

INSTALLATION AND INSTRUCTION MANUAL

# WAYSIDE INSPECTOR, P/N A81000

SEPTEMBER 2016 (REVISED APRIL 2021)

DOCUMENT NO. SIG-00-16-03 VERSION A.1

Siemens Mobility, Inc. 700 East Waterfront Drive Munhall, Pennsylvania 15120 1-800-793-SAFE www.usa.siemens.com/rail-manuals

Copyright © 2021 Siemens Mobility, Inc. All Rights Reserved

PRINTED IN U.S.A.

## **PROPRIETARY INFORMATION**

The material contained herein constitutes proprietary and confidential information, and is the intellectual property of Siemens Mobility, Inc., Rail Automation (Siemens) protected under United States patent, copyright and/or other laws and international treaty provisions. This information and the software it describes are for authorized use only, and may not be: (i) modified, translated, reverse engineered, decompiled, disassembled or used to create derivative works; (ii) copied or reproduced for any reason other than specific application needs; or (iii) rented, leased, lent, sublicensed, distributed, remarketed, or in any way transferred; without the prior written authorization of Siemens. This proprietary notice and any other associated labels may not be removed.

## TRANSLATIONS

The manuals and product information of Siemens Mobility, Inc. are intended to be produced and read in English. Any translation of the manuals and product information are unofficial and can be imprecise and inaccurate in whole or in part. Siemens Mobility, Inc. does not warrant the accuracy, reliability, or timeliness of any information contained in any translation of manual or product information from its original official released version in English and shall not be liable for any losses caused by such reliance on the accuracy, reliability, or timeliness of such information. Any person or entity that relies on translated information does so at his or her own risk.

## WARRANTY INFORMATION

Siemens Mobility, Inc. warranty policy is as stated in the current Terms and Conditions of Sale document. Warranty adjustments will not be allowed for products or components which have been subjected to abuse, alteration, improper handling, or installation, or which have not been operated in accordance with Seller's instructions. Alteration or removal of any serial number or identification mark voids the warranty.

## SALES AND SERVICE LOCATIONS

Technical assistance and sales information on Siemens Mobility, Inc. products may be obtained at the following locations:

| SIEMENS MOBILITY, IN | C. RAIL AUTOMATION       | SIEMENS MOBILITY, INC. RAIL AUTOMATION |                |  |
|----------------------|--------------------------|----------------------------------------|----------------|--|
| 2400 NELSON MILLER   | PARKWAY                  | 939 S. MAIN STREET                     |                |  |
| LOUISVILLE, KENTUCK  | XY 40223                 | MARION, KENTUCKY 42064                 |                |  |
| TELEPHONE:           | (502) 618-8800           | TELEPHONE:                             | (270) 918-7800 |  |
| FAX:                 | (502) 618-8810           | CUSTOMER SERVICE:                      | (800) 626-2710 |  |
| SALES & SERVICE:     | (800) 626-2710           | TECHNICAL SUPPORT:                     | (800) 793-7233 |  |
| WEB SITE:            | USA Rail Automation Site | FAX:                                   | (270) 918-7830 |  |

## FCC RULES COMPLIANCE

The equipment covered in this manual has been tested and found to comply with the limits for Class A digital devices, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his/her own expense.

# **DOCUMENT HISTORY**

| Version | Release<br>Date | Sections<br>Changed | Details of Change                                                                                                                                                                                                                |
|---------|-----------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A       | 09/22/2016      |                     | Initial release                                                                                                                                                                                                                  |
| A.1     | 04/01/2021      | All                 | Updated for clarity of content. Added details for new<br>product interfaces and features, which include:<br>MTSS<br>iLOD<br>WAG<br>GCP 3000+<br>Digitalization and diagnostic data reporting<br>WI connection to legacy GCP 3000 |
|         |                 |                     |                                                                                                                                                                                                                                  |
|         |                 |                     |                                                                                                                                                                                                                                  |
|         |                 |                     |                                                                                                                                                                                                                                  |

# **Table of Contents**

| PROPRIE  | TARY INFORMATION                                      | II  |
|----------|-------------------------------------------------------|-----|
| TRANSLA  | TIONS                                                 |     |
| WARRAN   | TY INFORMATION                                        |     |
| SALES AN | ID SERVICE LOCATIONS                                  |     |
| DOCUME   | NT HISTORY                                            |     |
| NOTES, C | AUTIONS, AND WARNINGS                                 | XIV |
| ELECTRO  | STATIC DISCHARGE (ESD) PRECAUTIONS                    | XV  |
| GLOSSAF  | RΥ                                                    | XVI |
| CHAPTER  | 1 INTRODUCTION                                        | 1-1 |
| 1.1      | Purpose                                               | 1-1 |
| 1.2      | Scope                                                 | 1-1 |
| 1.3      | Reference Material                                    | 1-1 |
| CHAPTER  | 2 OVERVIEW                                            | 2-1 |
| CHAPTER  | 3 HARDWARE                                            | 3-1 |
| 3.1      | Power Input Connector and ECD                         | 3-2 |
| 3.2      | Isolated Power Output                                 | 3-3 |
| 3.3      | On-site Personnel Button and Maintainer on-site mode  | 3-3 |
| 3.4      | Application LEDs                                      | 3-4 |
| 3.5      | Status LEDs                                           | 3-4 |
| 3.6      | Ethernet Interface LEDs                               | 3-5 |
| 3.7      | Comms Serial Port                                     | 3-5 |
| 3.8      | Hardware Expansion Slot                               | 3-6 |
| 3.9      | Digital Inputs                                        | 3-6 |
| 3.10     | Battery Inputs                                        | 3-7 |
| 3.11     | Relay Outputs                                         | 3-8 |
| 3.12     | AC Power Monitor and Control                          | 3-8 |
| 3.13     | Mounting                                              | 3-9 |
| CHAPTER  | 4 ANCILLARY EQUIPMENT                                 | 4-1 |
| 4.1      | Ground Fault Tester 2 (GFT2)                          | 4-1 |
| 4.2      | Grade Crossing Predictor Models 4000, 5000, and 3000+ | 4-3 |
| 4.2.1    | System Configurations                                 | 4-3 |
| 4.3      | Wireless Magnetometer (WiMag) System                  | 4-4 |

| 4.4     | iLOD                                               | 4-5  |
|---------|----------------------------------------------------|------|
| 4.5     | WAG                                                | 4-7  |
| 4.6     | MTSS                                               | 4-7  |
| 4.7     | E-Bell                                             | 4-8  |
| 4.8     | Gate Tip Sensor                                    | 4-8  |
| CHAPTER | 5 CONFIGURATION & PROGRAMMING                      | 5-1  |
| 5.1     | WI Application Guidelines & MCF Configuration Tool | 5-1  |
| 5.2     | Web User Interface (Web UI)                        | 5-2  |
| 5.3     | Logging in to the Web UI                           | 5-2  |
| 5.4     | Web UI Overview                                    | 5-4  |
| 5.5     | Configuration                                      | 5-5  |
| 5.5.1   | Site Configuration                                 | 5-5  |
| 5.5.2   | MCF Configuration                                  | 5-7  |
| 5.5.2.  | .1 General Configuration                           | 5-7  |
| 5.5.2.  | 2 Digital Input Configuration 1 - 25               | 5-10 |
| 5.5.2.  | .3 Battery Input Configuration                     | 5-13 |
| 5.5.2.  | .4 Relay Output Configuration                      | 5-15 |
| 5.5.2.  | 5 WiMag Configuration                              | 5-16 |
| 5.5.2.  | .6 Speed Measurement 1                             | 5-19 |
| 5.5.2.  | 7 iLOD Configuration                               | 5-20 |
| 5.5.2.  | .8 GCP Interface Configuration                     | 5-25 |
| 5.5.2.  | 9 Logic Configuration                              | 5-27 |
| 5.5.2.  | .10 State Names                                    | 5-29 |
| 5.5.2.  | .11 Set to Default                                 | 5-33 |
| 5.5.3   | Networking                                         | 5-34 |
| 5.5.3.  | .1 Comms Interface                                 | 5-34 |
| 5.5.3.  | 2 Domain Name System                               | 5-35 |
| 5.5.3.  | .3 ATCS/IP Field Protocol                          | 5-36 |
| 5.5.3.  | .4 ATCS/IP Office Protocol                         | 5-37 |
| 5.5.4   | WAMS/RailFusion                                    | 5-39 |
| 5.5.5   | Serial Port                                        | 5-40 |
| 5.5.5.  | .1 WI Connection to a Legacy 3000 GCP              | 5-41 |
| 5.5.6   | Log Setup                                          | 5-43 |
| 5.5.6.  | .1 Diagnostic Logging                              | 5-43 |

SEPTEMBER 2016 (REVISED APRIL 2021)

| 5.5.7  | ATCS Message Routing                       | 5-45 |
|--------|--------------------------------------------|------|
| 5.5.8  | Time Management                            | 5-46 |
| 5.5.9  | Security                                   | 5-47 |
| 5.5.9. | 1 Password                                 | 5-47 |
| 5.5.9. | 2 Web UI Configuration                     | 5-48 |
| 5.5.10 | WMS                                        | 5-49 |
| 5.5.10 | 0.1 WMS: Digitalization Interface Settings | 5-49 |
| 5.5.10 | 0.2 WMS: Class D Settings                  | 5-51 |
| 5.5.10 | 0.3 WMS: EMP Settings                      | 5-53 |
| 5.5.11 | Set to Default                             | 5-54 |
| 5.6    | Calibration & Ajustment                    | 5-55 |
| 5.7    | Status Monitor                             | 5-58 |
| 5.7.1  | Digital Inputs                             | 5-58 |
| 5.7.2  | Battery Inputs                             | 5-59 |
| 5.7.3  | Relay Outputs                              | 5-60 |
| 5.7.4  | AC Power Input and Controls                | 5-61 |
| 5.7.5  | GCP Status                                 | 5-61 |
| 5.7.6  | Internal Temperature                       | 5-62 |
| 5.7.7  | Network Status                             | 5-63 |
| 5.7.8  | LED Status                                 | 5-63 |
| 5.7.9  | Inspection Status                          | 5-64 |
| 5.7.10 | Schedule Status                            | 5-65 |
| 5.7.11 | Relay View                                 | 5-66 |
| 5.7.12 | Logic State View                           | 5-67 |
| 5.7.13 | ATCS Routes Table                          | 5-68 |
| 5.7.13 | 3.1 iLOD Status Screen                     | 5-68 |
| 5.8    | Reports & Logs                             | 5-69 |
| 5.8.1  | Event Log                                  | 5-70 |
| 5.8.2  | Diagnostic Log                             | 5-71 |
| 5.8.3  | Application Log                            | 5-72 |
| 5.8.4  | Version Report                             | 5-72 |
| 5.8.5  | Inspection Report                          | 5-73 |
| 5.8.6  | Configuration Report                       | 5-74 |
| 5.9    | Maintenance                                | 5-74 |

| 5.9.1     | Da   | ate/Time                                                                    | 5-74 |
|-----------|------|-----------------------------------------------------------------------------|------|
| 5.9.2     | Сс   | onfiguration                                                                | 5-75 |
| 5.9.3     | So   | oftware Update                                                              | 5-76 |
| 5.9.3.    | 1    | Loading Executive Software                                                  | 5-76 |
| 5.9.3.2   | 2    | Loading MCF                                                                 | 5-79 |
| 5.9.3.3   | 3    | Inspection Schedule                                                         | 5-80 |
| 5.9.3.4   | 4    | Delete MCF                                                                  | 5-81 |
| 5.9.3.    | 5    | Erase ECD                                                                   | 5-82 |
| 5.9.4     | Re   | eset                                                                        | 5-83 |
| 5.9.5     | Ne   | etwork                                                                      | 5-84 |
| 5.9.5.    | 1    | Ping                                                                        | 5-84 |
| 5.9.5.2   | 2    | Routes                                                                      | 5-84 |
| 5.9.5.3   | 3    | IFConfig                                                                    | 5-85 |
| 5.9.5.4   | 4    | ARP                                                                         | 5-85 |
| 5.10      | Ala  | arms                                                                        | 5-86 |
| CHAPTER 6 | 5 IN | ISTALLATION & WIRING                                                        | 6-1  |
| 6.1       | Wa   | ayside Inspector Installation & Wiring                                      | 6-1  |
| 6.2       | An   | ncillary Equipment Installation & Mounting                                  | 6-2  |
| 6.2.1     | W    | I Connected to the GFT2 and Configured for Grounds Inspection               | 6-3  |
| 6.2.2     | W    | I Connected to Model 5000 GCP with WI Configured for Warning Time Inspectio | n6-4 |
| 6.2.3     | W    | I Connection to Model 4000 GCP                                              | 6-5  |
| CHAPTER 7 | 70   | FFICE SYSTEM INTERFACES                                                     | 7-1  |
| 7.1       | Int  | erfaces to Office Systems                                                   | 7-1  |
| 7.1.1 W   | AM   | IS/RailFusion Interface                                                     | 7-1  |
| 7.1.2     | Dig  | gitalization Interface                                                      | 7-1  |
| 7.1.3     | Mi   | ndSphere, MindConnect Rail and the WI Web Application                       | 7-2  |

# List of Figures

| Figure 2-1  | Context of WI Installed at Crossing                | 2-2  |
|-------------|----------------------------------------------------|------|
| Figure 3-1  | Wayside Inspector, A81000 Connectors               | 3-1  |
| Figure 3-2  | Power Input Connector and ECD                      | 3-2  |
| Figure 3-3  | Isolated Power Output Connector                    | 3-3  |
| Figure 3-4  | Status LEDs                                        | 3-4  |
| Figure 3-5  | Hardware Expansion Slot                            | 3-6  |
| Figure 3-6  | Digital Input Connectors and LEDs                  | 3-6  |
| Figure 3-7  | Relay Output Hardware Internals                    | 3-8  |
| Figure 3-8  | WI Mounting Dimensions                             | 3-9  |
| Figure 4-1  | Ground Fault Tester 2: A81010-01 (9 V – 16.5 V)    | 4-1  |
| Figure 4-2  | Ground Fault Tester 2: A81010-02 (24 V – 30 V)     | 4-1  |
| Figure 4-3  | The Model 4000/5000 Grade Crossing Predictor (GCP) | 4-3  |
| Figure 4-4  | The Wireless Magnetometer (WiMag) Sensor System    | 4-4  |
| Figure 4-5  | iLOD Module                                        | 4-5  |
| Figure 4-6  | iLOD Current Sensor Wiring                         | 4-6  |
| Figure 4-7  | General Network Overview                           | 4-7  |
| Figure 5-1  | MCF Configuration Tool                             | 5-1  |
| Figure 5-2  | Connection Privacy Warning Screens                 | 5-3  |
| Figure 5-3  | WI Web UI Login Screen                             | 5-4  |
| Figure 5-4  | Web UI Menus                                       | 5-4  |
| Figure 5-5  | Site Configuration Screen                          | 5-5  |
| Figure 5-6  | Example MCF Configuration Submenus                 | 5-7  |
| Figure 5-7  | Maintainer On Site Screen                          | 5-8  |
| Figure 5-8  | AC Power Screen                                    | 5-8  |
| Figure 5-9  | Digital Input Configuration Screen                 | 5-10 |
| Figure 5-10 | Battery Input Configuration Screen                 | 5-13 |
| Figure 5-11 | Relay Output Configuration Screen                  | 5-15 |
| Figure 5-12 | WiMag General Screen                               | 5-16 |
| Figure 5-13 | WiMag Sensor "N" Screen                            | 5-17 |
| Figure 5-14 | Speed Measurement Screen                           | 5-19 |
| Figure 5-15 | iLOD General Screen                                | 5-21 |
| Figure 5-16 | iLOD Sensor Screen                                 | 5-22 |

| Figure 5-17 | iLOD Install Button                                         | 5-24 |
|-------------|-------------------------------------------------------------|------|
| Figure 5-18 | GCP Interface Configuration General Screen                  | 5-25 |
| Figure 5-19 | Logic Configuration: Properties Screen                      | 5-27 |
| Figure 5-20 | Logic Configuration: Timers Screen                          | 5-28 |
| Figure 5-21 | State "On" Names Screen                                     | 5-29 |
| Figure 5-22 | State "Off" Names Screen                                    | 5-30 |
| Figure 5-23 | State "Toggle" Names Screen                                 | 5-31 |
| Figure 5-24 | State "Battery" Names Screen                                | 5-32 |
| Figure 5-25 | MCF Configuration Set to Default Screen                     | 5-33 |
| Figure 5-26 | Networking: Comms Interface Screen                          | 5-34 |
| Figure 5-27 | Networking: Domain Name System Screen                       | 5-35 |
| Figure 5-28 | Networking: ATCS/IP Field Protocol Screen                   | 5-36 |
| Figure 5-29 | Networking: ATCS/IP Office Protocol Screen                  | 5-37 |
| Figure 5-30 | WAMS/RailFusion Screen                                      | 5-39 |
| Figure 5-31 | Serial Port Screen                                          | 5-40 |
| Figure 5-32 | Serial Port Screen Configuration for GCP 3000               | 5-41 |
| Figure 5-33 | Accessing Reports and Logs for GCP 3000                     | 5-42 |
| Figure 5-34 | Log Setup: Diagnostic Logging Screen                        | 5-43 |
| Figure 5-35 | ATCS Message Routing Screen                                 | 5-45 |
| Figure 5-36 | Time Management Screen                                      | 5-46 |
| Figure 5-37 | Password Screen                                             | 5-47 |
| Figure 5-38 | Web UI Configuration Screen                                 | 5-48 |
| Figure 5-39 | WMS: Digitalization Interface Settings Screen               | 5-49 |
| Figure 5-40 | WMS: Class D Settings Screen                                | 5-51 |
| Figure 5-41 | WMS: EMP Settings Screen                                    | 5-53 |
| Figure 5-42 | Set to Default Screen                                       | 5-54 |
| Figure 5-43 | iLOD Calibration Screen                                     | 5-55 |
| Figure 5-44 | iLOD Calibration Screen after selecting "Start Calibration" | 5-55 |
| Figure 5-45 | iLOD Calibration in Progress                                | 5-56 |
| Figure 5-46 | iLOD Calibration Complete                                   | 5-56 |
| Figure 5-47 | Digital Inputs Screen                                       | 5-58 |
| Figure 5-48 | Battery Inputs Screen                                       | 5-59 |
| Figure 5-49 | Relay Outputs Screen                                        | 5-60 |
| Figure 5-50 | AC Power Input and Controls Screen                          | 5-61 |

SEPTEMBER 2016 (REVISED APRIL 2021)

| Figure 5-51 | GCP Status Screen                           | 5-61 |
|-------------|---------------------------------------------|------|
| Figure 5-52 | Internal Temperature Screen                 | 5-62 |
| Figure 5-53 | Network Status Screen                       | 5-63 |
| Figure 5-54 | LED Status Screen                           | 5-63 |
| Figure 5-55 | Inspection Status Screen                    | 5-64 |
| Figure 5-56 | Schedule Status Screen                      | 5-65 |
| Figure 5-57 | Relay View Screen                           | 5-66 |
| Figure 5-58 | Logic State View Screen                     | 5-67 |
| Figure 5-59 | ATCS Routes Table Screen                    | 5-68 |
| Figure 5-60 | iLOD Status Monitor Screen                  | 5-68 |
| Figure 5-61 | iLOD Status Monitor 1 Screen                | 5-69 |
| Figure 5-62 | Event Log Screen                            | 5-70 |
| Figure 5-63 | Diagnostic Log Screen                       | 5-71 |
| Figure 5-64 | Application Log Screen                      | 5-72 |
| Figure 5-65 | Version Report Screen                       | 5-72 |
| Figure 5-66 | Inspection Report Screen                    | 5-73 |
| Figure 5-67 | Configuration Report Screen                 | 5-74 |
| Figure 5-68 | Date/Time Screen                            | 5-74 |
| Figure 5-69 | Configuration: Download Screen              | 5-75 |
| Figure 5-70 | Configuration: Upload Screen                | 5-75 |
| Figure 5-71 | Software Update: Executive Screen           | 5-76 |
| Figure 5-72 | Open MEF to Load Dialog Box                 | 5-77 |
| Figure 5-73 | Update MEF View                             | 5-77 |
| Figure 5-74 | MEF Update in Process View                  | 5-78 |
| Figure 5-75 | Reboot Required Dialog Box                  | 5-78 |
| Figure 5-76 | Executive Software Upload Complete View     | 5-79 |
| Figure 5-77 | Software Update: MCF Screen                 | 5-79 |
| Figure 5-78 | MCF Upload Complete View                    | 5-80 |
| Figure 5-79 | Software Update: Inspection Schedule Screen | 5-80 |
| Figure 5-80 | Software Update: Delete MCF Screen          | 5-81 |
| Figure 5-81 | Software Update: Erase ECD Screen           | 5-82 |
| Figure 5-82 | Reset Screen                                | 5-83 |
| Figure 5-83 | Network: Ping Screen                        | 5-84 |
| Figure 5-84 | Network: Routes Screen                      | 5-84 |

| Figure 5-85 | Network: IFConfig Screen                                                            | 5-85 |
|-------------|-------------------------------------------------------------------------------------|------|
| Figure 5-86 | Network: ARP Screen                                                                 | 5-85 |
| Figure 5-87 | Alarms Screen                                                                       | 5-86 |
| Figure 6-1  | Battery Surge Protection Wiring for WI, WI Configured for Stand-By Power Inspection | 6-1  |
| Figure 6-2  | Wiring for WI Connected to GFT2 with WI Configured for Grounds Inspection           | 6-3  |
| Figure 6-3  | WI Connected to Model 5000 GCP with WI Configured for Warning Time Inspection       | 6-4  |
| Figure 6-4  | WI Connected to Model 4000 GCP with WI Configured for Warning Time Inspection       | 6-6  |
| Figure 7-1  | Digitalization Interface Overview                                                   | 7-2  |

## List of Tables

| Table 1-1  | Abbreviation Index                                   | 1-1  |
|------------|------------------------------------------------------|------|
| Table 1-2  | Reference Documents                                  | 1-2  |
| Table 3-1  | WI Connectors                                        | 3-1  |
| Table 3-2  | Specifications                                       | 3-2  |
| Table 3-3  | Isolated Power Output Specifications                 | 3-3  |
| Table 3-4  | Comms Serial Port Specifications                     | 3-5  |
| Table 3-5  | Comms Serial Port Pin Configuration                  | 3-5  |
| Table 3-6  | Digital Input Specifications                         | 3-7  |
| Table 3-7  | Battery Input Specifications                         | 3-7  |
| Table 3-8  | Relay Output Specifications                          | 3-8  |
| Table 5-1  | Site Configuration Parameter Values                  | 5-6  |
| Table 5-2  | Maintainer On Site Parameter Values                  | 5-8  |
| Table 5-3  | AC Power Parameter Values                            | 5-9  |
| Table 5-4  | Digital Input Parameter Values                       | 5-12 |
| Table 5-5  | Battery Inputs Parameter Values                      | 5-14 |
| Table 5-6  | Relay Outputs Parameter Values                       | 5-16 |
| Table 5-7  | WiMag Base Parameter Values                          | 5-17 |
| Table 5-8  | WiMag Sensor Parameter Values                        | 5-18 |
| Table 5-9  | Speed Measurement Parameter Values                   | 5-20 |
| Table 5-10 | iLOD General Parameter Values                        | 5-21 |
| Table 5-11 | iLOD Sensor Parameter Values                         | 5-23 |
| Table 5-12 | GCP Interface Configuration General Parameter Values | 5-26 |
| Table 5-13 | State "On" Names Parameter Values                    | 5-29 |
| Table 5-14 | State "Off" Names Parameter Values                   | 5-30 |
| Table 5-15 | State "Toggle" Names Parameter Values                | 5-31 |
| Table 5-16 | State "Battery" Names Parameter Values               | 5-32 |
| Table 5-17 | Networking: Comms Interface Parameter Values         | 5-34 |
| Table 5-18 | Networking: Domain Name System Parameter Values      | 5-35 |
| Table 5-19 | Networking: ATCS/IP Field Protocol Parameter Values  | 5-36 |
| Table 5-20 | Networking: ATCS/IP Office Protocol Parameter Values | 5-38 |
| Table 5-21 | WAMS/RailFusion Parameter Values                     | 5-39 |
| Table 5-22 | Serial Port Parameter Values                         | 5-40 |

| Table 5-23 | Log Setup: Diagnostic Logging Parameter Values          | 5-44 |
|------------|---------------------------------------------------------|------|
| Table 5-24 | ATCS Message Routing Parameter Values                   | 5-45 |
| Table 5-25 | Time Management Parameter Values                        | 5-46 |
| Table 5-26 | Password Parameter Values                               | 5-47 |
| Table 5-27 | Web UI Configuration Parameter Values                   | 5-48 |
| Table 5-28 | WMS: Digitalization Interface Settings Parameter Values | 5-50 |
| Table 5-29 | WMS: Class D Settings Parameter Values                  | 5-52 |
| Table 5-30 | WMS: EMP Settings Parameter Values                      | 5-53 |

## NOTES, CAUTIONS, AND WARNINGS

Throughout this manual, notes, cautions, and warnings are frequently used to direct the reader's attention to specific information. Use of the three terms is defined as follows:



If there are any questions, contact Siemens Mobility, Inc. Application Engineering

## **ELECTROSTATIC DISCHARGE (ESD) PRECAUTIONS**

Static electricity can damage electronic circuitry, particularly low voltage components such as the integrated circuits commonly used throughout the electronics industry. Therefore, procedures have been adopted industry-wide which make it possible to avoid the sometimes invisible damage caused by electrostatic discharge (ESD) during the handling, shipping, and storage of electronic modules and components. Siemens Mobility, Inc. has instituted these practices at its manufacturing facility and encourages its customers to adopt them as well to lessen the likelihood of equipment damage in the field due to ESD. Some of the basic protective practices include the following:

- Ground yourself before touching card cages, assemblies, modules, or components.
- Remove power from card cages and assemblies before removing or installing modules.
- Remove circuit boards (modules) from card cages by the ejector lever only. If an ejector lever is not provided, grasp the edge of the circuit board but avoid touching circuit traces or components.
- Handle circuit boards by the edges only.
- Never physically touch circuit board or connector contact fingers or allow these fingers to come in contact with an insulator (e.g., plastic, rubber, etc.).
- When not in use, place circuit boards in approved static-shielding bags, contact fingers first. Remove circuit boards from static-shielding bags by grasping the ejector lever or the edge of the board only. Each bag should include a caution label on the outside indicating static-sensitive contents.
- Cover workbench surfaces used for repair of electronic equipment with static dissipative workbench matting.
- Utilize only anti-static cushioning material in equipment shipping and storage containers.

