
Open VMS RTL String Manipulation. (STR$) Manual

Part Number: AA- PV6MA- TK

OpenVMS RTL String
Manipulation (STR$) Manual
Order Number: AA-PV6MA-TK

May 1993

This manual documents the string manipulation routines contained in
the STR$ facility-of the Open VMS Run-Time Library.

Revision/Update Information: This manual supersedes the VMS RTL
String Manipulation (STR$) Manual,
Version 5.2.

Software Version: Open VMS AXP Version 1.5
Open VMS VAX Version 6.0

Digital Equipment Corporation
Maynard, Massachusetts

May 1993

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader,
CDA, DDIF, DEC, DECdtm, DECnet, DECUS, DECwindows, DECwriter, DEQNA, Digital, GIGI,
HSC, LiveLink, LN03, MASSBUS, MicroVAX, OpenVMS, PrintServer 40, Q-bus, ReGIS, ULTRIX,
UNIBUS, VAX, VAXcluster, VAX RMS, VAXserver, VAXstation, OpenVMS, VT, XUI, the AXP logo,
and the DIGITAL logo.

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems Incorporated.

All other trademarks and registered trademarks are the property of their respective holders.

ZK4613

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . v

1 Overview of the STR$ FaciUty

2 Introduction to String Manipulation {STR$) Routines

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1

String Semantics in the Run-Time Library
Fixed-Length Strings
Varying"-Length Strings
Dynamic-Length Strings
Examples .. .

Descriptor Classes and String Semantics
Conventions for Reading Input String Arguments
Semantics for Writing Output String Arguments

Selecting String Manipulation Routines
Efficiency .
Argument Passing
Error Handling

Allocating Resources for Dynamic Strings
String Zone .. .

STR$ Reference Section

STR$ADD .. .
STR$ANALYZE_SDESC
STR$APPEND
STR$CASE_BLIND_COMPARE
STR$COMPARE .. .
STR$COMPARE_EQL
STR$COMPARE_MULTI
STR$CONCAT
STR$COPY_DX .. .
STR$COPY_R
STR$DIVIDE .. .
STR$DUPL_CHAR
STR$ELEMENT
STR$FIND_FIRST_IN_SET
STR$FIND_FIRST_NOT_IN_SET
STR$FIND_FIRST_SUBSTRING
STR$FREE1_DX
STR$GET1_DX .. .

2-1
2-1
2-2
2-2
2-3
2-4
2-5
2-6
2-8
2-8
2-9
2-9

2-10
2-12

STR-3
STR-7
STR-9

STR-11
STR-13
STR-15
STR-17
STR-19
STR-22
STR-24
STR-26
STR-30
STR-32
STR-34
STR-36
STR-39
STR-42
STR-43

iii

Index

Tables

1-1
2-1
2-2
2-3 '
2-4

iv

STR$LEFT . STR-45
STR$LEN_EXTR .. · . . STR-48
STR$MATCH_WILD . STR-51
STR$MUL . STR-54
STR$POSITION . STR-58
STR$POS_EXTR . STR-61
STR$PREFIX . STR-64
STR$RECIP . STR-66
STR$REPLACE . STR-70
STR$RIGHT ·;·.. STR-73
STR$ROUND . STR-76
STR$TRANSLATE ... STR-80
STR$TRIM . STR-83
STR$UPCASE . STR-85

STR$ Routines .. .
String Passing Techniques Used by the Run-Time Library
How Run-Time Library Routines Read Strings
Semantics and Descriptor Classes
Severe Errors, by Facility

1-2
2-5
2-6
2-7

2-10

Preface

This manual provides users of the Open VMS operating system with detailed
usage and reference information on string manipulation routines supplied in the
STR$ facility of the Run-Time Library.

Intended Audience
This manual is intended for system and application programmers who want to
call Run-Time Library routines.

Document Structure
This manual is organized into two parts as follows:

• Part I contains two introductory chapters. The material is covered as
follows:

Chapter 1 provides a brief overview of the STR$ routines and lists the
routines and their functions.

Chapter 2 discusses in detail how to use the Run-Time Library STR$
routines.

• Part II provides detailed reference information on each routine contained
in the STR$ facility of the Run-Time Library. This information is presented
using the documentation format described in Open VMS Programming
Interfaces: Calling a System Routine. Routine descriptions appear in
alphabetical order by routine name.

Associated Documents
The Run-Time Library routines are documented in a series of reference manuals.
A description of how the Run-Time Library routines are accessed is presented
in Open VMS Programming Interfaces: Calling a System Routine. A description
of Open VMS features and functionality available through calls to the STR$
Run-Time Library appears in the Open VMS Programming Concepts Manual.
Descriptions of other RTL facilities and their corresponding routines and usages
are discussed in the following books:

• DPML, Digital Portable Mathematics Library

• Open VMS RTL DECtalk (DTK$) Manual

• Open VMS RTL Library (LIB$) Manual

• Open VMS VAX RTL Mathematics (MTH$) Manual

• Open VMS RTL General Purpose (OTS$) Manual

• Open VMS RTL Parallel Processing (PPL$) Manual

v

• Open VMS RTL Screen Management (SMG$) Manual

The Guide to DECthreads contains guidelines and reference information for
DECthreads, the Digital Multithreading Run-Time Library.

The Open VMS Calling Standard contains useful information for anyone who
wants to call Run-Time Library routines.

Application programmers using any programming language can refer to the Guide
to Creating Open VMS Modular Procedures for writing modular and reentrant
code.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manual. Additional
information may also be found in the language user's guide provided with your
Open VMS language software.

For a complete list and description of the manuals in the Open VMS
documentation set, see the Overview of Open VMS Documentation.

Conventions

vi

In this manual, every use of Open VMS AXP means the Open VMS AXP operating
system, every use of Open VMS VAX means the Open VMS VAX operating system,
and every use of Open VMS means both the Open VMS AXP operating system and
the Open VMS VAX operating system.

The following conventions are used to identify information specific to Open VMS
AXP or to Open VMS VAX: .,.
•D

•

The AXP icon denotes the beginning of information
specific to Open VMS AXP.

The VAX icon denotes the beginning of information
specific to Open VMS VAX.

The diamond symbol denotes the end of a section of
information specific to Open VMS AXP or to Open VMS
VAX.

The following conventions are used in this manual:

Ctrllx

PFlx

GOLDx

A sequence such as Ctrl/x indicates down the key labeled Ctrl
while you press another key or a pointing device button.

A sequence such as PFl x indicates that you must first press
and release the key labeled PFl, then press and release
another key or a pointing device button.

A sequence such as GOLD x indicates that you must first press
and release the key defined GOLD, then press and release
another key. GOLD key sequences can also have a slash (I),
dash (-), or underscore (_) as a delimiter in EVE commands.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

()

[]

{}

boldface text

italic text

UPPERCASE TEXT

numbers

A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an Open VMS file specification, or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, IPRODUCER=name), and command parameters
in text.

Uppercase text indicates a command, the name of a routine,
the name of a file, the name of a file protection code, or the
abbreviation for a system privilege.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

All numbers in text are assumed to be decimal, unless
otherwise noted. N ondecimal radixes-binary, octal, or
hexadecimal-are explicitly indicated.

Other conventions used in the documentation of Run-Time Library routines are
described in Open VMS Programming Interfaces: Calling a System Routine.

vii

1
Overview of the STR$ Facility

The Open VMS RTL String Manipulation (STR$) Manual discusses the Run-Time
Library STR$ routines that perform string functions. This chapter gives a
brief overview of the STR$ routines and lists the routines and their functions.
Chapter 2 explains in detail how the RTL handles strings. The second part of
this manual is a reference section describing all the Run-Time Library STR$
routines.

The STR$ facility provides you with routines that perform the following functions:

• Perform mathematical operations on strings

• Compare strings

• Extract and replace substrings

• Append and concatenate strings

• Copy strings

• Search characters and substrings

• Free and allocate dynamic strings

• Perform miscellaneous functions on strings

Mathematical Operation Routines
STRADD, STRDIVIDE, STRMUL, STRRECIP, and STR$ROUND are
routines that perform mathematical functions on strings. These routines allow
you to add, divide, and multiply two strings. You can also take the reciprocal of a
string or round a string.

Compare Routines
STR$CASE_BLIND_COMPARE, STR$COMPARE, STR$COMPARE_EQL, and
STR$COMPARE_MULTI compare the contents of two strings and return a value
(-1, 0, or 1) that denotes whether the first string is less than, equal to, or greater
than the second string.

Extract and Replace Routines
STR$ELEMENT, STR$LEFT, STRLEN_EXTR, STRPOS_EXTR,
STR$REPLACE, and STR$RIGHT are routines that extract a substring from
a string or replace a substring with another substring.

Append and Concatenate Routines
STR$APPEND and STR$CONCAT allow you to append a string to another string,
or to concatenate up to 254 strings into one string.

Copy Routines
STR$COPY_DX and STR$COPY_R allow you to copy a string passed by
descriptor or by reference to another string.

1-1

Overview of the STR$ Facility

1-2

Search Routines
STR$FIND_FIRST_IN_SET, STR$FIND_FIRST_NOT_IN_SET, and STR$FIND_
FIRST_SUBSTRING are routines that search a string one character at a time,
comparing each character to the characters in a specified set of characters.

Allocate and Deallocate Routines
STR$FREE1_DX and STR$GET1_DX deallocate and allocate a dynamic string.

Miscellaneous Routines
STR$ANALYZE_SDESC, STR$DUPL_CHAR, STR$MATCH_ WILD,
STR$POSITION, STR$TRANSLATE, STR$TRIM, and STR$UPCASE analyze
string descriptors, duplicate a character, match wildcard specifications, prefix
a string, return a relative position, translate matched characters, trim trailing
blanks and tabs, and convert strings to uppercase characters.

Table 1-1 contains all of the STR$ routines and their functions.

Table 1-1 STA$ Routines

Routine Name

STR$ADD

STR$ANALYZE_SDESC

STR$APPEND

STR$CASE_BLIND_COMPARE

STR$COMPARE

STR$COMPARE_EQL

STR$COMPARE_MULTI

STR$CONCAT

STR$COPY _DX

STR$COPY_R

STR$DIVIDE

STR$DUPL_CHAR

STR$ELEMENT

STR$FIND_FIRST_IN_SET

STR$FIND_FIRST _NOT_IN_SET

STR$FIND_FIRST_SUBSTRING

STR$FREE1_DX

STR$GET1_DX

STR$LEFT

STR$LEN_EXTR

STR$MATCH_ WILD

STR$MUL

STR$POSITION

Function

Add two decimal strings

Analyze a string descriptor

Append a string

Compare strings without regard to case

Compare two strings

Compare two strings for equality

Compare two strings for equality using the
DEC Multinational Character Set

Concatenate two or more strings

Copy a source string passed by descriptor to a
destination string

Copy a source string passed by reference to a
destination string

Divide two decimal strings

Duplicate character n times

Extract delimited element substring

Find the first character in a set of characters

Find the first character that does not occur in
the set

Find the first substring in the input string

Free one dynamic string

Allocate one dynamic string

Extract a substring of a string

Extract a substring of a string

Match a wildcard specification

Multiply two decimal strings

Return relative position of a substring

(continued on next page)

Table 1-1 (Cont.) STR$ Routines

Routine Name

STR$POS_EXTR

STR$PREFIX

STR$RECIP

STR$REPLACE

STR$RIGHT

STR$ROUND

STR$TRANSLATE

STR$TRIM

STR$UPCASE

Overview of the STR$ Facility

Function

Extract a substring of a string

Prefix a string

Return the reciprocal of a decimal string

Replace a substring

Extract a substring of a string

Round or truncate a decimal string

Translate matched characters

Trim trailing blanks and tabs

Convert string to all uppercase

1-3

•

2
Introduction to String Manipulation (STR$)

Routines

This chapter explains in detail the following topics:

• Types of strings recognized by Run-Time Library routines

• Relationship of descriptor classes to string semantics

• Differences in string handling among the LIB$, OTS$, and STR$ facilities of
the Run-Time Library

• Conventions for reading and writing string arguments in the Run-Time
Library string routines

• Selection of the proper string manipulation routines

• Allocation and deallocation of dynamic string resources

2.1 String Semantics in the Run-Time Library
The semantics of a string refers to the conventions that determine how a string
is stored, written, and read. The Alpha AXP and VAX architectures support three
string semantics: fixed length, varying length, and dynamic length.

2.1.1 Fixed-Length Strings
Fixed-length strings have two attributes:

• An address

• A length

The length of a fixed-length string is constant. It is usually initialized when
the program is compiled or linked. After initialization, this length is read but
never written. When a Run-Time Library routine copies a source string into a
longer fixed-length destination string, the routine pads the destination string
with trailing blanks.

When you pass a string to a Run-Time Library routine, you pass the string by
descriptor. For a fixed-length string, the descriptor must contain this information:

• The descriptor class

• The data type of the string

• The length of the string

• The address of the beginning of the string

2-1

Introduction to String Manipulation {STR$) Routines
2.1 String Semantics in the Run-Time Library

In most cases, you will not have to construct an actual descriptor. By default,
most Open VMS AXP and Open VMS VAX languages pass strings by descriptor.
For information about how the language you are using handles strings, see your
language reference manual. For more information about descriptors used for
fixed-length strings, refer to Open VMS Programming Interfaces: Calling an
Open VMS Routine.

In contrast to Run-Time Library routines, system services do not
pad output strings. For this reason, when a program calls a system
service that returns a fixed-length string, the program should supply an
additional argument that indicates how many bytes the system service
actually deposited in the fixed-length buffer of the calling program. Some
system service routines have corresponding Run-Time Library routines
that provide the proper semantics for fixed-length, varying-length, and
dynamic output strings.

2.1.2 Varying-Length Strings
Varying-length strings have the following three attributes:

• A current length

• An address

• A maximum length

The current length of a varying-length string is stored in a two-byte field, called
CURLEN, preceding the text of the string. The address of the string points to the
beginning of this CURLEN field, not to the beginning of the string's text.

The maximum string length is a field in the string's descriptor. The maximum
string length field specifies how much space is allocated to the string in a
program. The maximum string length is fixed and does not change.

The value in the CURLEN field specifies how many bytes beyond the CURLEN
field are occupied by the string's text. The character positions beyond this range
are reserved for the growth of the string. Their contents are undefined.

For example, assume a varying string whose CURLEN is 3 and whose maximum
length is 6. If a string 'ABCD' is copied into this string, the result is 'ABCD'
and the CURLEN is changed to 4. If a string 'XYZ' is now copied into the
same varying string, the resulting string is 'XYZ' with a CURLEN of 3. The
maximum length is still 6. The bytes beyond the range designated by CURLEN
are undefined.

2.1.3 Dynamic-Length Strings

2-2

Dynamic-length strings have two attributes:

• A current length

• An address pointing to the beginning of the text

Theoretically, dynamic strings have unbounded length. The length field is an
unsigned value occupying two bytes, however, so that its maximum value is
65,535. Thus the length of a dynamic string is limited to 65,535 characters. In
most cases, a program allocates only the descriptor for this kind of string.

Introduction to String Manipulation (STR$) Routines
2.1 String Semantics in the Run-Time Library

The actual space for a dynamic-length string is allocated from heap storage by
the Run-Time Library. When a Run-Time Library routine copies a character
string into a dynamic string, and the currently allocated heap storage is not large
enough to contain the string, the currently allocated storage returns to a pool of
heap storage maintained by the string routines. Then the string routines obtain
a new area of the correct size. As a result of this process of deallocation and
reallocation, both the current-length field and the address portion of the string's
descriptor may change. Often, dynamic strings are the most convenient type to
write.

The Run-Time Library string manipulation routines are the only routines that
you should use to alter the length or address of a dynamic string. Do not use
LIB$GET_ VM for this purpose.

2.1.4 Examples
The following examples illustrate what happens when the string 'ABCDEF' (of
length 6) is copied into various destination strings.

• Fixed-length string.

If 'ABCDEF' is copied into a fixed-length string, three results are possible:

1. If the length of the output string is greater than the length of the source
string, the string is padded with trailing spaces.

Length of output string

Result

10

'ABCDEF

2. If the length of the output string is the same as that of the input string,
the string is simply copied with no modification.

Length of output string

Result

6

'ABCDEF'

3. If the length of the output string is less than the length of the source
string, truncation on the right occurs.

Length of output string

Result

• Varying-length string

3

'ABC'

If the same string ('ABCDEF') is copied into a varying-length string, two
results are possible:

1. If the MAXSTRLEN field of the destination is greater than or equal
to the length of the source, the input string is written into the output
string without modification, and the CURLEN (current length) field of the
output string becomes 6.

2. If the MAXSTRLEN field of the destination is less than the length of the
source string, the source string is truncated on the right and the CURLEN
field is rewritten to its current length. For example, if MAXSTRLEN = 4,
the resulting string contains 'ABCD' and CURLEN = 4.

