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Section A:   Overview

This section encompasses the following chapters:

■ Introduction chapter on page 12

■ Getting Started chapter on page 17

■ Document Construction chapter on page 18

Document Revision History
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1.   Introduction

PSoC®  is a programmable embedded system controller with an ARM® Cortex®-M0 CPU.PSoC® 4 is a scalable and reconfig-
urable platform architecture for a family of programmable embedded system controllers with an ARM® Cortex®-M0+ CPU. It
combines programmable and reconfigurable analog and digital blocks with flexible automatic routing.

The PSoC 4700S product family, based on this platform, is the industry's first microcontroller with inductive sensing and
capacitive sensing technology in a single chip. The inductive sensing technology (MagSense™) enables sensing of metal
objects and the industry's leading capacitive sensing (CapSense) technology enables sensing of non-metallic objects.

PSoC 4 devices have these characteristics:

■ High-performance, 32-bit single-cycle Cortex-M0+ CPU core

■ High-performance analog system

■ Inductive sensing (MagSense) with superior noise immunity

■ Self and Mutual Capacitive touch sensing (CapSense®)

■ Configurable Timer/Counter/PWM block

■ Configurable communication block with I2C, SPI, and UART operating modes

■ Low-power operating modes – Sleep and Deep-Sleep

This document describes each functional block of the PSoC 4700S device in detail. This information will help designers to
create system-level designs.

1.1 Top Level Architecture

Figure 1-1 shows the major components of the PSoC 4700S architecture.
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Figure 1-1.  PSoC 4700S Family Block Diagram

1.2 Features

The PSoC 4700S family has these major components:

■ 32-bit Cortex-M0+ CPU with single-cycle multiply, deliv-
ering up to 0.9 DMIPS/MHz

■ Up to 32 KB flash and 4 KB SRAM

■ Five center-aligned pulse-width modulator (PWM) with 
complementary, dead-band programmable outputs

■ Two low-power comparators

■ Two serial communication blocks (SCB) that can work 
as SPI, UART, I2C, and local interconnect network (LIN) 
slave serial communication channels

■ A Smart I/O block, which provides the ability to perform 
Boolean functions in the I/O signal path

■ MagSense

■ CapSense

■ Segment LCD direct drive

■ Low-power operating modes: Sleep and Deep-Sleep

■ Programming and debugging system through serial wire 
debug (SWD)

■ Fully supported by PSoC Creator™ IDE tool

1.3 CPU System

1.3.1 Processor

The heart of the PSoC 4 is a 32-bit Cortex-M0+ CPU core
running up to 48 MHz for PSoC 4700S. It is optimized for
low-power operation with extensive clock gating. It uses 16-
bit instructions and executes a subset of the Thumb-2
instruction set. This instruction set enables fully compatible
binary upward migration of the code to higher performance
processors such as Cortex M3 and M4.

The CPU has a hardware multiplier that provides a 32-bit
result in one cycle. 

1.3.2 Interrupt Controller

The CPU subsystem includes a nested vectored interrupt
controller (NVIC) with 16 interrupt inputs and a wakeup
interrupt controller (WIC), which can wake the processor
from Deep-Sleep mode.

Peripherals

CPU Subsystem

System Interconnect (Single Layer AHB)

PSoC 4700S
Architecture

IO
S

S
 G

P
IO

(5
x

 p
or

ts
)

I/O Subsystem

Peripheral Interconnect (MMIO)PCLK

SWD/ TC

NVIC, IRQMUX

Cortex
M0+

48 MHz
FAST MUL

FLASH
32 KB

Read Accelerator

SPCIF

SRAM
4 KB

SRAM Controller

ROM
8 KB

ROM Controller

32-bit

AHB- Lite 

2
x

 S
C

B
-I

2C
/S

P
I/

U
A

R
T

36x GPIOs, LCD
DeepSleep

Active/ Sleep
Power Modes

Digital DFT

Test

Analog DFT

System Resources
Lite

Power

Clock

Reset

Clock Control

IMO

Sleep Control

REFPOR

Reset Control

TestMode Entry

WIC

XRES

WDT
ILO

PWRSYS

5x
 T

C
P

W
M

M
ag

S
en

se
/

C
a

p
S

en
se

W
C

O

2x
 L

P
 C

o
m

pa
ra

to
r

High Speed I/ O Matrix & 2x Programmable I/O



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 14

Introduction

1.4 Memory
The PSoC 4 memory subsystem consists of flash and
SRAM. A supervisory ROM, containing boot and configura-
tion routines, is also present. 

1.4.1 Flash

The PSoC 4 has a flash module, with a flash accelerator
tightly coupled to the CPU, to improve average access times
from the flash block. The flash accelerator delivers
85 percent of single-cycle SRAM access performance on an
average.

1.4.2 SRAM

The PSoC 4 provides SRAM, which is retained in all power
modes of the device.

1.5 System-Wide Resources

1.5.1 Clocking System

The clocking system consists of the internal main oscillator
(IMO) and internal low-speed oscillator (ILO) as internal
clocks and has provision for an external clock and watch
crystal oscillator (WCO).

The IMO with an accuracy of ±2 percent is the primary
source of internal clocking in the device. The default IMO
frequency is 24 MHz and can be adjusted between 24 MHz
and 48 MHz in steps of 4 MHz. Multiple clock derivatives are
generated from the main clock frequency to meet various
application needs.

The ILO is a low-power, less accurate oscillator and is used
as a source for LFCLK, to generate clocks for peripheral
operation in Deep-Sleep mode. Its clock frequency is
40 kHz with ±60 percent accuracy.

An external clock source ranging from 1 MHz to 48 MHz can
be used to generate the clock derivatives for the functional
blocks instead of the IMO. 

The WCO is a 32-kHz watch crystal oscillator. It is used to
dynamically trim the IMO to an accuracy of ±1 percent to
enable precision timing applications.

1.5.2 Power System

The device operates with a single external supply in the
range 1.71 V to 5.5 V. It provides multiple power supply
domains – VDDD to power digital section, and VDDA for noise
isolation of analog section. VDDD and VDDA should be
shorted externally.

The device has two low-power modes – Sleep and Deep-
Sleep – in addition to the default Active mode. In Active
mode, the CPU runs with all the logic powered. In Sleep
mode, the CPU is powered off with all other peripherals

functional. In Deep-Sleep mode, the CPU, SRAM, and high-
speed logic are in retention; the main system clock is OFF
while the low-frequency clock is ON and the low-frequency
peripherals are in operation.

Multiple internal regulators are available in the system to
support power supply schemes in different power modes.

1.5.3 GPIO

Every GPIO has the following characteristics:

■ Eight drive strength modes

■ Individual control of input and output disables

■ Hold mode for latching previous state

■ Selectable slew rates

■ Interrupt generation – edge triggered

In addition, the device has two Smart I/O blocks that pro-
vides the ability to perform Boolean functions on the port I/
Os. The Smart I/O block is available in all device power
modes, including low-power modes.

The pins are organized in a port that is 8-bit wide. A high-
speed I/O matrix is used to multiplex between various sig-
nals that may connect to an I/O pin. Pin locations for fixed-
function peripherals are also fixed.

1.6 Fixed-Function Digital

1.6.1 Timer/Counter/PWM Block
The Timer/Counter/PWM block consists of five 16-bit coun-
ter with user-programmable period length. The TCPWM
block has a capture register, period register, and compare
register. The block supports complementary, dead-band pro-
grammable outputs. It also has a kill input to force outputs to
a predetermined state. Other features of the block include
center-aligned PWM, clock prescaling, pseudo random
PWM, and quadrature decoding.

1.6.2 Serial Communication Blocks

The device has two SCBs. Each SCB can implement a
serial communication interface as I2C, UART, local intercon-
nect network (LIN) slave, or SPI. 

The features of each SCB include:

■ Standard I2C multi-master and slave function

■ Standard SPI master and slave function with Motorola, 
Texas Instruments, and National (MicroWire) mode

■ Standard UART transmitter and receiver function with 
SmartCard reader (ISO7816), IrDA protocol, and LIN

■ Standard LIN slave with LIN v1.3 and LIN v2.1/2.2 spec-
ification compliance

■ EZ function mode support with 32-byte buffer



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 15

Introduction

1.7 Analog System

1.7.1  Low-Power Comparators 
The PSoC 4 has a pair of low-power comparators, which
can operate in all device power modes. This functionality
allows the CPU and other system blocks to be disabled
while retaining the ability to monitor external voltage levels
during low-power modes. Two input voltages can both come
from pins, or one from an internal signal through the AMUX-
BUS.

1.8 Special Function Peripherals

1.8.1 LCD Segment Drive

The PSoC 4 has an LCD controller, which can drive up to
eight commons and every GPIO can be configured to drive
common or segment. It uses full digital methods (digital cor-
relation and PWM) to drive the LCD segments, and does not
require generation of internal LCD voltages.

1.8.2 Inductive Sensing

The MagSense block in the PSoC 4700S device provides
reliable contactless metal-sensing for applications such as
buttons (touch-over-metal), proximity detection and mea-
surement, rotary and linear encoders, spring-based position
detection, and other applications based on detecting posi-
tion or distance of the metal object.

This block can sense small deflections and can work off a
small coin-cell battery enabling battery-powered applica-
tions such as mobile devices and smart watches. Cypress
provides the component that automatically calibrates the
design and compensates for manufacturing variations,
thereby reducing time-to-market, while providing reliable
solutions that Just Works™ in harsh environments.

1.8.3 CapSense

PSoC 4700S devices support fourth generation CapSense,
which has the following features:

■ Self-capacitance and mutual-capacitance-based touch 
sensing

■ Robust CapSense Sigma Delta (CSD) and CapSense 
Crosspoint (CSX) sensing technologies that provide 
best-in class SNR for self-capacitance and mutual-
capacitance-based touch sensing respectively

■ Allows reconfiguring the CapSense block as an 8-bit or 
10-bit ADC and supports ADC input on any GPIO pin

■ Superior SNR with programmable voltage reference 
(VREF)

■ Supports spread spectrum and programmable resis-
tance switches for lower electromagnetic interference 
(EMI)

■ Reduced overhead on CPU during scanning by offload-
ing initialization and configuration process to the 
CapSense sequencer

■ Liquid tolerant CapSense operation using driven shield 
signal

■ Capacitive touch sensing and shielding on all GPIO pins 

1.8.3.1 IDACs and Comparator

The CapSense block has two IDACs and a comparator with
an adjustable reference, which can be used for general pur-
poses, if CapSense is not used. 

1.9 Program and Debug
PSoC 4 devices support programming and debugging fea-
tures of the device via the on-chip SWD interface. The
PSoC Creator IDE provides fully integrated programming
and debugging support. The SWD interface is also fully
compatible with industry standard third-party tools.

1.10 Device Feature Summary
.Table 1-1 shows the PSoC 4700S device summary.

Table 1-1.  PSoC 4700S Device Summary

Feature PSoC 4700S

Maximum CPU Frequency 48 MHz

Flash 32 KB

SRAM 4 KB

GPIOs (max) 36

Smart I/O 2 Ports

MagSense Available

CapSense Available

LCD Driver Available

Timer, Counter, PWM (TCPWM) 5
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Serial Communication Block (SCB) 2

IDAC (part of CapSense) 2

Low-Power Comparator (LPCOMP) 2

Watch Crystal Oscillator (WCO) Available

Power Modes Active, Sleep, and Deep-Sleep

Table 1-1.  PSoC 4700S Device Summary

Feature PSoC 4700S
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2.   Getting Started

2.1 Support

Free support for PSoC®  products is available online at . Resources include training seminars, discussion forums, application
notes, PSoC consultants, CRM technical support email, knowledge base, and application support engineers.

For application assistance, visit www.cypress.com/support/ or call 1-800-541-4736.

2.2 Product Upgrades

Cypress provides scheduled upgrades and version enhancements for PSoC Creator free of charge. Upgrades are available
from your distributor on DVD-ROM; you can also download them directly from www.cypress.com/psoccreator. Critical updates
to system documentation are also provided in the Documentation section.

2.3 Development Kits

The Cypress Online Store contains development kits, C compilers, and the accessories you need to successfully develop
PSoC projects. Visit the Cypress Online Store website at www.cypress.com/cypress-store. Under Products, click Program-
mable System-on-Chip to view a list of available items. Development kits are also available from Digi-Key, Avnet, Arrow, and
Future. 

http://www.cypress.com/support/
http://www.cypress.com/psoccreator
http://www.cypress.com/cypress-store
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3.   Document Construction

This document includes the following sections:

■ Section B: CPU System on page 21

■ Section C: System Resources Subsystem (SRSS) on page 35

■ Section D: Digital System on page 81

■ Section E: Analog System on page 147

■ Section F: Program and Debug on page 172

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

■ Section – Presents the top-level architecture, how to get started, and conventions and overview information of the prod-
uct.

■ Chapter – Presents the chapters specific to an individual aspect of the section topic. These are the detailed implementa-
tion and use information for some aspect of the integrated circuit.

■ Glossary – Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms are pre-
sented in bold, italic font throughout.

■ Registers Technical Reference Manual – Supplies all device register details summarized in the technical reference man-
ual. This is an additional document.

3.2 Documentation Conventions

This document uses only four distinguishing font types, besides those found in the headings.

■ The first is the use of italics when referencing a document title or file name.

■ The second is the use of bold italics when referencing a term described in the Glossary of this document.

■ The third is the use of Times New Roman font, distinguishing equation examples.

■ The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the PSoC 4700S Family: PSoC 4 Registers TRM.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
‘3Ah’) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.
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3.2.3 Units of Measure

This table lists the units of measure used in this document.

3.2.4 Acronyms

This table lists the acronyms used in this document

Table 3-1.  Units of Measure

Abbreviation Unit of Measure

bps bits per second

°C degrees Celsius

dB decibels

fF femtofarads

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k kilohms

MHz megahertz

M megaohms

µA microamperes

µF microfarads

µs microseconds

µV microvolts

µVrms microvolts root-mean-square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

 sigma: one standard deviation

V volts

Table 3-2.  Acronyms 

Acronym Definition

ABUS analog output bus

AC alternating current

ADC analog-to-digital converter

AHB
AMBA (advanced microcontroller bus architecture) 
high-performance bus, an ARM data transfer bus

API application programming interface

APOR analog power-on reset

BC broadcast clock

BOD brownout detect

BOM bill of materials

BR bit rate

BRA bus request acknowledge

BRQ bus request

CAN controller area network

CI carry in

CMP compare

CO carry out

CPU central processing unit

CRC cyclic redundancy check

DAP debug access port

DC direct current

DI digital or data input

DMA direct memory access

DO digital or data output

DSI digital signal interface

DSM deep-sleep mode

DW data wire

ECO external crystal oscillator

EEPROM
electrically erasable programmable read only 
memory

EMIF external memory interface

FB feedback

FIFO first in first out

FSR full scale range

GPIO general purpose I/O

HCI host-controller interface

HFCLK high-frequency clock

HSIOM high-speed I/O matrix

I2C inter-integrated circuit

IDE integrated development environment

ILO internal low-speed oscillator

ITO indium tin oxide

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOR I/O read

IOW I/O write

IRES initial power on reset

IRA interrupt request acknowledge

IRQ interrupt request

ISR interrupt service routine

IVR interrupt vector read

LCD liquid crystal display

Table 3-2.  Acronyms  (continued)

Acronym Definition
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LFCLK low-frequency clock

LPCOMP low-power comparator

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

MISO master-in-slave-out

MMIO memory mapped input/output

MOSI master-out-slave-in

MSb most significant bit

MSB most significant byte

NMI non-maskable interrupt

NVIC nested vectored interrupt controller

PC program counter

PCB printed circuit board

PCH program counter high

PCL program counter low

PD power down

PGA programmable gain amplifier

PM power management

PMA PSoC memory arbiter

POR power-on reset

PPOR precision power-on reset

PRS pseudo random sequence

PSoC® Programmable System-on-Chip

PSRR power supply rejection ratio

PSSDC power system sleep duty cycle

PWM pulse width modulator

RAM random-access memory

RETI return from interrupt

RF radio frequency

ROM read only memory

RMS root mean square

RW read/write

SAR successive approximation register

SC switched capacitor

SCB serial communication block

SIE serial interface engine

SIO special I/O

SE0 single-ended zero

SNR signal-to-noise ratio

SOF start of frame

SOI start of instruction

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

Table 3-2.  Acronyms  (continued)

Acronym Definition

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random-access memory

SROM supervisory read only memory

SSADC single slope ADC

SSC supervisory system call

SYSCLK system clock

SWD single wire debug

TC terminal count

TCPWM timer, counter, PWM

TD transaction descriptors

UART universal asynchronous receiver/transmitter

UDB universal digital block

USB universal serial bus

USBIO USB I/O

WCO watch crystal oscillator

WDT watchdog timer

WDR watchdog reset

XRES external reset

XRES_N external reset, active low

Table 3-2.  Acronyms  (continued)

Acronym Definition
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Section B: CPU System

This section encompasses the following chapters:

■ Cortex-M0+ CPU chapter on page 22

■ Interrupts chapter on page 27

Top Level Architecture

CPU System Block Diagram

CPU Subsystem

System Interconnect (Single Layer AHB)

SWD/TC, MTB

NVIC, IRQMUX, MPU

Cortex
M0+

48 MHz
FAST MUL
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4.   Cortex-M0+ CPU

The PSoC® 4 ARM Cortex-M0+ core is a 32-bit CPU optimized for low-power operation. It has an efficient two-stage pipeline,
a fixed 4-GB memory map, and supports the ARMv6-M Thumb instruction set. The Cortex-M0+ also features a single-cycle
32-bit multiply instruction and low-latency interrupt handling. Other subsystems tightly linked to the CPU core include a
nested vectored interrupt controller (NVIC), a SYSTICK timer, and debug.

This section gives an overview of the Cortex-M0+ processor. For more details, see the ARM Cortex-M0+ user guide or tech-
nical reference manual, both available at www.arm.com.

4.1 Features

The PSoC 4 Cortex-M0+ has the following features:

■ Easy to use, program, and debug, ensuring easier migration from 8- and 16-bit processors

■ Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power

■ Supports the Thumb instruction set for improved code density, ensuring efficient use of memory

■ NVIC unit to support interrupts and exceptions for rapid and deterministic interrupt response

■ Implements design time configurable Memory Protection Unit (MPU)

■ Supports unprivileged and privileged mode execution

■ Supports optional Vector Table Offset Register (VTOR)

■ Extensive debug support including:

❐ SWD port

❐ Breakpoints

❐ Watchpoints

http://www.arm.com
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4.2 Block Diagram

Figure 4-1.  CPU Subsystem Block Diagram

4.3 How It Works

The Cortex-M0+ is a 32-bit processor with a 32-bit data path, 32-bit registers, and a 32-bit memory interface. It supports most
16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2 instruction set.

The processor supports two operating modes (see Operating Modes on page 25). It has a single-cycle 32-bit multiplication
instruction.

4.4 Address Map

The ARM Cortex-M0+ has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 4-1. Note that code can be executed
from the code and SRAM regions.

Table 4-1.  Cortex-M0+ Address Map

Address Range Name Use

0x00000000 - 0x1FFFFFFF Code
Program code region. You can also place data here. Includes the exception vector table, 
which starts at address 0.

0x20000000 - 0x3FFFFFFF SRAM Data region. You can also execute code from this region.

0x40000000 - 0x5FFFFFFF Peripheral All peripheral registers. You cannot execute code from this region.

0x60000000 - 0xDFFFFFFF Not used.

0xE0000000 - 0xE00FFFFF PPB Peripheral registers within the CPU core.

0xE0100000 - 0xFFFFFFFF Device PSoC 4 implementation-specific.
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4.5 Registers

The Cortex-M0+ has sixteen 32-bit registers, as Table 4-2 shows:

■ R0 to R12 – General-purpose registers. R0 to R7 can be accessed by all instructions; the other registers can be accessed 
by a subset of the instructions.

■ R13 – Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the CONTROL 
register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

■ R14 – Link register. Stores the return program counter during function calls.

■ R15 – Program counter. This register can be written to control program flow.

Table 4-3 shows how the PSR bits are assigned.

Table 4-2.  Cortex-M0+ Registers

Name Typea Reset Value Description

R0-R12 RW Undefined R0-R12 are 32-bit general-purpose registers for data operations.

MSP (R13)

RW [0x00000000]

The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register 
indicates which stack pointer to use:

0 = Main stack pointer (MSP). This is the reset value.

1 = Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

PSP (R13)

LR (R14) RW Undefined
The link register (LR) is register R14. It stores the return information for subroutines, 
function calls, and exceptions.

PC (R15) RW [0x00000004]
The program counter (PC) is register R15. It contains the current program address. On 
reset, the processor loads the PC with the value from address 0x00000004. Bit[0] of the 
value is loaded into the EPSR T-bit at reset and must be 1.

PSR RW Undefined

The program status register (PSR) combines:

Application Program Status Register (APSR).

Execution Program Status Register (EPSR).

Interrupt Program Status Register (IPSR).

APSR RW Undefined
The APSR contains the current state of the condition flags from previous instruction 
executions.

EPSR RO [0x00000004].0 On reset, EPSR is loaded with the value bit[0] of the register [0x00000004].

IPSR RO 0 The IPSR contains the exception number of the current ISR.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.

CONTROL RW 0 The CONTROL register controls the stack used when the processor is in thread mode.

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Table 4-3.  Cortex-M0+ PSR Bit Assignments

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag
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Use the MSR or CPS instruction to set or clear bit 0 of the
PRIMASK register. If the bit is 0, exceptions are enabled. If
the bit is 1, all exceptions with configurable priority, that is,
all exceptions except HardFault, NMI, and Reset, are dis-
abled. See the Interrupts chapter on page 27 for a list of
exceptions.

4.6 Operating Modes

The Cortex-M0+ processor supports two operating modes:

■ Thread Mode – used by all normal applications. In this 
mode, the MSP or PSP can be used. The CONTROL 
register bit 1 determines which stack pointer is used:

❐ 0 = MSP is the current stack pointer

❐ 1 = PSP is the current stack pointer

■ Handler Mode – used to execute exception handlers. 
The MSP is always used.

In thread mode, use the MSR instruction to set the stack
pointer bit in the CONTROL register. When changing the
stack pointer, use an ISB instruction immediately after the
MSR instruction. This action ensures that instructions after
the ISB execute using the new stack pointer.

In handler mode, explicit writes to the CONTROL register
are ignored, because the MSP is always used. The excep-
tion entry and return mechanisms automatically update the
CONTROL register.

4.7 Instruction Set

The Cortex-M0+ implements a version of the Thumb instruc-
tion set, as Table 4-4 shows. For details, see the Cortex-
M0+ Generic User Guide.

An instruction operand can be an ARM register, a constant,
or another instruction-specific parameter. Instructions act on
the operands and often store the result in a destination reg-
ister. Many instructions are unable to use, or have restric-
tions on using, the PC or SP for the operands or destination
register. 

27 – 25 – – Reserved

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0 
results in a HardFault exception.

23 – 6 – – Reserved

5 – 0 IPSR N/A

Exception number of current ISR:

0 = thread mode
1 = reserved
2 = NMI
3 = HardFault
4 – 10 = reserved
11 = SVCall
12, 13 = reserved
14 = PendSV
15 = SysTick
16 = IRQ0
…
47 = 32

Table 4-3.  Cortex-M0+ PSR Bit Assignments

Bit PSR Register Name Usage

Table 4-4.  Thumb Instruction Set

Mnemonic Brief Description

ADCS Add with carry

ADD{S}a Add

ADR PC-relative address to register

ANDS Bit wise AND

ASRS Arithmetic shift right

B{cc} Branch {conditionally}

BICS Bit clear

BKPT Breakpoint

BL Branch with link

BLX Branch indirect with link

BX Branch indirect

CMN Compare negative

CMP Compare

CPSID Change processor state, disable interrupts

CPSIE Change processor state, enable interrupts

DMB Data memory barrier

DSB Data synchronization barrier
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4.7.1 Address Alignment

An aligned access is an operation where a word-aligned
address is used for a word or multiple word access, or
where a half-word-aligned address is used for a half-word
access. Byte accesses are always aligned.

No support is provided for unaligned accesses on the Cor-
tex-M0+ processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

4.7.2 Memory Endianness

The Cortex-M0+ uses the little-endian format, where the
least-significant byte of a word is stored at the lowest
address and the most significant byte is stored at the high-
est address.

4.8 Systick Timer

The Systick timer is integrated with the NVIC and generates
the SYSTICK interrupt. This interrupt can be used for task
management in a real-time system. The timer has a reload
register with 24 bits available to use as a countdown value.
The Systick timer uses either the Cortex-M0+ internal clock
or the low-frequency clock (LF_CLK) as the source.

4.9 Debug

PSoC 4 contains a debug interface based on SWD; it fea-
tures four breakpoint (address) comparators and two watch-
point (data) comparators.

EORS Exclusive OR

ISB Instruction synchronization barrier

LDM Load multiple registers, increment after

LDR Load register from PC-relative address

LDRB Load register with word

LDRH Load register with half-word

LDRSB Load register with signed byte

LDRSH Load register with signed half-word

LSLS Logical shift left

LSRS Logical shift right

MOV{S}a Move

MRS Move to general register from special register

MSR Move to special register from general register

MULS Multiply, 32-bit result

MVNS Bit wise NOT

NOP No operation

ORRS Logical OR

POP Pop registers from stack

PUSH Push registers onto stack

REV Byte-reverse word

REV16 Byte-reverse packed half-words

REVSH Byte-reverse signed half-word

RORS Rotate right

RSBS Reverse subtract

SBCS Subtract with carry

SEV Send event

STM Store multiple registers, increment after

STR Store register as word

STRB Store register as byte

STRH Store register as half-word

SUB{S}a Subtract

SVC Supervisor call

SXTB Sign extend byte

SXTH Sign extend half-word

TST Logical AND-based test

UXTB Zero extend a byte

UXTH Zero extend a half-word

WFE Wait for event

WFI Wait for interrupt

a. The ‘S’ qualifier causes the ADD, SUB, or MOV instructions to update
APSR condition flags.

Table 4-4.  Thumb Instruction Set

Mnemonic Brief Description
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5.   Interrupts

The ARM Cortex-M0+ (CM0+) CPU in PSoC® 4 supports interrupts and exceptions. Interrupts refer to those events gener-
ated by peripherals external to the CPU such as timers, serial communication block, and port pin signals. Exceptions refer to
those events that are generated by the CPU such as memory access faults and internal system timer events. Both interrupts
and exceptions result in the current program flow being stopped and the exception handler or interrupt service routine (ISR)
being executed by the CPU. The device provides a unified exception vector table for both interrupt handlers/ISR and excep-
tion handlers.

5.1 Features

PSoC 4 supports the following interrupt features:

■ Supports 16 interrupts

■ Nested vectored interrupt controller (NVIC) integrated with CPU core, yielding low interrupt latency

■ Vector table may be placed in either flash or SRAM

■ Configurable priority levels from 0 to 3 for each interrupt

■ Level-triggered and pulse-triggered interrupt signals

5.2 How It Works

Figure 5-1.  PSoC 4 Interrupts Block Diagram

Figure 5-1 shows the interaction between interrupt signals and the Cortex-M0+ CPU. PSoC 4 has 16 interrupts; these inter-
rupt signals are processed by the NVIC. The NVIC takes care of enabling/disabling individual interrupts, priority resolution,
and communication with the CPU core. The exceptions are not shown in Figure 5-1 because they are part of CM0+ core gen-
erated events, unlike interrupts, which are generated by peripherals external to the CPU.
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5.3 Interrupts and Exceptions - 
Operation

5.3.1 Interrupt/Exception Handling

The following sequence of events occurs when an interrupt
or exception event is triggered:

1. Assuming that all the interrupt signals are initially low 
(idle or inactive state) and the processor is executing the 
main code, a rising edge on any one of the interrupt lines 
is registered by the NVIC. The interrupt line is now in a 
pending state waiting to be serviced by the CPU. 

2. On detecting the interrupt request signal from the NVIC, 
the CPU stores its current context by pushing the con-
tents of the CPU registers onto the stack. 

3. The CPU also receives the exception number of the trig-
gered interrupt from the NVIC. All interrupts and excep-
tions have a unique exception number, as given in 
Table 5-1. By using this exception number, the CPU 
fetches the address of the specific exception handler 
from the vector table. 

4. The CPU then branches to this address and executes 
the exception handler that follows. 

5. Upon completion of the exception handler, the CPU reg-
isters are restored to their original state using stack pop 
operations; the CPU resumes the main code execution.

Figure 5-2.  Interrupt Handling When Triggered

When the NVIC receives an interrupt request while another
interrupt is being serviced or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the high-
est priority interrupt to the CPU. Thus, a higher priority inter-
rupt can block the execution of a lower priority ISR at any
time. 

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception
number, which is used by the CPU to execute the appropri-
ate exception handler.

5.3.2 Level and Pulse Interrupts

NVIC supports both level and pulse signals on the interrupt
lines (IRQ0 to IRQ15). The classification of an interrupt as
level or pulse is based on the interrupt source.

Figure 5-3.  Level Interrupts

Figure 5-4.  Pulse Interrupts 

Figure 5-3 and Figure 5-4 show the working of level and
pulse interrupts, respectively. Assuming the interrupt signal
is initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts: 

1. On a rising edge event of the interrupt signal, the NVIC 
registers the interrupt request. The interrupt is now in the 
pending state, which means the interrupt requests have 
not yet been serviced by the CPU.

2. The NVIC then sends the exception number along with 
the interrupt request signal to the CPU. When the CPU 
starts executing the ISR, the pending state of the inter-
rupt is cleared.

3. When the ISR is being executed by the CPU, one or 
more rising edges of the interrupt signal are logged as a 
single pending request. The pending interrupt is serviced 
again after the current ISR execution is complete (see 
Figure 5-4 for pulse interrupts).

4. If the interrupt signal is still high after completing the 
ISR, it will be pending and the ISR is executed again. 
Figure 5-3 illustrates this for level triggered interrupts, 
where the ISR is executed as long as the interrupt signal 
is high.
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5.3.3 Exception Vector Table

The exception vector table (Table 5-1), stores the entry point addresses for all exception handlers. The CPU fetches the
appropriate address based on the exception number. 

In Table 5-1, the first word (4 bytes) is not marked as excep-
tion number zero. This is because the first word in the
exception table is used to initialize the main stack pointer
(MSP) value on device reset; it is not considered as an
exception. The vector table can be located anywhere in the
memory map (flash or SRAM) by modifying the Vector Table
Offset Register (VTOR). This register is part of the System
Control Space of CM0+ located at 0xE000ED08. This regis-
ter takes bits 31:8 of the vector table address; bits 7:0 are
reserved. Therefore, the vector table address should be 256
bytes aligned.The advantage of moving the vector table to
SRAM is that the exception handler addresses can be
dynamically changed by modifying the SRAM vector table
contents. However, the nonvolatile flash memory vector
table must be modified by a flash memory write.

Reads of flash addresses 0x00000000 and 0x00000004 are
redirected to the first eight bytes of SROM to fetch the stack
pointer and reset vectors, unless the
DIS_RESET_VECT_REL bit of the CPUSS_SYSREQ regis-
ter is set. The default value of this bit at reset is 0 ensuring
that reset vector is always fetched from SROM. To allow
flash read from addresses 0x00000000 and 0x00000004,
the DIS_RESET_VECT_REL bit should be set to ‘1’. The
stack pointer vector holds the address that the stack pointer
is loaded with on reset. The reset vector holds the address
of the boot sequence. This mapping is done to use the
default addresses for the stack pointer and reset vector from
SROM when the device reset is released. For reset, boot
code in SROM is executed first and then the CPU jumps to
address 0x00000004 in flash to execute the handler in flash.
The reset exception address in the SRAM vector table is
never used.

Also, when the SYSREQ bit of the CPUSS_SYSREQ regis-
ter is set, reads of flash address 0x00000008 are redirected

to SROM to fetch the NMI vector address instead of from
flash. Reset CPUSS_SYSREQ to read the flash at address
0x00000008.

The exception sources (exception numbers 1 to 15) are
explained in 5.4 Exception Sources. The exceptions marked
as Reserved in Table 5-1 are not used, although they have
addresses reserved for them in the vector table. The inter-
rupt sources (exception numbers 16 to 31) are explained in
5.5 Interrupt Sources.

5.4 Exception Sources

This section explains the different exception sources listed
in Table 5-1 (exception numbers 1 to 15).

5.4.1 Reset Exception

Device reset is treated as an exception in PSoC 4. It is
always enabled with a fixed priority of –3, the highest priority
exception. A device reset can occur due to multiple reasons,
such as power-on-reset (POR), external reset signal on
XRES pin, or watchdog reset. When the device is reset, the
initial boot code for configuring the device is executed out of
supervisory read-only memory (SROM). The boot code and
other data in SROM memory are programmed by Cypress,
and are not read/write accessible to external users. After
completing the SROM boot sequence, the CPU code execu-
tion jumps to flash memory. Flash memory address
0x00000004 (Exception#1 in Table 5-1) stores the location
of the startup code in flash memory. The CPU starts execut-
ing code out of this address. Note that the reset exception
address in the SRAM vector table will never be used
because the device comes out of reset with the flash vector
table selected. The register configuration to select the

Table 5-1.  Exception Vector Table

Exception Number Exception Exception Priority Vector Address

– Initial Stack Pointer Value Not applicable (NA)
Base_Address - 0x00000000 (start of flash memory) or 
0x20000000 (start of SRAM)

1 Reset –3, the highest priority Base_Address + 0x04

2 Non Maskable Interrupt (NMI) –2 Base_Address + 0x08

3 HardFault –1 Base_Address + 0x0C

4-10 Reserved NA Base_Address + 0x10 to Base_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0 - 3) Base_Address + 0x2C

12-13 Reserved NA Base_Address + 0x30 to Base_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0 - 3) Base_Address + 0x38 

15 System Timer (SysTick) Configurable (0 - 3) Base_Address + 0x3C

16 External Interrupt(IRQ0) Configurable (0 - 3) Base_Address + 0x40

… … Configurable (0 - 3) …

31 External Interrupt(IRQ15) Configurable (0 - 3) Base_Address + 0x7C
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SRAM vector table can be done only as part of the startup
code in flash after the reset is de-asserted.

5.4.2 Non-Maskable Interrupt (NMI) 
Exception

Non-maskable interrupt (NMI) is the highest priority excep-
tion other than reset. It is always enabled with a fixed priority
of –2. There are two ways to trigger an NMI exception in the
device:

■ NMI exception by setting NMIPENDSET bit (user NMI 
exception): An NMI exception can be triggered in soft-
ware by setting the NMIPENDSET bit in the interrupt 
control state register (CM0P_ICSR register). Setting this 
bit will execute the NMI handler pointed to by the active 
vector table (flash or SRAM vector table).

■ System Call NMI exception: This exception is used for 
nonvolatile programming operations such as flash write 
operation and flash checksum operation. It is triggered 
by setting the SYSCALL_REQ bit in the 
CPUSS_SYSREQ register. An NMI exception triggered 
by SYSCALL_REQ bit always executes the NMI excep-
tion handler code that resides in SROM. Flash or SRAM 
exception vector table is not used for system call NMI 
exception. The NMI handler code in SROM is not read/
write accessible because it contains nonvolatile pro-
gramming routines that should not be modified by the 
user.

5.4.3 HardFault Exception

HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher
priority than any exception with configurable priority. Hard-
Fault exception is a catch-all exception for different types of
fault conditions, which include executing an undefined
instruction and accessing an invalid memory addresses.
The CM0+ CPU does not provide fault status information to
the HardFault exception handler, but it does permit the han-
dler to perform an exception return and continue execution
in cases where software has the ability to recover from the
fault situation.

5.4.4 Supervisor Call (SVCall) Exception

Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call.
The SVC instruction enables the application to issue a
supervisor call that requires privileged access to the system.
Note that the CM0+ in PSoC 4 uses a privileged mode for
the system call NMI exception, which is not related to the
SVCall exception. (See the Chip Operational Modes chapter
on page 67 for details on privileged mode.) There is no other

privileged mode support for SVCall at the architecture level
in the device. The application developer must define the
SVCall exception handler according to the end application
requirements.

The priority of a SVCall exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_11[31:30] of the System Handler Priority Register 2
(SHPR2). When the SVC instruction is executed, the SVCall
exception enters the pending state and waits to be serviced
by the CPU. The SVCALLPENDED bit in the System Han-
dler Control and State Register (SHCSR) can be used to
check or modify the pending status of the SVCall exception.

5.4.5 PendSV Exception

PendSV is another supervisor call related exception similar
to SVCall, normally being software-generated. PendSV is
always enabled and its priority is configurable. The PendSV
exception is triggered by setting the PENDSVSET bit in the
Interrupt Control State Register, CM0P_ICSR. On setting
this bit, the PendSV exception enters the pending state, and
waits to be serviced by the CPU. The pending state of a
PendSV exception can be cleared by setting the PENDSV-
CLR bit in the Interrupt Control State Register, CM0P_ICSR.
The priority of a PendSV exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_14[23:22] of the System Handler Priority Register 3
(CM0P_SHPR3). See the ARMv6-M Architecture Reference
Manual for more details.

5.4.6 SysTick Exception

CM0+ CPU in PSoC 4 supports a system timer, referred to
as SysTick, as part of its internal architecture. SysTick pro-
vides a simple, 24-bit decrementing counter for various
timekeeping purposes such as an RTOS tick timer, high-
speed alarm timer, or simple counter. The SysTick timer can
be configured to generate an interrupt when its count value
reaches zero, which is referred to as SysTick exception. The
exception is enabled by setting the TICKINT bit in the Sys-
Tick Control and Status Register (CM0P_SYST_CSR). The
priority of a SysTick exception can be configured to a value
between 0 and 3 by writing to the two bit fields
PRI_15[31:30] of the System Handler Priority Register 3
(SHPR3). The SysTick exception can always be generated
in software at any instant by writing a one to the PENDST-
SETb bit in the Interrupt Control State Register, CM0_ICSR.
Similarly, the pending state of the SysTick exception can be
cleared by writing a one to the PENDSTCLR bit in the Inter-
rupt Control State Register, CM0_ICSR.

5.5 Interrupt Sources

PSoC 4 supports 16 interrupts (IRQ0 to IRQ15 or exception
numbers 16 – 31) from peripherals. The source of each
interrupt is listed in . PSoC 4 provides flexible sourcing
options for each interrupt line. The interrupts include stan-

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
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dard interrupts from the on-chip peripherals such as
TCPWM and serial communication block. The interrupt gen-
erated is usually the logical OR of the different peripheral
states. The peripheral status register should be read in the
ISR to detect which condition generated the interrupt. inter-
rupts are usually level interrupts, which require that the
peripheral status register be read in the ISR to clear the

interrupt. If the status register is not read in the ISR, the
interrupt will remain asserted and the ISR will be executed
continuously. 

See the I/O System chapter on page 37 for details on GPIO
interrupts.   

5.6 Exception Priority

Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. PSoC 4 provides flexibility in choosing priority values
for different exceptions. All exceptions other than Reset,
NMI, and HardFault can be assigned a configurable priority
level. The Reset, NMI, and HardFault exceptions have a
fixed priority of –3, –2, and –1 respectively. In PSoC 4, lower
priority numbers represent higher priorities. This means that
the Reset, NMI, and HardFault exceptions have the highest
priorities. The other exceptions can be assigned a configu-
rable priority level between 0 and 3.

PSoC 4 supports nested exceptions in which a higher prior-
ity exception can obstruct (interrupt) the currently active
exception handler. This pre-emption does not happen if the
incoming exception priority is the same as active exception.
The CPU resumes execution of the lower priority exception
handler after servicing the higher priority exception. The
CM0+ CPU in PSoC 4 allows nesting of up to four excep-
tions. When the CPU receives two or more exceptions
requests of the same priority, the lowest exception number
is serviced first.

The registers to configure the priority of exception numbers
1 to 15 are explained in “Exception Sources” on page 29.

The priority of the 16 interrupts (IRQ0 to IRQ15) can be con-
figured by writing to the Interrupt Priority registers
(CM0P_IPR). This is a group of 32-bit registers with each
register storing the priority values of four interrupts, as given
in Table 5-3. The other bit fields in the register are not used.

5.7 Enabling and Disabling 
Interrupts

The NVIC provides registers to individually enable and dis-
able the 16 interrupts in software. If an interrupt is not
enabled, the NVIC will not process the interrupt requests on

Table 5-2.  List of PSoC 4 Interrupt Sources

Interrupt
Cortex-M0+ 

Exception No.
Interrupt Source

NMI 2 SYS_REQ

IRQ0 16 GPIO Interrupt - Port 0

IRQ1 17 GPIO Interrupt - Port 1

IRQ2 18 GPIO Interrupt - Port 2

IRQ3 19 GPIO Interrupt - Port 3

IRQ4 20 GPIO Interrupt - All Port

IRQ5 21 LPCOMP (low-power comparator)

IRQ6 22 WDT (Watchdog timer)

IRQ7 23 SCB0 (Serial Communication Block 0)

IRQ8 24 SCB1 (Serial Communication Block 1)

IRQ9 25 SPCIF Interrupt

IRQ10 26 CSD (CapSense)

IRQ11 27 TCPWM0 (Timer/Counter/PWM 0)

IRQ12 28 TCPWM1 (Timer/Counter/PWM 1)

IRQ13 29 TCPWM2 (Timer/Counter/PWM 2)

IRQ14 30 TCPWM3 (Timer/Counter/PWM 3)

IRQ15 31 TCPWM4 (Timer/Counter/PWM 4)

Table 5-3.  Interrupt Priority Register Bit Definitions

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.
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that interrupt line. The Interrupt Set-Enable Register
(CM0P_ISER) and the Interrupt Clear-Enable Register
(CM0P_ICER) are used to enable and disable the interrupts
respectively. These are 32-bit wide registers and each bit
corresponds to the same numbered interrupt. These regis-
ters can also be read in software to get the enable status of
the interrupts. Table 5-4 shows the register access proper-
ties for these two registers. Note that writing zero to these
registers has no effect.

The CM0P_ISER and CM0P_ICER registers are applicable
only for interrupts IRQ0 to IRQ15. These registers cannot be
used to enable or disable the exception numbers 1 to 15.
The 15 exceptions have their own support for enabling and
disabling, as explained in “Exception Sources” on page 29.

The PRIMASK register in Cortex-M0+ (CM0+) CPU can be
used as a global exception enable register to mask all the
configurable priority exceptions irrespective of whether they
are enabled. Configurable priority exceptions include all the
exceptions except Reset, NMI, and HardFault listed in
Table 5-1. They can be configured to a priority level between
0 and 3, 0 being the highest priority and 3 being the lowest
priority. When the PM bit (bit 0) in the PRIMASK register is
set, none of the configurable priority exceptions can be ser-
viced by the CPU, though they can be in the pending state
waiting to be serviced by the CPU after the PM bit is
cleared.

5.8 Exception States
Each exception can be in one of the following states.

The Interrupt Control State Register (CM0P_ICSR) contains
status bits describing the various exceptions states.

■ The VECTACTIVE bits ([8:0]) in the CM0P_ICSR store 
the exception number for the current executing excep-
tion. This value is zero if the CPU does not execute any 
exception handler (CPU is in thread mode). Note that the 
value in VECTACTIVE bit fields is the same as the value 
in bits [8:0] of the Interrupt Program Status Register 
(IPSR), which is also used to store the active exception 
number.

■ The VECTPENDING bits ([20:12]) in the CM0P_ICSR 
store the exception number of the highest priority pend-
ing exception. This value is zero if there are no pending 
exceptions.

■ The ISRPENDING bit (bit 22) in the CM0P_ICSR indi-
cates if a NVIC generated interrupt (IRQ0 to IRQ15) is in 
a pending state.

5.8.1 Pending Exceptions

When a peripheral generates an interrupt request signal to
the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts
executing the corresponding exception handler routine, the
exception is changed from the pending state to the active
state.