For information concerning ESD material applications, please contact the Technical Support Staff at 1-800-793-7233.

## GLOSSARY

| TERM           | DESCRIPTION                                                                                                                                                                                                                     |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AAR:           | Association of American Railroads – An organization that establishes uniformity and standardization among different railroad systems.                                                                                           |  |  |
| AREMA:         | American Railroad Equipment Manufacturing Association – An organization that supersedes AAR.                                                                                                                                    |  |  |
| ATCS:          | <u>Advanced Train Control System</u> – A set of standards compiled by the AAR for controlling all aspects of train operation.                                                                                                   |  |  |
| ECD:           | External Configuration Device – A serial EEPROM (Flash Memory) device mounted inside the chassis of the GEO unit. The ECD is used to store site-specific configuration data (MCF, SIN, UCN, and card parameters) for the CPU.   |  |  |
| EX Value       | Is the phase of the received signal, which is the measure of the impedance<br>of the track ballast. This measurement identifies how much current is leaking<br>from one rail to another.                                        |  |  |
| EZ Value       | Is the measure of the received signal level.                                                                                                                                                                                    |  |  |
| MEF:           | <u>Module Executable File</u> – The executive software running in the CPU or I/O Modules. The user can download the MEF through the Diag port to update the software.                                                           |  |  |
| MCF:           | Module Configuration File – The GCP application logic file.                                                                                                                                                                     |  |  |
| SIN:           | Site Identification Number – The 12-digit ATCS address for the SIN has the form 7.RRR.LLL.GGG.SS stored in binary coded decimal, with each digit in one nibble. The digit 0 is represented by "A" and 0 is used as a null byte. |  |  |
| Site Location: | The location where GCP unit is installed.                                                                                                                                                                                       |  |  |
| VPI:           | Vital Parallel Input – A module input circuit the function of which affects the safety of train operation.                                                                                                                      |  |  |
| VRO:           | <u>Vital Relay Output</u> – A module output circuit the function of which affects the safety of train operation.                                                                                                                |  |  |

# CHAPTER 1 INTRODUCTION

#### 1.1 PURPOSE

This manual provides guidance to field maintainers and crossing installation teams to install and correctly wire the Wayside Inspector (WI) to crossings. This manual provides installation instructions and wiring of the WI to AC power, batteries, battery chargers, crossing warning systems including the Solid State Crossing Controller (SSCC), relay controlled crossing wiring, Grade Crossing Predictor (GCP) connections, the Ground Fault Tester 2, and Wireless Magnetometers. Refer to the location's circuit plans for detailed wiring and programming information.

#### 1.2 SCOPE

This manual focuses on installation and connection of the WI. It is useful to crossing installers and field maintenance personnel intending to use the WI in crossing monitoring. This manual does not address any railroad specific crossing guidelines. This manual provides an overview of the WI programming but does not include site specific instructions. For application guidelines, see the *Wayside Inspector MCF Configuration Tool Application Guidelines, SIG-00-16-05*.

### 1.3 REFERENCE MATERIAL

#### Table 1-1 Abbreviation Index

| AP    | Access Point                                                    |
|-------|-----------------------------------------------------------------|
| AREMA | American Railway Engineering and Maintenance-of-way Association |
| CFR   | Code of Federal Regulations                                     |
| DCE   | Data Communication Equipment                                    |
| DHCP  | Dynamic Host Configuration Protocol                             |
| DNS   | Domain Name System                                              |
| DTE   | Data Terminal Equipment                                         |
| ECD   | External Configuration Device                                   |
| GCP   | Grade Crossing Predictor                                        |
| GFT   | Ground Fault Tester                                             |
| IP    | Internet Protocol                                               |
| IPv4  | Internet Protocol version 4                                     |
| IPv6  | Internet Protocol version 6                                     |
| MCF   | Module Configuration File                                       |
| MCT   | MCF Configuration Tool                                          |
| PoE   | Power over Ethernet                                             |
| TCP   | Transmission Control Protocol                                   |
| UDP   | User Datagram Protocol                                          |
| UI    | User Interface                                                  |
| WI    | Wayside Inspector                                               |
| WiMag | Wireless Magnetometer                                           |

| Component                               | Manual Title                                                                                                                         | Document Number  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Battery Charger                         | Series SJ Battery Chargers                                                                                                           | SIG-00-00-18     |
|                                         | Model 4000 Grade Crossing Predictor (GCP 4000)<br>Field Manual                                                                       | SIG-00-08-10     |
| Model 4000 Grade<br>Crossing Predictor  | Model 4000 Grade Crossing Predictor Plus<br>(Model 4000 GCP Plus) Field Manual                                                       | SIG-00-12-68     |
|                                         | Model 4000 Grade Crossing Predictor (GCP 4000)<br>Application Guidelines                                                             | SIG-00-08-06     |
| Model 5000 Grade                        | Model 5000 Grade Crossing Predictor (GCP 5000)<br>Field Manual                                                                       | SIG-00-13-03     |
| Crossing Predictor                      | Model 5000 Grade Crossing Predictor (GCP 5000)<br>Application Guidelines                                                             | SIG-00-13-04     |
|                                         | Model 3000+ Grade Crossing Predictor (GCP 3000+)<br>Application Guidelines                                                           | SIG-00-17-04     |
| Model 3000+ Grade<br>Crossing Predictor | Model 3000+ Grade Crossing Predictor (GCP 3000+)<br>Field Manual                                                                     | SIG-00-18-01     |
|                                         | Model 3000+ Grade Crossing Predictor (GCP 3000+)<br>Instruction and Installation                                                     | SIG-00-17-03     |
| Electronic Bell                         | User Guide, A80301                                                                                                                   | SIG-00-04-09     |
| Cround Foult Tostor                     | Ground Fault Tester, A80297-01, -02, -03                                                                                             | SIG-00-03-05-003 |
| Glound Fault Tester                     | Ground Fault Tester 2 (GFT2), A81010-01, -02                                                                                         | SIG-00-15-06     |
| Mini Trackside Sensor<br>Package        | User Guide. Part of SEAR II accessory group, includes MTSS (A80285, A80286-2), Gate Tip Sensor (A80281) and Electronic Bell (A80301) | SIG-00-03-05-001 |
|                                         | Solid State Crossing Controller IIIA (SSCCIIIA)<br>A91160 & 91165                                                                    | SIG-00-02-12     |
| Solid State Crossing<br>Controller      | Solid State Crossing Controller III Plus (SSCCIIIPlus)<br>A91190 & 91195                                                             | SIG-00-02-03     |
|                                         | Solid State Crossing Controller IV (SSCCIV)<br>A91210 & 91215                                                                        | SIG-00-03-02     |
| Wayside Inspector                       | Wayside Inspector Installation and Instruction Manual                                                                                | SIG 00-16-03     |
| Wayside Inspector                       | MCF Configuration Tool Application Guidelines Manual                                                                                 | SIG 00-16-05     |
| Wayside Inspector                       | Wayside Inspector Web Application User Manual                                                                                        | SIG-00-20-02     |

#### Table 1-2 Reference Documents

## **CHAPTER 2 OVERVIEW**

#### WARNING

## **A** WARNING

THE WAYSIDE INSPECTOR IS A NON-VITAL PRODUCT. CAUTION MUST BE TAKEN WHEN INTERFACING THE WAYSIDE INSPECTOR TO ANY VITAL SIGNAL OR CROSSING EQUIPMENT AS THE WAYSDE INSPECTOR CANNOT BE USED TO PERFORM, EITHER DIRECTLY OR INDIRECTLY, ANY VITAL FUNCTIONS. ENSURE THE WAYSIDE INSPECTOR IS INSTALLED PER MANUFACTURER'S INSTRUCTIONS, AND/OR ALL EQUIPMENT INTERCONNECTIONS ARE IN COMPLIANCE WITH RAILROAD PROCEDURES AND SPECIFICATIONS.

The Wayside Inspection system automates periodic inspections for crossings. The system has capabilities to conduct a number of automated inspections.

To achieve those goals, the system uses the Wayside Inspector (WI), installed at the crossing, to test standby power, test for grounds, monitor the crossing, and test warning times. The WI monitors the state of discrete I/O signals, battery voltages, and AC power at a crossing. From that information, the WI analyzes the operation of the crossing warning system and automatically performs periodic inspections of the crossing warning system. The WI can send alarms and automated inspection results to the back office system using several possible communication methods. The inspections are performed by the WI by executing application programmable logic. Figure 2-1 shows the context of the WI installed at a crossing.



Figure 2-1 Context of WI Installed at Crossing

The WI monitors the crossing warning system I/O using digital inputs. The WI monitors the battery system voltages using analog inputs. The WI can turn off the battery chargers using an AC power control relay. The WI monitors the system for ground faults using the Siemens Ground Fault Tester 2 (GFT2).

The WI monitors the operation of the gates through the Mini-Trackside Sensor System (MTSS). An MTSS in combination with the gate tip sensor (GTS) and E-Bell, reports the following information to the WI: gate up, gate down, gate level, bell power, and bell audio.

If the crossing uses a Siemens Grade Crossing Predictor of model 4000 or later (5000 and 3000+), the WI can receive crossing statuses over a network. In addition, the WI can receive train speed and direction information in GCP 4000, 5000, and 3000+ messages.

If the WI is interfacing with a legacy GCP 3000 model, the WI is able to view the GCP 3000 logs and configuration parameters, if the appropriate equipment is installed in the GCP 3000 system.

In situations where the typical crossing I/O cannot provide the directional route information needed for the warning time test, the installation can add Wireless Magnetometer (WiMag) sensors to detect trains. The WI can receive the WiMag sensor statuses over a network.

Field personnel can interact with the WI using a web browser user interface (Web UI). The Web UI allows field personnel to adjust system settings, view status, view inspection results, download logs, etc.

Because each location (or class of locations) is different, the WI uses programmable logic to execute the inspections. The logic is loaded into the WI as a Module Configuration File (MCF). The MCF includes configuration settings and relay logic. An application engineer defines the logic and settings using the MCF Configuration Tool (MCT).

OVERVIEW

This Page Intentionally Left Blank

# CHAPTER 3 HARDWARE



The Wayside Inspector (WI) has the following connections and components:

Figure 3-1 Wayside Inspector, A81000 Connectors

The WI has the following connectors, indicators, and components:

| No.                                    | Name                   | No. | Name                         |
|----------------------------------------|------------------------|-----|------------------------------|
| 1.                                     | Power Input & ECD      | 2.  | Isolated Power Output        |
| 3. On-site Personnel Button and Beeper |                        | 4.  | Application LEDs             |
| 5.                                     | Status LEDs            | 6.  | Ethernet Interfaces          |
| 7.                                     | Comms Serial Interface | 8.  | Expansion Slot               |
| 9.                                     | Digital Inputs         | 10. | Battery Inputs               |
| 11.                                    | Relay Outputs          | 12. | AC Power Monitor and Control |

Table 3-1 WI Connectors

### 3.1 POWER INPUT CONNECTOR AND ECD



Figure 3-2 Power Input Connector and ECD

The WI is connected to the 12 VDC (nominal) battery banks as shown in section 6.1. The WI power supply provides 2000 VRMS isolation and complies with AREMA power supply standards.

The WI monitors the applied power input voltage using an internal battery input circuit, which eliminates the need to wire the input power battery bank to a separate battery input. Table 3-2 shows the power input specifications.

| Parameter                   | Value Range                                                     |  |  |
|-----------------------------|-----------------------------------------------------------------|--|--|
| Input Voltage Range         | 8.0 – 20.0 VDC                                                  |  |  |
| Input Current               | 3.0 A max @ 13.8 VDC                                            |  |  |
| Reverse Polarity Protection | Up to 16 VDC                                                    |  |  |
| Isolation                   | 2000 VRMS, 60 Hz, 60 s                                          |  |  |
| ECD Capacity                | 512 MB, formatted for FAT32 file system                         |  |  |
| ECD Performance             | Sequential Read up to 21 MB/s<br>Sequential Write up to 16 MB/s |  |  |
|                             | Enhanced endurance with Advanced<br>Wear Leveling Algorithm     |  |  |
| ECD Interface               | Compatible with USB 2.0 (480 Mbps)                              |  |  |
| ECD Operating Temp          | -40° to +85°C                                                   |  |  |

The External Configuration Device (ECD) allows field personnel to replace the WI with a new unit without re-configuring it. The ECD is attached to the power input connector via a lanyard cable. The ECD is water/moisture resistant, vibration, shock, and electrostatic discharge resistant.

### 3.2 ISOLATED POWER OUTPUT

The WI provides 12 VDC (nominal) isolated power output. The isolated power can be used to power external communication equipment such as cell modems.



Figure 3-3 Isolated Power Output Connector

Table 3-3 lists the specification for the output power.

| Parameter                                | Value Range                              |
|------------------------------------------|------------------------------------------|
| Voltage                                  | 12.0 VDC nominal (follows input voltage) |
| Current Limit                            | 0.5 A max at 12.0 VDC                    |
| Short Circuit/Over Current<br>Protection | Yes                                      |
| Isolation                                | 2000 VRMS, 60 Hz, 60 s                   |

#### Table 3-3 Isolated Power Output Specifications

#### 3.3 ON-SITE PERSONNEL BUTTON AND MAINTAINER ON-SITE MODE

The WI has an On-Site Personnel button, which field personnel use to activate Maintainer On-Site mode.

Maintainer On-Site mode allows field personnel to test and modify the crossing without sending alarm messages to the office. When field personnel press the On-Site Personnel button, the WI goes into Maintainer On-Site mode and starts a timer. The WI will not send alarm messages to the office while in Maintainer On-Site mode. The WI returns to normal operation when the timer expires. The Alarms Suppressed LED will be on while the WI is in Maintainer On-Site mode. The maintainer may re-start the timer for Maintainer On-Site mode by pressing the On-Site Personnel button again, at any time.

The WI has an internal beeper. The beeper will "chirp" when the user presses the On-site Personnel pushbutton to provide audible feedback. The MCF may also control the beeper for application-specific functions.

#### 3.4 APPLICATION LEDS



The WI has eight application programmable LEDs available to the program logic. The eight LEDs are red in color. The application logic in the MCF determines the function of the Application LEDs. There is a space next to each LED to add a sticker or write in the LEDs intended function.

#### 3.5 STATUS LEDS

The WI has LEDs to display system status information.



The Power LED is green. It turns on when power is applied to the WI.

The Health LED is green and driven by software. The Health LED flashes at a rate of 1 Hz when the system is healthy. The Health LED flashes faster when there is a detected hardware problem.

The Alarms Suppressed LED is yellow. It turns ON while in Maintainer On-Site mode and alarms are suppressed. Field personnel activate Maintainer On-Site mode by pressing the On-site Personnel button (see section 6-20 for a description of Maintainer On-Site mode). The WI software must see the button change from "pressed" to "not pressed" to activate the mode, which prevents a failed button from leaving the unit in Maintainer On-Site mode permanently.

The TX/RX Comms LEDs are green and red respectively. The green TX LED briefly flashes when the WI sends a data packet on the Comms serial interface. The red RX LED briefly flashes when receiving a valid data packet.

#### 3.6 ETHERNET INTERFACE LEDS

The Laptop and Network Ethernet connectors each include a yellow and a green LED. The Laptop port is used when field maintenance personnel view the status of tests and equipment via the Web User Interface (Web UI). The yellow LED shows Ethernet link-up status. The yellow LED turns on when Ethernet link-up is established. The green LED shows Ethernet activity. The green LED briefly flashes when Ethernet frames are received or transmitted.

#### 3.7 COMMS SERIAL PORT

The WI has one RS-232 asynchronous serial port, which uses a DB9 male connector with a standard DTE pin arrangement. Table 3-4 lists the Comms serial port specifications and Table 3-5 shows the pin arrangement of the connector.

| Parameter    | Value Range       |  |
|--------------|-------------------|--|
| Baud Rate    | Up to 115,200 bps |  |
| Line Levels  | RS-232 only       |  |
| Clock Modes  | Asynchronous only |  |
| Flow Control | RTS/CTS, None     |  |

| Table 3-4         Comms Serial Port Specifications | Table 3-4 | <b>Comms Serial Port Specifications</b> |  |
|----------------------------------------------------|-----------|-----------------------------------------|--|
|----------------------------------------------------|-----------|-----------------------------------------|--|

| Pin | I/O | Function                  |
|-----|-----|---------------------------|
| 1   | I   | Carrier Detect (CD)       |
| 2   | I   | Receive Data (RXD)        |
| 3   | 0   | Transmit Data (TXD)       |
| 4   | 0   | Data Terminal Ready (DTR) |
| 5   | N/A | Ground (GND)              |
| 6   | I   | Data Set Ready (DSR)      |
| 7   | 0   | Request To Send (RTS)     |
| 8   | Ι   | Clear To Send (CTS)       |
| 9   | N/A | No Connect                |

#### Table 3-5 Comms Serial Port Pin Configuration

#### 3.8 HARDWARE EXPANSION SLOT

The WI has one hardware expansion slot.



Figure 3-5 Hardware Expansion Slot

The expansion slot is reserved for future I/O or communication expansion options.

### 3.9 DIGITAL INPUTS

The WI has a total of 25 digital inputs. The unit has 3 groups of 7 inputs per group. Each group shares a common negative. Each input group is isolated from other input groups and the rest of the system but is not isolated from inputs within the same group. There are 4 additional digital inputs, which are individually isolated with independent negatives. The installation may wire vital signals directly to digital inputs as long as the installation follows the wiring guidelines specified in this manual in CHAPTER 6.

Each input has its own LED indicator to display the state of that input, as determined by software (the LEDs are not directly hardware driven).



Figure 3-6 Digital Input Connectors and LEDs

Table 3-6 lists the specifications for the digital inputs.

| Parameter                   | Value Range              | Comments                    |
|-----------------------------|--------------------------|-----------------------------|
| Voltage Range               | 0 – 120 V (AC or DC)     | See Note                    |
| ON Threshold                | 4.0 VDC                  | See Note                    |
| OFF Threshold               | 1.0 VDC                  | See Note                    |
| Reverse Polarity Protection | Full input voltage range | Reverse polarity always OFF |
| Isolation                   | 2000 VRMS, 60 Hz, 60 sec |                             |

| Table 3-6 | Digital | Input | Specifications |
|-----------|---------|-------|----------------|
|-----------|---------|-------|----------------|

NOTE

The specified ON and OFF DC voltage thresholds apply to the input circuit hardware. The WI executive software further samples and debounces the input to determine the reported input state. The ON and OFF voltage thresholds do not apply when monitoring AC voltage. The system may not reliably detect AC voltage below about 14.0 VRMS and specific de-bounce settings are required to correctly report AC input states.

NOTE

See section 5.5.2 for a description of digital input processing and programming.

### 3.10 BATTERY INPUTS

The WI has 4 battery inputs. Three battery inputs are externally accessible through a WAGO connector. One battery input is internally connected to the power input. The battery inputs are designed to monitor battery banks with voltages ranging up to 36VDC.

Table 3-7 lists the specifications for the battery inputs.

| Parameter     | Value Range              |
|---------------|--------------------------|
| Voltage Range | 0 – 36 VDC               |
| Isolation     | 2000 VRMS, 60 Hz, 60 sec |

| Table 3-7 Battery Input Specification |
|---------------------------------------|
|---------------------------------------|

#### 3.11 RELAY OUTPUTS

The WI has 4 general purpose non-vital relay outputs. Each relay includes both the front (F) and back (B) contacts for normally open (H to F) or normally closed (H to B) wiring options. LED indicators display the status of each relay. Figure 3-7 shows the internal relay hardware:





Table 3-8 lists the specifications for the relay outputs.

Table 3-8 Relay Output Specifications

| Parameter             | Value Range                 |
|-----------------------|-----------------------------|
| Current Limit         | 8 A @ 250 VAC, 5 A @ 30 VDC |
| Isolation             | 2000 VRMS, 60 Hz, 60 sec    |
| Max Switching Voltage | 250 VAC, 30 VDC             |

#### 3.12 AC POWER MONITOR AND CONTROL

The WI has a dedicated input for monitoring 110 and 220 VAC and a dedicated relay output to control the AC power to battery chargers.

The "Line In" pin is for connection to the AC power line wire and the "Neutral" is for connection to the AC power.

The AC CTRL Relay is intended to control an external relay that removes AC power from the installed battery chargers. That is needed to perform the standby power test. The AC CTRL relay is normally open. The contacts will close to control external AC disconnect relays for each battery charger.

Siemens recommends using a 12 V relay with 100 Ohms or greater Relay Resistance Value for the AC CTRL Relay.

The AC CTRL relay has the same ratings as the general purpose relays, except only the Heel and Front contacts are available.

#### 3.13 MOUNTING

The WI is mounted on a wall, a shelf, or a 19-inch rack. All WI connectors and indicators are front facing.



Figure 3-8 WI Mounting Dimensions

HARDWARE

This Page Intentionally Left Blank

# CHAPTER 4 ANCILLARY EQUIPMENT

## 4.1 GROUND FAULT TESTER 2 (GFT2)



Figure 4-1 Ground Fault Tester 2: A81010-01 (9 V – 16.5 V)







AN INTERNAL FAILURE OF THE GFT 2 MAY RESULT IN A GROUND OF UP TO 0.8 mA ON THE BATTERY BEING MONITORED. THEREFORE, THE GFT 2 SHOULD NOT BE USED IN SAFETY CRITICAL APPLICATIONS THAT COULD BE ADVERSELY AFFECTED BY A GROUND OF UP TO 0.8 mA.

THE GFT 2 CANNOT BE GUARANTEED TO CORRECTLY DETECT AND/OR REPORT GROUND FAULTS UNDER ALL FAILURE CONDITIONS.

NOTE

#### NOTE

Periodic independent ground fault testing should be performed during routine maintenance of the system.

The A81010 Ground Fault Tester 2 (GFT 2) is a user configurable device used to monitor the leakage resistance between battery terminals and earth ground.

The GFT 2 is available in two hardware configurations, A81010-01 and A81010-02. The –01 configuration is used with 9 to 16 volt batteries. See Figure 4-1. The –02 configuration is used with 24 to 30 volt batteries. See Figure 4-2.

The unit can also be placed in test mode where a simulated ground fault of 1 mA is placed internally on an isolated battery input to verify that the unit is properly detecting faults.

A separate internal circuit is used to verify the GFT 2's health, as indicated by the status of the GFT FAIL LED on the front panel. The GFT 2 can be powered by a 9-30 VDC (12 VDC nominal) operating battery independently from the batteries being monitored.

The GFT 2 has an internal de-bounce circuit that monitors the channel faults for 10+/-1 sec from the instant the GFT 2 detects the presence or removal of the fault, before confirming the status of the fault visually, via LED indicators on the front panel, and to the WI via any WI digital input.

The GFT 2 has been designed using fail-safe design principles to ensure that in the event of a failure, no more than a 0.8 mA ground can be placed on the battery being monitored.

For additional information regarding the GFT 2, see *Siemens Ground Fault Tester 2 (GFT 2), A81010 -01, -02 User's Guide, SIG-00-15-06*.



## 4.2 GRADE CROSSING PREDICTOR MODELS 4000, 5000, AND 3000+

Figure 4-3 The Model 4000/5000 Grade Crossing Predictor (GCP)

## 4.2.1 System Configurations

The Model 4000, 5000, and 3000+ Grade Crossing Predictors (GCPs) are modular microprocessorcontrolled predictor systems that are deployed to continually monitor the approach(es) to railroad grade crossings.

The Model 4000 and 5000 GCPs allow for control of the lamps, gates, and bells associated with those crossings. The Model 5000 GCP and some configurations of the Model 4000 GCP have provision for an optional plug-in SEAR event recorder.

The Model 4000/5000 GCPs are available in several case configurations. A Model 4000 GCP with a legacy display (A80407) uses the GCP's Echelon communication protocol through the Wayside Access Gateway (WAG) to communicate with the WI via the Ethernet. A Model 4000 GCP with the currently released display module (A80485) and the Model 5000/3000+ GCPs have Ethernet connectivity already built in to pass information via the Ethernet.

For further information regarding the Model 4000 GCP, see *Siemens Microprocessor Based Grade Crossing Predictor Model 4000 Family Application Guidelines, SIG-00-08-06*.

For the Model 5000 GCP, see *Siemens Microprocessor Based Grade Crossing Predictor Model* **5000 Family Application Guidelines, SIG-00-08-06**.

For the Model 3000+ GCP, see SIG-00-17-03, (Instruction and Installation), SIG-00-18-01 (Field Manual), and SIG-00-17-04 (Application Guidelines).

#### 4.3 WIRELESS MAGNETOMETER (WIMAG) SYSTEM

The WI can receive status information from a Wireless Magnetometer (WiMag) system. The WiMag system is made up of an Access Point (or base station) and at least one sensor. Optionally, the system may use a repeater to increase the RF range of the sensors. Figure 4-4 shows an example system.



