
Z<o¢ut69ath());

}

) i
bt nSei eetFile .setBounds (o0, 37, 89, 23) ;
content Pane .add (btnSeieetFile);

1

/I Enter ORCID of signer.

JLabel IblEnterld = new JLabel ("Enter ORCID') ;

I bl Enterld. setHorizontal Al ignment (Swi ngConstants .CENTER)
I bl Enterld. setBounds (10, 97, 89, 23)

cont ent Pane. ad< (I bl Enterl d)

= new JTextField(};
1.setBounds (136, 98, 416, 20);
e,add{(IDTextField};

21ld, setColumns (10)

gnat start seguence
aSta new JLabel (¢
natureStart.setHorizontalA
Gnatgrestart.qetB“und (10¢,
ntPane. add (lblSignaturedtar

signst artFJnia =

dne.add(

/| Enter signature end sequence

I bl Si gnatureEnd = new JLabel ("Signature End")

I bl Si gnatureEnd. setHorizontal Alignment (SwingConstants .CENTER)
I bl Si gnatureEnd .setBounds (10, 276, 89, 20) ;

cont ent Pane. add (I bl Si gnat ureEnd) ;

signEndField = new JTextField ();

96

WO 2019/191083 PCT/US2019/024057

signEndField .setBounds (136, 276, 416, 20) ;
content Pane. add (si gnEndFi el d)
signEndField .setColums (10) ;

// SUBMT button

bt nSubmit = new JButton ("SUBMT");

bt nSubmi t. setBounds (259, 320, 89, 23) ;
content Pane. &dd (btnSubmt) ;

I bl NewLabel = new JLabel ("ID format : XXXX-XXXX-XXXX-XXXX");
| bl NewLabel .setBounds (136, 128, 315, 14) ;
cont ent Pane. add (| bl NewLabel) ;

/| Enter Plasnmid |D

JLabel IblPlasmidliD = new JLabel ("Enter PLASMD 1D") ;
I bl Plasm dI D. setBounds (20, 161, 102, 33) ;

content Pane .add (IblPlasm dl D) ;

plasm dliDField = new JTextField ();

pl asm dl DFi el d. setBounds (136, 167, 416, 20) ;
cont ent Pane, add (pl asm dl DField) ;

plasm dl DFi el d. setColumns (10) ;

// Call this when SUBMIT is clicked.
btaSubmit. addActi tener (new Acti

1
.
W
ot
o
o]
]
=

public veoid stionPerformed (ActionEvent e
I/ error checks .. if fields are enpty
if (FileTextField. getText ().isEnpty (}) f
JOpti onPane .showivessageDialog (null, "NO FILE SELECTED',

"alert", JOptionPane .ERROR_MESSAGE) ;
} else if (IDTextField. getText ().isEmpty ()) {
JOptionFane . showMes sage Pi alog (nudl, "NO IDENTITY PROVI DED' ,
"alert", JOptionPane .ERROR_MESSAGE) ;
} else if (plasmid DField .getText ().isEnpty ()) {
JOpti onPane .showMessageDialog (nul L, "NO PLASMD |D

PROVI DED', - "alert", JOptionPane .ERROR_MESSACGE) ;
} else if (signStartField.getText ().isEnpty o} {
JOoptijonPane . showvessage Dialog (null , "NO START SEQUENCE

PROVI DED"', “alert”,
JOpti onPane. ERROR_MESSAGE) ;
} else if (signEndField ,getText ().isEnpty ()) ¢
JOptionPane .shcwMess ageDi al og (Bull, "NO END SEQUENCE

PROVI DED', - "alert", JOptionPane .ERROR_MESSACGE) ;
else
i f(lgetFi ieExtens ion (FileTextField .getText (),trinm()).contains ("gb")) [
JOpti onPane .showiessageDialog (null, "EXPECTED GENBANK FILE
.GB"

+ "\n PROVIDED FILE HAS EXTENSI ON
."AcfetFil eExtension (FileTextField. getText ().trim)), "alert", JOptionPane .ERROR_MESSACGE) ;

3
h

/! ne error . proceed
else (
String identity = IDTextField. getText ().trim();
String fileContent = "";
Str.ng start_seq =
signStartField. getText ().trim().toLowerCase ();
String end_seq =
signEndFi eld.getText ().trim().toLowerCase ();
String piasmidiD = plasmidlDField. getText ().trimf{,;
// try te read the genebank file,
!
fileContent = new
extField.getText (). .trim{})}};
[OException el) |

tionPane.showMessageDialog(null, "CANNCT READ THE

FILE", Talert™, JOptionPane.BERROR MESSAGE)

}

/'/ file read and content is not enpty

97

WO 2019/191083 PCT/US2019/024057

if (!fiieContent -isEmpty (}} {

/1 extract DNASequence method to extract plasmd
sequence and descriptions from

11 file.
String 11 fileParts
ext ract DNASequence (fiieContent) ;
Soring content UptoOrigin = fileParts [0] ;
String sourceDNASequence ~ fileParts [1];

/'l provided signature scant sequence is not
present wthin plasmd sequence
i f (sourceDNASequence ,contains (start _seq)) {
Jopt ionPane, showMessagelialog (tull,
"START SEQUENCE | S ALREADY
PRESENT , CHOOSE DI FFERENT" , “alert ",
JOpti onPane .ERROR _NMESSAGE}
}
/'l provided signature end sequence is not
present within plasmd sequence
else if (SourceDNASequence .contains (end_seq) !
JOpti onPane. showMessageDi ai og (nul L, "END
SEQUENCE IS ALREADY PRESENT. CHOOSE DI FFERENT ™,

"

"alert
JOptionPane. ERROR_MESSAGE)
}
// proceed if above passed
else {
/] start the signature algorithm
Messadgeligest digest;
cry Ao
A /1 check for plasnmid id - nunbers

only

int plasmididint =
Integfer ,parselnt (plasmi di®);

/1 specify the hash function "SHA-
256"

Mes sageDi ges t .get I nstance ("SHA-256");
the sequence

di gest, digest (sourceDNASequence. gfetBytes (})+

digest, digest (identity, getBytes {(}};

Bi gl nteger msgHashl nt = new
Bi gl nteger (1, msgHash) ¢

Bi gl nt eger idllashlnt = new
Bi gl nteger (1, idHash) ;

/1 extract the token for sigfning
from provided ORCID. ID " d nod n

/1 Thi#s step is done by CA The
user wi Ll receive the token from CA.

Bi gl nteger extractedPrivKey =
i dHashl nt .modPow (priv, mod};

/1 signing step - (ID” d }
HEm} mod n

Bi gl nteger signaturelnt =
extracted?rivKey .modPow (ftsgHashl nt¢ mod);

// Convert to ACGT
String binary3ignatureString =
signaturelnt .toStrmg (2};

98

WO 2019/191083

i f needed

< mod. bitLength ()) {
StringBuilder ();
(nod. bitLength () - binarySignatureString,
sb.toString ();

paddi ng,concat (binarySignatureString);
bits

the signbature to ACGT

convertSignat uretACGT (bi narySi gnatureString) ;

SEQUENCE= + dnaSi gnatureString)

SEQUENCE LENGTH = + dnaSi gnatureString .length ();
converlldentitytoac GT (identity};

convert Plasmi dIDt oACGT (plasmidiD; ;

Sequence + identitySequence) ;

Sequence length = + identitySequence .length (});
Sequence ~ + pi asm dl DSequence) ;

Sequence length = + piasm dl DSequence .length ());
combining ORCID + PLASMD |ID * SIGNATURE SEQUENCE

i dentitySequence .concat (piasm dl DSequence)

.concat (dnaSignatureString) ;

+ SI GNATURE SEQUENCE- + dnal dSi gnat ureString) ;

PLASMD |ID + SIGNATURE SEQUENCE LENGTH -

dnal dSi gnatureString. length ());*/

Ei LeTextEield. getText ().Trim();

trame where user will provide position

start_seq, dnaldSignatureString,

identity, inputfile to the frame

Signature®iacement (3ourceDNASequence, start_seq-

99

length ());

i ++)

{

PCT/US2019/024057

/I padding extra O bits in front

if {binarySignatureString ,iength()
StringfBuilder sb = new
for fint i = 0; i <

sb . append ("C");
}
String padding

bi narySi gnat ureString =
1
/'l convert Si gnat ur et oACGT converts
String dnaSignatureString =
System out ,Printl ("SI GNATURE

System oufZ.println ("SIGNATURE

/1 Convert
String

ORCID to ACGT
i dentitySequence =

// Convert PLASMID ID to ACGT
String plasmidiDSequence =

// debug purpose
System.out.println {"ORC ID
System out .println ("ORC ID
Systern.out .printdln ("FLASMID |D

System ocut .println {"PLASMD |D

/1 create the final string by

String dnaldSignatureString =

1

// debug purpose
System.out.println/{
"ORC ID + PLASMID ID

System cut.printin ("ORC ID +

+

3tring input file =

/1 Opens the Signature Placenent

/1 auto open, no clicks needed,
/1 pass sourceDNASequence,

/']l end_sed, contentUptoOrigin,

Si gnat ur ePl acenent sp = new

WO 2019/191083 PCT/US2019/024057

plasmidil, end_sed,
contentUptoOrigin « jdentity, input%ile,priv,nod) ;
sp.setVisible (true) ¢
/1 close the current sign nmessage

frame.
w. di spose {} 7

/ cannot load 3HA-Z256
7 * atch (NoSuchAlgorithmException el) |
el (rz
;.,+//‘

// alert if provided plasmid id is not a
number.
catoeh {(NumberFormatException nfe) |

JOptionPane,. showlMessageDialog{null, T"PLASMID ID IS o DIGIT NUMBERS ONLYT, "alert®,

JOoptionPane. ERROR MESSAGE) ;

FILE

1my 4 o AwMes gy Salas il]l wy,
JOoptionPane.showMessagelialoginull, "WRONG FILE

[

DOES NOT CONTAIN KEYWORD ORIG N

JOpti onPane. ERROR_MESSAGE) ;

}

1
h

/1 file read successfully but no content / enpty file,

else i

JOpti onPane .showMessageDi al og (muli, "EMPTY FILE",
“"alert", JOptionPane. ERROR_MESSAGE) ;
}

i)
}
Jxx
* Extracts the dna seguence from file along with descriptions
*
.
*
*
* content upto the word "ORIGIN" which are
* "ORIGIN" which 1s the actual
*
*
-A-//
private static Stringl] extractDNASequence (3tring fileContent) |
String wordlol'lnd = "ORIGINT;
String tempSeqg = null;
String contentuptoorigin = null;

Pattern werd = Pattern.compille(wordToFind);
Matcher match = word.matcher (fileContent});

/'/ Match keyword "ORIGN'
while (match.find () i
System out.println ("Found ORIG N at index
(match, end () - 1));
/I tenmporary main sequence

n

+ match, start () + " "+

100

WO 2019/191083 PCT/US2019/024057

tenpSeq = fileContent .substring {(match. end{}}, fileContent .length ());

/'l descriprions
contentuproorigin = fileContent .substring (5, match .start ());

// Reformat main sequence to just ACGT.

oAl (M\\s", ")

tempSeqg = templeq.reple
// only take the string between "ORIGIN" and "//°

if(ltempSeq.contains ("//")) |

DELIMITER //.

String validSeq = StringUils .substringBefore (tempSeq, "//") ;

char[] seqarray = validSeq .toCharArray {);

StringBuilder sb = new StringBuilder ();

for {char c segarray) |
1f {o == ta' || < == T¢' || < == g’ || ¢ == 07 || ¢ == AT [| ¢ ==
[¢ == "G" || & == "T'} |

String (! output -- new String i2];
out put [0] = contentuptoorigin;
output [1] = Sequence ;

return output;

private static String getFileSxtension (String fileName) {
if(fileNane .lastlindexdF (".") 1= -1 & fileNarne.lastlndexOf (".")
return fileNane .substring (fileName .lastlndexCf (".";+!) ;

else return ;

package test;
public class GenLanbdaReturnCb Ject©5537 |

int nDLanbda;
short [j abDLanbda ;

public int getnDLarnbda (¢ {
return nDLanbda:

)
3
H

public void setnDLanbda (int nDLanbda) ({
this .nDLanbda =~ nDLanbda ;

3
h

public short (3 getAbDLanbda {) {
return abDLanbda ;

3
3

public void setAbDLambda (shorti] abDLambda} |
this.ablLambda = asbDLambda;

N
13
i

101

e

WO 2019/191083 PCT/US2019/024057

package test;
import java.awt.Event-Queue :

irmport javan .swing,JFrame;

import javaz.swing.JOpt i onPane;
jmport javax, sw ng. JButton;

import java. awt. event .ActionListener;
jmport java.math.Biglnteger;

import Java.awt .event .ActionEvent

[+

* Nauthor Diptendu

* Mairn App li cation.
* Contains 3 buttons - Keygen, Sign Message and Verify Signature
\Y
public class GenoSl GNDenpApp i
public Bigflinteger rsa private = null;
public Biglnteger rsa nodulus = null;
public BigInteger rsa_public = null;

private JFrame frnBanpl el bsScheneg;

VR

* Launch the application.

k/’

public static void main (String[] args) {

System out .println ("START"); // for logging and error tracing
Event Queue .invokeLat er (new Runnable (; {
public void run () ¢
try {
GenoSl GNDer noApp wiindov; = new GenoSl GNDembApp () ;
wi ndow. frnBanpl el bsSchene .setVisible (true) ;
} catch (Exception e) {
e.printStackTrace ();

P
)
’/4,—*
* Create the application.
A’/

public GenoSI GNDempApp () {
initialize ();

)
3
H

/**

* Initialize the contents of the frame. 3 buttons "KEYGEN', "SIA' and "VERI FY".
k/’

private void initialize () i

f r mBanpl el bsSchene new JFrame ();

frnBanpl el bsScheme .setTitle {"GenoSIGN 2.0 V4");

f r nBanpl el bsSchene .setBounds (100, 100, 469, 310);

f rmSampleIbsSchene .set Defaul tCloselperation (JFrame .EXIT_ON_CLOSE) ;
f r mBanpl el bsSchene. get Cont ent Pane () .setlLayout (null) ;

/1 KEYGEN SIMJILATES THE CENTRAL AUTHORITY. PARAMETERS ARE FIXED FOR POC PURPCSE.

