Logical Abstraction and Resource
Management Using the Layerscape
Management Complex
EUF-NET-T0969

Nir Erez | Software R&D

JAN.2015

Z “freescale

A 4
4\

Agenda NN .

- Why Management Complex?

- Creating Network-on-Chip

- Resource Management

- MC Logical Objects

- Data Path Network Interface (DPNI)
- Data Path Switch (DPSW)

<

: - freescale . External Use 1

A 4
4\

LS2085A Platform

Management Complex

Queue/ Buffer Manager ‘ PEB Memory ‘
Advanced 0 | R
DCE SEC Processor Layer 2 Switch Assist
(AIOP)
. 8x1/10 + 8x1
PME QDMA 32-bit DDR4

Memory Controller
8-Lane 10GHz

SERDES

Datapath Acceleration

» SEC - crypto acceleration

» DCE - Data Compression Engine

* PME — Pattern Matching Engine

* QDMA — Queue-enabled DMA Engine

L2 Switching -- via Datapath Acceleration Hardware

* Management Complex — Configuration and Control Abstraction

£

: - freescale . External Use 2

General Purpose Processing

* 8Xx ARM® A57 CPUs, 64 b, 2.0 GHz
* 1 MB L2 cache

HW L1 & L2 Prefetch Engines

Neon SIMD in all CPUs

1 MB L3 platform cache w/ECC

4 MB Coherent Cache

2x64 b DDR4 up to 2.4GT/s

Express Packet 10

* Supports1x8, 4x4, 4x2, 4x1 PCle Gen3
controllers

* SR-I0V support, Root Complex
* 2X SATA 3.0, 2 x USB 3.0 with PHY

Accelerated Packet Processing

» 20 Gbps SEC - crypto acceleration

* 10 Gbps Pattern Match/RegEx

* 20 Gbps Data Compression Engine

Network 10
» Wire Rate 10 Processor:
* 8x1/10GbE + 8x1G
* XAUI/XFI/KR and SGMII
* MACSec on up to 4x 1/10GbE
» Layer 2 Switch Assist

m% %% m

.

I;
y | 1]
Ty

N/ %L{T _:_ .

3

External Use

..Why Management Complex?

freescale

) 4

Legacy Ethernet Controller

.. translates between network stack’s
standard features and HW implementation.

.. owns all hardware resources needed to
operate the Ethernet device.

All functions are in a single HW block.

Configuration is mostly independent of other
blocks.

<.

Z “freescale

Network Stack

Ethernet Driver

(Tx BD Rings

Rx BD Rlngs

~~_ Classifier

MAC

-

_/

pRd
y
DPAA 1.x Ethernet Controller

- The Ethernet driver does not own all
hardware resources needed to operate the
device.

- QBMan resources may serve also other
drivers or instances

- Ethernet Controller functions are achieved
by multiple HW blocks, and configuration
has several dependencies.

<.

: - freescale . External Use | 5

Network Stack

Ethernet Driver

QBMan Driver

FMan Driver

I

Tx Queues

(SW Portal \

Rx Queues

Q! I]I]E[L

~~_ Classifier _—

MAC

PR
DPAA 1.x Ethernet and Crypto Functions (SMP System)

Crypto Stack Network Stack
SEC Driver Ethernet Driver
QBMan Driver FMan Driver QBMan Driver FMan Driver
— a = = = = a

4)

TX, Rx Queues Tx Queues Rx Queues Tx Queues Rx Queues

I l]l]l]l] 000 | | G000 foon

Shared Resources

\ Classifier / \ Classifier /

SEC Engine

MAC MAC

V g

l Shared Resources J

L

Z “freescale ... s

) 4

DPAA 1.x Ethernet Controllers (Partitioned System)

Network Stack

Ethernet Driver

QBMan Driver

Network Stack

Ethernet Driver

FMan Driver

P R 2

Tx Queues

LD T

[
N

SW Portal

Rx Queues

QBMan Driver FMan Driver

R 2 [

g SW Portal A

Tx Queues Rx Queues

Shared Resour

=~ Classifier _—

MAC

LULIRITITT
fron U

~~_ Classifier _—

MAC

L

Z " freescale’

External Use | 7

l Shared Resources J

A 4
4\

Management Complex (MC) — General Concept

- The Management Complex provides Freescale-owned abstraction and control firmware.