Figure 4-4 The Wireless Magnetometer (WiMag) Sensor System

The Access Point reports the status of each sensor in the system to the WI over a network using UDP messages. The sensor statuses are reported at a periodic rate. The sensor reports "detected" or "not detected" status and an error status. When a train is above a WiMag sensor, it will report "detected."

The user may set the UDP port number and a timeout value for the Access Point messages. The timeout is used to report the health of the link with the Access Point.

The user can set a channel name, OFF name, and ON name for each sensor. The user can also set ON and OFF de-bounce values for each sensor (just like discrete digital inputs). These names are used when adding state change entries to the Event Log.

The WI can receive statuses from only 1 Access Point and at most 20 WiMag sensors.

The application engineer may use the "detected" and "error" statuses of each sensor and the "link OK" status of the Access Point in the MCF logic.

For a more detailed description of the WiMag Sensor System, see Siemens WiMag Vehicle Detection System General Handbook, Part No. 667/HB/47200/000.
# 4.4 ILOD

The iLOD is the Intelligent Light Out Detector module that can be used to monitor as the current to flashing crossing lamps or other devices ( up to 30 A maximum, peak). The iLOD is connected to the WI to a WAG via Echelon LAN, and the WAG is connected to the Wayside Inspector via Ethernet. The iLOD Unit is designed for wall, shelf, or rack mounting (via mounting plates.) It does not require forced ventilation and the iLOD is rated for a temperature range of -40°C to +71°C (-40°F to +160°F). It is provided with internal secondary and tertiary surge protection circuits on the power input. Siemens Mobility, Inc. strongly recommends installing primary surge protection on any external lines connecting to the equipment.



#### Figure 4-5 iLOD Module

DC Power is supplied to each unit via a 4-pin connector accessible from the front panel. The power pins are labeled "B" and "N" to indicate polarity (B is positive, N is negative or return) and the connectors are keyed to ensure proper orientation. The following table presents the pinout for the power and Echelon interface connector for the iLOD Unit.

| PIN NUMBER | LABEL | SIGNAL                        |
|------------|-------|-------------------------------|
| 1          | ECH   | Echelon B Wire                |
| 2          | ECH   | Echelon A Wire                |
| 3          | N     | Battery Return (negative)     |
| 4          | В     | Battery Voltage In (positive) |

| Table 4-1 Pinout for Power and Echelon Interface Conne | ctor |
|--------------------------------------------------------|------|
|--------------------------------------------------------|------|

The WI connects to up to 4 iLOD modules through a WAG module. The WAG module performs media conversion between the Ethernet network of the WI and the Echelon twisted-pair network used by iLOD modules. Figure 4.4 shows the connections of iLOD modules to a WI through a WAG.



Figure 4-6 iLOD Current Sensor Wiring

For a more detailed description of the iLOD system, see the *Siemens iLOD manual, SIG-00-03-05-005*, on how the iLOD Current Sensors should be wired into the system.

See section 5.5.2.7 for the iLOD Echelon network installation procedure.

See section 5.6 for the iLOD lamp calibration procedure.

# 4.5 WAG

The Wayside Access Gateway (A53457) converts Echelon® messages to Ethernet messages. This lets Siemens equipment such as the HD/Link, use Ethernet Networks for communications. The Wayside Access Gateway (WAG) can also convert Echelon received messages to serial messages. This allows the system to use modems for communication between Siemens equipment. The figure on the following page shows an example of how devices in the field can be connected and the interaction between devices.



Figure 4-7 General Network Overview

# 4.6 MTSS

The Mini Trackside Sensor (MTSS) is the heart of the Trackside Sensor Package and is mounted inside the gate-mechanism enclosure. It monitors local inputs and sends the acquired data to the WI. Data from the various sensor inputs is assembled into a serial bitstream that only requires a single connection to a spare Digital Input on the WI. The MTSS interfaces with the various monitored signals via connector J1, a 12-pin, mass-terminated Eurostyle terminal block (board header and wiring plug), and provides LED indicators for power, when the gate is horizontal, and the bell is ringing.

See the MTSS user manual, SIG-00-03-05-001, for further details.

### 4.7 E-BELL

The Electronic Bell is equipped with a bell sensing circuit that monitors both electrical and audio bell characteristics and continuously reports the status back to the MTSS while the Electronic bell is powered. The microphone inside the Electronic bell "listens" for the sound of the bell. When the Electronic bell is used with the MTSS in the gate mechanism and a WI in the bungalow, the diagnostic information can alert the railroad of a bell system failure.

See the *E-Bell user manual, SIG-00-04-09*, for further details.

# 4.8 GATE TIP SENSOR

The Gate-Tip Sensor (GTS) is mounted inside the wiring case (junction box) of the tip-light (the last light on the gate arm) or fastened to the gate arm itself. The Gate-Tip Sensor monitors the position of the gate arm and reports it back to the Mini Trackside Sensor when the gate is within 5 degrees of horizontal. The GTS has two cable options - without a Reco light cable (80281-1) or with a Reco light cable (80281-2). When the Gate-Tip Sensor is used with the MTSS in the gate mechanism and a WI in the bungalow, the diagnostic information can alert the railroad when a gate arm is out of position (e.g., gate arm knocked off by passing vehicle).

The installation of the remote sensors (GTS and Electronic bell) does not require additional wires or any rewiring of the existing grade-crossing components. The MTSS hooks up to existing wires inside the gate mechanism enclosure and requires only one free wire to send data back to the WI.

See the *MTSS user manual, SIG-00-03-05-001*, for further details. This manual references the GTS as part of the SEAR II accessory group.

# CHAPTER 5 CONFIGURATION & PROGRAMMING

# 5.1 WI APPLICATION GUIDELINES & MCF CONFIGURATION TOOL

This manual provides guidance to field personnel to install and setup the Wayside Inspector (WI). The *Wayside Inspector MCF Configuration Tool Application Guidelines, SIG-00-16-05*, provides a reference to the application engineer for all WI configuration settings and their purpose. The Module Configuration File Configuration Tool (MCT), shown in Figure 5-1, provides a means for the application engineer to create a Module Configuration File (MCF).

| HCF Configuration Tool – 🗆 X              |                                                          |              |        |          |               |        |  |  |  |
|-------------------------------------------|----------------------------------------------------------|--------------|--------|----------|---------------|--------|--|--|--|
| File Edit Project Help                    |                                                          |              |        |          |               |        |  |  |  |
| ti C⇒ E C C C C C C C C C C C C C C C C C |                                                          |              |        |          |               |        |  |  |  |
| General ^                                 | Num                                                      | On Names 🌅   | ^      | Num      | Off Names     | ^      |  |  |  |
| AC Power                                  | 1                                                        | 02           | 1      | 1        | 0ff           |        |  |  |  |
| State Names                               |                                                          | Netlined     |        |          | Netllerd      |        |  |  |  |
| <ul> <li>Digital Inputs</li> </ul>        | 2                                                        | Not Used     |        | 2        | Not Used      |        |  |  |  |
| DI1 [Discrete Input]                      | 3                                                        | Not Used     |        | 3        | Not Used      |        |  |  |  |
| DI2 [Discrete Input]                      | 4                                                        | Not Used     |        | 4        | Not Used      |        |  |  |  |
| DI3 [Discrete Input]                      | 5                                                        | Not Used     |        | 5        | Not Used      |        |  |  |  |
| DI4 [Discrete Input]                      | 6                                                        | Not Used     |        | 6        | Not Used      |        |  |  |  |
| DIS [Discrete Input]                      | 7                                                        | Not Used     |        | 7        | Not Used      |        |  |  |  |
| Dio [Discrete Input]                      | 8                                                        | Not Used     | Ť.     | 8        | Not Used      |        |  |  |  |
| DI8 [Discrete Input]                      | 9                                                        | Not Used     |        | 9        | Not Used      |        |  |  |  |
| DI9 [Discrete Input]                      | 10                                                       | Not Used     |        | 10       | Not Used      |        |  |  |  |
| DI10 [Discrete Input]                     | 11                                                       | Not Used     |        | 11       | Not Used      |        |  |  |  |
| DI11 [Discrete Input]                     | 12                                                       | Not Used     |        | 12       | Not Used      |        |  |  |  |
| DI12 [Discrete Input]                     | 12                                                       | Not Used     |        | 12       | Not Used      | i T    |  |  |  |
| DI13 [Discrete Input]                     | 15                                                       | Not Used     |        | 15       | Not Used      |        |  |  |  |
| DI14 [Discrete Input]                     | 14                                                       | Not Used     | $\sim$ | 14       | Not Used      | $\sim$ |  |  |  |
| DI15 [Discrete Input]                     | Num                                                      | Toggle Names | 1      | Num      | Batteny Names | 1      |  |  |  |
| DI16 [Discrete Input]                     | - North                                                  |              |        | - Num    |               |        |  |  |  |
| DI17 [Discrete Input]                     | <u> -</u>                                                | loggling     |        | <u> </u> | Batt          |        |  |  |  |
| DI18 [Discrete Input]                     | 2                                                        | Not Used     |        | 2        | Not Used      |        |  |  |  |
| DI19 [Discrete Input]                     | 3                                                        | Not Used     |        | 3        | Not Used      |        |  |  |  |
| DI20 [Discrete Input]                     | 4                                                        | Not Used     |        | 4        | Not Used      |        |  |  |  |
| DI21 [Discrete Input]                     | 5                                                        | Not Used     |        | 5        | Not Used      |        |  |  |  |
| Di22 [Discrete input]                     | 6                                                        | Not Used     |        | 6        | Not Used      |        |  |  |  |
| DI25 [Discrete Input]                     | 7                                                        | Not Used     | Ť.     | 7        | Not Used      |        |  |  |  |
| DI25 [Discrete Input]                     | 8                                                        | Not Used     | 1      | 8        | Not Used      |        |  |  |  |
| Analog Inputs                             |                                                          |              | 1      |          |               |        |  |  |  |
| Belay Outputs                             |                                                          |              |        |          |               |        |  |  |  |
| ▷ LEDs                                    |                                                          |              |        |          |               |        |  |  |  |
| Output Window                             | г                                                        |              |        |          |               |        |  |  |  |
|                                           | \\ <b>M</b>                                              | \TestCeture  |        |          |               |        |  |  |  |
| Ready C:\Siemens\MCFConfigurationTool     | Keady C:Siemens/MCFConfigurationTool/Workspace/TestSetup |              |        |          |               |        |  |  |  |

Figure 5-1 MCF Configuration Tool

An application engineer tailors the functionality of the WI by writing a Module Configuration File (MCF). The MCF includes configuration settings and the relay logic. The application engineer uses the MCT to create the MCF. The MCT presents screens to define the MCF configuration settings, configure timers and logic states, and write the logic using relay logic diagrams. For information regarding the MCF and the MCT, see manual *SIG-00-16-05*.

# 5.2 WEB USER INTERFACE (WEB UI)

The field maintainer will connect a laptop computer to the Laptop Ethernet port to perform required maintenance or setup, upload software, and download reports. Office users may monitor the status of the WI remotely using the network port on the face of the WI. Office users can also reprogram and install software updates remotely with validation provided by on-site personnel.

# 5.3 LOGGING IN TO THE WEB UI

The WI Web UI supports the following web browsers:

- IE latest version
- Firefox latest version
- Chrome latest version

When a PC is connected to the WI's Laptop Ethernet port, the WI will automatically assign the connected computer an IP address using DHCP. If the WI is configured for secure web access, type <a href="https://192.168.255.81">https://192.168.255.81</a> in your web browser while connected to the Laptop Ethernet Port. The "s" at the end of "http" ensures the computer uses the secure version of HTTP. The browser may display the following screens regarding the connection.



Figure 5-2 Connection Privacy Warning Screens

Click the **Advanced** option and select the option to proceed to the IP address. The Web UI will then appear. If the WI is not configured with secure access, the web browser user interface may be accessed using <a href="http://192.168.255.81">http://192.168.255.81</a>.

The WI Web UI log in screen will now display and prompt the user to enter the password as shown in the following figure.

| SIEMENS              |                                   |              | <br> | <br> |
|----------------------|-----------------------------------|--------------|------|------|
| Wel                  | lcome to Waysi                    | de Inspector |      |      |
| User f<br>Passw      | Name : Admin V<br>word :<br>Cogin |              |      |      |
|                      |                                   |              |      |      |
| @ Copyright 2020 Sie | rmens. All rights reserved.       |              |      |      |
|                      |                                   |              |      |      |
|                      |                                   |              |      |      |
|                      |                                   |              |      |      |

Figure 5-3 WI Web UI Login Screen

# 5.4 WEB UI OVERVIEW

The WI Web UI has six top level menu icons that contain all the sub-level menus needed to configure, calibrate, monitor status, download logs, upload software, and view alarms.



Figure 5-4 Web UI Menus

# 5.5 CONFIGURATION

The screens in the following section are found under the Configuration menu of the Web UI. This section provides information regarding each of the Web UI Configuration menu screens that are used to program the WI.

The MCF Configuration parameter values are set by the application engineer for each MCF. Field maintainers can neither create nor add values that do not already appear in pull down entry lists in the MCF Configuration section.

Field maintainers that modify the WI configuration settings must ensure the entries are in accordance with the railroad/agency's approved site drawings.

#### 5.5.1 Site Configuration

For each WI setup, the unit must be uniquely configured for that site. This is done using the Site Configuration screen as shown below.

| Configuration Calibration & Stat      | tus Monitor Reports & Logs Mainte | nance Alarms           |
|---------------------------------------|-----------------------------------|------------------------|
| Configuration                         | Site Configuration                |                        |
| Site Configuration                    | 🔒 Save 🛛 😤 Refresh 🔒 Default      | ]                      |
| <ul> <li>MCF Configuration</li> </ul> |                                   |                        |
| Networking                            | Site Name                         | Hills Run Rd           |
| WAMS /RailFusion                      | DOT Number                        | 102575N                |
| Serial Port                           | Mile Post                         | 10.25v                 |
| Log Setup                             |                                   | 10.239                 |
| ATCS Message Routing                  | Time Zone                         | Eastern (GMT-5:00) 🔹 * |
| Time Management                       | ATCS Address                      | 7 125 550 002 99       |
| ▶ Security                            |                                   |                        |
| ▶ WMS                                 |                                   |                        |
| Set to Default                        |                                   |                        |

Figure 5-5 Site Configuration Screen



The top-level Site Configuration screen allows the field maintainer to enter the following parameter's values:

- Site Name
- DOT Number
- Mile Post
- Time Zone
- ATCS Address

| Parameter    | Range                                                                                                                                                                                                                                               | Default          | Description                                            |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------|
| Site Name    | 20 characters                                                                                                                                                                                                                                       | Inspection Site  | The name of the site printed on reports and downloads. |
| DOT Number   | 7 characters                                                                                                                                                                                                                                        | 000000A          | The DOT number<br>assigned to the<br>installation      |
| Mile Post    | 20 characters                                                                                                                                                                                                                                       | 000.0            | The mile post<br>location of the<br>installation.      |
| Time Zone    | Greenwich Mean Time (GMT),<br>Eastern,<br>Central,<br>Mountain,<br>Pacific,<br>Alaska,<br>Atlantic,<br>Arizona (no DST),<br>Newfoundland,<br>Western Australia,<br>Central Australia (no DST),<br>Eastern Australia,<br>Eastern Australia (no DST). | Eastern          | The time zone of the installation.                     |
| ATCS Address | Type 7 ATCS address                                                                                                                                                                                                                                 | 7.620.100.100.03 | The ATCS address of the installation.                  |

# Table 5-1 Site Configuration Parameter Values

# 5.5.2 MCF Configuration

The MCF Configuration menu opens the submenus shown in Figure 5-6. The exact MCF Configuration menus will vary based on the selections made when creating the MCF.

| <ul> <li>MCF Configuration</li> </ul>           | MCF Configuration           |
|-------------------------------------------------|-----------------------------|
| General configuration                           | General configuration       |
| Digital Input configuration                     | Digital Input configuration |
| <ul> <li>Battery Input configuration</li> </ul> | Battery Input configuration |
| Relay Output configuration                      | Relay Output configuration  |
| ▶ iLOD                                          | WiMag configuration         |
| <ul> <li>GCP Interface configuration</li> </ul> | Speed Measurement           |
| Logic configuration                             | Logic configuration         |
| State Names                                     | State Names                 |
| Set to default                                  | Set to default              |

#### Figure 5-6 Example MCF Configuration Submenus

# 5.5.2.1 General Configuration

The General Configuration menu has two submenu screens:

- Maintainer On Site
- AC Power

#### **Maintainer On Site**

From this screen the user can set the amount of time the WI will stop sending alarms after a local maintainer has confirmed Maintainer On Site with the "On-Site Personnel" button on the front of the WI Unit.

| Configuration                         | Maintainer On Site            |
|---------------------------------------|-------------------------------|
| Site Configuration                    | 🗟 Save 🛃 Refresh              |
| <ul> <li>MCF Configuration</li> </ul> |                               |
| 🔻 General configuration               | Maintainer on Site Time (min) |
| Maintainer On Site                    |                               |
| AC Power                              |                               |

Figure 5-7 Maintainer On Site Screen

| Table 5-2 | Maintainer | <b>On Site</b> | Parameter | Values |
|-----------|------------|----------------|-----------|--------|
|-----------|------------|----------------|-----------|--------|

| Parameter Name             | Range                | Default    | Description                                                                                                                                           |
|----------------------------|----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maintainer On Site<br>Time | 10 to 180<br>minutes | 30 minutes | This value determines the length of time the WI<br>will remain in Maintainer On Site mode when field<br>personnel press the On-Site Personnel button. |

#### **AC Power**

AC Power parameters, ranges and defaults are listed in Table 5-3.

| Configuration                                                         | AC Power                                |         |
|-----------------------------------------------------------------------|-----------------------------------------|---------|
| Site Configuration                                                    | 📕 Save 📑 Refresh                        |         |
| <ul> <li>MCF Configuration</li> </ul>                                 |                                         |         |
| <ul> <li>General configuration</li> <li>Maintainer On Site</li> </ul> | AC Power Monitor Name                   | ACPWR * |
| AC Power                                                              | AC Power Monitor Off Name               | Off*    |
| <ul> <li>Digital Input configuration</li> </ul>                       | AC Power Monitor On Name                | On*     |
| <ul> <li>Battery Input configuration</li> </ul>                       |                                         |         |
| <ul> <li>Relay Output configuration</li> </ul>                        | AC Power Monitor Off Debounce<br>(msec) | 1200    |
| ▶ iLOD                                                                | AC Power Monitor On Debounce            | 0 *     |
| GCP Interface configuration                                           | (msec)                                  |         |
| Logic configuration                                                   | AC Power Control Name                   | ACRLY * |
| State Names                                                           | AC Power Control Off Name               | Ofî* ▼  |
| Set to default                                                        | AC Power Control On Name                | On*     |
| Networking                                                            |                                         |         |

Figure 5-8 AC Power Screen

| Parameter Name                 | Range                  | Default | Description                                                                                                                                                             |
|--------------------------------|------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC Pwr Monitor<br>Name         | 20<br>characters       | ACPWR   | Name used when logging state changes in the event log and included on the configuration report.                                                                         |
| AC Pwr Monitor<br>On Name      | On state<br>name list  | On      | Name used for the ON state when logging state changes<br>in the event log. Name is selected from a user definable<br>list of possible ON state names.                   |
| AC Pwr Monitor<br>Off Name     | Off state<br>name list | Off     | Name used for the OFF state when logging changes in the event log. Name is selected from a user definable list of possible OFF state names.                             |
| AC Pwr Monitor<br>Off Debounce | 0 to<br>60,000 ms      | 1000    | Debounce timer to declare the input OFF. If the input is ON, the WI must not detect energy on the input for this period of time, continuously, before declaring it OFF. |
| AC Pwr Monitor<br>On Debounce  | 0 to<br>60,000 ms      | 0       | Debounce timer to declare the input ON. If the input is OFF, the WI must detect energy on the input for this period of time, continuously, before declaring it ON.      |
| AC Pwr Control<br>Name         | 20<br>characters       | ACRLY   | Name used when logging commanded state change in the event log and included on the configuration report.                                                                |
| AC Power<br>Control On Name    | On state<br>name list  | On      | Name used for the ON state when logging state changes<br>in the event log. Name is selected from a user definable<br>list of possible ON state names.                   |
| AC Power<br>Control Off Name   | Off state<br>name list | Off     | Name used for the OFF state when logging changes in the event log. Name is selected from a user definable list of possible OFF state names.                             |

 Table 5-3
 AC Power Parameter Values

NOTE

### NOTE

The MCF may (optionally) lock the names of WI I/O to prevent field personnel from changing the channel names and state names of WI I/O.

# 5.5.2.2 Digital Input Configuration 1 - 25

The WI monitors the crossing using digital inputs. The user can set each digital input to operate in one of four modes: Not Used, Discrete, GFT, or MTSS.



Figure 5-9 Digital Input Configuration Screen

There are 25 separate Digital Inputs. The MCF will contain the default values. Field personnel may modify the values if specified in the agency/railroad's approved site plans. Alternatively, the MCF may have some or all of the fields locked, thereby preventing changes to the channel name and state names of that channel.

#### Not Used Inputs

In some cases, the user may wish to ignore inputs without removing external wiring connected to that input. The user may set the input to "Not Used." In that case, the WI will not process the input or log events for that input.

# **Discrete Inputs**

The WI considers discrete digital inputs to be in one of the following states: OFF, ON, or TOGGLING. When the software detects a state change, it adds an entry to the event log. The log entry includes the name of the input and a name for the state.

For example, an input named "XR" with an OFF state name of "DOWN" and an ON state name of "UP would be logged as "XR DOWN" when the input turns off. The software would log "XR UP" when the input turned back on. The following is an example from an Event report:

B85F 07-Apr-2016 13:42:50.35 DI XR UP

The software determines the input's state by sampling the input hardware. The inputs are de-bounced to prevent logging state changes caused by noise and to prevent application logic from acting on transient states. Before the software declares the input is ON, it must have consecutive energized samples for the on de-bounce time.

The software implements toggle detection to prevent filling up the log if external relays or equipment fails. When the software detects the input is toggling, it will log one single event rather than a long sequence of ON/OFF entries. If the software sees 4 or more changes on the input within the toggle period, it will declare the input as toggling.

The input state is available to the MCF for use in relay logic.

# **GFT Inputs**

The WI can process the pulsed data signal used by the GFT. There are 4 bits of data sent by the GFT on the pulsed data signal: GFT Health (Good or Bad), GFT Mode (Normal or Test), Battery 1 Status (Fault/No Fault), Battery 2 Status (Fault/No Fault). The WI can also detect the "stuck low" and "stuck high" errors on the connection. The WI will log changes to each GFT status bit and the line status. Each status bit and the line status are available to the MCF for use in relay logic.

#### **MTSS Inputs**

The WI can process the pulsed data signal used by the MTSS. There are 5 bits of data sent by the MTSS on the pulsed data signal: Gate Up, Gate Down, Gate Level, Bell Power, and Bell Audio, each of which can be on or off.

The WI can also detect the "stuck low" and "stuck high" errors on the connection. The WI will log changes to each MTSS status bit and the line status. Each status bit and the line status are available to the MCF for use in relay logic.

| Parameter<br>Name | Range                                           | Default           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-------------------|-------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name              | 20<br>characters                                | DIxx              | Name used when logging state changes in the event log and included on the configuration report. This name is NOT used in the relay logic.                                                                                                                                                                                                                                                                                                                       |  |
| Channel<br>Type   | Discrete<br>Input,<br>GFT,<br>MTSS,<br>Not Used | Discrete<br>Input | rete<br>t<br>Selects the type of function the input used for. If Discrete In<br>logs OFF, ON, or TOGGLE states. If GFT, the input is wired<br>an external Ground Fault Tester and individual ground fault<br>states are logged. If MTSS the input is wired to an external<br>MTSS and individual Mini Track Side Sensor states are log<br>If Not Used, the input channel is ignored and nothing will be<br>logged, regardless of physical changes on the input. |  |
| On Name           | On state<br>name list                           | On                | Name used for the ON state when logging state changes in the event log. Name is selected from a user definable list of possible ON state names.                                                                                                                                                                                                                                                                                                                 |  |
| Off Name          | Off state<br>name list                          | Off               | Name used for the OFF state when logging changes in the event log. Name is selected from a user definable list of possible OFF state names.                                                                                                                                                                                                                                                                                                                     |  |
| Toggle<br>Name    | Toggle<br>state name<br>list                    | Toggle            | Name used for the TOGGLE state when logging changes in the event log. Name is selected from a user definable list of possible TOGGLE state names.                                                                                                                                                                                                                                                                                                               |  |
| Toggle<br>Period  | 0 to 60,000<br>ms                               | 1000 ms           | If an input changes state 4 or more times within the toggle period, the WI will record the input as "TOGGLING".                                                                                                                                                                                                                                                                                                                                                 |  |
| Off<br>Debounce   | 0 to 60,000<br>ms                               | 100 ms            | Debounce timer to declare the input OFF. If the input is ON the WI must not detect energy on the input for this period of time, continuously, before declaring it OFF.                                                                                                                                                                                                                                                                                          |  |
| On<br>Debounce    | 0 to 60,000<br>ms                               | 100 ms            | Debounce timer to declare the input ON. If the input is OFF, the WI must detect energy on the input for this period of time, continuously, before declaring it ON.                                                                                                                                                                                                                                                                                              |  |

Table 5-4 Digital Input Parameter Values

# 5.5.2.3 Battery Input Configuration

The WI monitors the battery banks at the crossing using the battery inputs. The software measures the voltage on the input by sampling the input every **Sample Period**. After sampling, the software averages the last **Average Count** samples to determine the voltage. If the voltage differs from the last logged voltage by the **Resolution** setting or greater, the software adds an entry to the Event log. The log entry includes the user-configured name of the battery bank and averaged voltage to the tenth of a volt. (e.g. OB 13.8V).

