
1SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Application Report
SPRACL3–August 2019

Designing With the C2000™ Configurable Logic Block
(CLB)

Nima Eskandari

ABSTRACT
The C2000 configurable logic block (CLB) is a collection of configurable blocks that interconnect through
software to implement custom digital logic functions. In this application report, a simple custom digital logic
system is designed and tested. Each configurable block inside the CLB module is examined and set up to
implement the desired custom system.

Contents
1 Introduction ... 3
2 Supplementary Online Information .. 3
3 Design Overview... 4
4 Sampling the Inputs ... 5
5 Implementing the State Machine in the FSM Submodule .. 6
6 Generating PWM Signals ... 9
7 Modifying PWM Period and Duty... 12
8 Completed Design.. 15
9 Input X-BAR, Output X-BAR, and CLB X-BAR ... 17
10 Running the Example Project... 20
11 Summary .. 24
12 References .. 24

List of Figures

1 State Machine Diagram ... 4
2 COUNTER0 Configuration ... 5
3 LUT0 and LUT1 Configuration ... 6
4 FSM1 S0 K-Map ... 7
5 FSM1 S1 K-Map ... 7
6 FSM1 Output K-Map .. 8
7 OUTLUT4 and OUTLUT5 Configurations .. 8
8 FSM2 Configuration.. 10
9 COUNTER1 Configuration .. 10
10 FSM0 Configuration.. 11
11 OUTLUT0 and OUTLUT2 Configurations... 12
12 LUT2 Configuration .. 13
13 HLC Configuration ... 14
14 Completed Design Block Diagrams.. 16
15 Invalid Connection for This Instance... 17
16 CLB BOUNDARY Input Multiplexing .. 18
17 TSM320F28379D LaunchPad Connections .. 20
18 Changing PWM Period and Duty Using the Expressions Window .. 21
19 PWM Duty 1000, Period 2000.. 22

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com

2 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

20 Oscilloscope - PWM Duty 1000, Period 2000 .. 23
21 PWM Duty 3000, Period 4000.. 23
22 Oscilloscope - PWM Duty 3000, Period 4000 .. 24

List of Tables

1 FSM Truth Table ... 6

Trademarks
C2000, LaunchPad, Code Composer Studio are trademarks of Texas Instruments.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Introduction

3SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

1 Introduction
To understand the CLB, this document examines each of its configurable blocks individually and explains
how they can be used together. The CLB subsystem contains a number of identical tiles. There are four
identical tiles in the F2837xD CLB subsystem, but other devices may contain more or fewer tiles. Each tile
has the following:
• 4-input look-up table (LUT4) submodules
• Counter submodules
• Finite State Machine (FSM) submodules
• Output 3-input lookup table (Output LUT) submodule
• High-level Controller (HLC) submodule

A simple 4-state, state machine is designed. Each of the submodules in a CLB tile are used and their
capability and example usage are shown.

2 Supplementary Online Information
For more information on the CLB module on a specific C2000 device, see the device-specific data sheet
and the corresponding Technical Reference Manual (TRM).

This application report was written using the TMS320F2837xD family of devices. The data sheet and TRM
used for this application report are listed below:
• TMS320F2837xD Dual-core Delfino™ Microcontrollers Datasheet
• TMS320F2837xD Dual-core Delfino™ Microcontrollers Technical Reference Manual

Additional support is provided by the TI E2E™ Community.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3
http://www.ti.com/lit/pdf/SPRS880
http://www.ti.com/lit/pdf/SPRUHM8
http://e2e.ti.com

Design Overview www.ti.com

4 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

3 Design Overview
The design used in this document is a simple 4-state, state machine. The four states are:
• Opened
• Closing
• Closed
• Opening

The design is similar to a simple garage door opening. There are two external inputs used to interact with
the state machine. They are:
• BOUNDARY IN0: Button input to open or close the door based on the current state
• BOUNDARY IN1: Sensor input to indicate whether the closing or opening of the door is completed

Figure 1 shows the states of the FSM and how the external inputs are used to transition between these
states.

