

a
....
en

"' z

I .,, .,,
-0 .,,
00
I

"' l.N

"' I
00

·. :. ;.

~ ·,'· ·:. • :: · , A

Now Available from Prima!
Advanced PageMaker 4.0 for Windows
CompuServe Information Manager for Windows: The Complete Membership Kit

& Handbook (with two 3Y2" disks)
Computers Don't Byte-The Absolute Beginner's Guide to
CorelDRAW! 4 Revealed!
Create Wealth with Quicken
DESQview: Everything You Need to Know
DOS 6.2: Everything You Need to Know
Free Electronic Networks
Harvard Graphics for Windows: The Art of Presentation
Improv for Windows Revealed! (with 3Yz'' disk)
Lotus Notes 3 Revealed!
Lotus Works 3: Everything You Need to Know
Making Movies with Your PC
Microsoft Office In Concert, Professional Edition
NetWare 3.x: A Do-It-Yourself Guide
Novell NetWare Lite: Simplified Network Solutions
1-2-3 for Windows: The Visual Learning Guide
PageMaker 5 for the Mac: Everything You Need to Know
Quattro Pro 4: Everything You Need to Know
Quick Time: Making Movies with Your Macintosh
The Software Developer's Complete Legal Companion (with 3W' disk)
SuperPaint 3: Everything You Need to Know
Think THINK C (with two 3Yz'' disks)
WinFax PRO: The Visual Learning Guide
Word for Windows 6: The Visual Learning Guide
WordPerfect 5.1 for Windows Desktop Publishing By Example
WordPerfect 6 for Windows: How Do I. .. ?

Upcoming Books
CorelDRAW! 5 Revealed!
Excel 5 for the Mac: The Visual Learning Guide
Word 6 for the Mac: The Visual Learning Guide

How to Order:
Individual orders and quantity discounts are available from the publisher, Prima Publishing,
P.O. Box. 1260BK, Rocklin, CA 95677-1260; phone: (916) 632-4400. On your letterhead
include information concerning the intended use of the books and the number of books
you wish to purchase. Turn to the back of the book for more information.

Object-Oriented Programming Fundamentals
for the Macintosh

Dan Parks Sydow

I) Prima Publishing

P.O. Box I 260BK
. Rocklin, CA 95677-1260
(916) 632-4400

Prima Computer Books is an imprint of Prima Publishing, Rocklin, California 95677

© 1994 by Dan Parks Sydow. All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without written permission from
Prima Publishing, except for the inclusion of quotations in a review.

Executive Editor: Roger Stewart

Managing Editor: Neweleen A. Trebnik

Acquisitions Editor: Sherri Morningstar
Project Editor: Steven Martin

Copy Editor: Betsy Ahl
Indexer: Lynn Brown
Technical Reviewer: Peter Ferrante
Design and Production: Susan Glinert, BookMakers

Cover Design: Page Design, Inc.

If you have problems installing or running Symantec C++, notify the Symantec Corporation.
Prima Publishing cannot provide software support.

Information contained in this book has been obtained by Prima Publishing from sources
believed to be reliable. However, because of the possibility of human or mechanical error by
our sources, Prima Publishing, or others, the publisher does not guarantee the accuracy, ade­
quacy, or completeness of any information and is not responsible for any errors or omissions of
the results obtained from use of such information

ISBN: 1-55958-633-8

Library of Congress Catalog Card Number: 94-066733

Printed in the United States of America

94 95 96 97 BC 10 9 8 7 6 5 4 3 2 1

To my wife, Nadine

Contents at a Glance

vi

I
2
3
4
5
6
7
8
9

10
11
A
B

Acknowledgments
Introduction
Using the Symantec C++ Compiler
Introduction to C++ and OOP
The C Language: The Basis of C++
Additions to C. .. Means C ++
Classes and Objects
Derived Classes
Abstract Classes
Dynamic Binding
Objects and the User
Windows as Objects
A Complete Example
Getting and Using QuickTime
Menu Handling
Index

xiii
xv

I
31
51
77

109
159
199
221
265
309
345
387
403
417

Contents

Acknowledgments xiii

Introduction xv

Whom This Book and Software Are For xvi
What You Need xvi

Using the Book xvii
Running the Simulator C++ Software xvii
Running the Example Programs xviii

How to Use This Book and Software xviii
Using the Symantec C++ Examples xviii
Using the Simulator C++ Software xviii

Features of the Simulator Software xx
Installing the Simulator C++ Software xx
Using the Simulator Software xxiv

Running the Simulator C++ Software xxiv
Pages and the Control Panel xxiv
Simulator Pages xxvii

Chapter I Using the Symantec C++ Compiler

Creating a New Project I
Creating a Project Using Symantec C++ 6.0 3
Creating a Project Using Symantec C++ 7.0 5

vii

·~-.=..:.

viii Symantec C++

Adding Files to a Project 9
Adding Libraries to a C++ Project 9
Adding a Source Code File to a C++ Project 12

Segmenting a Project 15
C++ Code: Writing It and Running It 17
Using the Symantec Debugger 19

Debugger Basics 20
Debugging a Program 23

Turning Code into an Application 26
Using the Included Projects 28
About That Code... 28
Chapter Summary 29

Chapter 2 Introduction to C++ and OOP

C++ and Object-Oriented Programming 31
C, C++, and OOP 32
From C to C++ to OOP 33

Procedural and Object Programming 34
Procedural Programming 34
Object-Oriented Programming 35
The Advantages of Object-Oriented Programming 38

Classes 42
The Class-the Pattern of Objects 42
Creating Multiple Objects 43

Object-Oriented Programming and C 45
Everything Need Not Be an Object 45
C++ Uses C 46

Chapter Summary 49

Chapter 3 The C Language: The Basis of C++

Basic Data Types 51
Integral Numbers 52
Floating-Point Numbers 53
Characters and Strings 53

Preprocessor Directives 54
The #define Directive 55
The #include Directive 55

Operators 56
Looping Statements 56

The while Loop 57
The do-while Loop 57
The for Loop 60

Branching Statements 60
The if Branch 60
The if-else Branch 62
The else-if Branch 63
The switch Branch 65

Structures 67
Defining and Declaring a struct 67

31

SI

Accessing struct Members 68
The struct and class Data Types 71

Chapter Summary 75

Contents ix

Chapter 4 Additions to C .•. Means C++ 77

The Very Basics 77
Functions 78
Comments 79

Function Overloading 79
Functions with a Different Number of Arguments 79
Functions with Different Argument Types 83
Why Create Functions with the Same Name? 84

Allocating Memory in C 85
Pointer Review 85
Using Pointers 86
Pointers and struct Variables 89
Using the Symantec Debugger 92
Using the Debugger to Verify a Proper Memory Allocation 92
Using the Debugger to Examine Bad Memory Allocation 94

Allocating Memory in C++ 99
The Scope Resolution Operator I 05
Chapter Summary I 07

Chapter 5 Classes and Objects

Declaring a Class I 09
Defining Member Functions I 12

Writing the Header of a Member Function I 12
Writing the Body of a Member Function I 15

Working with Objects I 17
Declaring an Object I 17
Objects and Member Functions 121
Invoking a Member Function 122
Objects and Member Functions-Round Two 127
Deleting an Object 129
Multiple Objects 130

Accessing Data Members 134
Data Access via Member Functions 134
Using the private and public Keywords to Limit Access 134
Accessing Data without Using Member Functions 135

The this Operator 139
Constructors and Destructors 143

Constructors 143
Destructors 149

Chapter Summary 156

Chapter 6 Derived Classes

Multiple Classes 159
Derived Classes 162

Why Create Derived Classes? 162

109

159

C ..

x Symantec C++

The Base Class 166
The Derived Class 167

Working with Derived Class Objects 169
Creating Derived Objects 170
Using Derived Objects 171
Derived Objects and Data Member Access 173
An Example Using Derived Objects 178
A Second Example Using Derived Objects 180

Overriding Member Functions 185
Why Override Member Functions~ 185
Overriding a Function 187
An Overriding Example 191

Chapter Summary 197

Chapter 7 Abstract Classes

Why Abstract Classes? 199
Creating an Abstract Class 20 I

The Abstract Class Data Members 20 I
The Abstract Class Member Functions 202

Creating a Family of Classes 204
The Derived Classes 204
The Member Functions of the Derived Classes 206

An Abstract Example 209
The Class Hierarchy 216
Chapter Summary 219

Chapter 8 Dynamic Binding

Returning Objects from Functions 222
A Shape as an Object 222
Returning an Object 227
Function Prototypes and Forward References 229
A Returned Object Example 230

