
How to Transition Code to TSP
from SCPI
––
APPLICATION NOTE

http://www.tek.com

Introduction
For many years, instrument manufacturers have used

“Standard Commands for Programmable Instrumentation”

(SCPI) to control programmable test and measurement

devices in test systems. The goal of SCPI is to provide a

uniform and consistent command set for the control of test

and measurement instruments. The same commands and

queries control corresponding instrument functions in SCPI

equipment, regardless of the manufacturer or the instrument

type. However, despite SCPI’s intended function as a

universal command set, the simple fact that new features are

implemented with each new iteration of an instrument means

that SCPI command sets will vary between instruments.

The main hurdle to overcome before taking the initiative

to use a different command set is learning the new one,

however adjusting to the nuances of a new SCPI command

implementation is required every time a different instrument

is in use, so it is not a hurdle that users are unfamiliar with.

The purpose of this document is to introduce Keithley’s

Test Script Processor (TSP®) command set and scripting

language as an alternative to SCPI and traditional instrument

programming. First, an overview of SCPI and TSP will be

given, followed by several side-by-side examples to show

analogous commands between both command sets.

What is TSP?
Keithley’s Test Script Processor (TSP) is a flexible hardware/

software architecture that allows message-based

programming, much like SCPI, with enhanced capabilities

for controlling test sequencing/flow, decision-making, and

instrument autonomy. TSP-enabled instruments operate like

conventional SCPI instruments by responding to a sequence

of commands sent by the controller. You can send individual

commands to the TSP-enabled instrument the same way you

would when using SCPI with any other instrument. Making

the switch to TSP will afford you improved throughput,

access to additional interfacing options between both the PC

and other instruments, and the convenience of autonomous

instrumentation when desired.

The use of an on-board Test Script Processor has made

it possible to create “smart” instruments, with built-in

decisionmaking capabilities, which reduces the need to

communicate so frequently with an external controller. This

approach to test system design allows smart instrument

systems to be much more efficient than those that rely

on standard SCPI-based programming. As the number of

TSP-based instruments grows, test system developers will

have greater flexibility to build test systems with far higher

throughput without compromising measurement integrity.

TSP encompasses both the TSP command set and the TSP

scripting language. The TSP scripting language is based

on Lua version 5.0, and when used together with the TSP

command set, allows for logic and subroutines that would

normally reside on a PC to run inside the instrument, which

reduces the amount of data and number of messages sent

over the communications bus by a considerable amount.

Why Use TSP?
While some instruments such as the 2600 Series SMUs

can only be interfaced with by using TSP, many Keithley

instruments allow the user to choose either SCPI or TSP for

remotely controlled instrument applications, which raises

the question: Why use TSP if the option of using SCPI is

available?

The main reason to choose the TSP command set for

remote operations is due to its ability to improve throughput

by offloading most processes and calculations onto the

instrument. With the computing operations on the instrument

side of the communication link, interactions between the host

PC and the test equipment can be significantly reduced by

eliminating entire reads and writes over the bus from the test

sequence. This is especially advantageous when sweeping

or when numerous repetitive measurements are made.

Instead of sending an entire array of data back to the PC for

processing, the instrument can process the array directly and

return a single computed answer.

TSP also offers far more flexibility and expandability than the

SCPI command set. While offloading some data processing

and calculations onto the instrument is one of TSP’s main

2 | WWW.TEK.COM

How to Transition Code to TSP from SCPI APPLICATION NOTE

advantages, that feature is not required to use the TSP

command set. TSP can be used in the same manner as SCPI,

where a PC controller sends commands to the instrument

and the data is returned to the PC to be interpreted by your

preferred software tools. The more cohesively your different

pieces of test equipment work, the less time you will need to

spend implementing workarounds or tricks to get the desired

performance outcome, which is why it is good to consider

implementing some of TSP’s more advanced features and try

scripting with TSP at some point.

Like SCPI commands, TSP commands can be sent down

from a controller using a programming language such

as Python or C++. However, unlike SCPI, TSP offers

many embedded features that will allow you to expand

the functionality of your test setups. Should you choose

to try scripting with TSP, you will acquire the ability to

load, store, and run numerous customized test functions

on an instrument and broadcast the same to all other

connected instruments; and gain access to greatly improved

communication throughput via best programming practices.

To learn more about scripting with TSP and other advanced

features see the Application Note: How to Write Scripts for

Test Script Processing (TSP).

