
The 8080 is a complete 8-bit parallel, central processor
unit (CPU) for use in general purpose digital computer sys
tems. It is fabricated on a single LSI chip (see Figure 2-1).
using Intel's n-channel silicon gate MOS process. The 8080
transfers data and internal state information via an 8-bit,
bidirectional 3 - state Data Bus (D0-D7). Memory and peri
pheral device addresses are transmitted over a separate 16-

bit 3-state Address Bus (A 0-A15). S ix timing and control
outputs (SYN C, DBIN , W AIT/W R, H LD A and IN TE) eman
ate from the 8080, while four control inputs (R EA D Y ,
HOLD, INT and R E S E T), four power inputs (+12v, +5v,
-5v, and GND) and two clock inputs (01 and 02) are ac_
cepted by the 8080.

Figure 2-1. 8080 Photomicrograph With Pin Designations

A R C H ITEC TU R E OF TH E 8080 CPU
The 8080 CPU consists of the following functional

units:
• Register array and address logic
• Arithmetic and logic unit (A LU)
• Instruction register and control section
• Bi-directional, 3-state data bus buffer

Figure 2-2 illustrates the functional blocks within
the 8080 CPU.

Registers:
The register section consists of a static RAM array

organized into six 16-bit registers:
• Program counter (PC)
• Stack pointer (SP)
• Six 8-bit general purpose registers arranged in pairs,

referred to as B,C ; D ,E ; and H ,L
• A temporary register pair called W,Z

The program counter maintains the memory address
of the current program instruction and is incremented auto

matically during every instruction fetch. The stack pointer
maintains the address of the next available stack location in
memory. The stack pointer can be initialized to use any
portion of read-write memory as a stack. The stack pointer
is decremented when data is "pushed" onto the stack and
incremented when data is "popped" off the stack (i.e., the
stack grows "downward").

The six general purpose registers can be used either as
single registers (8-bit) or as register pairs (16-bit). The
temporary register pair, W ,Z, is not program addressable
and is only used for the internal execution of instructions.

Eight-bit data bytes can be transferred between the
internal bus and the register array via the register-select
multiplexer. Sixteen-bit transfers can proceed between the
register array and the address latch or the incrementer/
decrementer circuit. The address latch receives data from
any of the three register pairs and drives the 16 address
output buffers (A0-A15), as well as the incrementer/
decrementer circuit. The incrementer/decrementer circuit
receives data from the address latch and sends it to
the register array. The 16-bit data can be incremented or
decremented or simply transferred between registers.

R EG IS TER
A R R A Y

Figure 2-2. 8080 CPU Functional Block Diagram

Arithmetic and Logic Unit (A LU):
The A LU contains the following registers:

• An 8-bit accumulator

• An 8-bit temporary accumulator (ACT)

• A 5-bit flag register: zero, carry, sign, parity and
auxiliary carry

• An 8-bit temporary register (TMP)

Arithmetic, logical and rotate operations are per
formed in the A LU . The A LU is fed by the temporary
register (TMP) and the temporary accumulator (ACT) and
carry flip-flop. The result of the operation can be trans
ferred to the internal bus or to the accumulator; the A LU
also feeds the flag register.

The temporary register (TMP) receives information
from the internal bus and can send all or portions of it to
the A LU , the flag register and the internal bus.

The accumulator (ACC) can be loaded from the A LU
and the internal bus and can transfer data to the temporary
accumulator (ACT) and the internal bus. The contents of
the accumulator (ACC) and the auxiliary carry flip-flop can
be tested for decimal correction during the execution of the
DAA instruction (see Chapter 4).

Instruction Register and Control:
During an instruction fetch, the first byte of an in

struction (containing the OP code) is transferred from the
internal bus to the 8-bit instruction register.

The contents of the instruction register are, in turn,
available to the instruction decoder. The output of the
decoder, combined with various timing signals, provides
the control signals for the register array, A LU and data
buffer blocks. In addition, the outputs from the instruction
decoder and external control signals feed the timing and
state control section which generates the state and cycle
timing signals.

Data Bus Buffer:
This 8-bit bidirectional 3-state buffer is used to

isolate the CPU's internal bus from the external data bus.
(Do through D7). In the output mode, the internal bus
content is loaded into an 8-bit latch that, in turn, drives the
data bus output buffers. The output buffers are switched
off during input or non-transfer operations.

During the input mode, data from the external data bus
is transferred to the internal bus. The internal bus is pre
charged at the beginning of each internal state, except for
the transfer state (T3—described later in this chapter).

THE PROCESSOR C Y C L E
An instruction cycle is defined as the time required

to fetch and execute an instruction. During the fetch, a
selected instruction (one, two or three bytes) is extracted
from memory and deposited in the CPU's instruction regis
ter. During the execution phase, the instruction is decoded
and translated into specific processing activities.

Every instruction cycle consists of one, two, three,
four or five machine cycles. A machine cycle is required
each time the CPU accesses memory or an I/O port. The
fetch portion of an instruction cycle requires one machine
cycle for each byte to be fetched. The duration of the execu
tion portion of the instruction cycle depends on the kind
of instruction that has been fetched. Some instructions do
not require any machine cycles other than those necessary
to fetch the instruction; other instructions, however, re
quire additional machine cycles to write or read data to/
from memory or I/O devices. The DAD instruction is an
exception in that it requires two additional machine cycles
to complete an internal register-pair add (see Chapter 4).

Each machine cycle consists of three, four or five
states. A state is the smallest unit of processing activity and
is defined as the interval between two successive positive
going transitions of the 01 driven clock pulse. The 8080
is driven by a two-phase clock oscillator. All processing activ
ities are referred to the period of this clock. The two non
overlapping clock pulses, labeled 01 and 02, are furnished
by external circuitry. It is the 0*| clock pulse which divides
each machine cycle into states. Timing logic within the
8080 uses the clock inputs to produce a SYN C pulse,
which identifies the beginning of every machine cycle. The
SYNC pulse is triggered by the low-to-high transition of 02,
as shown in Figure 2-3.

#SYNC DOES NOT OCCUR IN TH E SECOND AND THIRD MACHINE
C Y C LES OF A DAD INSTRUCTION SINCE TH ESE MACHINE CYCLES
A R E USED FOR AN IN TERN AL R EG ISTER -PA IR ADD.

Figure 2-3.01,02 And SYNC Timing

There are three exceptions to the defined duration of
a state. They are the W AIT state, the hold (HLDA) state
and the halt (H LTA) state, described later in this chapter.
Because the W AIT, the H LD A , and the H LTA states depend
upon external events, they are by their nature of indeter
minate length. Even these exceptional states, however, must

be synchronized with the pulses of the driving clock. Thus,
the duration of all states are integral multiples of the clock
period.

To summarize then, each clock period marks a state;
three to five states constitute a machine cycle; and one to
five machine cycles comprise an instruction cycle. A full
instruction cycle requires anywhere from four to eight-
teen states for its completion, depending on the kind of in
struction involved.

Machine Cycle Identification:
With the exception of the DAD instruction, there is

just one consideration that determines how many machine
cycles are required in any given instruction cycle: the num
ber of times that the processor must reference a memory
address or an addressable peripheral device, in order to
fetch and execute the instruction. Like many processors,
the 8080 is so constructed that it can transmit only one
address per machine cycle. Thus, if the fetch and execution
of an instruction requires two memory references, then the
instruction cycle associated with that instruction consists of
two machine cycles. If five such references are called for,
then the instruction cycle contains five machine cycles.

Every instruction cycle has at least one reference to
memory, during which the instruction is fetched. An in
struction cycle must always have a fetch, even if the execu
tion of the instruction requires no further references to
memory. The first machine cycle in every instruction cycle
is therefore a FETC H . Beyond that, there are no fast rules.
It depends on the kind of instruction that is fetched.

Consider some examples. The add-register (ADD r)
instruction is an instruction that requires only a single
machine cycle (FETC H) for its completion. In this one-byte
instruction, the contents of one of the CPU's six general
purpose registers is added to the existing contents of the
accumulator. Since all the information necessary to execute
the command is contained in the eight bits of the instruction
code, only one memory reference is necessary. Three states
are used to extract the instruction from memory, and one
additional state is used to accomplish the desired addition.
The entire instruction cycle thus requires only one machine
cycle that consists of four states, or four periods of the ex
ternal clock.

Suppose now, however, that we wish to add the con
tents of a specific memory location to the existing contents
of the accumulator (ADD M). Although this is quite similar
in principle to the example just cited, several additional
steps will be used. An extra machine cycle will be used, in
order to address the desired memory location.

The actual sequence is as follows. First the processor
extracts from memory the one-byte instruction word ad
dressed by its program counter. This takes three states.
The eight-bit instruction word obtained during the FETCH
machine cycle is deposited in the CPU's instruction register
and used to direct activities during the remainder of the
instruction cycle. Next, the processor sends out,as an address,

the contents of its H and L registers. The eight-bit data
word returned during this M EM ORY READ machine cycle
is placed in a temporary register inside the 8080 CPU. By
now three more clock periods (states) have elapsed. In the
seventh and final state, the contents of the temporary regis
ter are added to those of the accumulator. Two machine
cycles, consisting of seven states in all, complete the
"ADD M" instruction cycle.

At the opposite extreme is the save H and L registers
(SHLD) instruction, which requires five machine cycles.
During an "S H LD " instruction cycle, the contents of the
processor's H and L registers are deposited in two sequen
tially adjacent memory locations; the destination is indi
cated by two address bytes which are stored in the two
memory locations immediately following the operation code
byte. The following sequence of events occurs:

(1) A FETCH machine cycle, consisting of four
states. During the first three states of this
machine cycle, the processor fetches the instruc
tion indicated by its program counter. The pro
gram counter is then incremented. The fourth
state is used for internal instruction decoding.

(2) A M EMORY READ machine cycle, consisting
of three states. During this machine cycle, the
byte indicated by the program counter is read
from memory and placed in the processor's
Z register. The program counter is incremented
again.

(3) Another M EM ORY READ machine cycle, con
sisting of three states, in which the byte indica
ted by the processor's program counter is read
from memory and placed in the W register. The
program counter is incremented, in anticipation
of the next instruction fetch.

(4) A MEMORY W R ITE machine cycle, of three
states, in which the contents of the L register
are transferred to the memory location pointed
to by the present contents of the W and Z regis
ters. The state following the transfer is used to
increment the W,Z register pair so that it indi
cates the next memory location to receive data.

(5) A M EMORY W RITE machine cycle, of three
states, in which the contents of the H register
are transferred to the new memory location
pointed to by the W ,Z register pair.

In summary, the "S H LD " instruction cycle contains
five machine cycles and takes 16 states to execute.

Most instructions fall somewhere between the ex
tremes typified by the "AD D r" and the "S H LD " instruc
tions. The input (INP) and the output (OUT) instructions,
for example, require three machine cycles: a FETC H , to
obtain the instruction; a MEMORY R EA D , to obtain the
address of the object peripheral; and an IN PUT or an OUT
PUT machine cycle, to complete the transfer.

While no one instruction cycle will consist of more
then five machine cycles, the following ten different types
of machine cycles may occur within an instruction cycle:

(1) FETCH (M1)
(2) M EMORY READ
(3) M EMORY W R ITE
(4) STA C K READ
(5) STA CK W RITE
(6) INPUT
(7) OUTPUT
(8) IN TER R U PT
(9) H A LT

(10) H A LT • IN TER R U PT

The machine cycles that actually do occur in a par
ticular instruction cycle depend upon the kind of instruc
tion, with the overriding stipulation that the first machine
cycle in any instruction cycle is always a FETC H .

The processor identifies the machine cycle in prog
ress by transmitting an eight-bit status word during the first
state of every machine cycle. Updated status information is
presented on the 8080's data lines (D0-D7), during the
SYNC interval. This data should be saved in latches, and
used to develop control signals for external circuitry. Table
2-1 shows how the positive-true status information is dis
tributed on the processor's data bus.

Status signals are provided principally for the control
of external circuitry. Simplicity of interface, rather than
machine cycle identification, dictates the logical definition
of individual status bits. You will therefore observe that
certain processor machine cycles are uniquely identified by
a single status bit, but that others are not. The M-j status
bit (D6), for example, unambiguously identifies a FETCH
machine cycle. A STA CK R EA D , on the other hand, is
indicated by the coincidence of STA C K and MEMR sig
nals. Machine cycle identification data is also valuable in
the test and de-bugging phases of system development.
Table 2-1 lists the status bit outputs for each type of
machine cycle.

State Transition Sequence:
Every machine cycle within an instruction cycle con

sists of three to five active states (referred to as T 1, T 2, T 3,
T 4, T 5 or Ty\/). The actual number of states depends upon
the instruction being executed, and on the particular ma
chine cycle within the greater instruction cycle. The state
transition diagram in Figure 2-4 shows how the 8080 pro
ceeds from state to state in the course of a machine cycle.
The diagram also shows how the R E A D Y , HOLD, and
IN TERRU PT lines are sampled during the machine cycle,
and how the conditions on these lines may modify the

basic transition sequence. In the present discussion, we are
concerned only with the basic sequence and with the
R EA D Y function. The HOLD and IN TER R U PT functions
will be discussed later.

The 8080 CPU does not directly indicate its internal
state by transmitting a "state control" output during
each state; instead, the 8080 supplies direct control output
(IN TE , H LD A , DBIN , WR and W AIT) for use by external
circuitry.

Recall that the 8080 passes through at least three
states in every machine cycle, with each state defined by
successive low-to-high transitions of the 0 -1 clock. Figure
2-5 shows the timing relationships in a typical FETCH
machine cycle. Events that occur in each state are referenced
to transitions of the 0 *| and 02 clock pulses.

The SYNC signal identifies the first state (T 1) in
every machine cycle. As shown in Figure 2-5, the SYNC
signal is related to the leading edge of the 02 clock. There is
a delay (tp c) between the low-to-high transition of 02 and
the positive-going edge of the SYN C pulse. There also is a
corresponding delay (also tq q) between the next 02 pulse
and the falling edge of the SYNC signal. Status information
is displayed on D0-D7 during the same 02 to 02 interval.
Switching of the status signals is likewise controlled by 0 2 .

The rising edge of 02 during T \ also loads the pro
cessor's address lines (Ao-A15). These lines become stable
within a brief delay (tQ^) of the 02 clocking pulse, and
they remain stable until the first 02 pulse after state T 3.
This gives the processor ample time to read the data re
turned from memory.

Once the processor has sent an address to memory,
there is an opportunity for the memory to request a W AIT.
This it does by pulling the processor's R EA D Y line low,
prior to the "Ready set-up" interval (tp^) which occurs
during the 02 pulse within state T 2 or Tyy. As long as the
R EA D Y line remains low, the processor w ill idle, giving the
memory time to respond to the addressed data request.
Refer to Figure 2-5.

The processor responds to a wait request by entering
an alternative state (Tw) at the end of T 2 , rather than pro
ceeding directly to the T 3 state. Entry into the Tw state is
indicated by a W AIT signal from the processor, acknowledg
ing the memory's request. A low-to-high transition on the
W AIT line is triggered by the rising edge of the 0-j clock and
occurs within a brief delay (tq q) of the actual entry into
the Tw state.