Returned Objects and Derived Classes 233
Rectangles and Derived Classes 233
Dynamic Binding 239
A Dynamic Binding Example 243
The Rectangle Class-Still an Abstract Class~ 249

Passing Objects to Functions 249
A Rectangle Object as a Parameter 249
The PassedRectangle Example Program 254

Returned Objects and the Animal Class 257
Chapter Summary 263

Chapter 9 Objects and the User

Using an Alert to Create a New Object 265
Alert Resources 267
Using the Alert to Select an Object Type 268
An Alert Example 269

199

221

265

Updating an Object 274
The Need to Redraw a Window's Contents 274
Update Events and Redrawing a Window's Contents 276
Testing the Object Update 279
Updating an Object-an Example 284

Using a Dialog Box to Create a New Object 289
Dialog Box Resources 289
Handling Radio Button Items in a Dialog Box 291
Handling Edit Text Items in a Dialog Box 293
Creating a New Object Using a Dialog Box 294
A Dialog Box Example Program 299

Chapter Summary 308

Contents xi

Chapter I 0 Windows as Objects 309

Window Basics 309
Opening a Window 310
Window Data Types 3 I 0
Windows and Events 3 13
A Multiple-Windows Example Program 317

Representing Windows as Objects 325
The Window Class 325
Windows and the Constructor Function 327
Verifying That Objects Are Distinguishable 333
Windows and Events 335
An Example of Windows as Objects 336

Chapter Summary 343

Chapter I I A Complete Example 345

DerivedWindows: A Complete OOP Example 345
What the Program Does 346
The DerivedWindows Resources 350
The DerivedWindow Classes 353
The WindowClass Member Functions 357
The PictWindow Member Functions 359
The PetWindow Member Functions 361
Updating Object Windows 362
Menus and Objects 363
Objects and User Input 365
The DerivedWindows Source Code 369

What's Next? 385

Appendix A Getting and Using QuickTime

Getting Quicklime 387
Downloading from America Online 388
Downloading from CompuServe 390
Downloading from GEnie 395

Installing and Using Quicklime 40 I

387

xii Symantec C++ 1

Appendix B Menu Handling

Menu Resources 403
Menu Code 405
Menu Example 408

·Index

403

417

Acknowledgments

I'd like to take this opportunity to thank the several people who helped
make this book a reality:

Steven Martin, Prima Publishing Project Editor, for having a sense of
humor while keeping things moving through the production cycle.

Peter Ferrante, Apple Computer, for a technical edit that resulted in a
wealth of helpful comments and suggestions.

Betsy Ahl, SBI Inc., for a copyedit that once again made my grammar
look like it ain't all that bad!

Susan Glinert, BookMakers, for a page layout that made the book
look as good as it does.

Carole McClendon, Waterside Productions, for making this book
happen.

Betty Sydow, for encouragement and for displaying copies of my
books on her bookshelf.-even if she can't imagine what they're all about!
Thanks mom.

xiii

Introduction

These days, it's hard to hold a conversation about computer programming
without the topics of C++ and object-oriented programming surfacing.
You've surely heard such opinions as "C++ is the programming language of
the nineties" and "the future of programming is C++." While many will
argue the notion that C++ is the most worthy recipient of the title "the future
of programming," one simple fact stands out-it will be the dominant lan­
guage for at least the next several years.

You are probably aware that C++ is here to stay. Yet you might have
resisted the switch from your current language-Pascal or C, perhaps-to
C++. If that is indeed the case, you have probably hesitated because you've
heard that the C++ language is a complicated one to learn. You've probably
heard the same said about object-oriented programming-the set of pro­
gramming techniques that define how a C++ program is organized. Before
you turn this page, I'd like you to cast aside your fears and keep one thought
in mind-C++ and object-oriented programming aren't difficult; they're
different.

This book and the disk that accompanies it exisno eliminate the frus­
tration that many people feel as they attempt to make the transition from a
procedurallanguage like C to an object-oriented language like C++. The book
starts with a series of very small and simple examples designed to teach the

xv

xvi Symantec C++

basics of C++. This step-by-step approach builds a foundation for the more
comprehensive examples that appear later in the book-examples that use
C++ and object-oriented techniques to create Mac programs that include
menus and windows.

All of the source code for the examples in the book are provided on the
included disk. The disk also holds a software tutorial called Simulator C++
that is meant to accompany the text. While the book contains plenty of
figures to help clarify programming concepts, there are times when ideas
can be better presented using a little animation. The Simulator C++
software does just that. In Simulator C++, screens of information corre­
spond to the pages of a book. You click a button to page through them.
And, quite often, a page will open up a supplementary window that con­
tains a QuickTime movie. You can play and replay this movie to "bring to
life" a key programming concept.

Whom This Book and Software Are For

Symantec C++: Object-Oriented Programming Fundamentals for the Mac­
intosh was written for C programmers who want to move on and move up
to C++ programming. The book is ideal for people who fall into one or
more of the following categories:

• People who have programmed the Mac using C and now want to
program it using C++.

• People who have the combined Symantec C++/THINK C compiler but
haven't taken advantage of the C++ features of it.

• People who know a little about the C++ lanaguage but don't know how
to use it to write a Mac program.

• People who want to learn how C++ is used to write object-oriented pro­
grams (OOP).

What You Need

The Symantec C++: Object-Oriented Programming Fundamentals for the
Macintosh package is a comprehensive Macintosh C++ programming guide,
but there are a couple of things that will help you to get the maximum
benefit from it.

Introduction xvii

Using the Book
The C++ language is based on C. So it makes sense that you should know
the basics of C before trying to tackle C++. If you've programmed the Mac
but not in C or you've never written a Mac program, you might want to
consider getting a copy of Think THINK C!, also published by Prima Pub­
lishing. If you have programmed the Mac using C but feel a little rusty, then
take a close look at the material in Chapter 3.

Running the Simulator C++ Software

TABLE 1-1

Quick Time is Apple's movie-playing system so&ware extension. Because the
Simulator C++ tutorial so&ware included with this book uses QuickTime,
you'll need a Macintosh computer capable of running it. QuickTime
requires a Mac that has a 68020, 68030, 68040, or PowerPC micropro­
cessor. That shouldn't be a problem; every Mac made in the past several
years has one of those chips: Only a few of the older Macintosh models
donr--the Mac Plus, the Mac SE, the Mac Classic, and the PowerBook 100.
Every other model, including all those listed in Table l, is capable of
running Quick Time-and the Simulator C++ so&ware.

If you have one of the Macs listed in Table I-1 and version 6.0.7 or
later of the Macintosh operating system-including any version of System
7-you're all set. Just make sure you have a copy of the QuickTime
extension in the Extensions folder in your System Folder. If you don't, refer
to Appendix A. There you'll find out how to get a free copy of Quick Time
and how to install it. You do not need a compiler to run the Simulator C++
so&ware.

Macintosh models that can run Quicklime and the Simulator C++ software

Any LC II

SE/30 llx

Classic II llcx

Any Quadra llfx

Any Performa llvx

Any Duo llci

Any Centris llsi

Any PowerBook except the I 00 llvi

Any Power Macintosh

xviii Symantec C++

Running the Example Programs
In addition to the Simulator C++ tutorial software, the included disk con­
tains about two dozen example programs. Many are very small and
demonstrate just a single C++ concept. Others are much larger and demon­
strate how a real-world Macintosh C++ program is written. If you want to
examine the code and experiment with the examples, you'll need a· copy of
the Symantec C++ compiler. The best way to learn to program is to work
with examples, so the purchase of a C++ compiler is a very sound
investment. All the code in this book and on the disk works with either the
Symantec C++ 7.0 compiler or the older Symantec C++ 6.0.

How to Use This Book and Software

The disk that accompanies this book contains example C++ source code
and a software program called the Simulator C++. The example code and
the Simulator C++ program are separate items that do not depend on one
another. Figure 1-1 highlights this point. .

Using the Symantec C++ Examples
If you own the Symantec C++ compiler, you can use the Think Project
Manager that is part of that package to view, edit, compile, and run the
example source code that is in the Symantec C++ Examples folder. Chapter
1 provides step-by-step instructions for doing this.

Using the Simulator C++ Software
The Simulator C++ program is a software tutorial that accompanies this
book. If object-oriented programming and the C++ language are taught
in this book, why also include a software tutorial? Because Prima Pub­
lishing believes that every person has a different style and pace of
learning. Many people find that some programming concepts are best
learned through interactive study-the method that the Simulator C++
software uses.

