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Abstract—Microsoft’s Static Driver Verifier (SDV) pioneered
the use of software model checking for ensuring that device
drivers correctly use operating system (OS) APIs. However, the
verification methodology has been difficult to extend in order to
support either (a) new classes of drivers for which SDV does
not already have a harness and stubs, or (b) memory-corruption
properties. Any attempt to apply SDV out-of-the-box results in
either false alarms due to the lack of environment modeling, or
scalability issues when finding deeply nested bugs in the presence
of a very large number of memory accesses.

In this paper, we describe our experience designing and
shipping a new class of checks known as angelic checks through
SDV with the aid of angelic verification (AV) [1] technology,
over a period of 4 years. AV pairs a precise inter-procedural
assertion checker with automatic inference of likely specifications
for the environment. AV helps compensate for the lack of
environment modeling and regains scalability by making it
possible to find deeply nested bugs, even for complex memory-
corruption properties. These new rules have together found
over a hundred confirmed defects during internal deployment
at Microsoft, including several previously unknown high-impact
potential security vulnerabilities. AV considerably increases the
reach of SDV, both in terms of drivers as well as rules that it
can support effectively.

I. INTRODUCTION

Microsoft’s Static Driver Verifier (SDV) [2], [3] is a formal
software verification tool that checks Windows device drivers
against a set of rules on the correct usage of operating system
(OS) APIs. These Windows OS APIs, which are published
on MSDN, and exported for writing Windows drivers are
commonly referred to as the Driver Development Interface
(DDI) [4]. SDV is shipped to driver developers in the Windows
ecosystem through the Windows Driver Development Kit
(WDK). Running SDV is a mandated check for a driver to
obtain certification for Windows Server OS [5].

Examples of SDV rules range from checking that a driver
calls a DDI function at a particular Interrupt Request Level
(IRQL), to ensuring that locks are acquired and released
in correct sequence. Given: (a) a rule, written in SDV’s
specification language SLIC [6], (b) a harness for the driver
class (e.g. storage or networking) that determines how the
driver can be invoked by the OS, and (c) stubs for OS DDI
functions that can be invoked by the driver, SDV uses a
software verification tool to look for driver executions that
violate the rule. SDV also has a detailed defect viewer to aid

in debugging. The viewer allows stepping through (interproce-
dural) counterexample traces reported by the verifier. The trace
contains not just control-flow information but also values of
various variables along the trace. The verification “engine”
powering the analysis has transformed from SLAM [7] to
SLAM-2 [8] to YOGI [9] and then finally to Corral [10], [11],
each time improving performance, accuracy and scalability.
SDV establishes a high bar for precision of each of its
supported rules; typically false-positives rate is below 5% [8].

However, despite a decade of investment in the technology
and advances in the underlying verification engines [10], [12],
it has been difficult to adapt the tool to new verification chal-
lenges, even within the world of device drivers. Specifically,

• Memory safety: Checking for memory corruption bugs
within the driver code.

• Unsupported drivers: Performing verification of DDI
compliance rules for unsupported driver classes whose
frameworks are not modeled accurately by harnesses and
stubs.

Memory safety violation is broadly interpreted as an
unchecked invalid access to a piece of memory during a
program’s execution. These issues are prevalent in low-level
languages such as C and C++ that trade off performance for
automatic memory management overheads. Memory safety
violations can be either (i) temporal, which pertains to a
type-state on a memory address such as being allocated,
freed, or null, or (ii) spatial, which pertains to checking
bounds of an allocated buffer. Such violations can have serious
implications on both the reliability and, more importantly, on
the security of the entire system. Recent studies attribute as
much as 70% of all security bugs in Microsoft products can
be attributed to memory safety issues [13]. Static analysis
tools such as SDV are particularly attractive for the domain of
kernel-mode drivers due to the poor coverage of dynamic tools
in this space (because of System issues in setting up dynamic
tools for kernel-mode components, as well as the large input
space).

On the other hand, SDV currently supports environments
for certain general purpose drivers (WDM, WDF) as well
as two driver classes (storage, networking). However, there
are several important driver classes that SDV doesn’t support,
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including file system filters, audio drivers, kernel streaming (in
particular, camera) drivers. For such drivers, SDV environment
is insufficient, which results in partial coverage at best (lack
of a harness that calls the entry points) and false alarms (as
DDIs implemented by a driver class library are not modeled
by stubs).

In other words, SDV enjoys a very high precision on the
rules and driver classes it supports, but has a relatively poor
recall (or coverage) on the set of all possible bugs discovered
in Windows drivers, particularly those that affect memory
safety. In this paper, we therefore focus on the following
problem in the context of SDV:

Can we improve the coverage (or recall) of reliabil-
ity and security bugs in Windows drivers using SDV
without sacrificing the high precision bar?