Figure 1. State Machine Diagram

The system transitions from opened or closed states to closing or opening states when the BOUNDARY
IN0 (the button input) is HIGH. The system transitions from opening or closing states to opened or closed
states when BOUNDARY IN1 (the sensor input) is HIGH. When IN0 and IN1 are HIGH at the same time,
the system transitions from closing to opening state OR from opening to closing state. No other input
combinations cause a transition between the states of the state machine.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Sampling the Inputs

5SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

4 Sampling the Inputs
The first step in designing this specific system is sampling the external inputs to make testing the final
design easier. Instead of using the raw input from the GPIOs used as BOUNDARY IN0 and IN1, a counter
is used to sample BOUNDARY IN0 and IN1 every 50,000 clock cycles. Use an oscilloscope to help view
the results of the polling by displaying a transition between closing and opening states. This can be seen
in Section 10.

A counter module (COUNTER0) is used alongside LUT0 and LUT1 to generate the sampled input signals,
which is then used by the FSM submodule. The requirements for the sampling logic are:
• COUNTER0 is used to generate a signal every 50000 clock cycles (match1_val = 50000)
• The counter is always enabled (mode0 = 1) and counts up (mode1 = 1)
• The counter is reset on MATCH1 event
• LUT0 and LUT1 are used
• The two input signals (BOUNDARY IN0 and IN1) are used with the COUNTER0 MATCH1 event signal

to generate the sampled input signals, which are then used by the FSM

Figure 2 and Figure 3 show these requirements and how they are applied in the SysConfig settings of the
example project.

Figure 2. COUNTER0 Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

Implementing the State Machine in the FSM Submodule www.ti.com

6 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Figure 3. LUT0 and LUT1 Configuration

5 Implementing the State Machine in the FSM Submodule
The state machine in Figure 1 is applied using the sampled inputs generated in the previous section. First,
create a complete truth table consisting of the inputs, current states, and the next states of the state
machine. The FSM submodule also generates an output signal. In this design, the output is set to HIGH
when the state of the system is switched to opening or closing. This output is used later in the design (for
gating PWM signals). Table 1 shows the complete truth table of the design.

Table 1. FSM Truth Table

s0 s1 e0 e1 s0 NEXT s1 NEXT OUTPUT
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 1
0 0 1 1 1 1 1
0 1 0 0 0 1 0
0 1 0 1 0 0 0
0 1 1 0 0 1 0
0 1 1 1 1 0 1
1 0 0 0 1 0 0
1 0 0 1 1 1 0
1 0 1 0 1 0 0
1 0 1 1 0 1 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 0 1 1
1 1 1 1 0 1 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Implementing the State Machine in the FSM Submodule

7SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Using the FSM truth table, the Karnaugh map is created for the s0 state, s1 state, and the output of the
FSM. The Karnaugh map helps find the FSM equations for s0, s1, and the output.

Figure 4. FSM1 S0 K-Map

Figure 5. FSM1 S1 K-Map

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

Implementing the State Machine in the FSM Submodule www.ti.com

8 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Figure 6. FSM1 Output K-Map

The F28379D LaunchPad (used for testing this design) displays s0 and s1 of the FSM1 on the LEDs
available on the LaunchPad™. OUTLUT4 and OUTLUT5 export these signals from FSM1 to the OUTPUT
X-BAR which is then selected to drive GPIOs. The LEDs on the LaunchPad turn ON when the output of
GPIO34 and GPIO31 are pulled LOW. s0 and s1 of the FSM1 are therefore inverted before getting export
out of the CLB through OUTLUT4 and OUTLUT5. This inversion turns the LEDs ON when s0 and s1 are
HIGH. Figure 7 shows the SysConfig configuration for OUTLUT4 and OUTLUT5.

Figure 7. OUTLUT4 and OUTLUT5 Configurations

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Generating PWM Signals

9SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

6 Generating PWM Signals
The CLB can use its configurable blocks to generate PWM waveforms. Assume it is required to generate
PWM signals when the state of the system is opening or closing. For this system, the two PWM signals
from the CLB tile are:
• Opening state: First PWM signal is active with a modifiable period and duty cycle, while the second

PWM signal is held LOW.
• Closing state: First PWM signal is held LOW, while the second PWM signal is active with a modifiable

period and duty cycle.

FSM0, FSM2, and COUNTER1 generate the PWM signals. The counter submodule acts as the main part
of the PWM while FSM0 and FSM2 complete the rest of the logic. These roles are required to generate
the PWM waveforms.