- MC exports software-defined and standard-oriented interfaces to GPP and AIOP
software, and thus hides configuration complexity from customers.

- MCis atrusted entity and only executes Freescale-supplied trusted firmware.

It is isolated from the rest of the SoC so it cannot be compromised by malicious or buggy
software running on the GPPs.

GPPs
API API API API
AIOPs
_Object object object object
discover create manage use AE
destroy
object
use
Initial object Set Management
Complex

DPL

: - freescale . External Use 8

A 4
4\

Management Complex Roles

DPAA boot and global initialization
- Global initialization of DPAA hardware blocks (QBMan, WRIOP, AIOP, SEC, etc.)

Configuration and abstraction of logical objects — MC firmware allocates the
right set of low-level resources and configures them to compose a logical object:

- Network interfaces (basic or high-function interfaces)

- L2 switches and Demux objects (MAC patrtitioning, VEB/VEPA)

- Link aggregation groups

- Accelerator interfaces (SEC, DCE, PME, QDMA)

- Inter-Partition Communication interfaces (GPP < AIOP, GPP « GPP)

DPAA objects discovery per software context

DPAA resource management

- Allocation, tracking and recovery in fault scenarios

Support DPAA hardware virtualization

£

: - freescale . External Use 9

)¢
Goal: Easy-to-Use Logical Objects

- Complex sequences
- Driver dependencies

Lack of virtualization

- Centralized resource piles

- Sharing needed but complex
- Requires Hypervisor or IPC

- Resource cleanup
- Performance tuning

L

Z“freescale ...

r

4\ —
wie —ase of Use

(DPN' as examp | e) Integration specific driver
(Linux Kernel / Linux US / RTOS)

Ethernet / NIC Driver Abstract API

=== (Configuration & Control)

Data API Light implementation
Enqueue / Dequeue
(@BMan portals, not MC) DPIO API .

,,,,,, Command descriptors
GPP/AIOP N4 _
Visible software [_MC Portal API
MC Command Dispatcher Abstract AP|

FSL closed firmware !t ! Heavy implementation

T Abstraction =
Manager DPNI Drlver/ Manager
DPAA SEC
Controller Driver
Drivers CTLU WRIOP QBMan AlOP
Driver Driver Driver Driver

<

: - freescale . External Use 11

N

Create Your Network-on-Chip

As easy as 1-2-3

Z “freescale’

Topology Example #1

User Space

Kernel

-

Hardware
Boundary

External Use | 13

freescale

ooo

External Use | 14

) 4

82 ol &
ol o
| il et =i
z 8 2] _B
m 8 __ m | S Ez
. mAl 01‘ ||||||| ,Illl—w.wAl|mw
LSEE o i
> 1 i e
R a m nﬁ"mmg
8 0 e | o an
1R 8 _o m m
§2-3 & fe) |
= Y) [R - ——— - 1 “
z ¥ 0 _ - ZhE - m i
5 m !
= “ !
> i I
T £8 m m
e L
8 3@ -t
2HHHHHHHHHHHH“ |||||||||||||||||||||
A\ W B .08
H % = 18 =%e
o s EAM r_mnnn_D\,,A..|.m|D
) w 3 |
& = a 9 ob«-E3
— < = =" =z
m o 5 _ 5z5F
m o o
n) B _ “
D) HHHHHHHHHHHH_
[@))
o i m L. :
O m _r..“
o o2 m.
o i B
S 3
ITm

-

Typical Network Connections

(a) (b) (c)

R Tttt R R

(e)
LA R
DPNI@ DPNID D;FN' &
- - ' . ' (f)

ittt
“DPNID

(d)
St

C 4
Z“freescale :

)

Connecting Network Objects

Connections can be declared in the DPL file:

connections {
connection@l {

endpointl =
endpoint2 =

}s

connection@2 {

endpointl =
endpoint2 =

}i
connection@3/{
endpointl

endpoint2 =

b
b

"dpsw@0/1£fQ0";
"dpmac@Q0";

"dpsw@0/1£@5";
"dpni@l";

= "dpsw@O0/if@4";

"dpni@Z";

...or created dynamically via DPRC API:;

1) dprc connect (dprc,
2) dprc_connect (dprc,

3) dprc_connect (dprc,

<.