2-3

Introduction to String Manipulation {STR$) Routines
2.1 String Semantics in the Run-Time Library

• Dynamic-length string

If a Run-Time Library routine copies the string 'ABCDEF 1 into a dynamic
destination string, three results are possible:

1. If the length of the destination string is greater than the length of the
source string (6), the result is a dynamic string of length 6 containing
'ABCDEF 1

• No padding takes place. The Run-Time Library may
deallocate the string and reallocate a new string closer in length to
the length of the source string.

2. If the length of the destination string is less than the length of the source
string, the result is also 'ABCDEF', with a length of 6. The Run-Time
Library deallocates the destination string and allocates a new string large
enough to hold the 6 characters.

3. If the destination string and source string are of equal length, a simple
copy is done. No allocation, deallocation, or padding takes place, and the
destination descriptor is not modified.

2.2 Descriptor Classes and String Semantics

2-4

A calling program passes strings to a Run-Time Library STR$ routine by
descriptor. That is, the argument list entry for an input or output string is
actually the address of a string descriptor. The calling program allocates a
descriptor for the input string that indicates the string's address and length, so
that the called routine can find the string's text and operate on it. The calling
program also allocates a descriptor for the output string. In addition to length
and address fields, each descriptor contains a field (DSC$B_CLASS) indicating
the descriptor's class. The STR$ routine reads the class field to determine
whether to write the output string as fixed length, varying length, or dynamic
string.

To determine the address and length of the data in the input string, Run-Time
Library routines call LIB$ANALYZE_SDESC or STR$ANALYZE_SDESC. LIB$
routines call LIB$ANALYZE_SDESC; STR$ routines call STR$ANALYZE_
SDESC, so that they can signal errors instead of returning a status.

The STR$ routines provide a centralized facility for analyzing string descriptors,
so that string-handling routines can function independently of the class of
the input string. This means that if the Run-Time Library recognizes new
string types, only the analysis routine needs to be changed, not the string
routines themselves. If you are writing a routine that recognizes all the
string types recognized by the Run-Time Library, your routine should first call
LIB$ANALYZE_SDESC or STR$ANALYZE_SDESC to obtain the address and
length of the input string.

You can also use the string descriptor analysis routines to find the length of
a returned string. Assume that your called routine calls one of the Run-Time
Library string-copying routines to create a new string. You now want the called
routine to return the actual length of the new string to the calling program.
The called routine calls LIB$ANALYZE_SDESC to compute this length. This
sequence of calls allows you to create the new string without knowing its ultimate
length at the time it is created.

Introduction to String Manipulation (STR$) Routines
2.2 Descriptor Classes and String Semantics

The Run-Time Library routines recognize the following classes of string
descriptors:

• Z-unspecified

• S-scalar, fixed-length string

• SD-decimal scalar

• VS-varying-length string

• D-dynamic string

• A-array

• NCA-noncontiguous array

For a detailed description of these descriptor classes and their fields, see the
Open VMS Calling Standard.

Table 2-1 indicates how the Run-Time Library routines access the fields of the
descriptor for input and output string arguments. Given the class of the string
and the field of the descriptor, the table shows whether the routine reads, writes,
or modifies the field.

Table 2-1 String Passing Techniques Used by the Run-Time Library

String Descriptor Fields

String Type Class Length Pointer

Input Argument to Routines

Input string passed by descriptor Read Read Read

Output Argument from Routines; Called Routine Assumes the Descriptor Class

Output string passed by descriptor,
fixed-length

Output string passed by descriptor,
dynamic

Ignored

Ignored

Read

Read, can be
modified

Read

Read, can be modified

Output Argument from Routines; Calling Program Specifies the Descriptor Class in the Descriptor

Output string, fixed-length­
DSC$K_CLASS = S, Z, A, NCA, SD

Output string, dynamic­
DSC$K_CLASS_D

Output string, varying-length­
DSC$K_CLASS_ VS

Read

Read

Read

Read

Read, can be
modified

MAXSTRLEN is
read; CURLEN is
modified

2.2.1 Conventions for Reading Input String Arguments

Read

Read, can be modified

Read

When a calling program passes an input string as an argument to a Run-Time
Library routine, the argument list entry is the address of a descriptor. The called
routine examines the class code field of the descriptor to determine where the
routine looks to find the length of the string and the first byte of the string's
text. For each descriptor class, Table 2-2 indicates which field of the descriptor
the routine uses to locate the text and length of the string. For diagrams of the
descriptors, see the OpenOpen VMS Calling Standard.

., c

Introduction to String Manipulation (STR$) Routines
2.2 Descriptor Classes and String Semantics

Table 2-2 How Run-Time Library Routines Read Strings

Class Length Address of First Byte of Data

z DSC$W _LENGTH DSC$A_POINTER

s DSC$W _LENGTH DSC$A_POINTER

D DSC$W _LENGTH DSC$A_POINTER

A DSC$L_ARSIZE DSC$A_POINTER

SD DSC$W _LENGTH DSC$A_POINTER

NCA DSC$L_ARSIZE DSC$A_POINTER

vs Word at DSC$A_POINTER Value of DSC$A_POINTER + 2
(CURLEN field) (Byte after CURLEN field)

Note:

• If the descriptor class is NCA, it is assumed that the string is actually
contiguous.

• If the descriptor class is A or NCA, the element size is assumed to be one
byte.

• If the descriptor class is A or NCA, and the array being passed is
multidimensional, you should be aware of how your language stores arrays
(by column or by row).

2.2.2 Semantics for Writing Output String Arguments
Normally, Run-Time Library routines return the result of an operation in one of
two ways:

• The called routine returns the result as a function value in RO/Rl. If the
result is too large to fit in RO/Rl, it is returned as a function value in the
first position in the argument list, and the other arguments are shifted one
position to the right.

• The called routine returns the result as an output argument. The calling
program passes to the called routine an argument naming a variable in which
the routine will write the output string. In each RTL routine, the access field
of an output argument contains "write only".

The STR$ routines that produce string results use the first method to pass the
results back to the calling program. Because a return string, by definition, does
not fit in RO/Rl, the function value from a STR$ routine is placed in the first
position in the argument list.

On the other hand, the string manipulation routines in the LIB$ and OTS$
facilities use the second method. They return their results as output arguments.

For example, there are three entry points for the string-copying routine,
- LIB$SCOPY_DXDX, OTS$SCOPY_DXDX, and STR$COPY_DX. These copy
the source string (source-string) to the destination string (destination-string).
Their formats are as follows:

LIB$SCOPY _DXDX(SOURCE-STRING ,DESTINATION-STRING)
OTS$SCOPY _DXDX(SOURCE-STRING ,DESTINATION-STRING)
STR$COPY _DX(DESTINATION-STRING ,SOURCE-STRING)

Introduction to String Manipulation (STA$) Routines
2.2 Descriptor Classes and String Semantics

Because the STR$ entry point places the result string in the first position, you
can call STR$COPY_DX using a function reference in languages that support
string functions. In FORTRAN, for example, you can use a function reference to
invoke STR$COPY_DX in the following two ways:

CHARACTER*80 STR$COPY_DX

RETURN_STATUS = STR$COPY_DX(DESTINATION_STRING, SOURCE_STRING)

or

DESTINATION_STRING = STR$COPY_DX(SOURCE_STRING)

If you use the second form, you cannot access the return status, which is used to
indicate truncation.

If you use a function reference to invoke a string manipulation routine in a
language that does not support the concept of a string function (such as MACRO,
BLISS, and Pascal), you must place the destination string variable in the
argument list. In Pascal, for example, you can use a function reference to invoke
STR$COPY_DX as follows:

STATUS := STR$COPY_DX(DESTINATION_STRING, SOURCE_STRING);

However, the following statement results in an error:

DESTINATION_STRING := STR$COPY_DX(SOURCE_STRING)

In addition to allocating a variable for the output string, the calling program
must allocate the space for and fill in the fields of the output string descriptor at
compile, link, or run time. High-level languages do this automatically.

When a Run-Time Library routine returns an output string argument to the
calling program, the argument list entry is the address of a descriptor. The
routine determines the semantics of the output string (fixed, varying, or dynamic)
by examining the class of the descriptor for the destination string. Given the
class of the output string's descriptor, Table 2-3 specifies the semantics used by
Run-Time Library routines when writing the string.

Table 2-3 Semantics and Descriptor Classes

Class

z
s
D

A

SD

NCA

vs

Description

Unspecified

Scalar, string

Dynamic string

Array

Scalar decimal

Noncontiguous
array

Varying string

Restrictions

Treated as· class S

None

String length < 64K bytes (DSC$W _LENGTH < 64K)

Array is one-dimensional (DSC$B_DIMCT = 1)
String length < 64K bytes (DSC$L_ARSIZE < 64K)
Length of array elements is one byte (DSC$W _LENGTH = 1)

DSC$B_DIGITS and DSC$B_SCALE are ignored

Array is one-dimensional (DSC$B_DIMCT = 1)
String length < 64K bytes (DSC$L_ARSIZE < 64K)
Array is contiguous (DSC$L_Sl = DSC$W_LENGTH)
Length of array elements is one byte (DSC$W _LENGTH = 1)

Current length less than maximum length of string
(CURLEN <= DSC$W _MAXSTRLEN)

Semantics

Fixed-length string

Fixed-length string

Dynamic string

Fixed-length string

Fixed-length string

Fixed-length string

Varying string

When a called routine returns a string whose length cannot be determined by
the calling routine, the calling routine should also pass an optional argument to
contain the output length. This argument should be an unsigned 16-bit integer.

2-7

Introduction to String Manipulation {STR$) Routines
2.2 Descriptor Classes and String Semantics

If the output string is a fixed-length string, the length argument would reflect the
number of characters written, not counting the fill characters.

The output length argument is useful, for instance, when your program is reading
variable-length records. The program can read the input strings into a buffer
that is large enough to contain the largest. When you wish to perform the next
operation on the contents of the buffer, the length argument indicates exactly
how many characters have been read, so that the program does not need to
manipulate the whole buffer.

For example, LIB$GET_INPUT has the optional argument resultant-length.
If LIB$GET_INPUT is called with a fixed-length, five-character string as an
argument, and the routine reads a record containing 'ABC ' , then resultant­
length will have a value of 3 and the output string will be 'ABC ' . But if the
routine reads a record containing the value 'ABCDEFG•, resultant-length will
have a value of 5, and the output string will be 'ABCDE'. In either case, the
calling program will know exactly how many characters (not counting fillers) the
routine has read.

A routine such as STR$COPY_DX does not need the length argument, because
the calling program can determine the length of the output string. If the output
string is dynamic, the length is the same as the input string length. If the output
string is fixed-length, the length is the shorter of the two input lengths.

2.3 Selecting String Manipulation Routines
To perform a given string manipulation operation, you can often choose one of
several routines from the Run-Time Library. The LIB$, OTS$, and STR$ facilities
all contain string copying and dynamic string allocation routines. Furthermore, a
MACRO or BLISS program can call several of these routines using either a JSB
or CALL entry point.

You should consider the factors discussed below when choosing the routine to
perform the desired operation.

2.3.1 Efficiency

2-8

One of the major considerations in choosing among several routines is the
efficiency of the various options.

In general, LIB$ and STR$ routines execute more efficiently than the
corresponding OTS$ routines. OTS$ routines usually invoke the LIB$ entry
point to perform an operation.

JSB entry points usually execute more efficiently than CALL entry points.
However, a high-level language cannot explicitly access a JSB entry point.
Further, a JSB entry point does not establish a stack frame and executes entirely
in the environment of the calling program. This means, for instance, that the
called routine cannot establish its own condition handler, so it cannot regain
control if an exception occurs during execution. Also, some of the efficiency
gained by using the JSB may be lost because the calling routine must explicitly
save all of the registers that the called routine uses.

Note that the Open VMS AXP version of the STR$ facility does not provide JSB
entry points. However, translated Open VMS VAX images that use the JSB entry
points will run correctly on an Open VMS AXP system.

Introduction to String Manipulation (STR$) Routines
2.3 Selecting String Manipulation Routines

Some routines perform a specific operation that is a subset of a more general
capability. These more specialized routines are usually more efficient.
For example, if you want to join two strings together, STR$APPEND and
STR$PREFIX are more specific, and more efficient, than STR$CONCAT.
Similarly, STR$LEFT and STR$RIGHT are subsets of the capabilities of
STR$POS_EXTR.

2.3.2 Argument Passing
The mechanism by which a routine passes or receives arguments may also help
you to decide among several routines that perform basically the same function.

Routines in the LIB$ and STR$ facilities pass scalar input arguments by
reference to CALL entry points and by immediate value to JSB entry points.
OTS$ routines pass scalar input arguments by immediate value to all entry
points. For most high-level languages, the default passing mechanism is by
reference. Thus if you call a LIB$ or STR$ routine from one of these languages,
it will not be necessary to specify the passing mechanism for input scalar
arguments.

Some routines require you to set up and pass more arguments than others.
For example, some use a single string descriptor, while others require separate
arguments for the length and the address of the string. Which routine you choose
then depends on the form of the information already available in your program.

2.3.3 Error Handling
Routines from the LIB$, OTS$, and STR$ facilities handle errors in string
copying differently:

• LIB$

The LIB$ string-copying routines return a completion status. When an output
string must be truncated and its length depends on input arguments, LIB$
routines consider this to be a partial success; they therefore return LIB$_
STRTRU instead of a severe error. This process corresponds to the convention
of many higher-level languages, which do not consider truncation to be an
error.

• STR$

The STR$ string-copying routines generally signal errors instead of returning
a completion status. In the case of truncation errors, STR$ routines return
an error status with a severity of WARNING (STR$_TRU). STR$ routines
consider range errors to be qualified success.

• OTS$

The OTS$ string-copying routines also signal errors that are considered fatal
(such as invalid descriptor class). However, they are designed to leave the
registers as they would be after a VAX MOVC5 instruction. Thus, the call
entry point, like MOVC5, returns in RO the number of bytes in the source
string that were not moved to the destination string. The JSB entry points
for OTS$ string-copying routines also leave registers Rl through R5 as they
would be after a MOVC5 instruction. See the VAX Architecture Reference
Manual for a complete description of the MOVC5 instruction.

2-9

Introduction to String Manipulation (STR$) Routines
2.3 Selecting String Manipulation Routines

Table 2-4 indicates the errors that each facility considers severe, and the
corresponding message:

Table 2-4 Severe Errors, by Facility

Error LIB$_

Fatal internal error

Illegal string class

Insufficient virtual memory

FATERRLIB

INVSTRDES

INSVIRMEM

OTS$_

FATINTERR

INVSTRDES

INSVIRMEM

STR$_

FATINTERR

ILLSTRCLA

INSVIRMEM

Some Run-Time Library routines require you to specify the length of a string
or the position of a character within a string. The maximum length for a string
in Open VMS is 65,535 characters. When you refer to character positions in a
string, the first position is 1. Given a string with length L, containing a substring
specified by character positions M to N, the following evaluation rules apply:

• If M is less than 1, M is considered to equal 1.

• If M is greater than L, the substring specified is the null string.

• If N is greater than L, N is considered to equal the length of the source string.

• If M is greater than N, the substring specified is the null string.

When specifying a substring of length L, the following applies:

• If L is less than zero, the substring specified is the null string. (A null string
is a descriptor with zero length. A descriptor with a nonzero length and a
zero pointer generates an error and yields unspecified results.)

If any of these evaluation rules applies, the range error status (qualified success)
is returned. STR$POSITION represents the exception to this convention. This
routine returns a function value giving the character position of a substring
within a string. If the function value is zero, the substring was not found.

2.4 Allocating Resources for Dynamic Strings

2-10

This section tells how to use the Run-Time Library string resource allocation
routines. These routines allocate virtual memory for a dynamic string and place
the address of the allocated memory in a descriptor.

Dynamic strings may be the most convenient type to write, since you need not
specify constant length, maximum length, or position for them. However, there
are some restrictions on dynamic strings.

• They may cause program execution to be slower at run time.

• They require larger address space.

• They are not supported by all Open VMS AXP and Open VMS VAX languages.

In most cases, when you call a Run-Time Library routine to manipulate dynamic
strings, the Run-Time Library routine itself allocates the required memory for the
string. Your program needs to allocate only the descriptors.

For example, if you are copying a source string into a dynamic destination string,
simply use one of the library's string-copying routines. Copy the input string into
a dynamic string whose length and address have been initialized to zero. The
string-copying routine will then itself allocate the space that the calling program
needs.