The software can compare the last logged voltage to up to 4 voltage thresholds. If the voltage is greater than or equal to the threshold, the software sets a logic state, which the MCF can use in relay logic.

| Configuration                                                                        | Battery Input 1         |        |
|--------------------------------------------------------------------------------------|-------------------------|--------|
| Site Configuration                                                                   | 📕 Save 💋 Refresh        |        |
| <ul> <li>MCF Configuration</li> </ul>                                                |                         |        |
| General configuration                                                                | Name                    | Batt1  |
| <ul> <li>Digital Input configuration</li> <li>Battery Input configuration</li> </ul> | Resolution (V)          | 0.5    |
| Battery Input 1                                                                      | Sample Period (msec)    | 100    |
| Battery Input 2<br>Battery Input 3                                                   | Average Count           | 10 .   |
| Power Input                                                                          | Voltage Threshold 1 (V) | •      |
| <ul> <li>Relay Output configuration</li> </ul>                                       | Voltage Threshold 2 (V) | *      |
| GCP Interface configuration                                                          |                         |        |
| Logic configuration                                                                  | Voltage Threshold 3 (V) | 0.0 *  |
| <ul> <li>State Names</li> <li>Set to default</li> </ul>                              | Voltage Threshold 4 (V) | <br>00 |

Figure 5-10 Battery Input Configuration Screen

There are four separate Battery Inputs (Battery Input 1 - 3 and Power Input). If not preset in the MCF, the field maintainer will enter the values as specified in the Agency/Railroad's approved site diagram. Typically, the following values are entered: Name, Resolution (V), Sample Period (msec), Average Count, VThreshold 1 Use Field Cal Value, Voltage Threshold 1 (V), VThreshold 2 Use Field Cal Value, Voltage Threshold 2 (V), VThreshold 3 Use Field Cal Value, Voltage Threshold 3 (V), VThreshold 4 Use Field Cal Value, Voltage Threshold 4 (V). Alternatively, the MCF may have some or all of the fields locked, thereby preventing changes to the channel name and state names of that channel. Full details on each parameter can be found in Table 5-5.

| Parameter<br>Name      | Range                | Default | Description                                                                                                                                             |
|------------------------|----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                   | 20<br>characters     | BATTx   | Name used when logging state changes in the event log and included on the configuration report.                                                         |
| Resolution             | 0.1V to<br>36.0V     | 0.5V    | Required change in voltage before the executive will log an entry.                                                                                      |
| Sample<br>Period       | 100ms to<br>60,000ms | 100ms   | How often the executive will sample the input voltage.                                                                                                  |
| Average<br>Count       | 1 to 32              | 10      | The number of consecutive samples the executive will average together to determine the input's voltage.                                                 |
| Voltage<br>Threshold 1 | 0V to 36V            | 0V      | If the last logged voltage is greater than or equal to this value, the executive will set the "Above Threshold 1" logic state for this battery channel. |
| Voltage<br>Threshold 2 | 0V to 36V            | 0V      | If the last logged voltage is greater than or equal to this value, the executive will set the "Above Threshold 2" logic state for this battery channel. |
| Voltage<br>Threshold 3 | 0V to 36V            | 0V      | If the last logged voltage is greater than or equal to this value, the executive will set the "Above Threshold 3" logic state for this battery channel. |
| Voltage<br>Threshold 4 | 0V to 36V            | 0V      | If the last logged voltage is greater than or equal to this value, the executive will set the "Above Threshold 4" logic state for this battery channel. |

 Table 5-5
 Battery Inputs Parameter Values

#### 5.5.2.4 Relay Output Configuration

The WI commands the relay outputs to states as defined by the MCF. Like discrete digital inputs, each relay output has a: Name, Off Name, On Name and Toggle Name. When relay outputs are commanded to change state, the software adds an entry into the Event log showing the channel name and newly commanded state (e.g. TLITE FLASH).

| Configuration                                   | Relay Output 2       |            |  |
|-------------------------------------------------|----------------------|------------|--|
| Site Configuration                              | 🖥 Save 🔗 Refresh     |            |  |
|                                                 |                      |            |  |
| <ul> <li>General configuration</li> </ul>       | Name                 | PW2 *      |  |
| <ul> <li>Digital Input configuration</li> </ul> |                      |            |  |
| <ul> <li>Battery Input configuration</li> </ul> | On Name              | On * 🔹     |  |
| 👻 Relay Output configuration                    | Off Name             | 0ff*       |  |
| Relay Output 1                                  |                      |            |  |
| Relay Output 2                                  | Toggle Name          | Toggling * |  |
| Relay Output 3                                  | Toggle Period (msec) | 1000       |  |
| Relay Output 4                                  |                      |            |  |
| ▶ iLOD                                          | Duty Cycle           | 50 *       |  |

Figure 5-11 Relay Output Configuration Screen

The software automatically toggles the relay output at a user-programmable toggle rate and duty cycle when commanded to the Toggle state. The application engineer does not need to write MCF timer logic to turn the relay off and on.

There are four separate Relay Outputs. If not preset in the MCF, the field maintainer will enter the values as specified in the agency/railroad's approved site diagram. Typically, the following values are entered: Name, On Name, Off Name, Toggle Name, Toggle Period (msec), and Duty Cycle. Alternatively, the MCF may have some or all of the fields locked, thereby preventing changes to the channel name and state names of that channel.

| Parameter        | Range                     | Default | Description                                                                                                                                           |
|------------------|---------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name             | 20 characters             | RLYx    | Name used when logging state changes in the event log and<br>included on the configuration report. This name is NOT used<br>in the relay logic.       |
| On Name          | On state<br>name list     | On      | Name used for the ON state when logging state changes in<br>the event log. Name is selected from a user definable list of<br>possible ON state names. |
| Off Name         | Off state<br>name list    | Off     | Name used for the OFF state when logging changes in the event log. Name is selected from a user definable list of possible OFF state names.           |
| Toggle<br>Name   | Toggle state<br>name list | Toggle  | Name used for the TOGGLE state when logging changes in the event log. Name is selected from a user definable list of possible TOGGLE state names.     |
| Toggle<br>Period | 100ms to<br>60,000ms      | 1000ms  | If commanded to toggle, this is the period of time for each toggle cycle.                                                                             |
| Duty Cycle       | 5% to 95%                 | 50%     | If commanded to toggle, the percentage of the toggle cycle for the relay output to be ON.                                                             |

 Table 5-6
 Relay Outputs Parameter Values

# 5.5.2.5 WiMag Configuration

# WiMag General

| Configuration Status Monitor Rep                                               | ts & Logs Maintenance Alarms   |
|--------------------------------------------------------------------------------|--------------------------------|
| Configuration                                                                  | ViMag General                  |
| Site Configuration                                                             | 🗟 Save) 🥭 Refresh              |
| MCF Configuration                                                              |                                |
| <ul> <li>General configuration</li> <li>Digital Input configuration</li> </ul> | UDP Listen Port 7253 *         |
| <ul> <li>Battery Input configuration</li> </ul>                                | Base Status Timeout (sec) 10 * |
| <ul> <li>Relay Output configuration</li> </ul>                                 |                                |
| <ul> <li>WiMag configuration</li> </ul>                                        |                                |
| WiMag General                                                                  |                                |

Figure 5-12 WiMag General Screen

The user may set the UDP port number and a timeout value for the Access Point messages. The timeout is used to report the health of the link with the Access Point.

The field maintainer will enter the values as specified in the agency/railroad's approved site diagram. Alternatively, the MCF may have some or all of the fields locked, thereby preventing changes to the channel name and state names of that channel.

| Parameter Name         | Range      | Default | Description                                                                                                                        |
|------------------------|------------|---------|------------------------------------------------------------------------------------------------------------------------------------|
| UDP Listen Port        | 1 to 65535 | 7253    | The UDP port the WI will listen on for WiMag sensor status messages.                                                               |
| Base Status<br>Timeout | 0s to 255s | 10s     | If the WI does not receive a status update from the WiMag base station in this amount of time, it will declare the link as failed. |

Table 5-7 WiMag Base Parameter Values

# Sensor "N" (1-20)

| Configuration Status Monitor Re                                                | ports & Logs Maintenance A | larms    |   |  |
|--------------------------------------------------------------------------------|----------------------------|----------|---|--|
| Configuration                                                                  | Sensor 1                   |          |   |  |
| Site Configuration                                                             | 📃 Save 🛛 🧭 Refresh         |          |   |  |
| <ul> <li>General configuration</li> <li>Digital Input configuration</li> </ul> | Sensor Name                | Sensor 1 |   |  |
| <ul> <li>Battery Input configuration</li> </ul>                                | Sensor Used                | Yes      | * |  |
| <ul> <li>Relay Output configuration</li> </ul>                                 | Sensor Off Debounce (msec) | 1000     |   |  |
| <ul> <li>WiMag configuration</li> <li>WiMag General</li> </ul>                 | Sensor On Debounce (msec)  | 500      |   |  |
| Sensor 1                                                                       | Off Name                   | Off*     |   |  |
| Sensor 2                                                                       | On Name                    | On *     |   |  |
| Sensor 3                                                                       |                            |          |   |  |
| Sensor 5                                                                       |                            |          |   |  |
| Sensor 6                                                                       |                            |          |   |  |
| Sensor 7                                                                       |                            |          |   |  |

Figure 5-13 WiMag Sensor "N" Screen

There are up to 20 separate WiMag inputs. The field maintainer will enter the values as specified in the agency/railroad's approved site diagram.

The user can set a channel name, OFF name, and ON name for each sensor. The user can also set ON and OFF de-bounce values for each sensor (just like discrete digital inputs). These names are used when adding state change entries to the Event Log.

The WI can receive statuses from only 1 Access Point and at most 20 WiMag sensors.

The application engineer may use the "detected" and "error" statuses of each sensor and the "link OK" status of the Access Point in the MCF logic.

| Parameter<br>Name      | Range               | Default  | Description                                                                                                                                                |
|------------------------|---------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Senor Used             | Yes or No           | No       | If set to Yes, the WI will expect status updates for this sensor.                                                                                          |
| Sensor<br>Name         | 20 characters       | Sensor x | The name used when logging state changes to the event log and on reports. <i>Only visible if Sensor Used is Yes.</i>                                       |
| Sensor Off<br>Debounce | 0ms to 60,000ms     | 100ms    | The sensor must report off for this length of time, continuously, before the WI will declare the status as OFF. <i>Only visible if Sensor Used is Yes.</i> |
| Sensor On<br>Debounce  | 0ms to 60,000ms     | 500ms    | The sensor must report on for this length of time, continuously, before the WI will declare the status as ON. <i>Only visible if Sensor Used is Yes.</i>   |
| Off Name               | Off state name list | OFF      | The name used for the OFF state when logging state changes to the event log. <i>Only visible if Sensor Used is Yes.</i>                                    |
| On Name                | On state name list  | ON       | The name used for the ON state when logging state changes to the event log. <i>Only visible if Sensor Used is Yes.</i>                                     |

Table 5-8 WiMag Sensor Parameter Values

# 5.5.2.6 Speed Measurement 1

| Configuration                                   | Speed Measurement 1       |                        |   |
|-------------------------------------------------|---------------------------|------------------------|---|
| Site Configuration                              | 📕 Save 🔮 Refresh          |                        |   |
| <ul> <li>MCF Configuration</li> </ul>           |                           |                        | ļ |
| <ul> <li>General configuration</li> </ul>       | Snood Selection           |                        | ļ |
| Digital Input configuration                     | Obeen Delection           | GCP Trk1 Isl Speed     |   |
| <ul> <li>Battery Input configuration</li> </ul> | Name                      | EB Speed Measurement * |   |
| Relay Output configuration                      | Distance (ft)             |                        |   |
| ✓ Speed Measurement                             |                           |                        |   |
| Speed Measurement 1                             | Comparison Speed (mph)    | 65*                    |   |
| Speed Measurement 2                             | Time Adjustment (sec)     |                        |   |
| GCP Interface configuration                     |                           |                        |   |
| Logic configuration                             | Calculation Timeout (sec) | 180                    |   |
| State Names                                     |                           |                        |   |
| Set to default                                  |                           |                        |   |

Figure 5-14 Speed Measurement Screen

To properly perform warning time tests, the WI must ensure the train was moving through the crossing at or near the maximum permissible speed for the route. The WI provides two methods to get train speed: calculate it or receive it from a GCP.

The executive software determines if the train speed is fast enough on behalf of the MCF. The MCF configuration data includes a "Speed Measurement Entry" for each speed the executive needs to check. The WI supports up to 64 entries.

At crossings using the Siemens GCP, the WI does not need to calculate the speed. The GCP can report the speed to the WI over a network. The Speed Measurement Entry will identify which island speed, reported from the GCP, to compare to the Comparison Speed. The executive will set the Speed Result logic state (and Result Ready) after the GCP reports the island speed (after the train has entered the island).

| Parameter              | Range                                                          | Default              | Description                                                                                                                                                                                                                          |
|------------------------|----------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Speed<br>Selection     | Calculate,<br>GCP Trk 1 Isl<br>Speed, - GCP Trk<br>6 Isl Speed | Calculate<br>Speed   | Selects the method of determining speed.                                                                                                                                                                                             |
| Name                   | 0 - 20 characters                                              | Speed<br>Measurement | The name used for the speed measurement entry in logs and reports.                                                                                                                                                                   |
| Distance (ft)          | 0 to 65535                                                     | Specified in<br>MCF  | Distance in feet between the two inputs used to calculate the speed. The speed is calculated by timing the changes between two inputs and using this distance value.                                                                 |
| Comparison<br>Speed    | 0 – 255 mph                                                    | Specified in<br>MCF  | The calculated speed or reported speed from the GCP<br>must be greater than or equal to this value to set the<br>"Speed Result" logic state.                                                                                         |
| Time<br>Adjustment     | -12.8 to 12.7<br>seconds                                       | Specified in<br>MCF  | Time value used to adjust the speed calculation to account for de-bounce or other system delays.<br>Only relevant if Speed Selection is set to Calculate Speed.                                                                      |
| Calculation<br>Timeout | 0 to 65535<br>seconds                                          | 180 seconds          | Time limit on a complete speed calculation. If both speed measurement inputs do not change state within this length of time, the speed calculation will be abandoned.<br>Only relevant if Speed Selection is set to Calculate Speed. |

Table 5-9 Speed Measurement Parameter Values

# 5.5.2.7 iLOD Configuration

The WI receives current measurements from the Siemens A80271 iLOD and is able to communicate with a maximum of 4 concurrent iLOD units.

Each iLOD has three submenu screens:

- General
- Sensor 1
- Sensor 2

# General

This screen is used to give the iLOD a unique name.

| Configuration                                   | General                    |
|-------------------------------------------------|----------------------------|
| Site Configuration                              | 🖥 Save 🦉 Refresh 🕨 Install |
| <ul> <li>MCF Configuration</li> </ul>           |                            |
| General configuration                           | il OD Name II op 4         |
| <ul> <li>Digital Input configuration</li> </ul> |                            |
| <ul> <li>Battery Input configuration</li> </ul> |                            |
| <ul> <li>Relay Output configuration</li> </ul>  |                            |
| 🚽 iLOD                                          |                            |
| 🚽 iLOD 1                                        |                            |
| General                                         |                            |
| Sensor 1                                        |                            |
| Sensor 2                                        |                            |

Figure 5-15 iLOD General Screen

|  | Table 5-10 | iLOD General Parameter | Values |
|--|------------|------------------------|--------|
|--|------------|------------------------|--------|

| Parameter<br>Name | Range                | Default          | Description                                                        |
|-------------------|----------------------|------------------|--------------------------------------------------------------------|
| iLOD Name         | 0 - 20<br>characters | Specified in MCF | The name of the iLOD used when logging iLOD data to the event log. |

# Sensor 1 – 2

The sensor screens allow the user to configure the individual sensor parameters.

| Configuration                                   | Sensor 1                                     |          |   |
|-------------------------------------------------|----------------------------------------------|----------|---|
| Site Configuration                              | 🗟 Save 🦉 Refresh                             |          |   |
| <ul> <li>MCF Configuration</li> </ul>           | Sensor Name                                  | AE1      | * |
| <ul> <li>General configuration</li> </ul>       | Sensor Algorithm                             |          | * |
| <ul> <li>Digital Input configuration</li> </ul> |                                              |          | ] |
| <ul> <li>Battery Input configuration</li> </ul> | Sample Size                                  | 5        | * |
| <ul> <li>Relay Output configuration</li> </ul>  | Flash Rate Delta / Sample Interval<br>(msec) | 5        | * |
| 🔻 iLOD                                          | Delta (A)                                    | o 7      | 1 |
| 👻 iLOD 1                                        |                                              | 0.5      | ] |
| General                                         | FPM threshold 1 (fpm)                        | 45       | * |
| Sensor 1                                        |                                              |          | 1 |
| Sensor 2                                        | FPM threshold 2 (fpm)                        | 65       | * |
| ► iLOD 2                                        | FPM threshold 3 (fpm)                        | 0        | * |
| <ul> <li>GCP Interface configuration</li> </ul> | FPM threshold 4 (fpm)                        | 0        | * |
| <ul> <li>Logic configuration</li> </ul>         |                                              | <u>ہ</u> | ] |
| ▶ State Names                                   | Current threshold 1 (A)                      | 3.7      |   |
| Set to default                                  | Current threshold 2 (A)                      | 2.0      |   |

Figure 5-16 iLOD Sensor Screen

| Parameter Name                        | Range                                  | Default     | Description                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------|----------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor Name                           | Sensor Name 0 - 12 Sp<br>characters in |             | X is the iLOD number in the configuration (e.g. iLOD1 for the first iLOD, iLOD2 for the next, and so on) Y is either A or B, depending on which sensor is being configured.                                                                                                                                                                 |
| Sensor Algorithm                      | LOD,<br>Current                        | LOD<br>Mode | Unused, LOD Mode, Steady Current Mode                                                                                                                                                                                                                                                                                                       |
| Sample Size 5 to 32                   |                                        | 16          | If the selected sensor algorithm is "LOD Mode," this<br>parameter is not used.<br>If the selected sensor algorithm is "Steady Current<br>Mode" this parameter specifies the number of<br>samples to average together to determine the<br>measured current.                                                                                  |
| Flash Rate Delta /<br>Sample Interval | 10 to 200<br>ms                        | 10          | If the selected sensor algorithm is "LOD Mode," this<br>parameter specifies the change in the measured<br>flash rate necessary to trigger a new flash rate<br>event from the iLOD.<br>If the selected sensor algorithm is "Steady Current<br>Mode" this parameter specifies how often the iLOD<br>should sample the current being measured. |
| Delta (A) 0.0 to 9.9 amps             |                                        | 0.5         | Specifies the change in measured current necessary to trigger a new current measurement event from the iLOD.                                                                                                                                                                                                                                |
| FPM threshold 1 - 4                   | 0 to 255<br>f/m                        | 0           | Specifies threshold values to trigger logic state<br>changes in the MCF logic. If the reported flash rate<br>for this sensor is greater than or equal to the<br>threshold value, the executive software will set the<br>corresponding logic state input to the MCF to<br>TRUE.                                                              |
| Current threshold 1 - 4               | 0.0 to 30.0<br>amps                    | 0           | Specifies the threshold values to trigger logic state<br>changes in the MCF logic. If the reported current for<br>this sensor is greater than or equal to the threshold<br>value, the executive software will set the<br>corresponding logic state input to the MCF to<br>TRUE.                                                             |

 Table 5-11
 iLOD Sensor Parameter Values

#### iLOD Echelon Network Installation Procedure

Before the iLODs can report currents and flash rates to the WI, the iLODs must be "installed" on the Echelon network. The procedure to install them on the network must be followed for each iLOD.

Each iLOD is installed on the Echelon network by clicking the "Install" button on web browser user interface as shown in Figure 5-17. Navigate to the Configuration > MCF Configuration > iLOD > iLOD 1 > General page and follow the instructions to press the small "Echelon Service Button" on the side of the iLOD.

| Configuration                                   | Status Monitor | Reports & Logs | Maintenance | Alarms |   |
|-------------------------------------------------|----------------|----------------|-------------|--------|---|
| Configuration                                   | General        | C Pafrash      | Install     |        | _ |
| Site Configuration                              | E Save         | Neiresi        | Install     |        |   |
| <ul> <li>MCF Configuration</li> </ul>           |                |                |             |        |   |
| <ul> <li>General configuration</li> </ul>       | iLOD Name      |                | U OD 1      |        | • |
| <ul> <li>Digital Input configuration</li> </ul> |                |                | ILOD-1      |        |   |
| <ul> <li>Battery Input configuration</li> </ul> |                |                |             |        |   |
| <ul> <li>Relay Output configuration</li> </ul>  |                |                |             |        |   |
| 🚽 ILOD                                          |                |                |             |        |   |
| 👻 ILOD 1                                        |                |                |             |        |   |
| General                                         |                |                |             |        |   |
| Sensor 1                                        |                |                |             |        |   |
| Sensor 2                                        |                |                |             |        |   |
| ► ILOD 2                                        |                |                |             |        |   |

Figure 5-17 iLOD Install Button

# 5.5.2.8 GCP Interface Configuration

The WI can receive I/O statuses and configuration data from GCP 4000, GCP 5000, and GCP 3000+ over a network. The I/O statuses and the configuration data status are available to the MCF logic, which eliminates the need to wire physical inputs for many of the statuses. The connection configuration of the WI to the GCP is shown in Figure 5-18.

| Configuration                                   | General                 |       |         |
|-------------------------------------------------|-------------------------|-------|---------|
| Site Configuration                              | 📕 Save 📑 Refresh        |       |         |
| MCF Configuration                               |                         |       |         |
| General configuration                           | Name                    |       | *       |
| Digital Input configuration                     |                         |       |         |
| <ul> <li>Battery Input configuration</li> </ul> | ATCS Subnode            | 16    |         |
| Relay Output configuration                      | Send Status on Change   | Yes 🔻 |         |
| ▶ iLOD                                          |                         |       |         |
| <ul> <li>GCP Interface configuration</li> </ul> | Cfg Msg Period (min)    | 0     | *       |
| General                                         | Status Msg Period (sec) | 30    |         |
| <ul> <li>Logic configuration</li> </ul>         | COD Link Timesed (see)  |       | <br>  * |
| State Names                                     | GCP Link Timeout (sec)  | 30    |         |

Figure 5-18 GCP Interface Configuration General Screen

The WI monitors the health of the link with the GCP. If the WI stops receiving status messages from the GCP, it will set the link to unhealthy. The application engineer can set the timeout for the GCP messages in the MCF. The link health is available to the MCF logic as an input logic state.

The WI receives the status of GCP I/O, such as XR, ISL, etc., which the executive makes available as input logic states to the MCF. Since the GCP is highly configurable, not all I/O status are relevant in all conditions. The GCP reports the I/O items used in its current configuration. The executive software also makes the "used" statuses available to the MCF logic as input logic states. See the **Wayside Inspector MCF Configuration Tool Application Guidelines, SIG-00-16-05** for all the logic states available to the MCF.

The WI will also log changes in the I/O and configuration statuses, as reported from the GCP, into the Event Log using the configured function name for that status.

| Parameter<br>Name        | Range                | Default       | Description                                                                                                                                                      |
|--------------------------|----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                     | 20 characters        | GCP IF        | Name used for the GCP interface in logs and reports.                                                                                                             |
| ATCS<br>Subnode          | 0 to 99              | 16            | The ATCS subnode of the GCP, which is required to have the same railroad, line, and group addresses as the WI.                                                   |
| Send Status<br>on Change | Yes or No            | Yes           | If Yes, the GCP will send status changes on change of state.                                                                                                     |
| Cfg Msg<br>Period        | 0 to 60 minutes      | 0<br>minutes  | Time period between configuration messages. If 0,<br>the GCP will send configuration messages only on<br>initiate of the link and on configuration data changes. |
| Status Msg<br>Period     | 0 to 300 seconds     | 30<br>seconds | Period of status messages. If 0, the GCP will not send periodic status messages.                                                                                 |
| GCP Link<br>Timeout      | 10 to 600<br>seconds | 30<br>seconds | If the WI does not receive messages from the GCP for this length of time, it will declare the link as failed.                                                    |

| Table 5-12 | GCP Interface Configuration General Parameter V | alues |
|------------|-------------------------------------------------|-------|
|------------|-------------------------------------------------|-------|

# 5.5.2.9 Logic Configuration

#### **Properties**

Properties are field programmable options within the MCF, created by the application engineer. The user can set or clear a property from a menu. Properties provide a logic state, which the application engineer may use in the relay logic. Properties allow the MCF to change behavior based on field personnel input on the Web UI.

| Configuration                                   | Properties                    |         |
|-------------------------------------------------|-------------------------------|---------|
| Site Configuration                              | 📕 Save 🔮 Refresh              |         |
| <ul> <li>MCF Configuration</li> </ul>           | Test Alarm 1 Enabled          | Yes 🔻   |
| General configuration                           | Test Alarm 2 Enabled          | *       |
| <ul> <li>Digital Input configuration</li> </ul> | Test Alarm 2 Chabled          | Yes 🔻   |
| <ul> <li>Battery Input configuration</li> </ul> | Low Battery Alarm Enabled     | Yes 🔹 🕈 |
| <ul> <li>Relay Output configuration</li> </ul>  | High Battery Alarm Enabled    | *       |
| ▶ iLOD                                          |                               | res     |
| <ul> <li>GCP Interface configuration</li> </ul> | ECD Alarm Enabled             | Yes 🔻 * |
| <ul> <li>Logic configuration</li> </ul>         | Reset Alarm Enabled           | Vec *   |
| Properties                                      |                               |         |
| Timers                                          | AE1 Current Low Alarm Enabled | Yes 🔻   |
| State Names                                     | AE1 Lamps Out Alarm Enabled   | Yes 🔹 * |
| Set to default                                  |                               |         |
| Networking                                      | AE2 Current Low Alarm Enabled | Yes 🔹 🔨 |
| WAMS /RailFusion                                | AE2 Lamps Out Alarm Enabled   | Yes 🔻   |
| Serial Port                                     | BE1 Current Low Alarm Enabled | Yes *   |

Figure 5-19 Logic Configuration: Properties Screen

#### NOTE

#### NOTE

**Properties** are defined by the MCF. See documentation specific to the MCF for details.

# Timers

The WI supports timer relay coils in the relay logic. Each timer has a single logic state to start/run the timer and a single logic state indicating if the timer has expired or not. The application engineer creates a timer within the MCT on the "Logic Data" page.

| Configuration                                   | Timers               |    |          |
|-------------------------------------------------|----------------------|----|----------|
| Site Configuration                              | 📕 Save 📑 Refresh     |    |          |
| <ul> <li>MCF Configuration</li> </ul>           | tmrAlm1Set (sec)     | 2  | *        |
| General configuration                           | tmrAlm1Clr (sec)     | 2  | ] *      |
| <ul> <li>Digital Input configuration</li> </ul> |                      |    | ]        |
| <ul> <li>Battery Input configuration</li> </ul> | tmrAlm2Set (sec)     | 2  | ] *      |
| <ul> <li>Relay Output configuration</li> </ul>  | tmrAlm2Clr (sec)     | 2  | *        |
| ▶ iLOD                                          | tmrBLowSet (sec)     |    | '<br>  * |
| <ul> <li>GCP Interface configuration</li> </ul> |                      | 20 | ]        |
| <ul> <li>Logic configuration</li> </ul>         | tmrBLowClr (sec)     | 30 | ] *      |
| Timers                                          | tmrBHiSet (sec)      | 20 | *        |
| ▶ State Names                                   | tmrBHiClr (sec)      | 30 | *        |
| Set to default                                  | tmrECD (sec)         | 5  | *        |
| Networking                                      |                      |    | 」<br>] ★ |
| WAMS /RailFusion                                | tmr_ILODHealth (sec) | 60 |          |

Figure 5-20 Logic Configuration: Timers Screen

#### NOTE

#### NOTE

**Timers** are defined by the MCF. See documentation specific to the MCF for details.

### 5.5.2.10 State Names

There are 16 possible values for the states On / Off. There are eight possible Toggle Names and Battery Names. Typically, the state names, toggle names, and battery names are provided by the MCF and do not need to change. However, they can be edited here if necessary. The MCF may also lock these fields, thereby preventing changes.