: - freescale . External Use | 16

<dpsw-0/0>,
<dpni-1>,

<dpni-2>,

<dpmac-0>)
<dpsw-0/5>)

<dpsw-0/4>)

Network Topology View
W11 Attt W11 Attt
DPNI B DPNI B

0 n
Ol WardC

DPSW B
@ﬁ on
DPMACD

m% %% m

!
I;
d

4 J _.
il

N/ %L{T _:_ .

Resource Management

17

External Use

freescale

Network stack
Eth Driver 4
H
DPIQO Servi
1
I
I
I
I
I
I
i
I
B
DPIOD-' | DPBP
*
\ I
ittt 4t
DPNI (----

VM 2
Qoo
DPSW B
x 1]
gy
fcruAch

) 4

t Happen...

ing |

Mak

Kernel

Network stack
Eth Driver 3
1
Services
| i
1 1
I |
I i
1
1
1
- |
i]
| i
I i
I I
DPIO B-
*
1 I
ittt bttt
DPNI (3----

OS Network stack

Hardware
Boundary

External Use | 18

) 4

Kernel

OS Network stack

Declaring Initial Objects...

Hardware
Boundary

External Use | 19

) 4

Scan DPRC #2

E 4
[&]
%
M

Discovering Objects...

Eth Driver 3

A
]

Driver association

Driver association

o
u n ,._A.Mv|'0.
2 m £ =
|||||||||||||||||||||||||||||||||||||| - u n B.Q.l_
rTTTTTTTTTTTTAT T T “ “ H
I D m “
o £z .
|||||||||| I I_ [m i
o< T=0 _ “
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
“ 1
I i
3 =5 i H
(0]
B ——]
Q
K e - —— -
’/
e mmmmmmmmmmm——— TR
S I 1 1 1
- g, .0 o
S =0 .rllln & e a =
m E K DuAl m D :»,__.MD "
m o S
F - . £Es " FE
-—<0- £z I <-
% & mwn u_..p_m<mm
2 = s
5 o 9
£ - I i
T S | 1
1

Scan DPRC #1

Hardware
Boundary

External Use | 20

freescale

ooo

iz o
aa
§ ¥ e |
18 8 o
w S_5 | o +—Ez
m ﬂ-._!AI mli ||||||| .illl— WBA\|WW
a 5 ae __
3 z " FE
................................. a P e =-
o .,w_ 0
1 I N ¥ 8 T
N] | “
1R .0 “ “
m e __ w £z “ !
S ------- =5 | :
z 9 9 3 “ !
= ; m m
. .
E EBEE--i - m e e e e e m———————————— | 1
Q N
4
. I T
m =2 ' &2 :
- g =5F YE 3
@ : 3 ' ez
2 3 £5" Ril
- O O ()
“ i -—
O e H)
] “
© o
n o T HAmmmmmmmm———— .. e
- e
9 m o s £ N
¢ T @ G \)
oS W & it Bl
g3

)

Network stack
Eth Driver 3

T
DPIO Services

ing it clean...

Destroy (or reset) container #3

Keep

g 38 -

*]

Mt ittt

DPN
mmmmmmmmmmmeeeeeeecececeeeo——NOMAC

22

Eth Driver 2

I?PIO Serviegs

| 4

DPMAC[3----

A

']

1

DPNI 3 ---

Mt ittt

External Use

OS Network stack

Eth Driver 1

Attt

o
If
]

-----CJ DPMAC

|||||||||||||||||||||||||||||||||||||

freescale

Hardware
Boundary

[m

_ r_ _,._L

23

External Use

MC Logical Objects

freescale

A 4
4\

MC Logical Objects

- Network Interfaces:

- Data Path Network Interface (DPNI)
= A standard network interface (L2 and up), as expected by standard network stacks/applications.