Introduction to String Manipulation (STR$) Routines
2.4 Allocating Resources for Dynamic Strings

However, if your program must explicitly construct or modify a dynamic string
descriptor, it must use the Run-Time Library allocation and deallocation routines.
This technique may be necessary, for instance, if you are constructing a string out
of components that are not themselves in string form. Further, you can use one
of the deallocation routines to free the dynamic string after the string resources
are no longer needed, in order to optimize the program's use of resources.

The Run-Time Library provides eight entry points for string resource allocation
and deallocation, all with slightly different input arguments, calling techniques,
or methods of indicating errors. The following lists summarize these routines and
their functions.

The following routines allocate a specified number of bytes of dynamic virtual
memory to a specified string descriptor.

Routine

LIB$SGET1_DD

OTS$SGET1_DD

STR$GET1_DX

JSB Entry Point

LIB$SGET1_DD_R6

OTS$SGET1_DD _R6

STR$GET1_DX_R4

The following routines return one dynamic string area to free storage, and set
DSC$A_POINTER and DSC$W _LENGTH to zero.

Routine

LIB$SFREE l_DD

OTS$SFREE1_DD

STR$FREE1_DX

JSB Entry Point

LIB$SFREE l_DD6

OTS$SFREE1_DD6

STR$FREE1_DX_R4

The following routines return one or more dynamic string areas to free storage,
and set DSC$A_POINTER and DSC$W _LENGTH to zero.

Routine

LIB$SFREEN_DD

OTS$SFREEN_DD

JSB Entry Point

LIB$SFREEN_DD6

OTS$SFREEN_DD6

If you find it necessary to call the dynamic string allocation routines, there are
several factors to consider.

• When your program calls a string allocation routine, it needs to allocate space
only for the string descriptor before making the call. Your program does this
using the statement of the particular language, either statically at compile
time, or dynamically in local stack storage or heap storage.

• If your routine explicitly allocates dynamic string descriptors in stack storage,
it must explicitly free the associated dynamic string areas by calling the
LIB$SFREE1_DD, OTS$SFREE1_DD, or STR$FREE1_DX routine. Then
your routine must free the storage for the descriptor. After both areas have
been freed, your routine can return to the calling program. If the deallocation
is not done, the dynamic string area becomes unavailable when the RET
instruction removes the descriptors that point to the string area.

2-11

Introduction to String Manipulation (STR$) Routines
2.4 Allocating Resources for Dynamic Strings

• If a routine has explicitly allocated dynamic string areas, and the routine is
then unwound by the condition handling facility, the allocated address space
cannot be referenced again. For this reason, your program should establish
a handler that will free the associated dynamic string areas when the SS$_
UNWIND condition is signaled. The handler can free these areas by calling
one of the deallocation routines. This technique is especially important if a
large amount of address space is involved, or if the routine allocates space
within a repeating loop.

You can call the string resource allocation routines only from user mode, at AST
or non-AST level. However, be extremely careful if you manipulate dynamic
strings at AST level. The string manipulation routines in the Run-Time Library
do not prevent the strings that they are manipulating at non-AST level from
being modified at AST level.

For example, consider the case in which a string manipulation routine has
calculated the lengths and addresses involved in a concatenation operation. This
string manipulation routine may be interrupted by an AST. The user, at AST
level, may write to the same string, changing its length and address. It is then
possible to resume execution of the routine with addresses that are no longer
allocated or string lengths that are no longer valid. For this reason, if you use
dynamic strings at AST level, you should allocate, use, and deallocate them
within the AST code.

The dynamic string manipulation routines are intended for use at user mode only.
If you need to manipulate dynamic strings at another access mode, you should
allocate and deallocate storage for each string at that access mode to avoid side
effects. Link each segment of your program that will run at a different access
mode with the /NOSYSSHR qualifier. In this way, you will establish a separate
copy of the string database for each access mode.

2.4.1 String Zone

2-12

All virtual memory for dynamic strings is allocated from a Run-Time Library zone
called the string zone.

The string zone has the following benefits:

• Efficient memory utilization.

• Allocation and deallocation for long strings (more than 136 bytes) is twice as
fast.

• Elimination of paging contention with the default zone by isolation of the
string virtual memory accesses to a separate zone. A direct side effect of this
is that corruptions caused by writing into previously freed strings will no
longer affect items allocated in the default zone, directly easing the debugging
effort for such problems.

The following table shows attribute values for the string zone.

Attribute

Algorithm

Number of lookaside lists

Area of initial size

Area of extension size

Value

Quick fit

17 (short strings from 8 to 136 bytes)

4 pages

32 pages

Attribute

Block size

Alignment

Smallest block size

Boundary tags

Page limit

Fill on allocate

Fill on free

Introduction to String Manipulation (STR$) Routines
2.4 Allocating Resources for Dynamic Strings

Value

8 bytes

Quadword boundary

16 bytes (includes boundary tags)

Boundary tags are used for long strings

No page limit

No fill on allocate

No fill on free

2-13

STR$ Reference Section

This section provides detailed descriptions of the routines provided by the
Open VMS RTL String Manipulation (STR$) Facility.

STR$ADD

STR$ADD-Add Two Decimal Strings

Format

Returns

Arguments

The Add Two Decimal Strings routine adds two decimal strings of digits.

STR$ADD asign ,aexp ,adigits ,bsign ,bexp ,bdigits ,csign ,cexp ,cdigits

Open VMS usage
type
access
mechanism

asign

cond_value
longword (unsigned)
write only
by value

Open VMS usage longword_ unsigned
type longword (unsigned)
access read only
mechanism by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword containing this sign. Zero is considered positive; 1 is considered
negative.

a exp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Power of 10 by which adigits is multiplied to get the absolute value of the first
operand. The aexp argument is the address of a signed longword containing this
exponent.

adigits
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Text string of unsigned digits representing the absolute value of the first operand
before aexp is applied. The adigits argument is the address of a descriptor
pointing to this string. This string must be an unsigned decimal number.

bsign
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
read only
by reference

Sign of the second operand. The bsign argument is the address of an unsigned
longword containing the second operand's sign. Zero is considered positive; 1 is
considered negative.

STR-3

STR$ADD

Description

STR-4

bexp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Power of 10 by which bdigits is multiplied to get the absolute value of the second
operand. The bexp argument is the address of a signed longword containing the
second operand's exponent.

bdigits
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Text string of unsigned digits representing the absolute value of the second
operand before bexp is applied. The bdigits argument is the address of a
descriptor pointing to this string. This string must be an unsigned decimal
number.

csign
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by reference

Sign of the result. The csign argument is the address of an unsigned longword
containing the result's sign. Zero is considered positive; 1 is considered negative.

cexp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
write only
by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the result.
The cexp argument is the address of a signed longword containing this exponent.

cdigits
Open VMS usage
type
access
mechanism

char _string
character string
write only
by descriptor

Text string of unsigned digits representing the absolute value of the result before
cexp is applied. The cdigits argument is the address of a descriptor pointing to
this string. This string is an unsigned decimal number.

STR$ADD adds two strings of decimal numbers (a and b). Each number to be
added is passed to STR$ADD in three arguments:

1. xdigits-the string portion of the number

2. xexp-the power of ten needed to obtain the absolute value of the number

STR$ADD

3. xsign-the sign of the number

The value of the number xis derived by multiplying xdigits by 10xexp and
applying xsign. Therefore, if xdigits is equal to '2' and xexp is equal to 3 and
xsign is equal to 1, then the number represented in the x arguments is 2 * 103

plus the sign, or -2000.

The result of the addition (c) is also returned in those three parts.

Condition Values Returned

SS$_NORMAL

STR$_TRU

Routine successfully completed.

String truncation warning. The fixed-length
destination string could not contain all the
characters.

Condition Values Signaled

LIB$_INVARG

STR$_FATINTERR

Invalid argument.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

STR$_INSVIRMEM Insufficient virtual memory. STR$ADD could not
allocate heap storage for a dynamic or temporary
string.

STR$_ WRONUMARG Wrong number of arguments.

100 ! +
This is a sample arithmetic program

! showing the use of STR$ADD to add
! two decimal strings.
!-

ASIGN% = 1%
AEXP% = 3%
ADIGITS$ = '1'
BSIGN% = 0%
BEXP% = -4%
BDIGITS$ = '2'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = '0'
PRINT "A= "; ASIGN%; AEXP%; ADIGITS$
PRINT "B = "; BSIGN%; BEXP%; BDIGITS$
CALL STR$ADD (ASIGN%, AEXP%, ADIGITS$, &

BSIGN%, BEXP%, BDIGITS$, &
CSIGN% I CEXP% I CDIGITS$)

PRINT "C = "; CSIGN%; CEXP%; CDIGITS$
999 END

STR-5

STR$ADD

STR-6

This BASIC example uses STR$ADD to add two decimal strings, where the
following values apply:

A= -1000 (ASIGN = 1, AEXP = 3, ADIGITS = I l 1)
B = .0002 (BSIGN = 0, BEXP = -4, BDIGITS = I 2 I)

The output generated by this program is listed below; no~ that the decimal value
of C equals -999.9998 (CSIGN = 1, CEXP = -4, CDIGITS = 1 9999998 1

).

A = 1 3 1
B = 0 -4 2
c = 1 -4 9999998

STR$ANALYZE_SDESC

STR$ANALYZE_SDESC-Analyze String Descriptor

Format

The Analyze String Descriptor routine extracts the length and starting address of
the data for a variety of string descriptor classes.

STR$ANALYZE_SDESC input-descriptor , word-integer-length ,data-address

corresponding jsb entry point

STR$ANALYZE_SDESC_R1

Returns

Arguments

Open VMS usage
type
access
mechanism

cond_value
word (unsigned)
write only
by value

Length of the data. The return value is the same value returned to the word­
integer-length argument.

input-descriptor
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Input descriptor from which STR$ANALYZE_SDESC extracts the length of the
data and the address at which the data starts. The input-descriptor argument
is the address of a descriptor pointing to the input data.

word-integer-length
Open VMS usage word_ unsigned
type word (unsigned)
access write only
mechanism by reference for CALL entry point, by value for JSB entry

point

Length of the data; this length is extracted from the descriptor by
STR$ANALYZE_SDESC. The word-integer-length argument is the address
of an unsigned word integer into which STR$ANALYZE_SDESC writes the data
length.

data-address
Open VMS usage address
type longword (unsigned)
access write only
mechanism by reference for CALL entry point, by value for JSB entry

point

Address of the data; this address is extracted from the descriptor by
STR$ANALYZE_SDESC. The data-address argument is an unsigned longword
into which STR$ANALYZE_SDESC writes the address of the data.

STR-7

STR$ANALYZE_SDESC

Description

STR$ANALYZE_SDESC takes as input a descriptor argument and extracts from
the descriptor the length of the data and the address at which the data starts
for a variety of string descriptor classes. See LIB$ANALYZE_SDESC for a list of
classes.

STR$ANALYZE_SDESC returns the length of the data in the word-integer­
length argument and the starting address of the data in the data-address
argument.

STR$ANALYZE_SDESC signals an error if an invalid descriptor class is found.

Condition Values Signaled

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

STR-8

STR$APPEND

STR$APPEND-Append String

Format

Returns

Arguments

The Append String routine appends a source string to the end of a destination
string. The destination string must be a dynamic or varying-length string.

STR$APPEND destination-string ,source-string

Open VMS usage
type
access
mechanism

destination-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char_string
character string
write only
by descriptor

Destination string to which STR$APPEND appends the source string. The
destination-string argument is the address of a descriptor pointing to the
destination string. This destination string must be dynamic or varying-length.

source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Source string that STR$APPEND appends to the end of the destination string.
The source-string argument is the address of a descriptor pointing to this source
string.

Condition Values Returned

SS$_NORMAL

Condition Values Signaled

STR$_FATINTERR

Routine successfully completed.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

STR-9

STR$APPEND

Example

STR-10

STR$_ILLSTRCLA

STR$_INSVIRMEM

STR$_STRTOOLON

10 !+
! This example program uses

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$APPEND
could not allocate heap storage for a dynamic or
temporary string.
The combined lengths of the source and
destination strings exceeded 65,535.

! STR$APPEND to append a source
! string to a destination string.
!-

DST$ = 'DOG/'
SRC$ = 'CAT'
CALL STR$APPEND {DST$, SRC$)
PRINT II DST$ = II i DST$
END

This BASIC example uses STR$APPEND to append a source string 1 CAT 1
, to a

destination string 'DOG/' .

The output generated by this program is as follows:

DST$ = DOG/CAT

STR$CASE_BLIND_COMPARE

STR$CASE_BLIND_COMPARE-Compare Strings
Without Regard to Case

Format

Returns

Arguments

Description

The Compare Strings Without Regard to Case routine compares two input strings
of any supported class and data type without regard to whether the alphabetic
characters are uppercase or lowercase.

STR$CASE_BLIND_COMPARE first-source-string ,second-source-string

Open VMS usage longword_signed
type longword (signed)
access write only
mechanism by value

The values returned by STR$CASE_BLIND_COMPARE and the conditions to
which they translate are as follows:

Returned Value Condition

-1

0

1

First-source-string is less than second-source-string

Both are the same (with blank fill for shorter string)

First-source-string is greater than second-source­
string

first-source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

First string. The first-source-string argument is the address of a descriptor
pointing to the first string.

second-source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Second string. The second-source-string argument is the address of a
descriptor pointing to the second string.

STR$CASE_BLIND_COMPARE does not distinguish between uppercase and
lowercase characters. The contents of both strings are converted to uppercase
before the strings are compared, but the source strings themselves are not
changed. STR$CASE_BLIND_COMPARE uses the DEC Multinational Character
Set.

STR-11

STR$CASE_BLIND_COMPARE

Condition Value Signaled

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Example

STR-12

PROGRAM CASE_BLIND(INPUT, OUTPUT);

{+}
{ This program demonstrates the use of
{ STR$CASE_BLIND_COMPARE.
{
{ First, declare the external function.
{-}

FUNCTION STR$CASE_BLIND_COMPARE(STR1 : VARYING
[A] OF CHAR; STR2 : VARYING [B] OF
CHAR) : INTEGER; EXTERN;

{+}
{ Declare the variables to be used in the
{ main program.
{-}

VAR
STRINGl
STRING2
RET_STATUS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read values for
{ the strings to be compared. Call
{ STR$CASE_BLIND_COMPARE. Print the
{ result.
{ - }

BEGIN
WRITELN('ENTER THE FIRST STRING: ');
READLN (STRINGl) ;
WRITELN('ENTER THE SECOND STRING: ');
READLN (STRING2) ;
RET_STATUS := STR$CASE_BLIND_COMPARE(STRING1, STRING2);
WRITELN(RET_STATUS);

END.

This Pascal example shows how to call STR$CASE_BLIND_COMPARE to
determine whether two strings are equal regardless of case. One example of the
output of this program is as follows:

$ RUN CASE_BLIND
ENTER THE FIRST STRING: KITTEN
ENTER THE SECOND STRING: kitTeN

0

STR$COMPARE

STR$COMPARE-Compare Two Strings

Format

Returns

Arguments

Description

The Compare Two Strings routine compares the contents of two strings.

STR$COMPARE first-source-string ,second-source-string

Open VMS usage longword_signed
type longword integer (signed)
access write only
mechanism by value

The values returned by STR$COMPARE and the conditions to which they
translate are as follows:

Returned Value Condition

-1

0

1

First-source-string is less than second-source-string
First-source-string is equal to second-source-string

First-source-string is greater than second-source­
string

first-source-string
Open VMS usage char _string
type character string
access read only
mechanism by descriptor

First string. The first-source-string argument is the address of a descriptor
pointing to the first string.

second-source-string
Open VMS usage char _string
type character string
access read only
mechanism by descriptor

Second string. The second-source-string argument is the address of a
descriptor pointing to the second string.

STR$COMPARE compares two strings for the same contents. If the strings
are unequal in length, the shorter string is considered to be filled with blanks
to the length of the longer string before the comparison is made. This routine
distinguishes between uppercase and lowercase alphabetic characters.

STR-13

STR$COMPARE

Condition Value Signaled

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Example

STR-14

100 EXTERNAL INTEGER FUNCTION STR$COMPARE
SRC1$ = 'ABC'
SRC2$ = 'BCD

!+
Note that STR$COMPARE will treat SRC1$ as if it were the same
length as SRC2$ for the purpose of the comparison. Thus, it

! will treat the contents of SRC1$ as 'ABC '. However, it
! will only 'treat' the contents as longer; the contents of

the source string are not actually changed.
!-

I% = STR$COMPARE(SRC1$, SRC2$)
IF I% = 1 THEN RESULT$ = ' IS GREATER THAN '
IF I% = 0 THEN RESULT$ = I IS EQUAL TO I

IF I% = -1 THEN RESULT$ = I IS LESS THAN I

PRINT SRC1$; RESULT$; SRC2$
999 END

This BASIC program uses STR$COMPARE to compare two strings. The output
generated by this program is as follows:

ABC IS LESS THAN BCD

STR$COMPARE_EQL

STR$COMPARE_EQL-Compare Two ~trings for Equality

Format

Returns

Arguments

The Compare Two Strings for Equality routine compares two strings to see if they
have the same length and contents. Uppercase and lowercase characters are not
-considered equal.

