(ip)

OPERATING AND SERVICE MANUAL

MODEL 1349A/D
 DIGITAL DISPLAY

Abstract

SERIAL NUMBERS This manual applies directly to instruments with serial numbers prefixed 2437A.

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUALin Section I.

© COPYRIGHT HEWLETT-PACKARD COMPANY/COLORADO SPRINGS DIVISION 1984 1900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U.S.A.
 ALL RIGHTS RESERVED

Manual Part Number 01349-90901
Microfiche Part Number 01349-80901

HP MANUAL SCANS

By

Artel Media

1042 Plummer Cir. SW Rochester, MN 55902

www.artekmedia.com

"High resolution scans of obsolete technical manuals"

ALL HP MANUALS ARE REPRODUCED
 WITH PERMISSION OF AGILENT TECHNOLOGIES INC.

Reproduction of this scanned document or removal of this disclaimer Will be considered in violation of both Agilent's and Artek Media's copy rights

If your looking for a quality scanned technical manual in PDF format please visit our WEB site at www.artekmedia.com or drop us an email at manuals@artekmedia.com and we will be happy to email you a current list of the manuals we have available.

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details, This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

1) Typed text pages are typically scanned in black and white at 300 dpi.
2) Photo pages are typically scanned in gray scale mode at 600 dpi
3) Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).

Thanks

Dave \& Lynn Henderson
Artek Media

SAFETY

This product has been designed and tested according to International Safety Requirements. To ensure safe operation and to keep the product safe, the information, cautions, and warnings in this manual must be heeded. Refer to Section I and the Safety Summary for general safety considerations applicable to this product.

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

The cathode-ray tube (CRT) in the instrument and any replacement CRT purchased from HP are also warranted against electrical failure for a period of one year from the date of shipment from Colorado Springs. BROKEN TUBES AND TUBES WITH PHOSPHOR OR MESH BURNS, HOWEVER, ARE NOT INCLUDED UNDER THIS WARRANTY.

For warranty service or repair, this product must be returned to a service facility designated by HP. However, warranty service for products installed by HP and certain other products designated by HP will be performed at Buyer's facility at no charge within the HP service travel area. Outside HP service travel areas, warranty service will be performed at Buyer's facility only upon HP's prior agreement and Buyer shall pay HP's round trip travel expenses.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

Abstract

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

[^0]S C W \& A 9/78 (CRT)

SAFETY SUMMARY

The following general safety precautlons must be observed during all phases of operatlon, service, and repalr of this Instrument. Fallure to comply with these precautlons or with speciflc warnings elsewhere in this manual vlolates safety standards of design, manufacture, and Intended use of the Instrument. Hewlett-Packard Company assumes no llabllity for the customer's fallure to comply with these requirements.

GROUND THE INSTRUMENT.

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, aiways disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

USE CAUTION WHEN EXPOSING OR HANDLING THE CRT.

Breakage of the Cathode-ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent CRT implosion, avoid rough handling or jarring of the instrument. Handling of the CRT shall be done only by qualified maintenance personnel using approved safety mask and gloves.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification of the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained

DANGEROUS PROCEDURE WARNINGS.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

> WARNING
> Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

TABLE OF CONTENTS

Section

I. GENERAL INFORMATION

1-1. Introduction 1-1
1-4. Specifications 1-1
1-6. Safety Considerations $1-1$
1-8. Instruments Covered by Manual 1-1
1-13. Description 1-4
1-15. Accessories Supplied 1-4
1-19. Recommended Test Equipment 1-4
II. INSTALLATION
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-5. Preparation for Use 2-1
2-6. Power Requirements 2-1
2-8. Power Connector 2-2
2-10. I/O Connector 2-2
2-11. Analog Outputs 2-3
2-12. Operating Environment 2-3
2-16. Storage and Shipment 2-3
2-18. Packaging 2-3
III. OPERATION
3-1. Introduction 3-1
3-3. Signal Line Definitions 3-1
3-4. Handshake Timing for 1349D 3-1
3-5. Picture Refresh Requirements for 1349D 3-4
3-6. Refresh Modes 3-4
3-7. Memory Initialization 3-5
3-8. 1349A/D Command Set 3-6
3-9. Vector Drawing Examples 3-10
3-10. Programming the 1349D 3-10
3-11. Write Operation 3-10
3-12. Read Operation 3-11
3-13. Programming Summary 3-11
3-14. Using the Jump Instruction 3-12
3-15. Optimizing Picture Quality 3-12
3-16. Octal and Hexadecimal Range for 1349A/D Commands 3-12
3-17. Operating Considerations for the 1349A 3-12
3-18. Signal Line Definitions 3-12
3-19. Handshake Timing for the 1349A 3-12
3-20. Transfer Sequence 3-13
3-21. Restrictions 3-13
IV. PERFORMANCE VERIFICATION
4-1. Introduction 4-1
4-3. Equipment Required 4-1

Section
Page
4-5. Calibration Cycle 4-1
4-9. Performance Verification 4-1
4-10. Resolution Verification 4-4
V. ADJUSTMENTS
5-1. Introduction 5-1
5-3. Safety Requirements 5-1
5-5. Equipment Required 5-1
5-7. Adjustments 5-1
5-9. Adjustment Procedures 5-1
5-10. Low Voltage Power Supply Adjustment 5-3
5-11. High Voltage Power Supply Adjustment 5-4
5-12. Z-Axis Drive Adjustment and Test Pattern Set-up 5-5
5-13. Preliminary Focus and Astigmatism Adjustment 5-6
5-14. Intensity Cut-off Level 5-7
$5-15$. Trace Alignment and Writing Speed Adjustment 5-7
5-16. Stroke Generator Adjustments 5-8
5-17. Stroke Intensity Adjustments 5-9
5-18. Image Size and Position 5-10
$5-19$. Vector Closure 5-11
5-20. Fine Focus and Astigmatism Adjustment and Resolution Check 5-12
5-21. Auxiliary X-Y-Z Output Check 5-14
VI. REPLACEABLE PARTS
6-1. Introduction 6-1
6-3. Abbreviations 6-1
6-5. Replaceable Parts List 6-1
6-7. Ordering Information 6-1
6-10. Direct Mail Order System 6-1
VII. MANUAL CHANGES
7-1. Introduction 7-1
VIII. SERVICE
8-1. Introduction 8-1
8-4. Theory of Operation 8-1
8-8. Recommended Test Equipment 8-1

TABLE OF CONTENTS (Cont'd)

Section Page Section Page
8-10. Repair 8-1
8-12. CRT Removal Procedure 8-1
8-13. Troubleshooting 8-2
$8-16$. Service Sheet 1 , Theory of Operation 8-8
8-18. Vector Processor 8.8
8-19. X-Y Stroke Generator 8-8
8-20. Low Voltage and High Voltage Power Supplies 8-8
8-21. Memory Circuit 8.8
8-22. Service Sheet 2, Theory of Operation 8-10
8-23. Service Sheets $3 \mathrm{~A}, 3 \mathrm{~B}, 3 \mathrm{C}$ Theory of Operation 8-12
8-24. Service Sheet 4, Theory of Operation 8-18
8-25. Service Sheet 5 , Theory of Operation $8-20$
8-26. Service Sheet 6, Theory of Operation 8-24
LIST OF ILLUSTRATIONS
Figure Title Page Figure Title Page
1-1. 1349A Digital Display 1-0
1-2. 1349A Dimensional Detail 1-5
2-1. Power Connector for 1349A 2-2
2-2. 1349A I/O Connector 2-2
3-1. Read Command Timing 3-2
3-2. Write Command Timing 3-3
3-3. Refresh Mode Selection 3-4
3-4. Synchronous Refresh Example 3-4
3-5. Asynchronous Refresh Example 3-5
3-6. Vector Drawing Area 3-7
3-7. Graphing Example 3-7
3-8. Example of Character Spacing 3-8
3-9. Drawing a Square on the Display 3-10
3-10. Drawing Two Horizontal Lines on the Display 3-10
4-1. 1349A Power Connections 4-2
4-2. 1349A Primary Test Pattern 4-2
4-3. 1349A Command Check-out 4-3
4-4. Memory Fail Test Pattern 4-3
4-5. 1349A Focus and Resolution Test Pattern 4-4
5-1. 1349A Assembly Location Identification 5.2
5-2. Low Voltage Power Supply
Adjustment Locations $5 \cdot 3$
5-3. High Voltage Power Supply
Adjustment Locations 5-4
5-4. 1349A Primary Test Pattern 5-5
5-5. 1349A Primary Test Pattern 5-6
5-6. 1349A/D Primary Test Pattern 5-6
5-7. Z-Axis Drive and Preliminary Focus Adjustment Locations 5-6
5-8. Writing Speed Adjustment $5 \cdot 7$
5-9. Intensity Cut-off Level, Trace
Alignment and Writing Speed Adjustment Locations $5 \cdot 8$
5-10. Stroke Generator Adjustment 5-8
5-11. Stroke Length Adjustment 5-9
5-12. Stroke Intensity Adjustment 5-9
5-13. Stroke Generator, Stroke Length and Stroke Intensity Adjustment Locations 5-10
5-14. X-Y Vector Closure 5-11
5-15. $\quad \mathrm{P} / \mathrm{O}$ Fine Focus Adjustment 5-12
5-16. P/O Fine Focus Adjustment 5-12
5-17. Vector Closure, Focus and Astigmatism Adjustment Locations 5-13
5-18. X-Amplifier Auxiliary Output 5-14
5-19. Y-Amplifier Auxiliary Output 5-14
5-20. Z-Amplifier Auxiliary Output 5-14
6-1. Chassis Parts and Board Assembly Identification $6-3$
8-1. CRT Removal 8-2
8-2. Schematic Diagram Symbols 8-3
8-3. Basic Logic Symbols 8-4
8-4. Service Sheet 1, Block Diagram 8-9
8-5. Vector Processor Troubleshooting Flow Chart 8-10
8-6. Vector Processor Component Locator 8-10
8-7. Service Sheet 2A, P/O Vector Processor 8-11
8-8. Vector Processor Component Locator 8-12
8-9. Service Sheet 2B, P/O Vector Processor 8-13
8-10. Simplified Block Diagram of Analog Multiplier 8-14
8-11. Current Definition for Ramp Generator 8-14
8-12. Analog X-Y-Z Troubleshooting Flow Chart 8-14
8-13. Service Sheet 3A, P/O X-Y-Z Amp/
Stroke Generator $8-15$
8-14. Analog X-Y-Z Component Locator 8-16
8-15. Service Sheet 3B, P/O X-Y-Z Amp/Stroke Generator8-17

LIST OF ILLUSTRATIONS (Cont'd)

Figure Title Page
8-16. Analog X-Y-Z Component Locator $8-18$
8-17. Service Sheet 3C, P/O X-Y-Z AmpStroke Generator......................... 8-19
8-18. Low Voltage Power Supply
Troubleshooting Flow Chart 8.20
8-19. Low Voltage Power Supply Component Locator $8-20$
8-20. Service Sheet 4, Low Voltage Power Supply 8-21
8-21. High Voltage Power Supply Troubleshooting Flow Chart $8-22$
8-22. High Voltage Power Supply ComponentLocator8-22

Figure 1-1. 1349A/D Digital Display

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This Operating and Service Manual contains information required to install, operate, test, adjust, and service the HP Model 1349A/D Digital Display.

1-3. Listed on the title page of this manual is a microfiche part number. This number can be used to order 4×6-inch microfilm transparencies of the manual. Each microfiche contains up to 96 photo-duplicates of the manual pages. The microfiche pack age also includes the latest Manual Changes supplement.

1-4. SPECIFICATIONS.

1-5. Instrument specifications are listed in table 1-1. These specifications are the performance standards or limits against which the instrument is tested. Table 1-2 lists 1349A/D functions. Supplemental characteristics are listed in table 1-3 and are not specifications but are typical characteristics included as additional information for the user.

1-6. SAFETY CONSIDERATIONS.

WARNING

To prevent personal injury, observe all safety precautions and warnings stated on the instrument and in this manual.

1-7. This product is a Safety Class 1 instrument. Review the instrument and manual for safety markings and instructions before operation. Specific warnings, cautions and instructions are placed wherever applicable. Refer to the Safety Summary in the front of this manual and to Sections II, V, and VIII for further safety precautions. These precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standard of design, manufacture, and intended use of this instrument. Hewlett-Packard assumes no liability for the customer's failure to comply with these requirements.

1-8. INSTRUMENTS COVERED BY MANUAL.

1-9. Attached to the instrument is a serial number tag. The serial number is in the form: 0000 A 00000 . It is in two parts; the first four digits and the letter are the serial prefix, and the last five digits are the suffix. The prefix is the same for all identical instruments. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

1-10. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates that the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-11. In addition to change information, the supplement may contain information for correcting errors in the manual. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page.

1-12. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest HewlettPackard office.

Table 1-1. Specifications: 1349A (no memory); 1349D (with internal memory)

INTERFACE

General: 16 Bit Binary.
Signal lines:

Pin Name	Description	1349 A	1349 D
D0-D15	16-Bit TTL Data Bus Pos Logic	X	X
LWR	Low Memory Write	N / A	X
LDAV	Low Data Available	X	N / A
LRD	Low Memory Read	N / A	X
LRFD	Low Ready for Data	X	N / A
LDS	Low Device Select	N / A	X
SYNC	Ext Refresh Synchronization	N / A	X
LXACK	Low Transfer Acknowledge	N / A	X
GND	Logic Ground	X	X

DISCON Disconnect Sense. Signal connector off activates self test when allowed to float.

Logic Level: Standard TTL.

1349A		1349D	
Line	Loading	Line	
D0-D4	1-MOS, 1-LSTTL, 1-STTL	D0ading	
D5-D7	1-MOS, 2-LSTTL, 1-STTL	1-MOS, 1-LSTTL	
D8-D15	1-MOS, 1-LSTTL, 1-STTL	D14,D15	
LDAV	1-MOS, 1-LSTTL, 1-STTL	LRD	
		LWR	
		LDS	
		SYNC	

Mating connector: 26-pin female transition connector; mating part Ansley 609-2630 (polarized).

CATHODE RAY TUBE

Type: Electrostatic focus and deflection, post accelerated. Aluminized P31 Phosphor.
Screen Size: 204 Square cm (31.6 square in.); approx. 20.8 cm (8.2 in .) diagonal; 12 cm (4.7 in .) vertical by 17 cm (6.7 in .) horizontally.
Resolution: Display is to be adjusted so that all lines of the secondary test pattern are distinguishable.
Display Memory (1349D only): 8 K word by 16 bits.

INPUT POWER

$+15 \mathrm{VDC}+-5 \%$ Regulated $;<=1.3 \mathrm{~A} @<=10 \mathrm{mV}$ p-p ripple (measured at A3TP1).
$-15 \mathrm{VDC}+-5 \%$ Regulated; $<=0.35 \mathrm{~A} @<=10 \mathrm{mV}$ p-p ripple (measured at A3TP2).
$+5 \mathrm{VDC}+5-0 \%$ Regulated; $<2.0 \mathrm{~A} @<=50 \mathrm{mV}$ p-p ripple (measured at A3TP3 1349A only).
Mating Connector: Molex No. 09-50-3061.

SAFETY

X-Ray Emission: CRT emission $<=9,5 \mathrm{mR} / \mathrm{hr}$ (not measurable above background noise with Vicroreen Model 440RF/C when in normal operating modes).

OPERATING ENVIRONMENT

Temperature: (operating) $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $+149^{\circ} \mathrm{F}$).

NOTE

The $65^{\circ} \mathrm{C}\left(149^{\circ} \mathrm{F}\right)$ temperature specification reflects the maximum allowable operating temperature with the 1349A/D enclosed, not the ambient temperature of the system housing. It is recommended that a minimum of $0.84 \mathrm{~m}^{3} / \mathrm{min}$ ($30 \mathrm{ft}^{3} / \mathrm{min}$) of air flow is forced around and through the instrument to ensure that the maximum operating temperature of $65^{\circ} \mathrm{C}\left(149^{\circ} \mathrm{F}\right)$ is not exceeded. Refer to Section II, Paragraph 2-13 of this manual for temperature measurement instructions.

[^1]Table 1-1. Specifications (Cont'd)

Humidity: to 95% relative humidity up to $+50^{\circ} \mathrm{C}$.
Altitude: (operating) to $4600 \mathrm{~m},(15,000 \mathrm{ft})$;
(non-operating) to $15,300 \mathrm{~m},(50,000 \mathrm{ft})$.
Shock:
Shock Intensity 60 g .
Shock Pulse Duration 11 ms .
Shock tests are performed with the equipment non-operating and any auxiliary circuits not powered.
Vibration:
Vibration Frequency: $5-55-5 \mathrm{~Hz}$.
Vibration Sweep: Cover the vibration frequency in 15 minutes.
Vibration Pulse Shape: Full sine wave.
Vibration peak-to-peak amplitude:
$5-10 \mathrm{~Hz}, 6.34 \mathrm{~mm}(0.250 \mathrm{in}$.)
$10-25 \mathrm{~Hz}, 3.05 \mathrm{~mm}$ (0.120 in .) $25-55 \mathrm{~Hz}, 0.76 \mathrm{~mm}$ (0.030 in .)
Dwell for 10 minutes at the four highest resonances found on each axis. If no major resonance can be detected, dwell at 55 Hz for 10 minute duration at 0.76 mm (0.030 in .).

CAUTION

The 1349A/D Displays have been tested at shock and vibration levels listed above. These are absolute maximum levels and apply to the 1349A/D only not to the host structure in which they are installed.

In general, the host structure will act to amplify shock and vibration applied to it when transmitting that energy to the $1349 \mathrm{~A} / \mathrm{D}$.

Care must be taken that specified levels of shock and vibration are not applied to the 1349A/D.

Size: See outline drawing figure 1-2.
Weight: Net $6.0 \mathrm{~kg}(13.2 \mathrm{lbs})$.
Shipping Weight: $8.64 \mathrm{~kg}(19.0 \mathrm{lbs})$.

Table 1-2. 1349A/D Functions

GRAPHIC FUNCTIONS

Character Generator:

Stroke Characters: 32 by 20 point resolution; modified full ASCII set. Character Strokes are stored in ROM. Average character writing time is $16 \mu \mathrm{~s}$.
4 Programmable Character Sizes:
$1.0 \times=68$ Characters per line,
31 horizontal lines possible.
$1.5 x=45$ Characters per line,
21 horizontal lines possible.
$2.0 x=34$ Characters per line,
15 horizontal lines possible. $2.5 x=27$ Characters per line, 12 horizontal lines possible.

NOTE
$1 \times$ Character approximately 2 mm high.
4 Programmable Character Orientations: $0,90,180$, 270° (CCW) relative to horizontal.

VECTORS

Random Vector Plotting: Addressable resolution 2048 by 2048 points.
Line Types: Solid Line
Solid line with intensified end points
Short dashed line
Long dashed line
Dots

Velocity:

4 Programmable Writing Speeds: approximately $1.9,3.4,5.2$ and 6.9 mm per $\mu \mathrm{s}$.
Vector Drawing time: μ s per vector + (length of vector/writing speed).
3 Programmable Intensities: Dim, medium brightness, full brightness (plus Blank or off).

PLOTTING

Plotting Modes: Plot absolute and Graph.
Beam Control: The beam may be turned on or off while plotting.
GRAPH GENERATION
Tick Marks: X- and Y-axis tick marks of four selectable lengths.
Graph Mode: Allows generation of graphs which have a constant X-incrememt between points by storing the X-increment once, requiring only new values for succeeding points.

SELF TEST

Self Test is invoked by disconnecting the I/O connector with power applied. The Test Pattern verifies that the $1349 \mathrm{~A} / \mathrm{D}$ is operational and provides necessary stimulus for routine calibration. An internal connector is provided for activation of an alternate test pattern. When the connector is shorted, the alternate pattern may be used to verify CRT resolution and allow calibration of focus and astigmatism adjustments. When memory is installed (1349D), the self test feature also performs a memory test.

Table 1-3. Supplemental Characteristics

ANALOG OUTPUTS

General: The 1349A/D Displays have internal connectors for output of X, Y, and Z analog signals to drive a slave CRT display.
Amplitudes: Approximate amplitude range is 0 V to 1 V .
Output Impedance: X, Y - 340 ohms nominal. Z - 250 ohms nominal.
Polarity: X - Positive-going voltage corresponds to right beam movement.
Y - Positive-going voltage corresponds to upward beam movement.
Z - Positive-going voltage corresponds to increasing luminance.
Recommended Bandwidth of slave display: X, Y - Axis: $>=3 \mathrm{MHz}$
Z _ Axis: $>=10 \mathrm{MHz}$
Recommended Mating Connectors: Molex 22-01-1023.
(3 required, 1 each for X, Y and Z Axis).

CATHODE RAY TUBE

Brightness: Shipped from the factory at approximately $140 \mathrm{Cd} / \mathrm{sq} . \mathrm{m}$ at $1.9 \mathrm{~mm} / \mu \mathrm{s}$ writing speed, full brightness at 60 Hz refresh rate, 7 by $7 \mathrm{~cm}, 50$ line raster, 50% duty cycle.

1-13. DESCRIPTION.

1-14. The Hewlett-Packard Models 1349A and 1349D are 20.8 cm (approx. 9 in.) Display Components. Both produce vector graphics on their display screens in
response to digital commands from a user processor. The 1349D contains an 8 K word refresh memory which enables the display to refresh the picture without support from the user processor. The 1349A must be refreshed by the user.

The 1349A/D have an addressable resolution of 2048 by 2048 points which allows display of very high quality images, composed of straight or curved lines. Curved lines are formed by a series of short straight vectors joined end to end. The unit has programmable writing speeds and programmable intensities. Vectors, regardless of length can be drawn at constant speed so that the intensity does not vary from vector to vector.

For on screen labeling and identification, the 1349A/D have a built-in set of ASCII characters. The 1349A/D receive just one word from the user processor and all the vectors necessary to form one character are automatically produced from ROM.

1-15. ACCESSORIES SUPPLIED.

1-16. The following accessories are supplied with the 1349A/D:
One Operating and Service Manual.

1-17. RECOMMENDED TEST EQUIPMENT.

