
MSP Gang Programmer (MSP-GANG)

User's Guide

Literature Number: SLAU358D

September 2011–Revised May 2013

Contents

Preface ... 6

1 Introduction .. 8
1.1 Software Installation .. 9
1.2 Driver Installation .. 10
1.3 Hardware Installation .. 10

2 Operation ... 12
2.1 Programming MSP430 Flash Devices Using the MSP Gang Programmer .. 12

2.1.1 Programming Using Interactive Mode ... 13
2.1.2 Programming From Image .. 18
2.1.3 Programming From Script ... 21
2.1.4 Programming in Standalone Mode ... 26
2.1.5 Memory Setup for GO, Erase, Program, Verify, and Read ... 29
2.1.6 Creating and Using Images ... 31
2.1.7 Programming From Image File ... 33
2.1.8 Programming From SD Card ... 35
2.1.9 File Extensions .. 35
2.1.10 Checksum Calculation .. 35

2.2 Data Viewers ... 36
2.3 Status Messages .. 39
2.4 Self Test .. 43
2.5 Label .. 48
2.6 Benchmarks .. 49

2.6.1 Benchmarks for MSP430F5xx .. 49
2.6.2 Benchmarks for MSP430FR57x .. 50
2.6.3 Benchmarks for MSP430F2xx .. 50

3 Firmware .. 51
3.1 Commands ... 51
3.2 Firmware Interface Protocol .. 52
3.3 Synchronization Sequence ... 52
3.4 Command Messages ... 52

3.4.1 Frame Structure .. 52
3.4.2 Checksum ... 54

3.5 Detailed Description of Commands ... 54
3.5.1 General .. 54
3.5.2 Commands Supported by the BOOT Loader ... 54
3.5.3 Commands Supported by Application Firmware ... 58
3.5.4 API Firmware Commands That Should Not be Used .. 61

4 Dynamic Link Library for MSP-GANG Programmer .. 65
4.1 Gang430.dll Wrapper Description ... 65
4.2 MSP-GANG.dll Description ... 65

4.2.1 MSPGANG_GetDataBuffers_ptr ... 66
4.2.2 MSPGANG_SetGangBuffer, MSPGANG_GetGangBuffer .. 67
4.2.3 MSPGANG_GetDevice .. 68
4.2.4 MSPGANG_LoadFirmware ... 69

2 Contents SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com

4.2.5 MSPGANG_InitCom ... 69
4.2.6 MSPGANG_ReleaseCom ... 69
4.2.7 MSPGANG_GetErrorString ... 70
4.2.8 MSPGANG_SelectBaudrate .. 70
4.2.9 MSPGANG_GetDiagnostic .. 70
4.2.10 MSPGANG_MainProcess .. 71
4.2.11 MSPGANG_InteractiveProcess ... 71
4.2.12 MSPGANG_Interactive_Open_Target_Device .. 71
4.2.13 MSPGANG_Interactive_Close_Target_Device .. 72
4.2.14 MSPGANG_Interactive_DefReadTargets .. 72
4.2.15 MSPGANG_Interactive_ReadTargets .. 72
4.2.16 MSPGANG_Interactive_ReadBytes .. 73
4.2.17 MSPGANG_Interactive_WriteWord_to_RAM .. 73
4.2.18 MSPGANG_Interactive_WriteByte_to_RAM ... 74
4.2.19 MSPGANG_Interactive_WriteBytes_to_RAM ... 74
4.2.20 MSPGANG_Interactive_WriteBytes_to_FLASH ... 75
4.2.21 MSPGANG_Interactive_Copy_Gang_Buffer_to_RAM ... 75
4.2.22 MSPGANG_Interactive_Copy_Gang_Buffer_to_FLASH ... 76
4.2.23 MSPGANG_Interactive_EraseSectors ... 76
4.2.24 MSPGANG_Interactive_BlankCheck ... 77
4.2.25 MSPGANG_Interactive_DCO_Test ... 77
4.2.26 MSPGANG_SelectImage ... 78
4.2.27 MSPGANG_EraseImage ... 78
4.2.28 MSPGANG_CreateGangImage ... 78
4.2.29 MSPGANG_LoadImageBlock ... 79
4.2.30 MSPGANG_VerifyPSAImageBlock ... 79
4.2.31 MSPGANG_ReadImageBlock ... 79
4.2.32 MSPGANG_Read_Code_File ... 80
4.2.33 MSPGANG_Save_Config, MSPGANG_Load_Config, MSPGANG_Default_Config 80
4.2.34 MSPGANG_SetConfig, MSPGANG_GetConfig ... 81
4.2.35 MSPGANG_GetNameConfig, MSPGANG_SetNameConfig .. 86
4.2.36 MSPGANG_SetTmpGANG_Config ... 87
4.2.37 MSPGANG_GetLabel ... 87
4.2.38 MSPGANG_GetInfoMemory, MSPGANG_SetInfoMemory .. 88
4.2.39 MSPGANG_Get_qty_MCU_Family, MSPGANG_Get_MCU_FamilyName,

MSPGANG_Check_MCU_Name, MSPGANG_Get_MCU_Name ... 89
4.2.40 MSPGANG_Set_MCU_Name ... 90
4.2.41 MSPGANG_HW_devices .. 90
4.2.42 MSPGANG_GetProgressStatus ... 91
4.2.43 MSPGANG_GetAPIStatus ... 93
4.2.44 MSPGANG_Set_IO_State ... 94

5 Schematics ... 96

Revision History ... 102

3SLAU358D–September 2011–Revised May 2013 Contents
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com

List of Figures

1-1. Top View of the MSP Gang Programmer.. 9

2-1. Main MSP Gang Programmer Dialog GUI, Interactive Mode.. 13

2-2. Memory Options ... 15

2-3. Reset Options.. 16

2-4. Flash Memory Data ... 18

2-5. Main MSP Gang Programmer Dialog GUI, From Image Mode ... 19

2-6. Main MSP Gang Programmer Dialog GUI, From Image Mode and Custom Configuration Enabled 21

2-7. Main MSP Gang Programmer Dialog GUI, From Script.. 22

2-8. Main MSP Gang Programmer Dialog GUI, Standalone Mode .. 26

2-9. Image Option... 27

2-10. Target Enable or Disable Option .. 28

2-11. Memory Options, BSL Sectors Selected ... 30

2-12. Image Name Configuration Screen ... 32

2-13. Image File Security Options.. 32

2-14. Hardware Fingerprint of Computer in Use ... 33

2-15. Programming From Image File .. 34

2-16. Password for Image File.. 34

2-17. Code File Data ... 37

2-18. Comparison of Code and Flash Memory Data of the Target Microcontroller...................................... 38

2-19. Self Test .. 44

2-20. Information About the MSP Gang Programmer ... 48

5-1. MSP-GANG Simplified Schematic (1 of 4) ... 96

5-2. MSP-GANG Simplified Schematic (2 of 4) ... 97

5-3. MSP-GANG Simplified Schematic (3 of 4) ... 98

5-4. MSP-GANG Simplified Schematic (4 of 4) ... 99

5-5. Gang Splitter Schematic .. 100

5-6. BSL Connection Schematic .. 101

4 List of Figures SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com

List of Tables

2-1. Benchmark Results – MSP430F5438A, 256kB Code .. 49

2-2. Benchmark Results – MSP430F5438A, 250kB Code, Mode: From Image.. 49

2-3. Benchmark Results – MSP430F5438A, 250kB Code, Mode: Interactive, Communication via USB 49

2-4. Benchmark Results – MSP430FR5738, 15kB Code, Mode: From Image ... 50

2-5. Benchmark Results – MSP430FR5738, 15kB Code, Mode: Interactive, Communication via USB 50

2-6. Benchmark Results – MSP430F2619, 120kB Code, Mode: From Image ... 50

2-7. Benchmark Results – MSP430F2619, 120kB Code, Mode: Interactive, Communication via USB............. 50

3-1. Data Frame for Firmware Commands .. 53

5-1. Gang Splitter Bill of Materials (BOM).. 101

5SLAU358D–September 2011–Revised May 2013 List of Tables
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Preface
SLAU358D–September 2011–Revised May 2013

Read This First

If You Need Assistance

If you have any feedback or questions, support for the MSP430™ devices and the MSP-GANG is
provided by the Texas Instruments Product Information Center (PIC) and the TI E2E Forum
(https://community.ti.com/forums/12.aspx). Contact information for the PIC can be found on the TI web site
at support.ti.com. Additional device-specific information is on the MSP430 web site at www.ti.com/msp430.

Related Documentation from Texas Instruments

The primary sources of MSP430 information are the device-specific data sheets and user's guides. The
most current information is on the MSP430 web site at www.ti.com/msp430.

Information specific to the MSP-GANG is at www.ti.com/tool/msp-gang.

6 Read This First SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

https://community.ti.com/forums/12.aspx
http://support.ti.com
http://www.ti.com/msp430
http://www.ti.com/msp430
http://www.ti.com/tool/msp-gang
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

NOTE:

Warning:

This equipment has been tested and found to comply with the limits for a Class B digital devices, pursuant
to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference
in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction manual, may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment does cause harmful interference to radio or television reception, which can be determined by turning the
equipment off and on, the user is encouraged to try to correct the interference by one of more of the following
measures:
* Reorient or relocate the receiving antenna
* Increase the separation between the equipment and receiver
* Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
* Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by Texas Instruments Inc. could void the user’s
authority to operate the equipment.

This device complies with Part 15 of the FCC Rules.
Operation is subject to the following two conditions:
(1) this device may not cause harmful interference and
(2) this device must accept any interference received,

including interference that may cause undesired
operation.

This Class B digital apparatus meets all requirements of the Canadian
Interference-Causing Equipment Regulations.

Cet appereil numerique de la classe B respecte toutes les exigences du
Reglement sur le material brouilleur du Canada.

www.ti.com Related Documentation from Texas Instruments

7SLAU358D–September 2011–Revised May 2013 Read This First
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Chapter 1
SLAU358D–September 2011–Revised May 2013

Introduction

The MSP Gang Programmer is an MSP430 device programmer that can program up to eight identical
MSP430 flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC
using a standard RS-232 or USB connection and provides flexible programming options that allow the
user to fully customize the process. A top-level view of the MSP Gang Programmer can be seen in
Figure 1-1.

The MSP Gang Programmer is not a gang programmer in the traditional sense, in that there are not eight
sockets provided to program target devices. Instead, the MSP Gang Programmer is designed to connect
to target devices in-circuit (that is, target devices are mounted in the final circuit or system). The MSP
Gang Programmer accesses target devices using connectors that use JTAG or Spy-Bi-Wire (SBW)
signals.

The MSP Gang Programmer is provided with an expansion board, called the Gang Splitter, that
implements the interconnections between the MSP Gang Programmer and multiple target devices. Eight
cables are provided that connect the expansion board to eight target devices (via JTAG or Spy-Bi-Wire
connectors).

Chapter 2 describes in detail how to use the MSP Gang Programmer to program target devices. Various
modes of operation are described, and they allow the user to choose the most convenient method of
programming. In addition, this chapter describes the various windows that are used to configure the
programming procedure for a specific target device.

Chapter 3 describes firmware commands that can be used to control the programming process at fine
granularity. Firmware commands can be received over an RS-232 or USB port and correspond to specific
actions that the programmer can perform. Take great care in using these commands, because they must
often be used in groups for proper behavior, and the order in which they are executed affects the result.

Chapter 4 describes Gang430.dll and MSP-GANG.dll, including the functions available through them.

Chapter 5 contains an I/O schematic that shows how signals from the MSP Gang Programmer can be
brought out to each of the target devices via an MSP430-standard JTAG or Spy-Bi-Wire connector. The
user can easily modify the circuit to connect the signals to the target device pins directly (via a socket) if a
traditional gang programmer setup is desired.

8 Introduction SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Software Installation

Figure 1-1. Top View of the MSP Gang Programmer

1.1 Software Installation

TI recommends that you use the latest software version, which can be downloaded from the MSP430
website at www.ti.com/msp-gang.

To install MSP Gang Programmer software:

1. Insert the MSP430 CD-ROM into the CD-ROM drive of the host computer. Setup automatically opens
the default browser and displays the MSP430 start page.

If the start page does not open automatically, run the file setup.exe located in the root directory of the
CD-ROM using a web browser. The MSP430 start page is then displayed in a browser window.

2. Follow the instructions in the installation process.

3. When the setup program is complete, MSP Gang Programmer icons are available in the selected
folder. Click the MSP Gang Programmer Read Me First icon to obtain important information about the
MSP Gang Programmer.

4. The setup program also adds a program group and icons to the Windows desktop.

5. To start the MSP Gang Programmer software, click the newly created icon.

9SLAU358D–September 2011–Revised May 2013 Introduction
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/msp-gang
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Driver Installation www.ti.com

1.2 Driver Installation

To install the required drivers:

1. Connect the MSP-GANG programmer to PC USB port. When the Windows Wizard starts, follow
instructions provided by wizard. When the wizard asks for the USB driver location, browse to the CD-
ROM drive. Drivers are located in the main CD-ROM directory location and also in the following
directory:

C:\Program Files\Texas Instruments\MSP-GANG\Driver

2. If the RS-232 interface is used for communication with MSP-GANG, then the additional driver is not
required. Check the Device Manager for the COM port number to use with communication via RS-232.

1.3 Hardware Installation

To install the MSP Gang Programmer hardware:

1. Attach the expansion board (Gang Splitter) to the 100-pin connector on the MSP Gang Programmer.

The expansion board provides connectivity for up to eight targets using the included 14-pin cables. The
target MSP430 flash devices can be in standalone sockets or can be on an application's PCB. These
devices can be accessed via JTAG or Spy-Bi-Wire (SBW) signals.

2. Connect the MSP Gang Programmer hardware to a computer's USB port using a USB A-B cable.

The programmer can be fully supplied from the computer's USB port (5 V, 0.5 A). The programmer can
also be connected to a serial port (COM1 to COM255) using a 9-pin Sub-D connector, if the computer
does not have a USB port.

3. An external power supply is required to power the MSP Gang Programmer if it is not connected via
USB port or if the total current consumption of the programmed target devices exceeds 0.3 A.

NOTE: External Power Supply

If an external power supply is used then it must provide a voltage between 6 V and 10 V dc
and must be capable of providing a minimum current of 800 mA. The center post of the
power supply connector on the MSP Gang Programmer is the positive-voltage terminal. The
programmer indicates the status of the power supply connection by using system LEDs and
the LCD back light.

NOTE: Maximum Signal Path Length: 50 cm

The maximum length of a signal path between the 14-pin JTAG or SBW connector on the
Gang Splitter and the target device is 50 cm.

4. The MSP Gang Programmer can supply power at a specified voltage VCC to each target device
separately (pin 2 on each 14-pin JTAG or SBW cable). The maximum current for each target device is
programmable and can be 30 mA or 50 mA. If the higher current limit is selected (50 mA) and eight
target devices are connected, then the total current taken by all devices can reach up to 400 mA. In
this case, the MSP Gang Programmer must be supplied from an external power supply instead of from
the USB port. This is because the total current drawn from the USB port cannot exceed 0.5 A, and
150 mA are consumed by the MSP Gang Programmer itself, leaving 350 mA for the target devices.

10 Introduction SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Hardware Installation

CAUTION

When an external power supply is used to power target devices, it is important
to disconnect VCC (pin 2 on the JTAG or SBW connector) from the targets to
avoid power-supply conflicts that could potentially damage the MSP Gang
Programmer and the target devices.

When target devices are powered from an external power supply, the VCC from
the target device should be connected to Vextin (pin 4) on the JTAG or SBW
connectors. This voltage is used by the MSP Gang Programmer for sensing the
presence of an external power supply.

Also, the same voltage value that is used for powering the target device should
be set in the MSP Gang Programmer as the desired VCC level. This information
is mandatory to provide correct I/O levels for the TMS, TCK, TDI, TDO, and
RST signals. If the wrong VCC is provided, then the I/O levels between the
programmer and target devices can be too low or too high, and communication
can become unreliable.

5. The MSP Gang Programmer can be supplied from an external power supply connected to the dc
connector or via a gang splitter (not populated J10 connector). Because the J10 and dc connectors are
connected in parallel, make sure that only one connector provides an external power supply to the
MSP Gang Programmer.

11SLAU358D–September 2011–Revised May 2013 Introduction
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Chapter 2
SLAU358D–September 2011–Revised May 2013

Operation

This chapter describes how to use the MSP Gang Programmer to program target devices. Various modes
of operation, which allow the user to choose the most convenient method of programming, are described.
In addition, this chapter describes the various windows that are used to configure the programming
procedure for a specific target device. The explanations in this chapter assume that the user has properly
installed the MSP Gang Programmer hardware and software as described in Chapter 1.

2.1 Programming MSP430 Flash Devices Using the MSP Gang Programmer

The MSP Gang Programmer is capable of quickly and reliably programming MSP430 flash devices using
an RS-232 or USB interface. There are four ways to use the programmer to achieve this task and these
include:

• Interactive

• From Image

• From Script

• Standalone

The Interactive mode is selected by default, and is the easiest to get started with, because it requires the
least amount of preparation. After the user has mastered the Interactive mode it can be used to create
images and script files, which can then be used with the From Image and From Script modes,
respectively. Images and scripts are ready-to-go setups than can run with minimal user input. They are
very useful for repetitive programming, for example in a production environment, because they ensure
consistency (because of the re-use of images or scripts, we highly encourage the user to thoroughly test
their images or scripts for correctness before committing them to production). The MSP Gang Programmer
can also be run in Standalone mode to program target devices without a PC. To do this, first create an
image to use for programming, and then save it to internal memory of the MSP Gang Programmer.
Creating images is described in Section 2.1.6.

The following sections describe how to use these modes of operation.

12 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

2.1.1 Programming Using Interactive Mode

Use the following sequence to start the MSP Gang Programmer GUI and program MSP430 Flash Devices
using the Interactive Mode:

1. Click on the MSP Gang Programmer icon located in the program group that was specified during
installation. Figure 2-1 shows the MSP Gang Programmer GUI in the Interactive Mode (see the Mode
group in the top left corner). This window is used to select the target microcontroller, code file used for
programming, power supply options, communication interface, and more. This window also shows the
result of programming and any errors, if they occur.

Figure 2-1. Main MSP Gang Programmer Dialog GUI, Interactive Mode

2. Select a target device using the MCU Type menu (select MCU group and then desired MCU type).

3. Select the code file to be programmed into the devices using the Open Code File button or pulldown
menu: File→Open Code File. The formats supported for the code file are TI (.txt) and Intel (.hex) and
Motorola (.s19, .s28, .s37). Code size and checksum appear on the right side (for details on how the
checksum is calculated, see Section 2.1.10).

4. Optionally add another code file to be programmed into the devices using the Append Code File button
(check the box on the left to enable this option). This feature is useful for updating BSL firmware in 5xx
or 6xx MCUs. The two code files are combined together to create one final code file. If a conflict is
detected, a warning appears; however, if programming proceeds without changes the second code file
overwrites the conflict area. Code size and checksum appear on the right side.

13SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

5. Some MCUs (for example, the MSP430FR57xx) provide a method of disabling JTAG by programming
a password to flash memory. The password should be specified as data to be programmed starting at
0xFF80 and up to 0xFFFF (where 0xFF80 must be 0xAAAA, 0xFF82 must be the size of the password
in words, and 0xFF88-0xFFFF contains the password). The code file must contain password contents
if you intend to lock JTAG using the password feature after programming. If the MCU is already locked
using a previously programmed code file, then you must provide the password section (or entire old
code file) using the Open Password File button if and only if the password section is different.
Functionally, if the MCU is locked by password, the code file’s password section is first used to attempt
to unlock the MCU. If that fails, then the password file’s contents are used to attempt to unlock the
MCU. If both attempts fail, the MCU remains locked and JTAG access fails. Password file contents are
not used to program the MCU.

6. In the Target power group, select the desired VCC voltage and select if the target is supplied from the
MSP Gang Programmer or from an external power supply. If targets are supplied by the programmer,
then select the maximum current used by each target, 30 mA or 50 mA.

7. In the Results group, select desired target devices to be programmed. After programming has
concluded, a green checkmark or lights appear for successful operations for each target.

8. In the Interface selector, choose the desired interface (JTAG or Spy-Bi-Wire) and communication
speed (fast, medium, or slow).

9. In the Memory Options dialog (pulldown menu: Setup→Memory options) shown in Figure 2-2, select
desired memory space to be programmed. By default, the selected option is All Memory and it is
correct for most programming tasks (Section 2.1.5 describes how to use the memory configuration
window).

14 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

NOTE: The user can select which segments of memory are written to or read from.

Figure 2-2. Memory Options

10. In the Reset Options dialog (pulldown menu: Setup→Device Reset) shown in Figure 2-3 select the
duration of the reset pulse and the delay after reset. By default it is 10 ms, but other options are
available if required by the hardware.

15SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

NOTE: This window lets the user specify the duration of the reset pulse coming from the MSP Gang Programmer
to the target device. Depending on the hardware implementation, a longer reset pulse might be required.

Figure 2-3. Reset Options

Following these steps creates a working setup that can program target devices using the MSP Gang
Programmer. Click the Save Project As button to save this configuration settings. These settings can be
loaded again later and modified, if necessary (one project holds one configuration). After saving the
project, use the buttons described in the following sections to perform the desired actions.

2.1.1.1 GO

Click the GO button in the Main Dialog GUI (or F9 key on the keyboard) to start programming. The
progress and completion of the operation are displayed in the Results group. The result is shown as one
of the following:

Idle status

Test in progress. For power on or off, dc voltage is correct.

Access enabled

Access denied (for example, the fuse is blown)
Device action has been finished successfully
Device action has been finished, but result failed

2.1.1.2 Erase

Click the Erase button in the Main Dialog GUI to erase a segment of memory (sets each byte to 0xFF).
Use the Memory Options configuration screen shown in Figure 2-2 to specify which addresses should be
erased (Section 2.1.5 describes in detail how to use the memory configuration window). This action
succeeds after the programmer has attempted to erase the specified memory segment. Use the Blank
Check function to verify that this segment has been properly erased.