STR$COMPARE_EQL first-source-string ,second-source-string

Open VMS usage longword_ unsigned
type longword (unsigned)
access write only ,
mechanism by value

The values returned by STR$COMPARE and the conditions to which they
translate are as follows:

Returned Value Condition

0 The length and the contents of first-source-string are
equal to the• length and contents of second-source­
string.

1 Either the length of first-source-string is not equal
to the length of second-source-string, or the contents
of first-source-string are not equal to the contents of
second-source-string, or both.

first-source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

First source string. The first-source-string argument is the address of a
descriptor pointing to the first source string.

second-source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Second source string. The second-source-string argument is the address of a
descriptor pointing to the second source string.

STR-15

STR$COMPARE_EQL

Condition Values Signaled

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Example

STR-16

PROGRAM COMPARE_EQL(INPUT, OUTPUT);

{+}
{ This program demonstrates the use of
{ STR$COMPARE_EQL to compare two strings.
{ Strings are considered equal only if they
{ have the same contents and the same length.
{
{ First, declare the external function.
{ - }

FUNCTION STR$COMPARE_EQL(SRC1STR : VARYING
[A) OF CHAR; SRC2STR : VARYING [BJ
OF CHAR) : INTEGER; EXTERN;

{+}
{ Declare the variables used in the main program.
{ - }

VAR
STRINGl
STRING2
RET_STATUS

VARYING [256) OF CHAR;
VARYING [256) OF CHAR;
INTEGER;

{+}
{ Begin the main program. Read the strings
{ to be compared. Call STR$COMARE_EQL to compare
{ the strings. Print the result.
{ - }

BEGIN
WRITELN('ENTER THE FIRST STRING: ');
READLN (STRINGl) ;
WRITELN('ENTER THE SECOND STRING: ');
READLN (STRING2) ;
RET_STATUS := STR$COMPARE_EQL(STRING1, STRING2);
WRITELN(RET_STATUS);

END.

This Pascal example demonstrates the use of STR$COMPARE_EQL. A sample of
the output generated by this program is as follows:

$ RUN COMPARE_EQL
ENTER THE FIRST STRING:
ENTER THE SECOND STRING:

1

frog
Frogs

STR$COMPARE_MULTI

STR$COMPARE_MULTl-Compare Two Strings for Equality Using
Multinational Character Set

Format

Returns

Arguments

The Compare Two Strings for Equality Using Multinational Character Set
routine compares two character strings for equality using the DEC Multinational
Character Set.

STR$COM PAR E_M UL Tl first-source-string ,second-source-string [,flags-value]
[,foreign-language]

Open VMS usage longword_signed
type longword (signed)
access write only
mechanism by value

The values returned by STR$COMPARE_MULTI and the. conditions to which
they translate are as follows:

Returned Value Condition

-1

0

First-source-string is less than second-source-string.

Both strings are the same; the shorter string is blank
filled.

1 First-source-string is greater than second-source­
string.

first-source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

First string in the comparison. The first-source-string argument is the address
of a descriptor pointing to the first string.

second-source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Second string in the comparison. The second-source-string argument is the
address of a descriptor pointing to the second string.

flags-value
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by value

~TQ_17

STR$COMPARE_MULTI

Description

A single flag bit. The flags-value argument is a signed longword integer that
contains this flag bit. The default value of flags-value is zero; in other words,
flags-value is case sensitive.

Value Meaning

0 Uppercase and lowercase characters are not equivalent (in other words,
case sensitive.)

1 Uppercase and lowercase characters are equivalent (in other words,
case blind.)

foreign-language
Open VMS usage
type

longword_ unsigned
longword (unsigned)
read only access

mechanism by value

Indicator that determines the foreign language table to be used. The foreign­
language argument is an unsigned longword that contains this foreign language
table indicator. The default value of foreign-language is 1.

Value Language

1 Multinational table

2 Danish table

3 Finnish/Swedish table

4 German table

5 Norwegian table

6 Spanish table

STR$COMPARE_MULTI compares two character strings to see if they have the
same contents. Two strings are "equal" if they contain the same characters in
the same sequence, even if one of them is blank filled to a longer length than the
other. The DEC Multinational Character Set, or foreign language variations of
the DEC Multinational Character Set, are used in the comparison.

See the Open VMS I I 0 User's Reference Manual for more information about the
DEC Multinational Character Set.

Condition Values Signaled

STR$_ILLSTRCLA Illegal string class. Severe error. The descriptor
of first-source-string and/ or second-source­
string contains a class code that is not supported
by the Open VMS Calling Standard.

LIB$_INVARG Invalid argument. Severe error.

STR-18

STR$CONCAT

STR$CONCAT-Concatenate Two or More Strings

Format

Returns

Arguments

The Concatenate Two or More Strings routine concatenates all specified source
strings into a single destination string.

STR$CONCAT destination-string ,source-string [,source-string ...]

Open VMS usage
type
access
mechanism

destination-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char _string
character string
write only
by descriptor

Destination string into which STR$CONCAT concatenates all specified source
strings. The destination-string argument is the address of a descriptor pointing
to this destination string.

source-string
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

First source string; STR$CONCAT requires at least one source string. The
source-string argument is the address of a descriptor pointing to the first source
string. The maximum number of source strings that STR$CONCAT allows is 254.

source-string
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Additional source strings; STR$CONCAT requires at least one source string. The
source-string argument is the address of a descriptor pointing to the additional
source string. The maximum number of source strings that STR$CONCAT allows
is 254.

STR$CONCAT

Description

STR$CONCAT concatenates all specified source strings into a single destination
string. The strings can be of any class and data type, provided that the length
fields of the descriptors indicate the lengths of the strings in bytes. You must
specify at least one source string, and you can specify up to 254 source strings.
The maximum length of the concatenated string is 65,535 bytes.

A warning status is returned if one or more input characters were not copied to
the destination string.

Condition Values Returned

SS$_NORMAL

STR$_TRU

Condition Values Signaled

STR$_FATINTERR

STR$_ILLSTRCLA

STR$_INSVIRMEM

STR$_STRTOOLON

STR$_ WRONUMARG

Normal successful completion. All characters in
the input strings were copied into the destination
string.

String truncation warning. One or more input
characters were not copied into the destination
string. This can happen when the destination is
a fixed-length string.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$CONCAT
could not allocate heap storage for a dynamic or
temporary string.

String length exceeds 65,535 bytes.

Wrong number of arguments. You tried to pass
fewer than two or more than 255 arguments to
STR$CONCAT.

Examples

1. 10 !+

!-

This example program uses STR$CONCAT
to concatenate four source strings into a
single destination string.

EXTERNAL INTEGER FUNCTION STR$CONCAT
STATUS%= STR$CONCAT (X$, 'A' I 'B' I 'C' I 'D')
PRINT "X$ = ";X$
END

The output generated by this BASIC program is as follows:

X$ = ABCD

STR$CONCAT

STR$COPV _,OX

STR$COPY _DX-Copy a Source String Passed by Descriptor to a
Destination String

Format

The Copy a Source String Passed by Descriptor to a Destination String routine
copies a source string to a destination string. Both strings are passed by
descriptor.

STR$COPY _DX destination-string ,source-string

corresponding jsb entry point

STR$COPV _DX_R8

Returns

Arguments

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

destination-string
Open VMS usage char_string
type character string
access write only
mechanism by descriptor

Destination string into which STR$COPY_DX writes the source string; depending
on the class of the destination string, the following actions occur:

Class Field

DSC$K_CLASS_S,Z,SD,A,NCA

DSC$K_CLASS_D

DSC$K_CLASS_ VS

Action·

Copy the source string. If needed, space is
filled or truncated on the right.

If the area specified by the destination
descriptor is large enough to contain the
source string, copy the source string and
set the new length in the destination
descriptor. If the area specified is not
large enough, return the previous space
allocation (if any) and then dynamically
allocate the amount of space needed. Copy
the source string and set the new length
and address in the destination descriptor.

Copy the source string to the destination
string up to the limit of DSC$W _
MAXSTRLEN with no padding. Adjust
current length field to actual number of
bytes copied.

Description

STR$COPY_DX

The destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Source string that STR$COPY_DX copies into the destination string; the
descriptor class of the source string can be unspecified, fixed length, dynamic,
scalar decimal, array, noncontiguous array, or varying length. The source-string
argument is the address of a descriptor pointing to this source string. (See the
description of LIB$ANALYZE_SDESC for possible restrictions.)

STR$COPY_DX copies a source string to a destination string, where both strings
are passed by descriptor. All conditions except success and truncation are
signaled; truncation is returned as a warning condition value.

STR$COPY_DX passes the source string by descriptor. In addition, an equivalent
JSB entry point is provided, with RO being the first argument (the descriptor of
the destination string), and Rl the second (the descriptor of the source string).

Condition Values Returned

SS$_NORMAL

STR$_TRU

Condition Values Signaled

STR$_FATINTERR

STR$_ILLSTRCLA

STR$_INSVIRMEM

Normal successful completion. All characters in
the input string were copied to the destination
string.

String truncation warning. The fixed-length
destination string could not contain all of the
characters copied from the source string.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$COPY_DX
could not allocate heap storage for a dynamic or
temporary string.

STR-23

STR$COPY_R

STR$COPY _R-Copy a Source String Passed by Reference to a
Destination String

Format

The Copy a Source String Passed by Reference to a Destination String routine
copies a source string passed by reference to a destination string.

STR$COPY _R destination-string ,word-integer-source-length ,source-string-address

corresponding jsb entry point

STR$COPY _R_R8

Returns

Arguments

STR-24

Open VMS usage
type
access
mechanism

destination-string

cond_value
longword (unsigned)
write only
by value

Open VMS usage char_string
type character string
access write only
mechanism by descriptor

Destination string into which STR$COPY_R copies the source string. The
destination-string argument is the address of a descriptor pointing to the
destination string.

The class field determines the appropriate action.

word-integer-source-length
Open VMS usage word_ unsigned
type word (unsigned)
access read only
mechanism by reference

Length of the source string. The word-integer-source-length argument is the
address of an unsigned word containing the length of the source string.

source-string-address
Open VMS usage char_string
type character string
access read only
mechanism by reference

Source string that STR$COPY_R copies into the destination string. The source­
string-address argument is the address of the source string.

See the description of LIB$ANALYZE_SDESC for possible restrictions.

STR$COPY_R

Description

STR$COPY_R copies a source string passed by reference to a destination string.
All conditions except success and truncation are signaled; truncation is returned
as a warning condition value.

A JSB entry point is provided, with RO being the first argument, RI the second,
and R2 the third. The length argument is passed in bits 15:0 of RI.

Depending on the class of the destination string, the following actions occur:

Class Field

DSC$K_CLASS_S,Z,SD,A,NCA

DSC$K_CLASS_D

DSC$K_CLASS_ VS

Condition Values Returned

SS$_NORMAL

STR$_TRU

Condition Values Signaled

STR$_FATINTERR

STR$_ILLSTRCLA

STR$_INSVIRMEM

Action

Copy the source string. If needed, space is filled or
truncated on the right.

If the area specified by the destination descriptor is large
enough to contain the source string, copy the source string
and set the new length in the destination descriptor. If
the area specified is not large enough, return the previous
space allocation (if any) and then dynamically allocate the
amount of space needed. Copy the source string and set
the new length and address in the destination descriptor.

Copy the source string to the destination string up to the
limit of DSC$W _MAXSTRLEN with no padding. Adjust
current length field to actual number of bytes copied.

Normal successful completion. All characters in
the input string were copied to the destination
string.

String truncation warning. The fixed-length
destination string could not contain all of the
characters copied from the source string.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$COPY _R
could not allocate heap storage for a dynamic or
temporary string.

STR-25

STR$DIVIDE

STR$DIVIDE-Divide Two Decimal Strings

Format

Returns

Arguments

STR-26

The Divide Two Decimal Strings routine divides two decimal strings.

STR$DIVIDE asign ,aexp ,adigits ,bsign ,bexp ,bdigits ,total-digits
,round-truncate-indicator ,csign ,cexp ,cdigits

Open VMS usage
type
access
mechanism

asign
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

longword_ unsigned
longword (unsigned)
read only
by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword containing the first operand's sign. Zero is considered positive; 1 is
considered negative.

a exp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Power of 10 by which adigits is multiplied to get the absolute value of the first
operand. The aexp argument is the address of the first operand's exponent.

adigits
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

First operand's numeric text string. The adigits argument is the address of a
descriptor pointing to the first operand's numeric string. The string must be an
unsigned decimal number.

bsign
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
read only
by reference

Sign of the second operand. The bsign argument is the address of an unsigned
longword containing the second operand's string. Zero is considered positive; 1 is
considered negative.

bexp
Open VMS usage
type ·
access
mechanism

longword_signed
longword (signed)
read only
by reference

STR$DIVIDE

Power of 10 by which bdigits is multiplied to get the absolute value of the second
operand. The bexp argument is the address of the second operand's exponent.

bdigits
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Second operand's numeric text string. The bdigits argument is the address of a
descriptor pointing to the second operand's number string. The string must be an
unsigned decimal number.

total-digits
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Number of digits to the right of the decimal point. The total-digits argument
is the address of a signed longword containing the number of total digits.
STR$DIVIDE uses this number to carry out the division.

round-truncate-indicator
Open VMS usage mask_longword
type longword (unsigned)
access read only
mechanism by reference

Indicator of whether STR$DIVIDE is to round or truncate the result; zero means
truncate, 1 means round. The round-truncate-indicator argument is the
address of a longword bit mask containing this indicator.

csign
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by reference

Sign of the result. The csign argument is the address of an unsigned longword
containing the sign of the result. Zero is considered positive; 1 is considered
negative.

cexp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
write only
by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the result.
The cexp argument is the address of a signed longword containing the exponent.

STR-27

STR$DIVIDE

Description

cdigits
Open VMS usage
type
access
mechanism

char_string
character string
write only
by descriptor

Result's numeric text string. The cdigits argument is the address of a descriptor
pointing to the numeric string of the result. This string is an unsigned decimal
number.

STR$DIVIDE divides two decimal strings. The divisor and dividend are passed to
STR$DIVIDE in three parts: (1) the sign of the decimal number, (2) the power
of 10 needed to obtain the absolute value, and (3) the numeric string. The result
of the division is also returned in those three parts.

Condition Values Returned

SS$_NORMAL

STR$_TRU

Condition Values Signaled

LIB$_INVARG

STR$_DIVBY_ZER

STR$_FATINTERR

STR$_ILLSTRCLA

STR$_INSVIRMEM

STR$_ WRONUMARG

Example

100 ! +

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

Invalid argument.

Division by zero.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$DIVIDE
could not allocate heap storage for a dynamic
or temporary string.

Wrong number of arguments.

! This BASIC example program uses STR$DIVIDE

STR-28

! to divide two decimal strings and truncates
the result.

!-

ASIGN% = 1%
AEXP% = 3%
ADIGITS$ = '1'
BSIGN% = 0%
BEXP% = -4%
BDIGITS$ = '2'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = '0'
PRINT "A= "; ASIGN%; AEXP%; ADIGITS$
PRINT "B = "; BSIGN%; BEXP%; BDIGITS$
CALL STR$DIVIDE (ASIGN%, AEXP%, ADIGITS$, &

BSIGN%, BEXP%, BDIGITS$, &
3%, 0%, CSIGN%, CEXP%, CDIGITS$)

PRINT "C = "; CSIGN%; CEXP%; CDIGITS$
1500 END

STR$DIVIDE

This BASIC program uses STR$DIVIDE to divide two decimal strings, A divided
by B, where the following values apply:

A= -1000 (ASIGN = 1, AEXP = 3, ADIGITS = I l 1)
B = .0002 (BSIGN = 0, BEXP = -4, BDIGITS = I 2 I)

The output generated by this program is as follows:

A = 1 3 1
B = 0 -4 2
c = 1 -3 5000000000

Thus, the decimal value of C equals -5000000 (CSIGN = 1, CEXP = -3, CDIGITS
= 5000000000).

~TR-29

STR$DUPL_CHAR

STR$DUPL_CHAR-Duplicate Character n Times

Format

The Duplicate Character n Times routine generates a string containing n
duplicates of the input character. If the destination string is an "empty" dynamic
string descriptor, STR$DUPL_CHAR allocates and initializes the string.