The NVIC allows software pending of the 16 interrupt lines
by providing separate register bits for setting and clearing
the pending states of the interrupts. The Interrupt Set-Pend-
ing register (CM0P_ISPR) and the Interrupt Clear-Pending
register (CM0P_ICPR) are used to set and clear the pend-
ing status of the interrupt lines. These are 32-bit wide regis-
ters and each bit corresponds to the same numbered
interrupt.

Table 5-4.  Interrupt Enable/Disable Registers

Register Operation Bit Value Comment

Interrupt Set 
Enable Register 
(CM0P_ISER)

Write
1 To enable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear 
Enable Register 
(CM0P_ICER)

Write
1 To disable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Table 5-5.  Exception States

Exception State Meaning

Inactive
The exception is not active or pending. 
Either the exception is disabled or the 
enabled exception has not been triggered.

Pending
The exception request is received by the 
CPU/NVIC and the exception is waiting to 
be serviced by the CPU. 

Active

An exception that is being serviced by the 
CPU but whose exception handler execu-
tion is not yet complete. A high-priority 
exception can interrupt the execution of 
lower priority exception. In this case, both 
the exceptions are in the active state.

Active and Pending

The exception is serviced by the processor 
and there is a pending request from the 
same source during its exception handler 
execution.
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Table 5-6 shows the register access properties for these two
registers. Note that writing zero to these registers has no
effect.

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding
interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is
enabled by writing to the CM0P_ISER register.

Note that the CM0P_ISPR and CM0P_ICPR registers are
used only for the 16 peripheral interrupts (exception
numbers 16–31). These registers cannot be used for
pending the exception numbers 1 to 15. These 15
exceptions have their own support for pending, as explained
in “Exception Sources” on page 29.

5.9 Stack Usage for Exceptions

When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the
Program and Status Register (PSR), ReturnAddress, Link
Register (LR or R14), R12, R3, R2, R1, and R0. Cortex-M0+
has two stack pointers - MSP and PSP. Only one of the
stack pointers can be active at a time. When in thread mode,
the Active Stack Pointer bit in the Control register is used to
define the current active stack pointer. When in handler
mode, the MSP is always used as the stack pointer. The
stack pointer in Cortex-M0+ always grows downwards and
points to the address that has the last pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the
control register to store the general-purpose register
contents. After the stack push operations, the CPU enters
handler mode to execute the exception handler. When
another higher priority exception occurs while executing the

current exception, the MSP is used for stack push/pop
operations, because the CPU is already in handler mode.
See the Cortex-M0+ CPU chapter on page 22 for details.

The Cortex-M0+ uses two techniques, tail chaining and late
arrival, to reduce latency in servicing exceptions. These
techniques are not visible to the external user and are part
of the internal processor architecture. For information on tail
chaining and late arrival mechanism, visit the ARM
Infocenter. 

5.10 Interrupts and Low-Power 
Modes

PSoC 4 allows device wakeup from low-power modes when
certain peripheral interrupt requests are generated. The
Wakeup Interrupt Controller (WIC) block generates a
wakeup signal that causes the device to enter Active mode
when one or more wakeup sources generate an interrupt
signal. After entering Active mode, the ISR of the peripheral
interrupt is executed.

The Wait For Interrupt (WFI) instruction, executed by the
CM0+ CPU, triggers the transition into Sleep and Deep-
Sleep modes. The sequence of entering the different low-
power modes is detailed in the Power Modes chapter on
page 68. Chip low-power modes have two categories of
fixed-function interrupt sources:

■ Fixed-function interrupt sources that are available only in 
the Active and Deep-Sleep modes (watchdog timer 
interrupt,)

■ Fixed-function interrupt sources that are available only in 
the Active mode (all other fixed-function interrupts)

Table 5-6.  Interrupt Set Pending/Clear Pending Registers

Register Operation
Bit 

Value
Comment

Interrupt Set-
Pending Register 
(CM0P_ISPR)

Write
1

To put an interrupt to 
pending state

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

Interrupt Clear-
Pending Register 
(CM0P_ICPR)

Write
1

To clear a pending 
interrupt

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html
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5.11 Exceptions – Initialization and Configuration

This section covers the different steps involved in initializing and configuring exceptions in PSoC 4. 

1. Configuring the Exception Vector Table Location: The first step in using exceptions is to configure the vector table location 
as required – either in flash memory or SRAM. This configuration is done by writing bits 31:28 of the VTOR register with 
the value of the flash or SRAM address at which the vector table will reside This register write is done as part of device ini-
tialization code. 

It is recommended that the vector table be available in SRAM if the application needs to change the vector addresses 
dynamically. If the table is located in flash, then a flash write operation is required to modify the vector table contents. 
PSoC Creator IDE uses the vector table in SRAM by default.

2. Configuring Individual Exceptions: The next step is to configure individual exceptions required in an application.

a. Configure the exception or interrupt source; this includes setting up the interrupt generation conditions. The register 
configuration depends on the specific exception required.

b. Define the exception handler function and write the address of the function to the exception vector table. Table 5-1 
gives the exception vector table format; the exception handler address should be written to the appropriate exception 
number entry in the table.

c. Set up the exception priority, as explained in “Exception Priority” on page 31.

d. Enable the exception, as explained in “Enabling and Disabling Interrupts” on page 31.

5.12 Registers

5.13 Associated Documents
■ ARMv6-M Architecture Reference Manual – This document explains the ARM Cortex-M0+ architecture, including the 

instruction set, NVIC architecture, and CPU register descriptions.

Table 5-7.  List of Registers

Register Name Description

CM0P_ISER Interrupt Set-Enable Register

CM0P_ICER Interrupt Clear Enable Register

CM0P_ISPR Interrupt Set-Pending Register

CM0P_ICPR Interrupt Clear-Pending Register

CM0P_IPR Interrupt Priority Registers

CM0P_ICSR Interrupt Control State Register

CM0P_AIRCR Application Interrupt and Reset Control Register

CM0P_SCR System Control Register

CM0P_CCR Configuration and Control Register

CM0P_SHPR2 System Handler Priority Register 2

CM0P_SHPR3 System Handler Priority Register 3

CM0P_SHCSR System Handler Control and State Register

CM0P_SYST_CSR Systick Control and Status Register

CPUSS_CONFIG CPU Subsystem Configuration Register

CPUSS_SYSREQ System Request Register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
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Section C:System Resources Subsystem (SRSS)

This section encompasses the following chapters:

■ I/O System chapter on page 37

■ Clocking System chapter on page 56

■ Power Supply and Monitoring chapter on page 63

■ Chip Operational Modes chapter on page 67

■ Power Modes chapter on page 68

■ Watchdog Timer chapter on page 72

■ Reset System chapter on page 77

■ Device Security chapter on page 79
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6.   I/O System

This chapter explains the PSoC® 4 I/O system, its features, architecture, operating modes, and interrupts. The GPIO pins in
PSoC 4 are grouped into ports; a port can have a maximum of eight GPIOs. The PSoC 4700S family has a maximum of 36
GPIOs arranged in five ports. 

6.1 Features

The PSoC 4 GPIOs have these features:

■ Analog and digital input and output capabilities

■ Eight drive strength modes

■ Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis

■ Slew rate control

■ Hold mode for latching previous state (used for retaining I/O state in Deep-Sleep mode)

■ Selectable CMOS and low-voltage LVTTL input buffer mode

■ Smart I/O block provides the ability to perform Boolean functions in the I/O signal path

■ CapSense support

■ Segment LCD drive support

■ Two analog mux buses (AMUXBUS-A and AMUXBUS-B) that can be used to multiplex analog signals

6.2 GPIO Interface Overview

PSoC 4 is equipped with analog and digital peripherals. Figure 6-1 shows an overview of the routing between the peripherals
and pins.
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Figure 6-1.  GPIO Interface Overview

GPIO pins are connected to I/O cells. These cells are equipped with an input buffer for the digital input, providing high input
impedance and a driver for the digital output signals. The digital peripherals connect to the I/O cells via the high-speed I/O
matrix (HSIOM). HSIOM contains multiplexers to connect between a peripheral selected by the user and the pin. Some port
pins have a Smart I/O block between the HSIOM and the pins. The Smart I/O block enables logical operations on the pin sig-
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nected to the GPIO pins through the AMUX buses.

High Speed IO Matrix 
(HSIOM)

G
P

IO
 

C
onfiguration

G
P

IO
 Interrupt

G
P

IO
 P

in 
Interfa

ce

GPIO Port Control

CSD 
Controller

Fixed 
Function 
Digital 

Peripherals 
(TCPWM, 

I2C)

CapSense Pin

AMUXBUS-A

AMUXBUS-B

IO Cell

LPCOMP

Segment 
LCD 

Control

Smart I/O*

* Not available on all GPIOs



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 39

I/O System

6.3 I/O Cell Architecture

Figure 6-2 shows the I/O cell architecture. It comprises of an input buffer and an output driver. This architecture is present in
every GPIO cell. It connects to the HSIOM multiplexers/Smart I/O block for the digital input and the output signal.

Figure 6-2.  GPIO Block Diagram
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6.3.1 Digital Input Buffer

The digital input buffer provides a high-impedance buffer for
the external digital input. The buffer is enabled and disabled
by the INP_DIS bit of the Port Configuration Register 2
(GPIO_PRTx_PC2, where x is the port number). The buffer
is configurable for the following modes: 

■ CMOS

■ LVTTL

These buffer modes are selected by the PORT_VTRIP_SEL
bit (GPIO_PRTx_PC[24])of the Port Configuration register.

The threshold values for each mode can be obtained from
the device datasheet. The output of the input buffer is con-
nected to the HSIOM for routing to the selected peripherals.
Writing to the HSIOM port select register
(HSIOM_PORT_SELx) selects the peripheral. The digital
input peripherals in the HSIOM, shown in , are pin depen-
dent. See the device datasheet to know the functions avail-
able for each pin.

6.3.2 Digital Output Driver

Pins are driven by the digital output driver. It consists of cir-
cuitry to implement different drive modes and slew rate con-
trol for the digital output signals. The peripheral connects to
the digital output driver through the HSIOM; a particular
peripheral is selected by writing to the HSIOM port select
register (HSIOM_PORT_SELx).

In PSoC 4700S I/Os are driven with VDDD supply. Each
GPIO pin has ESD diodes to clamp the pin voltage to the
VDDD source. Ensure that the voltage at the pin does not
exceed the I/O supply voltage VDDD and drop below VSSD.
For the absolute maximum and minimum GPIO voltage, see
the device datasheet. The digital output driver can be
enabled and disabled using the DSI signal from the periph-
eral or data register (GPIO_PRTx_DR) associated with the
output pin. See 6.4 High-Speed I/O Matrix to know about the
peripheral source selection for the data and to enable or dis-
able control source selection.

6.3.2.1 Drive Modes

Each I/O is individually configurable into one of eight drive
modes using the Port Configuration register,
GPIO_PRTx_PC. Table 6-2 lists the drive modes. Figure 6-2
is a simplified output driver diagram that shows the pin view
based on each of the eight drive modes.

Table 6-1.  Input Buffer Modes

PORT_VTRIP_SEL Input Buffer Mode

0b CMOS 

1b LVTTL

Table 6-2.  Drive Mode Settings

GPIO_PRTx_PC ('x' denotes port number and 'y' denotes pin number)

Bits Drive Mode Value Data = 1 Data = 0

3y+2: 3y

SEL'y’ Selects Drive Mode for Pin 'y' (0  y  7)

High-Impedance Analog 0 High Z High Z

High-impedance Digital 1 High Z High Z

Resistive Pull Up 2 Weak 1 Strong 0

Resistive Pull Down 3 Strong 1 Weak 0 

Open Drain, Drives Low 4 High Z Strong 0

Open Drain, Drives High 5 Strong 1 High Z

Strong Drive 6 Strong 1 Strong 0

Resistive Pull Up and Down  7 Weak 1 Weak 0 

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
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Figure 6-3.  I/O Drive Mode Block Diagram

■ High-Impedance Analog

High-impedance analog mode is the default reset state; both output driver and digital input buffer are turned off. This state
prevents an external voltage from causing a current to flow into the digital input buffer. This drive mode is recommended for
pins that are floating or that support an analog voltage. High-impedance analog pins cannot be used for digital inputs. Read-
ing the pin state register returns a 0x00 regardless of the data register value. To achieve the lowest device current in low-
power modes, unused GPIOs must be configured to the high-impedance analog mode.

■ High-Impedance Digital

High-impedance digital mode is the standard high-impedance (High Z) state recommended for digital inputs. In this state, the
input buffer is enabled for digital input signals.

■ Resistive Pull-Up or Resistive Pull-Down
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In the resistive pull-up and resistive pull-down mode, the GPIO will have a series resistance in both logic 1 and logic 0 output
states. The high data state is pulled up while the low data state is pulled down. This mode is used when the bus is driven by
other signals that may cause shorts.

6.3.2.2 Slew Rate Control

GPIO pins have fast and slow output slew rate options in strong drive mode; this is configured using PORT_SLOW bit of the
Port Configuration register (GPIO_PRTx_PC[25]). Slew rate is individually configurable for each port. This bit is cleared by
default and the port works in fast slew mode. This bit can be set if a slow slew rate is required. Slower slew rate results in
reduced EMI and crosstalk; hence, the slow option is recommended for low-frequency signals or signals without strict timing
constraints.

6.4  High-Speed I/O Matrix 

The high-speed I/O matrix (HSIOM) is a group of high-speed switches that routes GPIOs to the peripherals inside the device.
As the GPIOs are shared for multiple functions, HSIOM multiplexes the pin and connects to a particular peripheral selected
by the user. PSoC 4700S, the Smart I/O block bridges the Port 2 and Port 3 pins to the HSIOM. Other ports connect directly
to the HSIOM.The HSIOM_PORT_SELx register is provided to select the peripheral. It is a 32-bit wide register available for
each port, with each pin occupying four bits. This register provides up to 16 different options for a pin as listed in Table 6-3.

Note The Active and Deep-Sleep sources are pin dependent. See the “Pinouts” section of the device datasheet for more
details on the features supported by each pin.

Table 6-3.  PSoC 4700S HSIOM Port Settings

HSIOM_PORT_SELx ('x' denotes port number and 'y' denotes pin number)

Bits Name (SEL'y') Value Description (Selects pin 'y' source (0  y  7))

4y+3 : 4y

DR 0 Pin is regular firmware-controlled I/O or connected to dedicated hardware block.

CSD_SENSE 4 Pin is a CSD sense pin (analog mode).

CSD_SHIELD 5 Pin is a CSD shield pin (analog mode).

AMUXA 6 Pin is connected to AMUXBUS-A.

AMUXB 7
Pin is connected to AMUXBUS-B. This mode is also used for CSD I/O charging. When CSD I/O 
charging is enabled in CSD_CONTROL, the digital I/O driver is connected to csd_charge signal 
(the pin is still connected to AMUXBUS-B).

ACTIVE_0 8 Pin-specific Active source #0 (TCPWM Output).

ACTIVE_1 9 Pin-specific Active source #1 (SCB-UART).

ACTIVE_2 10 Pin-specific Active source #2 (Reserved).

ACTIVE_3 11 Pin-specific Active source #3 (TCPWM Input).

DEEP_SLEEP_0 12 Pin-specific Deep-Sleep source #0 (LCD - COM).

DEEP_SLEEP_1 13 Pin-specific Deep-Sleep source #1 (LCD - SEG).

DEEP_SLEEP_2 14 Pin-specific Deep-Sleep source #2 (SCB-I2C, SWD, LPCOMP).

DEEP_SLEEP_3 15 Pin-specific Deep-Sleep source #3 (SCB-SPI).

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
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6.5 Smart I/O

The Smart I/O block adds programmable logic to an I/O port. This programmable logic integrates board-level Boolean logic
functionality such as AND, OR, and XOR into the port. The Smart I/O block has these features:

■ Integrate board-level Boolean logic functionality into a port

■ Ability to preprocess HSIOM input signals from the GPIO port pins

■ Ability to post-process HSIOM output signals to the GPIO port pins

■ Support in all device power modes

■ Integrate closely to the I/O pads, providing shortest signal paths with programmability

The PSoC 4700S supports Smart I/O on two ports – Port 2 and Port 3. The register nomenclature ‘PRGIO_PRT0’ denotes
Port 2 Smart I/O registers and ‘PRGIO_PRT1’ denotes Port 3 Smart I/O registers. For a general Smart I/O register descrip-
tion, the ‘PRGIO_PRTx’ nomenclature will be used.

6.5.1 .Overview

The Smart I/O block is positioned in the signal path between the HSIOM and the I/O port. The HSIOM multiplexes the output
signals from fixed-function peripherals and CPU to a specific port pin and vice-versa. The Smart I/O block is placed on this
signal path, acting as a bridge that can process signals from port pins and HSIOM, as shown in Figure 6-4.

Figure 6-4.  Smart I/O Interface

The signal paths supported through the Smart I/O block as
shown in Figure 6-4 are as follows:

1. Implement self-contained logic functions that directly 
operate on port I/O signals

2. Implement self-contained logic functions that operate on 
HSIOM signals or a combination of both

3. Operate on and modify HSIOM output signals and route 
the modified signals to port I/O signals

4. Operate on and modify port I/O signals and route the 
modified signals to HSIOM input signals

The following sections discuss the Smart I/O block compo-
nents, routing, and configuration in detail. In these sections,
GPIO signals (io_data) refer to the input/output signals from
the I/O port; device or chip (chip_data) signals refer to the
input/output signals from HSIOM.

6.5.2 Block Components

The internal logic of the Smart I/O includes these compo-
nents:

■ Clock/reset component

■ Synchronizers

■ LUT3 components

■ Data unit component

6.5.2.1 Clock and Reset 

The clock and reset component selects the Smart I/O
block’s clock (clk_block) and reset signal (rst_block_n). A
single clock and reset signal is used for all components in
the block. The clock and reset sources are determined by
the CLOCK_SRC[4:0] bit field of the PRGIO_PRTx_CTL
register. The selected clock is used for the synchronous
logic in the block components, which includes the I/O input
synchronizers, LUT, and data unit components. The
selected reset is used to asynchronously reset the synchro-
nous logic in the LUT and data unit components. 

Note that the selected clock (clk_block) for the block’s syn-
chronous logic is not phase-aligned with other synchronous
logic in the device, operating on the same clock. Therefore,
communication between Smart I/O and other synchronous
logic should be treated as asynchronous. 
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The following clock sources are available for selection:

■ GPIO input signals “io_data_in[7:0]”. These clock 
sources have no associated reset.

■ HSIOM output signals “chip_data[7:0]”. These clock 
sources have no associated reset.

■ The Smart I/O clock (clk_prgio). This is derived from the 
system clock (clk_sys) using a peripheral clock divider. 
See the Clocking System chapter on page 56 for details 
on peripheral clock dividers. This clock is only available 
in Active and Sleep power modes. The clock can have 
one out of two associated resets: rst_sys_act_n and 
rst_sys_dpslp_n. These resets determine in which sys-
tem power modes the block synchronous state is reset; 
for example, rst_sys_act_n is intended for Smart I/O 
synchronous functionality in the Active power mode and 
reset is activated in the Deep-Sleep power mode. 

■ The low-frequency (40 kHz) system clock (clk_lf). This 
clock is available in Deep-Sleep power mode. This clock 
has an associated reset, rst_lf_dpslp_n.

When the block is enabled, the selected clock (clk_block)
and associated reset (rst_block_n) are released to the fabric
components. When the fabric is disabled, no clock is
released to the fabric components and the reset is activated
(the LUT and data unit components are set to the reset
value of ‘0’). 

The I/O input synchronizers introduce a delay of two
clk_block cycles (when synchronizers are enabled). As a
result, in the first two cycles, the block may be exposed to
stale data from the synchronizer output. Hence, during the
first two clock cycles, the reset is activated and the block is
in bypass mode.

6.5.2.2 Synchronizer

Each GPIO input signal and device input signal (HSIOM input) can be used either asynchronously or synchronously. To use
the signals synchronously, a double flip-flop synchronizer, as shown in Figure 6-5, is placed on both these signal paths to syn-
chronize the signal to the Smart I/O clock (clk_block). The synchronization for each pin/input is enabled or disabled by setting
or clearing the IO_SYNC_EN[i] bit field for GPIO input signal and CHIP_SYNC_EN[i] for HSIOM signal in the
PRGIO_PRT0_SYNC_CTL register, where ‘i’ is the pin number.

Table 6-4.  Clock and Reset Register Control

Register[BIT_POS] Bit Name Description

PRGIO_PRT0_CTL[12:8] CLK_SRC[4:0]

Clock (clk_block)/reset (rst_block_n) source selection:

"0": io_data[0]/'1'

...

"7": io_data[7]/'1'

"8": chip_data[0]/'1'

...

"15": chip_data[7]/'1'

"16": clk_prgio/rst_sys_act_n; asserts reset in any power mode other than Active; that is, 
Smart I/O is active only in Active power mode with clock from the peripheral divider.

"17": clk_prgio/rst_sys_dpslp_n. Smart I/O is active in all power modes with clock from the 
peripheral divider. However, the clock will not be active in Deep-Sleep power mode.

"19": clk_lf/rst_lf_dpslp_n. Smart I/O is active in all power modes with clock from ILO.

"20"-"30": Clock source is a constant '0'. Any of these clock sources should be selected 
when the IP is disabled to ensure low power consumption.

"31": clk_sys/'1'. This selection is NOT intended for "clk_sys" operation. However, for asyn-
chronous operation, three "clk_sys" cycles after enabling the IP, the IP is fully functional 
(reset is de-activated). To be used for asynchronous (clockless) block functionality.
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Figure 6-5.  Smart I/O Clock Synchronizer

6.5.2.3 LUT3 

Each Smart I/O block contains eight lookup table (LUT3) components. The LUT3 component consists of a three-input LUT
and a flip-flop. Each LUT3 block takes three input signals and generates an output based on the configuration set in the
PRGIO_PRTx_LUT_CTLy register (y denotes the LUT3 number). For each LUT3, the configuration is determined by an 8-bit
lookup vector LUT[7:0] and a 2-bit opcode OPC[1:0] in the PRGIO_PRTx_LUT_CTLy register. The 8-bit vector is used as a
lookup table for the three input signals. The 2-bit opcode determines the usage of the flip-flop. The LUT3 configuration for dif-
ferent opcode is shown in Figure 6-6.

PRGIO_PRTx_LUT_SELy registers select the three input signals (tr0_in, tr1_in and tr2_in) going into each LUT3. The input
can come from the following sources:

■ Data unit output

■ Other LUT3 output signals (tr_out)

■ HSIOM output signals (chip_data[7:0])

■ GPIO input signals (io_data[7:0])
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LUT_TR0_SEL[3:0] bits of the PRGIO_PRTx_LUT_SELy register selects the tr0_in signal for the yth LUT3. Similarly,
LUT_TR1_SEL[3:0] bits and LUT_TR2_SEL[3:0] bits select the tr1_in and tr2_in signals respectively. See Table 6-5 for
details.

Table 6-5.  LUT3 Register Control

Register[BIT_POS] Bit Name Description

PRGIO_PRTx_LUT_CTLy[7:0] LUT[7:0]
LUT configuration. Depending on the LUT opcode (LUT_OPC), the internal state, 
and the LUT input signals tr0_in, tr1_in, and tr2_in, the LUT configuration is used 
to determine the LUT output signal and the next sequential state.

PRGIO_PRTx_LUT_CTLy[9:8] LUT_OPC[1:0] LUT opcode specifies the LUT operation as illustrated in Figure 6-6.

PRGIO_PRTx_LUT_SELy[3:0] LUT_TR0_SEL[3:0]

LUT input signal "tr0_in" source selection:

"0": Data unit output

"1": LUT 1 output

"2": LUT 2 output

"3": LUT 3 output

"4": LUT 4 output

"5": LUT 5 output

"6": LUT 6 output

"7": LUT 7 output

"8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)

"9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)

"10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)

"11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)

"12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)

"13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)

"14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)

"15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

PRGIO_PRTx_LUT_SELy[11:8] LUT_TR1_SEL[3:0]

LUT input signal "tr1_in" source selection:

"0": LUT 0 output

"1": LUT 1 output

"2": LUT 2 output

"3": LUT 3 output

"4": LUT 4 output

"5": LUT 5 output

"6": LUT 6 output

"7": LUT 7 output

"8": chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)

"9": chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)

"10": chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)

"11": chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)

"12": io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)

"13": io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)

"14": io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)

"15": io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

PRGIO_PRTx_LUT_SELy[19:16] LUT_TR2_SEL[3:0]
LUT input signal "tr2_in" source selection. Encoding is the same as for 
LUT_TR1_SEL.
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Figure 6-6.  Smart I/O LUT3 Configuration

6.5.2.4 Data Unit

Each Smart I/O block includes a data unit (DU) component. The data unit consists of a simple 8-bit datapath. It is capable of
performing simple increment, decrement, increment/decrement, shift, and AND/OR operations. The operation performed by
the DU is selected using a 4-bit opcode DU_OPC[3:0] bit field in the PRGIO_PRTx_DU_CTL register. 

The data unit component supports up to three input trigger signals (tr0_in, tr1_in, tr2_in) similar to the LUT3 component.
These signals are used to initiate an operation defined by the DU opcode. In addition, the data unit also includes two 8-bit
input data (data0_in[7:0] and data1_in[7:0]) that are used to initialize the 8-bit internal state (data[7:0]) or to provide a refer-
ence. The input to these 8-bit data can come from these sources:
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The trigger signals are selected using the DU_TRx_SEL[3:0] bit field of the PRGIO_PRTx_DU_SEL register. The
DUT_DATAx_SEL[1:0] bits of the PRGIO_PRTx_DU_SEL register selects the 8-bit input data source. The size of the DU
(number of bits used by the datapath) is defined by the DU_SIZE[2:0] bits of the PRGIO_PRTx_DU_CTL register. See
Table 6-6 for register control details.

The data unit generates a single output trigger signal (“tr_out”). The internal state (du_data[7:0]) is captured in flip-flops and
requires clk_block. 

The following pseudo code describes the various datapath operations supported by the DU opcode. Note that “Comb”
describes the combinatorial functionality – that is, functionalities that operate independent of previous output states. “Reg”
describes the registered functionality – that is, functionalities that operate on inputs and previous output states (registered
using flip-flops).
// The following is shared by all operations.
mask = (2 ^ (DU_SIZE+1) - 1)
data_eql_data1_in = (data & mask) == (data1_in & mask));
data_eql_0        = (data & mask) == 0);
data_incr         = (data + 1) & mask;
data_decr         = (data - 1) & mask;
data0_masked      = data_in0 & mask;

// INCR operation: increments data by 1 from an initial value (data0) until it reaches a
// final value (data1).
Comb:tr_out = data_eql_data1_in;

Table 6-6.  Data Unit Register Control

Register[BIT_POS] Bit Name Description

PRGIO_PRTx_DU_CTL[2:0] DU_SIZE[2:0]
Size/width of the data unit (in bits) is DU_SIZE+1. For example, if DU_SIZE is 7, 
the width is 8 bits.

PRGIO_PRTx_DU_CTL[11:8] DU_OPC[3:0]

Data unit opcode specifies the data unit operation:

"1": INCR

"2": DECR

"3": INCR_WRAP

"4": DECR_WRAP

"5": INCR_DECR

"6": INCR_DECR_WRAP

"7": ROR

"8": SHR

"9": AND_OR

"10": SHR_MAJ3

"11": SHR_EQL

Otherwise: Undefined.

PRGIO_PRTx_DU_SEL[3:0] DU_TR0_SEl[3:0]

Data unit input signal "tr0_in" source selection:

"0": Constant '0'.

"1": Constant '1'.

"2": Data unit output.

"10-3": LUT 7 - 0 outputs.

Otherwise: Undefined.

PRGIO_PRTx_DU_SEL[11:8] DU_TR1_SEl[3:0] Data unit input signal "tr1_in" source selection. Encoding same as DU_TR0_SEL

PRGIO_PRTx_DU_SEL[19:16] DU_TR2_SEl[3:0] Data unit input signal "tr2_in" source selection. Encoding same as DU_TR0_SEL

PRGIO_PRTx_DU_SEL[25:24] DU_DATA0_SEL[1:0]
Data unit input data "data0_in" source selection:

PRGIO_PRTx_DU_SEL[29:28] DU_DATA1_SEL[1:0]
Data unit input data "data1_in" source selection. Encoding same as 
DU_DATA0_SEL.

PRGIO_PRTx_DATA[7:0] DATA[7:0] Data unit input data source.
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Reg:  data <= data;
      if (tr0_in)      data <= data0_masked; //tr0_in is reload signal - loads masked data0
                                             // into data
      else if (tr1_in) data <= data_eql_data1_in ? data : data_incr; //increment data until
                                                                     // it equals data1

// INCR_WRAP operation: operates similar to INCR but instead of stopping at data1, it wraps 
// around to data0.
Comb:tr_out = data_eql_data1_in;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked;
      else if (tr1_in) data <= data_eql_data1_in ? data0_masked : data_incr; 

// DECR operation: decrements data from an initial value (data0) until it reaches 0.
Comb:tr_out = data_eql_0;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked;
      else if (tr1_in) data <= data_eql_0        ? data : data_decr; 

// DECR_WRAP operation: works similar to DECR. Instead of stopping at 0, it wraps around to 
// data0.
Comb:tr_out = data_eql_0;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked;
      else if (tr1_in) data <= data_eql_0        ? data0_masked: data_decr; 

// INCR_DECR operation: combination of INCR and DECR. Depending on trigger signals it either 
// starts incrementing or decrementing. Increment stops at data1 and decrement stops at 0.
Comb:tr_out = data_eql_data1_in | data_eql_0;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked; // Increment operation takes precedence over
                                             // decrement when both signal are available
      else if (tr1_in) data <= data_eql_data1_in ? data : data_incr;
      else if (tr2_in) data <= data_eql_0  ? data : data_decr;

// INCR_DECR_WRAP operation: same functionality as INCR_DECR with wrap around to data0 on 
// touching the limits.
Comb:tr_out = data_eql_data1_in | data_eql_0;
Reg:  data <= data;
      if (tr0_in)      data <= data0_masked;
      else if (tr1_in) data <= data_eql_data1_in ? data0_masked : data_incr;
      else if (tr2_in) data <= data_eql_0  ? data0_masked : data_decr;

// ROR operation: rotates data right and LSB is sent out. The data for rotation is taken from 
// data0.
Comb:tr_out = data[0];
Reg:  data <= data;
      if (tr0_in)      data          <= data0_masked;
      else if (tr1_in) {
                       data          <= {0, data[7:1]} & mask; //Shift right operation
                       data[du_size] <= data[0]; //Move the data[0] (LSB) to MSB
      }

// SHR operation: performs shift register operation. Initial data (data0) is shifted out and 
// data on tr2_in is shifted in.
Comb:tr_out = data[0];
Reg:  data <= data;
      if (tr0_in)      data          <= data0_masked;
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      else if (tr1_in) {
                       data          <= {0, data[7:1]} & mask; //Shift right operation
                       data[du_size] <= tr2_in; //tr2_in Shift in operation
      }

// SHR_MAJ3 operation: performs the same functionality as SHR. Instead of sending out the 
// shifted out value, it sends out a '1' if in the last three samples/shifted-out values
// (data[0]), the signal high in at least two samples. otherwise, sends a '0'. This function
// sends out the majority of the last three samples. 
Comb:tr_out =   (data == 0x03)
               | (data == 0x05) 
               | (data == 0x06) 
               | (data == 0x07);
Reg:  data <= data;
      if (tr0_in)      data          <= data0_masked;
      else if (tr1_in) {
                       data          <= {0, data[7:1]} & mask; 
                       data[du_size] <= tr2_in;
      }

// SHR_EQL operation: performs the same operation as SHR. Instead of shift-out, the output is 
// a comparison result (data0 == data1).
Comb:tr_out = data_eql_data1_in;
Reg:  data <= data;
      if      (tr0_in) data          <= data0_masked;
      else if (tr1_in) {
                       data          <= {0, data[7:1]} & mask; 
                       data[du_size] <= tr2_in;
      }

// AND_OR operation: ANDs data1 and data0 along with mask; then, ORs all the bits of the
// ANDed output.
Comb:tr_out = | (data & data1_in & mask);
Reg:  data <= data;
      if (tr0_in) data <= data0_masked;
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6.5.3 Routing

The Smart I/O block includes many switches that are used to route the signals in and out of the block and also between vari-
ous components present inside the block. The routing switches are handled through the PRTGIO_PRTx_LUT_SELy and
PRGIO_PRTx_DU_SEL registers. Refer to the PSoC 4700S Family: PSoC 4 Registers TRM for details. The Smart I/O inter-
nal routing is shown in Figure 6-7. In the figure, note that LUT7 to LUT4 operate on io_data/chip_data[7] to io_data/
chip_data[4] whereas LUT3 to LUT0 operate on io_data/chip_data[3] to io_data/chip_data[0].

Figure 6-7.  Smart I/O Routing

6.5.4 Operation

The Smart I/O block should be configured and operated as follows: 

1. Before enabling the block, all the components should be configured and the routing should be selected, as explained in 
“Block Components” on page 43.

2. In addition to configuring the components and routing, some block level settings need to be configured correctly for 
desired operation.

a. Bypass control: The Smart I/O path can be bypassed for a particular GPIO signal by setting the BYPASS[i] bit field in 
the PRGIO_PRTx_CTL register. When bit 'i' is set in the BYPASS[7:0] bit field, the ith GPIO signal is bypassed to the 
HSIOM signal path directly – Smart I/O logic will not be present in that signal path. This is useful when the Smart I/O 
functionality is required only on select I/Os.

b. Pipelined trigger mode: The LUT3 input multiplexers and the LUT3 component itself do not include any combinatorial 
loops. Similarly, the data unit also does not include any combinatorial loops. However, when one LUT3 interacts with 
the other or to the data unit, inadvertent combinatorial loops are possible. To overcome this limitation, the 
PIPELINE_EN bit field of the PRGIO_PRTx_CTL register is used. When set, all the outputs (LUT3 and data unit) are 
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registered (flopped) before branching out to other components. The output will be unflopped when the PIPELINE_EN 
bit is cleared.

3. After the Smart I/O block is configured for the desired functionality, the block can be enabled by setting the ENABLED bit 
field of the PRGIO_PRTx_CTL register. If disabled, the Smart I/O block is put in bypass mode, where the GPIO signals 
are directly controlled by the HSIOM signals and vice-versa. The Smart I/O block must be configured; that is, all register 
settings must be updated before enabling the block to prevent glitches during register updates.

6.6 I/O State on Power Up

During power up all the GPIOs are in high-impedance analog state and the input buffers are disabled. During run time, GPIOs
can be configured by writing to the associated registers. Note that the pins supporting debug access port (DAP) connections
(SWD lines) are always enabled as SWD lines during power up. However, the DAP connection can be disabled or reconfig-
ured for general-purpose use through HSIOM. However, this reconfiguration takes place only after the device boots and start
executing code.

6.7 Behavior in Low-Power Modes

 shows the status of GPIOs in low-power modes.

6.8 Interrupt

In the PSoC 4 device, all the port pins have the capability to generate interrupts. As shown in Figure 6-2, the pin signal is
routed to the interrupt controller through the GPIO Edge Detect block.

Figure 6-8 shows the GPIO Edge Detect block architecture.

Table 6-7.  Smart I/O Block Controls

Register [BIT_POS] Bit Name Description

PRGIO_PRTx_CTL[25] PIPELINE_EN

Enable for pipeline register:

'0': Disabled (register is bypassed).

'1': Enabled

PRGIO_PRTx_CTL[31] ENABLED

Enable Smart I/O. Should only be set to '1' when the Smart I/O is completely configured:

'0': Disabled (signals are bypassed; behavior as if BYPASS[7:0] is 0xFF). When disabled, the 
block (data unit and LUTs) reset is activated.

If the block is disabled:

- The PIPELINE_EN register field should be set to '1', to ensure low power consumption.

- The CLOCK_SRC register field should be set to 20 to 30 (clock is constant '0'), to ensure 
low power consumption.

'1': Enabled. When enabled, it takes three "clk_block" clock cycles until the block reset is de-
activated and the block becomes fully functional. This action ensures that the I/O pins' input 
synchronizer states are flushed when the block is fully functional.

PRGIO_PRTx_CTL[7:0] BYPASS[7:0]

Bypass of the Smart I/O, one bit for each I/O pin: BYPASS[i] is for I/O pin i. When ENABLED 
is '1', this field is used. When ENABLED is '0', this field is not used and Smart I/O is always 
bypassed.

'0': No bypass (Smart I/O is present in the signal path)

'1': Bypass (Smart I/O is absent in the signal path)

Table 6-8.  GPIO in Low-Power Modes

Low-Power Mode Status

Sleep
■ GPIOs are active and can be driven by peripherals such as TCPWM,, which can work in sleep mode.

■ Input buffers are active; thus an interrupt on any I/O can be used to wake up the CPU.

Deep-Sleep
■ GPIO output pin states are latched and remain in the frozen state, except the I2C pins.  block can work in the 

deep-sleep mode and can wake up the CPU on address match event.

■ Input buffers are also active in this mode; pin interrupts are functional.
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Figure 6-8.  GPIO Edge Detect Block Architecture

An edge detector is present at each pin. It is capable of
detecting rising edge, falling edge, and both edges without
reconfiguration. The edge detector is configured by writing
into the EDGE_SEL bits of the Port Interrupt Configuration
register, GPIO_PRTx_INTR_CFG, as shown in Table 6-9.

Besides the pins, edge detector is also present at the glitch
filter output. This filter can be used on one of the pins of a
port. The pin is selected by writing to the FLT_SEL field of
the GPIO_PRTx_INTR_CFG register as shown in
Table 6-10.

The edge detector outputs of a port are ORed together and
then routed to the interrupt controller (NVIC in the CPU sub-
system). Thus, there is only one interrupt vector per port. On
a pin interrupt, it is required to know which pin caused an
interrupt. This is done by reading the Port Interrupt Status
register, GPIO_PRTx_INTR. This register not only includes
the information on which pin triggered the interrupt, it also
includes the pin status; it allows the CPU to read both infor-
mation in a single read operation. This register has one
more important use – to clear the interrupt. Writing ‘1’ to the
corresponding status bit clears the pin interrupt. It is impor-

tant to clear the interrupt status bit; otherwise, the interrupt
will occur repeatedly for a single trigger or respond only
once for multiple triggers, which is explained later in this
section. Also, note that when the Port Interrupt Control Sta-
tus register is read when an interrupt is occurring on the cor-
responding port, it can result in the interrupt not being
properly detected. Therefore, when using GPIO interrupts, it
is recommended to read the status register only inside the
corresponding interrupt service routine and not in any other
part of the code. Table 6-11 shows the Port Interrupt Status
register bit fields.

The edge detector block output is routed to the Interrupt
Source Multiplexer shown in Figure 5-3 on page 28, which
gives an option of Level and Rising Edge detect. If the Level
option is selected, an interrupt is triggered repeatedly as
long as the Port Interrupt Status register bit is set. If the Ris-
ing Edge detect option is selected, an interrupt is triggered
only once if the Port Interrupt Status register is not cleared.
Thus, it is important to clear the interrupt status bit if the
Edge Detect block is used. 
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Table 6-9.  Edge Detector Configuration

EDGE_SEL Configuration

00 Interrupt is disabled

01 Interrupt on Rising Edge

10 Interrupt on Falling Edge

11 Interrupt on Both Edges

Table 6-10.  Glitch filter Input Selection

FLT_SEL Selected Pin

000 Pin 0 is selected

001 Pin 1 is selected

010 Pin 2 is selected

011 Pin 3 is selected

100 Pin 4 is selected

101 Pin 5 is selected

110 Pin 6 is selected

111 Pin 7 is selected

Table 6-11.  Port Interrupt Status Register

GPIO_PRTx_INTR Description

0000b to 0111b
Interrupt status on pin 0 to pin 7. Writing ‘1’ 
to the corresponding bit clears the interrupt

1000b Interrupt status from the glitch filter

10000b to 10111 Pin 0 to Pin 7 status

11000b Glitch filter output status
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6.9 Peripheral Connections

6.9.1 Firmware Controlled GPIO

See  to know the HSIOM settings for a firmware controlled
GPIO. GPIO_PRTx_DR is the data register used to read
and write the output data for the GPIOs. A write operation to
this register changes the GPIO output to the written value.
Note that a read operation reflects the output data written to
this register and not the current state of the GPIOs. Using
this register, read-modify-write sequences can be safely
performed on a port that has both input and output GPIOs.

In addition to the data register, three other registers –
GPIO_PRTx_DR_SET, GPIO_PRTx_DR_CLR, and
GPIO_PRTx_INV – are provided to set, clear, and invert the
output data respectively of a specific pin in a port without
affecting other pins. Writing ‘1’ into these registers will set,
clear, or invert; writing ‘0’ will have no affect on the pin sta-
tus.

GPIO_PRTx_PS is the I/O pad register that provides the
state of the GPIOs when read. Writes to this register have
no effect.

6.9.2 Analog I/O

Analog resources, such as (LPCOMPs), which require low-
impedance routing paths have dedicated pins. Dedicated
analog pins provide direct connections to specific analog
blocks. They help improve performanceand should be given
priority over other pins when using these analog resources.
See thet device datasheet for details on these dedicated
pins.

To configure a GPIO as a dedicated analog I/O, it should be
configured in high-impedance analog mode (see Table 6-2)
and the respective connection should be enabled in the spe-
cific analog resource. This can be done via registers associ-
ated with the respective analog resources.

To configure a GPIO as an analog pin connecting to AMUX-
BUS, it should be configured in high-impedance analog
mode and then routed to AMUXBUS using the
HSIOM_PORT_SELx register.

6.9.3 LCD Drive

All GPIOs have the capability of driving an LCD common or
segment. HSIOM_PORT_SELx registers are used to select
the pins for LCD drive. See the LCD Direct Drive chapter on
page 160 for details.

6.9.4 CapSense

The pins that support CSD can be configured as CapSense
widgets such as buttons, slider elements, touchpad ele-
ments, or proximity sensors. CapSense also requires exter-
nal tank capacitors and shield lines. Table 6-12shows the
GPIO and HSIOM settings required for CapSense. See the
CapSense chapter on page 156 for more information.

6.9.5 MagSense

The MagSense block uses two pins for each sensor. One
pin is for sensor excitation and the other pin is to sense a
signal across the tank circuit.

Table 6-12.  CapSense Settings

CapSense Pin
GPIO Drive Mode 
(GPIO_PRTx_PC)

Digital Input Buffer Setting 
(GPIO_PRTx_PC2)

HSIOM Setting

Sensor High-Impedance Analog Disable Buffer CSD_SENSE

Shield High-Impedance Analog Disable Buffer CSD_SHIELD

CMOD (normal operation) High-Impedance Analog Disable Buffer AMUXBUS A or CSD_COMP

CMOD (GPIO precharge, only available in select 
GPIO)

High-Impedance Analog Disable Buffer AMUXBUS B or CSD_COMP

CSH TANK (GPIO precharge, only available in 
select GPIO)

High-Impedance Analog Disable Buffer AMUXBUS B or CSD_COMP

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
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6.9.6 Serial Communication Block (SCB)

SCB, which can be configured as UART, I2C, and SPI, has dedicated connections to the pin. See thet device datasheet for
details on these dedicated pins. When the UART and SPI mode is used, the SCB controls the digital output buffer drive mode
for the input pin to keep the pin in the high-impedance state. That is, the SCB block disables the output buffer at the UART Rx
pin and MISO pin when configured as SPI master, and MOSI and select line when configured as SPI slave. This functionality
overrides the drive mode settings, which is done using the GPIO_PRTx_PC register.

6.9.7 Timer, Counter, and Pulse Width Modulator (TCPWM) Block

TCPWM has dedicated connections to the pin. See the device datasheet for details on these dedicated pins. Note that when
the TCPWM block inputs such as start and stop are taken from the pins, the drive mode can be only high-z digital because the
TCPWM block disables the output buffer at the input pins.