= Offers a wide range of standard offloads:
MAC & VLAN Filtering, QoS, checksums, time-stamping, policing, IPR, IPF, IPSec, RSC, GSO, etc.

= Configurable as a tunnel/fast-path interface (non-L2 packet), suitable for GPP-AIOP interaction.

it Attt <+— Queues (ingress distribution width + 1 for egress) per traffic class (1 to 8)
DPNI e <«—— Configuration interface
n <+—— Connection point

- Physical Interfaces:

- Data Path MAC (DPMAC)
= Serves for physical MAC and MDIO control

u <+— Connection point

DPMACE) <«— Configuration interface

<

: - freescale . External Use 24

A 4
4\

MC Logical Objects (cont.)

- Switching and Aggregation:

- Data Path Switch (DPSW) — Standard implementation of L2 Switch.
B B B} <« Switchinterfaces — connection points (2 or more)

DPSW m <+ Configuration interface

aaoa

- Data Path Demux (DPDMUX) — Allows partitioning of a physical interface into multiple (isolated) logical
interfaces. May be used for setting up different Ethernet Virtual Bridging (EVB) objects, such as VEB,
VEPA, or S-Component.

£ B} B} <« Internalinterfaces — connection points (2 or more)

DPDMUX [5) «— Configuration interface

n <+— Uplink interface — connection point (exactly 1)

- Data Path Link Aggregator (DPLAG) — aggregates multiple physical links into a single logical link.
(NOT available in LS2085 rev-1)

“ <+—— Bonded interface — connection point (exactly 1)
DPLAG [«— Configuration interface
- €3 B8 EJ) <« Slaveinterfaces —connection points (2 or more)

: - freescale . External Use 25

r
4\

MC Logical Objects (cont.)

- Supporting Infrastructure objects:

- Data Path Buffer Pool (DPBP) — An abstraction of BMan buffer pool
- DPBPB <+— Configuration interface

- Data Path I/0O (DPI0O) — Enables enqueue/dequeue via QMan portals and getting ingress notifications

— <+— GPP interface (QBMan software portal)
DPIO e <«—— Configuration interface
D <+— Notification channel (optional: notifications from ingress queues or DPCON)

- Data Path Concentrator (DPCON) — Scheduling object for advanced scheduling of ingress packets

from multiple interfaces.
<+—— QBMan channel for dequeue

DPCQNG <«— Configuration interface

mmmETE <+— Priorities for scheduling ingress queues (2-8)

<

: - freescale . External Use 26

r
4\

MC Logical Objects (cont.)

- Accelerator Interfaces:

- SEC Accelerator Interface (DPSECI) LIt <+— Queues (1 foringress + 1 for egress) per priority (1 or 2)
DPSECIB <+—— Configuration interface
—J

- DCE Accelerator Interface (DPDCEI) i <+— Queues (1 foringress + 1 for egress)

DPDCEI B <+— Configuration interface

PME Accelerator Interface (DPPMEI) + PME database (DPPME)

I <+— Queues (1 foringress + 1 for egress)

DPPMEI

<+—— Configuration interface

QDMA Accelerator Interface (DPDMAI)

Ltt <+— Queues (1 for ingress + 1 for egress) per priority

DPDMAG <+— Configuration interface

<.

: - freescale . External Use 27

A 4
4\

MC Logical Objects (cont.)

- Management objects:

- Data Path Resource Container (DPRC):
= Allows software context to assign DPAA objects and resources.
= Allows software context to create network topology by connecting network objects.
= Functions as virtual bus, so software context may query DPAA objects and associate with OS device drivers.

DPRC 3 <«— Configuration interface
ssms

« Inter-Partition Communication:

- Data Path Communication Interface (DPCI) — allows communication between different software
contexts through QMan infrastructure, which is not limited to network packet format. Useful for IPC
between two GPP software entities, or between GPP and AIOP entities. The communication protocol is

user-defined. it <+— Queues (1 foringress + 1 for egress) per priority (1 or 2)
DPC' B <+—— Configuration interface
n <+—— Connection point (to peer DPCI only)
: 4

: - freescale . External Use 28

m% %% m

.