The Simulator C++ program uses the analogy of a book to teach you
how to program your Macintosh using the C++ language. Screens are
referred to as pages and can be flipped through much as you would the
pages in a book. Pages are grouped into chapters and topics that correspond

FIGURE 1-1

...... -.. -.. -.. ----.. ---.. ------..... --- .. -....
: Symantec C+ + Examples --- -- --- --

If you own Symantec C++ you
can use that package's TIIlNK
Project Manager to run all of
the included examples

Introduction xix

Simulator _files

Simulator C+ +

You do not need to own
Symantec C++ to run the
software tutorial program
Simulator C++

Example programs work with Symantec C++. The Simulator program runs on its
own.

to those found in this book. That makes it easy for you to use both the book
and the software to study a single topic.

If you're using the software to study a topic and you want to refer to
that same topic in the book, just note the chapter and topic names in the
software; you'll find a corresponding chapter and topic in the book. To
reverse this process and go from the book to the Simulator C++ program,
look in the Simulator's pop-up Table of Contents menu to find the corre­
sponding topic.

The Simulator software contains the same programming topics found
in the book, but it is not just on-screen duplication of the book's text.
Instead, the software covers the material in a way not possible in the printed
pages of a book. The tutorial software uses the animation of Quick Time
movies to present material in a dynamic way. It also constantly tests your
knowledge by asking you questions, and it provides immediate feedback to
let you know what areas you need to concentrate on.

xx Symantec C++

The following are a few tips for using the the book and software
package. Start by running the Simulator software. Then,

• open the book to the same topic. It offers different wording, a different
figure, or a different piece of source code than that found in the Simu­
lator.

• if you want to take notes, mark up the book as you view on-screen pages
in the Simulator.

• if you're away from your Macintosh, take the book with you!

Features of the Simulator Software

The Simulator software uses a friendly, interactive approach to teaching you
the many concepts needed to write Macintosh programs using the C++ lan­
guage. Among the features of the software are the following:

• A pop-up Table of Contents, which lets you move to any topic at any
time.

• Highlight words, which can optionally be clicked on to get supple­
mental information about a topic. These boldfaced words provide an
additional layer of learning. When you encounter a word in boldface
type, just click on it to open a window that contains more background
information.

• Movie pages, which provide on-screen animation to bring to life dif­
ficult concepts that just can't be clearly explained on the static pages of a
book. Each movie page holds a QuickTime movie that can played as
often as you like.

• Question pages, which constantly test your knowledge and provide
helpful feedback.

• A Status page at the end of each chapter topic to let you know how well
you've answered the questions posed in the current topic. From the Status
page you'll be returned to skipped and missed questions so that you can
consider a topic mastered before leaving it.

Installing the Simulator C++ Software

The Simulator software is easy to install. Follow the steps provided here to
get your Simulator C++ program up and running.

Introduction xxi

The Simulator software comes in a single compressed file on a single
1.4MB disk, which you will find in a pocket at the back of this book. The
many individual files that make up the Simulator tutorial, as well as the
Symantec C++ source code examples, have all been compressed into one file
to save disk space. This file is self-extracting. This means that you do .not
have to own any special program . to decompress .the files back to their
original sizes.

You'll want to copy the single compressed file to your hard drive before
decompressing it. This serves two purposes: it makes the decompression run
smoothly, and it allows you to work with a copy of the file, thus preserving
the original file and disk for backup.

You can copy the single compressed file directly to the hard drive of
your Macintosh; you don't have to create any new folders. After copying the
file, you'll have a file titled Simulator.sea on your hard drive, as shown in
Figure I-2. Of course, because the other programs and folders on your hard
disk are different from mine, your hard disk folder won't look exactly like
the one pictured.

The next step is to decompress the file. Decompressing the file extracts
all the original files and programs that are currently combined in the one
compressed file. Double-dick on the Simulator.sea file. You'll be presented
with a dialog box like the one pictured in Figure I-3. This dialog box asks
you to specify where you want the extracted files to be placed. The Simu­
lator.sea file has been created in such a way that the extraction process will

Graphics Programs

Word Processors

FIGURE 1-2 The compressed file on your hard drive

xxii Symantec C++

FIGURE 1-3

Select Destination Folder. ..

Uolume: c=i Hard Disk

Folder: lc=i Hard Disk

--iiii~-D Finance
D Graphics Programs
D Programming
D Simulator.sea
D Word Processors

The Extraction dialog box

Desktop

Cancel

Open

automatically create the necessary folders. That means you need specify
nothing at this dialog box. It doesn't matter what folder or filename happens
to be highlighted in the Extraction dialog box. Simply click on the Extract
button, as shown in Figure I-3. Again, your list of folders and files will not
match ours.

If you already have the Simulator C software from Prima Publishing's Think
THINK C book on your hard drive, don't be alarmed. This new Simulator C++
software package will not delete or overwrite any of the folders or files associ­
ated with that software.

After clicking on the Extract button, you have nothing to do but sit
back and watch; the extraction processes runs on its own. You'll see a dialog
box-pictured in Figure I-4-that marks the progress of the extraction.

When the extraction is complete, the progress dialog box will disappear
and you will be returned to the Mac desktop. On your hard drive, you'll find
one new folder, titled Simulator C++ Folder. Within this folder are two more
folders and the Simulator C++ program, as shown in Figure I-5.

FIGURE 1-4

Introduction xxiii

EHtracting: Simulator C++

Files remaining to be eHtracted: 14 [Stop

Compacted by Compact Pro™ AutoEx tractor™ © 1992 Bill Goodman

The extraction progress indicator

The last step is to move the Simulator.sea file into your trash can.
You've extracted all the files you need from this one compressed file; get rid
of it and free up the disk space it occupies. If you later determine that some­
thing went wrong during the extraction process, you still have the original
self-extracting file on your floppy disk, so you can repeat the process.

IMPORTANT ·f~~

FIGURE 1-5

Keep the Simulator _Files folder and the Simulator C++ program in the same
folder, as shown in Figure 1-5. As the Simulator program runs, it will look for
files contained in the Simulator _Files folder. It assumes that the Simulator _Files
folder is right nearby.

Simulator C++ Folder
1 8 items 1 82 .6 MB in disk 17.4 MB available

• Simulator _files

Symantec C+ + Examples

~· Simulator C++

The contents of the Simulator C++ Folder

xxiv Symantec C++

Using the Simulator Software

The Simulator software has several easy-to-use features that help you learn
Macintosh object-oriented programming and the C++ language. This
section provides a look at each.

Running the Simulator C++ Software
To run the Simulator C++ program, just double-dick on the Simulator C++
program icon.

Pages and the Control Panel
The Simulator software uses the analogy of a book in that screens are
thought of as pages. Moving from one screen of information to another is
like turning the pages of a book. As you work with the Simulator software,
you'll always see two windows on the screen-the page window and the
control panel window. Figure I-6 shows a typical page. Figure I-7 shows the
control panel.

Topic: Errors

You've seen that to test a program you select Run from the Project menu.
If all goes well, your program vvill start running. If there are errors in your
source code, however, you'll see the Compile Errors vvindow--as pictured
here:

§!if Compile Errors
Double-click on ~ Fi le "Hel loWorld.cp"; Line 5
an error message f._,/ Error : undefined identifier 'WindowPtr'
to find the error
in your source
code file

Fi le «Hel loWorld .cp"; Line 5
Warning: value of expression is not used

FIGURE 1-6 A typical Simulator C++ page

FIGURE 1-7

FIGURE 1-8

Introduction xxv

The control panel

The control panel pictured in Figure 1-7 is a window opened by the Simulator
software and is not related to the Control Panels folder that comes with your
Macintosh system.

Pages are turned by clicking on the Next page or Previous page icon
found on the Simulator program's control panel window. Figure 1- 8 shows
these icons.

If you want to go back to a particular page-perhaps one that
appeared much earlier in a topic-use the control panel's Back 5 icon.
Clicking once on this icon moves you back five pages. Similarly, the
Forward 5 icon jumps you ahead five pages with each click. Figure 1-9
shows these icons.

Click here to go to
the previous page

Click here to go to
the next page

The control panel's Previous page and Next page icons

xxvi Symantec C++

FIGURE 1-9

Click here to go
5 pages back

Click here to go
5 pages forward

0
Ill <J hL> Ill

The control panel's Back 5 pages and Forward 5 pages icons

The Simulator has one chapter for each chapter of the book. To move
from one chapter to another, click on the control panel's Table of Contents

· icon. This icon is shown in Figure I-10.
Clicking on the Table of Contents icon displays a hierarchical menu

that lists every chapter. Move the mouse to highlight any chapter title; then
move the mouse to the right to display a submenu of chapter topics. Release
the mouse button on a topic to start that topic. Figure 1-11 shows an
example.