1-18. Equipment required to test and maintain the 1349A/D Displays is listed in table 1.4. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

Table 1-4. Recommended Test Equipment

Instrument Type	Recommended Model	Required Characteristics	Required For
Monitor Oscilloscope	HP Model 1740A	Bandwidth: 100 MHz Input Z: 50 ohms AND 1 Mohm shunted by approx. 20 pf.	A
Digital Voltmeter	HP Model 3466A	Voltage Rating: -15 V to 250 V Accuracy: 0.1% Input Resistance: 10 Mohm	A
1000:1 Divider	HP Model 34111A	Voltage Rating: 12 kV	A
10:1 Divider Probe (Qty 2)	HP Model 10041A (supplied with model 1740A)	Input Resistance: 1 Mohm shunted by approx. 12 pf.	A
Power Supply	HP Model 63315E	Output Voltage: 5 V at 2.0 A	$\mathrm{P}, \mathrm{~A}$
		$\text { Output Voltage: } \begin{aligned} & +15 \mathrm{~V} \text { at } 0.5 \mathrm{~A} \\ & -15 \mathrm{~V} \text { at } 1.1 \mathrm{~A} \end{aligned}$	$\mathrm{P}, \mathrm{~A}$
Signature Analyzer	HP Model 5005A		T
$=$ Performance test $\mathrm{A}=$ Adjustment $\quad \mathrm{T}=$ Troubleshooting			

INSTRUMENT MUST BE SUPPORTED BY ALL 12 HOLES

C13498pa/11-30-0.

Figure 1-2. Dimensional Detail, 1349A.

SECTION II

INSTALLATION

2-1. INTRODUCTION.

2-2. This section provides installation instructions for the Model 1349A/D Digital Displays. This section also includes information about initial inspection, damage claims, preparation for use, and storage and shipment.

2-3. INITIAL INSPECTION.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as listed in the "Accessories Supplied" paragraph in Section I. Procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the Performance Tests, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of
stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping material for carrier's inspection. The HP office will arrange for repair or replacement at HP option without waiting for claim settlement.

2-5. PREPARATION FOR USE.

WARNING

Read the Safety Summary in the front of this manual and the "Safety Considerations" paragraph in Section I before installing or operating this instrument. Before any connections are made to the instrument, the chassis must be connected to a safety ground.

2-6. POWER REQUIREMENTS.

2-7. The $1349 \mathrm{~A} / \mathrm{D}$ requires the following power supplies for proper operation:

Table 2-1. 1349A/D Power Requirements

Operating Voltages		Max P-P Ripple	Max Current	
Voltage	Tolerance		1349D	1349A
+15 VDC	$+-5 \%$	10 mV	1.3 A	1.3 A
-15 VDC	$+-5 \%$	10 mV	350 mA	350 mA
+5 VDC	$+5-0 \%$	50 mV	2.0 A	750 mA

2-8. POWER CONNECTOR.

2-9. A 6-pin connector (Molex 09-50-3061 or equivalent) is required to mate with the rear panel power connector (see figure 2-1).

2-10. I/O CONNECTOR.

A 26-pin connector (ANSLEY 609-2601M or equivalent) is required to mate with the rear panel connector. The connector is wired according to figure 2-2. It is recommended that the I/O cable length not exceed 45.7 cm (18 in.).

Figure 2-1. Power Connection for 1349A/D

Figure 2-2. 1349A/D I/O Connector

2-11. ANALOG OUTPUTS (X-Y-Z).

The purpose of the Analog Output jacks on the X-YZ/Stroke Generator (A1) board is to connect an external X-Y-Z display. The output signals can drive 1 V p-p into 600 ohm loads. The bandwidth of the external X-Y-Z display should have the following bandwidths:

$$
\begin{aligned}
\text { X-Y Axis: } & >=3 \mathrm{MHz} \\
\text { Z Axis: } & >=10 \mathrm{MHz}
\end{aligned}
$$

The interface cables should not exceed 1.83 m (6 ft) in length. Use the following table for interfacing:

$$
\begin{aligned}
& \text { A1J3 } \ldots \ldots . \text { Z AXIS OUTPUT } \\
& \text { A1J4 } \ldots \ldots . \text { Y AXIS OUTPUT } \\
& \text { A1J5 } \ldots \ldots . \text { X AXIS OUTPUT }
\end{aligned}
$$

2-12. OPERATING ENVIRONMENT.

2-13. Temperature. The instrument may be operated in temperatures from $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$.

The airflow recommendations stated above must be adhered to in order to prevent damage to the instrument.

NOTE

The $65^{\circ} \mathrm{C}\left(+149^{\circ} \mathrm{F}\right)$ temperature specification reflects the maximum allowable operating temperature with the 1349A/D enclosed, not the ambient temperature of the system housing. It is recommended that a minimum of $.84 \mathrm{~m}^{3} / \mathrm{min}\left(30 \mathrm{ft}^{3} / \mathrm{min}\right)$ of air flow is forced around and through the instrument to ensure that the maximum operating temperature of $65^{\circ} \mathrm{C}\left(+149^{\circ} \mathrm{F}\right)$ is not exeeded.

Ambient temperature measurements should be taken at several points in the instrument. Use the following information as a guide for making these measurements:

Measure temperature at:
a. Between the High Voltage cover and Focus Gain Adjustment.
b. $0.64 \mathrm{~cm}(0.25 \mathrm{in}$.) above A4R31.
c. Between Vector Processor Board (A2)
and the Memory Board (A5) near A2U16.
d. 0.64 cm (0.25 in .) above A1U23.

The surface temperature near A1U26 and A1U33 typically may be $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$ or more above the ambient temperature. It is therefore recommended that heat-sensitive devices or circuits not be placed in close proximity to these points.

2-14. Humidity. The instrument may be operated in environments with humidity up to 95%. However, the instrument should also be protected from temperature extremes which cause condensation within the instrument.

2-15. Altitude. The instrument may be operated at altitudes up to 4600 m (15000 ft).

2-16. STORAGE AND SHIPMENT.

2-17. Environment. The instrument may be stored or shipped in environments within the following limits:

$$
\begin{array}{lr}
\text { Temperature }-40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F}\right) \\
\text { Humidity } & \text { up to } 95 \% \text { relative humidity at } \\
& +50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right) \\
\text { Altitude } & 15300 \mathrm{~m}(50000 \mathrm{ft})
\end{array}
$$

The instrument should also be protected from temperature extremes which causes condensation within the instrument.

2-18. PACKAGING.

2-19. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to ensure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-20. Other Packaging. The following general instructions should be used for repacking with commercially available materials.
a. Wrap instrument in antistatic plastic. (If shipping to Hewlett-Packard office or service center, attach a tag indicating type of service required, return address, model number, and full serial number).
b. Use a strong shipping container. A double-wall carton made of 350 -pound test material is adequate.
c. Use a layer of shock-absorbing material 70 to 100 mm (3 to 4 inches) thick around all sides of the instrument to provide firm cushioning and prevent movement inside the container. Protect control panel with cardboard.
d. Seal shipping container securely.
e. Mark shipping container FRAGILE to ensure careful handling.
f. In any correspondence, refer to instrument by model number and full serial number.

SECTION III

OPERATION

3-1. INTRODUCTION.

$3-2$. The purpose of this section is to give detailed information concerning the operation and programming of the $1349 \mathrm{~A} / \mathrm{D}$. It includes a list of the programming instructions and a section containing a brief explanation of "bit programming". The end of this section contains several programming examples.

WARNING

SHOCK HAZARD

Before operating the instrument, connect the chassis of the display to a safety ground in the system.

3-3. SIGNAL LINE DEFINITIONS.

D0-D15

D0 through D14 are the vector data lines (TTL positive logic). D15 is used as a Vector Memory instruction. When D15 is a " 1 " then the input data is recognized as a memory command. When D15 is a " 0 " then all the input data forms the picture.

DISCONNECT SENSE

This line must be grounded to the display chassis when the data lines are active. The internal Performance Verification pattern will be displayed if the 26 -pin connector is disconnected.

SYNC

External display refresh synchronization signal line. The line provides an external refresh clock when external sync mode has been selected via a jumper wire on the Vector Memory board.

LXACK

Acknowledge signal line. When low, this line indicates that the Vector Memory has completed the Read or Write operation requested by the user processor.

LDS

Device Select signal line. When low this line enables the Vector Memory to communicate with the user processor (write/read).

LWR

Memory Write signal line. When low, this line indicates that the 16-bit Data Bus contents are to be written into either the current Vector Memory location ($\mathrm{D} 15=0$) or into the User Address Pointer (D15=1).

LRD

Memory Read signal line. When low, this line indicates that the contents of the current Vector Memory location (as specified by the User Address Pointer) are to be placed on the 16 -bit Data Bus for transmission back to the user processor.

NOTE

Whenever a Vector Memory location has been either written into or read from by the user processor, the User Address Pointer auto-increments to the next Vector Memory location (address).

3-4. HANDSHAKE TIMING FOR 1349D.

The TTL digital interface to the Vector Memory (1349D) is compatible with most microprocessor peripheral interface adaptor chips (the Motorola $® 6821$).

Vector Memory digital interface consists of:

1. A 16-bit bidirectional Data Bus.
2. A Read Signal line LRD (input).
3. A Write signal line LWR (input).
4. A Device Select signal line LDS (input).
5. An Acknowledge signal line LXACK (output).
6. An External display Synchronization signal line SYNC (input use is optional).

READ COMMPND TIMING

M1349001
Read Command Timing
Tdss - Device Select Setup Time 0 nsec min Tdsh - Device Select Hold Time 0 nsec min Trd - Read Pulse Time (ACK not used) 495 nsec min (ACK used) 760 nsec min
Trdp - Read Precharge Time 25 nsec min
Tac - Read Access Time 760 nsec max
Tdh - Read Data Hold Time 30 nsec min
Tah - Acknowledge Hold Time 40 nsec min 130 nsec max
Tack - Acknowledge Delay Time 455 nsec min 855 nsec max

Figure 3-1. Read Command Timing

WRITE COMMPND TIMING

M1349001

Write Command Timing

Tdss - Device Select Setup Time 0 nsec min
Tdsh - Device Select Hold Time 0 nsec min
Tcy - Write Cycle Time 820 nsec min
Twe - Write Command Active Time .. 795 nsec min
Tds - Data In Setup Time 0 nsec max
Tdh - Data In Hold Time 0 nsec min
Tack - acknowledge Delay Time 455 nsec min
855 nsec max
Tah - Acknowledge Hold Time......... . 40 nsec min
130 nsec max

Figure 3-2. Write Command Timing

Figure 3-3. Refresh Mode Selection

3-5. PICTURE REFRESH REQUIREMENTS FOR 1349D.

Each time that the picture is redrawn by the 1349D, the display is refreshed. This prevents the phosphor light output from expiring. The refresh sync signal may be provided by either the internal refresh circuit, or an external source. To select the required mode of operation for refresh mode, set the Int/Ext switch (A5S1) on the Memory Board (A5) as shown in figure 3-3.

INTERNAL SYNC. When the jumper is in the Internal position, an on-board oscillator (A5U1) provides sync pulses at approximately a 60 Hz rate. The user processor can send all picture producing data to the Vector Memory at one time. The Vector Memory will then continuously refresh the display screen by redrawing the picture at regular intervals. This reduces overhead time for the user processor.

EXTERNAL SYNC. Sync pulses (TTL) must be supplied from an external source in the user system via
the SYNC input signal line. This signal is useful when the display is used in electromagnetic fields which can cause the picture to "swim". Synchronizing the display with the interfering signal can stabilize the picture.

3-6. REFRESH MODES FOR 1349D.

The Vector Memory sends its data to the Vector Processor (VPC) each time the picture is to be drawn on screen. Data is send to the VPC either via synchronous mode or free running mode.

SYNCHRONOUS MODE. In synchronous mode, the Vector Memory waits until a synchronizing pulseoccurs before it will begin its next data output cycle to the 1349A/D. Synchronous refresh mode is entered when the Refresh Pointer equals 8191. After sending the contents of address 8191 to the VPC, the Vector Memory waits for the next sync pulse before starting a new refresh cycle at address 0000 .

Pictures A and B will be displayed at an even brightness (sync rate $=$ refresh rate) even though picture A requires less drawing time (See Figure 3-4).

Figure 3-4. Synchronous Refresh Example

Figure 3-5. Asynchronous Refresh Example

FREE RUNNING MODE. Free Running mode is when the picture cannot be drawn in the time interval between sync pulses. The memory circuit automatically enters this mode whenever a sync edge arrives before the refresh counter reaches its highest address (8191). In this mode, the memory will not wait for a sync edge when it finishes the picture, but will immediately start drawing the picture again.

This sync override feature allows all simple pictures to be displayed at an even brightness (say 60 Hertz refresh rate), and complex pictures to be displayed at a level of brightness that depends only on the time it takes to draw the picture on the display.

3-7. MEMORY INITIALIZATION.

When the Vector Memory is powered up, its contents are in an unknown random state. There are several methods of memory initialization.
One method is to fill the entire memory with "jump to $8191^{\prime \prime}$ instructions. The benefit of using this method of initialization is that as the user fills the Vector Memory with picture information, the Vector Memory will always "jump to 8191" after drawing the picture, no matter how many words are used to form the picture. This ensures that the picture will be displayed at the optimum refresh rate.
Another way of initializing the Vector Memory is to write all zeros to all words. This data will be sent to the 1349 D , but will draw nothing on screen (effectively a noop). Each "no-op" will take about one microsecond, thus 8000 "no-ops" (8000 words in Vector Memory) will use up to 8 milliseconds of display time, producing a dimmer picture if in the free running mode.

The Vector Memory can be tested by the user processor as part of power-on self test routine. For example, first write all zeros to all words. Then "chase a one" through memory to check each cell. Also, the User Address Pointer can be checked by writing data sequentially through the memory and then using the Pointer Instruction to move the pointer, and reading the contents of the word selected by the pointer. BE CAREFUL - 11XXXXXXXXXXXXXX (set address pointer) will not be written into the memory and 011XXXXXX1 XXXXXX (set condition) is illegal.

3-8. 1349A/D COMMAND SET.

The $1349 \mathrm{~A} / \mathrm{D}$ creates pictures by a technique called random vector plotting. A line is defined by its endpoints in 2048 by 2048 cartesian coordinate system. The origin $(0,0)$ is in the lower lefthand corner. All points are positive reference. The 1349A/D references each vector by starting point, ending point, intensity level, line type, and writing speed. The 1349A/D has the following programming command set.

The 1349A/D recognizes D0-D14 on its input Data Bus as being one of four commands:

Command	Bit 14	Bit 13
1. Set Condition	1	1
2. Plot	0	0
3. Graph	0	1
4. Text	1	0

SET CONDITION.

The Set Condition command controls the intensity level, the line type, and the writing speed of vectors drawn on the CRT.

$$
\text { B14 = } 1, \mathrm{~B} 13=1: \text { SET CONDITION COMMAND. }
$$

With both MSBs (Most Significant Bits) set to one, the 1349A/D is commanded to draw all following vectors according to the configuration commanded until changed by subsequent condition command.

NOTE

A one $(1)=$ TTL high; a zero $(0)=$ TTL low.

$$
\begin{array}{ccccccccccccccc}
\text { B14 } & \text { B13 } & \text { B12 } & \text { B11 } & \text { B10 } & \text { B9 } & \text { B8 } & \text { B7 } & \text { B6 } & \text { B5 } & \text { B4 } & \text { B3 } & \text { B2 } & \text { B1 } & \text { B0 } \\
\hline 1 & 1 & \text { I1 } & \text { I0 } & \text { X } & \text { L2 } & \text { L1 } & \text { L0 } & 0 & \text { X } & \text { W1 } & \text { W0 } & \text { X } & \text { X } & \text { X }
\end{array}
$$

$\mathrm{X}=$ DON'T CARE
B6 MUST be zero.

B14 $=1$, B13 $=1$: Set display configuration according to choices specified for intensity, line type, and writing speed.

$\mathbf{1 1}$	$\mathbf{1 0}$	Intensity
0	0	Blank
0	1	Dim
1	0	Half Brightness
1	1	Full Brightness

L2	L1	L0	Line Type
0	0	0	Solid Line
0	0	1	Intensify Endpoints (solid line)
0	1	0	Long Dashes
0	1	1	Short Dashes
1	0	1	Dots on endpoints

W1	W0	Writing Speed
1	1	0.19 cm per microsecond
1	0	0.34 cm per microsecond
0	1	0.52 cm per microsecond
0	0	0.69 cm per microsecond

When the line type"solid line with intensified endpoints" is selected, the intensity of the endpoints may vary due to optical illusion. As lines are linked together the intensity of the point where one line ends and the next line starts is a function of the angle separating the lines. The closer the angle is to 180 degrees, the brighter the point. The closer the angle is to zero degrees (absolute), the dimmer the point.

PLOT COMMAND $(B 14=0 . B 13=0)$.

With both MSBs set to zero, the 1349A/D is commanded to move the display beam to a specific X-Y location each time that a Y coordinate is received. The beam position may be moved with the beam either turned off or turned on. The Plot command will draw all vectors according to the display configuration established by the last Set Condition command received by the 1349A/D. Each time that a Y coordinate is received, the pen status (beam on or off) for the beam movement is established. Also, the X-Y location to be moved to is formed from the last X coordinate received and the current Y coordinate. For example, to draw a vertical line send the 1349A/D: (1) Plot Command - X value; (2) Plot Command - Y1 value (with beam off); (3) Plot Command-Y2 value (with beam on).

$$
\begin{array}{ccccccccccccccc}
\text { B14 } & \text { B13 } & \text { B12 } & \text { B11 } & \text { B10 } & \text { B9 } & \text { B8 } & \text { B7 } & \text { B6 } & \text { B5 } & \text { B4 } & \text { B3 } & \text { B2 } & \text { B1 } & \text { B0 } \\
\hline 0 & 0 & \text { XY } & \text { PC } & \text { D10 } & \text { D9 } & \text { D8 } & \text { D7 } & \text { D6 } & \text { D5 } & \text { D4 } 4 & \text { D3 } 3 & \text { D2 } 2 & \text { D1 } & \text { D0 } \\
& & & & & & & & & & & & & & \\
& & & \text { DATA } & & & & & & & & \\
& & & & & & & & & & & & \text { LSB }
\end{array}
$$

$\mathrm{B} 14=0, \mathrm{~B} 13=0$: Plot Command.

XY
$0=X$ coordinate ($0-2047$) as specified by D0 - D10.
$1=Y$ coordinate $(0-2047)$ as specified by D0-D10.

PC (Pen Control Bit B11)
$0=$ Move (draw vector with pen up).
$1=$ Draw (draw vector with pen down).

Figure 3-6. Vector Drawing Area

GRAPH COMMAND (B14=0, B13=1).

With the two MSBs set to zero and one respectively, the $1349 \mathrm{~A} / \mathrm{D}$ is commanded to either: (a) set the DELTA-X increment; or (b) move the beam to a specific X-Y location determined by the X increment and the Y coordinate.

The beam position may be moved with the beam either turned off or turned on. Beam status for the beam movement is established each time a Y coordinate graph command is received.

The Graph command will draw all vectors according to the display configuration established by the last Set Condition command received by the 1349A/D.

| B 14 | B 13 | B 12 | B 11 | B 10 | B 9 | B | $\mathrm{B7}$ | B 6 | B 5 | $\mathrm{B4}$ | $\mathrm{B3}$ | B 2 | B 1 | $\mathrm{B0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$0 \quad 1 \quad$ XY PC D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

DATA

MSB LSB

B14 $=0$, B13=1: Graph Command.
XY
$0=$ set automatic DELTA-X increment (as specified by D0-D10) for all subsequent Y coordinate Graph commands received.
$1=\mathrm{Y}$ coordinate (as specified by D0-D10) to which the beam is to be moved in conjunction with the DELTA-X increment.

PC (Pen Control Bit B11).
$0=$ Move (draw the vector with beam off).
1 = Draw (draw the vector with beam on).
Example:
To graph, first move the beam to a starting position P 1 (Plot Commands: X value; Y value with beam of). Then send the 1349A/D:

1) DELTA-X Graph command.
2) Y1 Graph command with the beam on. This moves the beam to point G1. Note that there is no DELTA-X increment with the first Y Graph command.
3) Y2 Graph command with the beam on. This moves the beam to point G2.
4) Y3 Graph command with the beam on. This moves the beam to point G3.
5) Y4 Graph command with the beam on. This moves the beam to point G4.

This will give a picture as shown below.

Figure 3.7. Graphing Example

TEXT COMMAND (B14 = 1, B13 = 0):

With the two MSBs set to one and zero respectively, the $1349 \mathrm{~A} / \mathrm{D}$ is commanded to draw all the vectors necessary to produce the character specified.

The 1349A/D automatically provides space to the right of each character for character spacing.

The Text command will draw the characters at the intensity level established by the last Set Condition Command, at the slowest writing speed and in the last line type specified (except dots).

Instead of specifying a character to be drawn, the Text command character code can be replaced by a beam movement control code. These codes that move the beam (with the beam off) are Carriage Return (CR), Line Feed (LF), Inverse Line Feed, Backspace (BS), $1 / 2$ shift up, and $1 / 2$ shift down. The amount and direction of beam movement depends on the character size and orientation specified. Line Feed and Inverse Line Feed provide automatic spacing between lines of text (spacing $=$ height of one character between lines).

The starting point for non-rotated characters is the lower left-hand corner of the character area. For rotated characters the entire character area is rotated the specified number of degrees (90, 180, or 270) in a counterclockwise direction around the starting point.

When the 1349A/D has finished drawing a character it automatically advances the beam to the starting point for the next character. In this way the $1349 \mathrm{~A} / \mathrm{D}$ functions much like a typewriter when presenting text. The modified ASCII character set for the 1349A/D is shown in table 3-1.

| B 14 | B 13 | B 12 | B 11 | B 10 | B 9 | B 8 | B 7 | B 6 | B 5 | B 4 | B 3 | B 2 | B 1 | B 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CHARACTER
MSB LSB

B14=1, B13=0 : commands that the 1349A display a text character (specified by D0 - D7)

ES (Establish size of character Bit B8).
$0=$ use previous size and rotation.
$1=$ establish new size and rotation according to S1-S0 and R1-R0.

R1	R0	Character Rotation (CCW)
0	0	0 degrees
0	1	90 degrees
1	0	180 degrees
1	1	270 degrees

S1	S0	Size	Width \mathbf{X} Height (in addressable points)		
0	0	1 X	30	X	32
0	1	1.5 X	45	X	48
1	0	2 X	60	X	64
1	1	2.5 X	75	X	80

Example:
1 X character spacing (in addressable points)

Figure 3-8. Example of Character Spacing
CALCULATING THE STARTING POINT FOR TEXT.
If we wish to display the characters " 1349 A " in the center of the display, proceed as follows.

Let's choose the 2.5 X (largest) character size. Each character will be 75 X 80 addressable points.

Calculation:

$$
\begin{aligned}
& \text { center screen }=1024,1024(\mathrm{X}, \mathrm{Y}) \\
& \begin{aligned}
\mathrm{X} & =1024 \cdot(2.5 \text { chars. X } 75 \text { points/char. }) \\
& =1024-188 \\
& =836 \\
\mathrm{Y} & =1024-(0.5 \text { char. X } 80 \text { points } / \text { char. }) \\
& =1024-40 \\
& =984
\end{aligned}
\end{aligned}
$$

Send the 1349A/D a Plot X command with $\mathrm{X}=836$. The Octal code to do this is 01504.

Send the 1349A/D a Plot Y command with the beam off and $\mathrm{Y}=984$. The Octal code to do this is 11730 .

