

Symphony SoundBite:
Assembly Project Template

User’s Guide

Document Number: SNDBASMTMPL
Version: 2.0

September 2008

- ii - © Copyright 2008, Freescale, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 921 03 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale Semiconductor data sheets and/or specifications
can and do vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by customer’s
technical experts. Freescale Semiconductor does not convey any license under its patent rights nor
the rights of others. Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Freescale
Semiconductor product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,
and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the
part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

© Copyright 2008, Freescale, Inc. 1

About This Document..3

Chapter 1 Overview ...5

1.1 Introduction..5

1.2 Symphony SoundBite Hardware ...5

1.3 Analog/Optical and Digital Conversion ..5

Chapter 2 Generating the Assembly Project ...6

2.1 Create and Build the Assembly Project ...6

2.2 Run the Assembly Project on Hardware ..7

Chapter 3 High Level Overview ..9

Chapter 4 Detailed Operation..10

4.1.1 The Files and Their Function ..10

4.1.2 Project Structure ...11

4.1.3 Application Memory Map ...11

4.1.4 Input/Output Buffer Structure ...13

4.1.5 Main Program Flow..14

4.1.6 Interrupt Service Routines...16

4.1.6.1 Left Data Transmit, esai_tx_isr_even ...17

4.1.6.2 Right Data Transmit, esai_tx_isr ..17

4.1.6.3 Left Data Receive, esai_1_rx_even ...17

4.1.6.4 Right Data Receive, esai_1_rx..17

Chapter 5 Customizing the Project ..18

5.1 Reserved Registers ...18

5.2 Main Loop ...19

5.3 Enabling/Disabling Processing ...19

Contents

- 2 - © Copyright 2008, Freescale, Inc.

5.4 Modifying PROCESS_AUDIO ...19

5.5 Buffer Modification...20

5.6 Output Channel Mapping ..20

© Copyright 2008, Freescale, Inc. - 3 -

About This Document
This document describes the organization and operation of the Symphony SoundBite Assembly Project Template
so that the user can extend the project template to perform custom digital signal processing applications on the
Symphony SoundBite board. Since the source assembly code is not duplicated in this document, the project and
the files contained within should be consulted in addition to this text.

Audience

This document is intended for users who want to build their own assembly-only digital signal processing
application code to run on the Symphony SoundBite development board.

Organization

This document is organized into the following chapters:

Chapter 1 Gives a brief overview of the Symphony SoundBite development board

Chapter 2 Describes how to build the Assembly Project from the source files

Chapter 3 Gives a high-level overview of the Assembly Project Template application flow

Chapter 4 Describes how the Assembly Project Template application works in detail

Chapter 5 Discusses how to modify the Assembly Project Template for custom digital signal processing
applications

References

Also see:

• Symphony SoundBite: Reference Manual
• Symphony SoundBite: Quick Start With Symphony Studio
• Symphony SoundBite: Demonstration Application

- 4 - © Copyright 2008, Freescale, Inc.

© Copyright 2008, Freescale, Inc. - 5 -

Chapter 1 Overview

1.1 Introduction

An Assembly Project Template has been developed by Freescale to provide users of the Symphony
SoundBite audio development board an application framework upon which to build their own software
application. The author would like to acknowledge that while other options exist, this particular template
has been limited to and implemented wholly in assembly language. The intent of this document is to
familiarize the user with the Assembly Project Template, explain its operation and provide a foundation
upon which custom applications may be derived. Please consult the project’s source files in addition to
this text, because none of the code and comments are duplicated herein.

1.2 Symphony SoundBite Hardware

The Symphony SoundBite is an inexpensive but feature-packed solution for audio digital signal
processing which is based around the Symphony DSPB56371 digital signal processor. It supports the
simultaneous input and output of 8 channels of analog audio or 6 channels of analog with digital stereo
optical SP/DIF through the eight 3.5mm jacks on the board. Sample rates of up to 192 kHz are
supported with the four 24-bit stereo codecs mounted on the board. A serial I2C EEPROM provides
non-volatile storage for the DSP as well as allowing the board to operate stand-alone (without an
attached host PC). An 8-position DIP switch and 9 LEDs are connected to GPIO pins on the DSP and
are available for user interaction and status indication. An expansion header is also provided to facilitate
off-board expansion.

The on-board USB communication interface is built around the FT-2232 dual USB UART. It provides
for low-level JTAG/OnCE debugging capability with the use of Symphony Studio, allowing application
code development in assembly alone or C alone or a mixture of C and assembly. Additionally, this
interface provides a “data pipe” for high-level SPI or I2C serial communication between the host PC and
the DSP. Data and/or application code may be transmitted through the data pipe.