I f~'
:lL...U.iiil

FIGURE 1-10 The control panel's Table of Contents icon

Using the Symantec C++ Compiler
Intro to C++ and OOP
The C Language: the Basis of C++
Additions to C Mean . .. C++

Objects and Classes
I.

Abstract Classes
Dynamic Binding

9 Objects and the User
1 O Windows as Objects
11 A Complete EHample

Introduction xxvii

I.

Working With Objects
Ouerriding Functions

FIGURE 1-11 Selecting a topic from Chapter 6 by clicking on the control panel's Table of Contents
icon

When you've read each page and answered each question in a topic,
that topic is said to be complete. When that happens, a check mark will
appear beside the topic name. Once a topic has been marked, it will remain
so-even between runnings of the Simulator program. This allows you to
keep track of which topics you've completed. Figure 1-12 shows that two
topics from Chapter 6 have been completed.

Simulator Pages
Each page, or screen, of the Simulator may contain text, graphics, or both.
Additionally, there are four special types of pages that you will occasionally
come across.

8 Dynamic Binding
9 Objects and the User

1 0 Windows as Objects
11 A Complete EHample

../ Multiple Classes
~ ../ Deriued Classes
~
~
~<.._~~~---~~~~----

~

FIGURE 1-12 A check mark appears beside a completed topic

xxviii Symantec C++

Cha1Jter 5: Ob ·ects and Classes Topic: Classes

t:}Class

i
class TCataloginfo

eighthinchBolt

Instance
ouariable

{
private: 671

long fPartNumber ; 3
long fCatalogVol ; half InchBol t

public : 672
void New_Part (l ong, long) ; 3 ..

} ;
void Write_Info(void) ; n

FIGURE 1-13 A typical Movie page

Movie Pages
Some pages have QuickTime movies on them. Why movies? Because some
topics can best be explained through the use of animation. Figure I-13
shows a typical Movie page.

You'll recognize a Movie page by the movie controller that appears on
the page. The movie controller is Apple's standardized way of allowing a
user to play a movie. By clicking the Play button on the controller, you can
play a movie as many times as you want. If the movie goes too fast for your
liking, you can use one of the Step buttons to step through it slowly. A few
movies include sound. To change the volume, use the controller's Speaker
button. Figure I-14 summarizes the purposes of the buttons on a movie
controller.

Highlight Word Pages
Some pages contain one or more Highlight words. If a word appears in bold
on a page, use the mouse to move the cursor over the word; then click the
mouse button. The word will change color if you have a color system or
change to an italic style if you have a black-and-white system. A new
window that contains more information about the word will open. Figure
I-15 shows Project menu as a Highlight word.

Speaker
volume

Play

FIGURE 1-14 The buttons on a movie controller

Step

backward

Introduction xxix

Step
toward

Chapter 1: Using the Symantec C++ Compiler Topic: Errors

y0 s ~ Sul,Jplementa.1 N.o1e

If A reminder: use the Run menu
so item to test your code, and the
he Build Application item to turn

your code into a program.

Close Project
Close & Compact
Smitch To Project ~

Set Project Type ...

lect Run from the Project .me.ou.
nning. If there are errors in your
ile Errors Vv'indow-as pictured

rors

indowPtr'

Remoue Objects not used

Bring Up To Date oou
Check Link OOL
Build Library ...
Build Application ...

Use Debugger
Run OOR

FIGURE 1-15 The Highlight words Project menu appear on a page. The Supplemental Note opens
when you click anywhere on those words.

xxx Symantec C++

Highlight words are a form of hypertext; clicking on one gives you
additional information. Clicking on a Highlight word is optional. High­
light words exist to provide an additional layer of information. If you
already know the meaning of a Highlight word, you can feel free to move on
without clicking on it.

Question Pages
Throughout a topic, the Simulator software will challenge you with an
occasional Question page. The purpose of the questions is to verify that you
understand the material just covered. Questions are either multiple choice
or true/false. Just click anywhere on the choice you think best answers the
question. A check mark will be placed beside your choice. If you're right,
you'll be congratulated. If you're wrong, you will receive helpful feedback.
Figure 1-16 shows a typical Question page.

You're allowed two chances to answer any one question. All subsequent
choices will be ignored. Once you get to the last page of a topic, the Status
page, you'll be returned to all missed and skipped questions for that topic.
There you'll be given another opportunity to answer the questions.

(;hapter5: OIJJects and Classes _ I()pic: .C:lasses

QUESTION:

Class data and functions declared "private" are accessible:

../ • to all functions of a program

• only to functions declared in the class

• only to the class and its subclass
• to functions in other programs

Click on one of the answers.

FEEDBACK: No. Remember, the "private" section is the most restrictive
of the three data hiding sections. Try again ...

FIGURE 1-16 A typical Question page with feedback

Introduction xxxi

Chapter 5: Ob -ects and Class~_s Topic: Classes

Status Paqe
Chaptei- 5 Topic 3

Number of Questions in Topic . . 5
Number of Questions Attempted . . 4
Number of Questions Correct 3
Percentage Correct . 75%
Number of Missed Questions 1
Number of Skipped Questions 1

FIGURE 1-17 A Status page at the end of a topic

Status Pages
At the end of every topic is a Status page. This page shows you how well
you've mastered the topic. Figure I-17 shows a Status page. After giving you
a few seconds to look over your score for the topic questions, the Simulator
will take you back to the first missed or skipped question of the topic. There
you'll be given two more chances to answer the question. If you still get it
wrong, the Simulator will help you out by checking the correct answer. The
purpose of a Question page is not to frustrate you, but rather to provide a
review that points out your strengths and weaknesses. After finishing all
missed and skipped questions, you'll be returned to the Status page. Then
it's time to select a new topic from the Table of Contents icon found on the
Simulator's control panel window.

hapter I

Using the Symantec C + + Compiler

In the world of Symantec C++, a program begins life as a project. A project
organizes all of the source code that is to become a program. In this chapter,
you'll see how to create a new project and how to work with a project-that
is, how to add files to the project and how to compile those files. You'll also
see how to turn a project into an application-a stand-alone Macintosh
program.

To demonstrate how to work with a project, you'll walk through the
creation of a very simple C++ application called Hello World. In this
chapter, you'll cover each step of the process of creating a Macintosh
program using the Symantec C++ compiler-from creating a new Hel­
lo World project to turning your work into the Hello World application.

Creating a New Project

The THINK Project Manager is the C++ compiler, source code editor, and
project file organizer, all rolled into one environment. When you edit a

2 Symantec C++

Deuelopment
1 0 items 187.1 MBindisk 12.9 MB available

II 18 items 187.1 MBindisk 12.9 MB available

~-~ S mantec C++ for Macintosh ~-

Symantec C+ + for Macintosh

FIGURE 1-1

[iJ
Mac Libraries THINK Project Manager

The THINK Project Manager icon, found in the Symantec C++ for Macintosh folder

source code file, you're using the THINK Project Manager. When you
compile that same source code file, you're again using the THINK Project
Manager. And the same applies when it comes time to turn your code into a
Macintosh application. So while you will be using Symantec's C++ com­
piler, you'll be doing so from within the environment of the THINK Project
Manager. That's why we'll talk so much more about the THINK Project
Manager than the Symantec C++ compiler.

The THINK Project Manager can be found in the Symantec C++ for
Macintosh folder, which is in the Development folder. The program's icon is
shown in Figure 1-1.

When you originally installed the Symantec software, the installer created the
Development folder. If you've since renamed it, you might want to consider
changing its name back to Development so that your folders match those
shown in the figures in this chapter.

The THINK Project Manager uses a single project file to store the
source code files, compiled code, and libraries of code that are used to create
a program. The next two sections deal with the creation of a project file. If
you're using version 7.0 of Symantec's C++ compiler, skip the following
section and go to the next one-Creating a Project Using Symantec C++
7.0. If you're using Symantec C++ 6.0, read on.

Chapter I Using the Symantec C++ Compiler 3

NOTE ·"'fl

If you've worked with Symantec's THINK C compiler, much of this chapter will
look very familiar-so familiar, in fact, that you may be tempted to skip it. If you
haven't worked with the Symantec C++ compiler, please don't give in to that
temptation. There are a few topics that you'll want to make sure you take note
of, such as which libraries are added to a typical Symantec C ++ project.

Creating a Project Using Symantec C++ 6.0
Before starting the THINK Project Manager program, create a folder to hold
the soon-to-be created project. Because this chapter will walk through the cre­
ation of a simple program named Hello World, I've named my folder
Hello World f. The f character stands for folder and is created by pressing
lOptionl-f. Make sure the folder is in the Development folder, as shown in
Figure 1-2. Keeping a project folder in the Development folder but not
inside the Symantec C++ for Macintosh folder makes it easy for the
THINK Project Manager to find the files it needs.