16 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

2.1.1.3 Blank Check

Click the Blank Check button in the Main Dialog GUI to check that the contents of specified memory have
been properly erased. This function is best used after erasing the same segment of memory, using the
button described above. Use the same Memory Options configuration screen shown in Figure 2-2 to
specify which addresses should be erased (Section 2.1.5 describes in detail how to use the memory
configuration window). This function succeeds when the specified memory segments are set to 0xFF, and
fails otherwise.

2.1.1.4 Program

Click the Program button in the Main Dialog GUI to write the contents of a code files to flash memory on
the target device. Addresses specified in the code files are used to determine where the program is
written. Make sure that the regions of memory corresponding to the addresses in the code file are enabled
for writing in the Memory Options configuration screen shown in Figure 2-2 (Section 2.1.5 describes in
detail how to use the memory configuration window).

Configuration conflicts may arise during programming. It is possible that the code the user has chosen is
too big to fit in the flash memory of the target MCU, or the appropriate memory segments have not been
enabled in the Memory Options configuration screen. If this is the case, a warning message appears to
notify the user of insufficient memory; however, the user is still allowed to proceed. If the user proceeds
despite the warning, only the portion of code that fits within the MCU's enabled flash memory is written.
This function succeeds after the programmer has attempted to write code to the specified memory
addresses. Use the Verify function to ensure that the code has been correctly copied to flash on the target
MCU.

2.1.1.5 Verify

Click the Verify button in the Main Dialog GUI to verify that the contents of the target MCU's flash memory
have been properly programmed. This function is best used after programming the same segment of
memory, as performed using the button described above. Make sure that the same memory segments are
enabled in the Memory Options configuration window shown in Figure 2-2, as during programming
described above, to ensure all programmed segments are verified (Section 2.1.5 describes in detail how
to use the memory configuration window).

If configuration conflicts arose during programming that indicated that the MCU did not contain sufficient
memory for the code to be programmed (either enabled segments or total memory was too small), then
the Verify function verifies only the code that was programmed and ignores the code that could not fit in
memory. This function succeeds if the code in flash matches the code file, and fail otherwise.

2.1.1.6 Read

Click the Read button in the Main Dialog GUI to read the contents of the target MCU's flash memory. Use
the Memory Options configuration screen shown in Figure 2-2 to specify which addresses should be read
(Section 2.1.5 describes in detail how to use the memory configuration window).

Once used, data is displayed in the Flash Memory Data window as shown in Figure 2-4. This window can
be selected in the View→Flash Memory Data pulldown menu. The Flash Memory Data viewer, shown in
Figure 2-4, displays the code address on the left side, data in hex format in the central column, and the
same data in ASCII format in the right column. The contents of the code viewer can be converted to TI
(*.txt) or Intel (*.hex) file format by clicking on the "TI hex" or "INTEL" button.

17SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

NOTE: This window displays the code addresses on the left side, data in hex format in the center column, and the
same data in ASCII format in the right column.

Figure 2-4. Flash Memory Data

2.1.2 Programming From Image

A programming configuration like the one created in Section 2.1.1 can be stored in the form of an image.
The advantage of an image is that it contains both the configuration options necessary for programming
as well as the code files that are flashed to target devices. Moreover, only images can be saved to internal
MSP Gang Programmer memory and used in Standalone mode, in which the programmer can operate
without being connected to a PC. Using the From Image mode allows the user to test images with full GUI
support before committing them to production.

Once an image has been created, it can be used to greatly simplify programming by using the procedure
described in Section 2.1.6. Figure 2-5 shows the main dialog GUI where the From Image option is
selected for programming (top left corner). Here the user can load an image from MSP Gang Programmer
internal memory. An image can be created in Interactive Mode and saved to the programmer. One of 16
different images can be selected from internal memory, or one image from each external SD-Card can be
used.

18 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

NOTE: MSP Gang Programmer internal memory and SD-Card are mutually exclusive.

To avoid confusion during programming, connecting an SD-Card to the MSP Gang
Programmer disables its internal memory used for other images. Therefore, when an SD-
Card is connected to the programmer only the image on the SD-Card is usable or
accessible. If the SD-Card is empty, or contains a corrupted image, then it must be
disconnected before MSP Gang Programmer internal memory can be used.

NOTE: This figure shows the From Image Mode (see the Mode section near the top left corner). The user can
load an image from MSP Gang Programmer internal memory. Saved images contain all configuration
necessary for programming and all code files. An image can be created using the Interactive Mode and
saved to the programmer. One of 16 different images can be selected from internal memory, or one image
from each external SD-Card can be used.

Figure 2-5. Main MSP Gang Programmer Dialog GUI, From Image Mode

19SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

Figure 2-5 highlights several parts of the GUI. The drop-down menu in the Object in Image memory group
(top right) is used to select which image is used for programming, because up to 16 different images might
be available. In the same group, the Config. from Image option is enabled, meaning that all configurations
options, such as which devices are enabled or power options are being taken from the image.

Sometimes it is useful to use the basic files from an image, such as the MCU type and code files, but also
make a few minor modifications to test a different configuration. Figure 2-6 shows the additional
configuration options available when the Config. from Image button is disabled. These are high-lighted in
red and include which devices are enabled for programming, target VCC and current, interface,
communication, and security. However, these changes cannot be committed to the image. If the user
wishes to change the current image's configuration or code files then the image needs to be recreated
using the original project file and procedure described in Section 2.1.6.

20 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

NOTE: This figure shows the From Image Mode (top left corner). The Config. from Image option is disabled in this
example, allowing the user to change various but not all configuration settings from the image. The
configuration options that can be changed are highlighted in red. One of the options that cannot be changed,
for example, is the target processor type.

Figure 2-6. Main MSP Gang Programmer Dialog GUI, From Image Mode and Custom Configuration
Enabled

2.1.3 Programming From Script

Use this option to create a script file to automate more complicated programming procedures. Scripts can
create functions that open message boxes, adjust voltage, target devices, change code files, and any
other sequences of reconfigurations up to a total of 1000 commands. Repeated series of instructions can
be encompassed into functions for easier programming. The stack supports a call depth of up to 50
CALLs (CALL inside CALL inside CALL, and so on), which is sufficient for most nonrecursive programs.

21SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

Figure 2-7 shows the main dialog GUI where the From Script option is selected for programming (top left
corner). A script file is selected using the Open Script File button and it specifies all configuration options,
and the code files to be used for programming. A script can be created using any text editor and saved in
a simple text file. Follow these guidelines to create a script.

NOTE: This figure shows the From Script mode (see the Mode section near the top left corner). A script file is
selected using the Open Script File button and it specifies all configuration options, and the code files to be
used for programming. In addition, the script can call individual functions, such as Program or Verify, in the
order specified by the programmer.

Figure 2-7. Main MSP Gang Programmer Dialog GUI, From Script

2.1.3.1 Script Limitations
• Up to a total of 1000 command lines can be used. Empty lines and comments are ignored.

• The stack supports a call depth of up to 50 CALLs (CALL inside CALL inside CALL, and so on).

22 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

2.1.3.2 Command Syntax
• White spaces before instructions, labels, and comments are ignored.

• ; – Start of a comment. All characters in the same line after the start of a comment are ignored.

NOTE: A comment cannot be placed after a filename.

For example, when specifying a config file to be loaded, a path to a file must be given. This
filename cannot be followed by a comment.

• > – Start of a label. Place the label name after the character with no spaces in between.

NOTE: A line with a label cannot also contain a command or another label.

For example, this would be illegal:

>START VCCOFF

2.1.3.3 Instructions

MESSAGE – Message declaration. Contents must be placed between quotes below a message
declaration. Maximum of 50 content lines. Example:

MESSAGE
"Hello."
"This is my script."

GUIMSGBOX setting – Enable or disable pop-up message boxes in the GUI (warning and errors). Setting
can be either ENABLE or DISABLE.

IFGUIMSGBOXPRESS option – Apply the option when a message box created by GUI is generated.
Option can be OK or CANCEL.

MESSAGEBOX type – Create a pop-up message box with buttons. Contents must be placed between
quotes below message declaration. Maximum of 50 content lines. Message box types are:

• OK – One button: OK.

• OKCANCEL – Two buttons: OK and CANCEL

• YESNO – Two buttons: YES and NO

• YESNOCANCEL – Three buttons: YES, NO, and CANCEL

Example:
MESSAGE YESNOCANCEL
"You have three choices:"
"Press yes, no, or cancel."

GOTO label – Jump to instruction immediately following the label.

SLEEP number – Pause a number of milliseconds, between 1 and 100000.

F_LOADPASSWORDFILE filename – Load JTAG password file. Provide a full path and filename.

F_FROMIMAGEMODE – Switch to Image mode.

CALL label – Call procedure starting at the instruction immediately following the label. Stack saves return
address.

RETURN – Return from CALL.

23SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

IF condition operation – Test condition and if true then perform operation. The condition can be one of
the following:

• BUTTONOK – OK button is pressed in the message box.

• BUTTONYES – YES button is pressed in the message box.

• BUTTONNO – NO button is pressed in the message box.

• BUTTONCANCEL – CANCEL button is pressed in the message box.

• DONE – Previous process (for example, GO or Read File) finished successfully.

• FAILED – Previous process (for example, GO or Read File) failed.

The operation can be one of the following:

• GOTO label

• CALL label SLEEP number – Pause a number of milliseconds, between 1 and 100000.

F_LOADCFGFILE filename – Load configuration file. Provide a full path and filename.

F_LOADCODEFILE filename – Load code file. Provide a full path and filename.

F_APPENDCODEFILE filename – Append code file. Provide a full path and file name.

F_VCCOFF – Turn VCC OFF from programming adapter to target device.

F_VCCON – Turn VCC ON from programming adapter to target device.

NOTE: VCC from FPA must be enabled first using configuration file.

F_VCCINMV – Set VCC in mV, between 1800 to 3600 in steps of 100 mV.

F_RESET – Perform RESET function from main dialogue screen.

F_GO – Perform GO function from main dialogue screen.

F_ERASEFLASH – Perform ERASE FLASH function from main dialogue screen.

F_BLANKCHECK – Perform BLANK CHECK function from main dialogue screen.

F_WRITEFLASH – Perform WRITE FLASH function from main dialogue screen.

F_VERIFYFLASH – Perform VERIFY FLASH function from main dialogue screen.

F_BLOWFUSE – Perform BLOW FUSE function from main dialogue screen.

NOTE: Blows fuse regardless of enable option.

If the BLOW FUSE command is used, then the security fuse is blown even if the Blow
Security Fuse enable option is disabled.

F_SETIMAGENUMBER number – Choose image number between 1 and 16 from MSP Gang
Programmer internal memory.

F_STANDALONEMODE – Switch to Standalone mode.

F_INTERACTIVEMODE – Switch to Interactive mode.

TRACEOFF – Disable tracing.

TRACEON – Enable tracing and log to the Trace-Scr.txt file in the current working directory. This option is
useful for debugging. The trace file contains the sequence of all executed commands from the script file
annotated with line numbers. Line numbers are counted without empty lines and without lines containing
only comments.

END – End of script.

24 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

The following example script executes this sequence of commands:

1. Label START is created.

2. VCC from programmer to target device is turned OFF.

3. Message box notifies the user of VCC setting and asks for permission to proceed with buttons OK and
CANCEL. The program halts here until a button is pressed.

4. If CANCEL was pressed then GOTO finish label (ends the script).

5. If CANCEL was not pressed (in this case this implies that OK was pressed) then load configuration file
test-A.g430cfg to the MSP Gang Programmer. Configuration file test-A.cfg should be prepared before
running this script using Interactive mode.

6. Message box asks the user to proceed. The program halts until OK is pressed.

7. The MSP Gang Programmer programs the target device using the GO function.

8. Message box asks the user if the test succeeded giving a YES or NO choice.

9. If NO was pressed then GOTO START label (start of script).

10. If NO was not pressed (in this case this implies that YES was pressed) then load configuration file
finalcode.g430cfg to the MSP Gang Programmer.

11. The MSP Gang Programmer programs the target device using the GO function. The new configuration
changes the code file.

12. Script jumps to the beginning using GOTO START. This can be used to wait for the next target device
to be connected.

13. Label finish is created.

14. Script ends.
;===
; Script file - demo program
;---
>START
VCCOFF
MESSAGEBOX OKCANCEL
"VCC if OFF now. Connect the test board."
"When ready press the button:"
" "
"OK - to test the board"
"CANCEL - to exit from program"
IF BUTTONCANCEL GOTO finish
F_LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\GANG430\test-A.G430cfg
MESSAGEBOX OK
"Press OK to download the test program."
F_GO
MESSAGEBOX YESNO
"Press YES when the test finished successfully."
"Press NO when the test failed."
IF BUTTONNO GOTO START
F_LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\GANG430\finalcode.G430cfg
F_GO
GOTO START
>finish
END
;===

25SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

2.1.4 Programming in Standalone Mode

The MSP Gang Programmer supports a Standalone mode of programming target devices. In this mode
the MSP Gang Programmer can only use images for programming because they contain a complete
configuration and code files necessary for the procedure. If the user has not already created an image
then follow the procedure outlined in Section 2.1.6. When viewed from the GUI, Figure 2-8 shows that all
GUI options are disabled and the MSP Gang Programmer hardware buttons have to be used for
programming.

NOTE: This figure uses the Standalone mode (see the Mode section near the top left corner). All GUI options are
disabled; the MSP Gang Programmer can only be operated using physical controls on the programmer itself.
Standalone mode allows the user to program a target device using an image either from internal memory (up
to 16 different images), or an external SD-Card, without the use of a desktop or laptop computer.

Figure 2-8. Main MSP Gang Programmer Dialog GUI, Standalone Mode

After images have been download to the internal memory or after an SD card with a valid image is
connected to the MSP Gang Programmer, proceed with programming in Standalone mode. Use the arrow
buttons (up and down) and the enter button to select a desired image for programming. A description of
the selected image is displayed on the bottom line, and it is the same description that was created in the
GUI when the Save Image button was pressed (see Figure 2-9).

26 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

Figure 2-9. Image Option

After the desired image has been selected, press the GO button on the MSP Gang Programmer hardware
to start programming. This button operates the same way as the GO button on the GUI. Progress of the
operation in Standalone mode is indicated by a flashing yellow LED and displayed on the LCD display.
The result status is represented by green and red LEDs on the MSP Gang Programmer and details are
displayed on the LCD display. If a green LED is ON only, then all targets have been programmed
successfully. If only the red LED is displaying, that all results failed. If red and green LEDs are on, then
result details should be checked on top of the LCD display. The LCD display shows target numbers 1 to 8
and marks to indicate failure or success: X for failure and V for success. When an error is reported, the
bottom line repeatedly displays an error number followed by a short description with time intervals of
approximately two seconds.

The selected image contains all necessary configuration options and code files required for programming;
however, the user can change the number of target devices being programmed using onboard buttons.
On the main display of the MSP-Gang Programmer (see Figure 2-10), use the up or down arrow buttons
to find the Target En/Dis option. Press the OK button to enter this menu. A sliding cursor appears below
the numbers representing each device at the top of the main display. Use the arrow buttons to underline
the device to enable or disable. Press OK to toggle the devices; press Esc to exit to the main menu. Press
GO to use the selected image to program the selected devices. If another image is selected or the current
image is selected again, the Enable and Disable options reset to what has been configured in the image.

27SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

Figure 2-10. Target Enable or Disable Option

In addition to the these options that control programming, the contrast of the LCD display can be changed.
Select the Contrast option in the main menu, and press OK. Then use the up and down arrow buttons to
adjust the screen contrast. Changes to contrast reset after power down, unless the contrast setting has
been set via the GUI on the host computer.

28 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

2.1.5 Memory Setup for GO, Erase, Program, Verify, and Read

The GO, Erase, Program, Verify, and Read operations shown in Figure 2-1 use addresses specified in the
Memory Options dialog screen shown in Figure 2-2. The memory setup used by these operations has five
main options:

1. Update only – When this option is selected, the GO operation does not erase memory contents.
Instead contents of code data taken from the code file are downloaded to flash memory. This option is
useful when a relatively small amount of data, such as calibration data, needs to be added to flash
memory. Other address ranges should not be included in the code file, meaning that the code file
should contain ONLY the data which is to be programmed to flash memory. For example, if the code
file contains data as shown in TI format:

@1008
25 CA 80 40 39 E3 F8 02
@2200
48 35 59 72 AC B8
q

Then 8 bytes of data are written starting at location 0x1008 and 6 bytes of data starting at location
0x2200. The specified addresses should be blank before writing (contain a value of 0xFF). Before the
writing operation is actually performed, the MSP Gang Programmer automatically verifies if this part of
memory is blank and proceeds to program the device only if verification is successful.

NOTE: Even Number of Bytes

The number of bytes in all data blocks must be even. Words (two bytes) are used for writing
and reading data. In case that the code file contains an odd number of bytes, the data
segment is appended by a single byte containing a blank value of 0xFF. This value does not
overwrite the current memory contents (because Update only is selected), but verification
fails if the target device does not contain a blank value of 0xFF at that location.

2. All Memory – This is the most frequently used option during programming. All memory is erased before
programming, and all contents from the code file are downloaded to the target microcontroller's flash
memory. When the microcontroller contains an INFO-A segment that can be locked (for example the
MSP430F2xx series contains DCO constants at locations 0x10F8 to 0x10FF), then INFO-A can be
erased or left unmodified. The including locked INFO-A segment should be selected or unselected
respectively. When INFO-A is not erased, none of the data is saved into INFO-A, even if this data is
specified in the code file. In addition, the DCO constants in the Retain Data in Flash group should be
selected if the DCO constants should be restored after erasing the INFO-A segment.

3. Main memory only – Flash information memory (segments A and B, C, D) are not modified. Contents
of information memory from the code file are ignored.

4. Used by Code File – This option allows main memory segments and information memory segments to
be modified when specified by the code file. Other flash memory segments are not touched. This
option is useful if only some data, like calibration data, needs to be replaced.

5. User defined – This option is functionally similar to options described before, but memory segments
are explicitly chosen by the user. When this option is selected, then on the right side of the memory
group, in the Memory Options dialog screen, check boxes and address edit lines are enabled. The
check boxes allow the user to select information memory segments to be enabled (erased,
programmed, verified). Edit lines in the Main Memory group allow the user to specify the main memory
address range (start and stop addresses). The start address should specify the first byte in the
segment, and the stop address should specify the last byte in the segment (last byte is programmed).
Because the main memory segment size is 0x200, the start address should be a multiple of 0x200; for
example, 0x2200. The stop address should specify the last byte of the segment to be written.
Therefore, it should be greater than the start address and point to a byte that immediately precedes a
memory segment boundary; for example, 0x23FF or 0x55FF.

29SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

2.1.5.1 Writing and Reading BSL Flash Sectors in the MSP430F5xx and MSP430F6xx MCUs

The MSP430F5xx and MSP430F6xx microcontrollers have BSL firmware saved in flash memory sectors.
By default, access to these sectors (Read or Write) is blocked, however it is possible to modify the BSL
firmware if required, which allows the user to upload newer or custom defined BSL firmware. These BSL
sectors are located in memory starting at 0x1000 to 0x17FF. The MSP Gang Programmer software
handles modification of these BSL flash sectors using the same method as all other memory sectors.
However, to avoid unintentional erasing of BSL sectors, the most commonly used memory option, All
Memory , blocks access to these BSL sectors. Access to BSL sectors is unlocked only when the Used by
Code File or User defined option is selected and desired selected BSL sectors are enabled, as shown in
Figure 2-11. Contents of BSL sectors can be read even when the All Memory option is selected.

NOTE: The user can select which segments of memory are written to or read from. The selected configuration
shows how the user can configure the programmer to overwrite segments of memory used by the Bootstrap
Loader (BSL).

Figure 2-11. Memory Options, BSL Sectors Selected

30 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

2.1.6 Creating and Using Images

An image contains the code files and the configuration options necessary for programming of a target
device. Images can be stored as a binary file (".mspgangbin") in internal MSP Gang Programmer memory
(or SD card), or as an image file (".mspgangimage") on disk for redistribution. Image files intended for
redistribution can be encrypted with additional security features described later in this section.

Creating an image is done in Interactive Mode by following the same steps described in Section 2.1.4
followed by pressing the “Save Image File As…” or “Save to Image” buttons. The first button saves the
code files and configuration options as a binary file and image file locally on disk, and the second button
saves this information directly to the MSP Gang Programmer internal memory. Note that to use the MSP
Gang Programmer in Standalone mode, you need to program at least one image to internal memory or
read a binary file from an SD card (via the SD card connector on the MSP Gang Programmer). If you
intend to modify the contents of an image at a later date, it is advisable to save the configuration options
as a project. Because an image is read-only, reading a project file is the only way to recreate images
easily without reentering the configuration options from scratch. After the project is loaded, a change can
be made and a new image with the same name can be created to overwrite the previous one.

In total, 16 different images can be saved internally in the MSP Gang Programmer or one image can be
saved on an SD card. Each image can be selected at any time to program the target devices. The MSP
Gang Programmer also allows the image to be saved in a file, either to be saved on an SD card or to be
sent to a customer. In order for the image file to be usable from the SD card, copy only the binary file
(".spgangbin") to the SD card and preserve the proper extension (Note that binary files are not encrypted).
For redistribution to a customer, the image file can be sent and encrypted with additional security features.

When a new image is saved to a file or to a MSP Gang Programmer internal memory, an image
configuration screen appears (see Figure 2-12). Enter any name up to 16 characters. This name is
displayed in the GUI image selector (see Figure 2-1) on the bottom line of the MSP Gang Programmer
LCD screen when the corresponding image is selected. Press OK when the name is entered.

Once you have created a programming setup using the steps mentioned above, it is useful to store it in
the form of an image. The advantage of an image is that it contains both the configuration options
necessary for programming as well as the code files that are flashed to target devices. Moreover, only
images can be saved to internal MSP Gang Programmer memory and used in Standalone mode, where
the programmer can operate without being connected to a PC.