# On Names

| Configuration                                   | On Names         |            |
|-------------------------------------------------|------------------|------------|
| Site Configuration                              | 📑 Save 🖉 Refresh |            |
| <ul> <li>MCF Configuration</li> </ul>           | #                | State Name |
| <ul> <li>General configuration</li> </ul>       |                  | On         |
| <ul> <li>Digital Input configuration</li> </ul> |                  | Not Used   |
| <ul> <li>Battery Input configuration</li> </ul> |                  | Not Used   |
| <ul> <li>Relay Output configuration</li> </ul>  |                  | Not Used   |
| ▶ iLOD                                          |                  | Not Used   |
| GCP Interface configuration                     | 6                | Not Used   |
| <ul> <li>Logic configuration</li> </ul>         |                  | Not Used   |
| <ul> <li>State Names</li> </ul>                 | 8                | Not Used   |
| On Names                                        |                  | Not Used   |
| Off Names                                       | 10               | Not Used   |
| Toggle Names                                    |                  | Not Used   |
| Detten Nomes                                    | 12               | Not Used   |
| Dattery Names                                   |                  | Not Used   |
| Set to default                                  | 14               | Not Used   |
| Networking                                      |                  | Not Used   |
| WAMS /RailFusion                                | 16               | Not Used   |

Figure 5-21 State "On" Names Screen

| Table 5-13 | State "On | " Names | Parameter  | Values    |
|------------|-----------|---------|------------|-----------|
|            | otato on  | Hainoo  | i aramotor | - ana - o |

| Parameter<br>Name | Range                 | Default     | Description                                                                                                                 |
|-------------------|-----------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|
| On Names          | 1 to 12<br>Characters | Not<br>Used | List of names available to choose from when configuring the "On Names" for inputs and outputs that support discrete states. |

# **Off Names**

| Configuration                                   | Off Names          |            |  |
|-------------------------------------------------|--------------------|------------|--|
| Site Configuration                              | 🕞 Save ) 🦉 Refresh |            |  |
| <ul> <li>MCF Configuration</li> </ul>           |                    | State Name |  |
| <ul> <li>General configuration</li> </ul>       | 1                  | Off        |  |
| <ul> <li>Digital Input configuration</li> </ul> | 2                  | Not Used   |  |
| <ul> <li>Battery Input configuration</li> </ul> | 3                  | Not Used   |  |
| <ul> <li>Relay Output configuration</li> </ul>  | 4                  | Not Used   |  |
| ▶ iLOD                                          | 5                  | Not Used   |  |
| GCP Interface configuration                     | 6                  | Not Used   |  |
| <ul> <li>Logic configuration</li> </ul>         | 7                  | Not Used   |  |
| State Names                                     | 8                  | Not Used   |  |
| On Names                                        | 9                  | Not Used   |  |
| Off Names                                       | 10                 | Not Used   |  |
|                                                 | 11                 | Not Used   |  |
|                                                 | 12                 | Not Used   |  |
| Battery Names                                   | 13                 | Not Used   |  |
| Set to default                                  | 14                 | Not Used   |  |
| Networking                                      | 15                 | Not Used   |  |
| WAMS /RailFusion                                | 16                 | Not Used   |  |



| Table 5-14 State "Off" Names Parameter value | Table 5-14 | State "Off" | Names Paramete | r Values |
|----------------------------------------------|------------|-------------|----------------|----------|
|----------------------------------------------|------------|-------------|----------------|----------|

| Parameter<br>Name | Range                 | Default  | Description                                                                                                                  |
|-------------------|-----------------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| Off Names         | 1 to 12<br>Characters | Not Used | List of names available to choose from when configuring the "Off Names" for inputs and outputs that support discrete states. |

# **Toggle Names**

| Configuration                                   | Toggle Names     |            |
|-------------------------------------------------|------------------|------------|
| Site Configuration                              | 🔒 Save 💕 Refresh |            |
| <ul> <li>MCF Configuration</li> </ul>           | #                | State Name |
| <ul> <li>General configuration</li> </ul>       | 1                | Toggling   |
| <ul> <li>Digital Input configuration</li> </ul> | 2                | Not Used   |
| <ul> <li>Battery Input configuration</li> </ul> | 3                | Not Used   |
| <ul> <li>Relay Output configuration</li> </ul>  | 4                | Not Used   |
| ▶ iLOD                                          | 5                | Not Used   |
| GCP Interface configuration                     | 6                | Not Used   |
| Logic configuration                             | 7                | Not Used   |
| <ul> <li>State Names</li> </ul>                 | 8                | Not Used   |
| On Names                                        |                  |            |
| Off Names                                       |                  |            |
| Toggle Names                                    |                  |            |
| Battery Names                                   |                  |            |



| Table 5-15 | State "Toggle" | Names Parameter Values |
|------------|----------------|------------------------|
|------------|----------------|------------------------|

| Parameter<br>Name | Range      | Default | Description                                                                                                                     |
|-------------------|------------|---------|---------------------------------------------------------------------------------------------------------------------------------|
| Toggle            | 1 to 12    | Not     | List of names available to choose from when configuring the "Toggle Names" for inputs and outputs that support discrete states. |
| Names             | Characters | Used    |                                                                                                                                 |

# **Battery Names**

| Configuration                                   | Battery Names      |            |  |
|-------------------------------------------------|--------------------|------------|--|
| Site Configuration                              | 🚦 Save 🛛 🚰 Refresh |            |  |
| MCF Configuration                               | #                  | State Name |  |
| <ul> <li>General configuration</li> </ul>       | 1                  | Batt       |  |
| <ul> <li>Digital Input configuration</li> </ul> | 2                  | Not Used   |  |
| <ul> <li>Battery Input configuration</li> </ul> | 3                  | Not Used   |  |
| Relay Output configuration                      | 4                  | Not Used   |  |
| ▶ iLOD                                          | 5                  | Not Used   |  |
| GCP Interface configuration                     | 6                  | Not Used   |  |
| <ul> <li>Logic configuration</li> </ul>         | 7                  | Not Used   |  |
| <ul> <li>State Names</li> </ul>                 | 8                  | Not Used   |  |
| • On Names                                      |                    |            |  |
| Off Names                                       |                    |            |  |
| Toggle Names                                    |                    |            |  |
| Battery Names                                   |                    |            |  |



| Parameter<br>Name | Range                 | Default  | Description                                                                                         |
|-------------------|-----------------------|----------|-----------------------------------------------------------------------------------------------------|
| Battery<br>Names  | 1 to 12<br>Characters | Not Used | List of names available to choose from when configuring the "Battery Names" for GFT input channels. |

# Table 5-16 State "Battery" Names Parameter Values
# 5.5.2.11 Set to Default



Figure 5-25 MCF Configuration Set to Default Screen

Selecting the Set to Default button will return all entries in the MCF Configuration portion of the Configuration Tab menu back to the MCF Default. Selecting this button does not affect parameter values set in the Site Configuration, Networking, Log Setup, ATCS Message Routing, and Time Management portions of Configuration Tab menu.

#### 5.5.3 Networking

#### 5.5.3.1 Comms Interface

The Comms Ethernet interface can be configured on the screen shown in Figure 5-26. Table 5-17 describes each configurable parameter and the available options.

| Configuration                                             | Comms Interface            |               |
|-----------------------------------------------------------|----------------------------|---------------|
| Site Configuration                                        | 🖪 Save) 🦉 Refresh 🚺 Defaul |               |
| <ul> <li>MCF Configuration</li> <li>vetworking</li> </ul> | DHCP Mode                  | Disabled •    |
| Comms Interface                                           | IP Address                 | 192.168.13.1  |
| Domain Name System<br>ATCS/IP Field Protocol              | Network Mask               | 255.255.255.0 |
| ATCS/IP Office Protocol                                   | Default Gateway            | 192.168.1.1   |
| WAMS /RailFusion                                          |                            |               |

Figure 5-26 Networking: Comms Interface Screen

| Parameter<br>Name  | Range                    | Default       | Description                                                                                                                                                   |
|--------------------|--------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DHCP<br>Mode       | Disabled or<br>Client    | Disabled      | If set to Client, the WI will request the network settings<br>using the DHCP protocol. If set to Disabled, the<br>interface uses static settings.             |
| IP Address         | IPv4 Address             | 192.168.2.100 | The IPv4 address of the Network Ethernet interface.<br>Only visible if DHCP Mode is Disabled.                                                                 |
| Network<br>Mask    | IPv4 Address             | 255.255.255.0 | The network mask of the Network Ethernet interface.<br>Only visible if DHCP Mode is Disabled.                                                                 |
| Default<br>Gateway | IPv4 Address<br>or Blank | Blank         | The default gateway of the Network Ethernet<br>interface. Leaving the field blank means no default<br>gateway used.<br>Only visible if DHCP Mode is Disabled. |

Table 5-17 Networking: Comms Interface Parameter Values

## 5.5.3.2 Domain Name System

The WI may resolve symbolic names to IP addresses using the domain name system. The WI has two configurable name server IP addresses.

| Configuration           | Domain Name System         |    |
|-------------------------|----------------------------|----|
| Site Configuration      | 📕 Save 🛛 🍯 Refresh 🚺 Defau | It |
| MCF Configuration       |                            |    |
|                         | Name Server 1              |    |
| Comms Interface         | Name Server 2              |    |
| Domain Name System      |                            |    |
| ATCS/IP Field Protocol  |                            |    |
| ATCS/IP Office Protocol |                            |    |

Figure 5-27 Networking: Domain Name System Screen

| Parameter<br>Name | Range                    | Default | Description                                                           |
|-------------------|--------------------------|---------|-----------------------------------------------------------------------|
| Name Server 1     | IPv4 Address or<br>Blank | Blank   | IP address of the primary name server for use with name resolution.   |
| Name Server 2     | IPv4 Address or<br>Blank | Blank   | IP address of the secondary name server for use with name resolution. |

#### Table 5-18 Networking: Domain Name System Parameter Values

#### 5.5.3.3 ATCS/IP Field Protocol

The ATCS/IP Field Protocol is used for communication between the WI and other equipment installed at the location on the local network. It is used to communicate with the GCP 4000/5000/3000+ and Echelon devices connected through a WAG.

| Configuration           | ATCS/IP Field Protocol         |                   |
|-------------------------|--------------------------------|-------------------|
| Site Configuration      | 🔚 Save 🛛 😴 Refresh 🔃 Defaul    | H                 |
| MCF Configuration       |                                |                   |
|                         | ALCS/IP Field Protocol Enabled | No *              |
| Comms Interface         | UDP Port                       | 5000 *            |
| Domain Name System      | Broadcast ID Addrass           |                   |
| ATCS/IP Field Protocol  | Divaucast IF Audress           | 255.255.255.255 * |
| ATCS/IP Office Protocol |                                |                   |

Figure 5-28 Networking: ATCS/IP Field Protocol Screen

| Parameter<br>Name                    | Range            | Default             | Description                                                                                                                                               |
|--------------------------------------|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATCS/IP<br>Field Protocol<br>Enabled | Yes or<br>No     | No                  | If set to Yes, enables the ATCS/IP Field Protocol, which is used for communication to other ATCS systems installed on a network, such as the Siemens GCP. |
| UDP Port                             | 1024 to<br>65535 | 5000                | The UDP port to use for the ATCS messages.                                                                                                                |
| Broadcast IP<br>Address              | IPv4<br>Address  | 255.255.<br>255.255 | The WI will send ATCS packets to this address if it has not yet discovered the IP address associated with the ATCS destination address.                   |

 Table 5-19
 Networking: ATCS/IP Field Protocol Parameter Values

# 5.5.3.4 ATCS/IP Office Protocol

The WI uses the ATCS/IP Office protocol to communicate with the back-office alarm management and monitoring system.

The Circuit ID is in the format of LLL.P.OO. (Line number, Port number, and Poll number). The Circuit ID is used by the OCG or packet switch to uniquely identify the field location.

The WI provides two configurable Routing Region IP Addresses. These are the IP addresses where route requests for the unit are sent. By default, the Routing Region IP addresses should not be enabled. The Web UI allows the user to configure the Routing Regions using symbolic names.

The Wayside inspector uses the first Routing Region address as a primary address for route requests and uses the second address if the first is not available. The WI has a configurable OCG Port number (UDP Port). The UDP Port number is used in the destination of route requests and route update messages. The UDP Port number defaults to 5361.

| C | onfiguration                                   | ATCS/IP Office Protocol         |              |   |
|---|------------------------------------------------|---------------------------------|--------------|---|
|   | Site Configuration                             | 🔚 Save 🔮 Refresh  Defa          | ult          |   |
| • | MCF Configuration<br>Networking                | ATCS/IP Office Protocol Enabled | Yes          | ~ |
|   | Comms Interface<br>Domain Name System          | Circuit ID Line                 | 100          | * |
|   | ATCS/IP Field Protocol ATCS/IP Office Protocol | Circuit ID Polt                 | 1            | * |
|   | WAMS /RailFusion<br>Serial Port                | Routing Region One              |              | * |
| ٠ | Log Setup                                      | Routing Region Two              | 10.163.70.15 |   |
|   | ATCS Message Routing<br>Time Management        | UDP Port                        | 5369         |   |
| Þ | Security                                       | Path Value                      | 72           | * |
| • | WMS<br>Set to Default                          | Route Search Time (seconds)     | 15           | * |
|   |                                                | Route Search Tries              | 5<br>4       | * |



| Parameter                                | Range                                            | Default    | Description                                                                                                                                                              |
|------------------------------------------|--------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATCS/IP<br>Office<br>Protocol<br>Enabled | Yes or No                                        | No         | If set to Yes, enables the ATCS/IP Office network protocol.                                                                                                              |
| Circuit ID Line                          | 0 - 999                                          | 100        | The circuit ID, or base ID, of every IP base                                                                                                                             |
| Circuit ID Port                          | 0 - 2                                            | 1          | here along with its IP address. The circuit                                                                                                                              |
| Circuit ID Poll                          | 0 - 15                                           | 00         | as a unique tag for each WI.                                                                                                                                             |
| Routing<br>Region One                    | 0.0.0.0 -<br>255.255.255.255<br>or Symbolic Name | Blank      | This can be either a subnet broadcast or<br>unicast IP address associated with office<br>OCG or packet switch.                                                           |
| Routing<br>Region Two                    | 0.0.0.0 -<br>255.255.255.255<br>or Symbolic Name | Blank      | This can be either a subnet broadcast or<br>unicast IP address associated with office<br>OCG or packet switch. The user may leave<br>this field blank if it is not used. |
| UDP Port                                 | 0 - 65535                                        | 5361       | Specifies the UDP port number used to send and receive messages.                                                                                                         |
| Path Value                               | 0 - 255                                          | 72         | This is information used by packet<br>switch/OCG to specify inbound path<br>options such as main/standby, field device<br>operation, etc.                                |
| Route Search<br>Time                     | 0 - 65535 seconds                                | 15 Seconds | Route request is sent per this time interval until a route update response is received.                                                                                  |
| Route<br>Refresh Time                    | 0 - 65535 Minutes                                | 5 Minutes  | Once a route update response is received,<br>a route request is periodically sent per this<br>time interval to refresh the route table.                                  |
| Route Search<br>Tries                    | 0 - 255                                          | 4          | The number of times the WI will retry a route search if a response is not received.                                                                                      |

 Table 5-20
 Networking: ATCS/IP Office Protocol Parameter Values

## 5.5.4 WAMS/RailFusion

The WI communicates with WAMS using ATCS messages, which are exchanged with the back-office over one of the layer 2 protocol options (typically, the ATCS/IP Office protocol over a network).

| Configuration        | WAMS /RailFusion                     |               |   |   |
|----------------------|--------------------------------------|---------------|---|---|
| Site Configuration   | 🔚 Save 🛛 🦉 Refresh 🚺 De              | fault         |   |   |
| MCF Configuration    |                                      |               |   |   |
| Networking           | WAMS/RailFusion Messaging<br>Enabled | Yes           | ~ | * |
| WAMS /RailFusion     | ATCS Address                         | 2.620.01.9100 |   | * |
| Serial Port          | Alarm Retry Time (Seconds)           |               |   |   |
| Log Setup            | Autor (Occords)                      | /5            |   | × |
| ATCS Message Routing | ATCS Msg Labels                      | Use WI Labels | ~ | * |
| Time Management      |                                      |               |   |   |
| ▶ Security           |                                      |               |   |   |
| ▶ WMS                |                                      |               |   |   |
| Set to Default       |                                      |               |   |   |

Figure 5-30 WAMS/RailFusion Screen

| Table 5-21 | WAMS/RailFus | ion Parameter Values |
|------------|--------------|----------------------|
|            |              |                      |

| Parameter Name                       | Range                                | Default       | Description                                                                                                                                                                                                                                        |
|--------------------------------------|--------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WAMS/RailFusion<br>Messaging Enabled | Yes, No                              | No            | Setting that allows the WI to interface with WAMS and RailFusion systems.                                                                                                                                                                          |
| ATCS Address                         | 2.000.00.0000<br>to<br>2.999.99.9999 | 2.620.01.9100 | The WI will set the destination ATCS address of packets sent to WAMS/RailFusion to this value.                                                                                                                                                     |
| Alarm Retry Time<br>(sec)            | 0 to 65535<br>seconds                | 75            | If an alarm is not acknowledged, the WI will try<br>sending the alarm again after the specified number<br>of seconds have passed. A value of 0 means<br>alarms will not be retried.                                                                |
| ATCS Msg Labels                      | Use WI<br>Labels, Use<br>SEAR Labels | Use WI Labels | Selects the ATCS message label value the WI will<br>use in communication. The user should select<br>"Use SEAR Labels" if using the WI in place of a<br>SEAR and the office system software has not yet<br>been updated to use the newer WI labels. |

5-39

#### 5.5.5 Serial Port

| Configuration                                | Serial Port |         |  |
|----------------------------------------------|-------------|---------|--|
| Site Configuration                           | Port        | lefault |  |
|                                              | Baud Rate   | 9600 *  |  |
| Domain Name System<br>ATCS/IP Field Protocol | Data Bits   | 8 *     |  |
| ATCS/IP Office Protocol                      | Parity      | None *  |  |
| WAMS /RailFusion                             | Stop Bits   | 1 *     |  |
| Senal Port<br>▶ Log Setup                    | Flow Ctrl   | None *  |  |
| ATCS Message Routing<br>Time Management      | Protocol    | None *  |  |

Figure 5-31 Serial Port Screen

| Parameter Name | Range                                                  | Default | Description                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|--------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baud Rate      | 1200 - 115200                                          | 9600    | Sets the serial port's baud rate in bits per second.                                                                                                                                                                                                                                                                                                                                                                                   |
| Data Bits      | 7, 8                                                   | 8       | Sets the number of data bits to use in each character transmitted.                                                                                                                                                                                                                                                                                                                                                                     |
| Parity         | None, Odd, Even                                        | None    | Sets the parity bit mode.                                                                                                                                                                                                                                                                                                                                                                                                              |
| Stop Bits      | 1, 2                                                   | 1       | Sets the number of stop bits to use in each character transmitted.                                                                                                                                                                                                                                                                                                                                                                     |
| Flow Ctrl      | None,<br>Hardware,<br>Radio/Modem                      | None    | Select the flow control method to use for the serial<br>port. "Hardware" selects the typical CTS/RTS<br>handshake method.<br>"Radio/Modem" is not currently supported.                                                                                                                                                                                                                                                                 |
| Protocol       | None,<br>Gen/ATCS Field,<br>Genisys Field,<br>GCP 3000 | None    | Currently, the WI only supports the GCP 3000<br>protocol. If "GCP 3000" is selected, the WI will poll<br>an external legacy 3000 Grade Crossing Predictor<br>for its configuration and event information. Refer<br>to the following subsection for further information<br>on WI connection to a legacy 3000 GCP.<br>Support for the "Gen/ATCS Field" protocol and the<br>"Genisys Field" protocol may be added in a future<br>release. |

#### Table 5-22 Serial Port Parameter Values

# 5.5.5.1 WI Connection to a Legacy 3000 GCP

The user can view and download legacy 3000 GCP logs and configuration reports from the WI webbrowser user interface.

The WI's Comms serial port must be connected to the J1 DB 25 recorder port of the 3000 GCP. The legacy 3000 GCP system must have the 80115 recorder module installed, and switch SW1 on the 80115 recorder card must be set to the PRINT position, to make the serial interface available to the WI. A DB25 to DB9 cable with a null modem adapter is required to connect the 3000 GCP to the WI.

The user must configure the WI Comms serial port with the GCP 3000 serial protocol and set the "Log Extract Time (Hours)" for how often the WI will request the data from the GCP 3000. This is shown in the following figure.

| Configuration & Adjustment            | Status Monitor Reports & Logs Ma | aintenance Alarms |        |
|---------------------------------------|----------------------------------|-------------------|--------|
| Configuration<br>Site Configuration   | Serial Port                      |                   |        |
| <ul> <li>MCF Configuration</li> </ul> | 🔒 Save 🛛 🛃 Refresh 📝 Default     |                   |        |
| <ul> <li>Networking</li> </ul>        |                                  |                   |        |
| WAMS /RailFusion                      | Baud Rate                        | 9600 ~            | *      |
| Serial Port                           | Data Bits                        | 8                 | -<br>* |
| ▶ Log Setup                           |                                  |                   |        |
| ATCS Message Routing                  | Parity                           | None 🗸            | *      |
| Time Management                       | Stop Bits                        | 1 ~               | *      |
| ▶ Security                            | Flow Ctrl                        |                   |        |
| ▶ WMS                                 |                                  | None              | *      |
| Set to Default                        | Protocol                         | GCP 3000 ~        | >      |
|                                       | Log Extract Time (Hours)         | 12                |        |

Figure 5-32 Serial Port Screen Configuration for GCP 3000

The WI issues the "I" command and the "A" command to the GCP 3000 to receive the configuration and logs per the number of hours set in the "Log Extract Time (Hours)" field. The information is stored in internal memory.

The user can view and download the GCP 3000 log and configuration information from the web browser user interface by going to the Reports & Logs menu, selecting "GCP 3000", and then selecting either "Configuration Report" or "Event Log" as shown in the following figure.

| Configuration Calibration & Adjustment                                                                                                           | Status Monitor Reports & Logs                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reports & Logs                                                                                                                                   | Event Log                                                                                                                                                                                                                                                                                                                                                                                                     |
| Event Log<br>Diagnostic Log<br>Application Log<br>Version Report<br>Inspection Report<br>Configuration Report<br>GCP3000<br>Configuration Report | BASIC       First       Pre         26-Mar-2021       05:07:59.78       26-Mar-2021       05:08:01.00         27-Mar-2021       05:07:59.98       27-Mar-2021       05:08:01.00         28-Mar-2021       05:07:59.88       28-Mar-2021       05:08:01.00         29-Mar-2021       05:07:59.85       29-Mar-2021       05:07:59.85         29-Mar-2021       05:07:59.85       29-Mar-2021       05:08:01.00 |

Figure 5-33 Accessing Reports and Logs for GCP 3000

The user can view the Configuration Report and Event Log in the web browser. The user may also download the Configuration Report and Event Log to their PC from these screens.