Next, open the Symantec C++ for Macintosh folder and double-dick
on the THINK Project Manager. You'll be presented with a dialog box like
the one shown in Figure 1-3. Click on the New button.

Next you'll see a dialog box like the one pictured in Figure 1-4. Use
the pop-up menu at the top of the dialog box to work your way into the
Development folder. Then double-dick on the Hello World f folder to move
inside it. Now type in the name of the project. The project name is generally
the name you'll give the program, followed by the 7t symbol. Create the 7t

11 items

~
~

HelloWorld f

Oeuelopment
187.1 MB in disk

~
~

Symantec C+ + for Macintosh

FIGURE 1-2 · Keep your project folders in the Development folder.

4 Symantec C++

o Mac Libraries
0 oops Libraries
0 Projects
0 Standard Libraries
o TH INK Class Library 1.1.3
D Tools
0 Translators

FIGURE 1-3 Creating a new project

CJ Hard Disk

I
Desktop

(Open)

-[Cancel)

character by pressing I Option)-[~). After typing in the project name, click on
the Create button.

The THINK Project Manager will open a new, empty project window,
as shown in Figure 1-5.

CJ Hard Disk
iii Desktop

Name new project:

I Hello World. 11

CJ Hard Disk

(Ej~~c1

(Desktop]

(Create)

[Cancel)

FIGURE 1-4 Creating a new project in the HelloWorld f folder

Chapter I Using the Symantec C++ Compiler 5

HelloWorld. 'JJ
Name

Totals

FIGURE 1-5 The empty HelloWorld project window

Now you're all set to add the necessary files to the project. Skip the
next section, which discusses creating a project using the new version of
Symantec's C++ compiler. Go directly to the section titled Adding Files to a
Project.

Creating a Project Using Symantec C++ 7 .0
Opening the Symantec C++ for Macintosh folder and double-clicking on
the THINK Project Manager icon is the first step in creating a project using
Symantec C++ 7.0. The first thing you'll see is the dialog box pictured in
Figure 1-6. Click on the New button.

After you click on the New button, the dialog box will be dismissed
and will be replaced by the one shown in Figure 1-7. Version 7.0 lets you
create several different types of projects; you can see some of them in the list
in the dialog box shown in Figure 1-7. In this book, you'll always be
starting with an empty project and adding files to it. Click on Empty
Project in the scrollable list; then click on the Create button. Be sure to leave
the Create Folder check box as it is-checked.

After clicking on the Create button, still another dialog box appears, as
shown in Figure 1-8. The THINK Project Manager will create a new folder
in which the project file will be stored. Use the pop-up menu at the top of
the dialog box to move into the Development folder, which is where you
want the new folder to be placed.

6 Symantec C++

0 Rliases
o Inspector Libraries
0 Mac #includes
o Mac Libraries
o oops Libraries
o Projects

I
~Hard Disk

Desktop

(Open D -(Cancel J

FIGURE 1-6 Creating a new project file

Now type in the name of project. The convention for naming a project
is to give the project the name you'll give the program, followed by the 7t

symbol ([Option]-®). After typing in the project name, dick on the Save
button, as shown in Figure 1-9.

New Pro·ect

Select the type of project to create:

RNSI Project
C++ IOStreams Project
C++ Project

Pro·eG
Mac Rpplication Project

[8l Create folder

(Cancel Mil$ii'

FIGURE 1-7 Selecting the Empty Project as the type of new project to create

Chapter I Using the Symantec C++ Compiler 7

c::> Hard Disk

Eject

Desktop
oops ran es

D Projects (New LI)
o Standard Libraries

Name new project: Cancel

Saue

FIGURE 1-8 Moving into the Development folder in preparation for creating the new project

When you click on the Save button, a new, empty project window, like
the one shown in Figure 1-10, will open.

Before adding any files to the new project, you might want to take a
look at your hard drive's main folder-the one that opens when you double­
click on the hard drive icon. When you installed your Symantec compiler, a

I a Deuelopment ...,. I c::> Hard Disk
.---============~--="" D Demos
0 Online Documentation
D Scripting
0 Symantec C++ for Macint ... ·i

'ii•
D TCL Demos !!!;
0 Utilities

Name new project:

I HelloWorld.11

FIGURE 1-9 Naming and saving a new project

Eject

Desktop

New LI)

Cancel

Saue
-·

8 Symantec C++

Code

Totals 578 0

FIGURE 1-10 The empty HelloWorld project window

folder named Development was placed in that folder. In the Development
folder you'll see a new folder tided Hello World f, as shown in Figure 1-11.
That's the folder that the THINK Project Manager created. When you
create a new project, the THINK Project Manager creates a new folder and
gives it the same name you have given the project. But instead of the 7t
symbol, the folder has the f symbol after its name.

Oeuelopment
11 items 187.1 MB in disk

Symantec C+ + for Macintosh

FIGURE 1-11 The new HelloWorld f folder created by the THINK Project Manager

Chapter I Using the Symantec C++ Compiler 9

Adding Files to a Project

A project file is the THINK Project Manager's way of organizing all the
code that will be used for one program. The THINK Project Manager
allows you to easily add the files you'll need to create a Macintosh program.

Adding Libraries to a C++ Project
The THINK Project Manager organizes not just the source code you write
but certain functions written by others-namely, Apple and Symantec. This
source code-already compiled for you-appears in libraries. A library con­
sists of precompiled code that is ready to use as is. For a Symantec C++
project, you'll always want to add the same three libraries to your project­
MacTraps, ANSI++, and CPlusLib. The MacTraps library lets your pro­
grams access Toolbox functions such as GetNewWindow(). The ANSI++
library contains the precompiled code for standard ANSI functions, and the
CPlusLib library contains routines used by the Symantec C++ compiler to
create and delete objects. You'll learn about objects and object-oriented pro­
gramming later in this book.

Now that you know what you need to add ... go ahead, add it. Select
Add Files from the Source menu, as shown in Figure 1-12.

When you select Add Files, you'll see the dialog box pictured in Figure
1-13. This figure also shows the associated pop-up menu. Use this menu to
move into the Symantec C++ for Macintosh folder. From the pop-up menu
in Figure 1-13, you can see the path you need to traverse to get to the Mac
Libraries folder. Once there, double-dick on the Mac Libraries folder; that's
where the Mac Traps library file can be found. Figure 1-13 shows where the
Mac Libraries folder is located.

The Mac Libraries folder is in the Symantec C++ for Macintosh folder,
which is, in turn, in the Development folder. Once in the proper location,
click on the Mac Traps name in the list and then click on the Add button, as
is being done in Figure 1-14.

Clicking on the Add button moves the selected file to the list at the
bottom of the dialog box, as shown in Figure 1-15.

The Add Files dialog box allows you to add more than one file at a
time. So before dismissing the dialog box, add the other two libraries that
you'll want in a C++ project-ANSI++ and CPlusLib. Both of these
libraries are located in the Standard Libraries folder. Use the pop-up menu
in the dialog box to move back to the Symantec C++ for Macintosh folder.

10 Symantec C++

Re moue
Get Info
Debug WI
SourceSeruer ~

Check SyntaH WY
Preprncess
Disassemble

Precompile ..•
Compile WK
Make ... W\

Browser 3€J

FIGURE 1-12 Selecting the Add Files menu item from the Source menu

Cl MacTraps2
Cl nRppleTalk
Cl Old MacTraps

Ill

Disk

Desktop

(OO!H~)

(Cancel)
..

