RRENESAS DUAL-PORT SRAMSs APPLICATION
WITH SEMAPHORE NOTE
ARBITRATION AN-14
By Michael J. Miller
Introduction Mostapplications cannot sacrifice dataintegrity and utilize the dual-

Duetotheir highbandwidth and message access flexibility, dual-port
SRAMs are used to link multiple high-performance processors and
systems. Integrated Device Technology makes dual-port SRAMsinmany
configurations, all of which consist of one SRAMwith two sets of address,
data and control signals. This allows two processors to share the same
block of physical memory in their respective address spaces. The two
processors canaccess dataintwo memory locations simultaneously and
asynchronously. This approach clearly outperforms a discrete part's
design where two processors must synchronize through arbitration for
accesstoabuswhichisusedtoaccessonelocationatatimeinastandard
single-port RAM.

MICROPROCESSOR | , .| DUAL-PORT | & MICROPROCESSOR
M68020 SRAM » TMS3020
180386 IDT49C000

3558 drw 01
Figure 1. Dual-Port RAMs Link High-Performance Processors

IDT's dual-access approach removes synchronization require-
mentsatthe memory’sbus access level. Nevertheless, synchronization
must be performed at other levels to ensure data integrity and proper
system operation. This application note addresses several approaches
to solving the mutual exclusion problem and gives a detailed discussion
of the semaphore capability provided by the IDT71342.

Arbitration

Consideramultiple-processor systemwhere each processor has
accesstothe same data. Arbitration schemes are necessarytoresolve the
situationwhenmultiple processors wantthe same piece of dataatthe same
time. Differentapproachestothe arbitrationissue have different tradeoffs
andare best-suited for differentapplications. These solutions vary fromno
arbitration, hardware solutions, software solutions, and combinations
thereof.

Seemingly, the simplestsolutionistoemploy noarbitrationatall. This
approachworksifthe application guaranteesthattwo processors will not
access the same location simultaneously or, ifthey do, then the indeter-
minate results are acceptable. Sometimes handshaking canbe employed
through /O ports orinterruptmechanisms. This approach providesa high-
performance, low overhead design butis restricted to certain applications.
Ifarbitrationis notrequired, the IDT7134 can be used. Itisa4K x8 dual-
portRAMwith no arbitration. This partcanalso be usedinlarge dual-port
designswhere one hardware arbiter is used forawhole array composed
of manyIDT7134s. Theinterrupthandshake mechanism canbe achieved
by using devices like the IDT7130/7140.

portmemory asacollection ofindividual memory locations which require
afinite accesstime. Inthis case, arbitration atmemory location resolution
is required. For example, the IDT7130 and IDT7132 use an address
comparison mechanismwhich provides aBUSY signaltothe losing side.
When the two processors try to access the very same location, the
arbitration asserts the BUSY signal to the processor which attempted
accesslast. When access attempts are within 5ns of each other, asideis
chosenarbitrarily. The BUSY outputs are suitable for attachment to the
READY or DTACK inputs of most microprocessors. Thisapproachisvery
straightforward and flexible and has the benefitthata processor cannotbe
locked out of the RAMlonger thanthe access period of the other processor.

The features ofthe IDT7130/7132 and other device with BUSY that
make themasuperb solutioninmany designs may create problemsin other
applications. The fact that BUSY lines are used and that arbitration
resolutionis atthe level of individual locations can be amajor limitationin
someinstances. Many significant controllers, such asthelDT 8031 and
IDT8051, are not equipped with READY or DTACK input pins. Of those
that are equipped, a penalty is often paid in the higher performance
versionsifthey require “seeing”the BUSY signal faster thanthe IDT7130/
7132 cansupplyit (16MHz 68020 requires 25ns AS to DSACK). Inthese
cases, wasteful wait cycles are required. In other applications, software
constraints may require mutual exclusion atthe software data structure
level rather than at the memory cell location level. For this reason,
Integrated Device Technology developed devices like the IDT71342.