Note that retaining the high precision bar is necessary for
SDV; customers will push back if SDV slowed down the devel-
opment process due to the need to deal with spurious alarms.
We are careful to pose the problem as that of “improving the
coverage” rather than “full coverage” (or ensuring the absence
of) of newer class of defects not detected by SDV. At the
same time, it is desirable that the approach is able to leverage
additional modeling (if present) to achieve higher coverage1.

We studied the main technical difficulties to adapt SDV
to new verification challenges, and narrowed it down to a
combination of two reasons:

1) Precision due to un(der)-constrained environment
models: Creating models for a new class of drivers re-
quires upfront investment that ranges from several weeks
to months of effort and close interaction with domain
experts. Furthermore, even the existing models for DDIs
may leave most behaviors unspecified, focussing on just
the ones that matter for the current set of rules. This is
especially troublesome for memory-safety rules because
existing models leave out pointer-related behaviors. For
example, it was very common for existing stubs to non-
deterministically return a null pointer as output; this
was fine for existing SDV rules, until we started checking
for null-safety and got numerous false alarms.

2) Scalability: Software verifiers face a path-explosion
problem when large parts of a program cannot be
abstracted with summaries. Although there has been
progress in performing modular software verification for
simple properties, performing summarization for memory
safety with SMT solvers is still an open research problem.
This is primarily due to the need to summarize the state
of the heap including state in linked data structures.
Secondly, the path explosion problem worsens with the
depth of nesting of procedure calls. Even when a bug
is localized to a procedure, e.g., the procedure sets a
pointer to null and then dereferences it, the verifier
could still fail (timeout) in trying to enumerate feasible
paths from a driver entrypoint to the procedure. This
search is unnecessary because a user can immediately

1One can view this as the principle of pay-as-you-go verification.

Rule Bugs
NULLCHECK 68

USEAFTERFREE 7
DOUBLEFETCH 11

IRQLCHECK 26
Total 112

Fig. 1. A count of true bugs found by SDV using angelic checks.

identify the bug without looking at the rest of the code.
This indicates a shortcoming of the SDV approach.

This paper describes how we significantly extended the
reach of SDV through a set of angelic checks. We distinguish
these checks from the currently supported (demonic) checks,
where the expectation was that SDV does due diligence to
provide accurate harnesses and stubs with full path coverage
for loop-free programs. We observed that we can address
both the issues of (a) spurious alarms from under-constrained
environment, and (b) scalability to find defects in deeply-
nested methods, by using angelic verification technology [14],
[1].

Angelic verification equips a precise interprocedural verifier
(such as Corral) with automatic inference of likely specifica-
tions for the unknowns that correspond to values controlled
by the environment. AV suppresses alarms from the verifier
if it can infer a reasonable environment specification to rule
out the alarm. Furthermore, because AV can also tolerate an
unconstrained initial state, AV can start exploration from any
driver procedure, not just the harness. This is beneficial for
catching deeply-nested bugs.

Since the AV technology works on programs written in
Boogie [15], we also developed an instrumentation framework
called AVP for Boogie programs that we used to instrument
the new class of memory safety properties. We have used the
new framework to successfully add several angelic checks to
SDV with the goal of realizing the above vision. These include
the following:

1) NULLCHECK: checks that a null-valued pointer is not
dereferenced,

2) USEAFTERFREE: checks that a freed pointer is not used
(or freed again),

3) DOUBLEFETCH: checks that a userland pointer is not
dereferenced twice in any execution within the ker-
nel [16],

4) IRQLCHECK: checks that DDI calls are made only at an
acceptable IRQL state.

The first three rules above pertain to memory safety (or
memory corruption) rules. Moreover, a violation of USE-
AFTERFREE and DOUBLEFETCH rules can expose a serious
security vulnerability.

We report our experience developing these checks and
specifically comment on the trade-offs between increasing
recall at the cost of sacrificing precision. These rules have
been evaluated on close to a thousand drivers within Microsoft,
including drivers outside SDV’s supported list. These new
rules have together found over a hundred confirmed defects
during an internal deployment at Microsoft, including several



Fig. 2. AV tool flow

previously unknown high-impact potential security vulnerabil-
ities. The exact counts are summarized in Figure 1. All bugs,
except one for DOUBLEFETCH, were previously unknown. AV
was able to suppress tens of thousands of spurious traces in
total over all these examples, indicating that these bugs could
not have been discovered without the angelic checks.

At the time of writing this paper, all the rules except
DOUBLEFETCH are available with Windows 10 WDK. The
DOUBLEFETCH rule is currently a part of preview versions of
the WDK for co-engineering partners. Furthermore, we note
that the AV tool is available open-source2. We hope that the
experience captured in this paper, in conjunction with open-
source AV, allows the development of similar tools in domains
other than device drivers.

The rest of the paper is organized as follows. Section II
presents background on the AV technology. Section III de-
scribes the angelic checks for memory safety, which incudes
NULLCHECK, USEAFTERFREE as well as DOUBLEFETCH.
Section IV covers the role of IRQL in device drivers and the
corresponding angelic check for it (IRQLCHECK). Section V
describes related work and Section VI concludes.