# 5.5.6 Log Setup

#### 5.5.6.1 Diagnostic Logging

The user may enable or disable logging of message traffic into the diagnostic log. Typically, the message traffic logging will be used by Siemens personnel to troubleshoot communications issues. The diagnostic logging options are set on the screen shown in Figure 5-34 and described in Table 5-23.

| C | onfiguration         | Diagnostic Logging                         |      |   |   |
|---|----------------------|--------------------------------------------|------|---|---|
|   | Site Configuration   | 🔚 Save 🥰 Refresh 🔒 Default                 | t    |   |   |
| Þ | MCF Configuration    | Diagnostic Log Verbosity                   | Info |   | • |
| Þ | Networking           |                                            | INIO |   | ~ |
|   | WAMS /RailFusion     | WAMS/RailFusion Message Logging<br>Enabled | No   | ~ | * |
|   | Serial Port          | Routing Logging Enabled                    | Yes  | ~ |   |
|   | Log Setup            |                                            |      |   |   |
|   | Diagnostic Logging   | Comms Senai Port Logging Enabled           | No   | ~ | * |
|   | ATCS Message Routing | Network Protocol Logging Enabled           | Yes  | ~ |   |
|   | Time Management      |                                            |      |   |   |
|   | Security             | Digi Protocol Logging Enabled              | Yes  | ~ |   |
| ► | WMS                  |                                            |      |   |   |
| ĥ | Set to Default       |                                            |      |   |   |

Figure 5-34 Log Setup: Diagnostic Logging Screen

| Parameter Name                                | Range                                | Default | Description                                                                                                                                                                                                             |
|-----------------------------------------------|--------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagnostic Log<br>Verbosity                   | Error,<br>Warning,<br>Info,<br>Debug | Info    | Sets the level of diagnostic entries to include in the diagnostic log. The selected level includes all entries at that level and lower (e.g. Info includes all Error, Warning, and Info entries in the diagnostic log). |
| WAMS/RailFusion<br>Message Logging<br>Enabled | Yes or<br>No                         | No      | Enables logging of WAMS/RailFusion messages sent and received by the WI into the WI's diagnostic log.                                                                                                                   |
| Routing Logging<br>Enabled                    | Yes or<br>No                         | No      | Enables logging of the internal ATCS message router functionality, which shows ATCS messages and their contents (starting with ATCS layer 3 header) in the diagnostic log.                                              |
| Comms Serial<br>Logging Enabled               | Yes or<br>No                         | No      | Future Feature.                                                                                                                                                                                                         |
| Network Protocol<br>Logging Enabled           | Yes or<br>No                         | No      | Enables logging of any enabled network protocol, such as ATCS/IP Field. The diagnostic log will include entries showing the sent and received message data, including the network protocol specific headers.            |
| Digi Protocol<br>Logging Enabled              | Yes or<br>No                         | No      | Enables logging of the Siemens Digitalization Protocol messaging to the diagnostic log.                                                                                                                                 |

Table 5-23 Log Setup: Diagnostic Logging Parameter Values

# 5.5.7 ATCS Message Routing

The WI contains an internal ATCS message router. The timeout for ATCS routes can be set on the screen shown in Figure 5-35.

| Configuration        | ATCS Message Routing          |
|----------------------|-------------------------------|
| Site Configuration   | 🔚 Save 💕 Refresh 💽 Default    |
| MCF Configuration    |                               |
| Networking           | Route Timeout (Seconds) 300 * |
| WAMS /RailFusion     |                               |
| Serial Port          |                               |
| 🔻 Log Setup          |                               |
| Diagnostic Logging   |                               |
| ATCS Message Routing |                               |

Figure 5-35 ATCS Message Routing Screen

| Table 5-24 | ATCS | Message | Routing | Parameter V | <b>Values</b> |
|------------|------|---------|---------|-------------|---------------|
|            | /    | moodage |         | i anamotor  | aiaoo         |

| Parameter<br>Name | Range        | Default | Description                                                                                                                                                               |
|-------------------|--------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Route             | 0 to 172,800 | 300     | The length of time, in seconds, the WI will hold the ATCS route information for a discovered device before discarding it. A value of 0 means entries will never time out. |
| Timeout           | seconds      | seconds |                                                                                                                                                                           |

#### 5.5.8 Time Management

The WI may use several sources for time. Currently, the WI only supports the "Manual Only" time source, which allows users to set the time from the web UI and send time updates on an active back-office interface.



Figure 5-36 Time Management Screen

| Parameter<br>Name          | Range       | Default        | Description                                                                                                                                                                                                                                      |
|----------------------------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time Source                | Manual Only | Manual<br>Only | The Manual Only is currently the only supported option.<br>The user can set the time from the web browser user<br>interface and the WI will set the time when a message is<br>received on the WAMS interface or the Digitalization<br>Interface. |
| Minimum Time<br>Difference | 0 – 60 sec  | 2              | Minimum amount of time difference between reference<br>time and machine time before the WI will set the time from<br>the time source.                                                                                                            |

| Table 5-25 | Time Mai | nagement | Parameter | Values |
|------------|----------|----------|-----------|--------|
|------------|----------|----------|-----------|--------|

# 5.5.9 Security

The Security tab has two sub-menus:

- Password
- Web UI Configuration

#### 5.5.9.1 Password

In the password sub-menu, the web UI login password and the session inactivity timeout for a logic can be changed, as shown in Figure 5-37.

| Configuration        | Password                             |    |  |
|----------------------|--------------------------------------|----|--|
| Site Configuration   | 📑 Save) 💋 Refresh 🔒 Defaul           | t  |  |
| MCF Configuration    |                                      |    |  |
| Networking           | WebUI password                       |    |  |
| WAMS /RailFusion     | Session Inactivity Timeout (Minutes) | 20 |  |
| Serial Port          |                                      |    |  |
| Log Setup            |                                      |    |  |
| ATCS Message Routing |                                      |    |  |
| Time Management      |                                      |    |  |
|                      |                                      |    |  |
| Password             |                                      |    |  |
| WebUI Configuration  |                                      |    |  |

Figure 5-37 Password Screen

| I able J-20 Fassword Faraineler values | Table 5-26 | Password Parameter Value | s |
|----------------------------------------|------------|--------------------------|---|
|----------------------------------------|------------|--------------------------|---|

| Parameter<br>Name                | Range           | Default       | Description                                                                                                            |
|----------------------------------|-----------------|---------------|------------------------------------------------------------------------------------------------------------------------|
| WebUI<br>password                | 20 characters   | Siemens       | Sets the password the user must enter to access the web browser UI.                                                    |
| Session<br>Inactivity<br>Timeout | 5 to 60 Minutes | 20<br>minutes | The number of minutes of inactivity before the WI will automatically log out a connected user from the web browser UI. |

#### 5.5.9.2 Web UI Configuration

In the Web UI configuration sub-menu, the user can select whether to access the web UI using the secure http protocol (https) or the original http protocol. This also determines what the user must type when accessing the web UI. If the browser access is set to secure, the user must be sure to type "https" in the web browser address bar.

| Configuration                  | WebUI Configuration        |                  |  |
|--------------------------------|----------------------------|------------------|--|
| Site Configuration             | 🔚 Save 🔮 Refresh 🔣 Default |                  |  |
| MCF Configuration              |                            |                  |  |
| <ul> <li>Networking</li> </ul> | Browser Access             | Secure (https) * |  |
| WAMS /RailFusion               |                            |                  |  |
| Serial Port                    |                            |                  |  |
| ▶ Log Setup                    |                            |                  |  |
| ATCS Message Routing           |                            |                  |  |
| Time Management                |                            |                  |  |
| 🚽 Security                     |                            |                  |  |
| Password                       |                            |                  |  |
| WebUI Configuration            |                            |                  |  |

Figure 5-38 Web UI Configuration Screen

| Table 5-27         Web UI Configuration Parameter Values |  |
|----------------------------------------------------------|--|
|----------------------------------------------------------|--|

| Parameter<br>Name | Range             | Default | Description                                                             |
|-------------------|-------------------|---------|-------------------------------------------------------------------------|
| Browser           | Secure (https) or | Secure  | Selects whether or not the web browser is accessed using http or https. |
| Access            | Non-Secure (http) | (https) |                                                                         |

## 5.5.10 WMS

The WI can receive digitalization messages from a connected Wayside Messaging Server (WMS). Digitalization messages include data and measurements taken by the WI, which may be used for office and cloud applications. The WI supports the Class D protocol to connect to the application gateway within the WMS. The WI supports the EMP protocol for processing and routing of digitalization messages sent and received on the Interoperable Train Control Messaging (ITCM) system.

#### 5.5.10.1 WMS: Digitalization Interface Settings

The user can enable or disable the digitalization interface and set the encryption and authentication options for the digitalization interface on the screen shown in Figure 5-39.

|                                                          | Digi Intf Settings |  |  |  |  |
|----------------------------------------------------------|--------------------|--|--|--|--|
| Site Configuration                                       |                    |  |  |  |  |
| MCF Configuration                                        |                    |  |  |  |  |
| ▶ Networking Digitalization Interface Enabled No ▼       |                    |  |  |  |  |
| WAMS /RailFusion Encryption Enabled Yes                  |                    |  |  |  |  |
| Serial Port                                              |                    |  |  |  |  |
| ► Log Setup                                              |                    |  |  |  |  |
| ATCS Message Routing Message Authentication Key MacKey#1 |                    |  |  |  |  |
| Time Management                                          |                    |  |  |  |  |
| ▶ Security                                               |                    |  |  |  |  |
| VVMS                                                     |                    |  |  |  |  |
| Digi Intf Settings                                       |                    |  |  |  |  |
| Class D Settings                                         |                    |  |  |  |  |
| EMP Settings                                             |                    |  |  |  |  |

Figure 5-39 WMS: Digitalization Interface Settings Screen

| Parameter<br>Name                      | Range                 | Default      | Description                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|-----------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digitalization<br>Interface<br>Enabled | Yes, No               | No           | The digitalization interface may be enabled or disabled with this setting.                                                                                                                                                                                                                                                  |
| Encryption<br>Enabled                  | Yes, No               | Yes          | If set to Yes, the WI will encrypt digitalization messages using the specified encryption key.                                                                                                                                                                                                                              |
| Encryption Key                         | 1 to 20<br>characters | Encryptkey#1 | If encryption is enabled, this key will be used by the WI to encrypt all digitalization messages. The office software must use this same key value to decode the messages and to encode any messages sent to the WI.                                                                                                        |
| Message<br>Authentication<br>Key       | 1 to 20<br>characters | MacKey#1     | Each digitalization message is authenticated using a message authentication code (MAC). This field specifies the key to use in the message authentication process. The office software must use this same key value to authenticate the messages received from the WI and to create the MAC on any messages sent to the WI. |

| Table 5-28 | WMS: Digitalization Interface Settings Parameter Values |
|------------|---------------------------------------------------------|
|            |                                                         |

#### 5.5.10.2 WMS: Class D Settings

If the Digitalization Interface Enabled parameter is set to Yes, the user interface allows the user to set the following parameters for the Class D interface to the ITCM Messaging system. Users may refer to the Association of American Railroads (AAR) standard S-9356 for a detailed description of the Class D protocol and its configuration settings.

| C | onfiguration         | Class D Settings               |                |       |  |
|---|----------------------|--------------------------------|----------------|-------|--|
|   | Site Configuration   | 🔚 Save 🔮 Refresh 🔣 Default     |                |       |  |
| ۲ | MCF Configuration    | Application Gateway IP Address |                |       |  |
| • | Networking           |                                | 10.200.200.210 | ^<br> |  |
|   | WAMS /RailFusion     | Application Gateway Port       | 3001           | ×     |  |
|   | Serial Port          | Keep Alive Interval (ms)       | 30000          | *     |  |
|   | ATCS Message Routing | Keep Alive Ack Timeout (ms)    | 30000          | *     |  |
|   | Time Management      | Ack Timeout (ms)               | 15000          | *     |  |
| ► | Security             | Connect Attempt Timeout (mo)   |                |       |  |
| • | WMS                  | Connect Attempt Timeout (ins)  | 30000          | *     |  |
|   | Class D Settings     | Connect Attempt Delay (ms)     | 60000          | *     |  |
|   | -<br>EMP Settings    | Connect Attempt Retry Count    | -1             | *     |  |
|   | Set to Default       | Reconn. Attempt Retry Limit    | -1             | ×     |  |
|   |                      | Data ACK Enable                | Yes 🔻          | *     |  |
|   |                      | Data ACK Timeout (ms)          | 15000          | *     |  |

Figure 5-40 WMS: Class D Settings Screen

| Parameter Name                 | Range              | Default        | Description                                                                                                                   |
|--------------------------------|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|
| Application Gateway IP Address | 0 to 64 characters | 10.255.255.210 | Specifies the IP address<br>of the application gateway<br>service to use for<br>communication.                                |
| Application Gateway Port       | 1024 to 65535      | 3001           | Specifies the TCP port<br>number to use for the<br>Class D connection to the<br>application gateway.                          |
| Keep Alive Interval            | 0 to 60000 ms      | 30000          | Specifies the interval<br>between Class D keep<br>alive ack messages.                                                         |
| Keep Alive Ack Timeout         | 0 to 60000 ms      | 30000          | Specifies the timeout for<br>Class D keep alive ack<br>messages.                                                              |
| Ack Timeout                    | 0 to 60000 ms      | 15000          | Specifies the timeout for<br>Class D ack messages.                                                                            |
| Connect Attempt Timeout        | 1 to 60000 ms      | 30000          | Specifies the connection timeout for Class D connections.                                                                     |
| Connect Attempt Delay          | 1 to 60000 ms      | 60000          | Specifies the delay<br>between attempts to<br>connect.                                                                        |
| Connect Attempt Retry Count    | -1 to 10000        | -1             | Specifies the limit on<br>connection attempts. A<br>value of -1 means the WI<br>will attempt to connect<br>indefinitely.      |
| Reconn. Attempt Retry Limit    | -1 to 10000        | -1             | Specifies the limit on<br>reconnection attempts. A<br>value of -1 means the WI<br>will attempt to re-connect<br>indefinitely. |
| Data ACK Enable                | Yes, No            | Yes            | Enables or disables data ack messages.                                                                                        |
| Data Ack Timeout               | 1 to 60000 ms      | 15000          | Sets the time for data ACKs.                                                                                                  |

| Table 5-29 | WMS: | Class | D | Settings | Parameter | Values |
|------------|------|-------|---|----------|-----------|--------|
|------------|------|-------|---|----------|-----------|--------|

# 5.5.10.3 WMS: EMP Settings

For a detailed explanation of the EMP protocol and settings, see the AAR standard S-9354.

| Configuration |                      | EMP Settings               |           |  |  |  |
|---------------|----------------------|----------------------------|-----------|--|--|--|
|               | Site Configuration   | 📑 Save 🍯 Refresh 🚺 Defau   | lt        |  |  |  |
| •             | MCF Configuration    |                            |           |  |  |  |
| •             | Networking           | Wayside Inspector EMP Addr | wi.w:1 *  |  |  |  |
|               | WAMS /RailFusion     | MindConnect Rail EMP Addr  | mcr.o:1 * |  |  |  |
|               | Serial Port          | EMP TTI                    |           |  |  |  |
| ►             | Log Setup            |                            | 1 *       |  |  |  |
|               | ATCS Message Routing | EMP QOS                    | 1 *       |  |  |  |
|               | Time Management      |                            |           |  |  |  |
| •             | Security             |                            |           |  |  |  |
| v             | WMS                  |                            |           |  |  |  |
|               | Digi Intf Settings   |                            |           |  |  |  |
|               | Class D Settings     |                            |           |  |  |  |
|               | EMP Settings         |                            |           |  |  |  |
|               | Set to Default       |                            |           |  |  |  |
|               |                      |                            |           |  |  |  |

Figure 5-41 WMS: EMP Settings Screen

| Parameter Name                | Range             | Default | Description                                                                                                        |
|-------------------------------|-------------------|---------|--------------------------------------------------------------------------------------------------------------------|
| Wayside Inspector<br>EMP Addr | 0 – 64 characters | wi.w:1  | The EMP address used for the WI unit.                                                                              |
| MindConnect Rail<br>EMP Addr  | 0 – 64 characters | mcr.o:1 | The EMP address used for the MindConnect<br>Rail server, which is the digitalization gateway<br>system for the WI. |
| EMP TTL                       | 0 to 65535        | 1       | Specifies the EMP TTL value to use in digitalization messages.                                                     |
| EMP QOS                       | 0 to 65535        | 1       | Specifies the EMP QOS value to use in digitalization messages.                                                     |

| Table 5-30 | WMS: EMP | Settings | Parameter | Values |
|------------|----------|----------|-----------|--------|
|------------|----------|----------|-----------|--------|

#### 5.5.11 Set to Default

| Configuration        | Set to Default |
|----------------------|----------------|
| Site Configuration   | Default        |
| MCF Configuration    |                |
| Networking           |                |
| WAMS /RailFusion     |                |
| Serial Port          |                |
| ▶ Log Setup          |                |
| ATCS Message Routing |                |
| Time Management      |                |
| ▶ Security           |                |
| VMS                  |                |
| Digi Intf Settings   |                |
| Class D Settings     |                |
| EMP Settings         |                |
| Set to Default       |                |

Figure 5-42 Set to Default Screen

The Set to Default screen resets all values entered within the Configuration Tab. It will reset all parameters other than MCF Configuration parameters to the default condition.



## 5.6 CALIBRATION & AJUSTMENT

| Configuration Calle   | ration & Statu<br>stment | us Monitor | Reports & Logs   | <b>Maintenance</b> | Alarms |
|-----------------------|--------------------------|------------|------------------|--------------------|--------|
| Calibration & Adjustm | ent                      | Calibratio | on               |                    |        |
| ▼ iLOD<br>Calibration |                          |            | Start Calibratio | n                  |        |

Figure 5-43 iLOD Calibration Screen

| SIEMENS                  |                                           |                                                                                      |
|--------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|
|                          |                                           |                                                                                      |
| Configuration            | Status Monitor Reports & Logs Maintenance | Alarms                                                                               |
| Calibration & Adjustment | ilod                                      |                                                                                      |
| ► K.0D                   |                                           |                                                                                      |
|                          | Start Calibration                         | Calibration                                                                          |
|                          |                                           | Please activate the crossing, wait for gates to lower and then press OK to continue. |
|                          |                                           | Ok                                                                                   |
|                          |                                           |                                                                                      |

Figure 5-44 iLOD Calibration Screen after selecting "Start Calibration"

| SIEMENS         |                         |                |                |             |            |                                    |   |      |
|-----------------|-------------------------|----------------|----------------|-------------|------------|------------------------------------|---|------|
| Configuration   | California<br>Adustment | Status Monitor | Reports & Logs | Maintenance | Alarms     |                                    |   | Sile |
| Calibration & A | Adjustment              | iLOD           |                |             |            |                                    |   |      |
| ► ILOD          |                         |                | Start Calibrat |             |            |                                    |   |      |
|                 |                         |                |                |             |            |                                    |   |      |
|                 |                         |                |                |             | O Performi | ng field calibration. Please wait. | х |      |

Figure 5-45 iLOD Calibration in Progress

| SIEMENS                  |                                                |
|--------------------------|------------------------------------------------|
| Configuration            | atus Monitor Reports & Logs Maintenance Alarms |
| Calibration & Adjustment | iLOD                                           |
| ► LOD                    | Start Calibration                              |
|                          |                                                |

Figure 5-46 iLOD Calibration Complete

The iLOD module requires a field lamp calibration procedure to set internal thresholds necessary to correctly monitor the flashing lamps. Before performing the field lamp calibration procedure, all iLOD modules must have been installed on the Echelon network first (see section 5.5.2.7). The field calibration procedure calibrates all iLOD modules at once and only needs to be performed one time for all iLODs.

The user performs the field calibration procedure as follows:

- 1. Field personnel start the Field Calibration procedure from the screen shown in Figure 5-43 by clicking the "Start Calibration" button.
- 2. The WI requests the field personnel to activate the Crossing Warning System. Field personnel will need to activate the crossing using the appropriate method for the installed crossing warning system equipment.
- 3. Once all the lamps are flashing and the gates are level, field personnel confirm the Crossing Warning System has been activated by clicking the "Ok" button as shown in Figure 5-44.
- The UI will countdown, while the iLOD performs an internal field calibration procedure, then sends a Field Calibration Message to the WI to indicate the calibration is complete as shown in Figure 5-45.
- 5. When calibration completes, the WI logs that the iLOD Field Calibration procedure has been calibrated and displays to the "iLOD Field Calibration Complete" message as shown in Figure 5-46.

# 5.7 STATUS MONITOR

The Status Monitor tab provides the status of the WI I/O.

# 5.7.1 Digital Inputs

| SIEMENS                                |                |                           |                  |                                                                                    |
|----------------------------------------|----------------|---------------------------|------------------|------------------------------------------------------------------------------------|
|                                        |                |                           |                  |                                                                                    |
|                                        |                |                           | Site Name: N     | Nate WI   ATCS Address: 7.125.550.002.99   Mile Post: 10.25y   DOT Number: 102575N |
| Configuration Calibration & Adjustment | Status Monitor | Reports & Logs Maintenand | Rej<br>ce Alarms |                                                                                    |
| Status Monitor                         | Digital Input  | :s                        |                  |                                                                                    |
|                                        |                | Channel Type              | Channel Name     | Status                                                                             |
| Digital Inputs                         | 1              | Discrete Input            | TSTALM1          | Off                                                                                |
| Battery Inputs                         | 2              | Discrete Input            | TSTALM2          | Off                                                                                |
| Relay Outputs                          | 3              | Discrete Input            | DI3              | off                                                                                |
| AC Power Input and Controls            | 4              | Discrete Input            | DI4              | Off                                                                                |
| GCP Status                             | 5              | Discrete Input            | DI5              | Off                                                                                |
| Internal Temperature                   | 6              | Discrete Input            | DI6              | Off                                                                                |
| Network Status                         | 7              | Discrete Input            | DI7              | Off                                                                                |
| LED Status                             | 8              | Discrete Input            | DI8              | Off                                                                                |
| WiMag Status                           | 9              | Discrete Input            | D19              | Off                                                                                |
| Inspection Status                      | 10             | Discrete Input            | DI10             | Off                                                                                |
| Schedule Status                        | 11             | Discrete Input            | DI11             | Off                                                                                |
| PolovView                              | 12             | Discrete Input            | DI12             | Off                                                                                |
| Logia State View                       | 13             | Discrete Input            | DI13             | Off                                                                                |
|                                        | 14             | Discrete Input            | DI14             | Off                                                                                |
| ALCS ROUTES Table                      | 15             | Discrete Input            | DI15             | Off                                                                                |
|                                        | 16             | Discrete Input            | DI16             | Off                                                                                |
|                                        | 17             | Discrete Input            | DI17             | Off                                                                                |
|                                        | 18             | Discrete Input            | DI18             | Off                                                                                |
|                                        | 19             | Discrete Input            | DI19             | Off                                                                                |
|                                        | 20             | Discrete Input            | DI20             | Off                                                                                |
|                                        | 21             | Discrete Input            | DI21             | Off                                                                                |
|                                        | 22             | Discrete Input            | DI22             | Off                                                                                |
|                                        | 23             | Discrete Input            | DI23             | Off                                                                                |
|                                        | 24             | Discrete Input            | DI24             | Off                                                                                |
|                                        | 25             | Discrete Input            | DI25             | Off                                                                                |

Figure 5-47 Digital Inputs Screen

The Digital Input screen provides the status of the WI's 25 digital inputs.

# 5.7.2 Battery Inputs

| Status Monitor              | Battery Inpu | its          |          |
|-----------------------------|--------------|--------------|----------|
|                             | #            | Channel Name | Voltage  |
| Digital Inputs              | 1            | Batt1        | 13.4 VDC |
| Battery Inputs              | 2            | Batt2        | 0.0 VDC  |
| Relay Outputs               | 3            | Batt3        | 0.0 VDC  |
| AC Power Input and Controls | 4            | Power In     | 13.4 VDC |
| GCP Status                  |              |              |          |
| Internal Temperature        |              |              |          |
| Network Status              |              |              |          |
| LED Status                  |              |              |          |
|                             |              |              |          |
| Inspection Status           |              |              |          |
| Schedule Status             |              |              |          |
| Relay View                  |              |              |          |
| Logic State View            |              |              |          |
| ATCS Routes Table           |              |              |          |
|                             |              |              |          |
|                             |              |              |          |
|                             |              |              |          |
|                             |              |              |          |

Figure 5-48 Battery Inputs Screen

The Battery Inputs screen provides the status of up to four batteries with their respective Channel Names and their voltages.

# 5.7.3 Relay Outputs

| SIEMENS                                |                                                  |                                                                               |
|----------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|
|                                        |                                                  |                                                                               |
|                                        | Site Name: Nate \                                | MI   ATCS Address: 7.125.550.002.99   Mile Post: 10.25y   DOT Number: 102575N |
| Configuration Calibration & Adjustment | Status Monitor Reports & Logs Maintenance Alarms |                                                                               |
| Status Monitor                         | Relay Outputs                                    |                                                                               |
| Digital Inputs                         | Change State: TSTRLY1 To: Off T Apply            |                                                                               |
| Battery Inputs                         | # Riv2 Channel Name                              | Status                                                                        |
| Relay Outputs                          | 1 Rly3 TSTRLY1<br>Rly4                           | Off                                                                           |
| AC Power Input and Controls            | 2 Rhy2                                           | Off                                                                           |
| GCP Status                             | 3 Rly3                                           | Off                                                                           |
| Internal Temperature                   | 4 Rly4                                           | Off                                                                           |
| Network Status                         |                                                  |                                                                               |
| LED Status                             |                                                  |                                                                               |
| WiMag Status                           |                                                  |                                                                               |
| Inspection Status                      |                                                  |                                                                               |
| Schedule Status                        |                                                  |                                                                               |
| Relay View                             |                                                  |                                                                               |
| Logic State View                       |                                                  |                                                                               |
| ATCS Routes Table                      |                                                  |                                                                               |
| ▶ iLOD                                 |                                                  |                                                                               |
|                                        |                                                  |                                                                               |
|                                        |                                                  |                                                                               |
|                                        |                                                  |                                                                               |
|                                        |                                                  |                                                                               |

Figure 5-49 Relay Outputs Screen

The Relay Outputs screen provides the status of each Relay Output and depicts the Channel Name and Relay Status. From this screen, the user can command the relay off, on, or to toggle.