Instead of comparing addresses on every cycle, and occasionally
asserting BUSY status, the IDT71342 employs circuitry to support a
software mechanism called semaphores. Here, every memory cycleis
equallyasshortasthe nextand arbitrationis handled at the software level.

The semaphore conceptwas pioneered by E.N. Dijkstrain 1968. He
developed a test and set approach for single processor multi-tasking
systems. Thetasktestsamemory location (a semaphore) for aparticular
valueand, onthe nextcycle, the task setsthe samelocationaunique value.
Ifthe semaphore was already set, thenthe currenttask knows thatanother
taskhasaccess. Ifthe value was not present, thenthe task knows that it
has permission to proceed and all other tasks are blocked because the
semaphore is not set. Only one task at a time has permission via the
semaphore. Semaphores are used like locks to resources such as disk
buffers, message queues, critical code sections, shared accessto commu-
nication controllers, etc.

Because the test and set operation requires that the two memory
accesses are indivisible in time, the IDT7130/7132 will not support
semaphores formany processorsand systems. This occurs because one
processor may test the semaphore and, before it can set it, the other
processor mighttest it, too. Inthis case, both processors “believe” they

MARCH 1999

© 2019 Renesas Electronics Corporation

3558/3

Dual-Port SRAMs with Semaphore Arbritration

have the semaphore. The IDT71342 employs atwistby using setand test.
The"set"correspondstoarequestandthe ‘test” checkstoseeiftherequest
was granted. The indivisible double access requirement is avoided
because, as soon as a request is made by one processor on one side,
the grantis blocked onthe other side. Some processors supporttestand
setoperationsthrough aread/modify/write operation, butthe memory bus
design must supportthe processorinsuch away thatthe address and the
chip select remain constant. When the test and set instruction is used,
arbitration musttake place. Aswillbe seen, semaphore operationwithout
hardware busy arbitration has many advantages.

The IDT semaphore scheme employs a software/hardware ap-
proach which provides a secure method of resource allocation with the
flexibility of software configuration and control and the resolution of
hardware. Since there is no hardware relationship between semaphores
and dual-portmemorylocations, the block sizes, locations and semaphore
associationare defined by the software. The semaphores canalsobe used
toallocate other resources such as I/0 devices. This offers the system
designer considerable flexibility.

As an example, a dual-port SRAM might be shared by a disk
controller processor and a host processor. When the controller is
accessing a bufferinmemory (e.g. whenwriting a sector inatrack), the
main processor cannotbe allowed to interrupt or delay the controller. By
setting the semaphore, the controller has exclusive access to the disk
buffer. When done, it releases the semaphore and therefore provides
access to the disk buffer by the processor on the other side.

Because the processors musttestand setasemaphore withmultiple
bus cycles, the semaphore arbitration scheme has a longer arbitration
latency than the address comparison scheme. Since arbitrationis most
oftenusedforaccesstomultiple locationsinmemory the overhead canbe
amortized across multiple accesses. In systems that require mutual
exclusion of access to data structures over a period longer than one
memory cycle, thistrade-offisirrelevant.

Functional Description of the
IDT71342

The IDT71342 is a fast dual-port 4K x 8 CMOS static SRAM with
semaphore logic, packaged in a 52-pin PLCC and 64-pin TQFP. The
semaphore logic can be usedto allocate portions of the dual-port SRAM
tooneside orthe otherandis used in place ofthe address arbitrationlogic
usedinother dual-port designs. Semaphores are software-controlled.
Therefore, this approach provides several advantagesincluding alloca-
tion of multiple blocks of arbitrary size and no processor WAIT states or
BUSY logic.