Comparing the SCPI and TSP
Command Systems
The SCPI command format was developed to be self-

descriptive, each command is intended to describe its

own function. All SCPI commands have an extended

and abbreviated form. The more verbose form aids in user

understanding as the commands hold more characters

to help better define the action the specific command

performs. The advantage of the abbreviated form is that

the user can achieve the same outcome sending fewer

characters. Every ASCII character sent and received takes

time to propagate from sender to receiver. Therefore, fewer

characters translates to less communication time.

SCPI Example:

:ROUTe[:CHANnel]:CLOSe (@<channelList>)

vs.

:ROUT:CLOS(@<channelList>)

TSP Example:

channel.close("channelList")

However, in using the truncated SCPI commands, the user

sacrifices readability for throughput. TSP language does not

have short form commands. However, with scripting, you

can have the commands run directly on the instrument itself,

removing the need for abbreviated commands as there is no

longer any delay caused by bus communication time. Even

without full scripting, it is possible to alias TSP commands

to any user selected string, allowing even shorter command

strings than those of SCPI short commands. Comparatively,

a PC-based control program with TSP can yield greater

readability with better throughput than when utilizing SCPI.

One of the main differences between the SCPI and TSP

command systems is how readings are taken. In the SCPI

case, you must send the :READ? command to initiate the

measurement. The reading is then placed in an output queue

in the instrument for retrieval. The control program must then

get the reading from the instrument in order to complete

the process. This is because SCPI queries must adhere to

a message exchange protocol which maintains that a new

query or command cannot be sent to the instrument before

the result of the previous query is retrieved completely.

Otherwise, the “Query Interrupted” error will propagate. This

inflexible messaging protocol limits your instrument control

options, and can be problematic in some applications.

This is not the case with the TSP command set.

Since TSP is built for scripting, readings are stored

in variables and can be returned at any time and

in any quantity. A measurement is executed by the

command READING = dmm.measure.read() for

digital multimeters and data acquisition systems, or

READING = smu.measure.read() for source measure

units. In both cases, the measurement is stored in the

variable READING. It is not necessary to return the

measurement to the host controller unless it is required, in

which case, the print(READING) command will return the

value. The READING variable could be used within a TSP

script for other operations, such as limit testing, a math

operation, or as part of an overall testing strategy. This is

where the power of the TSP functions begins.

WWW.TEK.COM | 3

How to Transition Code to TSP from SCPI APPLICATION NOTE

The SCPI Instrument Model controls the way instrument

functionality is divided among the SCPI command sub-

systems. Some sub-systems are only available on certain

types of instruments. For example, the ROUTe sub-system is

only available on units with switching capabilities or with front

and rear terminals. The command sub-systems are generally

broken down into the following categories:

1.	 CALCulate: Used for math expressions, limit testing, and

statistics.

2.	 CALibration: Configures and controls the calibration

operations.

3.	 DIGital: The commands in the Digital subsystem control

the digital I/O lines.

4.	 DISPlay: Controls the display of the instruments.

5.	 INITiate: Starts the trigger model and enables/disables

continuous triggering.

6.	 FORMat: Selects the data format for transferring

readings over the bus.

7.	 OUTPut: Provides information and settings that control

the output of the selected source.

8.	 ROUTe: Controls front/rear inputs and channel switching.

9.	 SCRipt: Controls macro or instrument setup scripts.

10.	 SENSe: Configures and controls the measurement

functions.

11.	 SOURce: Configure and control the current source and

voltage source for SMUs and power supplies.

12.	 STATus: Controls the status registers.

13.	 SYSTem: Contains miscellaneous commands for

instrument setup including passwords, beepers,

time, etc..

14.	 TRACe: Configures and controls data storage into

the buffer.

15.	 TRIGger: Configures the Trigger Model and controls

trigger operations.

The TSP command set is a group of predefined functions and

attributes that are used to control the instrument. They act as

instrument commands that are used in the same manner as

SCPI commands used by SCPI instruments. Like SCPI, TSP

commands can also be broken down into categories, and not

all the categories apply to all instruments. For example, the

SMU commands can only be used by source measure units.

1.	 Beeper: Commands used to control the built-in beeper.

2.	 Bit: Used to perform logic operations on one or two

binary numbers.

3.	 Buffer: Commands that are used to manipulate the

contents and features of the reading buffers.

4.	 Channel: Commands that set the attributes of

multiplexer channels available with data loggers and data

acquisition systems and monitor their status.