1.3 Analog/Optical and Digital Conversion

The four stereo codecs provide for the conversion between the analog and digital audio. The digital
audio data input and output streams are connected to the DSP. In the case of the optical input and
output, the AK4584 codec performs the conversion between the optical digital and electrical digital
streams. The DSP processes the streams it receives and then outputs serial digital audio streams back to
the codecs.

All the “magic” processing that the Symphony SoundBite is capable of occurs within the DSP in the
digital signal processing application code that you, the user, will create for it.

- 6 - © Copyright 2008, Freescale, Inc.

Chapter 2 Generating the Assembly Project

In order to better understand the Assembly Project Template application code, we shall begin with the
source files. The following sections will cover the creation of the project, importing the source files,
configuring the project properties, building the project, and running the application code on the
Symphony SoundBite hardware.

2.1 Create and Build the Assembly Project

Begin by creating an empty Assembly project in Symphony Studio. (Here, it is assumed that Symphony
Studio has already been properly installed and configured on the host PC and that the user is somewhat
familiar with the application. If not, please refer to the document, Symphony SoundBite: Quick Start
with Symphony Studio.)

1. Launch Symphony Studio. Make sure auto-building is turned off by clicking the Project menu. If
there is a check by Build Automatically, select Build Automatically to toggle the auto-building off.

2. In the C/C++ Projects pane of the C/C++ perspective, right-click and select New > Managed
Make ASM Project. Alternatively, the menu File > New > Managed Make ASM Project may
also be used.

3. Enter a name in the field Project name. Here “assembly_template” will be used. Click Next when
done.

4. Verify that the Project Type is 56K ASM COFF. Leaving everything else unchanged (the
defaults), click Finish.

A new, blank assembly project should now appear in the C/C++ Projects pane. Now, do the following
to import the source files into the empty project:

5. Select the project in the C/C++ Projects pane and right-click it. Select Import… from the menu
that pops up.

6. In the dialog box that opens up, expand General and select Archive File. Click Next.

7. Use the Browse button to navigate to the location on your hard drive where the file containing the
Assembly Project Template source files resides, SoundBite_Assy_Tmpl.zip. Select it and click
Open.

8. Make sure that all the check boxes on both halves of the dialog box have check marks in them
(they should by default). The field Into folder should have the name of the project created above
in it. If it does not, use the Browse button to select it. Check the box by “Overwrite existing
resources without warning” and click Finish.

© Copyright 2008, Freescale, Inc. - 7 -

9. Expand the project assembly_template in the C/C++ Projects pane. It should contain all the files
that were in the Assembly Project Template source archive.

The project files have now been imported but the project properties need to be modified in order for the
project to build properly. Do the following:

10. Right click the project assembly_template and select Properties from the pop up menu.

11. Select C/C++ Build on the left hand side. On the right hand side, select the Tool Settings tab.

12. Select Options under 56k ASM Linker. These are the interface to the command line options for
the 56300 Linker executable.

13. Type a name for the Map File command line option. Here, “mapfile.txt” will be used.

14. In the Memory Control File option field, enter the following (without the quotes):
“..\sb_linker.ctl”

15. Click the OK button.

The project is now ready to build. Do so by right clicking the project name (assembly_template in this
case) and selecting Build Project.

Text emitted by the assembler and linker should scroll in the Console tab. When successfully built,
folders named Debug and Binaries folder objects should appear in the project, and there should be no red
mark on the project icon.

2.2 Run the Assembly Project on Hardware

Now that the Assembly Project Template has been imported, configured and built, it can be executed and
debugged. (If an external tool has already been configured for the Symphony SoundBite, launch it and
continue at step 20.)

16. Switch to the Debug perspective by clicking on the Debug button at the top right hand side of the
window.

17. Create the external tool for making the hardware connection to the Symphony SoundBite board
by using the menu Run > External Tools > External Tools…

18. In the dialog box that comes up, on the left select OpenOCD GDB Server and then click the new
button (the page icon with the yellow “+”).

19. Under OpenOCD Configuration File, choose 56371 in the Device pull down menu and choose
soundbite in the Dongle pull down menu.

20. Click Run.

- 8 - © Copyright 2008, Freescale, Inc.

21. After launching, the console tab should display a single status line with no errors similar to the
following:
Info: openocd.c:82 main(): Open On-Chip Debugger ps001 (2007-10-
19 18:00 CEST)
If it does not, re-launch the external tool by selecting it from the Run > Debug History.