A wait period may be of indefinite duration. The pro
cessor remains in the waiting condition until its R EA D Y line
again goes high. A R EA D Y indication must precede the fall
ing edge of the 02 clock by a specified interval (tpg), in
order to guarantee an exit from the Tyy state. The cycle
may then proceed, beginning with the rising edge of the
next 01 clock. A W AIT interval will therefore consist of an
integral number of T w states and will always be a multiple
of the clock period.

Instructions for the 8080 require from one to five machine
cycles for complete execution. The 8080 sends out 8 bit of
status information on the data bus at the beginning of each
machine cycle (during SYNC time). The following table defines
the status information.

STATUS INFORMATION DEFINITION
Data Bus

Symbols Bit Definition
INTA* Do Acknowledge signal for INTERRUPT re

quest. Signal should be used to gate a re
start instruction onto the data bus when
DBIN is active.

WO Di Indicates that the operation in the current
machine cycle will be a W RITE memory
or OUTPUT function (WO = 0). Otherwise,
a READ memory or INPUT operation will
be executed.

STACK d 2 Indicates that the address bus holds the
pushdown stack address from the Stack
Pointer.

HLTA d 3 Acknowledge signal for HALT instruction.
OUT d 4 Indicates that the address bus contains the

address of an output device and the data
bus will contain the output data when
WR is active.

M1 d 5 Provides a signal to indicate that the CPU
is in the fetch cycle for the first byte of
an instruction.

INP* d 6 Indicates that the address bus contains the
address of an input device and the input
data should be placed on the data bus
when DBIN is active.

MEMR* d 7 Designates that the data bus will be used
for memory read data.

*These three status bits can be used to control
the flow of data onto the 8080 data bus.

8080 STATUS LATCH

ol
<;2

SYNC

DATA

STATUS

T1 T2

r __ nr\

__/
__xi

y

STATUS WORD CHART
TYPE OF MACHINE CYCLE

Table 2-1. 8080 Status Bit Definitions

SET INTERNAL
HOLD F/F

13)

HOLD
MODE

NO

RESET HLTA

(1,IN TE F/F IS R ES ET IF IN TER N A L INT F/F IS SET.
(2)IN TER N A L INT F/F IS R ES ET IF IN TE F/F IS R ESET .
(3,SEE PAGE 2-13.

Figure 2-4. CPU State Transition Diagram

The events that take place during the T 3 state are
determined by the kind of machine cycle in progress. In a
FETCH machine cycle, the processor interprets the data on
its data bus as an instruction. During a MEMORY READ or
a STA CK R EA D , data on this bus is interpreted as a data
word. The processor outputs data on this bus during a
MEMORY W RITE machine cycle. During I/O operations,
the processor may either transmit or receive data, de
pending on whether an O UTPUT or an INPUT operation
is involved.

Figure 2-6 illustrates the timing that is characteristic
of a data input operation. As shown, the low-to-high transi
tion of 02 during T 2 clears status information from the pro
cessor's data lines, preparing these lines for the receipt of
incoming data. The data presented to the processor must
have stabilized prior to both the " 01—data set-up" interval
(t o s i)/ ^at precedes the falling edge of the 01 pulse defin
ing state T 3, and the " 02—data set-up" interval (t0S2^
that precedes the rising edge of 02 in state T 3 . This same

data must remain stable during the "data hold" interval
(tDH) that occurs following the rising edge of the 02 pulse.
Data placed on these lines by memory or by other external
devices will be sampled during T 3 .

During the input of data to the processor, the 8080
generates a DBIN signal which should be used externally to
enable the transfer. Machine cycles in which DBIN is avail
able include: FETC H , M EM ORY R EA D , STA C K R EAD ,
and IN TERRU PT . DBIN is initiated by the rising edge of 02
during state T2 and terminated by the corresponding edge of
02 during T 3. Any T w phases intervening between T 2 and
T 3 will therefore extend DBIN by one or more clock
periods.

Figure 2-7 shows the timing of a machine cycle in
which the processor outputs data. Output data may be des
tined either for memory or for peripherals. The rising edge
of 02 within state T 2 clears status information from the
CPU's data lines, and loads in the data which is to be output
to external devices. This substitution takes place within the

N O T E : (N) Refer to Status Word Chart on Page 2-6.

Figure 2-5. Basic 8080 Instruction Cycle

01

02

M-| m 2 m 3

T| t 2 T3 t 4 T 1 T 2 t 3 T i T 2 T3

n r A n n n n n n n
r~

\

A 15-0 r B Y T E
O N E

\ UNHc n o w n / B Y T E
TW O

-------------------- 1--------------------
IN PU T D A T A TD

D 7-O

S Y N C

A C C U M U L A T O R

___________ /
*
\.

f
- - -/ F L O A T IN G / .

i r
- J /

\ " r
_ J

\ \

D B IN / \ r ~ \

"1 "
"0 "
" V

S T A T U S
IN F O R M A T IO N /) C ® ~

—
n ©

N O T E : (N) Refer to Status Word Chart on Page 2-6.

Figure 2-6. Input Instruction Cycle

N O T E : (N) Refer to Status Word Chart on Page 2-6.

Figure 2-7. Output Instruction Cycle

"data output delay" interval (tp o) following the 02 clock's
leading edge. Data on the bus remains stable throughout
the remainder of the machine cycle, until replaced by up
dated status information in the subsequent T 1 state. Observe
that a R EA D Y signal is necessary for completion of an
OUTPUT machine cycle. Unless such an indication is pres
ent, the processor enters the Ty\j state, following the T 2
state. Data on the output lines remains stable in the
interim, and the processing cycle will not proceed until
the R EA D Y line again goes high.

The 8080 CPU generates a WR output for the syn
chronization of external transfers, during those machine
cycles in which the processor outputs data. These include
MEMORY W R IT E , STA CK W R IT E , and OUTPUT. The
negative-going leading edge of WR is referenced to the rising
edge of the first 01 clock pulse following T 2, and occurs
within a brief delay (tQQ> of that event. WR remains low
until re-triggered by the leading edge of 0 -j during the
state following T 3 . Note that any Tyy states intervening
between T 2 and T 3 of the output machine cycle will neces

sarily extend W R, in much the same way that DBIN is af
fected during data input operations.

All processor machine cycles consist of at least three
states: T j , T 2 , and T 3 as just described. If the processor has
to wait for a response from the peripheral or memory with
which it is communicating, then the machine cycle may
also contain one or more T w states. During the three basic
states, data is transferred to or from the processor.

After the T 3 state, however, it becomes difficult to
generalize. T 4 and T 5 states are available, if the execution
of a particular instruction requires them. But not all machine
cycles make use of these states. It depends upon the kind of
instruction being executed, and on the particular machine
cycle within the instruction cycle. The processor will termi
nate any machine cycle as soon as its processing activities
are completed, rather than proceeding through the T 4 and
T 5 states every time. Thus the 8080 may exit a machine
cycle following the T 3, the T 4, or the T 5 state and pro
ceed directly to the T 1 state of the next machine cycle.

STATE ASSOCIATED A CTIVITIES

T l A memory address or I/O device number is
placed on the Address Bus (A 15.0); status
information is placed on Data Bus (D7.0).

t 2 The CPU samples the R EA D Y and HOLD in
puts and checks for halt instruction.

TW
(optional)

Processor enters wait state if R EA D Y is low
or if H A LT instruction has been executed.

T3 An instruction byte (FETCH machine cycle),
data byte (MEMORY READ , STA C K READ)
or interrupt instruction (IN TER R U P T machine
cycle) is input to the CPU from the Data Bus;
or a data byte (MEMORY W R ITE , STA C K
W RITE or OUTPUT machine cycle) is output
onto the data bus.

T4
T5

(optional)

States T 4 and T 5 are available if the execu
tion of a particular instruction requires them;
if not, the CPU may skip one or both of
them. T 4 and T 5 are only used for internal
processor operations.

Table 2-2. State Definitions

The 8080 has the built-in capacity to handle external
interrupt requests. A peripheral device can initiate an inter
rupt simply by driving the processor's interrupt (INT) line
high.

The interrupt (INT) input is asynchronous, and a
request may therefore originate at any time during any
instruction cycle. Internal logic re-clocks the external re
quest, so that a proper correspondence with the driving
clock is established. As Figure 2-8 shows, an interrupt
request (IN T) arriving during the time that the interrupt
enable line (IN TE) is high, acts in coincidence with the 02
clock to set the internal interrupt latch. This event takes
place during the last state of the instruction cycle in which
the request occurs, thus ensuring that any instruction in
progress is completed before the interrupt can be processed.

The IN TER R U PT machine cycle which follows the
arrival of an enabled interrupt request resembles an ordinary
FETCH machine cycle in most respects. The M'j status bit
is transmitted as usual during the SYN C interval. It is
accompanied, however, by an INTA status bit (Do) which
acknowledges the external request. The contents of the
program counter are latched onto the CPU's address lines
during T-j, but the counter itself is not incremented during
the IN TER R U PT machine cycle, as it otherwise would be.

INTERRUPT SEQUENCES In this way, the pre-interrupt status of the program counter
is preserved, so that data in the counter may be restored by
the interrupted program after the interrupt request has been
processed.

The interrupt cycle is otherwise indistinguishable from
an ordinary FETCH machine cycle. The processor itself
takes no further special action. It is the responsibility of the
peripheral logic to see that an eight-bit interrupt instruction
is "jammed" onto the processor's data bus during state T 3.
In a typical system, this means that the data-in bus from
memory must be temporarily disconnected from the pro
cessor's main data bus, so that the interrupting device can
command the main bus without interference.

The 8080's instruction set provides a special one-byte
call which facilitates the processing of interrupts (the ordi
nary program Call takes three bytes). This is the R E S T A R T
instruction (R ST). A variable three-bit field embedded in
the eight-bitfield of the RST enables the interrupting device
to direct a Call to one of eight fixed memory locations. The
decimal addresses of these dedicated locations are: 0, 8, 16,
24, 32, 40, 48, and 56. Any of these addresses may be used
to store the first instruction(s) of a routine designed to
service the requirements of an interrupting device. Since
the (RST) is a call, completion of the instruction also
stores the old program counter contents on the STA C K .

Figure 2-8. Interrupt Timing

Figure 2-9. HOLD Operation (Read Mode)

01

02

Mn M n+1 M n+2
t3 t4 T i T2 T3 T 1

n rv n n n rv n rv
_ j — L_ j — L _ j — L_ J — L_ j— L_ J— L_ J — L I— L

1
A 15-0

r f i .O A T IN G

D7-0 /------1 j - X r

WR

H O LD
R E Q U E S T —

HO LD

\ , /

j \
11 \

H O LD F /F
IN T E R N A L

\

/ \
H LD A / V I

W R IT E D A T A

Figure 2-10. HOLD Operation (Write Mode)

HOLD SEQUENCES
The 8080A CPU contains provisions for Direct Mem

ory Access (DMA) operations. By applying a HOLD to the
appropriate control pin on the processor, an external device
can cause the CPU to suspend its normal operations and re
linquish control of the address and data busses. The proces
sor responds to a request of this kind by floating its address
to other devices sharing the busses. A t the same time, the
processor acknowledges the HOLD by placing a high on its
HLDA outpin pin. During an acknowledged HOLD, the
address and data busses are under control of the peripheral
which originated the request, enabling it to conduct mem
ory transfers without processor intervention.

Like the interrupt, the HOLD input is synchronized
internally. A HOLD signal must be stable prior to the “ Hold
set-up" interval (tn sh that precedes the rising edge of 02-

Figures 2-9 and 2-10 illustrate the timing involved in
HOLD operations. Note the delay between the asynchronous
HOLD REQ U EST and the re-clocked HOLD. As shown in
the diagram, a coincidence of the R E A D Y , the HOLD, and
the 02 clocks sets the internal hold latch. Setting the latch
enables the subsequent rising edge of the 01 clock pulse to
trigger the HLDA output.

Acknowledgement of the HOLD R EQ U EST precedes
slightly the actual floating of the processor's address and
data lines. The processor acknowledges a HOLD at the begin
ning of T 3, if a read or an input machine cycle is in progress
(see Figure 2-9). Otherwise, acknowledgement is deferred
until the beginning of the state following T 3 (see Figure
2-10). In both cases, however, the H LD A goes high within
a specified delay (tq q) of the rising edge of the selected 01
clock pulse. Address and data lines are floated within a
brief delay after the rising edge of the next 02 clock pulse.
This relationship is also shown in the diagrams.

To all outward appearances, the processor has suspend
ed its operations once the address and data busses are floated.
Internally, however, certain functions may continue. If a
HOLD REQ U EST is acknowledged at T 3, and if the pro
cessor is in the middle of a machine cycle which requires
four or more states to complete, the CPU proceeds through
T 4 and T 5 before coming to a rest. Not until the end of the
machine cycle is reached will processing activities cease.
Internal processing is thus permitted to overlap the external
DMA transfer, improving both the efficiency and the speed
of the entire system.

The processor exits the holding state through a
sequence similar to that by which it entered. A HOLD
REQ U EST is terminated asynchronously when the external
device has completed its data transfer. The H LD A output

returns to a low level following the leading edge of the next
01 clock pulse. Normal processing resumes with the ma
chine cycle following the last cycle that was executed.

H ALT SEQ U EN CES
When a halt instruction (H LT) is executed, the CPU

enters the halt state (Tyyj-j) after state T 2 of the next ma
chine cycle, as shown in Figure 2-11. There are only three
ways in which the 8080 can exit the halt state:

• A high on the R E S E T line will always reset the
8080 to state T y, R E S E T also clears the program
counter.

• A HOLD input will cause the 8080 to enter the
hold state, as previously described. When the
HOLD line goes low, the 8080 re-enters the halt
state on the rising edge of the next 01 clock
pulse.

• An interrupt (i.e., INT goes high while IN TE is
enabled) will cause the 8080 to exit the Halt state
and enter state T 1 on the rising edge of the next
0*1 clock pulse. NO TE: The interrupt enable (IN TE)
flag must be set when the halt state is entered;
otherwise, the 8080 will only be able to exit via a
R ES ET signal.

Figure 2-12 illustrates halt sequencing in flow chart
form.

START-UP O F TH E 8080 CPU
When power is applied initially to the 8080, the pro

cessor begins operating immediately. The contents of its
program counter, stack pointer, and the other working regis
ters are naturally subject to random factors and cannot be
specified. For this reason, it will be necessary to begin the
power-up sequence with R ES ET .

An external R E S E T signal of three clock period dura
tion (minimum) restores the processor's internal program
counter to zero. Program execution thus begins with mem
ory location zero, following a R E S E T . Systems which re
quire the processor to wait for an explicit start-up signal
will store a halt instruction (E l, H LT) in the first two loca
tions. A manual or an automatic IN TER R U P T will be used
for starting. In other systems, the processor may begin ex
ecuting its stored program immediately. Note, however, that
the R E S E T has no effect on status flags, or on any of the
processor's working registers (accumulator, registers, or
stack pointer). The contents of these registers remain inde
terminate, until initialized explicitly by the program.