COUNTER1 is set up to operate in count-down mode, generating signals when the counter reaches
ZERO or a specified match value. The items below summarize the requirements for COUNTER1:
• Count down from load_val (mode1 = 0).
• At the counter=ZERO event, load the load_val into the counter.
• The period of the PWM signal is set by the load_val register of COUNTER1.
• The event generated at counter=match1_val is used in the next steps.
• The duty cycle of the PWM is set by the match1_val register of COUNTER1.
• The enable signal for the counter is mode0. This signal should be active only when the system is in

opening or closing states (this signal, which is an input to the counter, is created in the next steps).
• Reset the timer when a transition of states to opening or closing states is detected (this signal is

already available from FSM1 OUTPUT).

The time-based counter of the PWM is now set up. Next, create the signal that is active only when the
system is in opening or closing states. To create this signal, FSM2 is used as a 3-output LUT instead of a
Finite State Machine. FSM2 is set up to fulfill the requirements below:
• S0: Active only when the opening state is active
• S1: Active only when the closing state is active
• OUTPUT: Active when either closing or opening states are active

The output from FSM2 is used as the input to COUNTER1 mode0. Mode0 of COUNTER1 is only active
when the system is in either closing or opening states.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

Generating PWM Signals www.ti.com

10 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Figure 8 and Figure 9 show the SysConfig configurations for FSM2 and COUNTER1.

Figure 8. FSM2 Configuration

Figure 9. COUNTER1 Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Generating PWM Signals

11SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

The final step to create the PWM signals is to use the FSM module to generate the PWM waveforms
based on the events and signals generated by COUNTER1 and FSM2. The PWM signal is generated by
using FSM0 s0. s0 must clear to LOW on the counter=ZERO event of the COUNTER1. s0 must set to
HIGH on the counter=match1_val event of the COUNTER1.

Figure 10 shows the SysConfig configuration of FSM0.

Figure 10. FSM0 Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

Modifying PWM Period and Duty www.ti.com

12 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Finally, the PWM signal is split into two signals: one for the closing state and one for the opening state.
OUTLUT0 and OUTLUT2 export the two signals. When the system is in the opening state, OUTLUT0
outputs the PWM signal while OUTLUT2 stays LOW. When the system is in the closing state, OUTLUT2
outputs the PWM signal while OUTLUT0 stays LOW. Figure 11 show the SysConfig configurations for
OUTLUT0 and OUTLUT2.

Figure 11. OUTLUT0 and OUTLUT2 Configurations

In the next step, the PWM period and duty cycle can be updated at any runtime by using the C28x core
and the HLC submodule.

7 Modifying PWM Period and Duty
It is required to update the load_val and match1_val of the COUNTER1 to modify the period and duty
cycle of the PWM generated by the CLB tile. The C28x core has access to both of these registers in
COUNTER1 and can updates them as desired. However, it would better if the load_val and match1_val is
updated at counter=ZERO event of COUNTER1 to eliminate any unpredictable behavior. In this design,
the update of the counter values occur on the next counter=ZERO after it is requested by the C28x core.
To load the counter values, the HLC submodule and the PUSH-PULL interface are used. The PUSH-
PULL interface is a 4-deep FIFO that the C28x core and the HLC submodule use for data transfer. The
C28x core writes the new period and duty cycle values to the PUSH-PULL FIFO. The HLC reads these
values and updates the COUNTER1 registers at the next counter=ZERO event. The C28x also must
signal to the HLC that new values are available in the PUSH-PULL FIFO. The signal is created by using
BIT2 (0b00000100) of the GPREG register (which is a C28x accessible register). The bits of the GPREG
register connect to the BOUNDARY input of the CLB tile. HLC performs its tasks when an input event is
activated.

In this design, EVENT0 is used to signal the HLC to read the PUSH-PULL FIFO and update the PWM
values. If a rising edge is detected on EVENT0 of the HLC, the specified instructions are executed. Since
the C28x core must signal to the HLC to start updating the PWM values on the next COUNTER1
counter=ZERO event, the EVENT0 input from the HLC must be the resulting signal from COUNTER1
counter=ZERO "ANDed" with BOUNDARY IN2. LUT2 is used to logically AND these two signals. The
output of LUT2 is then connected to the EVENT0 input of the HLC.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Modifying PWM Period and Duty

13SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Figure 12 shows the SysConfig configuration of LUT2.