II. ANGELIC CHECKS

In this section, we describe background on angelic verifi-
cation (Section II-A) and some details of the AVP property
instrumentation language (Section II-B).

A. Angelic Verification

Angelic verification [1] (AV) is a technique for leveraging
automatic static assertion checkers for finding high-confidence
defects in open programs. The technique pairs a precise
assertion checker (AC) (that can find interprocedural traces
for assertion violations in closed programs) with the inference
of angelic specifications on the environment. The latter is used
to push back on the AC verifier from reporting “dumb” false
alarms in open programs.

2https://github.com/boogie-org/corral/tree/master/AddOns/
AngelicVerifierNull

i n t Foo ( i n t ∗x , i n t ∗y ,
boo l f )

{
∗x = 1 ;
Bar ( x , y ) ;
i f ( f ) { f r e e ( x ) ; }
. . .

}
vo id Bar ( i n t ∗x , i n t ∗y )
{

f r e e ( x ) ;
∗y = 2 ;

}
vo id f r e e ( i n t ∗x ) ;

procedure Foo(x: int, y: int,
f: bool)

{
assert (!Freed[x]);

Mem[x] := 1;
call Bar(x, y);
i f (f) { call free(x); }
...

}
procedure Bar(x: int, y: int)
{

call free(x);
assert (!Freed[y]);

Mem[y] := 2;
}
procedure free(x: int)
{

assert (!Freed[x]);

Freed[x] := true;

}

Fig. 3. A program in C and its encoding in Boogie.

Figure 2 describes the high-level flow of the algorithm.
Given an open program with a set of assertions in Boogie [15],
we first close the program with an angelic harness. The angelic
harness helps to create a unified representation of unknown
values resulting from both the input state (value of parameters
and the heap state when program execution begins) as well
as the output state of an external call (return value as well as
side-effects). We refer the readers to earlier work for further
details [1]. The harness non-deterministically calls into all
procedures of the input program. (For the purpose of this
section, we make the simplifying assumption that the program
contains no external methods.) AV invokes a whole-program
verifier (CORRAL) in a loop to enumerate traces that violate
an assertion in the input program. For each such failure trace
τ starting at a procedure p with unconstrained inputs over X
that violates an assertion, AV infers a precondition φ over X
that ensures φ⇒ wp(true, τ), where wp stands for the weakest
liberal precondition [17]. AV then checks if the precondition is
consistent with the previously inferred specifications (starting
with true). If so, it suppresses the trace τ , else it marks τ as
an angelic trace to be displayed to the user.

AV provides several knobs to the rule developer in order
to control the expressiveness of the inferred specifications φ,
which in turn helps determine the scalability and the precision
of AV on that rule. Among other things, an angelic check is
parameterized by a vocabulary V of predicates that constitutes
the atoms in the preconditions (the pool of candidate predicates
are automatically mined from the trace). For example, we can
require the vocabulary to only consist of non-aliasing predi-
cates, connected with arbitrary Boolean connectives. Further,
AV allows the analysis to only suppress the data flow (i.e.
consider wp while treating all conditionals in a path as non-
deterministic) or consider the control flow of the defect as
well [14], [1]. For the checks presented in this paper, AV only
considered blocking the data flow.

Figure 3 shows AV’s working on a simplified version of
the USEAFTERFREE rule. The figure shows the program
in C, as well as its encoding in Boogie, where the heap
is modeled using an array Mem that maps a pointer to its
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contents. (A more detailed explanation on the encoding of C
semantics in Boogie can be found in previous work [18], [11].)
The underlined statements in the Boogie encoding denote
the instrumentation performed for checking USEAFTERFREE
on the code. This instrumentation happens via the AVP tool
described in Section II-B. We introduce a map Freed to track
the allocated-ness of a pointer, and add assertions before the
use of a pointer (either a dereference or a free of the pointer).

AV requires two verification queries for this program, one
that starts program execution at Foo and other that starts
at Bar. The analysis of Bar produces two error traces
due to unconstrained inputs, which can be blocked using
preconditions !Freed[x] and !Freed[y] && x != y
respectively. Note the role of the vocabulary V here; if we
disallow equality predicates in our vocabulary, then there
are no permissive specifications to block the second trace.
However, the only specification for Foo to block the trace that
frees x twice by descending into Bar is !f, which creates
dead code and is not permissive. For the angelic checks in
SDV, we decided to not block the trace based on control
flow as described earlier. Thus, in this case, AV will report
one angelic trace for Foo that will be displayed to the user.
Next we briefly describe the property instrumentation tool for
creating the input to AV.