Before the user proceeds to making images; however, it is advisable to save the MSP Gang Programmer
setup as a project first. This is recommended because images cannot be modified once created, only
overwritten. Therefore, if the user wants to change an image that has already been created without
recreating the whole configuration from scratch then it is necessary to load the corresponding project file.
Once the project is loaded, a change can be made and a new image with the same name can be created
to overwrite the old one.

Images can be saved to the programmer's internal memory, or on an external SD-Card. A total of 16
different images can be saved internally, or one image can be saved on an SD-Card. Each image can be
selected at any time to program the target devices. The MSP Gang Programmer also allows the image to
be saved in a file, either to be saved on an SD-Card or to be sent to a customer. When the code file and
configuration are ready to be saved, press the Save Image button to save to MSP Gang Programmer
internal memory, or the Save Image to file button to save to a file.

Whether the new image being created is saved to a file or to MSP Gang Programmer internal memory, an
image configuration screen appears (see Figure 2-12). Enter any name up to 16 characters. This name is
displayed in the GUI image selector (see Figure 2-1) and it is displayed on the bottom line of the MSP
Gang Programmer LCD screen when the corresponding image is selected. Press OK when the name is
entered.

31SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

NOTE: The image name is limited to 16 characters. This name is shown on the LCD display of the MSP Gang
Programmer , and Image pulldown menu in the GUI.

Figure 2-12. Image Name Configuration Screen

The screen shown in Figure 2-13 allows the user configure what type of security is used to protect the
image file. Three options are available; however, for all three options the contents of the code file are
always encrypted and cannot be read.

NOTE: During project creation, the user can select to protect project information using various methods.

Figure 2-13. Image File Security Options

32 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

1. Any PC – Configuration can be opened on any computer using MSP Gang Programmer software. It
can be used for programming only.

2. Any PC - Password protected – Configuration can be opened on any computer using the MSP Gang
Programmer software, but only after the desired password has been entered.

3. Selected PC - Hardware Fingerprint number – Image can be opened only on the dedicated
computer with the same hardware fingerprint number as the number entered in the edited line above.
Figure 2-14 shows a window with the hardware fingerprint number. An example usage scenario would
involve calling an intended user to provide the hardware fingerprint number of their computer and
entering it within this configuration window. This restricts opening this image to only the dedicated
computer running MSP Gang Programmer software.

NOTE: The fingerprint can be used to secure the project where, for example, only a computer with a matching
hardware fingerprint can be used to view and edit the project.

Figure 2-14. Hardware Fingerprint of Computer in Use

The image file can be copied to internal MSP Gang Programmer memory and used for programming
target devices. Select the desired image number in the GUI and press the Load Image from File button
(see Figure 2-1). This selected image is subsequently be used for programming target devices.

2.1.7 Programming From Image File

An image file can be used to program target devices from a self-contained read-only file that has all the
necessary configuration options and code files already included. By selecting the “From Image File” Mode
you can use an image file created using the steps described in Section 2.1.6. If the image is password
protected you are prompted to enter the password before you can use the image. Alternatively, if the
image is restricted to be used on a specific PC you are unable to use the image unless your PC matches
the hardware fingerprint (for instructions on how to use images from MSP Gang Programmer internal
memory see Section 2.1.2).

33SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Programming MSP430 Flash Devices Using the MSP Gang Programmer www.ti.com

Figure 2-15. Programming From Image File

Figure 2-16. Password for Image File

34 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Programming MSP430 Flash Devices Using the MSP Gang Programmer

2.1.8 Programming From SD Card

The MSP Gang Programmer can program target devices with an image loaded from an external SD card.
To program from an external SD card, copy a binary file (".mspgangbin") created using steps described in
Section 2.1.6 to the root directory of the SD card (preserve the original extension ".mspgangbin"). If
multiple binary files are present in the root directory of the SD card, the first one found is used (the first
one found is not necessarily the first one alphabetically). To ensure that the desired binary file is used,
verify that only one binary file with the proper extension .mspgangbin is present in the root directory. The
name of the selected file is displayed on the LCD screen of the MSP Gang Programmer.

When the SD card is connected to the MSP Gang Programmer, internal memory is disabled and an image
can only be read from the SD card. This mechanism has been deliberately implemented to aid in
production because inserting an SD card to the MSP Gang Programmer leaves users with only one option
for programming a target device and, therefore, less possibility for misconfiguration errors.

2.1.9 File Extensions

MSP Gang Programmer software accepts the following file extensions:

Code hex files

*.txt Texas Instruments
.s19,.s28,*.s37 Motorola
*.hex Intel
*.a43 Intel hex format with extensions specified by IAR

Image files

*.mspgangbin binary file, used for saving data in SD card
*.mspgangimage image file, can be password protected for distribution

Script files

*.mspgangsf script file

Project configuration files

*.mspgangproj keep all configuration, file names and data for used project

2.1.10 Checksum Calculation

The checksum (CS) that is displayed on the side of the code file name is used for internal verification. The
CS is calculated as the 32-bit arithmetic sum of the 16-bit unsigned words in the code file, without
considering the flash memory size or location. If any portion of the code file specifies only one byte
instead of a 16-bit word, the missing byte is defined as 0xFF for the CS calculation.

The following formula is used.
DWORD CS;
DWORD XL, XH;

CS = 0;
for(addr = 0; addr < ADDR_MAX; addr = addr + 2)
{
if((valid_code[addr]) || (valid_code[addr+1]))
{

if(valid_code[addr])
XL = (DWORD) code[addr];

else
XL = 0xFF;

35SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Data Viewers www.ti.com

if(valid_code[addr+1])
XH = ((DWORD) code[addr+1])<<8;

else
XH = 0xFF00;

CS = CS + XH + XL;
}

}

As an example, refer to the code file below, which is in the TI hex file (*.txt format).
--
@FC00
F2 40

@FC90
28 02 68 92 DB 3B 38 80 05 00 58

@FFFC
4E F9 B6 FA
q
--

The CS is calculated as shown below:
CS = 0x40F2 + 0x0228 + 0x9268 + 0x3BDB + 0x8038 + 0x0005 + 0xFF58 = 0x000290F2

2.2 Data Viewers

Data from code files and from flash memory can be viewed and compared in data viewers. Contents of
the selected file can be viewed by selecting the View→Code File Data option from the drop-down menu.
The Code data viewer, shown in Figure 2-17, displays the code address on the left side, data in hex
format in the central column, the same data in ASCII format in the right column. Data in hex format is
displayed from 0x00 to 0xFF for addresses corresponding to the code file. Data from other addresses is
displayed as double dots (..). If code size exceeds flash memory size in the selected microcontroller, this
warning message is displayed first.

Data out of the Flash Memory Space of the selected MSP430.

36 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Data Viewers

NOTE: The selected option on the bottom ignores all bytes that have the value of 0xFF , which represents empty
bytes.

Figure 2-17. Code File Data

The contents of the code viewer can be converted to TI (*.txt) or Intel (*.hex) file format by clicking on the
TI hex or INTEL button.

Contents of flash memory data can be viewed by selecting the View→Flash Memory Data option from the
drop-down menu. To be able to see flash memory contents, the Read button must be used first (as
described in Section 2.1.1). The Flash Memory Data viewer displays the memory addresses, data in hex
and ASCII format in the same way as the Code data viewer shown in Figure 2-17.

Contents of the code file and flash memory can be compared and differences can be displayed in a the
viewer by selecting the View→Compare Code & Flash Data options from the drop-down menu. Only data
that are not the same in the code file and the flash memory are displayed. The first line displays code file
data, and the second line displays flash memory data as shown in Figure 2-18.

37SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Data Viewers www.ti.com

The Compare location presented in the code file only option is chosen by default. This option allows the
user to view differences between Code file data and corresponding flash contents (compared by address).
Additional data in the flash like DCO calibration and personal data is not compared but can be displayed if
desired. If all the aforementioned data are identical, then a "No difference found" message is displayed on
the screen.

NOTE: Only bytes that differ are shown. The selected option on the bottom of the figure specifies that only
memory segments corresponding to the code file should be compared. The second option, if selected,
performs the comparison and shows any remaining contents of flash memory that do not correspond to the
code file.

Figure 2-18. Comparison of Code and Flash Memory Data of the Target Microcontroller

38 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Status Messages

2.3 Status Messages

The current status is always displayed at the bottom of the progress bar, as shown in Figure 2-1, and
previous status and error messages are shown in the history window in the bottom left corner. are
displayed in the report window.

All procedures in the MSP Gang Programmer are divided into small tasks to be executed in series. When
first task is finished successfully, then the next task is started. Each task has is own consecutive number
assigned by the task manager when the image is created. The most commonly executed tasks are listed
below:

• Initialization

• Open Target Device

• Close Target Device

• Erase

– Segment

– Main memory

– Info memory

– BSL memory

• Blank check

• Program

• Gang Program (program unique data to each target)

• Write RAM

• Write GANG RAM (write unique data to each target)

• Verify

• Read memory

• Save Info-A

• DCO calibration

• Retain Info-A

• SetPC and run

• Capture PC and Stop

• Stop PC

• Secure device

• Finish

For example, the operations Erase, Program ,and Verify execute the following tasks:

• Initialization

• Open Target Device

• Erase

• Blank check

• Program

• Verify

• Close target and finish.

These tasks execute the easiest programming process in small MCU devices. The aforementioned tasks
can be divided into smaller tasks that only erase one segment, erase info segment, or erase one block of
the main memory. For that reason, many more tasks are displayed in the report window than are
described above. For example, when programming the MSP430F5438 the following information would be
displayed in the report window:

39SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Status Messages www.ti.com

Executing Main Process...
=== F5438 Test ===
.............
2 : init target
3 : erasing-Info
4 : erasing-Info
5 : erasing-Info
6 : erasing-Main
7 : erasing-Main
8 : erasing-Main
9 : erasing-Main
10 : erasing-Main
11 : erasing-Main
12 : erasing-Main
13 : erasing-Main
14 : erasing-Main
15 : BlankCh-Info
16 : BlankCh-Info
17 : BlankCh-Info
18 : BlankCh-Main
19 : BlankCh-Main
20 : BlankCh-Main
21 : BlankCh-Main
22 : BlankCh-Main
23 : Programming
24 : Programming
25 : Programming
26 : Programming
27 : Programming
28 : Programming
29 : Verifying
30 : Verifying
31 : Verifying
32 : Verifying
33 : Verifying
34 : Verifying
35 : closing target
36 : Finished
Done

This report indicates that sectors INFO-B, INFO-C, INFO-D, and the main memory block have been
erased (tasks 2 to 14) blank checked (tasks 15 to 22), programmed (tasks 23 to 28) and verified (tasks 29
to 34). Finally, access to target devices is closed and the programming process is finished. Length of task
description (including consecutive task number) is limited to 16 characters to be able display this
information on the third line of the MSP Gang Programmer LCD display.

The MSP Gang Programmer can process up to 1000 tasks per one image saved in internal memory.
Having that number of available tasks and one or more code files saved in internal memory (total memory
footprint of up to 512 kbytes in one image), the MSP Gang Programmer gives the user significant flexibility
to perform custom programming procedures. If for any reason the code files and task scripts require more
than 512 kbytes of memory, then the next image memory can be taken and combined with the first one for
one larger image block (1Mbyte or more). The MSP Gang Programmer has internal flash memory of
8Mbyte that can, if desired, all be used to form one image with a memory footprint of 8Mbyte.

Error messages are displayed similarly to status messages, however, programming is terminated if the
error is related to all target devices. Subsequently, if the problem is resolved or the faulty target device is
disabled, then the programming procedure can be restarted to complete the programming process. The
result for all devices is reported in the results section (green or red icons). When the global status is
reported as FAIL, see the result section for details. Similarly, the MSP Gang Programmer uses red and
green LEDs to indicate the result of its operations (red indicates failure) and details are displayed on the
LCD display. Below is the list of errors reported in the MSP Gang Programmer.

40 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Status Messages

==== Errors from the BOOT loader. ====

ERROR # 001 - BOOT Firmware only is in the MSP-GANG! The API Firmware should be downloaded.
ERROR # 002 - API Firmware CRC is not present! The API Firmware should be reloaded.
ERROR # 003 - API Firmware CRC error! The API Firmware should be reloaded.
ERROR # 004 - BOOT CRC error in the MSP-GANG!

==== Errors from the MSP-GANG Firmware. ====

ERROR # 010 - CRC Access key. Key corrupted. Access to programmer is blocked.
ERROR # 011 - Invalid programmer's access key. Access to programmer is blocked.
ERROR # 012 - Unknown interface
ERROR # 013 - Vcc is too low
ERROR # 014 - Vcc is too high
ERROR # 015 - VtIO is too low
ERROR # 016 - VtIO is too high
ERROR # 017 - Header CRC
ERROR # 018 - Script CRC
ERROR # 019 - Exceed script no
ERROR # 020 - Script command ?
ERROR # 021 - MCU Fetch synch
ERROR # 022 - CPU JTAG synch
ERROR # 023 - MCU device init.
ERROR # 024 - RAM FW download
ERROR # 025 - Blank check err
ERROR # 026 - Read verify err
ERROR # 027 - Flash write err
ERROR # 028 - Image FL WR init
ERROR # 029 - Image Flash lock
ERROR # 030 - Invalid Script T
ERROR # 031 - Size too high
ERROR # 032 - Used wrong MCU
ERROR # 033 - IR Interrupted
ERROR # 034 - Page Info number out of range
ERROR # 035 - Address too high
ERROR # 036 - Target number out of range
ERROR # 037 - Address not Even
ERROR # 038 - Size not Even
ERROR # 039 - DCO Cal.Freq. out of range
ERROR # 040 - DCO Cal.Failed
ERROR # 041 - Gang Flash write error
ERROR # 042 - SD Card - Read Response Error
ERROR # 043 - SD Card - Boundary Address Error
ERROR # 044 - SD Card - Initialization timeout
ERROR # 045 - SD Card - Read timeout
ERROR # 046 - SD Card - Initialization Error
ERROR # 047 - SD Card - CRC7 Error
ERROR # 048 - SD Card - CRC16 Error
ERROR # 049 - SD Card - Write CRC Error
ERROR # 050 - SD Card - Data Write Wrror
ERROR # 051 - SD Card - Write Timeout
ERROR # 052 - SD Card - MBR Sector Error
ERROR # 053 - SD Card - Volume Error
ERROR # 054 - SD Card - Address in File Error
ERROR # 055 - SD Card - Read File Error
ERROR # 056 - SD Card - File not found
ERROR # 057 - Hardware Rev-0. Option not supported
ERROR # 058 - Verification Error
ERROR # 059 - Rx data error
ERROR # 060 - Secure Vpp low
ERROR # 061 - Secure Key Error
ERROR # 062 - Secure Device Er
ERROR # 063 - Target not open
ERROR # 064 - Wrong index
ERROR # 065 - BSL Rx Timeout
ERROR # 066 - BSL firmware download error

41SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Status Messages www.ti.com

ERROR # 067 - Wrong command
ERROR # 068 - FBSL initialization error
ERROR # 069 - MSP-
GANG overload. Reduce amount of target devices to 5 or select 30 mA output current.
ERROR # 070 - Wrong BSL Passwords. Target cannot be unlocked.

==== Errors from the MSP-GANG DLL. ====

ERROR # 301 - Communication - Frame has errors !
ERROR # 302 - Unable to open COM port - already in use?
ERROR # 303 - Unable to close COM port !
ERROR # 304 - Unable to modify COM port state !
ERROR # 305 - Synchronization failed. Programmer connected?
ERROR # 306 - Timeout during operation - Correct COM port selected?
ERROR # 307 - Wrong baud rate specified !
ERROR # 308 - Communication Port baud rate change
ERROR # 309 - Communnication port - diagnostic response error
ERROR # 310 - Open Comm port - invalid handle value
ERROR # 311 - Invalid Comm Port Setup
ERROR # 312 - Open Comm Port timeout
ERROR # 313 - Get Comm Port state error
ERROR # 321 - Command did not complete correctly !
ERROR # 322 - Command failed or not defined or Target not accessible !
ERROR # 323 - Could not read 'default.mspgangcfg'!
ERROR # 324 - File contains invalid record !
ERROR # 325 - Unexpected end of file !
ERROR # 326 - Error during file I/O !
ERROR # 327 - Selected file is of unrecognizable format !
ERROR # 328 - Unable to open file !
ERROR # 329 - Function argument(s) out of range !
ERROR # 330 - Note: Boot downloaded
ERROR # 331 - WARNING: Temporary function blocked, due to used main polling
ERROR # 332 - Image Memory corrupted or erased ! Load Image.
ERROR # 333 - Target not accessible !
ERROR # 334 - Verification failed !
ERROR # 335 - Main Process Parameters not yet set ! Load Image.
ERROR # 336 - Could not erase Image Buffer !
ERROR # 337 - Could not load Image Buffer !
ERROR # 338 - Could not load Main Process Parameters !
ERROR # 339 - Could not select Baud Rate !
ERROR # 340 - WARNING: Could not set target voltage -
Short circuitry or settling time too small?

ERROR # 341 - Invalid firmware command !
ERROR # 342 - Power supply voltage too low !
ERROR # 343 - WARNING: Sense voltage out of range - Check pin MSP_VCC_IN of target connector !
ERROR # 344 - Wrong target device connected !
ERROR # 345 - No target device connected
ERROR # 346 - File(s) contains already specified data (code overwritten)
ERROR # 347 - Selected Image number out of range
ERROR # 348 - Could not open the configuration file.
ERROR # 349 - Script Header size error
ERROR # 350 - Image ID error. Image ignored, program terminated.
ERROR # 351 - Image contents (size, no of tasks) error. Program terminated.
ERROR # 352 - Image CRC error. Program terminated.
ERROR # 353 - WARNING: Code overwritten. Code from the file written to already used location.
ERROR # 354 - Code in the file contains invalid data.
ERROR # 355 - Open File error
ERROR # 356 - Extention or file name error
ERROR # 357 - Wrong password for opening the image file
ERROR # 358 - Wrong PC hardware fingerprint # for opening the image file
ERROR # 359 - Image file ID error or file corrupted
ERROR # 360 - Check Sum of the Image file error or file corrupted
ERROR # 361 - Wrong header in the image file or file corrupted
ERROR # 362 - Image file is not for the MSP-GANG programmer.
ERROR # 363 - Image file contents error or file corrupted.
ERROR # 364 - Unknown protection mode of the image file or file corrupted.

42 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Self Test

ERROR # 365 - Data offset in the image file error or file corrupted.
ERROR # 366 - Hex data conversion in the image file error or file corrupted.
ERROR # 367 - Image file corrupted.
ERROR # 368 - Image file cannot be unlocked
ERROR # 369 - Customized MCUs license file open error
ERROR # 370 -
WARNING: Code specified for the BSL space location, but access to the BSL is locked.

ERROR # 371 - Info memory page number is out of range.
ERROR # 372 - COM ports scan number is too low.
ERROR # 373 - Selftest data size too high.
ERROR # 374 - Data size too high.
ERROR # 377 - Gang mask ZERO. Nothing to do.
ERROR # 378 - Address definition.
ERROR # 379 - Data size is below 2.
ERROR # 380 - Invalid DCO noumber.
ERROR # 381 - Command not implemented.
ERROR # 382 - Wrong Target number
ERROR # 383 - Code File error.
ERROR # 384 - Password File error.
ERROR # 385 - Nothing to program/verify - empty code in selected memory space.
ERROR # 386 - Code out of range of the selected MCU.
ERROR # 387 - Invalid name index.
ERROR # 388 - Warning: Part of the code ignored. Check the memory setup.
ERROR # 391 - Image data size too long
ERROR # 392 - Terminated by user
ERROR # 393 - Code specified in the Retain Data space
ERROR # 999 - Invalid error number !

2.4 Self Test

The MSP Gang Programmer Self Test program allows to test most of the hardware for correctness.
Connect the programmer to a computer running MSP Gang Programmer software. If the user is utilizing a
Gang Splitter, then connect it to MSP Gang Programmer hardware (this allows the Self Test to find short
circuits in the Gang Splitter). Disconnect all target devices, because any connected devices can modify
the test results and make them invalid.

Activate the Self Test by choosing the Tools→Self Test option from the drop-down menu. Press the Start
Self Test button, as shown in Figure 2-19, to begin. If the Self Test reports any problems then it is
advisable to send the test report to TI technical support for assistance.

43SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Self Test www.ti.com

NOTE: Use the MSP Gang Programmer selftest capability to check the integrity of the hardware. Before
beginning the test, make sure that no target MCUs are connected to the MSP Gang Programmer.