JButton btnKeygen = new JButton ("KeyGen");
bt nKeygf en. addActionLis tener {(new ActionListener () |

102

WO 2019/191083 PCT/US2019/024057

public void actionPerformed (ActionEvent e) !
System out. PrintIn ("IN KEY GEN')
rsa_private = new Biglnteger(

new Biglnteger|

47813482121277
1028120039852
1627695478¢ 4.=L:

sublic = new BigInteger {"65537%);
‘ion?ane.showﬁescage“'alo {(frm3amplelbsScheme. getComponent (0)
"PARAMETERS ARE FIXED FOR THIS DEMC. PARAMS LOADED, ") ;
}
i
btnKeyvgen

frmlSample

// OPENS A IELDS
// KEYGEN P? EN BU
JButton btr Ton ("
btnSignMessage.addActionlistener{new A«

JOptionPane. showMes i SamplelbsSch

System,out.printin{"IN

GenerateSignature sf =

st.setVisible{true);

// OPENS
// KEYGEN
JButton btnNewButton = new JBut
btnNewButton.addActionListener

ARATE VERIEFY FRAME,

ARE PASSED

‘prJ.l: void actionPerformed (Actionks

if (rss_public == gpull) |

JOptionPane. showMes

Scheme. getComponent (¢}, "NEED

P
btn

NewButton.setBounds (312, 98, 128, 81):
mmSamplelbsSchema. getContentPane {} . add (btnNewButto

1) 8

\\GenoSi GenoSi gt 2.0\rs$55%7

package test:

inport Java.util. ArraylLis t;

103

WO 2019/191083 PCT/US2019/024057

import Java.util Arrays;
inmport java.utid.List;
/*DO NOT CHANGE ANY PARAVETER VALUES* /
public «class rs60537 {
static final int POLY Ox1300b; // GF(6553%) polynomial

static final short ALPHA ~ 0x02; // alpha for G-(65536)
static final Short FOR = 0x01; // first consecutive root {1 or ALPHA)

catic veid main{String argsil) |

illis ()
B> ()
ring (b))
;
short{! encodedBytes = Encode (NPARITY, data, paranlist) ;

System <©uf .printin ("\1RS ENCODED BYTES \n");
SyStern. out -p¥ifntln (Arrays.to3tring{encodedBytes));

//System <ut .println {*\nRS ENCODED DATA STRING ~" T new String (encodedBytes });
encodedBytes {0} 60;

encodedBytesi{l] = 61

encodedBytes [12] 62

enc:ds Bytes{3] = 63;

encodedBytes 4] = 64;

//encodedBytes{5] = 75;

out.println{®\nk3 MORIFIED BYTES\n"};
i.oub.println{Arrays. toString {encodedBytes)};

cem, oub . println ("\nMODIFIED DATA STRING - " + new StringlencodedBytes));
reconstructedBytes = Decode (encodedBytes, NPARITY, paramiist};

onstructedByt

iy
out.println{®\nk3 DECODED BYTES");
ut. r:rintln {Arrays.toString{reconstructedBytes));
cpriotln ("\nRS DECODED DATA STRING - + new

System.out.println ("CANNOT CORRECT ERRORS.");

long endtime = System currentTineMIlis)
System out .println ("Time to conplete - "+{endtime ~ starttime)+" ns") ;

/1 1nitGF initialize Gatics Stuff //

104

WO 2019/191083 PCT/US2019/024057

A — o
pubklic static List<shortl|]|> PLGF{int NPARITY) {
st<short[]> paramliist = new Arraylist<>{};
i
vt
NP

rif 553261

rtf ;
shortl PARITY]); // generator poly roots
shorti i1
b o= 1:
for (i * i++)y f i

ALPHA} ;
}
abLogi0] = {short) 0zxffff; // init ablogi{i
for (i = 0; i < &@5535; i++) |
sbLog{{int) abExplil] & OxLIiff] = (short) i;
}
b = FCR; // init generator poly roots
for {(i = ¢; 1 < NPARITY; i+4++} {
= b;
b = GFMpy{b, ALPEA, abExp, ablogl;

i

0

//System.out.println ("abExp - + Arrays.toString(abBExp))
//System.out.println("abLog - " + Arrays.toStri (ablLog) };

//System,out.priy
B

Poly = Roe

v // diniu

generator poly

return paramiist;

GFMpy 0O (B

1
}

return ((short} product);

/ 00 / /

7

J [e e e e e e et e em e e e 2ot et oo e o e o et 2t e am e e

// RootZPelyi{pPDat, pVSrc) convert roots

105

WO 2019/191083 PCT/US2019/024057

static short[] RootPPoiy (short {] abGenPoly, short [j abGenRoots, short[] abExp, short[]
ablLog, int NPARITY) {
int 1, j;
Arrays.fill(abGenPoly, (short) 0);
abGen?oly|[0] == J:
for (- Gy j < NPARITY; q++) |
for (=350 >=0; i—) |
abGenPoly [i + O0x1] = GFSub (abGenPoly [i + 0x1], GFMpy (abGenPoly [i],
abGenRoots [3], abExp, ablLog));
}

return abGenPoly;

B i
1.1 GFAA(bO, bl) bo+bl //
U B |
static short GFAcid (short bO short bl) i

return ((short) (bO ™ bl) };

R E————— //
// GFSub (b0, k1) blo-hi //
/ / e e e o o e o o e e e o e oo o et e o o et o e e oot o et e o o e e o 1 o ot ot e o o o e e oot e e o e / /
static short GFSub (short bQ short bl) i
return ((short) (bO ™ bl) };
S e e 7/
// Encode //
/ / B T T T 4
static short [Encode (int NPARITY, Soring data, Listdshoro {i> paraniist) {
int i, j;

int NDATA = data.length ();
short bQuot; // quotient byte
short i abCdWd = new short (NPARITY + NDATA];

byte i} tenpDataba = data,getBYtes ();

for (int d = 0; d < NDATA, d++) {
abCdWd [d] = tenpDataba [d] ;

§
H

short() abParities = new short [NPARITY] ;

short DbRenD, bReml; // partial renuninders

Arrays .fill (abParities , (short) 0); // generate parities
short [} abGenPoly = paramist .get (3);

for {3 = 0: j < NDATA; F++) |
bQuot = GFAdd (abldWrd[j], abParities[C]};
bRewl = (O
for (i = NPARITY; i '= C;) {
bReml = GI'Sub (bRem, GFMpy(bQuot, abGenPoelyii]l, paramlist.get (0},
paramlist.get (1)})},
bRem(= abParities([il;
abParities [i] = bRen;
}
}
for (i = o0; i < NPARITY; i++) { // append parities
abCdWd [NDATA + i] = GFSub ((short) o, abParities{i]);

return abCdwd;

/ / e mn e M et M s M ma mm s mm s mm ima e m emi mm ams M ime M. mm mmi mm e+ mm s M mm i mm fms mm ima mm. ma ami mm Ams e ima mm. mm mmi mm Ams M= ma mm mm mmi mm ms mm ima mm. mm mi e ms mm ima / /
/| Decode //
|| —m T T e 11

static short (] Decode (short [] abCdWd, int NPARITY, Li st<short []> paraniist) {

106

WO 2019/191083 PCT/US2019/024057

int NCDWRD = abCdWrd.length:
shorti] abSyndromes = GenSyndromes (abldWrd, NPARITY, paramlist); //

syndr ones

Eucl i dRet ur nObj ect 65537 ero T Euclid (NPARITY, abSyndrones, param i st, NCDWRD) ;//
Euclid

CGenLanmbdaRet urnG ject65L37 gro = GenLanbda (ero. getnErr (), ero .getAbLambdaR (),
NPARITY):
short (! abForney = Forney (paramist , NPARITY, ero, gro) ; // Forney

=
T

{| abFforney.length == Q)

int nErr = ero.getnErr();

L e e /7

// Forney generate er sing Forney //

F A e e 7/

static short|] Forney{list<short[]> paramlist, int NPARITY, EuclidReturnObjecté&b5537
ero, GenLambdaReturnObject65237 gro) |

int i, 33
short bDvnd;
int nErr = ero.getnErr(j;
shorti] abErrloc = erc.,getAbErrloc{);
shorti] abOmega 2rc. getAblms 93();
int nDLambda = gro.getnDLambdal();
shorti}] abDlLambda = gro.getAbDLambdal);
int NP1 = NPARITY + 1:
short bDvsr;
shorti}] ablLog = paramlist.get(l);
shorti] abForney = new short{NP1l];
short feorr = (short) (1 - ablog[FCR & Oxffff}); // correction value for FCE
short biIlLec; // inverse of locator
ill{abForney, (short) 0};
7 < aBErr; G4+

pDvsr = bDvnd = 0;

blLoc = (sho v 1, abBrrlLoc{i], paramlist.get{0},

for (i = nErr; 1 '= 0;) |

i)s param-ist.get (0), param ist.get (.
paramli

}

bDvnd = GFPow (abErrLecl]], fcorr, parsmlist.get(0},
paramlist.get (1)}, paramiist.ﬁzu(ﬁy
paran
for (i = nDLambda;
1
bDvsr = GF

GFMpy ((short} 2, (short)

raramlist.get (0},

.
~

{nDLamkbda - 1 -

107

WO 2019/191083 PCT/US2019/024057

paramiist.get (o) .

paramlist.get (1)},

if) 3T b

tin("Forney divide by 0"};

abForney|j} = GF3ub((short} ¢, GFDiv{bDvnd, bDvsr, paramlist.get {0},

paraniist ,get (1)));
}

return abForney;

short bl, short{] abExp,

(bl & 1) != 0}
b = GFMpy (b, 0, abBExp, abLog);
b0

b0 = GFMpy{k0, bl, abExp, ablog};
bl = (short) ((bl & Czffff) >> 1}):
i
return (b}
}
S e 7/
// GenlLambda //
/

e e e e e e e e e e e

/7
static GenlambdaReturnObjectébs

P1 = NPARITY + 1;

i ablambda = new short {(NP1]:;
i 1 abDLambca = new short [NP1l;

reverse of LambdaR
i <= nErr; i++} {

// generate DLambda from Lawmbda (cof)
catmple: derivative of a x°3 + b 272 + cx + d
- {c

+
// a x™2 + 0 r+ ¢
i ambds = (nExr + 1) / 23

s
/
i
o
L]

GenLawbdaReturnChbiject = new GenlLambdaReturn

-/

/ /' e [

// GenSyndromes generate standard RS syndromes //

static shortl] GenSyndremes (shortl] abldWrd, int NPARITY, List<shoert{]>» paramlist

NDPART o

shorti] abSyndromes = new short|[NPARITY];

ate a s yndrome

108

paramlist.get (0}, paramlist.get(1l)})

~e

37 GenLambda (int nErr, short{] ablLarmbaaR, int NPARITY)

WO 2019/191083 PCT/US2019/024057

parani i st

11
11

11
Il
I
11
Il
11
11
11

[s

GFMpy (abGenkoo tS[j1, absyndromes [j], paramiist get (0),

retur I abSyndFtolles:

Euclid extended Euclid division algorithm [/

generates a series of polynom als: 11

AlilS(z) + B[i] (&"t) = R[i} //

where the degree of RiJ decreases with each iteration //
until degree <— MVXERR, then A[iJ = Lanbda, R[i}] = Orega //
abEQ, abEl: left side contains R[] //

abEQ, abEl: right side contains reversed Al] //

iEQ, i1E: index to end of R], start of A[]l //

static EuclidReturnCbject. 65537 Euclid (int NPARITY, short!] abSyndrones, Li st<short []>
paraniist,

int NCDWRD) §

int i;
short bQuot; // quotient
/'l EO.R[-J] = x"MAXERR, EO0.A[0] =1

int NP1 = NPARITY + 1;

int NP2 = NPARITY 4 2;

int iEO = NP1,

short!] abET;

int iETY;

short [} abLambdaR = new short [NP1];
short [j abOnega = nev; short [NP1];
int MAXERR = NPARITY / 2;

short[] abErrLoc = nev; short [NPARITY] ;
short!] abEO = new short [NP2];
short!] abEl = nev; short [NP2];

El.A[-1] = O

E1.R[] >» max error

shift El1 left untii E1.R{} msk!=0
// or fully shifted lef

[
o
A

W~

}
if {iE1 <= MAXERR} { // if degree of E1.R[{] <= MAXERR, br
break;