Figure 2-11. HALT Timing

TO STATE
TW or T 3

TO STATE
Tl

Figure 2-12. H A LT Sequence Flow Chart.

01 _

02

Mi
Tn Tn + 1 Tn + 2 Tn + 3 Tn + (i—1) Tn + i Ti t2

n r
[\ n n rn n n n
_J L _ J — L / L _ _ / L _ _ / L

A150
■n

_______________r~ ^ FLOATING J PC = 0

d 7.0

RESET

_______________ / ------------------- ' UNK;nown

(D /

j
\

INTERNAL
RESET

TC

v>SYNC r~ \
DBIN ■v» /— i

i

STATUS
INFORMATION

m Wh
CL
TH

IEN RESET SIGN/
OCK PERIODS LA
E ABOVE DIAGR/
I__________________________

IL IS ACTIVE, ALI
TER . THE RESET
AM N AND I MAY
J___________________

L OF CONTROL Ol
SIGNAL MUST Bl

BE ANY INTEGEF
UTPUT SIGNALS1
E ACTIVE FOR A
i.

WILL BE RESET IP
MINIMUM OF THF

IMMEDIATELY OR
IEE CLOCK CYCL

l x ®

SOME
ES. IN
I I

NOTE: (n) Refer to Status Word Chart on Page 2-6.

Figure 2-13. Reset.

Figure 2-14. Relation between HOLD and I NT in the H A LT State,

MNEMONIC OP CODE j M lH) M2

D7 Dg D5 D4 D3 D2 D-| Do T1 T 2121 T3 T4 T5 T1 T 2W T3

MOV r1 ,r2 0 1 D D D S S S PC OUT
STATU S

PC = PC +1 IN ST-TM P/IR (SSS)-*TMP (t m p ^ d d d

MOV r, M 0 1 D D D 1 1 0 X P I 1 H L O U T ' D A T A — ►DDD
s t a t u s ®

MOV M ,r 0 1 1 1 0 S S S (SSS)-TM P S T A T uI [7) (T M P)-► D A T A BUS

SPHL 1 1 1 1 1 0 0 1 (H L)__________________ , •SP ^

MVI r, data 0 0 D D D 1 1 0 X i- 'C pc 0 U T 82 _ * ’ DDDD
J .,V - STA TU S®

MVI M, data 0 0 1 1 0 1 1 0 X a B 2— ►TMP

LX I rp, data 0 0 R P 0 0 0 1 X ' PC = PC + 1 B 2 - ►r 1
'

LDA addr 0 0 1 1 1 0 1 0 X '' i^ r / PC = PC + 1 B2 — ►Z
'

STA addr 0 0 1 1 0 0 1 0 X £ 1 $ $ PC = PC + 1 B2 - ►Z

LHLDaddr 0 0 1 0 1 0 1 0 X « * PC = PC + 1 B2 — ► Z
!>«’• w

SHLD addr 0 0 1 0 0 0 1 0 X - : • /, PC OUT PC = PC + 1 B 2 — ► Z
s t a t u s ®

LDAX rpM 0 0 R P 1 0 1 0 X ‘ rp OUT D A T A — ► A
STATU S®

STAX rpW) 0 0 R P 0 0 1 0 X rp OUT (A)- ► D A T A BUS
H S S S S f i f f STATUS!?!

XCHG 1 1 1 0 1 0 1 1 (HL)*— (DE)

ADD r 1 0 0 0 0 s s s (SSS)-TM P
(AH-ACT * > .1 , 191 (ACT)+ (TM PH A

ADD M 1 0 0 0 0 1 1 0 (A)-A C T - ^ £V* H LO U T DATA— ►TMP
STA TU S®

ADI data 1 1 0 0 0 1 1 0 (A)-*ACT ■’ " PC OUT PC = PC + 1 B2 — ►TMP
„• STA TU S®

ADC r 1 0 0 0 1 s s s (SSS)-TM P
(A)-A C T

- „ * [91 (A C T)+(TMP) +CY-*A

ADC M 1 0 0 0 1 1 1 0 (A)-»ACT H LO U T , D A TA — » T M P
STA TU S®

ACI data 1 1 0 0 1 1 1 0 (A)-A C T PC OUT , PC = PC%- 1 B 2— ►TM P
; (* s t a t u s !®!

SUB r 1 0 0 1 0 s s s (SSS)-TM P
(A)-*ACT

; [9] (ACT)-(TM P)-*A
•.

SUB M 1 0 0 1 0 1 1 0 (A)-*ACT ^ r * H LO U T D A TA — ► TM P
STATU S®

SUI data 1 1 0 1 0 1 1 0 (A)-»ACT -f PC OUT PC = PC + 1 B 2 - * - T M P
STA TU S®

SB B r 1 0 0 1 1 s s s (SSS)-^TMP
(A)-A C T

[3 (ACT)-(TM P)-CY-*A

SBB M 1 0 0 1 1 1 1 0 (A)-*-ACT ' H L OUT t , D A T A - ► TM P
> ' K s t a t u s !®]

SBI data 1 1 0 1 1 1 1 0 (A)-*’ACT ̂ " PC OUT P C = P C + 1 B2— ► TM P
'* ‘ ^ s t a t u s !®!

INR r 0 0 D D D 1 0 0 (DDD)-TM P
(TMP) + 1 -A LU a l u ^ o d d

INR M 0 0 1 1 0 1 0 0 X * : H LO U T , D A T A -► T M P
~ STATUS!®! (TMP)+1 — ► A LU

DCR r 0 0 D D D 1 0 1 (D D D KTM P
(TMP)+1-*ALU ALU^DDD > ' , V ' * ~ P ,

DCR M 0 0 1 1 0 1 0 1 X ' I r S & l* ' h l o u t d a t a - ► t m p v s t a t u s !® (TMP)-1 - ► A L U

INX rp

DCX rp

0 0 R P

0 0 R P

0 0 1 1

1 0 1 1
— —

(RP) + 1

(RP) - 1 1 ■ '
DADrpfSl 0 0 R P 1 0 0 1 X X v< X3;”f (ri)-+ACT (L)-*TMP, ALU-+L, CY , (ACT)+(TM P)-pA LU

DAA 0 0 1 0 0 1 1 1 d a a -»a , f l a g s !10!

A N A r 1 0 1 0 0 s s s (SSSKTM P
(AH-ACT

® (A C T l+ IT M P K A

ANA M 1 0 1 0 0 1 1 0 PC OUT
STATU S

PC = PC + 1 INST-*TMP/IR (A)-A C T H LO U T , D A T A —► TM P
v V ,.-’ STATUS!®!

M3 M4 M5

T1 T 2 ® T3 T1 T 2 l2! T3 T1 T 2 (2l T3 ' T4 T5

HL OUT ,
STA TU S l7!

(TMP) - •►DATA BUS

PC OUT ,
STATU S®

PC= PC + 1 B3 — ► rh

PC = PC + 1 B3 —► W WZ OUT ,
s t a t u s !®

D A T A -------- 1► A

PC = PC + 1 B3 — ► W WZ OUT
s t a t u s !7!

(A) ------------ - ► DATA BUS

P C = P C + 1 B3 — ► w WZ OUT
s t a t u s !®

D A T A --------
WZ = WZ + 1

► L WZ OUT
STATU S®

D A T A - ►H

PC OUT
STATU S®

PC = PC + 1 B 3 - ► w WZ OUT
STA TU S!7!

WZ OUT
s t a t u s !7!WZ = WZ + 1

 ̂UM I n DUO ^U/*\ I A dUo

[9! (ACT)+(TMP)-*A

[9] (ACT)+(TMP)-+A

[9] (ACT)+(TM P)+CY-A

[9! (ACT)+(TMP)+CY-*A

(9) (ACT)-(TMP)->-A

[91 {ACT)-(TM P)-*A

[9] (ACT)-(TMP)-CY-*-A

(9! (ACT)-(TM P)-CY-»’A

HL OUT
STATUS [7J

A L U - ► DATA BUS

HL OUT
s t a t u s !7!

A L U - ► DATA BUS

(rh)-*ACT (HMTMP
(ACT)+ (TM P)+CY-ALU

A L U -H , CY

[9] (ACT)+(TMP)->A

MNEMONIC OPCODE M ill] M2

d 7 d6 d 5 d 4 D3D2D1 Dq T 1 T2l2l T 3 T4 T5 T 1 T212] T 3

ANI data 1 1 1 0 0 1 1 0 PC OUT
STATUS

PC = PC + 1 INST->TMP/IR (AHACT pc o u t
' - STATUS l®l

PC = PC + 1 B2 __ ^.TMP '

X R A r 1 0 1 0 1 s s s (AHACT
(SSSHTMP

i9) (ACT)+(TPMHA

XRA M 1 0 1 0 1 1 1 0 (AHACT h l o u t
, STATUSl®]

DATA — -►TMP

XRI data 1 1 1 0 1 1 1 0 (AHACT PC OUT
STATUst61

PC = PC + 1 B2 —♦•TMP

O RA r 1 0 1 1 0 s s s (AH A CT
(SSSHTMP

(9) (ACT) + (TMP)-A

ORA M 1 0 1 1 0 1 1 0 (AHACT HL OUT
- STATUSI6I

DATA - -►TMP

ORI data 1 1 1 1 0 1 1 0 (AHACT - r PC OUT
' ... s t a t u s !®)

PC = PC + 1 B2 —-►TMP

CMP r 1 0 1 1 1 s s s (AHACT
(SSSHTMP , * J ’ ' ", 19)

" f ’ '‘4 .
(ACT)-(TMP), FLAGS

CMP M 1 0 1 1 1 1 1 0 (AHACT W £ 0 l ? H L OUT
; « . s t a t u s !®)

D A T A - ♦►TMP

CPI data 1 1 1 1 1 1 1 0 (AHACT P PC OUT
s t a t u s !®]

PC = PC + 1 B2 —-►TMP

RLC 0 0 0 0 0 1 1 1 (A H A L U
RO TA TE

I t F i r i ,91
M J % H:' V * „ .

i f M ; :rt

A L U - A .C Y

R R C

R A L

RA R

CMA

CMC

STC

0 0 0 0

0 0 0 1

0 0 0 1

0 0 1 0

0 0 1 1

0 0 1 1

1 1 1 1

0 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 1 1 1

(A H A L U
R O TATE

(A), CY^ ALU
R O TA TE

(A), C Y -A L U
R O TA TE
(A H A

CY-+CY

1-*CY

S I 5 T S 7 T B i

------------------7 * r - K - : ■ n
y 1 / • ' -
It” i 3

- ir-; \

. .
... '7"' ^7
l j | | j§

A L L H A , CY

A L L H A , CY

A L L H A , CY

r .v v:-. .
* - * ' • ' *

-

T - '

^ B U p
V

f j ? * ^ V.’v .

JMP addr 1 1 0 0 0 0 1 1 X
^ a° tUJ s [61

PC = PC + 1 B2 — ♦►z ;

J cond addr!17! 1 1 c c c 0 1 0 JUDGE CONDITION PC OUT
STATUS!®)

PC = PC + 1 B2 — ► z

C A LL addr 1 1 0 0 1 1 0 1 SP = SP - 1 PC OUT r ,
STATUS!®)

PC = PC + 1 B2 — ► z

C cond addrf171 1 1 c c c 1 0 0 JU DGE CONDITION PC OUT r ,
IF T R U E ,S P = SP - 1 STATUS!®!

PC = PC+ 1 B2 — ► z

R E T 1 1 0 0 1 0 0 1 X .! P 1 ■; SP OUT ,
~ | ;v \ s t a t u s !1 ®]

SP = SP + 1 DATA — ► z

R cond addr!17! 1 1 c c c 0 0 0 IN ST-TM P/IR JU DGE CONDITION!1*) S P O U T , ,
STA TU S !1®)

SP = SP + 1 DATA — ► z

R S T n 1 1 N N N 1 1 1 0--W
INST-*TMP/IR

SP = SP - 1 SP OUT
s t a t u s !1®)

SP = S P -1 (PCH) — ► DATA BUS

PCHL 1 1 1 0 1 0 0 1 INST-*TMP/IR (H L)-------------------1 ’ *' < *
> .

“K
’

ii
li

l
PUSH rp 1 1 R P 0 1 0 1 SP = SP - 1 SP OUT

S T A T U S ^
SP = SP - 1 (rh)— ► DATA BUS

PUSH PSW 1 1 1 1 0 1 0 1 SP = SP - 1 SP OUT , ,
STA TU S!1®)

SP = S P - 1 (A) — ► DATA BUS

POP rp 1 1 R P 0 0 0 1 X « H' y r ^ s p o u t
s t a t u s !1®]

SP = SP + 1 DATA — ►r1

POP PSW 1 1 1 1 0 0 0 1 X ; SP OUT
s t a t u s !1®]

SP = SP + 1 DATA — ► FLA G S

X T H L 1 1 1 0 0 0 1 1 X . SP OUT ,
STA TU S !1®]

SP = SP + 1 DATA — ► Z

IN port 1 1 0 1 1 0 1 1 X . . P p p - pc o u t rei
, STATUS!®]

PC = PC + 1 B2 — ► z ,w

OUT port 1 1 0 1 0 0 1 1 X PC OUT , ,
' , s t a t u s !®]

PC = PC + 1 B2 —► z .w

El 1 1 1 1 1 0 1 1 SET IN TE F/F .
. / ;

’* tJt " s

Dl 1 1 1 1 0 0 1 1 R ES E T IN TE F/F
■

‘V'V

HLT 0 1 1 1 0 1 1 0 X PC OUT
STATUS

H A LT MODE!®!

NOP 0 0 0 0 0 0 0 0 PC OUT
STATUS

PC = PC + 1 IN ST-TM P/IR X
* ,

M3 M4 M5
T1 T2!® T3 T1 T2f® T3 T1 T2l2) T3 T4 T5

[9] (ACT)+(TMP)-*A ;
X, S ' < ‘ t

S.

.
;-v i- x,lX<.̂ xx.

r '' • xxX'
' X ’> , ’>v *' ,1 >r V ;>

,h;.
:.,

1 - >>. ,
, ;...... "

•vXr-X̂ :
/.'X'-X ■' ;.-.XX

[9] (ACT)+(TMP)-A
‘ >

^ •

.’ ‘ ,

......A.'"......
; 77 i-v,;, t r r - z t r r

:
[9] (ACT)+(TMP)-*-A X , .X , : X U

"T
v.-. j XXx *...

:X :: ;< J /.XxxxXxx::... ...,X..X-'..-• < '•' ■ •
;r,..if-., • ■

") r̂y.;:.vV*
; ' i x x x vX % XX

.V'.--

[9i (ACT)+(TMP)-»A / 'L X •1 ' -.r%
X ilL .

r >- ‘ i-V,;’
v.

“T vX

19] (ACT)+(TMP)->A :.V V :v 'V > r
u ■ '■ ';t>' r'-VX -' < <' *

•v:: X - " : ;i\ >; V X '.'v 1 1 1

X & V -..X X,~ ’ •iX' V , ‘ . X'X\ •> V
> v.. ,̂...W.X£|xvx--:vfc' •' ; ' X ■X :X X X - ‘ v". V;, '

(9 (ACT)-(TMP); FLAGS 5 # f y V - X : a .
'X-XXX7 : XXXXXXXx '. • ’X X“;> ' X,

[9] (ACT)-(TMP); FLAGS
X ■V-.' - ' wo. ■ ■■■.. -i-v-r"......tl̂ £ i x ^

...