Figure 12. LUT2 Configuration

Next, define the instructions of the HLC. The C28x core updates the FIFO with the new period value, then
with the new duty value. The HLC must PULL these values from the FIFO in the same order. First, the
HLC must PULL the period value into the active counter register of COUNTER1 (this value is also written
to the load_val, discussed in the next step). The next value PULLED from the FIFO must be written to the
match1_val of the COUNTER1. However, the PULL instruction cannot pull values into the match1_val of
the counter submodule. The only instruction that can write to the match values of the counters are
MOV_T1 and MOV_T2. These instructions access match1_val and match2_val, respectively. The value in
the FIFO is pulled into the R1 register of the HLC using a PULL instruction. Afterward, the R1 value
updates the match1_val of the COUNTER1 using the MOV_T1 instruction.

The INTR instruction is the final instruction executed by the HLC. The INTR instruction generates an
interrupt on the C28x core, which signals the C28x core that the update has taken place. The FIFO is now
empty and may be used again. The GPREG BIT2 is also cleared by the C28x core so that the next
counter=ZERO does not generate another HLC event (causing the FIFO to be read when it is empty and
creating an underflow scenario). The INTR instruction requires one argument called the "interrupt tag".
This tag is read on the C28x core side to see what caused the interrupt. The HLC can generate multiple
interrupts at different events in the tile; however, in this design only one interrupt is used. The interrupt tag
used with the INTR instruction is "1" and the C28x core ensures the interrupt tag is "1" when handling the
interrupt service routine.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

Modifying PWM Period and Duty www.ti.com

14 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Figure 13 shows the SysConfig configuration of the HLC submode.

Figure 13. HLC Configuration

The final item left open in this part of the design is updating the load_val of COUNTER1. The HLC does
not have access to this register, so the C28x must update this value before it sets the GPREG BIT2. If the
load_val is not updated, the period is not updated. The following code snippet shows how the C28x core
can update the PWM period and duty cycle, and clear the GPREG after the interrupt is received.
void updateClbPwm(uint32_t period, uint32_t duty)
{
if (canUpdate)

{
canUpdate = 0;
CLB_writeInterface(CLB1_BASE, CLB_ADDR_COUNTER_1_LOAD, period);
HWREG(CLB1_BASE + CLB_LOGICCTL + CLB_O_BUF_PTR) = 0U;
HWREG(CLB1_BASE + CLB_DATAEXCH + CLB_O_PULL(0)) = period;
HWREG(CLB1_BASE + CLB_DATAEXCH + CLB_O_PULL(1)) = duty;
CLB_setGPREG(CLB1_BASE, 1 << TRIGGER_PWM_UPDATE_SHIFT);

}
}

__interrupt void clb1ISR(void)
{

uint16_t tag = CLB_getInterruptTag(CLB1_BASE);
if (tag == UPDATE_PWM_COMPLETED_TAG)
{

canUpdate = 1;
CLB_setGPREG(CLB1_BASE, 0);

}
CLB_clearInterruptTag(CLB1_BASE);
Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP5);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Completed Design

15SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Section 9 describes how the XBAR modules are used to import and export signals in and out of the CLB
tiles.

8 Completed Design
Figure 14 shows the complete block diagram of the design. The connection between the submodules
allows you to visualize the complete picture of what the CLB tile is designed to accomplish.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

i0
TILE1_OUTLUT_0

out = i0&i1
i1 out

i2
TILE1_BOUNDARY

out0

out1

out2

out3

out4

out5

out6

out7

e0
TILE1_FSM_0

s0 = (s0 ^ e1)& (!e0)

e1 s0

xe0 s1

xe1 out
i0
TILE1_OUTLUT_2

out = i0&i1
i1 out

i2

e0 TILE1_FSM_2

s0 = e0&(!e1)
s1 = (!e0)&e1
out = s0 | s1

e1 s0

xe0 s1

xe1 out

reset

TILE1_COUNTER_1

evAction = Load

zero

event match1

mode0 match2

mode1

i0
TILE1_OUTLUT_4

out = !i0
i1 out

i2

e0 TILE1_FSM_1

s0 = (!e0&s0) | (e0&e1&!s0) | (!s0&!s1&e0) | (e0&!e1&!s1)
s1 = (s1&!e1) | (s0&s1) | (s0&e1)

out = (e0&e1) | (!s0&!s1&e0) | (s0&s1&e0)

e1 s0

xe0 s1

xe1 out

i0
TILE1_OUTLUT_5

out = !i0
i1 out

i2

i0

TILE1_LUT_0

out = i0&i1

i1 out

i2

i3

reset
TILE1_COUNTER_0

evAction = None

zero

event match1

mode0 match2

mode1

i0

TILE1_LUT_1

out = i0&i1

i1 out

i2

i3

TILE1_BOUNDARY

in0 →

in1 →

in2 →

in3 →

in4 →

in5 →

in6 →

in7 →

i0
TILE1_LUT_2

out = i0&i1

i1 out

i2

i3

e0

TILE1_HLC
e1

e2

e3

1

Completed Design www.ti.com

16 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Figure 14. Completed Design Block Diagrams