Then send the Text commands to produce each of the characters.

Table 3-1. 1349A/D Character Set

0		32	Space	64	@	96	- NOTE 2
1	HP logo	33	!	65	A	97	a
2	beta	34	"	66	B	98	b
3		35	\#	67	C	99	c
4	upper-half tic	36	\$	68	D	100	d
5	lower-half tic	37	\%	69	E	101	e
6	left-half tic	38	\&	70	F	102	f
7	right-half tic	39	,	71	G	103	g
8	back space	40	(72	H	104	h
9	$1 / 2$ shift down	41)	73	I	105	i
10	line feed	42	*	74	J	106	j
11	inv. line feed	43	+	75	K	107	k
12	$1 / 2$ shift up	44	,	76	L	108	1
13	carriage return	45	-	77	M	109	m
14	horizontal tic	46	.	78	N	110	n
15	vertical tic	47	/	79	O	111	o
16	centered *	48	0	80	P	112	p
17	centered o	49	1	81	Q	113	q
18	up arrow	50	2	82	R	114	r
19	left arrow	51	3	83	S	115	s
20	down arrow	52	4	84	T	116	t
21	right arrow	53	5	85	U	117	u
22	square root	54	6	86	V	118	v
23	pi	55	7	87	W	119	w
24	delta	56	8	88	X	120	x
25	mu	57	9	89	Y	121	y
26	${ }^{\circ}$ (degree)	58	:	90	Z	122	z
27	ohm	59	;	91	[123	\{
28	rho	60	<	92	-	124	I
29	gamma	61	$=$	93]	125	5
30	theta	62	>	94	\wedge	126	box
31	lamda	63	?	95	- NOTE 1	127	shaded triangle

NOTES: 1. $95=$ Underline character with Auto Back Space
2. $96=$ Slanted in opposite direction of character 39.

The characters listed beiow cause wraparound if positioned too close to the edge of the Vector Drawing area. Wraparound appears as vectors drawn completely across the display. This condition can also be caused by vectors drawn outside the screen area.

Character Number	Character	Character Number	Character
1	HP Logo	41)
2	beta	44	(comma)
4	upper-half tic	59	(semicolon)
5	lower-half tic	91	[
6	left-half tic	93]
7	right-half tic	95	- (underline)
14	horizontal tic	103	g
15	vertical tic	106	j
16	centered *	112	p
17	centered o	113	q
25	mu	121	y
26	${ }^{\circ}$ (degree)	123	\{
28	rho	125	\}
40	(

3-9. VECTOR DRAWING EXAMPLES.

Example 1.

To draw a square on the display, use the following procedure.
a. Send the $1349 \mathrm{~A} / \mathrm{D}$ a Set Condition command to configure display brightness, line type, and writing rate.
b. Send the 1349A/D a Plot X1 command.
c. Send the $1349 \mathrm{~A} / \mathrm{D}$ a Plot Y1 command with the beam off. This moves the beam to the starting point of the square.
d. Send the $1349 \mathrm{~A} / \mathrm{D}$ a Plot Y 2 command with the beam on. This moves the beam to the X1,Y2 point shown in the diagram below (draws vector " 1 ").
e. Send the 1349A/D a Plot X2 command, then a Plot Y2 (beam on) command. This moves the beam to $\mathrm{X} 2, \mathrm{Y} 2$ (draws vector " 2 ").
f. Send the 1349A/D a Plot Y1 command with the beam on. This moves the beam to X2,Y1 (draws vector " 3 ").
g. Send the 1349A/D a Plot X1 command, then a Plot Yi (beam on) command. This moves the beam back to the starting point (draws vector " 4 ").

Figure 3-9. Drawing a Square on the Display

Example 2.
To draw two horizontal lines on the display, modify steps " d " and " f " in example 1 so that the $1349 A / D$ receives the Plot Y command with beam off instead of beam on.

Figure 3-10. Drawing two horizontal lines on the Display

3-10. PROGRAMMING THE 1349D.

In the case of the 1349D, all commands from the user processor go to the Vector Memory as either a write operation or a read operation.

3-11. WRITE OPERATION.

The Write Operation allows the 16 bits on the data bus to be written into either the Vector Memory or the Address Pointer. A Vector Memory word can be either a Picture Data Word or an Internal Jump Word.

PICTURE DATA WORD. When bit M15 is set low, the other 15 data bits (M14-M0) must conform to the 1349A/D commands covered earlier in this section under Data Bit Definitions for 1349A/D commands.

M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0

(See 1349A/D Commands).
When the display is refreshed, this data is sent from the Memory Board to the VPC for vector/character generation. If internal sync mode is selected, display refresh is accomplished without attention from the user processor once the picture has been loaded into Vector Memory. The write operation is controlled by the handshake sequence as presented in figure 3-2.

INTERNAL JUMPWORD. When M15 is high and M14 is low, then data bits M12 through M0 designate the address of the next word in Vector Memory that will be sent to the VPC. This allows the Memory to skip blocks of picture data on each pass through its address range when it is refreshing the display. Certain data in Memory is effectively suppressed until the user processor wants that data to be displayed. Refer to paragraph 3-14 for an example of using the Jump Instruction. When needed, a suppressed block of data can be added to the picture by changing only the Vector Memory Word that contains the internal jump code. An internal jump does not affect the User Pointer Address.

M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0
$100 \quad \mathrm{X} \quad \mathrm{X}$ Al1 Al0 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

$\mathrm{X}=\mathrm{DON}$ 'T CARE

> M15 $=1$, M14 $=0:$ Internal Jump to vector address specified by A11 through A0 during refresh.

POINTER INSTRUCTION. When bits M15 and M14 are both high, then data bits M12 through M0 designate the address to which the User Address Pointer will move. The value in the pointer register specifies the next address in Vector Memory that will be written into (or read from) by the user processor. The pointer increments to the next Vector Memory address after each read or write operation commanded by the user processor.

M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 Mo

X = DON'T CARE
Set pointer register to the Vector Memory address value specified by A11 through A0.

NOTE

The address is placed in the User Address Pointer, not the Vector Memory.

3-12. READ OPERATION.

The Address Pointer value specifies the word to be read from Vector Memory. The pointer increments with each Write or Read operation to the Vector Memory. Positioning of the Address Pointer to a specific location can also be accomplished via a write operation and the pointer instruction. This allows a selected word to be read from Vector Memory. The read operation is controlled by the handshake sequence as presented in figure 3-1.

3-13. PROGRAMMING SUMMARY.

A programming summary for the $1349 \mathrm{~A} / \mathrm{D}$ instruction set and commands is given in table 3-2.

Table 3-2. Truth Table for 1349A/D Instructions and Commands

BIT			NUMBER		1349A/D INSTRUCTION OR
M15	M14	M13	COMMAND		
0	0	0	PLOT		
0	0	1	GRAPH		
0	1	0	TEXT		
0	1	1	SET CONDITION		
1	0	0	INTERNAL JUMP		
1	0	1	INTERNAL JUMP		
1	1	0	SET POINTER		
1	1	1	SET POINTER		

3-14. USING THE JUMP INSTRUCTION.

The Internal Jump instruction resides in the Vector Memory. When it is encountered in the course of refreshing the $1349 \mathrm{~A} / \mathrm{D}$ it is not sent to the VPC. Instead, it causes the Vector Memory to do an absolute jump to a new location. The Vector Memory then resumes sending data to the VPC. This allows the user to store pictures in the Vector Memory but not display them until ready (by jumping past them). See the example below.

Address	VECTOR MEMORY Contents
0000	Jump to 1002
$\begin{gathered} 0001 \\ \text { to } \\ 1000 \end{gathered}$	Picture A
1001	Jump to 1002
$\begin{gathered} 1002 \\ \text { to } \\ 2002 \end{gathered}$	Picture B
2003	Jump to 2062
$\begin{gathered} 2004 \\ \text { to } \\ 2060 \end{gathered}$	Graticule A
2061	Jump to 2062
$\begin{gathered} 2062 \\ \text { to } \\ 2147 \end{gathered}$	Graticule B
2148	Jump to 8191
$\begin{gathered} 2149 \\ \text { to } \\ 2255 \end{gathered}$	Set of labels
2256	Jump to 8191
$\begin{gathered} 2257 \\ \text { to } \\ 8190 \end{gathered}$	Unused Memory
8191	No-Op

By putting jump instructions around each block of data, it allows the user to turn parts of the complete picture on or off by writing only one or two words to the Vector Memory. Picture A might be used as a standard to compare against picture B which is being updated in real time. For this application, picture A can be turned on whenever it is needed by changing the contents of address 0000 to be "Jump to 0001 ".

NOTE

Vector Memory location 0000 is the first location sent to the 1349A/D in each refresh cycle. The Vector Memory then auto-increments to location 0001, 0002, etc.

3-15. OPTIMIZING PICTURE QUALITY

Due to differing conditions of ambient light when the 1349A/D is displaying pictures, the programmer may have to experiment with the Intensity and Writing Speed parameters of the Set Condition command.

For example, in an environment of high ambient light, the $1349 \mathrm{~A} / \mathrm{D}$ should be set to the highest brightness level and slowest writing speed.

3-16. OCTAL AND HEXADECIMAL RANGES FOR 1349A/D COMMANDS.

1349A/D Command	Octal Range	Hexadecimal Range
Plot	$00000-07777$	$0000-0 \mathrm{FFF}$
X (beam off)	$10000-13777$	$1000-17 \mathrm{FF}$
Y Y (beam on)	$14000-17777$	$1800-1 \mathrm{FFF}$
Graph		
Set DELTA-X	$20000-27777$	$2000-2 \mathrm{FFF}$
Y (beam off)	$30000-33777$	$3000-37 \mathrm{FF}$
Y (beam on)	$34000-37777$	$3800-3 \mathrm{FFF}$
Text	$40000-57777$	$4000-5 \mathrm{FFF}$
Set Condition	$60000-77777$	$6000-7 \mathrm{FFF}$
Internal Jump	$100000-120000$	$8000-\mathrm{A} 000$
Set Pointer	$140000-160000$	$\mathrm{C} 000-\mathrm{E} 000$

3-17. OPERATING CONSIDERATIONS FOR THE 1349A.

Model 1349A is not equipped with the Vector Memory Board.

3-18. SIGNAL LINE DEFINITIONS.

D0-D15.

D0 through D15 are the vector data lines (TTL positive logic). Bit D15 is used only with the Memory Board.

LDAV

Data Valid Signal Line (active low). Signal from user processor to 1349A. New output data is available on data bus.

LRFD

Ready for data signal line (active low). Signal to user processor. 1349A is ready for next data transfer.

DISCONNECT SENSE.

This line must be grounded when above signal lines are active. The internal performance verification pattern will be displayed if this line in not grounded.

3-19. HANDSHAKE TIMING FOR 1349A.

$\overline{\mathrm{RFD}}$ and $\overline{\mathrm{DAV}}$ (Ready For Data, Data Valid) Handshake.

> Internal 1345A
> Power-on Reset

Tr - Ready Time (1349A Power-on
delay) 400 nsec min 100 usec max

3-20. TRANSFER SEQUENCE.

1. 1349A sets RFD low to indicate that it is ready for a word from the 16 -bit Data Bus.
2. User processor sets DAV low to indicate that the contents of the 16 -bit Data Bus are valid.
3. 1349A returns RFD high to indicate that it has accepted the word from the 16 -bit Data Bus.
4. User processor returns DAV high so that the 1349A can initiate the next transfer.
5. 1349A sets RFD low to indicate that it is ready for a word from the 16 -bit Data Bus.

3-21. RESTRICTIONS.

1. User processor can set DAV low at the same time or after 1349A sets RFD low, but NOT BEFORE.
2. User processor can return DAV high at the same time or after 1349A returns RFD high, but NOT BEFORE.

NOTE
While DAV remains low, the 1349A will not act on the command from the Data Bus, even though it has signalled that it has accepted the word from the Data Bus. It is recommended that the host system keep Th to a minimum.
3. 1349A will not set RFD low unless DAV is high.
4. Data on the 16-bit Data Bus must remain valid as long as DAV is low.

NOTE
For maximum speed and performance, it is advisable that the host system use EDGE TRIGGERED logic.

SECTION IV PERFORMANCE VERIFICATION

4-1. INTRODUCTION.

$4-2$. The Performance Verification Procedures in this section test the instrument's electrical performance. The procedures provide approximately 90% assurance of proper 1349A/D operation.

4-3. EQUIPMENT REQUIRED.

4-4. Equipment required for the performance tests is listed in Section I, table 1-4. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended models.

4-5. CALIBRATION CYCLE.

4-6. Periodic performance verification is not normally required for this instrument. Performance tests should be performed after service work has been performed or if improper operation is suspected.

4-7. Further checks that require access to the interior of the instrument are included in the adjustment section, but are not required for the performance verification.

WARNING

ELECTRICAL SHOCK HAZARD

This instrument is designed and manufactured for OEM systems. Protective covers are not provided and internal hazardous voltages are exposed when power is applied. Component replacement, including fuses, and internal adjustments must be made by qualified maintenance personnel.

4-8. PERFORMANCE TEST PROCEDURES.

PERFORMANCE TESTS

4-9. PERFORMANCE VERIFICATION.

DESCRIPTION:

The following procedure is directed at obtaining the correct performance verification pattern on the 1349A/D screen.

EQUIPMENT REQUIRED:

Power Supply
Power Connector

PROCEDURE:

a. Adjust power supply outputs to values shown in table 4-1.

Table 4-1. Power Supply Output

Operating Voltages		Max P-P Ripple	Max Current	
	Voltage			1349 D
+15 VDC	$+-5 \%$	10 mV	1.3 A	1.3 A
-15 VDC	$+-5 \%$	10 mV	350 mA	350 mA
+5 VDC	$+-5 \%$	50 mV	2.0 A	750 mA

b. Connect power supply to the $1349 \mathrm{~A} / \mathrm{D}$ and turn on power. (See figure $4-1$ for power connections.)

PERFORMANCE TESTS

Figure 4-1. 1349A/D Power Connections
c. Check for a display as shown in figure 4-2.

Figure 4-2. 1349A/D Primary Test Pattern
The 1349A/D cycles through the four Commands: Set Condition, Plot, Graph and Text Command. The relationship of the test pattern and the 1349A/D Commands is shown in figure 4-3. If any portion of the test pattern is not displayed, refer to Section VIII, Service and Troubleshooting.

Figure 4-3. 1349A/D Command Check-out
d. If a test pattern as shown in figure 4-4 is displayed, then the memory circuit is defective. Refer to Section VIII, Service and Troubleshooting.

Figure 4-4. Memory Fail Test Pattern (1349D only)

4-10. RESOLUTION VERIFICATION.

DESCRIPTION:

An internal test pattern is used to check resolution.

EQUIPMENT REQUIRED:

Power Supply
Power Connector

PROCEDURE:

a. Disconnect the 1349A/D I/O Port (A2J4) and apply power.
b. Short A2J6-1 to A2J6-2 and display the focus and resolution test pattern (see figure 4-5).
c. To check resolution:

The $1349 \mathrm{~A} / \mathrm{D}$ passes the resolution test if every one of the lines in the 13 boxes can be resolved. Should the test fail, perform the Focus and Astigmatism Adjustments described in Section V of this manual.

Figure 4-5. 1349A/D Focus and Resolution Test Pattern

SECTION V

ADJUSTMENTS

5-1. INTRODUCTION.

5-2. This section describes adjustments and checks required to return the $1349 \mathrm{~A} / \mathrm{D}$ to peak operating capabilities when repairs have been made. Included in this section are equipment setups and adjustment procedures.

5-3. SAFETY REQUIREMENTS.

5-4. Although this instrument has been designed in accordance with international safety standards, general safety precautions must be observed during all phases of operation, service and repair of the instrument. Failure to comply with the precautions listed in the Safety Summary at the front of this manual or with specific warnings given throughout this manual could result in serious injury or death. Service and adjustments should be performed only by qualified service personnel.

5-5 EQUIPMENT REQUIRED.

5-6. A complete list of required test equipment is given in Section 1, table 1-4. Test equipment equivalent to that recommended may be substituted, provided it meets the required characteristics. For best results, use recently calibrated test equipment.

5-7. ADJUSTMENTS.

$5-8$. The adjustment procedures are arranged in a recommended sequence of adjustments. While most adjustments may be made independent of other adjustments, it is recommended that adjustments be made sequentially as a number of adjustments are directly related to preceeding or following adjustments. For best results, allow the instrument to warm up for 15 minutes before making adjustments. See table 5-1 for sequence of adjustments.

5-9. ADJUSTMENT PROCEDURES.

WARNING

SHOCK HAZARD
This instrument is designed and manufactured for OEM systems. Protective covers are not provided and internal hazardous voltages are exposed when power is applied. Voltages up to 20 kV are present around the CRT and HVPS areas and are capable of causing serious injury or death. Before any connections are made to the instrument, the chassis must be connected to a safety ground. Component replacement, including fuses, and internal adjustments must be made by qualified maintenance personnel.

Table 5-1. Sequence of Adjustments

Adjustment	Order of Adjustment	Paragraph No.
Low Voltage Power Supply High Voltage Power Supply	1	$5-10$
Z-Axis Drive and Test	2	$5-11$
Pattern Set-up Preliminary Focus and	3	$5-12$
Astigmatism	4	$5-13$
Intensity Cut-Off Level	5	$5-14$
Trace Alignment and	6	$5-15$
Writing Speed	7	$5-16$
Stroke Generator	8	$5-17$
Stroke Intensity	9	$5-18$
Image Size and Position	10	$5-19$
Vector Closure	11	$5-20$
Fine Focus and Astigmatism	12	$5-20$
Resolution Check	13	$5-21$
Auxiliary X-YZZ Amplifier	Output Check	

ADJUSTMENTS

1349A TOP VIEW

Figure 5-1. 1349A/D Assembly Location Identification

ADJUSTMENTS

5-10. LOW VOLTAGE POWER SUPPLY ADJUSTMENT.

REFERENCE:

Service Sheet 4

DESCRIPTION:

In this procedure the input power supplies are verified and the +105 V power supply is adjusted to $+105 \mathrm{~V} \pm 250 \mathrm{mV}$.

EQUIPMENT:

Digital Voltmeter
Power Supply

PROCEDURE:

a. Preset the Intensity (A1R128) and Intensity Cut-off A1R131 fully ccw. This step is done to protect the CRT when power is applied to the instrument.
b. Apply power to the power connector on the Low Voltage Power Supply Board (A3J1) and check input power supplies as indicated below:

Monitor	Supply	Test Limits
A3TP1	+15 V	$\pm 750 \mathrm{mV}$
A3TP3	+5 V	$0 \mathrm{mV} \pm 250 \mathrm{mV}$
A3TP2	-15 V	$\pm 750 \mathrm{mV}$

c. Monitor A3TP4 with the digital voltmeter and adjust the +105 V supply for $105 \mathrm{~V} \pm 250 \mathrm{mV}$.

Table 5-2. +105 V Adjustment.

Figure 5-2. Low Voltage Power Supply Adjustment Locations

ADJUSTMENTS

5-11. HIGH VOLTAGE POWER SUPPLY ADJUSTMENT.

REFERENCE:

Service Sheet 5.

DESCRIPTION:

This procedure describes the Cathode Voltage adjustment. The Cathode Voltage is set to $-2450 \mathrm{~V}, \pm 25 \mathrm{~V}$.

EQUIPMENT REQUIRED:

Digital Voltmeter
1000:1 Divider Probe
Power Supply
PROCEDURE:
a. Adjust Intensity Cut Off Level (A1R131) and Intensity control (A1R129) to the ccw stop. This step is done to protect the CRT when power is applied (adjustments are on the Analog X-Y-Z Stroke Generator board, A1).
b. Calibrate the 1000:1 divider probe against the +105 V supply. Monitor the cathode voltage at A4TP3 on the H.V.P.S board using the 1000:1 divider probe and adjust High Voltage Adjust (A4R20) - 2450V.

Table 5-3. High Voltage Power Supply Adjustment

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A4R20	High Voltage Adj	$5-11, \mathrm{c}$	5	Adjust for -2450V

Note: High Voltage cover is removed.

Figure 5-3. High Voltage Power Supply Adjustment Locators

ADJUSTMENTS

5-12. Z-AXIS DRIVE ADJUSTMENT AND TEST PATTERN SET-UP.

REFERENCE:

Service Sheets 5, 3C

DESCRIPTION:

The purpose of these adjustments are to set Z-Axis drive and to initially set image size and positioning.

EQUIPMENT REQUIRED:

Power Supply
Oscilloscope

PROCEDURE:

a. Apply power to the instrument. Most of the 1349A/D primary test pattern should be on screen
b. Monitor A4TP2 with the oscilloscope. Set the oscilloscope sweep speed for $0.5 \mathrm{mSec} / \mathrm{Div}$ and $1 \mathrm{~V} /$ Div, using a 10:1 divider probe. DC couple the vertical attenuator.
c. Adjust Intensity Cut-off level (A1R131) so that the bottom level of the waveform is set to +20 VDC with respect to ground, or until rest dot is extinguished (dot above and to the right of $\mathrm{Y}=2047$).
d. Adjust Intensity control (A1R129) so that the peak-to-peak value of the waveform is equal to the value marked on top of the CRT plus 1 V . Use the sticker with the largest voltage value

$$
\text { EXAMPLE: If CRT label reads } 35 \mathrm{~V} / 140 \text {, then set p-p value to } 36 \mathrm{~V} \text {. }
$$

e. Adjust Med Intensity control (A1R181) so that the peak-to-peak value of the first narrow level towards the end of the waveform is equal to the value marked on top of the CRT plus 1 V . Use the sticker with the medium voltage value.
f. Adjust Dim Intensity control (A1R180) so that the peak-to-peak value of the second narrow level towards the end of the waveform is equal to the value marked on top of the CRT plus 1 V . Use the sticker with the smallest voltage value.
g. Adjust Y-Gain (A1R110) for a 12 cm (4.72 in.) high and X-Gain (A1R87) for a 17 cm (6.7 in .) wide display. It may be necessary to to adjust Y-Pos (A1R105) and X-Pos (A1R82) to bring the display on screen. The primary test pattern is shown in figure 5-4
h. Mechanically center X-Current Off-set (A1R56) and Y-Current Off-set (A1R65).