6.10 Registers

Note The 'x' in the GPIO register name denotes the port number. For example, GPIO_PTR1_DR is the Port 1 output data
register. The ‘x’ in the Smart I/O register name denotes the Smart I/O port number. The Smart I/O port number and the actual
port number may vary. See 6.5 Smart I/O on page 43 for details.

Table 6-13.  I/O Registers

Name Description

GPIO_PRTx_DR Port Output Data Register

GPIO_PRTx_DR_SET Port Output Data Set Register

GPIO_PRTx_DR_CLR Port Output Data Clear Register

GPIO_PRTx_DR_INV Port Output Data Inverting Register

GPIO_PRTx_PS Port Pin State Register - Reads the logical pin state of I/O

GPIO_PRTx_PC Port Configuration Register - Configures the output drive mode, input threshold, and slew rate

GPIO_PRTx_PC2 Port Secondary Configuration Register - Configures the input buffer of I/O pin

GPIO_PRTx_INTR_CFG Port Interrupt Configuration Register

GPIO_PRTx_INTR Port Interrupt Status Register

HSIOM_PORT_SELx HSIOM Port Selection Register

PRGIO_PRTx_CTL Smart I/O port control register

PRGIO_PRTx_SYNC_CTL Smart I/O Synchronization control register

PRGIO_PRTx_LUT_SELy Smart I/O yth LUT component input selection register

PRGIO_PRTx_LUT_CTLy Smart I/O yth LUT component control register

PRGIO_PRTx_DU_SEL Smart I/O data unit input selection register

PRGIO_PRTx_DU_CTL Smart I/O data unit control register

PRGIO_PRTx_DATA Smart I/O data unit input data source register

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
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7.   Clocking System

The PSoC® 4 clock system includes these clock resources:

■ Two internal clock sources:

❐ 24–48 MHz internal main oscillator (IMO) with ±2 percent accuracy across all frequencies with trim

❐ 40-kHz internal low-speed oscillator (ILO) with ±60 percent accuracy with trim (can be calibrated using the IMO)

■ Two external clock sources:

❐ External clock (EXTCLK) generated using a signal from an I/O pin

❐ External 32-kHz watch crystal oscillator (WCO) 

■ High-frequency clock (HFCLK) of up to 48 MHz, selected from IMO or external clock

■ Low-frequency clock (LFCLK) sourced by ILO

■ Dedicated prescaler for system clock (SYSCLK) of up to 48 MHz sourced by HFCLK

■ Six 16-bit peripheral clock dividers

■ Two fractional dividers for accurate clock generation

■ Eleven digital and analog peripheral clocks

7.1 Block Diagram

Figure 7-1 gives a generic view of the clocking system in PSoC 4 devices.
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Figure 7-1.  Clocking System Block Diagram

The four clock sources in the device are IMO, EXTCLK,
WCO, and ILO, as shown in Figure 7-1. The HFCLK mux
selects the HFCLK source from the EXTCLK or the IMO.
The HFCLK frequency can be a maximum of 48 MHz.

7.2 Clock Sources

7.2.1 Internal Main Oscillator

The internal main oscillator (IMO) is an accurate, high-
speed internal (crystal-less) oscillator that is available as the
main clock source during Active and Sleep modes. It is the
default clock source for the device. Its frequency can be
changed in 4-MHz steps between 24 MHz and 48 MHz, with
an accuracy of ±2 percent. 

The IMO frequency is changed using the
CLK_IMO_SELECT register. The default frequency is
24 MHz. 

To get the accurate IMO frequency, trim registers are pro-
vided – CLK_IMO_TRIM1 provides coarse trimming with a
step size of 120 kHz, CLK_IMO_TRIM2 is for fine trimming
with a step size of 15 kHz, and the TCTRIM field in
CLK_IMO_TRIM3 is for temperature compensation. Trim
settings are generated during manufacturing for every fre-
quency that can be selected by CLK_IMO_SELECT. These
trim settings are stored in SFLASH. 

The trim settings are loaded during device startup; however,
firmware can load new trim values and change the fre-
quency in run time. Follow the algorithm in Figure 7-2 to
change the IMO frequency.
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Table 7-1.  IMO Frequency

CLK_IMO_SELECT[2:0] Nominal IMO Frequency

0 24 MHz

1 28 MHz

2 32 MHz

3 36 MHz

4 40 MHz

5 44 MHz

6 48 MHz

Table 7-1.  IMO Frequency

CLK_IMO_SELECT[2:0] Nominal IMO Frequency
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Figure 7-2.  Change IMO Frequency

7.2.1.1 Startup Behavior

After reset, the IMO is configured for 24-MHz operation.
During the “boot” portion of startup, trim values are read

from flash and the IMO is configured to achieve datasheet
specified accuracy.

7.2.1.2 Programming Clock (36-MHz)

IMO must be set to 48 MHz to program the flash. It is used
to drive the charge pumps of flash and for program/erase
timing purposes. 

7.2.2 Internal Low-speed Oscillator

The internal low-speed oscillator operates with no external components and outputs a stable clock at 40-kHz nominal. The
ILO is relatively low power and low accuracy. It can be calibrated periodically using a higher accuracy, high-frequency clock to
improve accuracy. The ILO is available in all power modes except Hibernate and Stop modes. The ILO is used as the system
low-frequency clock LFCLK in the device. The ILO is a relatively inaccurate (±60 percent overvoltage and temperature) oscil-
lator, which is used to generate low-frequency clocks. If calibrated against the IMO when in operation, the ILO is accurate to
±10 percent for stable temperature and voltage. The ILO is enabled and disabled with register CLK_ILO_CONFIG bit
ENABLE.
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7.2.3 External Clock (EXTCLK)

The external clock (EXTCLK) is a MHz range clock that can be generated from a signal on a designated PSoC 4 pin. This
clock may be used instead of the IMO as the source of the system high-frequency clock, HFCLK. The allowable range of
external clock frequencies is 1–48 MHz. The device always starts up using the IMO and the external clock must be enabled in
user mode; so the device cannot be started from a reset, which is clocked by the external clock.

When manually configuring a pin as the input to the EXTCLK, the drive mode of the pin must be set to high-impedance digital
to enable the digital input buffer. See the I/O System chapter on page 37 for more details.

7.2.4 Watch Crystal Oscillator (WCO)

The PSoC device contains an oscillator to drive a 32.768-kHz watch crystal. Similar to ILO, WCO is also available in all
modes. The WCO is enabled and disabled with the WCO_CONFIG register’s ENABLE bit.

WCO can be forced into low-power mode by setting the WCO_CONFIG[0] bit. Alternatively, the block can be put in the Auto
mode where low-power mode transition happens only when the device goes into Deep-Sleep mode. This mode is enabled by
setting WCO_CONFIG[1]. Note that the Auto mode will be overridden if the block is forced to low-power mode by setting
WCO_CONFIG[0].

The difference in operation between the normal and low-power mode is the amplifier gain. The low-power mode is expected
to have a lower amplifier gain to effectively reduce power. The amplifier gain for the two modes can be set in the WCO_TRIM
register.

The IMO supports locking to the WCO. The WCO contains the logic to measure and compare the IMO clock and trim the IMO.
The WCO implements a digital phased lock loop scheme to support a clock accuracy of ±1 percent. The IMO trimming logic of
the WCO can be enabled by the use of the DPLL_ENABLE bit of the WCO_CONFIG. The user firmware, when using this fea-
ture, must make sure that there is a minimum time of 500 ms between the WCO enable and the DPLL_ENABLE events.

7.3 Clock Distribution

PSoC 4 clocks are developed and distributed throughout the device, as shown in Figure 7-1. The distribution configuration
options are as follows:

■ HFCLK input selection

■ LFCLK input selection

■ SYSCLK prescaler configuration

■ Peripheral divider configuration

7.3.1 .HFCLK Input Selection

HFCLK in PSoC 4 has two input options: IMO and EXTCLK. The HFCLK input is selected using the CLK_SELECT register’s
HFCLK_SEL bits, as described in Table 7-2. 

Pre-divider is provided for HFCLK to limit the peak current of the device. The divider options are 2, 4, and 8 configured using
HFCLK_DIV bits of the CLK_SELECT register. Default divider is 4.

Table 7-2.  HFCLK Input Selection Bits _SEL

Name Description

_SEL[2:0]

HFCLK input clock selection

0: IMO. Uses the IMO as the source of the HFCLK

1: EXTCLK. Uses the EXTCLK as the source of the HFCLK
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7.3.2 LFCLK Input Selection

Only the ILO can be the source for LFCLK in the PSoC 4700S device.

7.3.3 SYSCLK Prescaler Configuration

The SYSCLK Prescaler allows the device to divide the HFCLK before use as SYSCLK, which allows for non-integer relation-
ships between peripheral clocks and the system clock. SYSCLK must be equal to or faster than all other clocks in the device
that are derived from HFCLK. The SYSCLK prescaler is capable of dividing the HFCLK by powers of 2 between 2^0 = 1 and
2^7 = 128. The prescaler divide value is set using register CLK_SELECT bits SYSCLK_DIV, as described in Table 7-3. The
prescaler is initially configured to divide by 1.

 

7.3.4  Peripheral Clock Divider Configuration

PSoC 4 has eight clock dividers, which include six 16-bit clock dividers and two 16.5-bit fractional clock dividers. Fractional
clock dividers allow the clock divisor to include a fraction of 0..31/32. The formula for the output frequency of a fractional
divider is Fout = Fin / (INT16_DIV + (FRAC5_DIV/32)). For example, a 16.5-divider with an integer divide value of 2
(INT16_DIV=3, FRAC5_DIV=0), produces signals to generate a 16-MHz clock from a 48-MHz HFCLK. A 16.5-divider with an
integer divide value of 3 (INT16_DIV=3, FRAC5_DIV=0), produces signals to generate a 12-MHz clock from a 48-MHz
HFCLK. A 16.5-divider with an integer divide value of 2 (INT16_DIV=3) and a fractional divider of 16 (FRAC5_DIV=16) pro-
duces signals to generate a 13.7-MHz clock from a 48-MHz HFCLK. Not all 13.7-MHz clock periods are equal in size; half of
them will be 3 HFCLK cycles and half of them will be 2 HFCLK cycles. 

Fractional dividers are useful when a high-precision clock is required (for example, for a UART/SPI serial interface). Frac-
tional dividers are not used when a low jitter clock is required, because the clock periods have a jitter of 1 HFCLK cycle.

The divide value for each of the 16 integer clock dividers are configured with the PERI_DIV_16_CTLx registers and the four
16.5-bit fractional clock dividers are configured with the PERI_DIV_16_5_CTLx registers. Table 7-4 and Table 7-5 describe
the configurations for these registers.    

Table 7-3.  SYSCLK Prescaler Divide Value Bits SYSCLK_DIV

Name Description

SYSCLK_DIV[3:0]

SYSCLK prescaler divide value

0: SYSCLK = HFCLK

1: SYSCLK = HFCLK/2

2: SYSCLK = HFCLK/4

3: SYSCLK = HFCLK/8

4: SYSCLK = HFCLK/16

5: SYSCLK = HFCLK/32

6: SYSCLK = HFCLK/64

7: SYSCLK = HFCLK/128

Table 7-4.  Non-Fractional Peripheral Clock Divider Configuration Register PERI_DIV_16_CTLx

Bits Name Description

0 ENABLE_x
Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as 
a result on a DISABLE command.

23:8 INT16_DIV_x Integer division by (1+INT16_DIV). Allows for integer divisions in the range [, 65536].
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Each divider can be enabled using the PERI_DIV_CMD register. This register acts as the command register for all 16 integer
dividers and four fractional dividers. The PERI_DIV_CMD register format is as follows.

The SEL_TYPE field specifies the type of divider being configured. This field is '1' for the 16-bit integer divider and '2' for the
16.5-bit fractional divider. 

The SEL_DIV field specifies the number of the specific divider being configured. For the integer dividers, this number ranges
from 0 to 15. For fractional dividers, this field is any value in the range 0 to 3. When SEL_TYPE = 63 and SEL_TYPE = 3, no
divider is specified.

The (PA_SEL_TYPE, PA_SEL_DIV) field pair allows a divider to be phase-aligned with another divider. The PA_SEL_DIV
specifies the divider which is phase aligned. Any enabled divider can be used as a reference. The PA_SEL_TYPE specifies
the type of the divider being phase aligned. When PA_SEL_DIV = 63 and PA_SEL_TYPE = 3, HFCLK is used as a reference.

Consider a 48-MHz HFCLK and a need for a 12-MHz divided clock A and a 8-MHz divided clock B. Clock A uses a 16-bit inte-
ger divider 0 and is created by aligning it to HF_CLK ((PA_SEL_TYPE, PA_SEL_DIV) is (3, 63)) and
DIV_16_CTL0.INT16_DIV is 3. Clock B uses the integer divider 1 and is created by aligning it to clock A ((PA_SEL_TYPE,
PA_SEL_DIV) is (1, 0)) and DIV_16_CTL1.INT16_DIV is 5. This guarantees that clock B is phase-aligned with clock A as the
smallest common multiple of the two clock periods is 12 HFCLK cycles, the clocks A and B will be aligned every 12 HFCLK
cycles. Note that clock B is phase-aligned to clock A, but still uses HFCLK as a reference clock for its divider value.

Each peripheral block in PSoC has a unique peripheral clock (PERI#_CLK) associated with it. Each of the peripheral clocks
have a multiplexed input, which can take the input clock from any of the existing clock dividers. 

Table 7-6 shows the mapping of the mux output to the corresponding peripheral blocks (shown in Figure 7-1). Any of the 
peripheral clock dividers can be mapped to a specific peripheral by using their respective PERI_PCLK_CTLx register, as 
described in Table 7-7.

Table 7-5.  Fractional Peripheral Clock Divider Configuration Register PERI_DIV_16_5_CTLx

Bits Name Description

0 ENABLE_x
Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as 
a result on a DISABLE command.

7:3 FRAC5_DIV_x
Fractional division by (FRAC5_DIV/32). Allows for fractional divisions in the range [0, 31/32].

Note that fractional division results in clock jitter as some clock periods may be 1 "clk_hf" cycle longer 
than other clock periods.

23:8 INT16_DIV_x Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536]. 

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description Enable Disable PA_SEL_TYPE PA_SEL_DIV SEL_TYPE SEL_DIV

Table 7-6.  Peripheral Clock Multiplexer Output Mapping

PERI#_CLK Peripheral

0 SCB0 

1 SCB1 

2 CSD 

3 TCPWM0

4 TCPWM1

5 TCPWM2

6 TCPWM3

7 TCPWM4

8 Smart I/O

9 Smart I/O

10 LCD
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7.4 Low-Power Mode Operation

The high-frequency clocks including the IMO, EXTCLK, HFCLK, SYSCLK, and peripheral clocks operate only in Active and
Sleep modes. The ILO, WCO, and LFCLK operate in all power modes.

7.5 Register List

Table 7-7.  Programmable Clock Control Register - PERI_PCLK_CTLx

Bits Name Description

5:0 SEL_DIV
Specifies one of the dividers of the divider type specified by SEL_TYPE. If SEL_DIV is "" and SEL_TYPE is 
"1", then the (zero being first) 16-bit clock divider will be routed to the mux output for peripheral clock_x. Sim-
ilarly, if SEL_DIV is "0" and SEL_TYPE is "2", then the first 16.5 clock divider will be routed to the mux output.

7:6 SEL_TYPE

0: Do not use

1: 16.0 (integer) clock dividers

2: 16.5 (fractional) clock dividers

3:

Table 7-8.  Clocking System Register List

Register Name Description

CLK_IMO_TRIM1 IMO Trim Register - This register contains IMO trim for course correction.

CLK_IMO_TRIM2 IMO Trim Register - This register contains IMO trim for fine correction. 

PWR_BG_TRIM Bandgap Trim Registers - These registers control the trim of the bandgap reference, allowing manipulation of 
the voltage references in the device.PWR_BG_TRIM

CLK_ILO_CONFIG ILO Configuration Register - This register controls the ILO configuration.

CLK_IMO_CONFIG IMO Configuration Register - This register controls the IMO configuration.

CLK_SELECT 
Clock Select - This register controls clock tree configuration, selecting different sources for the system 
clocks.

WCO_CONFIG WCO Enable. This register enables or disables the external watch crystal oscillator.

PERI_DIV_16_CTLx
Peripheral Clock Divider Control Registers - These registers configure the peripheral clock dividers, setting 
integer divide value, and enabling or disabling the divider.

PERI_DIV_16_5_CTLx
Peripheral Clock Fractional Divider Control Registers - These registers configure the peripheral clock divid-
ers, setting fractional divide value, and enabling or disabling the divider.

PERI_PCLK_CTLx Programmable Clock Control Registers - These registers are used to select the input clocks to peripherals.
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8.   Power Supply and Monitoring

PSoC® 4 is capable of operating from a 1.71 V to 5.5 V externally supplied voltage. This is supported through one of the two
following operating ranges:

■ 1.80 V to 5.50 V supply input to the internal regulators

■ 1.71 V to 1.89 V1 direct supply

There are two internal regulators to support the various power modes - Active digital regulator and Deep-Sleep regulator.

8.1 Block Diagram

Figure 8-1.  Power System Block Diagram

Figure 8-1 shows the power system diagram and all the power supply pins. The system has one regulator in Active mode for
the digital circuitry. There is no analog regulator; the analog circuits run directly from the VDDA input. There is a separate reg-

ulator for Deep-Sleep mode. 

The supply voltage range is 1.71 V to 5.5 V with all functions and circuits operating in that range. The device allows two dis-
tinct modes of power supply operation: unregulated external supply and regulated external supply modes. 

1. When the system supply is in the range 1.80 V to 1.89 V, both direct supply and internal regulator options can be used. The selection can be made depending
on the user’s system capability. Note that the supply voltage cannot go above 1.89 V for the direct supply option because it will damage the device. It should
not go below 1.80 V for the internal regulator option because the regulator will turn off.
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8.2 Power Supply Scenarios

The following diagrams illustrate the different ways in which the device is powered.

8.2.1 Single 1.8 V to 5.5 V Unregulated Supply

If a 1.8-V to 5.5-V supply is to be used as the unregulated power supply input, it should be connected as shown in Figure 8-2.

Figure 8-2.  Single Regulated VDDD Supply 

In this mode, the device is powered by an external power supply that can be anywhere in the range of 1.8 V to 5.5 V. This
range is also designed for battery-powered operation; for instance, the chip can be powered from a battery system that starts
at 3.5 V and works down to 1.8 V. In this mode, the internal regulator supplies the internal logic. The VCCD output must be
bypassed to ground via a 0.1 µF external ceramic capacitor. 

Bypass capacitors are also required from VDDD to ground; typical practice for systems in this frequency range is to use a bulk
capacitor in the 1 µF to 10 µF range in parallel with a smaller ceramic capacitor (0.1 µF, for example). Note that these are sim-
ply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic
should be simulated to design and obtain optimal bypassing.

8.2.2 Direct 1.71 V to 1.89 V Regulated Supply

In direct supply configuration, VCCD and VDDD are shorted together and connected to a 1.71-V to 1.89-V supply. This regu-

lated supply should be connected to the device, as shown in Figure 8-3.

PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD

0.1 uF 1 uF

1.8 V - 5.5 V

0.1 uF
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Figure 8-3.  Single Unregulated VDDD Supply 

In this mode, VCCD and VDDD pins are shorted together and
bypassed. The internal regulator should be disabled in firm-
ware. See 8.3.1.1 Active Digital Regulator on page 65 for
details.

8.3 How It Works

The regulators in Figure 8-1 power the various domains of
the device. All the core regulators draw their input power
from the VDDD pin supply. The analog circuits run directly
from the VDDA input.

8.3.1 Regulator Summary

8.3.1.1 Active Digital Regulator

For external supplies from 1.8 V and 5.5 V, the Active digital
regulator provides the main digital logic in Active and Sleep
modes. This regulator has its output connected to a pin
(VCCD) and requires an external decoupling capacitor (1 µF
X5R).

For supplies below 1.8 V, VCCD must be supplied directly. In
this case, VCCD and VDDD must be shorted together, as
shown in Figure 8-3.

The Active digital regulator can be disabled by setting the
EXT_VCCD bit in the PWR_CONTROL register. This action
reduces the power consumption in direct supply mode. The
Active digital regulator is available only in Active and Sleep
power modes.

8.3.1.2 Deep-Sleep Regulator

This regulator supplies the circuits that remain powered in
Deep-Sleep mode, such as the ILO, WCO, and SCB (I2C/
SPI), and low-power comparator. The Deep-Sleep regulator
is available in all power modes. In Active and Sleep power
modes, the main output of this regulator is connected to the
output of the Active digital regulator (VCCD). 

8.4 Voltage Monitoring

The voltage monitoring system includes power-on-reset
(POR) brownout detection (BOD). 

8.4.1 Power-On-Reset (POR)

POR circuits provide a reset pulse during the initial power
ramp. POR circuits monitor VCCD voltage. Typically, the

POR circuits are not very accurate with respect to trip-point.
POR circuits are used during initial chip power-up and then
disabled.

8.4.1.1 Brownout-Detect (BOD)

The BOD circuit protects the operating or retaining logic
from possibly unsafe supply conditions by applying reset to
the device. BOD circuit monitors the VCCD voltage. The

BOD circuit generates a reset if a voltage excursion dips
below the minimum VCCD voltage required for safe opera-

tion (see the device datasheet for details). The system will
not come out of RESET until the supply is detected to be
valid again.

To ensure reliable operation of the device, the watchdog
timer should be used in all designs. Watchdog timer pro-
vides protection against abnormal brownout conditions that
may compromise the CPU functionality. See Watchdog
Timer chapter on page 72 for more details.

       PSoC 4

VDDD

VDDA

VCCD

VSSA

VSSD
0.1 uF 1 uF

1.71 V - 1.89 V

Table 8-1.  Regulator Status in Different Power Modes

Mode Active Digital Regulator Deep-Sleep Regulator

Deep-Sleep Off On

Sleep On On

Active On On

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
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8.5 Register List 

Table 8-2.  Power Supply and Monitoring Register List

Register Name Description

PWR_CONTROL
Power Mode Control Register – This register allows configuration of device power modes and regulator 
activity.
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9.   Chip Operational Modes

PSoC® 4 is capable of executing firmware in four different modes. These modes dictate execution from different locations in
flash and ROM, with different levels of hardware privileges. Only three of these modes are used in end-applications; debug
mode is used exclusively to debug designs during firmware development. 

PSoC 4 operational modes are:

■ Boot

■ User

■ Privileged

■ Debug

9.1 Boot

Boot mode is an operational mode where the device is configured by instructions hard-coded in the device SROM. This mode
is entered after the end of a reset, provided no debug-acquire sequence is received by the device. Boot mode is a privileged
mode; interrupts are disabled in this mode so that the boot firmware can set up the device for operation without being inter-
rupted. During boot mode, hardware trim settings are loaded from flash to guarantee proper operation during power-up.
When boot concludes, the device enters user mode and code execution from flash begins. This code in flash may include
automatically generated instructions from the PSoC Creator IDE that will further configure the device.

9.2 User

User mode is an operational mode where normal user firmware from flash is executed. User mode cannot execute code from
SROM. Firmware execution in this mode includes the automatically generated firmware by the PSoC Creator IDE and the
firmware written by the user. The automatically generated firmware can govern both the firmware startup and portions of nor-
mal operation. The boot process transfers control to this mode after it has completed its tasks.

9.3 Privileged

Privileged mode is an operational mode, which allows execution of special subroutines that are stored in the device ROM.
These subroutines cannot be modified by the user and are used to execute proprietary code that is not meant to be inter-
rupted or observed. Debugging is not allowed in privileged mode. 

The CPU can transition to privileged mode through the execution of a system call. For more information on how to perform a
system call, see “Performing a System Call” on page 181. Exit from this mode returns the device to user mode.

9.4 Debug

Debug mode is an operational mode that allows observation of the PSoC 4 operational parameters. This mode is used to
debug the firmware during development. The debug mode is entered when an SWD debugger connects to the device during
the acquire time window, which occurs during the device reset. Debug mode allows IDEs such as PSoC Creator and ARM
MDK to debug the firmware. Debug mode is only available on devices in open mode (one of the four protection modes). For
more details on the debug interface, see the Program and Debug Interface chapter on page 173.

For more details on protection modes, see the Device Security chapter on page 79.
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10.   Power Modes

The PSoC® 4 provides three power modes, intended to minimize the average power consumption for a given application. The
power modes, in the order of decreasing power consumption, are:

■ Active

■ Sleep

■ Deep-Sleep

Active, Sleep, and Deep-Sleep are standard ARM-defined power modes, supported by the ARM CPUs.

The power consumption in different power modes is controlled by using the following methods: 

■ Enabling/disabling peripherals

■ Powering on/off internal regulators

■ Powering on/off clock sources

■ Powering on/off other portions of the PSoC 4

Figure 10-1 illustrates the various power modes and the possible transitions between them.

Figure 10-1.  Power Mode Transitions State Diagram

Note: ARM nomenclature for Deep-Sleep power mode is 'SLEEPDEEP'.
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Table 10-1 illustrates the power modes offered by PSoC 4. 

In addition to the wakeup sources mentioned in Table 10-1, external reset (XRES) and brownout reset bring the device to
Active mode from any power mode.

10.1 Active Mode

Active mode is the primary power mode of the PSoC device. This mode provides the option to use every possible subsystem/
peripheral in the device. In this mode, the CPU is running and all the peripherals are powered. The firmware may be config-
ured to disable specific peripherals that are not in use, to reduce power consumption.

10.2 Sleep Mode

This is a CPU-centric power mode. In this mode, the Cortex-M0+ CPU enters Sleep mode and its clock is disabled. It is a
mode that the device should come to very often or as soon as the CPU is idle, to accomplish low power consumption. It is
identical to Active mode from a peripheral point of view. Any enabled interrupt can cause wakeup from Sleep mode.

10.3 Deep-Sleep Mode

In Deep-Sleep mode, the CPU, SRAM, and high-speed logic are in retention. The high-frequency clocks, including HFCLK
and SYSCLK, are disabled. Optionally, the internal low-frequency (40 kHz) oscillator remains on and low-frequency peripher-
als continue to operate. Digital peripherals that do not need a clock or receive a clock from their external interface (for exam-
ple, I2C slave) continue to operate. Interrupts from low-speed, asynchronous or low-power analog peripherals can cause a
wakeup from Deep-Sleep mode.

The available wakeup sources are listed in Table 10-3. 

Table 10-1.  PSoC 4 Power Modes

Power 
Mode

Description Entry Condition
Wakeup 
Sources

Active Clocks
Wakeup 
Action

Available Regulators

Active
Primary mode of opera-
tion; all peripherals are 
available (programmable).

Wakeup from other 
power modes, inter-
nal and external 
resets, brownout, 
power on reset

Not applicable
All (programma-
ble)

N/A

All regulators are available. 
The Active digital regulator 
can be disabled if external 
regulation is used.

Sleep

CPU enters Sleep mode 
and SRAM is in retention; 
all peripherals are avail-
able (programmable).

Manual register write
Any enabled 
interrupt

All (programma-
ble) except CPU 
clock

Interrupt

All regulators are available. 
The Active digital regulator 
can be disabled if external 
regulation is used.

Deep-
Sleep

All internal supplies are 
driven from the Deep-
Sleep regulator. IMO and 
high-speed peripherals are 
off. Only the low-frequency 
clock is available. 

Interrupts from low-speed, 
asynchronous, or low-
power analog peripherals 
can cause a wakeup.

Manual register write

GPIO interrupt, 
low-power 
comparator, 
SCB, watch-
dog timer

ILO (40 kHz), 
WCO (32 kHz)

Interrupt Deep-Sleep regulator
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10.4 Power Mode Summary

Table 10-3 illustrates the peripherals available in each low-power mode; Table 10-3 illustrates the wakeup sources available
in each power mode.  

Note: In addition to the wakeup sources mentioned in Table 10-3, external reset (XRES) and brownout reset bring the device
to Active mode from any power mode. XRES and brownout trigger a full system restart. All the states including frozen GPIOs
are lost. In this case, the cause of wakeup is not readable after the device restarts.

Table 10-2.  Available Peripherals

Peripheral Active Sleep Deep-Sleep

CPU Available Retentiona

a. The configuration and state of the peripheral is retained. Peripheral continues its operation when the device enters Active mode.

Retention

SRAM Available Retention

High-speed peripherals Available Available Retention

Low-speed peripherals Available Available Available 

Internal main oscillator (IMO) Available Available Not Available

Internal low-speed oscillator (ILO, kHz) Available Available Available 

Asynchronous peripherals Available Available Available

Available Available Available

GPIO output state Available Available Available

Table 10-3.  Wakeup Sources

Power Mode Wakeup Source Wakeup Action

Sleep Any enabled interrupt source Interrupt

Deep-Sleep GPIO interrupt Interrupt

I2C address match Interrupt

Watchdog timer Interrupt/Reset

Low-power comparator Interrupt
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10.5 Low-Power Mode Entry and Exit

A Wait For Interrupt (WFI) instruction from the Cortex-M0+ (CM0+) triggers the transitions into Sleep and Deep-Sleep mode. 
The Cortex-M0+ can delay the transition into a low-power mode until the lowest priority ISR is exited (if the SLEEPONEXIT bit 
in the CM0 System Control Register is set).

The transition to Sleep and Deep-Sleep modes are controlled by the flags SLEEPDEEP in the CM0P System Control Regis-
ter (CM0P_SCR).

■ Sleep is entered when the WFI instruction is executed, SLEEPDEEP = 0.

■ Deep-Sleep is entered when the WFI instruction is executed, SLEEPDEEP = 1.

The LPM READY bit in the PWR_CONTROL register shows the status of Deep-Sleep regulator. If the firmware tries to enter
Deep-Sleep mode before the regulators are ready, then PSoC 4 goes to Sleep mode first, and when the regulators are ready,
the device enters Deep-Sleep mode. This operation is automatically done in hardware.

In Sleep and Deep-Sleep modes, a selection of peripherals are available (see Table 10-3), and firmware can either enable or
disable their associated interrupts. Enabled interrupts can cause wakeup from low-power mode to Active mode. Additionally,
any RESET returns the system to Active mode. See the Interrupts chapter on page 27 and the Reset System chapter on
page 77 for details.

10.6 Register List

Table 10-4.  Power Mode Register List

Register Name Description

CM0P_SCR System Control - Sets or returns system control data.

PWR_CONTROL Power Mode Control - Controls the device power mode options and allows observation of current state.
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11.   Watchdog Timer 

The watchdog timer (WDT) is used to automatically reset the device in the event of an unexpected firmware execution path or
a brownout that compromises the CPU functionality. The WDT runs from the LFCLK, generated by the ILO. The timer must be
serviced periodically in firmware to avoid a reset. Otherwise, the timer will elapse and generate a device reset. The WDT can
be used as an interrupt source or a wakeup source in low-power modes.

11.1 Features

The WDT has these features:

■ System reset generation after a configurable interval

■ Periodic interrupt/wake up generation in Active, Sleep, and Deep-Sleep power modes

■ Features a 16-bit free-running counter

11.2 Block Diagram

Figure 11-1.  Watchdog Timer Block Diagram

11.3 How It Works
The WDT asserts a hardware reset to the device on the third WDT match event, unless it is periodically serviced in firmware.
The WDT is a free-running wraparound up-counter with a maximum of 16-bit resolution. The resolution is configurable as
explained later in this section.

The WDT_COUNTER register provides the count value of the WDT. The WDT generates an interrupt when the count value in
WDT_COUNTER equals the match value stored in the WDT_MATCH register, but it does not reset the count to '0'. Instead,
the WDT keeps counting until it overflows (after 0xFFFF when the resolution is set to 16 bits) and rolls back to 0. When the
count value again reaches the match value, another interrupt is generated. Note that the match count can be changed when
the counter is running. 

A bit named WDT_MATCH in the SRSS_INTR register is set whenever the WDT interrupt occurs. This interrupt must be
cleared by writing a '1' to the WDT_MATCH bit in SRSS_INTR to reset the watchdog. If the firmware does not reset the WDT
for two consecutive interrupts, the third match event will generate a hardware reset.
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The IGNORE_BITS in the WDT_MATCH register can be used to reduce the entire WDT counter period. The ignore bits can
specify the number of MSBs that need to be discarded. For example, if the IGNORE_BITS value is 3, then the WDT counter
becomes a 13-bit counter. For details, see the WDT_COUNTER, WDT_MATCH, and SRSS_INTR registers in the PSoC
4700S Family: PSoC 4 Registers TRM.

When the WDT is used to protect against system crashes, clearing the WDT interrupt bit to reset the watchdog must be done
from a portion of the code that is not directly associated with the WDT interrupt. Otherwise, even if the main function of the
firmware crashes or is in an endless loop, the WDT interrupt vector can still be intact and feed the WDT periodically.

The safest way to use the WDT against system crashes is to:

■ Configure the watchdog reset period such that firmware is able to reset the watchdog at least once during the period, even
along the longest firmware delay path. 

■ Reset the watchdog by clearing the interrupt bit regularly in the main body of the firmware code by writing a '1' to the
WDT_MATCH bit in SRSS_INTR register.

■ It is not recommended to reset watchdog in the WDT interrupt service routine (ISR), if WDT is being used as a reset
source to protect the system against crashes. Hence, it is not recommended to use WDT reset feature and ISR together. 

Follow these steps to use WDT as a periodic interrupt generator:

1. Write the desired IGNORE_BITS in the WDT_MATCH register to set the counter resolution.

2. Write the desired match value to the WDT_MATCH register.

3. Clear the WDT_MATCH bit in SRSS_INTR to clear any pending WDT interrupt.

4. Enable the WDT interrupt by setting the WDT_MATCH bit in SRSS_INTR_MASK

5. Enable global WDT interrupt in the CM0_ISER register (See the Interrupts chapter on page 27 for details). 

6. In the ISR, clear the WDT interrupt and add the desired match value to the existing match value. By doing so, another 
periodic interrupt will be generated when the counter reaches the new match value.

For more details on interrupts, see the Interrupts chapter on page 27.

11.3.1 Enabling and Disabling WDT

The watchdog counter is a free-running counter that cannot be disabled. However, it is possible to disable the watchdog reset
by writing a key '0xACED8865' to the WDT_DISABLE_KEY register. Writing any other value to this register will enable the
watchdog reset. If the watchdog system reset is disabled, the firmware does not have to periodically reset the watchdog to
avoid a system reset. The watchdog counter can still be used as an interrupt source or wakeup source. The only way to stop
the counter is to disable the ILO by clearing the ENABLE bit in the CLK_ILO_CONFIG register. The watchdog reset must be
disabled before disabling the ILO. Otherwise, any register write to disable the ILO will be ignored. Enabling the watchdog
reset will automatically enable the ILO.

Note Disabling the WDT reset is not recommended if:

■ Protection is required against firmware crashes

■ The power supply can produce sudden brownout events that may compromise the CPU functionality



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 74

Watchdog Timer

11.3.2 WDT Interrupts and Low-Power Modes

The watchdog counter can send interrupt requests to the CPU in Active power mode and to the WakeUp Interrupt Controller
(WIC) in Sleep and Deep-Sleep power modes. It works as follows:

■ Active Mode: In Active power mode, the WDT can send the interrupt to the CPU. The CPU acknowledges the interrupt
request and executes the ISR. The interrupt must be cleared after entering the ISR in firmware.

■ Sleep or Deep-Sleep Mode: In this mode, the CPU subsystem is powered down. Therefore, the interrupt request from
the WDT is directly sent to the WIC, which will then wake up the CPU. The CPU acknowledges the interrupt request and
executes the ISR. The interrupt must be cleared after entering the ISR in firmware.

For more details on device power modes, see the Power Modes chapter on page 68.

11.3.3 WDT Reset Mode

The RESET_WDT bit in the RES_CAUSE register indicates the reset generated by the WDT. This bit remains set until
cleared or until a power-on reset (POR), brownout reset (BOD), or external reset (XRES) occurs. All other resets leave this bit
untouched. For more details, see the Reset System chapter on page 77.

11.4 Additional Timers

Besides WDT, there are three additional up-counting timers for general-purpose use – WDT0, WDT1, and WDT2. These
three timers are clocked either from ILO or WCO, selected by writing into the WCO_WDT_CLKEN register. These timers can
run in Active, Sleep, and Deep-Sleep modes and are capable of generating interrupts. 

Figure 11-2.  WDT Additional Timers Block Diagram

11.4.1 WDT0 and WDT1 

These are 16-bit timers, which can be operated in two configurations:

■ Free running 

■ Clear on match (configurable period) 

In the free-running mode, the timer counts throughout the 16-bit range. On reaching 65535 (216–1), the timer resets to 0 and
starts counting again. In the Clear-on-match mode, the match count written in WDT_MATCH0 and WDT_MATCH1 of the
WCO_WDT_MATCH register decides the period of WDT0 and WDT1, respectively. When the timer count reaches the match
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value, the timer resets to 0 and starts counting again. One of these two configurations is selected using WDT_CLEAR0 and
WDT_CLEAR1 bits of the WCO_WDT_CONFIG register. The Clear-on-match mode is selected by writing ‘1’ to
WDT_CLEARx. Writing ‘0’ to this bit disables the clearing of timer on match count and the free-running mode is configured.
Note that changing the match count requires three input clock cycles to come into effect. Before putting the device to deep
sleep, ensure delay of at least one input clock cycle after the match count update.

An interrupt can be generated on match or timer overflow by writing into WDT_MODE bits of the WCO_WDT_CONFIG regis-
ter. On interrupt, the WDT_INTx bit of the WCO_WDT_CONTROL register is set. This bit must be cleared by firmware to
allow the next interrupt trigger. Note that the interrupts from all the three timers are ORed to generate a single trigger to the
CPU. To identify which timer caused an interrupt, read the WDT_INTx bit. 

The timers are enabled by writing ‘1’ to the WDT_ENABLEx bit of the WCO_WDT_CONTROL register. Note that it takes
three clock cycles to take effect. It is not recommended to toggle this bit more than once during this time. After enabling the
timer, it is not recommended to write to the configuration register (WCO_WDT_CONFIG). The present value of the timers can
be read from the WDT_CTRLOW register; it can be reset by writing ‘1’ to the WDT_RESETx bit of the
WCO_WDT_CONTROL register.

11.4.2 WDT2

It is similar to WDT0 and WDT1 with following differences:

■ WDT2 is a 32-bit up-counting timer

■ Supports only free-running configuration with counting range of 0 to (232–1)

■ The interrupt is triggered when one out of 32 bits toggles during counting. The bit position is configured using the 5-bit 
WDT_BITS2 field of the WCO_WDT_CONFIG register. Setting it to ‘0’ results in an interrupt on every input clock; setting 
it to ‘1’ results in an interrupt on alternate clocks; setting it to ‘31’ results in an interrupt every 231 clocks. 

11.4.3 Cascading

The cascading options are as follows:

■ WDT0 and WDT1 timers can be cascaded by writing into WDT_CASCADE0_1 bit of the WCO_WDT_CONFIG register. 
When cascaded, WDT1 increments after WDT0 reaches its match count. 

■ WDT1 and WDT2 timers can also be cascaded by writing into WDT_CASCADE1_2 bit of the WCO_WDT_CONFIG regis-
ter. When cascaded, WDT2 increments after WDT1 reaches its match count. 

■ All the three timers are cascaded when WDT_CASCADE0_1 and WDT_CASCADE1_2 bits are set. 
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11.5 Register List 

Table 11-1.  WDT Registers

Register Name Description

WDT_DISABLE_KEY Disables the WDT when 0XACED8865 is written, for any other value WDT works normally

WDT_COUNTER Provides the count value of the WDT

WDT_MATCH Stores the match value of the WDT

SRSS_INTR Services the WDT to avoid reset

Table 11-2.  WDT Registers

Register Name Description

WDT_DISABLE_KEY Disables the WDT when 0XACED8865 is written; for any other value WDT works normally.

WDT_COUNTER Provides the count value of the WDT.

WDT_MATCH Holds the match value of the WDT.

SRSS_INTR Services the WDT to avoid reset.

WCO_WDT_CTRLOW Stores the current WDT0 and WDT1 timer value.

WCO_WDT_CTRHIGH Stores the current WDT2 timer value.

WCO_WDT_MATCH Holds the match count for WDT0 and WDT1.

WCO_WDT_CONFIG
Configures WDT0, WDT1, and WDT2 – selection of clock source, selection of free running or clear on match, 
interrupt generation, and cascading.

WCO_WDT_CONTROL Used for enabling and resetting the timer.

WCO_WDT_CLKEN Enables the clock (ILO/WCO) to be used with the timer.
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12.   Reset System

PSoC® 4 supports several types of resets that guarantee error-free operation during power up and allow the device to reset
based on user-supplied external hardware or internal software reset signals. PSoC 4 also contains hardware to enable the
detection of certain resets.

The reset system has these sources:

■ Power-on reset (POR) to hold the device in reset while the power supply ramps up

■ Brownout reset (BOD) to reset the device if the power supply falls below specifications during operation

■ Watchdog reset (WRES) to reset the device if firmware execution fails to service the watchdog timer

■ Software initiated reset (SRES) to reset the device on demand using firmware

■ External reset (XRES) to reset the device using an external electrical signal

■ Protection fault reset (PROT_FAULT) to reset the device if unauthorized operating conditions occur

12.1 Reset Sources

The following sections provide a description of the reset sources available in PSoC 4.

12.1.1 Power-on Reset

Power-on reset is provided for system reset at power-up. POR holds the device in reset until the supply voltage, VDDD, is

according to the datasheet specification. The POR activates automatically at power-up. 

POR events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, BOD, or XRES.

12.1.2 Brownout Reset

Brownout reset monitors the chip digital voltage supply VCCD and generates a reset if VCCD is below the minimum logic oper-

ating voltage specified in the device datasheet. BOD is available in all power modes.

12.1.3 Watchdog Reset

Watchdog reset (WRES) detects errant code by causing a reset if the watchdog timer is not cleared within the user-specified
time limit. This feature is enabled by default. It can be disabled by writing '0xACED8865' to the WDT_DISABLE_KEY register.

The RESET_WDT status bit of the RES_CAUSE register is set when a watchdog reset occurs. This bit remains set until
cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets leave this bit
untouched.

For more details, see the Watchdog Timer chapter on page 72.

12.1.4 Software Initiated Reset

Software initiated reset (SRES) is a mechanism that allows a software-driven reset. The Cortex-M0+ application interrupt and
reset control register (CM0P_AIRCR) forces a device reset when a ‘1’ is written into the SYSRESETREQ bit. CM0P_AIRCR
requires a value of A05F written to the top two bytes for writes. Therefore, write A05F0004 for the reset.

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
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The RESET_SOFT status bit of the RES_CAUSE register is set when a software reset occurs. This bit remains set until
cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets leave this bit
untouched.

12.1.5 External Reset

External reset (XRES) is a user-supplied reset that causes immediate system reset when asserted. The XRES pin is active
low – a high voltage on the pin has no effect and a low voltage causes a reset. The pin is pulled high inside the device. XRES
is available as a dedicated pin in most of the devices. For detailed pinout, refer to the pinout section of the device datasheet.

The XRES pin holds the device in reset while held active. When the pin is released, the device goes through a normal boot
sequence. The logical thresholds for XRES and other electrical characteristics, are listed in the Electrical Specifications sec-
tion of the device datasheet.

XRES events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, BOD, or XRES.

12.1.6 Protection Fault Reset

Protection fault reset (PROT_FAULT) detects unauthorized protection violations and causes a device reset if they occur. One
example of a protection fault is if a debug breakpoint is reached while executing privileged code. For details about privilege
code, see “Privileged” on page 67.

The RESET_PROT_FAULT bit of the RES_CAUSE register is set when a protection fault occurs. This bit remains set until
cleared or until a POR, XRES, or BOD reset; for example, in the case of a device power cycle. All other resets leave this bit
untouched.