STR$DU PL_ CHAR destination-string [,repetition-count] [,ASCII-character]

corresponding jsb entry point

STR$DUPL_CHAR_R8

Returns

Arguments

STR-30

Open VMS usage
type
access
mechanism

destination-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char _string
character string
write only
by descriptor

Destination string into which STR$DUPL_CHAR writes repetition-count copies
of the input character. The destination-string argument is the address of a
descriptor pointing to the destination string.

repetition-count
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Number of times ASCII-character is duplicated; this is an optional argument
(if omitted, the default is 1). The repetition-count argument is the address of a
signed longword containing the number.

ASCII-character
Open VMS usage
type
access
mechanism

char_string
character string
read only
by reference

ASCII character that STR$DUPL_CHAR writes repetition-count times into the
destination string. The ASCII-character argument is the address of a character
string containing this character. This is an optional argument; if omitted, the
default is a space.

STR$DUPL_CHAR

Condition Values Returned

SS$_NORMAL

STR$_NEGSTRLEN

STR$_TRU

Normal successful completion.

Alternate success. The length argument
contained a negative value; zero was used.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

Condition Values Signaled

STR$_FATINTERR Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

STR$_INSVIRMEM Insufficient virtual memory. STR$DUPL_ CHAR
could not allocate heap storage for a dynamic or
temporary string.

STR$_STRTOOLON String length exceeds 65,535 bytes.

10 ! +
! This example uses STR$DUPL_CHAR to
! duplicate the character 'A' four times.
!-

EXTERNAL INTEGER FUNCTION STR$DUPL_CHAR
STATUS% = STR$DUPL_CHAR (X$, 4%, 'A' BY REF)
PRINT X$
END

These BASIC statements set X$ equal to 'AAAA'.

The output generated by this program is as follows:

AAAA

STR-31

STR$ELEMENT

STR$ELEMENT-Extract Delimited Element Substring

Format

Returns

Arguments

STR-32

The Extract Delimited Element Substring routine extracts an element from a
string in which the elements are separated by a specified delimiter.

STR$ELEMENT destination-string ,element-number ,delimiter-string ,source-string

Open VMS usage
type
access
mechanism

destination-string

cond_value
longword (unsigned)
write only
by value

Open VMS usage char_string
type character string
access write only
mechanism by descriptor

Destination string into which STR$ELEMENT copies the selected substring.
The destination-string argument is the address of a descriptor pointing to the
destination string.

element-number
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Element number of the delimited element substring to be returned. The
element-number argument is the address of a signed longword containing
the desired element number. Zero is used to represent the first delimited element
substring, one is used to represent the second, and so forth.

delimiter-string
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Delimiter string used to separate element substrings. The delimiter-string
argument is the address of a descriptor pointing to the delimiter string.
Delimiter-string must be exactly one character long.

source-string
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Description

STR$ELEMENT

Source string from which STR$ELEMENT extracts the requested delimited
substring. The source-string argument is the address of a descriptor pointing to
the source string.

STR$ELEMENT extracts an element from a string in which the elements are
separated by a specified delimiter.

For example, if source-string is MONATUEAWEDATHUAFRIASATASUN,
delimiter-string is A, and element-number is 2, then STR$ELEMENT returns
the string WED.

Once the specified element is located, all the characters in that delimited element
are returned. That is, all characters between the element-number and the
element-number+ 1 delimiters are written to destination-string. At least
element-number delimiters must be found. If exactly element-number
delimiters are found, then all values from the element-number delimiter to the
end of the string are returned. If element-number equals 0 and no delimiters
are found, the entire input string is returned.

STR$ELEMENT duplicates the functions of the DCL lexical function
F$ELEMENT.

Condition Values Returned

SS$_NORMAL

STR$_INVDELIM

STR$_NOELEM

STR$_TRU

Condition Values Signaled

STR$_FATINTERR

STR$_ILLSTRCLA

STR$_INSVIRMEM

Normal successful completion.

Delimiter string is not exactly one character long
(warning).

Not enough delimited characters found to satisfy
requested element number (warning).

String truncation. The fixed-length destination
string could not contain all the characters in the
delimited substring (warning).

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$ELEMENT
could not allocate heap storage for a dynamic or
temporary string.

STR-33

STR$FIND_FIRST _IN_SET

STR$FIND_FIRST_IN_SET-Find First Character in a Set of
Characters

Format

Returns

Arguments

Description

STR-34

The Find First Character in a Set of Characters routine searches a string one
character at a time, from left to right, comparing each character in the string to
every character in a specified set of characters for which it is searching.

STR$FIND_FIRST _IN_SET source-string ,set-of-characters

Open VMS usage
type
access
mechanism

longword_ signed
longword (signed)
write only
by value

Position in source-string where the first match is found; zero if no match is
found.

source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

String that STR$FIND_FIRST_IN_SET compares to the set of characters, looking
for the first match. The source-string argument is the address of a descriptor
pointing to the character string.

set-of-characters
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Set of characters that STR$FIND_FIRST_IN_SET is searching for in the string.
The source-string argument is the address of a descriptor pointing to the set of
characters.

STR$FIND_FIRST_IN_SET compares each character in the string to every
character in the specified set of characters. As soon as the first match is found,
STR$FIND_FIRST_IN_SET returns the position in the string where the matching
character was found. If no match is found, 0 is returned. If either source-string
or set-of -characters is of zero length, 0 is returned.

STR$FIND_FIRST _IN_SET

Condition Value Signaled

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Example

PROGRAM FIND_FIRST(INPUT, OUTPUT);

{+}
{ This example uses STR$FIND_FIRST_IN_SET
{ to find the first character in the source
{ string (STRINGl) that matches a character
{ in the set of characters being searched for
{ (CHARS).
{

{ First, declare the external function.
{-}

FUNCTION STR$FIND_FIRST_IN_SET(STRING :

{+}

VARYING [A] OF CHAR; SETOFCHARS
VARYING [B] OF CHAR) : INTEGER;
EXTERN;

{ Declare the variables used in the main program.
{-}

VAR
STRINGl
CHARS
RET_STATUS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read the source string
{ and the set of characters being searched for. Call
{ STR$FIND_FIRST_IN_SET to find the first match.
{ Print the result.
{-}

BEGIN
WRITELN('ENTER THE STRING: ');
READLN (STRINGl) ;
WRITELN('ENTER THE SET OF CHARACTERS: ');
READLN (CHARS) ;
RET_STATUS := STR$FIND_FIRST_IN_SET(STRING1, CHARS);
WRITELN(RET_STATUS);

END.

This Pascal program demonstrates the use of STR$FIND_FIRST_IN_SET. If you
run this program and set STRINGl equal to ABCDEFGHIJK and CHARS equal
to XYZA, the value of RET_STATUS will be 1. The output generated by this
program is as follows:

ENTER THE STRING:
ABCDEFGHIJK
ENTER THE SET OF CHARACTERS:
XYZA

1

STR-35

STR$FIND_FIRST _NOT _IN_SET

STR$FIND_FIRST _NOT _IN_SET-Find First Character That Does Not
Occur in Set

Format

Returns

Arguments

STR-36

The Find First Character That Does Not Occur in Set routine searches a string,
comparing each character to the characters in a specified set of characters. The
string is searched character by character, from left to right. STR$FIND_FIRST_
NOT_IN_SET returns the position of the first character in the string that does
not match any of the characters in the selected set of characters.

STR$FIND_FIRST _NOT _IN_SET source-string ,set-of-characters

Open VMS usage
type
access
mechanism

longword_ signed
longword (signed)
write only
by value

Position in source-string where a nonmatch was found.

Returned value

0

1

N

source-string
Open VMS usage
type
access
mechanism

Condition

Either all characters in source-string match some
character in set-of-characters, or there were no
characters in set-of-characters.

Either the first nonmatching character in source-string
was found in position 1, or there were no characters in
source-string.

The first nonmatching character was found in position N
within source-string.

char _string
character string
read only
by descriptor

String that STR$FIND_FIRST_NOT_It-f_SET searches. The source-string
argument is the address of a descriptor pointing to the string.

set-of-characters
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

The set of characters that STR$FIND_FIRST_NOT_IN_SET compares to the
string, looking for a nonmatch. The set-of-characters argument is the address
of a descriptor pointing to this set of characters.

Description

STR$FIND_FIRST ~NOT _IN_SET

STR$FIND_FIRST_NOT_IN_SET searches a string, comparing each character to
the characters in a specified set of characters. The string is searched character
by character, from left to right. When STR$FIND_FIRST_NOT_IN_SET finds a
character from the string that is not in set-of-characters, it stops searching and
returns, as the value of STR$FIND_FIRST_NOT_IN_SET, the position in source­
string where it found the nonmatching character. If all characters in the string
match some character in the set of characters, STR$FIND_FIRST_NOT_IN_SET
returns 0. If the string is of zero length, the position returned is 1 since none of
the elements in the set of characters (particularly the first element) will be found
in the string. If there are no characters in the set of characters, zero is returned
since "nothing" can always be found.

Condition Value Signaled

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Example

PROGRAM NOT_IN_SET(INPUT, OUTPUT);

{+}
{ This example uses STR$FIND_FIRST_NOT_IN_SET
{ to find the position of the first nonrnatching
{ character from a set of characters (CHARS)
{ in a source string (STRINGl).
{
{ First, declare the external function.
{-}

FUNCTION STR$FIND_FIRST_NOT_IN_SET(STRING
VARYING [A] OF CHAR; SETOFCHARS
VARYING [B] OF CHAR) : INTEGER;
EXTERN;

{+}
{ Declare the variables used in the main program.
{-}

VAR
STRINGl
CHARS
RET_STATUS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read the source string
{ and set of characters. Call STR$FIND_FIRST_NOT_IN_SET.
{ Print the result.
{-}

BEGIN
WRITELN('ENTER THE STRING: ');
READLN (STRING 1) ;
WRITELN('ENTER THE SET OF CHARACTERS: ');
READLN (CHARS) ;
RET_STATUS := STR$FIND_FIRST_NOT_IN_SET(STRING1, CHARS);
WRITELN(RET_STATUS);

END.

STR-37

STR$FIND_FIRST _NOT _IN_SET

STR-38

This Pascal program demonstrates the use of STR$FIND_FIRST_NOT_IN_SET.
If you run this program and set STRING 1 equal to FORTUNATE and CHARS
equal to FORT, the value of RET_STATUS will be 5.

The output generated by this program is as follows:

ENTER THE STRING:
FORTUNATE
ENTER THE SET OF CHARACTERS:
FORT

5

STR$FIND_FIRST _SUBSTRING

STR$FIND_FIRST _SUBSTRING-Find First Substring in Input String

Format

Returns

Arguments

The Find First Substring in Input String routine finds the first substring (in a
provided list of substrings) occurring in a given string.

STR$FIND_FIRST _SUBSTRING source-string ,index ,substring-index ,substring
[,substring ...]

Open VMS usage longword_ unsigned
type longword (unsigned)
access write only
mechanism by value

The values returned by STR$FIND_FIRST_SUBSTRING and the conditions to
which they translate are as follows:

Returned Value

0

1

source-string
Open VMS usage
type
access
mechanism

Condition

Source-string did not contain any of the specified
substrings.

STR$FIND_FIRST_SUBSTRING found at least one of
the specified substrings in the string.

char_string
character string
read only
by descriptor

String that STR$FIND_FIRST_SUBSTRING searches. The source-string
argument is the address of a descriptor pointing to the string.

index
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
write only
by reference

Earliest position within source-string at which STR$FIND_FIRST_SUBSTRING
found a matching substring; zero if no matching substring was found. The index
argument is the address of a signed longword containing this position.

substring-index
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
write only
by reference

Ordinal number of the substring that matched (1 for the first, 2 for the second,
and so on), or zero if STR$FIND_FIRST_SUBSTRING found no substrings that

STR-39

STR$FIND_FIRST _SUBSTRING

matched. The substring-index argument is the address of a signed longword
containing this ordinal number.

substring
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Specified substring for which STR$FIND_FIRST_SUBSTRING searches in
source-string. The substring argument is the address of a descriptor pointing
to the first substring. You can specify multiple substrings to be searched for.

substring
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

. Additional specified substrings for which STR$FIND_FIRST_SUBSTRING
searches in source-string. The substring argument is the address of a
descriptor pointing to the substring. You can specify multiple substrings to
be searched for.

Description

STR$FIND_FIRST_SUBSTRING takes as input a string to be searched and an
unspecified number of substrings for which to search. It searches the specified
string and returns the position of the substring that is found earliest in the
string. This is not necessarily the position of the first substring specified. That
is, STR$FIND_FIRST_SUBSTRING returns the position of the leftmost matching
substring. The order in which the substrings are searched for is irrelevant.

Unlike many of the compare and search routines, STR$FIND_FIRST_
SUBSTRING does not return the position in a return value. The position of
the substring which is found earliest in the string is returned in the index
argument. If none of the specified substrings is found in the string, the value of
index is zero.

Zero-length strings, or null arguments, produce unexpected results. Any time
the routine is called with a null substring as an argument, STR$FIND_FIRST_
SUBSTRING always returns the position of the null substring as the first
substring found. All other substrings are interpreted as appearing in the string
after the null string.

Condition Values Signaled

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

STR$_ WRONUMARG

STR-40

Wrong number of arguments. You must supply
at least one substring.

Example

STR$FIND_FIRST _SUBSTRING

1 ! +

!-

This is a BASIC program demonstrating the use of
STR$FIND_FIRST_SUBSTRING. This program takes as input
four strings that are listed in a data statement
at the end of the program. STR$FIND_FIRST_SUBSTRING
is called four times (once for each string)
to find the first substring occurring in the given
string.

OPTION TYPE = EXPLICIT

DECLARE STRING
DECLARE LONG

MATCH_STRING
RET_STATUS, &
INDEX, &
I, &
SUB_STRING_NUM

EXTERNAL LONG FUNCTION STR$FIND_FIRST_SUBSTRING

FOR I = 1 TO 4
READ MATCH_STRING
RET_STATUS = STR$FIND_FIRST_SUBSTRING(MATCH_STRING, &

INDEX, SUB_STRING_NUM, 'ING' I 'CK' I 'TH')
IF RET_STATUS = 0% THEN

PRINT MATCH_STRING;" did not contain any of the substrings"
ELSE

SELECT SUB_STRING_NUM
CASE 1

PRINT MATCH_STRING;" contains ING at position";INDEX
CASE 2

PRINT MATCH_STRING;" contains CK at position";INDEX
CASE 3

PRINT MATCH_STRING;" contains TH at position";INDEX
END SELECT

END IF
NEXT I

2 DATA CHUCKLE, RAINING, FOURTH, THICK

3 END

This BASIC program demonstrates the use of STR$FIND_FIRST_SUBSTRING.
The output generated by this program is as follows:

$ BASIC FINDSUB
$ LINK FINDSUB
$ RUN FINDSUB
CHUCKLE contains CK at position 4
RAINING contains ING at position 5
FOURTH contains TH at position 5
THICK contains TH at position 1

Note that "THICK" contains both the substrings "TH" and "CK". STR$FIND_
FIRST_SUBSTRING locates the "CK" substring in "THICK", and then locates
the "TH" substring. However, since the "TH" substring is the earliest, or leftmost
matching substring, its ordinal number is returned in substring-index, and the
point at which "TH" occurs is returned in index.

STR-41

STR$FREE1_DX

STR$FREE1_DX-Free One Dynamic String

The Free One Dynamic String routine deallocates one dynamic string.

Format

STR$FREE1_DX string-descriptor

corresponding jsb entry point

STR$FREE1_DX_R4

Returns

Argument

Description

Open VMS usage
type
access
mechanism

string-descriptor

cond_value
longword (unsigned)
write only
by value

Open VMS usage char_string
type character string
access modify
mechanism by descriptor

Dynamic string descriptor of the dynamic string that STR$FREE1_DX
deallocates. The string-descriptor argument is the address of a descriptor
pointing to the string to be deallocated. The class field (DSC$B_CLASS) is
checked.

STR$FREE1_DX deallocates the described string space and flags the descriptor
as describing no string at all (DSC$A_POINTER = 0, DSC$W _LENGTH = 0).

Condition Values Returned

SS$_NORMAL

Condition Values Signaled

STR$_FATINTERR

STR$_ILLSTRCLA

STR-42

Normal successful completion.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

STR$GET1_DX

STR$GET1_DX-Allocate One Dynamic String

Format

The Allocate One Dynamic String routine allocates a specified number of bytes of
dynamic virtual memory to a specified dynamic string descriptor.

STR$GET1_DX word-integer-length ,character-string

corresponding jsb entry point

STR$GET1 _DX_R4

Returns

Arguments

Description

Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

word-integer-length
Open VMS usage word_ unsigned
type word (unsigned)
access read only
mechanism by reference

Number of bytes that STR$GET1_DX allocates. The word-integer-length
argument is the address of an unsigned word containing this number.

character-string
Open VMS usage char_string
type character string
access modify
mechanism by descriptor

Dynamic string descriptor to which STR$GET1_DX allocates the area. The
character-string argument is the address of an unsigned quadword containing
the string descriptor.