Now that the external tool has been configured and is connected to the hardware, use the debug
configuration to download the application and run it. These steps may be skipped once the debug
configuration is in place.

22. Create a debug configuration for assembly_template by using the menu Run > Debug…

23. Select the debug Freescale 56371 from the left side of the dialog box. Click the new button (the
page icon with the yellow “+”). Make sure the Main tab is selected.

24. On the right hand side, assign a new name to the debug configuration, if one different from the
default name that was generated is desired, by entering it into the Name field.

25. If the project assembly_template does not already appear in the Project field, click the Browse
button next to it and select the project from the list that pops up.

26. For the field C/C++ Application, click the Search Project button and choose the
assembly_template.cld DSP code object file and click OK.

27. Verify that Run at Startup and Stop on Startup are unchecked.

28. Verify that Download onto Target is checked.

29. Verify that Core Index is 0.

30. Click the Commands tab. Verify the following 4 lines of text are in the ‘Initialize’ commands text
box:

 M p:0 0x000084
 M p:1 0x000200
 set $pc=0
 cont

This text is necessary when using Symphony Studio with the DSP56371 because of errata ED54.
See FAQ-28010 at http://www.freescale.com for more information.

31. Click Apply to save the changes.

32. Click Debug to launch the debug configuration.

Run, debug, modify and rebuild the Assembly Project Template application as desired. As built from the
files in the archive, audio signals present at every one of the 8 analog inputs will be passed unmodified to
the corresponding analog output.

© Copyright 2008, Freescale, Inc. - 9 -

Chapter 3 High Level Overview

The Assembly Project Template application passes analog audio signals present at each of the 8 inputs to
the corresponding analog output without modification. Figure 3-1 shows a flow chart of the code
executing within the Assembly Project Template application. The following chapter covers the detailed
operation of the application flow chart shown graphically below.

Start

Initialize DSP
GPIO and ESAIs

Configure
AK4584 Codec

Enable Interrupts

Enable LEDs and
DIP switches,

initialize counter

Read switches (8 bits)

Append counter bit
18 state to switch

byte (9 bits)

Write 9 bit word
to LEDs

Main
Loop

Pull odd samples
from buffer, RTI

Pull even samples from
buffer and increment

pointers, set
BEGIN_PROCESSING

flag
 RTI

Increment pointer,
place odd samples
into buffer, RTI

Place even samples
into buffer, RTI

If BEGIN_SAMPLES is set,
process audio and clear flag

TX_even interrupt

TX_odd interrupt

RX_even interrupt

RX_odd interrupt

Figure 3-1. Assembly Project Template Flowchart

Interrupt service routines are triggered
by codec clocks, operating

independently of the main loop

- 10 - © Copyright 2008, Freescale, Inc.

Chapter 4 Detailed Operation

The program flow shown in Figure 3-1 will be traced in detail throughout this section. Each assembly file
in the project will be mentioned as it is encountered.

4.1.1 The Files and Their Function

Table 4-1 lists the name of each assembly file and the general function of that file within the Assembly
Project Template.

Table 4-1. The assembly code files and their function in brief.

Filename Description

main.asm The main.asm file contains the startup code for the application and the main
loop of the application. The main loop contains a counter that is used to flash
LED9. It also reads the 8-position DIP switch and displays the state of each
switch in LED1-LED8.

process_samples.asm The process_samples.asm file contains the routines that enable and disable
audio processing by the application. When disabled, audio is passed directly
from each input to the corresponding output. When enabled, the same thing
occurs in the Assembly Project Template until you, the user, modifies that
routine to do the audio processing you desire.

sb_codecs.asm The sb_codecs.asm file contains the subroutines that enable the GPIO pins for
the bit-banged serial communication link between the DSP and the AK4584
codec.

sb_isr_esais.asm The sb_isr_esais.asm file contains the interrupt service routines that receive
the digital audio input streams from the codecs and fill the input buffers and
pull the audio data from the output buffers for transmission to the codecs.
Once enabled, the interrupt service routines do all the work in receiving,
transmitting and processing the digital audio. The processing work is done by
a call to process_samples.asm after the flag BEGIN_PROCESSING is set.

sb_leds.asm The sb_leds.asm file contains subroutines that make it easy to enable and turn
on and off the general purpose LEDs on the Symphony SoundBite board.

sb_switches.asm The file sb_switches file contains subroutines that make it easy to enable and
reads the status of the 8-position general purpose DIP switch.

sb_eeprogram.asm The sb_eeprogram.asm file contains subroutines required to write the I2C
serial EEPROM attached to the DSP56371 in the format required for the

© Copyright 2008, Freescale, Inc. - 11 -

Symphony SoundBite board to boot up on its own for stand-alone operation.