Figure 2-19. Self Test

The following is a typical self test report:
=== MSP-GANG Self test results (Saturday, November 27, 2011, 19:08:43) ===
Adapter SN ------: 10110012
Hardware --------: G430: 01.01
Access key ------: MSP430 - Gang Programmer
Silicon Number --: 24D4 CC47 0400 1B00
API Firmware ----: MSP-Gang A430: 01.00.08.00
BOOT Firmware ---: G430BOOT B430: 01.00.01.00
GUI Software ----: MSP-Gang-GUI G430: 01.00.08.00
DLL Software ----: MSP-Gang-DLL D430: 01.00.08.00
================ Test results =============
No. name parameter limits result status
1: Vcc Target-1 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.02 V ... >> OK <<
2: Vcc Target-2 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.01 V ... >> OK <<
3: Vcc Target-3 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.01 V ... >> OK <<
4: Vcc Target-4 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.01 V ... >> OK <<
5: Vcc Target-5 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.01 V ... >> OK <<
6: Vcc Target-6 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.01 V ... >> OK <<
7: Vcc Target-7 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.01 V ... >> OK <<
8: Vcc Target-8 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.01 V ... >> OK <<
9: Translators VT (OFF) 0.00 V (0.00 to 0.50) Result: 0.01 V ... >> OK <<

44 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Self Test

10: Translators VT (ON 1.8V) 1.80 V (1.60 to 2.00) Result: 1.80 V ... >> OK <<
11: Translators VT (ON 2.7V) 2.70 V (2.50 to 2.90) Result: 2.68 V ... >> OK <<
12: Translators VT (ON 3.6V) 3.60 V (3.40 to 3.80) Result: 3.58 V ... >> OK <<
13: Vpp Voltage-in 10.00 V (8.00 to 12.00) Result: 9.96 V ... >> OK <<
14: Vpp Voltage 7.00 V (6.50 to 7.30) Result: 6.90 V ... >> OK <<
15: Internal Vcc-3.3V 3.30 V (3.20 to 3.40) Result: 3.30 V ... >> OK <<
16: Vcc Target-1 (ALL ON 1.8V) 1.80 V (1.60 to 2.00) Result: 1.78 V ... >> OK <<
17: Vcc Target-2 (ALL ON 1.8V) 1.80 V (1.60 to 2.00) Result: 1.76 V ... >> OK <<
18: Vcc Target-3 (ALL ON 1.8V) 1.80 V (1.60 to 2.00) Result: 1.79 V ... >> OK <<
19: Vcc Target-4 (ALL ON 1.8V) 1.80 V (1.60 to 2.00) Result: 1.79 V ... >> OK <<
20: Vcc Target-5 (ALL ON 1.8V) 1.80 V (1.60 to 2.00) Result: 1.78 V ... >> OK <<
21: Vcc Target-6 (ALL ON 1.8V) 1.80 V (1.60 to 2.00) Result: 1.80 V ... >> OK <<
22: Vcc Target-7 (ALL ON 1.8V) 1.80 V (1.60 to 2.00) Result: 1.76 V ... >> OK <<
23: Vcc Target-8 (ALL ON 1.8V) 1.80 V (1.60 to 2.00) Result: 1.75 V ... >> OK <<
24: Vcc Target-1 (ALL ON 2.7V) 2.70 V (2.50 to 2.90) Result: 2.67 V ... >> OK <<
25: Vcc Target-2 (ALL ON 2.7V) 2.70 V (2.50 to 2.90) Result: 2.66 V ... >> OK <<
26: Vcc Target-3 (ALL ON 2.7V) 2.70 V (2.50 to 2.90) Result: 2.68 V ... >> OK <<
27: Vcc Target-4 (ALL ON 2.7V) 2.70 V (2.50 to 2.90) Result: 2.69 V ... >> OK <<
28: Vcc Target-5 (ALL ON 2.7V) 2.70 V (2.50 to 2.90) Result: 2.67 V ... >> OK <<
29: Vcc Target-6 (ALL ON 2.7V) 2.70 V (2.50 to 2.90) Result: 2.70 V ... >> OK <<
30: Vcc Target-7 (ALL ON 2.7V) 2.70 V (2.50 to 2.90) Result: 2.65 V ... >> OK <<
31: Vcc Target-8 (ALL ON 2.7V) 2.70 V (2.50 to 2.90) Result: 2.64 V ... >> OK <<
32: Vcc Target-1 (ALL ON 3.6V) 3.60 V (3.40 to 3.80) Result: 3.59 V ... >> OK <<
33: Vcc Target-2 (ALL ON 3.6V) 3.60 V (3.40 to 3.80) Result: 3.56 V ... >> OK <<
34: Vcc Target-3 (ALL ON 3.6V) 3.60 V (3.40 to 3.80) Result: 3.59 V ... >> OK <<
35: Vcc Target-4 (ALL ON 3.6V) 3.60 V (3.40 to 3.80) Result: 3.60 V ... >> OK <<
36: Vcc Target-5 (ALL ON 3.6V) 3.60 V (3.40 to 3.80) Result: 3.59 V ... >> OK <<
37: Vcc Target-6 (ALL ON 3.6V) 3.60 V (3.40 to 3.80) Result: 3.61 V ... >> OK <<
38: Vcc Target-7 (ALL ON 3.6V) 3.60 V (3.40 to 3.80) Result: 3.58 V ... >> OK <<
39: Vcc Target-8 (ALL ON 3.6V) 3.60 V (3.40 to 3.80) Result: 3.54 V ... >> OK <<
40: Vcc discharge (100ms)Target-1 3.60 V (1.00 to 2.70) Result: 2.10 V ... >> OK <<
41: Vcc discharge (100ms)Target-2 3.60 V (1.00 to 2.70) Result: 2.00 V ... >> OK <<
42: Vcc discharge (100ms)Target-3 3.60 V (1.00 to 2.70) Result: 2.07 V ... >> OK <<
43: Vcc discharge (100ms)Target-4 3.60 V (1.00 to 2.70) Result: 2.04 V ... >> OK <<
44: Vcc discharge (100ms)Target-5 3.60 V (1.00 to 2.70) Result: 2.08 V ... >> OK <<
45: Vcc discharge (100ms)Target-6 3.60 V (1.00 to 2.70) Result: 2.13 V ... >> OK <<
46: Vcc discharge (100ms)Target-7 3.60 V (1.00 to 2.70) Result: 2.02 V ... >> OK <<
47: Vcc discharge (100ms)Target-8 3.60 V (1.00 to 2.70) Result: 2.01 V ... >> OK <<
48: Vcc Target-1 (\#1 ON) 0.00 V (3.10 to 3.50) Result: 3.27 V ... >> OK <<
49: Vcc Target-2 (\#1 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
50: Vcc Target-3 (\#1 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
51: Vcc Target-4 (\#1 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
52: Vcc Target-5 (\#1 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
53: Vcc Target-6 (\#1 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
54: Vcc Target-7 (\#1 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
55: Vcc Target-8 (\#1 ON) 3.30 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
56: Vcc Target-1 (\#2 ON) 0.00 V (0.00 to 0.50) Result: 0.27 V ... >> OK <<
57: Vcc Target-2 (\#2 ON) 0.00 V (3.10 to 3.50) Result: 3.26 V ... >> OK <<
58: Vcc Target-3 (\#2 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
59: Vcc Target-4 (\#2 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
60: Vcc Target-5 (\#2 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
61: Vcc Target-6 (\#2 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
62: Vcc Target-7 (\#2 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
63: Vcc Target-8 (\#2 ON) 3.30 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
64: Vcc Target-1 (\#3 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
65: Vcc Target-2 (\#3 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
66: Vcc Target-3 (\#3 ON) 0.00 V (3.10 to 3.50) Result: 3.28 V ... >> OK <<
67: Vcc Target-4 (\#3 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
68: Vcc Target-5 (\#3 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
69: Vcc Target-6 (\#3 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
70: Vcc Target-7 (\#3 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
71: Vcc Target-8 (\#3 ON) 3.30 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
72: Vcc Target-1 (\#4 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
73: Vcc Target-2 (\#4 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
74: Vcc Target-3 (\#4 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
75: Vcc Target-4 (\#4 ON) 0.00 V (3.10 to 3.50) Result: 3.29 V ... >> OK <<

45SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Self Test www.ti.com

76: Vcc Target-5 (\#4 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
77: Vcc Target-6 (\#4 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
78: Vcc Target-7 (\#4 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
79: Vcc Target-8 (\#4 ON) 3.30 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
80: Vcc Target-1 (\#5 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
81: Vcc Target-2 (\#5 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
82: Vcc Target-3 (\#5 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
83: Vcc Target-4 (\#5 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
84: Vcc Target-5 (\#5 ON) 0.00 V (3.10 to 3.50) Result: 3.27 V ... >> OK <<
85: Vcc Target-6 (\#5 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
86: Vcc Target-7 (\#5 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
87: Vcc Target-8 (\#5 ON) 3.30 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
88: Vcc Target-1 (\#6 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
89: Vcc Target-2 (\#6 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
90: Vcc Target-3 (\#6 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
91: Vcc Target-4 (\#6 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
92: Vcc Target-5 (\#6 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
93: Vcc Target-6 (\#6 ON) 0.00 V (3.10 to 3.50) Result: 3.30 V ... >> OK <<
94: Vcc Target-7 (\#6 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
95: Vcc Target-8 (\#6 ON) 3.30 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
96: Vcc Target-1 (\#7 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
97: Vcc Target-2 (\#7 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
98: Vcc Target-3 (\#7 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
99: Vcc Target-4 (\#7 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
100: Vcc Target-5 (\#7 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
101: Vcc Target-6 (\#7 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
102: Vcc Target-7 (\#7 ON) 0.00 V (3.10 to 3.50) Result: 3.26 V ... >> OK <<
103: Vcc Target-8 (\#7 ON) 3.30 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
104: Vcc Target-1 (\#8 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
105: Vcc Target-2 (\#8 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
106: Vcc Target-3 (\#8 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
107: Vcc Target-4 (\#8 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
108: Vcc Target-5 (\#8 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
109: Vcc Target-6 (\#8 ON) 0.00 V (0.00 to 0.50) Result: 0.25 V ... >> OK <<
110: Vcc Target-7 (\#8 ON) 0.00 V (0.00 to 0.50) Result: 0.26 V ... >> OK <<
111: Vcc Target-8 (\#8 ON) 3.30 V (3.10 to 3.50) Result: 3.23 V ... >> OK <<
112: BSL RX bus (\#1 HIGH) 0x01 (0x01 to 0x01) Result: 0x01 ... >> OK <<
113: BSL RX bus (\#2 HIGH) 0x02 (0x02 to 0x02) Result: 0x02 ... >> OK <<
114: BSL RX bus (\#3 HIGH) 0x04 (0x04 to 0x04) Result: 0x04 ... >> OK <<
115: BSL RX bus (\#4 HIGH) 0x08 (0x08 to 0x08) Result: 0x08 ... >> OK <<
116: BSL RX bus (\#5 HIGH) 0x10 (0x10 to 0x10) Result: 0x10 ... >> OK <<
117: BSL RX bus (\#6 HIGH) 0x20 (0x20 to 0x20) Result: 0x20 ... >> OK <<
118: BSL RX bus (\#7 HIGH) 0x40 (0x40 to 0x40) Result: 0x40 ... >> OK <<
119: BSL RX bus (\#8 HIGH) 0x80 (0x80 to 0x80) Result: 0x80 ... >> OK <<
120: BSL TX bus (\#1 HIGH) 0x01 (0x01 to 0x01) Result: 0x01 ... >> OK <<
121: BSL TX bus (\#2 HIGH) 0x02 (0x02 to 0x02) Result: 0x02 ... >> OK <<
122: BSL TX bus (\#3 HIGH) 0x04 (0x04 to 0x04) Result: 0x04 ... >> OK <<
123: BSL TX bus (\#4 HIGH) 0x08 (0x08 to 0x08) Result: 0x08 ... >> OK <<
124: BSL TX bus (\#5 HIGH) 0x10 (0x10 to 0x10) Result: 0x10 ... >> OK <<
125: BSL TX bus (\#6 HIGH) 0x20 (0x20 to 0x20) Result: 0x20 ... >> OK <<
126: BSL TX bus (\#7 HIGH) 0x40 (0x40 to 0x40) Result: 0x40 ... >> OK <<
127: BSL TX bus (\#8 HIGH) 0x80 (0x80 to 0x80) Result: 0x80 ... >> OK <<
128: TDI bus (\#1 HIGH) 0x01 (0x01 to 0x01) Result: 0x01 ... >> OK <<
129: TDI bus (\#2 HIGH) 0x02 (0x02 to 0x02) Result: 0x02 ... >> OK <<
130: TDI bus (\#3 HIGH) 0x04 (0x04 to 0x04) Result: 0x04 ... >> OK <<
131: TDI bus (\#4 HIGH) 0x08 (0x08 to 0x08) Result: 0x08 ... >> OK <<
132: TDI bus (\#5 HIGH) 0x10 (0x10 to 0x10) Result: 0x10 ... >> OK <<
133: TDI bus (\#6 HIGH) 0x20 (0x20 to 0x20) Result: 0x20 ... >> OK <<
134: TDI bus (\#7 HIGH) 0x40 (0x40 to 0x40) Result: 0x40 ... >> OK <<
135: TDI bus (\#8 HIGH) 0x80 (0x80 to 0x80) Result: 0x80 ... >> OK <<
136: TDOI Tx-bus (\#1 HIGH) 0x01 (0x01 to 0x01) Result: 0x01 ... >> OK <<
137: TDOI Tx-bus (\#2 HIGH) 0x02 (0x02 to 0x02) Result: 0x02 ... >> OK <<
138: TDOI Tx-bus (\#3 HIGH) 0x04 (0x04 to 0x04) Result: 0x04 ... >> OK <<
139: TDOI Tx-bus (\#4 HIGH) 0x08 (0x08 to 0x08) Result: 0x08 ... >> OK <<
140: TDOI Tx-bus (\#5 HIGH) 0x10 (0x10 to 0x10) Result: 0x10 ... >> OK <<
141: TDOI Tx-bus (\#6 HIGH) 0x20 (0x20 to 0x20) Result: 0x20 ... >> OK <<

46 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Self Test

142: TDOI Tx-bus (\#7 HIGH) 0x40 (0x40 to 0x40) Result: 0x40 ... >> OK <<
143: TDOI Tx-bus (\#8 HIGH) 0x80 (0x80 to 0x80) Result: 0x80 ... >> OK <<
144: TDOI Tx-Rx (\#1 HIGH) 0x01 (0x01 to 0x01) Result: 0x01 ... >> OK <<
145: TDOI Tx-Rx (\#2 HIGH) 0x02 (0x02 to 0x02) Result: 0x02 ... >> OK <<
146: TDOI Tx-Rx (\#3 HIGH) 0x04 (0x04 to 0x04) Result: 0x04 ... >> OK <<
147: TDOI Tx-Rx (\#4 HIGH) 0x08 (0x08 to 0x08) Result: 0x08 ... >> OK <<
148: TDOI Tx-Rx (\#5 HIGH) 0x10 (0x10 to 0x10) Result: 0x10 ... >> OK <<
149: TDOI Tx-Rx (\#6 HIGH) 0x20 (0x20 to 0x20) Result: 0x20 ... >> OK <<
150: TDOI Tx-Rx (\#7 HIGH) 0x40 (0x40 to 0x40) Result: 0x40 ... >> OK <<
151: TDOI Tx-Rx (\#8 HIGH) 0x80 (0x80 to 0x80) Result: 0x80 ... >> OK <<
152: TDOI Rx-bus (\#1 HIGH) 0x01 (0x01 to 0x01) Result: 0x01 ... >> OK <<
153: TDOI Rx-bus (\#2 HIGH) 0x02 (0x02 to 0x02) Result: 0x02 ... >> OK <<
154: TDOI Rx-bus (\#3 HIGH) 0x04 (0x04 to 0x04) Result: 0x04 ... >> OK <<
155: TDOI Rx-bus (\#4 HIGH) 0x08 (0x08 to 0x08) Result: 0x08 ... >> OK <<
156: TDOI Rx-bus (\#5 HIGH) 0x10 (0x10 to 0x10) Result: 0x10 ... >> OK <<
157: TDOI Rx-bus (\#6 HIGH) 0x20 (0x20 to 0x20) Result: 0x20 ... >> OK <<
158: TDOI Rx-bus (\#7 HIGH) 0x40 (0x40 to 0x40) Result: 0x40 ... >> OK <<
159: TDOI Rx-bus (\#84 HIGH) 0x80 (0x80 to 0x80) Result: 0x80 ... >> OK <<
160: VEXT bus (\#1 HIGH) 0x01 (0x01 to 0x01) Result: 0x01 ... >> OK <<
161: VEXT bus (\#2 HIGH) 0x02 (0x02 to 0x02) Result: 0x02 ... >> OK <<
162: VEXT bus (\#3 HIGH) 0x04 (0x04 to 0x04) Result: 0x04 ... >> OK <<
163: VEXT bus (\#4 HIGH) 0x08 (0x08 to 0x08) Result: 0x08 ... >> OK <<
164: VEXT bus (\#5 HIGH) 0x10 (0x10 to 0x10) Result: 0x10 ... >> OK <<
165: VEXT bus (\#6 HIGH) 0x20 (0x20 to 0x20) Result: 0x20 ... >> OK <<
166: VEXT bus (\#7 HIGH) 0x40 (0x40 to 0x40) Result: 0x40 ... >> OK <<
167: VEXT bus (\#8 HIGH) 0x80 (0x80 to 0x80) Result: 0x80 ... >> OK <<
168: VEXT bus (All-ON delay 10us) 0xFF (0xFF to 0xFF) Result: 0xFF ... >> OK <<
169: VEXT bus (All-ON delay 5 ms) 0xFF (0x00 to 0x00) Result: 0x00 ... >> OK <<
170: Keys buffer (All pull-up) 0x1F (0x1F to 0x1F) Result: 0x1F ... >> OK <<
171: Access to LCD RAM (0xAA) 0xAA (0xAA to 0xAA) Result: 0xAA ... >> OK <<
172: Access to LCD RAM (0x99) 0x99 (0x99 to 0x99) Result: 0x99 ... >> OK <<
173: Image Flash Access (get ID) 0x02 (0x01 to 0x02) Result: 0x01 ... >> OK <<
174: TDI Fuse keys (\#1 ON) 0x01 (0x01 to 0x01) Result: 0x01 ... >> OK <<
175: TDI Fuse keys (\#2 ON) 0x02 (0x02 to 0x02) Result: 0x02 ... >> OK <<
176: TDI Fuse keys (\#3 ON) 0x04 (0x04 to 0x04) Result: 0x04 ... >> OK <<
177: TDI Fuse keys (\#4 ON) 0x08 (0x08 to 0x08) Result: 0x08 ... >> OK <<
178: TDI Fuse keys (\#5 ON) 0x10 (0x10 to 0x10) Result: 0x10 ... >> OK <<
179: TDI Fuse keys (\#6 ON) 0x20 (0x20 to 0x20) Result: 0x20 ... >> OK <<
180: TDI Fuse keys (\#7 ON) 0x40 (0x40 to 0x40) Result: 0x40 ... >> OK <<
181: TDI Fuse keys (\#8 ON) 0x80 (0x80 to 0x80) Result: 0x80 ... >> OK <<
182: TEST Fuse keys (All OFF) 0.00 (0.00 to 0.30) Result: 0.00 ... >> OK <<
183: TEST Fuse keys (\#1 ON) 1.00 (0.80 to 3.00) Result: 1.47 ... >> OK <<
184: TEST Fuse keys (\#2 ON) 2.00 (0.80 to 3.00) Result: 1.46 ... >> OK <<
185: TEST Fuse keys (\#3 ON) 3.00 (0.80 to 3.00) Result: 1.54 ... >> OK <<
186: TEST Fuse keys (\#4 ON) 4.00 (0.80 to 3.00) Result: 1.62 ... >> OK <<
187: TEST Fuse keys (\#5 ON) 5.00 (0.80 to 3.00) Result: 1.78 ... >> OK <<
188: TEST Fuse keys (\#6 ON) 6.00 (0.80 to 3.00) Result: 1.91 ... >> OK <<
189: TEST Fuse keys (\#7 ON) 7.00 (0.80 to 3.00) Result: 2.01 ... >> OK <<
190: TEST Fuse keys (\#8 ON) 8.00 (0.80 to 3.00) Result: 2.04 ... >> OK <<
============== Finished =================================
* Test pass - no errors.

47SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Label www.ti.com

2.5 Label

Information and MSP Gang Programmer software and hardware can be displayed by accessing the About
drop-down menu. Select the About→About option to display information similar to that shown in Figure 2-
20.

Figure 2-20. Information About the MSP Gang Programmer

48 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Benchmarks

2.6 Benchmarks

This section shows the results of timing benchmarks used on the MSP Gang Programmer to measure the
programming speed. Each table shows the result of the benchmark when programming with the JTAG and
SBW interfaces. Identical programming speed is seen whether programming one device or eight devices
simultaneously, because programming each MCU is done in parallel.

2.6.1 Benchmarks for MSP430F5xx

Table 2-1. Benchmark Results – MSP430F5438A, 256kB Code (1)

Erase, Blank Check, Verify Programming Speed Verify SpeedInterface Program, and Verify (s) (kB/s) (kB/s)(s)

JTAG Fast 8.7 0.25 32 1000

JTAG Med 15.8 0.28 17 900

JTAG Slow 31.3 0.36 8.5 700

SBW Fast 27.4 0.34 9.7 750

SBW Med 47.6 0.45 5.5 570

SBW Slow 99.0 0.72 2.6 350
(1) Programming speed and verify speed without startup procedures (access to target device).

Table 2-2. Benchmark Results – MSP430F5438A, 250kB Code, Mode: From Image (1)

Erase, Blank Check, Verify Programming SpeedProgram, and Verify (s) (kB/s)(s)

JTAG Fast 9.6 0.4 31

JTAG Med 16.6 0.5 17

JTAG Slow 32 0.6 8

SBW Fast 38 0.6 7

SBW Med 58 0.7 4.6

SBW Slow 110 1.1 2.5
(1) Programming speed and verify speed without startup procedures (access to target device).

Table 2-3. Benchmark Results – MSP430F5438A, 250kB Code, Mode: Interactive, Communication
via USB (1)

Erase, Blank Check, Verify Programming SpeedProgram, and Verify (s) (kB/s)(s)

JTAG Fast 13.5 0.5 21

JTAG Med 19.7 0.6 14

JTAG Slow 36 0.7 7.5

SBW Fast 42 0.7 6.3

SBW Med 61 0.8 4.3

SBW Slow 114 1.2 2.3
(1) Programming speed and verify speed without startup procedures (access to target device).

49SLAU358D–September 2011–Revised May 2013 Operation
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Benchmarks www.ti.com

2.6.2 Benchmarks for MSP430FR57x

Table 2-4. Benchmark Results – MSP430FR5738, 15kB Code, Mode: From Image (1)

Erase, Blank Check, Verify Programming SpeedProgram, and Verify (s) (kB/s)(s)

JTAG Fast 0.9 0.3 35

JTAG Med 1.4 0.3 18

JTAG Slow 2.5 0.4 8.5

SBW Fast 2.9 0.4 7.5

SBW Med 4.2 0.5 4.8

SBW Slow 7.8 0.7 2.5
(1) Programming speed without startup procedures (access to target device).