5.	 Delay: Commands the instrument to wait for a specified

number of seconds.

6.	 Digital I/O: Used to control the Digital I/O port

of the instrument.

7.	 Display: Used to control display messaging on the front

panel of the instrument.

8.	 DMM: Controls the measurement operations for

DAQs and DMMs.

9.	 Error Queue: Used to read the entries in the error/

event queue.

10.	 Event Log: Used to view specific details about triggering

and other system events.

4 | WWW.TEK.COM

How to Transition Code to TSP from SCPI APPLICATION NOTE

11.	 Exit: Used to terminate a script that is presently running.

12.	 File: Used to open and close directories and files, write

data, or to read a file from a specified file location.

13.	 Format: Used for data printed with the printnumber and

printbuffer commands.

14.	 GPIB: Used to set the GPIB address.

15.	 LAN: Used to review and configure network settings over

the remote interface.

16.	 LocalNode: Used to set the power line frequency,

control (on/off) prompting, and control (hide/show) error

messages on the display.

17.	 Operation Complete: Sets the OPC bit in the status

register when all overlapped commands are completed.

18.	 Print: Generates a response message.

19.	 PrintBuffer: Prints data from tables or reading buffer

subtables.

20.	 Reset: Used to return an instrument to its

default settings.

21.	 Scan: Configures the scan settings for multiplexer

modules used with data acquisition systems.

22.	 Script: Commands used to manage TSP scripts stored

in the instrument’s nonvolatile memory.

23.	 Serial: Used to configure and control the instrument's

serial Interface.

24.	 Slot: Commands used to monitor the rear slot for switch

or multiplexer cards.

25.	 SMU: Used to control basic source-measure operations

of Source Measure Units.

26.	 Status: Controls the status registers.

27.	 Timer: The timer can be used to measure the time it

takes to perform various operations.

28.	 Trigger: Used to control triggering.

29.	 UserString: Used to store/retrieve user-defined strings in

non-volatile memory.

30.	 WaitComplete: Waits for all overlapped commands

to complete.

While the TSP categories are a larger list of command

definitions compared to the list of SCPI subsystems, many of

the categories in this list contain access to features that are

otherwise unavailable when using the SCPI command set.

One such advantage over the SCPI command set is the TSP

command set’s fine-grained control over the instrument’s

processes, including low-level processes. In comparison,

SCPI only allows access to the instrument’s high-level

features. A large number of categories is also explained

by the more straightforward organizational structure. For

example, the SCPI SYSTem category contains commands

analogous to those in these TSP categories: Beeper, Slot,

LAN, Error Queue, Event Log, and GPIB. Several of these

categories are individual commands in and of themselves.

Common remote interface commands are commands that

have the same general meaning, regardless of the instrument

you use them with. The common commands perform

operations such as reset, wait-to-continue, and status. They

always begin with an asterisk (*) and may include one or

more parameters. The command keyword is separated from

the first parameter by a blank space. Note that although these

commands are essentially the same as those defined by the

IEEE Std 488.2 standard, TSP-compatible instruments may

not strictly conform to that standard.

WWW.TEK.COM | 5

How to Transition Code to TSP from SCPI APPLICATION NOTE

If you are using a SCPI remote interface, the commands

can be combined. Use a semicolon (;) to separate multiple

commands, as shown below:

*RST; *CLS; *ESE 32; *OPC?

Common commands can be used with TSP-only instruments

and instruments currently set to TSP mode. For example,

an instrument set to TSP mode will still respond with an ID

string when *IDN? is sent to it. However, common commands

cannot be used in TSP scripts. Following is a list of the

common SCPI commands along with their TSP command

set equivalents:

Common Commands with TSP Equivalents

Common SCPI
Commands TSP Equivalent Commands

*CLS eventlog.clear() status.clear()
*ESE status.standard.enable
*ESE? print(status.standard.enable)
*ESR? print(status.standard.event)

*IDN?
print(localnode.model)
print(localnode.serialno)
print(localnode.version)

*LANG No equivalent, accessible through front panel

*LANG? No equivalent, accessible through front panel

*OPC opc()
*OPC? waitcomplete() print([[1]])
*RST reset()
*SRE status.request_enable
*SRE? print(status.request_enable)
*STB? print(status.condition)
*TRG trigger.tsplinkout[N].assert()
*TST? print([[0]])
*WAI waitcomplete()	

6 | WWW.TEK.COM

How to Transition Code to TSP from SCPI APPLICATION NOTE

How to Switch Code from SCPI to TSP: Examples
Making the switch to the TSP command set from SCPI is a simple matter of swapping analogous commands. While

that concept seems daunting, it is not so different from learning the different SCPI command sets for each individual

instrument model.