!
while (true} | // while more divide/multiply sub-steps

if (abEO[0] != 0} { // if EC.R{] mshi=0
bQuot = GFDiv{(abEC[0], abEl{0}, paramlist.get (0},

i++y { // EO.R[{I=EC.R{}-C*E1.R{]

r 7 ~
= GF3ub(sbiEO{i], GIMpy(bQuct, abEl{il],

for {1 = iEQ; i
abE1[i] =
paramlist.get (0), paramlist.get{l}});
)
:
}
if (1RO == iEl) { // if sub-steps done, break

109

WO 2019/191083 PCT/US2019/024057

)
iR0-—; // shift EQ left
for (i = 0; 1 < NP1l; i+4)
abEC[1] = abiEO{i + 11;
abEO[NPL] = 0O;
}
abET abED; // swap EO, E1
abE0 = abBEl;
apEl = abBET;
iET = 1iEQ;
iE0 = iEl;
iEL = iET;
}
int nErr = NP1 - iE0; // number of errors
if (iE1 > nErry { // if degree E1.R]

while (iEl < El if Omega

bQuot = abRECIi&0]; = lsb of Lanmbda
if (bouet == 0} {
System.cut.println(”lsb of Lambda == 0%");
return null;
}
/ O0.A[] / bQuot (without unreversing EO0.ALIQ}
nErr; 1++)
1] = GFDiv{(abEO[Li + 1EO}, bQuot, paramiist.get (0},

paramlist.get|
/ bguct
nkErr; i++)

= GFDiv(abkl
LarbdaR, roots
oot (abErrlLoc,

null] sbErrL

System.out.printin{"polyZroot (LambdaR) faile

w

537 ero = new EuclidReturnObject653537();

JaE ant
ers, setAbRrrl (3uhrLLo‘):
ere. s tAbLambdaR(bhdsR)
ero.setAblOmeaga (ak 1

raturn erc:

e I
/1 GFDiv (bo, bl) bQObl //
// PSS S_._...,_...//
static short GFDivishort bO short bl, short {] abE#p, short:.] abLog) {
if (bl == o)

System <u®.println ("divide by zero")

return ((short) oi;
¢
if (b0 == o)

return ((short) o0);
return (abExp|[(ablLogib® & OzffffJ & Oxffff) - (abLog[bl & Cxffff] & Oxffff) +

f S e /7

// PolyZRoot //

P S O

77 /

static shortl] PolyZRoot (short{] abbst, short|]| abdrec, int n, int NCDWRD, List

paramlist) {

no

WO 2019/191083 PCT/US2019/024057
/'l current |ocator
/'l current sum
i // index to abDst
if G)
return null;
iDst = 0;
bLoc = 1;
for (= C; j < NCDWRD; j++) |
bSum = 0; // sum up terns
for (i = o0; i <= n; i++) {
bSum = GFMpy (bSum blLoc, paramist .get (U}, paramist .get (1));
bSum = GFAdd(bSum abSrcii]):
}
if (bSumm — o) { // if a root
if (ibst > n) { // exit if too many roots
return (null) ;
abDst [i Dst] = bLoc; // append locator
i Dst ++;
bLoc = GFMpy (bLoc, ALPHA, paramlist.get (0), paramist, get (1));
} // advance |ocator
if (iDst != n} // exit if not enough roots
return (null) ;
return abDst; // indicate slccesS

-

M\Genolign\Geno3ign

< 0\3idnatureflacernent

pacKag® te&st/

import java .awb . Wndow

i npor t Javax .swing.JFrame ;

import Jjavax .swing,JPanel ;

i mpor t javaxz.swing,border,EmptyBorder;

impokt javax.swing.JLabel;

i npor t javax, swing. JOptionPane;

inp Ort Jjavax, swing. JTextField;

impoXt javax .swing.JButton ;

i mpor t Java .avit ,event .Actionli stener ;

i mpor t java _io.File;

i mpor t java,io.Fi leWwiter;

inmport- java.io.lGException ;

i nport java.math.Bi glnteger;

iWport java.security.MessageDigest;

i mpor t java .security. NoSuchAl gorithnException;

i npor t Java ,util .ArraylLis t;

i nport Java.util. Arrays;

i mpor t java.util.Li nkedKashSet;

import- java.util.List;

i mport java .util .Set ;

iport java.util.regex.Mat cher;

i mpor t java .util .regex .Pattern;

i npor t Jjava ,awt .event .ActiocnEvent ;

i npor t javax .swing ,UIManager;

i mpor t javax .swing,JText Pane ;

/'kJ\-
* @author Diptendu
* This frame is called from Generatelignature after the signature
* guence 1s generated. s only 1 field where user provides
* pesition where to put the nature.

111

the

WO 2019/191083

PCT/US2019/024057

*
* ithin the plasmid.
* a genebank file,
*
*/
public class SignaturePlacement extends JFrame |{

private static = 1L

private JPanel

private String

private String

private String

private String co“tantuptoorigin = null;

private JTextField signlLo i

private JTextFi

private String

private String null;

private String SignaturedString = null:

[Ax

* Create the frame,

* /

pubklic Sign end
String contentip,

modulus) |

Sys Len

tring sig

Cut-printin

nerlD,

/1 debug

("IN SIGN PLACEMENT")

originalDNASequen<e = origDNA
| D
tart
t oLower Case
content £p;

plasmdid =
signStartDelim
si gnEndDel i m

contentuptoor?i
orcid ~

= piasmd
s

end.
.gin
si gner! D

if all
printlin
println

check
out.

cut.println

println

Y.
[

.toLower Case

)

correctly
ql*g*AaluN“
T

\RT DELIM
ART DELIM

ut.printin{"3IGN END DELIM = + signEndDelim) ;
ut.printin{"3IGN END DELIM LENGTH = " + 51gnEndDelim.ieqqth\, H
System.out . printin{"PLASMID ID = "+plasmidid):
System.out.println{"SIGNER'S ID = "+orcid);
{"CONTENT URTO ORIGIN = " + ;
W oSpw =
“loseOperation | _CLOSE} :
IGNATURE PLE,EMmNT uD ERROP TOLERANCE")
100, 100, 448, 454;;
= new JPanel {);
(new EmptyBorder(b5, %, b5, 5})};
1tentPane);
ayout(“ull};
JLabei I bl NewLabel ~ new JlLabel ("Enter the location where you want to put the

signature ."};

|
cont ent Pane

// this conten!
// dispiays ba

JLabel

1

base pairs
|

bl NewLabel . SetBou

.add (I'b

I bl NewLabel
"The

D

bl NewLabel

1. setBounds

nds (10, 395,

| NewLabel

11,
)7

42) ;

in the source genebank file
I = new JLabel (
original sequence contai s " 1 original DNASequence | engt h{}

{10, 48, 395, 14) ;

112

WO 2019/191083 PCT/US2019/024057

cont ent Pane .add (Lbl NewlLabel_1);

// instructions for user

JTextPane rePogitionText = new ’Tex*kdn (
signaturel .se*ﬁa =
signaturefo
signaturePos
signaturePos

-~

seJuence. <

o
o

G
®
2

+ "Enter "

+ " te put
<Jhr<hr>t

+ "Enter any number bhetween l and " +
() 4+ 1) 4 "».</html>"};

oy

{originalDNASeguence. length
slgnaturePosi
contentPane.

414, €5);

signlocation a new JTextField();

signlocationF =4 Bounds (154, 160, 86, Z0);

,on;ont:ane.add(s'J ocationField);
nlocationField,setColumns (10)

JText Pane errorCorrectionText = new JText Pane ()7

errorCorrectionText .setBackground (U Manager .get Coior ("Button .background"));

errorCorrectionText.setEditable (false);

errorCorrectionText .setContentType ("text/html ");

errorCorrectionText .setText ("<htm xb>Enter the nunber of bases that you want to
be corrected.”

+ "The error tolerance limt is up to this nunber of
bases .</htm >");

errorCorrecti onText .setBounds (10, 213, 414, 92) ;

content Pane ,add (errorCorrectionText);

nunmof ErrorField = new JTextField ();

nunof ErrorFiel d .setBounds (154, 316, 86, 20) ;
content Pane. add (nunof ErrorField) ;

nunof Error Fi el d. set Col uims (10) ;

JButton btnSubnmit = new JButton ("SUBMT");
bt nSubrnit .set Bounds (154, 382, 89, 23) ;
cont ent Pane. &dd (bt nSubmit)
/7 call this when submit is clicked
btnSubmit. addActionlistener (new Actionlistener{} {
public void actionPerformed(ActionEvent e} |

// error check pesition not provided

1f (signLocationField. geiTe\t VodsEmpty (i) |

JoptionPane.showMessageDialog(null, "PCOSITION CANNOT BE
EMPTY™, "alert®, JUptionPane.ERRCR MESSAGE):
} else if (humtfﬁrrorField,Uetmext\).isEmpwy()) {

el T
JOptionPane. showMessaquialog(“ull,
»

m

n = signlocationField.getText () .trim(};
fhrr = numoflrrorField.getTexzt (). trim();
is integer number
signaturelocation = Integer.parselnt{location);

o
"
<

int errornum =integer .parselnt (nunberofErr);

// position is within the range of bases in the
plasmid

it (signaturelocation > ¢ && sjignaturelocation
<= origi nal DNASequence .length () T 1) f

0
{

if (errorpum .- O) |

113

WO 2019/191083

JOpt i onPane
error tolerance. Cli<k OK to proceed.”,
JOpt i onPane

I NFORMATI ON __MESSAGE)

ori gr mal DNASequence

Jdength ()1 (
des cripti on

12..240 i .e. int .

.int
contentuptoorigin

csplit ("\n" 1}
new Array st<sr_‘rings(

Arrays .aslLis

{linesuptoOrigin});
cont ai ns

the keyword

"source"

l.inesasLi stwosource = new arraylist<String>{);

linesas Listwosour ce.add {s);

cont ent

Scring,join("\n"

linesasListwosource);
ANNOTATI ONS W THOUT KEYWORD source

* Kk

\n") S
System.out .println (annotat i ons\WOs our cej ;

Pattern.compile{" [0-9] +\\. \\ .[0-9] +") ;
ArrayList<String>():

pattern .mat cher (annotati onsWOsource) ;
listFeaturesAll .add (m group ());

System.out .println{listFeaturesall);

Li nkedHashSe t:-

/1
{listFeaturesAll) ;
ArrayListo (hs1);
removal : \n"

+ listFeatures;;

System.out println

114

showMessage Dialog (ull,

Set <String>

Li st<String>

PCT/US2019/024057

ninfor,

"You have selected
if (errornum <=
/1 get festure location £from
/] feature

location pattern -
String{] linesuptoOlrigin
ArraylList<String>

l'i nesasLi st =
int featureLocation =
/1

= 0;
removing the

|ines which
ArrayList<String>

¢
{
¢

1/ print

to check

the updated
String

annot at i onsWOsour ce

System

Sut .println ("\n

* ko

Pattern pattern

List<String> listFeaturesAll
Matcher m =

= new
while

(m find () {

de-duplicating

feature list
hsl = new
|'i st Features =

new

("After

devpl icate

0

WO 2019/191083 PCT/US2019/024057

bool ean iskocationCoilision =

bool ean islLocati onSanmeAsStart =

/lisolate start and end |ocation
of each feature: for collision detection 'with)
//provided position

for (String f : listFeatures) {
String] feature =
f.otrjm() . split {("\\..");

int start =
Integer .parselnt (featurejo] J;
int end =
Integer.parselnt (feature [1]):
if ((start == 1 && end ==
origins |DNASequence .length ())
{{ {(start ==

ori gi nal DNASequence .length (} a& end == 1)} {
/1 skip the total
no. ©f ba%es featur#®
cotitinue;
} else {

{signatu relocation > start && signaturelocation <- end) {
cllision = true;

isLocationd

(sigrnatureLocation start) {

i sLocati onSaneAsSt a Lt = true;

}

/1 position coiliding with a
feature |ocation
i f (isLocationCollision) {

JOptionPane.showiessageDialog (full;
' THE PROVI DED

POSITION IS COLLIDING

o
A
-
a2
\D;

JOptionPane. ERROR MESSAGE) ;

b oelse |

// ne colli proceed

if {isLoc onSameAsStart)

avi

Jopt LontPane . showMessagelialog (null,
YTEE
PROVIDED POSITION |S SAME AS START o A FEATURE\n CLICK OK TO PROCEE &.",

"alert", JOopti ©“nFan€ . ERROR _MESSAGE) ;

/| GENE PATE ERROR
CORRECTI ON SEQUENCE

// ADD THE ECC SEQUENCE
WTH N THE SIGNATURE PART

I/ NOW THE SIGN SEQUENCE
CONTAI N ORCID i PLASMD |ID + SIGNATURE + EZC

/1 ALL THIS WLL BE PLACED

WTH N THE DELIM TERS

String finai Sign withDe1ims

String eccACGIString =
nul'l’;

String sequencer o0Sign =
nul'l”;

115

WO 2019/191083

sequence for signature generation

circular rotation property

conver1lIdentitytoACGT (orcid).trim();

ACGT

convert Pl asm dl Dt oACGT (piasmidid) .trim(};

start or end of original sequence, no shift is needed

PCT/US2019/024057

/1 this is due to the

T ORCID to ACGT
ing identitySequence
/1 Convert PLASMD 1D to

String plasm dl DSequence =

/1 if sig is placed at

/1 concating plasmd 1D ¢

because if only plasnid 1D sequence is corrupt it needs to be detected

originalDNASequence,

originalDNASeguence.subestring{0, signaturelocation - 1};

{partl.concat (part?)) .concat (plasmidIlSequence) . .trim{};

== {originalDNASeguence.length{} + 1})

ing
- 1, ecriginalDNASeguence.length
9

if {(signaturelocation == 1

Systern.out .@rintin ("ORIGNAL MSG = "+ori i nalDVASeqience.concat (piasrnidl DSeouence));

System.out.printin("ORIGINAL LENGTH =
P B N
L p

"toriginalDNASequence.concat {pl:
MSG = "fsequencet 0oSi gn) ;

LENGTH = “4sequence toSign.length (});

the shifted sequence

id . nunbers only

Integer. Parselnt (piasmjdiDi;

function "SHA 256"

MessageDi ges T .getlnstance ("SHA-256");

sequence

<

diges t .digest (sequence Lo

n.Yet3ytes () ! ;

di gest. di gestiorcid. getBytes O);

116

System out .ptintdin{"sH FTED

System.out.print in ("SH FYED

/'l generating signature on

Mess age Di gest di gest;

try
/'l check for plasmd

int plasmdidint =

/1 specify the hash

digest

/1 hash ©of the

byte [] nsgilash =

// hash of the ORCID
bytel] idHash =

WO 2019/191083 PCT/US2019/024057

Bi ginteger
msgHashlnt = neW Biglnteger (}, msgHash!:

Bi gl nteger idHashlnt
= new Biglnteger (i, idHash);

/'l extract the token
for signing from provided ORCID. ID ”~ d nod n

/1 This step is done
by ca. The user wiil receive the token from CA.