Figure 5-4. 1349A/D Primary Test Pattern

ADJUSTMENTS

P/O Figure 5-5. Z-Axis Drive and Preliminary Focus Adjustment Locations

ADJUSTMENTS

c. Set monitor oscilloscope sweep speed to $2 \mathrm{mSec} / \mathrm{Div}$, and vertical attenuator to $0.2 \mathrm{~V} / \mathrm{Div}$. Use a $10: 1$ divider probe and DC couple the attenuator. Monitor A1TP10 and position the trace on the center graticule line with the vertical position control.
d. Monitor A1TP9 and adjust Y-Focus Off-set (A1R138) so that the bottom of the signal is on the center graticule line.
e. Move the scope probe to A1TP11 and adjust X-Focus Off-set (A1R135) so that the bottom of the signal is on center graticule line. Readjust scope trigger level if necessary
f. Set monitor scope sweep speed to $0.2 \mathrm{mSec} /$ Div and the vertical attenuator to $0.5 \mathrm{~V} / \mathrm{Div}$. DC couple the vertical attenuator and monitor A4TP1 (on High Voltage Board) with a 10:1 divider probe.
g. Set A1R149 fully cw. Adjust A1R149 slowly in the ccw direction and note the signal level where clipping ends Adjust A1R149 so that the bottom of the waveform is 5 VDC above the clipping level.
h. Center adjustments Edge Astig (A1R171) and Center Astig (A1R169).
i. Adjust Focus (A4R42), 45° Astig (A4R54), and Center Astig (A1R169) for best display.

5-13. PRELIMINARY FOCUS AND ASTIGMATISM ADJUSTMENT.

REFERENCE:
Service Sheets 3C, 5.

DESCRIPTION:

These procedures provide the necessary adjustments for preliminary focus and astigmatism set-up. The only signal source required is the primary test pattern.

EQUIPMENT REQUIRED:

Power Supply
Oscilloscope

PROCEDURE:

a. Preset X-Focus Gain (A1R142) fully cw, Y-Focus Gain (A1R145) fully ccw, and Focus Gain on the High Voltage Board (A4R2) fully cw.
b. Apply power to the instrument. The primary test pattern should be displayed on screen.

Figure 5-6. 1349A/D Primary Test Pattern

Set A1R149 fully cw. Adjust A1R149 slowly in the ccw direction and note the signal level where clipping ends.

ADJUSTMENTS				
Table 5-5. Preliminary Focus and Astigmatism Adjustment				
Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R142	X-Focus Gain	5-13, a	3 C	Preset to fully cw
A1R145	Y-Focus Gain	5-13, a	3 C	Preset to fully ccw
A4R2	Focus Gain	5-13, a	5	Preset to fully cw
A1R138	Y-Focus Off-set	5-13, d	3 C	Bottom of signal to A1TP10 DC level
A1R135	X-Focus Off-set	5-13, e	3 C	Bottom of signal to A1TP10 DC level
A1R149	Fine Focus	5-13, g	3 C	5 VDC above signal clipping level
A1R171,A1R169	Edge Astig Center Astig	5-13, h	3 C	Center both adjustments
A4R42 A4R54 A1R169	Focus 45° Astig Center Astig	5-13, i	3C, 5	For best overall display

Table 5-5. Preliminary Focus and Astigmatism Adjustment

Note: Adjustment Locations for A4R2, A4R42, and A4R54 are shown on figure 5-3.
Figure 5-7. Z-Axis Drive and Preliminary Focus Adjustment Locations

5-14. INTENSITY CUT-OFF LEVEL

REFERENCE:

Service Sheets 3C, 5
DESCRIPTION:
The primary test pattern is used as the signal source to adjust the intensity cut-off level
EQUIPMENT REQUIRED:
Power Supply
Oscilloscope

PROCEDURE:

a. Apply power to the instrument and display the primary test pattern
b. Set monitor scope sweep speed to $2 \mathrm{mSec} / \mathrm{Div}$ and set the vertical attenuator to $0.5 \mathrm{~V} / \mathrm{Div}$. DC couple the attenuator and use a 10:1 divider probe to monitor A4TP2 on High Voltage board.
c. Set Intensity Cut-off (A1R131) cw until a dot just appears above and to the right of the note " $\mathrm{Y}=2047$ " in the primary test pattern
d. Readjust Intensity Cut-off (A1R131) until dot is just extinguished. Note the signal level on the monitor scope.
e. Adjust Intensity Cut-off level so that the signal level displayed on the scope is 1 V below the level of visual cut-off.
f. Readjust Focus (A4R42) for best display.

Table 5-6. Intensity Cut-off Level Adjustments										
Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description			$	$	A1R131	Intensity Cut-off
:---	:---									
A1R131	Intensity Cut-off									
A1R131	Intensity Cut-off									
A4R42	Focus									

5-15. TRACE ALIGNMENT AND WRITING SPEED ADJUSTMENT

REFERENCE:

Service Sheets 3B, 5

DESCRIPTION:

The $1349 \mathrm{~A} / \mathrm{D}$ primary test pattern is used for trace alignment and writing speed adjustment. The seven segment line of the test pattern is used to adjust writing speed.

EQUIPMENT REQUIRED

Power Supply.

PROCEDURE:

a. Apply power to the instrument and display the primary test pattern.
b. Adjust Trace Align (A1R160) to align test pattern horizontally.
c. Adjust Writing Speed (A1R70) for the seven segment line as shown in figure 5-8.

Figure 5-8. Writing Speed Adjustment

ADJUSTMENTS
Table 5-7. Trace Align and Writing Speed Adjustment

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R160	Trace Align	5-15, b	5	Align test pattern horizontally
A1R70	Writing Speed	5-15, c	3B	Adjust for the seven segment line in primary test pattern

Note: Adjustment Locations for A4R42 is shown on figure 5-3.

Figure 5-9. Intensity Cut-off Level, Trace Alignment and Writing Speed Adjustment Locations

5-16. STROKE GENERATOR ADJUSTMENTS

REFERENCE:

Service Sheets 3A, 3B.
description:
This procedure describes the adjustments necessaryto ensure proper vector stroke generation.
EQUIPMENT REQUIRED:
Power Supply
PRocedure:

NOTE

The following procedures are referenced to figure 5-10. Perform the following adjustment steps in the same sequence as outlined below:
a. Apply power to the instrument and display the primary test pattern.
b. Adjust A1R36 for parallel adjacent lines of the bottom two boxes in the test pattern.
c. Adjust A1R30 for parallel adjacent lines of the top two boxes in the test pattern.
d. Adjust A1R8 for parallel adjacent lines of the left two boxes in the test pattern.
e. Adjust A1R1 for parallel adjacent lines of the right two boxes in the test pattern
f. All adjacent sides of the boxes in the test pattern should now be parallel. If not, repeat steps b through f.

Figure 5-10. Stroke Generator Adjustments

The following procedures are referenced to figure 5-11. Perform the following adjustment step in the sequence outlined below.
g. Adjust A1R39 so that the left vertical line of the pattern starts exactly the bottom horizontal line in the test pattern.

ADJUSTMENTS

h. Adjust A1R48 so that the left vertical line ends at exactly the top horizontal line in the test pattern.
i. Adjust A1R11 so that the top horizontal line originates at exactly the left vertical line in the test pattern.
j. Adjust A1R20 so that the top horizontal line ends at exactly the right vertical line in the test pattern.
k. The outside box of the pattern should now be closed properly. If not, recheck steps h through k

Figure 5-11. Stroke Length Adjustment
Table 5-8. Stroke Generator and Stroke Length Adjustment

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R36	Y-Stroke	$\begin{aligned} & 5-16, ~ c \\ & \text { Offset } \end{aligned}$	3A	Parallel lines of bottom boxes in the test pattern (figure 5-10)
A1R30	Y-Dac Gain	5-16, d	3A	Parallel line of top boxes in the test pattern (figure 5-10)
A1R8	X-Stroke Offset	5-16, e	3A	Parallel lines of left boxes in the test pattern (figure 5-10)
A1R1	X-Dac Gain	5-16, f	3A	Parallel lines of right boxes in the test pattern (figure 5-10)
A1R39	Y-Ramp Offset	5-16, h	3A	Left vertical line starts at bottom horizontal line in the test pattern (figure 5-11)

ADJUSTMENTS

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R48	Y-Stroke Length	5-16, i	3A	Left Vertical Line ends at top horizontal line in the test pattern (figure 5-11)
A1R11	X-Ramp Offset	5-16, h	3A	Top horizontal line starts at left Vertical line in the test pattern (figure 5-11)
A1R20	X-Stroke Length	5-16, k	3A	Top horizontal line ends at right vertical line in the test pattern (figure 5-11)

5-17. STROKE INTENSITY ADJUSTMENT.
REFERENCE:
Service sheet 3B
DESCRIPTION:
This procedure describes the adjustments necessary to ensure equal intensity of all vectors.
Power supply
PROCEDURE:
NOTE
The following procedures are referenced to figure $5-11$. Perform the following adjustments in the same sequence as outlined below:
a. Apply power to the instrument and obtain the primary test pattern on screen
b. Adjust A1R56 so that the horizontal lines of the four small boxes in the test pattern are of equal intensity
c. Adjust A1R65 so that the vertical lines of the four small boxes in the test pattern are of equal intensity.

Figure 5-12. Stroke Intensity Adjustments

ADJUSTMENTS
Table 5-9. Stroke Intensity Adjustments

Table 5-9. Stroke Intensity Adjustments.						
Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description		

Figure 5-13. Stroke Generator, Stroke Length and Stroke Intensity Adjustment Locations

5-18. IMAGE SIZE AND POSITION ADJUSTMENTS.

REFERENCE:

Service Sheet 3C
DESCRIPTION:
Using the $1349 \mathrm{~A} / \mathrm{D}$ secondary test pattern, the X Gain is set to 17 cm (6.69 in .) and the Y Gain is set to 12 cm (4.72 in .). The test pattern is also centered vertically and horizontally

QUIPMENT REQUIRED:

Power Supply

ROCEDURE

a. Short A2J6-1 to A2J6-2 and apply power to the instrument. The secondary test pattern should be displayed
b. Adjust Y-Pos (A1R105) until the test pattern is vertically centered.
c. Adjust Y-Gain (A1R110) so that the outside box of the pattern is exactly 12 cm (4.72 in .) high. A plastic seethrough ruler cut to length and held against the CRT may be used for this measurement.
d. Adjust X-Pos (A1R82) to center the pattern horizontally.
e. Adjust X-Gain (A1R87) so that the outside box of the test pattern is exactly 17 cm (6.69 in.) wide. Use the same method of measurement as in step c.

Recenter the test pattern as necessary using X-Pos (A1R82) and Y-Pos (A1R105).
NOTE: Adjustment Locations for Image Size and Positioning are shown in figure 5-5.

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R105	Y-Pos	5-18, b	3 C	Center test pattern vertically
A1R110	Y-Gain	5-18, c	3 C	Adjust for a 12 cm (4.72 in.) high display
A1R82	X-Pos	5-18, d	3 C	Center test pattern horizontally
A1R87	X-Gain	5-18, e	3 C	Adjust for a 17 cm (6.69 in.) wide display

ADJUSTMENTS

ADJUSTMENTS
h. Adjust A1R48 so that the left vertical line ends at exactly the top horizontal line in the test pattern.
i. Adjust A1R11 so that the top horizontal line originates at exactly the left vertical line in the test pattern.
j. Adjust A1R20 so that the top horizontal line ends at exactly the right vertical line in the test pattern
k. The outside box of the pattern should now be closed properly. If not, recheck steps h through k.

Figure 5-11. Stroke Length Adjustment
Table 5-8. Stroke Generator and Stroke Length Adjustments

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R36	Y-Stroke	$\begin{aligned} & 5-16, ~ c \\ & \text { Offset } \end{aligned}$	3A	Parallel lines of bottom boxes in the test pattern (figure 5-10)
A1R30	Y-Dac Gain	5-16, d	3A	Parallel line of top boxes in the test pattern (figure 5-10)
A1R8	X-Stroke Offset	5-16, e	3A	Parallel lines of left boxes in the test pattern (figure 5-10)
A1R1	X-Dac Gain	5-16, f	3A	Parallel lines of right boxes in the test pattern (figure 5-10)
A1R39	Y-Ramp Offset	5-16, h	3A	Left vertical line starts at bottom horizontal line in the test pattern (figure 5-11)

Table 5-8. Stroke Generator and Stroke Length Adjustments (Con't)

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R48	Y-Stroke Length	5-16, i	3A	Left Vertical Line ends at top horizontal line in the test pattern (figure 5-11)
A1R11	X-Ramp Offset	5-16, h	3A	Top horizontal line starts at left Vertical line in the test pattern (figure 5-11)
A1R20	X-Stroke Length	5-16, k	3A	Top horizontal line ends at right vertical line in the test pattern (figure 5-11)

5-17. STROKE INTENSITY ADJUSTMENT.

REFERENCE:
Service sheet 3B.
DESCRIPTION:
This procedure describes the adjustments necessary to ensure equal intensity of all vectors.
EQUIPMENT REQUIRED:
Power supply
PROCEDURE:

NOTE

The following procedures are referenced to figure 5-11. Perform the following adjustments in the same sequence as outlined below:
a. Apply power to the instrument and obtain the primary test pattern on screen
b. Adjust A1R56 so that the horizontal lines of the four small boxes in the test pattern are of equal intensity
c. Adjust A1R65 so that the vertical lines of the four small boxes in the test pattern are of equal intensity

Figure 5-12. Stroke Intensity Adjustments

ADJUSTMENTS

Table 5-9. Stroke Intensity Adjustments.

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R56	X-Current Offset	5-17, b	3B	Equal intensity of horizontal lines of four small boxes in the test pattern (figure 5-12)
A1R65	Y-Current Off-set	5-17, c	3B	Equal intensity of vertical lines of four small boxes in the test pattern (figure 5-12)

ADJUSTMENTS

5-18. IMAGE SIZE AND POSITION ADJUSTMENTS.

REFERENCE:

Service Sheet 3C

DESCRIPTION

Using the 1349A/D secondary test pattern, the X Gain is set to 17 cm (6.69 in .) and the Y Gain is set to 12 cm (4.72 in .). The test pattern is also centered vertically and horizontally

QUIPMENT REQUIRED:

Power Supply

Rocedure:

a. Short A2J6-1 to A2J6-2 and apply power to the instrument. The secondary test pattern should be displayed.
b. Adjust Y-Pos (A1R105) until the test pattern is vertically centered.
c. Adjust Y-Gain (A1R110) so that the outside box of the pattern is exactly 12 cm (4.72 in .) high. A plastic seethrough ruler cut to length and held against the CRT may be used for this measurement.
d. Adjust X-Pos (A1R82) to center the pattern horizontally.
e. Adjust X-Gain (A1R87) so that the outside box of the test pattern is exactly 17 cm (6.69 in .) wide. Use the same method of measurement as in step c.
f. Recenter the test pattern as necessary using X-Pos (A1R82) and Y-Pos (A1R105).

NOTE: Adjustment Locations for Image Size and Positioning are shown in figure 5-5.

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R105	Y-Pos	5-18, b	3 C	Center test pattern vertically
A1R110	Y-Gain	5-18, c	3 C	Adjust for a 12 cm (4.72 in.) high display
A1R82	X-Pos	5-18, d	3 C	Center test pattern horizontally
A1R87	X-Gain	5-18, e	3 C	Adjust for a 17 cm (6.69 in .) wide display

5-19. VECTOR CLOSURE

REFERENCE

Service Sheet 3A

DESCRIPTION:

The procedures outlined below describe the adjustments necessary for best overall vector closure between the low speed vectors and high speed vectors. The secondary test pattern is used for this procedure

EQUIPMENT REQUIRED:

Power Supply

PROCEDURE:

a. Short A2J6-1 to A2J6-2 and apply power to the instrument to obtain the secondary test pattern.
b. Adjust Y-Ramp Offset (A1R39) and Y-Stroke Length (A1R48) for best overall vector closure between low speed vector and high speed vectors. Try to keep the low speed box corners closed while adjusting the high speed as close as possible. Refer to figure 5-14.
c. Adjust X-Ramp Offset (A1R11) and X-Stroke Length (A1R20) for best overall closure between the low speed vectors and the high speed vectors. Try to keep the low speed corners closed while bringing the high speed as close as possible. Refer to figure 5-14.

Figure 5-14. X-Y Vector Closure

ADJUSTMENTS

5-20. FINE FOCUS AND ASTIGMATISM ADJUSTMENT AND RESOLUTION CHECK

REFERENCE

Service Sheet 3C, 5

DESCRIPTION:

These procedures provide the necessary adjustments for optimum focus of the display. The secondary test pattern is used as the signal source. A resolution check at the end of this procedure is also included

EQUIPMENT REQUIRED:

Power Supply

PROCEDURE:

NOTE

The fine focus and astigmatism adjustment is based on the correct set-up of al previous adjustment procedures.

The following procedures reference figure 5-15. Perform the following adjustments in the same sequence as outlined below:
a. Short A2J6-1 to A2J6-2 and apply power to the instrument to obtain the secondary test pattern
b. Adjust Focus(A4R42) on High Voltage board and Center Astig (A1R169) on AnalogX-Y-Z board to convert dots on secondary test pattern to short vertical lines.
c. Adjust 45° Astig (A4R54) on High Voltage board so that all converted dots are close to vertical. When optimally set the converted dots may lean to left and right of vertical in different parts of CRT. In this case set to leas overall departure from vertical.
d. Adjust Center Astig (A1R169) so that dots around the three centermost patters stay round when Focus (A4R42) is adjusted slightly either side of smallest dots. This may require sompromise between Center Astig and adjusted slightly e
Focus adjustments.
e. Adjust Edge Astig (A1R171) for best display at the centermost edge patterns.

CENTER ASTIG \& 45° ASTIG A1R169 \& A4R54

CENTER ASTIG \& 45° ASTIG (A1R169 \& A4R54)
$\underbrace{\substack{\text { R17 }}}_{\substack{\text { Edge ASTIG } \\(A 171)}}$ (A1R171)

CENTER ASTIG \& 45° ASTIG
(A1R169 \& A4R54

Figure 5-15. Fine Focus Adjustment

ADJUSTMENTS

NOTE

Refer to figure 5-16 for the following procedures.
f. Adjust X-Focus Gain (A1R142) for best display at the X-Axis edges.
g. Adjust Y-Focus Gain (A1R145) for best display at the Y-Axis edges.
h. Adjust Focus (A4R42 on High Voltage Board) for best picture. Concentrate on the four vertical medium intensity segments of the pattern while keeping best overall focus on the rest of the display

Figure 5-16. Fine Focus Adjustment

RESOLUTION CHECK

A 1349A/D passes the resolutuion test if all of the lines in the 13 boxes of the test pattern can be resolved. If the resolution tests fails, it may be necessary to adjust Focus and Astig adjustments slightly to improve overall definition of the secondary test pattern

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A4R54	45 degree Astig	5-20, b, c	5	Adjust for most vertical converted dots
A1R169	Center Astig	5-20, d	3 C	Adjust for round dots on both sides of Focus of three centermost patterns
A1R171	Edge Astig	5-20, e	3 C	Adjust for best display of centermost edge patterns
A1R142	X-Focus Gain	5-20, f	3 C	Adjust for best display at X-Axis
A1R145	Y-Focus Gain	5-20, g	3 C	Adjust for best display at Y-Axis
A4R42	Focus	5-20, h	5	Adjust for best overall display

ADJUSTMENTS

5-21. AUXILIARY X-Y-Z OUTPUT CHECK

REFERENCE:

Service Sheets 3A, 3B.

DESCRIPTION:

This check verifies the auxiliary X-Y-Z Outputs

EQUIPMENT REQUIRED:

Power Supply
Oscilloscope
10:1 Divider Probe

PROCEDURE:

a. Apply power to the instrument and obtain the primary test pattern on screen.
b. Connect oscilloscope to A1J5 pin 2 and check for a display as shown in figure 5-18.
c. Monitor A1J4 Pin 2 and check the oscilloscope for a display as shown in figure 5-19.

VERTICAL ATTENUATOR $=20 \mathrm{mV} /$ div. SWEEP $=1 \mathrm{mS} /$ div.

Figure 5-18. X-Amplifier Auxiliary Output

VERTICAL ATTENUATOR $=20 \mathrm{mV} /$ div.
SWEEP $=1 \mathrm{~ms} /$ div.
Figure 5-19. Y-Amplifier Auxiliary Output
d. Monitor A1J3 Pin 2 and check for a display on the oscilloscope as shown in figure 5-20.

VERTICAL ATTENUATOR $=20 \mathrm{mV} /$ div.
SWEEP $=500 \mathrm{mS} /$ div.
Figure 5-20. Z-Amplifier Auxiliary Output

SECTION VI
 REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list, table 6-2 lists all replaceable parts in reference designator order.

6-3. ABBREVIATIONS.

6-4. Table 6-1 lists abbreviations used in the parts list, the schematics, and throughout the manual. In some cases, two forms of the abbreviations are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in other parts of the manual other abbreviation forms are used with both lower and uppercase letters.

6-5. REPLACEABLE PARTS LIST.

6-6. Table 6-2 is the list of replaceable parts and is organized as follows:
a. Electrical assemblies in alphanumerical order by reference designation.
b. Chassis-mounted parts in alphanumerical order by reference designation.
c. Electrical assemblies and their components in alphanumerical order by reference designation.

The information given for each part consists of the following:
a. Complete reference designation.
b. Hewlett-Packard part number.
c. Total quantity (Qty) in instrument.
d. Description of part.
e. Check digit.

The total quantity for each part is only given once, at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION.

6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard fart number, check digit, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.

6-9. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and number of parts required. Address the order to the nearest HewlettPackard office.

6-10. DIRECT MAIL ORDER SYSTEM.

6-11. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:
a. Direct ordering and shipment from HP Parts Center in Mountain View, California.
b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through local HP offices when orders require billing and invoicing).
c. Prepaid transportation (there is a small handling charge for each order).
d. No invoices - to provide these advantages, check or money order must accompany each order.

6-12. Mail order forms and specific ordering information are available through your local HP offices.