Like other IDT dual-port SRAMs, the IDT71342 allows accesstoa
common set of SRAM cells from two independent ports. Each port is
functionally identical to that of a conventional static RAM. Both ports are
completely independent and asynchronous in operation. Reading or
writing on one port does not affect the operation or timing of read/write
operations on the other port. Unlike the IDT7130/7132, the IDT71342
does notemploy hardware arbitration which blocks write access. If one
portiswritingtoalocationwhile the other portis reading that same location,
the datawill change duringthe read. Ifboth ports attempt towrite tothe same
locationatthe same time, the resultwill be some combination of the two data
words being written. If both ports are reading, however, there is no
interaction because the data does not change.

Application Note AN-14

How the Semaphore Flags Work

The semaphore logic is provided by a set of eight latches. These
latches canbe usedto pass aflag, ortoken, fromone porttothe otherto
indicate thatablock of SRAMisinuse. Theinternal circuitry preventsthe
flagfrombeing passedinboth directions atthe same time. The semaphores
provide a hardware assist for a use assignment method called “token
passingallocation”. Inthismethod, the state ofthe semaphore latchis used
asatokenindicatingthatablock of SRAMisinuse. Ifthe processor onthe
L portwantstouse ablock of SRAM, itattemptsto setthe latch, requesting

Do-7L -t —————— - §——p Do7R
- -t -

CEL -~ -t CEr
- DUAL-PORT |-
- RAM -

— - —
R/WL i R/WR
OEL — —— OEr
— - - Ll —

SEML - -l SEMR
EIGHT
SEMAPHORE
LATCHES
- -t
Ao-11L Ao-11R

3558 drw 02

Figure 2. Functional Block Diagram of
Dual-Port SRAM with Semaphores

thetoken. The processorthen checks the latch to see ifitwas successful
insetting the semaphore. Ifitwas, the processor proceeds toread and/
orwriteinthe block. Ifthe processorwas notsuccessfulin setting the latch,
itmeansthatthe R porthad setitfirst, hasthe token and is using the block.
The L portthen continues to testuntilitis successful, indicating thatthe R
port has released the token and is no longer using the block.

The semaphore logicisindependent of the dual-port SRAM. These
eightlatches canbe accessed fromeither port by enabling the semaphore
chipenable (SEM=VIL), which s separate fromthe SRAM chip enable.
Whenthe semaphore logicis enabled onaport, one of the eight latches
canberead orwrittenfromthat port. The latchis selected by the three least
significantaddress pins for the port and the data for reading and writing
uses the Do data pin.

Asemaphore latchisread orwritteninthe same mannerasan SRAM
cell. The latchis writtentoa“1” or “0” by activating the semaphore logic
enable, selecting the latch with the three least significant address bits,
activating the write enable and puttinga“1” or “0”, respectively, onthe Do
data pin. The latch may be read by activating the semaphore enable,
selecting the latch, holding the write enable HIGH and reading the data
on Do, Forthe user's convenience, all eight of the data lines are settothe
same value as Doduring read. In other words, the data lines will contain
all“1"sorall“0"swhenDoisa“1"ora“0", respectively. Inthisway, branch
zerotesting can be employed.

The semaphorereadlogiclatchesthe readout state ofthe semaphore
flag duringthe read. This prevents the value seen by the reading portfrom
changing during the read, even though the state of the latch may be
changinginternally due to write activity on the other port. The latch goes
into the hold mode when both semaphore enable and output enable are
active. Inorderto see the latch change, either the semaphore enable or
outputenable mustbe disabled, and thenenabled. Thismeansthatread
operations mustbe cyclic; itis not possible to enable the semaphore and

© 2019 Renesas Electronics Corporation

Dual-Port SRAMs with Semaphore Arbritration

output enable continuously and wait for the latch value being read to
change.

The semaphore logicis active LOW. Anaccess tokenis requested
by writing a “0” to the semaphore latch and is released by writing a “1”.
Torequestatoken, anattempttowritea“0"tothe semaphoreis made and
the semaphore is read to determine ifthe “0”was successfully written. If
a"“0"isread, the token request was granted. Ifa“1" isread, the request
was denied and the other port has the token.