I;
y | 1]
Ty

N/ %L{T _:_ .

[m

_ r_ _,._L

DPNI: Data Path Network Interface

29

External Use

freescale

A 4
4\

Data Path Network Interface (DPNI)

- Wire-speed frame parsing

- Parsing results may be visible in frame annotation area

Filtering of received frames

- Exact-match filtering based on destination MAC address and/or VLAN IDs
- Unicast promiscuous and Multicast promiscuous modes

QO0S support

- Packet classification up to eight traffic classes, based on user-defined key
- Policing based on classification result (tail-drop or WRED)

Distribution to receive queues

- Statistical distribution based on hash-generated key (RSS)

- Explicit flow steering based on user-defined key

Up to eight different buffer pools

- Various scheduling options for received packets

£

: - freescale . External Use 30

V¥ ¢
i

Data Path Network Interface (DPNI)

- Traffic shaping of transmitted packets
- Up to eight transmit queues (traffic classes)
- Rate limit
- Various offload functions:
- L3 and L4 checksum generation and validation
- VLAN add/remove
- IP Reassembly and Fragmentation
- GRO and GSO
- |IPSec transport
- Priority-based Flow Control (PFC)
- Supporting queue congestion and/or buffer pool depletion
- PTP (IEEE 1588) time-stamping
- Network interface statistics
- Full reset

£

: - freescale . External Use 31

A 4
4\

DPNI Ingress Frame Processing

@

®

©

@

(©

Incoming frame
from DPMAC or ——
another object

<

Z " freescale’

Parsing L2 Filtering VLAN IP
Removal Reassembly
Parse frame » Filter frame » Remove » Reassemble
headers by VLAN or VLAN header IP fragments
Destination (optional) of this frame
MAC (optional)
address
QoS: Select Policing Distribution:
Traffic Class Select
(TC) Receive
Queue Enqueue frame to
» Basedon » Mark the > ——» selected receive queue;
QoS table packet’s drop Based on notify user (optional)
lookup priority based hash key or
on selected explicit flow
TC lookup

@

External Use 32

@

®)

@

A 4
4\

DPNI Egress Frame Processing

@ ® © @ (©

IP VLAN Scheduling

Fragmentation Insertion and Shaping
Dequeue frame from Frame is sent to
transmit queue (one — Split the IP » Add VLAN » Settransmit — DPMAC or
queue per traffic class) frame to header priority and another object

fragments (optional) rate limitation

(optional)

<

: - freescale . External Use 33

\
4

Objects Configuration — Easy to Use API

0= 00

0=08

0=10

0x18

020

O

0= 30

0x33

£

63
CMI

B3
MALC _

B3

|

63
START

63
WMAX_DI:

B3

|

63

|

B3

|

struct dpni_cfg

{

uint8 t mac addr[6];

struct {

uinté4_t options;

enum ne
uint8 t
uint8 t
uint8 t
uint8_t
uint8_t
uint8_t
uint8_t
uint8 t
uint8_t

t prot start hdr;

max senders;

max tcs;

max dist per tc[DPNI MAX TC];
max unicast filters;

max multicast filters;

max vlan filters;
max_qgos_entries;

max_qgos_key size;
max_dist key size;

struct dpni_ipr cfg ipr cfg;

} adv;

};

int dpni_create(struct fsl mc io *mc_io,

: < freescale . External Use

const struct dpni_cfg *cfg,
uintlé_t *token);

34

A 4
4\

Example: NIC Creation Sequence

/* (1) DPIO creation */

dpio cfg.channel mode
dpio cfg.num priorities
dpio_create(drv->mc _io,

dpio_enable (drv->mc_io,

/* (2) DPBP creation */

dpbp_create (drv->mc_io,

dpbp enable (drv->mc_io, token);

DPIO_ LOCAL CHANNEL;

&dpio cfg, &token);

token) ;