.fr t Rdd D
(Rdd Rll)

(H~~mom~)

FIGURE 1-13 Maneuvering into the Mac Libraries folder

Chapter I Using the Symantec C++ Compiler 11

I a Mac Libraries ..-1
Cl AppleTalk CJ Hard Disk
Cl CommToolboH

""'~-· -~-:-~-J-f.-~--~:-~~-------il Desktop

Cl Old MacTraps Cancel

FIGURE 1-14 Adding the Mac Traps library to the project

I a Mac Libraries ..-1
~ ~:~~;~:lboH I CJ Hard D.isk

Cl Graf30 !iiii! (!: j(~ (t

~~~~-~-~-~_r;_·f_i_~~-p-s~~~~~~~ ..... 1 [ ~~;~:~ l 
········································································································································································ 

( Open ] 

( Add All ) 

( H~~m !WP ) 

I MocTrnps 

FIGURE 1- 15 The added file appears in the list at the bottom of the Add Files dialog box. 



12 Symantec C++ 

t5I Symantec C++ for Macintosh Hard Disk 
t5I Deuelopment 
G:::J Hard Disk 
Iii Desktop 

CJ c headers 
CJ C sources 
CJ C++ headers 

Mac Traps 

FIGURE 1-16 Moving into the Standard Libraries folder 

Once there, double-click on the Standard Libraries folder. Figure 1-16 
shows the path that was traversed to get into the Standard Libraries folder. 

Once in the Standard Libraries folder, double-click on the ANSI++ 
filename in the list. That's a shortcut for clicking on a filename and then 
clicking on the Add button. Next, scroll down to the CPlusLib library and 
double-click on it. The names of the three libraries your project needs will 
now be listed at the bottom of the dialog box. Click on the Done button, as 
shown in Figure 1-17. 

After you click on the Done button, the three libraries will appear in 
the formerly empty project window. Figure 1-18 shows how your Hel­
lo World project window should now look. 

Adding a Source Code File to a C++ Project 
There's only one file left to add to complete your project-a source code 
file. To create a new source code file, select New from the File menu. A new, 
empty source code file will open. Name the file right away by selecting Save 
As from the File menu. Using the pop-up menu in the dialog box that 
appears, make your way into the Development folder. Once there, double­
click on the Hello World f folder. Now you're ready to name and save the 
new file. Type HelloWorld.cp and click on the Save button. Figure 1-19 



Chapter I Using the Symantec C++ Compiler 13 

I a Standard Libraries ..... j 
Cl ANSI 
Cl ANSl-A4 
Cl ANSl-A4++ 
Cl ANSI-small 
Cl ANSI-small++ 
CJ C: headers 
CJ c: sources 
CJ C:++ headers 

ANSI++ 
C:Pluslib 
MacTraps 

-0 

e:>HardDisk 

Desktop 

-~ 
([ Open , 
( Add All ) 
( !h~llH>IH~ ) 

FIGURE 1-17 The Done button completes the addition of the listed files to the project. 

CPlusLib 
Mac Traps 
Totals 582 

FIGURE 1-18 The project window after the addition of the three library files 



14 Symantec C++ 

D ! GI Deuelopment 
c:::J Hard Disk 

Iii Desktop 

Saue file as: 

j Hellolllorld.cp 

FIGURE 1-19 Naming a source code file 

c:::J Hant Disk 

( fjf~C1 

( Desktop ] 

K Saue Il 
( Cancel ] 

shows the path to your Hello World f folder and the name that the new file 
is being given. 

The THINK Project Manager recognizes a file as a C++ source code 
file if it ends with the extension .cp or .cpp. For this example and for all 
others in this book, .cp will be used. Be sure to give all of your source code 
files this extension. 

Your source code file, shown in Figure 1-20, now has the name Hel­
lo World.cp in its title bar. Even though it's still empty, you'll want to add it 
to the project; simply creating a new file doesn't automatically place it in the 

HellolUorld.cp 

FIGURE 1-20 The new, empty source code file with the name in its title bar 



Chapter I Using the Symantec C++ Compiler 15 

Remoue 
Get Info 
Debug WI 
SourceSeruer ~ 

Check SyntaH WY 
Preprocess 
Disassemble 

Precompile ... 
Compile :l€K 
Make ... :Jg\ 

Browser :JgJ 

FIGURE 1-21 Adding the new source code file to the Hello World project 

project. To do this, select the very first menu item in the Source menu­
Add 'HelloWorld.cp', which is shown in Figure 1- 21. This menu item will 
appear dim after the file has been added to the project. Once you create and 
save a new file, however, the menu item is enabled and takes on the name of 
the file. This menu item is simply a shortcut to adding the source file to 
your project- it saves you the work of using the Add Files menu option. 

Segmenting a Project 

Figure 1- 22 shows how your HelloWorld project window now looks. 
Notice the name- Segment 2-next to the inverted triangle. To help the 
Mac operating system work with large programs, Macintosh programs are 
divided into segments, each of which can be no larger than 32K. Since the 
ANSI++ library is close to 30K all by itself, it should be obvious that this 
project requires more than one segment. To move a file into a new segment, 
click on its name. With the mouse button still pressed, drag the file below 
the word Totals in the project window. Then release the mouse button. In 
Figure 1-23 the ANSI++ library is being moved into its own segment. On 



16 Symantec C++ 

HelloUJorld.11 
Name 

V Segment 2 

ANSI++ 

CPluslib 
Hello'vlor ld .cp 
Mac Traps 
Totals 

Code 

4 1) 
0 

0 

0 
0 

582 

FIGURE 1-22 The project window with the three libraries and one source code file in it 

the left, you see the file being dragged to the bottom of the window. On the 
right, you see the new segment that is created by this action. 

Next, drag the CPlusLib library until the mouse is over the ANSI++ 
library name; then release the mouse button. That places the CPlusLib 
library in the same segment as the ANSI++ library. The final segmentation 
of the project is shown in Figure 1- 24. 

Helloll.lorld.11' 
Name 

V Segment 2 

ANSI++ 
CPluslib 
Hello'vlorld .cp 
Mac Traps 
Totals 

Code 

4 1) 
0 
0 

0 
0 

582 

Helloll.lorld.1T 
Name 

VSegment 2 

CPluslib 

Hello'vlorld.cp 

Code 

4 1) 
0 i-=-

0 

[ 
... .... ~~.c.!.r..?.P..~ ..................................... .. ................... 9-.. 
v Segment 3 4 

~s~ o 
Totals 586 

FIGURE 1-23 Moving the ANSI++ library into a new segment 



Chapter I Using the Symantec C++ Compiler 17 

C++ Code: Writing It and Running It 

With the preliminaries out of the way, it's time to write a simple C++ 
program. If you've closed the empty Hello World.cp source code file, open it 
now. You can do that by double-clicking on its name in the project window. 
When the file is open, type in the short program that is shown in Figure 1- 25 . 
Type carefully and compare your file to the one pictured here. 

After typing the code, select Save from the File menu. To test it, select 
Run from the Project menu, as shown in Figure 1-26. 

Choosing Run presents you with the dialog box shown in Figure 1-27. 
Here the THINK Project Manager wants you to verify that it is okay for it 
to go ahead and compile your source code and to make the added libraries a 
part of your project by loading them. Click on the Update button to let the 
THINK Project Manager do its thing. 

The simple program you typed in opens a window and writes the 
words "Hello, World!" to it. If all went well, you'll see a window like the one 
pictured in Figure 1-28. If you see a different window- one that lists an 
error message-refer to Appendix B at the end of this book. That appendix 
lists common mistakes and ways to correct them. 

To end the Hello World program, click the mouse button. That closes 
the window and returns you to the THINK Project Manager environment. 
Before you ran your program, the right side of the project window showed a 

HelloWorld.11 
Name 

v Segment 2 
Hello'w'orld.cp 

......... ~~.c.!.r..~P..5. .............. ... ... ............. . 
v Segment 3 

ANSI++ 

Code 

4 1} 
o r 
0 

4 
0 

CPluslib 0 
· · · · ····fot"a"i~··· ·· ············ · · ·· · · · ··· · ·· ··········· · ·············:ia6·· 

FIGURE 1-24 The segmented HelloWorld project 



18 Symantec C++ 

HelloWorld•~P 

void main( void ) 
{ 

WindowPtr the...mindow; 
Rect window...rect; 

lnitGraf( &thePort ); 
lni tFonts( ); 
lnitWindows(); 

SetRect( &window...rect, 50, 50, 350, 150 ); 
the...mindow = NewWindow( OL, &window...rect, "\pNew Window", true, 

noGrowDocProc, <WindowPtr) -1L, true, 0 ); 
SetPort( the...mindow ); 

MoveTo< 20, 30 ); 
Drawstring( "\pHel lo, World!" ); 

while ( !Button() ) 

FIGURE 1-25 The HelloWorld C++ source code 

Close Project 
Close & Compact 
Switch To Project ~ 

Set Project Type .•. 
Remoue Objects 

Bring Up To Date 8€U 
Check Link 8€L 
Build Library ... 
Build Rpplication ••• 

Use Debugger 
Run ~R 

FIGURE 1-26 Selecting Run from the Project menu to give the code a test run 



Chapter I Using the Symantec C++ Compiler 19 

Bring the project up to date? 

Make 

(Don't Update) Cancel 

FIGURE 1-27 Telling the THINK Project Manager to update the project 

New Window 

Hello , World! 

FIGURE 1-28 The result of running the code in the Hello World project 

column with several numbers-many of them zeros-in it. Take a dose 
look at the project window, shown in Figure 1-29, now. Notice that each 
filename now has a new number to the right of it. That number represents 
the size of the compiled code from that file. The size of a source code file 
isn't known until it has been compiled, and the size of a library isn't known 
until it has been loaded. Selecting Run from the Project menu accomplishes 
these tasks. 

In Figure 1-29, notice that both segments have a total size ofless than 