The critical case of semaphore timing occurswhen both ports request
the token by writinga “0" atthe same time. The semaphore logicis specially
designedtoresolve this problem—ifrequests are made simultaneously,
the logic guaranteesthatonly one side receivesthe token. Inthis case, the
token assignmentwill be made arbitrarily to one port or the other.

Figure 2 shows theinternal logic circuitry for one semaphore “latch”
cell. Itiscomposed of multiple latches and cross-coupled AND gates which
serveasanarbitertoguarantee that only one side atatime receivesagrant
signal. Atypical sequence of semaphore operationsislistedin Table 1. The
Docolumnsrepresentthe logic value thatwould be read onthat side. The
“RequestF/F'saretheinternal flip-flops which store the state of requests.

Use of Semaphores

Semaphores provide useful solutions forvarious problems atboththe
hardware and software levels. The following selections highlight a few of

Application Note AN-14

the semaphore benefits which range from increasing performance to
providing functionality not available with other designs.

High-Performance Dual-Port Design
To gain a deeper understanding of the trade-offs between sema-
phore and non-semaphore dual-port SRAM designs, the following
example compares both approaches. Dual-portmemory systemdesign
requires akey awareness of the microprocessor's memory accesstime
requirements. Figure 3isaread cycle timing diagram of a20MHz 68020.
Two timings are critical: A 45ns address to data size acknowledge
(DSACK)toguarantee nowait statesand a 95ns addressto data. Itisalso
important to examine a typical design. Figure 4 shows the interface
between a single processor and one side of the dual-port. For simpli-
fication, the other port interface was omitted from the drawing. This
example shows the address bus which is decoded by a comparator
(IDT74FCT521A) and an address decoder (IDT74FCT138A). The
addressinterface chooseswhich dual-port SRAMto enable. After the chip
enableis enabled, chipenable arbitration (available onallIDT DPRAMs
except forthe IDT7014) and data access can begin.
Inatightly-coupled system (i.e., the 68020 processor and dual-port
are on the same board), chip select can be generated from addressin
13ns. Inthe bestcase, the dataacknowledgeis tied to the 68020 through
a NAND gate (to include other acknowledges). The NAND gate will

1
WRITEL —|] [| WRITEF
| F F |
DoL | D Y Y D | Dor
| |
| |
DiL —H //—F Dir
o| |o
! I3
! I3
D7 Y D D Y = D7R
| E E |
READL ' ' + READR
_— e e e — - 1
3558 drw 03
Figure 3. Simplified Diagram of One Semaphore Cell
Left Right
DO Request Request DO
Function FIF FIF Function
No action 1 1 1 1 |Semaphore Free
L port writes 0 0 0 1 1 |L port has token
R port writes 0 0 0 0 1 | No change; L port keeps token
L port writes 1 1 1 0 0 |Semaphore freed; R port gets it
R port writes 1 1 1 1 1 | Semaphore free
L port writes 0 0 0 1 1 |L port has token
L port writes 1 1 1 1 1 [Semaphore free
Table 1. Semaphore Function Table 35580l QL

© 2019 Renesas Electronics Corporation

Dual-Port SRAMs with Semaphore Arbritration

S0 s2 s4
cLock m
| | |
ADDRESS X

25nsI | |

DSACKx

5ns b

DATA

A
A

- »
- -

50ns

Figure 4. Read Cycle Timing for 20Mhz 68020

ADDRESS ?W +5V DATA
Z & ‘ % Z\

3558 drw 04

| DUALPORT | g p»
> RAM
7
4
F
> $ | DUALPORT |g—p
> RAM
5 7
2 4
1™ F
A [}
T —: DUAL PORT | g—p»
1 > RAM
- 3
8
A | DUALPORT |t
> RAM
\ / 74FCT521A 7.2ns V
74FCT138A 5.8ns
J— 3558 drw 05
ADDRESS TO CS = 13ns
Figure 5. Memory Interface to One Port of

a Dual-Port RAM System

introduce another 5nsdelay. Thisleaves 26.9nsto generate the acknowl-
edge (DSACK) and meetthe 5ns setuptime to guarantee thatawait state
willnotbeinserted. Inalessrigorous design where the dual-portand CPU
are on separate boards, 10ns or more may be required for on/off board
buffers and bus delay, etc. This leaves 16ns or less to generate
acknowledge.