# 5.7.4 AC Power Input and Controls

| Status Monitor              | AC Power Input and Controls |              |        |  |  |
|-----------------------------|-----------------------------|--------------|--------|--|--|
| Digital Inputs              | AC Pwr Switch: Off   Apply  |              |        |  |  |
| Battery Inputs              | Channel Tag                 | Channel Name | Status |  |  |
| Relay Outpute               | AC Pwr In                   | ACPWR        | On     |  |  |
|                             | AC Pwr Switch               | ACRLY        | Off    |  |  |
| AC Power input and Controls |                             |              |        |  |  |
| GCP Status                  |                             |              |        |  |  |
| Internal Temperature        |                             |              |        |  |  |
| Network Status              |                             |              |        |  |  |
| LED Status                  |                             |              |        |  |  |
| WiMag Status                |                             |              |        |  |  |
| Inspection Status           |                             |              |        |  |  |
| Schedule Status             |                             |              |        |  |  |
| Relay View                  |                             |              |        |  |  |
| Logic State View            |                             |              |        |  |  |
| ATCS Routes Table           |                             |              |        |  |  |
| ▶ iLOD                      |                             |              |        |  |  |
|                             |                             |              |        |  |  |
|                             |                             |              |        |  |  |
|                             |                             |              |        |  |  |
|                             |                             |              |        |  |  |

Figure 5-50 AC Power Input and Controls Screen

The AC Power Input and Controls screen provides the Channel Name and Status of AC Power In and the AC Power Switch. The AC Control Relay is commanded off and on from this screen.

| Digital Inputs              | Link Health 🍯 |         |          |          |        |                   |
|-----------------------------|---------------|---------|----------|----------|--------|-------------------|
| Battery Inputs              |               |         |          |          |        |                   |
| Relay Outputs               | Track         | Last EZ | Last EX  | Last MPH | Island | Train on Approach |
| AC Power Input and Controls |               |         |          |          |        |                   |
| GCP Status                  |               |         |          |          |        |                   |
| Internal Temperature        |               |         |          |          |        |                   |
| Network Status              |               |         |          |          |        |                   |
| LED Status                  |               |         |          |          |        |                   |
|                             |               |         |          |          |        |                   |
| Inspection Status           |               |         | <u> </u> |          |        | <u> </u>          |
| Schedule Status             | SSCC:         |         | AND:     |          |        |                   |
| Relay View                  |               |         |          |          |        |                   |
| Logic State View            |               |         |          |          |        |                   |
| ATCS Routes Table           |               |         |          |          |        |                   |

# 5.7.5 GCP Status

#### Figure 5-51 GCP Status Screen

The GCP Status screen provides data for up to six tracks, providing Last EZ, Last EX, Last MPH, Island, and Train on Approach for each track as well as SSCC & AND status.

# 5.7.6 Internal Temperature

| Status Monitor              | Internal Temperature |
|-----------------------------|----------------------|
| Digital Inputs              | Temperature: 90 75 F |
| Battery Inputs              |                      |
| Relay Outputs               |                      |
| AC Power Input and Controls |                      |
| GCP Status                  |                      |
| Internal Temperature        |                      |
| Network Status              |                      |
| LED Status                  |                      |
| WiMag Status                |                      |
| Inspection Status           |                      |
| Schedule Status             |                      |
| Relay View                  |                      |
| Logic State View            |                      |
| ATCS Routes Table           |                      |
| ▶ iLOD                      |                      |

Figure 5-52 Internal Temperature Screen

The Internal Temperature screen provides the current internal temperature of the WI.

# 5.7.7 Network Status

| Network Status  |                                                                                                                                   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Laptop          |                                                                                                                                   |
| DHCP Mode       | Server                                                                                                                            |
| IP Address      | 192.168.255.081 Down                                                                                                              |
| Network Mask    | 255.255.255.000                                                                                                                   |
| Link-up Status  | DOWN                                                                                                                              |
| Comms Interface |                                                                                                                                   |
| DHCP Mode       | Disabled                                                                                                                          |
| IP Address      | 192.168.013.001 Up                                                                                                                |
| Network Mask    | 255.255.255.000                                                                                                                   |
| Link-up Status  | UP                                                                                                                                |
|                 |                                                                                                                                   |
|                 |                                                                                                                                   |
|                 |                                                                                                                                   |
|                 |                                                                                                                                   |
|                 |                                                                                                                                   |
|                 |                                                                                                                                   |
|                 |                                                                                                                                   |
|                 |                                                                                                                                   |
|                 |                                                                                                                                   |
|                 | Network Status  Laptop  DHCP Mode  IP Address  Link-up Status  Comms Interface  DHCP Mode  IP Address Network Mask Link-up Status |

#### Figure 5-53 Network Status Screen

The Network Status screen provides network data for the Laptop and Comms Interface connectors.

| Status Monitor              | LED Statu | S                 |          |
|-----------------------------|-----------|-------------------|----------|
|                             | #         | Name              | Status   |
| Digital Inputs              | 1         | LED Alm1          | On       |
| Battery Inputs              | 2         | LED Alm2          | On       |
| Relay Outputs               | 3         | LED LowBatt       | On       |
| AC Power Input and Controls | 4         | LED HighBatt      | On       |
| GCP Status                  | 5         | LED ECD           | On       |
| Internal Temperature        | 6         | LED iLOD-1 Health | Flashing |
| Network Status              | 7         | LED iLOD-2 Health | Flashing |
| LED Status                  | 8         | LED 8 - UNUSED    | Off      |
| WiMag Status                |           |                   |          |
| Inspection Status           |           |                   |          |
| Schedule Status             |           |                   |          |
| Relay View                  |           |                   |          |
| Logic State View            |           |                   |          |
| ATCS Routes Table           |           |                   |          |
| ▶ iLOD                      |           |                   |          |
|                             |           |                   |          |
|                             |           |                   |          |
|                             |           |                   |          |

#### 5.7.8 LED Status

#### Figure 5-54 LED Status Screen

The LED Status screen provides the name and status of each of the eight Application LEDs.

## 5.7.9 Inspection Status

| SIEMENS                         |                  |                                |        |                  |                           | Welcome                   | e Admin Logout      |
|---------------------------------|------------------|--------------------------------|--------|------------------|---------------------------|---------------------------|---------------------|
|                                 |                  |                                | Si     | te Name: ITS Tes | t ATCS Address: 7.555.100 | .100.11   Mile Post 000.0 | DOT Number: 000000A |
| Configuration Status Monitor Re | eports & Logs Ma | intenance Alarms               |        |                  |                           |                           |                     |
| Status Monitor                  | Inspection S     | tatus                          |        |                  |                           |                           |                     |
| Digital Inputs                  | <b>Trigger</b>   |                                |        |                  |                           |                           |                     |
| Battery Inputs                  |                  | Inspection Name                | Туре   | State            | Last Pass Date/Time       | Last Pass Value           | Next Inspection     |
| Relay Outputs                   | IN SPE           | CTION 1 Warning Time (234.259) | Annual | Pending          | 03-Jun-2016 09:38:20      | 27s                       | None Scheduled      |
|                                 | IN SPE           | CTION 2 Warning Time (234.259) | Annual | Passed           | 06-Jun-2016 09:33:29      | 20s                       | None Scheduled      |
| AC Power input and Controls     | IN SPE           | CTION 3 Warning Time (234.259) | Annual | Pending          | No Result                 | No Result                 | None Scheduled      |
| GCP Status                      |                  |                                |        |                  |                           |                           |                     |
| Internal Temperature            |                  |                                |        |                  |                           |                           |                     |
| Network Status                  |                  |                                |        |                  |                           |                           |                     |
| LED Status                      |                  |                                |        |                  |                           |                           |                     |
| WiMag Status                    |                  |                                |        |                  |                           |                           |                     |
| Inspection Status               |                  |                                |        |                  |                           |                           |                     |
| Schedule Status                 |                  |                                |        |                  |                           |                           |                     |
| Relay View                      |                  |                                |        |                  |                           |                           |                     |
| Logic State View                |                  |                                |        |                  |                           |                           |                     |
|                                 |                  |                                |        |                  |                           |                           |                     |
| ALCS ROULES TABLE               |                  |                                |        |                  |                           |                           |                     |

Figure 5-55 Inspection Status Screen

The Inspection Status screen shows the status of currently programmed tests. This screen also allows the user to select and trigger programmed tests with the **Trigger** button.

# 5.7.10 Schedule Status

| _                                      |                                           |                   |         |
|----------------------------------------|-------------------------------------------|-------------------|---------|
| SIEMENS                                |                                           |                   |         |
|                                        |                                           |                   |         |
| Configuration Calibration & Adjustment | Status Monitor Reports & Logs Maintenance | Alarms            |         |
| Status Monitor                         | Schedule Status                           |                   |         |
|                                        | Туре                                      | Date/Time         | Status  |
| Digital Inputs                         | Monthly Inspection                        | 01-Nov-2020 10:00 | Ignored |
| Battery Inputs                         | Quarterly Inspection                      | 01-Nov-2020 10:00 | Ignored |
| Relay Outputs                          | Annual Inspection                         | 02-Nov-2020 10:00 | Ignored |
| AC Power Input and Controls            | Weekly Inspection                         | 02-Nov-2020 10:00 | Ignored |
| GCP Status                             |                                           |                   |         |
| Internal Temperature                   | Inspection schedule CRC                   | 55D4AD2A          |         |
| Network Status                         |                                           |                   |         |
| LED Status                             | -                                         |                   |         |
| WiMag Status                           |                                           |                   |         |
| Inspection Status                      |                                           |                   |         |
| Schedule Status                        |                                           |                   |         |
| Relay View                             | -                                         |                   |         |
| Logic State View                       |                                           |                   |         |
| ATCS Routes Table                      |                                           |                   |         |
|                                        |                                           |                   |         |
|                                        |                                           |                   |         |
|                                        |                                           |                   |         |
|                                        |                                           |                   |         |

Figure 5-56 Schedule Status Screen

The Schedule Status screen shows the schedule times for each set of inspections and the current status. The screen also shows the CRC of the currently loaded Inspection Schedule.

# 5.7.11 Relay View



Figure 5-57 Relay View Screen

The Relay View screen displays the MCFs relay logic circuits and the contact and coil states in real time. The user may view any relay logic circuit defined in the MCF on this screen. This screen may be useful to application engineers to troubleshoot the MCF's relay logic.

# 5.7.12 Logic State View

| Status Monitor              | Logic State View                           |       |                             |                                       |          |  |
|-----------------------------|--------------------------------------------|-------|-----------------------------|---------------------------------------|----------|--|
| Digital Inputs              | Monitor Elear Select Logic States          |       |                             |                                       |          |  |
| Battery Inputs              | Mnemonic                                   | State | Logic State Log             | \$                                    |          |  |
| Relay Outputs               |                                            |       | 14-Apr-2020 19:50:21 36 alr | n Reset = True                        | <b>^</b> |  |
| AC Power Input and Controls |                                            |       | 14-Apr-2020 19:50:21.36 lec | IAIm1On = True                        |          |  |
| GCP Status                  |                                            |       | 14-Apr-2020 19:50:21.36 lec | iAlm2On = True                        |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.36 lec | IAIm3On = True                        |          |  |
| Internal Temperature        |                                            |       |                             | IAIm4On = True                        |          |  |
| Network Status              |                                            |       | 14-Apr-2020 19:50:21.36 lec | IAIMOUN = Irue<br>Nil OD 1 Red = True |          |  |
| LED Status                  |                                            |       | 14-Api-2020 19:50:21:50 let | I_ILOD IBau - Ifue                    |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 1Discrete = True                      |          |  |
| Inspection Status           | 14-Apr-2020 19:50:21 68 Di2Discrete = True |       |                             |                                       |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 3Discrete = True                      |          |  |
| Schedule Status             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 4Discrete = True                      |          |  |
| Relay View                  |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 5Discrete = True                      |          |  |
| Logic State View            |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 6Discrete = True                      |          |  |
| ATCS Routes Table           |                                            |       |                             | 7Discrete = True                      |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 Di  | 8Discrete = Irue                      |          |  |
| - 1200                      |                                            |       | 14-Apr-2020 19:50:21:66 Di  | 9Discrete = True<br>10Discrete = True |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21:00 Di  | 11Discrete = True                     |          |  |
|                             |                                            |       |                             | 12Discrete = True                     |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 13Discrete = True                     |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 14Discrete = True                     |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 15Discrete = True                     |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 16Discrete = True                     |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 17Discrete = True                     |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 18Discrete = True                     |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 19Discrete = True                     |          |  |
|                             |                                            |       | 14-Apr-2020 19:50:21.68 DI  | 20Discrete = True                     |          |  |
|                             |                                            |       |                             | 27Discrete = True                     | -        |  |

Figure 5-58 Logic State View Screen

The Logic State View screen displays a real-time log showing the state changes for all logic states in the MCF. The user may select a subset of logic states to monitor on this screen. This screen may be useful to application engineers to troubleshoot the MCF's relay logic.

## 5.7.13 ATCS Routes Table

| Status Monitor              | ATCS Routes Table |              |                     |      |              |                  |
|-----------------------------|-------------------|--------------|---------------------|------|--------------|------------------|
| Digital Inputs              | Port Number       | Port Name    | ATCS Address        | Path | Timeout Text | Timeout<br>Value |
| Battery Inputs              | 1                 | Local Serial | 7.125.550.002.99.01 | None | mortal       | 300              |
| Relay Outputs               |                   |              |                     |      |              |                  |
| AC Power Input and Controls |                   |              |                     |      |              |                  |
| GCP Status                  |                   |              |                     |      |              |                  |
| Internal Temperature        |                   |              |                     |      |              |                  |
| Network Status              |                   |              |                     |      |              |                  |
| LED Status                  |                   |              |                     |      |              |                  |
|                             |                   |              |                     |      |              |                  |
| Inspection Status           |                   |              |                     |      |              |                  |
| Schedule Status             |                   |              |                     |      |              |                  |
| Relay View                  |                   |              |                     |      |              |                  |
| Logic State View            |                   |              |                     |      |              |                  |
| ATCS Routes Table           |                   |              |                     |      |              |                  |
| ▶ iLOD                      |                   |              |                     |      |              |                  |
|                             |                   |              |                     |      |              |                  |
|                             |                   |              |                     |      |              |                  |
|                             |                   |              |                     |      |              |                  |

Figure 5-59 ATCS Routes Table Screen

The ATCS Routes Table provides the list of Routes used in the WI.

| Status Monitor                                                                                 | iLOD 1                                                                                                                         |                                                                |                                                       |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|--|
| Digital Inputs<br>Battery Inputs<br>Relay Outputs<br>AC Power Input and Controls<br>GCP Status | Name<br>Comms Link Health<br>Installation Complete<br>Factory Calibrated<br>Field Calibrated<br>iLOD Neuron ID<br>Echelon Node | iLOD 1<br>Ves<br>Yes<br>Yes<br>0267C2C00100<br>100             |                                                       |  |
| Network Status<br>LED Status<br>WiMag Status                                                   | Sensor 1 Name<br>Lamp Current<br>Lamp Current Waveform                                                                         | iLOD1Sensor1<br>0.8 A<br>DC                                    |                                                       |  |
| Inspection Status<br>Schedule Status<br>Relay View<br>Logic State View                         | Threshold No<br>1<br>2<br>3<br>4                                                                                               | Threshold Current<br>0.0 A<br>0.0 A<br>0.0 A<br>0.0 A<br>0.0 A | Current is Over Threshold<br>Yes<br>Yes<br>Yes<br>Yes |  |
| ATCS Routes Table<br>▼ iLOD<br>iLOD 1                                                          | Sensor 2 Name<br>Lamp State                                                                                                    | iLOD1Sensor2<br>Off                                            |                                                       |  |

#### 5.7.13.1 iLOD Status Screen


| Status Monitor              | iLOD 1                |                      |                              |  |
|-----------------------------|-----------------------|----------------------|------------------------------|--|
|                             | 2                     | 0.0 A                | Yes                          |  |
| Digital Inputs              | 3                     | 0.0 A                | Yes                          |  |
| Battery Inputs              | 4                     | 0.0 A                | Yes                          |  |
| Relay Outputs               | Sensor 2 Name         | iLOD1Sensor2         |                              |  |
| AC Power Input and Controls | Lamp State            | Off                  |                              |  |
| GCP Status                  | Lamp Current          | 0.0 A                |                              |  |
|                             | Lamp Current Waveform | DC                   |                              |  |
| Internal Temperature        | Lamp Flash Rate       | 0 fpm                |                              |  |
| Network Status              |                       |                      |                              |  |
| LED Status                  | Threshold No          | Threshold Current    | Current is Over Threshold    |  |
| Williag Status              | 1                     | 0.5 A                | No                           |  |
| Wilway Status               | 2                     | 0.5 A                | No                           |  |
| Inspection Status           | 3                     | 0.5 A                | No                           |  |
| Schedule Status             | 4                     | 0.5 A                | No                           |  |
| Relay View                  | Threshold No          | Threshold Flash Rate | Flash Rate is Over Threshold |  |
| Logic State View            |                       | 5 fpm                | No                           |  |
| ATOS Bautas Tabla           |                       | 5 fpm                | No                           |  |
| ATCS Routes Table           |                       | 5 fpm                | No                           |  |
| ▼ iLOD                      | 4                     | 5 fpm                | No                           |  |
| iLOD 1                      |                       |                      |                              |  |

Figure 5-61 iLOD Status Monitor 1 Screen

The iLOD status screens show the state of the link with the iLOD modules and the last reported data from the modules. The data includes the measured current and calibration states for the module. The screen also shows whether the current is above the configured current thresholds for the MCF logic.

# 5.8 REPORTS & LOGS

The WI keeps three logs: the Event Log, the Diagnostic Log, and the Application Log.

The Event Log contains entries showing external crossing events detected by the WI. The Event Log is useful to investigate crossing operation.

The Diagnostic Log contains entries showing internal WI operations and data. The Diagnostic Log is useful to troubleshoot the WI itself.

The Application Log contains only the entries that were created by the MCF.

The WI always logs entries in chronological order. The time stamp may change forward or backward as the user changes the time; however, events are always added to the log in the order they occurred.

# 5.8.1 Event Log

| Reports & Logs       | Event Log               |               |                                                                |
|----------------------|-------------------------|---------------|----------------------------------------------------------------|
| Event Log            | BASIC 🔻 🔰 First         | Previous Next | Last Download Event Text V                                     |
| Diagnostic Log       | 14-Apr-2020 19:51:03.75 | iLOD          | UNKNOWN comms bad                                              |
| Application Log      | 14-Apr-2020 19:51:21.85 | APPL          | ILOD-1 HEALTH BAD                                              |
| Version Report       | 14-Apr-2020 19:51:21.85 | APPL          | ILOD-2 HEALTH BAD                                              |
|                      | 14-Apr-2020 19:51:50.71 | Exec          | WebUser:Log in MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1  |
| Inspection Report    | 14-Apr-2020 19:52:09.21 | Exec          | WebUser:Log out MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1 |
| Configuration Report | 24-Apr-2020 12:57:07.39 | Exec          | WebUser:Log in MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1  |
|                      | 24-Apr-2020 14:02:42.41 | Exec          | WebUser:Log out MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1 |
|                      | 24-Apr-2020 14:26:19.89 | Exec          | WebUser:Log in MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1  |
|                      | 24-Apr-2020 14:31:41.01 | Exec          | WebUser:Log out MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1 |
|                      | 24-Apr-2020 14:40:42.07 | Exec          | WebUser:Log in MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1  |
|                      | 24-Apr-2020 17:41:54.38 | Exec          | WebUser:Log out MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1 |
|                      | 27-Apr-2020 08:57:14.18 | Exec          | WebUser:Log in MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1  |
|                      | 27-Apr-2020 11:01:34.69 | Exec          | WebUser:Log out MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1 |
|                      | 27-Apr-2020 11:02:00.50 | Exec          | WebUser:Log in MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1  |
|                      | 27-Apr-2020 12:03:25.46 | Exec          | WebUser:Log out MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1 |
|                      | 27-Apr-2020 12:39:47.79 | Exec          | WebUser:Log in MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1  |
|                      | 27-Apr-2020 13:59:58.26 | Exec          | WebUser:Log out MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1 |
|                      | 27-Apr-2020 14:18:10.72 | Exec          | WebUser.Log in MAC Address: 00:E0:4C:31:93:F5 PORT: ETHERNET1  |

Figure 5-62 Event Log Screen

The event log will hold up to 172,800 entries. The following is an example event log entry:

095D 11-Apr-2016 13:26:15.30 AI Power In 12.0 V

# 5.8.2 Diagnostic Log

| Reports & Logs       | Diagnostic Log          |               |        |                                                                               |
|----------------------|-------------------------|---------------|--------|-------------------------------------------------------------------------------|
| Event Log            | BASIC V First           | Previous Next | ▶ Last | 🔁 Download 🔍 Event Text 🔹                                                     |
| Diagnostic Log       | 27-Apr-2020 14:30:12.42 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #122 7.125.550.002.99.01->7.125.550.002.16.01 |
| Application Log      | 27-Apr-2020 14:30:22.39 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #123 7.125.550.002.99.01->7.125.550.002.16.01 |
| Version Report       | 27-Apr-2020 14:30:32.41 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #125 7.125.550.002.99.01->7.125.550.002.16.01 |
|                      | 27-Apr-2020 14:30:42.43 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #126 7.125.550.002.99.01->7.125.550.002.16.01 |
| Inspection Report    | 27-Apr-2020 14:30:52.40 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #127 7.125.550.002.99.01->7.125.550.002.16.01 |
| Configuration Report | 27-Apr-2020 14:31:02.42 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #0 7.125.550.002.99.01->7.125.550.002.16.01   |
|                      | 27-Apr-2020 14:31:12.39 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #1 7.125.550.002.99.01->7.125.550.002.16.01   |
|                      | 27-Apr-2020 14:31:22.41 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #2 7.125.550.002.99.01->7.125.550.002.16.01   |
|                      | 27-Apr-2020 14:31:32.43 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #3 7.125.550.002.99.01->7.125.550.002.16.01   |
|                      | 27-Apr-2020 14:31:42.40 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #4 7.125.550.002.99.01->7.125.550.002.16.01   |
|                      | 27-Apr-2020 14:31:52.42 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #6 7.125.550.002.99.01->7.125.550.002.16.01   |
|                      | 27-Apr-2020 14:32:02.40 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #7 7.125.550.002.99.01->7.125.550.002.16.01   |
|                      | 27-Apr-2020 14:32:12.41 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #8 7.125.550.002.99.01->7.125.550.002.16.01   |
|                      | 27-Apr-2020 14:32:22.43 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #9 7.125.550.002.99.01->7.125.550.002.16.01   |
|                      | 27-Apr-2020 14:32:32.40 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #10 7.125.550.002.99.01->7.125.550.002.16.01  |
|                      | 27-Apr-2020 14:32:42.42 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #11 7.125.550.002.99.01->7.125.550.002.16.01  |
|                      | 27-Apr-2020 14:32:52.39 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #12 7.125.550.002.99.01->7.125.550.002.16.01  |
|                      | 27-Apr-2020 14:33:02.41 | Warning       | RTE    | Dropped Pkt (no route):LBL=C759 #13 7.125.550.002.99.01->7.125.550.002.16.01  |

Figure 5-63 Diagnostic Log Screen

Field personnel can change the diagnostic log verbosity level using the Web UI. The verbosity level defaults to "Info", which means the diagnostic log contains entries at verbosity level Basic, Error, Warning, and Info. It will not include Debug level entries.

Each entry has a verbosity level associated with it. The diagnostic log also has a logging verbosity level. The WI will only add entries with the same verbosity level or lower to the diagnostic log. The user may turn the verbosity up or down to control how much information is in the diagnostic log. If turned all the way up, the diagnostic log may include a lot of information in a short amount of time, limiting the duration of time the log covers. If turned all the way down, the diagnostic log may cover a long duration of time but not include much detail.

The diagnostic log will hold up to 172,800 entries. The diagnostic log entries contain the same data as the event log entries with the addition of the "Verbosity" field. The following is an example of a Diagnostic Log entry:

DA75 24-Mar-2016 13:59:27.33 INFO TMON Thread Registered:wimag id:10

# 5.8.3 Application Log

| Reports & Logs       | Application Log         |               |                     |              |
|----------------------|-------------------------|---------------|---------------------|--------------|
| Event Log            | BASIC V First           | Previous Next | 🔪 Last 🛃 Download 🔍 | Event Text 🔻 |
| Diagnostic Log       | 06-Apr-2020 14:09:59.46 | APPL          | System Reset        |              |
| Application Log      | 06-Apr-2020 14:10:48.12 | APPL          | ILOD-1 HEALTH BAD   |              |
| Version Report       | 06-Apr-2020 14:10:48.12 | APPL          | ILOD-2 HEALTH BAD   |              |
| Increation Depart    | 09-Apr-2020 12:11:14.43 | APPL          | System Reset        |              |
| Inspection Report    | 09-Apr-2020 12:12:04.77 | APPL          | ILOD-1 HEALTH BAD   |              |
| Configuration Report | 09-Apr-2020 12:12:04.77 | APPL          | iLOD-2 HEALTH BAD   |              |
|                      | 09-Apr-2020 13:12:42.75 | APPL          | System Reset        |              |
|                      | 09-Apr-2020 13:13:32.89 | APPL          | ILOD-1 HEALTH BAD   |              |
|                      | 09-Apr-2020 13:13:32.89 | APPL          | ILOD-2 HEALTH BAD   |              |
|                      | 09-Apr-2020 14:14:42.54 | APPL          | System Reset        |              |
|                      | 09-Apr-2020 14:15:32.89 | APPL          | ILOD-1 HEALTH BAD   |              |
|                      | 09-Apr-2020 14:15:32.89 | APPL          | ILOD-2 HEALTH BAD   |              |
|                      | 12-Apr-2020 15:33:13.80 | APPL          | System Reset        |              |
|                      | 12-Apr-2020 15:34:05.66 | APPL          | ILOD-1 HEALTH BAD   |              |
|                      | 12-Apr-2020 15:34:05.66 | APPL          | iLOD-2 HEALTH BAD   |              |
|                      | 14-Apr-2020 19:50:30.63 | APPL          | System Reset        |              |
|                      | 14-Apr-2020 19:51:21.85 | APPL          | ILOD-1 HEALTH BAD   |              |
|                      | 14-Apr-2020 19:51:21.85 | APPL          | ILOD-2 HEALTH BAD   |              |

#### Figure 5-64 Application Log Screen

The Application Log is a filtered version of the Event Log that shows only the entries added to the Event Log by the MCF logic.