' V i r ' s . x .i i ' L i i 1 X X v. ''■.....• ■ M X ' ..x:...
-< •4 ,‘v

m im m * , •>; X'̂ xi
- -X> XX" * X - > x XX M

.. ;-;<ii
f.-j.. -X X

' V ; x:x:‘ ' X-
XX:;>:X.. X x X x i is i is

.y
vX:' , ' 'X

/ , c ' , ,,
■ iX - V <>1

, •' ■ . ' . 1
*’i- ',"X;■■■' s> X S:;:

■ - i i i i l l l i •••
........

: v
-

; •-iXfxfX- lX xX> '
X / ' w V ' ..

: , ’ - *- -■... i
, 3-" X XX 1 -j

; : • ■ r.>:rX c ; ^ : - X ■' ■- r; ' ~ ■- 7 X •XX nixx
*’

— T J< K-\ « 4 s ' i *-
.''Xfft'.v/'V h X X r,.- - ^ '-V, t1'.,-, ;;x> >x ,:... ;:XX.X̂ .

: - - h ■

PC OUT , . STATUS® PC = PC + 1 B3 —►w
..1 <•..... - :

■>■ xx xx x x ;
' .r ; - *xXvX'/-.;'Xi ; X x X X X ■WZ OUT ,status!1 11 (WZ) + 1 -*• PC

PC OUT foi STATUS® PC = PC + 1 B3 —
'.. ..«...

.. ,
.... -X ;-,T. ...

y r r -
1 X :..... ,l..X... X WZ OUT status!1 1>12] (WZ) + 1 -*■ PC

PC OUT rol STATUS® PC = PC + 1 B3 — SP 0UT MCIstatus!1® (PCH)-----SP = SP - 1 ► DATA BUS SP0UTMC1status!1® (PCU-i► DATA BUS "XX-
• X-:XX' :Xr-X' WZ OUT ,status!111

(WZ) + 1 - PC
PC OUT STATUS® PC = PC + 1 B3 —►WH3] SP OUT status!1®’ (PCH)-----SP = SP- 1 ► DATA BUS SP 0UT MCIstatus!1® (PCLM► DATA BUS X a.'; WZ OUT,status!1 ̂ U2l (WZ) + 1 - PC
SP OUT r<cl STATUS!1® SP = SP + 1 DATA — '7T_̂ — '— r, i ■” ' •' X - : v X • ■ -/v-7- < \ ** ‘ i sXXX.t XX: x ,xx~

:..i,.--:,.. - WZ OUT ,status!1 11 (WZ) + 1 -* PC

SP 0UT MC STATUS!1® SP = SP + 1 DATA —►w
Z : l ^ :

. T, ' " , , *
X X X X

u*J;v :
X :'X .-X 4 I X X'; . x!' v iiiS i WZ OUTstatus!11-121 (WZ) + 1 - PC

S P 0 U T mci STATUS!1® (TMP = OONNNOOO)--(PCD —►z► DATA BUS :;-S
r r x ^
,-l Vli'

* x * *-:,
.... ...,%..........

;l': \ ■J X T
:: -; - >;■ WZ°UTstatus!111 (WZ) + 1 - PC

■■'S'-:'"
? “ , /- 1 '• j ‘ ’ ' ~T'\f....1......V

,r„ •;*
..;•

1 -
- ; -■ - .f>: “ - ■ ::

. .. -- ,
t? ̂ r r»

, - *x;.x:^ •
SP0UT m ci status!1® (rl) —►DATA BUS

, , -
v, .?*v

X >--XXX XXs X X
'■J, >■■■■■v"1 •,

;x X:<;,:X
SP°UTstatus!1® FLAGS —►DATA BUS '* ' ' *.v' >' 1 - ' ‘ s’- V,XV

• *. x; .X..:-l
SP0UT mcistatus!1® SP = SP + 1 DATA — r ' v’".' - . ! • ; ;

■;..; -
XXX,/ -X,:;;

' 7 J ' X X
_ _ _ _ _
.....1..•■'

--- .
•J' in n s

SPOUT ,status!1® SP = SP + 1 DATA — < - \..> :...'v.
X'X'r' '.-XXa ; i ' , ■

, ■ x • , , r x :’V sSIIISiix
xiXsXSft

status!1® data— SP0UT MCIstatus!1® (H)------- ►DATA BUS
status!1® (L)--- ► DATA BUS (WZ)--►HL

status!1® DATA —► A
1 i • .- ■■'< ,c<..r.' .xxiliix-

WZ OUTstatus!1® (A) - ► DATA BUS
■ M V1 w• • , xx ,'X(r , J • *'*

:x l® X X * ;t
: X . . - ' ..

'

m : : X

T - ^ r - r r

XX4 V • X v

t e b r
: => ■ *’ .• • 5 V

,X - -
X l lX lX

V . -

r ' * < > [

.. •'
'sv• V/

X:: X :^xx;X'XX-;X"
■-;v;X-'X\

...... ■....

X X X X ' ' -" ■* 'XI XX
‘

'■'X’’

X.. '.?x> * '

' X';-"X •'
■/'XXX'

XXXiii:.
,;XX',:X'v X’’ X̂ .-i

NOTES:

1. The first memory cycle (M1) is always an instruction
fetch; the first (or only) byte, containing the op code, is
fetched during this cycle.
2. If the R E A D Y input from memory is not high during
T2 of each memory cycle, the processor will enter a wait
state (TW) until R E A D Y is sampled as high.
3. States T 4 and T5 are present, as required, for opera
tions which are completely internal to the CPU. The con
tents of the internal bus during T4 and T 5 are available at
the data bus; this is designed for testing purposes only. An
" X " denotes that the state is present, but is only used for
such internal operations as instruction decoding.
4. Only register pairs rp = B (registers B and C) or rp= D
(registers D and E) may be specified.
5. These states are skipped.
6. Memory read sub-cycles; an instruction or data word
will be read.
7. Memory write sub-cycle.
8. The R EA D Y signal is not required during the second
and third sub-cycles (M2 and M3). The HOLD signal is
accepted during M2 and M3. The SYN C signal is not gene
rated during M2 and M3. During the execution of DAD,
M2 and M3 are required for an internal register-pair add;
memory is not referenced.
9. The results of these arithmetic, logical or rotate in
structions are not moved into the accumulator (A) until
state T2 of the next instruction cycle. That is, A is loaded
while the next instruction is being fetched; this overlapping
of operations allows for faster processing.
10. If the value of the least significant 4-bits of the accumu
lator is greater than 9 o r j f the auxiliary carry bit is set, 6
is added to the accumulator. If the value of the most signifi
cant 4-bits of the accumulator is now greater than 9, or if
the carry bit is set, 6 is added to the most significant
4-bits of the accumulator.
11. This represents the first sub-cycle (the instruction
fetch) of the next instruction cycle.

12. If the condition was met, the contents of the register
pair WZ are output on the address lines (Ao-15) instead of
the contents of the program counter (PC).
13. If the condition was not met, sub-cycles M4 and M5
are skipped; the processor instead proceeds immediately to
the instruction fetch (M1) of the next instruction cycle.
14. If the condition was not met, sub-cycles M2 and M3
are skipped; the processor instead proceeds immediately to
the instruction fetch (M1) of the next instruction cycle.
15. Stack read sub-cycle.
16. Stack write sub-cycle.
17. CONDITION CCC

NZ — not zero (Z = 0) 000
Z - zero (Z= 1) 001

NC — no carry (C Y = 0) 010
C - carry (C Y = 1) 011

PO - parity odd (P = 0) 100
PE — parity even (P = 1) 101

P — plus (S = 0) 110
M — minus (S = 1) 111

18. I/O sub-cycle: the I/O port's 8-bit select code is dupli
cated on address lines 0-7 (A0.7) and 8-15 (Ag-15).
19. Output sub-cycle.
20. The processor will remain idle in the halt state until
an interrupt, a reset or a hold is accepted. When a hold re
quest is accepted, the CPU enters the hold mode; after the
hold mode is terminated, the processor returns to the halt
state. After a reset is accepted, the processor begins execu
tion at memory location zero. After an interrupt is accepted,
the processor executes the instruction forced onto the data
bus (usually a restart instruction).

SSS or DDD Value rp Value
A 111 B 00
B 000 D 01
C 001 H 10
D 010 SP 11
E 011
H 100
L 101

This chapter will illustrate, in detail, how to interface
the 8080 CPU with Memory and I/O. It will also show the
benefits and tradeoffs encountered when using a variety of
system architectures to achieve higher throughput, de
creased component count or minimization of memory size.

8080 Microcomputer system design lends itself to a
simple, modular approach. Such an approach will yield the
designer a reliable, high performance system that contains a
minimum component count and is easy to manufacture and
maintain.

The overall system can be thought of as a simple
block diagram. The three (3) blocks in the diagram repre
sent the functions common to any computer system.

CPU Module* Contains the Central Processing Unit, system
timing and interface circuitry to Memory
and I/O devices.

Memory Contains Read Only Memory (ROM) and
Read/Write Memory (RAM) for program and
data storage.

I/O Contains circuitry that allows the computer
system to communicate with devices or
structures existing outside of the CPU or
Memory array.
for example: Keyboards, Floppy Disks,
Paper Tape, etc.

There are three busses that interconnect these blocks:
Data Bust A bi-directional path on which data can flow

between the CPU and Memory or I/O.
Address Bus A uni-directional group of lines that identify

a particular Memory location or I/O device.

*"Module" refers to a functional block, it does not ref
erence a printed circuit board manufactured by IN TEL .
f"B u s" refers to a set of signals grouped together because
of the similarity of their functions.

Control Bus A uni-directional set of signals that indicate
the type of activity in current process.
Type of activities: 1. Memory Read

2. Memory Write
3. I/O Read
4. I/O Write
5. Interrupt Acknowledge

Figure 3-1. Typical Computer System Block Diagram

Basic System Operation
1. The CPU Module issues an activity command on the

Control Bus.
2. The CPU Module issues a binary code on the Address

Bus to identify which particular Memory location or
I/O device will be involved in the current process
activity.

3. The CPU Module receives or transmits data with the
selected Memory location or I/O device.

4. The CPU Module returns to (T) and issues the next
activity command.
It is easy to see at this point that the CPU module is

the central element in any computer system.

The following pages will cover the detailed design of
the CPU Module with the 8080. The three Busses (Data,
Address and Control) will be developed and the intercon
nection to Memory and I/O will be shown.

Design philosophies and system architectures pre
sented in this manual are consistent with product develop-TM
ment programs underway at IN T EL for the MCS-80. Thus,
the designer who uses this manual as a guide for his total
system engineering is assured that all new developments in
components and software for MCS-80 from IN TEL will be
compatible with his design approach.

CPU Module Design
The CPU Module contains three major areas:

1. The 8080 Central Processing Unit
2. A Clock Generator and High Level Driver
3. A bi-directional Data Bus Driver and System Control

Logic

The following will discuss the design of the three
major areas contained in the CPU Module. This design is
presented as an alternative to the Intel® 8224 Clock Gener
ator and Intel 8228 System Controller. By studying the
alternative approach, the designer can more clearly see the
considerations involved in the specification and engineering
of the 8224 and 8228. Standard T T L components and Intel
general purpose peripheral devices are used to implement

the design and to achieve operational characteristics that
are as close as possible to those of the 8224 and 8228.
Many auxiliary timing functions and features of the 8224
and 8228 are too complex to practically implement in
standard components, so only the basic functions of the
8224 and 8228 are generated. Since significant benefits in
system timing and component count reduction can be
realized by using the 8224 and 8228, this is the preferred
method of implementation.

1. 8080 CPU
The operation of the 8080 CPU was covered in pre
vious chapters of this manual, so little reference will
be made to it in the design of the Module.

2. Clock Generator and High Level Driver
The 8080 is a dynamic device, meaning that its inter
nal storage elements and logic circuitry require a
timing reference (Clock), supplied by external cir
cuitry, to refresh and provide timing control signals.
The 8080 requires two (2) such Clocks. Their wave
forms must be non-overlapping, and comply with the
timing and levels specified in the 8080 A .C . and D.C.
Characteristics, page 5-15.

Clock Generator Design
The Clock Generator consists of a crystal controlled,

GND -
+5 V -
-5 V -

+12 V -

SYSTEM DMA REQ. ■

SYSTEM INT. REQ. •

INT. ENABLE

CLOCK
GENERATOR

DRIVER

A0
A1
A2
A3
A4
A5

8080 A6
CPU A7

A8

HOLD A9
A10
A11

INT A12
A13

INTE A14
A15
WR

DBIN
HLDA

01 DO
02 D1

D2
WAIT D3
READY D4

D5RESET D6

SYNC D7

STATUS STROBE

BI-DIREC
TIONAL

BUS DRIVER

SYSTEM
CONTROL

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DB0
. DB1
. DB2
. DB3

DB4
. DB5
■ DB6
. DB7
• INTA

ADDRESS BUS

. MEM W
■ 17or
► i/ow

CONTROL BUS

Figure 3-2. 8080 CPU Interface

OSCILLATOR
20 MHz

330 W
*—VW— | | VW—11
— O 1 Jh L

74S04 680 pF 74S04

--

74S04

G N D -

C L K
DA QA

DB QB
74163

DC QC
DD QD

J I

CLOCK GENERATOR
7486

c c

W AVEFO RM S

* — w -------------,10011001 ,
ns h “ 50ns

02 \ 250ns /

50ns-*J |<— — »| I*—50ns

0 ! A _ J " \ 250ns f

1 _

f

STSTB

7 ^
\ t— v 74H00

- > 01 (T T L)

-► 02 (T T L)
AU XILIA RY FUNCTIONS

D
74S74
C L K Q

I 74H00

= i > — -

SYN C

DMA R EQ ■

D Q
74S74
C L K

D Q
74S74
C L K

STSTB

* 01A (T T L)

R E A D Y

HOLD

Figure 3-3. 8080 Clock Generator
20 MHZ oscillator, a four bit counter, and gating
circuits.
The oscillator provides a 20 MHZ signal to the input
of a four (4) bit, presettable, synchronous, binary
counter. By presetting the counter as shown in figure
3-3 and clocking it with the 20 MHZ signal, a simple
decoding of the counters outputs using standard T T L
gates, provides proper timing for the two (2) 8080
clock inputs.
Note that the timing must actually be measured at
the output of the High Level Driver to take into ac
count the added delays and waveform distortions
within such a device.

High Level Driver Design
The voltage level of the clocks for the 8080 is not
T T L compatible like the other signals that input to
the 8080. The voltage swing is from .6 volts (V ,LC)
to 11 volts (V |HC) with risetimes and falltimes under
50 ns. The Capacitive Drive is 20 pf (max.). Thus, a
High Level Driver is required to interface the outputs
of the Clock Generator (T T L) to the 8080.