4.1.2 Project Structure

It should be noted that the Assembly Project Template application uses features of the DSP56300
assembler and linker to make the assembly code more humanly readable and that facilitate more
structured programming. As such, it is assumed that the user has some familiarity with structured
programming techniques. For more information about the specific details of the assembler and linker
features, please refer to the Assembler Reference Manual and the Linker Reference Manual documents.
The more important and more often used features in the Assembly Project Template are mentioned below.

The files dsp56371.equ, soundbite.equ, and soundbite_macros.equ contain symbols that are used by the
assembly code files to give readable, meaningful names for the peripheral registers and bits, DSP pins,
DIP switches and LEDs. These symbols are incorporated into the assembly file with the INCLUDE
assembler directive. The INCLUDE directives are typically surrounded by LIST and NOLIST directives
which suppress the output of these files in the listing output of the assembler.

Each assembly file is bounded by SECTION and ENDSEC directives which instruct the assembler to
assemble the enclosed code into a relative object file in such a way that it can be linked together with
other relative objects to form the final absolute code object. This allows external symbols from other
assembly files to be used in the current file as well as the ability to expose local symbols in the current file
for use in external code files. The directives GLOBAL, XREF, and XDEF are used to define global
symbols, externally defined symbols to be used locally and local symbols to expose for external usage,
respectively.

The ORG directive instructs the compiler to resume assembly using the specified memory space at an
optionally specified address (which may be a symbol or an absolute address).

The file sb_linker.ctl is a linker control file that defines where in memory each section of the Assembly
Project Template application should be placed when the relative object files are linked together to form
the final absolute code object file. It is used to guarantee the ordering of the sections in memory to
ensure that the no application code resides in the interrupt vector table of the DSP and that the EEPROM
programming section, which is seldom used, is placed at the end of the application object. This makes it
easy to determine the size of the final code object which in turn makes programming the EEPROM of the
Symphony SoundBite for stand-alone operation a relatively simple matter.

4.1.3 Application Memory Map

Figure 4-1 shows how the memory is allocated in the Assembly Project Template application.

The application code itself starts at P:0 with the RESET vector at the base of the vector table. The
interrupt vectors also reside in the vector table and pointers to the ESAI interrupt service routines in the
section isr_esais.

- 12 - © Copyright 2008, Freescale, Inc.

The beginning of the actual application, in the section main is P:100. The rest of the sections of the
application follow with the order specified by the linker control file, sb_linker.ctl.

The X and Y memory data spaces hold channel data in circular buffers for each codec. The exact
structure and function of the buffers will be discussed next section. X memory also holds the software
stack intended for subroutines to use to save and restore registers or any other values as desired. In the
setup portion, the AK4584 (U5) codec’s register settings before and after initialization are also stored in
X memory, as will be discussed later section as well.

 P Memory X Memory Y Memory

P:$0 JMP main X:$0 RX_BUFF_BASE (left) < R0 Y:$0 RX_BUFF_BASE (right) < R0

 (Vector Table)

 isr_esai

P:$100 main

 TX_BUFF_BASE (left) < R2 TX_BUFF_BASE (right) < R2

 process_samples < R3 < R3

 < R4 < R4

 < R5 < R5

 soundbite_codecs

 soundbite_leds

 X:$2000 AK4584 registers
 before initialization Reserved registers:

 R0 input buffer pointer

 soundbite_switches X:$2020 AK4584 registers R2 output buffer pointer
 after initialization R3 output buffer pointer

 R4 output buffer pointer
 R5 output buffer pointer

 X:$C000 Software stack,

 soundbite_eeprogram pointed to by R7, R7 software stack pointer
 pushes increment R7
 Also reserved are:
 N0, N2, N3, N4, N5
 M0, M2, M3, M4, M5, M7

Figure 4-1. Assembly Project Template application memory map in the P, X and Y memory spaces.

© Copyright 2008, Freescale, Inc. - 13 -

4.1.4 Input/Output Buffer Structure

The input and output circular buffers, coupled with the ESAI interrupt service routines, are at the center
of the “action” in the Assembly Project Template application. The input and output process is shown
pictorially in Figure 4-2.