B. AVP Instrumentation Language

Since AV operates on Boogie programs, we designed a
custom domain-specific language (DSL) called AVP3 that
describes a source-to-source instrumentation of Boogie pro-
grams. The language is a collection of LHS-to-RHS rules. A
rule can pattern-match on Boogie AST nodes like expressions,
statements or procedures and present a rewriting of the match.

Each angelic check is described as an AVP file whose
purpose is to add ghost state (such as Freed in Figure 3)
and instrument the necessary assertions and updates to ghost
variables into the program. The NULLCHECK rule, for in-
stance, matches on the base pointer p of a dereference (such
as *(p+4)) and adds the following assertion right before the
dereference:

assert (!aliases(p, NULL) || p != NULL)

The aliases function triggers AV’s alias analysis as a
pre-pass. If the analysis finds that an expression e1 cannot
alias e2, then it replaces the occurrence aliases(e1, e2)
syntactically with false; otherwise, it is replaced with true.
The ability to refer to alias analysis allows us to express not
just syntactic, but a more semantic program instrumentation
to add a property. We leverage this feature for all the memory
safety properties. But it is important to note that we use
alias analysis only as an optimization to prune the space of
assertions. It does not affect precision given an interprocedural
checker that reasons precisely about aliasing within the module
and the specification inference takes care of possible spurious
aliasing due to the environment.

3https://github.com/boogie-org/corral/wiki/AV-Property-(AVP)-Language

III. ANGELIC MEMORY SAFETY CHECKS

In this section, we describe the different angelic checks re-
lated to memory safety. Recall that such issues arise primarily
in low-level languages such as C and C++ that rely on the
programmer to ensure that a program does not access invalid
memory. Examples of invalid accesses include: accessing a
null pointer, accessing a pointer after it has been freed, or ac-
cessing a pointer outside the bounds of an allocated object. In
recent years, many of these invalid memory accesses have lead
to security exploits, where an attacker can trick a system to
perform information leak or remote code execution [19], [13].
Some of the classical memory safety issues can be mitigated
by programming in managed languages such as Rust, where
accesses to invalid addresses lead to runtime exceptions with
clear semantics (unlike the undefined behaviors for programs
written in unmanaged languages). However, other security
relevant memory safety issues (e.g. DOUBLEFETCH) that
result from the kernel-user boundary [16], [20], [21], [22] may
be applicable even when the drivers are authored in memory
safe languages such as Rust.

In this section, we describe the different rules and our expe-
rience with deploying them. These properties were developed
and tested over various points over the course of four years, so
we report our evaluation of the rules as they were developed
and tested before being rolled out to customers. Note that we
did not change the internals of AV tool for supporting these
multiple properties. Each property is completely contained in
its own AVP file.

A. Nullcheck
In our earlier work [1], we presented an evaluation of the

angelic NULLCHECK rule on 10 modules in Windows, totaling
over 300K lines of code, and compared it with a mature
tool PREfix. We briefly summarize our findings. PREfix is
an industrial strength tool being used at Microsoft for over
a decade, and has custom algorithms for null-checking as
well as accurate models for many OS components. Over a
set of 68 defects that PREfix reported in these 10 modules,
we managed to confirm over 80% of the defects, found several
false alarms in the PREfix defects due to imprecise modeling
of C semantics, and also discovered new true alarms not
reported by PREfix. AV also reported less than 10% of false
positives on this set (leaving aside frontend translation issues
that have subsequently been addressed).

These results were seen as encouraging by the SDV product
team and lead to the integration of NULLCHECK as the first
angelic check in SDV. The rule now appears documented on
MSDN4 since its release in 2018. This section outlines the
further insights that were needed to take NULLCHECK from
a research prototype to a push-button check available to the
entire Windows driver ecosystem.

First, we performed several improvements on the precision
and usability of the check when evaluating on Windows
drivers. The chief among them are the following.

4https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/
nullcheckw?redirectedfrom=MSDN
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1) Improved alias analysis: We designed an alias analysis
that works on a Boogie program and use it to prune
away null checks on pointers that cannot alias null.
The analysis implements the usual Andersen’s may-alias
analysis [23], however it is optimized to track the flow
of null-value very precisely [24]. The analysis is able
to prune away almost 98% of all null-checks.

2) Changes to existing SDV models: We needed to modify
SDV’s harness and stubs even for supported driver frame-
works. These modifications consisted of the following
major changes. (a) First, we found that several existing
OS models mistakenly left an output pointer unallocated
even when the return NT_STATUS error code denoted
successful allocation. This leads to a false alarm because
AV will discover a null-dereference in the caller; the
alarm cannot be suppressed without creating dead code.
(b) Second, we did not use SDV’s harness even when
present. Recall that a harness calls the driver APIs in
a sequence in order to mimic how an actual OS would
invoke the driver. Using the harness would cause the
analysis to time out even when driver had simple bugs but
were embedded deep inside the driver. Instead of using
the harness, we run AV on all methods of the driver in
parallel. This allows SDV to get much better coverage on
the driver. However, dropping the harness does cause us
to miss bugs that can only be triggered by calling several
driver APIs in sequence.