Considering the timing constraints, the designer can choose from
several options. Inapplications whichrequire arbitration resolution to the
memory cell level, 26.9nsis notenough timeto generate DSACK from CE
using the IDT7130L55. One solution involves adding logic tothe BUSY/
DSACK path so that a wait state is always inserted until the dual-port
can respond with BUSY. This will slow down the system whenever the
dual-portisaccessed. If block arbitration or higher memory cycle perfor-
mance are required, the designer should utilize the IDT71342. This
configurationwould only be constrainedtothe 95nsaddresstodataaccess
time, minus any address and databuffertime. The IDT71342 provides high
enough performance for use with the 25MHz 68020. Some software

Application Note AN-14

overhead is required for semaphore access but, given the fact that the
semaphore arbitrationis forablock of locations, the arbitration latency can
be amortized across multiple higher speed accesses. Consequently, the
semaphore approach provides a higher performance solution if block
arbitrationis desirable oracceptable.

A Software View of Semaphores

The dictionary defines semaphore as “signaling by flags”. A
semaphore isimplemented asaspecialized type of memory locationwhich
canbe accessed by either processor inadual-port design. Two different
operations are performed onthe semaphore: the request operationwhich
attempts to gain access and the release operation which signals the
termination of access. These operations are used to guarantee mutual
exclusion, meaningthatonly one processorisaccessingaresource atany
giventime. Thisoccurs fromthe time arequestis granted untilthe time that
the semaphoreisreleased.

Asemaphore is chosenwhich both processors associate with one
resource. Firstthe processor requests the semaphore by attempting to
writea“0"tothe semaphorelocation. Thenitreadsthe location. Ifitreceives
a non-zero value (i.e. a “1"), it loops back and reads the semaphore
locationagain. Itwill continue toreadthe location untilitreceivesa“0”. The
software may be written in such away that useful work may be performed
while waiting. Whena“0"is read, the processor can accessthe resource
foraslong, andas manytimes, as desired. The processor mustrelease

WRITE ZERO TO
SEMAPHORE LOCATION

READ
SEMAPHORE
LOCATIO

REQUEST:

MUTUAL EXCLUSION
SECTION OF
PROCESS

v

WRITE ONE TO
SEMAPHORE
LOCATION

RELEASE:

3558 drw 06

Flow Chart 1. Sequence of Operations on Semaphore
to Guarantee Mutual Exclusion

the semaphore whenitis finished with the resource. Thisisachieved by
writing a “1"to the semaphore location.

Using Semaphores at the
Software Level

One example of where semaphores might be applied involves two
processors working together to generate a video display for animated
images. The “MASTER”" processor generates a picture layoutinthe form
ofadisplay list. The “SLAVE" processor reads the display list, interprets
itand generates animage inadisplay buffer. Asthe image is displayed,
the video buffer is cleared. The displayed list is reinterpreted and

© 2019 Renesas Electronics Corporation

Dual-Port SRAMs with Semaphore Arbritration

displayed. Ifthe display listis changed, theimage appears asthoughithas
moved, giving the illusion of animation.

A dual-port SRAM is used to store the display list. The SLAVE
interprets one display listrepeatedly to generate the display bufferimage,
while the MASTER generates and updates another display list. The
SLAVE processor continuously updates the video display buffer since the
buffer iswiped clean whenits contents are dumped to the video screen.