Table 6-1. Reference Designators and Abbreviations

REFERENCE DESIGNATORS							
A	= assembly	F	= fuse	MP	= mechanical part	U	= integrated circuit
B	= motor	FL	= filter	P	= plug	v	= vacuum, tube, neon
BT	= battery	IC	= integrated circuit	Q	= transistor		bulb, photocell, etc
C	= capacitor	J	= jack	R	= resistor	VR	$=$ voltage regulator
CP	= coupler	K	= relay	RT	= thermistor	w	= cable
CR	$=$ diode	L	= inductor	s	$=$ switch	x	= socket
DL	$=$ delay line	LS	= loud speaker	T	= transformer	Y	= crystal
DS	$=$ device signaling (lamp)	M	= meter	TB	= terminal board	z	$=$ tuned cavity network
E	$=$ misc electronic part	MK	$=$ microphone	TP	$=$ test point		
ABBREVIATIONS							
A	$=$ amperes	H	$=$ henries	N/O	= normally open	Rmo	= rack mount only
AFC	$=$ automatic frequency	HDW	= hardware	NOM	= nominal	RMS	$=$ root-mean square
AMPL	= amplifier	$\begin{aligned} & \text { HEX } \\ & \text { HG } \end{aligned}$	= hexagonal = mercury	NPO	$=$ negative positive zero (zero temperature	RWV	$=\text { reverse working }$ voltage
BFO	$=$ beat frequency oscillator	HR	= hour(s)		coefficient)		
BE CU	= beryllium copper	Hz	$=$ hertz	NPN	$=$ negative-positive -	S-B	= slow-blow
BH	$=$ binder head				negative	SCR	= screw
BP	= bandpass			NRFR	= not recommended for	SE	= selenium
BRS	= brass	IF	$=$ intermediate freq		field replacement	SECT	= section(s)
Bwo	= backward wave oscillator	IMPG INCD	$=$ impregnated = incandescent	NSR	$=$ not separately replaceable	SEMICON	= semiconductor = silicon
CCW	= counter-clockwise	INCL	= includers)			SIL	= silver
CER	= ceramic	INS	= insulation(ed)	OBD	= order by description	SL	= slide
смо	= cabinet mount only	INT	= internal	OH	= oval head	SPG	= spring
COEF	$=$ coeficient			ox	= oxide	SPL	= special
COM	= common	K	$=$ kilo $=1000$			SST	= stainless steel
COMP	= composition					SR	$=$ split ring
COMPL	= complete	LH	$=$ left hand	P	= peak	STL	= steel
CONN	$=$ connector	LIN	= linear taper	PC	= printed circuit		
CP	= cadmium plate	LK WASH	= lock washer	PF	= picofarads= 10-12	TA	$=$ tantalum
CRT	= cathode-ray tube	LOG	= logarithmic taper		farads	TD	= time delay
cW	= clockwise	LPF	= low pass filter	PH BRZ	$=\text { phosphor bronze }$	TGL	$=\text { toggle }$
				PHL	$=\text { phillips }$	THD	$=\text { thread }$
DEPC	- = deposited carbon	M	$=$ milli $=10-3$	PIV	$=$ peak inverse voltage	$\mathrm{TI}^{\text {I }}$	= titanium
DR	$=$ drive	MEG	$=\mathrm{meg}=106$	PNP	= positive-negative-	TOL	$=$ tolerance
		MET FLM	= metal film		positive	TRIM	= trimmer
ELECT	= electrolytic	MET OX	= metallic oxide	P/O	= part of	TWT	$=$ traveling wave tube
ENCAP	$=$ encapsulated	MFR	= manufacturer	POLY	= polystyrene		
EXT	= external	MHZ	$=$ mega hertz	PORC	= porcelain	u	$=$ micro $=10-6$
		MINAT	$=$ miniature	POS	$=$ position(s)		
F	= farads	MOM	= momentary	POT	= potentiometer	VAR	= variable
FH	= flat head	mos	$=$ metal oxide substrate	PP	= peak-to-peak	vDCw	$=\mathrm{dc}$ working volts
FIL H	$=$ fillister head	MTG	= mounting	PT	= point		
FXD	$=$ fixed	MY	= "mylar"	PWV	$=$ peak working voltage	$\begin{aligned} & \mathbf{w} / \\ & \mathbf{w} \end{aligned}$	$=$ with = watts
G	$=$ giga (109)	N	$=$ nano (10-9)	RECT	= rectifier	wiv	= working inverse
GE	= germanium	N/C	$=$ normally closed	RF	$=$ radio frequency		voltage
GL	= glass	NE	$=\text { neon }$	RH	$=$ round head or	ww	= wirewound
GRD	$=$ groundled)	NI PL	= nickel plate		right hand	w/o	= without

HARDWARE FOR:	USE HARDWARE	OTY	USE TORX SCREW DRIVER NO.
PC BOARDS	$0515-0432(\mathrm{H} 1)$	25	T10
PRELOAD RING (MP7)	$0515-0636(\mathrm{H} 4)$	4	T15
CRT BEZEL (MP4)	$0515-0788(\mathrm{H} 2)$	4	T10

P/O Figure 6-1. Chasis Parts and Board Assembly Identification

HARDWARE FOR:	USE HARDWARE	QTY	USE TORX SCREW DRIVER NO.
PC BOARDS	$0515-0432(\mathrm{H} 1)$	25	T10
PRELOAD RING (MP7)	$0515-0636(\mathrm{H} 4)$	4	T15
CRT BEZEL (MP4)	$0515-0788(\mathrm{H} 2)$	4	T10

P/O Figure 6-1. Chasis Parts and Board Assembly Identification

Table 6-2. Replaceable Parts

Reference Designator	HP Part Number	C D	Qty	Description	Mir Code	Mir Part Number
A1	01349-66509	2	1	BOARD ASSEMBLY-ANALOG-XYZ	28480	01349-66509
A2	01349-66507	3	1	BOARD ASSEMBLY-VPC DOT	28480	01349-66507
A3	01349-66504	5	1	BOARD ASEMBLY-LOW VOLTAGE	28480	01349-66504
A4	01349-66508	4	1	BOARD ASSEMBLY-HIGH VOLTAGE	28480	01349-66508
A5	01349-66506	6	1	BOARD ASSEMBLY-MEMORY (1349D ONLY)	28480	01349-66506
H1	0515-0432	5	25	SCREW-METRIC M 3 X. 05 6MM LG PAN-HD TAPTITE	00000	ORDER BY DESCRIPTION
H2	0515-0788		4	SCREW-METRIC M $4.0 \times 0.7 \times 10 \mathrm{MM}$ LONG TAPTITE	00000	ORDER BY DESCRIPTION
H3	0515-1026	5	2	SCREW-METRIC M 3 X .05 10MM LG TO- 10 TAPTITE	00000	ORDER BY DESCRIPTION
H4	0515-0636	1	4	SCREW-MACHINE M4X. 07 25MM-LG PAN-HD	00000	ORDER BY DESCRIPTION
H5	3050-0105	6	2	WASHER FL MTLC NO. $4.125-1 \mathrm{IN}$-ID	28480	3050-0105
H6	2190-0584	0	2	WASHER-LK HLCL 3.OMM 3.1MM-ID	28480	2190-0584
MP1	01349-00501	4	1	MAIN FRAME	28480	01349-00501
MP2	01349-60601	1	1	SHIELD-CRT	28480	01349-60601
MP3	01349-66001	7	1	ALIGNMENT COIL ASSEMBLY	28480	01349-66001
MP4	01349-40001		1	BEZEL	28480	01349-40001
MP5	1520-0661	4	4	FOAM VIBRATION MOUNT-BEZEL	28480	1520-0661
MP6	0330.0379	7	1	SHOCK RING-CRT	28480	0330.0379
MP7	01349-40003	8	1	RING-PRELOAD	28480	01349-40003
MP8	0400-0009	9	1	GROMMET-RND $.125-\mathrm{IN}-\mathrm{ID}$. $25-\mathrm{IN}$-GRV-OD	28480	0400-0009
MP9	0340-0564	3	2	INSULATOR-XSTOR THERM CNDT	28480	0340-0564
MP10	0340-0977	2	2	INSULATOR-FLG-BSHG NYLON	28480	0340-0977
MP11	1400-1251	6	1	CLAMP-CABLE	28480	1400-1251
MP12	01349-00601	5	1	SHIELD-OUTER HIGH VOLTAGE	28480	01349-00601
MP13	1400-0249	0	3	CABLE TIE . 062 - 625 DIA . 091 -WD NYL	06383	PLT1M-8
V1	5083-6350	6	1	ELECTRON TUBE: PHOSPHOR CRT P31 AL NG	28480	5083-6350
W1	01349-61601	3	1	CABLE VPC to analog	28480	01349-61601
W2	01349-61602	4	1	CABLE VPC TO ANALOG	28480	01349-61602
w3	01349-61607	9	1	CABLE CRT HARNESS	28480	01349-61607
W4	01349-61605	7	1	CABLE ASSEMBLY-LOW VOLTAGE TO HIGH VOLTAGE	28480	01349-61605
w5	01349-61608	0	1	CABLE ASSEMBLY-LOW VOLTAGE TO VPC	28480	01349-61608
W6W7	01349-61604	6	1	CABLE ASSEMBLY-LOW VOLTAGE TO VPC	28480	01349-61604
	01349-61603	2	1	CABLE VECTOR MEMORY TO VPC	28480	01349-61603
	$8150-0005$		1	JUMPER-BLACK (0) ANALOG BD TO HIGH VOLTAGE BD	28480	8150-0005
	$8150-0013$			JUMPER-GREEN/WHITE (95) ANALOG BD TO HIGH VOLTAGE BD	28480	8150-0013
	$8150-0018$ $8150-0040$		1	JUMPER-ORANGE/WHITE (93) ANALOG BD TO HIGH VOLTAGE BD JUMPER-YELLOW/WHITE (94) ANALOG BD TO HIGH VOLTAGE BD	28480 28480	$\begin{aligned} & 8150-0018 \\ & 8150-0040 \end{aligned}$
			1			
	9282-0100		1	INSTALLATION GUIDE BINDER-3 RING	28480 28480	9282-0100
	01349-90901		1	OPERATING AND SERVICE MANUAL	28480	01349-90901

Table 6-2. Replaceable Parts (Cont'd)

Reference Designator	HP Part Number	C D	Qty	Description	Mfr Code	Mir Part Number
A1	01349-66509	2	1	BOARD-ASSY-ANA XYZ	28480	01349-66509
A1C1	0160-3569	2	4	CAPACITOR-FXD 27PF $\pm 5 \% 100 \mathrm{VDC} \mathrm{CER} 0 \pm 30$	28480	0160-3569
A1C2	0160-3569	2		CAPACITOR-FXD 27PF $\pm 5 \%$ 100VDC CER 0 ± 30	28480	0160-3569
A1C3	0160-3569	2		CAPACITOR-FXD 27PF $\pm 5 \%$ 100VDC CER 0 ± 30	28480	0160-3569
A1C4	0160-3569	2		CAPACITOR-FXD 27PF $\pm 5 \% 100 \mathrm{VDC}$ CER 0 ± 30	28480	0160-3569
A1C5	0180-0374	3	1	CAPACITOR-FXD 10UF $\pm 10 \%$ 20VDC TA	56289	1500106×9020B2
A1C6	0160-2204	0	3	CAPACITOR-FXD 100PF $\pm 5 \% 300 \mathrm{VDC} \mathrm{MICA}$	28480	0160-2204
A1C7	0160-3443	1	14	CAPACITOR-FXD .1UF + 80-20\% 50VDC CER	28480	0160-3443
A1C8	0160-2204	0		CAPACITOR-FXD 100PF $\pm 5 \% 300 \mathrm{VDC} \mathrm{MICA}$	28480	0160-2204
A1C9	0160-3443	1		CAPACITOR-FXD .1UF + 80-20\% 50VDC CER	28480	0160-3443
A1C10	0140-0196	3	1	CAPACITOR-FXO 150PF $\pm 5 \% 300 \mathrm{VDC} \mathrm{MICA}$	72136	DM15F151J0300WV1CR
A1C11	0160-2204	0		CAPACITOR-FXD 100PF $\pm 5 \% 300 \mathrm{VDC} \mathrm{MICA}$ CAPACITOR-FXD $1 \mathrm{UF}+80-20 \% 50 \mathrm{VDC} \mathrm{CER}$	28480 28480	$\begin{aligned} & 0160-2204 \\ & 0160-3443 \end{aligned}$
A1C12 A1C13	$0160-3443$ $0160-3443$	1 1		CAPACITOR-FXD . $1 \mathrm{UF}+80-20 \%$ 50VDC CER CAPACITOR-FXD $1 \mathrm{UF}+80-20 \% 50 \mathrm{VDC}$ CER	28480	$0160 \cdot 3443$ $0160-3443$
A1C14	0160-2253	9	2	CAPACITOR-FXD 6.8PF $\pm .25 \mathrm{PF} 500 \mathrm{VDC} \mathrm{CER}$	28480	0160-2253
A1C15				NOT ASSIGNED CAPACITOR-FXD 1.2 PF 500VDC CER		
A1C16	$0160-2237$ $0160-2055$	9	4	CAPACITOR-FXD 1.2PF 500VDC CER CAPACITOR-FXD $01 \mathrm{UF}+80-20 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	0160-2237 $0160-2055$
A1C17 A1C18	0160-2055 $0160-3670$	9	4	CAPACITOR-FXD $.01 \mathrm{UF}+80-20 \% 100 \mathrm{VDC}$ CER CAPACITOR-FXD $1 \mathrm{UF} \pm 20 \%$ 200VDC CER	28480 28480	$0160-2055$ $0160-3670$
A1C19	0160-3670	6		CAPACITOR-FXD 1 l ($\pm 20 \% 200 \mathrm{VDC}$ CER	28480	0160-3670
A1C20	0160-2055	9		CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	0160-2055
A1C21	0160-2237	9		CAPACITOR-FXD 1.2PF 500VDC CER	28480	0160-2237
A1C22	0160-3443	1		CAPACITOR-FXD 1 1 F $+80-20 \% 50 V D C$ CER	28480	0160-3443
A1C23	$0160-3443$ $0160-2253$	1		CAPACITOR-FXD $1 \mathrm{UF}+80-20 \%$ 50VDC CER CAPACITOR-FXD 6.8PF $\pm 25 \mathrm{PF} 500 \mathrm{VDC} \mathrm{CER}$	28480	0160-3443 $0160-2253$
A1C24	0160-2253	9		CAPACITOR-FXD 6.8PF $\pm .25 \mathrm{PF} 500 \mathrm{VDC}$ CER	28480	0160-2253
A1C25 A1C26	0160-2237	9		NOT ASSIGNED CAPACITOR-FXD 1.2PF 500VDC CER	28480	0160-2237
A1C27	0160-2055	9		CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	0160.2055
A1C28	0160-3670	6		CAPACITOR-FXD . $1 \mathrm{UF} \pm 20 \%$ 200VDC CER	28480	0160-3670
A1C29	0160-3670	6		CAPACITOR-FXD . $1 \mathrm{UF} \pm 20 \%$ 200VDC CER	28480	0160-3670
A1C30	0160-2055	9		CAPACITOR-FXD .01UF $+80-20 \% 100 \mathrm{VDC}$ CER	28480	0160-2055
A1C31	0160-2237	9		CAPACITOR-FXD 1.2PF 500VDC CER	28480	0160-2237
A1C32	0160-3443	1		CAPACITOR-FXD . $1 \mathrm{UF}+80-20 \% 50 \mathrm{VDC}$ CER	28480	0160-3443
A1C33	0160-3443	1		CAPACITOR-FXD . $1 \mathrm{UF}+80-20 \% 50 \mathrm{VDC}$ CER	28480	0160-3443
A1C34	0160-3470	4	2	CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \% 50 \mathrm{VDC}$ CER	28480	0160-3470
A1C35	$0160-3470$ $0160-3508$	4		CAPACITOR-FXD . O1UF $+80-20 \%$ 50VDC CER CAPACITOR-FXD $1 \mathrm{UF}+80-20 \% 50 \mathrm{VDC}$ CER	28480 28480	$0160-3470$ $0160-3508$
A1C36 A1C37	0160-3508	9	7	CAPACITOR-FXD 1 1 F $+80-20 \% 50 \mathrm{VDC}$ CER CAPACITOR-FXD 1 UF $+80-20 \% 50 \mathrm{VDC}$ CER	28480 28480	0160-3508 $0160-3508$
A1C37 A1C38	0160-3508 $0160-3508$	9		CAPACITOR-FXD 1 $\mathrm{UF}+80-20 \% 50 \mathrm{VDC}$ CER	28480	0160-3508
A1C39	0160-3508	9		CAPACITOR-FXD 1 $\mathrm{UF}+80-20 \% 50 \mathrm{VDC}$ CER	28480	0160-3508
AlC40	0160-3508	9		CAPACITOR-FXD 1 UF $+80-20 \% 50 \mathrm{VDC}$ CER CAPACITOR-FXD $100 \mathrm{UF}+75-10 \% 25 \mathrm{VDC} \mathrm{AL}$	28480 56289	O160-3508 30D107G025DD2
A1C41 A1C42	$0180-0094$ $0160-3508$	1	2	CAPACITOR-FXD 100UF $+75-10 \% 25 \mathrm{VDC} \mathrm{AL}$ CAPACITOR-FXD 1UF $+80-20 \% 50 \mathrm{VDC} \mathrm{CER}$	56289 28480	30D107G025DD2 $0160-3508$
A1C42 A1C43	$0160-3508$ $0160-3508$	9		CAPACITOR-FXD 1 UF $+80-20 \% 50 \mathrm{VDC}$ CER	28480	0160-3508
A1C44	0160-0197	6	6	CAPACITOR-FXD 2.2UF $\pm 10 \%$ 20VDC TA	28480	150D225X9020A2
A1C45	0160.0197 0180.0197			CAPACITOR-FXD $2.2 \mathrm{LFF} \pm 10 \%$ 20VDC TA CAPACITOR-FXD $2.2 \mathrm{~F}+10 \%$ 20VDC TA	28480 56289	150D225X9020A2 $150 \mathrm{D} 225 \times 9020 \mathrm{~A}$
A1C46 A1C47 A	$0180-0197$ $0180-0197$	8		CAPACITOR-FXD $2.2 \mathrm{UF} \pm 10 \%$ 20VDC TA CAPACITOR-FXD $2.2 \mathrm{UF} \pm 10 \%$ 20VDC TA	56289 56289	150D225X9020A2 1500225×902042
A1C48	0180.0197	8		CAPACITOR-FXD $2.2 \mathrm{UF} \pm 10 \%$ 20VDC TA	56289	150D225X9020A2
A1C49	0180-0197	8		CAPACITOR-FXD 2.2UF $\pm 10 \%$ 2OVDC TA	56289	150D225×9020A2
A1C50	0160-3443	1		CAPACITOR-FXD .1UF + 80-20\% 50VDC CER	28480	0160-3443
A1C51	0160-3443	1		CAPACITOR-FXD . $1 \mathrm{UF}+80-20 \% 50 \mathrm{VDC}$ CER	28480	0160-3443
A1C52	0160-3443	1		CAPACITOR-FXD 0.1UF $+80-20 \%$ 50VDC CER	28480	0160-3443
A1C53	0160-3443	1		CAPACITOR-FXD 0.1UF + 80-20\% 50VDC CER	28480	0160-3443
A1C54	0160-3443	1		CAPACITOR-FXD 0.1UF + 80-20\% 50VDC CER	28480	0160-3443
A1C55	0160-3443	1		CAPACITOR-FXD 0.1UF + 80-20\% 50VDC CER	28480	0160-3443
A1CR1	1901-1068	5	8	DIODE-SM SIG SCHOTTKY	28480	1901-1068
A1CR2	1901-1068	5		DIODE-SM SIG SCHOTTKY	28480	1901-1068
A1CR3	1901-1068	5		DIODE-SM SIG SCHOTTKY	28480	1901-1068
A1CR4	1901-1068	5		DIODE-SM SIG SCHOTTKY	28480	1901-1068
A1CR5	1901-1068	5		DIODE-SM SIG SCHOTTKY	28480	1901-1068
A1CR6	1901-1068	5		DIODE-SM SIG SCHOTTKY	28480	1901-1068
A1CR7	1901-1068			DIODE-SM SIG SCHOTTKY	28480	1901-1068
A1CR8	1901-1068	5		DIODE-SM SIG SCHOTTKY	28480	1901-1068
A1 CR9	1901-0040	1	5	DIODE-SWITCHING 3OV 50MA 2NS DO-35	28480	1901-0040
A1CR10	1901 -0040	,		DIODE-SWITCHING 3OV 50MA 2NS DO. 35	28480	1901-0040
A1CR11	1901-0028	5	8	DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A1CR12	1901-0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A1CR13	1901-0096	7	4	DIODE-SWITCHING 120V 50MA 100NS	28480	1901.0096
A1CR14	1901-0096	7		DIODE-SWITCHING 120V 50MA 100NS	28480	1901-0096

See introduction to this section for ordering information

Table 6-2. Replaceable Parts (Cont'd)

Table 6-2. Replaceable Parts (Cont'd)

See introduction to this section for ordering information

Table 6-2. Replaceable Parts (Cont'd)

See introduction to this section for ordering information

Table 6-2. Replaceable Parts (Cont'd)