3) Side-effects of external methods: Finally, we realized
that AV suppresses spurious alarms arising from external
methods only when it can estimate the side-effects of
the external method. We currently use the signature of
an external method to automatically determine the side
effects in addition to the return value. For example, if
an external method takes an argument e of static type
int **, then we assume that the values of ∗e and
∗ ∗ e may be modified. This in turn allows AV to infer
angelic specifications on these unknown modified values.
However, this heuristic does not work when the external
method (a) modifies some global variable, or (b) exits
under some condition. Of these, the former happens
frequently when the external method sets up a global
function pointer that is invoked later in the driver. We,
therefore, manually added models for such DDI functions
driven by the false alarms we saw during our evaluation.

We evaluated the NULLCHECK rule on a set of 192 real-
world drivers that constitute the Integration Test Pass (ITP),
the regression test suite for the SDV product. These constitute
drivers from Storport, KMDF, WDM and NDIS classes of
drivers. Of these, we found 61 defects over 27 drivers and
3 drivers timed out after 3000 seconds. Several of the authors
spent a few months (of 2016) to inspect these traces, and
consulted with driver experts to determine the ground truth on
their validity. We finally determined that 58 out of the 61 de-
fects were true defects (95% precision). Several of these bugs
(after removing duplicates that require the same underlying

fix) were filed and fixed. The bugs that were confirmed but not
fixed mainly came from two categories: (a) the driver was no
longer being maintained or shipped externally, or (b) there was
a runtime assertion NT_ASSERT(FALSE) in debug mode
that would cause the driver to crash if the pointer was null,
eliminating any security implications (12 such cases). These
runtime assertions indicate that the driver developers suspected
these pointers could be null at runtime although there is
no proof of their absence. The 3 false alarms came from the
absence of two models of external functions and 1 modeling
issue for C arrays in the front end; the latter has since been
fixed. The two OS models required modeling of linked lists
ExInterlockedRemoveHeadList and additional ghost
state in IoAttachDeviceToDeviceStack, neither of
which were deemed cost effective to add.

In addition to the 58 bugs in ITP, at least 10 more true bugs
have been found and confirmed by SDV team during internal
deployment. The rule has found a couple of potential security
bugs in Windows drivers, of which at least one was classified
by a security review as critical, (hence) immediately fixed and
the fix was taken to an OS security update (in 2016).

B. Use After Free

Figure 3 showed an example of the USEAFTERFREE an-
gelic check. The ability to use a pointer after it has been freed
has serious implications ranging from corruption of valid data
to remote code execution vulnerabilities [25]. In this section,
we describe the rule in more detail and present our experience
with deploying it internally in Microsoft.

The rule ensures that a non-null pointer that has been freed
by calling a DDI function (either free or variants such as
IoFreeMdl, etc.), is not used5. A pointer is used if it is
an argument to a routine that frees the pointer (special case
signifying double-free), or is dereferenced. To specify the rule,
we leverage our alias analysis to guard the check to only those
pointers that can potentially be aliased with a freed-pointer
within the module. This is achieved by tracking a global
variable freedp that can be non-deterministically assigned
one of the pointers that is freed, and weakening the assertion
to only consider pointers that could be aliased with freedp.
We refined the rule to allow freeing of null, which is a valid
behavior. In fact, it is a common practice to set a freed pointer
to null, and not check for a pointer to be non-null before
freeing it.

We performed an extensive evaluation on 65 drivers that
contain at least one call to a method named “free”. Our initial
rule was more aggressive than the final rule described above
in two aspects to not miss defects during evaluation:

1) We considered any external method with a substring free
as a method that could potentially free a pointer, and

2) We considered a pointer argument to any external proce-
dure as a use; our intuition was that it is a bad practice
to pass a freed pointer externally.

5The property file is located here: https://github.com/boogie-org/
corral/blob/master/AddOns/PropInst/PropInst/ExampleProperties/
useafterfree-razzle.avp
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void Foo(x) {
Increment(&x->RefCnt);
Bar(x); // may free x
x->f = 1; // use

}

void Bar() {
Decrement(x->RefCnt);
if(x->RefCnt == 0) {

free(x);
}

}

Fig. 4. False alarm for USEAFTERFREE.

We obtained a total of 69 traces in 22 drivers that we carefully
inspected after removing duplicates. We filed 7 new bugs with
developers and most of them were either fixed or confirmed
but not fixed due to the lack of support for the driver. Many
of these bugs were due to cleanups along exception paths,
making them difficult to reach during regular testing.

A majority of the spurious alarms resulted from the
two decisions above. For example, routines such as
RtlFreeUnicodeString take a pointer to a structure as
an argument, but only free the Buffer field of that structure.
Similarly, we found several low-level print functions such as
TracePrint that never dereference the pointer and therefore
safe. In addition to these, there was one class of false alarms
in 3 traces that demonstrates a fundamental limitation of the
angelic choice that we adopted. We discuss this in more detail.