The class field (DSC$B_CLASS) is checked.

STR$GET1_DX allocates a specified number of bytes of dynamic virtual memory
to a specified string descriptor. The descriptor must be dynamic.

If the string descriptor already has dynamic memory allocated to it, but the
amount allocated is less than word-integer-length, STR$GETl_DX deallocates
that space before it allocates new space.

STR$GET1_DX is the only recommended method for allocating a dynamic
descriptor. Simply filling in the length and pointer fields of a dynamic string
descriptor can cause serious and unexpected problems with string management.

To deallocate dynamic strings, call STR$FREE l_DX.

STR-43

STR$GET1_DX

Condition Values Returned

SS$_NORMAL

Condition Values Signaled

STR$_FATINTERR

STR$_ILLSTRCLA

STR$_INSVIRMEM

STR-44

Normal successful completion.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.
Insufficient virtual memory. STR$GET1_DX
could not allocate heap storage for a dynamic or
temporary string.

STR$LEFT

STR$LEFT-Extract a Substring of a String

Format

The Extract a Substring of a String routine copies a substring of a source string
into a destination string. The relative starting position in the source string is 1.

STR$LEFT destination-string ,source-string ,end-position

corresponding jsb entry point

STR$LEFT_R8

Returns

Arguments

Open VMS usage
type
access
mechanism

destination-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char_string
character string
write only
by descriptor

Destination string into which STR$LEFT copies the substring. The destination­
string argument is the address of a descriptor pointing to the destination
string.

source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Source string from which STR$LEFT extracts the substring that it copies into the
destination string. The source-string argument is the address of a descriptor
pointing to the source string.

end-position
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Relative position in the source string at which the substring ends. The end­
position argument is the address of a signed longword containing the ending
position.

STR$LEFT copies all characters in the source string from position 1 (the leftmost
position) to the position number specified in this end-position argument.

STR-45

STR$LEFT

Description

STR$LEFT extracts a substring from a source string and copies that substring
into a destination string. STR$LEFT defines the substring by specifying the
relative ending position in the source string. The relative starting position in
the source string is 1. The source string is unchanged, unless it is also the
destination string.

This is a variation of STR$POS_EXTR. Other routines that may be used to
extract and copy a substring are STR$RIGHT and STR$LEN_EXTR.

Condition Values Returned

SS$_NORMAL

STR$_ILLSTRPOS

STR$_ILLSTRSPE

STR$_TRU

Normal successful completion.

Alternate success. An argument referenced a
character position outside the specified string. A
default value was used.

Alternate success. The length of the substring
was too long for the specified destination string.
Default values were used.
String truncation warning. The fixed-length
destination string could not contain all the
characters copied from the source string.

Condition Values Signaled

STR$_FATINTERR Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR-46

STR$_ILLSTRCLA

STR$_INSVIRMEM

PROGRAM LEFT(INPUT, OUTPUT);

{+}

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.
Insufficient virtual memory. STR$LEFT could
not allocate heap storage for a dynamic or
temporary string.

{ This Pascal program demonstrates the use of
{ STR$LEFT. This program reads in a source string
{ and the ending position of a substring.
{ It returns a substring consisting of all
{ characters from the beginning (left) of the
{ source string to the ending position entered.
{-}

{+}
{ Declare the external procedure, STR$LEFT.
{-}

PROCEDURE STR$LEFT(%DESCR DSTSTR: VARYING
[A] OF CHAR; SRCSTR
VARYING [B] OF CHAR; ENDPOS :
INTEGER); EXTERN;

{+}
{ Declare the variables used by this program.
{-}

VAR
SRC_STR
DST_STR
END_POS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read the source string
{ and ending position. Call STR$LEFT. Print the
{ results.
{-}

BEGIN
WRITELN('ENTER THE SOURCE STRING: ');
READLN (SRC_STR) ;
WRITELN('ENTER THE ENDING POSITION');
WRITELN('OF THE SUBSTRING: ');
READLN (END_POS) ;
STR$LEFT(DST_STR, SRC_STR, END_POS);
WRITELN;
WRITELN('THE SUBSTRING IS: ',DST_STR);

END.

STR$LEFT

This Pascal example shows the use of STR$LEFT. The following is one sample of
the output of this program:

$ PASCAL LEFT
$ LINK LEFT
$ RUN LEFT
ENTER THE SOURCE STRING: MAGIC CARPET
ENTER THE ENDING POSITION OF
THE SUBSTRING: 9

THE SUBSTRING IS: MAGIC CAR

STR-47

STR$LEN_EXTR

STR$LEN_EXTR-Extract a Substring of a String

Format

The Extract a Substring of a String routine copies a substring of a source string
into a destination string.

STR$LEN_EXTR destination-string ,source-string ,start-position
,longword-integer-length

corresponding jsb entry point

STR$LEN_EXTR_R8

Returns

Arguments

STR-48

Open VMS usage
type
access
mechanism

destination-string

cond_value
longword (unsigned)
write only
by value

Open VMS usage char_string
type character string
access write only
mechanism by descriptor

Destination string into which STR$LEN_EXTR copies the substring. The
destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Source string from which STR$LEN_EXTR extracts the substring that it copies
into the destination string. The source-string argument is the address of a
descriptor pointing to the source string.

start-position
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference

Relative position in the source string at which STR$LEN_EXTR begins copying
the substring. The start-position argument is the address of a signed longword
containing the starting position.

Description

STR$LEN_EXTR

lc;mgword-integer-length
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference

Number of characters in the substring that STR$LEN_EXTR copies to the
destination string. The longword-integer-length argument is the address of a
signed longword containing the length of the substring.

STR$LEN_EXTR extracts a substring from a source string and copies that
substring into a destination string.

STR$LEN_EXTR defines the substring by specifying the relative starting position
in the source string and the number of characters to be copied. The source string
is unchanged, unless it is also the destination string.

If the starting position is less than 1, 1 is used. If the starting position is greater
than the length of the source string, the null string is returned. If the length is
less than 1, the null string is also returned.

Other routines that may be used to extract and copy a substring are STR$RIGHT,
STR$LEFT and STR$POS_EXTR.

Condition Values Returned

SS$_NORMAL

STR$_ILLSTRPOS

STR$_ILLSTRSPE

STR$_NEGSTRLEN

STR$_TRU

Condition Values Signaled

STR$_FATINTERR

STR$_ILLSTRCLA

Normal successful completion.

STR$LEN_EXTR completed successfully, except
that an argument referenced a character position
outside the specified string. A default value was
used.

STR$LEN_EXTR completed successfully, except
that the length was too long for the specified
string. Default values were used.

STR$LEN_EXTR completed successfully, except
that longword-integer-length contained a
negative value. Zero was used.

String truncation warning. The fixed-length
destination string could not contain all the
characters copied from the source string.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

STR-49

STR$LEN_EXTR

Example

STR-50

STR$_INSVIRMEM Insufficient virtual memory. STR$LEN_EXTR
could not allocate heap storage for a dynamic or
temporary string.

CHARACTER*131 IN_STRING
CHARACTER*l FRONT_CHAR
CHARACTER*l TAIL_CHAR
INTEGER STRLEN_EXTR, STRREPLACE, STR$TRIM
INTEGER FRONT_POSITION, TAIL_POSITION

10 WRITE (6, 800)
800 FORMAT (' Enter a string, 131 characters or less:',$)

READ (5, 900, END=200) IN_STRING
900 FORMAT (A)

ISTATUS = STR$TRIM (IN_STRING, IN_STRING, LENGTH)

DO 100 I = l, LENGTH/2
FRONT_POSITION = I
TAIL_POSITION = LENGTH + 1 - I
ISTATUS = STR$LEN_EXTR (FRONT_CHAR, IN_STRING, FRONT_POSITION,

A %REF (1))

ISTATUS = STR$LEN_EXTR TAIL_CHAR, IN_STRING, TAIL_POSITION,
A %REF (1))

ISTATUS = STR$REPLACE IN_STRING, IN_STRING, FRONT_POSITION,
A FRONT_POSITION, TAIL_CHAR)

ISTATUS = STR$REPLACE IN_STRING, IN_STRING, TAIL_POSITION,
A TAIL_POSITION, FRONT_CHAR)

100 CONTINUE
WRITE (6, 901) IN_STRING

901 FORMAT (' Reversed string is : ',/,lX,A)
GOTO 10

200 CONTINUE
END

This FORTRAN program accepts a string as input and writes the string in
reverse order as output. This program continues to prompt for input until Ctrl/Z
is pressed. One sample of the output generated by this program is as follows:

$ FORTRAN REVERSE
$ LINK REVERSE
$ RUN REVERSE
Enter a string, 131 characters or less: Elephants often have
flat feet.
Reversed string is
.teef talf evah netfo stnahpelE

Enter a string, 131 characters or less: CTRL/Z
$

STR$MATCH_WILD

STR$MATCH_ WILD-Match Wildcard Specification

Format

Returns

Arguments

Description

The Match Wildcard Specification routine is used to compare a pattern string
that includes wildcard characters with a candidate string. It returns a condition
value of STR$_MATCH if the strings match and STR$_NOMATCH if they do not
match.

STR$MATCH_WILD candidate-string ,pattern-string

Open VMS usage
type
access
mechanism

candidate-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char_string
character string
read only
by descriptor

String that is compared to the pattern string. The candidate-string argument
is the address of a descriptor pointing to the candidate string.

pattern-string
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

String containing wildcard characters. The pattern-string argument is the
address of a descriptor pointing to the pattern string. The wildcards in the
pattern string are translated when STR$MATCH_ WILD searches the candidate
string to determine if it matches the pattern string.

STR$MATCH_ WILD translates wildcard characters and searches the candidate
string to determine if it matches the pattern string. The pattern string may
contain either one or both of the two wildcard characters, asterisk (*) and
percent (%). The asterisk character is mapped to zero or more characters. The
percent character is mapped to only one character.

The two wildcard characters that may be used in the pattern string may be
used only as wildcards. If the candidate string contains an asterisk or percent
character, the condition STR$_MATCH is returned. Wildcard characters are
translated literally. There is no restriction on whether either wildcard character
in the pattern string can match a percent or asterisk that is translated literally
in the candidate string.

STR-51

STR$MATCH_WILD

Condition Values Returned

STR$_MATCH

STR$_NOMATCH

The candidate string and the pattern string
match.
The candidate string and the pattern string do
not match.

Condition Value Signaled

STR$_ILLSTRCLA Illegal string class. Severe error. The descriptor
of candidate-string and/or pattern-string
contains a class code that is not supported by the
Open VMS Calling· Standard.

Example

STR-52

/*
* Example program using STR$MATCH_WILD.
*
* The following program reads in a master pattern string and then
* compares that to input strings until it reaches the end of the
* input file. For each string comparison done, it prints
* either 'Matches pattern string' or 'Doesn't match pattern string'.
*/

declare str$match_wild
external entry (character(*) varying, character(*) varying)
returns (bit(l));

example: procedure options(main);

dcl pattern_string character(80) varying;
dcl test_string character(80) varying;

on endfile(sysin) stop;

put skip;

get list(pattern_string) options(prompt('Pattern string> '));

do while ('1 'b) ;

end;

get skip list(test_string) options(prompt('Test string> '));
if str$match_wild(test_string,pattern_string)

then put skip list('Matches pattern string');
else put skip list('Doesn' 't match pattern string');

end;

This PL/I program demonstrates the use of STR$MATCH_ WILD. The output
generated by this program is as follows:

STR$MATCH_ WILD

$ PLI MATCH
$ LINK MATCH
$ RUN MATCH
Pattern string> 'Must match me exactly.'
Test string> 'Will this work? Must match me exactly.'
Doesn't match pattern string
Test string> 'must match me exactly'
Doesn't match pattern string
Test string> 'must match me exactly.'
Doesn't match pattern string
Test string> 'Must match me exactly'
Doesn't match pattern string
Test String> 'Must match me exactly.'
Matches pattern string

STR-53

STR$MUL

STR$MUL-Multiply Two Decimal Strings

Format

Returns

Arguments

STR-54

The Multiply Two Decimal Strings routine multiplies two decimal strings.

STR$MUL asign ,aexp ,adigits ,bsign ,bexp ,bdigits ,csign ,cexp ,cdigits

Open VMS usage
type
access
mechanism

asign
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

longword_ unsigned
longword (unsigned)
read only
by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword containing the first operand's sign. Zero is considered positive; 1 is
considered negative.

a exp
Open VMS usage
type
access
mechanism

longword_ signed
longword (signed)
read only
by reference

Power of 10 by which adigits is multiplied to get the absolute value of the first
operand. The aexp argument is the address of a signed longword containing this
exponent.

adigits
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

First operand's numeric text string. The adigits argument is the address of a
descriptor pointing to the numeric string of the first operand. The string must be
an unsigned decimal number.

bsign
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
read only
by reference

Sign of the second operand. The bsign argument is the address of an unsigned
longword containing the sign of the second operand. Zero is considered positive; 1
is considered negative.

Description

bexp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

STR$MUL

Power of 10 by which bdigits is multiplied to get the absolute value of the second
operand. The bexp argument is the address of a signed longword containing this
exponent.

bdigits
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Second operand's numeric text string. The bdigits argument is the address of a
descriptor pointing to the second operand's numeric string. The string must be an
unsigned decimal number.

csign
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by reference

Sign of the result. The csign argument is the address of an unsigned longword
containing the sign of the result. Zero is considered positive; 1 is considered
negative.

cexp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
write only
by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the result.
The cexp argument is the address of a signed longword containing this exponent.

cdigits
Open VMS usage
type
access
mechanism

char _string
character string
write only
by descriptor

Result's numeric text string. The cdigits argument is the address of a descriptor
pointing to the numeric string of the result. The string is an unsigned decimal
number.

STR$MUL multiplies two decimal strings. The numbers to be multiplied are
passed to STR$MUL in three parts: (1) the sign of the decimal number, (2) the
power of 10 needed to obtain the absolute value, and (3) the numeric string. The
result of the multiplication is also returned in those three parts.

8TR-55

STR$MUL

Condition Values Returned

SS$_NORMAL

STR$_TRU

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all the
characters.

Condition Values Signaled

LIB$_INVARG

STR$_FATINTERR

Invalid argument.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR-56

STR$_ILLSTRCLA

STR$_INSVIRMEM

STR$_ WRONUMARG

100 +

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$MUL could not
allocate heap storage for a dynamic or temporary
string.

Wrong number of arguments.

This example program uses
STR$MUL to multiply two decimal
strings (A and B) and place the
results in a third decimal string,
(C)

ASIGN% = 1%
AEXP% = 3%
ADIGITS$ = '1'
BSIGN% = 0%
BEXP% = -4%
BDIGITS$ = '2'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = '0'
PRINT "A= "; ASIGN%; AEXP%; ADIGITS$
PRINT "B = "; BSIGN%; BEXP%; BDIGITS$
CALL STR$MUL (ASIGN%, AEXP%, ADIGITS$, &

BSIGN%, BEXP%, BDIGITS$, &
CSIGN%, CEXP%, CDIGITS$)

PRINT "C = "; CSIGN%; CEXP%; CDIGITS$
999 END

This BASIC example uses STR$MUL to multiply two decimal strings, where the
following values apply:

A = -1000 (ASIGN = 1, AEXP = 3, ADIGITS = I l 1)
B = .0002 (BSIGN = 0, BEXP = -4, BDIGITS = I 2 I)

STR$MUL

Listed below is the output generated by this program; note that the decimal value
C equals -.2 (CSIGN = 1, CEXP = -1, CDIGITS = 2).

A = 1 3 1
B = 0 -4 2
c = 1 -1 2

STR-57

STR$POSITION

STR$POSITION-Return Relative Position of Substring

Format

The Return Relative Position of Substring routine searches for the first occurrence
of a single substring within a source string. If STR$POSITION finds the
substring, it returns the relative position of that substring. If the substring
is not found, STR$POSITION returns a zero.

STR$POSITION source-string ,substring [,start-position]

corresponding jsb entry point

STR$POSITION_R6

Returns

Arguments

STR-58

Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by value

Relative position of the first character of the substring. Zero is the value returned
if STR$POSITION did not find the substring.

source-string
Open VMS usage char _string
type character string
access read only
mechanism by descriptor

Source string within which STR$POSITION searches for the substring. The
source-string argument is the address of a descriptor pointing to the source
string.

substring
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Substring for which STR$POSITION searches. The substring argument is the
address of a descriptor pointing to the substring.

start-position
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Relative position in the source string at which STR$POSITION begins the search.
The start-position argument is the address of a signed longword containing the
starting position. Although this is an optional argument, it is required if you are
using the JSB entry point.

Description

STR$POSITION

If start-position is not supplied, STR$POSITION starts the search at the first
character position of source-string.