#### 5.8.4 Version Report

Figure 5-65 Version Report Screen

The Version report contains all the software/firmware information for the software/firmware currently loaded on the WI. It also contains the Site Configuration details.

# 5.8.5 Inspection Report

| Reports & Logs       | Inspection Report                                                            |                   |                     |         |                        |                        |                        |                        |                                        |            |
|----------------------|------------------------------------------------------------------------------|-------------------|---------------------|---------|------------------------|------------------------|------------------------|------------------------|----------------------------------------|------------|
| EventLog             | 🔳 Create 🔡 Download                                                          |                   |                     |         |                        |                        |                        |                        |                                        |            |
| Diagnostic Log       |                                                                              |                   |                     |         |                        |                        |                        |                        |                                        |            |
| Application Log      | Wayside Inspector Inspection Re                                              | port              | Generated O         | 9-Nov-2 | 020 16:19:47           | 7                      |                        |                        |                                        |            |
| Version Report       | Site Configuration                                                           |                   |                     |         |                        |                        |                        |                        |                                        |            |
| Inspection Report    | Site Name: WI_Lab_Setup2                                                     |                   |                     |         |                        |                        |                        |                        |                                        |            |
| Configuration Report | Milepost: 402232<br>Dot Number: 1789                                         |                   |                     |         |                        |                        |                        |                        |                                        |            |
|                      | Time zone: Eastern<br>ATCS Address: 7.620.100.100.09<br>Config CRC: 84D3A640 |                   |                     |         |                        |                        |                        |                        |                                        |            |
|                      | Software Versions                                                            |                   |                     |         |                        |                        |                        |                        |                                        |            |
|                      | TYPE SW_Name                                                                 | Version           | Build No            | Build   | l Date                 |                        | CRC                    |                        |                                        |            |
|                      | MEF 9VD17-A01.F                                                              | 1.6               | 20                  | 05-No   | v-2020 11:2            | EST                    | 3a30d8f01ae85cccbb69   | 46eae21d0b60           |                                        |            |
|                      | UBOOT 9VD13A01. A                                                            | 2.6.74            | 0                   | May 2   | 7 2016 - 14            | 00:03                  | 0                      |                        |                                        |            |
|                      | ROOTES 9VD16A01.A<br>DTB 9VD15A01A                                           | 210121            | 0                   | 29-Fe   | b-2016                 |                        | fe50cfdfdf2520663e48   | 13ae41150bba           |                                        |            |
|                      | FPGA 9VD21_A01.A4                                                            |                   | ō                   | 2016-   | Jun-02 11:19           |                        | ō                      |                        |                                        |            |
|                      | Inspection Name                                                              |                   |                     |         | State                  | Туре                   | Last Passed Date       | Value                  | Next Scheduled Date                    | Spd Msrmt# |
|                      | Inspection 1<br>Inspection 2                                                 |                   |                     |         | No Result<br>No Result | Monthly<br>Monthly     | No Result<br>No Result | No Result<br>No Result | None scheduled<br>None scheduled       |            |
|                      | Inspection 3                                                                 |                   |                     |         | No Result              | Quarterly              | No Result              | No Result              | None scheduled                         |            |
|                      |                                                                              |                   |                     |         |                        |                        |                        |                        |                                        |            |
| Reports & Logs       | Inspection Report                                                            |                   |                     |         |                        |                        |                        |                        |                                        |            |
| Event Log            | 🔲 Create 🔹 Download                                                          |                   |                     |         |                        |                        |                        |                        |                                        |            |
| Diagnostic Log       |                                                                              |                   |                     |         |                        |                        |                        |                        |                                        |            |
| Application Log      | R00TES 9VD16A01-A                                                            |                   | 0                   | 29-Fe   | b-2016                 |                        | fe50cfdfdf2520663e4    | 81 3ae411 50bba        |                                        |            |
| Version Report       | DTB 9VD15A01A<br>FPGA 9VD21_A01.A4                                           |                   | 0<br>0              | 2016-   | Jun-02 11:19           | ,                      | 0                      |                        |                                        |            |
| Inspection Report    |                                                                              |                   |                     |         |                        |                        |                        |                        |                                        |            |
| Configuration Report | Inspection Name                                                              |                   |                     |         | State                  | Туре                   | Last Passed Date       | Value                  | Next Scheduled Date                    | Spd Msrmt# |
|                      | Inspection 1<br>Inspection 2                                                 |                   |                     |         | No Result<br>No Result | Monthly<br>Monthly     | No Result<br>No Result | No Result<br>No Result | 09-Nov-2020 17:30<br>09-Nov-2020 17:30 |            |
|                      | Inspection 3<br>Inspection 4                                                 |                   |                     |         | No Result<br>No Result | Quarterly<br>Quarterly | No Result<br>No Result | No Result<br>No Result | 09-Nov-2020 17:30<br>09-Nov-2020 17:30 |            |
|                      | Inspection 5<br>Inspection 6                                                 |                   |                     |         | No Result<br>No Result | Week Iy<br>Annua I     | No Result<br>No Result | No Result<br>No Result | 09-Nov-2020 17:00<br>09-Nov-2020 17:00 |            |
|                      | Inspection 7<br>Inspection 8                                                 |                   |                     |         | No Result              | Annual                 | No Result              | No Result              | 09-Nov-2020 17:00<br>09-Nov-2020 17:00 |            |
|                      | Inspection Schedule File: /mnt/                                              | erd/insperts      | ch/ei inch sche     | di.tvt  | NO RESUIC              | quarterity             | NO RESULC              | NO RESULC              | 05-007-2020 17:30                      |            |
|                      | Inspection schedule CRC:                                                     | 47A1DAF 7         | any or _ map_action |         |                        |                        |                        |                        |                                        |            |
|                      | Type Triggered Trigger D                                                     | ate               |                     |         |                        |                        |                        |                        |                                        |            |
|                      | Nonthly No 09-Nov-20                                                         | 20 17:30          |                     |         |                        |                        |                        |                        |                                        |            |
|                      | Quarterly No 09-Nov-20<br>Annual No 09-Nov-20                                | 20 17:30 20 17:00 |                     |         |                        |                        |                        |                        |                                        |            |
|                      | week ty No 09-Nov-20                                                         | 20 17:00          |                     |         |                        |                        |                        |                        |                                        |            |
|                      |                                                                              |                   |                     |         |                        |                        |                        |                        |                                        |            |

Figure 5-66 Inspection Report Screen

The Inspection Report is the same as the Version Report except that it also contains any programmed inspections and the inspection schedule.

# 5.8.6 Configuration Report

| Reports & Logs                                                                                                                 | Configuration Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                                                                                                                                                |         |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Reports & Logs<br>Event Log<br>Diagnostic Log<br>Application Log<br>Version Report<br>Inspecton Report<br>Configuration Report | Configuration Report  Wayside Inspector Configuration Rep Site Configuration  Site Name: Nate WI Milepost: 10.25y Dot Number: 102375N Time zone: Eastern ArtS Address: 7.125.550.002.99 Config CAC: BCC17455 Software versions TYPE Sw_Name TYP | Version Build No<br> | Build Date<br>14-Apr-2020 15:12:20<br>14-Apr-2020 10:41 PDT<br>06-Apr-2020 10:49<br>May 27 2016 - 14:00:03<br>TUE 00: 20 11:13:35 PDT 2015<br>29-Feb-2016<br>2016-Jun-02 11:19 | CRC<br> |
|                                                                                                                                | Maintainer on site Time (min) :<br>Digital Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                                                |         |

Figure 5-67 Configuration Report Screen

The Configuration Report contains all the Wayside Inspectors configuration parameters, including the Site Configuration and the software/firmware information.

#### 5.9 MAINTENANCE

#### 5.9.1 Date/Time

|   | Aaintenance     | Date/Time                |                    |
|---|-----------------|--------------------------|--------------------|
|   | Date/Time       | 🔒 Save 📑 Refresh 🛛 🔶 Get |                    |
| • | Configuration   |                          |                    |
| • | Software Update | Date                     | 27-Apr-2020        |
|   | Reset           | Time                     | 15 🔻 : 13 🔻 : 22 🔻 |
| ► | Network         |                          |                    |

Figure 5-68 Date/Time Screen

The field maintainer may set the time by manually entering it on the screen or using the **Get** button to retrieve the time from the PC running the web browser. After the time has been retrieved, the user may press the **Save** button to set that time in the WI.

# 5.9.2 Configuration



Figure 5-69 Configuration: Download Screen

| Maintenance     | Upload                   |
|-----------------|--------------------------|
| Date/Time       | Update                   |
|                 |                          |
| Download        |                          |
| Upload          |                          |
| Software Update |                          |
| Reset           |                          |
| ▶ Network       | Select File : 🚺 🔕 Browse |
|                 |                          |

Figure 5-70 Configuration: Upload Screen

The Configuration Download and Upload screens allow a configuration package to be downloaded from one site and uploaded to another WI as an exact duplicate.

# 5.9.3 Software Update

Within the Software Update tab, the following screens may be updated: Executive, MCF, Inspection Schedule, Delete MCF, Erase ECD.

#### 5.9.3.1 Loading Executive Software

To update the executive software, select the **Browse** button, then navigate to the desired file.

| Maintenance         | Executive   |          |
|---------------------|-------------|----------|
| Date/Time           | Vpdate      |          |
| Configuration       |             |          |
| 👻 Software Update   |             |          |
| Executive           | Select MEF: | 🚺 Browse |
| MCF                 |             |          |
| Inspection Schedule |             |          |
| Delete MCF          |             |          |
| Erase ECD           |             |          |
| Reset               |             |          |
| ▶ Network           |             |          |

Figure 5-71 Software Update: Executive Screen

After selecting the desired MEF from the dialog box, select **Open.** 



Figure 5-72 Open MEF to Load Dialog Box

After the desired software file is uploaded, select the **Update** button. This will begin the MEF update process.

| Maintenance                       | Executive                                       |
|-----------------------------------|-------------------------------------------------|
| Date/Time                         | Update                                          |
| <ul> <li>Configuration</li> </ul> |                                                 |
| 👻 Software Update                 |                                                 |
| Executive                         | Select MEF: C:\fakepath\nvWl_mef_1.6.7 3 Browse |
| MCF                               |                                                 |
| Inspection Schedule               |                                                 |
| Delete MCF                        |                                                 |
| Erase ECD                         |                                                 |
| Reset                             |                                                 |
| ▶ Network                         |                                                 |

Figure 5-73 Update MEF View

While the MEF is uploading, a status bar will be displayed on the screen to indicate progress as shown below.

| Configuration & Adjustment        | Status Monitor Reports & Logs Maintenance Alarms |
|-----------------------------------|--------------------------------------------------|
| Maintenance                       | Executive                                        |
| Date/Time                         | <b>↓ Update</b>                                  |
| <ul> <li>Configuration</li> </ul> |                                                  |
| ✓ Software Update<br>Executive    | Uploading Status - 60% Completed                 |
| MCF                               |                                                  |
| Inspection Schedule               |                                                  |
| Delete MCF                        |                                                  |
| Erase ECD                         |                                                  |
| Reset                             |                                                  |
| Network                           |                                                  |

Figure 5-74 MEF Update in Process View

Once the upload has reached 90% the Web UI will prompt the user to acknowledge that a reboot is required.



Figure 5-75 Reboot Required Dialog Box

After the software has been successfully updated, the Web UI will display the message shown in the figure below.

| Maintenance                                                         | Executive                                                                                               |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Date/Time<br>Configuration                                          | File uploaded successfully. System will reboot to load the new software. This may take several minutes. |
| <ul> <li>Software Update</li> <li>Executive</li> <li>MCF</li> </ul> | Select MEF:                                                                                             |
| Inspection Schedule<br>Delete MCF<br>Erase ECD                      |                                                                                                         |

Figure 5-76 Executive Software Upload Complete View

#### 5.9.3.2 Loading MCF

The MCF upload procedure is the same as the procedure for the MEF (section 5.9.3.1). From the Update MCF Software screen, select the MCF from the available files, then select **Update**.

| Maintenance |                     | MCF                  |       |  |  |
|-------------|---------------------|----------------------|-------|--|--|
|             | Date/Time           | Vpdate               |       |  |  |
| •           | Configuration       | MCF : CSX Lab002 mcf |       |  |  |
| •           | Software Update     |                      |       |  |  |
|             | Executive           |                      |       |  |  |
|             | MCF                 | Select MCF:          | rowse |  |  |
|             | Inspection Schedule |                      |       |  |  |
|             | Delete MCF          |                      |       |  |  |
|             | Erase ECD           |                      |       |  |  |
|             |                     |                      |       |  |  |

Figure 5-77 Software Update: MCF Screen

| Maintenance                                                                                                                             | MCF                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Date/Time<br>Configuration<br>Software Update<br>Executive<br>MCF<br>Inspection Schedule<br>Delete MCF<br>Erase ECD<br>Reset<br>Network | MCF uplate<br>MCF:<br>MCF:<br>Select MCF: |

Once the MCF has been updated, the Web UI will display the message shown below.

Figure 5-78 MCF Upload Complete View

#### 5.9.3.3 Inspection Schedule

| Maintenance         | Inspection Schedule         |  |  |  |
|---------------------|-----------------------------|--|--|--|
| Date/Time           | Vpdate                      |  |  |  |
| Configuration       |                             |  |  |  |
| 🚽 Software Update   |                             |  |  |  |
| Executive           | Select Inspection Schedule: |  |  |  |
| MCF                 |                             |  |  |  |
| Inspection Schedule |                             |  |  |  |
| Delete MCF          |                             |  |  |  |
| Erase ECD           |                             |  |  |  |
| Reset               |                             |  |  |  |
| ► Network           |                             |  |  |  |

Figure 5-79 Software Update: Inspection Schedule Screen

From this screen, a new Inspection Schedule may be uploaded. Locate the applicable .txt file, make the updates, save the file, and click the **Update** button on the screen.

#### 5.9.3.4 Delete MCF



Figure 5-80 Software Update: Delete MCF Screen

From this screen, the currently loaded MCF may be deleted.

button.



# NOTE

Once the MCF has been deleted it cannot be undone. Ensure that this action is intended prior to clicking the **Delete MCF** 

#### 5.9.3.5 Erase ECD



Figure 5-81 Software Update: Erase ECD Screen

From this screen, the ECD may be erased.



Once the ECD has been erased it cannot be undone.

Ensure that this action is intended prior to clicking the **Erase ECD** button. Erasing the ECD will restore the unit to its factory default settings.

NOTE

#### 5.9.4 Reset



Figure 5-82 Reset Screen

Using the Reset function triggers the WI to reboot.

# 5.9.5 Network

# 5.9.5.1 Ping

| Maintenance                                                                 | Ping                     |  |
|-----------------------------------------------------------------------------|--------------------------|--|
| Date/Time<br>▶ Configuration                                                | Enter IP Address or Name |  |
| Reset                                                                       | Output                   |  |
| <ul> <li>Network</li> <li>Ping</li> <li>Routes</li> <li>IFConfig</li> </ul> |                          |  |

Figure 5-83 Network: Ping Screen

The Web UI allows the user to perform a network ping.

#### 5.9.5.2 Routes

| Maintenance                       | Routes                                         |               |                  |           |   |
|-----------------------------------|------------------------------------------------|---------------|------------------|-----------|---|
| Date/Time                         | Output                                         |               |                  |           |   |
| <ul> <li>Configuration</li> </ul> | Kernel IP routing table<br>Destination Gateway | Genmask       | Flags Metric Ref | Use Iface |   |
| Software Update                   | 192.168.13.0 *                                 | 255.255.255.0 | U 0 0            | 0 eth2    | × |
| Reset                             | 192.168.255.0 *                                | 255.255.255.0 | U 0 0            | 0 eth0    | × |
| Vetwork                           |                                                |               |                  |           |   |
| Ping                              | Add Route                                      |               |                  |           |   |
| Routes                            |                                                |               |                  |           |   |
| IFConfig                          |                                                |               |                  |           |   |

Figure 5-84 Network: Routes Screen

The Routes screen allows the user to view the currently configured networking routes in the WI. The user may also add or remove route table entries from this screen.

#### 5.9.5.3 IFConfig



Figure 5-85 Network: IFConfig Screen

The IFConfig screen allows the user to view the network interface details.

#### 5.9.5.4 ARP

| Maintenance                                    | ARP                                                                                                                                               |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Date/Time Configuration Software Update Reset  | Output<br>? (10.163.70.254) at 00:B8:B3:BA:B6:7A [ether] on eth2<br>pit-sommerer01.railad.com (10.163.70.15) at 10:E7:C6:32:8B:29 [ether] on eth2 |
| ▼ Network<br>Ping<br>Routes<br>IFConfig<br>APP | Delete All                                                                                                                                        |
|                                                |                                                                                                                                                   |
|                                                |                                                                                                                                                   |

#### Figure 5-86 Network: ARP Screen

The ARP screen allows the user to view the Address Resolution Protocol used to discover link layer addresses.

SEPTEMBER 2016 (REVISED APRIL 2021)

# 5.10 ALARMS

| Alarms | Alarms    |                        |          |                       |            |  |
|--------|-----------|------------------------|----------|-----------------------|------------|--|
|        | Clear All |                        |          |                       |            |  |
|        | Status    | Set Text               | Set Code | Clear Text            | Clear Code |  |
|        | Clear     | Test Alarm 1           |          | Test Alarm 1 Cleared  | 101        |  |
|        | Clear     | Test Alarm 2           |          | Test Alarm 2 Cleared  | 102        |  |
|        | Clear     | Batt Low               |          | Batt Normal           | 103        |  |
|        | Clear     | Batt High              |          | Batt Normal           | 104        |  |
|        | Clear     | ECD Failed             |          |                       |            |  |
|        | Clear     | Clear Alarms Triggered | 0        |                       | 0          |  |
|        | Set       | System Reset           |          |                       |            |  |
|        | Clear     | AE1 CURRENT LOW        | 8        | AE1 CURRENT NORMAL    | 108        |  |
|        | Clear     | AE1 LAMPS OUT          |          | AE1 LAMPS NORMAL      | 109        |  |
|        | Clear     | AE2 CURRENT LOW        | 10       | AE2 CURRENT NORMAL    | 110        |  |
|        | Clear     | AE2 LAMPS OUT          | 11       | AE2 LAMPS NORMAL      | 111        |  |
|        | Clear     | BE1 CURRENT LOW        | 12       | BE1 CURRENT NORMAL    | 112        |  |
|        | Clear     | BE1 LAMPS OUT          | 13       | BE1 LAMPS NORMAL      | 113        |  |
|        | Clear     | BE2 CURRENT LOW        | 14       | BE2 CURRENT NORMAL    | 114        |  |
|        | Clear     | BE2 LAMPS OUT          | 15       | BE2 LAMPS NORMAL      | 115        |  |
|        | Set       | iLOD-1 HEALTH BAD      | 16       | iLOD-1 HEALTH OK      | 116        |  |
|        | Set       | iLOD-2 HEALTH BAD      |          | iLOD-2 HEALTH OK      | 117        |  |
|        | Clear     | AE1 FLASH RATE FAIL    | 18       | AE1 FLASH RATE NORMAL | 118        |  |
|        | Clear     | AE2 FLASH RATE FAIL    | 19       | AE2 FLASH RATE NORMAL | 119        |  |
|        | Clear     | BE1 FLASH RATE FAIL    | 20       | BE1 FLASH RATE NORMAL | 120        |  |
|        | Clear     | BE2 FLASH RATE FAIL    | 21       | BE2 FLASH RATE NORMAL | 121        |  |

Figure 5-87 Alarms Screen

The Alarms screen provides a listing of all programmed alarms and their current state.

# CHAPTER 6 INSTALLATION & WIRING

#### 6.1 WAYSIDE INSPECTOR INSTALLATION & WIRING

The WI is wall, shelf, or rack mountable. It must be installed in accordance with the railroad/agency's approved site drawing. In Figure 6-1, the WI is wired to perform the Standby Power Inspection (CFR, Title 49, §234.251).





# 6.2 ANCILLARY EQUIPMENT INSTALLATION & MOUNTING

All ancillary equipment used with the WI is wall or rack mountable. The following ancillary equipment is installed and wired as shown:

- 1. WI connected to the Ground Fault Tester 2 (GFT2) and configured for Grounds Inspection.
- 2. WI connected to the Model 5000 Grade Crossing Predictor (GCP) and configured for Warning Time Inspection.
- 3. WI connected to the Model 4000 Grade Crossing Predictor (GCP) via the Wayside Access Gateway (WAG) and configured for Warning Time Inspection.

# 6.2.1 WI Connected to the GFT2 and Configured for Grounds Inspection

The GFT2 is wall, shelf, or rack mountable. The Data Out wire may be connected to any unused Digital Input. In Figure 6-2, the WI is configured to perform the Grounds (CFR, Title 49, §234.249) Inspection. The GFT2 must be installed in accordance with the railroad/agency's approved site drawing.



Figure 6-2 Recommended Wiring for WI Connected to GFT2 with WI Configured for Grounds Inspection

# 6.2.2 WI Connected to Model 5000 GCP with WI Configured for Warning Time Inspection

#### NOTE

#### NOTE

Customer supplied ethernet hubs may be used to ensure connectivity between all ethernet capable equipment in the shelter.

The Model 5000 GCP is wall, shelf, or rack mountable. The GCP automatically provides the WI with Warning Time ((CFR, Title 49, §234.259) Inspection data. The Model 5000 is network capable and is connected via Cat 5 cable to the WI in either the ETH1 or ETH2 connector in accordance with the Railroad/Agency's approved site drawing.





# 6.2.3 WI Connection to Model 4000 GCP

| NOTE | NOTE                                                                                                                      |
|------|---------------------------------------------------------------------------------------------------------------------------|
|      | Customer supplied ethernet hubs may be used to ensure connectivity between all ethernet capable equipment in the shelter. |

The Model 4000 GCP is wall, shelf, or rack mountable. The GCP automatically provides the WI with Warning Time (CFR, Title 49, §234.259) inspection data.

Model 4000 GCPs that use older display modules (A80407) cannot be directly connected to the WI and must be connected via the Echelon connector to the Wayside Access Gateway (WAG), with the WAG connected to the WI in accordance with the railroad/agency's approved site drawing.

If the Model 4000 GCP is using the current display (A80485), then the WI can plug directly into either Ethernet 1 or Ethernet 2 of the display module or into a common network used by either of those ports, without the need for a WAG. This is shown in the following figure where the CAT 5 cable connects to the display in place of the WAG.

The network interface IP addresses and netmask of both systems must be configured correctly. Siemens does not recommend plugging the WI into the Laptop Ethernet port, which is reserved for on-site personnel.



Figure 6-4 WI Connected to Model 4000 GCP with WI Configured for Warning Time Inspection

# CHAPTER 7 OFFICE SYSTEM INTERFACES

# 7.1 INTERFACES TO OFFICE SYSTEMS

The WI supports two protocol stack interfaces to communicate with office systems: WAMS and Digitalization. Both interfaces use the network Ethernet port of the WI.

# 7.1.1 WAMS/RailFusion Interface

The WI supports a Siemens proprietary protocol for reporting alarms and other information to a Wayside Alarm Management System (WAMS) running in the office. The interface supports alarm messages, logs, limited configuration data, and getting and setting the time for the unit. The WAMS/RailFusion interface protocol stack uses proprietary messages embedded in ATCS packets, which are transported across a network in UDP datagrams. For details on the WAMS/RailFusion interface protocol stack, contact Siemens Mobility, Inc.

# 7.1.2 Digitalization Interface

The Digitalization Interface is used for communication between the WI and a Digitalization Platform. The Digitalization Platform provides connectivity to applications running in the cloud or in an on-premise server (Cloud Apps). The Digitalization Platform can be one provided by Siemens Mobility but may also be provided by third parties.

The WI digitalization interface protocol stack uses the Interoperable Train Control Messaging (ITCM) System to transport messages. The following figure shows the context for the digitalization interface.



Figure 7-1 Digitalization Interface Overview

# 7.1.3 MindSphere, MindConnect Rail and the WI Web Application

Siemens provides a digitalization platform and a web application to go with the WI using Siemens MindSphere and MindConnect Rail.

MindSphere is the Siemens Industrial IoT operating system comprising the core cloud services and applications. In MindSphere, submitted data by a WI is processed and stored for analysis and further management purposes. MindConnect Rail is an office connectivity application used to pre-process and securely route WI data from the field into the MindSphere platform.

The WI web application is an application that runs on the MindSphere platform, which then communicates with WIs through MindConnect Rail and the digitalization interface. Users access the WI web application using a web browser on a laptop, desktop, tablet, or smartphone. For more information about the WI web application, see manual *SIG-00-20-02*.