Bi ginteger

extracted?rivKkey = idHashInt .modPow{privateKey, nodulus };
// signing step - (
ID " d) ™ Hrn) nod n
Bi gf | nt eger
si gnaturel nt = extractedPrivKey .modPow (nsgHashlnt . nodulus) ;
// Convert to ACGT
St r'i ng
bi narySi gnatureString = signaturelnt. toString (2) ;

/| padding extra ©
bits in front if needed

if
(bi narySi gnat ureString. length () < nodulus .BitLength ()) |
StringBui | der
sb = niew StringBuilder ()7
for (it i =
0, i < (nodulus .bitLength () - binarySignatureString. length (y}; i++)
sb-append ("C");
String padding
= sb. toString ();
bi narySi grnatureString = padding .concat (binarySignatureStringr)
/1
convert Si gnat ur et oACGT converts the signbature bits t© ACGT
String
dnaSignatureString = convertS gitatureCoACGT (binarySignatureString);
System,out.printin("3IGNATURE SEQUENCE = © 4+ gnaturesString};
System out .println ("SIGNATURE SEQUENCE LENGTH = " + dnaSignatu YeString. i‘ength());
/1 debug purpose
System out .println ("ORC |ID Sequence = " + identitySequence} ;
SyStel . Out .println ("ORC I D Sequence length = " 7 identitySequence .length ());
Sys tern, out -println ("PLASM D |D Sequence = " - plasm dl DSequence) ;
System out .println ("PLASMD |ID Sequence length = " . plasnidl DSequence length ()}

/1 create the final
soring by combining ORCID + PLASMID |D + SIGNATURE SEQUENCE

dnal dSi gnatureString
= j.dentitySeguence.concat (plasm dIDSequence)

.concat (dnaSi gnatureStrrng) ;
'/ debig purpose
System out -printin(
"ORC |ID
+ PLASMD | D *+ SIGNATURE SEQUENCE- " + dnaldSigna tureSt ¥ing);

System out. printinf "ORC ID f PLASMD |D + SIGNATURE SEQUENC E LENGTH =

117

WO 2019/191083 PCT/US2019/024057

+
dnai dSi gnat ureString. lengthi)):
}
// cannot load SHA-256
catch
(NoSuchAl gori t hnException el) {
el .printStackTrace 0):
}
// alert if provided
plasmid id is n9%t a nunber.
eaten
(Nunb exFormatException rfe) {
JptionPane -skowMessage Dialog (null , "PLASMD ID IS 6 DIGT NUMBERS ONLY', “alert",

JOptionPane - ERROR_MES SAGE) ;

if{errornum !=0) ¢
2V R TTORTRG T e
/7 upto half of
parity bytes can be corrected,
/'l user provides num

of errors ~ parity = 2 * errors

int
nunof pa ri tyShorts = (2 * errornuin) ¢

List<short {]>
paramist = rs65537 Ini “GF (nunmofparityShorts)7+

/'l generate ECC on
ori gi nal + ORCID + PLASMD | D + SlIGNATURE

Systern.out .Printin ("MSG STRING ="49riginal DNASequence)

// delete this line
String
combinedSignwithDelims = signStartDelim.concat (dnaldSignatureString).concat(signEndDalim);

String msySeq =
wt

sequencet 0Si gn .Yepl ac# (pl asm dl DSequence, Y. .trixm();

String dataSbring =

msgleq.conCat (combinedSignwithbelims);

System out. println ("DATA STRING - "+dataString) ;

Sys tern, Qut -Printl o ("ECC INPUT LENGTH= "4dataString-length (});

short]
rsEncodedBata = rs565537.Encode (numofparityShorts, dataString, paramiist);
Systern, out.prinlip{"ECC QUTPUT short ARRAY length = "3rsEncodedData .length);

short [] eccShorts
new short [nunofpari tyShorts] ¢

for tint i=0;i <
nuno fparityShorts;i++)
eccShorts [i] =
rsEncodedDat a [dataString.length () + i]7¢

118

WO 2019/191083 PCT/US2019/024057

Systern.out .printin("ECC ONLY SHORTS -~ “+Arrays .toString (eccShorts }};
System.out .printin ("ECC ONLY SHORTS LENGTH ~ "+eccShorts .length) ;

String
binaryECCString = ShorttoBilnary{eccShorts);

eccACGTString =
convertBinarytoACET (binaryECCString);

fi

alsignwithDelims
Lim)

gnStartbelim. concat {dnaldsSignatureString) . conaat

else {
final Sign with Deli s
= signStartDel im-<on<at (dnaldSignatureString).conCat {signEndDelimi
}
Strind signpiussourceSeq =

[}

null;
/1 insert the signature
sequence within The original plasmid sequence
i f (signaturelLocation == 1}
{

signplussourceSeq
f I nai Si gnwi t hDel i ms .concat (original DNASequence) ;
} else if
(signatureLocation == original DNASequence .length ()} |
si grnpl ussourceSeq =~
origi nal DNASequence .concat (£inai SignwithDelims};

m
i
)]
0]

ori gi nal DNASequence .substring (%,

{si gnatureLocation ~ 1y,
String origpartl =
ori gi nal DNASequence .substring { (signaturelLocation i)y

ori gi nal DNASequence -length {));
si gnpi ussour ceSeq =

=

origpartl concat (finalSignwithDelirns)
-Conca® (origpart2);

}

// for check - debug

System.out.printlin ("FINAL
SEQUENCE = " + signplus sources eq) ;

/1 now organizing the
output genebank file accordingly

// update descriptors,
format final sequence

// Formatting the second
part 1.e. CORIGIN - END

Stringl] formattedtempSign
= formatSignaturefutput {signplussourcedeq)

Stringl]

formattedfinal DNASignatureString = new 3tringl{formsttedtempiign.length];
int signlinenum = 1;
for (int i = 0; i <
formattedtenpSign. length; i++)
formattedf inal DNASignatureS tring [i] = String, format ("3%s", signlinenum
+

formalledtenp S, .gn{i]:
signlinenum =
signiinenum + €o0;

119

WO 2019/191083

String. join ("\n",

forrnat zedf i nalDNASi gnaztreString’ ;

"ORIGINNNn" .<onca® (fi nal Qut put Si gnature)

.concat ("\n//");

check

Sys tern. out -p¥i it i1 (conbi nedSecondPart)

descri ptions, new feature |ocations

= String ,vaiueO (original DNASequence Jlength())+

String. valueOf (signpl ussourceSeq. length ());

= String. vaiueX (finalSignvrithDelirns .length ())7

linesashist) {

(5.contains ("FEATURES ")) {

f eat ureLocati on = linesasList .indexOf

(s. contains (¢riginal DNASedLength} && s,contains

s.replace (original DNASegLengt h,

linesaslList-set (linesasList.index0f (5},

(s.contains (original DNASeqLength) && S.contains

5 .replace (original DNASegLengt h,

linesasList, set (linesasList, indexO (5)-

listFeatures) i

(s, contains (range) ! {

Strings] limits = range -trim¢ -split v\\

()

;

("bp") + {

out put DNASeqgLengt h) ;

temwp);

("base")}

out put DNASeqgLengt h) ;

tenp ’ ;

")

int startlimit = Integer-parselnt (1imi ts[0}-Crim());
int endlimt = integer .parselnt (limts [1],trimg));
/'l update the new total base pairs
if ((startlinmit == 1)

&& (endlimt * original DNASequer.ee .length ()))
String newange = "I. " + output DNASeqlLengt h;
String tenmp T s.replace (range, new ange) ;
linesasList.setC (lines asList .indexOf (8); tenp);
}else if ((startlimt < origi nal DNASequence «length ())

120

(

PCT/US2019/024057

String finaloutpuzSighature

Strind corfbi nedSecondPart =

/1 second part formatted

1
Tlie

// Updating
String originalDNASeqLlength
String out put DNASeqLengt h .

String signwi thdeiimnmiength

for (String s

String tenp

} else if
String temp =
}
for (Strind range
if
if
try

WO 2019/191083 PCT/US2019/024057

&& (endlimt <= original DNASequer.ee .length ())) {

/1 IF provided |location > feature position - skip the
// feature

/'l no need to update

i f ((signaturelLocation > startiimt)
&& (signaturelocation > endlinit) } {

continue;

/'l update those feature |location which are after provided

ositioen

.
T

else if ((startiimt >= signaturelocation)
&& (endlinit > signatureLocation)) |
String newstart = String .vaiueOf (startiimt
+ Integer .parselnt (signwithdelimnlength))
String newend = String -vaiueOX (endlimt

+ Integer .parselnt (signw thdelinlength))

String tenp = s.replace (range ,
newstart + ",," + newend) ;
iinesasList. set (linesasList. indexOh (s), tenp) ;
/'l can never go here still adding as safety

else {
JOpti onPane. shovMessa@eDial od (null,
"THIS | S UNEXPECTED. SIGN LOCATION COLLIDE WTH FEATURE LOCATI ON

"alert", JOptionPane .ERROR_MESSAGE) ;

} catch
(Nunber For mat Excepti on nfe) {

nfe.printStackTrace ();

/1 insert the descriptions

for signature, sig-start, sig-end
int insertLocation To0;
if (featureLocation 1= 0)
if

¥

) .contains (''source")) |

4
AL

(iinesasList .get (featureLocation +

121

WO 2019/191083 PCT/US2019/024057

for {int i =

teaturel ocation + 2; i < linesasList. Bize(l; i++) |
String
content = |inesas List.geT (i) .trim) ;
it
(content .indexO (7} 7 o} {
insertLo%ation =i ;
break
1
)
}
if (insertlLocation != 0O) |
/1l sig-start
Li nesasList. add(insertLocation, " msc _feature " + signatYrelocation
fon

t (signatureLocation t sigriStartDelim length (} . 1));
linesasList. &dd (insertLocation + 1,
/label=sig-start"}:
linesasList. add (insertLocation + 2:
/note— "start of the signature delinmter \"");
/1 orcid sequence
i inesasList .add (i nsertLocation + 3,

raise_feature
+ (signatureLocation * signStartDelira, length (}) + ".."
+ (signaturelocation + signStartDelim-length ()
+32 - 1)},
linesasList. add (insertLocation + 4,
/| abel =orcid");

i inesasList .add (i nsertLocation + =,

' LERTIN

/note—\"Si gner 's ORCID sequence/ [

sequence

i inesaslList .add(insertLocation + 6,
isc feature N

+ (signatureLocation + signStartDelira. length (}

+ 320+,

+ (signatureLocation + signStartDelim.length (}

+ 32 + 12 - 13);

linesasList .add (insertLocation =« 1,
/tabel=plasmid id"};

linesasList.add ({nsertlLocation . &,

/note=\"Plasmd |D sequence/""} ;

122

WO 2019/191083

Sequence

i inesasList .add (i nsertLocation + 2,

raise_feature
+ (signaturelLocation

+.32 + 12) o T."
+ (signaturelocation
+ 32 + 12 * 512
linesasList .add (insertLocation

/| Ltabel=si gnature");

(o3

linesaglist.add(insertlLocat

/note =., "This

iinesasList .add (insertLocation

raise_feature

+ (signaturelocCation

e 32 4 2 + Si2y + "7
+ (Signaturetocation + signStartDeiiru. length (}

t 32 12 + 512 t eceACGIString. length () ~
finesaslList .add (insertLocation + 13,

/| abel -error correction code") ;
linesasList. add (nsertlLocation + 14,

/note=\"Error correction code sequence/" ");
iinesasList. #dd (insertLocation + 15, " wisc_featu r @

('si gnatureLocation i signStartDeiim.length ()

12 + 512 + eceACGTString. dength{y)

+ (signaturelLocation + signStartDelim.lengt. ()

12 + 21lZ + eccACGTString.length(} + signEndDelim.length() - 1}
linesaslist,add (insertLocation + 16, "
linesaglist.add(insertlLocation + 17,

/note =.,"end of signature delimter/"") ;

0

sig-end
iinesasList. add (insertlLocation + 12, " misc_feature

+ signStartDelim

+ signStartDelira.