The inputs and outputs of ESAI_1 and ESAI are in I2S format, that is, both the left and right channel data
is on the one data line, differentiated by the LRCLK signal. Both ESAI_1 and ESAI are configured so
that two interrupts are generated, one for the left channel data and one for the right channel data. For
both ESAI peripherals, these add up to a total of four interrupts corresponding to receiving left and right
data, and transmitting left and right data. These are indicated in Figure 4-2 by the arrows connecting the
buffers to the ESAI blocks. These interrupt service routines place the data in or pull the data out from
the appropriate circular buffer. Additionally, the right transmit interrupt service routine sets the flag
BEGIN_PROCESSING. In the main loop of the application, a call is made to process_samples when the
BEGIN_PROCESSING flag is observed as being set. It should also be noted that all the buffers are
circular, which means that as the pointers increment, they wrap around automatically back to the
beginning when the end of the buffer is reached (controlled by the Mx registers). The details of the
interrupt service routines, the buffers, the pointers, and the audio processing will be covered in
subsequent sections.

Each circular buffer holds the sample data in blocks of four samples. In the default configuration of the
Assembly Project Template, each buffer contains 3 blocks of 4 samples each, which provides two

J1
J3
J5
J7

ESAI_1

J2
J4
J6
J8

ESAI

X memory:
Left channel

output
circular
buffer

Y memory:
Right

channel
input circular

buffer

X memory:
Left channel
input circular

buffer

Y memory:
Right

channel
input circular

buffer

RX odd ISR (right)

RX even ISR (left)

TX odd ISR (right)

TX even ISR (left)

RX_BUFF_BASE

TX_BUFF_BASE

Figure 4-2. Paths of the digital audio to and from the various circular buffers.

- 14 - © Copyright 2008, Freescale, Inc.

previous samples in addition to the current sample for each channel’s input and output data. This sizing
readily allows for the implementation of second-order filters.

The pointer register (R0) is used for pointing to the current block in the input buffer, as indicated in
Figure 4-3. The four pointer registers R2, R3, R4, and R5 are each dedicated to a single ESAI output,
which corresponds to a single codec output as shown in Figure 4-3. The corresponding modifier
registers for these pointers are configured to make the pointers wrap around, thus creating circular
buffers. After each sample, the pointers are incremented by an offset of 4 (using the corresponding Nx
offset register) so they point to the next buffer block.

 X memory (LEFT) Y memory (RIGHT)
 RX_BUFF_BASE J1 (U5 – AK4584) < R0 J1 (U5 – AK4584) < R0
 (Input data) J3 (U2 – AK4556) J3 (U2 – AK4556)
 J5 (U3 – AK4556) N0 (but also J5 (U3 – AK4556)
 J7 (U4 – AK4556) N2, N3, N4, N5) J7 (U4 – AK4556)
 J1 (U5 – AK4584) J1 (U5 – AK4584)
 J3 (U2 – AK4556) J3 (U2 – AK4556)
 J5 (U3 – AK4556) J5 (U3 – AK4556)
 J7 (U4 – AK4556) J7 (U4 – AK4556)
 J1 (U5 – AK4584) J1 (U5 – AK4584)
 J3 (U2 – AK4556) J3 (U2 – AK4556)
 J5 (U3 – AK4556) J5 (U3 – AK4556)
 J7 (U4 – AK4556) J7 (U4 – AK4556)

 TX_BUFF_BASE < R2, J2 (U5 – AK4584) < R2, J2 (U5 – AK4584)
 (Output data) < R3, J4 (U2 – AK4556) < R3, J4 (U2 – AK4556)
 < R4, J6 (U3 – AK4556) < R4, J6 (U3 – AK4556)
 < R5, J8 (U4 – AK4556) < R5, J8 (U4 – AK4556)

Figure 4-3: Diagram of the default left and right input and output buffer structure with the data
sources and destinations.

4.1.5 Main Program Flow

Program execution begins in main.asm.at the label RESET with a jump into the main code at Fmain.

At Fmain, the initialization of the DSP begins with the explicit masking of interrupts. This prevents any
interrupts from occurring while the application is starting up. The PLL is programmed for one half of full

© Copyright 2008, Freescale, Inc. - 15 -

speed to prevent overshoot, per the data sheet requirements of the DSP56371. Several core registers are
explicitly written with their reset values and the interrupt priority registers are written such that both
ESAIs are enabled with an interrupt priority of 2. The software stack, which is used to save and restore
registers during subroutines, is instantiated by writing the stack base address into the R7 register.

Next, a jump to the subroutine INIT_ESAIS (in sb_codecs.asm) occurs. This subroutine initializes ESAI
for output only and ESAI_1 for input only with the data format being 24-bit I2S. Both peripherals
receive their I2S clocks from the AK4584 codec (U5).