32K-as the THINK Project Manager requires. 

Using the Symantec Debugger 

Programming errors, or bugs, creep into the programs of every developer. The 
best way to find the cause of an error-or to just see what's going on as a 



20 Symantec C++ 

nenowortd.'Jf: 
Code 
7184 

106 

.......... ~~-~!r..~P..~ ..................................... ............ !.9.!.~ .. 
v Segment 3 30272 

ANSI++ 28492 
CPlusLib 1776 
Totals 38034 

FIGURE 1-29 The project window displays the size of each file in the project. 

program executes-is to use a debugger. Many people shy away from 
debuggers because they assume they need a knowledge of assembly language 
to understand how memory and variable values are displayed. This is certainly 
true for some debuggers-but not for the one included with your Symantec 
C++ package. 

Debugger Basics 
The Symantec source debugger works behind the scenes; you don't run it 
from the desktop as you do other software applications. All you do to 
activate it is select Use Debugger from the Project menu. Figure 1-30 shows 
that menu item. · 

Selecting Use Debugger doesn't do anything noticeable-not just yet. 
The debugger doesn't run until you select Run from the Project menu. 
Then two windows open-the Source window and the Data window. The 
Source window displays your project's source code. The title bar of the 
Source window displays the name of the source code file that's about to 
execute. The Data window allows you to enter the names of variables you 
want to monitor as the program executes. The title bar of the Data window 
displays the word Data. These two windows are shown in Figure 1-31. 

To familiarize you with the debugger, I'll walk through a very short 
program called DebuggerDemo, which is included on the accompanying 
disk. The source code listing for DebuggerDemo appears below. Figure 1-32 
shows the results of running the program. 



Chapter I Using the Symantec C++ Compiler 21 

Close Project 
Close & Compact 
Smitch To Project t>-

Set Project Type ... 
Remoue Objects 

Bring Up To Date 3€U 
Check Link 3€L 
Build Library ... 
Build Rpplication ... 

FIGURE 1-30 Turning the debugger on in Symantec C++ 

Source window 

the-Window; 
window....rect; 
num-1; 
num...2; 
total; 
the...str; 

lnitGraf< &thePort ); 
lni tFonts< ); 
In i ti.Ii ndows<); 

• main 

Data window 

FIGURE 1-31 The Source window and the Data window of the Symantec debugger 



22 Symantec C++ 

void main( void ) 
{ 

WindowPtr the window; 
Rect window_rect; 
long num_l; 
long num_2; 
long total; 
Str255 the_str; 

InitGraf( &thePort ); 
I nit Fonts(); 
Ini tWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the window = NewWindow( OL, &window rect, 

"\pNew Window", true, 

SetPort( the_window ); 

num_l = 3.2; 
num_2 = 6.8; 
total = num_l + num_2; 

noGrowDocProc, (WindowPtr)-lL, true, 0 ); 

NumToString( total, the_str ); 

MoveTo( 20, 30 ); 
Drawstring( the_str ); 

while ( !Button() ) 

DebuggerDemo opens a window, assigns values to two variables, adds 
the values of the variables together, and writes the resulting total to the 
window. The Num ToString() routine is a Toolbox function that accepts a 
long variable and a Str255 variable as parameters. The function converts the 
number to a string and places it in the Str255 variable. Since the sum of 3.2 
and 6.8 is 10, I was assuming that Num ToString() would convert the number 
10 to the string 10. Then I'd be all set to write the string to the window using 
DrawString(). You can see in Figure 1-32 that instead of 10 being written to 
the window, 9 was. The program contains a very fundamental error, which 



Chapter I Using the Symantec C++ Compiler 23 

-
g 

FIGURE 1-32 The results of running the DebuggerDemo program 

you may have caught just by looking at the source code. The purpose of this 
example isn't to stump you, though; it's to allow you to see the debugger in 
action. So let's assume that neither you nor I know just what went wrong. 
That means it's time to run the DebuggerDemo program with the Symantec 
debugger turned on. 

Debugging a Program 
To run the debugger, make sure that Use Debugger is checked in the Project 
menu. Then select R~m from that same menu. I've done that with Debug­
ger Demo. You saw how the Source window and the Data window look for 
DebuggerDemo back in Figure 1-31. 

With the debugger running, the first thing you'll do is type in the 
name of a variable whose value you want to monitor, or follow, as the 
program runs. Type the variable name in the box at the top of the Data 
window; then press [Enter I. Do this for each of the variables you want to 
watch. In Figure 1-33, I've entered the num_l and num_2 variable names and 
am about to do the same for the tota 1 variable. 

You can see that in Figure 1-33 the variables num_l and num_2 have 
values-before they have even been used in assignment statements. At the 
start of a program a variable contains a "garbage" value, which turns out to 
be whatever value was last left at the memocy location that the variable 
occupies. This value is sometimes 0, but it can be any number at all. 

After entering variable names in the Data window, you'll want to set a 
breakpoint in the Source window. A breakpoint specifies the line of code at 
which you want the debugger to pause. When you click on the Go button 
irt the debugger Source window, the program will start executing. If you 
don't have at least one breakpoint set, the program will run from start to 
finish without pausing. You'll never get a chance to look at the values of the 



24 Symantec C++ 

• 

To monitor a variable 
type its name here, then 
press the Return key 

the..J.U i ndow; 

l ol lGcof( &~l;:et; I 
l n i tFonts ( ); 

num_l 
num-2 

I n i tw i ndows < ) ; 

~f~m 
SetRect < &wi ndow....rect, ~ 

main 

Data lit-

372 
372 

FIGURE 1-33 Entering the names of variables whose values are to be monitored as the program 
runs 

variables- and that's the whole point of debugging. You set a breakpoint by 
clicking on the small diamond that appears to the left of the line of code at 
which you want the program to halt. Figure 1-34 shows a breakpoint set in 
the DebuggerDemo program. 

With a breakpoint set, it's time to start your program running by 
clicking on the Go button in the Source Window. The program will execute 
up to the breakpoint. In Figure 1-34, you can see a black arrow just to the 
right of the breakpoint diamond. The arrow indicates where the program 
has stopped. It's important to note that the line to which the arrow points 
hasn't yet executed-it is the next line of code that will execute. You can 
verify this by looking at the Data window in Figure 1-34. The value of 
num _ 1 is still 372; it hasn't yet taken on the value it will be given in the 
assignment statement. 

To execute the single line of code that the black arrow points to, click 
on the Step button in the Source window. You'll see the arrow move down a 
line to indicate that the line at which the program was halted has now exe-



Click the Go button 
to start the program 

Click a 
diamond 

Chapter I Using the Symantec C++ Compiler 25 

Once the program has been 
started, click the Step button 

num_1 = 3.2; 
num...2 = 6 a· 
total = n~m~1 + num...2; 

MoveTo< 20, 30 ); 
Drawstring( the..str ); 

while < 

372 
372 
0 

+ main 

FIGURE 1-34 Setting a breakpoint and using the Go and Step buttons in the debugger 

cuted. You can click on the Step button again and again to single-step 
through as much of the program as you want. In Figure 1-35, you can see 
that the Step button was clicked once and that the arrow now points to the 
line following the num_ 1 assignment. The Data window shows you that the 
value of num _ 1 has changed from 372 to 3. 

The Data window in Figure 1-35 shows the values of the variables 
after the following line has executed: 

num_l = 3.2; 

Note that the value for num 1 in the Data window is 3-not 3.2. The 
variables num _ l, num _ 2, and tota 1 were all declared to be of type long. 
Recall from C that the long is a form of integer. Integers don't hold the 
decimal, or fractional, portion of a number. Therein lies the reason for 
total having a value of9 rather than 10. After the program runs, num_l has 
a value of 3 and num _ 2 has a value of 6. 

You might have been able to detect the bug in the DebuggerDemo 
program without the use of the Symantec debugger, but now that you're 
familiar with its use, you'll be able to solve much trickier programming 
problems. 



26 Symantec C++ 

The arrow 
moves down 
a line, telling 
you that the 
above line 

After the line num_l = 3 . 2 ; executes, 
this number changes to 3 

~=~;l num_1 = 3 .2; 
num...2 = 6.8; ¢i 

¢! 
¢ ! 
¢! 
¢! 

' 

total = num_l + num...2; 

MoveTo < 20, 30 >; 
Drawstring< the_str >; 

¢! while < 

• main 

FIGURE 1-35 After the Step button is clicked, the black arrow moves down a line and the values in 
the Data window are updated. 

Turning Code into an Application 

The THINK Project Manager makes it easy to turn any project into a 
stand-alone Macintosh application. If you haven't selected Run from the 
Project menu to test your project, do that now. When you're satisfied that 
the code works properly, choose Build Application from the Project menu, 
as is being done in Figure 1-36. 

Before building the application, the THINK Project Manager lets you 
enter the name you want to give the program. In Figure 1-37, the program 