Q

length (}
length ()
1))
w 10
b1,

file was signed by "+ signerl D+"\"");

+ 12,

+ signStartDelira.length ()

123

PCT/US2019/024057

/1 Signature

if (errornum != 0) {
/1 ECC S#qience
1rys
/1 sig-end
+
w 32 +
P
+ 32 4

/label=sig~end");

IS
h

else if (error nura ==

.

/1 no &c¢ only

/1 sig-end

"

WO 2019/191083

PCT/US2019/024057

+ (signature -Ocation + signStartDelim length ()
+ 32 = 12 + 512)
+ ".." f (signatureLocation + signStartDelim length (i
f 32 f 12 + 512 + signEndDe 1li%.length () - 1));
linesasList. add (nmsertLocation + 13, " /'l abei =sig-end"):
i inesaslList .add (i nsertLocation + 14,
" /note=\"end of signature delimiter\""};
/7
Sys tern, out .printin (fitesasList)s
Strine,
conbi nedf irstPart = String .Join("\n", iinesasList);
/1 This is the file
genebank output file
String
finai Gene BankFile = conbinedf irstFart.c®ncat ("\n")
.ccncat (conbi nedSecondPar t)
Sys tern, out .printin (final GeneBankFile)¢
// Detect 0§,
fiiepaths are different for windows and Llinux/mac
Strincr, OS =
System getProperty ("oS.name").toLowerCase ();
Systern. out .Printin("Detected OS =" =+ 03);
null;
if
(0s.contains ("nux") !| OS.contains ("nix") |j OS.contains ("aix")
I
O%.contains ("NUX') || OS.contains ("NIX') |j O3.contains ("AIX) f
parti =
inputFile. substring (%, inputFiie. lastiIndexoOti{'/'));
’ fil enane
inputFile.subs tring (inputFile lastIndexCLf('/ '),
inputFile .lastlndexO™ ('.'));
P else if
(0s. contains ("win" |j O%,contains ("WN')) |
parti T
inputFile .subs tring (0, inputFiie .lastlndexOf ("\\'));
filenane =
inputFjle. supstring (InputFile.lastIndexOf ("\\.7)¢
inputFiie, lastlndexOf ('.'));
P else if
(Os.contains ("mac") |j OS.contains ("MAC') j! OS.contains ("osx")
I
OS.contains ("OSX’ }) {
parti =
inputFile. substring (0. inputFiie, lastlndexOf (7')):
filenane =
inputFi le.substring (inputfile.lastIndexOr {'/ ')«
inputFiie. lastlndexOd ('."));
P oelse {
JOpt i onPane. show !=ssageDialog (null, "CANNOT DETECT OPERATING SYSTEM,

124

WO 2019/191083 PCT/US2019/024057

"alert", JOptionPane .ERROR_MESSACE) ;

/1 output filename =
i nput £i | ename_out put. gb

// save in sanme
directory as input file

String outputfile =

parti .concat (filename).concat (" _output .gb");

File file =
new File (output! ile);
FileWiter

fileWiter = new FileWiter (file) ;
filewriter 'wite(final Gene BankFile);:
fileWrjter.flush {):

fileWiter .close ();
} catch (fCException

ex-printStackTrace ();

/1 message to user
about conpletion and output file path

JOpti onPane .skow\es sageDial ¢g (null ,

"SI GNATURE GENERATED\n OUTPUT FILE - " + outpubtfile};
spw. dispose ();

} else {

JOpt i onPane .showwes sage Di al og (null
"ZoyLD
NOT FIND KEYWORD FEATURE. \n CANNOT |INSERT SIG_START, SIG SIG_END TAGS",

“alert", JOptionPane .ERROR _MESSAGE) ;

// nuwmber not within Limits of the
vlasmid bases

else f

JOpti onPane .show\es sageDial ¢g (nul |

™ NUMBER OF ERROR
TOLERANCE MUST BE WTHIN 0 and " w (original DNASequence -length()),

Tatert "
JOpti onPane. ERROR_MESSAGE) ;

} else |
JOpti onPane. showvessageDi al og (null,
"SI GNATURE POSI TION MUST BE
W THIN 1 and " + (originai DNASequence -length () T 1),
“"alert"”,

JOpti onPane. ERROR_MESSAGE) ;

}

10T integer number
ion nfe) |
ne,showMessageDialog{null,

"ENTER A- NUMBER FOR ERRCR

1
N

TOLERANTE\ nENTER 0 TO NOTIFY NO ERROR TOLERANCE', Malert ",

}

JOpti onPane -ERROR_MESSAGE) ;

125

WO 2019/191083 PCT/US2019/024057

/7 position
catch {(Numbe
JoptionPane
FOR SBIGNATURE PLACEMENT LOCATION", "alert®™,

i
3

=
[
;J
Z
[
=
o
£l
=

"ENTE

JOpticonPane. ERROR MESSAGE) ;

/**
* Format & string of dna seguence into genebank file format
N
* @param sequence
* string
*
* formatted string
Jc/
private Stringl] formatSignaturelutput (String sequence) |
// TODO Auto-generated method stub
N

char|] Temp = segue

St ringBui | der sb = new StringBuilder O ;

for (int i = 0; i < tenp. length; i++) |

sb.append (temp{i]);

String (i output —sk.toString ().split ("\n");

return output ;

public $tring ShorttoBinary (short:] shorts)
StringBuilder sb = new StringBuilder (shorts.length * Short. SIZE);

fori. int i = o0; i < Short. SIZE * shorts .length; i++)
sb. append { (shorts{i / Short, SI ZE] << i % Shorn, &1 ZE & 0x8000) == 0

return sb.toString ();

VAR
* Convert 6 digit plasmid id to ACGT
* input 123456 output .. acsgatcacccg

* @param piasmid id
+ @return plasmid 1D in ACGI format

convertPlasmidlIDToACGET (S g pid) |
sb = new StringBuilder({};

{
o, toCharArray () ;

C
prend{"ac");
{c == '1'} {

sh.append(Tag™)

(c

126

WO 2019/191083 PCT/US2019/024057

} else
} else
} else
} else
} else‘if {c R A

cappend{"ta™);

return sk, toString ();
i else {
JOpti onPane .showMessageDial og (null »

""ERROR IN PLASMD ID -

ID NOT 6 digits 7,

JOopticonPane. ERROR _MESSAGE) ;

return null;

* Convert

* input - - acacacacagagagagatstatatcscacaca
* @param identity
* {dreturn idenitity in ACGT format

o

String identity) {
StringBuilder{);

new
LR
y

16} |
d = temp.tolharArray(};
id) f
0ty
sh.appe

(]
po
0]
]

} (e
b, append{Tat™) ;
} else if (o == '3'}) |
sb.append{"ca”);
} else if (¢ == *4'; |
e
] else
} else
} else if }
sh.append{“gc");
} else if
sh
! it
s

}

}

>, showMessageDialog (null, "ERROR IN ORCID - ID NOT

n

r
JOptionPane. ERROR MES3AGE} ;

return

null;

private String convertBinarytoACGT

chart] binsign
StringBui |l der

bi narystring
dnaf or mat srgn

127

(String binarystring) {
.toCharArray () ;
new StringfBuilder ();

WO 2019/191083 PCT/US2019/024057

return dnaformatsign .toString ();

* Convert binary string into sequence

* ainput - 00100%111,... output - aget. ,.,
* @Bparam biilarysignat ureString

* @return signature string in ACGL format
%

.}(’/’

private String convertSignatUretoACGT (String binarySignatureString) {
char(] binsign = binarySignatureString. toCharArray {);

StringBuiider dnaformatsign = new StringBuiider ();

return dnaformatsign .toString ();

import Jjava.awt.Win
import jsva.math.Bilg
import java.
port java.
import java.
import java.
import java.
import java.
import java.:
import java.
lmport java.

hmBException;

import javax. swing, JFrane;
inport navax. swinge, JPanei ;
inport 7Javax.sw ng ,border ,EnptyBorder i

128

WO 2019/191083

PCT/US2019/024057

jmwport javax,swing.filechooser.FileSystemView;
import javax. swing. JButton;
inp ort javax .swing .JFileChooser;
ifport javax .swing ,JTextField;
import javaz.swing.JTextPane ;
import javax. swing. JOptionPane;
inp ort java. awt. event .ActionListener;
iwport java .io.File;
import java .ic.lCException;
inp ort 7Java .awt .event .ActionEvent ;
import org.apache .commons .langS.Stringlt ils;
/**
* @author Tiptendu
*
* This frame is created by clicking "Verify Signature” button in the
* main screen., User needs to provide the signed file.
* Verities that signature extracted from the sequence
* by the sender. Extracts ‘"\isners ORCID from seguence, e ts
* ig nce, original sequence and invokes verification
* alg‘ot?.thm
4\-//
public class VerifySigne JFrame {
[Ax
.
7'(/
private static final long serialVersionUID = 1L;
//-,l-k
Cnly cne field and button. public key and modulus are passed from KEYGEN.
*
* For a commercial app. This frame will connect to the Central Authority and
* geb T key and modulus.
*‘/
private contentPane;
private eger pub = null;
priva to. eger mod ul’ili;
private "leld i
private JI b ig
private 3tring s TiftT'ﬂQ = “acgcttcgca";
private String endlag = "gtatcctatg®;
//-,l-k
* Create the frame.
* /
7
public VerifySignature{Biglnteger e, Biglnteger n} |
. DISPC ;
tyBorder (5, 5, 5, 5)):
Opens file system and allow user to select file,
= new JButton ("Signed Fille"}:
an onbListener{new Acti YlLiStPnPL‘(} {
public void actionPerformed(ActionEvent e} |
ileChooser j'fC = new
JFileChooser(FilesystemView.getFileSystemView () .getHomeDirectory ()}
int returnValue = j fc.showOpenuial og (nul 1);
/1 int returnVal ue = jfc.showSaveDiaiog (null);
if (returnValue == JFileChooser .APPROVE_OPTTON) i

File

Sys tern. out

129

sel ectedFile
.print

= jfc,getSelectedFile 0);
n(selectedFile .getAbsclute Path (});

WO 2019/191083 PCT/US2019/024057

FileTextField.setText (selectedFile .getAbsolutepath ());

i
btnFile .setBounds (1¢, 105, 110, 31} ;
coiitent Pane.add (btnFidle);

FileTexztField = new

btnVerifySignature = new JButton rify Signature®);
7/ 11 this when SUBMIT is cli

btnVerifySignature.addActionlistener (new ActionlListensr{} {
rublic void actionPerformed (ActionEvent e} |

if (FileTextFieid. getText ().isEmpty()) f

JOptionPane .showMessageDialog (null, "NO FILE SELECTED', .

"alert”, JOpti onPane. ERROR _MESSAGE) ;
b oelse if
(‘getFileEztension (FileTextField.detTe®t ().trim()).contains ("fa”)) |
JOptionPane.showMessageDial og (ull,
"EXPECTED FASTA FILE" + "\n PROVIDED FILE
EXTENSI ON
+
get Fi | eExt ensi on (FileTextField .getText (),trinm()),
"alert", JOptionPane. ERROR_MESSAGE) ;
i eise f

List<String> fiieContentLis t = new Arraylist<String> ()

/1 try to read the file
try {
fileContentlList =
Files .read?>.11Lines (Faths.get (FileTextZield.getText (),trim()));
} catch (1OException el) |

JOpti onPane. showMessageDi al og (nul'l, "CANNOT READ

FILE", "alert", JOpti onPane .ERROR _MESSAGE) ;

/I file read and content is not enpty
if (!fileContentList .isEmpty()) !

if (fileContentlList .get (O).trim().startsWth (">"))

HAS

e
g

[

System out .println ("FASTA FILE START SYMBOL OK

)
St ringBui | der sb = new StringBuilder ();

for (String s:fileContentList) f
if(ls.trim{) startsWth (">")) {

sb.append (s."rim());

}
i

String filecontent =
sb. toString ()-toLov;erCase ();

T .