Reference Designator	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Qty	Description	Mfr Code	Mfr Part Number
A1R156	0757-0411	2		RESISTOR $3321 \% .125 W$ F TC=O ± 100	24546	C4-1/8-TO-332R-F
A1R157	0698-3445	2	1	RESISTOR $3481 \% .125 W$ F TC=0 ± 100	24546	C4-1/8-TO-348R-F
A1R158	0757-0428	1		RESISTOR $1.62 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC= 0 ± 100	24546	C4-1/8-TO-1621-F
A1R159	0757-0714	8	1	RESISTOR $1301 \% .25 \mathrm{~W}$ F TC=O ± 100	24546	C5-1/4-TO-131-F
A1R160	2100-2216	,		RESISTOR-TRMR 5 K 10\% C TOP-ADJ 1-TRN	73138	82PR5K
A1R161	0698.3438	3		RESISTOR $1471 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	28480	0698-3438
A1R162	0757-0421	4		RESISTOR $8251 \% .125 W$ F TC $=0 \pm 100$	28480	0757-0421
A1R163	0757-0416	7		RESISTOR $5111 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4.-1/8-TO-5112-F
A1R164	0757-0416	7		RESISTOR $5111 \% .125 \mathrm{~W}$ F TC=O ± 100	24546	C4.1/8-TO-5112-F
A1R165	0757-0442	9		RESISTOR $10 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC= $= \pm 100$	24546	C4-1/8-TO-1002-F
A1R166	0757-0442	9		RESISTOR $10 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	24546	C4-1/8-TO-1002-F
A1R167	0757-0394	0		RESISTOR $51.11 \% .125 W$ F TC= 0 ± 100	24546	C4-1/8-TO-51R1-F
A1R168	0757-0394	0		RESISTOR $51.11 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4-1/8-TO-51R1-F
A1R169	2100-1738	9		RESISTOR-TRMR 10K 10% C TOP-ADJ 1-TRN	73138	82 PR 10 K
A1R170	0698-3136	8		RESISTOR $17.8 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4-1/8-TO-1782-F
A1R171	2100-2216	0		RESISTOR-TRMR $5 \mathrm{~K} 10 \% \mathrm{C}$ TOP-ADJ 1-TRN	73138	82PR5K
A1R172	0757-0419	0		RESISTOR $6811 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4-1/8-TO-681R-F
A1R173	0757-0290	5		RESISTOR 6.19K $1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	19701	MF4C1/8-TO-6191-F
A1R174 A1R175	0757.0442 $0698-3762$	9		RESISTOR $10 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC=O ± 100 RESISTOR $46.4 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	24546 24546	C4-1/8-TO-1002-F C4-1/8-TO-4642-F
A1R176	0757-0435	0		RESISTOR 3.92K $1 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4-1/8-TO-3921-F
A1R177	0757-0442			RESISTOR $10 \mathrm{~K} 1 \% .125 \mathrm{~W} \mathrm{~F} \mathrm{TC}=0 \pm 100$	24546	C4-1/8-TO-1002-F
A1R178	0757-0433	8		RESISTOR $3.32 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC= $= \pm 100$	24546	C4-1/8-TO-3321-F
A1R179	0757-0281	4		RESISTOR $2.74 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC= 0 ± 100	24546	C4-1/8-TO-2741-F
A1R180	2100-1788	9		RESISTOR-TRMR 50010% C TOP-ADJ 1-TRN	73138	82PR500
A1R181	2100-1986	9		RESISTOR-TRMR $1 \mathrm{~K} 10 \% \mathrm{C}$ TOP-ADJ 1 -TRN	73138	82PR1K
A1TP1				NOT ASSIGNED		
A1TP2	0360-0535	0	4	terminal test point pcb	28480	0360-0535
A1TP3				NOT ASSIGNED		
A1TP4				NOT ASSIGNED		
A1TP5				NOT ASSIGNED		
A1TP6				NOT ASSIGNED		
A1TP7				NOT ASSIGNED		
A1TP8				NOT ASSIGNED		
A1TP9	0360-0535	0		TERMINAL TEST POINT PCB	28480	0360-0535
A1TP10	0360-0535	0		TERMINAL TEST POINT PCB	24840	0360.0535
A1TP11	0360-0535	0		TERMINAL TEST POINT PCB	24840	0360-0535
A1U1	1820-1196	8	4	IC FF THL LS D-TYPE POS-EDGE-TRIG COM	01295	SN74LS174N
A1U2	1820-1196	8		IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295	SN74LS174N
A1U3	1826-0860	3	4	IC CONV 12-B-D/A 24-DIP-C PKG	34371	HI1-562A-5
A1U4	1826-0860	3		IC CONV 12-B-D/A 24-DIP-C PKG	34371	H11-562A-5
A1U5	1826-0930	8	6	IC OP AMP LOW BIAS-H-IMPD TO99 PKG	3L585	CA3140AS
Alu6	1826-0930			IC OP AMP LOW-BIAS-H-IMPD TO99 PKG	3L585	CA3140AS
A1U7	1 NB4-5003	4	2	ANALOG MULTI. PACK	28480	1 NB4.5003
A1U8	1826-0207	2	4	IC OP AMP WB 8-DIP-P PKG	01295	LM318P
Alu9	1826-0207	2		IC OP AMP WB 8-DIP-P PKG	01295	LM318P
Alvio	1826-0930	8		IC OP AMP LOW-BIAS-H-IMPD TO99 PKG	3L585	CA3140AS
Alul1	1826-0208	3	3	IC OP AMP GP 8-DIP-P PKG	27014	LM310N
Alu12	1826-0753		3	IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-D	27014	LF3478N
Alul3	1820-1196	8		IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295	SN74LS174N
A1U14	1820-1196	8		IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295	SN74LS174N
A1U15	1826-0860	3		IC CONV 12-B-D/A 24-DIP-C PKG	34371	H11-562A-5
${ }^{\text {Alu }} 16$	1826-0860	3		IC CONV 12-B-D/A 24-DIP-C PKG	34371	HI1-562A-5
A1017	1826-0930	8		IC OP AMP LOW-BIAS-H-IMPD TO99 PKG	3L585	CA3140AS
A1018	1826-0930	8		IC OP AMP LOW-BIAS-H-IMPD TO99 PKG	3 L 885	CA3140AS
A1U19	1 NB4-5003	4		analog multi. Pack	28480	1NB4-5003
A1U20	1826.0207	2		IC OP AMP WB 8-DIP-P PKG	01295	LM318P
A1U21	1826-0207	2		IC OP AMP WB 8-DIP-P PKG	01295	LM318P
A1U22	1826-0930	8		IC OP AMP LOW-BIAS-H-IMPD TO99 PKG	3L585	CA3140AS
A1U23	1826.0208	3		IC OP AMP GP 8-DIP-P PKG	27014	LM310N
A1U24	1826.0208			IC OP AMP GP 8-DIP-P PKG	27014	LM310N
A1U25	1826-1224	1	1	IC 20-DIP-C PKG	28480	1826-1224
A1U26	1 NB4-5004	5	1	RAMP GENERATOR	28480	1 NB4.5004
A1U27	1826-0871	6	3	IC LINEAR	28480	1826-0871
A1U28	1826-0871	6		IC LINEAR	28480	1826-0871
A1U29	1826-0871	6		IC LINEAR	28480	1826.0871
A1U30	1826.0527	9	1	IC V RGLTR TO-220	04713	MC34004BL
A1U31	1826.0753			IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C	04713	MC34004BL
A1U32	1826-0753	3		IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C	04713	MC34004BL
A1U33	1826.0393	7	1	IC V RGLTR TO-220	27014	LM317T
AlVR1	1826-0825	0		IC-VOLTAGE REGULATOR	28480	1826-0825
A1VR2	1902-0025	4	3	DIODE-ZNR 10V 5\% DO-35 PD=.4W TC = + . 06%	28480	1902-0025

See introduction to this section for ordering information

Table 6-2. Replaceable Parts (Cont'd)

Table 6-2. Replaceable Parts (Cont'd)

See introduction to this section for ordering information

Table 6-2. Replaceable Parts (Cont'd)

See introduction to this section for ordering information

Table 6-2. Replaceable Parts (Cont'd)

See introduction to this section for ordering information

Table 6-2. Replaceable Parts (Cont'd)

Reference Designator	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Qty	Description	Mir Code	Mir Part Number
A4	01349-66508	4	1	BOARD ASSEMBLY-HV	28480	01349-66508
A4A1	0960-0678	4	1	MULTIPLIER-H.V. $\times 8 \mathrm{HI}$	28480	0960-0678
A4C1	0160-2205	1	2	CAPACITOR-FXD 120PF $\pm 5 \% 300 \mathrm{VDC} \mathrm{MICA}$	28480	0160-2205
A4C2				NOT ASSIGNED		
A4C3	0160-5473		3	CAPACITOR-FXD . O1UF +80-20\% 100VDC CER	28480	0160-5473
A4C4	0160-5211	6	2	CAPACITOR-FXD . $1 \mathrm{UF}+80-20 \% 200 \mathrm{VDC} \mathrm{CER}$	28480	0160-5211
A4C5	0160-2055	9		CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \%$ 100VDC CER	28480	0160-2055
A4C6	0160-5473	9		CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \%$ 100VDC CER	28480	0160-5473
A4C7	0160-5211	6		CAPACITOR-FXD .1 UF $+80-20 \%$ 200VDC CER	28480	0160-5211
A4C8	0180-0098	8	2	CAPACITOR-FXD 100UF $\pm 20 \%$ 20VDC TA	56289	150D107X0020S2
A4C9	0180-0098	8		CAPACITOR-FXD 100UF $\pm 20 \%$ 20VDC TA	56289	150D107×0020S2
A4C10	0160.0165	8	1	CAPACITOR-FXD . O56UF $\pm 10 \%$ 200VDC POLYE	28480	0160-0165
A4C11	0160-3443	1	1	CAPACITOR-FXD . $1 \mathrm{UF}+80-20 \% 50 \mathrm{VDC}$ CER	28480	0160-3443
A4C12	0160-4051	9	2	CAPACITOR-FXD . $01 \mathrm{UF} \pm 20 \% 4 \mathrm{KVDC}$	28480	0160-4051
${ }^{4} 4 \mathrm{Cl} 3$	0160-0584	5		CAPACITOR-FXD . $068 \mathrm{UF} \pm 20 \% 4 \mathrm{KVDCMY}$	56289	430P683040
A4C14	0160-2264	2	1	CAPACITOR-FXD 20PF $\pm 5 \% 500 \mathrm{VDC}$ CER 0 ± 30	28480	0160-2264
A4C15	0160-0684	6	2	CAPACITOR-FXD 1000PF $\pm 20 \% 4 \mathrm{KVDC}$	28480	0160-0684
A4C16	0160-0684	6		CAPACITOR-FXD 1000PF $\pm 20 \% 4 \mathrm{KVDC}$	28480	0160-0684
A4C17	0160-4051	9		CAPACITOR-FXD . $01 \mathrm{UF} \pm 20 \% 4 \mathrm{KVDC}$	28480	0160-4051
A4C18	0160-2205	1	1	CAPACITOR-FXD 120PF $\pm 5 \% 300 \mathrm{VDC} \mathrm{MICA}$	28480	0160-2205
A4C19	0160-3665	9	1	CAPACITOR-FXD . O1UF $+80-20 \%$ 500VDC CER	28480	0160-3665
A4C20	0160-5337	6	1	CAPACITOR-FXD 30PF $\pm 20 \% 3$ KVDC CER	28480	0160-5337
A4C21	0160-5336	5	1	CAPACITOR-FXD 20PF $\pm 20 \%$ 3KVDC CER	28480	0160-5336
A4C22	0160.0162	1	1	CAPACITOR-FXD . O22UF $\pm 10 \%$ 200VDC POLYE	28480	0160-0162
A4C23	0160-0134	1		CAPACITOR 220PF $\pm 5 \% 300 \mathrm{VDC} \mathrm{MICA}$	28480	0160-0134
A4C24	0160-2240	4		CAPACITOR 2.OPF $\pm 25 \mathrm{PF} 500 \mathrm{VDC}$ CER	28480	0160-2240
A4C25	0160-5473	-		CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \%$ 100VDC CER	28480	0160-5473
A4C26	0160-5211	6		CAPACITOR-FXD . 1 UF $\pm 20 \%$ 200VDC CER	28480	0160-5211
A4C27	0160-2234	6	1	CAPACITOR-FXD . $51 \mathrm{PF} \pm .25 \mathrm{PF} 500 \mathrm{VDC}$ CER	28480	0160-2234
A4C28	0160-5211			CAPACITOR-FXD $1+80-20 \%$ 200VDC CER	28480	0160-5211
A4C29	0160-5211			CAPACITOR-FXD . $1+80-20 \%$ 200VDC CER	28480	0160-52'11
A4CR1	1901-0028	5	12	DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A4CR2	1901-0096	7		DIODE-SWITCHING 120 V 50MA 100NS	28480	1901-0096
A4CR3	1901-0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A4CR4	1901-0028	5		DIODE-PWR RECT 400 V 750 MA DO-29	28480	1901-0028
A4CR5	1901.0096	7		DIODE-SWITCHING 120V 50MA 100NS	28480	1901-0096
A4CR6	1901-0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A4CR7	1901-0040	1	2	DIOde-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A4CR8	$1901-0040$	1		DIODE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A4CR9	1901-0028	5		DIODE-PWR RECT 400 V 750 MA DO-29	28480	1901-0028
A4CR10	1901-0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A4CR11	1901-0683	8	1	DIODE-HV RECT 10KV 5MA 250NS	28480	1901-0683
A4CR12	1901-0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A4CR13	1901-0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A4CR14	1901-0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A4CR15	1901-0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A4CR16	1901.0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901-0028
A4CR17	1901-0028	5		DIODE-PWR RECT 400V 750MA DO-29	28480	1901.0028
A4CR18	1901-0096	7		DIODE-SWITCHING 120V 50MA 100NS	28480	1901.0096
A4F1	2110-0001	8	1	FUSE 1.0A 250 V NTD $1.25 \times 25 \mathrm{UL}$	28480	2110-0001
A4H1	2110-0269	0	2	FUSE HOLDER-CLIP TYPE 25D-FUSE	28480	2110.0269
A4H2	0515-0372	2	3	SCREW-MACHINE ASSEMBLY M 3×0.5 8MM-LG	00000	ORDER BY DESCRIPTION
A4H3	0360-1653		13	TERMINAL PN STRAIGHT	28480	0360-1653
A4H4	0515-0372		3	PHMS M3X0. 58 LG	28480	0515-0372
A4H5	0340-0564		1	INSULATOR XSTR	28480	0340-0564
A4J1	1251-5863	7		CONNECTOR 5-PIN M METRIC POST TYPE	28480	1251-5863
A4L1	9140-0115	5	1	INDUCTOR RF-CH-MLD 22UH 10\% .23DX.57LG	28480	9140.0115
A4L2	9140.0129	1	1	INDUCTOR RF-CH-MLD 220UH 5\% .166DX.385LG	28480	9140-0129
A4MP1	01345-04103	6	1	COVER HV INNER	28480	01345-04103
A4MP2	01349-60602	2	1	PA CONN SHIELD	28480	01349-60602
A401	1854.0215	1	2	TRANSISTOR NPN SIPD $=350 \mathrm{MW} \mathrm{FT}=300 \mathrm{MHZ}$	04713	2N3904
A402	1853-0038	4	3	TRANSISTOR PNP SI TO-39 PD=1W FT $=100 \mathrm{MHZ}$	28480	1853-0038
A403	1854-0419	7	3	TRANSISTOR NPN SI TO-39 PD=1W FT= 200 MHZ	28480	1854.0419
A404	$1854-0215$	1		TRANSISTOR NPN SI PD $=350 \mathrm{MW} \mathrm{FT}=300 \mathrm{MHZ}$	04713	2N3904
A405	1853-0038	4		TRANSISTOR PNP SI TO-39 PD $=1 \mathrm{~W} \mathrm{FT}=100 \mathrm{MHZ}$	28480	1853-0038
A406	1854-0419	7		TRANSISTOR NPN SI TO-39 PD $=1 \mathrm{~W} \mathrm{~W} \mathrm{FT}=200 \mathrm{MHZ}$	28480	1854-0419
A407	1854-0433	5	1	TRANSISTOR NPN SI PD=90W FT $=2 \mathrm{MHZ}$	28480	1854-0433
A408	1853-0038	4		TRANSISTOR PNP S1 TO-39 PD=1W FT=100MHZ	28480	1853-0038
A409	1853-0419	7		TRANSISTOR NPN S1 TO-39 PD=1W FT $=200 \mathrm{MHZ}$	28480	1853-0419
A4010	1853-0036	2		TRANSISTOR PNP S1 PD=31 MW $\mathrm{FT}=250 \mathrm{MHZ}$	28480	1853-0036

See introduction to this section for ordering information

Table 6-2. Replaceable Parts (Cont'd)

Reference Designator	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A4R1	0684-6811	3	6	RESISTOR 680 10\% .25W FC TC=-400/+600	01121	CB6811
A4R2	2100-1738	9	1	RESISTOR-TRMR 10K 10% C TOP-ADJ 1 -TRN	73138	82PR10K
A4R3	0698-3421	4	1	RESISTOR $38.3 \mathrm{~K} 1 \% .5 \mathrm{~W}$ F TC= 0 ± 100	28480	0698-3421
A4R4	0684-1011	5	6	RESISTOR $10010 \% .25 \mathrm{~W}$ FC TC $=-400 /+500$	01121	CB1011
A4R5	0757-0442	9	2	RESISTOR $10 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	24546	C4-1/8-TO-1002-F
A4R6	0757-0775	1	2	RESISTOR 90.9K 1\% .25W F TC=0 ± 100	24546	C5-1/4-TO-9092-F
A4R7	0757-0726	2	2	RESISTOR $5111 \% .25 W \mathrm{~F}$ TC= $=0 \pm 100$	24546	C5-1/4-TO-511R-F
A4R8	0757-0735	3	2	RESISTOR $1.3 \mathrm{~K} 1 \% .25 \mathrm{~W}$ F TC=0 ± 100	24546	C5-1/4-TO-1301-F
A4R9	0757-0190		3	RESISTOR $20 \mathrm{~K} 1 \%$. 5 W F TC $=0 \pm 100$	28480	0757.0190
A4R10	0684-1011	5		RESISTOR $10010 \% .25 \mathrm{~W}$ FC TC $=-400 /+500$	01121	CB1011
A4R11	0757-0190	4		RESISTOR $20 \mathrm{~K} 1 \% .5 \mathrm{~W}$ F TC $=0 \pm 100$	28480	0757-0190
A4R12	0683-2715	6	1	RESISTOR $2705 \% .25 \mathrm{~W}$ FC TC-400/+600	28480	0683-2715
A4R13	0757-0442	9		RESISTOR $10 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC= 0 ± 100	24546	C4-1/8-TO-1002-F
A4R14	0757-0775			RESISTOR 90.9K 1%. 25 W F TC= 0 ± 100	24546	C5-1/4-TO-9092-F
A4R15	0757.0726	2		RESISTOR $5111 \% .25 \mathrm{~W}$ F TC $=0 \pm 100$	24546	C5-1/4-TO-511R-F
A4R16	0757-0735	3		RESISTOR $1.3 \mathrm{~K} 1 \% .25 \mathrm{~W}$ F TC= 0 ± 100	24546	C5-1/4-TO-1301-F
A4R17	0757-0190	4		RESISTOR $20 \mathrm{~K} 1 \%$. 5 W F TC= $=0 \pm 100$	28480	0757-0190
A4R18	0684-1011	5		RESISTOR $10010 \% .25 \mathrm{~W}$ FC TC=-400/+500	01121	CB1011
A4R19	0757-0486	7	1	RESISTOR $750 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	28480	0757-0486
A4R20	$2100-0580$	7		RESISTOR-TRMR 500K 10% C TOP-ADJ 1-TRN	28480	2100-0580
A4R2 1	0757-0465	6	2	RESISTOR 100K 1%. 125 W F TC= 0 ± 100	24546	C4-1/8-TO-1003-F
A4R22	0757-0465	6		RESISTOR 100K $1 \% .125 \mathrm{~W}$ F TC $=0 \pm 100$	24546	C4-1/8-TO-1003-F
A4R23 A4R24	0683-2265	1	1 1	RESISTOR $22 \mathrm{M} 5 \% .25 \mathrm{~W}$ FC TC $=-900 /+1200$ RESISTOR 47K $10 \% .25 \mathrm{~W}$ FC TC $=-400 /+800$	01121 01121	CB2265
A4R25	0684-1011	5		RESISTOR 100 10\% .25W FC TC $=-400 /+500$	01121	CB1011
A4R26	0683-3915	0	1	RESISTOR $3905 \% .25 \mathrm{~W}$ FC TC= $=-400 /+600$	01121	CB3915
A4R27	0684-2221	7	1	RESISTOR $2.2 \mathrm{~K} 10 \% .25 \mathrm{~W}$ FC TC $=-400 /+700$	01121	CB2221
A4R28	0684-1021	7	1	RESISTOR $1 \mathrm{~K} 10 \% .25 \mathrm{~W}$ FC TC $=-400 /+600$	01121	CB1021
A4R29	0687-3941	0	1	RESISTOR 390K $10 \% .5 \mathrm{~W}$ CC TC=0 ${ }^{\text {c }} 882$	01121	EB3941
A4R30	0684-6811	3		RESISTOR 680 10\% .25W FC TC= $-400 /+600$	01121	CB6811
A4R31	0684-6811	3		RESISTOR 680 10\% .25W FC TC=-400/+ 600	01121	CB6811
A4R32	0684-5621	1	1	RESISTOR $5.6 \mathrm{~K} 10 \% .25 \mathrm{~W}$ FC TC $=-400 /+700$	01121	CB5621
A4R33	0699-0167	1	1	RESISTOR 20M 5\% 1W C TC=0 ± 250	28480	0699-0167
A4R34	0684-6811	3		RESISTOR 680 10\% .25W FC TC=-400/+600	01121	CB6811
A4R35	0684-6811	3		RESISTOR 680 10\% .25W FC TC=-400/+600	01121	CB6811
A4R36	0684-1061	5	. 1	RESISTOR 10M 10\% .25W FC TC=-900/+1100	01121	CB1061
A4R37	0684-1011	5		RESISTOR $10010 \% .25 \mathrm{~W}$ FC TC=-400/+500	01121	CB1011
A4R38	0683-2235	5		RESISTOR $22 \mathrm{~K} 5 \%$. 25 W FC TC=-400/+800	01121	CB2235
A4R39	0683-3945	6	1	RESISTOR 390K $5 \% .25 \mathrm{~W}$ FC TC= $-800 /+900$	01121	CB3945
A4R40	0699-0187	5	1	RESISTOR $1.85 \% .25 \mathrm{~W}$ FC TC=-400/+450	01121	CB18G5
A4R41	0699-0171	7	1	RESISTOR 6.5 MEG 5\% 1W C TC=0 ± 250	28480	0699-0171
A4R42	2100-0569	2	1	RESISTOR-TRMR $1 \mathrm{M} 20 \%$ C TOP-ADJ 1-TRN	28480	2100-0569
A4R43	0699-0172	8	1	RESISTOR $3 \mathrm{M} 5 \% 1 \mathrm{~W}$ C TC=0 ± 250	28480	0699-0172
A4R44	0684-6811	3		RESISTOR $68010 \% .25 \mathrm{~W}$ FC TC=-400/+600	01121	CB6811
A4R45	0757-0398	4	1	RESISTOR $751 \% .125 \mathrm{~W}$ F TC=0 ± 100	24546	C4-1/8-TO-75RO-F
A4R46	0683-4725	2	1	RESISTOR 4.7K $5 \% .25 \mathrm{~W}$ FC TC $=-400 /+700$	01121	CB4725
A4R47	0757-0847	8	2	RESISTOR $27.4 \mathrm{~K} 1 \%$. 5 W F TC=0 ± 100	28480	0757-0847
A4R48	0757-0290	5	1	RESISTOR $6.19 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC= 0 ± 100	19701	MF4C 1/8-TO-6191-F
A4R49	0757-0777	3	1	RESISTOR $121 \mathrm{~K} 1 \% .25 \mathrm{~W}$ F TC=0 ± 100	28480	0757-0777
A4R50	0757-0734	2	1	RESISTOR $1.2 \mathrm{~K} 1 \% .25 \mathrm{~W}$ F TC= 0 ± 100	28480	0757-0734
A4R51	0757-0847	8		RESISTOR $27.4 \mathrm{~K} 1 \% .5 \mathrm{~W}$ F TC= 0 ± 100	28480	0757-0847
A4R52	0684-1011	5		RESISTOR $10010 \% .25 \mathrm{~W}$ FC TC $=-400 /+500$	01121	CB1011
A4R53	0757-0443	0	2	RESISTOR $11 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC=0 ± 100	45546	C4-1/8-TO-1102-F
A4R54	2100-0558	9	1	RESISTOR-TRMR 20K 10\% C TOP-ADJ 1-TRN	28480	2100-0558
A4R55	0757-0443	0		RESISTOR $11 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC= $= \pm 100$	45546	C4-1/8-TO-1102-F
A4R56	0757-0407	6	3	RESISTOR $2001 \% .125 \mathrm{~W}$ F TC= $=0+$ - 100	24546	C4-1/8-TO-200R-F
A4R57	0757-0407	6	3	RESISTOR 2001%.125W F TC=0 +/-100	24546	C4-1/8-TO-200R-F
A4R58	0757-0407	6	3	RESISTOR 2001%. 125 W F TC=0 + /-100	24546	C4-1/8-TO-200R-F
A4T1	01345-61101	4	1	HV TRANSFORMER	28480	01345-61101
A4TP1	0360-0535	0	3	TERMINAL TEST PT PCB	28480	0360-0535
A4TP2	0360-0535	0		TERMINAL TEST PT PCB	28480	0360-0535
A4TP3	0360-0535	0		TERMINAL TEST PT PCB	28480	0360-0535
A4U1	1826-0167	3	1	IC OP AMP PRGMBL TO-99 PKG	0192B	CA3094AT
A4V1	2140-0018	0	2	LAMP-GLOW A9A-CT 90VDC 700UA T-2-BULB	0046G	A9A-CT
A4V2	2140.0018	0		LAMP-GLOW A9A-CT 90VDC 700UA T-2-buLb	0046G	A9A-CT
A4VR1	1902-0049	2	2	DIODE-ZNR 6.19V 5% DO-35 PD $=.4 \mathrm{~W}$	28480	1902.0049
A4VR2	1902-3104	6		DIODE-ZNR $5.62 \mathrm{~V} 5 \%$ DO-35 PD $=.4 \mathrm{~W}$	28480	1902-3104
A4VR3	1902-0049	2	1	DIODE-ZNR 6.19V 5\% DO-35 PD $=.4 \mathrm{~W}$	28480	1902-0049
A4VR4	1902-3354	8	1	DIODE-ZNR 54.9V 5\% DO-7 PD=.4W TC=+.081\%	28480	1902-3354
	0360-1653	5	13	MISCELLANEOUS CONNECTOR-SGL CONT PIN . $045-$ IN-BSC-SZ SQ	28480	0360-1653