Following the return from INIT_ESAIS, the PLL is programmed for operation at 178 MHz. A delay loop
follows to allow the PLL to settle before program execution continues.

A subroutine call to DISABLE_PROCESSING (in process_samples.asm) is made to configure the
application for default pass-through behavior where each output channel is mapped to the corresponding
input channel. The pointer registers, address modifier and offset registers for the buffer pointers are all
initialized here.

Program execution resumes in main.asm at the label STRAIGHT, where custom output channel mapping
settings may be applied: the AK4584 (U5) is initialized for analog input and output and each output
channel is mapped to the corresponding input channel by the initialization of the pointer registers R2, R3,
R4 and R5, similar to what was done in DISABLE_PROCESSING. A call is then made to
DISABLE_PROCESSING (in process_samples.asm). Performing this seemingly redundant configuration
allows for the modification of the Assembly Project Template to perform customized audio processing
and channel mapping as well as on-the-fly enabling and disabling of the audio processing (for more details,
please refer to Chapter 5, Customizing the Project).

The AK4584 codec (U5) is configured with a subroutine call to SETUP_AK4584 (in sb_codecs.asm)
where the GPIO pins that perform the bit-bang serial communication with the AK4584 are configured.
This is followed by a subroutine call to GET_REGS_AK4584 (in sb_codecs.asm), which returns a dump
of all the internal registers of the AK4584 codec to X memory beginning at x:$2000.

The AK4584 is then reset and configured with a subroutine call to INIT_AK4584 (in sb_codecs.asm).
This subroutine takes as an argument a value in Y0 which configures the inputs and outputs of the
AK4584 (see assembly code and the AK4584 data sheet for more information). Recall that this value
was placed in Y0 following the STRAIGHT label above.

Following the initialization of the AK4584, another subroutine call to GET_REGS_AK4584 (in
sb_codecs.asm) is made, this time dumping the block of the AK4584’s registers to x:$2020. These
dumps of register values can be inspected to verify that the codec’s internal registers were indeed written
correctly with the debugger, if desired.

The setup and configuration of the Assembly Project Template application is now complete. Audio data
will not be passed until interrupts are unmasked, which occurs next. Once unmasked, the ESAI_1 and
ESAI interrupts occur and their interrupt service routines handle the input and output of the audio data
along. The audio processing occurs when the flag BEGIN_PROCESSING is set within the right transmit
ISR. In the default configuration, audio data is copied directly from each input buffer to each output
buffer without modification, so that each output channel is a copy of the corresponding input channel.

- 16 - © Copyright 2008, Freescale, Inc.

Following the unmasking of interrupts, the GPIO pins connected to the general purpose LEDs and DIP
switches on the Symphony SoundBite are properly configured as outputs and inputs (respectively) with
subroutine calls to SETUP_LEDS and SETUP_SWITCHES (in sb_leds.asm and sb_switches.asm,
respectively). The B register is cleared so that it may be used as a counter.

In the main loop itself, the B register is incremented. The switch status is read with a subroutine call to
READ_SWITCHES (in sb_switches.asm), which returns the state of each switch in the lower 8 bits of the
A1 register. To make the ninth LED blink, bit 18 of register B1 is tested. If it is set, bit 8 of register A1
is set (which is the ninth bit from the right of A1). The value in the lowest 9 bits of A1 is then used to
update the state of the general purpose LEDs with a subroutine call to SET_LEDS (in sb_leds.asm).

Next, the state of the flag BEGIN_PROCESSING is tested. If it is set, it indicates that a frame of left and
right data has been received and just transmitted. A subroutine call is made to PROCESS_SAMPLES (in
process_samples.asm) which processes the most resent samples by copying each newest input sample to
the top of each corresponding output buffer.

On entry into PROCESS_SAMPLES, at the label PROCESS_ENABLE, there is a jump instruction that
governs the execution path through the subroutine. This jump instruction is modified by the
ENABLE_PROCESSING and DISABLE_PROCESSING (both in process_samples.asm), which will be
discussed at greater length in Chapter 5, Customizing the Template. This subroutine is invoked once
after both sets of left and right channel sample data is received (that is, after the flag
BEGIN_PROCESSING is set). As configured, the Assembly Project Template application has the same
code that copies the input data to the corresponding output buffer in the code blocks PASS_THROUGH
and PROCESS_AUDIO in process_samples.asm.

Upon return to the main loop, the flag BEGIN_PROCESSING is cleared (it is reset so that no further
audio processing will occur until the next frame of data occurs). The DSP is then instructed to jump back
to the beginning of the loop.