The two (2) outputs of the Clock Generator are ca
pacitivity coupled to a dual- High Level clock driver.
The driver must be capable of complying with the
8080 clock input specifications, page 5-15. A driver
of this type usually has little problem supplying the

positive transition when biased from the 8080 V qd
supply (12V) but to achieve the low voltage specifi
cation (V||_c) -8 volts Max. the driver is biased to the
8080 V BB supply (-5V). This allows the driver to
swing from GND to Vqd with the aid of a simple
resistor divider.
A low resistance series network is added between the
driver and the 8080 to eliminate any overshoot of the
pulsed waveforms. Now a circuit is apparent that can
easily comply with the 8080 specifications. In fact
rise and falltimes of this design are typically less than
10 ns.

+12V

Figure 3-4. High Level Driver

Auxiliary Timing Signals and Functions
The Clock Generator can also be used to provide
other signals that the designer can use to simplify
large system timing or the interface to dynamic
memories.
Functions such as power-on reset, synchronization of
external requests (H O LD , R EA D Y , etc.) and single
step, could easily be added to the Clock Generator to
further enhance its capabilities.
For instance, the 20 MHZ signal from the oscillator
can be buffered so that it could provide the basis for
communication baud rate generation.
The Clock Generator diagram also shows how to gen
erate an advanced timing signal (01A) that is handy
to use in clocking "D " type flipflops to synchronize
external requests. It can also be used to generate a
strobe (STSTB) that is the latching signal for the sta
tus information which is available on the Data Bus at
the beginning of each machine cycle. A simple gating
of the SYNC signal from the 8080 and the advanced
(01 A) will do the job. See Figure 3-3.

3. Bi-Directional Bus Driver and System Control Logic
The system Memory and I/O devices communicate
with the CPU over the bi-directional Data Bus. The
system Control Bus is used to gate data on and off
the Data Bus within the proper timing sequences as
dictated by the operation of the 8080 CPU. The data
lines of the 8080 CPU, Memory and I/O devices are
3-state in nature, that is, their output drivers have
the ability to be forced into a high-impedance mode
and are, effectively, removed from the circuit. This 3 -
state bus technique allows the designer to construct a
system around a single, eight (8) bit parallel, bi-direc
tional Data Bus and simply gate the information on
or off this bus by selecting or deselecting (3-stating)
Memory and I/O devices with signals from the Con
trol Bus.

Bi-Directional Data Bus Driver Design
The 8080 Data Bus (D7-D0) has two (2) major areas
of concern for the designer:
1. Input Voltage level (V |H) 3.3 volts minimum.
2. Output Drive Capability (I0 l > 1.7 mA maximum.

Figure 3-5. 8080 System Control

The input level specification implies that any semi
conductor memory or I/O device connected to the
8080 Data Bus must be able to provide a minimum of
3.3 volts in its high state. Most semiconductor mem
ories and standard T T L I/O devices have an output
capability of between 2.0 and 2.8 volts, obviously a
direct connection onto the 8080 Data Bus would re
quire pullup resistors, whose value should not affect
the bus speed or stress the drive capability of the
memory or I/O components.
The 8080A output drive capability (Iq l) 1-9mA max.
is sufficient for small systems where Memory size and
I/O requirements are minimal and the entire system is
contained on a single printed circuit board. Most sys
tems however, take advantage of the high-perfor
mance computing power of the 8080 CPU and thus a
more typical system would require some form of buf
fering on the 8080 Data Bus to support a larger array
of Memory and I/O devices which are likely to be on
separate boards.
A device specifically designed to do this buffering
function is the IN T E L?8216, a (4) four bit bi-direc
tional bus driver whose input voltage level is compat
ible with standard T T L devices and semiconductor
memory components, and has output drive capability
of 50 mA. At the 8080 side, the 8216 has a “ high"
output of 3.65 volts that not only meets the 8080
input spec but provides the designer with a worse case
350 mV noise margin.
A pair of 8216's are connected directly to the 8080
Data Bus (D7-D0) as shown in figure 3-5. Note that
the DBIN signal from the 8080 is connected to the
direction control input (D IEN) so the correct flow of
data on the bus is maintained. The chip select (CS) of
the 8216 is connected to BUS EN A B LE (BUSEN) to
allow for DMA activities by deselecting the Data Bus
Buffer and forcing the outputs of the 8216's into
their high impedance (3-state) mode. This allows
other devices to gain access to the data bus (DMA).

System Control Logic Design
The Control Bus maintains discipline of the bi-direc
tional Data Bus, that is, it determines what type of
device will have access to the bus (Memory or I/O)
and generates signals to assure that these devices
transfer Data with the 8080 CPU within the proper
timing "windows" as dictated by the CPU operational
characteristics.
As described previously, the 8080 issues Status infor
mation at the beginning of each Machine Cycle on its
Data Bus to indicate what operation will take place
during that cycle. A simple (8) bit latch, like an
IN TEL? 8212, connected directly to the 8080 Data
Bus (D7-D0) as shown in figure 3-5 will store the

Status information. The signal that loads the data
into the Status Latch comes from the Clock Gener
ator, it is Status Strobe (STSTB) and occurs at the
start of each Machine Cycle.

Note that the Status Latch is connected onto the
8080 Data Bus (D7-D0) before the Bus Buffer. This is
to maintain the integrity of the Data Bus and simplify
Control Bus timing in DMA dependent environments.

As shown in the diagram, a simple gating of the out
puts of the Status Latch with the DBIN and WR
signals from the 8080 generate the (4) four Control
signals that make up the basic Control Bus.

These four signals: 1. Memory Read (MEM R)

2. Memory Write (MEM W)

3. I/O Read (I/O R)

4. I/O Write (ITOW)
TM

connect directly to the MCS-80 component "fam ily"
of ROMs, RAMs and I/O devices.

A fifth signal, Interrupt Acknowledge (IN TA) is
added to the Control Bus by gating data off the
Status Latch with the DBIN signal from the 8080
CPU. This signal is used to enable the Interrupt
Instruction Port which holds the RST instruction
onto the Data Bus.

Other signals that are part of the Control Bus such as
WO, Stack and M1 are present to aid in the testing of
the System and also to simplify interfacing the CPU
to dynamic memories or very large systems that re
quire several levels of bus buffering.

Address Buffer Design
The Address Bus (A15-A0) of the 8080, like the Data
Bus, is sufficient to support a small system that has a
moderate size Memory and I/O structure, confined to
a single card. To expand the size of the system that
the Address Bus can support a simple buffer can be
added, as shown in figure 3-6 . The IN T E L?8212 or
8216 is an excellent device for this function. They
provide low input loading (.25 mA), high output
drive and insert a minimal delay in the System
Timing.

Note that BUS EN A B LE (BUSEN) is connected to
the buffers so that they are forced into their high-
impedance (3-state) mode during DMA activities so
that other devices can gain access to the Address Bus.

IN TERFACIN G TH E 8080 CPU TO MEMORY
AND I/O D EV IC ES

The 8080 interfaces with standard semiconductor
Memory components and I/O devices. In the previous text
the proper control signals and buffering were developed
which will produce a simple bus system similar to the basic
system example shown at the beginning of this chapter.

In Figure 3-6 a simple, but exact 8080 typical system
is shown that can be used as a guide for any 8080 system,
regardless of size or complexity. It is a "three bus" archi
tecture, using the signals developed in the CPU module.

Note that Memory and I/O devices interface in the
same manner and that their isolation is only a function of
the definition of the Read-Write signals on the Control Bus.
This allows the 8080 system to be configured so that Mem
ory and I/O are treated as a single array (memory mapped
I/O) for small systems that require high thruput and have
less than 32K memory size. This approach will be brought
out later in the chapter.

ROM IN TER FA C E
A ROM is a device that stores data in the form of

Program or other information such as "look-up tables" and
is only read from, thus the term Read Only Memory. This
type of memory is generally non-volatile, meaning that
when the power is removed the information is retained.

This feature eliminates the need for extra equipment like
tape readers and disks to load programs initially, an im
portant aspect in small system design.

Interfacing standard ROMs, such as the devices shown
in the diagram is simple and direct. The output Data lines
are connected to the bi-directional Data Bus, the Address
inputs tie to the Address bus with possible decoding of the
most significant bits as "chip selects" and the MEMR signal
from the Control Bus connected to a "chip select" or data
buffer. Basically, the CPU issues an address during the first
portion of an instruction or data fetch (T1 & T2). This
value on the Address Bus selects a specific location within
the ROM, then depending on the ROM's delay (access time)
the data stored at the addressed location is present at the
Data output lines. At this time (T3) the CPU Data Bus is
in the "input Mode" and the control logic issues a Memory
Read command (MEMR) that gates the addressed data on
to the Data Bus.

RAM IN TER FA C E
A RAM is a device that stores data. This data can be

program, active "look-up tables," temporary values or ex
ternal stacks. The difference between RAM and ROM is
that data can be written into such devices and are in
essence, Read/Write storage elements. RAMs do not hold
their data when power is removed so in the case where Pro
gram or "look-up tables" data is stored a method to load

DATA BUS (8)

31 H
3 Z

CON TRO L BUS (6)
21 H

ADD RESS BUS (16)

Figure 3-6. Microcomputer System

RAM memory must be provided, such as: Floppy Disk,
Paper Tape, etc.

The CPU treats RAM in exactly the same manner as
ROM for addressing data to be read. Writing data is very
similar; the RAM is issued an address during the first por
tion of the Memory Write cycle (T1 & T2) in T3 when the
data that is to be written is output by the CPU and is stable
on the bus an MEMW command is generated. The MEMW
signal is connected to the R/W input of the RAM and
strobes the data into the addressed location.

In Figure 3-7 a typical Memory system is illustrated
to show how standard semiconductor components interface
to the 8080 bus. The memory array shown has 8K bytes
(8 bits/byte) of ROM storage, using four lntel@8216As
and 512 bytes of RAM storage, using Intel 8111 static
RAMs. The basic interface to the bus structure detailed
here is common to almost any size memory. The only ad
dition that might have to be made for larger systems is
more buffers (8216/8212) and decoders (8205) for gener
ating “ chip selects."

The memories chosen for this example have an access
time of 850 nS (max) to illustrate that slower, economical
devices can be easily interfaced to the 8080 with little ef
fect on performance. When the 8080 is operated from a
clock generator with a tC Y of 500 nS the required memory
access time is Approx. 450-550 nS. See detailed timing
specification Pg. 5-16. Using memory devices of this speed
such as lntel@8308, 8102A, 8107A, etc. the R EA D Y input
to the 8080 CPU can remain "high" because no "wait"
states are required. Note that the bus interface to memory
shown in Figure 3-7 remains the same. However, if slower
memories are to be used, such as the devices illustrated
(8316A , 8111) that have access times slower than the min
imum requirement a simple logic control of the R EA D Y
input to the 8080 CPU will insert an extra "wait state" that
is equal to one or more clock periods as an access time
"adjustment" delay to compensate. The effect of the extra
"w ait" state is naturally a slower execution time for the
instruction. A single "w ait" changes the basic instruction
cycle to 2.5 microSeconds.

8K + 512 8K 0

DATA BUS (8)

CONTROL BUS (6)

ADDRESS BUS (16)

Figure 3-7. Typical Memory Interface

I/O IN TER FA C E

General Theory
As in any computer based system, the 8080 CPU must

be able to communicate with devices or structures that exist
outside its normal memory array. Devices like keyboards,
paper tape, floppy disks, printers, displays and other control
structures are used to input information into the 8080 CPU
and display or store the results of the computational activity.

Probably the most important and strongest feature of
the 8080 Microcomputer System is the flexib ility and power
of its I/O structure and the components that support it. There
are many ways to structure the I/O array so that it will ''fit"
the total system environment to maximize efficiency and
minimize component count.

The basic operation of the I/O structure can best be
viewed as an array of single byte memory locations that can
be Read from or Written into. The 8080 CPU has special in
structions devoted to managing such transfers (IN , OUT).
These instructions generally isolate memory and I/O arrays
so that memory address space is not effected by the I/O
structure and the general concept is that of a simple transfer
to or from the Accumulator with an addressed "P O R T". An
other method of I/O architecture is to treat the I/O structure
as part of the Memory array. This is generally referred to as
"Memory Mapped I/O" and provides the designer with a
powerful new "instruction set" devoted to I/O manipulation.

ISOLATED I/O

Figure 3-8. Memory/I/O Mapping.

Isolated I/O
In Figure 3-9 the system control signals, previously de

tailed in this chapter, are shown. This type of I/O architecture
separates the memory address space from the I/O address
space and uses a conceptually simple transfer to or from Ac
cumulator technique. Such an architecture is easy to under
stand because I/O communicates only with the Accumulator
using the IN or OUT instructions. Also because of the isola
tion of memory and I/O, the full address space (65K) is un
effected by I/O addressing.

TO MEMORY
DEVICES

- TO I/O DEVICES

Figure 3-9. Isolated I/O.

Memory Mapped I/O
By assigning an area of memory address space as I/O a

powerful architecture can be developed that can manipulate
I/O using the same instructions that are used to manipulate
memory locations. Thus, a "new" instruction set is created
that is devoted to I/O handling.

As shown in Figure 3-10, new control signals are gene
rated by gating the MEMR and MEMW signals with A 15, the
most significant address bit. The new I/O control signals con
nect in exactly the same manner as Isolated I/O, thus the
system bus characteristics are unchanged.

By assigning A 15 as the I/O "flag", a simple method of
I/O discipline is maintained:

If A 15 is a "zero" then Memory is active.
If A 15 is a "one" then I/O is active.

Other address bits can also be used for this function. A 15 was
chosen because it is the most significant address bit so it is
easier to control with software and because it still allows
memory addressing of 32K .

I/O devices are still considered addressed "ports" but
instead of the Accumulator as the only transfer medium any
of the internal registers can be used. A ll instructions that
could be used to operate on memory locations can be used
in I/O.

Examples:
MOVr, M
MOV M, r
MVI M
LDA
STA
LH LD
SHLD
ADD M
ANA M

(Input Port to any Register)
(Output any Register to Port)
(Output immediate data to Port)
(Input to ACC)
(Output from ACC to Port)
(16 B it Input)
(16 Bit Output)
(Add Port to ACC)
("A N D " Port with ACC)

It is easy to see that from the list of possible "new"
instructions that this type of I/O architecture could have a
drastic effect on increased system throughput. It is concep
tually more difficult to understand than Isolated I/O and it
does limit memory address space, but Memory Mapped I/O
can mean a significant increase in overall speed and at the
same time reducing required program memory area.

The second example uses Memory Mapped I/O and
linear select to show how thirteen devices (8255) can bead-
dressed without the use of extra decoders. The format shown
could be the second and third bytes of the LDA or STA in
structions or any other instructions used to manipulate I/O
using the Memory Mapped technique.

It is easy to see that such a flexible I/O structure, that
can be “ tailored” to the overall system environment, provides
the designer with a powerful tool to optimize efficiency and
minimize component count.

EXAMPLE #2

Figure 3-10. Memory Mapped I/O.

I/O Addressing
With both systems of I/O structure the addressing of

each device can be configured to optimize efficiency and re
duce component count. One method, the most common, is
to decode the address bus into exclusive “ chip selects” that
enable the addressed I/O device, similar to generating chip-
selects in memory arrays.