STR$POSITION returns the relative position of the first occurrence of a substring
in the source string. The value returned is an unsigned longword. The relative
character positions are numbered 1, 2, 3, and so on. Zero indicates that the
substring was not found.

If the substring has a zero length, the minimum value of start-position (and the
length of source-string plus one) is returned by STR$POSITION.

If the source string has a zero length and the substring has a nonzero length,
zero is returned, indicating that the substring was not found.

Condition Values Signaled

STR$_ILLSTRCLA Illegal string class. The class code found in the
string class field of a descriptor is not a string
class code allowed by the Open VMS Calling
Standard.

Example

PROGRAM POSITION(INPUT,OUTPUT);

{+}
{ This example uses STR$POSITION to determine
{ the position of the first occurrence of
{ a substring (SUBSTRING) within a source
{ string (STRINGl) after the starting
{ position (START).
{

{ First, declare the external function.
{-}

FUNCTION STR$POSITION(SRCSTR : VARYING [A]
OF CHAR; SUBSTR : VARYING [B] OF CHAR;
STARTPOS : INTEGER) : INTEGER; EXTERN;

{+}
{ Declare the variables used in the main program.
{-}

VAR
STRINGl
SUBSTRING
START
RET_STATUS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;
INTEGER;

{ Begin the main program. Read the string and substring.
{ Set START equal to 1 to begin looking for the substring
{ at the beginning of the source string. Call STR$POSITION
{ and print the result.
{-}

STR-59

STR$POSITION

STR-60

BEGIN
WRITELN('ENTER THE STRING: ');
READLN (STRING 1) ;
WRITELN('ENTER THE SUBSTRING: ');
READLN(SUBSTRING);
START := 1;
RET_STATUS := STR$POSITION(STRING1, SUBSTRING, START);
WRITELN(RET_STATUS);

END.

This Pascal program demonstrates the use of STR$POSITION. If you run this
program and set STRING I equal to KITTEN and substring equal to TEN, the
value of RET_STATUS is 4.

The output generated by this program is as· follows:

ENTER THE STRING:
KITTEN
ENTER THE SUBSTRING:
TEN

4

STR$POS_EXTR

STR$POS_EXTR-Extract a Substring of a String

Format

The Extract a Substring of a String routine copies a substring of a source string
into a destination string.

STR$POS_EXTR destination-string ,source-string ,start-position ,end-position

corresponding jsb entry point

STR$POS_EXTR_R8

Returns

Arguments

Open VMS usage
type
access
mechanism

destination-string

cond_value
longword (unsigned)
write only
by value

Open VMS usage char_string
type character string
access write only
mechanism by descriptor

Destination string into which STR$POS_EXTR copies the substring. The
destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Source string from which STR$POS_EXTR extracts the substring that it copies
into the destination string. The source-string argument is the address of a
descriptor pointing to the source string.

start-position
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference for CALL entry point, by value for JSB entry

point

Relative position in the source string at which STR$POS_EXTR begins copying
the substring. The start-position argument is the address of a signed longword
containing the starting position.

STR-61

STR$POS_EXTR

Description

end-position
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference for CALL entry point, by value for JSB entry

point

Relative position in the source string at which STR$POS_EXTR stops copying
the substring. The end-position argument is the address of a signed longword
containing the ending position.

STR$POS_EXTR extracts a substring from a source string and copies the
substring into a destination string. STR$POS_EXTR defines the substring by
specifying the relative starting and ending positions in the source string. The
source string is unchanged, unless it is also the destination string.

If the starting position is less than 1 then 1 is used. If the starting position is
greater than the length of the source string, the null string is returned. If the
ending position is greater than the length of the source string, the length of the
source string is used.

Other routines that may be used to extract and copy a substring are STR$LEFT,
STR$RIGHT and STR$LEN_EXTR.

Condition Values Returned

SS$_NORMAL

STR$_ILLSTRPOS

STR$_1LLSTRSPE

STR$_TRU

Condition Values Signaled

STR$_FATINTERR

STR$_ILLSTRCLA

STR$_INSVIRMEM

STR-62

Normal successful completion.

Alternate success. An argument referenced a
character position outside the specified string. A
default value was used.

Alternate success. End-position was less than
start-position. Default values were used.

String truncation warning. The fixed-length
destination string could not contain all the
characters copied from the source string.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$POS_EXTR
could not allocate heap storage for a dynamic or
temporary string.

STR$POS_EXTR

Example

O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTY D F 80 TTY
C* Initialize source string and position
C MOVE '7 SW Ave' SOURCE 8
C Z-ADD3 BEGPOS 90
C Z-ADD4 ENDPOS 90
C POS_EXTR EXTRN'STR$POS_EXTR'
C* Extract the 2 character string beginning at position 3
C CALL POS_EXTR
C PARMD DEST 2
C PARMD SOURCE
C PARM BEGPOS RL
C PARM ENDPOS RL
C* Display on the terminal the extracted string
C DEST DSPLYTTY
C SETON LR

The RPG II program above displays the string ' SW' on the terminal.

STR-63

STR$PREFIX

STR$PREFIX-Prefix a String

Format

Returns

Arguments

Description

The Prefix a String routine inserts a source string at the beginning of a
destination string. The destination string must be dynamic or varying length.

STR$PREFIX destination-string ,source-string

Open VMS usage
type
access
mechanism

desti nation-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char _string
character string
write only
by descriptor

Destination string (dynamic or varying length); STR$PREFIX copies the source
string into the beginning of this destination string. The destination-string
argument is the address of a descriptor pointing to the destination string.

source-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Source string that STR$PREFIX copies into the beginning of the destination
string. The source-string argument is the address of a descriptor pointing to the
source string.

STR$PREFIX inserts the source string at the beginning of the destination string.
The destination string must be dynamic or varying length.

Condition Values Returned

STR-64

SS$_NORMAL

STR$_TRU

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

STR$PREFIX

Condition Values Signaled

STR$_FATINTERR Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

STR$_INSVIRMEM Insufficient virtual memory. STR$PREFIX
could not allocate heap storage for a dynamic or
temporary string.

10 ! +
! This example uses STR$PREFIX to
! prefix a destination string (D$)
! with a source string ('ABCD').
!-

EXTERNAL INTEGER FUNCTION STR$PREFIX
D$ = 'EFG'
STATUS%= STR$PREFIX (D$, 'ABCD')
PRINT D$
END

These BASIC statements set D$ equal to 'ABCDEFG'.

STR-65

STR$RECIP

STR$RECIP-Reciprocal of a Decimal String

Format

Returns

Arguments

STR-66

The Reciprocal of a Decimal String routine takes the reciprocal of the first decimal
string to the precision limit specified by the second decimal string and returns
the result as a decimal string.

STR$RECIP asign ,aexp ,adigits ,bsign ,bexp ,bdigits ,csign ,cexp ,cdigits

Open VMS usage
type
access
mechanism

asign
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

longword_ unsigned
longword (unsigned)
read only
by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword containing the first operand's sign. Zero is considered positive; 1 is
considered negative.

a exp
Open VMS usage
type
access
mechanism

longword_ signed
longword (signed)
read only
by reference

Power of 10 by which adigits is multiplied to get the absolute value of the first
operand. The aexp argument is the address of a signed longword containing this
exponent.

adigits
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

First operand's numeric text string. The adigits argument is the address of a
descriptor pointing to the first operand's numeric string. The string must be an
unsigned decimal number.

bsign
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
read only
by reference

Description

STR$RECIP

Sign of the second operand. The bsign argument is the address of an unsigned
longword containing the sign of the second operand. Zero is considered positive; 1
is considered negative.

bexp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Power of 10 by which bdigits is multiplied to get the absolute value of the second
operand. The bexp argument is the address of a signed longword containing this
exponent.

bdigits
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Second operand's numeric text string. The bdigits argument is the address of a
descriptor pointing to the second operand's numeric string. The string must be an
unsigned decimal number.

csign
Open VMS usage
type
access
mechanism

longword_unsigned
longword (unsigned)
write only
by reference

Sign of the result. The csign argument is the address of an unsigned longword
containing the result's sign. Zero is considered positive; 1 is considered negative.

cexp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
write only
by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the result.
The cexp argument is the address of a signed longword containing this exponent.

cdigits
Open VMS usage
type
access
mechanism

char_string
character string
write only
by descriptor

Result's numeric text string. The cdigits argument is the address of a descriptor
pointing to the result's numeric string. The string is an unsigned decimal
number.

STR$RECIP takes the reciprocal of the first decimal string to the precision limit
specified by the second decimal string and returns the result as a decimal string.

STR-67

STR$RECIP

Condition Values Returned

SS$_NORMAL

STR$_TRU

Routine successfully completed.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

Condition Values Signaled

STR$_DIVBY_ZER
LIB$_INVARG

STR$_FATINTERR

Division by zero.
Invalid argument.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR-68

STR$_ILLSTRCLA

STR$_1NSVIRMEM

STR$_ WRONUMARG

100 !+

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.
Insufficient virtual memory. STR$RECIP could
not allocate heap storage for a dynamic or
temporary string.

Wrong number of arguments.

This example program uses

!-

STR$RECIP to find the reciprocal of
the first decimal string (A) to the
precision specified in the second
decimal string (B), and place the
result in a third decimal string (C) .

ASIGN% = 1%
AEXP% = 3%
ADIGITS$ = '1'
BSIGN% = 0%
BEXP% = -4%
BDIGITS$ = '2'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = '0'

PRINT "A= "; ASIGN%; AEXP%; ADIGITS$
PRINT "B = "; BSIGN%; BEXP%; BDIGITS$
CALL STR$RECIP (ASIGN%, AEXP%, ADIGITS$, &

BSIGN%, BEXP%, BDIGITS$, &
CSIGN%, CEXP%, CDIGITS$)

PRINT "C = "; CSIGN%; CEXP%; CDIGITS$

999 END

This BASIC example uses STR$RECIP to find the reciprocal of A to the precision
level specified in B.

The following values apply:

A = -1000 (ASIGN = 1, AEXP = 3, ADIGITS = I l 1)
B = .0002 (BSIGN = 0, BEXP = -4, BDIGITS = I 2 I)

STR$RECIP

The output generated by this program is as follows, yielding a decimal value of C
equal to -.001.

A = 1 3 1
B = 0 -4 2
c = 1 -3 1

STR-69

STR$REPLACE

STR$REPLACE-Replace a Substring

Format

The Replace a Substring routine copies a source string to a destination string,
replacing part of the string with another string. The substring to be replaced is
specified by its starting and ending positions.

STR$REPLACE destination-string ,source-string ,start-position ,end-position
, replacement-string

corresponding jsb entry point

STR$REPLACE_R8

Returns

Arguments

STR-70

Open VMS usage
type
access
mechanism

destination-string

cond_value
longword (unsigned)
write only
by value

Open VMS usage char_string
type character string
access write only
mechanism by descriptor

Destination string into which STR$REPLACE writes the new string created when
it replaces the substring. The destination-string argument is the address of a
descriptor pointing to the destination string.

source-string
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Source string. The source-string argument is the address of a descriptor
pointing to the source string.

start-position
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference for CALL entry point, by value for JSB entry

point

Position in the source string at which the substring that STR$REPLACE replaces
begins. The start-position argument is the address of a signed longword
containing the starting position. The position is relative to the start of the source
string.

Description

STR$REPLACE

end-position
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference for CALL entry point, by value for JSB entry

point

Position in the source string at which the substring that STR$REPLACE replaces
ends. The end-position argument is the address of a signed longword containing
the ending position. The position is relative to the start of the source string.

replacement-string
Open VMS usage char_string
type character string
access read only
mechanism by descriptor

Replacement string with which STR$REPLACE replaces the substring. The
replacement-string argument is the address of a descriptor pointing to
this replacement string. The value of replacement-string must be equal to
end-position minus start-position.

STR$REPLACE copies a source string to a destination string, replacing part of
the string with another string. The substring to be replaced is specified by its
starting and ending positions.

If the starting position is less than 1, 1 is used. If the ending position is greater
than the length of the source string, the length of the source string is used. If the
starting position is greater than the ending position, the overlapping portion of
the source string will be copied twice.

Condition Values Returned

SS$_NORMAL

STR$_ILLSTRPOS

STR$_ILLSTRSPE

STR$_TRU

Normal successful completion.

Alternate success. An argument referenced a
character position outside the specified string. A
default value was used.

Alternate success. End-position was less than
start-position or the length of the substring was
too long for the specified string. Default values
were used.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

STR-71

STR$REPLACE

Condition Values Signaled

STR$_FATINTERR Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR-72

STR$_ILLSTRCLA

STR$_INSVIRMEM

10 ! +

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$REPLACE
could not allocate heap storage for a dynamic or
temporary string.

This example uses STR$REPLACE to
replace all characters from the starting

! position (2%) to the ending position (3%)
! with characters from the replacement string

('XYZ').
!-

EXTERNAL INTEGER FUNCTION STR$REPLACE
D$ = 'ABCD'
STATUS%= STR$REPLACE (D$, D$, 2%, 3%, 'XYZ')
PRINT D$
END

These BASIC statements set D$ equal to 'AXYZD'.

STR$RIGHT

STR$RIGl:IT-Extract a Substring of a String

Format

The Extract a Substring of a String routine copies a substring of a source string
into a destination string.

STR$RIGHT destination-string ,source-string ,start-position

corresponding jsb entry point

STR$RIGHT _R8

Returns

Arguments

Open VMS usage
type
access
mechanism

destination-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char _string
character string
write only
by descriptor

Destination string into which STR$RIGHT copies the substring. The
destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Source string from which STR$RIGHT extracts the substring that it copies
into the destination string. The source-string argument is the address of a
descriptor pointing to the source string.

start-position
Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference for CALL entry point, by value for JSB entry

point

Relative position in the source string at which the substring that STR$RIGHT
copies starts. The start-position argument is the address of a signed longword
containing the starting position.

STR-73

STR$RIGHT

Description

STR$RIGHT extracts a substring from a source string and copies that substring
into a destination string. STR$RIGHT defines the substring by specifying the
relative starting position. The relative ending position is equal to the length of
the source string. The source string is unchanged, unless it is also the destination
string.

If the starting position is less than 2, the entire source string is copied. If the
starting position is greater than the length of the source string, a null string is
copied.

This is a variation of STR$POS_EXTR. Other routines that may be used to
extract and copy a substring are STR$LEFT and STR$LEN_EXTR.

Condition Values Returned

SS$_NORMAL

STR$_ILLSTRPOS

STR$_TRU

Normal successful completion.

Alternate success. An argument referenced a
character position outside the specified string. A
default value was used.

String truncation warning. The fixed-length
destination string could not contain all the
characters copied from the source string.

Condition Values Signaled

STR$_FATINTERR Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR-74

STR$_ILLSTRCLA

STR$_INSVIRMEM

PROGRAM RIGHT(INPUT, OUTPUT);

{+}

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$RIGHT could
not allocate heap storage for a dynamic or
temporary string.

{ This example uses STR$RIGHT to extract a substring
{ from a specified starting position (START_POS) to
{ the end (right side) of a source string (SRC_STR)
{ and write the result in a destination string (DST_STR) .
{
{ First, declare the external procedure.
{-}

STR$RIGHT

PROCEDURE STR$RIGHT(%DESCR DSTSTR: VARYING
[A] OF CHAR; SRCSTR : VARYING [B] OF CHAR;
STARTPOS : INTEGER); EXTERN;

{+}
{ Declare the variables used in the main program.
{-}

VAR
SRC_STR
DST_STR
START_POS

{+}

VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
INTEGER;

{ Begin the main program. Read the source string
{ and starting position. Call STR$RIGHT to extract
{ the substring. Print the result.
{-}

BEGIN
WRITELN('ENTER THE SOURCE STRING: ');
READLN (SRC_STR) ;
WRITELN('ENTER THE STARTING POSITION');
WRITELN('OF THE SUBSTRING: ');
READLN(START_POS);
STR$RIGHT(DST_STR, SRC_STR, START_POS);
WRITELN;
WRITELN('THE SUBSTRING IS: ',DST_STR);

END.

This Pascal program uses STR$RIGHT to extract a substring from a specified
starting position (START_POS) to the end of the source string. One sample of the
output is as follows:

$ RUN RIGHT
ENTER THE SOURCE STRING: BLUE PLANETS ALWAYS HAVE PURPLE PLANTS
ENTER THE STARTING POSITION
OF THE SUBSTRING: 27
THE SUBSTRING IS: URPLE PLANTS

STR-75

STR$ROUND

STR$ROUND-Round or Truncate a Decimal String

Format

Returns

Arguments

STR-76

The Round or Truncate a Decimal String routine rounds or truncates a decimal
string to a specified number of significant digits and places the result in another
decimal string.