System. AR
System.
System
"+f ilecontent. length());
boolean 1
boolean 1
3 pla 5
s originalSeg = null;
s eccleqg = null;
S tfilecontentRevComp
genera teRevers eConp lenient (filecontent) ;
i f(filecontent .contains (startTag)]

filecontent. contains (endTag) ! f
i.sNormal = true;

130

WO 2019/191083 PCT/US2019/024057

if {fil econtent RevConp .contains {(startTag! ||
tilecontentRevConp .contains (endTag)) (
i sRevCop = true;

if{isRevCommp ji isNormai) {
i £(isNormai) {
String repeatMsg =
tiiecontent .concat (filecontent).concat (filecontent) . trim();
i f (repeat Msg. indexOf (stai'tTag)!=
repeat Msg .lastlndexOf (startTag)) {

Strind tenmp -~
StringUtils .substringBe tween (repeatMsg, startTag, startTag) ;

orcidsec

fte}

tenp - substring (U, 32) ;

plasmi dIDSeq
temwp,substring (32, 44);

s.giatureSeq =
tenp .substring (44, 556);

eccSeq =
StringUtils .sSubstringBe twee® (tenp, signatureSeq, endTag) ;

originalSeq =
StringUils ,substringAfterLast (tenp, endTag) ;

}
else f
JOptionPane. showMessageDialog (null, "CANNOT EXTRACT PARTS , ONLY ONE |INSTANCE OF START
IN CCMBINED MsSa",
"alert®,
JoptionPane. ERROR MESSAGE) ;
}

t(startTag)'!=

String temp T
StringUtils .substringBe tween (repeatMsg, - startTag, startTag) ;

orcidSeq =
tenp .Substring (0, 32);

pl asm dl DSeq =

tenmp ,3ubstring (32, 44) ;

signatureseq =
tenp .substring (44, 556);

eccSeq -~
StringUtils .sSubstringBe twee® (tenp, signatureSeq, endTag) ;

originalsSeq =
StringUtils ,substringA fterLast (tenp, endTag) ;

|
else {
JOptionPane. showMwes sageDialog (null, "CANNOT EXTRACT PARTS , ONLY ONE |INSTANCE OF START
I N COVMBI NED MSG',
"alert",
JOpti onPane, ERROR _MESSACE) ;
}

'plasmidIDSeqg. isEmpty{) && !signatureSeq.isEmpty() && loriginalSeqg
String i

ext

ractIdentity{orcidsSeq};
String plasmidiD

=extractPlasmidID (plasmidiDSeq);

System out .println ("ldentity =
identity);

System ouft.printIn ("PLASMD ID =
+ plasmdiD) ;

131

WO 2019/191083

length = " + signatureSeq.length (}):
leccSeq .trim().isEmpty()) {

+ eccSeq) ;

LENGTH = eccSeq. length ());
original Seq. concat (plasmdlDSeq) ;

{

.getlnstance ("SHA-2567);

original seguence (total - sign)

diges t.diges t (signedSeq .getBytes ());
ORCID

diges t .diges t (identity .getBytes {));

msgi lashint = new Biglnteger (L. nsgHash) ;
= new Biglnteger (1, idKash) ;

extracted IR " Hm

= idHashlnt .nodPov; (MsgHashInt. nod) ;
string from ACGT to binary
binarySignstring = convert ACGItoBinary (3ignaturesed!
Bi gi nt

si gnat ur el nt =

Sign " public key

signaturelnt .®odFo¥ (pub, nod) ;

Sys tern.ut .Printin(rhsve ri fy)s

Systen ,out -printin(lhsverify);

then Ihs == rhs , inform user about

(ihsVerif ¥.ZompareTo (rhsveri fy) == U)

JOpt i onPane

new BigInteger (binaryS ignStrings

success

{

,ShOWMessage Dial @g (nu].l s

132

2);

" EXTRACTED

PCT/US2019/024057

System ocut,printlin ("Signature = "

System out.println (*Signature

it] null &&

(eccsSeq I

System out .println ("ECC =
System out .Printin ("ECC

}

String signedSeq =

if (signatureSeq. length() == 512)

n

// specify the hash
MessageDigest digest
// hash of the

byte [] msgHash =

I/ hash of extracted

byte [] idHash =
Bi gl nt eger
Biglnteger idHashlnt
/' lhs of verify
Bi gl nt eger I hsVerify
/'l convert signature
String
'/ from binary to
Bi gf | nt eger
Il rhs ©oFf verify.
Bi-gl nteger rhsVerify
/I check - debug
/1 if sign valid
if

ITDENTLITY " + identity

WO 2019/191083

+ "\nEXTPACTED PLASMD ID =

+ "\nSIGNATURE VALID !

“SUCCESS", JOptionPane

+ plasmidiD

\n THS FILE WAS SIGNED BY ©

. | NFORMATI ON __MESSAGCE)

+ id

PCT/US2019/024057

entity »

/1 close fraite
w.disposel);

/

// rest remains
else if
{LhsVerify -conpareTo (rhsVerify) 1= 0
{isccSeq == null ii eccSeq. trim{).isEmpty ())) {
JOptionPane ,showMes sageDialog (null, "EXTRACIED IDENTITY = " + identity
+ "\DEXTRACTED PLASMD ID = " + pl asmi dl D
f "\n3IGNATURE INVALID ! \n THS FILE WAS NOT SIGNED BY "
+ identity + "\n THERE |S NO ERROR CORRECTION SEQUENCE PRESENT ."
+ "\ nCANNOT ATTEMPT TO CORRECT AND RE VER FY,", " ALERT",
JOpti onPane .ERROR_MESSAGE) ;
P else if
(Ahsverify-conpareTo (rhsVerify} 1= 0
YeccSeq. trim().isEmpty ()) {
JOptionPane. showMes sageDial og (nul &, "EXTRACTED | DENTITY " + identity
+ "\nEXTPACTED PLASMD ID = " + plasnidlD
+ "\nSIGNATURE INVALID ! \n THIS FILE WAS NOT SIGNED BY "
+ identity
+ "\'n THE ERROR CORRECTION CODE PRESENT |IN THE SEQUENCE CAN CORRECT UPTO "
+ (eccSeq. length () / 16)
+ " ERRORS. \nCLICK OK TO PROCEED.", " ALERT",
JOpti onPane. ERROR_MES SAGE) ;
System out.println ("INVOKING REED - SOLOMON ECO :D') ;
int
nunof pa rityShorts = (eccSeq, Lengti() / 8);
String
eccBinaryString = convert ACGTt oBi nary (eccSeq) +
shorit{]
eccShorts 7 BinarytoShort (eccBinaryString) ¢
System out .Println("ECC ONLY SHORTS - " + Arrays .toString (eccShorts));
Listxshort [I>
paramist = r365537 . Ini t GF (nuraof parityShorts)s
String
errorSequence = original Seq. concat (startTag) .concat {(orcidSeq:
.concat (ptasmi diPSeq).concat (srgnatureSeq) -concat (endTag) .trin(} ;
System 2ut.println ("ERROR SEQ = " + errorSequence) 7
System out .println ("LENGTH of err seq - " *+ errorSequence .length ())’

133

WO 2019/191083

PCT/US2019/024057
shorit{]
modi fiedDat ashorts = new short [errorSequence. length {}i;
byte [}
modi fiedBat @Bytes error Sequence .getBytes () ;
for '_I_Dt
0; i < error Sequence .length (); i++) {
modi f i edDatashorts [ij = nodi fiedDataBytes [ili7
short !}
modifiedDatapluseccshorts = concatenatest! {
modifiedDatashorts, eccShorts);
shorti]
modifiedDatapluseceshortsCopy = new shortmodifiedDatapluseceshorts. lengthl;
for {int 1 =
0; i < modifiedDatapluseccshorts |length; ir+) {
nodi f i edDat apl useccshort sCopy [i] = nodif iedDatapluseccshorts [i1 +
Sys tern. 2ut .println (
"INPUT TO DECODE - " + nodif iedDatapluseccshorts .length) 7
shorti]
correctedShorts rs©5537 Decode (nodi fiedDatapiuseccshorts ,
nutoiparityshorts , paramist)
Syster.out .printin(
Arrays .equals {wodi fiedDatapl useccshortsCopy, correcteaShorts})s
i £
(®orrectedShorts null j| Arrays
.equal s (nodifiedDat api useccshort sCopy, correctedShorts)) |
JOptionPane.showidessageDialog (full;
"CANNOT CORRECT ERROR SEQUENCE. TOO MANY ERRORS ", “alert",
JOpti onPane. ERROR _MESSAGE) ;
Poelse |
System out .println ("INVOKING RE VERI FICATION PROCESS') ;
7/
Sys tern. 2ut-Rrintl 0 (Arrays .toString (SO0rre<tedSherts));
I//
extract corrected sequence
bytel]
correct edByt eSequence = new byte fcorrectedShorts -length nunof pari t yShorts] ;
for
(int i = 0; i < correctedByteSequence Jlength ; i-#) |
correct edByt eSequence [il] = (byte) correctedShorts [i1 ;
}
String
CorrecteaTotalString = new String (correctedByteSequence) ;
Strij ng
correcledMe ssa%eSeduence correctedTotal String. substring (U, original Seq. tength ()}

134

WO 2019/191083 PCT/US2019/024057

correctedIPSignSequence
correctedTotal String. substring (originaiSeq. | ength ()fcorrectedTotal String.length ()};

correcteds tart Sequence = correctedl DSignSequence .substring (i-startTag.length());
correctedORCID3equence
correctedIDSignSeques (startTag.length{),32+startTag. Length ())

correctedPlasmidibDSequence = correctediDSignSequence.substring(startTag. length()+32,
startTag. Length{}+44);

correctediignatureSeguence = correctedilSigndeguence.substring({startTag.length()+44,
startTag. length{}+556);

correctedendSequence = correctedIil3ignSeguence.substringistartTag.length{(}+53¢6,
startTag. length{} +55¢+endTag. Llengthi{}};

correct edECCShorts = new short [nunofparityShorts] ;

i 0#iCcorrectedECCShorts .length: ill) f

correctedECCShorts[i] = correctedShorts[i+ (co.rectedShorts-iength —
nunofpari tyShorts)i’

System out .printin ("CORRECTED ECC SHORTS - "I Arrays.toStringf (correctedECCShorts}

cor rect edECCBi nary = Short toBi nary (correct edECCShorts;;

correct edeccSequence = convertBi naryt oAC:T (correct edECCBi nary) ;

Systei.out .printin ("PREV ECC SEQ "leccSeq) ;

System out .printin ("CORRECT ECC SEQ - "lcorrectedeccSequence) ;

convert the extracted ORZID from ACGT to OCRIE format

correct edi dent ity T ext ractl dentity {correctedORC DSequence)7
convert the extracted plasmid id from ACGT to & nunbers
correctedpi asm dl D = extractPlasm dl D (

correctedPlasni diDSequence);

correcteds igfiedSed = correctedMes sage Sequence .concar (CorrectedP lasmidl DSequence);

(correctedSi gnaf ureSequence ,length () == 512) {
try [
MessageDiges T newdi gest = MessageDiges t

,getlnstance ("3HA-256");

/1 hash <f the original sequence (total

in

§ut
«
=

—

byt e[] correctednsgl | ash = newdi gest

.digest (correcteds ignedSeq. getBytes ())7’

135

String

short [}

[t
9}
a4
-
ot

String

String

11
String
11

String

String

WO 2019/191083 PCT/US2019/024057

/1 hash of extracted ORCID
byte[] correctediDHash = digest

.digest (correctedidentity. detBytes (/)7

Bi gl nteger correctednsgHashl nt = new BigIntageril,
correcteditsgHash) ;
BicfInteger corrected! DHashint = new Biglnteger (%.

correctediDHash);

/1 lhs of verify . extracted ID ™ Hm
BicfInteger newi hsVerify = correctedl DHashl nt

.ModPo¥ (Correct edmsgHashint , nod) ;

/1l convert signature string from ACGI to binary
String correctedbinarySi gnString = convert ACGIt oBi nary (

correctedsignat ureSeduence’ ;

/1 from binary to Bigint
BicfInt eger cerreetedsignaturel nt = new Biglnteger (

correctedbi narySi gnString, 2) 7

~

/'l rhs of verify. Si gn public key
Bicfint eger new hsVerify = correctedsi grnaturel nt . nmodPow (pub.

mod) ;

/1 check .. debug
Systern, out.print in(newhsVerif vy);

Systern. @Ut .print 45 (newihsvVerif yi’

if (newi hsVerify. <ofpareT® (new hsVerify) == 0y {
JOptionPane.showMessageDial og (null,
"EXTRACTED IDENTITY = " + correctedidentity
"\ nEXTRACTED PLASMD ID = "
+ correctedptasmi diD

"\ nSIGNATURE VALID ON CORRECTED SEQUENCE | \n TH'S

FILE wAS SIGNED BY
+ correcte didentity,
"SUCCESS" , JOptionPane .INFORMATIONIVIESSAGE);
/'l close frarme

w.dlsposal();

136

WO 2019/191083

PCT/US2019/024057

int response < JOptionPane .showConfirmDialod (nuli,

"Do you want to see where the ERROR was 7",
"Confirnt , JOptionPane .YES_NO_OPTI ON,

JOpti onPane ,QUESTION MESSAGE) ;

if (response == JQOptionPane .NO OPTION) |

) else

} else

} else {

System out.println ("No button clicked")

if (response == JOptionPane .YES_OPTION)

System ouT.print! n("Yes button clicked") ;

Di spl ayErrors displ ay-wi ndow =~ new DispiayErrors (
originalfeq, correctedMessageSequence;
startTag; correc tedstart Sequence ,
orcidSeq, correctedORCl D Sequence,
pi asmi dl DSeq, correctedf| asmj diDSequence |,
srgnatureSeq, correctedSignature Sequence,
eccSeq, correctedeccSequence,
endTag, correctedendSequence) ;

di spi aywi ndew.setVisible (frue);

¢

if (response == JOptionPane. CLOSED OPTI ON) i

System out .println ("JOptionPane closed") ;

JOpti onPane. showMessagf eDi ai ogf (nul 4,

"CANNOT VALI DATE SIGNATURE AFTER ERROR CORRECTION' -

"alert", JOptionPane .ERROR_MESSAGE) ;

} catch (NoSuchAlgorithrriException el) |

/1 TODO Auto-generated catch block

el .printStackTrace ()¥¢

N
13
i

JOopt ionPane, showvkesssgelialoginuli,
g g

"ERROR | N CORRECTING SIGNATURE SEQUENCE. NOT 5i2 BP",

"alert", JOptionPane .ERROR_MESSAGE)