Table 2-5. Benchmark Results – MSP430FR5738, 15kB Code, Mode: Interactive, Communication via
USB (1)

Erase, Blank Check, Verify Programming SpeedProgram, and Verify (s) (kB/s)(s)

JTAG Fast 1.2 0.3 22

JTAG Med 1.7 0.3 15

JTAG Slow 2.8 0.4 8

SBW Fast 3.3 0.4 6.5

SBW Med 4.7 0.5 4.5

SBW Slow 8.5 0.7 2.3
(1) Programming speed without startup procedures (access to target device).

2.6.3 Benchmarks for MSP430F2xx

Table 2-6. Benchmark Results – MSP430F2619, 120kB Code, Mode: From Image (1)

Erase, Blank Check, Verify Programming SpeedProgram, and Verify (s) (kB/s)(s)

JTAG Fast 8.3 0.4 16.2

JTAG Med 15 0.5 8.6

JTAG Slow 25 0.6 5.1
(1) Programming speed without startup procedures (access to target device).

Table 2-7. Benchmark Results – MSP430F2619, 120kB Code, Mode: Interactive, Communication via
USB (1)

Erase, Blank Check, Verify Programming SpeedProgram, and Verify (s) (kB/s)(s)

JTAG Fast 10.4 0.5 12.7

JTAG Med 17 0.5 7.5

JTAG Slow 27 0.6 4.7
(1) Programming speed without startup procedures (access to target device).

50 Operation SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Chapter 3
SLAU358D–September 2011–Revised May 2013

Firmware

3.1 Commands

The MSP-GANG can be controlled via firmware commands received through USB or its RS-232 serial
port. The following firmware commands are supported:

== Commands supported by the BOOT loader ======

• "Hello"

• Boot Commands Disable

• Boot Commands Enable

• Transmit Diagnostics

• Select Baud Rate

• Erase Firmware

• Load Firmware

• Exit Firmware update

• Get Label

• Get Progress Status

== Commands supported by API firmware ======

• Main process

• Interactive process

• Erase Image

• Read Info memory from MSP-GANG

• Write Info memory to MSP-GANG

• Verify Access Key

• Load Image Block

• Verify Image Checksum

• Read Image Header

• Boot update

• Read from Gang Data buffer

• Write to Gang Data buffer

• Disable API Interrupts

• Select Image

• Display Message on the LCD display

• Set temporary configuration

• Get selected status

• Selftest

51SLAU358D–September 2011–Revised May 2013 Firmware
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Firmware Interface Protocol www.ti.com

3.2 Firmware Interface Protocol

The MSP Gang Programmer supports a UART communication protocol at baud rates from 9.6 to 115.2
kbaud in half duplex mode. The default baud rate at startup is 9.6 kbaud. This allows for communication
between the MSP Gang Programmer and devices that have a lower communication speed than the
maximum 115.2 kbaud. It is recommended that after startup the communication speed be increased to the
common maximum for both devices to enable faster communication. If the control device has a USB
interface with a virtual COM port, then it is recommended to use USB for communication between the
control device and the MSP Gang Programmer, because it is several times faster than via RS-232.
Communication requires one start bit, eight data bits, even parity bit, and one stop bit. A software
handshake is performed by a (not) acknowledge character.

3.3 Synchronization Sequence

To synchronize with the MSP-GANG Programmer the host serial handler transmits a SYNC (CR)
character (0x0D) to the MSP-GANG Programmer. The MSP-GANG Programmer acknowledges successful
reception of the SYNC character by responding with a DATA ACK character (0x90). If the SYNC is not
received correctly, no data is sent back. This sequence is required to establish the communication
channel and to react immediately to line faults. The synchronization character is not part of the data frame
described in Section 3.4.1. When communication is established, the synchronization character is not
required any more, but it can be send at any time for checking the "alive" status if required.

The synchronization character is not part of the data frame described in Section 3.4.1.

3.4 Command Messages

The MSP-GANG has a few type of messages with mandatory responses for each received command.

• Short TX messages with one byte only

"Hello"
Tx -> 0x0d (CR)
Rx -> 0x90 (ACK)

Get Progress Status
Tx -> 0xA5
Rx -> 0x80 0x00 <...data...> (without Check Sum)

• Standard TX messages with data frame
Tx -> 0x3E, CMD, <...data...>, < Check sum >
Rx -> 0x90 (ACK)

or 0xA0 (NACK)
or 0xB0 (In Progress) (use Get Progress Status for monitoring)
or 0x80, 0x00, <...data....>, < Check sum >

3.4.1 Frame Structure

The data frame format follows the TI MSP430 serial standard protocol (SSP) rules, extended with a
preceding synchronization sequence (SS), as described in Section 3.3. The MSP Gang Programmer is
considered the receiver in Table 3-1, which details the data frame for firmware commands. The
redundancy of some parameters results from the adaptation of the SSP or to save boot ROM space.

The data frame format of the firmware commands is shown in Table 3-1.

• The first eight bytes (HDR through LH) are mandatory (– represents dummy data).

• Data bytes D1 to Dn are optional.

• Two bytes (CKL and CKH) for checksum are mandatory

• Acknowledge done by the MSP Gang Programmer is mandatory.

52 Firmware SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Command Messages

The following abbreviations are used in Table 3-1.

CMD Command identification

R Do not use this command. Used for internal communication.

T Target number (1 to 8)

L1, L2 Number of bytes in AL through Dn. The valid values of these bytes are restricted as follows: L1 = L2, L1 < 255, L1 even.

A1, A2, A3 Block start address or erase (check) address or jump address LO or HI byte. The bytes are combined to generate a 24-bit
word as follows: Address = A3 × 0x10000 + A2 × 0x100 + A1

LL, LH Number of pure data bytes (maximum 250) or erase information LO or HI byte or block length of erase check (max is 0xFFFF).

D1...Dn Data bytes

CKL, CKH 16-bit checksum LO or HI byte

xx Can be any data

– No character (data byte) received or transmitted

ACK The acknowledge character returned by the MSP-GANG can be either DATA_ACK = 0x90 (frame was received correctly,
command was executed successfully) or DATA_NAK = 0xA0 (frame not valid (for example, wrong checksum, L, L2), command
is not defined, is not allowed.

PRS DATA_IN_PROGRESS = 0xB0 - Tasks in progress. Use Get Progress Status (0xA5) command to get the status and check
when task is finished.

Table 3-1. Data Frame for Firmware Commands (1) (2)

MSP-GANG Firmware PRO CMD L1 L2 A1 A2 A3 A4 LL LH D1 D2...Dn CLK CLH ACKCommand MPT

"Hello" 0D - - ACK

Boot Commands 3E 2A R R R R R R R R R R CKL CKH ACKDisable

Boot Commands 3E 2B R R R R R R R R R R CKL CKH ACKEnable

Diagnostic 3E 32 04 04 00 00 - - 00 00 - - CKL CKH -

Diagnostic response 80 0 1E 1E D1 D2 D3 D4 D5 D6 D7 D08...D1E CKL CKH -

Set Baud Rate 3E 38 06 06 D1 00 - - 00 00 00 00 CKL CKH ACK

Erase Firmware 3E 39 R R R R R R R R R R CKL CKH ACK

Load Firmware 3E 3A R R R R R R R R R R CKL CKH ACK

Exit Firmware Update 3E 3B R R R R R R R R R R CKL CKH ACK

Get Label 3E 40 04 04 00 00 - - 00 00 - - CKL CKH -

Response-Get Label 80 00 8C 8C D1 D2 D3 D4 D5 D6 D7 D8...D140 CKL CKH -

Get Progress Status A5 - -

Response----,,,,--- 80 A5 D1 D2 D3 D4 D5 D6 D7 D7 D8 D9...D48 - -

Main Process 3E 31 04 04 00 00 - - 00 00 - - CKL CKH PRS

Interactive Task 3E 46 n n D1 D2 - - D3 D4 D5 D6...Dn CKL CKH -

Response---,,--- 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH -

Erase Image 3E 33 04 04 00 00 - - 00 00 - - CKL CKH PRS

Get Info C-D 3E 41 04 04 A1 00 - - 00 00 - - CKL CKH -

Response Get Info 80 0 80 80 D1 D2 D3 D4 D5 D6 D7 D8...D128 CKL CKH

Write Info C-D 3E 42 84 84 A1 00 80 0 D1 D2...D128 CKL CKH ACK

Get Access Key St 3E 44 04 04 00 00 - - 00 00 - - CKL CKH ACK

Load Image 3E 43 n n A1 A2 A3 00 n-6 00 D1 D2...Dn-6 CKL CKH ACK

Verify Image CRC 3E 45 08 08 A1 A2 A3 A4 LL LH D1 D2 CKL CKH ACK

Get Image Header 3E 47 06 06 A1 A2 00 00 n 00 - - CKL CKH -

Response–,,,-- 80 0 n n D1 D2 - - D3 D4 D5 D6...Dn CKL CKH

Read Gang Buffer 3E 49 4 4 T 0 - - n 0 - - CKL CKH -

Response–,,,-- 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH

Write Gang Buffer 3E 4A n+4 n+4 T 0 - - n 0 D1 D2...Dn CKL CKH ACK

Disable API Interrupts 3E 4C 4 4 R R - - R R - - CKL CKH ACK

Select Image 3E 50 4 4 A1 0 - - 0 0 CKL CKH ACK

(1) All numbers are bytes in hexadecimal notation. ACK is sent by the MSP-GANG.
(2) PROMPT = 0x3E means data frame expected.

53SLAU358D–September 2011–Revised May 2013 Firmware
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Detailed Description of Commands www.ti.com

Table 3-1. Data Frame for Firmware Commands (1) (2) (continued)

Display Message 3E 54 n+4 n+4 A1 A2 - - n 00 D1 D2...Dn CKL CKH ACK

Set IO State 3E 4E 0C 0C VL VH - - 08 00 D1 D2...D8 CKL CKH ACK

Set Temporary 3E 56 06 06 A1 A2 - - 2 0 D1 D2 CKL CKH ACKConfiguration

Get Gang Status 3E 58 04 04 A1 0 - - 0 0 - - CKL CKH -

Response —,,,--- 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH

Remote Selftest 3E 71 n+6 n+6 A1 A2 A3 A4 n 0 D1 D2...Dn CKL CKH

Response----,,--- 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH

3.4.2 Checksum

The 16-bit (2-byte) checksum is calculated over all received or transmitted bytes, B1 to Bn, in the data
frame except the checksum bytes themselves. The checksum is calculated by XORing words (two
consecutive bytes) and bit-wise inverting (∼) the result, as shown in the following formulas.

CHECKSUM = INV [(B1 + 256 × B2) XOR (B3 + 256 × B4) XOR...XOR ((Bn – 1) + 256 × Bn)]

or
CKL = INV [B1 XOR B3 XOR...XOR Bn–1]
CKH = INV [B2 XOR B4 XOR...XOR Bn]

An example of a frame for the Execute Self Test command with checksum would appear as:
0x3E 0x35 0x06 0x06 0x00 0x00 0x00 0x00 0x00 0x00 0xC7 0xCC

3.5 Detailed Description of Commands

3.5.1 General

After the prompt byte (0x3E) and the command identification byte CMD, the frame length bytes L1 and L2
(which must be equal) hold the number of bytes following L2, excluding the checksum bytes CKL and
CKH. Bytes A1, A2, A3, A4, LL, LH, and D1 to Dn are command specific. However, the checksum bytes
CKL (low byte) and CKH (high byte) are mandatory. If the data frame is received correctly and the
command execution is successful, the acknowledge byte ACK (0x90), in progress byte (0xB0) or received
message with header byte (0x80) as the first one. Incorrectly received data frames, unsuccessful
operations, and commands that are not defined are confirmed with a DATA_NACK = 0xA0.

3.5.2 Commands Supported by the BOOT Loader

3.5.2.1 "Hello" Command

Short TX messages with one byte only
Tx -> 0x0d (CR)
Rx -> 0x90 (ACK)

A response is sent only when the <CR> (0x0D byte) has been detected and when it is not the byte used
as the part of the data frame. This command can be useful for checking communication with the MSP-
GANG. When there is no response, then the baud rate should be changed. After power-up, the USB
interface is used for communication with the MSP GANG; however, the RS-232 receiver is also active. To
reestablish communication between USB and RS232, the "Hello" command must be sent a minimum of
three times via RS232. After this, an ACK (0x90) is transmitted via RS232. This sequence also works in
reverse, to reestablish communication between RS232 and USB.

3.5.2.2 Boot Commands Disable
Tx -> 3E 2A CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
MSP-GANG executable GUI software for updating firmware or information memory update if required.

54 Firmware SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Detailed Description of Commands

3.5.2.3 Boot Commands Enable
Tx -> 3E 2B CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
MSP-GANG executable GUI software for updating firmware or information memory update if required.

3.5.2.4 Get Diagnostic Command

The Get Diagnostic command retrieves the result of the preceding gang programming command.
Tx -> 3E 32 04 04 00 00 00 00 CKL CKH
Rx -> 80 00 1E 1E D1 D2 ... D30 CKL CKH

Data bytes D1 to D30 hold the parameters, as follows:
D1-D6: Reserved
D7-D8: Boot revision number: D7 (MSByte), D8 (LSByte)
D9-D10: Hardware version number: D9 (MSByte), D10 (LSByte).
D11 to D12: Firmware version number: D11 (MSByte), D12 (LSByte).
D13 to D20: Character string representing the boot name "G430BOOT"
D21: Comma (,)
D22 to D30: Zero-terminated application firmware name "MSP-GANG"

When the application is modified or is not present, then bits D11-D12 and D22-D30 are modified and can
be used for detection if the application firmware is present, and if present, what type and version of the
application firmware is downloaded.

3.5.2.5 Select Baud Rate Command
Tx -> 3E 38 06 06 BR 00 00 00 00 00 CKL CKH
Rx -> 0x90 (ACK)

The Select Baud Rate command sets the rate of the serial communications. The default is 9600 baud.
Baud rate index 0 to 4, representing the baud rate.

BR → 0 = 9600 baud (default)
BR → 1 = 19200 baud
BR → 2 = 38400 baud
BR → 3 = 57600 baud
BR → 4 = 115200 baud

The Select Baud Rate command takes effect (that is, changes the baud rate) immediately.

3.5.2.6 Erase Firmware Command
Tx -> 3E 39 CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
MSP-GANG executable GUI software for updating firmware or information memory update if required.

3.5.2.7 Load Firmware Command
Tx -> 3E 3A CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
MSP-GANG executable GUI software for updating firmware or information memory update if required.

55SLAU358D–September 2011–Revised May 2013 Firmware
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Detailed Description of Commands www.ti.com

3.5.2.8 Exit from Firmware Update Command
Tx -> 3E 3B CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
MSP-GANG executable GUI software for updating firmware or information memory update if required.

3.5.2.9 Get Label Command

The Get Label command retrieves all hardware and software information.
Tx -> 3E 40 04 04 00 00 00 00 CKL CKH
Rx -> 80 00 8C 8C D1 D2 ... D140 CKL CKH

Data bytes D1 to D140 hold the parameters, as follows:
D1, D2: BOOT software ID ("B430")
D3-D6: BOOT software version (01 00 01 00)
D7, D8: API software ID ("A430")
D9-D12: API software version (01 00 01 09)
D13, D14: Boot revision number: D7 (MSByte), D8 (LSByte)
D15, D16: Hardware version number: D9 (MSByte), D10 (LSByte).
D17, D18: Firmware version number: D11 (MSByte), D12 (LSByte).
D19-D26: Character string representing the boot name "G430BOOT"
D27: Comma ','
D28-D36: Zero-terminated application firmware name "MSP-GANG"
D37-D44: MCU's Silicon Unique Number
D45-D76: Zero-terminated string of the Programmer description.
D77-D108: Access keys
D109-D116: Programmers serial number YYMMnnnn
D117-D120: MFG ID "ELP "
D121-D124: Hardware ID "G430"
D125-D126: Hardware revision 0x0101 (rev 1.01)
D127-D140: Spare

3.5.2.10 Get Progress Status

The Get Progress Status command is a low-level command and can be used at any time, even if the
MSP-GANG is busy with other tasks. It replies to the command without interrupting the currently serviced
process. Some commands that have the long execution time requires use the Get Progress Status
command for monitoring the current state. For example, the Main Process command that can be executed
a few seconds or more, responding with character "In Progress 0xB0" as fast as the command has been
received and accepted. The communication link has been released and ready to use the Get Progress
Status command. Now the current status and progress data can be monitored by polling the Get Progress
Status command. Contents of the progress status contains current task number, chunk number, and
information about what tasks have been already finished (erase, blank check, program, verify and more).
Additionally, the comment displayed on the LCD display is also available in the progress status message.
This makes it possible to mirror the progress status on a PC screen and for the status on the PC screen to
appear the same as it is in the MSP-GANG LCD display. The internal firmware the progress status buffer
is always updated when the new task or new chunk is executed. In cases where the LCD is updated
frequently, it might not be possible for the PC screen to exactly mirror it. If polling is done more frequently,
then all messages on the PC can be updated almost in real time. Polling can be fast, but it is not
recommended to send the Get Progress Status command within the 20-ms interval. The MSP-GANG has
internal 8 level FIFO buffer for progress status (8 internal buffers - 50 bytes each). This allows messages
to be retrieved even if status has been changed a few times in interval 20 ms, as long as the next task is
bigger and the status is not updated within the next 100 ms.

56 Firmware SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Detailed Description of Commands

One of the bytes (byte 6) in the progress status contains information as to whether the process is still in
progress or if it is finished. If the process is finished, then the programmer is ready to get the next
command. If the process is in progress, then only the Get Progress Status command can be used. Do not
send any other commands. The next command can also be accepted, but the new command bytes would
be collected in the RX buffer until the MSP-GANG is ready to service it. When the first valid byte of the
new command has been received (byte prompt '>' 0x3E), then the receiver cannot get the Get Progress
Status command, because the 0xA5 byte, instead of the Get Progress Status command, is treated as a
data byte in the data frame.

When the Get Progress Status command is detected (single 0xA5 byte if it is not the frame data contents)
then the current status (50 bytes) is transmitted from the MSP-GANG with following data:

byte 0 0x80

byte 1 0xA5

bytes 2-3 (WORD) Task counter

bytes 4-5 (WORD) Chunk counter

byte 6 Status - In Progress, ACK or NACK

byte 7 Ack or nack

bytes 8-9 (WORD) Finished tasks mask

byte 10 Cumulative gang mask

byte 11 Request gang mask

byte 12 Connected gang mask

byte 13 Erased gang mask

byte 14 Blank check gang mask

byte 15 Programmed gang mask

byte 16 Verified gang mask

byte 17 Secured gang mask

bytes 18-23 Spare

byte 24 Error number

byte 25 Internal VTIO (VTIO = data × 32 mV)

byte 26 VCC gang status mask - A

byte 27 VCC gang status mask - B

byte 28 VCC error mask

byte 29 VCC cumulative error mask

byte 30 JTAG init err mask

byte 31 JTAG Fuse already blown mask

byte 32 Wrong MCU ID mask

byte 33 Progress bar (0 - 100%)

bytes 34-50 Comment text (comment currently displayed on the LCD display)

Where,

Bytes 8-9 are task mask bits:

CONNECT_TASK_BIT 0x0001

ERASE_TASK_BIT 0x0002

BLANKCHECK_TASK_BIT 0x0004

PROGRAM_TASK_BIT 0x0008

VERIFY_TASK_BIT 0x0010

SECURE_TASK_BIT 0x0020

DCO_CAL_TASK_BIT 0x0040

spare 0x0080 to 0x4000

RST_AND_START_FW_BIT 0x8000

57SLAU358D–September 2011–Revised May 2013 Firmware
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Detailed Description of Commands www.ti.com

All byte masks (bytes 10 to 17 and 26 to 32) are related to each target device:

Bits: B A

0 0 VCC below 0.7 V

0 1 VCC below VCC min (0.7 V < VCC < VCC min)

1 0 VCC over VCC min (OK status)

1 1 VCC over 3.8 V

Target 1 mask 0x01

Target 2 mask 0x02

⋮ ⋮
Target 8 mask 0x80

For example, result 0x83 in connected gang mask (byte 12) means that targets 1, 2, and 8 have been
detected and communication with targets successfully established.

Bytes 26 and 27 (VCC status) provide two bits to each target. Bit A for each target and bit B for each
target.

3.5.3 Commands Supported by Application Firmware

Commands supported by the application firmware give access to target device. All features provided by
the MSP-GANG programmer and available in the MSP-GANG GUI and MSP-GANG DLL are accessible
by these functions. Some of the commands that allows control of the MSP-GANG programmer are
described in the following sections; however, commands that provide data transfer and script information
between MSP-GANG and MSP-GANG DLL are not described here. Users should use the GUI software
package (MSP-GANG executable and MSP-GANG DLL) for preparing data for programming, save it in the
internal memory or SD card, verify if that works, and then use the commands described in the following
sections to control the programming process via RS-232 or USB interface. If it is possible, then its is
recommended to use the MSP-GANG DLL and control the MSP-GANG programmer via the DLL rather
than directly via RS-232 or USB interface using the low-level communication protocol. The MSP-GANG
DLL allows full control of the MSP-GANG programmer.

3.5.3.1 Select Image Command
Tx -> 3E 50 4 4 A1 0 0 0 CKL CKH
Rx -> 90 (ACK)

The Select Image command sets a number for the current image. After this command, all operations that
the MSP-GANG performs use this image. The MSP-GANG supports 16 images, 0 through 15. The default
image after power on is 0.

A1: holds a number of the image to set (0x00 to 0x0F).

NOTE: When the SD card is inserted to SD slot, then the SD card is selected as the default image
and the Select Image command has no effect.

3.5.3.2 Main Process Command
Tx -> 3E 31 4 4 0 0 0 0 CKL CKH
Rx -> B0 (In Progress)

The Main Process command begins the gang programming cycle, using the operations defined in the SD
or internal image memory. The result of the command execution can be determined using the Get
Progress Status command described in Section 3.5.2. It should be noted that the Main Progress
commands responds as soon as the command is accepted with byte In Progress (0xB0). When the byte In
Progress is received, then the Get Progress Status command should be via a polling technique for
monitoring the progress status. As long as the main process is not finished, byte 6 gives a response of In-
Progress data (0xB0). When the process is finished, byte 6 changes to ACK (0x90) or NACK (0xA0).