12.2 Identifying Reset Sources

When the device comes out of reset, it is often useful to know the cause of the most recent or even older resets. This is
achieved in the device primarily through the RES_CAUSE register. This register has specific status bits allocated for some of
the reset sources. The RES_CAUSE register supports detection of watchdog reset, software reset, and protection fault reset.
It does not record the occurrences of POR, BOD, or XRES. The bits are set on the occurrence of the corresponding reset and
remain set after the reset, until cleared or a loss of retention, such as a POR reset, external reset, or brownout detect. 

If the RES_CAUSE register cannot detect the cause of the reset, then it can be one of the non-recorded and non-retention
resets: BOD, POR, XRES. These resets cannot be distinguished using on-chip resources.

12.3 Register List

Table 12-1.  Reset System Register List

Register Name Description

WDT_DISABLE_KEY Disables the WDT when 0XACED8865 is written, for any other value WDT works normally

CM0P_AIRCR
Cortex-M0+ Application Interrupt and Reset Control Register - This register allows initiation of software 
resets, among other Cortex-M0+ functions.

RES_CAUSE Reset Cause Register - This register captures the cause of recent resets.

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
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13.   Device Security

PSoC® 4 offers a number of options for protecting user designs from unauthorized access or copying. Disabling debug fea-
tures and enabling flash protection provide a high level of security. 

The debug circuits are enabled by default and can only be disabled in firmware. If disabled, the only way to re-enable them is
to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Addi-
tionally, all device interfaces can be permanently disabled for applications concerned about phishing attacks due to a mali-
ciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences.
Permanently disabling interfaces is not recommended for most applications because the designer cannot access the device.
For more information, as well as a discussion on flash row and chip protection, see the PSoC 4100M, PSoC 4200M, PSoC
4200D, PSoC 4400, PSoC 4000S, PSoC 4100S, PSoC 4700S Programming Specifications.

Note Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4
devices with full device security enabled may not be returned for failure analysis.

13.1 Features

The PSoC 4 device security system has the following features:

■ User-selectable levels of protection.

■ In the most secure case provided, the chip can be “locked” such that it cannot be acquired for test/debug and it cannot 
enter erase cycles. Interrupting erase cycles is a known way for hackers to leave chips in an undefined state and open to 
observation.

■ CPU execution in a privileged mode by use of the non-maskable interrupt (NMI). When in privileged mode, NMI remains 
asserted to prevent any inadvertent return from interrupt instructions causing a security leak.

In addition to these, the device offers protection for individual flash row data.

13.2 How It Works

13.2.1 Device Security

The CPU operates in normal user mode or in privileged mode, and the device operates in one of four protection modes:
BOOT, OPEN, PROTECTED, and KILL. Each mode provides specific capabilities for the CPU software and debug. You can
change the mode by writing to the CPUSS_PROTECTION register.

■ BOOT mode: The device comes out of reset in BOOT mode. It stays there until its protection state is copied from supervi-
sor flash to the protection control register (CPUSS_PROTECTION). The debug-access port is stalled until this has hap-
pened. BOOT is a transitory mode required to set the part to its configured protection state. During BOOT mode, the CPU 
always operates in privileged mode.

■ OPEN mode: This is the factory default. The CPU can operate in user mode or privileged mode. In user mode, flash can 
be programmed and debugger features are supported. In privileged mode, access restrictions are enforced.

■ PROTECTED mode: The user may change the mode from OPEN to PROTECTED. This mode disables all debug access 
to user code or memory. In protected mode, only few registers are accessible; debug access to registers to reprogram 
flash is not available. The mode can be set back to OPEN but only after completely erasing the flash.

■ KILL mode: The user may change the mode from OPEN to KILL. This mode removes all debug access to user code or 
memory, and the flash cannot be erased. Access to most registers is still available; debug access to registers to repro-

http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
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gram flash is not available. The part cannot be taken out of KILL mode; devices in KILL mode may not be returned for fail-
ure analysis.

13.2.2 Flash Security

The PSoC 4 devices include a flexible flash-protection system that controls access to flash memory. This feature is designed
to secure proprietary code, but it can also be used to protect against inadvertent writes to the bootloader portion of flash.

Flash memory is organized in rows. You can assign one of two protection levels to each row; see Table 13-1. Flash protection
levels can only be changed by performing a complete flash erase.

For more details, see the Nonvolatile Memory Programming chapter on page 180.

Table 13-1.  Flash Protection Levels

Protection Setting Allowed Not Allowed

Unprotected
External read and write,
Internal read and write

–

Full Protection External reada

Internal read

a. To protect the device from external read operations, you should change the device protection settings to PROTECTED.

External write,
Internal write
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Section D: Digital System

This section encompasses the following chapters:

■ Serial Communications Block (SCB) chapter on page 82

■ Timer, Counter, and PWM chapter on page 123

Top Level Architecture

Digital System Block Diagram
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14.   Serial Communications Block (SCB)

The Serial Communications Block (SCB) of PSoC® 4 supports three serial interface protocols: SPI, UART, and I2C. Only one
of the protocols is supported by an SCB at any given time. PSoC devices have two SCBs.

14.1 Features

This block supports the following features:

■ Standard SPI master and slave functionality with Motorola, Texas Instruments, and National Semiconductor protocols

■ Standard UART functionality with SmartCard reader, Local Interconnect Network (LIN), and IrDA protocols

■ Standard I2C master and slave functionality

■ Standard LIN slave functionality with LIN v1.3 and LIN v2.1/2.2 specification compliance

■ EZ mode for SPI and I2C, which allows for operation without CPU intervention

■ Low-power (Deep-Sleep) mode of operation for SPI and I2C protocols (using external clocking)

Each of the three protocols is explained in the following sections.

14.2 Serial Peripheral Interface (SPI)

The SPI protocol is a synchronous serial interface protocol. Devices operate in either master or slave mode. The master initi-
ates the data transfer. The SCB supports single-master-multiple-slaves topology for SPI. Multiple slaves are supported with
individual slave select lines. 

You can use the SPI master mode when the PSoC has to communicate with one or more SPI slave devices. The SPI slave
mode can be used when the PSoC has to communicate with an SPI master device. 

14.2.1 Features

■ Supports master and slave functionality

■ Supports three types of SPI protocols:

❐ Motorola SPI – modes 0, 1, 2, and 3

❐ Texas Instruments SPI, with coinciding and preceding data frame indicator for mode 1

❐ National Semiconductor (MicroWire) SPI for mode 0

■ Supports up to four slave select lines

■ Data frame size programmable from 4 bits to 16 bits

■ Interrupts or polling CPU interface

■ Programmable oversampling

■ Supports EZ mode of operation (Easy SPI Protocol)

❐ EZSPI mode allows for operation without CPU intervention

■ Supports externally clocked slave operation:

❐ In this mode, the slave operates in Active, Sleep, and Deep-Sleep system power modes
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14.2.2 General Description

Figure 14-1 illustrates an example of SPI master with four slaves.

Figure 14-1.  SPI Example

A standard SPI interface consists of four signals as follows. 

■ SCLK: Serial clock (clock output from the master, input to the slave).

■ MOSI: Master-out-slave-in (data output from the master, input to the slave).

■ MISO: Master-in-slave-out (data input to the master, output from the slave).

■ Slave Select (SS): Typically an active low signal (output from the master, input to the slave).

A simple SPI data transfer involves the following: the master selects a slave by driving its SS line, then it drives data on the
MOSI line and a clock on the SCLK line. The slave uses either of the edges of SCLK depending on the configuration to cap-
ture the data on the MOSI line; it also drives data on the MISO line, which is captured by the master.

By default, the SPI interface supports a data frame size of eight bits (1 byte). The data frame size can be configured to any
value in the range 4 to 16 bits. The serial data can be transmitted either most significant bit (MSb) first or least significant bit
(LSB) first.

Three different variants of the SPI protocol are supported by the SCB:

■ Motorola SPI: This is the original SPI protocol.

■ Texas Instruments SPI: A variation of the original SPI protocol, in which data frames are identified by a pulse on the SS 
line.

■ National Semiconductors SPI: A half duplex variation of the original SPI protocol.
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14.2.3 SPI Modes of Operation

14.2.3.1 Motorola SPI

The original SPI protocol was defined by Motorola. It is a full duplex protocol. Multiple data transfers may happen with the SS
line held at '0'. As a result, slave devices must keep track of the progress of data transfers to separate individual data frames.
When not transmitting data, the SS line is held at '1' and SCLK is typically pulled low.

Modes of Motorola SPI

The Motorola SPI protocol has four different modes based on how data is driven and captured on the MOSI and MISO lines.
These modes are determined by clock polarity (CPOL) and clock phase (CPHA). 

Clock polarity determines the value of the SCLK line when not transmitting data. CPOL = '0' indicates that SCLK is '0' when
not transmitting data. CPOL = '1' indicates that SCLK is '1' when not transmitting data.

Clock phase determines when data is driven and captured. CPHA=0 means sample (capture data) on the leading (first) clock
edge, while CPHA=1 means sample on the trailing (second) clock edge, regardless of whether that clock edge is rising or fall-
ing. With CPHA=0, the data must be stable for setup time before the first clock cycle.

■ Mode 0: CPOL is '0', CPHA is '0': Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK.

■ Mode 1; CPOL is '0', CPHA is '1': Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK.

■ Mode 2: CPOL is '1', CPHA is '0': Data is driven on a rising edge of SCLK. Data is captured on a falling edge of SCLK.

■ Mode 3: CPOL is '1', CPHA is '1': Data is driven on a falling edge of SCLK. Data is captured on a rising edge of SCLK.

Figure 14-2 illustrates driving and capturing of MOSI/MISO data as a function of CPOL and CPHA.

Figure 14-2.  SPI Motorola, 4 Modes
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Figure 14-3 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0 (CPOL is '0', CPHA is '0').

Figure 14-3.  SPI Motorola Data Transfer Example

Configuring SCB for SPI Motorola Mode

To configure the SCB for SPI Motorola mode, set various register bits in the following order: 

1. Select SPI by writing '01' to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI Motorola mode by writing '00' to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in Motorola by writing to the CPHA and CPOL fields (bits 2 and 3 respectively) of the
SCB_SPI_CTRL register.

4. Follow steps 2 to 4 mentioned in “Enabling and Initializing SPI” on page 91. 

Note that PSoC Creator does all this automatically with the help of GUIs. For more information on these registers, see the
PSoC 4700S Family: PSoC 4 Registers TRM.

14.2.3.2 Texas Instruments SPI

The Texas Instruments' SPI protocol redefines the use of the SS signal. It uses the signal to indicate the start of a data trans-
fer, rather than a low active slave select signal, as in the case of Motorola SPI. As a result, slave devices need not keep track
of the progress of data transfers to separate individual data frames. The start of a transfer is indicated by a high active pulse
of a single bit transfer period. This pulse may occur one cycle before the transmission of the first data bit, or may coincide with
the transmission of the first data bit. The TI SPI protocol supports only mode 1 (CPOL is '0' and CPHA is '1'): data is driven on
a rising edge of SCLK and data is captured on a falling edge of SCLK.

Figure 14-4 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse precedes the
first data bit. Note how the SELECT pulse of the second data transfer coincides with the last data bit of the first data transfer.
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Figure 14-4.  SPI TI Data Transfer Example

Figure 14-5 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse coincides with
the first data bit of a frame.

Figure 14-5.  SPI TI Data Transfer Example
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Configuring SCB for SPI TI Mode

To configure the SCB for SPI TI mode, set various register bits in the following order: 

1. Select SPI by writing '01' to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Select SPI TI mode by writing '01' to the MODE (bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in TI by writing to the SELECT_PRECEDE field (bit 1) of the SCB_SPI_CTRL register ('1'
configures the SELECT pulse to precede the first bit of next frame and '0' otherwise).

4. Follow steps 2 to 5 mentioned in “Enabling and Initializing SPI” on page 91. 

Note that PSoC Creator does all this automatically with the help of GUIs. For more information on these registers, see the
PSoC 4700S Family: PSoC 4 Registers TRM.

14.2.3.3 National Semiconductors SPI

The National Semiconductors' SPI protocol is a half duplex protocol. Rather than transmission and reception occurring at the
same time, they take turns. The transmission and reception data sizes may differ. A single "idle" bit transfer period separates
transmission from reception. However, the successive data transfers are NOT separated by an "idle" bit transfer period.

The National Semiconductors SPI protocol only supports mode 0: data is driven on a falling edge of SCLK and data is cap-
tured on a rising edge of SCLK.

Figure 14-6 illustrates a single data transfer and two successive data transfers. In both cases the transmission data transfer
size is eight bits and the reception data transfer size is four bits.

Figure 14-6.  SPI NS Data Transfer Example
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Configuring SCB for SPI NS Mode

To configure the SCB for SPI NS mode, set various register
bits in the following order: 

1. Select SPI by writing '01' to the MODE (bits [25:24]) of 
the SCB_CTRL register.

2. Select SPI NS mode by writing '10' to the MODE (bits
[25:24]) of the SCB_SPI_CTRL register.

3. Follow steps 2 to 5 mentioned in “Enabling and Initializ-
ing SPI” on page 91.

Note that PSoC Creator does all this automatically with the
help of Component customizers. For more information on
these registers, see the PSoC 4700S Family: PSoC 4 Reg-
isters TRM.

14.2.4 Using SPI Master to Clock Slave

In a normal SPI Master mode transmission, the SCLK is
generated only when the SCB is enabled and data is being
transmitted. This can be changed to always generate a
clock on the SCLK line as long as the SCB is enabled. This
is used when the slave uses the SCLK for functional opera-
tions other than just the SPI functionality. To enable this,
write '1' to the SCLK_CONTINUOUS (bit 5) of the
SCB_SPI_CTRL register.

14.2.5 Easy SPI Protocol

The easy SPI (EZSPI) protocol is based on the Motorola SPI
operating in any mode (0, 1, 2, 3). It allows communication
between master and slave without the need for CPU inter-
vention at the level of individual frames.

The EZSPI protocol defines an 8-bit EZ address that
indexes a memory array (32-entry array of eight bit per entry
is supported) located on the slave device. To address these
32 locations, the lower five bits of the EZ address are used.
All EZSPI data transfers have 8-bit data frames. 

Note The SCB has a FIFO memory, which is a 16 word by
16-bit SRAM, with byte write enable. The access methods
for EZ and non-EZ functions are different. In non-EZ mode,
the FIFO is split into TXFIFO and RXFIFO. Each has eight
entries of 16 bits per entry. The 16-bit width per entry is used
to accommodate configurable data width. In EZ mode, it is
used as a single 32x8 bit EZFIFO because only a fixed 8-bit
width data is used in EZ mode.

EZSPI has three types of transfers: a write of the EZ
address from the master to the slave, a write of data from
the master to an addressed slave memory location, and a
read by the master from an addressed slave memory loca-
tion.

14.2.5.1 EZ Address Write

A write of the EZ address starts with a command byte (0x00)
on the MOSI line indicating the master's intent to write the
EZ address. The slave then drives a reply byte on the MISO

line to indicate that the command is observed (0xFE) or not
(0xFF). The second byte on the MOSI line is the EZ
address.

14.2.5.2 Memory Array Write

A write to a memory array index starts with a command byte
(0x01) on the MOSI line indicating the master's intent to
write to the memory array. The slave then drives a reply byte
on the MISO line to indicate that the command was regis-
tered (0xFE) or not (0xFF). Any additional write data bytes
on the MOSI line are written to the memory array at loca-
tions indicated by the communicated EZ address. The EZ
address is automatically incremented by the slave as bytes
are written into the memory array. When the EZ address
exceeds the maximum number of memory entries (32), it
remains there and does not wrap around to 0.

14.2.5.3 Memory Array Read

A read from a memory array index starts with a command
byte (0x02) on the MOSI line indicating the master's intent to
read from the memory array. The slave then drives a reply
byte on the MISO line to indicate that the command was
registered (0xFE) or not (0xFF). Any additional read data
bytes on the MISO line are read from the memory array at
locations indicated by the communicated EZ address. The
EZ address is automatically incremented by the slave as
bytes are read from the memory array. When the EZ
address exceeds the maximum number of memory entries
(32), it remains there and does not wrap around to 0.

Figure 14-7 illustrates the write of EZ address, write to a
memory array and read from a memory array operations in
the EZSPI protocol.
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Figure 14-7.  EZSPI Example

14.2.5.4 Configuring SCB for EZSPI Mode

By default, the SCB is configured for non-EZ mode of operation. To configure the SCB for EZSPI mode, set the register bits in
the following order: 

1. Select EZ mode by writing '1' to the EZ_MODE bit (bit 10) of the SCB_CTRL register.

2. Use continuous transmission mode for the transmitter by writing '1' to the CONTINUOUS bit of SCB_SPI_CTRL register. 

3. Follow steps 2 to 5 mentioned in “Enabling and Initializing SPI” on page 91.

Note that PSoC Creator does all this automatically with the help of Component customizers. For more information on these
registers, see the PSoC 4700S Family: PSoC 4 Registers TRM.
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14.2.6 SPI Registers

The SPI interface is controlled using a set of 32-bit control and status registers listed in Table 14-1. For more information on
these registers, see the PSoC 4700S Family: PSoC 4 Registers TRM.

Table 14-1.  SPI Registers

Register Name Operation

SCB_CTRL Enables the SCB, selects the type of serial interface (SPI, UART, I2C), and selects internally and externally 
clocked operation.

SCB_SPI_CTRL
Configures the SPI as either a master or a slave, selects SPI protocols (Motorola, TI, National) and clock-
based submodes in Motorola SPI (modes 0,1,2,3), selects the type of SELECT signal in TI SPI.

SCB_SPI_STATUS Indicates whether the SPI bus is busy.

SCB_TX_CTRL pecifies the data frame width and specifies whether MSB or LSB is the first bit in transmission.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the receiver.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clears the transmitter FIFO and shift registers, and performs the FREEZE opera-
tion of the transmitter FIFO. 

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_FIFO_RD
Holds the data frame read from the receiver FIFO. Reading a data frame removes the data frame from the 
FIFO - behavior is similar to that of a POP operation. This register has a side effect when read by software: 
a data frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data frame read from the receiver FIFO. Reading a data frame does not remove the data frame 
from the FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Holds the slave device address and mask values.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by 
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides 
if the transmitter FIFO holds the valid data.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.
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14.2.7 SPI Interrupts

The SPI supports both internal and external interrupt requests. The internal interrupt events are listed here. PSoC Creator
generates the necessary interrupt service routines (ISRs) for handling buffer management interrupts. Custom ISRs can also
be used by connecting external interrupt component to the interrupt output of the SPI component (with external interrupts
enabled).

The SPI predefined interrupts can be classified as TX interrupts and RX interrupts. The TX interrupt output is the logical OR of
the group of all possible TX interrupt sources. This signal goes high when any of the enabled TX interrupt sources are true.
The RX interrupt output is the logical OR of the group of all possible RX interrupt sources. This signal goes high when any of
the enabled Rx interrupt sources are true. Various interrupt registers are used to determine the actual source of the interrupt. 

The SPI supports interrupts on the following events: 

■ SPI master transfer done

■ SPI Bus Error - Slave deselected at an unexpected time in the SPI transfer

■ SPI slave deselected after any EZSPI transfer occurred

■ SPI slave deselected after a write EZSPI transfer occurred

■ TX

❐ TX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

■ RX

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

■ SPI Externally clocked

❐ Wake up request on slave select

❐ SPI STOP detection at the end of each transfer

❐ SPI STOP detection at the end of a write transfer

❐ SPI STOP detection at the end of a read transfer

Note The SPI interrupt signal is hard-wired to the Cortex-M0 NVIC and cannot be routed to external pins.

14.2.8 Enabling and Initializing SPI

The SPI must be programmed in the following order:

1. Program protocol specific information using the SCB_SPI_CTRL register, according to Table 14-3. This includes selecting
the submodes of the protocol and selecting master-slave functionality. EZSPI can be used with slave mode only.

2. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL registers, as
shown in Table 14-4:

a. Specify the data frame width. This should always be 8 for EZSPI.

b. Specify whether MSB or LSB is the first bit to be transmitted/received. This should always be MSB first for EZSPI.

3. Program the transmitter and receiver FIFOs using the SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL registers respec-
tively, as shown in Table 14-5:

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift registers.

c. Freeze the TX and RX FIFO.

4. Program SCB_CTRL register to enable the SCB block. Also select the mode of operation. These register bits are shown
in Table 14-2.
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5. Enable the block (write a '1' to the ENABLED bit of the SCB_CTRL register). After the block is enabled, control bits should
not be changed. Changes should be made after disabling the block; for example, to modify the operation mode (from
Motorola mode to TI mode) or to go from externally clocked to internally clocked operation. The change takes effect only
after the block is re-enabled. Note that re-enabling the block causes re-initialization and the associated state is lost (for
example, FIFO content).

Table 14-2.  SCB_CTRL Register

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block disabled

1 SCB block enabled

Table 14-3.  SCB_SPI_CTRL Register

Bits Name Value Description

[25:24] MODE

00 SPI Motorola submode.

01 SPI Texas Instruments submode.

10 SPI National Semiconductors submode.

11 Reserved.

31 MASTER_MODE
0 Slave mode. 

1 Master mode.

Table 14-4.  SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the number of bits in the transmitted or received data frame. The valid 
range is [3, 15]. This does not include start, stop, and parity bits.

8 MSB_FIRST
1= MSB first

0= LSB first

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap median filter is applied on the input interface lines. This 
filter should reduce susceptibility to errors, but it requires higher oversampling values.

1=Enabled

0=Disabled

Table 14-5.  SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL Registers

Bits Name Description

[:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or receiver FIFO has more entries 
than the value of this field, a transmitter or receiver trigger event is generated in the respec-
tive case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no effect. Freeze 
does not advance the TX or RX FIFO read/write pointer.



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 93

Serial Communications Block (SCB)

14.2.9 Internally and Externally Clocked SPI Operations

The SCB supports both internally and externally clocked operations for SPI and I2C functions. An internally clocked operation
uses a clock provided by the chip. An externally clocked operation uses a clock provided by the serial interface. Externally
clocked operation enables operation in the Deep-Sleep system power mode.

Internally clocked operation uses the high-frequency clock (HFCLK) of the system. For more information on system clocking,
see the Clocking System chapter on page 56. It also supports oversampling. Oversampling is implemented with respect to
the high-frequency clock. The OVS (bits [3:0]) of the SCB_CTRL register specify the oversampling. 

In SPI master mode, the valid range for oversampling is 4 to 16. Hence, with a clock speed of 48 MHz, the maximum bit rate
is 12 Mbps. However, if you consider the I/O cell and routing delays, the oversampling must be set between 6 and 16 for
proper operation. So, the maximum bit rate is 8 Mbps. Note To achieve maximum possible bit rate, LATE_MISO_SAMPLE
must be set to '1' in SPI master mode. This has a default value of ‘0’.

In SPI slave mode, the OVS field (bits [3:0]) of SCB_CTRL register is not used. However, there is a frequency requirement for
the SCB clock with respect to the interface clock (SCLK). This requirement is expressed in terms of the ratio (SCB clock/
SCLK). This ratio is dependent on two fields: MEDIAN of SCB_RX_CTRL register and LATE_MISO_SAMPLE of SCB_CTRL
register. If the external SPI master supports Late MISO sampling and if the median bit is set to ‘0’, the maximum data rate that
can be achieved is 16 Mbps. If the external SPI master does not support late MISO sampling, the maximum data rate is lim-
ited to 8 Mbps (with the median bit set to ‘0’). Based on these bits, the maximum bit rates are given in Table 14-6. 

Externally clocked operation is limited to:

■ Slave functionality.

■ EZ functionality. EZ functionality uses the block's SRAM as a memory structure. Non-EZ functionality uses the block's
SRAM as TX and RX FIFOs; FIFO support is not available in externally clocked operation.

■ Motorola mode 0, 1, 2, 3.

Externally clocked EZ mode of operation can support a data rate of 48 Mbps (at the interface clock of 48 MHz).

Internally and externally clocked operation is determined by two register fields of the SCB_CTRL register:

■ EC_AM_MODE: Indicates whether SPI slave selection is internally ('0') or externally ('1') clocked. SPI slave selection
comprises the first part of the protocol.

■ EC_OP_MODE: Indicates whether the rest of the protocol operation (besides SPI slave selection) is internally ('0') or
externally ('1') clocked. As mentioned earlier, externally clocked operation does NOT support non-EZ functionality.

These two register fields determine the functional behavior of SPI. The register fields should be set based on the required
behavior in Active, Sleep, and Deep-Sleep system power mode. Improper setting may result in faulty behavior in certain sys-
tem power modes. Table 14-7 and Table 14-8 describe the settings for SPI (in non-EZ and EZ modes).

Table 14-6.  SPI Slave Maximum Data Rates

Maximum Bit Rate at Peripheral Clock of 48 MHz Ratio Requirement
Median of 

SCB_RX_CTRL
LATE_MISO_SAMPLE of SCB_CTRL

8 Mbps 6 0 1

6 Mbps 8 1 1

4 Mbps 12 0 0

3 Mbps 16 1 0
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14.2.9.1 Non-EZ Mode of Operation

In non-EZ mode there are two possible settings. As externally clocked operation is not supported for non-EZ functionality (no
FIFO support), EC_OP_MODE should always be set to '0'. However, EC_AM_MODE can be set to '0' or '1'. Table 14-7 gives
an overview of the possibilities. 

EC_OP_MODE is '0' and EC_AM_MODE is '0': This setting only works in Active and Sleep system power modes. The entire
block's functionality is provided in the internally clocked domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1': This setting works in Active and Sleep system power mode and provides lim-
ited (wake up) functionality in Deep-Sleep system power mode. SPI slave selection is performed by the externally clocked
logic: in Active system power mode, both internally and externally clocked logic are active, and in Deep-Sleep system power
mode, only the externally clocked logic is active. When the externally clocked logic detects slave selection, it sets a wakeup
interrupt cause bit, which can be used to generate an interrupt to wake up the CPU.

■ In Active system power mode, the CPU and the block's internally clocked operation are active and the wakeup interrupt
cause is disabled (associated MASK bit is '0'). But in the Sleep mode, wakeup interrupt cause can be either enabled or
disabled (MASK bit can be either '1' or '0') based on the application. The remaining operations in the Sleep mode are
same as that of the Active mode. The internally clocked operation takes care of the ongoing SPI transfer.

■ In Deep-Sleep system power mode, the CPU needs to be woken up and the wakeup interrupt cause is enabled (MASK bit
is '1'). Waking up takes time, so the ongoing SPI transfer is negatively acknowledged ('1' bit or "0xFF" byte is sent out on
the MISO line) and the internally clocked operation takes care of the next SPI transfer when it is woken up.

14.2.9.2 EZ Mode of Operation

EZ mode has three possible settings. EC_AM_MODE can be set to '0' or '1' when EC_OP_MODE is '0' and EC_AM_MODE
must be set to '1' when EC_OP_MODE is '1'. Table 14-8 gives an overview of the possibilities. The grey cells indicate a pos-
sible, yet not recommended, setting because it involves a switch from the externally clocked logic (slave selection) to the
internally clocked logic (rest of the operation). The combination EC_AM_MODE=0 and EC_OP_MODE=1 is invalid and the
block will not respond.

Table 14-7.  

System Power Mode
EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep
Selection using internal clock. 

Operation using internal 
clock.

Selection using external clock: 

Operation using internal clock.

In Active mode, the Wakeup 
interrupt cause is disabled 
(MASK = 0).

In Sleep mode, the MASK bit 
can be configured by the user.

Not supported Not supported

Deep-Sleep Not supported

Selection using external clock: 
Wakeup interrupt cause is 
enabled (MASK = 1).

Send 0xFF.
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EC_OP_MODE is '0' and EC_AM_MODE is '0': This setting
only works in Active and Sleep system power modes. The
entire block's functionality is provided in the internally
clocked domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1': This setting
works in Active and Sleep system power modes and pro-
vides limited (wake up) functionality in Deep-Sleep system
power mode. SPI slave selection is performed by the exter-
nally clocked logic: in Active system power mode, both inter-
nally and externally clocked logic are active, and in Deep-
Sleep system power mode, only the externally clocked logic
is active. When the externally clocked logic detects slave
selection, it sets a wakeup interrupt cause bit, which can be
used to generate an interrupt to wake up the CPU.

■ In Active system power mode, the CPU and the block's
internally clocked operation are active and the wakeup
interrupt cause is disabled (associated MASK bit is '0').
But in Sleep mode, wakeup interrupt cause can be either
enabled or disabled (MASK bit can be either '1' or '0')
based on the application. The remaining operations in
the Sleep mode are same as that of the Active mode.
The internally clocked operation takes care of the ongo-
ing SPI transfer.

■ In Deep-Sleep system power mode, the CPU needs to
be woken up and the wakeup interrupt cause is enabled
(MASK bit is '1'). Waking up takes time, so the ongoing
SPI transfer is negatively acknowledged ('1' bit or "0xFF"
byte is sent out on the MISO line) and the internally
clocked operation takes care of the next SPI transfer
when it is woken up.

EC_OP_MODE is '1' and EC_AM_MODE is '1': This setting
works in Active, Sleep, and Deep-Sleep system power
modes. The SCB functionality is provided in the externally
clocked domain. Note that this setting results in externally
clocked accesses to the block's SRAM. These accesses
may conflict with internally clocked accesses from the
device. This may cause wait states or bus errors. The field

FIFO_BLOCK of the SCB_CTRL register determines
whether wait states ('1') or bus errors ('0') are generated.

Table 14-8.  SPI Operation in EZ Mode

SPI, EZ Mode

System Power 
Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1 

Active and Sleep
Selection using internal clock.

Operation using internal clock.

Selection using external clock.

Operation using internal clock.

In Active mode, the Wakeup 
interrupt cause is disabled 
(MASK = 0).

In Sleep mode, the MASK bit 
can be configured by the user.

Invalid

Selection using external 
clock.

Operation using external 
clock.

Deep-Sleep Not supported

Selection using external clock: 
Wakeup interrupt cause is 
enabled (MASK = 1). 

Send 0xFF.

Selection using external 
clock.

Operation using external 
clock.
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14.3 UART

The Universal Asynchronous Receiver/Transmitter (UART)
protocol is an asynchronous serial interface protocol. UART
communication is typically point-to-point. The UART inter-
face consists of two signals:

■ TX: Transmitter output

■ RX: Receiver input

14.3.1 Features

■ Asynchronous transmitter and receiver functionality

■ Supports a maximum data rate of 3 Mbps

■ Supports UART protocol

❐ Standard UART

❐ SmartCard (ISO7816) reader.

❐ IrDA

■ Supports Local Interconnect Network (LIN)

❐ Break detection

❐ Baud rate detection

❐ Collision detection (ability to detect that a driven bit 
value is not reflected on the bus, indicating that 
another component is driving the same bus)

■ Multi-processor mode

■ Data frame size programmable from 4 to 9 bits

■ Programmable number of STOP bits, which can be set 
in terms of half bit periods between 1 and 4 

■ Parity support (odd and even parity)

■ Interrupt or polling CPU interface

■ Programmable oversampling

14.3.2 General Description

Figure 14-8 illustrates a standard UART TX and RX.

Figure 14-8.  UART Example

A typical UART transfer consists of a "Start Bit" followed by
multiple "Data Bits", optionally followed by a "Parity Bit" and
finally completed by one or more "Stop Bits". The Start and
Stop bits indicate the start and end of data transmission. The
Parity bit is sent by the transmitter and is used by the
receiver to detect single bit errors. As the interface does not
have a clock (asynchronous), the transmitter and receiver
use their own clocks; also, they need to agree upon the
period of a bit transfer.

Three different serial interface protocols are supported:

■ Standard UART protocol

❐ Multi-Processor Mode

❐ Local Interconnect Network (LIN)

■ SmartCard, similar to UART, but with a possibility to 
send a negative acknowledgement

■ IrDA, modification to the UART with a modulation 
scheme

By default, UART supports a data frame width of eight bits.
However, this can be configured to any value in the range of
4 to 9. This does not include start, stop, and parity bits. The
number of stop bits can be in the range of 1 to 4. The parity
bit can be either enabled or disabled. If enabled, the type of
parity can be set to either even parity or odd parity. The
option of using the parity bit is available only in the Standard
UART and SmartCard UART modes. For IrDA UART mode,
the parity bit is automatically disabled. Figure 14-9 depicts
the default configuration of the UART interface of the SCB.

Note UART interface does not support external clocking
operation. Hence, UART operates only in the Active and
Sleep system power modes. 

14.3.3 UART Modes of Operation

14.3.3.1 Standard Protocol

A typical UART transfer consists of a start bit followed by
multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start bit
value is always '0', the data bits values are dependent on
the data transferred, the parity bit value is set to a value
guaranteeing an even or odd parity over the data bits, and
the stop bit value is '1'. The parity bit is generated by the
transmitter and can be used by the receiver to detect single
bit transmission errors. When not transmitting data, the TX
line is '1' – the same value as the stop bits. 

Because the interface does not have a clock, the transmitter
and receiver need to agree upon the period of a bit transfer.
The transmitter and receiver have their own internal clocks.
The receiver clock runs at a higher frequency than the bit
transfer frequency, such that the receiver may oversample
the incoming signal. 

The transition of a stop bit to a start bit is represented by a
change from '1' to '0' on the TX line. This transition can be
used by the receiver to synchronize with the transmitter
clock. Synchronization at the start of each data transfer
allows error-free transmission even in the presence of fre-
quency drift between transmitter and receiver clocks. The
required clock accuracy is dependent on the data transfer
size. 

The stop period or the amount of stop bits between succes-
sive data transfers is typically agreed upon between trans-
mitter and receiver, and is typically in the range of 1 to 3-bit
transfer periods. 

UART UART

TX

RX
TX

RX
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Figure 14-9 illustrates the UART protocol.

Figure 14-9.  UART, Standard Protocol Example

The receiver oversamples the incoming signal; the value of the sample point in the middle of the bit transfer period (on the
receiver's clock) is used. Figure 14-10 illustrates this. 

Figure 14-10.  UART, Standard Protocol Example (Single Sample)

Alternatively, three samples around the middle of the bit transfer period (on the receiver's clock) are used for a majority vote
to increase accuracy. Figure 14-11 illustrates this.

Figure 14-11.  UART, Standard Protocol (Multiple Samples)

UART Multi-Processor Mode

The UART_MP (multi-processor) mode is defined with single-master-multi-slave topology, as Figure 14-12 shows. This mode
is also known as UART 9-bit protocol because the data field is nine bits wide. UART_MP is part of Standard UART mode. 

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line
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Figure 14-12.  UART MP Mode Bus Connections

The main properties of UART_MP mode are: 

■ Single master with multiple slave concept (multi-drop network).

■ Each slave is identified by a unique address.

■ Using 9-bit data field, with the ninth bit as address/data flag (MP bit). When set high, it indicates an address byte; when 
set low it indicates a data byte. A data frame is illustrated in Figure 14-13.

■ Parity bit is disabled.

Figure 14-13.  UART MP Data Frame

The SCB can be used as either master or slave device in UART_MP mode. Both SCB_TX_CTRL and SCB_RX_CTRL regis-
ters should be set to 9-bit data frame size. When the SCB works as UART_MP master device, the firmware changes the MP
flag for every address or data frame. When it works as UART_MP slave device, the MP_MODE field of the
SCB_UART_RX_CTRL register should be set to '1'. The SCB_RX_MATCH register should be set for the slave address and
address mask. The matched address is written in the RX_FIFO when ADDR_ACCEPT field of the SCB_CTRL register is set
to '1'. If received address does not match its own address, then the interface ignores the following data, until next address is
received for compare.

UART Local Interconnect Network (LIN) Mode

The LIN protocol is supported by the SCB as part of the standard UART. LIN is designed with single-master-multi-slave topol-
ogy. There is one master node and multiple slave nodes on the LIN bus. The SCB UART supports both LIN master and slave
functionality. The LIN specification defines both physical layer (layer 1) and data link layer (layer 2). Figure 14-14 illustrates
the UART_LIN and LIN Transceiver.

Figure 14-14.  UART_LIN and LIN Transceiver

UART MP
Master

UART MP
Slave 1

UART MP
Slave 2

UART MP
Slave 3

TX

RXTX TXTX

RX

RXRX

Master TX

Master RX

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field

UART LIN

LIN Transceiver

UART LIN

LIN Transceiver

LIN Master 1 LIN Slave 1 LIN Slave 2

TX RX TX RX

LIN BUS

UART LIN

LIN Transceiver

TX RX
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LIN protocol defines two tasks:

■ Master task: This task involves sending a header packet to initiate a LIN transfer. 

■ Slave task: This task involves transmitting or receiving a response.

The master node supports master task and slave task; the slave node supports only slave task, as shown in Figure 14-15. 

Figure 14-15.  LIN Bus Nodes and Tasks

LIN Frame Structure

LIN is based on the transmission of frames at pre-determined moments of time. A frame is divided into header and response
fields, as shown in Figure 14-16.

■ The header field consists of:

❐ Break field (at least 13 bit periods with the value '0').

❐ Sync field (a 0x55 byte frame). A sync field can be used to synchronize the clock of the slave task with that of the mas-
ter task.

❐ Identifier field (a frame specifying a specific slave).

■ The response field consists of data and checksum.

Figure 14-16.  LIN Frame Structure

In LIN protocol communication, the least significant bit (LSB) of the data is sent first and the most significant bit (MSB) last.
The start bit is encoded as zero and the stop bit is encoded as one. The following sections describe all the byte fields in the
LIN frame.

Break Field

Every new frame starts with a break field, which is always generated by the master. The break filed has logical zero with a
minimum of 13 bit times and followed by a break delimiter. The break field structure is as shown in Figure 14-17.

Figure 14-17.  LIN Break Field

Sync Field

This is the second field transmitted by the master in the header field; its value is 0x55. A sync field can be used to synchronize
the clock of the slave task with that of the master task for automatic baud rate detection. Figure 14-18 shows the LIN sync
field structure.

Figure 14-18.  LIN Sync Field

Master Node

Master Task

Slave Task

Slave Node Slave Node

LIN bus

Slave Task Slave Task
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Protected identifier (PID) Field

A protected identifier field consists of two sub-fields: the frame identifier (bits 0-5) and the parity (bit 6 and bit 7). The PID field
structure is shown in Figure 14-19.

■ Frame identifier: The frame identifiers are split into three categories

❐ Values 0 to 59 (0x3B) are used for signal carrying frames

❐ 60 (0x3C) and 61 (0x3D) are used to carry diagnostic and configuration data

❐ 62 (0x3E) and 63 (0x3F) are reserved for future protocol enhancements

■ Parity: Frame identifier bits are used to calculate the parity

Figure 14-19 shows the PID field structure.

Figure 14-19.  PID Field

Data.  In LIN, every frame can carry a minimum of one byte and maximum of 8 bytes of data. Here, the LSB of the data byte
is sent first and the MSB of the data byte is sent last.

Checksum

The checksum is the last byte field in the LIN frame. It is calculated by inverting the 8-bit sum along with carryover of all data
bytes only or the 8-bit sum with the carryover of all data bytes and the PID field. There are two types of checksums in LIN
frames. They are:

■ Classic checksum: the checksum calculated over all the data bytes only (used in LIN 1.x slaves).

■ Enhanced checksum: the checksum calculated over all the data bytes along with the protected identifier (used in LIN 2.x 
slaves).

LIN Frame Types

The type of frame refers to the conditions that need to be valid to transmit the frame. According to the LIN specification, there
are five different types of LIN frames. A node or cluster does not have to support all frame types.

Unconditional Frame

These frames carry the signals and their frame identifiers (of 0x00 to 0x3B range). The subscriber will receive the frames and
make it available to the application; the publisher of the frame will provide the response to the header.

Event-Triggered Frame

The purpose of an event-triggered frame is to increase the responsiveness of the LIN cluster without assigning too much of
the bus bandwidth to polling of multiple slave nodes with seldom occurring events. Event-triggered frames carry the response
of one or more unconditional frames. The unconditional frames associated with an event triggered frame should:

■ Have equal length

■ Use the same checksum model (either classic or enhanced)

■ Reserve the first data field to its protected identifier

■ Be published by different slave nodes

■ Not be included directly in the same schedule table as the event-triggered frame

Sporadic Frame

The purpose of the sporadic frames is to merge some dynamic behavior into the schedule table without affecting the rest of
the schedule table. These frames have a group of unconditional frames that share the frame slot. When the sporadic frame is
due for transmission, the unconditional frames are checked if they have any updated signals. If no signals are updated, no
frame will be transmitted and the frame slot will be empty.
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Diagnostic Frames

Diagnostic frames always carry transport layer, and contains eight data bytes.

The frame identifier for diagnostic frame is:

■ Master request frame (0x3C), or

■ Slave response frame (0x3D)

Before transmitting a master request frame, the master task queries its diagnostic module to see if it will be transmitted or if
the bus will be silent. A slave response frame header will be sent unconditionally. The slave tasks publish and subscribe to the
response according to their diagnostic modules.

Reserved Frames

These frames are reserved for future use; their frame identifiers are 0x3E and 0x3F.

LIN Go-To-Sleep and Wake-Up

The LIN protocol has the feature of keeping the LIN bus in Sleep mode, if the master sends the go-to-sleep command. The
go-to-sleep command is a master request frame (ID = 0x3C) with the first byte field is equal to 0x00 and rest set to 0xFF. The
slave node application may still be active after the go-to-sleep command is received. This behavior is application specific. The
LIN slave nodes automatically enter Sleep mode if the LIN bus inactivity is more than four seconds.

Wake-up can be initiated by any node connected to the LIN bus – either LIN master or any of the LIN slaves by forcing the
bus to be dominant for 250 µs to 5 ms. Each slave should detect the wakeup request and be ready to process headers within
100 ms. The master should also detect the wakeup request and start sending headers when the slave nodes are active.

To support LIN, a dedicated (off-chip) line driver/receiver is required. Supply voltage range on the LIN bus is 7 V to 18 V. Typ-
ically, LIN line drivers will drive the LIN line with the value provided on the SCB TX line and present the value on the LIN line
to the SCB RX line. By comparing TX and RX lines in the SCB, bus collisions can be detected (indicated by the
SCB_UART_ARB_LOST field of the SCB_INTR_TX register).

Configuring the SCB as Standard UART Interface

To configure the SCB as a standard UART interface, set various register bits in the following order:

1. Configure the SCB as UART interface by writing '10' to the MODE field (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a Standard protocol by writing '00' to the MODE field (bits [25:24]) of the 
SCB_UART_CTRL register.

3. To enable the UART MP Mode or UART LIN Mode, write '1' to the MP_MODE (bit 10) or LIN_MODE (bit 12) respectively 
of the SCB_UART_RX_CTRL register.

4. Follow steps 2 to 5 described in “Enabling and Initializing UART” on page 104.

Note that PSoC Creator does all this automatically with the help of GUIs. For more information on these registers, see the
PSoC 4700S Family: PSoC 4 Registers TRM.

14.3.3.2 SmartCard (ISO7816)

ISO7816 is asynchronous serial interface, defined with single-master-single slave topology. ISO7816 defines both Reader
(master) and Card (slave) functionality. For more information, refer to the ISO7816 Specification. Only master (reader) func-
tion is supported by the SCB. This block provides the basic physical layer support with asynchronous character transmission.
UART_TX line is connected to SmartCard I/O line, by internally multiplexing between UART_TX and UART_RX control mod-
ules.

The SmartCard transfer is similar to a UART transfer, with the addition of a negative acknowledgement (NACK) that may be
sent from the receiver to the transmitter. A NACK is always '0'. Both master and slave may drive the same line, although
never at the same time. 

A SmartCard transfer has the transmitter drive the start bit and data bits (and optionally a parity bit). After these bits, it enters
its stop period by releasing the bus. Releasing results in the line being '1' (the value of a stop bit). After one bit transfer period
into the stop period, the receiver may drive a NACK on the line (a value of '0') for one bit transfer period. This NACK is
observed by the transmitter, which reacts by extending its stop period by one bit transfer period. For this protocol to work, the
stop period should be longer than one bit transfer period. Note that a data transfer with a NACK takes one bit transfer period

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38770
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longer, than a data transfer without a NACK. Typically, implementations use a tristate driver with a pull-up resistor, such that
when the line is not transmitting data or transmitting the Stop bit, its value is '1'.