137

WO 2019/191083 PCT/US2019/024057

catch
(NoSuchAl gor | t hnExcept i on el)
/] TODO Auto-
generated catch block
el .printStackTrace ();
}
}
alge |
JOptionPane . showMessagePljialog (null,
"ERROR IN
RETRI EVING SI GNATURE SEQUENCE, MOT 512 BP', "alert"”,
JOpti onPane. ERROR _MESSAGE) ;
}
else {
JOpti onPane. showMessageDi al og (nul'l, "ANY ONE OF TRIE SEQUENCE |S MSSING FOR
VALI DATI ON',
"alert”
JOptionPane. ERROR_MES SAGE) ;
}
¢ {

JOoptionFane.shov;wssagePialog (null,
"tencTag+™ NOT FOUND -

¥

"START TAG "+startTag+" and END TAG

"alert ",
JOptionPane. ERROR _MESSAGE) ;
i
!
I else {
JOpti onPane. showMessageDi al og (nul'l, "WRONG FILE
,- FILE DOES NOT START WTH SymBOoL > ¥,
"alert".
JOptionPane. ERROR _MESSAGE) ;
/'l enpty file concent
i else f
JOptionPane .showMessageDi al og (nul'l , "EMPTY FILE /

n

CANNOT PARSE FILE *, "alert ",
JOptionPane. ERRCR MESSAGE) |

btnVerif ySignature .%etBounds (141, 208, 136, 23)
contentPane. add (btr. VerifySignature)

1

{

private 3tri

stub

method

7

/7T

String kinaryString = new StringBuilder{);
char{l} dnasign = filecontent.

for {int i = 0; i < dnasign.len

if {dnasigni{i] == ATy

138

WO 2019/191083

bi narystring

PCT/US2019/024057

append ("t ") ;

j eise if (dnasign [£] == "¢’ |j dnasign:!: == 'c’) {
bi narystring .append ("g”}:

} else if idnasign[i] == 'g j| dnasign [i] == !
bi naryString. appenc("c",

} eise if (dnasign [i] == 't' | dnasign [i] == {
bi narystring. append ("a”l;

}

i
String complement = binaryString.todtring{};
return StringUils .reverse (conplenent 7 ;
}
/‘,+7'<
* Convert 22 base palrs of ACGET to ORCID input -
* acacacacagagagagatatatatcacacaca output - 1111-2222-3333-4444
*
*
* CGT format
* @return ity in ORCID format
%
A’/
private String extract ity (String iddeq) |
gBuilder sb = cingBuilder () ;
:
i =1+ 2} |
+ 1] == "'} |
i f && idf{i + 1] gty |
sb.append ("1"});
}oelse 1f (id[i] == 'a' && id{i + 1] == 't'} |
sppend ("27) ;
} else && 1dii + 1] ta'y |
{
P oelse if Yogg idii o+ 1] == gty |
sh.append (4"} ;
}oelse 1f (id[i] == ‘¢’ && id{i + 1] == 't'} |
sb.append ("57);
}oelse 1f (id[i} Yotog& Ldii o+ 1] ta') |
sk.append ("6} ;
}oelse i (igd[i}] == 'g' && idii + 1] == 'c'} |
sh,append ("7") ;
} if (idfi} ‘gt o&& idii o+ 1] oty o
sb.append ("8} ;
} if (id[i] == 't' && + 1] == Ta’'} |
sppend (97} ;
)
}
|
sh2.append("-"};
}
)
sb2.append(tempidcharsi{il);
}
sbZ.toString();
3
ionPane.showMessageDialog{null, "ERROR IN EXTRACTING ORCID -

ey
12

139

tionPane,

I

9}
1%

WO 2019/191083

* Convert

*

*

* ‘/‘

private 3tri
String

;g
/7 Sys
e

I (P

SEQUENCE NOT

* Extracts

ng

PCT/US2019/024057

AOGT

ot

1234

wn
[&2)

o & cacccyg 01t“u -

—oacagac

g extractPlasmidID
Builder sb = new
t@m.ﬁut.pribtin(t;mp
idSeq 0)

bidSeq){

char iddeq. toCharArray{};
for i < id.length; 1 = 1 + 2} {
{13 ‘a' && id{i + 1] == oty |
1d (07 ;
} else i} ‘e’ && d1dii 4+ L] == 'g'}) |
J (L")
} else i £& idii + 11 ety
a
P oelse 3 && idii + 1] == ‘a'} {
sh. append (
}oelse if (id[i}] == '¢' s&& == Tg'} |
mb.aopeAU{"4“‘;
}oelse if (did[il} fot &4 == £} |
sk.append ("57);
}oelse if (1g[i} == 'g' && == Tz} {
nd (H
} 58 == ety |
} && 1dii 4+ L] == 't |
} £& idii + 11 == ‘a’'} |

"ERRCR IN EXTRACTING PLASMID ID

PR P
lTailognuli,

onPane. ERROR MESSAGE)

seguence from file along with descriptions

* @param fileContent

* - contents of the input gensbank fil
*
* @return two cox ré T strings - 1. content upte the word “"ORIGIN" which are
* o after the word "ORIGIN" which is the actual
*
*
* /
private static Stringll extractDNASequence (String fileContent) |
// TODC Auto- Ted method stub
String wordToFind = "ORIGINT;
String tempSeqg = null;
String contentuptoorigin = null;
Pattern word = Ea_;ern compile (wordToFind};
Matcher match = word.matcher (fileContent)
// int count = 0;
while (match.find{)} |
/7 countt+s
System.out.println{"Found ORIGIN at index " + 0o+ " -
{match.end ()} - 1}};

140

D

WO 2019/191083 PCT/US2019/024057

tenpSeq = fileContent.substring { (ratch.end ()), fileContent,length ()}’

cont ent upt oori gi n = fileContent .substring (¢, match .start ());
§
'y stem.\u;.prlnt (c) ;
cut. pr-ntl {con il
(H
b
CharArray();
StringBullder sb = new 3tringBullder():;
for (char ¢ : segarray) |
if {c¢ al] ¢ ot ¢ gt i e 2 e AT o oy
i c [l e == T} {
sb.append(
}
}
3tring seguence = sb.tolString().trim(};
System out . println ("EXTRACT = " + sequence);
/7 System.out.printin(leContent};
Stringll output = new Stringi2];
cutput{l] = contentuptoorigin:
output{l] = seguence;
return ocutput;
i
)
{
'g {
binaryString. a)peﬁd("l@"}'
} else if {(dnasign{i] == 't' || dnasignii| YTy
binaryString.append (11"} ;
1
!
}
return binarystring. toString ();
}
public fromBinary (String s) |
length{};
= new byte{{sLen + Byte.SILZE - 1} / Byte.3I1ZE};
0; 1 < slen;
= 1
jot's / o= / Byte.3IZE] | (0xE&0
>>> (1 % Byte,.
£ o{c 1= 10"
throw) s
raturn toReturn:
i
:
public 53 |
+ Short.3IZE - 1) / Short.SIZE];

141

WO 2019/191083 PCT/US2019/024057

public String ShorttoBina ty (short[] shorts)
i

Stringbuilder = new StringBuilder{shorts.length *
for{ int i = ¢; 1 <« Short.31ZE * i rthy i++
sb.append((shorts[i / Short. | Shert. S o 2 0
LA R T
iy

o)
-~
in
o
o}
a1
a3
fou
o}

public short[] concatenateShortArrays (shorti

itring getFilelBxtension (3t
stindexQOf (".") I=

return fileName.substring{fileName.lastindexOL{".") + 1;};

h
I
jon
o
=
-z
=
0]
o
o

private String convertBinarytoACGT (String binarySi gnatureString) |
har{] kinsign = binarySignaturestring.toCharArray (i ;
StringBuilder dnaformatsign = new StringBuilder {};

for {int

-+

,_
|
|
-

+
oo
il
i
o

return dnaformatsign, toStringf ()

200662506 v1

142

WO 2019/191083 PCT/US2019/024057

Claims

1 A processor-implemented nucleic acid crypto-signing method, comprising:

receiving anucleic acid sequence from a user device associated with a user;

generating, via at least one processor, afirst portion of a digital signature by encrypting a
mapped value of the NA sequence using a private key associated with the user;

generating a second portion of the digital signature based on at least one of a unique
identifier associated with the user, aunique identifier associated with the nucleic acid sequence,
and an error detection code;

identifying at least two conserved portions of the nucleic acid sequence;

forming a completed digital signature by combining the first and second portions of the
digital signature;

converting the completed digital signature into nucleic acid signature sequence data;

providing the converted nucleic acid signature sequence data for generation of a signed
nucleic acid sequence by insertion of the nucleic acid signature sequence between identified
conserved portions of the nucleic acid sequence; and

sending digital sequence information corresponding to the generated, signed nucleic acid

sequence to the user device.

2. The method of claim 1, further comprising:

synthesizing the signed nucleic acid sequence.

3. The method of claim 1, further comprising:

synthesizing a plasmid comprising the signed nucleic acid sequence.

4, The method of claim 1, claim 2, or claim 3, wherein the error detection code includes

error tolerance information.

5. The method of claim 1, claim 2, or claim 3, wherein the error detection code is a block-
based error detection code.

143

WO 2019/191083 PCT/US2019/024057

6. The method of claim 1, claim 2, or claim 3, wherein the error detection code includes a
modified Reed-Solomon code.

7. The method of claim 1, wherein forming the completed digital signature further
comprises combining athird portion with the first and second portions to form the completed

digital signature.

8. A nucleic acid crypto-signing apparatus, comprising:
at least one processor; and
at least one memory in communication with the at least one processor and storing

processor-executable instructions to perform the method of claim 1.

9. A processor-implemented nucleic acid crypto-validation method, comprising:

receiving sequence data;

identifying that the sequence data has a signed nucleic acid sequence including afirst
nucleic acid sequence, anucleic acid signature sequence, and an error detecting code sequence;

converting the nucleic acid signature sequence into a digital signature;

computing afirst mapped value of the first nucleic acid sequence by applying a
cryptographic function to the first nucleic acid sequence;

computing, based on decrypting at least aportion of the digital signature, a second
mapped value of a second nucleic acid sequence;

comparing the first mapped value of the first nucleic acid sequence with the second
mapped value of the second nucleic acid sequence;

identifying a mismatch between the first mapped values of the first nucleic acid sequence
and the second mapped value of the second nucleic acid sequence based on a set of errors in the
first nucleic acid sequence; and

generating a notification based on the error detecting code sequence.

10. The method of claim 9, wherein computing afirst mapped valise of the first nucleic acid

sequence by applying the cryptographic function to the first nucleic acid sequence includes

144

WO 2019/191083 PCT/US2019/024057

applying a hash function to the first nucleic acid sequence to obtain a hash value, the first
mapped value based on the hash valise.

11. A processor-readable non-transitory medium, comprising nucleic acid (NA) crypto-
signing processor-executable instructions to:

receive a NA sequence associated with a user identifier;

determine a mapped value of the NA sequence by applying a cryptographic function to
the NA sequence;

generate afirst portion of adigital signature by encrypting the mapped value of the NA
sequence using a private key associated with the user identifier;

generate a second portion of the digital signature based on a unique identifier associated
with the user identifier;

combine the first and second portions of the digital signature to form a completed digital
signature;

output the completed digital signature for conversion into aN A signature sequence and
generation of asigned NA sequence by insertion of the NA signature sequence between
identified conserved portions of the N A sequence; and

provide the signed NA sequence to a compute device associated with the user identifier.

12, A processor-readable non-transitory medium, comprising nucleic acid (NA) crypto-
validation processor-executable instructions to;

recelve a sequence data;

identify the sequence datato have a signed NA sequence including afirst NA sequence
and aNA signature sequence;

determine afirst mapped value of the first NA sequence by application of a cryptographic
function to the first NA sequence;

convert the NA signature sequence into a digital signature;

identify, included in the digital signature, afirst portion and a second portion, the first
portion including an encrypted mapped valise of a second NA sequence, and the second portion

being based on a unique identifier associated with a user identifier;

145

WO 2019/191083 PCT/US2019/024057

obtain a second mapped value of the second NA sequence in response to a successful
decryption of the first portion of the digital signature using a decryption key based on the unique
identifier associated with the user identifier;

compare the first mapped value of the first NA sequence with the second mapped value
of the second NA sequence; and

validate the first NA sequence as substantially similar to the second NA sequence in
response to successful verification of a substantial match between the first mapped value and the
second mapped value.

13. A nucleic acid (NA) crypto-signing method, comprising:

receiving aN A sequence from a user device associated with a user;

computing a mapped value of the NA sequence by applying a cryptographic function to
the NA sequence;

generating afirst portion of adigital signature by encrypting the mapped value of the NA
seguence using a private key associated with the user;

generating a second portion of the digital signature based on a unique identifier
associated with the user and/or a unique identifier associated with the NA and/or an error
detection code and/or other meta data;

combining the first and second portions of the digital signature to form a completed
digital signature;

converting the completed digital signature into aNA signature sequence;

generating a signed NA sequence by inserting the NA signature sequence between
identified conserved portions of the NA sequence; and

sending the signed NA sequence to the user device.

14. A nucleic acid (NA) crypto-signing apparatus, comprising:

at least one processor; and

a least one memory in communication with the at least one processor and storing
processor-executable instructions to:

receive aNA sequence from auser device;

146

WO 2019/191083 PCT/US2019/024057

determine a mapped value of the NA sequence by applying a cryptographic
function to the NA sequence;

generate afirst portion of adigital signature by encrypting the mapped value of
the NA seguence using a private key associated with the user device;

generate a second portion of the digital signature based on a unique identifier
associated with the user device;

combine the first and second portions of the digital signature to form a completed
digital signature;

output the completed digital signature for conversion into aNA signature
sequence and generation of a signed NA sequence by insertion of the NA signature
seguence between identified conserved portions of the NA sequence; and

provide the signed NA sequence to the user device.