58 Firmware SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Detailed Description of Commands

When ACK is received, then whole process is finished, and all results are available on bytes 8 to 32. See
the Get Progress Status command description for details. During the polling process, it is possible to
examine all bytes of the progress status and check the current state; for example, what targets are
connected or erased. In the comment bytes (34-50) is the current process, and the same message as is
displayed on the LCD display.

3.5.3.3 Set Temporary Configuration in MSP-GANG Command
Tx -> 3E 56 6 6 A1 0 2 0 DL DH CKL CKH
Rx -> 90 (ACK)

By default the Main Process command takes all configuration and setup from the image memory. It is
possible to overwrite some of the configuration parameters and execute the Main Process commands with
a modified configuration. The following parameters can be modified: Targets VCC, high or low current,
external VCC enable or disable, VCC settle time, communication interface (JTAG or SBW), enabled target
devices and enable process mask (for example, erase or program verify). The Set Temporary
Configuration in MSP-GANG command allows modification of these parameters.

When the Main Process command is finished, then the temporary setups are erased and the configuration
from the image memory is restored. When the modified configuration should be used in the next run, then
the temporary configuration should be transferred to MSP-GANG again before starting the Main Process
command.

The Set Temporary Configuration in MSP-GANG command transfers two data: address index (A1) and
one 16-bit data [DL (LSB byte) and DH (MSB byte)].

The following address indexes are defined:

CFG_TMP_CLEAR (2)

Data (DH, DH) is irrelevant.

Remove temporary configuration and take it from the image memory.

CFG_TMP_TASK_MASK (4)

Set the execution mask.

By default execution mask is 0xFFFF (execute all procedures).

Data (DH, DL) can be from 0x0000 up to 0xFFFF.

Currently supported bits in the execution mask:

CONNECT_TASK_BIT 0x0001

ERASE_TASK_BIT 0x0002

BLANKCHECK_TASK_BIT 0x0004

PROGRAM_TASK_BIT 0x0008

VERIFY_TASK_BIT 0x0010

SECURE_TASK_BIT 0x0020

DCO_CAL_TASK_BIT 0x0040

For example, when the target device must be erased, then only the following data should be send (A1, D).
4, 0x0003

Full command:
Tx -> 3E 56 6 6 4 0 2 0 3 0 CKL CKH

CFG_TMP_VCC_VALUE (6)

Data - VCC value in mV (range from 1800 to 3600)

59SLAU358D–September 2011–Revised May 2013 Firmware
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Detailed Description of Commands www.ti.com

CFG_TMP_POWER_VCC_EN (8)

Data 0 Target devices powered from an external power supply

Data 1 Target devices powered from MSP-GANG programmer

CFG_TMP_INTERFACE (10)

Data JTAG_FAST 0x0004

Data JTAG_MED 0x0005

Data JTAG_SLOW 0x0006

Data SBW_FAST 0x0008

Data SBW_MED 0x0009

Data SBW_SLOW 0x000A

CFG_TMP_GANG_MASK (12)

Sum of target bit masks

Target 1 0x01

Target 2 0x02

Target 3 0x04

⋮ ⋮
Target 8 0x80

One target only - Target 1 Data = 0x0001

All targets Data = 0x00FF

CFG_TMP_VCC_ONOFF (14)

Immediately turn VCC target on of off

Data 0x0001 ON

Data 0x0000 OFF

CFG_TMP_ICC_HI_EN (18)

High (50 mA) current from programmer enable or disable

Data 0x0001 Enable

Data 0x0000 Disable

CFG_TMP_IO_INTERFACE (20)

Set interface configuration

Data 0x0000 SBW via TDOI line

Data 0x0001 SBW via RST line

CFG_TMP_RESET (22)

Immediately reset target device

Data 0x0001 Reset target device

Data 0x0000 Release Reset line

60 Firmware SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Detailed Description of Commands

CFG_TMP_VCC_SETTLE_TIME (26)

Data 0x0000 to 0x00C8 Settle VCC time in step 20 ms

3.5.3.4 Get Selected Status Command
Tx ->3E 58 04 04 A1 0 - - 0 0 - - CKL CKH
Rx ->80 0 n n B0 B1 B2 B3 ... Bn CKL CKH

The Get Selected Status command gets the selected status or results from the MSP-Gang programmer.
The following numbers (A1) are available. See the description of the MSPGANG_GetAPIStatus function
(Section 4.2.43) for details of the B0...Bn byte contents.

GET_APP_FLAGS 10

GET_LAST_STATUS 12

GET_LAST_ERROR_NO 14

3.5.3.5 Read From Gang Data Buffer Command
Tx -> 3E 49 4 4 T 0 - - n 0 - - CKL CKH
Rx -> 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH

The MSP-GANG Programmer contains a temporary data buffer that can be used for writing data to and
reading data from each target device. The buffer size is 128 bytes for each target device - Buffer[8] [128];

T = Target device number, 1 to 8
n = Number of bytes taken from the Buffer[T-1] [..]

3.5.3.6 Write to Gang Data Buffer Command
Tx -> 3E 4A n+4 n+4 T 0 - - n 0 D1 D2...Dn CKL CKH
Rx -> ACK

Write bytes to selected target’s Buffer -> Buffer[8] [128]
T = Target device number, 1 to 8
n = Number of bytes written to Buffer[T-1] [..]

3.5.4 API Firmware Commands That Should Not be Used

3.5.4.1 Interactive Process Command
Tx -> 3E 46 n n D1 ... Dn CKL CKH
Rx -> 80 0 k k D1 ... Dk CKL CKH

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.2 Erase Image Command
Tx -> 3E 33 4 4 0 0 0 0 CKL CKH
Rx -> B0 (In Progress)

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

61SLAU358D–September 2011–Revised May 2013 Firmware
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Detailed Description of Commands www.ti.com

3.5.4.3 Read Info Memory From MSP-GANG Command
Tx -> 3E 41 4 4 A1 0 0 0 CKL CKH
Rx -> 80 0 80 80 D1 ... D128 CKL CKH

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.4 Write to MSP-GANG Info Memory Command
Tx -> 3E 42 84 84 A1 0 80 0 D1 ... D128 CKL CKH
Rx -> ACK

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.5 Verify Access Key Command
Tx -> 3E 44 4 4 0 0 0 0 CKL CKH
Rx -> ACK or NACK

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.6 Write to Image Block Command
Tx -> 3E 43 n n A1 A2 A3 0 n-6 0 D1 ... Dn-6 CKL CKH
Rx -> ACK or NACK

The Write to Image Block command loads the data bytes into the image buffer of the MSP-GANG. Do not
use this function in your application. Use MSP-GANG GUI and MSP-GANG DLL for writing data into the
internal image buffer.

3.5.4.7 Verify Image Check Sum Command
Tx -> 3E 45 08 08 A1 A2 A3 0 LL LH D1 D2 CKL CKH
Rx -> ACK or NACK

The Verify Image Check Sum command verifies the image check sum of all written image contents. Do
not use this function in your application. Use MSP-GANG GUI and MSP-GANG DLL for writing and
verifying data in the internal image buffer.

3.5.4.8 Read Image Header Command
Tx -> 3E 47 6 6 A1 A2 0 0 n 0 CKL CKH
Rx -> 80 0 n n D1 ... Dn CKL CKH

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.9 Disable API Interrupts Command
Tx -> 3E 4C 4 4 R R R R CKL CKH
Rx -> ACK

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

62 Firmware SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com Detailed Description of Commands

3.5.4.10 Display Message on LCD Display Command
Tx -> 3E 54 n+4 n+4 A1 A2 n 0 D1 ... Dn CKL CKH
Rx -> ACK

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.11 Set IO State Command
Tx -> 3E 4E 0C 0C VL VH 08 00 D1 D2 D3 D4 D5 D6 D7 D8 CKL CKH
Rx -> ACK

Modify static levels on the I/O pins (JTAG lines).

Vcc - VCC level in mV (VCC = VH × 256 + VL)

D1 - Open destination buffer for output and transferred data for each target
0 = none
1 = TDI (target1 to target8)
2 = TDOI (target1 to target8)
3 = TMS (target1 to target8)
4 = RST (target1 to target8)
5 = BSL-RX (target1 to target8)

D2 - data transferred to the buffer above
b0 to b7 - target1 to target8

D3 - output enable bits: 0 = high impedance, 1 = output
b2 (0x04) - common RST - the same state for all eight targets (Note: if the RST buffer above is
selected, then this state is ignored)
b3 (0x08) - common TEST - the same state for all eight targets
b4 (0x10) - common TCK - the same state for all eight targets
b5 (0x20) - common TMS - the same state for all eight targets (Note: if the TMS buffer above is
selected, then this state is ignored)

D4 - output level on all targets: 0 = LOW, 1 = HIGH
b2 (0x04) - common RST - the same level for all eight targets (Note: if the RST buffer above is
selected, then this state is ignored)
b3 (0x08) - common TEST - the same level for all eight targets
b4 (0x10) - common TCK - the same level for all eight targets
b5 (0x20) - common TMS - the same level for all eight targets (Note: if the TMS buffer above is
selected, then this state is ignored)

D5 - VCC enable bits to each targets
b0 to b7 - target1 to target8

D6 - ICC HI enable: 0 = disable, 1 = enable

D7 - spare

D8 - spare

Example 1

Generate a short RST pulse on target 1 only and force RST level LOW on targets 2 to 5 and RST level
HIGH on targets 6 and 7. VCC on targets 1 to 7 is 3.3 V (0x0CE4) and on target 8 is 0 V (disabled).
Tx -> 3E 4E 0C 0C E4 0C 08 00 04 60 00 00 7F 00 00 00 CKL CKH

then

Tx -> 3E 4E 0C 0C E4 0C 08 00 04 61 00 00 7F 00 00 00 CKL CKH

63SLAU358D–September 2011–Revised May 2013 Firmware
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Detailed Description of Commands www.ti.com

Example 2

Generate a short RST pulse on all targets. VCC on targets 1 to 7 is 3.3 V (0x0CE4) and on target 8 is 0 V
(disabled).
Tx -> 3E 4E 0C 0C E4 0C 08 00 00 00 04 00 7F 00 00 00 CKL CKH

then
Tx -> 3E 4E 0C 0C E4 0C 08 00 00 00 04 04 7F 00 00 00 CKL CKH

64 Firmware SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Chapter 4
SLAU358D–September 2011–Revised May 2013

Dynamic Link Library for MSP-GANG Programmer

4.1 Gang430.dll Wrapper Description

The Gang430.dll wrapper allows application software prepared for the old MSP430 Gang programmer to
control the new MSP-GANG programmer via the MSP-GANG.dll. Because the MSP- GANG programmer
has different functionality and features than the old MSP430 Gang Programmer, not all features provided
in the old programmer are supported in the same way by the MSP-GANG programmer. The Gang430.dll
wrapper allows an easy transition to the new programmer when using an old application, but it is
recommended to use MSP-GANG.dll for remote control of the MSP-GANG programmer to have access to
all features provided by the programmer.

When Gang430.dll is used, the following files must be located in the same directory where the application
software is located:

• Gang430.dll - DLL wrapper with the same name as the previous Gang430.dll

• Gang430.ini - Initialization file for compatibility with the old structure

• MSP-GANG.dll - New DLL that has access to MSP-GANG Programmer

Examples of using the GANG430.dll as a wrapper around the new MSP-Gang.dll are provided and can be
found in these locations (if the default installation directory was used):

C:\Program Files\Texas Instruments\MSP-GANG\Examples\C_Applications_Wrapper
and
C:\Program Files\Texas Instruments\MSP-GANG\Examples\Cpp_Applications_Wrapper

To use these examples, also copy the MSG-Gang.dll into the working directory.

Limitation

The MSP-GANG works in interactive mode. The image is not saved in the memory; however, the save
image option must be used as it is in the old Gang430.dll. An image is saved inside the DLL only (very
fast) and used when the Start command is executed. If USB communication is used, then programming is
fast. RS-232 communication is, of course, slower than USB, but it is still faster than the previous MSP430
Gang Programmer.

See the MSP430 Gang Programmer (MSP-GANG430) User's Guide (SLAU101) for list of commands used
in Gang430.dll.

4.2 MSP-GANG.dll Description

The MSP-GANG.dll is a Dynamic Link Library (DLL) that provides functions for controlling the MSP-GANG
Programmer. The MSP-GANG.dll controls the Gang Programmer via RS 232 or USB (VCP) interface. The
MSP-GANG.dll greatly simplifies the control of the MSP-GANG Programmer, because the user is isolated
from the complexities of the communication via USB or RS232 interface protocol. Together with the MSP-
GANG.dll are provided two more files that should be used during the compilation process.

• MSP-GANG.h: This file is the header file for the MSP-GANG.dll, and provides the function prototypes,
typedefs, #defines, and data structures for the functions of the MSP-GANG.dll. This file is normally
located in the same directory as the application source file and should be included by the application
source files. This file is used during compile time.

• MSP-GANG.lib: This file is the library file for the MSP-GANG.dll and is required to access the DLL
functions. This file is normally located in the same directory as the application source file and should
be added to the Linker Object, Library Modules list of the application. This file is used during link time.

65SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SLAU101
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

All MSP-GANG DLL functions have the same "MSPGANG_" prefix in the function name. It is easy in the
application software determine what functions are used with the MSP-GANG.dll. The following sections
describe each function.

Examples of using the new MSP-Gang.dll are provided and can be found in these locations (if the default
installation directory was used):

C:\Program Files\Texas Instruments\MSP-GANG\Examples\C_Applications_MSP_DLL
and
C:\Program Files\Texas Instruments\MSP-GANG\Examples\Cpp_Applications_MSP_DLL

These examples show how to configure the MSP-Gang Programmer to the desired target device type,
select code, and subsequently program connected devices. In addition, the examples also show how to
write a serial number into a custom memory location. To use these examples copy the MSG-Gang.dll into
the working directory.

4.2.1 MSPGANG_GetDataBuffers_ptr

MSPGANG_GetDataBuffers_ptr gives access to the internal data buffers that provide code contents, data
to be programmed, and buffers of data that was read from each target device with following structure.
#define DBUFFER_SIZE 0x90000
#define JTAG_PASSW_LEN 0x80
#define BSL_PASSW_LEN 0x20
#define FLASH_END_ADDR (DBUFFER_SIZE-1)
#define FLASH_BUF_LEN DBUFFER_SIZE
#define GANG_SIZE 8

typedef struct
{

BYTE SourceCode[DBUFFER_SIZE]; //source code from the file
BYTE UsedCode[DBUFFER_SIZE]; //combined data (source code, serialization etc)
BYTE CommonTx[DBUFFER_SIZE]; //data used to writing - the same data to all targets
BYTE GangTx[DBUFFER_SIZE][GANG_SIZE]; //selective data used to writing
BYTE GangRx[DBUFFER_SIZE][GANG_SIZE]; //data read from all targets
BYTE Tmp[DBUFFER_SIZE];
BYTE JTAG_Passsword[2][JTAG_PASSW_LEN];
BYTE BSL_Passsword[2][BSL_PASSW_LEN];
BYTE Flag_ScrCode[DBUFFER_SIZE]; //0 - empty 1-Code1, 2-Code2,

//4-Appended Code in SourceCode[x];
#define CODE1_FLAG 1
#define CODE2_FLAG 2
#define APPEND_CODE_FLAG 4

BYTE Flag_UsedCode[DBUFFER_SIZE]; //0 - empty 1-valid data in UsedCode[x];
BYTE Flag_WrEn[DBUFFER_SIZE]; //0 - none 1-write/verify enable in FlashMem[x]
BYTE Flag_EraseEn[DBUFFER_SIZE]; //0 - none 1-erase enable in FlashMem[x]
BYTE Flag_RdEn[DBUFFER_SIZE]; //0 - none 1-read enable in FlashMem[x]
BYTE Flag_Sp1[DBUFFER_SIZE]; //spare
BYTE Flag_Sp2[DBUFFER_SIZE]; //spare
BYTE Flag_Sp3[DBUFFER_SIZE]; //
BYTE Flag_JTAG_Passw[2][JTAG_PASSW_LEN]; // [0][..]-password from code file;

// [1][..]-password from password file
BYTE Flag_BSL_Passw[2][BSL_PASSW_LEN]; // [0][..]-password from code file;

// [1][..]-password from password file
} DATA_BUFFERS;
extern DATA_BUFFERS dat;

In the application software, the pointer to the dat buffer can be initialized as follows.
DATA_BUFFERS *DBuf;
void *temp;
MSPGANG_GetDataBuffers_ptr((&temp));
DBuf = (DATA_BUFFERS *)temp;

Syntax
LONG MSPGANG_GetDataBuffers_ptr(void ** x)

66 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.2 MSPGANG_SetGangBuffer, MSPGANG_GetGangBuffer

The MSP-GANG Programmer contains a temporary data buffer that can be used for writing and reading
data to each target device. Buffer size is 128 bytes for each target device.
Buffer[8] [128];

MSPGANG_SetGangBuffer writes data to selected Buffer. MSPGANG_GetGangBuffer reads contents
from the selected buffer.

Syntax
LONG MSPGANG_SetGangBuffer(BYTE target, BYTE size, BYTE *data)
LONG MSPGANG_GetGangBuffer(BYTE target, BYTE size, BYTE *data)

Arguments

BYTE target Target number (1 to 8)
BYTE size Size of data (1 to 128)
BYTE *data Pointer to data buffer from where data is taken or to where the data should be saved

Result

LONG Error code

67SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.3 MSPGANG_GetDevice

Reads all specific parameters of a device type from the internal MSP-GANG .DLL table and returns data
related to the selected device.

Syntax
LONG WINAPI MSPGANG_GetDevice(LPTSTR lpszDeviceName, void **lpData)

Arguments

LPTSTR lpszDeviceName MCU name. The device name; for example, 'MSP430F5438A' for desired
MCU or (blank) for currently selected MCU

void *lpData Pointer to internal structure

Result

LONG Error code

typedef struct
{
long Group;
long IsFRAM;
long RAM_size;
long no_of_info_segm;
long info_segm_size;
long info_start_addr;
long info_end_addr;
long info_A_locked;
long MainMem_start_addr;
long MainMem_end_addr;
long no_of_BSL_segm;
long BSL_segm_size;
long BSL_start_addr;
long BSL_end_addr;
long Vcc_prg_min;
long Vcc_run_min;
long BSL_passw_size;
long family_index;
long has_JTAG_password;
long spare[25];

} DEVICE_INFO;

In the application software, the pointer to the device info structure can be initialized as follows.
DEVICE_INFO *Device;
void *temp;

MSPGANG_GetDevice(" ", &temp);
Device = (DEVICE_INFO *)temp;

68 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.4 MSPGANG_LoadFirmware

Load firmware from MSP-GANG.dll to MSP-GANG Programmer,

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

Syntax
LONG MSPGANG_LoadFirmware(void)

4.2.5 MSPGANG_InitCom

MSPGANG_InitCom opens a communications port, sets the baudrate and checks if the MSP-GANG
Programmer is present.

Syntax
LONG MSPGANG_InitCom(LPTSTR lpszPort, LONG lBaud)

Arguments

char * lpszComPort Name of the port
LONG lBaudRate Baud rate

Result

LONG Error code

4.2.6 MSPGANG_ReleaseCom

Release communications port

Syntax
LONG MSPGANG_ReleaseCom(void)

Arguments

None

Result

LONG Error code

69SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.7 MSPGANG_GetErrorString

Returns the error string for the selected error number (response from any functions that returns error
status).

Syntax
LPTSTR MSPGANG_GetErrorString(LONG lErrorNumber)

Arguments

LONG lErrorNumber Error number

Result

LPTSTR Error string

4.2.8 MSPGANG_SelectBaudrate

MSPGANG_SelectBaudrate sets the rate of the serial communications. The default is 9600 baud. Baud
rate index 0 to 4, representing the baud rate. The Select Baud Rate command takes effect (that is,
changes the baud rate) immediately.

Syntax
LONG MSPGANG_SelectBaudrate(LONG lBaud)

Arguments

LONG lBaud Baud rate in bytes per second
0 = 9600 baud (default)
1 = 19200 baud
2 = 38400 baud
3 = 57600 baud
4 = 115200 baud

Result

LONG Error code

4.2.9 MSPGANG_GetDiagnostic

See the Get Diagnostic command (Section 3.5.2.4) for detailed information about received data contents.

Syntax
LONG MSPGANG_GetDiagnostic(void **lpData)

Arguments

void ** lpData Pointer to data buffer

Result

LONG Error code

70 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.10 MSPGANG_MainProcess

MSPGANG_MainProcess starts the execution if all function saved inside image memory (or SD card
memory). That includes targets initialization, fuse check, memory erase, blank check, program,
verification, and more, if selected (for example, DCO calibration).

Syntax
LONG MSPGANG_MainProcess(LONG timeout)

Arguments

LONG timeout In seconds

Result

LONG Error code

4.2.11 MSPGANG_InteractiveProcess

MSPGANG_InteractiveProcess starts the execution if all function provided in the interactive mode, similar
to the MSPGANG_MainProcess function; however, data is taken from the PC, not from the image (or SD)
memory.

Syntax
LONG MSPGANG_InteractiveProcess(LONG timeout)

Arguments

LONG timeout In seconds

Result

LONG Error code

4.2.12 MSPGANG_Interactive_Open_Target_Device

MSPGANG_Interactive_Open_Target_Device is used in the interactive mode and in initializing access to
target devices (setting Vcc, checking fuse, and initializing JTAG or SBW communication with target
devices). The argument 'name' is displayed on the LCD display. It can contains no more then 16
characters. Extra characters are ignored.