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Input X-BAR, Output X-BAR, and CLB X-BAR

17SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Be careful when choosing which submodule to use. For example, the design above cannot use FSM0
instead of FSM1 because hardware limitations does not allow the output of LUT1 to be selected as an
input to the e1 of the FSM0. This is an example of an invalid configuration. TMS320F2837xD Dual-core
Delfino™ Microcontrollers Technical Reference Manual shows the complete list of these invalid setups.
Some sets of inputs are disconnected in hardware to avoid logic loops. Figure 15 shows the warning the
CLB SysConfig tool generates to notify the user of this design error.

Figure 15. Invalid Connection for This Instance

9 Input X-BAR, Output X-BAR, and CLB X-BAR
The X-BAR module can be used to import external signals into the CLB or export signals out of the CLB.
In this section, the X-BAR modules (INPUT X-BAR, OUTPUT X-BAR, and CLB X-BAR) are configured for
the CLB tile designed in this application report.

9.1 Using X-BAR to Import Signals to the CLB Tiles
To import signals into the CLB (BOUNDARY INz, where z is any number between 0–7) from the GPIOs,
you must configure the INPUT X-BAR and CLB X-BAR. The steps required to import signals from GPIOs
to the CLB are:
1. Configure the GPIO as usual:

a. Set the direction: INPUT/OUTPUT.
b. Enable/disable the PULL-UP.
c. Set other GPIO configurations.

2. Use the INPUT X-BAR (for example, INPUTx, where x is any number from 1 to the maximum number
of INPUTs) and select the GPIO required.

3. Inside the CLB module, select GLOBAL input for BOUNDARY INz instead of the LOCAL input.
4. Use the CLB X-BAR to select the INPUTx of the INPUT X-BAR as AUXSIGy (where y is any number

between 0–7).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3
http://www.ti.com/lit/pdf/SPRUHM8
http://www.ti.com/lit/pdf/SPRUHM8

Cell input [n]

GPREG [n]

FilterLocal Inputs

Synchronizer

CLB_INPUT_FILTER

CLB_LCL_MUX_SEL_0/1

Global Inputs

CLB_GLBL_MUX_SEL_0/1

CLB_INPUT_FILTER

Input X-BAR, Output X-BAR, and CLB X-BAR www.ti.com

18 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

5. Select AUXSIGy as GLOBAL input for BOUNDARY INz.
6. Disable the GPREG input and enable the external input (GLOBAL input = AUXSIGy input = INPUTx

input = GPIO input).

Figure 16 shows how the CLB BOUNDARY inputs are selected from GLOBAL inputs, LOCAL inputs, or
GPREG bits.

Figure 16. CLB BOUNDARY Input Multiplexing

The following code snippets show how the preceding steps are accomplished using the device driver
library.
//
// Configure GPIO4 for Button
//
GPIO_setPinConfig(GPIO_4_GPIO4);
GPIO_setDirectionMode(4, GPIO_DIR_MODE_IN);
GPIO_setPadConfig(4, GPIO_PIN_TYPE_PULLUP);
//
// Configure Input-XBAR INPUT1 to GPIO4
//
XBAR_setInputPin(XBAR_INPUT1, 4);
//
// Configure CLB-XBAR AUXSIG0 as INPUT1
//
XBAR_setCLBMuxConfig(XBAR_AUXSIG0, XBAR_CLB_MUX01_INPUTXBAR1);
XBAR_enableCLBMux(XBAR_AUXSIG0, XBAR_MUX01);

CLB_configLocalInputMux(CLB1_BASE, CLB_IN0, CLB_LOCAL_IN_MUX_GLOBAL_IN);
CLB_configGlobalInputMux(CLB1_BASE, CLB_IN0, CLB_GLOBAL_IN_MUX_CLB_AUXSIG0);
CLB_configGPInputMux(CLB1_BASE, CLB_IN0, CLB_GP_IN_MUX_EXTERNAL);

9.2 Using X-BAR to Export Signals from the CLB Tiles
To export signals from the CLB (BOUNDARY OUTx) to the GPIOs, use the OUTPUT X-BAR for OUT4
and OUT5 while OUT0–3 and OUT6–7 intercept specific peripheral outputs at the GPIO.