&dpbp cfg, &token);

dpbp get attributes (drv->mc_io,

/* use dpbp attr.bpid to fill buffers pool*/

£

Z " freescale’

External Use

/* (3) DPNI creation */

dpni cfg.mac addr = { ... };
dpni cfg.adv.max tcs = 4;
dpni cfg.adv.max unicast filters = 32;

(+ other standard features / offload features)

dpni_create (drv->mc_io, &dpni_ cfg, &token);

/* attach buffer pool */

pools cfg.num dpbp = 1;

token &dpbp attr);

35

pools cfg.pools[0].dpbp id = dpbp attr.id;
pools cfg.pools[0].buffer size = 512;

dpni set pools (drv->mc io, token, &pools cfqg);

dpni_enable (drv->dpni) ;

/* runtime control operations */

dpni_add vlan_id(drv->mc_io, token, 0x0200);

_r__

[

|

,._L

DPSW: Data Path Switch

36

External Use

freescale

|
y

'
A

Data Path Switch (DPSW)

- Supports 802.1Q switching, based on (outer) VLAN and MAC address

- Supports separate FDB (MAC table) per VLAN, or shared FDB for multiple VLANs
- Flooding (configuration per VLAN)

- Three address learning modes, selected per FDB:

- Automatic learning by the switch hardware
- Secure learning by host GPP software
- Non-secure learning by host GPP software

- Supports various VLAN handling options:

- Supports port-based VLAN — definition of default VLAN per interface

- Untagged frames transmission

- Untagged frames admittance: admit tagged and untagged, or only tagged frames
- VLAN filtering — dropping frames with unregistered VLANS

- Supports trunk interface — accepting all VLANs

- Two custom TPIDs per switch

- Interface mirroring, with option to mirror only specific VLAN
- STP/RSTP/MSTP marking (Spanning Tree Protocol handled by GPP software)

£

: - freescale . External Use 37

V¥ ¢
i

DPSW Features

- Supports 802.1Q switching, based on (outer) VLAN and MAC address
- Supports separate FDB (MAC table) per VLAN, or shared FDB for multiple VLANSsS
- Flooding (configuration per VLAN)

- Three address learning modes, selected per FDB:
- Automatic learning by the switch hardware
- Secure learning by host GPP software
- Non-secure learning by host GPP software

- Supports various VLAN handling options:
- Supports port-based VLAN — definition of default VLAN per interface
- Untagged frames transmission (configuration per VLAN/interface)
- Untagged frames admittance: admit tagged and untagged, or only tagged frames
- VLAN filtering — dropping frames with unregistered VLANs
- Supports trunk interface — accepting all VLANSs (configuration per interface)
- Two custom TPIDs per switch

- Interface mirroring, with option to mirror only specific VLAN

- STP/RSTP/MSTP marking (Spanning Tree Protocol handled by host GPP software)

£

: - freescale . External Use 38

V¥ ¢
i

DPSW Features (cont.)

- Supports QoS capabilities:
Traffic class selection based on DSCP or 802.1P

Transmission bandwidth allocation per traffic class

Transmission rate configuration per interface

- WRED on ingress (configuration per traffic class)
- Supports policy-based forwarding on ingress (TCAM lookup on L2-L4 fields)

- Supports forwarding of selective protocols to a control interface, for example:
- Ethernet monitoring, Multicast management (IGMP/MLD), Spanning Tree (BPDU), etc.

- PTP (IEEE 1588) time-stamping

- Priority-based Flow Control (PFC) based on queue congestion and/or buffer depletion
- Statistics counters per interface

- Link state indication per interface (with interrupts on changes)

- Supports interface enable and disable operations

- Supports switch enable and disable operations

-+ Supports switch reset operation

£

: - freescale . External Use 39

A 4
4\

MC Makes it Easy

O Presents hardware as logical objects
O Virtualizes and isolates objects

O Hides complex sequences

0 Manages resources

O Manages the Network-on-Chip

O Extends capabilities through sharing

<

: - freescale . External Use | 40

2 “freescale

www.Freescale.com

© 2015 Freescale Semiconductor, Inc. | External Use

http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