While the application is running, the main loop monitors the state of the DIP switches and reflects them in
the lowest eight of the general purpose LEDs. Changing the state of the DIP switches will be
immediately reflected (at least to the human observer) by a corresponding change in illumination in the
LEDs. The ninth LED will blink, as the 18th bit of B1 is set and clear with the incrementing of B in the
main loop.

4.1.6 Interrupt Service Routines

As stated previously, the interrupt service routines for ESAI_! And ESAI handle the inputting and
outputting of the digital audio data from and to the codecs. Additionally, the TX odd interrupt (right
channel) interrupt service routine sets the flag BEGIN_PROCESSING, which in turn triggers a subroutine
call in the main loop to the audio processing subroutine PROCESS_SAMPLES (in main.asm), which
performs the actual audio signal processing. In the default Assembly Project Template configuration,
PROCESS_SAMPLES copies the input data directly to each corresponding output. The following
section describes the operation of each interrupt service routine in more detail.

© Copyright 2008, Freescale, Inc. - 17 -

4.1.6.1 Left Data Transmit, esai_tx_isr_even

The esai_tx_isr_even (in sb_isr_esais.asm) interrupt service routine for ESAI handles copying the left
channel output data from the output buffer in X memory pointed to by registers R2, R3, R4, and R5 to
the ESAI transmit registers. No other processing occurs in this ISR; the output data is presumed to be
already present in the output buffer.

4.1.6.2 Right Data Transmit, esai_tx_isr

The esai_tx_isr (in sb_isr_esais.asm) interrupt service routine for ESAI handles copying the right
channel output data from the output buffer in Y memory pointed to by registers R2, R3, R4, and R5 to
the ESAI transmit registers. The buffer pointers are incremented by the buffer size, which in the case of
the Symphony SoundBite is 4, corresponding to the number of codecs on the board and the number of
I2S output lines. No other processing occurs in this ISR; the output data is presumed to be already
present in the output buffer. The incrementing occurs following the writing of the right channel data so
as to keep the left and right sample data in the same frame. The flag BEGIN_PROCESSING is then set
to signal to the main loop of the application that it is time to begin processing the latest set of input
samples.

4.1.6.3 Left Data Receive, esai_1_rx_even

The esai_1_rx_even (in sb_isr_esais.asm) interrupt service routine for ESAI_1 handles copying the left
channel input data from the ESAI_1 receive registers to the left channel input buffer in X memory. The
pointer register R0 is incremented by the buffer size (4) and stored on the software stack. The left
channel sample data is then moved and the value of R0 is restored prior to exiting the ISR so that the
corresponding right channel sample data will reside at the same addresses within the input buffer in Y
memory.

4.1.6.4 Right Data Receive, esai_1_rx

The esai_1_rx (in sb_isr_esais.asm) interrupt service routine for ESAI_1 handles copying the right
channel input data from the ESAI_1 receive registers to the right channel input buffer in Y memory. The
pointer register R0 preserved on the software stack before the data moves and restored afterwards so as
to not require the use of any other address registers for the indexing.

- 18 - © Copyright 2008, Freescale, Inc.

Chapter 5 Customizing the Project

The Assembly Project Template application was written to provide a working example application that can be
readily extended to perform custom audio processing. As configured, the implementation of second-order filters
is a simple matter since the input and output buffers contain the current sample and two previous samples of the
input and output for all of the eight channels. The application used for testing the Symphony SoundBite board as
described in Symphony SoundBite: Demonstration Application is based on the Assembly Project Template
application (actually, to be historically accurate, the demonstration application came first; the Assembly Project
Template was derived from it later).

The following sections are intended to provide some considerations when using the Assembly Project Template
as a starting point for custom audio processing applications.

5.1 Reserved Registers

The digital audio processing as well as the audio data input and output of the Assembly Project Template
application occurs exclusively through the interrupt service routines that service the ESAI peripherals. In
order for these ISRs to operate independently, there are a number of core registers dedicated to their
operation. These registers are listed in Figures 4-1 and 4-3 but they are re-listed here in Table 5-1 with a
more descriptive explanation of their function.

 Table 5-1: Reserved Registers and their usage.