If OUT4 and OUT5 are used, use the OUTPUT X-BAR with the following steps:
1. Configure the GPIO as usual.

a. Set the direction: INPUT/OUTPUT.
b. Enable/disable the PULL-UP.
c. Set other GPIO configurations.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Input X-BAR, Output X-BAR, and CLB X-BAR

19SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

2. Configure the PINMUX to use the OUTPUT X-BAR.

The following code snippets show how the preceding steps are accomplished using the device driver
library.
//
// Configure GPIO31 for OUTPUTXBAR8
//
GPIO_setPinConfig(GPIO_31_OUTPUTXBAR8);
GPIO_setDirectionMode(31, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(31, GPIO_PIN_TYPE_STD);
//
// Configure OUTPUT-XBAR OUTPUT8 as CLB1_OUT4
//
XBAR_setOutputMuxConfig(XBAR_OUTPUT8, XBAR_OUT_MUX01_CLB1_OUT4);
XBAR_enableOutputMux(XBAR_OUTPUT8, XBAR_MUX01);
//
// Configure GPIO34 for OUTPUTXBAR1
//
GPIO_setPinConfig(GPIO_34_OUTPUTXBAR1);
GPIO_setDirectionMode(34, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(34, GPIO_PIN_TYPE_STD);
//
// Configure OUTPUT-XBAR OUTPUT1 as CLB1_OUT5
//
XBAR_setOutputMuxConfig(XBAR_OUTPUT1, XBAR_OUT_MUX03_CLB1_OUT5);
XBAR_enableOutputMux(XBAR_OUTPUT1, XBAR_MUX03);

If you have peripheral output interception (tile OUT0–3 and OUT6–7):
1. Configure the PINMUX as usual for that specific peripheral.

a. Example: Configure GPIO0 for EPWM1A.
2. Enable the output of the CLB OUT0–3 and OUT6–7 using the OUT_EN register.

The output of the GPIO is the CLB OUT instead of the peripheral output. The Peripheral Signal Multiplexer
table in the TRM mentions which CLB OUT corresponds to which peripheral output. The following code
snippets show how the preceding steps are accomplished using the device driver library.
//
// Configure GPIO0 for EPWM1A which will be overriden by CLB0_OUT0
//
GPIO_setPinConfig(GPIO_0_EPWM1A);
GPIO_setDirectionMode(0, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(0, GPIO_PIN_TYPE_STD);
//
// Configure GPIO1 for EPWM1B which will be overriden by CLB0_OUT1
//
GPIO_setPinConfig(GPIO_1_EPWM1B);
GPIO_setDirectionMode(1, GPIO_DIR_MODE_OUT);
GPIO_setPadConfig(1, GPIO_PIN_TYPE_STD);

Finally, the output of the CLB tile must be enabled. The following code snippet accomplishes this task
using the device driver library.
CLB_setOutputEnableMask(CLB1_BASE, 1 << 0 | 1 << 2);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

Running the Example Project www.ti.com

20 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

10 Running the Example Project
This section discusses the instructions on how to test the Code Composer Studio™ example project
provided for the system designed here. The example is tested on the TMS320F28379D LaunchPad.

10.1 Setup and Connections
Figure 17 shows the pins used for BOUNDARY IN0 and IN1, the PWM outputs for the closing and
opening states, and the LEDs used to show the current state of the FSM1 submodule.

Figure 17. TSM320F28379D LaunchPad Connections

10.2 Testing States And Transitions
Before running the code, pull both BOUNDARY IN0 and IN1 to GND using a jumper wire. The internal
PULLUP is enabled on these GPIOs. Removing the connection to GND pulls the pins to HIGH. Connect
oscilloscope probes to both GPIO0 and GPIO1 to view the PWM signals when the system is in closing or
opening states. The following sections show how to transition between the steps and see the results of
these changes on the LaunchPad.

10.2.1 Step 1
Follow these steps to see the transition between the opened state to closing state:
1. Run the core. Both LEDs are OFF and no PWM signal is shown on the scope.
2. Disconnect BOUNDARY IN0 from GND.

a. The state machine transitions from opened to closing. The PWM signal displays on the
corresponding GPIO for closing. The state LEDs are in OFF-ON state to show S1 = 0, S0 = 1.