Consider a simplified program in Figure 4. AV performs
two checks, starting at each of the two procedures. When
analyzing Foo, there is a path where x is freed and later
dereferenced. This is a false alarm as callers of Foo ensure that
x->RefCount is always greater than 1 on entry. However,
the default configuration of AV does not infer a specification
on RefCount values because we treat path conditions as non-
deterministic. In other words, we only treat the data-flow in
an angelic manner, not the control flow. We are working on
improving AV to push the traces all the way to module entry
points in such cases to remove this class of false alarms.

C. Double Fetch

Consider the method Foo below that marks an entry point
into the kernel and consider a pointer parameter x that can be
controlled by the user from a user-mode application or driver
(referred to as userland pointers). Consider an execution when
the pointer is “fetched” twice, in lines 2 and 5.

1 NT_STATUS Foo(A *x, ..) {
2 int len = x->Length;
3 if (len > 0) {
4 char *y = malloc(len);
5 RtlCopyMemory(y, x->Length, x->Buffer);
6 }
7 }

A malicious user may alter the value of x->Length
between the two lines, resulting in a buffer overflow of
the kernel memory, which can be exploited for information
disclosure or remote code execution. These bugs have lead
to several security vulnerabilities in both Linux and Windows
kernels and therefore of great concern to kernel-mode driver
developers.

The double-fetch property is encoded as an angelic
check6. Similar to USEAFTERFREE, we maintain a map
hasBeenRead that maps each address to the number of
times it has been read, and ensure that a userland pointer
is never read twice. However, userland pointers cannot be
distinguished from kernel-allocated pointers without precisely
marking the kernel entry points. Instead, we approximate
it by assuming that that driver developer at least probes
userland pointers before accessing them in the kernel. We
use a similar trick as USEAFTERFREE where we consider a
pointer as userland if it aliases with the argument of either
ProbeForRead or ProbeForWrite.

We have currently evaluated this rule on one driver where
a violation was detected by security pen-testers manually over
a year ago. The bug was present in a C++ module, and
spanned several method calls between the site of probe and
the two fetches. Further, one of the fetches was directly inside
a condition statement. To recover the bug, we had to fix some
issues in the SDV front end for C++ as well as set a high
timeout of 9000 seconds for the angelic check. Not only did
we recover the precise bug, but we also discovered 10 more
variants of the bug (all confirmed by the pen-testers) on other
pointers and procedures on the same version of the driver
(the driver was already rewritten substantially after previous
bugs). There has not been any false alarms from this rule to
date on either this or other drivers that we have tested so
far, although further evaluation starting with the ITP suite is
still pending. The DOUBLEFETCH rule is currently a part of
preview versions of the WDK for co-engineering partners, and
will be made available to broader ecosystem in the near future.

IV. ANGELIC IRQL CHECKS

This section starts by describing the concept of IRQLs
in Windows device drivers, followed by the design of the
IRQLCHECK angelic rule and our experience with it on
internal drivers.

A. IRQL

IRQL (Interrupt Request Level) is a number, ranging from
0 to 31 on x86, which is used to assign priorities to interrupts.
An IRQL value is associated with each CPU processor of a
system as well as incoming interrupt requests. If a processor
is currently at an IRQL value v1 and an interrupt arrives at
level v2, then the interrupt waits if v2 ≤ v1. Otherwise, the
processor’s current task is interrupted, its IRQL is raised to v2
and it starts processing the interrupt.

Some of the important IRQL levels are PASSIVE_LEVEL
(0), APC_LEVEL (1) and DISPATCH_LEVEL (2). User-
level threads and most kernel-mode operations execute at
PASSIVE_LEVEL. Since this is the lowest level, all inter-
rupts are accepted at this level. Asynchronous procedure calls
(APCs) and the page fault handler execute at APC_LEVEL.
The Windows thread scheduler and deferred procedure calls
(DPCs) execute at DISPATCH_LEVEL. When executing at

6https://github.com/boogie-org/corral/blob/master/AddOns/PropInst/
PropInst/ExampleProperties/doubleFetch.avp
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this level, a thread cannot be pre-empted by other threads
because an interrupt request from the thread scheduler gets
masked (but higher-level interrupts can still be scheduled as
they arrive).

Windows provides kernel routines to manipulate the IRQL
value of a processor. Driver developers use these routines
to control which interrupts should be masked during the
execution of the driver. However, the developer must use these
routines carefully. For instance, code running at APC_LEVEL
should not access pageable memory due to the possibility
of a page fault, which cannot be served at APC_LEVEL.
Running at DISPATCH_LEVEL further rules out context-
switching to other threads. Thus, a thread must not wait
on any synchronization objects at this level. Furthermore,
the amount of time spent at DISPATCH_LEVEL should be
limited to a minimum to keep the system responsive. In
order to guard against these errors, Windows restricts invoking
certain kernel routine at an unacceptable IRQL value. Doing
so can cause a kernel panic at runtime. The IRQL require-
ments of each kernel routine are very clearly specified in
the MSDN documentation. For instance, expensive safe-string
routines like RtlEqualString7 should only be invoked at
PASSIVE_LEVEL, etc. It is important to weed out incorrect
IRQL violations statically.