Figure 14-20 illustrates the SmartCard protocol.

Figure 14-20.  SmartCard Example

The communication Baud rate for ISO7816 is given as:

Baud rate= f7816 × (D/F)

Where f7816 is the clock frequency, F is the clock rate conversion integer, and D is the baud rate adjustment integer.

By default, F = 372, D = f1, and the maximum clock frequency is 5 MHz. Thus, maximum baud rate is 13.4 Kbps. Typically, a
3.57-MHz clock is selected. The typical value of the baud rate is 9.6 Kbps. 

Configuring SCB as UART SmartCard Interface

To configure the SCB as a UART SmartCard interface, set various register bits in the following order; note that PSoC Creator
does all this automatically with the help of GUIs. For more information on these registers, see the PSoC 4700S Family: PSoC
4 Registers TRM.

1. Configure the SCB as UART interface by writing '10' to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a SmartCard protocol by writing '01' to the MODE (bits [25:24]) of the 
SCB_UART_CTRL register.

3. Follow steps 2 to 5 described in “Enabling and Initializing UART” on page 104.

14.3.3.3 IrDA

The SCB supports the Infrared Data Association (IrDA) protocol for data rates of up to 115.2 Kbps using the UART interface.
It supports only the basic physical layer of IrDA protocol with rates less than 115.2 Kbps. Hence, the system instantiating this
block must consider how to implement a complete IrDA communication system with other available system resources.

The IrDA protocol adds a modulation scheme to the UART signaling. At the transmitter, bits are modulated. At the receiver,
bits are demodulated. The modulation scheme uses a Return-to-Zero-Inverted (RZI) format. A bit value of '0' is signaled by a
short '1' pulse on the line and a bit value of '1' is signaled by holding the line to '0'. For these data rates (<=115.2 Kbps), the
RZI modulation scheme is used and the pulse duration is 3/16 of the bit period. The sampling clock frequency should be set
16 times the selected baud rate, by configuring the SCB_OVS field of the SCB_CTRL register. 

Different communication speeds under 115.2 Kbps can be achieved by configuring corresponding block clock frequency.
Additional allowable rates are 2.4 Kbps, 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, and 57.6 Kbps. An IrDA serial infrared interface
operates at 9.6 Kbps. Figure 14-21 shows how a UART transfer is IrDA modulated.

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) without NACK
TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

STOPNACK
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Figure 14-21.  IrDA Example

Configuring the SCB as UART IrDA Interface

To configure the SCB as a UART IrDA interface, set various register bits in the following order; note that PSoC Creator does
all this automatically with the help of GUIs. For more information on these registers, see the PSoC 4700S Family: PSoC 4
Registers TRM.

1. Configure the SCB as UART interface by writing '10' to the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as IrDA protocol by writing '10' to the MODE (bits [25:24]) of the 
SCB_UART_CTRL register.

3. Enable the Median filter on the input interface line by writing ‘1’ to MEDIAN (bit 9) of the SCB_RX_CTRL register.

4. Configure the SCB as described in “Enabling and Initializing UART” on page 104.

14.3.4 UART Registers

The UART interface is controlled using a set of 32-bit registers listed in Table 14-9. For more information on these registers,
see the PSoC 4700S Family: PSoC 4 Registers TRM.

Table 14-9.  UART Registers

Register Name Operation

SCB_CTRL Enables the SCB; selects the type of serial interface (SPI, UART, I2C)

SCB_UART_CTRL
Used to select the sub-modes of UART (standard UART, SmartCard, IrDA), also used for local loop back 
control.

SCB_UART_RX_STATUS
Used to specify the BR_COUNTER value that determines the bit period. This is used to set the accuracy 
of the SCB clock. This value provides more granularity than the OVS bit in SCB_CTRL register.

SCB_UART_TX_CTRL
Used to specify the number of stop bits, enable parity, select the type of parity, and enable retransmission 
on NACK.

SCB_UART_RX_CTRL
Performs same function as SCB_UART_TX_CTRL but is also used for enabling multi processor mode, 
LIN mode drop on parity error, and drop on frame error.

SCB_TX_CTRL Used to specify the data frame width and to specify whether MSB or LSB is the first bit in transmission.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides 
whether a median filter is to be used on the input interface lines.

PARIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX

IrDA
TX / RX

LEGEND:
TX / RX : Transmit or Receive line
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14.3.5 UART Interrupts

The UART supports both internal and external interrupt requests. The internal interrupt events are listed in this section. PSoC
Creator generates the necessary interrupt service routines (ISRs) for handling buffer management interrupts. Custom ISRs
can also be used by connecting the external interrupt component to the interrupt output of the UART component (with exter-
nal interrupts enabled).

The UART predefined interrupts can be classified as TX interrupts and RX interrupts. The TX interrupt output is the logical OR
of the group of all possible TX interrupt sources. This signal goes high when any of the enabled TX interrupt sources is true.
The RX interrupt output is the logical OR of the group of all possible RX interrupt sources. This signal goes high when any of
the enabled Rx interrupt sources is true. The UART provides interrupts on the following events: 

■ TX

❐ TX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

❐ TX received a NACK in SmartCard mode

❐ TX done

❐ Arbitration lost (in LIN or SmartCard modes)

■ RX 

❐ RX FIFO has less entries than the value specified by TRIGGER_LEVEL in SCB_RX_FIFO_CTRL

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

❐ Frame error in received data frame

❐ Parity error in received data frame

❐ LIN baud rate detection is completed

❐ LIN break detection is successful

14.3.6 Enabling and Initializing UART

The UART must be programmed in the following order:

1. Program protocol specific information using the SCB_UART_CTRL register, according to Table 14-10. This includes
selecting the submodes of the protocol, transmitter-receiver functionality, and so on. 

2. Program the generic transmitter and receiver information using the SCB_TX_CTRL and SCB_RX_CTRL registers, as
shown in Table 14-11.

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be transmitted or received.

3. Program the transmitter and receiver FIFOs using the SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL registers respec-
tively, as shown in Table 14-12. 

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift registers.

c. Freeze the TX and RX FIFOs.

4. Program the SCB_CTRL register to enable the SCB block. Also select the mode of operation (Table 14-13).

5. Enable the block (write a '1' to the ENABLED bit of the SCB_CTRL register). After the block is enabled, control bits should
not be changed. Changes should be made after disabling the block; for example, to modify the operation mode (from
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SmartCard to IrDA). The change takes effect only after the block is re-enabled. Note that re-enabling the block causes re-
initialization and the associated state is lost (for example FIFO content).

Table 14-10.  SCB_UART_CTRL Register

Bits Name Value Description

[25:24] MODE

00 Standard UART

01 SmartCard

10 IrDA

11 Reserved

16 LOOP_BACK Loop back control. This allows a SCB UART transmitter to communicate with its receiver counterpart.

Table 14-11.  SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the no. of bits in the transmitted or received data frame. The valid range is [3, 15]. This 
does not include start, stop, and parity bits.

8 MSB_FIRST
1 = MSB first

0 = LSB first

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap median filter is applied on the input interface lines. This filter should 
reduce susceptibility to errors, but it requires higher oversampling values. For the UART IrDA mode, this 
should always be '1'.

1 = Enabled

0 = Disabled

Table 14-12.  SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL Registers

Bits Name Description

[:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or receiver FIFO has more entries than the value of 
this field, a transmitter or receiver trigger event is generated in the respective case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared/invalidated.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no effect. Freeze will not advance 
the TX or RX FIFO read/write pointer.

Table 14-13.  SCB_CTRL Register

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block disabled

1 SCB block enabled
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14.4 Inter Integrated Circuit (I2C)

This section explains the I2C implementation in PSoC. For more information on the I2C protocol specification, refer to the I2C-
bus specification available on the NXP website.

14.4.1 Features

This block supports the following features:

■ Master, slave, and master/slave mode

■ Slow-mode (50 kbps), standard-mode (100 kbps), fast-mode (400 kbps), and fast-mode plus (1000 kbps) data-rates

■ 7- or 10-bit slave addressing (10-bit addressing requires firmware support)

■ Clock stretching and collision detection

■ Programmable oversampling of I2C clock signal (SCL)

■ Error reduction using an digital median filter on the input path of the I2C data signal (SDA)

■ Glitch-free signal transmission with an analog glitch filter 

■ Interrupt or polling CPU interface

14.4.2 General Description

Figure 14-22 illustrates an example of an I2C communication network.

Figure 14-22.  I2C Interface Block Diagram

The standard I2C bus is a two wire interface with the following lines:

■ Serial Data (SDA)

■ Serial Clock (SCL)

I2C devices are connected to these lines using open collector or open-drain output stages, with pull-up resistors (Rp). A sim-
ple master/slave relationship exists between devices. Masters and slaves can operate as either transmitter or receiver. Each
slave device connected to the bus is software addressable by a unique 7-bit address. PSoC also supports 10-bit address
matching for I2C with firmware support.

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

http://www.nxp.com/documents/other/UM10204_v5.pdf
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14.4.3 Terms and Definitions

Table 14-14 explains the commonly used terms in an I2C
communication network.

14.4.3.1 Clock Stretching

When a slave device is not yet ready to process data, it may
drive a ‘0’ on the SCL line to hold it down. Due to the imple-
mentation of the I/O signal interface, the SCL line value will
be '0', independent of the values that any other master or
slave may be driving on the SCL line. This is known as clock
stretching and is the only situation in which a slave drives
the SCL line. The master device monitors the SCL line and
detects it when it cannot generate a positive clock pulse ('1')
on the SCL line. It then reacts by delaying the generation of
a positive edge on the SCL line, effectively synchronizing
with the slave device that is stretching the clock.

14.4.3.2 Bus Arbitration

The I2C protocol is a multi-master, multi-slave interface. Bus
arbitration is implemented on master devices by monitoring
the SDA line. Bus collisions are detected when the master
observes an SDA line value that is not the same as the
value it is driving on the SDA line. For example, when mas-
ter 1 is driving the value '1' on the SDA line and master 2 is
driving the value '0' on the SDA line, the actual line value will
be '0' due to the implementation of the I/O signal interface.
Master 1 detects the inconsistency and loses control of the
bus. Master 2 does not detect any inconsistency and keeps
control of the bus.

14.4.4 I2C Modes of Operation

I2C is a synchronous single master, multi-master, multi-slave
serial interface. Devices operate in either master mode,
slave mode, or master/slave mode. In master/slave mode,
the device switches from master to slave mode when it is
addressed. Only a single master may be active during a
data transfer. The active master is responsible for driving the

clock on the SCL line. Table 14-15 illustrates the I2C modes
of operation.

Data transfer through the I2C bus follows a specific format.
Table 14-16 lists some common bus events that are part of
an I2C data transfer. The Write Transfer and Read Transfer
sections explain the I2C bus bit format during data transfer.

When operating in multi-master mode, the bus should
always be checked to see if it is busy; another master may
already be communicating with a slave. In this case, the
master must wait until the current operation is complete
before issuing a START signal (see Table 14-16,
Figure 14-23, and Figure 14-24). The master looks for a
STOP signal as an indicator that it can start its data trans-
mission.

When operating in multi-master-slave mode, if the master
loses arbitration during data transmission, the hardware
reverts to slave mode and the received byte generates a
slave address interrupt, so that the device is ready to
respond to any other master on the bus. With all of these
modes, there are two types of transfer - read and write. In
write transfer, the master sends data to slave; in read trans-
fer, the master receives data from slave. Write and read
transfer examples are available in “Master Mode Transfer
Examples” on page 115, “Slave Mode Transfer Examples”
on page 117, and “Multi-Master Mode Transfer Example” on
page 121. 

Table 14-14.  Definition of I2C Bus Terminology

Term Description

Transmitter The device that sends data to the bus

Receiver The device that receives data from the bus

Master
The device that initiates a transfer, generates 
clock signals, and terminates a transfer

Slave The device addressed by a master

Multi-master
More than one master can attempt to control 
the bus at the same time without corrupting the 
message

Arbitration

Procedure to ensure that, if more than one mas-
ter simultaneously tries to control the bus, only 
one is allowed to do so and the winning mes-
sage is not corrupted

Synchronization
Procedure to synchronize the clock signals of 
two or more devices

Table 14-15.  I2C Modes

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi-master Supports more than one master on the bus

Multi-master-slave Simultaneous slave and multi-master operation 

Table 14-16.  I2C Bus Events Terminology

Bus Event Description

START
A HIGH to LOW transition on the SDA line while 
SCL is HIGH

STOP
A LOW to HIGH transition on the SDA line while 
SCL is HIGH

ACK

The receiver pulls the SDA line LOW and it 
remains LOW during the HIGH period of the clock 
pulse, after the transmitter transmits each byte. 
This indicates to the transmitter that the receiver 
received the byte properly.

NACK

The receiver does not pull the SDA line LOW and 
it remains HIGH during the HIGH period of clock 
pulse after the transmitter transmits each byte. 
This indicates to the transmitter that the receiver 
received the byte properly.

Repeated 
START

START condition generated by master at the end 
of a transfer instead of a STOP condition

DATA
SDA status change while SCL is low (data chang-
ing), and no change while SCL is high (data valid)
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14.4.4.1 Write Transfer

Figure 14-23.  Master Write Data Transfer

■ A typical write transfer begins with the master generating a START condition on the I2C bus. The master then writes a 7-

bit I2C slave address and a write indicator ('0') after the START condition. The addressed slave transmits an acknowl-
edgement byte by pulling the data line low during the ninth bit time.

■ If the slave address does not match any of the slave devices or if the addressed device does not want to acknowledge the 
request, it transmits a no acknowledgement (NACK) by not pulling the SDA line low. The absence of an acknowledge-
ment, results in an SDA line value of '1' due to the pull-up resistor implementation. 

■ If no acknowledgement is transmitted by the slave, the master may end the write transfer with a STOP event. The master 
can also generate a repeated START condition for a retry attempt.

■ The master may transmit data to the bus if it receives an acknowledgement. The addressed slave transmits an acknowl-
edgement to confirm the receipt of every byte of data written. Upon receipt of this acknowledgement, the master may 
transmit another data byte.

■ When the transfer is complete, the master generates a STOP condition.

14.4.4.2 Read Transfer

Figure 14-24.  Master Read Data Transfer

■ A typical read transfer begins with the master generating a START condition on the I2C bus. The master then writes a 7-
bit I2C slave address and a read indicator ('1') after the START condition. The addressed slave transmits an acknowledge-
ment by pulling the data line low during the ninth bit time.

■ If the slave address does not match with that of the connected slave device or if the addressed device does not want to 
acknowledge the request, a no acknowledgement (NACK) is transmitted by not pulling the SDA line low. The absence of 
an acknowledgement, results in an SDA line value of '1' due to the pull-up resistor implementation. 

■ If no acknowledgement is transmitted by the slave, the master may end the read transfer with a STOP event. The master 
can also generate a repeated START condition for a retry attempt.

■ If the slave acknowledges the address, it starts transmitting data after the acknowledgement signal. The master transmits 
an acknowledgement to confirm the receipt of each data byte sent by the slave. Upon receipt of this acknowledgement, 
the addressed slave may transmit another data byte.

■ The master can send a NACK signal to the slave to stop the slave from sending data bytes. This completes the read 
transfer.

■ When the transfer is complete, the master generates a STOP condition.

MSB LSBSDA

SCL

START Slave address (7 bits) Write ACK ACKData(8 bits) STOP

Write data transfer(Master writes the data)

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

MSB LSB

START Slave address (7 bits) Read ACK ACKData(8 bits) STOP

Read data transfer(Master reads the data)

SDA

SCL

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive
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14.4.5 Easy I2C (EZI2C) Protocol

The Easy I2C (EZI2C) protocol is a unique communication
scheme built on top of the I2C protocol by Cypress. It uses a
software wrapper around the standard I2C protocol to com-
municate to an I2C slave using indexed memory transfers.
This removes the need for CPU intervention at the level of
individual frames.

The EZI2C protocol defines an 8-bit address that indexes a
memory array (8-bit wide 32 locations) located on the slave
device. Five lower bits of the EZ address are used to
address these 32 locations. The number of bytes transferred
to or from the EZI2C memory array can be found by compar-
ing the EZ address at the START event and the EZ address
at the STOP event.

Note The I2C block has a hardware FIFO memory, which is
16 bits wide and 16 locations deep with byte write enable.
The access methods for EZ and non-EZ functions are differ-
ent. In non-EZ mode, the FIFO is split into TXFIFO and
RXFIFO. Each has 16-bit wide eight locations. In EZ mode,
the FIFO is used as a single memory unit with 8-bit wide 32
locations.

EZI2C has two types of transfers: a data write from the mas-
ter to an addressed slave memory location, and a read by
the master from an addressed slave memory location.

14.4.5.1 Memory Array Write

An EZ write to a memory array index is by means of an I2C
write transfer. The first transmitted write data is used to send
an EZ address from the master to the slave. The five lowest
significant bits of the write data are used as the "new" EZ
address at the slave. Any additional write data elements in
the write transfer are bytes that are written to the memory
array. The EZ address is automatically incremented by the
slave as bytes are written into the memory array. If the num-
ber of continuous data bytes written to the EZI2C buffer
exceeds EZI2C buffer boundary, it overwrites the last loca-
tion for every subsequent byte.

14.4.5.2 Memory Array Read

An EZ read from a memory array index is by means of an
I2C read transfer. The EZ read relies on an earlier EZ write
to have set the EZ address at the slave. The first received
read data is the byte from the memory array at the EZ
address memory location. The EZ address is automatically
incremented as bytes are read from the memory array. The
address wraps around to zero when the final memory loca-
tion is reached.

Figure 14-25.  EZI2C Write and Read Data Transfer

LEGEND :
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B
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BSDA
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Write data transfer(single write data)
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Read data transfer(single read data)

SDA
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SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive
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Address
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14.4.6 I2C Registers

The I2C interface is controlled by reading and writing a set of configuration, control, and status registers, as listed in
Table 14-17. 

Note Detailed descriptions of the I2C register bits are available in the PSoC 4700S Family: PSoC 4 Registers TRM.

Table 14-17.  I2C Registers

Register Function

SCB_CTRL
Enables the I2C block and selects the type of serial interface (SPI, UART,I2C). Also used to select internally 
and externally clocked operation and EZ and non-EZ modes of operation.

SCB_I2C_CTRL Selects the mode (master, slave) and sends an ACK or NACK signal based on receiver FIFO status.

SCB_I2C_STATUS
Indicates bus busy status detection, read/write transfer status of the slave/master, and stores the EZ slave 
address.

SCB_I2C_M_CMD Enables the master to generate START, STOP, and ACK/NACK signals.

SCB_I2C_S_CMD Enables the slave to generate ACK/NACK signals.

SCB_STATUS
Indicates whether the externally clocked logic is using the EZ memory. This bit can be used by software to 
determine whether it is safe to issue a software access to the EZ memory.

SCB_I2C_CFG Configures filters, which remove glitches from the SDA and SCL lines.

SCB_TX_CTRL Specifies the data frame width; also used to specify whether MSB or LSB is the first bit in transmission.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clearing of the transmitter FIFO and shift registers, and FREEZE operation of the 
transmitter FIFO.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by 
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides 
if the transmitter FIFO holds the valid data. 

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides 
whether a median filter is to be used on the input interface lines.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver. 

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO; 
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data 
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the 
FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as slave device address MASK. 

SCB_EZ_DATA Holds the data in an EZ memory location.



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 111

Serial Communications Block (SCB)

14.4.7 I2C Interrupts

The fixed-function I2C block generates interrupts for the fol-
lowing conditions.

■ I2C Master

❐ I2C master lost arbitration 

❐ I2C master received NACK

❐ I2C master received ACK

❐ I2C master sent STOP

❐ I2C bus error (unexpected stop/start condition 
detected)

■ I2C Slave

❐ I2C slave lost arbitration

❐ I2C slave received NACK

❐ I2C slave received ACK

❐ I2C slave received STOP

❐ I2C slave received START

❐ I2C slave address matched

❐ I2C bus error (unexpected stop/start condition 
detected)

■ TX

❐ TX FIFO has less entries than the value specified by 
TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

■ RX

❐ RX FIFO has less entries than the value specified by 
TRIGGER_LEVEL in SCB_RX_FIFO_CTRL

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

■ I2C Externally Clocked

❐ Wake up request on address match

❐ I2C STOP detection at the end of each transfer

❐ I2C STOP detection at the end of a write transfer

❐ I2C STOP detection at the end of a read transfer

The I2C interrupt signal is hard-wired to the Cortex-M0 NVIC
and cannot be routed to external pins.

The interrupt output is the logical OR of the group of all pos-
sible interrupt sources. The interrupt is triggered when any
of the enabled interrupt conditions are met. Interrupt status
registers are used to determine the actual source of the
interrupt. For more information on interrupt registers, see
the PSoC 4700S Family: PSoC 4 Registers TRM.

14.4.8 Enabling and Initializing the I2C

The following section describes the method to configure the
I2C block for standard (non-EZ) mode and EZI2C mode.

14.4.8.1 Configuring for I2C Standard (Non-
EZ) Mode

The I2C interface must be programmed in the following
order.

1. Program protocol specific information using the 
SCB_I2C_CTRL register according to Table 14-18. This 
includes selecting master - slave functionality.

2. Program the generic transmitter and receiver information 
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 14-19. 

a. Specify the data frame width.

b. Specify that MSB is the first bit to be transmitted/
received.

3. Program transmitter and receiver FIFO using the 
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters, respectively, as shown in Table 14-20. 

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift 
registers.

4. Program the SCB_CTRL register to enable the I2C block 
and select the I2C mode. These register bits are shown 
in Table 14-21. For a complete description of the I2C 
registers, see the PSoC 4700S Family: PSoC 4 Regis-
ters TRM.

Table 14-18.  SCB_I2C_CTRL Register

Bits Name Value Description

30 SLAVE_MODE 1 Slave mode

31 MASTER_MODE 1 Master mode
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14.4.8.2 Configuring for EZI2C Mode

To configure the I2C block for EZI2C mode, set the following I2C register bits

1. Select the EZI2C mode by writing '1' to the EZ_MODE bit (bit 10) of the SCB_CTRL register.

2. Follow steps 2 to 4 mentioned in Configuring for EZI2C Mode.

3. Set the S_READY_ADDR_ACK (bit 12) and S_READY_DATA_ACK (bit 13) bits of the SCB_I2C_CTRL register.

14.4.9 Internal and External Clock Operation in I2C

The I2C block supports both internally and externally clocked operation for data-rate generation. Internally clocked operations
use a clock signal derived from the PSoC system bus clock. Externally clocked operations use a clock provided by the user.
Externally clocked operation allows limited functionality in the Deep-Sleep power mode, in which on-chip clocks are not
active. For more information on system clocking, see the Clocking System chapter on page 56. 

Externally clocked operation is limited to the following cases:

■ Slave functionality.

■ EZ functionality. 

TX and RX FIFOs do not support externally clocked operation; therefore, it is not used for non-EZ functionality. 

Internally and externally clocked operations are determined by two register fields of the SCB_CTRL register:

Table 14-19.  SCB_TX_CTRL/SCB_RX_CTRL Register

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the number of bits in the transmitted or received data 
frame. For I2C, this is always 7.

8 MSB_FIRST
1= MSB first (this should always be true for I2C)

0= LSB first

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap median filter is applied on the input interface 
lines. This filter should reduce susceptibility to errors, but it requires higher overs-
ampling values.

1=Enabled

0=Disabled

Table 14-20.  SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL 

Bits Name Description

[7:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or the receiver FIFO 
has more entries than the value of this field, a transmitter or receiver trigger event 
is generated in the respective case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no 
effect. Freeze does not advance the TX or RX FIFO read/write pointer.

Table 14-21.  SCB_CTRL Registers

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block disabled

1 SCB block enabled
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■ EC_AM_MODE (Externally Clocked Address Matching Mode): Indicates whether I2C address matching is internally
('0') or externally ('1') clocked.

■ EC_OP_MODE (Externally Clocked Operation Mode): Indicates whether the rest of the protocol operation (besides I2C
address match) is internally ('0') or externally ('1') clocked. As mentioned earlier, externally clocked operation does not
support non-EZ functionality.

These two register fields determine the functional behavior of I2C. The register fields should be set based on the required
behavior in Active, Sleep, and Deep-Sleep system power modes. Improper setting may result in faulty behavior in certain
power modes. Table 14-22 and Table 14-23 describe the settings for I2C in EZ and non-EZ mode.

14.4.9.1 I2C Non-EZ Mode of Operation

Externally clocked operation is not supported for non-EZ functionality because there is no FIFO support for this mode. So, the
EC_OP_MODE should always be set to '0'for non-EZ mode. However, EC_AM_MODE can be set to '0' or '1'.Table 14-22
gives an overview of the possibilities. The combination EC_AM_MODE = 0 and EC_OP_MODE = 1 is invalid and the block
will not respond.

EC_AM_MODE is '0' and EC_OP_MODE is '0'. 

This setting only works in Active and Sleep system power modes. All the functionality of the I2C is provided in the internally
clocked domain.

EC_AM_MODE is '1' and EC_OP_MODE is '0'. 

This setting works in Active, Sleep, and Deep-Sleep system power modes. I2C address matching is performed by the exter-
nally clocked logic in Active, Sleep, and Deep-Sleep system power modes. When the externally clocked logic matches the
address, it sets a wakeup interrupt cause bit, which can be used to generate an interrupt to wakeup the CPU.

■ In Active system power mode, the CPU is active and the wakeup interrupt cause is disabled (associated MASK bit is '0').
The externally clocked logic takes care of the address matching and the internally locked logic takes care of the rest of the
I2C transfer.

■ In the Sleep mode, wakeup interrupt cause can be either enabled or disabled based on the application. The remaining
operations are similar to the Active mode.

■ In the Deep-Sleep mode, the CPU is shut down and will wake up on I2C activity if the wakeup interrupt cause is enabled.
CPU wakeup up takes time and the ongoing I2C transfer is either negatively acknowledged (NACK) or the clock is
stretched. In the case of a NACK, the internally clocked logic takes care of the first I2C transfer after it wakes up. For clock
stretching, the internally clocked logic takes care of the ongoing/stretched transfer when it wakes up. The register bit
S_NOT_READY_ADDR_NACK (bit 14) of the SCB_I2C_CTRL register determines whether the externally clocked logic
performs a negative acknowledge ('1') or clock stretch ('0').

14.4.9.2 I2C EZ Operation Mode

EZ mode has three possible settings. EC_AM_MODE can be set to '0' or '1' when EC_OP_MODE is '0' and EC_AM_MODE
must be set to '1' when EC_OP_MODE is '1'. Table 14-23 gives an overview of the possibilities. The grey cells indicate a pos-
sible, yet not recommended setting because it involves a switch from the externally clocked logic (slave selection) to the inter-

Table 14-22.  I2C Operation in Non-EZ Mode

I2C (Non-EZ) Mode

System Power 
Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep
Address match using internal clock.

Operation using internal clock.

Address match using external clock.

Operation using internal clock.
Not supported

Deep-Sleep Not supported
Address match using external clock.

Operation using internal clock.
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nally clocked logic (rest of the operation). The combination EC_AM_MODE = 0 and EC_OP_MODE = 1 is invalid and the
block will not respond.

■ EC_AM_MODE is '0' and EC_OP_MODE is '0'. This setting only works in Active and Sleep system power modes. 

■ EC_AM_MODE is '1' and EC_OP_MODE is '0'. This setting works same as I2C non-EZ mode.

■ EC_AM_MODE is '1' and EC_OP_MODE is '1'. This setting works in Active and Deep-Sleep system power modes. 

The I2C block’s functionality is provided in the externally clocked domain. Note that this setting results in externally clocked
accesses to the block's SRAM. These accesses may conflict with internally clocked accesses from the device. This may
cause wait states or bus errors. The field FIFO_BLOCK (bit 17) of the SCB_CTRL register determines whether wait states
('1') or bus errors ('0') are generated.

14.4.10 Wake up from Sleep 

The system wakes up from Sleep or Deep-Sleep system power modes when an I2C address match occurs. The fixed-func-
tion I2C block performs either of two actions after address match: Address ACK or Address NACK.

Address ACK - The I2C slave executes clock stretching and waits until the device wakes up and ACKs the address. 

Address NACK - The I2C slave NACKs the address immediately. The master must poll the slave again after the device
wakeup time is passed. This option is only valid in the slave or multi-master-slave modes.

Note The interrupt bit WAKE_UP (bit 0) of the SCB_INTR_I2C_EC register must be enabled for the I2C to wake up the
device on slave address match while switching to the Sleep mode.

Note If the device is configured in I2C slave mode, the clock to the SCB should be disabled when entering Deep-Sleep
power mode; enable the clock when waking up from Deep-Sleep mode.

Table 14-23.  I2C Operation in EZ Mode

I2C, EZ Mode

System Power 
Mode

EC_OP_MODE= 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep

Address match using internal 
clock

Operation using internal 
clock

Address match using external 
clock

Operation using internal clock
Invalid

Address match using external 
clock 

Operation using external clock 

Deep-Sleep Not supported
Address match using external 
clock

Operation using internal clock

Address match using external 
clock 

Operation using external clock
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14.4.11 Master Mode Transfer Examples

Master mode transmits or receives data.

14.4.11.1 Master Transmit

Figure 14-26.  Single Master Mode Write Operation Flow Chart
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14.4.11.2 Master Receive

Figure 14-27.  Single Master Mode Read Operation Flow Chart
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14.4.12 Slave Mode Transfer Examples

Slave mode transmits or receives data.

14.4.12.1 Slave Transmit

Figure 14-28.  Slave Mode Write Operation Flow Chart
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14.4.12.2 Slave Receive

Figure 14-29.  Slave Mode Read Operation Flow Chart
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14.4.13 EZ Slave Mode Transfer Example

The EZ Slave mode transmits or receives data.

14.4.13.1 EZ Slave Transmit

Figure 14-30.   EZI2C Slave Mode Write Operation Flow Chart
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14.4.13.2 EZ Slave Receive

Figure 14-31.  EZI2C Slave Mode Read Operation Flow Chart
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14.4.14 Multi-Master Mode Transfer Example

In multi-master mode, data can be transferred with the slave mode enabled or not enabled.

14.4.14.1 Multi-Master - Slave Not Enabled

Figure 14-32.  Multi-Master, Slave Not Enabled Flow Chart
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14.4.14.2 Multi-Master - Slave Enabled

Figure 14-33.   Multi-Master, Slave Enabled Flow Chart
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15.   Timer, Counter, and PWM

The Timer, Counter, and Pulse Width Modulator (TCPWM) block in PSoC® 4 implements the 16-bit timer, counter, pulse width
modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an
input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadra-
ture signals. This chapter explains the features, implementation, and operational modes of the TCPWM block.

15.1 Features
■ Five 16-bit timers, counters, or pulse width modulators (PWM)

■ The TCPWM block supports the following operational modes:

❐ Timer

❐ Capture

❐ Quadrature decoding

❐ Pulse width modulation

❐ Pseudo-random PWM

❐ PWM with dead time

■ Multiple counting modes – up, down, and up/down 

■ Clock prescaling (division by 1, 2, 4, ... 64, 128)

■ Double buffering of compare/capture and period values

■ Supports interrupt on:

❐ Terminal Count – The final value in the counter register is reached

❐ Capture/Compare – The count is captured to the capture/compare register or the counter value equals the compare 
value

■ Underflow, overflow, and capture/compare output signals

■ Complementary line output for PWMs

■ Selectable start, reload, stop, count, and capture event signals for the TCPWM underflow, overflow, and capture/compare 
signals of other TCPWMs, output of LPCOMPs, and from the dedicated GPIOs with rising edge, falling edge, both edges, 
and level trigger options
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15.2 Block Diagram

Figure 15-1.  TCPWM Block Diagram

The block has these interfaces:

■ Bus interface: Connects the block to the CPU subsystem.

■ I/O signal interface: Connects input triggers (such as reload, start, stop, count, and capture)

■ Interrupts: Provides interrupt request signals from the counter, based on terminal count (TC) or CC conditions.

■ System interface: Consists of control signals such as clock and reset from the system resources subsystem.

This TCPWM block can be configured by writing to the TCPWM registers. See “TCPWM Registers” on page 146 for more
information on all registers required for this block.

15.2.1 Enabling and Disabling Counter in TCPWM Block

The counter can be enabled by setting the COUNTER_ENABLED field (bit 0) of the control register TCPWM_CTRL. 

Note The counter must be configured before enabling it. If the counter is enabled after being configured, registers are
updated with the new configuration values. Disabling the counter retains the values in the registers until it is enabled again (or
reconfigured).

15.2.2 Clocking

The TCPWM receives the HFCLK through the system interface to synchronize all events in the block. The counter enable sig-
nal (counter_en), which is generated when the counter is enabled, gates the HFCLK to provide a counter-specific clock
(counter_clock). Output triggers (explained later in this chapter) are also synchronized with the HFCLK.

Clock Prescaling: counter_clock can be prescaled, with divider values of 1, 2, 4… 64, 128. This prescaling is done by modi-
fying the GENERIC field of the counter control (TCPWM_CNT_CTRL) register, as shown in Table 15-1.

Note Clock prescaling cannot be done in quadrature mode and PWM-DT mode.

Table 15-1.  Bit-Field Setting to Prescale Counter Clock

GENERIC[10:8] Description

0 Divide by 1

1 Divide by 2

2 Divide by 4

3 Divide by 8

4 Divide by 16

5 Divide by 32

6 Divide by 64

7 Divide by 128
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15.2.3 Events Based on Trigger Inputs

These are the events triggered by hardware or software.

■ Reload

■ Start

■ Stop

■ Count

■ Capture/switch

Hardware triggers can be level signal, rising edge, falling edge, or both edges. Figure 15-2 shows the selection of edge detec-
tion type for any event trigger signal.

Any edge (rising, falling, or both) or level (high or low) can be selected for the occurrence of an event by configuring the trig-
ger control register 1 (TCPWM_CNT_TR_CTRL1). This edge/level configuration can be selected for each trigger event sepa-
rately. Alternatively, firmware can generate an event by writing to the counter command register (TCPWM_CMD), as shown in
Figure 15-2.

Figure 15-2.  Trigger Signal Edge Detection  

The trigger signal to generate an event can be a GPIO signal, TCPWM's underflow, compare match or overflow signal, or a
low-power comparator (LPCOMP) output signal. Figure 15-3 shows the trigger signal selection for all the events.
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Figure 15-3.  Trigger Mux 

The events derived from these triggers can have different
definitions in different modes of the TCPWM block. 

■ Reload: A reload event initializes and starts the counter.

❐ In UP counting mode, the count register 
(TCPWM_CNT_COUNTER) is initialized with ‘0’.

❐ In DOWN counting mode, the counter is initialized 
with the period value stored in the 
TCPWM_CNT_PERIOD register.

❐ In UP/DOWN counting mode, the count register is 
initialized with ‘0’.

❐ In quadrature mode, the reload event acts as a 
quadrature index event. An index/reload event indi-

cates a completed rotation and can be used to syn-
chronize quadrature decoding.

■ Start: A start event is used to start counting; it can be 
used after a stop event or after re-initialization of the 
counter register to any value by software. Note that the 
count register is not initialized on this event. 

❐ In quadrature mode, the start event acts as quadra-
ture phase input phiB, which is explained in detail in 
“Quadrature Decoder Mode” on page 135.

■ Count: A count event causes the counter to increment 
or decrement, depending on its configuration. 

❐ In quadrature mode, the count event acts as quadra-
ture phase input phiA.
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■ Stop: A stop event stops the counter from incrementing 
or decrementing. A start event will start the counting 
again. 

❐ In the PWM modes, the stop event acts as a kill 
event. A kill event disables all the PWM output lines.

■ Capture: A capture event copies the counter register 
value to the capture register and capture register value 
to the buffer capture register. In the PWM modes, the 
capture event acts as a switch event. It switches the val-
ues of the capture/compare and period registers with 

their buffer counterparts. This feature can be used to 
modulate the pulse width and frequency.

Notes

■ All trigger inputs are synchronized to the HFCLK.

■ When more than one event occurs in the same counter 
clock period, one or more events may be missed. This 
can happen for high-frequency events (frequencies 
close to the counter frequency) and a timer configuration 
in which a pre-scaled (divided) counter clock is used.

15.2.4 Output Signals

The TCPWM block generates several output signals, as shown in Figure 15-4.

Figure 15-4.  TCPWM Output Signals

15.2.4.1 Signals upon Trigger Conditions

■ Counter generates an internal overflow (OV) condition when counting up and the count register reaches the period value.

■ Counter generates an internal underflow (UN) condition when counting down and the count register reaches zero. 

■ The capture/compare (CC) condition is generated by the TCPWM when the counter is running and one of the following 
conditions occur:

❐ The counter value equals the compare value.

❐ A capture event occurs - When a capture event occurs, the TCPWM_CNT_COUNTER register value is copied to the 
capture register and the capture register value is copied to the buffer capture register. 

Note These signals, when they occur, remain at logic high for two cycles of the HFCLK. For reliable operation, the condition
that causes this trigger should be less than a quarter of the HFCLK. For example, if the HFCLK is running at 24 MHz, the con-
dition causing the trigger should occur at a frequency less than 6 MHz.

15.2.4.2 Interrupts

The TCPWM block provides a dedicated interrupt output signal from the counter. An interrupt can be generated for a TC con-
dition or a CC condition. The exact definition of these conditions is mode-specific. 

Four registers are used for interrupt handling in this block, as shown in Table 15-2.

Table 15-2.  Interrupt Register

Interrupt Registers Bits Name Description

TCPWM_CNT_INTR

(Interrupt request register)

0 TC This bit is set to '1', when a terminal count is detected. Write '1' to clear this bit.

1 CC_MATCH
This bit is set to ‘1’ when the counter value matches capture/compare register 
value. Write '1' to clear this bit.

TCPWM_CNT_INTR_SET

(Interrupt set request register)

0 TC
Write '1' to set the corresponding bit in the interrupt request register. When 
read, this register reflects the interrupt request register status.

1 CC_MATCH
Write '1' to set the corresponding bit in the interrupt request register. When 
read, this register reflects the interrupt request register status.

TCPWM block

Interrupt

line_out
line_compl_out

Underflow

Overflow
Capture / Compare
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15.2.4.3 Outputs

The TCPWM has two outputs, line_out and line_compl_out (complementary of line_out). Note that the OV, UN, and CC con-
ditions can be used to drive line_out and line_compl_out if needed, by configuring the TCPWM_CNT_TR_CTRL2 register
(Table 15-3).

15.2.5 Power Modes

The TCPWM block works in Active and Sleep modes. The TCPWM block is powered from VCCD. The configuration registers

and other logic are powered in Deep-Sleep mode to keep the states of configuration registers. See Table 15-4 for details.

TCPWM_CNT_INTR_MASK

(Interrupt mask register)

0 TC Mask bit for the corresponding TC bit in the interrupt request register.

1 CC_MATCH Mask bit for the corresponding CC_MATCH bit in the interrupt request register.

TCPWM_CNT_INTR_MASKED

(Interrupt masked request register)

0 TC Logical AND of the corresponding TC request and mask bits.

1 CC_MATCH Logical AND of the corresponding CC_MATCH request and mask bits.

Table 15-3.  Configuring Output Line for OV, UN, and CC Conditions

Field Bit Value Event Description

CC_MATCH_MODE 
Default Value = 3

1:0

0 Set line_out to '1

Configures output line on a compare 
match (CC) event

1 Clear line_out to '0

2 Invert line_out

3 No change

OVERFLOW_MODE 
Default Value = 3

3:2

0 Set line_out to '1

Configures output line on a overflow 
(OV) event

1 Clear line_out to '0

2 Invert line_out

3 No change

UNDERFLOW_MODE 
Default Value = 3

5:4

0 Set line_out to '1

Configures output line on a underflow 
(UN) event

1 Clear line_out to '0

2 Invert line_out

3 No change

Table 15-4.  Power Modes in TCPWM Block

Power Mode Block Status

Active This block is fully operational in this mode with clock running and power switched on.

Sleep All counter clocks are on, but bus interface cannot be accessed.

Deep-Sleep
In this mode, the power to this block is still on but no bus clock is provided; hence, the logic is not functional. 
All the configuration registers will keep their state.

Table 15-2.  Interrupt Register

Interrupt Registers Bits Name Description
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15.3 Modes of Operation

The counter block can function in six operational modes, as shown in Table 15-5. The MODE [26:24] field of the counter con-
trol register (TCPWM_CNTx_CTRL) configures the counter in the specific operational mode.

The counter can be configured to count up, down, and up/down by setting the UP_DOWN_MODE[17:16] field in the
TCPWM_CNT_CTRL register, as shown in Table 15-6.

Table 15-5.  Operational Mode Configuration

Mode
MODE Field 

[26:24]
Description

Timer 000
Implements a timer or counter. The counter increments or decrements by '1' at every counter clock cycle in 
which a count event is detected.

Capture 010
Implements a timer or counter with capture input. The counter increments or decrements by '1' at every coun-
ter clock cycle in which a count event is detected. When a capture event occurs, the counter value copies into 
the capture register.

Quadrature 
Decoder

011
Implements a quadrature decoder, where the counter is decremented or incremented, based on two phase 
inputs according to the selected (X1, X2 or X4) encoding scheme.

PWM 100 Implements edge/center-aligned PWMs with an 8-bit clock prescaler and buffered compare/period registers.

PWM-DT 101
Implements edge/center-aligned PWMs with configurable 8-bit dead time (on both outputs) and buffered com-
pare/period registers.

PWM-PR 110 Implements a pseudo-random PWM using a 16-bit linear feedback shift register (LFSR).

Table 15-6.  Counting Mode Configuration

Counting Modes
UP_DOWN_

MODE[17:16]
Description

UP Counting Mode 00
Increments the counter until the period value is reached. A Terminal Count (TC) condition is 
generated when the counter reaches the period value.

DOWN Counting Mode 01
Decrements the counter from the period value until 0 is reached. A TC condition is gener-
ated when the counter reaches ‘0’.

UP/DOWN Counting Mode 0 10
Increments the counter until the period value is reached, and then decrements the counter 
until ‘0’ is reached. A TC condition is generated only when ‘0’ is reached.

UP/DOWN Counting Mode 1 11
Similar to up/down counting mode 0 but a TC condition is generated when the counter 
reaches ‘0’ and when the counter value reaches the period value.
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15.3.1 Timer Mode

The timer mode is commonly used to measure the time of occurrence of an event or to measure the time difference between
two events.

15.3.1.1 Block Diagram

Figure 15-5.  Timer Mode Block Diagram

15.3.1.2 How It Works

The timer can be configured to count in up, down, and up/down counting modes. It can also be configured to run in either con-
tinuous mode or one-shot mode. The following explains the working of the timer:

■ The timer is an up, down, and up/down counter.

❐ The current count value is stored in the count register (TCPWM_CNTx_COUNTER). 
Note  It is not recommended to write values to this register while the counter is running.

❐ The period value for the timer is stored in the period register.

■ The counter is re-initialized in different counting modes as follows:

❐ In the up counting mode, after the count reaches the period value, the count register is automatically reloaded with 0.

❐ In the down counting mode, after the count register reaches zero, the count register is reloaded with the value in the 
period register.

❐ In the up/down counting modes, the count register value is not updated upon reaching the terminal values. Instead the 
direction of counting changes when the count value reaches 0 or the period value.

■ The CC condition is generated when the count register value equals the compare register value. Upon this condition, the 
compare register and buffer compare register switch their values if enabled by the AUTO_RELOAD_CC bit-field of the 
counter control (TCPWM_CNT_CTRL) register. This condition can be used to generate an interrupt request.

Figure 15-6 shows the timer operational mode of the counter in four different counting modes. The period register contains
the maximum counter value. 

■ In the up counting mode, a period value of A results in A+1 counter cycles (0 to A).