STR$ROUND places ,flags ,asign ,aexp ,adigits ,csign ,cexp ,cdigits

Open VMS usage
type
access
mechanism

places

cond_value
longword (unsigned)
write only
by value

Open VMS usage longword_signed
type longword (signed)
access read only
mechanism by reference

Maximum number of decimal digits that STR$ROUND retains in the result. The
places argument is the address of a signed longword containing the number of
decimal digits.

flags
Open VMS usage
type
access
mechanism

mask_longword
longword (unsigned)
read only
by reference

Function flag. Zero indicates that the decimal string is rounded; 1 indicates
that it is truncated. The flags argument is the address of an unsigned longword
containing this function flag.

asign
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
read only
by reference

Sign of the first operand. The asign argument is the address of an unsigned
longword string containing this sign. A value of zero indicates that the number is
positive, while a value of 1 indicates that the number is negative.

a exp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
read only
by reference

Description

STR$ROUND

Power of 10 by which adigits is multiplied to get the absolute value of the first
operand. The aexp argument is the address of a signed longword containing this
exponent.

adigits
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

First operand's text numeric string. The adigits argument is the address of
a descriptor pointing to this numeric string. The string must be an unsigned
decimal number.

csign
Open VMS usage
type
access
mechanism

longword_ unsigned
longword (unsigned)
write only
by reference

Sign of the result. The csign argument is the address of an unsigned longword
containing the result's sign. A value of zero indicates that the number is positive,
while a value of 1 indicates that the number is negative.

cexp
Open VMS usage
type
access
mechanism

longword_signed
longword (signed)
write only
by reference

Power of 10 by which cdigits is multiplied to get the absolute value of the result.
The cexp argument is the address of a signed longword containing this exponent.

cdigits
Open VMS usage
type
access
mechanism

char _string
character string
write only
by descriptor

Result's numeric text string. The cdigits argument is the address of a descriptor
pointing to this numeric string. The string is an unsigned decimal number.

The Round or Truncate a Decimal String routine rounds or truncates a decimal
string to a specified number of significant digits and places the result in another
decimal string.

Condition Values Returned

SS$_NORMAL

STR$_TRU

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

STR-77

STR$ROUND

Condition Values Signaled

LIB$_INVARG

STR$_FATINTERR

Invalid argument.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR-78

STR$_ILLSTRCLA

STR$_INSVIRMEM

STR$_ WRONUMARG

100 ! +

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$ROUND
could not allocate heap storage for a dynamic or
temporary string.

Wrong nu:r~ber of arguments.

This example shows the difference between
the values obtained when rounding or truncating
a decimal string.

!-

ASIGN% = 0%
AEXP% = -4%
ADIGITS$ = '9999998'
CSIGN% = 0%
CEXP% = 0%
CDIGITS$ = '0'
PRINT "A="; ASIGN%; AEXP%; ADIGITS$

!+
First, call STR$ROUND to round the value of A.

!-

CALL STR$ROUND (3%, 0%, ASIGN%, AEXP%, ADIGITS$, &
CSIGN%, CEXP%, CDIGITS$)

PRINT "ROUNDED: C = "; CSIGN%; CEXP%; CDIGITS$

!+
! Now, call STR$ROUND to truncate the value of A.
!-

CALL STR$ROUND (3%, 1%, ASIGN%, AEXP%, ADIGITS$, &
CSIGN%, CEXP%, CDIGITS$)

PRINT "TRUNCATED: C = "; CSIGN%; CEXP%; CDIGITS$
999 END

STR$ROUND

This BASIC example uses STR$ROUND to first round and then truncate the
value of A to the number of decimal places specified by places. The following
values apply:

A = 999.9998 (ASIGN = 1, AEXP = -4, ADIGITS = I 9999998 I)

Listed below is the output generated by this program; note that the decimal value
of C equals 1000 when rounded, and 999 when truncated.

A = 1 -4 9999998

ROUNDED: C = 0 1 100

TRUNCATED: C = 0 0 999

~T~-7Q

STR$TRANSLATE

STR$TRANSLATE-Translate Matched Characters

Format

Returns

Arguments

STR-80

The Translate Matched Characters routine successively compares each character
in a source string to all characters in a match string. If a source character has a
match, the destination character is taken from the translate string. Otherwise,
STR$TRANSLATE moves the source character to the destination string.

STR$TRANSLATE destination-string ,source-string ,translation-string ,match-string

Open VMS usage
type
access
mechanism

destination-string

cond_value
longword (unsigned)
write only
by value

Open VMS usage char_string
type character string
access write only
mechanism by descriptor

Destination string. The destination-string argument is the address of a
descriptor pointing to the destination string.

source-string
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Source string. The source-string argument is the address of a descriptor
pointing to the source string.

translation-string
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Translate string. The translation-string argument is the address of a descriptor
pointing to the translate string.

match-string
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Match string. The match-string argument is the address of a descriptor pointing
to the match string.

Description

STR$TRANSLATE

STR$TRANSLATE successively compares each character in a source string
to all characters in a match string. If a source character matches any of the
characters in the match string, STR$TRANSLATE moves a character from the
translate string to the destination string. Otherwise, STR$TRANSLATE moves
the character from the source string to the destination string.

The character taken from the translate string has the same relative position
as the matching character had in the match string. When a character appears
more than once in the match string, the position of the leftmost occurrence of
the multiply-defined character is used to select the translate string character. If
the translate string is shorter than the match string and the matched character
position is greater than the translate string length, the destination character is a
space.

Condition Values Returned

SS$_NORMAL

STR$_TRU

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all of the
characters.

Condition Values Signaled

STR$_FATINTERR Fatal internal error. An internal consistency
. check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Example

STR$_ILLSTRCLA Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

STR$_INSVIRMEM Insufficient virtual memory. STR$TRANSLATE
could not allocate heap storage for a dynamic or
temporary string.

10 ! +

!-

This example program uses STR$TRANSLATE to
translate all characters of a source string
from uppercase to lowercase characters.

EXTERNAL INTEGER FUNCTION STR$TRANSLATE(STRING,STRING,STRING,STRING)
T0$='abcdefghijklmnopqrstuvwxyz'
FROM$='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
X% = STR$TRANSLATE(OUT$, 'TEST' ,TO$, FROM$)
PRINT 'Status= ';x%
PRINT 'Resulting string= ';out$

32767 END

This BASIC example translates uppercase letters to lowercase letters, thus
performing the same function as STR$UPCASE.

STR-81

STR$TRANSLATE

STR-82

The output generated by this example is as follows:

$ RUN TRANSLATE
Status = 1
Resulting string = test

A more practical although more complicated use for STR$TRANSLATE would be
to encrypt data by translating the characters to obscure combinations of numbers
and alphabetic characters.

STR$TRIM

STR$TRIM-Trim Trailing Blanks and_ Tabs

Format

Returns

Arguments

The Trim Trailing Blanks and Tabs routine copies a source string to a destination
string and deletes the trailing blank and tab characters.

STR$TRIM destination-string ,source-string [,resultant-length]

Open VMS usage
type
access
mechanism

destination-string

cond_value
longword (unsigned)
write only
by value

Open VMS usage char_string
type character string
access write only
mechanism by descriptor

Destination string into which STR$TRIM copies the trimmed string. The
destination-string argument is the address of a descriptor pointing to the
destination string.

source-string
Open VMS usage
type
access
mechanism

char_string
character string
read only
by descriptor

Source string which STR$TRIM trims and then copies into the destination string.
The source-string argument is the address of a descriptor pointing to the source
string.

resultant-length
Open VMS usage word_ unsigned
type word (unsigned)
access write only
mechanism by reference

Number of bytes that STR$TRIM writes into destination-string, not counting
padding in the case of a fixed-length string. The resultant-length argument
is the address of an unsigned word into which STR$TRIM writes the length of
the output string. If the input string is truncated to the size specified in the
destination-string description, resultant-length is set to this size. Therefore,
resultant-length can always be used by the calling program to access a valid
substring of destination-string.

~TR-8~

STR$TRIM

Description

STR$TRIM copies a source string to a destination string and deletes the trailing
blank and tab characters.

Condition Values Returned

SS$_NORMAL

STR$_TRU

Condition Values Signaled

STR$_FATINTERR

STR$_ILLSTRCLA

STR$_INSVIRMEM

STR-84

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all the
characters.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.

Insufficient virtual memory. STR$TRIM could
not allocate heap storage for a dynamic or
temporary string.

STR$UPCASE

STR$UPCASE-Convert String to All Uppercase Characters

Format

Returns

Arguments

Description

The Convert String to All Uppercase Characters routine converts a source string
to uppercase.

STR$UPCASE destination-string ,source-string

Open VMS usage
type
access
mechanism

destination-string
Open VMS usage
type
access
mechanism

cond_value
longword (unsigned)
write only
by value

char _string
character string
write only
by descriptor

Destination string into which STR$UPCASE writes the string it has converted
to uppercase. The destination-string argument is the address of a descriptor
pointing to the destination string.

source-string
Open VMS usage
type
access
mechanism

char _string
character string
read only
by descriptor

Source string that STR$UPCASE converts to uppercase. The source-string
argument is the address of a descriptor pointing to the source string.

STR$UPCASE converts successive characters in a source string to uppercase and
writes the converted character into the destination string. The routine converts
all characters in the DEC Multinational Character Set.

Condition Values Returned

SS$_NORMAL

STR$_TRU

Normal successful completion.

String truncation warning. The fixed-length
destination string could not contain all the
characters.

STR-85

STR$UPCASE

Condition Values Signaled

STR$_FATINTERR Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

STR$_ILLSTRCLA

STR$_INSVIRMEM

Illegal string class. The class code found in the
class field of a descriptor is not a string class
code allowed by the Open VMS Calling Standard.
Insufficient virtual memory. STR$UPCASE
could not allocate heap storage for a dynamic or
temporary string.

Examples

1. 30 +
This example uses STR$UPCASE
to convert all characters in
the source string (SRC$) to
uppercase and write the result
in the destination string (DST$).

SRC$ = 'abed'
PRINi "SRC$ =";SRC$
CALL STR$UPCASE (DST$, SRC$)
PRINT "DST$ =";DST$
END

This BASIC program generates the following output:

SCR$ =abed
DST$ =ABCD

2. O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTY D F 80 TTY
C* Initialize string to be converted to uppercase
C MOVE ' rep head' HEAD 8
C UPCASE EXTRN'STR$UPCASE'
C* Convert the string to uppercase
C CALL UPCASE
C PARMD RESULT 8
C PARMD HEAD
C* Display on the terminal the string in uppercase
C RESULT DSPLYTTY
C SETON LR

The RPG II program above displays the string 'REP HEAD' on the terminal.

STR-86

A
Addition of decimal strings, STR-4

D
DEC Multinational Character Set

string comparison, STR-11, STR-18
string conversion, STR-85

Descriptors, 2-7
analysis of, 2-4

Dynamic length strings, 2-1, 2-2, 2-3, STR-64
allocation of, STR-43
deallocation of, STR-42

E
Entry points

F

CALL entry points, 2-8
JSB entry points, 2-8

Fixed length strings, 2-1
Function return values, 2-6

returned in output argument, 2-6
returned in RO/Rl, 2-6

H
Heap storage, 2-2

L
LIB$ANALYZE_SDESC routine, 2-4
LIB$GET_INPUT routine, 2-8
LIB$GET_ VM routine, 2-3
LIB$SCOPY_DXDX routine, 2-6

M
Memory

allocating strings, STR-43
deallocating strings, STR-42

Multiplication of decimal strings, STR-55

0
OTS$SCOPY _DXDX routine, 2-6

R
Routines

See String manipulation routines
Run-~me Library Routines

string Manipulation, 2-1

s

Index

STR$ADD routine, STR-3
STR$ANALYZE_SDESC routine, 2-4, STR-7
STR$APPEND routine, 2-9, STR-9
STR$CASE_BLIND_COMPARE routine, STR-11
STR$COMPARE routine, STR-13
STR$COMPARE_EQL routine, STR-15
STR$COMPARE_MULTI routine, STR-17
STR$CONCAT routine, 2-9, STR-19
STR$COPY_DX routine, 2-6, 2-8, STR-22
STR$COPY_R routine, STR-24
STR$DIVIDE routine, STR-26
STR$DUPL_CHAR routine, STR-30
STR$ELEMENT routine, STR-32
STR$FIND_FIRST_IN_SET routine, STR-34
STR$FIND_FIRST_NOT_IN_SET routine,

STR-36
STR$FIND_FIRST_SUBSTRING routine, STR-39
STR$FREE1_DX routine, STR-42
STR$GET1_DX routine, STR-43
STR$LEFT routine, 2-9, STR-45
STR$LEN_EXTR routine, STR-48
STR$MATCH_ WILD routine, STR-51
STR$MUL routine, STR-54
STR$POSITION routine, STR-58
STR$POS_EXTRA routine, 2-9
STR$POS_EXTR routine, STR-61
STR$PREFIX routine, 2-9, STR-64
STR$RECIP routine, STR-66
STR$REPLACE routine, STR-70
STR$RIGHT routine, 2-9, STR-73
STR$ROUND routine, STR-76

lndex-1

STR$TRANSLATE routine, STR-80
STR$TRIM routine, STR-83
STR$UPCASE routine, STR-85
String arithmetic

addition of decimal strings, STR-4
division of decimal strings, STR-28
multiplication, STR-55

String descriptors, STR-8
String manipulation routines, 2-1

descriptor classes and string semantics~ 2-4
how to select, 2-8
list of severe errors, 2-10
reading input string arguments, 2-5
writing output string arguments, 2-6

Strings
See also Descriptors
See also String manipulation routines
appending source string to end of destination

string, STR-9
comparing for equality, no padding, STR-15
comparing two, STR-13
comparing without regard to case, STR-11
concatenating, STR-20
converting to uppercase, STR-85
copying by descriptor, STR-23

lndex-2

copying by reference, STR-25
dividing two decimal strings, STR-28
dynamic length, 2-2, 2-10, 2-11
evaluation rules, 2-1
finding substring, STR-59
fixed length, 2-1 ·
inserting source string at front of destination,

STR-64
maximum length of, 2-1
null strings, 2-10
output length argument, 2-7
reciprocal of decimal string, STR-67
removing trailing blanks and tabs, STR-84
rounding or truncating a decimal string,

STR-77
semantics of, 2-1, 2-4
translating matched characters, STR-81

Substrings, 2-1
replacing, STR-71

v
Varying length strings, 2-1, 2-2, 2-3, STR-9,

STR-23, STR-64

NOTES

NOTES

2

NOTES

3

NOTES

4

NOTES

NOTES

NOTES

7

NOTES

8

NOTES

NOTES

10

NOTES

11

NOTES

12

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
and press 2 for technical assistance.

Electronic Orders
If you wish to place an order through your account at the Electronic Store, dial 800-234-1998, using a
modem set to 2400- or 9600-baud. You must be using a VT terminal or terminal emulator set at 8 bits, no
parity. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an
Electronic Store specialist.

Telephone and Direct Mail Orders

From

U.S.A.

Puerto Rico

Canada

International

Internal Orders1

(for software
documentation)

Internal Orders
(for hardware
documentation)

Call

DECdirect
Phone: 800-DIGITAL
(800-344-4825)
FAX: (603) 884-5597

Phone: (809) 781-0505
FAX: (809) 749-8377

Phone: 800-267-6215
FAX: (613) 592-1946

DTN: 241-3023
(508) 874-3023

DTN: 234-4325
(508) 351-4325
FAX: (508) 351-4467

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.
3 Digital Plaza, 1st Street
Suite 200
Metro Office Park
San Juan, Puerto Rico 00920

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Local Digital subsidiary or
approved distributor

Software Supply Business (SSB)
Digital Equipment Corporation
1 Digital Drive
Westminster, MA 014 73

Publishing & Circulation Services
Digital Equipment Corporation
NR02-2
444 Whitney Street
Northboro, MA 01532

1Call to request an Internal Software Order Form (EN-01740-07).

Reader's Comments OpenVMS RTL String
Manipulation (STR$) Manual

AA-PV6MA-TK

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair

Accuracy (product works as manual says) D D D
Completeness (enough information) D D D
Clarity (easy to understand) D D D
Organization (structure of subject matter) D D D
Figures (useful) D D D
Examples (useful) D D D
Index (ability to find topic) D D D
Page layout (easy to find information) D D D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

For software manuals, please indicate which version of the software you are using:

Name/Title

Company

Mailing Address

Dept.

Phone

Date

Poor

D
D
D
D
D
D
D
D

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OpenVMS Documentation
110 SPIT BROOK ROAD ZK03-4/U08
NASHUA, NH 03062-2642

lll11111ll1ll1111ll1111l1l11l1l1ll111l11l11l1l1l1l1I

No Postage
Necessary
if Mailed

in the
United States

--- Do Not Tear -Fold Here ---