DAQ6510 Example

This example configures a basic scan using a DAQ6510 Data Acquisition and Logging Multimeter.

Channels 101 through 109 are set to measure DC voltage at 1 power line cycle with auto range enabled.

Resolution is set to 4.5 digits and the scan count is set to 10.

SCPI TSP
"*RST" reset()

"FUNC 'VOLT:DC', (@101:109)"
channel.setdmm("101:109",
dmm.ATTR_MEAS_FUNCTION,
dmm.FUNC_DC_VOLTAGE)

"VOLT:NPLC 1, (@101:109)" channel.setdmm("101:109",
dmm.ATTR_MEAS_NPLC, 1)

"VOLT:RANG:AUTO ON, (@101:109)" channel.setdmm("101:109",
dmm.ATTR_MEAS_RANGE_AUTO, dmm.ON)

"DISP:VOLT:DIG 4, (@101:109)" channel.setdmm("101:109",
dmm.ATTR_MEAS_DIGITS, dmm.DIGITS_4_5)

"ROUT:SCAN:CRE (@101:109)" scan.create("101:109")
"ROUT:SCAN:COUN:SCAN 10" scan.scancount = 10
"INIT" trigger.model.initiate()
"TRAC:DATA? 1, 90, "defbuffer1", READ" printbuffer(1, 90, defbuffer1.readings)

Alternatively, the first four TSP commands that apply settings to the channel list can be condensed into a single command by

passing all the arguments at once, while the SCPI settings must all be applied separately.

SCPI TSP
"*RST" reset()

"FUNC ‘VOLT:DC', (@101:109)"

channel.setdmm("101:109",
dmm.ATTR_MEAS_FUNCTION,
dmm.FUNC_DC_VOLTAGE, dmm.ATTR_MEAS_NPLC, 1,
dmm.ATTR_MEAS_RANGE_AUTO, dmm.ON,
dmm.ATTR_MEAS_DIGITS, dmm.DIGITS_4_5)

"VOLT:NPLC 1, (@101:109)"
"VOLT:RANG:AUTO ON, (@101:109)"
"DISP:VOLT:DIG 4, (@101:109)"
"ROUT:SCAN:CRE (@101:109)" scan.create("101:109")
"ROUT:SCAN:COUN:SCAN 10" scan.scancount = 10
"INIT" trigger.model.initiate()
"TRAC:DATA? 1, 90, "defbuffer1", READ" printbuffer(1, 90, defbuffer1.readings)

WWW.TEK.COM | 7

How to Transition Code to TSP from SCPI APPLICATION NOTE

SMU 2450 Example

This example utilizes a 2450 SourceMeter® source measure unit to produce an I-V sweep characterization of a solar cell.

The voltage is swept from 0 V to 0.55 V in 56 steps. The resulting solar cell current is measured. The current and voltage

measurements are stored in a default data buffer (defbuffer1). Finally, the delta buffer is returned.

SCPI TSP
"*RST" reset()
"SENS:FUNC 'CURR'" smu.measure.func = smu.FUNC_DC_CURRENT
"SENS:CURR:RANG:AUTO ON" smu.measure.autorange = smu.ON
"SENS:CURR:RSEN ON" smu.measure.sense = smu.SENSE_4WIRE
"SOUR:FUNC VOLT" smu.source.func = smu.FUNC_DC_VOLTAGE
"SOUR:VOLT:RANG 2" smu.source.range = 2
"SOUR:VOLT:ILIM 1" smu.source.ilimit.level = 1

"SOUR:SWE:VOLT:LIN 0, 0.55, 56, 0.1" smu.source.sweeplinear("SolarCell", 0, 0.55,
56, 0.1)

"INIT" trigger.model.initiate()
"*WAI" waitcomplete()

"TRAC:DATA? 1, 56, "defbuffer1", SOUR, READ" printbuffer(1, 56, defbuffer1.sourcevalues,
defbuffer1.readings)

This example can be taken a step further by using these basic TSP commands in conjunction with the full power of the TSP

scripting language. The Test Script Processor in enabled instruments uses scripting with the TSP command set. This allows for

data interpretation to be handled locally by the instrument, as opposed to remotely by a controlling PC running programs such

as Microsoft Excel. The calculations required to identify key points of data can be done by the instrument, and displayed on the

front panel or returned to an external computer.