B. AV rules

Development of the AV property specification for checking
correct IRQL usage required modest effort; a majority of it was
completed in one person month. The IRQL requirements of
each kernel routine was already well documented. Often, the
effort was simply to codify the documentation. For instance,
the KeAcquireSpinLock8 routine requires that current
IRQL be less than DISPATCH_LEVEL. It then raises the
IRQL to DISPATCH_LEVEL and stashes the old IRQL value
in the pointer argument supplied to it. Calls to this routine are
instrumented as shown below.
procedure KeAcquireSpinLock(x0: int, x1: int);
{

assert irql <= 2;
Mem[x1] := irql;
irql := 2;

}

This uses a single global variable irql that records the
current IRQL value of the processor. Note that SDV performs
sequential verification only; correspondingly, we only need to
track the IRQL of a single processor.

Any behavior that was unrelated to IRQLs, e.g., actually
acquiring a lock, was left unspecified, limiting the amount of
work that was required to design the AV property file. The
entire property specification consists of 476 such rules. Out
of these, only 65 routines actually change the IRQL value,
whereas the rest simply assert a precondition. Each rule was
at most 4 lines of instrumentation.

7https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/
nf-ntddk-rtlequalstring

8https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/
nf-wdm-keacquirespinlock

i n t D r i v e r R o u t i n e ( . . . )
{

i f ( . . . ) / / b r an ch B
{

/ / R e q u i r e s i r q l <= 1 , s e t s i r q l t o 1
ExAcqui reFas tMutex ( . . . ) ;
/ / R e q u i r e s i r q l == 0
R t l E q u a l S t r i n g ( . . . ) ;

}
e l s e
{

/ / R e q u i r e s i r q l == 2
KeTryToAcquireSpinLockAtDpcLevel ( . . . )

}
. . .

}

Fig. 5. Program snippet illustrating AV for checking correct IRQL usage.

The AV vocabulary is set to arbitrary arithmetic constraints
(equality, disequality and comparisons) over the variable irql
and any constant. This vocabulary is different from the vo-
cabulary used for memory safety rules, where we do not
permit equality predicates over the pointers. For instance, for
NULLCHECK, the vocabulary only allows disequality con-
straints to model non-aliasing and non-nullness. This illustrates
the flexibility of the AV framework to adapt to new classes of
rules with relative easy.

We illustrate the behavior of AV for checking correct IRQL
usage using the example shown in Figure 5. This program
shows a simple driver routine that calls three different kernel
routines. The requirements of each of the kernel routines are
shown in comments, along with any side-effects they have on
changing the IRQL value. This information is instrumented
into the program by property instrumentation tool.

We describe a sample run of AV on DriverRoutine.
AV will start analysis on this routine with an unconstrained
initial value for irql, because of which it will detect a
possible failure of the assertion irql ≤ 1 at the call
to ExAcquireFastMutex. AV will suppress this failure
by installing an angelic precondition on DriverRoutine,
namely that irql ≤ 1. Next, AV restarts the analysis with
this new pre-condition. In this case, it will report another
possible failure: the assert irql == 0 fails on the call
to RtlEqualString. This failure has no dependence on
the initial value of irql (because ExAcquireFastMutex
always sets irql to 1); thus, it cannot be suppressed by AV
and it will correspondingly show the violation to the user as a
single trace of execution of DriverRoutine. This kind of
analysis also has a pleasant side-effect: the user can inspect
this trace in isolation from the callers of DriverRoutine
because the initial value of irql is immaterial.

C. Inconsistency Violations

There is a second class of violations that AV can report that
we call inconsistency violations. Such a violation consists of
multiple (2 or more) traces. Consider the assertion at the call to
KeTryToAcquireSpinLockAtDpcLevel. AV will try to
suppress this violation as well by installing the precondition
irql == 2 to DriverRoutine. However, this precon-
dition conflicts with the previous precondition irql ≤ 1,

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-rtlequalstring
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-rtlequalstring
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-keacquirespinlock
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-keacquirespinlock


i.e., their conjunction is unsatisfiable (and therefore rejected
by the permissiveness check in Figure 2). AV detects this
conflict and shows a violation to the user consisting of
two traces: the first trace is the one that ends in a call
to ExAcquireFastMutex and the second one ends in a
call to KeTryToAcquireSpinLockAtDpcLevel. This
violation tells the user that at least one of the calls (maybe,
both) is potentially buggy.