Syntax
LONG MSPGANG_Interactive_Open_Target_Device(LPTSTR name)

Arguments

LPTSTR name

Result

LONG Error code

71SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.13 MSPGANG_Interactive_Close_Target_Device

MSPGANG_Interactive_Close_Target_Device is used in the interactive mode and in closing access to
target devices.

Syntax
LONG MSPGANG_Interactive_Close_Target_Device(void)

Result

LONG Error code

4.2.14 MSPGANG_Interactive_DefReadTargets

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_DefReadTargets reads the contents of the selected target devices (one to eight
targets) simultaneously from Start_addr to the End_addr and saves it in the internal data buffer (see
DATA_BUFFERS dat; structure for details).

Syntax
LONG MSPGANG_Interactive_DefReadTargets(BYTE mask, BYTE bar_min, BYTE bar_max, LONG Start_addr,
LONG End_addr)

Arguments

BYTE mask Mask of the target devices that data should be read from
BYTE bar_min Beginning progress bar value displayed on the LCD display (valid values are 0 to

100).
BYTE bar_max Ending —,,,---
LONG Start_addr Data read from Start_addr location
LONG End_addr Data read up to the End_addr location

Result

LONG Error code

4.2.15 MSPGANG_Interactive_ReadTargets

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_ReadTargets reads the contents of the selected target devices (one to eight
targets) simultaneously from the locations specified in the configuration memory (see configuration setup
for details) and saves it in the internal data buffer (see DATA_BUFFERS dat; structure for details).

Syntax
LONG MSPGANG_Interactive_ReadTargets(BYTE mask)

Arguments

BYTE mask Mask of the target devices that data should be read from

Result

LONG Error code

72 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.16 MSPGANG_Interactive_ReadBytes

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_ReadBytes reads contents from one selected target device and saves it in the
desired data buffer.

Syntax
LONG MSPGANG_Interactive_ReadBytes(BYTE target_no, LONG addr, LONG size, BYTE *data)

Arguments

BYTE target_no Target number (one to eight) of the desired target device
LONG addr Start address from read data
LONG size Number of read bytes
BYTE *data Pointer to buffer where data would be saved

Result

LONG Error code

4.2.17 MSPGANG_Interactive_WriteWord_to_RAM

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_WriteWord_to_RAM writes one word (16 bits) to any RAM or I/O location. The
address must be even.

Syntax
LONG MSPGANG_Interactive_WriteWord_to_RAM(LONG addr, LONG data)

Arguments

LONG addr RAM address location
BYTE data Data (16 bits)

Result

LONG Error code

73SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.18 MSPGANG_Interactive_WriteByte_to_RAM

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_WriteByte_to_RAM writes one byte to any RAM or I/O location.

Syntax
LONG MSPGANG_Interactive_WriteByte_to_RAM(LONG addr, BYTE data)

Arguments

LONG addr RAM address location
BYTE data Data (8 bits)

Result

LONG Error code

4.2.19 MSPGANG_Interactive_WriteBytes_to_RAM

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_WriteBytes_to_RAM writes 'size' number of bytes to any RAM or I/O location. The
starting address must be even.

Syntax
LONG MSPGANG_Interactive_WriteBytes_to_RAM(LONG addr, LONG size, BYTE * data)

Arguments

LONG addr RAM address location
LONG size Number of bytes to be written
BYTE * data Data block

Result

LONG Error code

74 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.20 MSPGANG_Interactive_WriteBytes_to_FLASH

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_WriteBytes_to_FLASH writes 'size' number of bytes to any flash location. The
starting address must be even.

Syntax
LONG MSPGANG_Interactive_WriteBytes_to_FLASH(LONG addr, LONG size, BYTE * data)

Arguments

LONG addr RAM address location
LONG size Number of bytes to be written
BYTE * data Data block

Result

LONG Error code

4.2.21 MSPGANG_Interactive_Copy_Gang_Buffer_to_RAM

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_Copy_Gang_Buffer_to_RAM writes 'size' number of bytes from the internal
Gang_Buffer[8][128] to RAM - simultaneously to all active target devices. Data for each target can be
different. Contents from Gang_Buffer[0][n] are written to target 1, contents from Gang_Buffer[1][n] are
written to target 2, and contents from Gang_Buffer[7][n] are written to target 8.

Data in the Gang_Buffer should be prepared and send to MSP-GANG first. See
MSPGANG_GetGangBuffer and MSPGANG_SetGangBuffer functions for details.

Syntax
LONG MSPGANG_Interactive_Copy_GANG_Buffer_to_RAM(LONG addr, LONG size)

Arguments

LONG addr RAM address location
LONG size Number of bytes to be written (up to 128)

Result

LONG Error code

75SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.22 MSPGANG_Interactive_Copy_Gang_Buffer_to_FLASH

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_Copy_Gang_Buffer_to_FLASH writes 'size' number of bytes from the internal
Gang_Buffer[8][128] to FLASH, simultaneously to all active target devices. Data for each target can be
different (for example, calibration data or serial numbers). Contents from Gang_Buffer[0][n] are written to
target 1, contents from Gang_Buffer[1][n] are written to target 2, and contents from Gang_Buffer[7][n] are
written to target 8.

Data in the Gang_Buffer should be prepared and send to MSP-GANG first. See
MSPGANG_GetGangBuffer and MSPGANG_SetGangBuffer functions for details.

Syntax
LONG MSPGANG_Interactive_Copy_GANG_Buffer_to_FLASH(LONG addr, LONG size)

Arguments

LONG addr FLASH address location
LONG size Number of bytes to be written

Result

LONG Error code

4.2.23 MSPGANG_Interactive_EraseSectors

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_EraseSectors erases flash sectors starting from the sector with address location
StartAddr and ending with the sector with EndAddr location.

Syntax
LONG MSPGANG_Interactive_EraseSectors(LONG StartAddr, LONG EndAddr)

Arguments

LONG StartAddr FLASH address location of the first sector to be erased. Address aligned to the
sector size.

LONG EndAddr Address of the last sector to be erased. The address is aligned to the sector size.

Result

LONG Error code

76 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.24 MSPGANG_Interactive_BlankCheck

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_BlankCheck verifies all flash contents starting from StartAddr and ending with
EndAddr are 0xFF.

Syntax
LONG MSPGANG_Interactive_BlankCheck(LONG StartAddr, LONG EndAddr)

Arguments

LONG StartAddr Blank check (if 0xFF) from StartAddr location to EndAddr location Start Address
must be even, End address must be odd.LONG EndAddr

Result

LONG 0 = blank
!0 = error (not blank or error)

4.2.25 MSPGANG_Interactive_DCO_Test

Note: The target device must be opened first if not open yet (see
MSPGANG_Interactive_Open_Target_Device, Section 4.2.12).

MSPGANG_Interactive_DCO_Test takes data from INFO memory location 0x10F8 to 0x10FF, writing one
selected word to DCO registers and checking the DCO frequency in real time for up to eight targets
simultaneously. Test results in kHz are saved in the *result_in_kHz buffer.

Syntax
LONG MSPGANG_Interactive_DCO_Test(BYTE DCO_no, LONG *result_in_kHz);

Arguments

BYTE DCO no DCO number data taken from the Info memory.
0 = data for DCO taken from 0x10FE
1 = data for DCO taken from 0x10FC
2 = data for DCO taken from 0x10FA
3 = data for DCO taken from 0x10F8

LONG * results Pointer to long buffer size for 8 targets (LONG DCO[8])

Result

LONG Error code

77SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.26 MSPGANG_SelectImage

MSPGANG_SelectImage sets an active image to work with. MSP-GANG supports 16 images.

Syntax
LONG MSPGANG_SelectImage(LONG lImage)

Arguments

LONG lImage Image number (0 to 15)

Result

LONG Error code

4.2.27 MSPGANG_EraseImage

MSPGANG_EraseImage clears (presets with 0xFF) active image memory. Use the
MSPGANG_SelectImage function to select desired image memory.

Syntax
LONG MSPGANG_EraseImage(void)

Result

LONG Error code

4.2.28 MSPGANG_CreateGangImage

MSPGANG_CreateGangImage creates a command script and the data to be written to target devices
according to current MSP-GANG configuration. After the image data is prepared, then it can be saved in
the selected image memory by calling the MSPGANG_LoadImageBlock function.

Syntax
LONG MSPGANG_CreateGangImage(LPTSTR name)

Arguments

LPTSTR name Image name; maximum of 16 characters. Image name is displayed on the LCD
display.

Result

LONG Error code

78 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.29 MSPGANG_LoadImageBlock

MSPGANG_LoadImageBlock saves the previously prepared image contents into the selected image
memory. The selected image memory must be erased first. Use the following sequence for preparing and
saving an image into image memory:
MSPGANG_CreateGangImage(name);
MSPGANG_SelectImage(lImage);
MSPGANG_EraseImage();
MSPGANG_LoadImageBlock();
MSPGANG_VerifyPSAImageBlock();

Syntax
LONG MSPGANG_LoadImageBlock(void)

Arguments

None

Result

LONG Error code

4.2.30 MSPGANG_VerifyPSAImageBlock

MSPGANG_VerifyPSAImageBlock verifies the checksum of all blocks used in the selected image
memory. The image memory number should be selected first using MSPGANG_SelectImage function.

Syntax
LONG MSPGANG_VerifyPSAImageBlock(void)

Arguments

None

Result

LONG Error code

4.2.31 MSPGANG_ReadImageBlock

MSPGANG_ReadImageBlock reads the header from the selected image memory. A maximum of 254
bytes can be read. Access to the remaining image memory (up to 512 kBytes) is blocked.

Syntax
LONG MSPGANG_ReadImageBlock(LONG addr, LONG size, void *lpData)

Arguments

LONG address
LONG size
void *lpData Pointer to byte buffer where the result is saved

Result

LONG Error code

79SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.32 MSPGANG_Read_Code_File

MSPGANG_Read_Code_File reads or appends a code file or reads a password file and saves it in its
internal buffer. By default, the file is treated as the main code file as long as the setup has not redirected
the file to 'Append code' or 'Password code' using the MSPGANG_SetConfig function.
MSPGANG_SetConfig(CFG_OPEN_FILE_TYPE, CODE_FILE_INDEX)
MSPGANG_SetConfig(CFG_OPEN_FILE_TYPE, APPEND_FILE_INDEX)
MSPGANG_SetConfig(CFG_OPEN_FILE_TYPE, PASSW_FILE_INDEX)

When the MSPGANG_Read_Code_File is executed, the flag set by
MSPGANG_SetConfig(CFG_OPEN_FILE_TYPE, CODE_FILE_INDEX) is set to the default value of Read
Code File.

Syntax
LONG MSPGANG_Read_Code_File(LPTSTR FullPath)

Arguments

LPTSTR FullPath Path to the code file (*.hex,*.txt or *.s19, *.s28, *.s37)

Result

LONG Error code

4.2.33 MSPGANG_Save_Config, MSPGANG_Load_Config, MSPGANG_Default_Config

The current configuration file can be saved using the MSPGANG_Save_Config function and recalled when
required using the MSPGANG_Load_Config function. The current configuration can be erased and the
default configuration loaded by calling the MSPGANG_Default_Config function. When the new
configuration is loaded, some of the parameters can be modified item-by-item using
MSPGANG_SetConfig and can be read from the configuration item-by-item using MSPGANG_GetConfig.
The MSP-GANG configuration can also be created using the MSP-GANG GUI software (MSP-GANG-exe)
by setting desired programmer setup, verifying if all works, then saving the configuration using the Save
Setup as... option. The setup used in the GUI can be restored in the DLL when the above mentioned
configuration file is downloaded using MSPGANG_Load_Config function.

Syntax
LONG MSPGANG_Save_Config(LPTSTR filename)
LONG MSPGANG_Load_Config(LPTSTR filename)
LONG MSPGANG_Default_Config(void)

Arguments

LPTSTR filename Path to the configuration file

Result

LONG Error code

80 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.34 MSPGANG_SetConfig, MSPGANG_GetConfig

Syntax
LONG MSPGANG_SetConfig(LONG index, LONG data)

Arguments

LONG index Configuration index. See list below.
LONG data Configuration data

Result

LONG Error code

Syntax
LONG MSPGANG_GetConfig(LONG index)

Arguments

LONG index Configuration index. See list below.

Result

LONG data Configuration data

List of Indexes
#define FROMIMAGE_BIT 0x1000
#define CFG_INTERFACE 0

//INTERFACE_NONE 0
//INTERFACE_JTAG 4
//INTERFACE_SBW 8
//INTERFACE_BSL 0xC
//INTERFACE_TYPE_MAX_INDEX INTERFACE_BSL

#define CFG_JTAG_SPEED 1
//INTERFACE_FAST 0
//INTERFACE_MED 1
//INTERFACE_SLOW 2
//INTERFACE_SPEED_MAX_INDEX INTERFACE_SLOW

#define CFG_SBW_SPEED 2
//INTERFACE_FAST 0
//INTERFACE_MED 1
//INTERFACE_SLOW 2

#define CFG_BSL_SPEED 3
//INTERFACE_FAST 0
//INTERFACE_MED 1
//INTERFACE_SLOW 2

#define CFG_IO_INTERFACE 4
// 0 - SBW_VIA_TDOI (pin 1) and TCK/TEST (pin-7/8)
// 1 - SBW_VIA_RST (pin 11) and TCK/TEST (pin-7/8)

#define CFG_POWERTARGETEN 6
//EXTERNAL_POWER_WHOLE_RANGE 0 // external power supply -

whole range from Vccmin to Vccmax
//POWER_SUPPLIED_BY_MSPGANG 1 // targets supplied by MSP-GANG
//EXTERNAL_POWER_IN_RANGE 2 // external power supply - verified range -

selected Vcc +/- 0.3V

#define CFG_VCCINDEX 7

81SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

//Vcc in mV 1800 - 3600

#define CFG_ICC_HI_EN 8
//disable 0 (up to 30mA from MSP-GANG to each targets)
//enable 1 (up to 50mA from MSP-GANG to each targets)

#define CFG_BLOWFUSE 9
//disable 0
//enable 1

#define CFG_TARGET_EN_INDEX 10
//Targets GANG enable mask - 0x00 ...0xFF. Enable all targets -> 0xFF
//TARGET_1_MASK 0x01
//TARGET_2_MASK 0x02
//TARGET_3_MASK 0x04
//TARGET_4_MASK 0x08
//TARGET_5_MASK 0x10
//TARGET_6_MASK 0x20
//TARGET_7_MASK 0x40
//TARGET_8_MASK 0x80

#define CFG_FLASHERASEMODE 11
//ERASE_NONE_MEM_INDEX 0
//ERASE_ALL_MEM_INDEX 1
//ERASE_PRG_ONLY_MEM_INDEX 2
//ERASE_INFILE_MEM_INDEX 3
//ERASE_DEF_CM_INDEX 4
//ERASE_MAX_INDEX ERASE_DEF_CM_INDEX

#define CFG_ERASEINFOA 12
//disable 0
//enable 1

#define CFG_ERASEINFOB 13
//disable 0
//enable 1

#define CFG_ERASEINFOC 14
//disable 0
//enable 1

#define CFG_ERASEINFOD 15
//disable 0
//enable 1

#define CFG_MASSERASE_AND_INFOA_EN 16
//disable 0
//enable 1

#define CFG_ERASESTARTADDR 17
//FLASH/FRAM start erase address

#define CFG_ERASESTOPADDR 18
//FLASH/FRAM end erase address

#define CFG_FLASHREADMODE 19
//READ_ALL_MEM_INDEX 0
//READ_PRGMEM_ONLY_INDEX 1
//READ_INFOMEM_ONLY_INDEX 2
//READ_DEF_MEM_INDEX 3
//READ_MEM_MAX_INDEX READ_DEF_MEM_INDEX

#define CFG_READINFOA 20
//disable 0
//enable 1

82 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

#define CFG_READINFOB 21
//disable 0
//enable 1

#define CFG_READINFOC 22
//disable 0
//enable 1

#define CFG_READINFOD 23
//disable 0
//enable 1

#define CFG_FINALACTION_MODE 24
//APPLICATION_NO_RESET 0
//APPLICATION_TOGGLE_RESET 1
//APPLICATION_TOGGLE_VCC 2
//APPLICATION_JTAG_RESET 3
//APPLICATION_RESET_MAX_INDEX APPLICATION_JTAG_RESET

#define CFG_BEEPMODE 25
//sum of following bits
//BEEP_PCSPK_EN_BIT 1 //Beep via PC Speaker enable
//BEEP_OK_EN_BIT 2 //Beep when OK enable
//BEEP_SOUND_EN_BIT 4 //Sound enable

#define CFG_DEFERASEMAINEN 26
//disable 0
//enable 1

#define CFG_CUSTOMRESETPULSETIME 27
//time in ms 1.....2000

#define CFG_CUSTOMRESETIDLETIME 28
//time in ms 1.....2000

#define CFG_BSL_ENH_ENABLE 29
//disable 0
//enable 1

#define CFG_BSL_ENH_INDEX 30
//for future usage
//BSL_ENH_DISABLE 0
//BSL_ENH_NONE 1
//BSL_ENH_ERASE 2
//BSL_ENH_MAX_INDEX 2

#define CFG_RETAIN_CAL_DATA_INDEX 31
//disable 0
//enable 1

#define CFG_FINALACTIONRUNTIME 32
// 0 - infinite,
// 1...120 time in seconds

#define CFG_FINALACTIONVCCOFFTIME 33
// Vcc-OFF (then again ON) time after programming when the
// APPLICATION_TOGGLE_VCC option is selected.

#define CFG_DCO_CONST_2XX_VERIFY_EN 35
//disable 0
//enable 1

#define CFG_DCOCAL_2XX_EN 36
//disable 0
//enable 1

83SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

#define CFG_BSL_FLASH_WR_EN 37
// mask for 4 BSL segments - disable->0, enable->1
// bit 0 -> 0x01 BSL segment 1
// bit 1 -> 0x02 BSL segment 2
// bit 2 -> 0x04 BSL segment 3
// bit 3 -> 0x08 BSL segment 4

#define CFG_BSL_FLASH_RD_EN 38
// mask for 4 BSL segments - disable->0, enable->1
// bit 0 -> 0x01 BSL segment 1
// bit 1 -> 0x02 BSL segment 2
// bit 2 -> 0x04 BSL segment 3
// bit 3 -> 0x08 BSL segment 4

#define CFG_READMAINMEMEN 39
//disable 0
//enable 1

#define CFG_READDEFSTARTADDR 40
// Memory READ start address

#define CFG_READDEFSTOPADDR 41
// Memory READ end address

#define CFG_COMPORT_NO 42
// Communication COM Port number - 0..255

#define CFG_UART_SPEED 43
// Baud Rate index
//UART_9600 0
//UART_19200 1
//UART_38400 2
//UART_57600 3
//UART_115200 4

#define CFG_OPEN_FILE_TYPE 44
//CODE_FILE_INDEX 0
//APPEND_FILE_INDEX 1
//PASSW_FILE_INDEX 2
//SECONDCODE_FILE_INDEX 3
//CODE2_FILE_INDEX 4

#define CFG_USE_SCRIPT_FILE 45
//disable 0
//enable 1

#define CFG_IMAGE_NO 46
//image number - 0...15

#define CFG_RESETTIME 47
//RESET_10MS_INDEX 0
//RESET_100MS_INDEX 1
//RESET_200MS_INDEX 2
//RESET_500MS_INDEX 3
//RESET_CUSTOM_INDEX 4
//RESET_MAX_INDEX RESET_CUSTOM_INDEX

#define CFG_PROJECT_SOURCE 48
//INTERACTIVE_MODE 0
//FROM_IMAGE_MEMORY_MODE 1
//STANDALONE_MODE 2
//FROM_IMAGE_FILE_MODE 3
//PROJECT_SOURCE_MAX_INDEX FROM_IMAGE_FILE_MODE

#define CFG_COPY_CFG_FROM_MEMORY_EN 49
//Direct (eg. Interactive) 0

84 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

//From Image memory 1

#define CFG_RUNNING_SCRIPT_MODE 50
//RUNNING_SCRIPT_NONE 0
//RUNNING_SCRIPT_ONLINE 1
//RUNNING_SCRIPT_OFFLINE 2

#define CFG_VCC_SETTLE_TIME 51
//Vss settle time in step 20 ms. Range 0...200 (time 0...4000 ms)

#define CFG_JTAG_UNLOCK_EN 52
//disable 0
//enable 1

#define CFG_CODE2_FILE_EN 53
//disable 0
// enable 1

#define CFG_BSL_FIRST_PASSWORD 54
//BSL_ANY_PASSW 0
//BSL_PASSW_FROM_CODE_FILE 1
//BSL_PASSW_FROM_PASSWORD_FILE 2
//BSL_EMPTY_PASSW 3

#define CFG_DEFINED_RETAIN_DATA_EN 55
//disable 0
//enable 1

#define CFG_DEFINED_RETAIN_START_ADDR 56
//address must be even

#define CFG_DEFINED_RETAIN_END_ADDR 57
//address must be odd
// END_ADDR - START_ADDR + 1 <= DEFINED_RETAIN_DATA_MAX_SIZE
//DEFINED_RETAIN_DATA_MAX_SIZE 0x40

85SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.35 MSPGANG_GetNameConfig, MSPGANG_SetNameConfig

Set or Get file names for code file, script file, password file or warning sounds.

Syntax
LPTSTR MSPGANG_GetNameConfig(LONG index)

Arguments

LONG index See list of indexes below

Result

LPTSTR File name

Syntax
LONG MSPGANG_SetNameConfig(LONG index, LPTSTR name)

Arguments

LONG index See list of indexes below
LPTSTR
file_name

Result

LONG Error code

#define CODEFILE_INDEX 0
#define SCRIPTFILE_INDEX 1
#define PASSWORDFILE_INDEX 2
#define SOUNDERRFILE_INDEX 3
#define SOUNDOKFILE_INDEX 4
#define SOUNDWARNINGFILE_INDEX 5

86 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.36 MSPGANG_SetTmpGANG_Config

See the Set temporary configuration command (Section 3.5.3.3) for details.