Inthis particular application, the dual-port SRAM is broken up into
three areas. Thefirstarea contains common information concerning which

HIGH SPEED DUAL-PORT

Application Note AN-14

statements accessingavariable called SEM. The semaphoreisreleased
by writing a “1” to that variable.

Semaphores and Caches

In high-performance dual-port systems, semaphores can be used
with cachesto achieve valid data synchronization. The use of cachesis
anestablished method of speeding up access between a processorand
main memory. Main memory may be slower due tothe use of lower cost,
higher density DRAMs or system bus latency. The cache operates by

MEMORY WITH SEMAPHORES

eure: [|
SEMo
MASTER CMD: SLAVE !
—— B | VIDEO DISPLAY)
uP uP y
SEM1
SEM2
3558 drw 07

Figure 5B. Software Block Diagram of Video Display System for Animation

display listis being accessed and which oneis being updated. Itislocked
withthe semaphore SEMo. Two buffers comprise the otherareasandare
locked by semaphores SEM1and SEM2. Atany giventime one bufferis
used forthe display list currently being interpreted and the otheris used
forthelistbeing built. The common area storesthe pointerwhichindicates
which bufferis being updated.

Thekeytothe effectiveness ofthisapproach lies atthe software level.
The flow chart for the master processor begins with a buffer request via
asemaphore. Once granted, it builds a display list. Then it releases the
bufferthroughthe semaphore mechanism. Nextit calls aroutine toinform
the SLAVE processor to switch over to the new buffer. Itthen loops back
torequestaccesstothe other buffer.

The SLAVE processor functions by first fetching the current buffer
number. Then it requests the buffer via the semaphore mechanism
(involving SEM1or SEM2). Once the SLAVE gains access to the buffer,
itbuildsthe display fromthe list. After releasing the buffer, it goes back to
fetching the current buffer/number. This is necessary because the
MASTER processor may have switched buffers. Fetching the current
buffer/number requires access tothe commonareawhichis achieved by
obtaining the semaphore SEMo. After accessing the data, the SLAVE
releases SEMo which allows the MASTER to come in and update the
commonarea.

The software code forthe MASTER and SLAVE processorsis listed
on the following pages. It is in the form of a pseudo-'C" language-
type program. The request for a semaphore is made by the WHILE

REQUEST
BUFFER

GOTIT

BUILD DISPLAY
LIST

v

RELEASE
BUFFER

v

TELL SLAVE
TO SWITCH

v

PREPARE TO WORK
IN OTHER BUFFER

g 3558 drw 08

Flow Chart 2. Sequence of Operations for Master Processor

© 2019 Renesas Electronics Corporation

Dual-Port SRAMs with Semaphore Arbritration

FETCHS CURRENT
BUFFER NUMBER

Y

REQUEST
BUFFER

BUILD DISPLAY
LIST

v

RELEASE
BUFFER

* 3558 drw 09

Flow Chart 3. Sequence of Operations for Slave Processor

monitoring datatransfer betweenthe processorand memory. Whenwrite
operations are performed, the cache remembers the data and location.
Whenaread is performeditcompares the address of the requestwitha
listoflocationsithas datafor. Ifthe address matches, the cache supplies
the dataand abortsthe mainmemory access. Ifnomatch occurs, the cache
allowsthe mainmemory accesstoproceed and notesthe dataandlocation.

One mightfirstassume thatthe dual-port SRAM can always be used
with cached memory accesses. However, extra considerations mustbe

DUAL-PORT P
| DUALPORT |4—>{oPy.

-—

[cru]4———>
SRAM

3558 drw 10

Flow Chart 4. Dual-Port SRAM in a Cached Memory Environment

Application Note AN-14

made. When datais writtentoamemory location in dual-port SRAM, the
cache storesthe acquired value andits associated location. The nexttime
thatlocationisread, the cache will register a“match”and bypass reading
from the location in dual-port SRAM. This might result in an error if a
processor on the other port has written new data to the location.
Onewaytoremedythe situationisto putthe dual-port SRAMintonon-
cached /O address space and block data transfer between the dual-port
SRAM and cached address space where standard SRAM exists. To
make this approachwork, semaphores mustbe employedtolock abuffer
inthe dual-port SRAM while the datais inthe cached SRAM. Inthisway
a“checkout” procedure canbeimplementedto ensure dataintegrity. The
semaphore latches mustbe addressed through non-cached 1/0 spacein
order forthe request and release mechanismto function correctly.