Like the previous example, the instrument here is programmed to produce an I-V sweep characterization of a solar cell where

the voltage is swept from 0 V to 0.55 V in 56 steps. But this example enhances functionality by additionally displaying calculated

data and custom text on the instrument front panel using the display.changescreen and display.settext commands.

After the test is finished, the front panel display will indicate the maximum power (Pmax), the short circuit current (ISC), and the

open circuit voltage (VOC).

8 | WWW.TEK.COM

How to Transition Code to TSP from SCPI APPLICATION NOTE

TSP
--Define the number of points in the sweep.
num = 56
--Reset the instrument and clear the buffer.
reset()
--Set the source and measure functions.
smu.measure.func = smu.FUNC_DC_CURRENT
smu.source.func = smu.FUNC_DC_VOLTAGE
--Measurement settings.
smu.measure.terminals = smu.TERMINALS_FRONT
smu.measure.sense = smu.SENSE_4WIRE
smu.measure.autorange = smu.ON
smu.measure.nplc = 1
--Source settings.
smu.source.highc = smu.OFF
smu.source.range = 2
smu.source.readback = smu.ON
smu.source.ilimit.level = 1
smu.source.sweeplinear("SolarCell", 0, 0.55, num, 0.1)
--Start the trigger model and wait for it to complete.
trigger.model.initiate()
waitcomplete()
--Define initial values.
voltage = defbuffer1.sourcevalues
current = defbuffer1
isc = current[1]
mincurr = current[1]
imax = current[1]
voc = voltage[1]
vmax = voltage[1]
pmax = voltage[1]*current[1]
--Calculate values: maximum power, maximum current, maximum voltage, open circuit voltage,
short circuit current.
for i = 1, num do
 print(voltage[i],current[i],voltage[i]*current[i])
 if (voltage[i]*current[i] > pmax) then
 pmax = voltage[i]*current[i]
 imax = current[i]
 vmax = voltage[i]
 end
 if math.abs(current[i]) < math.abs(mincurr) then
 voc = voltage[i]
 end
end
pmax = math.abs(pmax)
imax = math.abs(imax)
--Display values on the front panel.
display.changescreen(display.SCREEN_USER_SWIPE)
display.settext(display.TEXT1, string.format("Pmax = %.4fW", pmax))
display.settext(display.TEXT2, string.format("Isc = %.4fA, Voc = %.2fV", isc, voc))

The display of the 2450 after
the script has completed
showing the output values
in a custom display.

WWW.TEK.COM | 9

How to Transition Code to TSP from SCPI APPLICATION NOTE

Conclusion
Whether you are using the TSP command set as a

replacement for SCPI or using the full TSP language as a

powerful scripting tool, TSP can help improve test throughput

and increase the overall functionality of your instruments.

TSP affords the user a multitude of advantages over SCPI,

including the ability to return multiple readings at once,

improved throughput, and better readability. Flexibility is a

key asset of the TSP command set, allowing the user to tune

their experience to their specific needs. TSP can be used in

a similar manner to SCPI by being run from a controlling PC

with TSP commands acting as analogous replacements to

SCPI commands. It can be used to write scripts that are run

locally on the instrument, or to manage large networks of

connected instruments. To learn more about scripting with

TSP in order to get the most out of your TSP compatible

instruments, visit tek.com/keithley.

10 | WWW.TEK.COM

How to Transition Code to TSP from SCPI APPLICATION NOTE

https://www.tek.com/keithley

WWW.TEK.COM | 11

How to Transition Code to TSP from SCPI APPLICATION NOTE

Contact Information:
 Australia 1 800 709 465

Austria* 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835

Brazil +55 (11) 3759 7627

Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France* 00800 2255 4835

Germany* 00800 2255 4835

Hong Kong 400 820 5835

India 000 800 650 1835

Indonesia 007 803 601 5249

Italy 00800 2255 4835

Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777

Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90

Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835

New Zealand 0800 800 238

Norway 800 16098

People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564

Singapore 800 6011 473

South Africa +41 52 675 3777

Spain* 00800 2255 4835

Sweden* 00800 2255 4835

Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688

Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835

USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not

accessible, call: +41 52 675 3777
Rev. 02.2018

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names
referenced are the service marks, trademarks or registered trademarks of their respective companies.

031121 SBG 1KW-61539-0

http://www.tek.com
http://www.tek.com