Syntax
LONG MSPGANG_SetTmpGANG_Config(LONG no, LONG data)

Arguments

LONG no Index list of indexes below
LONG data

Result

LONG Error code

//----- TMP_CFG_INDEX -----------
#define CFG_TMP_CLEAR 2
#define CFG_TMP_TASK_MASK 4
#define CFG_TMP_VCC_VALUE 6
#define CFG_TMP_POWER_VCC_EN 8
#define CFG_TMP_INTERFACE 10
#define CFG_TMP_GANG_MASK 12
#define CFG_TMP_VCC_ONOFF 14
#define CFG_LCD_CONTRAST 16
#define CFG_TMP_ICC_HI_EN 18
#define CFG_TMP_IO_INTERFACE 20
#define CFG_TMP_RESET 22
#define CFG_TMP_KEYBOARD_EN 24
#define CFG_TMP_VCC_SETTLE_TIME 26

4.2.37 MSPGANG_GetLabel

See the Get Label command (Section 3.5.2.9) for detailed LABEL information.

Syntax
LONG MSPGANG_GetLabel(BYTE *Data)

Arguments

BYTE *Data Pointer to data buffer where the label is saved

Result

LONG Error code

87SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.38 MSPGANG_GetInfoMemory, MSPGANG_SetInfoMemory

Reads or writes 128 bytes to the internal Information memory. Information memory contains configuration
data such as LCD contrast and USB port configuration, and it is not intended to be modified by the user.
Use the GUI software to set the Information memory.

Syntax
LONG MSPGANG_GetInfoMemory(BYTE page, BYTE *data)
LONG MSPGANG_SetInfoMemory(BYTE page, BYTE *data)

Arguments

BYTE page Page info 0 or 1
BYTE *data Pointer to or from data buffer

Result

LONG Error code

88 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.39 MSPGANG_Get_qty_MCU_Family, MSPGANG_Get_MCU_FamilyName,
MSPGANG_Check_MCU_Name, MSPGANG_Get_MCU_Name

Set of functions that allows to get names of all supported MCU’s, names of MCU groups and subgroups.

Syntax
LONG MSPGANG_Get_qty_MCU_Family(void)
LONG MSPGANG_Get_MCU_FamilyName(LONG index, LPTSTR name)
LONG MSPGANG_Check_MCU_Name(LPTSTR name)
LONG MSPGANG_Get_MCU_Name(LONG group_index, LONG index, LPTSTR name)

Use these functions in the following order:
typedef struct
{

int no;
char name[24];

} MCU_FAMILY;

MCU_FAMILY MCU_family_list[30];

typedef struct
{

int index;
char name[24];

} MCU_NAME;

MCU_NAME MCU_name_list[100];

n = MSPGANG_Get_qty_MCU_Family(); //get no of MCU groups
for(k=0; k<n; k++)
{
P = MSPGANG_Get_MCU_FamilyName(k, MCU_family_list[k].name);
If(p == 0) break;
MCU_family_list[k].no = p;

}

Currently following names and numbers should be received using above functions:
{ 1, " MSP430F1xx" },
{ 20, " MSP430F2xx" },
{ 22, " MSP430AFE2xx" },
{ 21, " MSP430G2xx" },
{ 40, " MSP430F4xx" },
{ 41, " MSP430FE4xx" },
{ 42, " MSP430FG4xx" },
{ 43, " MSP430FW4xx" },
{ 50, " MSP430F5xx" },
{ 57, " MSP430FR5xx" },
{ 60, " MSP430F6xx" },
{ 51, " CC-430F5xx" },
{ 61, " CC-430F6xx" }

List of the MCU names in selected group can be taken as follows (as an example - list of the MCUs from
the MSP430F5xx group (group number 50)):
for(n = 0; n< 100; n++) MCU_name_list[n].index = 0;
for(n = 0; n< 100; n++)
{
p = MSPGANG_Get_MCU_Name(50, n, MCU_name_list[n].name);
if(p == 0) break;
MCU_name_list[n].index = n;

}

89SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.40 MSPGANG_Set_MCU_Name

The MSPGANG_Set_MCU_Name allows to select desired target MCU.

Syntax
LONG MSPGANG_Set_MCU_Name(LPTSTR name);

Arguments

LPTSTR MCU_name MCU name, the same as it is listed in the GUI software

Result

LONG Error code

4.2.41 MSPGANG_HW_devices

The MSPGANG_HW_devices function scanning all available COM ports and saving information about
these ports in following structure.
#define MAX_COM_SIZE 60
#define HW_NAME_SIZE 30
typedef union
{

unsigned char bytes[HW_NAME_SIZE];
struct
{

unsigned short ComNo;
char ComName[7];
char description[HW_NAME_SIZE-2-7];

}x;
}COM_PORTS_DEF;
COM_PORTS_DEF *AvailableComPorts = NULL;
MSPGANG_HW_devices(MAX_COM_SIZE, (void **) &AvailableComPorts));

If detected, USB VCP information is placed at the first location.

Syntax
LONG MSPGANG_HW_devices(LONG max, void **AvailableComPorts)

Arguments

LONG max
void **AvailableComPorts

Result

LONG Error code

90 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.42 MSPGANG_GetProgressStatus

MSPGANG_GetProgressStatus gets progress status from MSP-GANG. The data received contains a
Gang Mask of all processes done in the previous function. Each bit in the Gang mask represents one
targeted device:

bit 0 → Target 1, bit 1 → Target 2, ... bit 7 → Target 8

For example, when connected_gang_mask is 0x7A, then targets 2, 4, 5, 6, and 7 are detected, and
communication with these targets is established. The cumulative mask contains the final result for all
targets.

Syntax
LONG MSPGANG_GetProgressStatus(void *lpData)

Arguments

void *lpData Pointer to structure below

Result

LONG Error code

#define SCRIPT_TEXT_SIZE 16
union GANG_PROGRESS_STATUS
{

BYTE bytes[PROGRESS_STATUS_SIZE+4];
struct
{

BYTE header;
BYTE ctr;
WORD task_ctr;
WORD chunk_ctr;
BYTE run;
BYTE ack;
WORD Finished_tasks_mask;

//--- task mask bits ----
// CONNECT_TASK_BIT 0x0001
// ERASE_TASK_BIT 0x0002
// BLANKCHECK_TASK_BIT 0x0004
// PROGRAM_TASK_BIT 0x0008
// VERIFY_TASK_BIT 0x0010
// SECURE_TASK_BIT 0x0020
// DCO_CAL_TASK_BIT 0x0040
// spare 0x0080 to 0x4000
// RST_AND_START_FW_BIT 0x8000

BYTE cumulative;
//target masks
// TARGET_1_MASK 0x01
// TARGET_2_MASK 0x02
// TARGET_3_MASK 0x04
// TARGET_4_MASK 0x08
// TARGET_5_MASK 0x10
// TARGET_6_MASK 0x20
// TARGET_7_MASK 0x40
// TARGET_8_MASK 0x80

BYTE Rq_gang_mask;
BYTE Connected_gang_mask;
BYTE Erased_gang_mask;
BYTE BlankCheck_gang_mask;
BYTE Programmed_gang_mask;
BYTE Verified_gang_mask;
BYTE Secured_gang_mask;
BYTE spare[6];
BYTE error_no;
BYTE VTIO_32mV;

91SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

BYTE VccSt_LOW;
BYTE VccSt_HI;

// VccSt_LOW, VccSt_HI provide 2 bits to each target.
// Bit A for each target and bit B for each target.
// Bits B A
// 0 0 Vcc below 0.7 V
// 0 1 Vcc below Vcc min (0.7 V < Vcc < Vcc min)
// 1 0 Vcc over Vcc min (OK status)
// 1 1 Vcc over 3.8 V

BYTE VccErr;
// current Vcc below min

BYTE VccErr_Cumulative;
// Cumulative (during programming) Vcc below min

BYTE JTAG_init_err_mask;
BYTE JTAG_Fuse_already_blown_mask;
BYTE Wrong_MCU_ID_mask;
BYTE Progress_bar;

// 0...100%
char comment[SCRIPT_TEXT_SIZE];

}st;
};

92 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

4.2.43 MSPGANG_GetAPIStatus

MSPGANG_GetAPIStatus gets the selected status or results from the MSP-Gang programmer. The
following numbers (no) are available:
GET_APP_FLAGS 10
GET_LAST_STATUS 12
GET_LAST_ERROR_NO 14

Syntax
LONG MSPGANG_GetAPIStatus (LONG no, BYTE *data)

Arguments

LONG no Status type
BYTE *data Pointer to status results. See below.

Result

LONG Error code

no = GET_APP_FLAGS (10)
response:

Byte-0
b0 (LSB) Hardware rev-0
b1 initialization finished (after power-up)
b2 access key CRC error
b3 invalid access key
b4 running from SD card
b5 File in SD card found
b6 target secure device in process
b7 keypad enabled

Byte-1
b0 key pressed
b1..b7 spare

Byte-2 spare
Byte-3 spare

no = GET_LAST_STATUS (12)
response:

Byte-0 Error number in the last execute transaction
Byte-1 targets connection mask
Byte-2 active targets mask
Byte-3 targets error mask
Byte-4..7 spare

no = GET_LAST_ERROR_NO (14)
Byte-0 last error number from MSP-GANG for any command

error numbers 1...255 - see error list numbers

93SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG.dll Description www.ti.com

4.2.44 MSPGANG_Set_IO_State

The MSPGANG_Set_IO_State modifies the static levels on the I/O pins (JTAG lines). The JTAG lines can
be set to the desired level (low or high) or they can be high impedance. The state and the level can be the
same on all outputs. The level on one selected line (RST, TDI, TDOI, TMS or BSL-RX) can be different for
each target.

Syntax
LONG MSPGANG_Set_IO_State(long Vcc_mV, BYTE * data);

Arguments

Vcc_mV Voltage level in mV on the target’s VCC

data[0] Open destination buffer for output and transferred data for each targets.
0 = None
1 = TDI (target1 to target8)
2 = TDOI (target1 to target8)
3 = TMS (target1 to target8)
4 = RST (target1 to target8)
5 = BSL-RX (target1 to target8)

data[1] Data transferred to the buffer above.
b0 to b7 - target1 to target8

data[2] Output enable bits: 0 = high impedance, 1 = output
b2 (0x04) - common RST - the same state for all 8 targets (Note: if the RST buffer
above is selected, then this state is ignored)
b3 (0x08) - common TEST - the same state for all 8 targets
b4 (0x10) - common TCK - the same state for all 8 targets
b5 (0x20) - common TMS - the same state for all 8 targets (Note: if the TMS buffer
above is selected, then this state is ignored)

data[3] Output level on all targets: 0 = LOW, 1 = HIGH
b2 (0x04) - common RST - the same level for all eight targets (Note: if the RST
buffer above is selected, then this state is ignored)
b3 (0x08) - common TEST - the same level for all eight targets
b4 (0x10) - common TCK - the same level for all eight targets
b5 (0x20) - common TMS - the same level for all eight targets (Note: if the TMS
buffer above is selected, then this state is ignored)

data[4] VCC enable bits to each target
b0 to b7 - target1 to target8

data[5] ICC HI enable: 0 = disable, 1 = enable
data[6] spare
data[7] spare

Example 1

Generate a short RST pulse on target 1 only and force RST level LOW on targets 2 to 5 and RST level
HIGH on targets 6 and 7. VCC on targets 1 to 7 is 3.3 V (0x0CE4) and on target 8 is 0 V (disabled).
BYTE data[8] = { 04 60 00 00 7F 00 00 00 };
MSPGANG_Set_IO_State(3300, data);

then
data[1] = 0x61;
MSPGANG_Set_IO_State(3300, data);

94 Dynamic Link Library for MSP-GANG Programmer SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com MSP-GANG.dll Description

Example 2

Generate a short RST pulse on all targets. VCC on targets 1 to 7 is 3.3 V (0x0CE4) and on target 8 is 0 V
(disabled).
BYTE data[8] = { 00 00 04 00 7F 00 00 00 };
MSPGANG_Set_IO_State(3300, data);

then
data[4] = 0x04;
MSPGANG_Set_IO_State(3300, data);

95SLAU358D–September 2011–Revised May 2013 Dynamic Link Library for MSP-GANG Programmer
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG-simlified.sch-1 - Sun Jan 15 14:25:06 2012

Chapter 5
SLAU358D–September 2011–Revised May 2013

Schematics

Figure 5-1. MSP-GANG Simplified Schematic (1 of 4)

96 Schematics SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG-simlified.sch-2 - Sun Jan 15 14:25:06 2012

www.ti.com

Figure 5-2. MSP-GANG Simplified Schematic (2 of 4)

97SLAU358D–September 2011–Revised May 2013 Schematics
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG-simlified.sch-3 - Sun Jan 15 14:25:06 2012

www.ti.com

Figure 5-3. MSP-GANG Simplified Schematic (3 of 4)

98 Schematics SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

MSP-GANG-simlified.sch-4 - Sun Jan 15 14:25:07 2012

www.ti.com

Figure 5-4. MSP-GANG Simplified Schematic (4 of 4)

99SLAU358D–September 2011–Revised May 2013 Schematics
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com

Figure 5-5. Gang Splitter Schematic

100 Schematics SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

www.ti.com

Table 5-1. Gang Splitter Bill of Materials (BOM)

Drawing and Part QuantitItem Name DescriptionNumber y

1 BLANK PC BOARD MSP-GANG-SP rev-2 1 Blank PC Board

THROUGH HOLE COMPONENTS

1 Connector 35-514-0 1 14-pins Header Connector (Mode Electronics, Electrosonic)

2 Connector 35-514-0 1 14-pins Header Connector (Mode Electronics, Electrosonic)

3 Connector 35-514-0 1 14-pins Header Connector (Mode Electronics, Electrosonic)

4 Connector 35-514-0 1 14-pins Header Connector (Mode Electronics, Electrosonic)

5 Connector 35-514-0 1 14-pins Header Connector (Mode Electronics, Electrosonic)

6 Connector 35-514-0 1 14-pins Header Connector (Mode Electronics, Electrosonic)

7 Connector 35-514-0 1 14-pins Header Connector (Mode Electronics, Electrosonic)

8 Connector 35-514-0 1 14-pins Header Connector (Mode Electronics, Electrosonic)

J9 Connector TX24-100R-LT-H1E 1 100p-Receptacle Right Angle Connector (JAE Electronics)

J10 Connector do not populate 2-pins terminal block

Bumpers SJ61A6 3 Bumpon, cylindrical 0.312 x 0.215, black

Figure 5-6. BSL Connection Schematic

101SLAU358D–September 2011–Revised May 2013 Schematics
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

Revision History www.ti.com

Revision History
SLAU358 Initial release

SLAU358A Added SLEEP, F_LOADPASSWORDFILE, and F_FROMIMAGEMODE to Section 2.1.3.3.
Added Section 2.1.7, Section 2.1.8 and Section 2.1.9.
Added results for additional MSP430 families to Section 2.6.
Added Table 5-1.

SLAU358B Added "*.a43" to Section 2.1.9.
Changed CMD value for Disable API Interrupts in Table 3-1 and Section 3.5.4.9.
Added Set IO State command to Table 3-1.
Added Section 3.5.4.11 and Section 4.2.44.
Added Figure 5-1, Figure 5-2, Figure 5-3, Figure 5-4.

SLAU358C Changed Figure 2-1.
Removed obsolete names of GANG430U in several code example comments.
Changed initialization sample code in Section 4.2.3.
Corrected typo in name of MSPGANG_VerifyPSAImageBlock in Section 4.2.30.
Added Figure 5-6.

SLAU358D Changed Figure 2-2 and Figure 2-11.
Added Section 2.1.10.
Changed list of errors in Section 2.3.
Changed structure definition in Section 4.2.1.
Changed list of indexes in Section 4.2.34.
Changed Figure 5-5.

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

102 Revision History SLAU358D–September 2011–Revised May 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU358D

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	1 Introduction
	1.1 Software Installation
	1.2 Driver Installation
	1.3 Hardware Installation

	2 Operation
	2.1 Programming MSP430 Flash Devices Using the MSP Gang Programmer
	2.1.1 Programming Using Interactive Mode
	2.1.1.1 GO
	2.1.1.2 Erase
	2.1.1.3 Blank Check
	2.1.1.4 Program
	2.1.1.5 Verify
	2.1.1.6 Read

	2.1.2 Programming From Image
	2.1.3 Programming From Script
	2.1.3.1 Script Limitations
	2.1.3.2 Command Syntax
	2.1.3.3 Instructions

	2.1.4 Programming in Standalone Mode
	2.1.5 Memory Setup for GO, Erase, Program, Verify, and Read
	2.1.5.1 Writing and Reading BSL Flash Sectors in the MSP430F5xx and MSP430F6xx MCUs

	2.1.6 Creating and Using Images
	2.1.7 Programming From Image File
	2.1.8 Programming From SD Card
	2.1.9 File Extensions
	2.1.10 Checksum Calculation

	2.2 Data Viewers
	2.3 Status Messages
	2.4 Self Test
	2.5 Label
	2.6 Benchmarks
	2.6.1 Benchmarks for MSP430F5xx
	2.6.2 Benchmarks for MSP430FR57x
	2.6.3 Benchmarks for MSP430F2xx

	3 Firmware
	3.1 Commands
	3.2 Firmware Interface Protocol
	3.3 Synchronization Sequence
	3.4 Command Messages
	3.4.1 Frame Structure
	3.4.2 Checksum

	3.5 Detailed Description of Commands
	3.5.1 General
	3.5.2 Commands Supported by the BOOT Loader
	3.5.2.1 "Hello" Command
	3.5.2.2 Boot Commands Disable
	3.5.2.3 Boot Commands Enable
	3.5.2.4 Get Diagnostic Command
	3.5.2.5 Select Baud Rate Command
	3.5.2.6 Erase Firmware Command
	3.5.2.7 Load Firmware Command
	3.5.2.8 Exit from Firmware Update Command
	3.5.2.9 Get Label Command
	3.5.2.10 Get Progress Status

	3.5.3 Commands Supported by Application Firmware
	3.5.3.1 Select Image Command
	3.5.3.2 Main Process Command
	3.5.3.3 Set Temporary Configuration in MSP-GANG Command
	3.5.3.4 Get Selected Status Command
	3.5.3.5 Read From Gang Data Buffer Command
	3.5.3.6 Write to Gang Data Buffer Command

	3.5.4 API Firmware Commands That Should Not be Used
	3.5.4.1 Interactive Process Command
	3.5.4.2 Erase Image Command
	3.5.4.3 Read Info Memory From MSP-GANG Command
	3.5.4.4 Write to MSP-GANG Info Memory Command
	3.5.4.5 Verify Access Key Command
	3.5.4.6 Write to Image Block Command
	3.5.4.7 Verify Image Check Sum Command
	3.5.4.8 Read Image Header Command
	3.5.4.9 Disable API Interrupts Command
	3.5.4.10 Display Message on LCD Display Command
	3.5.4.11 Set IO State Command

	4 Dynamic Link Library for MSP-GANG Programmer
	4.1 Gang430.dll Wrapper Description
	4.2 MSP-GANG.dll Description
	4.2.1 MSPGANG_GetDataBuffers_ptr
	4.2.2 MSPGANG_SetGangBuffer, MSPGANG_GetGangBuffer
	4.2.3 MSPGANG_GetDevice
	4.2.4 MSPGANG_LoadFirmware
	4.2.5 MSPGANG_InitCom
	4.2.6 MSPGANG_ReleaseCom
	4.2.7 MSPGANG_GetErrorString
	4.2.8 MSPGANG_SelectBaudrate
	4.2.9 MSPGANG_GetDiagnostic
	4.2.10 MSPGANG_MainProcess
	4.2.11 MSPGANG_InteractiveProcess
	4.2.12 MSPGANG_Interactive_Open_Target_Device
	4.2.13 MSPGANG_Interactive_Close_Target_Device
	4.2.14 MSPGANG_Interactive_DefReadTargets
	4.2.15 MSPGANG_Interactive_ReadTargets
	4.2.16 MSPGANG_Interactive_ReadBytes
	4.2.17 MSPGANG_Interactive_WriteWord_to_RAM
	4.2.18 MSPGANG_Interactive_WriteByte_to_RAM
	4.2.19 MSPGANG_Interactive_WriteBytes_to_RAM
	4.2.20 MSPGANG_Interactive_WriteBytes_to_FLASH
	4.2.21 MSPGANG_Interactive_Copy_Gang_Buffer_to_RAM
	4.2.22 MSPGANG_Interactive_Copy_Gang_Buffer_to_FLASH
	4.2.23 MSPGANG_Interactive_EraseSectors
	4.2.24 MSPGANG_Interactive_BlankCheck
	4.2.25 MSPGANG_Interactive_DCO_Test
	4.2.26 MSPGANG_SelectImage
	4.2.27 MSPGANG_EraseImage
	4.2.28 MSPGANG_CreateGangImage
	4.2.29 MSPGANG_LoadImageBlock
	4.2.30 MSPGANG_VerifyPSAImageBlock
	4.2.31 MSPGANG_ReadImageBlock
	4.2.32 MSPGANG_Read_Code_File
	4.2.33 MSPGANG_Save_Config, MSPGANG_Load_Config, MSPGANG_Default_Config
	4.2.34 MSPGANG_SetConfig, MSPGANG_GetConfig
	4.2.35 MSPGANG_GetNameConfig, MSPGANG_SetNameConfig
	4.2.36 MSPGANG_SetTmpGANG_Config
	4.2.37 MSPGANG_GetLabel
	4.2.38 MSPGANG_GetInfoMemory, MSPGANG_SetInfoMemory
	4.2.39 MSPGANG_Get_qty_MCU_Family, MSPGANG_Get_MCU_FamilyName, MSPGANG_Check_MCU_Name, MSPGANG_Get_MCU_Name
	4.2.40 MSPGANG_Set_MCU_Name
	4.2.41 MSPGANG_HW_devices
	4.2.42 MSPGANG_GetProgressStatus
	4.2.43 MSPGANG_GetAPIStatus
	4.2.44 MSPGANG_Set_IO_State

	5 Schematics
	Revision History