■ In the down counting mode, a period value of A results in A+1 counter cycles (A to 0).

■ In the two up/down counting modes (0 and 1), a period value of A results in 2*A counter cycles (0 to A and back to 0).
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Figure 15-6.  Timing Diagram for Timer in Multiple Counting Modes
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Note The OV and UN signals remain at logic high for two cycles of the HFCLK, as explained in “Signals upon Trigger Condi-
tions” on page 127. The figures in this chapter assume that HFCLK and counter clock are the same.

15.3.1.3 Configuring Counter for Timer Mode

The steps to configure the counter for Timer mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select Timer mode by writing '000' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the 
TCPWM_CNT_CC_BUFF register. 

5. Set AUTO_RELOAD_CC field of the TCPWM_CNT_CTRL register, if required to switch values at every CC condition.

6. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in Table 15-1.

7. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register, as 
shown in Table 15-6.

8. The timer can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the 
ONE_SHOT[18] field of TCPWM_CNT_CTRL.

9. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Stop, Capture, and 
Count).

10. Set the TCPWM_CNT_TR_CTRL1 register to select the edge of the trigger that causes the event (Reload, Start, Stop, 
Capture, and Count).

11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 127.

12. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger must be 
provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal is not enabled.
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15.3.2 Capture Mode

In the capture mode, the counter value can be captured at any time either through a firmware write to command register
(TCPWM_CMD) or a capture trigger input. This mode is used for period and pulse width measurement.

15.3.2.1 Block Diagram

Figure 15-7.  Capture Mode Block Diagram

15.3.2.2 How it Works

The counter can be set to count in up, down, and up/down counting modes by configuring the UP_DOWN_MODE[17:16] bit-
field of the counter control register (TCPWM_CNT_CTRL).

Operation in capture mode occurs as follows:

■ During a capture event, generated either by hardware or software, the current count register value is copied to the capture 
register (TCPWM_CNT_CC) and the capture register value is copied to the buffer capture register 
(TCPWM_CNT_CC_BUFF).

■ A pulse on the CC output signal is generated when the counter value is copied to the capture register. This condition can 
also be used to generate an interrupt request.

Figure 15-8 illustrates the capture behavior in the up counting mode. 

Figure 15-8.  Timing Diagram of Counter in Capture Mode, Up Counting Mode

PERIOD

COUNTER

CAPTURE

CAPTURE BUFFER 

==

Reload

Start

Stop

Count

UN

OV

CC

TC

counter_clock

Capture

Period

Counter

OV

UN

TC

Capture, up counting mode

capture

capture buffer

CC

counter_clock

0xFFFF

Capture trigger

0x0002

0x0002

0xFFFE

0xFFFE

0x0003

0xFFFE

0xFFFF

0x0002

0x0003

0x0000

0x0001

0xFFFE

0xFFFF

0x0002

0x0003

0x0001

0x0002

0x0001

0xFFFF



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 134

Timer, Counter, and PWM

In the figure, observe that:

■ The period register contains the maximum count value.

■ Internal overflow (OV) and TC conditions are generated when the counter reaches the period value.

■ A capture event is only possible at the edges or through software. Use trigger control register 1 to configure the edge 
detection.

■ Multiple capture events in a single clock cycle are handled as:

❐ Even number of capture events - no event is observed

❐ Odd number of capture events - single event is observed

This happens when the capture signal frequency is greater than the counter_clock frequency.

15.3.2.3 Configuring Counter for Capture Mode

The steps to configure the counter for Capture mode operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select Capture mode by writing '010' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in Table 15-1.

5. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register, as 
shown in Table 15-6.

6. Counter can be configured to run either in continuous mode or one-shot mode by writing 0 or 1, respectively to the 
ONE_SHOT[18] field of the TCPWM_CNT_CTRL register.

7. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Stop, Capture, and 
Count).

8. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Stop, Capture, and 
Count).

9. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 127.

10. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger must be 
provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal is not enabled.
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15.3.3 Quadrature Decoder Mode

Quadrature decoders are used to determine speed and position of a rotary device (such as servo motors, volume control
wheels, and PC mice). The quadrature encoder signals are used as phiA and phiB inputs to the decoder.

15.3.3.1 Block Diagram

Figure 15-9.  Quadrature Mode Block Diagram

15.3.3.2 How It Works

Quadrature decoding only runs on counter_clock. It can
operate in three sub-modes: X1, X2, and X4 modes. These
encoding modes can be controlled by the
QUADRATURE_MODE[21:20] field of the counter control
register (TCPWM_CNT_CTRL). This mode uses double
buffered capture registers.

The Quadrature mode operation occurs as follows:

■ Quadrature phases phiA and phiB: Counting direction is 
determined by the phase relationship between phiA and 
phiB. These phases are connected to the count and the 
start trigger inputs, respectively as hardware input to the 
decoder. 

■ Quadrature index signal: This is connected to the reload 
signal as a hardware input. This event generates a TC 
condition, as shown in Figure 15-10.

On TC, the counter is set to 0x0000 (in the up counting 
mode) or to the period value (in the down counting 
mode).

Note The down counting mode is recommended to be 
used with a period value of 0x8000 (the mid-point value).

■ A pulse on CC output signal is generated when the 
count register value reaches 0x0000 or 0xFFFF. On a 
CC condition, the count register is set to the period value 
(0x8000 in this case).

■ On TC or CC condition:

❐ Count register value is copied to the capture register

❐ Capture register value is copied to the buffer capture 
register

❐ This condition can be used to generate an interrupt 
request

■ The value in the capture register can be used to deter-
mine which condition caused the event and whether:

❐ A counter underflow occurred (value 0)

❐ A counter overflow occurred (value 0xFFFF)

❐ An index/TC event occurred (value is not equal to 
either 0 or 0xFFFF)

■ The DOWN bit field of counter status 
(TCPWM_CNTx_STATUS) register can be read to deter-
mine the current counting direction. Value '0' indicates a 
previous increment operation and value '1' indicates pre-
vious decrement operation. Figure 15-10 illustrates 
quadrature behavior in the X1 encoding mode. 

❐ A positive edge on phiA increments the counter 
when phiB is '0' and decrements the counter when 
phiB is '1'.

❐ The count register is initialized with the period value 
on an index/reload event.

❐ Terminal count is generated when the counter is ini-
tialized by index event. This event can be used to 
generate an interrupt.

❐ When the count register reaches 0xFFFF (the maxi-
mum count register value), the count register value is 
copied to the capture register and the count register 
is initialized with period value (0x8000 in this case).
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Figure 15-10.  Timing Diagram for Quadrature Mode, X1 Encoding

The quadrature phases are detected on the counter_clock. Within a single counter_clock period, the phases should not
change value more than once. The X2 and X4 quadrature encoding modes count twice and four times as fast as the X1
encoding mode.

Figure 15-11 illustrates the quadrature mode behavior in the X2 and X4 encoding modes.
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Figure 15-11.  Timing Diagram for Quadrature Mode, X2 and X4 Encoding

15.3.3.3 Configuring Counter for Quadrature Mode

The steps to configure the counter for quadrature mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select Quadrature mode by writing '011' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set the required encoding mode by writing to the QUADRATURE_MODE[21:20] field of the TCPWM_CNT_CTRL regis-
ter.

5. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Index and Stop).

6. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Index and Stop).

7. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 127.

8. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

Period

TC

Quadrature, X2 encoding

4

counter

phiA

phiB

index/reload 
event

counter_clock

4 5 6 7 8 7 6

Period

TC

Quadrature, X4 encoding

4

counter

phiA

phiB

index/reload 
event

counter_clock

4 5 6 7 8 9 10 11 12 11 10 9 8



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 138

Timer, Counter, and PWM

15.3.4 Pulse Width Modulation Mode

The PWM mode is also called the Digital Comparator mode. The comparison output is a PWM signal whose period depends
on the period register value and duty cycle depends on the compare and period register values.

PWM period = (period value/counter clock frequency) in left- and right-aligned modes

PWM period = (2 × (period value/counter clock frequency)) in center-aligned mode

Duty cycle = (compare value/period value) in left- and right-aligned modes

Duty cycle = ((period value-compare value)/period value) in center-aligned mode

15.3.4.1 Block Diagram

Figure 15-12.  PWM Mode Block Diagram

15.3.4.2 How It Works

The PWM mode can output left, right, center, or asymmetri-
cally aligned PWM signals. The desired output alignment is
achieved by using the counter's up, down, and up/down
counting modes selected using UP_DOWN_MODE [17:16]
bits in the TCPWM_CNT_CTRL register, as shown in
Table 15-6.

This CC signal along with OV and UN signals control the
PWM output line. The signals can toggle the output line or
set it to a logic '0' or '1' by configuring the
TCPWM_CNT_TR_CTRL2 register. By configuring how the
signals impact the output line, the desired PWM output
alignment can be obtained.

The recommended way to modify the duty cycle is:

■ The buffer period register and buffer compare register
are updated with new values.

■ On TC, the period and compare registers are automati-
cally updated with the buffer period and buffer compare
registers when there is an active switch event. The
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD
fields of the counter control register are set to ‘1’. When

a switch event is detected, it is remembered until the
next TC event. Pass through signal (selected during
event detection setting) cannot trigger a switch event.

■ Updates to the buffer period register and buffer compare
register should be completed before the next TC with an
active switch event; otherwise, switching does not reflect
the register update, as shown in Figure 15-14.

In the center-aligned mode, the output line is set to '0' at Ter-
minal Count and toggled at the CC condition

At the reload event, the count register is initialized and starts
counting in the appropriate mode. At every count, the count
register value is compared with compare register value to
generate the CC signal on match.

Figure 15-13 illustrates center-aligned PWM with buffered
period and compare registers (up/down counting mode 0).
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Figure 15-13.  Timing Diagram for Center Aligned PWM

Figure 15-13 illustrates center-aligned PWM with software generated switch events:

■ Software generates a switch event only after both the period buffer and compare buffer registers are updated.

■ Because the updates of the second PWM pulse come late (after the terminal count), the first PWM pulse is repeated.

■ Note that the switch event is automatically cleared by hardware at TC after the event takes effect.
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Figure 15-14.  Timing Diagram for Center Aligned PWM (software switch event

15.3.4.3 Other Configurations

■ For asymmetric PWM, the up/down counting mode 1 should be used. This causes a TC when the counter reaches either
‘0’ or the period value. To create an asymmetric PWM, the compare register is changed at every TC (when the counter
reaches either ‘0’ or the period value), whereas the period register is only changed at every other TC (only when the coun-
ter reaches ‘0’). 

■ For left-aligned PWM, use the up counting mode; configure the OV condition to set output line to '1' and CC condition to
reset the output line to '0'. See Table 15-3.

■ For right-aligned PWM, use the down counting mode; configure UN condition to reset output line to '0' and CC condition to
set the output line to '1'. See Table 15-3.

15.3.4.4 Kill Feature

The kill feature gives the ability to disable both output lines immediately. This event can be programmed to stop the counter
by modifying the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the counter control register, as shown in Table 15-7.

Table 15-7.  Field Setting for Stop on Kill Feature

PWM_STOP_ON_KILL Field Comments

0 The kill trigger temporarily blocks the PWM output line but the counter is still running.

1 The kill trigger temporarily blocks the PWM output line and the counter is also stopped.
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A kill event can be programmed to be asynchronous or synchronous, as shown in Table 15-8. 

In the synchronous kill, PWM cannot be started before the next TC. To restart the PWM immediately after kill input is
removed, kill event should be asynchronous (see Table 15-8). The generated stop event disables both output lines. In this
case, the reload event can use the same trigger input signal but should be used in falling edge detection mode.

15.3.4.5 Configuring Counter for PWM Mode

The steps to configure the counter for the PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select PWM mode by writing '100' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set clock prescaling by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in Table 15-1.

4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the 
TCPWM_CNT_PERIOD_BUFF register to switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC register and buffer compare value in the 
TCPWM_CNT_CC_BUFF register to switch values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to con-
figure left-aligned, right-aligned, or center-aligned PWM, as shown in Table 15-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, Switch, and 
Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, Switch, and 
Count).

10. line_out and line_out_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC, 
OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 127.

12. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger must be 
provided through firmware (TCPWM_CMD register) to start the counter if the hardware start signal is not enabled.

Table 15-8.  Field Setting for Synchronous/Asynchronous Kill

PWM_SYNC_KILL Field Comments

0 An asynchronous kill event lasts as long as it is present. This event requires pass through mode.

1
A synchronous kill event disables the output lines until the next TC event. This event requires rising 
edge mode.
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15.3.5 Pulse Width Modulation with Dead Time Mode

Dead time is used to delay the transitions of both ‘line_out’ and ‘line_out_compl’ signals. It separates the transition edges of
these two signals by a specified time interval. Two complementary output lines 'dt_line' and 'dt_line_compl' are derived from
these two lines. During the dead band period, both compare output and complement compare output are at logic ‘0’ for a fixed
period. The dead band feature allows the generation of two non-overlapping PWM pulses. A maximum dead time of 255
clocks can be generated using this feature.

15.3.5.1 Block Diagram

Figure 15-15.  PWM-DT Mode Block Diagram

15.3.5.2 How It Works

The PWM operation with Dead Time mode occurs as fol-
lows:

■ On the rising edge of the PWM line_out, depending upon 
UN, OV, and CC conditions, the dead time block sets the 
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the 
period configured in the register.

■ When the dead band period is complete, dt_line is set to 
'1'.

■ On the falling edge of the PWM line_out depending upon 
UN, OV, and CC conditions, the dead time block sets the 
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the 
period configured in the register.

■ When the dead band period has completed, 
dt_line_compl is set to '1'.

■ A dead band period of zero has no effect on the dt_line 
and is the same as line_out.

■ When the duration of the dead time equals or exceeds 
the width of a pulse, the pulse is removed.

This mode follows PWM mode and supports the following
features available with that mode:

■ Various output alignment modes

■ Two complementary output lines, dt_line and 
dt_line_compl, derived from PWM "line_out" and "line 
_out_compl", respectively

❐ Stop/kill event with synchronous and asynchronous 
modes

❐ Conditional switch event for compare and buffer 
compare registers and period and buffer period reg-
isters

This mode does not support clock prescaling. 

Figure 15-16 illustrates how the complementary output lines
"dt_line" and "dt_line_compl" are generated from the PWM
output line, "line_out".
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Figure 15-16.  Timing Diagram for PWM, with and without Dead Time

15.3.5.3 Configuring Counter for PWM with Dead Time Mode

The steps to configure the counter for PWM with Dead Time mode of operation and the affected register bits are as follows:

1. Disable the counter by writing '0' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

2. Select PWM with Dead Time mode by writing '101' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required dead time by writing to the GENERIC[15:8] field of the TCPWM_CNT_CTRL register, as shown in 
Table 15-1.

4. Set the required 16-bit period in the TCPWM_CNT_PERIOD register and the buffer period value in the 
TCPWM_CNT_PERIOD_BUFF register to switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the 
TCPWM_CNT_CC_BUFF register to switch values, if required.

6. Set the direction of counting by writing to the UP_DOWN_MODE[17:16] field of the TCPWM_CNT_CTRL register to con-
figure left-aligned, right-aligned, or center-aligned PWM, as shown in Table 15-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required, as shown 
in the “Pulse Width Modulation Mode” on page 138.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, Switch, and 
Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, Switch, and 
Count).

10. dt_line and dt_line_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC, 
OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 127.

12. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register. A start trigger must be 
provided through firmware (TCPWM_CMD register) to start the counter if hardware start signal is not enabled.

PWM, Deadtime insertion

line_out

Dead time duration : 0

dt_line

dt_line_compl

Deadtime duration :

dt_line

dt_line_compl
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15.3.6 Pulse Width Modulation Pseudo-Random Mode

This mode uses the linear feedback shift register (LFSR). LFSR is a shift register whose input bit is a linear function of its pre-
vious state.

15.3.6.1 Block Diagram

Figure 15-17.  PWM-PR Mode Block Diagram

15.3.6.2 How It Works

The counter register is used to implement LFSR with the polynomial: x16+x14+x13+x11+1, as shown in Figure 15-18. It gener-
ates all the numbers in the range [1, 0xFFFF] in a pseudo-random sequence. Note that the counter register should be initial-
ized with a non-zero value.

Figure 15-18.  Pseudo-Random Sequence Generation using Counter Register
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The following steps describe the process:

■ The PWM output line, ‘line_out’, is driven with '1' when
the lower 15-bit value of the counter register is smaller
than the value in the compare register (when coun-
ter[14:0] < compare[15:0]). A compare value of ‘0x8000’
or higher always results in a '1' on the PWM output line.
A compare value of ‘0’ always results in a '0' on the
PWM output line. 

■ A reload event behaves similar to a start event; however,
it does not initialize the counter.

■ Terminal count is generated when the counter value
equals the period value. LFSR generates a predictable
pattern of counter values for a certain initial value. This
predictability can be used to calculate the counter value
after a certain amount of LFSR iterations ‘n’. This calcu-
lated counter value can be used as a period value and
the TC is generated after ‘n’ iterations.

■ At TC, a switch/capture event conditionally switches the
compare and period register pairs (based on the
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD
fields of the counter control register).

■ A kill event can be programmed to stop the counter as
described in previous sections. 

■ One shot mode can be configured by setting the
ONE_SHOT field of the counter control register. At ter-
minal count, the counter is stopped by hardware.

■ In this mode, underflow, overflow, and trigger condition
events do not occur.

■ CC condition occurs when the counter is running and its
value equals compare value. Figure 15-19 illustrates
pseudo-random noise behavior.

■ A compare value of 0x4000 results in 50 percent duty
cycle (only the lower 15 bits of the 16- bit counter are
used to compare with the compare register value).

Figure 15-19.  Timing Diagram for Pseudo-Random PWM

A capture/switch input signal may switch the values between the compare and compare buffer registers and the period and
period buffer registers. This functionality can be used to modulate between two different compare values using a trigger input
signal to control the modulation. 

Note Capture/switch input signal can only be triggered by an edge (rising, falling, or both). This input signal is remembered
until the next terminal count.

15.3.6.3 Configuring Counter for Pseudo-Random PWM Mode

The steps to configure the counter for pseudo-random PWM mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to COUNTER_ENABLED of the TCPWM_CTRL register.

2. Select pseudo-random PWM mode by writing '110' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required period (16 bit) in the TCPWM_CNT_PERIOD register and buffer period value in the 
TCPWM_CNT_PERIOD_BUFF register to switch values, if required.

4. Set the 16-bit compare value in the TCPWM_CNT_CC register and the buffer compare value in the 
TCPWM_CNT_CC_BUFF register to switch values.

5. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL fields of the TCPWM_CNT_CTRL register as required.

6. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Reload, Start, Kill, and Switch).

7. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Reload, Start, Kill, and Switch).

8. line_out and line_out_compl can be controlled by the TCPWM_CNT_TR_CTRL2 register to set, reset, or invert upon CC, 
OV, and UN conditions.

9. If required, set the interrupt upon TC or CC condition, as shown in “Interrupts” on page 127.

10. Enable the counter by writing '1' to the COUNTER_ENABLED field of the TCPWM_CTRL register.

Pseudo Random PWM
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15.4 TCPWM Registers

Table 15-9.  List of TCPWM Registers

Register Comment Features

TCPWM_CTRL TCPWM control register Enables the counter block

TCPWM_CMD TCPWM command register Generates software events

TCPWM_INTR_CAUSE TCPWM counter interrupt cause register Determines the source of the combined interrupt signal

TCPWM_CNT_CTRL Counter control register
Configures counter mode, encoding modes, one shot mode, 
switching, kill feature, dead time, clock pre-scaling, and counting 
direction

TCPWM_CNT_STATUS Counter status register
Reads the direction of counting, dead time duration, and clock 
pre-scaling; checks if the counter is running

TCPWM_CNT_COUNTER Count register Contains the 16-bit counter value

TCPWM_CNT_CC Counter compare/capture register
Captures the counter value or compares the value with counter 
value

TCPWM_CNT_CC_BUFF Counter buffered compare/capture register Buffer register for counter CC register; switches period value

TCPWM_CNT_PERIOD Counter period register Contains upper value of the counter

TCPWM_CNT_PERIOD_BUFF Counter buffered period register Buffer register for counter period register; switches compare value

TCPWM_CNT_TR_CTRL0 Counter trigger control register 0 Selects trigger for specific counter events

TCPWM_CNT_TR_CTRL1 Counter trigger control register 1 Determine edge detection for specific counter input signals

TCPWM_CNT_TR_CTRL2 Counter trigger control register 2 Controls counter output lines upon CC, OV, and UN conditions

TCPWM_CNT_INTR Interrupt request register Sets the register bit when TC or CC condition is detected

TCPWM_CNT_INTR_SET Interrupt set request register Sets the corresponding bits in interrupt request register

TCPWM_CNT_INTR_MASK Interrupt mask register Mask for interrupt request register

TCPWM_CNT_INTR_MASKED Interrupt masked request register Bitwise AND of interrupt request and mask registers
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Section E: Analog System

This section encompasses the following chapter:

■ Low-Power Comparator chapter on page 148

■ Inductive Sensing chapter on page 154

■ CapSense chapter on page 156

■ LCD Direct Drive chapter on page 160

Top Level Architecture

Analog System Block Diagram
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16.   Low-Power Comparator

PSoC® 4 devices have two low-power comparators. These comparators can perform fast analog signal comparison in all sys-
tem power modes. Refer to the Power Modes chapter on page 68 for details on various device power modes. The positive
and negative inputs can be connected to dedicated GPIO pins or to AMUXBUS-A/AMUXBUS-B. The comparator output can
be read by the CPU through a status register, used as an interrupt or wakeup source or routed to a GPIO.

16.1 Features

PSoC 4 comparators have the following features:

■ Configurable positive and negative inputs

■ Programmable power and speed

■ Ultra low-power mode support (<4 µA)

■ Optional 10-mV input hysteresis

■ Low-input offset voltage (<4 mV after trim)

■ Wakeup source in Deep-Sleep mode
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16.2 Block Diagram

Figure 16-1 shows the block diagram for the low-power comparator.

Figure 16-1.  Low-Power Comparator Block Diagram

16.3 How It Works

The following sections describe the operation of the PSoC 4
low-power comparator, including input configuration, power
and speed mode, output and interrupt configuration, hyster-
esis, wake up from low-power modes, comparator clock,
and offset trim.

16.3.1 Input Configuration

Inputs to the comparators can be as follows:

■ Both positive and negative inputs from dedicated input 
pins.

■ Both positive and negative inputs from any pin through 
AMUXBUS (not available in Deep-Sleep mode).

■ One input from an external pin and another input from an 
internally-generated signal. Both inputs can be con-
nected to either positive or negative inputs of the com-
parator. The internally-generated signal is connected to 
the comparator input through the analog AMUXBUS.

■ Both positive and negative inputs from internally-gener-
ated signals. The internally-generated signals are con-
nected to the comparator input through AMUXBUS-A/
AMUXBUS-B.

From Figure 16-1, note that P0.0 and P0.1 connect to posi-
tive and negative inputs of Comparator 0; P0.2 and P0.3
connect to the inputs of Comparator 1. Also, note that the
AMUXBUS nets do not have a direct connection to the com-
parator inputs. Therefore, the comparator connection is
routed to the AMUXBUS nets through the corresponding
input pin. These input pins will not be available for other pur-
poses when using AMUXBUS for comparator connections.
They should be left open in designs that use AMUXBUS for
comparator input connection. Note that AMUXBUS connec-
tions are not available in Deep-Sleep mode. If Deep-Sleep
operation is required, the low-power comparator must be
connected to the dedicated pins. This restriction also
includes routing of any internally-generated signal, which
uses the AMUXBUS for the connection. See the I/O
System chapter on page 37 for more details on connecting

Comparator 0

Comparator 1

Edge Detector

Edge Detector

MMIO Registers

AHB IFAHB

I/0 pad 
P0.0

I/0 pad
P0.1

I/0 pad 
P0.2

I/0 pad 
P0.3

comp_intr

In
tr
_
cl
r

Active Power Domain

DeepSleep Power Domain

Fa
ll
in
g,
 

R
is
in
g,
 b
o
th

in
tr
_c
o
m
p
1

in
tr
_c
o
m
p
2

A
M
U
X
B
U
S_
A

A
M
U
X
B
U
S_
B

Not part of Low power comparator
It is in GPIO block

Each GPIO connects to AMUXBUS_A/_B

Sync

Interrupt 
Generation

Sy
n
c

Sy
n
c

In
tr
_
cl
r

Fa
ll
in
g,
 

R
is
in
g,
 b
o
th

Active Power Domain

<To MMIO Registers>

MMIO interface signals
Comparator related signals

Sy
n
c

lpcomp_comp[1]

lpcomp_comp[0]

Signal connection to HSIOM



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 150

Low-Power Comparator

the GPIO to AMUXBUS A/B or setting up the GPIO for com-
parator input.

16.3.2 Output and Interrupt Configuration

The output of Comparator0 and Comparator1 are available
in the OUT1 bit [6] and OUT2 bit [14], respectively, in the
LPCOMP_CONFIG register (Table 16-1). The comparator
outputs are synchronized to SYSCLK before latching them
to the OUTx bits in the LPCOMP_CONFIG register. The out-
put of each comparator is connected to a corresponding
edge detector block. This block determines the edge that
triggers the interrupt. The edge selection and interrupt
enable is configured using the INTTYPE1 bits [5:4] and
INTTYPE2 bits [13:12] in the LPCOMP_CONFIG register.
Using the INTTYPEx bits, the interrupt type can be selected
to disabled, rising edge, falling edge, or both edges, as
described in Table 16-1. 

Each comparator's output can be routed directly to a GPIO
pin through the HSIOM. The comparator outputs are avail-
able as Deep-Sleep source 2 connection in the HSIOM. See
High-Speed I/O Matrix on page 42 for details on HSIOM. For
details on the pins that support the low-power comparator
output, refer to the device datasheet. The output on these
pins are direct output from the comparator and are not syn-
chronized. Because they act as Deep-Sleep source for the
pins, the comparator output is available in Deep-Sleep
power mode as well. 

During an edge event, the comparator will trigger an inter-
rupt (intr_comp1/intr_comp2 signals in Figure 16-1). The
interrupt request is registered in the COMP1 bit [0] and

COMP2 bit [1] of the LPCOMP_INTR register for
Comparator0 and Comparator1, respectively. Both
Comparator0 and Comparator1 share a common interrupt
(comp_intr signal in Figure 16-1), which is a logical OR of
the two interrupts and mapped as the low-power comparator
block's interrupt in the CPU NVIC. Refer to the
Interrupts chapter on page 27 for details. If both the compar-
ators are used in a design, the COMP1 and/or COMP2 bits
of the LPCOMP_INTR register need to be read in the inter-
rupt service routine to know which one triggered the inter-
rupt. Alternatively, COMP1_MASK bit [0] and
COMP2_MASK bit [1] of the LPCOMP_INTR_MASK regis-
ter can be used to mask the Comparator0 and Comparator1
interrupts to the CPU. Only the masked interrupts will be
serviced by the CPU. After the interrupt is processed, the
interrupt should be cleared by writing a '1' to the COMP1
and COMP2 bits of the LPCOMP_INTR register in firmware.
If the interrupt is not cleared, the next compare event will not
trigger an interrupt and the CPU will not be able to process
the event.. 

The LPCOMP interrupt (comp1_intr/comp2_intr) is synchro-
nous with SYSCLK. Clearing comp1_intr/comp2_intr are all
synchronous. 

LPCOMP_INTR_SET register bits [1:0] can be used to
assert an interrupt for software debugging.

In Deep-Sleep mode, the wakeup interrupt controller (WIC)
can be activated by a comparator edge event, which then
wakes up the CPU. Thus, the LPCOMP has the capability to
monitor a specified signal in low-power modes.

Table 16-1.  Output and Interrupt Configuration in LPCOMP_CONFIG Register

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[6] OUT1 Current/Instantaneous output value of Comparator0

LPCOMP_CONFIG[14] OUT2 Current/Instantaneous output value of Comparator1

LPCOMP_CONFIG[5:4] INTTYPE1

Sets on which edge Comparator0 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_CONFIG[13:12] INTTYPE2

Sets on which edge Comparator1 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_INTR[0] COMP1
Comparator0 Interrupt: hardware sets this interrupt when Comparator0 triggers. Write a '1' 
to clear the interrupt

LPCOMP_INTR[1] COMP2
Comparator2 Interrupt: hardware sets this interrupt when Comparator1 triggers. Write a '1' 
to clear the interrupt

LPCOMP_INTR_SET[0] COMP1 Write a '1' to trigger the software interrupt for Comparator0

LPCOMP_INTR_SET[1] COMP2 Write a 1 to trigger the software interrupt for Comparator1

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
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16.3.3 Power Mode and Speed Configuration

The low-power comparators can operate in three power modes: 

■ Fast 

■ Slow

■ Ultra low-power

The power or speed setting for Comparator0 is configured using MODE1 bits [1:0] in the LPCOMP_CONFIG register. The
power or speed setting for Comparator1 is configured using MODE2 bits [9:8] in the same register. The power consumption
and response time vary depending on the selected power mode; power consumption is highest in fast mode and lowest in
ultra-low-power mode, response time is fastest in fast mode and slowest in ultra-low-power mode. Refer to the device data-
sheet for specifications for the response time and power consumption for various power settings.

The comparators are enabled/disabled using ENABLE1 bit [7] and ENABLE2 bit [15] in the LPCOMP_CONFIG register, as
described in Table 16-2.

Note The output of the comparator may glitch when the power mode is changed while comparator is enabled. To avoid this,
disable the comparator before changing the power mode.

16.3.4 Hysteresis

For applications that compare signals close to each other and slow changing signals, hysteresis helps to avoid oscillations at
the comparator output when the signals are noisy. For such applications, a fixed 10-mV hysteresis may be enabled in the
comparator block.

The 10-mV hysteresis level is enabled/disabled by using the HYST1 bit [2] and HYST2 bit [10] in the LPCOMP_CONFIG reg-
ister, as described in Table 16-3.

Table 16-2.  Comparator Power Mode Selection Bits MODE1 and MODE2

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[1:0] MODE1

Compartor0 power mode selection

00: Slow operating mode (uses less power)

01: Fast operating mode (uses more power)

10: Ultra low-power operating mode (uses lowest possible power)

LPCOMP_CONFIG[9:8] MODE2

Compartor1 power mode selection

00: Slow operating mode (uses less power)

01: Fast operating mode (uses more power)

10: Ultra low-power operating mode (uses lowest possible power)

LPCOMP_CONFIG[7] ENABLE1

Comparator0 enable bit

0: Disables Comparator0

1: Enables Comparator0

LPCOMP_CONFIG[15] ENABLE2

Comparator1 enable bit

0: Disables Comparator1

1: Enables Comparator1

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
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Table 16-3.  Hysteresis Control Bits HYST1 and HYST2

16.3.5 Wakeup from Low-Power Modes

The comparator is operational in the device’s low-power
modes, including Sleep and Deep-Sleep modes. The com-
parator output interrupt can wake the device from Sleep and
Deep-Sleep modes. The comparator should be enabled in
the LPCOMP_CONFIG register, the INTTYPEx bits in the
LPCOMP_CONFIG register should not be set to disabled,
and the INTR_MASKx bit should be set in the
LPCOMP_INTR_MASK register for the corresponding com-
parator to wake the device from low-power modes. Compar-
isons involving AMUXBUS connections are not available in
DeepSleep mode.

In the Deep-Sleep power mode, a compare event on either
Comparator0 or Comparator1 output will generate a wakeup
interrupt. The INTTYPEx bits in the LPCOMP_CONFIG reg-
ister should be configured, as required, for the correspond-
ing comparator to wake the device from low-power modes.
The mask bits in the LPCOMP_INTR_MASK register is
used to select whether one or both of the comparator's inter-
rupt is serviced by the CPU.

16.3.6 Comparator Clock

The comparator uses the system main clock SYSCLK as the
clock for interrupt synchronization.

16.3.7 Offset Trim

The comparator offset is trimmed at the factory to less than
4.0 mV. The trim is a two-step process, trimmed first at com-
mon mode voltage equal to 0.1 V, then at common mode
voltage equal to VDD–0.1 V. Offset voltage is guaranteed to

be less than 10.0 mV over the input voltage range of 0.1 V to
VDD–0.1 V. For normal operation, further adjustment of trim

values is not recommended.

If a tighter trim is required at a specific input common mode
voltage, a trim may be performed at the desired input com-
mon mode voltage. The comparator offset trim is performed
using the LPCOMP_TRIM1/2/3/4 registers.
LPCOMP_TRIM1 and LPCOMP_TRIM2 are used to trim
comparator 0. LPCOMP_TRIM3 and LPCOMP_TRIM4 are
used to trim comparator 1. The bit fields that change the trim
values are TRIMA bits [4:0] in LPCOMP_TRIM1 and
LPCOMP_TRIM3, and TRIMB bits [3:0] in LPCOMP_TRIM2
and LPCOMP_TRIM4. TRIMA bits are used to coarse tune

the offset; TRIMB bits are used to fine tune. The use of
TRIMB bits for offset correction is restricted to slow mode of
comparator operation.

Any standard comparator offset trim procedure can be used
to perform the trimming. The following method can be used
to improve the offset at a given reference/common mode
voltage input.

1. Short the comparator inputs externally and connect the 
voltage reference, Vref, to the input.

2. Set up the comparator for comparison, turn off hystere-
sis, and check the output.

3. If the output is high, the offset is positive. Otherwise, the 
offset is negative. Follow these steps to tune the offset: 

a. Tune the TRIMA bits[4:0] until the output switches
direction. TRIMA bits[3:0] control the amount of off-
set and TRIMA bit[4] controls the polarity of offset ('1'
indicates positive offset and '0' indicates negative off-
set).

b. When the tuning of TRIMA bits is complete, tune the
TRIMB bits[3:0] until the output switches direction
again. The TRIMB bit tuning is valid only for slow
mode of comparator operation. TRIMB bit[3] controls
the polarity of offset. Increasing TRIMB bits [2:0]
reduces the offset.

c. After completing step 3-b, the values available in the
TRIMA and TRIMB bits will be the closest possible
trim value for that particular Vref.

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[2] HYST1

Enable/Disable 10 mV hysteresis to Comparator0 

- 0: Enable Hysteresis 

- 1: Disable Hysteresis

LPCOMP_CONFIG[10] HYST2

Enable/Disable 10 mV hysteresis to Comparator1 

- 0: Enable Hysteresis 

- 1: Disable Hysteresis
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16.4 Register Summary 

Table 16-4.  Low-Power Comparator Register Summary

Register Function

LPCOMP_ID Includes the information of LPCOMP controller ID and revision number

LPCOMP_CONFIG LPCOMP configuration register

LPCOMP_INTR LPCOMP interrupt register

LPCOMP_INTR_SET LPCOMP interrupt set register

LPCOMP_INTR_MASK LPCOMP interrupt request mask register

LPCOMP_INTR_MASKED LPCOMP masked interrupt output register

LPCOMP_TRIM1 Trim fields for comparator 0

LPCOMP_TRIM2 Trim fields for comparator 0

LPCOMP_TRIM3 Trim fields for comparator 1

LPCOMP_TRIM4 Trim fields for comparator 1
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17.   Inductive Sensing

The PSoC 4700 family of devices support a low-cost and robust inductive sensing block (MagSense), which integrates seam-
lessly with existing user interfaces and is used to detect the presence of metallic or conductive objects. In addition to inductive
sensing, the system can also integrate capacitive sensing functionality.

17.1 Features

Inductive sensing in the PSoC 4700 MCU has the following features: 

■ Supports inductive sensing for excitation frequencies up to 3 MHz 

■ Operates at a measurement rate of up to 10 ksps 

■ Supports up to sixteen inductive sensor channels. 

■ Contains an integrated graphical tuner for tuning, testing, and debugging 

17.2 Block Diagram

Figure 17-1 shows the block diagram of the PSoC-based inductive sensing system.
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Figure 17-1.  MagSense Block Diagram 

17.3 Working Principle

The MagSense block contains the following sub-blocks.

■ Sensor excitation block

■ Amplitude-to-digital converter

■ Sensor selection muxes

17.3.1 Sensor Excitation Block

The sensor excitation block generates the square wave with
a desired frequency equal to the resonant frequency of the
selected tank circuit.

17.3.2 Amplitude-to-Digital Converter

The amplitude of the signal across the tank circuit changes
with respect to the proximity distance between the sensor
and the target metal. The amplitude-to-digital converter

block converts the amplitude of the sinusoidal signal across
the tank circuit to an equivalent digital count. The resolution
of conversion is configurable and can be set to a maximum
of 16 bits.

17.3.3 Sensor Selection Muxes

In multi-sensor applications, the sensors are scanned
sequentially using the sensor selection muxes. The Mag-
Sense block contains two muxes for selecting the sensor
that needs to be scanned.

See the Inductive Sensing Design Guide for details of sen-
sor design and tuning PSoC parameters for optimum perfor-
mance of the inductive sensing system.
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18.   CapSense

The PSoC 4 device uses the fourth generation capacitive touch sensing system (CapSense). The CapSense system can
measure the change in self-capacitance of a single electrode or the mutual capacitance between a pair of electrodes. In addi-
tion to the capacitive sensing feature, the system can also function as an ADC to measure voltage on any GPIO pin that sup-
ports CapSense functionality.

PSoC 4 uses Cypress’s patented capacitive touch sensing methods – CapSense Sigma Delta (CSD) for self-capacitance
sensing and CapSense Crosspoint (CSX) for mutual-capacitance scanning. The CSD and CSX touch sensing methods pro-
vide the industry's best-in-class signal-to-noise ratio (SNR), high touch sensitivity, low-power operation, and superior EMI per-
formance. The CapSense system is a combination of hardware and firmware techniques.

See the Getting Started with CapSense design guide for basics of capacitive sensing and the PSoC 4 CapSense Design
Guide for more details on the basics of CapSense operation. 

18.1 Features

The fourth-generation CapSense in the PSoC 4 device has the following features:

■ Supports self-capacitance and mutual-capacitance-based touch sensing

■ Supports voltage measurement on any GPIO pin

■ Provides superior SNR with CSD-based touch sensing method and with programmable voltage reference

■ Provides robust touch sensing using spread spectrum scanning method

■ Supports spread spectrum, pseudo-random sequence (PRS) clock source and programmable resistance switches to 
reduce electromagnetic interference (EMI)

■ Provides high touch sensitivity to detect touch across a variety of overlay materials and thickness

■ Provides reduced offset error

■ Provides low-power CapSense operation

■ Allows any GPIO pin to be used for capacitive sensing and shielding

■ Supports large proximity-sensing distance

■ Supports liquid tolerant operation using driven shield signal

■ Supports split-IDAC operation for improved scan speed and SNR

■ Reduces overhead on CPU during CapSense scanning by offloading the initialization process to the CapSense 
sequencer 

■ PSoC Creator CapSense Component supports SmartSense™ auto-tuning to automatically tune all the CapSense param-
eters

■ Allows general-purpose use of CapSense comparator and IDAC 

http://www.cypress.com/documentation/application-notes/an85951-psoc-4-capsense-design-guide
http://www.cypress.com/documentation/application-notes/an85951-psoc-4-capsense-design-guide
http://www.cypress.com/documentation/application-notes/an64846-getting-started-capsense?source=search&keywords=an64846
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18.2 Block Diagram

Figure 18-1 shows the block diagram of the CapSense system.

Figure 18-1.  CapSense System Block Diagram 
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18.3 How It Works

The following are the main blocks of the CapSense system:

■ GPIO Cell

■ Analog Mux Bus (AMUXBUS)

■ CapSense Delta Sigma (CSD) Modulator

■ IDAC 

■ Digital Sequencers and Counter

■ Clock Generation

18.3.1 GPIO Cell

In a CapSense system, the GPIO cells are used for the fol-
lowing purposes:

■ Sensing self-capacitance 

■ Driving and sensing mutual-capacitance 

■ Driving shield signal

■ Connecting external capacitors to the CapSense system

18.3.1.1 Sensing Self-Capacitance 

Self-capacitance mode measures the sensor capacitance
with respect to ground.

18.3.1.2 Driving and Sensing Mutual-
capacitance

Mutual-capacitance sensing measures the mutual-capaci-
tance between two electrodes connected to the GPIO pins.
One of the GPIOs is used as a transmit (TX) pin and the
other as a receive (RX) pin. 

Figure 18-2 shows the configuration of GPIO in mutual-
capacitance sensing mode. The TX pin drives a digital sig-
nal to the TX electrode using the digital output driver of the
GPIO pin. The SenseClk generated from the clock genera-
tor section is the input clock to the digital output driver. The
RX pin is statically connected to the AMUXBUSA to mea-
sure the charge coupled from TX electrode to the RX elec-
trode.

Figure 18-2.  GPIO Configuration for Mutual-Capacitance Sensing

When the SenseClk is high, charge is coupled from TX electrode to RX electrode. The voltage on the RX electrode, which
was at VREF increases above VREF due to charge coupling from TX electrode to RX electrode. A sinking IDAC is connected to

AMUXBUSA to bring the voltage on AMUXBUSA back to VREF. 

Similarly, when the SenseClk is low, charge flows from RX electrode to TX electrode and the voltage on RX electrode, which
was at VREF drops below VREF. A sourcing IDAC is connected to AMUXBUSA to bring the voltage back to VREF.

18.3.1.3 Driving Shield Signal

Shield signal is used to switch the shield electrode between VREF and ground to reduce sensor CP, implement liquid toler-

ance, and improve the proximity-sensing distance. The resistance of the shield driving switches can be controlled from the
CapSense Component. The shield can also be driven by low-EMI switches to charge and discharge the CSHIELD capacitor;
this helps in reducing the radiated emissions due to shield electrode switching.

18.3.1.4 Connecting External Capacitors

The CapSense system requires external capacitors (CMOD, CINTA, and CINTB) to be connected to dedicated pins for proper

CapSense operation. Refer to the device datasheet for the dedicated pins assigned for Cmod/CintA/CintB. 
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18.3.2 Analog Mux Bus

The Analog Mux Bus (AMUXBUS) in the device provides
the path for the signal from GPIO pin to the CapSense
block. The PSoC 4 device has two analog mux buses,
AMUXBUSA and AMUXBUSB. These mux buses allow any
GPIO to be used as sensor pin or as a shield pin.

The AMUXBUSA is used to connect the sensor pin to the
CapSense block. The AMUXBUSB is used to drive shield
signal from the CapSense block to the shield pin. 

18.3.3 CapSense Delta Sigma Modulator

The CSD modulator along with CSD sequencer and counter
converts the sensor Capacitance to equivalent digital count.

18.3.4 Digital Sequencer

To reduce CPU overhead during the CapSense and ADC
operations, the CapSense system has two sequencers -
CSD sequencer and ADC sequencer, which control
CapSense hardware during initialization and capacitance or
input voltage measurements.

Slope ADCThe CapSense system implements a slope
ADC to measure the input voltage. The ADC sequencer
automatically samples the input voltage and performs the
voltage measurement without CPU intervention. Sampling
capacitors CREF1, CREF2, and IDACB are used for slope
ADC implementation.

18.3.5 Clock Generation

The clock generation block generates the clock signal
required for the switches in the GPIO and the clock for the
CapSense and ADC counter.

Figure 18-3 shows the CapSense clock architecture. The
SampleClk is generated using the PERI divider. The Sam-
pleClk is used as the input clock for CSD and ADC counters. 

The SenseClk is used to control the switches in the GPIO. It
can be generated using the following methods:

■ Direct Clock

■ Direct Clock with PWM

■ Spread Spectrum Clock

Figure 18-3.  Clock Generation for CapSense

18.3.5.1 Direct Clock 

In the direct clock configuration, the SenseClk is a divided
version of SampleClk. 

18.3.5.2 Direct Clock with PWM

In this configuration, the duty cycle of the SenseClk can be
variedwhen low-EMI switches are used for sensor charging/
discharging.

18.3.5.3 Spread Spectrum Clock

In this configuration, the sense clock frequency is spread
over a range of frequencies. This configuration reduces the
radiated emission from CapSense system.