3. Connect BOUNDARY IN0 to GND again. Nothing occurs from this change.

10.2.2 Step 2
Follow these steps to see the transition between the closing state to closed state:
1. Disconnect BOUNDARY IN1 from GND.

a. The state machine transitions from closing to closed. The PWM signal stops. The state LEDs are
in ON-ON state to show S1 = 1, S0 = 1.

2. Connect BOUNDARY IN1 to GND again. Nothing occurs from this change.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Running the Example Project

21SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

10.2.3 Step 3
Follow these steps to see the transition between the closed state to opening state:
1. Disconnect BOUNDARY IN0 from GND.

a. The state machine transitions from closed to opening. The PWM signal shows on the
corresponding GPIO for opening. The state LEDs are in ON-OFF state to show S1 = 1, S0 = 0.

2. Connect BOUNDARY IN0 to GND again. Nothing occurs from this change.

10.2.4 Step 4
Follow these steps to see the transition between the opening state to opened state:
1. Disconnect BOUNDARY IN1 from GND.

a. The state machine transitions from opening to opened. The PWM signal stops. The state LEDs are
in OFF-OFF state to show S1 = 0, S0 = 0.

2. Connect BOUNDARY IN1 to GND again. Nothing occurs from this change.

10.2.5 Step 5
In this last test, inputs IN0 and IN1 are disconnected from GND, causing the state of the system to jump
between closing and opening, continuously. This jumping toggles the states and the PWM signals with the
frequency of the sampling counter.

10.3 Testing PWM Period and Duty Cycle
The last thing to test is the ability to change the PWM period and duty cycle at run time. Follow these
steps to test this feature:
1. Run the code and open the expressions window.
2. Add “clbPwmUpdateNow”, “clbPwmDuty”, and “clbPwmPeriod".
3. Enable Auto Refresh.

Figure 18. Changing PWM Period and Duty Using the Expressions Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

Running the Example Project www.ti.com

22 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

4. Click on the value of the clbPwmDuty and clbPwmPeriod and update them to new values.
5. Click on the value of clbPwmUpdateNow and write the value “1”.
6. The PWM updates and is seen on the oscilloscope.

Figure 19 and Figure 20 show an example of setting the PWM duty cycle to 1000 and the period to 2000.

Figure 19. PWM Duty 1000, Period 2000

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

www.ti.com Running the Example Project

23SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Figure 20. Oscilloscope - PWM Duty 1000, Period 2000

Figure 21 and Figure 22 show an example of setting the PWM duty cycle to 3000 and the period to 4000.

Figure 21. PWM Duty 3000, Period 4000

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3

Summary www.ti.com

24 SPRACL3–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Designing With the C2000™ Configurable Logic Block (CLB)

Figure 22. Oscilloscope - PWM Duty 3000, Period 4000

11 Summary
The CLB module is a powerful and highly flexible peripheral. It can be used to create incredibly powerful
designs which can operate independently or as a complement to the C28x core. The use of the CLB
Sysconfig Tool is also showcased, alongside the configurations needed by the XBAR module to import
signals in or export signals out of the CLB module.

12 References
• TMS320F2837xD Dual-Core Delfino™ Microcontrollers Technical Reference Manual
• TMS320F28004x Piccolo Microcontrollers Technical Reference Manual

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACL3
http://www.ti.com/lit/pdf/SPRUHM8
http://www.ti.com/lit/pdf/SPRUI33

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Designing With the C2000 Configurable Logic Block (CLB)
	1 Introduction
	2 Supplementary Online Information
	3 Design Overview
	4 Sampling the Inputs
	5 Implementing the State Machine in the FSM Submodule
	6 Generating PWM Signals
	7 Modifying PWM Period and Duty
	8 Completed Design
	9 Input X-BAR, Output X-BAR, and CLB X-BAR
	9.1 Using X-BAR to Import Signals to the CLB Tiles
	9.2 Using X-BAR to Export Signals from the CLB Tiles

	10 Running the Example Project
	10.1 Setup and Connections
	10.2 Testing States And Transitions
	10.2.1 Step 1
	10.2.2 Step 2
	10.2.3 Step 3
	10.2.4 Step 4
	10.2.5 Step 5

	10.3 Testing PWM Period and Duty Cycle

	11 Summary
	12 References

	Important Notice