15. A nucleic acid (NA) crypto-signing apparatus, comprising:
at least one processor; and
at least one memory in communication with the at least one processor and storing
processor-executable instructions to:
receive aNA sequence from auser device;
receive, from the user device, afirst description associated with the NA sequence;
generate a signed NA sequence based on an encrypted digital signature associated
with the NA sequence;
receive information associated with a second description based on the signed NA
sequence;
combine the signed NA sequence with the second description based on the signed
NA sequence to form a combined message;
generate a digital signature based on the combined message;
append the digital signature based on the combined message to the first
description;
associate the first description with the signed NA sequence; and
return the signed NA sequence with the associated first description to the user

device.

147

WO 2019/191083 PCT/US2019/024057

16. A nucleic acid (NA) crypto-validation apparatus, comprising:
at least one processor; and
at least one memory in communication with the at least one processor and storing
processor-executable instructions to:

receive a sequence data;

identify the sequence datato have a signed NA sequence including afirst NA
segquence and a NA signature sequence;

determine afirst mapped value of the first NA sequence by application of a
cryptographic function to the first NA sequence;

convert the NA signature sequence into a digital signature;

identify, included mthe digital signature, afirst portion and a second portion, the
first portion including an encrypted mapped value of a second NA sequence, and the
second portion being based on a unique identifier associated with a user device;

obtain a second mapped value of the second NA sequence in response to a
successful decryption of the first portion of the digital signature using a decryption key
based on the unique identifier associated with the user device;

compare the first mapped value of the first NA sequence with the second mapped
value of the second NA sequence; and

validate the first NA sequence as substantially similar to the second NA sequence
in response to successful verification of a substantial match between the first mapped

value and the second mapped value.

148

WO 2019/191083 PCT/US2019/024057
1726

100
P
//
¥
User Device
102
Nucleic Acid Authentication
Device 110
Memory
P 18¢
i
Frocessor
120
Communicator
188
User Device
104

FIG. 1

WO 2019/191083 PCT/US2019/024057
2/26

Receive, from a user device, NA sequence and
information associated with the NA seguence 201

Generate a digital signature by encrypling a mapped
vaiue of the NA sequence, the mapped value being
generated by applying a cryptographic function
using a unique identifier related to the information
associated with the NA sequence 203

Convert the digital signature into a NA signature
sequence 208

;

identify insertion points in the NA sequence and
insert the NA signature sequence within the
insertion points to generate the signed NA sequence
207

!

Send the signed NA sequence to the user device
209

FIG. 2

300

WO 2019/191083

R

3/26

User A generates a
| nucleic acid sequence |

301

v

User A obtains a signed version of the
NA sequence and generates NA
molecule sample using the signed NA
sequence 303

]

User A shares sample
with user B 305

\g\v

| User B seqguences the |
NA molecule in the
sample 307

$

User B inputs the seguence dala into
the NA system to validate the NA
sequence in the sample and receives
information regarding the errors in the

NA sequence in the sample 309

v

User B evaluates use of the NA sampie
in consideration of error correction 311

FIG. 3

PCT/US2019/024057

400

WO 2019/191083

R

4/26

User A generales a nucleic acid sequence with descriptions

401

v

User A generaies a signed NA sequence 403

\ 4

User A combines description with the signed NA sequence o
generate a combined message and generates signature for

the sombined message 405

v

User A adds the signature to a description of the singed NA
sequence 407

v

User A shares the sample with singed NA sequence and the
description with user B 409

User B sequences the NA molecule in the sample o oblain
sequence data 411

User B extracts the signature of the combined message, the
description and the signed NA sequence from the ssgquence

data 413

v

User B validataes the singed NA sequence in the sequence

data and the description and evaluales use of the NA muolecule

419

FIG. 4

PCT/US2019/024057

WO 2019/191083

EeayE09E

5/26

N

g« By - Kova¥ 4

sy
A
BRI

S

N

Lrnse
:X;‘
%

:;5/
Bupys - HopY

%/

EESny BEHE

W
R
N5

)
o
B
ond
2

PCT/US2019/024057

FIG. 5

PCT/US2019/024057

WO 2019/191083

6/26

2oy
e

S

2

7%

S AV AT E SN

%
A

R
e

[o ey
7ws

x P

Y

>
5!
4%

NEH
AL

g
%\-‘“\‘r‘ﬁ\;\.\?-

3

B3

TRt
PRRMAR

b

Qﬁvt&g\x

ited e
RERER AR

PRV
IR

R
N

7
2

Fals
it

FIG. 6A

[

R A RN
Heiia

‘%

A

o L T

7

¥

e

2

%%,

Ty O

G0k iy
3

SV ERT)

i
or 42 %,

RSN

G

P A

G 4 Ayl

0 7

ity

i L s
K

AR

3
&

L

R

2
i
%
%
% %
% %

FIG. 6B

WO 2019/191083 PCT/US2019/024057
7/26

A

Qe

FIG. 7

WO 2019/191083

PCT/US2019/024057

8/26

Ay,
T,

s
AL

7

AN
&
S

i,

&

o
o
s
s
e
5

\\\\\\\\\\\\\\\\\\\S\\\\\\\\\\\\i\\
& ¥

i,
y,

&
BN
\\\\\\\\

§
S

S~
S

N

FIG. BA

PCT/US2019/024057

9/26

WO 2019/191083

oy
RIS

AN

2

I PRI

Foor,

X
P

¥ 3
RSN
SN NP
i
e &
T
R
N

SN

Foa,

Y
3
*
X
A

4

P

it

Gk Gy
% o
Z

P

z

RIS
- :
SIS
AN
N
N
Sy y;
NENR

SN

Ak i
S

SN
NEXY

SRR RS

3

3
3
Nt e, &

3
o N

3

SRS

X AN

W

Z.
Z
4
.
s
4
7

-
-
4

o

oA RN

W

ey

$

o
-
TR
R R RS

AT
N

%
\
%,
7 .
Yo p 2
fer Py G4
“ 5
(97 W 5
> KA
(A A
f .
w4 #4, G
s e A
¥, J 7% 7
%4, ” ;
74 14
4 2
g K i
m % \“\ &3 P
EA ¥ oo o ah
(9 oot 75 45
3 G2
4y : i
M.\\v g 7 -
Pl o mf\\» 7z, it
7 77, G 94, 45 o
Yoh G 5 p Gt
Lo et o v
G g4 7
I A 7
Lk L n..\.n\
. 17
N
7y
“
Gosy

¥

&

e
R
R

Gk 2

> 7 <,

W]

Lve & Pt
Govw Hudy %
o %
[N o
M\W\ G Yoy
g 7 .
m\\a oot Gers
PR £,
Bl Herd 7
Lo 5

S

Y

et
%
2

FIG. 8B

WO 2019/191083 PCT/US2019/024057
10726

FIG. 3A

WO 2019/191083 PCT/US2019/024057
11726

v,

‘&N&§&§&N&§&§&§&§&é&§&§&§&$&$&§&§&§&§&$&$&
Y

FiG. 9B

WO 2019/191083 PCT/US2019/024057
12726

A

SN R

got

FIG. 10

WO 2019/191083

User Davice
1102

Communication
network 1106

User Davice
1104

PCT/US2019/024057
13726
/,/4 100
Ve
¥
Nucleic Acid Authentication
Deavice 1110
Input/Ouiput
Unit
1140
Mfg%ry Procaessor
—— 1120

Communicator
1180

FIG. 11

WO 2019/191083

User Device 1202

User
Application 212

Internet 1206

14/26

PCT/US2019/024057

NA Authentication
Deavice 1210

Server Application
1214

FIG. 12

WO 2019/191083 PCT/US2019/024057
15/26

1300

Obtain desired NA sequence
1301

:

input the NA sequence to the NA authentication
device 1303

:

Initiale generation of signature NA sequence and
singed NA sequence 1305

I

Receive cryptographically signed NA sequence
1307

!

Lse the signed NA sequence {0 generate synthetic
NA molecule 1309

FIG. 13

WO 2019/191083 PCT/US2019/024057

16/26
14400
Receive NA seguence and user information from vf'/
user device associated with a user
1401
Compute a mapped value of the
NA sequence by applying a
cryptographic function to the NA Define a second portion of the
sequence 1403 digital signature based on a
unique identifier from the user
& information associated with
Define a first portion of a digital the user
signature by encrypting the 1407
mapped value of the NA
sequence 1405

Combine the first and second portions to form a
completed digital signature 1409

'

Convert the completed digital signature into a NA
signature sequence 1411

|

identify insertion points in the NA sequence and
insert the NA signature seguence within the
insertion points to generate the signed NA sequence
1413

:

Send the signed NA sequence to the user device
1415

FIG. 14

WO 2019/191083 PCT/US2019/024057
17/26
1500
\ Receive test sequence from user device associated with a user
1501

identify within the test seguence a signed NA sequence 1503

;

Extract, from the signed NA sequence, a first NA sequence and a
signature NA sequence 1505

’

Convert the NA signature sequence into
a digital signature 1509

| I

¥

Compute a first
mapped value of the
first NA sequence by

applying a
cryptographic funclion
to the first NA

sequence 1507

tdentify, within the
digital signature, an
encrypted mapped
vaiue of a second NA
sequence and 1511

tdentify, within the
digital signature, a
unique identifier
associated with a user
1843

¥

Obtain a second mapped value of a
second NA sequence by decrypting the
encrypted mapped value using a key
generated based on the unique identifier
1815

!

Compare the first and second mapped values 1517

.

in response (o a substantially positive match
between the mapped values, send validation of the
first NA seqguence being substantially similar to the
second NA sequence 1518

FIG. 15

WO 2019/191083

18/26

PCT/US2019/024057

FIG. 16

1700

WO 2019/191083

\

19/26

| User A generates a
- nucleic acid sequence
‘ 1701

v

User A obtains a signed version of the

nucieic acid sequence and generates

NA molecule sample using the signed
varsion 1703

i

User A shares sample
with user B 1705

v

User B seguences the
NA molecule in the
sample 1707

%

User B inputs the seguence dala into
the system and receives information
regarding the authenticity of the
sequence in the sample 1708

FIG. 17

PCT/US2019/024057

1800

WO 2019/191083

User device
g

AN
T
SRR
R

N
e

N
P
w:‘\;:m»%‘
e
PR
RNy
A

ANRRINNN

\\\\\\\\\\\\\\\\\ 3
& X

%,

User device
1802

20/26

PCT/US2019/024057

\\\\\\\\\\
S
e

y

S

¥

ZZ

FIG. 18

WO 2019/191083 PCT/US2019/024057
21/26

FIG. 18A

FIG. 19

WO 2019/191083 PCT/US2019/024057
22/26

/

. e | ey 1926
Kayhen

FIG. 20

WO 2019/191083 PCT/US2019/024057
23/26

FiG. 21

WO 2019/191083 PCT/US2019/024057

1042

3

s

D R

FIG. 22A
1946

FIG. 12B

WO 2019/191083 PCT/US2019/024057
25/26

1956

=t Lorrect Basewilibe - g

§M§§%}§“%®@§§\ Rane b

oo Correct Rasewii e v g

g, Lovrert Rasewili be v g

&s‘mﬁmm Base iz =g, Lorrect Basswill g = 8

QUERCE BRRORN

_§\ rroneous - & Lorrect Basewill e~ ¢

FIG. 23

WO 2019/191083 PCT/US2019/024057
26/26

1962

FIG. 24A
1966

FIG. 24C

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2019/024057

A. CLASSIFICATION OF SUBJECT MATTER
INV. G16B50/40

ADD.

According to International Patent Classification (IPC) orto both national classification and IPC

B. FIELDS SEARCHED

G16B

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal , BIOSIS,

Sequence Search

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EMBASE, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X HEIDER DOMINIK ET AL:

LONDON, GB,

page 176, XP021027503,
ISSN: 1471-2105, DOI:
10.1186/1471-2105-8-176
Sect. 2

vol. 8, no. 1, 29 May 2007 (2007-05-29),

"DNA-based 1-16
watermarks using the DNA-Crypt algorithm"
BMC BIOINFORMATICS, BIOMED CENTRAL,

-

Further documents are listed in the continuation of Box C.

_I _I See patent family annex.

Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

‘E " earlier application or patent but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) orwhich is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle ortheory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 July 2019

Date of mailing of the inte rnational search report

07/08/2019

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Wimmer, Georg

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2019/024057

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

X,P

DAN TULPAN ET AL: "HyDEn: A Hybrid
Steganocryptographic Approach for Data
Encryption Using Randomized
Error-Correcting DNA Codes",

BIOMED RESEARCH INTERNATIONAL,

vol. 32, no. 4839,

1 January 2013 (2013-01-01), pages 675-11,
XP055194313,

ISSN: 2314-6133, DOI: 10.1155/2013/634832
pgs. 3-7

DIPTENDU MOHAN KAR ET AL: "Digital
Signatures to Ensure the Authenticity and
Integrity of Synthetic DNA Molecules",
20180828; 20180828 - 20180831,

28 August 2018 (2018-08-28), pages
110-122, XP058428135,

DOI: 10.1145/3285002.3285007

ISBN: 978-1-4503-6597-0

the whole document

1-16

1-16

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	abstract
	description
	claims
	drawings
	wo-search-report