The SenseClk can also be generated as a pseudo-random
sequence signal. 

18.4 General-Purpose Resources

If the CapSense block is not used for touch sensing, the
CSDCOMP and the two IDACs can be used as general-pur-
pose analog blocks. 

You can use AMUXBUSA/B to connect any CapSense-sup-
ported GPIO to the positive input of the CSDCOMP. The
negative input of the CSDCOMP is connected to the REF-
GEN. The AMUXBUSA/B can also be used as an analog
multiplexer at the comparator input.

If AMUXBUS is required for other uses, the positive terminal
of the CSDCOMP can be connected to the fixed CEXT1,
CEXT2, and CEXT3 pins. The output of the comparator is
connected to a dedicated pin CSD.COMP. See thet for
details on the pin number.

Both the IDAC-A/B can operate in the general-purpose
mode.

The output of IDAC can be connected to GPIOs using either
AMUXBUSA or AMUXBUSB. It is also possible to connect
the both IDACs to a single AMUXBUS. 

SenseClk

SampleClk

HFCLK ÷ N ÷ M

LFSR

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
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19.   LCD Direct Drive

The PSoC® 4 Liquid Crystal Display (LCD) drive system is a highly configurable peripheral that allows the PSoC device to
directly drive STN and TN segment LCDs.

19.1 Features
The PSoC 4 LCD segment drive block has the following features:

■ Supports up to 28 segments and eight commons

■ Supports Type A (standard) and Type B (low-power) drive waveforms

■ Any GPIO can be configured as a common or segment

■ Supports five drive methods:

❐ Digital correlation

❐ PWM at 1/2 bias

❐ PWM at 1/3 bias

❐ PWM at 1/4 bias

❐ PWM at 1/5 bias

■ Ability to drive 3-V displays from 1.8 V VDD in Digital Correlation mode

■ Operates in active, sleep, and deep-sleep modes

■ Digital contrast control

19.2 LCD Segment Drive Overview
A segmented LCD panel has the liquid crystal material between two sets of electrodes and various polarization and reflector
layers. The two electrodes of an individual segment are called commons (COM) or backplanes and segment electrodes
(SEG). From an electrical perspective, an LCD segment can be considered as a capacitive load; the COM/SEG electrodes
can be considered as the rows and columns in a matrix of segments. The opacity of an LCD segment is controlled by varying
the root-mean-square (RMS) voltage across the corresponding COM/SEG pair.

The following terms/voltages are used in this chapter to describe LCD drive:

■ VRMSOFF: The voltage that the LCD driver can realize on segments that are intended to be off.

■ VRMSON: The voltage that the LCD driver can realize on segments that are intended to be on.

■ Discrimination Ratio (D): The ratio of VRMSON and VRMSOFF that the LCD driver can realize. This depends on the type of 
waveforms applied to the LCD panel. Higher discrimination ratio results in higher contrast.

Liquid crystal material does not tolerate long term exposure to DC voltage. Therefore, any waveforms applied to the panel
must produce a 0-V DC component on every segment (on or off). Typically, LCD drivers apply waveforms to the COM and
SEG electrodes that are generated by switching between multiple voltages. The following terms are used to define these
waveforms:

■ Duty: A driver is said to operate in 1/M duty when it drives 'M' number of COM electrodes. Each COM electrode is effec-
tively driven 1/M of the time. 

■ Bias: A driver is said to use 1/B bias when its waveforms use voltage steps of (1/B) × VDRV. VDRV is the highest drive 
voltage in the system (equals to VDD in PSoC 4). PSoC 4 supports 1/2, 1/3, 1/4, and 1/5 biases in PWM drive modes.

■ Frame: A frame is the length of time required to drive all the segments. During a frame, the driver cycles through the com-
mons in sequence. All segments receive 0-V DC (but non-zero RMS voltage) when measured over the entire frame.
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PSoC 4 supports two different types of drive waveforms in all drive modes. These are:

■ Type-A Waveform: In this type of waveform, the driver structures a frame into M sub-frames. 'M' is the number of COM 
electrodes. Each COM is addressed only once during a frame. For example, COM[i] is addressed in sub-frame i.

■ Type-B Waveform: The driver structures a frame into 2M sub-frames. The two sub-frames are inverses of each other. 
Each COM is addressed twice during a frame. For example, COM[i] is addressed in sub-frames i and M+i. Type-B wave-
forms are slightly more power efficient because it contains fewer transitions per frame.

19.2.1 Drive Modes

PSoC 4 supports the following drive modes.

■ PWM drive at 1/2 bias

■ PWM drive at 1/3 bias

■ PWM drive at 1/4 bias with high-frequency clock input

■ PWM drive at 1/5 bias with high-frequency clock input

■ Digital correlation

19.2.1.1 PWM Drive

In PWM drive mode, multi-voltage drive signals are generated using a PWM output signal together with the intrinsic resis-
tance and capacitance of the LCD. Figure 19-1 illustrates this. 

Figure 19-1.  PWM Drive (at 1/3 Bias)

The output waveform of the drive electronics is a PWM waveform. With the Indium Tin Oxide (ITO) panel resistance and the
segment capacitance to filter the PWM, the voltage across the LCD segment is an analog voltage, as shown in Figure 19-1.
This figure illustrates the generation of a 1/3 bias waveform (four commons and voltage steps of VDD/3).

The PWM is derived from either ILO (32 kHz, low-speed operation) or IMO (high-speed operation). The generated analog
voltage typically runs at very low frequency (~ 50 Hz) for segment LCD driving.

Figure 19-2 and Figure 19-3 illustrate the Type A and Type B waveforms for COM and SEG electrodes for 1/2 bias and 1/4
duty. Only COM0/COM1 and SEG0/SEG1 are drawn for demonstration purpose. Similarly, Figure 19-4 and Figure 19-5 illus-
trate the Type A and Type B waveforms for COM and SEG electrodes for 1/3 bias and 1/4 duty. 
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Figure 19-2.  PWM1/2 Type-A Waveform Example
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Figure 19-3.  PWM1/2 Type-B Waveform Example
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Figure 19-4.  PWM1/3 Type-A Waveform Example
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Figure 19-5.  PWM1/3 Type-B Waveform Example
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The effective RMS voltage for ON and OFF segments can be calculated easily using these equations:

Equation 19-1

 Equation 19-2

Where B is the bias and M is the duty (number of COMs).

For example, if the number of COMs is four, the resulting discrimination ratios (D) for 1/2 and 1/3 biases are 1.528 and 1.732,
respectively. 1/3 bias offers better discrimination ratio in two and three COM drives also. Therefore, 1/3 bias offers better con-
trast than 1/2 bias and is recommended for most applications. 1/4 and 1/5 biases are available only in high-speed operation
of the LCD. They offer better discrimination ratio especially when used with high COM designs (more than four COMs).

When the low-speed operation of LCD is used, the PWM signal is derived from the ILO. To drive a low-capacitance display
with acceptable ripple and rise/fall times using a 32-kHz PWM, additional external series resistances of 100 k-1 M should be
used. External resistors are not required for PWM frequencies greater than ~1 MHz. The ideal PWM frequency depends on
the capacitance of the display and the internal ITO resistance of the ITO routing traces.

The 1/2 bias mode has the advantage that PWM is only required on the COM signals; the SEG signals use only logic levels,
as shown in Figure 19-2 and Figure 19-3. 

19.2.1.2 Digital Correlation

The digital correlation mode, instead of generating bias voltages between the rails, takes advantage of the characteristic of
LCDs that the contrast of LCD segments is determined by the RMS voltage across the segments. In this approach, the corre-
lation coefficient between any given pair of COM and SEG signals determines whether the corresponding LCD segment is on
or off. Thus, by doubling the base drive frequency of the COM signals in their inactive sub-frame intervals, the phase relation-
ship of the COM and SEG drive signals can be varied to turn segments on and off. This is different from varying the DC levels
of the signals as in the PWM drive approach. Figure 19-8 and Figure 19-9 are example waveforms that illustrate the princi-
ples of operation.
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Figure 19-6.  Digital Correlation Type-A Waveform
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Figure 19-7.  Digital Correlation Type-B Waveform 
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The RMS voltage applied to on and off segments can be calculated as follows:

Where B is the bias and M is the duty (number of COMs). This leads to a discrimination ratio (D) of 1.291 for four COMs.
Digital correlation mode also has the ability to drive 3-V displays from 1.8-V VDD.

19.2.2 Recommended Usage of Drive Modes

The PWM drive mode has higher discrimination ratios compared to the digital correlation mode, as explained in 19.2.1.1
PWM Drive and 19.2.1.2 Digital Correlation. Therefore, the contrast in digital correlation method is lower than PWM method
but digital correlation has lower power consumption because its waveforms toggle at low frequencies. 

The digital correlation mode creates reduced, but acceptable contrast on TN displays, but no noticeable difference in contrast
or viewing angle on higher contrast STN displays. Because each mode has strengths and weaknesses, recommended usage
is as follows.

19.2.3 Digital Contrast Control

In all drive modes, digital contrast control can be used to change the contrast level of the segments. This method reduces
contrast by reducing the driving time of the segments. This is done by inserting a ‘Dead-Time’ interval after each frame. Dur-
ing dead time, all COM and SEG signals are driven to a logic 1 state. The dead time can be controlled in fine resolution.
Figure 19-8 illustrates the dead-time contrast control method for 1/3 bias and 1/4 duty implementation.

Figure 19-8.  Dead-Time’ Contrast Control

Table 19-1.  Recommended Usage of Drive Modes

Display Type Deep-Sleep Mode Sleep/Active Mode Notes

Four COM TN 
Glass

Digital correlation PWM 1/3 bias
Firmware must switch between LCD drive modes before going to deep 
sleep or waking up.

Four COM STN 
Glass

Digital correlation No contrast advantage for PWM drive with STN glass.

Eight COM, STN Not supported
PWM 1/4 bias and
1/5 bias

Supported only in the high-speed LCD mode. The low-speed clock is not 
fast enough to make the PWM work at high multiplex ratios.
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19.3 Block Diagram

Figure 19-9.  Block Diagram of LCD Direct Drive System

19.3.1 How it Works

The LCD controller block contains two generators; one with
a high-speed clock source HFCLK and the other with a low-
speed clock source derived from the ILO. These are called
high-speed LCD master generator and low-speed LCD mas-
ter generator, respectively. Both the generators support
PWM and digital correlation drive modes. PWM drive mode
with low-speed generator requires external resistors, as
explained in PWM Drive on page 161. 

The multiplexer selects one of these two generator outputs
to drive LCD, as configured by the firmware. The LCD pin
logic block routes the COM and SEG outputs from the gen-
erators to the corresponding I/O matrices. Any GPIO can be
used as either COM or SEG. This configurable pin assign-
ment for COM or SEG is implemented in GPIO and I/O
matrix; see High-Speed I/O Matrix on page 42. These two
generators share the same configuration registers. These
memory mapped I/O registers are connected to the system
bus (AHB) using an AHB interface.

The LCD controller works in three device power modes:
active, sleep, and deep-sleep. High-speed operation is sup-
ported in active and sleep modes. Low-speed operation is
supported in active, sleep, and deep-sleep modes. The LCD
controller is unpowered in hibernate and stop modes.

19.3.2 High-Speed and Low-Speed 
Master Generators

The high-speed and low-speed master generators are simi-
lar to each other. The only exception is that the high-speed
version has larger frequency dividers to generate the frame
and sub-frame periods. This is because the clock of the
high-speed block (HFCLK) is derived from the IMO, which is
typically at 30 to 100 times the frequency of the ILO clock
fed to the low-speed block. The high-speed generator is in
the active power domain and the low-speed generator is in
the deep-sleep power domain. A single set of configuration
registers is provided to control both high-speed and low-
speed blocks. Each master generator has the following fea-
tures and characteristics:

■ Register bit configuring the block for either Type A or 
Type B drive waveforms (LCD_MODE bit in 
LCD_CONTROL register).

■ Register bits to select the number of COMs (COM_NUM 
field in LCD_CONTROL register). The available values 
are 2, 3, and 4.

■ Operating mode configuration bits enabled to select one 
of the following:

❐ Digital correlation

❐ PWM 1/2 bias
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❐ PWM 1/3 bias

❐ PWM 1/4 bias (not supported in low-speed genera-
tor)

❐ PWM 1/5 bias (not supported in low-speed genera-
tor)

❐ Off/disabled. Typically, one of the two generators will 
be configured to be Off

OP_MODE and BIAS fields in LCD_CONTROL bits 
select the drive mode.

■ A counter to generate the sub-frame timing. The 
SUBFR_DIV field in the LCD_DIVIDER register deter-
mines the duration of each sub-frame. If the divide value 
written into this counter is C, the sub-frame period is 4 × 
(C+1). The low-speed generator has an 8-bit counter. 
This counter generates a maximum half sub-frame 
period of 8 ms from the ILO clock. The high-speed gen-
erator has a 16-bit counter.

■ A counter to generate the dead time period. These coun-
ters have the same number of bits as the sub-frame 
period counters and use the same clocks. DEAD_DIV 
field in the LCD_DIVIDER register controls the dead 
time period.

19.3.3 Multiplexer and LCD Pin Logic

The multiplexer selects the output signals of either high-
speed or low-speed master generator blocks and feeds it to
the LCD pin logic. This selection is controlled by the configu-
ration and control register. The LCD pin logic uses the sub-
frame signal from the multiplexer to choose the display data.
This pin logic will be replicated for each LCD pin.

19.3.4 Display Data Registers

Each LCD segment pin is part of an LCD port with its own
display data register, LCD_DATAnx. The device has eight
such LCD ports. Note that these ports are not real pin ports
but the ports/connections available in the LCD hardware for
mapping the segments to commons. Each LCD segment
configured is considered as a pin in these LCD ports. The
LCD_DATAnx registers are 32-bit wide and store the ON/
OFF data for all SEG-COM combination enabled in the
design. LCD_DATA0x holds SEG-COM data for COM0 to
COM3 and LCD_DATA1x holds SEG-COM data for COM4
to COM7. The bits [4i+3:4i] (where 'i' is the pin number) of
each LCD_DATA0x register represent the ON/OFF data for
Pin[i] in Port[x] and COM[3,2,1,0] combinations, as shown in
Table 19-2. The LCD_DATAnx register should be pro-
grammed according to the display data of each frame. The
display data registers are Memory Mapped I/O (MMIO) and
accessed through the AHB slave interface.

19.4 Register List 

Table 19-2.  SEG-COM Mapping in LCD_DATA0x Registers (each SEG is a pin of the LCD port)

BITS[31:28] = PIN_7[3:0] BITS[27:24] = PIN_6[3:0]

PIN_7-COM3 PIN_7-COM2 PIN_7-COM1 PIN_7-COM0 PIN_6-COM3 PIN_6-COM2 PIN_6-COM1 PIN_6-COM0

BITS[23:20] = PIN_5[3:0] BITS[19:16] = PIN_4[3:0]

PIN_5-COM3 PIN_5-COM2 PIN_5-COM1 PIN_5-COM0 PIN_4-COM3 PIN_4-COM2 PIN_4-COM1 PIN_4-COM0

BITS[15:12] = PIN_3[3:0] BITS[11:8] = PIN_2[3:0]

PIN_3-COM3 PIN_3-COM2 PIN_3-COM1 PIN_3-COM0 PIN_2-COM3 PIN_2-COM2 PIN_2-COM1 PIN_2-COM0

BITS[7:3] = PIN_1[3:0] BITS[3:0] = PIN_0[3:0]

PIN_1-COM3 PIN_1-COM2 PIN_1-COM1 PIN_1-COM0 PIN_0-COM3 PIN_0-COM2 PIN_0-COM1 PIN_0-COM0

Table 19-3.  LCD Direct Drive Register List

Register Name Description

LCD_ID This register includes the information of LCD controller' ID and revision number

LCD_DIVIDER This register controls the sub-frame and dead-time period

LCD_CONTROL This register is used to configure high-speed and low-speed generators

LCD_DATA0x LCD port pin data register for COM0 to COM3; x = port number, eight ports are available

LCD_DATA1x LCD port pin data register for COM4 to COM7; x = port number, eight ports are available
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Section F: Program and Debug

This section encompasses the following chapters:

■ Program and Debug Interface chapter on page 173

■ Nonvolatile Memory Programming chapter on page 180

Top Level Architecture

Program and Debug Block Diagram  
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20.   Program and Debug Interface

The PSoC® 4 Program and Debug interface provides a communication gateway for an external device to perform program-
ming or debugging. The external device can be a Cypress-supplied programmer and debugger, or a third-party device that
supports programming and debugging. The serial wire debug (SWD) interface is used as the communication protocol
between the external device and PSoC 4.

20.1 Features
■ Programming and debugging through the SWD interface

■ Four hardware breakpoints and two hardware watchpoints while debugging

■ Read and write access to all memory and registers in the system while debugging, including the Cortex-M0+ register bank 
when the core is running or halted

20.2 Functional Description

Figure 20-1 shows the block diagram of the program and debug interface in PSoC 4. The Cortex-M0+ debug and access port
(DAP) acts as the program and debug interface. The external programmer or debugger, also known as the "host", communi-
cates with the DAP of the PSoC 4 "target" using the two pins of the SWD interface - the bidirectional data pin (SWDIO) and
the host-driven clock pin (SWDCK). The SWD physical port pins (SWDIO and SWDCK) communicate with the DAP through
the high-speed I/O matrix (HSIOM). See the I/O System chapter on page 37 for details on HSIOM.

Figure 20-1.  Program and Debug Interface 

The DAP communicates with the Cortex-M0+ CPU using the ARM-specified advanced high-performance bus (AHB) inter-
face. AHB is the systems interconnect protocol used inside the device, which facilitates memory and peripheral register
access by the AHB master. The device has two AHB masters – ARM CM0 CPU core and DAP. The external device can effec-
tively take control of the entire device through the DAP to perform programming and debugging operations.
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20.3 Serial Wire Debug (SWD) Interface

PSoC 4’s Cortex-M0+ supports programming and debugging through the SWD interface. The SWD protocol is a packet-
based serial transaction protocol. At the pin level, it uses a single bidirectional data signal (SWDIO) and a unidirectional clock
signal (SWDCK). The host programmer always drives the clock line, whereas either the host or the target drives the data line.
A complete data transfer (one SWD packet) requires 46 clocks and consists of three phases:

■ Host Packet Request Phase – The host issues a request to the PSoC 4 target.

■ Target Acknowledge Response Phase – The PSoC 4 target sends an acknowledgement to the host.

■ Data Transfer Phase – The host or target writes data to the bus, depending on the direction of the transfer.

When control of the SWDIO line passes from the host to the target, or vice versa, there is a turnaround period (Trn) where
neither device drives the line and it floats in a high-impedance (Hi-Z) state. This period is either one-half or one and a half
clock cycles, depending on the transition.

Figure 20-2 shows the timing diagrams of read and write SWD packets.

Figure 20-2.  SWD Write and Read Packet Timing Diagrams

The sequence to transmit SWD read and write packets are
as follows:

1. Host Packet Request Phase: SWDIO driven by the host

a. The start bit initiates a transfer; it is always logic 1.

b. The “AP not DP” (APnDP) bit determines whether 
the transfer is an AP access – 1b1 or a DP access – 
1b0.

c. The “Read not Write” bit (RnW) controls which direc-
tion the data transfer is in. 1b1 represents a ‘read 
from’ the target, or 1b0 for a ‘write to’ the target.

d. The Address bits (A[3:2]) are register select bits for 
AP or DP, depending on the APnDP bit value. See 
Table 20-3 and Table 20-4 for definitions. 
Note Address bits are transmitted with the LSB first.

e. The parity bit contains the parity of APnDP, RnW, 
and ADDR bits. It is an even parity bit; this means, 
when XORed with the other bits, the result will be 0.

If the parity bit is not correct, the header is ignored by 
PSoC 4; there is no ACK response (ACK = 3b111). 
The programming operation should be aborted and 
retried again by following a device reset.

f. The stop bit is always logic 0.

g. The park bit is always logic 1.

2. Target Acknowledge Response Phase: SWDIO driven 
by the target

a. The ACK[2:0] bits represent the target to host 
response, indicating failure or success, among other 
results. See Table 20-1 for definitions. 
Note  ACK bits are transmitted with the LSB first.

3. Data Transfer Phase: SWDIO driven by either target or 
host depending on direction

a. The data for read or write is written to the bus, LSB 
first.
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b. The data parity bit indicates the parity of the data 
read or written. It is an even parity; this means when 
XORed with the data bits, the result will be 0.

If the parity bit indicates a data error, corrective 
action should be taken. For a read packet, if the host 
detects a parity error, it must abort the programming 
operation and restart. For a write packet, if the target 
detects a parity error, it generates a FAULT ACK 
response in the next packet.

According to the SWD protocol, the host can generate any
number of SWDCK clock cycles between two packets with
SWDIO low. It is recommended to generate three or more
dummy clock cycles between two SWD packets if the clock
is not free-running or to make the clock free-running in IDLE
mode. 

The SWD interface can be reset by clocking the SWDCK
line for 50 or more cycles with SWDIO high. To return to the
idle state, clock the SWDIO low once.

20.3.1 SWD Timing Details

The SWDIO line is written to and read at different times
depending on the direction of communication. The host
drives the SWDIO line during the Host Packet Request
Phase and, if the host is writing data to the target, during the
Data Transfer phase as well. When the host is driving the
SWDIO line, each new bit is written by the host on falling
SWDCK edges, and read by the target on rising SWDCK
edges. The target drives the SWDIO line during the Target
Acknowledge Response Phase and, if the target is reading
out data, during the Data Transfer Phase as well. When the
target is driving the SWDIO line, each new bit is written by
the target on rising SWDCK edges, and read by the host on
falling SWDCK edges.

Table 20-1 and Figure 20-2 illustrate the timing of SWDIO bit
writes and reads.

20.3.2 ACK Details

The acknowledge (ACK) bit-field is used to communicate
the status of the previous transfer. OK ACK means that pre-
vious packet was successful. A WAIT response requires a
data phase. For a FAULT status, the programming operation
should be aborted immediately. Table 20-2 shows the ACK
bit-field decoding details.

Details on WAIT and FAULT response behaviors are as fol-
lows:

■ For a WAIT response, if the transaction is a read, the 
host should ignore the data read in the data phase. The 
target does not drive the line and the host must not 
check the parity bit as well.

■ For a WAIT response, if the transaction is a write, the 
data phase is ignored by the PSoC 4. But, the host must 
still send the data to be written to complete the packet. 
The parity bit corresponding to the data should also be 
sent by the host.

■ For a WAIT response, it means that the PSoC 4 is pro-
cessing the previous transaction. The host can try for a 
maximum of four continuous WAIT responses to see if 
an OK response is received. If it fails, then the program-
ming operation should be aborted and retried again.

■ For a FAULT response, the programming operation 
should be aborted and retried again by doing a device 
reset.

20.3.3 Turnaround (Trn) Period Details

There is a turnaround period between the packet request
and the ACK phases, as well as between the ACK and the
data phases for host write transfers, as shown in
Figure 20-2. According to the SWD protocol, the Trn period
is used by both the host and target to change the drive
modes on their respective SWDIO lines. During the first Trn
period after the packet request, the target starts driving the
ACK data on the SWDIO line on the rising edge of SWDCK.
This action ensures that the host can read the ACK data on
the next falling edge. Thus, the first Trn period lasts only
one-half cycle. The second Trn period of the SWD packet is
one and a half cycles. Neither the host nor the PSoC 4
should drive the SWDIO line during the Trn period.

Table 20-1.  SWDIO Bit Write and Read Timing

SWD Packet Phase
SWDIO Edge

Falling Rising

Host Packet Request
Host Write Target Read

Host Data Transfer

Target Ack Response
Host Read Target Write

Target Data Transfer

Table 20-2.  SWD Transfer ACK Response Decoding

Response ACK[2:0]

OK 3b001

WAIT 3b010

FAULT 3b100

NO ACK 3b111
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20.4 Cortex-M0+ Debug and Access Port (DAP)

The Cortex-M0+ program and debug interface includes a Debug Port (DP) and an Access Port (AP), which combine to form
the DAP. The debug port implements the state machine for the SWD interface protocol that enables communication with the
host device. It also includes registers for the configuration of access port, DAP identification code, and so on. The access port
contains registers that enable the external device to access the Cortex-M0+ DAP-AHB interface. Typically, the DP registers
are used for a one time configuration or for error detection purposes, and the AP registers are used to perform the program-
ming and debugging operations. Complete architecture details of the DAP is available in the ARM® Debug Interface v5 Archi-
tecture Specification.

20.4.1 Debug Port (DP) Registers

Table 20-3 shows the Cortex-M0+ DP registers used for programming and debugging, along with the corresponding SWD
address bit selections. The APnDP bit is always zero for DP register accesses. Two address bits (A[3:2]) are used for select-
ing among the different DP registers. Note that for the same address bits, different DP registers can be accessed depending
on whether it is a read or a write operation. See the ARM® Debug Interface v5 Architecture Specification for details on all of
the DP registers.

20.4.2 Access Port (AP) Registers 

Table 20-4 lists the main Cortex-M0+ AP registers that are used for programming and debugging, along with the correspond-
ing SWD address bit selections. The APnDP bit is always one for AP register accesses. Two address bits (A[3:2]) are used for
selecting the different AP registers. 

Table 20-3.  Main Debug Port (DP) Registers

Register  APnDP
Address

A[3:2]
RnW Full Name Register Functionality

ABORT 0 (DP) 2b00 0 (W) AP Abort Register
This register is used to force a DAP abort and to clear the 
error and sticky flag conditions.

IDCODE 0 (DP) 2b00 1 (R)
Identification Code 
Register

This register holds the SWD ID of the Cortex-M0+ CPU, which 
is 0x0BB11477.

CTRL/STAT 0 (DP) 2b01 X (R/W)
Control and Status 
Register

This register allows control of the DP and contains status 
information about the DP.

SELECT 0 (DP) 2b10 0 (W) AP Select Register
This register is used to select the current AP. In PSoC 4, there 
is only one AP, which interfaces with the DAP AHB.

RDBUFF 0 (DP) 2b11 1 (R) Read Buffer Register This register holds the result of the last AP read operation.

Table 20-4.  Main Access Port (AP) Registers

Register  APnDP
Address

A[3:2]
RnW Full Name Register Functionality

CSW 1 (AP) 2b00 X (R/W)
Control and Status 
Word Register 
(CSW)

This register configures and controls accesses through the 
memory access port to a connected memory system (which is 
the PSoC 4 Memory map)

TAR 1 (AP) 2b01 X (R/W)
Transfer Address 
Register

This register is used to specify the 32-bit memory address to 
be read from or written to

DRW 1 (AP) 2b11 X (R/W)
Data Read and Write 
Register

This register holds the 32-bit data read from or to be written to 
the address specified in the TAR register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
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20.5 Programming the PSoC 4 
Device

PSoC 4 is programmed using the following sequence. Refer
to the PSoC 4100M, PSoC 4200M, PSoC 4200D, PSoC
4400, PSoC 4000S, PSoC 4700S Device Programming
Specifications for complete details on the programming
algorithm, timing specifications, and hardware configuration
required for programming.

1. Acquire the SWD port in PSoC 4.

2. Enter the programming mode. 

3. Execute the device programming routines such as Sili-
con ID Check, Flash Programming, Flash Verification, 
and Checksum Verification.

20.5.1 SWD Port Acquisition

20.5.1.1 Primary and Secondary SWD Pin 
Pairs

The first step in device programming is to acquire the SWD
port in PSoC 4. Refer to the device datasheet for information
on SWD pins.

If two SWD pin pairs are available in the device, the
SWD_CONFIG register in the supervisory flash region is
used to select between one of the two SWD pin pairs that
can be used for programming and debugging. Note that only
one of the SWD pin pairs can be used during any program-
ming or debugging session. The default selection for
devices coming from the factory is the primary SWD pin pair.
To select the secondary SWD pin pair, it is necessary to pro-
gram the device using the primary pair with the hex file that
enables the secondary pin pair configuration. Afterwards,
the secondary SWD pin pair may be used. 

20.5.1.2  SWD Port Acquire Sequence

The first step in device programming is for the host to
acquire the target's SWD port. The host first performs a
device reset by asserting the external reset (XRES) pin.
After removing the XRES signal, the host must send an
SWD connect sequence for the device within the acquire
window to connect to the SWD interface in the DAP. The
pseudo code for the sequence is given here.

Code 1. SWD Port Acquire Pseudo Code
ToggleXRES(); // Toggle XRES pin to reset
device

//Execute ARM’s connection sequence to
acquire SWD-port
do
{

SWD_LineReset(); //perform a line reset
(50+ SWDCK clocks with SWDIO high)

ack = Read_DAP ( IDCODE, out ID); //Read
the IDCODE DP register

}while ((ack != OK) && time_elapsed < ms); //
retry connection until OK ACK or timeout

if (time_elapsed >= ms) return FAIL; //check for
acquire time out

if (ID != CM0P_ID) return FAIL; //confirm SWD
ID of Cortex-M0+ CPU. (0x0BC11477)

In this pseudo code, SWD_LineReset() is the standard ARM
command to reset the debug access port. It consists of more
than 49 SWDCK clock cycles with SWDIO high. The trans-
action must be completed by sending at least one SWDCK
clock cycle with SWDIO asserted LOW. This sequence syn-
chronizes the programmer and the chip. Read_DAP() refers
to the read of the IDCODE register in the debug port. The
sequence of line reset and IDCODE read should be
repeated until an OK ACK is received for the IDCODE read
or a timeout ( ms) occurs. The SWD port is said to be in the
acquired state if an OK ACK is received within the time win-
dow and the IDCODE read matches with that of the Cortex-
M0+ DAP.

20.5.2 SWD Programming Mode Entry

After the SWD port is acquired, the host must enter the
device programming mode within a specific time window.
This is done by setting the TEST_MODE bit (bit 31) in the
test mode control register (MODE register). The debug port
should also be configured before entering the device pro-
gramming mode. Timing specifications and pseudo code for
entering the programming mode are detailed in the PSoC
4100M, PSoC 4200M, PSoC 4200D, PSoC 4400, PSoC
4000S, PSoC 4700S Device Programming Specifications
document. The minimum required clock frequency for the
Port Acquire step and this step to succeed is 1.5 MHz.

20.5.3 SWD Programming Routines 
Executions

When the device is in programming mode, the external pro-
grammer can start sending the SWD packet sequence for
performing programming operations such as flash erase,
flash program, checksum verification, and so on. The pro-
gramming routines are explained in the Nonvolatile Memory
Programming chapter on page 180. The exact sequence of
calling the programming routines is given in thePSoC
4100M, PSoC 4200M, PSoC 4200D, PSoC 4400, PSoC
4000S, PSoC 4700S Device Programming Specifications.

http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4000s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/datasheets/psocr-4-psoc-4100s-family-datasheet-programmable-system-chip-psoc
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
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20.6 PSoC 4 SWD Debug 
Interface

Cortex-M0+ DAP debugging features are classified into two
types: invasive debugging and noninvasive debugging.
Invasive debugging includes program halting and stepping,
breakpoints, and data watchpoints. Noninvasive debugging
includes instruction address profiling and device memory
access, which includes the flash memory, SRAM, and other
peripheral registers.

The DAP has three major debug subsystems:

■ Debug Control and Configuration registers

■ Breakpoint Unit (BPU) – provides breakpoint support

■ Debug Watchpoint (DWT) – provides watchpoint sup-
port. Trace is not supported in Cortex-M0+ Debug.

See the ARMv6-M Architecture Reference Manual for com-
plete details on the debug architecture. 

20.6.1 Debug Control and Configuration 
Registers

The debug control and configuration registers are used to
execute firmware debugging. The registers and their key
functions are as follows. See the ARMv6-M Architecture
Reference Manual for complete bit level definitions of these
registers.

■ Debug Halting Control and Status Register 
(CM0P_DHCSR) – This register contains the control bits 
to enable debug, halt the CPU, and perform a single-
step operation. It also includes status bits for the debug 
state of the processor.

■ Debug Fault Status Register (CM0P_DFSR) – This reg-
ister describes the reason a debug event has occurred 
and includes debug events, which are caused by a CPU 
halt, breakpoint event, or watchpoint event.

■ Debug Core Register Selector Register 
(CM0P_DCRSR) – This register is used to select the 
general-purpose register in the Cortex-M0+ CPU to 
which a read or write operation must be performed by 
the external debugger.

■ Debug Core Register Data Register (CM0P_DCRDR) – 
This register is used to store the data to write to or read 
from the register selected in the CM0P_DCRSR register.

■ Debug Exception and Monitor Control Register 
(CM0P_DEMCR) – This register contains the enable bits 
for global debug watchpoint (DWT) block enable, reset 
vector catch, and hard fault exception catch.

20.6.2 Breakpoint Unit (BPU)

The BPU provides breakpoint functionality on instruction
fetches. The Cortex-M0+ DAP in PSoC 4 supports up to four
hardware breakpoints. Along with the hardware breakpoints,
any number of software breakpoints can be created by using

the BKPT instruction in the Cortex-M0+. The BPU has two
types of registers.

■ The breakpoint control register (CM0P_BP_CTRL) is 
used to enable the BPU and store the number of hard-
ware breakpoints supported by the debug system (four 
for CM0 DAP in the PSoC 4).

■ Each hardware breakpoint has a Breakpoint Compare 
Register (CM0P_BP_COMPx). It contains the enable bit 
for the breakpoint, the compare address value, and the 
match condition that will trigger a breakpoint debug 
event. The typical use case is that when an instruction 
fetch address matches the compare address of a break-
point, a breakpoint event is generated and the processor 
is halted.

20.6.3 Data Watchpoint (DWT)

The DWT provides watchpoint support on a data address
access or a program counter (PC) instruction address. The
DWT supports two watchpoints. It also provides external
program counter sampling using a PC sample register,
which can be used for noninvasive coarse profiling of the
program counter. The most important registers in the DWT
are as follows.

■ The watchpoint compare (CM0P_DWT_COMPx) regis-
ters store the compare values that are used by the 
watchpoint comparator for the generation of watchpoint 
events. Each watchpoint has an associated 
DWT_COMPx register.

■ The watchpoint mask (CM0P_DWT_MASKx) registers 
store the ignore masks applied to the address range 
matching in the associated watchpoints.

■ The watchpoint function (CM0P_DWT_FUNCTIONx) 
registers store the conditions that trigger the watchpoint 
events. They may be program counter watchpoint event 
or data address read/write access watchpoint events. A 
status bit is also set when the associated watchpoint 
event has occurred.

■ The watchpoint comparator PC sample register 
(CM0P_DWT_PCSR) stores the current value of the 
program counter. This register is used for coarse, non-
invasive profiling of the program counter register.

20.6.4 Debugging the PSoC 4 Device

The host debugs the target PSoC 4 by accessing the debug
control and configuration registers, registers in the BPU, and
registers in the DWT. All registers are accessed through the
SWD interface; the SWD debug port (SW-DP) in the Cortex-
M0+ DAP converts the SWD packets to appropriate register
access through the DAP-AHB interface.

The first step in debugging the target PSoC 4 is to acquire
the SWD port. The acquire sequence consists of an SWD
line reset sequence and read of the DAP SWDID through
the SWD interface. The SWD port is acquired when the cor-
rect CM0 DAP SWDID is read from the target device. For

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
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the debug transactions to occur on the SWD interface, the
corresponding pins should not be used for any other pur-
pose. See the I/O System chapter on page 37 to understand
how to configure the SWD port pins, allowing them to be
used only for SWD interface or for other functions such as
GPIO. If debugging is required, the SWD port pins should
not be used for other purposes. If only programming support
is needed, the SWD pins can be used for other purposes. 

When the SWD port is acquired, the external debugger sets
the C_DEBUGEN bit in the DHCSR register to enable
debugging. Then, the different debugging operations such
as stepping, halting, breakpoint configuration, and watch-

point configuration are carried out by writing to the appropri-
ate registers in the debug system.

Debugging the target device is also affected by the overall
device protection setting, which is explained in the Device
Security chapter on page 79. Only the OPEN protected
mode supports device debugging. The external debugger
and the target device connection is not lost for a device tran-
sition from Active mode to either Sleep or Deep-Sleep
modes. When the device enters the Active mode from either
Deep-Sleep or Sleep modes, the debugger can resume its
actions without initiating a connect sequence again.

20.7 Registers

Table 20-5.  List of Registers

Register Name Description

CM0P_DHCSR Debug Halting Control and Status Register

CM0P_DFSR Debug Fault Status Register

CM0P_DCRSR Debug Core Register Selector Register

CM0P_DCRDR Debug Core Register Data Register

CM0P_DEMCR Debug Exception and Monitor Control Register

CM0P_BP_CTRL Breakpoint control register

CM0P_BP_COMPx Breakpoint Compare Register

CM0P_DWT_COMPx Watchpoint Compare Register

CM0P_DWT_MASKx Watchpoint Mask Register

CM0P_DWT_FUNCTIONx Watchpoint Function Register

CM0P_DWT_PCSR Watchpoint Comparator PC Sample Register
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21.   Nonvolatile Memory Programming

Nonvolatile memory programming refers to the programming of flash memory in the PSoC® 4 device. This chapter explains
the different functions that are part of device programming, such as erase, write, program, and checksum calculation.
Cypress-supplied programmers and other third-party programmers can use these functions to program the PSoC 4 device
with the data in an application hex file. They can also be used to perform bootload operations where the CPU will update a
portion of the flash memory.

21.1 Features
■ Supports programming through the debug and access port (DAP) and Cortex-M0+ CPU

■ Supports both blocking and non-blocking flash program and erase operations from the Cortex-M0+ CPU

21.2 Functional Description

Flash programming operations are implemented as system calls. System calls are executed out of SROM in the privileged
mode of operation. The user has no access to read or modify the SROM code. The DAP or the CM0+ CPU requests the sys-
tem call by writing the function opcode and parameters to the System Performance Controller Interface (SPCIF) input regis-
ters, and then requesting the SROM to execute the function. Based on the function opcode, the System Performance
Controller (SPC) executes the corresponding system call from SROM and updates the SPCIF status register. The DAP or the
CPU should read this status register for the pass/fail result of the function execution. As part of function execution, the code in
SROM interacts with the SPCIF to do the actual flash programming operations.

PSoC 4 flash is programmed using a Program Erase Program (PEP) sequence. The flash cells are all programmed to a
known state, erased, and then the selected bits are programmed. This sequence increases the life of the flash by balancing
the stored charge. When writing to flash the data is first copied to a page latch buffer. The flash write functions are then used
to transfer this data to flash.

External programmers program the flash memory in PSoC 4 using the SWD protocol by sending the commands to the Debug
and Access Port (DAP). The programming sequence for the PSoC 4 device with an external programmer is given in the
PSoC 4100M, PSoC 4200M, PSoC 4200D, PSoC 4400, PSoC 4000S, PSoC 4100S, PSoC 4700S Programming Specifica-
tions. Flash memory can also be programmed by the CM0+ CPU by accessing the relevant registers through the AHB inter-
face. This type of programming is typically used to update a portion of the flash memory as part of a bootload operation, or
other application requirements, such as updating a lookup table stored in the flash memory. All write operations to flash mem-
ory, whether from the DAP or from the CPU, are done through the SPCIF.

Note It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or unexpected
changes may be made to portions of the flash. Reset sources (see the Reset System chapter on page 77) include XRES pin,
software reset, and watchdog; make sure that these are not inadvertently activated. In addition, the low-voltage detect circuits
should be configured to generate an interrupt instead of a reset. 

Note PSoC 4 implements a User Supervisory Flash (SFlash), which can be used to store application-specific information.
These rows are not part of the hex file; their programming is optional.

http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m


PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 181

Nonvolatile Memory Programming

21.3 System Call Implementation

A system call consists of the following items:

■ Opcode: A unique 8-bit opcode

■ Parameters: Two 8-bit parameters are mandatory for all 
system calls. These parameters are referred to as key1 
and key2, and are defined as follows:

key1 = 0xB6

key2 = 0xD3 + Opcode

The two keys are passed to ensure that the user system 
call is not initiated by mistake. If the key1 and key2 
parameters are not correct, the SROM does not execute 
the function, and returns an error code. Apart from these 
two parameters, additional parameters may be required 
depending on the specific function being called. 

■ Return Values: Some system calls also return a value on 
completion of their execution, such as the silicon ID or a 
checksum.

■ Completion Status: Each system call returns a 32-bit sta-
tus that the CPU or DAP can read to verify success or 
determine the reason for failure.

21.4 Blocking and Non-Blocking 
System Calls

System call functions can be categorized as blocking or
non-blocking based on the nature of their execution. Block-
ing system calls are those where the CPU cannot execute
any other task in parallel other than the execution of the sys-
tem call. When a blocking system call is called from a pro-
cess, the CPU jumps to the code corresponding in SROM.
When the execution is complete, the original thread execu-
tion resumes. Non-blocking system calls allow the CPU to
execute some other code in parallel and communicate the
completion of interim system call tasks to the CPU through
an interrupt. 

Non-blocking system calls are only used when the CPU initi-
ates the system call. The DAP will only use system calls dur-
ing the programming mode and the CPU is halted during
this process. 

The three non-blocking system calls are Non-Blocking Write
Row, Non-Blocking Program Row, and Resume Non-Block-
ing, respectively. All other system calls are blocking. 

Because the CPU cannot execute code from flash while
doing an erase or program operation on the flash, the non-
blocking system calls can only be called from a code execut-
ing out of SRAM. If the non-blocking functions are called
from flash memory, the result is undefined and may return a
bus error and trigger a hard fault when the flash fetch opera-
tion is being done.

The System Performance Controller (SPC) is the block that
generates the properly sequenced high-voltage pulses
required for erase and program operations of the flash

memory. When a non-blocking function is called from
SRAM, the SPC timer triggers its interrupt when each of the
sub-operations in a write or program operation is complete.
Call the Resume Non-Blocking function from the SPC inter-
rupt service routine (ISR) to ensure that the subsequent
steps in the system call are completed. Because the CPU
can execute code only from the SRAM when a non-blocking
write or program operation is being done, the SPC ISR
should also be located in the SRAM. The SPC interrupt is
triggered once in the case of a non-blocking program func-
tion or thrice in a non-blocking write operation. The Resume
Non-Blocking function call done in the SPC ISR is called
once in a non-blocking program operation and thrice in a
non-blocking write operation.

The pseudo code for using a non-blocking write system call
and executing user code out of SRAM is given later in this
chapter.

21.4.1 Performing a System Call

The steps to initiate a system call are as follows:

1. Set up the function parameters: The two possible meth-
ods for preparing the function parameters (key1, key2, 
additional parameters) are:

a. Write the function parameters to the 
CPUSS_SYSARG register: This method is used for 
functions that retrieve their parameters from the 
CPUSS_SYSARG register. The 32-bit 
CPUSS_SYSARG register must be written with the 
parameters in the sequence specified in the respec-
tive system call table. 

b. Write the function parameters to SRAM: This method 
is used for functions that retrieve their parameters 
from SRAM. The parameters should first be written in 
the specified sequence to consecutive SRAM loca-
tions. Then, the starting address of the SRAM, which 
is the address of the first parameter, should be writ-
ten to the CPUSS_SYSARG register. This starting 
address should always be a word-aligned (32-bit) 
address. The system call uses this address to fetch 
the parameters.

2. Specify the system call using its opcode and initiating the 
system call: The 8-bit opcode should be written to the 
SYSCALL_COMMAND bits ([15:0]) in the 
CPUSS_SYSREQ register. The opcode is placed in the 
lower eight bits [7:0] and 0x00 be written to the upper 
eight bits [15:8]. To initiate the system call, set the 
SYSCALL_REQ bit (31) in the CPUSS_SYSREG regis-
ter. Setting this bit triggers a non-maskable interrupt that 
jumps the CPU to the SROM code referenced by the 
opcode parameter.