Another method is called “ linear select” . In this method,
instead of decoding the Address Bus, a singular bit from the
bus is assigned as the exclusive enable for a specific I/O de
vice. This method, of course, limits the number of I/O de
vices that can be addressed but eliminates the need for extra
decoders, an important consideration in small system design.

A simple example illustrates the power of such a flexi
ble I/O structure. The first example illustrates the format of
the second byte of the IN or OUT instruction using the Iso
lated I/O technique. The devices used are lntel®8255 Pro
grammable Peripheral Interface units and are linear selected.
Each device has three ports and from the format it can be
seen that six devices can be addressed without additional de
coders.

A7 A 6 A5 A4 A3 A2 A1 A) |

PORT SELECTS

- DEVICE SELECTS

A 15 A 14 A 13 A 12 A 11 A 10

- DEVICE SELECTS

I/O FLAG I = I/O
O = MEMORY

ADDRESSES - 13 - 8255s
(39 PORTS - 3 1 2 BITS)

EXAMPLE #1

A? As As a4 a3 a2 A 1 Aq

i -
0- PORT SELECTS

- DEVICE SELECTS

ADDRESSES - 6 - 8255s
(18 PORTS - 1 4 4 BITS)

Figure 3-12. Memory Mapped I/O — (Linear Select (8255)

I/O Interface Example
In Figure 3-16 a typical I/O system is shown that uses a

variety of devices (8212, 8251 and 8255). It could be used
to interface the peripherals around an intelligent C R T termi
nals; keyboards, display, and communication interface. An
other application could be in a process controller to interface
sensors, relays, and motor controls. The limitation of the ap
plication area for such a circuit is solely that of the designers
imagination.

The I/O structure shown interfaces to the 8080 CPU
using the bus architecture developed previously in this chap
ter. Either Isolated or Memory Mapped techniques can be
used, depending on the system I/O environment.

The 8251 provides a serial data communication inter
face so that the system can transmit and receive data over
communication links such as telephone lines.Figure 3-11. Isolated I/O — (Linear Select) (8255)

0 0 A 4

L C/D CONTROL

8251 SELECT
(ACTIVE LOW)

0 - DATA
1 - COMMAND

Figure 3-13. 8251 Format.

The two (2) 8255s provide twenty four bits each of
programmable I/O data and control so that keyboards, sen
sors, paper tape, etc., can be interfaced to the system.

The three 8212s can be used to drive long lines or LED
indicators due to their high drive capability. (15mA)

A? Ag A5 1 1

8212 #1 SELECT
(ACTIVE HIGH)

8212 #2 SELEC T
(ACTIVE HIGH)
8212 #3 SELECT
(ACTIVE HIGH)

Figure 3-15. 8212 Format.

<”ooo

A2 Ai j Aq j

L 1
PORT SELECT

8255 #1 SELECT
(ACTIVE LOW)

8255 #2 SELECT
(ACTIVE LOW)

00 - PORT A
01 - PORT B
1 0 - PORT C
11 - COMMAND

Addressing the structure is described in the formats il
lustrated in Figures 3-13, 3-14, 3-15. Linear Select is used so
that no decoders are required thus, each device has an ex
clusive “ enable b it".

The example shows how a powerful yet flexible I/O
structure can be created using a minimum component count
with devices that are all members of the 8080 Microcomputer
System.

Figure 3-14. 8255 Format.

Figure 3-16. Typical I/O Interface.

A computer, no matter how sophisticated, can only
do what it is "to ld " to do. One "te lls" the computer what
to do via a series of coded instructions referred to as a Pro
gram. The realm of the programmer is referred to as Soft
ware, in contrast to the Hardware that comprises the actual
computer equipment. A computer's software refers to all of
the programs that have been written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit (CPU) with the ability to per
form a particular set of operations. The CPU is designed
such that a specific operation is performed when the CPU
control logic decodes a particular instruction. Consequently,
the operations that can be performed by a CPU define the
computer's Instruction Set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All com
puters implement certain arithmetic operations in their in
struction set, such as an instruction to add the contents of
two registers. Often logical operations (e.g., OR the con
tents of two registers) and register operate instructions (e.g.,
increment a register) are included in the instruction set. A
computer's instruction set will also have instructions that
move data between registers, between a register and memory,
and between a register and an I/O device. Most instruction
sets also provide Conditional Instructions. A conditional
instruction specifies an operation to be performed only if
certain conditions have been met; for example, jump to a
particular instruction if the result of the last operation was
zero. Conditional instructions provide a program with a
decision-making capability.

By logically organizing a sequence of instructions into
a coherent program, the programmer can "te ll" the com
puter to perform a very specific and useful function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (i.e., a series
of 1's and 0's), that is called Machine Code. Because it
would be extremely cumbersome to program in machine
code, programming languages have been developed. There

are programs available which convert the programming lan
guage instructions into machine code that can be inter
preted by the processor.

One type of programming language is Assembly Lan
guage. A unique assembly language mnemonic is assigned to
each of the computer's instructions. The programmer can
write a program (called the Source Program) using these
mnemonics and certain operands; the source program is
then converted into machine instructions (called the Object
Code). Each assembly language instruction is converted into
one machine code instruction (1 or more bytes) by an
Assembler program. Assembly languages are usually ma
chine dependent (i.e., they are usually able to run on only
one type of computer).

THE 8080 INSTRUCTION SET
The 8080 instruction set includes five different types

of instructions:
• Data Transfer Group—move data between registers

or between memory and registers
• Arithmetic Group — add, subtract, increment or

decrement data in registers or in memory
• Logical Group - AND, O R , EXC LU S IV E-O R ,

compare, rotate or complement data in registers
or in memory

• Branch Group — conditional and unconditional
jump instructions, subroutine call instructions and
return instructions

• Stack, I/O and Machine Control Group — includes
I/O instructions, as well as instructions for main
taining the stack and internal control flags.

Instruction and Data Formats:
Memory for the 8080 is organized into 8-bit quanti

ties, called Bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in memory.

The 8080 can directly address up to 65,536 bytes of mem
ory, which may consist of both read-only memory (ROM)
elements and random-access memory (RAM) elements (read/
write memory).

Data in the 8080 is stored in the form of 8-bit binary
integers:

D A TA WORD

D7 ‘ D6 ' D5 ' D4 1 D3 ' D2 1 D ! ' do
MSB LSB

When a register or data word contains a binary num
ber, it is necessary to establish the order in which the bits
of the number are written. In the Intel 8080, B IT 0 is re
ferred to as the Least Significant Bit (LSB), and B IT 7 (of
an 8 bit number) is referred to as the Most Significant Bit
(MSB).

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instructions.
The exact instruction format will depend on the particular
operation to be executed.

Single Byte Instructions

Byte One

Byte Two

Byte One

Byte Two

Byte Three

D7 i i i i r - 1 D0

Two-Byte Instructions

d 7 i i i i i D0

d 7 ‘ i i i i i Do

Three-Byte Instructions

D7 i i i i i Do

d 7 ‘ i i i i i ' D0

d 7 ’ i i i i ' D0

Op Code

Op Code

Data or
Address

Op Code

(Data
or

Address

Addressing Modes:
Often the data that is to be operated on is stored in

memory. When multi-byte numeric data is used, the data,
like instructions, is stored in successive memory locations,
with the least significant byte first, followed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers:

• Direct —Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item (the low-order bits of the address are
in byte 2, the high-order bits in byte 3).

• Register — The instruction specifies the register or
register-pair in which the data is located.

• Register Indirect — The instruction specifies a reg
ister-pair which contains the memory

address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

• Immediate — The instruction contains the data it
self. This is either an 8-bit quantity or a
16-bit quantity (least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecu
tively increasing memory locations. A branch instruction
can specify the address of the next instruction to be exe
cuted in one of two ways:

• D irect—The branch instruction contains the ad
dress of the next instruction to be exe
cuted. (Except for the 'R S T ' instruction,
byte 2 contains the low-order address and
byte 3 the high-order address.)

• Register indirect — The branch instruction indi
cates a register-pair which contains the
address of the next instruction to be exe
cuted. (The high-order bits of the address
are in the first register of the pair, the
low-order bits in the second.)

The RST instruction is a special one-byte call instruc
tion (usually used during interrupt sequences). RST in
cludes a three-bit field; program control is transferred to
the instruction whose address is eight times the contents
of this three-bit field.

Condition Flags:
There are five condition flags associated with the exe

cution of instructions on the 8080. They are Zero, Sign,
Parity, Carry, and Auxiliary Carry, and are each represented
by a 1-bit register in the CPU. A flag is "set" by forcing the
bit to 1; "reset" by forcing the bit to 0 .

Unless indicated otherwise, when an instruction af
fects a flag, it affects it in the following manner:

Zero: If the result of an instruction has the
value 0, this flag is set; otherwise it is
reset.

Sign: If the most significant bit of the result of
the operation has the value 1, this flag is
set; otherwise it is reset.

Parity: If the modulo 2 sum of the bits of the re
sult of the operation is 0 , (i.e., if the
result has even parity), this flag is set;
otherwise it is reset (i.e., if the result has
odd parity).

Carry: If the instruction resulted in a carry
(from addition), or a borrow (from sub
traction or a comparison) out of the high-
order bit, this flag is set; otherwise it is
reset.

Auxiliary Carry: If the instruction caused a carry out
of bit 3 and into bit 4 of the resulting
value, the auxiliary carry is set; otherwise
it is reset. This flag is affected by single
precision additions, subtractions, incre
ments, decrements, comparisons, and log
ical operations, but is principally used
with additions and increments preceding
a DAA (Decimal Adjust Accumulator)
instruction.

Symbols and Abbreviations:
The following symbols and abbreviations are used in

the subsequent description of the 8080 instructions:
SYMBOLS MEANING
accumulator Register A
addr 16-bit address quantity
data 8-bit data quantity
data 16 16-bit data quantity
byte 2 The second byte of the instruction
byte 3 The third byte of the instruction
port 8-bit address of an I/O device
r,r1,r2 One of the registers A ,B ,C ,D ,E ,H ,L
DDD,SSS The bit pattern designating one of the regis

ters A ,B ,C ,D ,E ,H ,L (DDD=destination, SSS=
source):

rp

RP

DDD or SSS REG ISTER NAME
111 A
000 B
001 C
010 D
011 E
100 H
101 L

One of the register pairs:
B represents the B,C pair with B as the high-
order register and C as the low-order register;
D represents the D ,E pair with D as the high-
order register and E as the low-order register;
H represents the H ,L pair with H as the high-
order register and L as the low-order register;
SP represents the 16-bit stack pointer
register.
The bit pattern designating one of the regis
ter pairs B ,D ,H ,SP :

RP REGISTER PAIR
00 B-C
01 D-E
10 H-L
11 SP

rh The first (high-order) register of a designated
register pair.

rl The second (low-order) register of a desig
nated register pair.

PC 16-bit program counter register (PCH and
PCL are used to refer to the high-order and
low-order 8 bits respectively).

SP 16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and low-
order 8 bits respectively).

rm Bit m of the register r (bits are number 7
through 0 from left to right).

Z ,S ,P ,C Y ,A C The condition flags:
Zero,
Sign,
Parity,
Carry,
and Auxiliary Carry, respectively.

() The contents of the memory location or reg
isters enclosed in the parentheses.

— “ Is transferred to"
A Logical AND
V Exclusive OR
V Inclusive OR
+ Addition
— Two's complement subtraction
* Multiplication

"Is exchanged w ith"
~ The one's complement (e.g., (A))
n The restart number 0 through 7
NNN The binary representation 000 through 111

for restart number 0 through 7 respectively.

Description Format:
The following pages provide a detailed description of

the instruction set of the 8080. Each instruction is de
scribed in the following manner:

1. The MAC 80 assembler format, consisting of
the instruction mnemonic and operand fields, is
printed in BO LD FA C E on the left side of the first
line.

2. The name of the instruction is enclosed in paren
thesis on the right side of the first line.

3. The next line(s) contain a symbolic description
of the operation of the instruction.

4. This is followed by a narative description of the
operation of the instruction.

5. The following line(s) contain the binary fields and
patterns that comprise the machine instruction.

6. The last four lines contain incidental information
about the execution of the instruction. The num
ber of machine cycles and states required to exe
cute the instruction are listed first. If the instruc
tion has two possible execution times, as in a
Conditional Jump, both times will be listed, sep
arated by a slash. Next, any significant data ad
dressing modes (see Page 4-2) are listed. The last
line lists any of the five Flags that are affected by
the execution of the instruction.

Data Transfer Group:
This group of instructions transfers data to and from

registers and memory. Condition flags are not affected by
any instruction in this group.

MVI r, data (Move Immediate)
(r) — (byte 2)
The content of byte 2 of the instruction is moved to
register r.

0 1 0 D 1 D 1 D

data

Cycles:
States:

Addressing:
Flags:

2
7
immediate
none

MOV r l , r2 (Move Register)
(r l) ^ — (r2)
The content of register r2 is moved to register r1.

Cycles: 1
States: 5

Addressing: register
Flags: none

MOV r, M (Move from memory)
(r) ((H) (L))
The content of the memory location, whose address
is in registers H and L , is moved to register r.

o 1 1 D 1 D 1 D 1 1 1 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

MOV M, r (Move to memory)
((H) (L)) (r)
The content of register r is moved to the memory lo
cation whose address is in registers H and L.

0 1“ 7 1 1 ' 1 1 0 s * s 1 s

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

MVI M, data (Move to memory immediate)
((H) (L)) — (byte 2)
The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H
and L.

0 * o ' 1 ' 1 ' 0 1 1 I 1 0
data

Cycles:
States:

Addressing:
Flags:

3
10
immed./reg. indirect
none

LXI rp, data 16 (Load register pair immediate)
(rh) -4— (byte 3),
(rl) (byte 2)
Byte 3 of the instruction is moved into the high-order
register (rh) of the register pair rp. Byte 2 of the in
struction is moved into the low-order register (rl) of
the register pair rp.

Cycles: 3
States: 10

Addressing: immediate
Flags: none

LD A addr (Load Accumulator direct)
(A) — ((byte 3)(byte 2))
The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register A .

Cycles: 4
States: 13

Addressing: direct
Flags: none

SHLD addr (Store H and L direct)
((byte 3)(byte 2)) (L)
((byte 3)(byte 2) + 1) (H)
The content of register L is moved to the memory lo
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed
ing memory location.

Cycles: 5
States: 16

Addressing: direct
Flags: none

STA addr (Store Accumulator direct)
((byte 3)(byte 2)) ◄— (A)
The content of the accumulator is moved to the
memory location whose address is specified in byte
2 and byte 3 of the instruction.

LD A X rp (Load accumulator indirect)
(A) ((rp))
The content of the memory location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp=B (registers B and C) or rp=D
(registers D and E) may be specified.

Cycles:
States:

Addressing:
Flags:

2
7
reg. indirect
none

Cycles: 4
States: 13

Addressing: direct
Flags: none

LHLD addr (Load H and L direct)
(L) ◄— ((byte 3)(byte 2))
(H) ◄— ((byte 3)(byte 2) + 1)
The content of the memory location, whose address
is specified in byte 2 and byte 3 of the instruction, is
moved to register L . The content of the memory loca
tion at the succeeding address is moved to register H.