 Register Description of Usage

 R0 Input buffer pointer used for all ESAI_1 input channels

 R2 Output pointer used for ESAI SDO0 [AK4584 codec (U5), J2]

 R3 Output pointer used for ESAI SDO1 [AK4556 codec (U2), J4]

 R4 Output pointer used for ESAI SDO2 [AK4556 codec (U3), J6]

 R5 Output pointer used for ESAI SDO3 [AK4556 codec (U4), J8]

 R7 Software stack pointer used by interrupt service routines

 N0, N2, N3,
N4, N5

Offset registers used with the input and output pointers used for
incrementing the Rx registers by buffsize (see sb_isr_esais.asm)

 M0, M2, M3,
M4, M5

Modifier registers set with the value keep (see sb_isr_esais.asm)
to make the Rx registers behave as circular buffer pointers

 M7 Modifier register for R7, keeps default linear arithmetic value of
$FFFFFF

© Copyright 2008, Freescale, Inc. - 19 -

All registers other than those listed in Table 5-1 are available for use by code both in the main loop as
well as the audio processing algorithm code in PROCESS_AUDIO (see process_samples.asm). It should
be noted that any registers used in PROCESS_AUDIO that are not in the reserved list of registers should
be placed on the software stack in order to avoid clobbering any that might be used in the main loop of
the application.

5.2 Main Loop

The switch reading and LED lighting in main loop of the Assembly Project Template application is
provided as a means of displaying whether or not the Symphony SoundBite is running application code.

Application code in the main loop must also be careful not to modify or tamper with the reserved
registers used by the interrupt service routines. Processing in the main loop other than the subroutine call
to PROCESS_SAMPLES needs to be carefully managed to ensure that there are enough free MIPS
available for the DSP to do the desired processing within the time period of a frame of data. If
PROCESS_SAMPLES is delayed too long, input buffer overrun or output buffer under-run may occur.

5.3 Enabling/Disabling Processing

The subroutines ENABLE_PROCESSING and DISABLE_PROCESSING (see process_samples.asm) are
provided so that the audio processing may be enabled and disabled under software control. Since these
routines modify the application code in the subroutine PROCESS_SAMPLES (also in
process_samples.asm), interrupts should be disabled prior to calls to these subroutines to avoid the
unhappy event of changing the code while it is being executed which would likely lead to unpredictable
results.

When processing is disabled, the reserved registers are configured such that audio signals presented at the
inputs of the codecs are passed directly through to the corresponding outputs. Before enabling
processing, the reserved registers need to be configured as desired.

5.4 Modifying PROCESS_AUDIO

As configured, the PROCESS_AUDIO (see process_samples.asm), subroutine is a copy of the
PASS_THROUGH (see process_samples.asm) subroutine. PASS_THROUGH copies the audio input
data directly to the corresponding position in the output buffer. To implement custom audio processing
routines, the code within the PROCESS_AUDIO routine must be changed.

When entering PROCESS_AUDIO, the pointer registers R0 points to the base of the block that contains
the most recent input samples obtained from the codecs as shown in Figure 4-3. The offset
TX_BUFF_BASE-RX_BUFF_BASE, the difference between the start addresses of the input and output
buffers, is the offset used to obtain the address of the next available output buffer block. The registers R2,
R3, R4 and R5 should not be used as pointers into the output buffer for the audio processing routine
since these are subject to change depending on how the output channels are mapped (see Section 5.6). A

- 20 - © Copyright 2008, Freescale, Inc.

channel offset of 0, 1, 2, or 3 must be added to address the specific channels within the input and output
buffer blocks.

PROCESS_AUDIO must complete all processing within a sample period in order to keep from losing
valid input or output data when the next interrupt occurs. Failure to complete in time may cause stutters
or other noise in the output audio.

5.5 Buffer Modification

In the default configuration, the input and output buffers in the Assembly Project Template application
are sized so that there is enough space for one current sample and two previous samples of both the input
and output digital audio data for all eight channels on the board. Each buffer consists of keep blocks of
buffsize words each (see sb_isr_esais.asm), as shown in Figure 4-3. In the default configuration, there
are 3 blocks of 4 words.

If more sample history is desired (i.e., to implement higher order filters), the symbol keep may be changed.
The assembler directives in sb_isr_esais.asm will align the buffers to proper boundaries so that the
reserved pointer registers will operate in a circular fashion. As they are configured by default, the
buffering structure readily allows second-order filtering to be implemented on all eight channels. The
symbol buffsize should not be changed unless fewer channels are used or the buffer structure is changed.

5.6 Output Channel Mapping

There is room in the output buffers for eight independent channels of audio. By using separate pointers,
one for each EASI output, each output channel pair does not need to pull its data from the corresponding
input. Furthermore, all the outputs may be exactly the same as each other since they can pull from the
same output buffer channels. An example of the usage of this mapping can be observed in the
Demonstration Application (see Symphony SoundBite: Demonstration Application) where the DIP
switch settings result in various mappings from the input to the output.