Note that it is possible for AV to report false inconsistency
violations. For instance, if the branch B in the code had a con-
dition dependent on some flags passed to DriverRoutine
that were set by its callers to indicate different IRQL levels,
then it is possible for DriverRoutine to be correct. AV
only includes inferring preconditions on the irql variable,
so it does not pick up the branch condition B. This allows
AV to scale at the cost of some precision. In our experiments,
however, AV did not report any false positives because of this
reason.

D. Evaluation

During the development of the IRQLCHECK rule, we con-
ducted an initial set of experiments on internal driver code.
We picked 797 driver modules that each had some usage of
IRQL levels, i.e., ones that called at least one kernel routine
that manipulated the IRQL value. The average running time of
AV on these modules was 180 seconds. A distribution of the
AV running times, shown in Figure 6, indicates that a majority
of modules take little time, however there are a few that take
much longer.

AV reported a total of 29 violations in these modules.
Manual inspection revealed that 26 of these were true vio-
lations; of these 18 were single-trace defects and the rest 8
were inconsistency violations consisting of two traces each.
There were 3 false positives. In two of these, AV reported
a violation assuming an initial IRQL value of −1. This is
not possible. We fixed it by constraining the irql variable
to always be between 0 and 31 and the corresponding false
positives went away. One false positive was due to imprecision
in aliasing where the value stored under a global variable was
overwritten by a write through an unconstrained pointer. The
code did not contain any evidence that the pointer could alias
the global. This is currently a limitation of AV but happens
very rarely; usually the pointer analysis is good at ruling out
such possibilities.

V. RELATED WORK

Memory safety of C/C++ applications has naturally received
a lot of attention, both in academia and industry, because of
their security implications. Microsoft has invested in tools such
as Esp [26], Espx [27] and Prefix [28] that have all targeted the
Windows Operating System. As opposed to SDV, these tools
are not shipped externally. They are used in-house and for that
reason they have been heavily tuned for internal Windows code
through the use of custom analyses (often a form of pointer
analysis), annotations (SAL [29]) or extensive models. Such
investment makes the tools expensive to maintain (dependence

Fig. 6. Histogram of AV running times on multiple Windows modules.

on annotations/models also implies a constant maintenance
struggle) or extend to new properties (which requires a new
custom analysis).

Facebook supports the open-source tool Infer [30]. Infer per-
forms a bottom-up pointer-based analysis of C/C++ programs
(even Java) looking for null-safety, use-after-free violations,
etc. Infer is designed to be incredibly fast so that developers
get immediate feedback as they make code changes. SDV
is much more heavy-weight with the use of its SMT-based
engine so it cannot provide immediate feedback. Instead, SDV
finds its place in a certification process for drivers where it
has more time to perform the analysis. On the other hand,
Infer is not as readily extensible as SDV for new checks as it
requires the creation of a new abstract domain for summarizing
behaviors relevant to the property of interest. Besides, the
presence of overapproximate summaries can lead to false
alarms even for closed programs, especially when summaries
need to capture complex arithmetic conditions. Unfortunately,
we cannot perform a direct comparison with Infer on the
common rules, as Infer cannot be integrated into the build
environment for these Windows drivers that use the Microsoft
C/C++ compiler toolchain.

The angelic checks in SDV has two key contributions over
the tools mentioned above. First, the use of a precise SMT-
based backend allows AV-SDV to be easily tuned to support
multiple different rules, simply as a new AVP instrumentation
file. For instance, IRQLCHECK is not a pointer-based rule;
instead it requires arithmetic reasoning of the IRQL value.
Yet, AV-SDV supports it without any changes to the tool flow.
Second, AV can tolerate imprecise models, thus considerably
reducing the maintenance effort.

The core idea of angelic verification is related to research
on abduction [31] and maximal specification inference [32].
These techniques use novel yet expensive quantifier elimina-
tion algorithms to find permissive specifications on the envi-
ronment. Further these techniques can be used to infer loop
invariants for unbounded executions. The main differences lie
in the use of AV in SDV to detect high quality bugs instead of
finding the maximally permissive or inductive specifications.
Although this may result in AV failing to infer a permissive
specification even when it exists, AV’s lightweight predicate



abstraction allows us to scale to modules with hundreds of
thousands of lines of code in the presence of a heap. Finally,
the idea of starting exploration from functions other than
entrypoints is also explored in recent scalable pointer analysis
approaches [33], [34].

VI. CONCLUSION

In this paper, we described our experience integrating an-
gelic checking with the Static Driver Verifier tool, over a
period of several years. We described the limitations of SDV
for checking unsupported drivers as well as memory safety
properties before this work, and provide evidence that the an-
gelic checks provide a cost-effective solution to finding high-
quality defects in drivers with very low upfront investment.
For future work, we are currently working on: (a) making
AV more scalable by pruning state space already explored
from transitive callees, and (b) providing support for writing
other security critical angelic checks that require taint tracking
through values in the heap.
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