Conclusion

There are anumber of ways to handle dual-port SRAM arbitration.
Choice ofthe most efficienttechnique concernswhatgranularity of address
arbitrationis required, whether a processor must be locked out of a block
of memory for multiple accesses from the other processor and what
constraints areimposed by the memory access cycletiming. Semaphores
provide analternative which canresultinhigher performance systemsand
provide functions which are not otherwise achievable. The followingisa
quick summary.

No Busy Logic- Some applications guarantee by definition that the two
processorswill notaccess the same locations simultaneously or, ifthey do,
it doesn't matter. The IDT7134 is also ideal for use in large dual-port
designs where one arbiter is used for an array of dual-port devices.
Interrupt Logic - Interrupt logic provides a signaling method from one
processor to the other to provide amechanism for handshaking.
Hardware Busy Logic- Hardware busy logic provides the lowest
latency overhead when accessing multiple individual unrelated memory
locations. The MASTER/SLAVE concept was introduced by IDT to
provide a single arbiter, thus avoiding deadlocks encountered with
multiple arbiters when using more than one dual-port in wide bus
applications.

Semaphore Logic- Semaphore logic provides the best overhead trade-
offwhenaccessingablock of datacomprised of multiple related locations.
Thisfacility may also be requiredin high performance applications where
one of the processors does nothave aready/busy input or the overhead
of waitstates cannotbe tolerated.

Semaphores provide a mechanism for one processor to bar the
other processor from seeing an incomplete update of a block of data.
This is achieved through a software mechanism supported by on-chip
circuitry which provides a test and set facility that arbitrates between
simultaneousrequests.

© 2019 Renesas Electronics Corporation

Dual-Port SRAMs with Semaphore Arbritration

CODE FORMASTER PROCESSOR

Application Note AN-14

/*request*/
/*Build new display
/*release*/

list*/

MAIN*/

/*request*/

/*release*/

MAIN () {
/* code to initialize */
FOREVER {
SEM (CUR_BUF) : =
UNTIL (SEM (CUR_BUF) = 0);
BUILD_DISPLAY (CUR_BUFF) ;
SEM (CUR_BUFF) := 1
SWITCH_BUFF (CUR_BUFF) ;
IF (CUR -= BUFF 1)
CUR_BUFF:= 2;
else CUR_BUFF:= 1;
}
} /*end
SWITCH_BUFF (NBUFF) {
SEMO:= 0
UNTIL (SEMO = 0); /*request*/
BUFF:= NBUFF;
CMD:= NEW;
SEM:= 1; /*release*/
RETURN)
}
CODE FOR SLAVE PROCESSOR
MAIN () {
FOREVER {
CUR_BUFF:= FETCH_BUFF () ;
PROCESS (CUR_BUFF) ;
}
}
FETCH_BUFF () {
SEM 0:= 0;
UNTIL (SEMO = 0);
A BUFF:= BUFF;
CMD:= OLD;
RETURN (ABUFF) ;
SEMO:= 1;
}
PROCESS (BUFF) {
SEM (BUFF):= O0;
UNTIL (SEM (BUFF) = 0);
REFRESH (BUFF) : /*code to
SEM (BUFF):= 1;

}

/*request*/
refresh

display*/

/*release*/

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
Www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

(Rev.1.0 Mar 2020)

Contact Information

For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:

www.renesas.com/contact/

© 2020 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com
https://www.renesas.com/contact/
https://www.renesas.com/contact/