0 ' 1 ' 0 0 * 1 * 0
low-order addr

high-order addr

STA X rp (Store accumulator indirect)
((rp)) — (A)
The content of register A is moved to the memory lo
cation whose address is in the register pair rp. Note:
only register pairs rp=B (registers B and C) or rp=D
(registers D and E) may be specified.

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

XCHG (Exchange H and L with D and E)
(H)^ - M D)
(L) - h- M E)
The contents of registers H and L are exchanged with
the contents of registers D and E.

1 I 1 I 1 I 0 I 1 I 0 I 1 1 1

Cycles: 5
States: 16

Addressing: direct
Flags: none

Cycles: 1
States: 4

Addressing: register
Flags: none

Arithmetic Group:

This group of instructions performs arithmetic oper
ations on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Carry, and Auxilia ry
Carry flags according to the standard rules.

All -subtraction operations are performed via two's
complement arithmetic and set the carry flag to one to in
dicate a borrow and clear it to indicate no borrow.

ADC r (Add Register with carry)
(A) (A) + (r) + (CY)
The content of register r and the content of the carry
bit are added to the content of the accumulator. The
result is placed in the accumulator.

Cycles:
States:

Addressing:
Flags:

1
4
register
Z ,S ,P ,CY ,A C

ADD r (Add Register)
(A) (A) + (r)
The content of register r is added to the content of the
accumulator. The result is placed in the accumulator.

Cycles:
States:

Addressing:
Flags:

1
4
register
Z ,S ,P ,CY ,A C

ADC M (Add memory with carry)
(A) (A) + ((H) (L)) + (CY)
The content of the memory location whose address is
contained in the H and L registers and the content of
the CY flag are added to the accumulator. The result
is placed in the accumulator.

1 1 0 1 0 1 0 * 1 T 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z ,S ,P ,C Y ,A C

ADD M (Add memory)
(A) (A) + ((H) (L))
The content of the memory location whose address
is contained in the H and L registers is added to the
content of the accumulator. The result is placed in
the accumulator.

0 1 OO 0 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z ,S ,P ,C Y ,A C

ADI data (Add immediate)
(A) (A) + (byte 2)
The content of the second byte of the instruction is
added to the content of the accumulator. The result
is placed in the accumulator.

P i I o I o ̂ o ̂ i l i ̂ o
data

ACI data (Add immediate with carry)
(A) (A) + (byte 2) + (CY)
The content of the second byte of the instruction and
the content of the C Y flag are added to the contents
of the accumulator. The result is placed in the
accumulator.

i""l i o T l_i i i *~"o
data

Cycles:
States:

Addressing:
Flags:

2
7
immediate
Z ,S ,P ,C Y ,A C

SUB r (Subtract Register)
(A) (A) - (r)
The content of register r is subtracted from the con
tent of the accumulator. The result is placed in the
accumulator.

Cycles: 2
States: 7

Addressing: immediate
Flags: Z ,S ,P ,CY ,A C

Cycles: 1
States: 4

Addressing: register
Flags: Z fS ,P ,CY ,A C

SUB M (Subtract memory)
(A) -*— (A) - ((H) (L))
The content of the memory location whose address is
contained in the H and L registers is subtracted from
the content of the accumulator. The result is placed
in the accumulator.

1 1 0 1 0 r 1 r 0 ' r v 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z ,S ,P ,C Y ,A C

SUI data (Subtract immediate)
(A) (A) - (byte 2)
The content of the second byte of the instruction is
subtracted from the content of the accumulator. The
result is placed in the accumulator.

i I i r~o T-] o n T~]
data

Cycles:
States:

Addressing:
Flags:

2
7
immediate
Z ,S ,P ,C Y ,A C

SBI data (Subtract immediate with borrow)
(A) (A) - (byte 2) - (CY)
The contents of the second byte of the instruction
and the contents of the C Y flag are both subtracted
from the accumulator. The result is placed in the
accumulator.

data

Cycles:
States:

Addressing:
Flags:

2
7
immediate
Z ,S ,P fCY ,A C

INR r (Increment Register)
(r) (r) + 1
The content of register r is incremented by one.
Note: A ll condition flags except CY are affected.

Cycles: 1
States: 5

Addressing: register
Flags: Z ,S,P ,AC

SBB r (Subtract Register with borrow)
(A) (A) - (r) - (CY)
The content of register r and the content of the CY
flag are both subtracted from the accumulator. The
result is placed in the accumulator.

1 1 0 1 0 1 1 1 1 S 1 S 1 S

Cycles: 1
States: 4

Addressing: register
Flags: Z ,S ,P ,C Y ,A C

INR M (Increment memory)
((H) (D) ((H) (L)) + 1
The content of the memory location whose address
is contained in the H and L registers is incremented
by one. Note: A ll condition flags except CY are
affected.

0 T V r T - T ~ r 1 0 n r 1 0 1 0
Cycles:
States:

Addressing:
Flags:

3
10
reg. indirect
Z ,S ,P ,AC

SBB M (Subtract memory with borrow)
(A) — (A) - ((H) (U) — (CY)
The content of the memory location whose address is
contained in the H and L registers and the content of

DCR r (Decrement Register)
(r) (r) - 1

the C Y flag are both subtracted from the accumula
tor. The result is placed in the accumulator.

The content of register r is decremented by one
Note: A ll condition flags except CY are affected.

1 ' 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 D 1 D 1 D 1 1 1 0 1 1

Cycles: 2 Cycles: 1
States: 7 States: 5

Addressing: reg. indirect Addressing: register
Flags: Z ,S ,P fC Y ,A C Flags: Z ,S ,P ,AC

DCR M (Decrement memory)
((H) (L)) - h- ((H) (L)) — 1
The content of the memory location whose address is
contained in the H and L registers is decremented by
one. Note: All condition flags except CY are affected.

0 I 0 I 1 I 1 1 0 n r 1 0 T "

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: Z ,S ,P fAC

DAA (Decimal Adjust Accumulator)
The eight-bit number in the accumulator is adjusted
to form two four-bit Binary-Coded-Decimal digits by
the following process:
1. If the value of the least significant 4 bits of the

accumulator is greater than 9 or if the AC flag
is set, 6 is added to the accumulator.

2. If the value of the most significant 4 bits of the
accumulator is now greater than 9, or if the C Y
flag is set, 6 is added to the most significant 4
bits of the accumulator.

NOTE: All flags are affected.

INX rp (Increment register pair)
(rh) (rl) (rh) (rl) + 1
The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

0 1 0 R 1 P 0 1 0 1 1 * 1

Cycles: 1
States: 5

Addressing: register
Flags: none

DCX rp (Decrement register pair)
(rh) (rl) (rh) (rl) - 1
The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

o I 0 R 1 P 1 1 0 1 1 1 1

Cycles: 1
States: 5

Addressing: register
Flags: none

0 1 0 1 1 I 0 I n r n r

Cycles: 1
States: 4
Flags: Z ,S ,P ,C Y ,A C

Logical Group:
This group of instructions performs logical (Boolean)

operations on data in registers and memory and on condi
tion flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANA r (AND Register)
(A) (A)A (r)
The content of register r is logically anded with the
content of the accumulator. The result is placed in
the accumulator. The CY flag is cleared.

Cycles:
States:

Addressing:
Flags:

1
4
register
Z ,S ,P ,C Y ,A C

DAD rp (Add register pair to H and L)
(H) (L) (H) (L) + (rh) (rl)
The content of the register pair rp is added to the
content of the register pair H and L. The result is
placed in the register pair H and L. Note: Only the
CY flag is affected. It is set if there is a carry out of
the double precision add; otherwise it is reset.

0 11 0 R 1 P 0 ' 1

Cycles: 3
States: 10

Addressing: register
Flags: C Y

ANA M (AND memory)
(A) (A) A ((H) (L))
The contents of the memory location whose address
is contained in the H and L registers is logically anded
with the content of the accumulator. The result is
placed in the accumulator. The C Y flag is cleared.

1 I 0 I 1 I 0 I 0 r - r r 1 * 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z ,S ,P ,CY ,A C

ANI data (AND immediate)
(A)-*— (A) A (byte 2)
The content of the second byte of the instruction is
logically anded with the contents of the accumulator.
The result is placed in the accumulator. The C Y and
AC flags are cleared.

Cycles:
States:

Addressing:
Flags:

2
7
immediate
Z ,S#P ,C Y ,A C

XRA r (Exclusive OR Register)
(A) (A) V (r)
The content of register r is exclusive-or'd with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1 0 1 1 0 T 1 s s s

Cycles: 1
States: 4

Addressing: register
Flags: Z ,S ,P ,C Y ,A C

ORA r (OR Register)
(A) (A) V (r)
The content of register r is inclusive-OR'd with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1 I 0 II 1 I 1 I 0 S * s 1 s

Cycles: 1
States: 4

Addressing: register
Flags: Z ,S ,P ,C Y ,A C

ORA M (OR memory)
(A) -H - (A) V ((H) (L))
The content of the memory location whose address is
contained in the H and L registers is inclusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are
cleared.

1 i o i 1 n i 0 1 1 1 1 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z ,S ,P ,C Y ,A C

XRA M (Exclusive OR Memory)
(A) (A) V ((H) (L))
The content of the memory location whose address
is contained in the H and L registers is exclusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are
cleared.

1 I 0 II 1 I 0 1 1 i1 1 1 1 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z ,S ,P ,C Y ,A C

OR I data (OR Immediate)
(A) (A) V (byte 2)
The content of the second byte of the instruction is
inclusive-OR'd with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

i~ l i * i * i ~̂ n I o
data

Cycles: 2
States: 7

Addressing: immediate
Flags: Z ,S ,P ,C Y ,A C

XRI data (Exclusive OR immediate)
(A) — (A) V (byte 2)
The content of the second byte of the instruction is
exclusive-0 R'd with the content of the accumulator.
The result is placed in the accumulator. The CY and
AC flags are cleared.

i f i I- i T~o H I- 1
data

Cycles: 2
States: 7

Addressing: immediate
Flags: Z ,S ,P ,C Y ,A C

CMP r (Compare Register)
(A) - (r)
The content of register r is subtracted from the ac
cumulator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction.
The Z flag is set to 1 if (A) = (r). The CY flag is set to
1 if (A) < (r).

1 T - I 1 1 1 1 1 s * s *1 s

Cycles: 1
States: 4

Addressing: register
Flags: Z ,S fP,CY,AC

CMP M (Compare memory)
(A) - ((H) (L))
The content of the memory location whose address
is contained in the H and L registers is subtracted
from the accumulator. The accumulator remains un
changed. The condition flags are set as a result of the
subtraction. The Z flag is set to 1 if (A) = ((H) (L)) .
The C Y flag is set to 1 if (A) < ((H) (L)) .

1 1 0 1 1 1 , 1 1 1 1 1 1 T
Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z ,S ,P ,C Y ,A C

CPI data (Compare immediate)
(A) - (byte 2)
The content of the second byte of the instruction is
subtracted from the accumulator. The condition flags
are set by the result of the subtraction. The Z flag is
set to 1 if (A) = (byte 2). The CY flag is set to 1 if
(A) < (byte 2).

RRC (Rotate right)
(A n) ^— (A n-1) ; (A 7) — (A q)
(CY) (A 0)
The content of the accumulator is rotated right one
position. The high order bit and the C Y flag are both
set to the value shifted out of the low order bit posi
tion. Only the CY flag is affected.

0 1 0 11 0 1 0 1 1 1 1 1 1 1 1

Cycles: 1
States: 4
Flags: C Y

R A L (Rotate left through carry)
(A n+1) — (A n) ; (CY) — (A 7)
(A q) (CY)
The content of the accumulator is rotated left one
position through the C Y flag. The low order bit is set
equal to the C Y flag and the C Y flag is set to the
value shifted out of the high order bit. Only the CY
flag is affected.

0 1 0 11 0 1 1 1 0 1 1 1 1 1 1

Cycles: 1
States: 4
Flags: C Y

1 i 1 * 1 i 1 1 1 i 1 1 1 ' 0
data

Cycles:
States:

Addressing:
Flags:

2
7
immediate
Z fS fP#C Y ,A C

R LC (Rotate left)
(An+1) (A n) ; (A 0) (A 7)
(CY) — (A 7)
The content of the accumulator is rotated left one
position. The low order bit and the C Y flag are both
set to the value shifted out of the high order bit posi
tion. Only the C Y flag is affected.

RA R (Rotate right through carry)
(A n) (A n+ i) ; <C Y > — (A 0)
(A 7) (CY)
The content of the accumulator is rotated right one
position through the C Y flag. The high order bit is set
to the C Y flag and the C Y flag is set to the value
shifted out of the low order bit. Only the C Y flag is
affected.

0 1 0 1 0 1 1 1 1 1 1

Cycles: 1
States: 4
Flags: C Y

CMA (Complement accumulator)
(A) (A)
The contents of the accumulator are complemented-
(zero bits become 1f one bits become 0). No flags are
affected.

Cycles: 1
States: 4
Flags: CY

Cycles: 1
States: 4
Flags: none

CMC (Complement carry)
(CY) (CY)
The CY flag is complemented. No other flags are
affected.

0 I 0 I 1 1 1 I' 1

Cycles: 1
States: 4
Flags: CY

STC (Set carry)
(CY) 1
The C Y flag is set to 1. No other flags are affected.

0 I 0 ' 1 I 1 I 0

Cycles: 1
States: 4
Flags: CY

dress is specified in byte 3 and byte 2 of the current
instruction.

~o 0 * 0T ^ T T 0 1 1

low-order addr
high-order addr

Cycles:
States:

Addressing:
Flags:

3
10
immediate
none

Jcondition addr (Conditional jump)
If (CCC),

(PC) (byte 3) (byte 2)
If the specified condition is true, control is trans
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction; other
wise, control continues sequentially.

low-order addr

high-order addr

Branch Group:

This group of instructions alter normal sequential
program flow.

Condition flags are not affected by any instruction
in this group.

The two types of branch instructions are uncondi
tional and conditional. Unconditional transfers simply per
form the specified operation on register PC (the program
counter). Conditional transfers examine the status of one of
the four processor flags to determine if the specified branch
is to be executed. The conditions that may be specified are
as follows:

CONDITION ccc
NZ — not zero (Z = 0) 000

Z — zero (Z = 1) 001
NC — no carry (C Y = 0) 010

C — carry (C Y = 1) 011
PO — parity odd (P = 0) 100
PE — parity even (P = 1) 101

P — plus (S = 0) 110
M — minus (S = 1) 111

JMP addr (Jump)
(PC) (byte 3) (byte 2)
Control is transferred to the instruction whose ad-

Cycles:
States:

Addressing:
Flags:

3
10
immediate
none

CA LL addr (Call)
((SP) — 1) (PCH)
((SP) - 2) (PCL)
(SP) (SP) - 2
(PC) (byte 3) (byte 2)

The high-order eight bits of the next instruction ad
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2. Con
trol is transferred to the instruction whose address is
specified in byte 3 and byte 2 of the current
instruction.