See introduction to this section for ordering information

Table 6-2. Replaceable Parts (Cont'd)

Reference Designator	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Qty	Description	Mfr Code	Mfr Part Number
A5 (1349D ONLY)	01349-66506	7	1	BOARD ASSEMBLY-MEMORY (1349D ONLY)	28480	01349-66506
A5C1	0160-5471	9	1	CAPACITOR-FXD 0.1UF +/-5\% 50VDC MET-POLYE	28480	0160-5471
A5C2	0160-5921	4	19	CAPACITOR-FXD 0.01UF $+/-20 \% 50 \mathrm{VDC}$	28480	0160-5921
A5C3	0180.0374	3	1	CAPACITOR-FXD 10UF +/-10\% 20VDC TA	28480	0180-0374
A5C4	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5C5	0160-5921	4		CAPACITOR-FXD 0.01UF +/- 20% 50VDC	28480	0160-5921
A5C6	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5C7	0160-5921	4		CAPACITOR-FXD 0.01UF +/- 20% 50VDC	28480	0160-5921
A5C8	0160-5921	4		CAPACITOR-FXD $0.01 \mathrm{UF}+/-20 \% 50 \mathrm{VDC}$	28480	0160-5921
A5C9	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160.5921
A5C10	0160.5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5C11	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5C12	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5C13	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5C14	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5C15	0160-5921	4		CAPACITOR-FXD $0.01 \mathrm{UF}+/-20 \% 50 \mathrm{VDC}$	28480	0160-5921
A5C16	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160.5921
A5C17	0160-5921	4		CAPACITOR-FXD 001UF +/-20\% 50VDC	28480	0160-5921
A5C18	0160.5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5C19	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5C20	0160-5921	4		CAPACITOR-FXD 0.01UF $+/-20 \% 50 \mathrm{VDC}$	28480	0160-5921
A5C21	0160-5921	4		CAPACITOR-FXD 0.01UF +/-20\% 50VDC	28480	0160-5921
A5R1	0757-0442	9		RESISTOR-FXD 10K 1\% .125W F TC=0+/-100	24546	CT4-1/8-TO-1002-F
A5R2	0757.0467	8		RESISTOR-FXD 121K 1%, 125W F TC=0+/-100	24546	CT4-1/8-TO-1213-F
A5R3	0757-0442	9		RESISTOR-FXD 10K 1%, 125W F TC=0+/-100	24546	CT4-1/8-TO-1002-F
A5R4	0757.0442	9		RESISTOR-FXD 10K 1%. 125 W F TC=0 $=1 /-100$	24546	CT4-1/8-TO-1002-F
A5U1	1826-0180	0		IC TIMER TTL MONO/ASTBL	01295	NE555P
A5U2	1818-3330	1	2	IC CMOS Stat ram 64k $120 \mathrm{NS} \mathrm{3-S}$	54013	HM6264P-12
A5U3	1820-1432	5	8	IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295	SN74LS163AN
A5U4	1820-1432	5		IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295	SN74LS163AN
A5U5	1820-1416	5	1	IC SCHMITT-TRIG TTL LS INV HEX 1 -INP	01295	SN74LS14N
A5U6	1820-1432	5		IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295	SN74LS163AN
A5U7	1820-1432	5		IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295	SN74LS163AN
A5U8	1820-1197	9	1	IC GATE TTL LS NAND QUAD 2-INP	01295	SN74LSOON
A5U9	1820-1997	7	3	IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74LS374N
A5U10	1820-2102	8		IC LCH TTL LS D-TYPE OCTL	01295	SN74LS373N
A5U11	1820-2102	8		IC LCH TTL LS D-TYPE OCTL	01295	SN74LS373N
A5U12	1820-1997	9	3	IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74LS374N
A5U13	1820-1997	9		IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74LS374N
${ }^{\text {A5U14 }}$				NOT ASSIGNED		
A5U15	1820-1470	1	4	IC MUXR/DATA-SEL TTL LS 2-TO-1 LINE QUAD	01295	SN74LS157N
A5U16	1820-1470	1		IC MUXR/DATA-SEL TTL LS 2-to-1 line quad	01295	SN74LS157N
A5U17	1820-1440	1	1	IC LCH TTL LS QuAd	01295	SN74LS279N
A5U18	1816-1516	7	,	IC TTL S 8192 (8K) PROM 55NS 3.5	28480	1816-1516
A5U19				NOT ASSIGNED		
A5U20	1820-1432	5		IC CNTR TTL LS BIN SYNChro pos-Edge-trig	01295	SN74LS163AN
A5U21	1820-1432	5		IC CNTR TTL LS BIN SYNChro pos-Edge-trig	01295	SN74LS163AN
A5U22	1820-1202	7	1	IC GATE TTL LS NAND TPL 3-INP	01295	SN74LS10N
A5U23	1816-1516	7		IC TTL S 8192 (8K) PROM 55NS 3-5	28480	1816-1516
A5U24	1820-2024	3	2	IC DRVR TTL LS LINE DRVR OCtL	01295	SN74LS244N
A5U25	1820-2024	3		ic DRvr ttl ls line drvr octl	01295	SN74LS244N
A5U26				NOT ASSIGNED		
A5U27				NOT ASSIGNED		
A5U28	1818-3330	1		IC CMOS Stat ram 64k 120 NS 3 3-S	54013	HM6264P-12
A5U29	1820-1432	5		IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295	SN74LS163AN
A5U30	1820-1432	5		IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	01295	SN74LS163AN
A5U31	1820-1208	3	,	IC GATE TTL LS OR QUAD 2-INPUT	01295	SN74LS32N
A5U32	1820-1112	8	2	IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74LS74AN
A5U33	1820-1470	1		IC MUXR/DATA SEL TTL LS 2-TO-1 LINE QUAD	01295	SN74LS157N
A5U34	1820-1470	1		IC MUXR/DATA-SEL TTL LS 2-TO-1 LINE QUAD	01295	SN74LS157N
A5U35	1820-1112	8		IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295	SN74LS74AN
A5U36	1820-1645	2	1	ic bfr TTl lS bus quad	01295	SN74LS126AN
A5U37	1813.0139	2	1	XTAL-CLOCK-OSCILLATOR 10MHZ 0.01\% TTL	03795	K1100A-10.0MHZ
A5W1	01349-61606	0	1	memory power cable		
A5W2	01349-61609	1	1	data cable to vpc		
$\begin{aligned} & \text { A5XU2 } \\ & \text { A5xU28 } \end{aligned}$	$\begin{aligned} & 1200-0567 \\ & 1200-0567 \end{aligned}$	1	2	SOCKET-IC 28-CONT DIP DIP-SLDR SOCKET-IC 28 -CONT DIP DIP-SLDR	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 1200-0567 \\ & 1200-0567 \end{aligned}$

Table 6-3. List of Manufacturers' Codes

Mfr No.	Manufacturer Name	Address		$\text { Zip }_{\text {Code }}$
00000	ANY SATISFACTORY SUPPLIER			
01121	ALLEN-BRADLEY CO	MILWAUKEE	WI	53204
01295	TEXAS INSTR INC SEMICOND CMPNT DIV	DALLAS	TX	75222
0192B	RCA CORP SOLID STATE DIV	SOMERVILLE	NJ	08876
02111	SPECTROL ELECTRONICS	CITY OF IND	CA	91745
03508	GE CO SEMICONDUCTOR PROD DEPT	SYRACUSE	NY	13201
03888	KDI PYROFILM CORP	WHIPPANY	NJ	07981
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX	AZ	85062
07263	FAIRCHILD SEMICONDUCTOR DIV	MOUNTAIN VIEW	CA	94042
11502	TRW INC	BOONE DIV	NC	28607
19701	MEPCO/ELECTRA CORP	MINERALS WELLS	TX	76067
24046	TRANSITRON ELECTRONIC CORP	WAKEFIELD	MA	01880
24546	CORNING GLASS WORKS (BRADFORD)	BRADFORD	PA	16701
27014	NATIONAL SEMICONDUCTOR CORP	PALO ALTO	CA	94304
27167	CORNING GLASS WORKS (WILMINGTON)	WILMINGTON	NC	28401
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO	CA	94304
30983	MEPCO/ELECTRA CORP	SAN DIEGO	CA	92121
32997	BOURNS INC TRIMPOT PROD DIV	RIVERSIDE	CA	92507
34371	HARRIS SEMICON DIV	MELBOURNE	FL	32901
50088	MOSTEK CORP	CARROLLTON	TX	75006
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS	MA	01247
72136	ELECTRO MOTIVE CORP SUB IEC	WILLIMANTIC	CT	06226
72982	ERIE TECHNOLOGICAL PRODUCTS INC	ERIE	PA	16512
73138	BECKMAN INSTRUMENTS INC HELIPOT DIV	FULLERTON	CA	92634
74100	BUSSMAN MFG DIV OF MCGRAW-EDISON CO	ST LOUIS	MO	63107
75915	LITTLEFUSE INC	DES PLAINES	IL	60016
84411	TRW CAPACITOR DIV	OGALLALA	NE	69153
91506	AUGAT INC	ATTLEBORO	MA	02703

SECTION VII

MANUAL CHANGES

7-1. INTRODUCTION.

7-2. This section normally contains information for adapting this manual to instruments for which the content does not apply directly. Since this manual does
apply directly to all instruments up to the serial number listed on the title page, no change information is given here. Refer to INSTRUMENTS COVERED BY THIS MANUAL in Section I for additional important information about serial number coverage.

SECTION VIII

SERVICE

8-1. INTRODUCTION.

$8-2$. This section provides instructions for troubleshooting and repairing the Model 1349A/D Digital Display.

8 8. Detailed theory of operation and troubleshooting information are located opposite the schematics on foldout Service Sheets. The remainder of this section has general service information that should help you quickly service and repair the Display.

8-4. THEORY OF OPERATION.

8-5. Overall theory of operation appears on pages opposite the Block Diagram (Service Sheet 1). Each section of the diagram refers to service sheets where detailed theory, schematics and troubleshooting information are presented. Figure 8 -2 explains any unusual symbols that appear on the schematics.

8-6. LOGIC CONVENTIONS. Positive logic convention is used in this manual, unless otherwise noted on the schematics. Positive logic convention defines " 1 " as the more positive voltage (high) and a logic " 0 " as the more negative voltage (low).

8-7. LOGIC SYMBOLOGY. The new ANSI logic symbology is used in this manual. The purpose of these symbols is to graphically represent device function so that the operation can be understood without having to "look up" how a device works. Basic logic symbols and examples of symbols are shown in Figure 8-3. Table 8-2 provides an explanation of function lables used in the schematics.

8-8. RECOMMENDED TEST EQUIPMENT.

8-9. Test equipment required for maintaining the 1349A/D is listed in Section I Table 1-4. Equipment
other than that listed may be substituted if it meets the listed specifications.

8-10. REPAIR.

8-11. ASSEMBLY REMOVAL. Major assembly removal is shown in Figure 6-1. Refer to Table 8-1 for the list of assemblies indexed to Service Sheets.

Table 8-1. Service Sheet Quick Reference.

Assembly	Name	Service Sheet(s)
A1	X-Y Stroke Generator	$3 \mathrm{~A}, 3 \mathrm{~B}, 3 \mathrm{C}$
A2	Vector Processor	2A, 2B
A3	Low Voltage Power Supply	4
A4	High Voltage Power Supply	5
A5	Memory Circuit (1349D only)	6A, 6B

8-12. CRT REMOVAL PROCEDURE.

a. Remove power from the instrument.
b. Remove CRT socket. Use two thin bladed screwdrivers to pry the socket away from the CRT (see Figure 8-3). Disconnect the PA lead.
c. Loosen screw on the CRT Shield (MP2) on top of the instrument (next to the Low Voltage Power Supply)
d. Loosen Preload Ring (MP7). Use a No. T15 Torx screwdriver. Gradually release the pressure of the Preload Ring by loosening the screws in the $1,2,3,4$ sequence as shown in Figure 8-1.

LOOSEN PRELOAD RING (MP7) IN THE 1, 2, 3, 4 SEQUENCE

Figure 8-1. CRT Removal.
e. Remove CRT Bezel (MP4) using a No. T10 Torx screwdriver. Remove the CRT from the CR'T Shield (MP2).
f. When reinstalling a CRT, relubricate the Yoke assembly with silicone grease. Ensure a layer of grease where ever the CRT contacts the Yoke assembly.
g. Lubricate the PA lead from the CRT. Wipe the electrical connector part of the PA lead clean.
h. To reassemble the instrument reverse the above procedure (steps e through b).

8-13. TROUBLESHOOTING.

Read the safety summary at the front of this manual before troubleshooting the instrument.

8-14. DC VOLTAGES AND WAVEFORMS. DC voltages, waveforms and conditions for making these measurements are given on, or are adjacent to schematics on the Service Sheets. Since conditions for making measurements may differ from one circuit to a nother, always check the specific conditions listed for each schematic.

8-15. INITIAL TROUBLESHOOTING PROCEDURE. Before attempting to troubleshoot the 1349A/D, visually inspect the interior of the instrument for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy the cause of such conditions. If no abnormal conditions are found, try to perform the adjustment procedure in Section V of this manual. Some apparent malfunctions may be corrected by these adjustments, or failure to obtain a correct adjustment will often reveal the source of trouble.

Figure 8-2. Schematic Diagram Symbols.

Figure 8-3. Basic Logic Symbols (Sheet 1).

ACTIVE HIGH inputs and outputs Indicated by the absence of the polarity indicator (Δ

ACTIVE LOW inputs and outputs Indicated by the presence of the polarity indicator (Δ).

EDGE SENSITIVE (Dynamic) inputs Indicated by the presence of the dynamic indicator symbol $\mid>$.

BI-THRESHOLD (Hysteresis) input
(a) - input takes on internal
high state when external signal exceeds high threshold value State is maintained until external signal falls below a lower threshold value

OPEN COLLECTOR output 10
Forms a part of a distributed connector.

SHIFT RIGHT (Down input of register. m may be other qualifiers or dependency notation.

COUNT UP input of a counter. m may be other qualifiers or dependency notation.

DATA input. m may be other qualifiers or dependency notation.

INDICATES DEVICE IS A DEMULTIPLEXER 3-LINE TO 8-LINE DECODER/ DEMULTIPLEXER ON C INPUT. 8-BIT SERIAL-IN/PARALLEL-OUT SHIFT REGISTER	PRESETTABLE BINARY COUNTER

Figure 8-3. Example Complex Logic Symbols (Sheet 3).

Table 8-2. Function Labels.

8-16. SERVICE SHEET 1, THEORY OF OPERATION.

8-17. INTRODUCTION. The following paragraphs contain functional descriptions keyed to the simplified block diagram on the opposite page. The block diagram is drawn for function and does not show circuit details. Circuit details and circuit descriptions are located on the schematics following the block diagram. Refer to Table 8-1 for schematic identification.

8-18. VECTOR PROCESSOR (Assembly A2, Service Sheets 2, 2A).

The purpose of the Vector Processor Control is to convert the digital 16 bit input data from the user processor to absolute coordinate vector data for the Stroke Generator (A1). The self test processor A2U1 is used to display the primary and secondary test patterns. The patterns are used for the Performance Checks (Section IV) and the Adjustment Procedures (Section V). The Vector Processor Control Board contains the following primary circuits:

1. Input Data Latches (A2U6, A2U8, A2U13).
2. Output Data Latches (A2U22-A2U25).
3. Character Generator (A2U5, A2U9-A2U12).
4. Timing Circuits (A2U14, A2U26).
5. Vector Processor (A2U16).

8-19. X-Y STROKE GENERATOR (Assembly A1, Service Sheets 3A, 3B, 3C).

The Stroke Generator converts binary data from the Vector Processor to analog deflection information. The Stroke Generator consists of the following primary circuits:

1. Digital to Analog Converters (A1U1-A1U6, A1U13-A1U18).
2. Analog Multiplier (A1U7, A1U19).
3. Ramp Generator (A1U26).
4. Intensity Controller (A1U25).
5. X and Y Output Amplifiers.

8-20. LOW VOLTAGE AND HIGH VOLTAGE POWER SUPPLIES (Assemblies A3, A4 Service Sheets 4, 5).

The Low Voltage Power Supply (A3) conditions the operating potentials for the 1349A/D. Additionally, the assembly provides a +105 V supply for the High Voltage Power Supply, the X-Y Deflection Amplifiers, Intensity Amplifier and Astigmatism Amplifiers. The High Voltage Power Supply (A4) provides the operating potentials for the CRT. The supply consists of the following circuits:

1. Oscillator Circuit (A4Q7).
2. Cathode Rectifier and Filter (A4CR11, A4C12, A4C13).
3. High Voltage Regulator (A4U1).
4. Level Translator Circuit (A4CR14, A4CR15, A4C16).

8-21. MEMORY CIRCUIT (Assembly A5, Service Sheet 6).

The Vector Memory circuit can store all the $1349 \mathrm{~A} / \mathrm{D}$ commands to draw a picture on the screen. The user processor can access any address in Vector Memory via the Address Pointer. This allows selected portions of a picture to be changed or sent back to the processor for checking or processing.

The Memory Circuit also has a feature whereby the user processor can supress portions of the picture (such as graticules or labels). Suppressed information is not erased from the Vector Memory. This is done by having the Memory do an Internal Jump past the data that is not to be displayed. Suppressed data can be made part of the picture by using only a few user processor commands, thus reducing overhead time.

8-22. SERVICE SHEETS 2, 2B, THEORY OF OPERATION.

The 16 bit data from a user processor is converted to absolute coordinate vector data for the X-Y Stroke Generator (A1). This is accomplished by interfacing a host processor or refresh system with the circuit board. The self test processor is used for storing the primary and secondary test patterns. The Vector Processor nd secondary test pattern. The Vector Processor consists of the following circuits which are described below:

1. Input Data Latches (A2U6, A2U8).
2. Output Data Latches (A2U22-A2U25).
3. Character Generator (A2U5, A2U9-A2U13)
4. Timing Circuit (A2U14, A2U26).
5. Vector Processor (A2U16).
6. Condition Latches (A2U18-20).

NPUT DATA BUFFERS. The Input Data Buffers provide buffering for the Vector Processor (A2U16). The input data is gated to the when the VPC is ready for new vector data. Character data is handled by A2U13, while vector data is handled by A2U6 and A2U8. The VPC controls the gating of the data by using the signal lines VECTOR and CHARACTER.

OUTPUT DATA AND CONDITION LATCHES. The

 absolute X and Y vector values generated by the VPC (A2U16), are held in output latches A2U22-A2U25 for use by the Stroke Generator. The vector data is transfered by the Data Latch signal into the Output Latches. Condition Latches (A2U18-A2U20) contain the last Set Condition commands.Character generator. The Character Generator translates character data into vector data for the VPC (A2U16). ROM A2U12 contains the stroke information for the modified ASCII character set. The character size and rotation is processed by the VPC for proper vector generation.
To generate a character:

1. LRFD is set low by the VPC
2. LDAV is set low by the user processor (or by A2U1 if in self test)
3. VPC sets LVECTOR low to read Data Bus Command from Data Buffers A2U6 and A2U8.
4. At the same time LVECTOR goes low, A2U9-U11 are loaded with the address of the character from Character look-up ROM A2U5.
5. VPC set LRFD high.
6. VPC sets LCHARACTER low to read byte from Character ROM A2U12 via Character Buffer A1U13.
7. VPC sets LCHARACTER high to clock A2U9A2U11 via A2U15B (COUNT INC goes positive) for next character byte.
8. Steps 6 and 7 repeat until last stroke of the character has been transferred to the Analog Board.
9. VPC sets LRFD low for next Data Bus command

TIMING CIRCUIT. The clock circuit (A2U14,A2U26) provides the clock for the VPC. A2U14 generates a 19.66 MHz pulse and A2U26 divides that pulse by 5 to 3.93 MHz for the VPC.

VECTOR PROCESSOR (VPC). The VPC is the controlling device for vector generation, using four programmable modes of operation.

1. Set Condition
2. Plot Absolute
3. Graph Absolute
4. Text

SET CONDITION. When bits B14, and B13 of an input word are set to " 1 ", the VPC recognizes the Set Condition Command. The Set Condition Command controls the intensity level, the line type, and the writing speed of the vector drawn. Once a Set Condition has been defined, the data remains stored in buffers A2U18-A2U20 until a new Set Condition Command is received.
PLOT COMMAND. When bits B14 and B13 are set to " 0 ", the VPC is ready to process vector data. Data bits B0-B10 define X or Y coordinates. When bit B12 is set to " 0 " the incomming data is an X coordinate, when bit B12 is set to " 1 " the incoming data is a Y coordinate. The beam can be turned on or off depending on the The beam can be turned on or off depending on the
status of bit B11. The present X-Y coordinates are latched into A2U22-A2U25.
GRAPH COMMAND. The Graph Command allows automatic X incrementing with each new Y coordinate input. To invoke the Graph Command, data bits B14 must be set to " 0 " and B13 must be set to " 1 ". When bit B12 is set to " 0 ", B0-B10 define the X increment. The VPC is now programmed to increment the X coordinate each time a new Y coordinate is received. Bits B0-B10 contain Y coordinate information when B12 is set to " 1 ".
TEXT COMMAND. When bit B14 is set to " 1 " and B13 is set to " 0 ", the VPC is instructed to go to the Text Mode. Bits B0-B7 define the character to be drawn. B11-B12 define the size of character to be drawn, B9-B10 determine rotation of the character. When bit B8 is set to " 0 " the VPC defaults to the previous size and rotation data. When set to " 1 " size and rotation information is determined via data bits B9-B12.