3. Wait for the system call to finish executing: When the 
system call begins execution, it sets the PRIVILEGED 
bit in the CPUSS_SYSREQ register. This bit can be set 
only by the system call, not by the CPU or DAP. The 
DAP should poll the PRIVILEGED and SYSCALL_REQ 
bits in the CPUSS_SYSREG register continuously to 
check whether the system call is completed. Both these 
bits are cleared on completion of the system call. The 
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maximum execution time is one second. If these two bits 
are not cleared after one second, the operation should 
be considered a failure and aborted without executing 
the following steps. Note that unlike the DAP, the CPU 
application code cannot poll these bits during system 
call execution. This is because the CPU executes code 
out of the SROM during the system call. The application 
code can check only the final function pass/fail status 
after the execution returns from SROM.

4. Check the completion status: After the PRIVILEGED and 
SYSCALL_REQ bits are cleared to indicate completion 
of the system call, the CPUSS_SYSARG register should 
be read to check for the status of the system call. If the 
32-bit value read from the CPUSS_SYSARG register is 
0xAXXXXXXX (where ‘X’ denotes don’t care hex val-
ues), the system call was successfully executed. For a 
failed system call, the status code is 0xF00000YY where 

YY indicates the reason for failure. See Table 21-1 for 
the complete list of status codes and their description.

5. Retrieve the return values: For system calls that return 
values such as silicon ID and checksum, the CPU or 
DAP should read the CPUSS_SYSREG and 
CPUSS_SYSARG registers to fetch the values returned.

21.5 System Calls

Table 21-1 lists all the system calls supported in PSoC 4
along with the function description and availability in device
protection modes. See the Device Security chapter on
page 79 for more information on the device protection set-
tings. Note that some system calls cannot be called by the
CPU as given in the table. Detailed information on each of
the system calls follows the table.

21.5.1 Silicon ID

This function returns a 12-bit family ID, 16-bit silicon ID, and an 8-bit revision ID, and the current device protection mode.
These values are returned to the CPUSS_SYSARG and CPUSS_SYSREQ registers. Parameters are passed through the
CPUSS_SYSARG and CPUSS_SYSREQ registers.

Parameters

Table 21-1.  List of System Calls

System Call Description
DAP Access CPU 

AccessOpen Protected Kill

Silicon ID Returns the device Silicon ID, Family ID, and Revision ID ✔ ✔ – ✔

Load Flash Bytes
Loads data to the page latch buffer to be programmed later into the 
flash row, in 1 byte granularity, for a row size of 128 bytes

✔ – – ✔

Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer

✔ – – ✔

Program Row Programs a row of flash with data in the page latch buffer ✔ – – ✔

Erase All
Erases all user code in the flash array; the flash row-level protection 
data in the supervisory flash area

✔ – –

Checksum
Calculates the checksum over the entire flash memory (user and super-
visory area) or checksums a single row of flash

✔ ✔ – ✔

Write Protection
This programs both flash row-level protection settings and chip-level 
protection settings into the supervisory flash (row 0)

✔ ✔ –

Non-Blocking Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer. During program/erase pulses, the user may execute code from 
SRAM. This function is meant only for CPU access

– – – ✔

Non-Blocking Program 
Row

Programs a row of flash with data in the page latch buffer. During pro-
gram/erase pulses, the user may execute code from SRAM. This func-
tion is meant only for CPU access

– – – ✔

Resume Non-Blocking
Resumes a non-blocking write row or non-blocking program row. This 
function is meant only for CPU access

– – – ✔

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD3 Key2
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Return

21.5.2 Configure Clock

This function initializes the clock necessary for flash programming and erasing operations. This API is used to ensure that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz prior to calling the flash write and flash
erase APIs. The flash write and erase APIs will exit without acting on the flash and return the "Invalid Pump Clock Frequency"
status if the IMO is the source of the charge pump clock and is not 48 MHz.

21.5.3 Load Flash Bytes

This function loads the page latch buffer with data to be programmed into a row of flash. The load size can range from 1-byte
to the maximum number of bytes in a flash row, which is 128 bytes. Data is loaded into the page latch buffer starting at the
location specified by the “Byte Addr” input parameter. Data loaded into the page latch buffer remains until a program opera-
tion is performed, which clears the page latch contents. The parameters for this function, including the data to be loaded into
the page latch, are written to the SRAM; the starting address of the SRAM data is written to the CPUSS_SYSARG register.
Note that the starting parameter address should be a word-aligned address.

Parameters

Bits [31:16] 0x0000 Not used

CPUSS_SYSREQ register

Bits [15:0] 0x0000 Silicon ID opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [7:0] Silicon ID Lo
Silicon ID value for the selected device

Bits [15:8] Silicon ID Hi

Bits [19:16] Minor Revision Id See the PSoC 4100M, PSoC 4200M, PSoC 4200D, PSoC 
4400, PSoC 4000S, PSoC 4100S, PSoC 4700S Programming 
SpecificationsBits [23:20] Major Revision Id

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28] 0xA Success status code 

CPUSS_SYSREQ register

Bits [11:0] Family ID
Family ID for PSoC 4700S

Bits [15:12] Chip Protection Chip protection level

Bits [31:16] 0xXXXX Not used

Address Value to be Written Description

SRAM Address - 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD7 Key2

Bits [23:16] Byte Addr

Start address of page latch buffer to write data

0x00 – Byte 0 of latch buffer

0x7F – Byte 127 of latch buffer

Bits [31:24] Flash Macro Select

0x00 – Flash Macro 0

0x01 – Flash Macro 1

(Refer to the Cortex-M0+ CPU chapter on page 22 for the 
number of flash macros in the device)

Address Value to be Written Description

http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
http://www.cypress.com/documentation/programming-specifications/psocr-4000s-psoc-4100m-psoc-4100s-psoc-4200d-psoc-4200m
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Return

21.5.4 Write Row

This function erases and then programs the addressed row of flash with the data in the page latch buffer. If all data in the page
latch buffer is 0, then the program is skipped. The parameters for this function are stored in SRAM. The start address of the
stored parameters is written to the CPUSS_SYSARG register. This function clears the page latch buffer contents after the row
is programmed. 

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz.Call the Load Flash Bytes function before
calling this function. This function can do a write operation only if the corresponding flash row is not write protected.

Refer to the CLK_IMO_CONFIG register in the  for more information.

Parameters

SRAM Address- 32’hYY + 0x04

Bits [7:0] Load Size

Number of bytes to be written to the page latch buffer.

0x00 – 1 byte

0x7F – 128 bytes

Bits [15:8] 0xXX Don’t care parameter

Bits [23:16] 0xXX Don’t care parameter

Bits [31:24] 0xXX Don’t care parameter

SRAM Address- From (32’hYY + 0x08) to (32’hYY + 0x08 + Load Size)

Byte 0 Data Byte [0] First data byte to be loaded

. . .

. . .

Byte (Load size –1) Data Byte [Load size –1] Last data byte to be loaded

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0004 Load Flash Bytes opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD8 Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Address Value to be Written Description

http://www.cypress.com/?rID=78807
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21.5.5 Program Row

This function programs the addressed row of the flash with data in the page latch buffer. If all data in the page latch buffer is 0,
then the program is skipped. The row must be in an erased state before calling this function. It clears the page latch buffer
contents after the row is programmed. 

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz.Call the Load Flash Bytes function before
calling this function. The row must be in an erased state before calling this function. This function can do a program operation
only if the corresponding flash row is not write-protected.

Parameters

Return

21.5.6 Erase All

This function erases all the user code in the flash main arrays and the row-level protection data in supervisory flash row 0 of
each flash macro. 

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0005 Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD9 Key2

Bits [31:16] Row ID
Row number to program

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0006 Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description
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Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. This API can be called only from the DAP
in the programming mode and only if the chip protection mode is OPEN. If the chip protection mode is PROTECTED, then the
Write Protection API must be used by the DAP to change the protection settings to OPEN. Changing the protection setting
from PROTECTED to OPEN automatically does an erase all operation. 

Parameters

Return

21.5.7 Checksum

This function reads either the whole flash memory or a row of flash and returns the 24-bit sum of each byte read in that flash
region. When performing a checksum on the whole flash, the user code and supervisory flash regions are included. When
performing a checksum only on one row of flash, the flash row number is passed as a parameter. Bytes 2 and 3 of the param-
eters select whether the checksum is performed on the whole flash memory or a row of user code flash. 

Parameters

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDD Key2

Bits [31:16] 0xXXXX Don’t care

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x000A Erase All opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDE Key2

Bits [31:16] Row ID

Selects the flash row number on which the checksum operation is done

Row number – 16 bit flash row number

or

0x8000 – Checksum is performed on entire flash memory

CPUSS_SYSREQ register

Bits [15:0] 0x000B Checksum opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit
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21.5.8 Write Protection

This function programs both the flash row-level protection settings and the device protection settings in the supervisory flash
row. The flash row-level protection settings are programmed separately for each flash macro in the device. Each row has a
single protection bit. The total number of protection bytes is the number of flash rows divided by eight. The chip-level protec-
tion settings (1-byte) are stored in flash macro zero in the last byte location in row zero of the supervisory flash. The size of
the supervisory flash row is the same as the user code flash row size.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. The Load Flash Bytes function is used to
load the flash protection bytes of a flash macro into the page latch buffer corresponding to the macro. The starting address
parameter for the load function should be zero. The flash macro number should be one that needs to be programmed; the
number of bytes to load is the number of flash protection bytes in that macro.

Then, the Write Protection function is called, which programs the flash protection bytes from the page latch to be the corre-
sponding flash macro’s supervisory row. In flash macro zero, which also stores the device protection settings, the device level
protection setting is passed as a parameter in the CPUSS_SYSARG register. 

Parameters

Return

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:24] 0xX Not used (don’t care) 

Bits [23:0] Checksum 24-bit checksum value of the selected flash region

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xE0 Key2

Bits [23:16] Device Protection Byte

Parameter applicable only for Flash Macro 0

0x01 – OPEN mode

0x02 – PROTECTED mode

0x04 – KILL mode

Bits [31:24] Flash Macro Select
0x00 – Flash Macro 0

0x01 – Flash Macro 1

CPUSS_SYSREQ register

Bits [15:0] 0x000D Write Protection opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:24] 0xX Not used (don’t care) 

Bits [23:0] 0x000000
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21.5.9 Non-Blocking Write Row

This function is used when a flash row needs to be written by the CM0+ CPU in a non-blocking manner, so that the CPU can
execute code from SRAM while the write operation is being done. The explanation of non-blocking system calls is explained
in Blocking and Non-Blocking System Calls on page 181. 

The non-blocking write row system call has three phases: Pre-program, Erase, Program. Pre-program is the step in which all
of the bits in the flash row are written a ‘1’ in preparation for an erase operation. The erase operation clears all of the bits in
the row, and the program operation writes the new data to the row.

While each phase is being executed, the CPU can execute code from SRAM. When the non-blocking write row system call is
initiated, the user cannot call any system call function other than the Resume Non-Blocking function, which is required for
completion of the non-blocking write operation. After the completion of each phase, the SPC triggers its interrupt. In this inter-
rupt, call the Resume Non-Blocking system call.

Note  The device firmware must not attempt to put the device to sleep during a non-blocking write row. This action will reset
the page latch buffer and the flash will be written with all zeroes.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz.Call the Load Flash Bytes function before
calling this function to load the data bytes that will be used for programming the row. In addition, the non-blocking write row
function can be called only from the SRAM. This is because the CM0+ CPU cannot execute code from flash while doing the
flash erase program operations. If this function is called from the flash memory, the result is undefined, and may return a bus
error and trigger a hard fault when the flash fetch operation is being done.

Parameters

Return

21.5.10 Non-Blocking Program Row

This function is used when a flash row needs to be programmed by the CM0+ CPU in a non-blocking manner, so that the
CPU can execute code from the SRAM when the program operation is being done. The explanation of non-blocking system
calls is explained in Blocking and Non-Blocking System Calls on page 181. While the program operation is being done, the
CPU can execute code from the SRAM. When the non-blocking program row system call is called, the user cannot call any
other system call function other than the Resume Non-Blocking function, which is required for the completion of the non-
blocking write operation. 

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDA Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first function 
parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0007 Non-Blocking Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 
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Unlike the Non-Blocking Write Row system call, the Program system call only has a single phase. Therefore, the Resume
Non-Blocking function only needs to be called once from the SPC interrupt when using the Non-Blocking Program Row sys-
tem call.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz.Call the Load Flash Bytes function before
calling this function to load the data bytes that will be used for programming the row. In addition, the non-blocking program
row function can be called only from SRAM. This is because the CM0+ CPU cannot execute code from flash while doing flash
program operations. If this function is called from flash memory, the result is undefined, and may return a bus error and trigger
a hard fault when the flash fetch operation is being done.

Parameters

Return

21.5.11 Resume Non-Blocking

This function completes the additional phases of erase and program that were started using the non-blocking write row and
non-blocking program row system calls. This function must be called thrice following a call to Non-Blocking Write Row or once
following a call to Non-Blocking Program Row from the SPC ISR. No other system calls can execute until all phases of the
program or erase operation are complete. More details on the procedure of using the non-blocking functions are explained in
Blocking and Non-Blocking System Calls on page 181.

Parameters

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDB Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0008 Non-Blocking Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDC Key2

Bits [31:16] 0xXXXX Don’t care. Not used by SROM

CPUSS_SYSARG register
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Return

21.6 System Call Status

At the end of every system call, a status code is written over the arguments in the CPUSS_SYSARG register. A success sta-
tus is 0xAXXXXXXX, where X indicates don’t care values or return data in the case of the system calls that return a value. A
failure status is indicated by 0xF00000XX, where XX is the failure code. 

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0009 Resume Non-Blocking opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Table 21-2.  System Call Status Codes

Status Code 
(32-bit value in 

CPUSS_SYSARG register)
Description

AXXXXXXXh
Success – The “X” denotes a don’t care value, which has a value of ‘0’ returned by the SROM, unless the 
API returns parameters directly to the CPUSS_SYSARG register. 

F0000001h Invalid Chip Protection Mode – This API is not available during the current chip protection mode.

F0000003h
Invalid Page Latch Address – The address within the page latch buffer is either out of bounds or the size pro-
vided is too large for the page address.

F0000004h Invalid Address – The row ID or byte address provided is outside of the available memory. 

F0000005h Row Protected – The row ID provided is a protected row.

F0000007h
Resume Completed – All non-blocking APIs have completed. The resume API cannot be called until the next 
non-blocking API. 

F0000008h
Pending Resume – A non-blocking API was initiated and must be completed by calling the resume API, 
before any other APIs may be called. 

F0000009h
System Call Still In Progress – A resume or non-blocking is still in progress. The SPC ISR must fire before 
attempting the next resume.

F000000Ah Checksum Zero Failed – The calculated checksum was not zero.

F000000Bh Invalid Opcode – The opcode is not a valid API opcode.

F000000Ch Key Opcode Mismatch – The opcode provided does not match key1 and key2. 

F000000Eh Invalid Start Address – The start address is greater than the end address provided. 

F0000012h
Invalid Pump Clock Frequency - IMO must be set to 48 MHz and HF clock source to the IMO clock source 
before flash write/erase operations.

Address Value to be Written Description
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21.7 Non-Blocking System Call Pseudo Code

This section contains pseudo code to demonstrate how to set up a non-blocking system call and execute code out of SRAM
during the flash programming operations.

#define REG(addr) (*((volatile uint32 *) (addr)))
#define CM0_ISER_REG REG( 0xE000E100 )
#define CPUSS_CONFIG_REG REG( 0x40100000 )
#define CPUSS_SYSREQ_REG REG( 0x40100004 )
#define CPUSS_SYSARG_REG REG( 0x40100008 )

#define ROW_SIZE_    ()
#define ROW_SIZE        (ROW_SIZE_)

/*Variable to keep track of how many times SPC ISR is triggered */
__ram int iStatusInt = 0x00;

__flash int main(void)
{

DoUserStuff();

/*CM0+ interrupt enable bit for spc interrupt enable */
CM0_ISER_REG |= 0x00000040;

/*Set CPUSS_CONFIG.VECS_IN_RAM because SPC ISR should be in SRAM */
CPUSS_CONFIG_REG |= 0x00000001;

/*Call non-blocking write row API */
NonBlockingWriteRow();

/*End Program */
while(1);

}
__sram void SpcIntHandler(void)
{

/* Write key1, key2 parameters to SRAM */
REG( 0x20000000 ) = 0x0000DCB6;

/*Write the address of key1 to the CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x09 to the CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000009;

/* Number of times the ISR has triggered */
iStatusInt ++; 

}
__sram void NonBlockingWriteRow(void)
{

int iter;

/*Load the Flash page latch with data to write*/
* Write key1, key2, byte address, and macro sel parameters to SRAM
*/
REG( 0x20000000 ) = 0x0000D7B6;
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//Write load size param (128 bytes) to SRAM
REG( 0x20000004 ) = 0x0000007F;

for(i = 0; i < ROW_SIZE/4; i += 1)
{

REG( 0x20000008 + i*4 ) = 0xDADADADA;
}

/*Write the address of the key1 param to CPUSS_SYSARG reg*/
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x04 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000004;

/*Perform Non-Blocking Write Row on Row 200 as an example. 
* Write key1, key2, row id to SRAM row id = 0xC8 -> which is row 200
*/
REG( 0x20000000 ) = 0x00C8DAB6;

/*Write the address of the key1 param to CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x07 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000007;

/*Execute user code until iStatusInt equals 3 to signify
* 3 SPC interrupts have happened. This should be 1 in case
* of non-blocking program System Call 
*/
while( iStatusInt != 0x03 )
{

DoOtherUserStuff();
} 

/* Get the success or failure status of System Call*/
syscall_status = CPUSS_SYSARG_REG;

}

In the code, the CM0+ exception table is configured to be in SRAM by writing 0x01 to the CPUSS_CONFIG register. The
SRAM exception table should have the vector address of the SPC interrupt as the address of the SpcIntHandler() function,
which is also defined to be in SRAM. See the Interrupts chapter on page 27 for details on configuring the CM0+ exception
table to be in SRAM. The pseudo code for a non-blocking program system call is also similar, except that the function opcode
and parameters will differ and the iStatusInt variable should be polled for 1 instead of 3. This is because the SPC ISR will be
triggered only once for a non-blocking program system call.
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The Glossary section explains the terminology used in this technical reference manual. Glossary terms are characterized in
bold, italic font throughout the text of this manual.

A

accumulator In a CPU, a register in which intermediate results are stored. Without an accumulator, it is neces-
sary to write the result of each calculation (addition, subtraction, shift, and so on.) to main mem-
ory and read them back. Access to main memory is slower than access to the accumulator,
which usually has direct paths to and from the arithmetic and logic unit (ALU). 

active high 1. A logic signal having its asserted state as the logic 1 state.

2. A logic signal having the logic 1 state as the higher voltage of the two states.

active low 1. A logic signal having its asserted state as the logic 0 state.

2. A logic signal having its logic 1 state as the lower voltage of the two states: inverted logic.

address The label or number identifying the memory location (RAM, ROM, or register) where a unit of
information is stored.

algorithm A procedure for solving a mathematical problem in a finite number of steps that frequently
involve repetition of an operation.

ambient temperature The temperature of the air in a designated area, particularly the area surrounding the PSoC
device.

analog See analog signals.

analog blocks The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous
time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain
stages, and much more.

analog output An output that is capable of driving any voltage between the supply rails, instead of just a logic 1
or logic 0.

analog signals A signal represented in a continuous form with respect to continuous times, as contrasted with a
digital signal represented in a discrete (discontinuous) form in a sequence of time.

analog-to-digital (ADC) A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,
an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs
the reverse operation.
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AND See Boolean Algebra.

API (Application Pro-
gramming Interface)

A series of software routines that comprise an interface between a computer application and
lower-level services and functions (for example, user modules and libraries). APIs serve as build-
ing blocks for programmers that create software applications.

array An array, also known as a vector or list, is one of the simplest data structures in computer pro-
gramming. Arrays hold a fixed number of equally-sized data elements, generally of the same
data type. Individual elements are accessed by index using a consecutive range of integers, as
opposed to an associative array. Most high-level programming languages have arrays as a built-
in data type. Some arrays are multi-dimensional, meaning they are indexed by a fixed number of
integers; for example, by a group of two integers. One- and two-dimensional arrays are the most
common. Also, an array can be a group of capacitors or resistors connected in some common
form.

assembly A symbolic representation of the machine language of a specific processor. Assembly language
is converted to machine code by an assembler. Usually, each line of assembly code produces
one machine instruction, though the use of macros is common. Assembly languages are consid-
ered low-level languages; where as C is considered a high-level language.

asynchronous A signal whose data is acknowledged or acted upon immediately, irrespective of any clock sig-
nal.

attenuation The decrease in intensity of a signal as a result of absorption of energy and of scattering out of
the path to the detector, but not including the reduction due to geometric spreading. Attenuation
is usually expressed in dB.

B

bandgap reference A stable voltage reference design that matches the positive temperature coefficient of VT with the

negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) refer-

ence.

bandwidth 1. The frequency range of a message or information processing system measured in hertz.

2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or 
loss); it is sometimes represented more specifically as, for example, full width at half maxi-
mum.

bias 1. A systematic deviation of a value from a reference value.

2. The amount by which the average of a set of values departs from a reference value.

3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a 
reference level to operate the device.

bias current The constant low-level DC current that is used to produce a stable operation in amplifiers. This
current can sometimes be changed to alter the bandwidth of an amplifier.

binary The name for the base 2 numbering system. The most common numbering system is the base
10 numbering system. The base of a numbering system indicates the number of values that may
exist for a particular positioning within a number for that system. For example, in base 2, binary,
each position may have one of two values (0 or 1). In the base 10, decimal, numbering system,
each position may have one of ten values (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).
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bit A single digit of a binary number. Therefore, a bit may only have a value of ‘0’ or ‘1’. A group of 8
bits is called a byte. Because the PSoC's M8CP is an 8-bit microcontroller, the PSoC devices's
native data chunk size is a byte.

bit rate (BR) The number of bits occurring per unit of time in a bit stream, usually expressed in bits per second
(bps). 

block 1. A functional unit that performs a single function, such as an oscillator.

2. A functional unit that may be configured to perform one of several functions, such as a digital 
PSoC block or an analog PSoC block.

Boolean Algebra In mathematics and computer science, Boolean algebras or Boolean lattices, are algebraic struc-
tures which "capture the essence" of the logical operations AND, OR and NOT as well as the set
theoretic operations union, intersection, and complement. Boolean algebra also defines a set of
theorems that describe how Boolean equations can be manipulated. For example, these theo-
rems are used to simplify Boolean equations, which will reduce the number of logic elements
needed to implement the equation.

The operators of Boolean algebra may be represented in various ways. Often they are simply
written as AND, OR, and NOT. In describing circuits, NAND (NOT AND), NOR (NOT OR), XNOR
(exclusive NOT OR), and XOR (exclusive OR) may also be used. Mathematicians often use +
(for example, A+B) for OR and for AND (for example, A*B) (in some ways those operations are
analogous to addition and multiplication in other algebraic structures) and represent NOT by a
line drawn above the expression being negated (for example, ~A, A_, !A). 

break-before-make The elements involved go through a disconnected state entering (‘break”) before the new con-
nected state (“make”).

broadcast net A signal that is routed throughout the microcontroller and is accessible by many blocks or sys-
tems.

buffer 1. A storage area for data that is used to compensate for a speed difference, when transferring 
data from one device to another. Usually refers to an area reserved for I/O operations, into 
which data is read, or from which data is written.

2. A portion of memory set aside to store data, often before it is sent to an external device or as 
it is received from an external device.

3. An amplifier used to lower the output impedance of a system.

bus 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets 
with similar routing patterns.

2. A set of signals performing a common function and carrying similar data. Typically repre-
sented using vector notation; for example, address[7:0].

3. One or more conductors that serve as a common connection for a group of related devices.

byte A digital storage unit consisting of 8 bits.

C

C A high-level programming language.

capacitance A measure of the ability of two adjacent conductors, separated by an insulator, to hold a charge
when a voltage differential is applied between them. Capacitance is measured in units of Farads.
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capture To extract information automatically through the use of software or hardware, as opposed to
hand-entering of data into a computer file.

chaining Connecting two or more 8-bit digital blocks to form 16-, 24-, and even 32-bit functions. Chaining
allows certain signals such as Compare, Carry, Enable, Capture, and Gate to be produced from
one block to another.

checksum The checksum of a set of data is generated by adding the value of each data word to a sum. The
actual checksum can simply be the result sum or a value that must be added to the sum to gen-
erate a pre-determined value.

clear To force a bit/register to a value of logic ‘0’.

clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is
sometimes used to synchronize different logic blocks.

clock generator A circuit that is used to generate a clock signal.

CMOS The logic gates constructed using MOS transistors connected in a complementary manner.
CMOS is an acronym for complementary metal-oxide semiconductor.

comparator An electronic circuit that produces an output voltage or current whenever two input levels simul-
taneously satisfy predetermined amplitude requirements.

compiler A program that translates a high-level language, such as C, into machine language.

configuration In a computer system, an arrangement of functional units according to their nature, number, and
chief characteristics. Configuration pertains to hardware, software, firmware, and documentation.
The configuration will affect system performance.

configuration space In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to
‘1’.

crowbar A type of over-voltage protection that rapidly places a low-resistance shunt (typically an SCR)
from the signal to one of the power supply rails, when the output voltage exceeds a predeter-
mined value.

CPUSS CPU subsystem

crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelec-
tric crystal is less sensitive to ambient temperature than other circuit components.

cyclic redundancy 
check (CRC)

A calculation used to detect errors in data communications, typically performed using a linear
feedback shift register. Similar calculations may be used for a variety of other purposes such as
data compression.
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D

data bus A bi-directional set of signals used by a computer to convey information from a memory location
to the central processing unit and vice versa. More generally, a set of signals used to convey
data between digital functions.

data stream A sequence of digitally encoded signals used to represent information in transmission.

data transmission Sending data from one place to another by means of signals over a channel.

debugger A hardware and software system that allows the user to analyze the operation of the system
under development. A debugger usually allows the developer to step through the firmware one
step at a time, set break points, and analyze memory.

dead band A period of time when neither of two or more signals are in their active state or in transition.

decimal A base-10 numbering system, which uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 (called digits)
together with the decimal point and the sign symbols + (plus) and - (minus) to represent num-
bers.

default value Pertaining to the pre-defined initial, original, or specific setting, condition, value, or action a sys-
tem will assume, use, or take in the absence of instructions from the user.

device The device referred to in this manual is the PSoC device, unless otherwise specified.

die An non-packaged integrated circuit (IC), normally cut from a wafer.

digital A signal or function, the amplitude of which is characterized by one of two discrete values: ‘0’ or
‘1’.

digital blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC gen-
erator, pseudo-random number generator, or SPI.

digital logic A methodology for dealing with expressions containing two-state variables that describe the
behavior of a circuit or system.

digital-to-analog (DAC) A device that changes a digital signal to an analog signal of corresponding magnitude. The ana-
log-to-digital (ADC) converter performs the reverse operation.

direct access The capability to obtain data from a storage device, or to enter data into a storage device, in a
sequence independent of their relative positions by means of addresses that indicate the physi-
cal location of the data. 

duty cycle The relationship of a clock period high time to its low time, expressed as a percent.

E

External Reset 
(XRES_N)

An active high signal that is driven into the PSoC device. It causes all operation of the CPU and
blocks to stop and return to a pre-defined state.
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F

falling edge A transition from a logic 1 to a logic 0. Also known as a negative edge.

feedback The return of a portion of the output, or processed portion of the output, of a (usually active)
device to the input.

filter A device or process by which certain frequency components of a signal are attenuated.

firmware The software that is embedded in a hardware device and executed by the CPU. The software
may be executed by the end user, but it may not be modified.

flag Any of various types of indicators used for identification of a condition or event (for example, a
character that signals the termination of a transmission).

Flash An electrically programmable and erasable, volatile technology that provides users with the pro-
grammability and data storage of EPROMs, plus in-system erasability. Nonvolatile means that
the data is retained when power is off.

Flash bank A group of flash ROM blocks where flash block numbers always begin with ‘0’ in an individual
flash bank. A flash bank also has its own block level protection information.

Flash block The smallest amount of flash ROM space that may be programmed at one time and the smallest
amount of flash space that may be protected. A flash block holds 64 bytes.

flip-flop A device having two stable states and two input terminals (or types of input signals) each of
which corresponds with one of the two states. The circuit remains in either state until it is made to
change to the other state by application of the corresponding signal.

frequency The number of cycles or events per unit of time, for a periodic function.

G

gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively.
Gain is usually expressed in dB.

gate 1. A device having one output channel and one or more input channels, such that the output 
channel state is completely determined by the input channel states, except during switching 
transients.

2. One of many types of combinational logic elements having at least two inputs (for example, 
AND, OR, NAND, and NOR (also see Boolean Algebra)). 

ground 1. The electrical neutral line having the same potential as the surrounding earth.

2. The negative side of DC power supply.

3. The reference point for an electrical system.

4. The conducting paths between an electric circuit or equipment and the earth, or some con-
ducting body serving in place of the earth.
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H

hardware A comprehensive term for all of the physical parts of a computer or embedded system, as distin-
guished from the data it contains or operates on, and the software that provides instructions for
the hardware to accomplish tasks. 

hardware reset A reset that is caused by a circuit, such as a POR, watchdog reset, or external reset. A hardware
reset restores the state of the device as it was when it was first powered up. Therefore, all regis-
ters are set to the POR value as indicated in register tables throughout this document.

hexadecimal A base 16 numeral system (often abbreviated and called hex), usually written using the symbols
0-9 and A-F. It is a useful system in computers because there is an easy mapping from four bits
to a single hex digit. Thus, one can represent every byte as two consecutive hexadecimal digits.
Compare the binary, hex, and decimal representations:

bin = hex = dec

0000b = 0x0 = 0

0001b = 0x1 = 1

0010b = 0x2 = 2

...

1001b = 0x9 = 9

1010b = 0xA = 10

1011b = 0xB = 11

...

1111b = 0xF = 15

So the decimal numeral 79 whose binary representation is 0100 1111b can be written as 4Fh in
hexadecimal (0x4F).

high time The amount of time the signal has a value of ‘1’ in one period, for a periodic digital signal.

I

I2C A two-wire serial computer bus by Phillips Semiconductors (now NXP Semiconductors). I2C is an
Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The
original system was created in the early 1980s as a battery control interface, but it was later used

as a simple internal bus system for building control electronics. I2C uses only two bidirectional
pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at
100 Kbps in standard mode and 400 Kbps in fast mode. 

idle state A condition that exists whenever user messages are not being transmitted, but the service is
immediately available for use.



PSoC 4700S Family: PSoC 4 Architecture TRM, Document No. 002-21042 Rev. *A 200

Glossary

impedance 1. The resistance to the flow of current caused by resistive, capacitive, or inductive devices in a 
circuit.

2. The total passive opposition offered to the flow of electric current. Note the impedance is 
determined by the particular combination of resistance, inductive reactance, and capacitive 
reactance in a given circuit.

input A point that accepts data, in a device, process, or channel.

input/output (I/O) A device that introduces data into or extracts data from a system.

instruction An expression that specifies one operation and identifies its operands, if any, in a programming
language such as C or assembly.

instruction mnemonics A set of acronyms that represent the opcodes for each of the assembly-language instructions, for
example, ADD, SUBB, MOV.

integrated circuit (IC) A device in which components such as resistors, capacitors, diodes, and transistors are formed
on the surface of a single piece of semiconductor.

interface The means by which two systems or devices are connected and interact with each other.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed.

interrupt service rou-
tine (ISR)

A block of code that normal code execution is diverted to when the M8CP receives a hardware
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code
block. Each ISR code block ends with the RETI instruction, returning the device to the point in
the program where it left normal program execution.

J

jitter 1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption 
that occurs on serial data streams.

2. The abrupt and unwanted variations of one or more signal characteristics, such as the inter-
val between successive pulses, the amplitude of successive cycles, or the frequency or 
phase of successive cycles.

L

latency The time or delay that it takes for a signal to pass through a given circuit or network.

least significant bit 
(LSb)

The binary digit, or bit, in a binary number that represents the least significant value (typically the
right-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in LSb.

least significant byte 
(LSB)

The byte in a multi-byte word that represents the least significant values (typically the right-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in LSB.
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Linear Feedback Shift 
Register (LFSR)

A shift register whose data input is generated as an XOR of two or more elements in the register
chain.

load The electrical demand of a process expressed as power (watts), current (amps), or resistance
(ohms).

logic function A mathematical function that performs a digital operation on digital data and returns a digital
value.

lookup table (LUT) A logic block that implements several logic functions. The logic function is selected by means of
select lines and is applied to the inputs of the block. For example: A 2 input LUT with 4 select
lines can be used to perform any one of 16 logic functions on the two inputs resulting in a single
logic output. The LUT is a combinational device; therefore, the input/output relationship is contin-
uous, that is, not sampled.

low time The amount of time the signal has a value of ‘0’ in one period, for a periodic digital signal.

low-voltage detect 
(LVD)

A circuit that senses VDDD and provides an interrupt to the system when VDDD falls below a

selected threshold.

M

M8CP An 8-bit Harvard Architecture microprocessor. The microprocessor coordinates all activity inside
a PSoC device by interfacing to the flash, SRAM, and register space.

macro A programming language macro is an abstraction, whereby a certain textual pattern is replaced
according to a defined set of rules. The interpreter or compiler automatically replaces the macro
instance with the macro contents when an instance of the macro is encountered. Therefore, if a
macro is used five times and the macro definition required 10 bytes of code space, 50 bytes of
code space will be needed in total.

mask 1. To obscure, hide, or otherwise prevent information from being derived from a signal. It is usu-
ally the result of interaction with another signal, such as noise, static, jamming, or other forms 
of interference.

2. A pattern of bits that can be used to retain or suppress segments of another pattern of bits, in 
computing and data processing systems.

master device A device that controls the timing for data exchanges between two devices. Or when devices are
cascaded in width, the master device is the one that controls the timing for data exchanges
between the cascaded devices and an external interface. The controlled device is called the
slave device.

microcontroller An integrated circuit device that is designed primarily for control systems and products. In addi-
tion to a CPU, a microcontroller typically includes memory, timing circuits, and I/O circuitry. The
reason for this is to permit the realization of a controller with a minimal quantity of devices, thus
achieving maximal possible miniaturization. This in turn, will reduce the volume and the cost of
the controller. The microcontroller is normally not used for general-purpose computation as is a
microprocessor. 

mnemonic A tool intended to assist the memory. Mnemonics rely on not only repetition to remember facts,
but also on creating associations between easy-to-remember constructs and lists of data. A two
to four character string representing a microprocessor instruction.
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mode A distinct method of operation for software or hardware. For example, the Digital PSoC block
may be in either counter mode or timer mode.

modulation A range of techniques for encoding information on a carrier signal, typically a sine-wave signal. A
device that performs modulation is known as a modulator.

Modulator A device that imposes a signal on a carrier.

MOS An acronym for metal-oxide semiconductor.

most significant bit 
(MSb)

The binary digit, or bit, in a binary number that represents the most significant value (typically the
left-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in MSb.

most significant byte 
(MSB)

The byte in a multi-byte word that represents the most significant values (typically the left-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in MSB.

multiplexer (mux) 1. A logic function that uses a binary value, or address, to select between a number of inputs 
and conveys the data from the selected input to the output.

2. A technique which allows different input (or output) signals to use the same lines at different 
times, controlled by an external signal. Multiplexing is used to save on wiring and I/O ports.

N

NAND See Boolean Algebra.

negative edge A transition from a logic 1 to a logic 0. Also known as a falling edge.

net The routing between devices.

nibble A group of four bits, which is one-half of a byte.

noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.

2. The random variations of one or more characteristics of any entity such as voltage, current, 
or data. 

NOR See Boolean Algebra.

NOT See Boolean Algebra.

O

OR See Boolean Algebra.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

output The electrical signal or signals which are produced by an analog or digital block.
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P

parallel The means of communication in which digital data is sent multiple bits at a time, with each simul-
taneous bit being sent over a separate line.

parameter Characteristics for a given block that have either been characterized or may be defined by the
designer.

parameter block A location in memory where parameters for the SSC instruction are placed prior to execution.

parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make the
sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).

path 1. The logical sequence of instructions executed by a computer.

2. The flow of an electrical signal through a circuit.

pending interrupts An interrupt that is triggered but not serviced, either because the processor is busy servicing
another interrupt or global interrupts are disabled.

phase The relationship between two signals, usually the same frequency, that determines the delay
between them. This delay between signals is either measured by time or angle (degrees).

pin A terminal on a hardware component. Also called lead.

pinouts The pin number assignment: the relation between the logical inputs and outputs of the PSoC
device and their physical counterparts in the printed circuit board (PCB) package. Pinouts will
involve pin numbers as a link between schematic and PCB design (both being computer gener-
ated files) and may also involve pin names. 

port A group of pins, usually eight.

positive edge A transition from a logic 0 to a logic 1. Also known as a rising edge.

posted interrupts An interrupt that is detected by the hardware but may or may not be enabled by its mask bit.
Posted interrupts that are not masked become pending interrupts.

Power On Reset (POR) A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is
one type of hardware reset.

program counter The instruction pointer (also called the program counter) is a register in a computer processor
that indicates where in memory the CPU is executing instructions. Depending on the details of
the particular machine, it holds either the address of the instruction being executed, or the
address of the next instruction to be executed. 

protocol A set of rules. Particularly the rules that govern networked communications.

PSoC® Cypress’s Programmable System-on-Chip (PSoC®) devices. 

PSoC blocks See analog blocks and digital blocks.

PSoC Creator™ The software for Cypress’s next generation Programmable System-on-Chip technology.
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pulse A rapid change in some characteristic of a signal (for example, phase or frequency), from a base-
line value to a higher or lower value, followed by a rapid return to the baseline value.

pulse width modulator 
(PWM)

An output in the form of duty cycle which varies as a function of the applied measure.

R

RAM An acronym for random access memory. A data-storage device from which data can be read out
and new data can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a know state. See hardware reset and software reset.

resistance The resistance to the flow of electric current measured in ohms for a conductor.

revision ID A unique identifier of the PSoC device.

ripple divider An asynchronous ripple counter constructed of flip-flops. The clock is fed to the first stage of the

counter. An n-bit binary counter consisting of n flip-flops that can count in binary from 0 to 2n - 1.

rising edge See positive edge.

ROM An acronym for read only memory. A data-storage device from which data can be read out, but
new data cannot be written in.

routine A block of code, called by another block of code, that may have some general or frequent use.

routing Physically connecting objects in a design according to design rules set in the reference library.

runt pulses In digital circuits, narrow pulses that, due to non-zero rise and fall times of the signal, do not
reach a valid high or low level. For example, a runt pulse may occur when switching between
asynchronous clocks or as the result of a race condition in which a signal takes two separate
paths through a circuit. These race conditions may have different delays and are then recom-
bined to form a glitch or when the output of a flip-flop becomes metastable.

S

sampling The process of converting an analog signal into a series of digital values or reversed.

schematic A diagram, drawing, or sketch that details the elements of a system, such as the elements of an
electrical circuit or the elements of a logic diagram for a computer.

seed value An initial value loaded into a linear feedback shift register or random number generator.

serial 1. Pertaining to a process in which all events occur one after the other.

2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a 
single device or channel. 
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set To force a bit/register to a value of logic 1.

settling time The time it takes for an output signal or value to stabilize after the input has changed from one
value to another.

shift The movement of each bit in a word one position to either the left or right. For example, if the hex
value 0x24 is shifted one place to the left, it becomes 0x48. If the hex value 0x24 is shifted one
place to the right, it becomes 0x12.

shift register A memory storage device that sequentially shifts a word either left or right to output a stream of
serial data.

sign bit The most significant binary digit, or bit, of a signed binary number. If set to a logic 1, this bit rep-
resents a negative quantity.

signal A detectable transmitted energy that can be used to carry information. As applied to electronics,
any transmitted electrical impulse.

silicon ID A unique identifier of the PSoC silicon.

skew The difference in arrival time of bits transmitted at the same time, in parallel transmission.

slave device A device that allows another device to control the timing for data exchanges between two
devices. Or when devices are cascaded in width, the slave device is the one that allows another
device to control the timing of data exchanges between the cascaded devices and an external
interface. The controlling device is called the master device.

software A set of computer programs, procedures, and associated documentation about the operation of a
data processing system (for example, compilers, library routines, manuals, and circuit diagrams).
Software is often written first as source code, and then converted to a binary format that is spe-
cific to the device on which the code will be executed.

software reset A partial reset executed by software to bring part of the system back to a known state. A software
reset will restore the M8CP to a know state but not PSoC blocks, systems, peripherals, or regis-
ters. For a software reset, the CPU registers (CPU_A, CPU_F, CPU_PC, CPU_SP, and CPU_X)
are set to 0x00. Therefore, code execution will begin at flash address 0x0000.

SRAM An acronym for static random access memory. A memory device allowing users to store and
retrieve data at a high rate of speed. The term static is used because, when a value is loaded
into an SRAM cell, it will remain unchanged until it is explicitly altered or until power is removed
from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the
device, calibrate circuitry, and perform flash operations. The functions of the SROM may be
accessed in normal user code, operating from flash.

stack A stack is a data structure that works on the principle of Last In First Out (LIFO). This means that
the last item put on the stack is the first item that can be taken off.

stack pointer A stack may be represented in a computer’s inside blocks of memory cells, with the bottom at a
fixed location and a variable stack pointer to the current top cell.

state machine The actual implementation (in hardware or software) of a function that can be considered to con-
sist of a set of states through which it sequences.
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sticky A bit in a register that maintains its value past the time of the event that caused its transition, has
passed.

stop bit A signal following a character or block that prepares the receiving device to receive the next
character or block.

switching The controlling or routing of signals in circuits to execute logical or arithmetic operations, or to
transmit data between specific points in a network.

switch phasing The clock that controls a given switch, PHI1 or PHI2, in respect to the switch capacitor (SC)
blocks. The PSoC SC blocks have two groups of switches. One group of these switches is nor-
mally closed during PHI1 and open during PHI2. The other group is open during PHI1 and closed
during PHI2. These switches can be controlled in the normal operation, or in reverse mode if the
PHI1 and PHI2 clocks are reversed.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock 
signal.

2. A system whose operation is synchronized by a clock signal.

T

tap The connection between two blocks of a device created by connecting several blocks/compo-
nents in a series, such as a shift register or resistive voltage divider.

terminal count The state at which a counter is counted down to zero.

threshold The minimum value of a signal that can be detected by the system or sensor under consider-
ation.

Thumb-2 The Thumb-2 instruction set is a highly efficient and powerful instruction set that delivers signifi-
cant benefits in terms of ease of use, code size, and performance. The Thumb-2 instruction set is
a superset of the previous 16-bit Thumb instruction set, with additional 16-bit instructions along-
side 32-bit instructions.

transistors The transistor is a solid-state semiconductor device used for amplification and switching, and
has three terminals: a small current or voltage applied to one terminal controls the current
through the other two. It is the key component in all modern electronics. In digital circuits, transis-
tors are used as very fast electrical switches, and arrangements of transistors can function as
logic gates, RAM-type memory, and other devices. In analog circuits, transistors are essentially
used as amplifiers.

tristate A function whose output can adopt three states: 0, 1, and Z (high impedance). The function does
not drive any value in the Z state and, in many respects, may be considered to be disconnected
from the rest of the circuit, allowing another output to drive the same net.

U

UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data
and serial bits. 
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user The person using the PSoC device and reading this manual.

user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and
configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high
level API (Application Programming Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified
during normal program execution and not just during initialization. Registers in bank 1 are most
likely to be modified only during the initialization phase of the program.

V

VDDD A name for a power net meaning "voltage drain." The most positive power supply signal. Usually
5 or 3.3 volts.

volatile Not guaranteed to stay the same value or level when not in scope.

VSS A name for a power net meaning "voltage source." The most negative power supply signal.

W

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU will reset after a specified
period of time.

waveform The representation of a signal as a plot of amplitude versus time.

X

XOR See Boolean Algebra.
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