Cycles:
States:

Addressing:
Flags:

5
17 \
immediate/reg. indirect
none

Ccondition addr (Condition call)
If (CCC),

((SP) - 1) (PCH)
«SP) — 2) -«— (PCL)
(SP) — (SP) - 2
(PC) (byte 3) (byte 2)

If the specified condition is true, the actions specified
in the C A L L instruction (see above) are performed;
otherwise, control continues sequentially.

T"TT

low-order addr

high-order addr

RST n (Restart)
((SP) — 1) — (PCH)
((SP) — 2) (PCL)
(SP) (SP) - 2
(PC) 8 * (NNN)

The high-order eight bits of the next instruction ad
dress are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction ad
dress are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose ad
dress is eight times the content of NNN.

Cycles: 3/5
States: 11/17

Addressing: immediate/reg. indirect
Flags: none

RET (Return)
(PCL) — ((SP))7
(PCH) ((SP) + 1);
(SP) (SP) + 2;

The content of the memory location whose address
is specified in register SP is moved to the low-order
eight bits of register PC. The content of the memory
location whose address is one more than the content
of register SP is moved to the high-order eight bits of
register PC. The content of register SP is incremented
by 2.

1 I 0 ' 0 n r H P n r

Cycles:
States:

Addressing:
Flags:

3
10
reg. indirect
none

Rcondition (Conditional return)
If (CCC),

(PCL) ((SP))
(PCH) ((SP) + 1)
(SP) (SP) + 2

If the specified condition is true, the actions specified
in the R ET instruction (see above) are performed;
otherwise, control continues sequentially.

1 I 1 N 1 N 1 N 1 I 1 1 1

Cycles: 3
States: 11

Addressing: reg. indirect
Flags: none

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 N N N 0 0 0

Program Counter After Restart

PCHL (Jump H and L indirect — move H and L to PC)
(PCH) (H)
(PCL) (L)
The content of register H is moved to the high-order
eight bits of register PC. The content of register L is
moved to the low-order eight bits of register PC.

0 ' 0

Cycles: 1
States: 5

Addressing: register
Flags: none

Cycles: 1/3
States: 5/11

Addressing: reg. indirect
Flags: none

Stack, I/O, and Machine Control Group: FLA G WORD

This group of instructions performs I/O, manipulates
the Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not
affected by any instructions in this group.

PUSH rp (Push)
«SP) — 1) (rh)
((SP) - 2) (rl)
(SP) (SP) - 2

The content of the high-order register of register pair
rp is moved to the memory location whose address is
one less than the content of register SP. The content
of the low-order register of register pair rp is moved
to the memory location whose address is two less
than the content of register SP. The content of reg
ister SP is decremented by 2. Note: Register pair
rp = SP may not be specified.

1 1 1 R 1 P 0 1 1 * 0 * 1

Cycles: 3
States: 11

Addressing: reg. indirect
Flags: none

PUSH PSW (Push processor status word)
((SP) — 1) — (A)
((SP) - 2)0 (CY) , ((SP) - 2) ! ^ - 1
((SP) - 2)2 (P) , ((SP) - 2)3 0
((SP) - 2)4 -H - (AC) , ((SP) - 2)5 0
((SP) — 2)6 (Z) , ((SP) — 2)7 -i— (S)
(SP) (SP) - 2

The content of register A is moved to the memory
location whose address is one less than register SP.
The contents of the condition flags are assembled
into a processor status word and the word is moved
to the memory location whose address is two less
than the content of register SP. The content of reg
ister SP is decremented by two.

1 i 1 i i i 1 i o I 1 r r
Cycles: 3
States: 11

Addressing: reg. indirect
Flags: none

D 7 d 6 d 5 d 4 D 3 d 2 D i D 0

s z 0 AC 0 p 1 C Y

POP rp (Pop)
(rl) ((SP))
(rh) ((SP) + 1)
(SP) (SP) + 2
The content of the memory location, whose address
is specified by the content of register SP, is moved to
the low-order register of register pair rp. The content
of the memory location, whose address is one more
than the content of register SP, is moved to the high-
order register of register pair rp. The content of reg
ister SP is incremented by 2. Note: Register pair
rp = SP may not be specified.

1 1 1 R 1 P ooo

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: none

POP PSW (Pop processor status word)
(CY) ((SP))0
(P) ((SP))2
(AC) ((SP))4
(Z) ((SP))6
(S) ((S P))7
(A) — ((SP) + 1)
(SP) — (SP) + 2
The content of the memory location whose address
is specified by the content of register SP is used to
restore the condition flags. The content of the mem
ory location whose address is one more than the
content of register SP is moved to register A . The
content of register SP is incremented by 2 .

1 II 1 i . i , i ooo

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: Z ,S ,P ,C Y ,A C

X T H L (Exchange stack top with H and L)
(L) ^ ((SP))
(H) ^ ((SP) + 1)
The content of the L register is exchanged with the
content of the memory location whose address is
specified by the content of register SP. The content
of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP.

El (Enable interrupts)
The interrupt system is enabled following the execu
tion of the next instruction.

T ~ i ~ ~ p 1 1 1 ' 1 1 0 1 1 I 1

Cycles: 1
States: 4
Flags: none

1 1 1 0 1 0 v ~o~r —

Cycles:
States:

Addressing:
Flags:

5
18
reg. indirect

Dl (Disable interrupts)
The interrupt system is disabled immediately fol
lowing the execution of the Dl instruction.

n o n e |1 II r ~ i r ~ — 1------- l-------1 1i 1 l1 1 1 1 1 0 1 0 1 1 1 1

SPHL (Move HL to SP)
(SP) — (H) (L)
The contents of registers H and L (16 bits) are moved
to register SP.

Cycles: 1
States: 5

Addressing: register
Flags: none

Cycles: 1
States: 4
Flags: none

H LT (Halt)
The processor is stopped. The registers and flags are
unaffected.

0 1 1 i 1 I 1 I 0 n r n r 1 0

Cycles: 1
IN port (Input) States: 7

(A) -*— (data) Flags: none
The data placed on the eight bit bi-directional data
bus by the specified port is moved to register A.

i- I i 1 o 1 i r~o I i
port

Cycles: 3
States: 10

Addressing: direct
Flags: none

NOP (No op)
No operation is performed. The registers and flags
are unaffected.

0 I o I 0 I 0 I 0 I

Cycles: 1
States: 4
Flags: none

OUT port (Output)
(data) — (A)
The content of register A is placed on the eight bit
bi-directional data bus for transmission to the spec
ified port.

i I i T"o I- i r~o T~o
port

Cycles: 3
States: 10

Addressing: direct
Flags: none

INSTRUCTION SET

Summary of Processor Instructions

Instruction Code HI Clock [21
Mnemonic Description D7 06 °5 °4 03 o2 Di D o Cycles

M0Vr1. r2 Move register to register 0 1 D D D S s s 5
MOV M, r Move register to memory 0 1 1 1 0 s s s 7
MOV r, M Move memory to register 0 1 D D D 1 1 0 7
HLT Halt 0 1 1 1 0 1 1 0 7
MVI r Move immediate register 0 0 D D D 1 1 0 7
MVI M Move immediate memory 0 0 1 1 0 1 1 0 10
INR r Increment register 0 0 D D D 1 0 0 5
OCR r Decrement register 0 0 D D D 1 0 1 5
INR M Increment memory 0 0 1 1 0 1 0 0 10
DCR M Decrement memory 0 0 1 1 0 1 0 1 10
ADD r Add register to A 1 0 0 0 0 s s s 4
ADC r Add register to A with carry 1 0 0 0 1 s s s 4
SUB r Subtract register from A 1 0 0 1 0 s s s 4
SBBr Subtract register from A

with borrow
1 0 0 1 1 s s s 4

ANAr And register with A 1 0 1 0 0 s s s 4
XRAr Exclusive Or register with A 1 0 1 0 1 s s s 4
ORAr Or register with A 1 0 1 1 0 s s s 4
CMP r Compare register with A 1 0 1 1 1 s s s 4
AOD M Add memory to A 1 0 0 0 0 1 1 0 7
ADC M Add memory to A with carry 1 0 0 0 1 1 1 0 7
SUB M Subtract memory from A 1 0 0 1 0 1 1 0 7
SBBM Subtract memory from A

with borrow
1 0 0 1 1 1 1 0 7

ANA M And memory with A 1 0 1 0 0 1 1 0 7
XRAM Exclusive Or memory with A 1 0 1 0 1 1 1 0 7
ORAM Or memory with A 1 0 1 1 0 1 1 0 7
CMPM Compare memory with A 1 0 1 1 1 1 1 0 7
ADI Add immediate to A 1 1 0 0 0 1 1 0 7
ACI Add immediate to A with

carry
1 1 0 0 1 1 1 0 7

SUI Subtract immediate from A 1 1 0 1 0 1 1 0 7
SBI Subtract immediate from A

with borrow
1 1 0 1 1 1 1 0 7

ANI And immediate with A 1 1 1 0 0 1 1 0 7
XRI Exclusive Or immediate with 1 1 1 0 1 1 1 0 7

ORI
A
Or immediate with A 1 1 1 1 0 1 1 0 7

CPI Compare immediate with A 1 1 1 1 1 1 1 0 7
RLC Rotate A left 0 0 0 0 0 1 1 1 4
RRC Rotate A right 0 0 0 0 1 1 1 1 4
RAL Rotate A left through carry 0 0 0 1 0 1 1 1 4
RAR Rotate A right through

carry
0 0 0 1 1 1 1 1 4

JMP Jump unconditional 1 1 0 0 0 0 1 1 10
JC Jump on carry 1 1 0 1 1 0 1 0 10
JNC Jump on no carry 1 1 0 1 0 0 1 0 10
JZ Jump on zero 1 1 0 0 1 0 1 0 10
JNZ Jump on no zero 1 1 0 0 0 0 1 0 10
JP Jump on positive 1 1 1 1 0 0 1 0 10
JM Jump on minus 1 1 1 1 1 0 1 0 10
JPE Jump on parity even 1 1 1 0 1 0 1 0 10
JPO Jump on parity odd 1 1 1 0 0 0 1 0 10
CALL Call unconditional 1 1 0 0 1 1 0 1 17
CC Call on carry 1 1 0 1 1 1 0 0 11/17
CNC Call on no carry 1 1 0 1 0 1 0 0 11/17
CZ Call on zero 1 1 0 0 1 1 0 0 11/17
CNZ Call on no zero 1 1 0 0 0 1 0 0 11/17
CP Call on positive 1 1 1 1 0 1 0 0 11/17
CM Call on minus 1 1 1 1 1 1 0 0 11/17
CPE Call on parity even 1 1 1 0 1 1 0 0 11/17
CPO Call on parity odd 1 1 1 0 0 1 0 0 11/17
RET Return 1 1 0 0 1 0 0 1 10
RC Return on carry 1 1 0 1 1 0 0 0 5/11
RNC Return on no carry 1 1 0 1 0 0 0 0 5/11

Instruction Code I1) C locks
Mnemonic Description d7 D6 Db D4 03 d2 Dt Do Cycles

RZ Return on zero 1 1 0 0 1 0 0 0 5/11
RNZ Return on no zero 1 1 0 0 0 0 c 0 5/11
RP Return on positive 1 1 1 1 0 0 0 0 5/11
RM Return on minus 1 1 1 1 1 0 0 0 5/11
RPE Return on parity even 1 1 1 0 1 0 0 0 5/11
RPO Return on parity odd 1 1 1 0 0 0 0 0 5/11
RST Restart 1 1 A A A 1 1 1 11
IN Input 1 1 0 1 1 0 1 1 10
OUT Output 1 1 0 1 0 0 1 1 10
LXI B Load immediate register

Pair B & C
0 0 0 0 0 0 0 1 10

LXI D Load immediate register
Pair D & E

0 0 0 1 0 0 0 1 10

LXI H Load immediate register
Pair H & L

0 0 1 0 0 0 0 1 10

LXI SP Load immediate stack pointer 0 0 1 1 0 0 0 1 10
PUSH B Push register Pair B & C on

stack
1 1 0 0 0 1 0 1 11

PUSH D Push register Pair D & E on
stack

1 1 0 1 0 1 0 1 11

PUSH H Push register Pair H & L on
stack

1 1 1 0 0 1 0 1 11

PUSH PSW Push A and Flags
on stack

1 1 1 1 0 1 0 1 11

POP B Pop register pair B & C off
stack

1 1 0 0 0 0 0 1 10

POP D Pop register pair D & E off
stack

1 1 0 1 0 0 0 1 10

POPH Pop register pair H & L off
stack

1 1 1 0 0 0 0 1 10

POP PSW Pop A and Flags
off stack

1 1 1 1 0 0 0 1 10

STA Store A direct 0 0 1 1 0 0 1 0 13
LDA Load A direct 0 0 1 1 1 0 1 0 13
XCHG Exchange D&E. H& L

Registers
1 1 1 0 1 0 1 1 4

XTHL Exchange top of stack, H & L 1 1 1 0 0 0 1 1 18
SPHL H & L to stack pointer 1 1 1 1 1 0 0 1 5
PCHL H & L to program counter 1 1 1 0 1 0 0 1 5
DAD B Add B & C to H & L 0 0 0 0 1 0 0 1 10
DAD D Add D & E to H & L 0 0 0 1 1 0 0 1 10
DAD H Add H & L to H & L 0 0 1 0 1 0 0 1 10
DAD SP Add stack pointer to H & L 0 0 1 1 1 0 0 1 10
STAX B Store A indirect 0 0 0 0 0 0 1 0 7
STAX D Store A indirect 0 0 0 1 0 0 1 0 7
LDAXB Load A indirect 0 0 0 0 1 0 1 0 7
LDAX D Load A indirect 0 0 0 1 1 0 1 0 7
INX B Increment B & C registers 0 0 0 0 0 0 1 1 5
INX D Increment D& E registers 0 0 0 1 0 0 1 1 5
INX H Increment H & L registers 0 0 1 0 0 0 1 1 5
INX SP Increment stack pointer 0 0 1 1 0 0 1 1 5
DCX B Decrement B & C 0 0 0 0 1 0 1 1 5
DCX D Decrement D& E 0 0 0 1 1 0 1 1 5
DCX H Decrement H & L 0 0 1 0 1 0 1 1 5
DCX SP Decrement stack pointer 0 0 1 1 1 0 1 1 5
CMA Complement A 0 0 1 0 1 1 1 1 4
STC Set carry 0 0 1 1 0 1 1 1 4
CMC Complement carry 0 0 1 1 1 1 1 1 4
DAA Decimal adjust A 0 0 1 0 0 1 1 1 4
SHLD Store H & L direct 0 0 1 0 0 0 1 0 16
LHLD Load H & L direct 0 0 1 0 1 0 1 0 16
El Enable Interrupts 1 1 1 1 1 0 1 1 4
DI Disable interrupt 1 1 1 1 0 0 1 1 4
NOP No-operation 0 0 0 0 0 0 0 0 4

NOTES: 1. DDD or SSS - 000 B - 001 C - 010 D -0 1 1 E - 100 H - 101 L - 110 Memory - 111 A.
2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