VPC/Analog Handshake Sequence

1. Analog Board sets VECTOR DONE high (forced by Stroker Restart A2U21 on VPC Board at power-on. This line is normally controlled by Ramp Generator A2U26 on the Analog Board.
2. VPC sets Data Latch high.
3. VPC sets Start Vector 1 high, then waits for a high on VECTOR DONE (step 1).

$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	${ }_{\text {coc }}^{\text {GRID }}$	- REFİ	${ }_{\text {LOC }}^{\text {GR10 }}$	REFFIG	${ }_{\text {LOC }}^{\text {GRID }}$	REF	${ }_{\text {coc }}^{\text {GRID }}$
C1	B-3	C22	H-3	R7	G-3	U12	E-3
C2	B-3	C23	H-3	R8	G-3	U13	E-3
C3	B-3	CR1	H-3	R9	H-3	U14	F-3
C4	A-2	CR2	E-3	R10	H-3	U15	E-3
C5	C-3	E1	A-3	R11	H-3	U16	E-2
C6	C-3	J1	C-1	R12	H-3	417	F-3
C7	C-3	J2	H-1	R13	H-3	U18	F-2
C8	C-2	J3	H-2	RP1	B-3	U19	F-2
c9	C-2	J4	A-3	RP2	C-4	U20	F-2
C10	D-3	J5	B-2	U1	B-3	U21	G-3
C11	D-2	J6	A-2	U2	B-3	U22	G-3
C12	E-2	L1	B-3	U3	B-3	U23	G-2
C13	E-3	Q1	H-3	U4	B-2	U24	G-2
C14	E-3	Q2	H-3	U5	C-3	U25	G-2
C15	E-3	R1	A-3	U6	C-3	U26	H-2
C16	F-3	R2	A-3	U7	C-2	U27	F-3
C17	G-3	R3	D.3	U8	C-2	U28	A-2
C18	G-2	R4	D-2	U9	D-3	VR1	H-3
C19	G-3	R5	D-2	U10	D-3	XU4	B-3
C20	G-3	R6	D-1	U11	D-2	XU5	C-3
C21	G-2					XU16	E-2

REF	${ }_{\text {chac }}^{\text {GRID }}$	REFIG	${ }_{\text {LOC }}^{\text {GRID }}$	- REFE	${ }_{\text {LOC }}^{\text {GR10 }}$	REF DESIG	GRID LOC
C1	в-3	C22	H-3	R7	G-3	U12	E-3
C2	B-3	C23	H-3	R8	G-3	U13	E-3
С3	B-3	CR1	H-3	R9	H-3	U14	F-3
C4	A-2	CR2	E-3	R10	H-3	U15	E-3
C5	C-3	E1	A-3	R11	H-3	U16	E-2
C6	C-3	J1	C-1	R12	H-3	U17	F-3
C7	c-3	J2	H-1	R13	H-3	U18	F-2
C8	C-2	J3	H-2	RP1	B-3	U19	F-2
C9	C-2	J4	A-3	RP2	C-4	U20	F-2
C10	D-3	J5	B-2	U1	B-3	U21	G-3
C11	D-2	J6	A-2	U2	B-3	U22	G-3
C12	E-2	L1	B-3	U3	B-3	U23	G-2
C13	E-3	01	H-3	U4	B-2	U24	G-2
C14	E-3	Q2	H-3	U5	C-3	U25	G-2
C15	E-3	R1	A-3	U6	C-3	U26	H-2
C16	F-3	R2	A-3	U7	C-2	U27	F-3
C17	G-3	R3	D-3	U8	C-2	U28	A-2
C18	G-2	R4	D-2	U9	D-3	VR1	H-3
C19	G-3	R5	D-2	U10	D-3	xU4	B-3
C20	G-3	R6	D-1	U11	D-2	xU5	C-3
C21	G-2					XU16	E-2

8-23. SERVICE SHEETS 3A, 3B, 3C THEORY OF OPERATION.

The Stroke Generator converts the binary data from the VPC to analog deflection information. Since the XY Stroke Generator and the X-Y Amplifiers are identical, only the X-Axis circuits will be described.

DIGITAL TO ANALOG CONVERTER. A1U1 and A1U2 latch the previous X coordinate for comparison with the present X coordinate data. A1U3 and A1U4 are 12 bit DACs that convert the binary coordinate data to a corresponding analog current. The output voltage of operational amplifiers A1U5 and A1U6 represents the present and previous X coordinates. The difference between these two voltages determines the next relative beam movement in the X direction.

ANALOG MULTIPLIER. The Analog Multiplier multiplies two signals: the ramp generated by A1U26, and the DAC outputs. The output of A1U10 is a ramp whose amplitude is a function of the desired relative X beam movement and whose offset is a function of screen location (see Figure 8-10).

Figure 8-10. Simplified Block Diagram of Analog Multiplier.

RAMP GENERATOR. The Ramp Generator (A1U26) provides two signals: a ramp for X-Y beam movement and the gate pulse for beam blanking. In order to maintain a constant intensity level for different vector length, the slope of the ramp (writing speed) must be held constant. The ramp slope is controlled by a combination of four inputs to A1U26. (See Figure 8-11 for the current definitions).

Figure 8-11. Current Definition For Ramp Generator

INTENSITY CONTROLLER. The Intensity Controller converts digital line writing and intensity information to analog voltages for use by the Intensity Amplifier. The only other input to the Intensity Controller is the gate pulse for beam blanking generated by A1U26. The current controlled oscillator in A1U25 generates two chopping frequencies: one for short dash line type and the other for long dash line type.

X-Y AMPLIFIERS. The X and Y amplifiers are identical They amplify the X and Y analog coordinates from the Analog Multiplier (A1U7, A1U19) to drive the CRT horizontal and vertical deflection plates. Since both
amplifiers are identical, only the X amplifier will be described. The X amplifier consits of a preamplifier (A1U29) and an output amplifier (A1Q7-A1Q12). The differential output from preamp A1U29 is applied to two identical amplifiers A1Q7-A1Q9 and A1Q10A1Q12. The signal voltage is raised by these two amplifiers to the required level to drive the horizontal deflection plates. The gain of the output amplifier is stabilized by the negative feedback path through A1R92 and A1R101. The gain and balance of the X amplifier is set by A1R87 and A1R82 respectively.

Z-AXIS AMPLIFIER. The operating potential between the CRT grid and cathode is controlled by the Z-Axis amplifier output level. The amplifier consists of the ZAxis preamp located on the Stroke Generator assembly (A1) and the Intensity Amplifier located on the High Voltage Power Supply assembly (A4). The output of the preamp A1U27 is applied to the Focus Correction Amplifier (A1U31) and the Intensity Amplifier A4Q4A4Q6. The output of emitter follower A1Q4 is applied to amplifier A1Q5 and A1Q6 where the signal amplitude is raised to the required level to control the operating potential of the CRT control grid. Intensity Amplifier gain is stabilized by the negative feedback path through A1R11. A1CR5 and A1CR6 provide protection for the Intensity Amplifier output stage against arcs and transients.

FOCUS CORRECTION AMPLIFIER. The Focus Correc tion circuit provides an optimum focused display over the entire viewing area. The amplifier uses three inputs for proper focus correction voltage generation. A voltage proportional to the beam position is coupled from the X and Y preamps to A1U31D and A1U31A. The Z axis correction voltage is fed from the Z axis preamp to the output of A1U31B. The X Gain and Balance is adjusted by A1R142 and A1R135, the Y Gain and Balance is adjusted by A1R145 and A1R138. The focus correction signal is applied to Focus Output amplifier A4Q1-A4Q3. The Output amplifier operates identical to the Intensity Amplifier.

Component Locator for 3A is shown on Service Sheet 3B \& 3C.
amplifiers are identical, only the X amplifier will be described. The X amplifier consits of a preamplifier (A1U29) and an output amplifier (A1Q7-A1Q12). The differential output from preamp A1U29 is applied to two identical amplifiers A1Q7-A1Q9 and A1Q10A1Q12. The signal voltage is raised by these two amplifiers to the required level to drive the horizontal deflection plates. The gain of the output amplifier is stabilized by the negative feedback path through A1R92 and A1R101. The gain and balance of the X amplifier is set by A1R87 and A1R82 respectively.

Z-AXIS AMPLIFIER. The operating potential between the CRT grid and cathode is controlled by the Z-Axis amplifier output level. The amplifier consists of the ZAxis preamp located on the Stroke Generator assembly (A1) and the Intensity Amplifier located on the High Voltage Power Supply assembly (A4). The output of the preamp A1U27 is applied to the Focus Correction preamp A1U2 1 31) and the Intensity Amplifier A4Q4Amplifier (A1U31) and the Intensity Amplifier A4Q4A4Q6. The output of emitter follower A1Q4 is applied to mplised to the required level to control the operating is raised to the required level to control the operating potential of the CRT control grid. Intensity Amplifier gain is stabilized by the negative feedback path hrough A1R11. A1CR5 and A1CR6 provide protection for the Intensity Amplifier output stage against arcs and transients.
focus correction amplifier. The Focus Correcion circuit provides an optimum focused display over the entire viewing area. The amplifier uses three inputs for proper focus correction voltage generation. A voltage proportional to the beam position is coupled from the X and Y preamps to A1U31D and A1U31A. The Z axis correction voltage is fed from the Z axis preamp to the output of A1U31B. The X Gain and Balance is adjusted by A1R142 and A1R135, the Y Gain and Balance is adjusted by A1R145 and A1R138. The focus correction signal is applied to Focus Output amplifier A4Q1-A4Q3. The Output amplifier operates identical to the Intensity Amplifier.

AUXILIARY X-OUTPUT (A1J5) 1349A DEFLECTION FACTOR $=0.2 \mathrm{~V} / \mathrm{DIV}$ SWEEP $=0.2 \mathrm{~ms} / \mathrm{DIV}$

AUXILIARY X-OUTPUT (A1J5) 1349D DEFLECTION FACTOR $=0.2 \mathrm{~V} / \mathrm{DIV}$ SWEEP $=1 \mathrm{~ms} /$ DIV

MEASUREMENT CONDITIONS
OBTAIN 1349A/D PRIMAR TEST PATTERN

AUXILIARY Y-OUTPUT (A1 1J4) 1349 DEFLECTION FACTOR $=0.2 \mathrm{~V} / \mathrm{DIV}$ SWEEP $=1 \mathrm{~ms} / \mathrm{DIV}$

AUXILIARY Y-OUTPUT (A1J4) 1349 DEFLECTION FACTOR $=0.2 \mathrm{~V} / \mathrm{DIV}$ FACTOR $=0.2 \mathrm{~V} / \mathrm{DIV}$
SWEEP $=0.2 \mathrm{~ms} / D I V$

AUXILIARY Z-OUTPUT (A1J3) 1349A DEFLECTION FACTOR $=0.2 \mathrm{~V} / \mathrm{DIV}$ SWEEP $=1 \mathrm{~ms} / \mathrm{DIV}$

AUXILIARY Z-OUTPUT (A1J3) 1349D
DEFLECTION FACTOR $=0.2 \mathrm{~V} / \mathrm{DIV}$ SWEEP $=0.2 \mathrm{~ms} / \mathrm{DIV}$

8-24. SERVICE SHEET 4, THEORY OF OPERATION.

The purpose of the Low Voltage Power Supply is to provide the +105 V for the X-Y Deflection Amplifiers, the Intensity Amplifier, and the High Voltage Power Supply. The supply consists of only one primary circuit the +105 V supply. All other required operating voltages must be provided by an external supply. The +105 V power supply is a switching supply consisting of A3U1, A3Q1,A3Q2 and A3T1. A3U1 contains all the unctions necessary for current limiting; regulating and switching the power transistors A3Q1 and A3Q2 $\mathrm{A} C 5$ and A3R4 determine the switching frequency of he oscillator of A3U1. A3T1 steps up the switchin oiltage. A3CR3 and A3CR4 make up accomplished by A3L2 and A3C7. A3R11 adjusts the +105 V supply.

Top oscluaroo signal at auv, pin
Botiom colector of abal

Figure 8-18. Low Voltage Power Supply Troubleshooting Flow Chart.

8-25. SERVICE SHEET 5, THEORY OF OPERATION

The High Voltage Power Supply provides the high operating potentials for the CRT. The supply consists of the following primary circuits: an oscillator; the cathode rectifier and filter circuit; a regulator circuit and the level translator. The oscillator signal is stepped up by tranformer A4T1 and rectified by A4CR11 $\mathrm{A} 4 \mathrm{C} 12, \mathrm{~A} 4 \mathrm{C} 13$ and A4R32 provide filtering for the cathode supply. A4R33 and A4Ul make up th regulator circuit. The feedback voltage from A4R33 is compared to the +105 V reference voltage at th junction of A4R21 and A4R33. The resultant output voltage of A4U1 controls the amplitude of the High Voltage Oscillator A4Q7. The Level Translator, A4CR14 and A4CR15, establishes the operating potential between cathode and grid of the CRT.

Figure 8-22. High Voltage Power Supply Component Locator.

8-26. SERVICE SHEET 6A, 6B THEORY OF OPERATION.

MEMORY CONTROL (SERVICE SHEET 6A)

The Memory Control section interpets the user commands and synchronizes the memory operations. The circuit is divided into three functional stages: The Command Decode stage, the Memory Control Latch and the Memory Control ROM.
THE COMMAND DECODER. The Command Decoder Monitors the status of the memory operations. The user commands (LRD, LWR, LDS), the memory status lines and the next state control lines specify in which of the two modes the memory is to operate. The two states are: Read/Write and Screen Refresh. To read data from memory, control lines LDS and LRD are used. To write data into memory, control lines LDS and LWR are used. When control line LDS is set high by the user, the display will be refreshed at the sync rate according to the instructions stored in memory. Internal Sync is generated by LCLR SYNC being setlow A CL SYNC will also hold off the MAX ADRSL line. The MAX ADRSL line indicates when the end of the display mery is reached. When User Data lines UD14 and UD15 are high, SET ADRS is set high indicating that the Read/Write pointer is to be set to the address defined by UD0 through UD11. SXACK clocks the status of the user commands through A5U32A to A5U36. The output at A5U36 pin 11 (LXACK) is fed back to the user to acknowledge that the command has been received. acknow line LMRDIS disables the Memory Read Latches (A5U10, U11).

REFRESH SYNC. The display refresh is synchronized by either an internal clock or the sync signal can be provided by a user clock.

INTERNAL SYNC. When in Internal Sync mode, an onboard oscillator (A5U1) provides sync pulses at approximately a 60 Hz rate. The user processor can send all picture producing data to the Vector Memory at one time. The Vector Memory will then continuously refresh the display screen by redrawing the picture at regular intervals. This reduces overhead time for the user processor.

EXTERNAL SYNC. Sync pulses (TTL) must be supplied from an external source in the user system via the SYNC input signal line at W1 pin 4.

MEMORY CONTROL LATCH. On the positive edge of the OP FETCH line, the status of the six state request line and the two status signals are latched and held at the Memory Control Latch (MA2-MA9). The six state INTRFD, MD15 and SET ADRS. The two status signals are MAX ADRS and MEM SYNC.

MEMORY CONTROL ROM. The output of the Memory Control ROMS (A5U18, U23) are the eleven memory control signals and the five state control signals. The Memory Control signals are: VPC ADRS LOAD, VPC ADRS CLK, VPC DATA CLK, USER ADRS LOAD, ADRS CLK, VPC DATA CLK, USER ADRS LOAD,
USER ADDRESS CLK, USER DATA LATCH, MW DATA EN, HUSER/LVPC ADDRESS SELECT, DATA EN, HUSER/LVPC ADDRESS SELECT,
LMARD EN, MEMORY OE and MEMORY WRITE. The five state control signals are: MCA0, MCA1, OP The five state control signals are: MCA0, MCA1, OP
FETCH, LCLAR SYNC, and SXACK. The states of the FETCH, LCLAR SYNC, and SXACK. The states of the
Memory Control signals are determined by the data Memory Control signals are determined by the data
stored in the Memory Control ROMS (A5U18, U23). The stored in the Memory Control ROMS (A5U18, U23). The
Memory Control Address specified by MCA0-MCA9 will at the positive edge of the control clock determine the state of the Memory Control Signals.

MEMORY CIRCUIT (SERVICE SHEET 6B).

The following circuit description refers to the two modes of operation of the memory circuit: The Read/Write mode and the Screen Refresh mode.
READ/WRITE MODE. The user can do a Read/Write operation without setting the Read/Write Pointer. However, it is recommended that the user knows which location in memory is being accessed (read from or written into). There are two steps in a read or write operation: Setting the Read/Write Pointer, and read from or write into Vector Memory.
SET POINTER. The value in the Read/Write Pointer specifies the next address in Vector Memory that will be written into or read from by the user processor. When the user sends a Set Pointer Commana, the USER ADRS MD13 is preto Dutputs of the Pointer (USER A0-USER A13) are elected by the Address Multiplexers (A5U15, U16, U33 U34) as the next Memory Address.

READ/WRITE. After the vector memory address has been selected, a Read/Write operation can be performed. To read data from Vector Memory, the user sets LDS and LRD lines low. Control line MEMORY OE will set low
and the information at the address specified will be placed on the Data Bus. At the same time that LDS and LRD were set low, the Memory Read Latches (A5U10, U11) were enabled to transfer the data from the Memory Data Bus to the User Data Bus (UD0-UD15)
When a write operation is performed, signal lines LDS and LWR are set low, and LDR is set high. As a result, the MEMORY WRITE line is set low and the information on the Data Bus is written into Vector Memory at the address specified. The data flow through the Memory Buffers (A5U24, U25) is controlled by the MW DATA EN line. When this line is low, data is transferred from the User Data Bus to the Memory Data Bus.

REFRESH MODE. The refresh sync signal may be provided by either the internal refresh circuit, or an provided by either the internal refresh circuit, or an operation, set the A5S1 in the memory board as shown in Section III, figure 3-3.
The VPC ADRS LOAD, ADRS CLK, and DATA CLK control the memory address and therefore the data transfer to the VPC circuit during screen refresh. The rate of data transfer is controlled by the LRFD and LDAV handshake rate. HUSER/LVPC ADDRESS SELECT is low during this operation.

IC DEVICE

$+5 v \frac{16}{8}{ }^{417}$
$+5 v \frac{20}{10}{ }^{10}$ us
$\left.+5 v \frac{24}{12} \right\rvert\,$ U18,23

NOTES

1. GATES ARE SMB SMIIZED ACCORDING To
2. UMLESS OTHCRNISE. NOTED

OPPACITANCE IN PICOFFRRDS
INTUTFNCE IN MICPOHNRIES
3. LNLESS OTHERNISE NOTED

OGIC LEVELS RRE TTL
$+2.6 \mathrm{VVO}+5.0 \mathrm{~V}=L O G$,

$\prod_{\text {SHEET }}^{\text {SERVICE }} 6 \mathrm{~A}$

ACTIVITY ON THE OP-FETCH LINE A5U CHECKING FOR ACTIVITY ON THE OP-FETCH LINE, A5U9 PIN 11. CHECK
LOGIC SIGNAL AS SHOWN BELOW. DISCONNECT I/O

CHECK AT	CHECK FOR
A5U9-2	LOGIC LOW
A5U9-19	LOGIC HIGH
A509-16	LOGIC HIGH
A5U9-6	10.4KHz to 10.6KHz
A549-15	6OHZ (SYNC RATE)
A599-12	SYNC RAAE
A5U9-9	SYNC RATE
A5U9-5	LOGIC LOW

OTE 6. CHECK LRFD AND LDAV FOR AN APPROXIMATE 10.5 KHz SIGNAL.
NOTE 7. THE REFRESH COUNTERS SHOULD BE CYCLING AT THE SYNC RATE. THE OUTPUTS OFTHE MULTIPLEXERS SHOULD MATCH THE OUTPUTS OF THE REFRESH COUNTERS. THE READ/WRITE POINTER SHOULD B Inactive.
note 8. the rams are socketed. exchange these Wh Side to side and note if failure indications ChANGE.

NOTE 5. VERIFY MEMORY CONTROL BY CHECKING FOR ACTIVITY ON THE OP-FETCH LINE, A5UY PIN 11. CHECK LOGIC SIGNAL AS SHOWN BELOW:
DISCONNECT I/O

CHECK AT	CHECK FOR
A5U9-2	LOGIC LOW
A5U9-19	LOGIC HIGH
A5U9-16	LOGIC HIGH
A5U9-6	10.KHz to 0.6 KHz
A5U9-15	6OHz (SYNC RATE)
A5U9-12	SYNC RATE
A5U9-9	SYNC RATE
A5U9-5	LOGIC LOW

SYNC RATE

Cote 0.5KHz SIGNAL.

NOTE 7. THE REFRESH COUNTERS SHOULD BE CYCLIN AT THE SYNC RATE THE OUTPUTS OFTHE MULTIPLEXER信 inActive.
note 8. THE RAMS ARE SOCKETED. EXCHANGE THESE NOTE 8. THE RAMS ARE SOCKETED. EXCHANGE THESE
TWO SIDE TO SIDE AND NOTE IF FAILURE INDICATIONS Change.

- REF	CRID	$\begin{gathered} \text { REF } \\ \text { RESIG } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { GOD } \end{array}$	$\begin{gathered} \text { REF } \\ \text { DESIG } \end{gathered}$	GR1O ROC	REEF	${ }_{\text {crald }}^{\text {GROC }}$
C1	A-4	C17	G-2	U7	G-4	U23	H-3
C2	A-4	C18	H-2	U8	G-4	U24	B-2
C3	B-4	C19	H-2	U9	H-4	U25	C-2
C4	B-2	C20	J-4	U10	в-3	U26	C-2
C5	B-3	C21	J-2	U11	C-3	427	D-2
C6	C-4	R1	A-3	U12	C-3	U28	E-2
C7	C-3	R2	A-3	U13	D-3	U29	F-2
C8	C-4	R3	G-3	U14	E-3	U30	G-2
c9	C-3	R4	G-3	U15	F-3	U31	G-2
C10	D-4	S1	H-4	U16	G-3	U32	H-2
C11	D-3	U1	A-4	417	G-3	U33	F-2
C12	G-4	U2	E-4	U18	H-3	U34	G-2
C13	G-4	U3	F-4	U19	E-3	U35	G-2
C14	G-3	U4	G-4	U20	F-3	U36	H-2
C15	G-3	U5	G-4	U21	G-3	U37	A-3
C15 C16	G-3	U6	F-4	U22	G-3	W1	B-4

THEORY FOR MEMORY CIRCUIT IS ON MAGE 8-24.

[^0]: ASSISTANCE

 Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

 For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

[^1]: Temperature: (non-operating) $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$.