is being given the name Hello World. 

Click on the Save button, and, after just a second or two, you'll have a 
new Mac program. To verify this, go to the desktop and open the Hel­
lo World f folder that's in your Development folder. There, along with the 
project file and the source code file, will be the icon for your new appli­
cation, as shown in Figure 1-38. 



Chapter I Using the Symantec C++ Compiler 27 

Close Project 
Close & Compact 
Switch To Project .. 
Set Project Type ••• 
Remoue Objects 

Bring Up To Date 88U 
Check Link 88L 
Build Library ••• 

Use Debugger 
Run 888 

FIGURE 1-36 Turning the code into a stand-alone application 

I a HelloWorld f • I 
D Ht~UDUforld.~;JI 
D Ht~Ul)World:n· 

Saue application as: 

I HelloWorld 

181 Smart Link 

FIGURE 1-37 Giving the application a name 

~ ~HardDisk 

( Ejt~G1 ) 

(Desktop ) 

( Saue ) 

( Cancel ) 



28 Symantec C++ 

Using the Included Projects 

The Symantec C++ project file and source code for each example program 
in this book can be found on the included disk. If you don't have the 
THINK Project Manager running, you can open any existing project by 
simply double-clicking on its icon. If the THINK Project Manager is 
already running, you must first close the current project. Select Close 
Project from the Project menu. A dialog box will open. Use the pop-up 
menu in it to move into the Symantec C++ Examples folder that's located in 
the Simulator C++ folder. Once there, you can double-dick on any folder in 
the list. 

If you have the Symantec C++ compiler, try running the Hello World.7t 
project in the (COl)HelloWorld f folder. All the examples in this book work 
for both version 6.0 and version 7.0 of Symantec C++. If you're using 
Symantec C++ 6.0 and you double-dick on one of the included projects, 
the project will open. If you're using Symantec C++ 7.0, you'll first see a 
dialog box like the one shown in Figure 1-39. Click on the Convert button. 
The dialog box will be dismissed, and the project will open. 

About That Code ... 

If you've written a Macintosh program using the C language, the Hel­
lo World source code should look very familiar to you. If it does, you should 
congratulate yourself for remembering C, because that's exactly what the 

:=if HelloWorld f [if~ 
3 items 187.1 MBindi sk 12 . 9 MB available 

~ 

iJ ~ ~ 
HelloWorld.11 HelloWorld .cp HelloWorld 

\fY 
¢J J¢ I; 

FIGURE 1-38 The icon for the new application will be in the Hello World f folder 



Chapter I Using the Symantec C++ Compiler 29 

This project was created by an earlier 
uersion of the THINK Project Manager. 
Conuert it to the current format? This 
operation will Remoue Objects! 

n Cancel , ii.J,j§fi 

FIGURE 1-39 Opening one of the included example projects using Symantec C++ 7.0 

source code is! Remember the definition of the C++ language: it's the C lan­
guage, plus. In the Hello World program, I intentionally chose not to 
include any of the "plus" features. The purpose of this chapter was to famil­
iarize you with the environment of the Symantec compiler, not to have you 
master a new language. You have the remainder of the book for that­
starting with the very next chapter .... 

Chapter Summary 

Any program that was created using the Symantec C++ compiler started out 
as a project file. A project file holds the names of the source code files and 
library files needed to compile a single program. When code is compiled, 
the resulting object code is also stored in the project file. The THINK 
Project Manager-the combined programming environment that consists 
of a text editor, compiler, linker, and interface for these components-keeps 
track of the contents of a project file. 

Almost all THINK C++ projects need three libraries in order to suc­
cessfully compile. You'll use the Add Files menu item from the Source menu 
to add the MacTraps, ANSI++, and CPlusLib libraries to each of your 
projects. You'll use this same menu item to add your source code file to the 
project-after creating the new file by selecting New and Save As from the 
File menu. 

Projects consist of segments-sections of source code that must not 
exceed 32K. If a single segment goes beyond this size limit, you can move 



30 Symantec C++ 

files about within the project window to regroup existing segments or create 
additional ones. 

After typing in your source code, select Run from the Project menu to 
compile and test the code. If you've made mistakes in your code, the 
THINK Project Manager will open a Compile Errors window that describes 
the problems the compiler encountered. For errors whose source is less than 
obvious, you'll want to use the THINK debugger. The debugger is activated 
by selecting Use Debugger from the Project menu before you run the code. 
When you run your code, two windows will open. These debugger windows 
allow you to step through your code line-by-line and monitor the values of 
the variables as the code executes. 

When you're satisfied that your code is functional, you'll turn it into a 
stand-alone application by selecting Build Application from the Project 
menu. The result will appear on your Macintosh desktop in the form of an 
executable program with its own icon. 



hapter 2 

Introduction to C + + and OOP 

While often thought of as one and the same, C++ and object-oriented pro­
gramming are not the same at all. In this chapter, you'll see the differences 
and similarities between C and C++, and you'll learn how OOP-object­
oriented programming-is used to create programs in the C++ language. 

Object-oriented programming uses objects to represent the data and 
the actions, or operations, that are performed on that data. This chapter will 
take a long, hard look at objects and the data structure that defines an 
object-the class. 

C++ and Object-Oriented 
Programming 

A program written in the C++ language is an object-oriented program, 
right? Not necessarily. While a C++ program usually does, in fact, work with 
objects, it doesn't have to. 

31 



32 Symantec C++ 

FIGURE 2-1 The C++ language includes all of the C language-and more. 

C, C++, and OOP 
If you've programmed using C, your skills will not be lost as you make the 
transition to C++. That's because the C++ language is a superset of the Clan­
guage, which means C++ includes all of the C language and more. Figure 2-1 
gives emphasis to this point. 

Some of the programming features, or elements, that are found in C++ 
but not in C are trivial, while others are much more important. The features 
found in C++ but not in C that are considered the most crucial are those that 
make objects possible. Although C++ programs are usually object-oriented, 
they don't have to be. Consider this very simple C++ program: 

void main( void ) 
{ 

int i; 
int j = O; 

I* declare an integer *I 
II declare and initialize an 
II integer 

for (i=O; i < 10; i++) II loop ten times 
j += 5; II increment j by 5 at each 

II pass 



Chapter 2 Introduction to C++ and OOP 33 

In the C language, comments begin with /* and end with */. This 
method of writing a comment also applies to C++. C++, however, also lets 
you identify a single-line comment by using a double slash. The above C++ 
program contains both types of comments. . 

While the above program is very trivial-and in itself useless-it does 
serve to demonstrate one point. A C++ program does not have to be object­
oriented. This example is nothing more than a trivial C program with a few 
C++ style comments. There's nothing object-like about it. 

OOP is not a programming language. It is a programming method­
ology--a way of organizing or structuring a program. You may have noticed 
programmers using C++ and OOP almost interchangeably. That's because 
while programs written in C++ don't have to be object-oriented, they almost 
always are. The elements that were added to the C language to make C++ 
are, for the most part, elements that allow programs to become object­
oriented. If a C++ program doesn't take advantage of those elements, there is 
little difference between it and a C program. 

From C to C++ to OOP 
Since C++ is built on C, and OOP is a way of working with the elements of 
the C++ language, it would make sense to present the material in this book 
in an order that follows this progression. And so, of course, it does. Here's a 
summary of the next three chapters. 

Chapter 3 is a summary of C. It is not intended to be a complete ref­
erence to C. Instead, it highlights the basic elements of the C language­
those parts of C that are also basic to C++ and used regularly in C++ 
programs. 

Chapter 4 covers many of the C++ additions to the C language but not 
the C++ elements that allow object programming. You've already seen one 
such element-the use of the double slash to denote a comment. 

Chapter 5 covers more of the programming elements that are found in 
C++ but not in C. In particular, this chapter discusses the features of C++ 
that enable you to write object-oriented programs. 

Chapters 3, 4, and 5 present plenty of source code examples to illus­
trate the programming discussions. This chapter doesn't. Instead, the 
remainder of this chapter consists of an overview of the ways in which an 
object-oriented program differs from a procedural one and a general look at 
the programming elements of C++ that make objects possible. 



34 Symantec C++ 

Procedural and Object Programming 

Object-oriented programming isn't new; it has been around for many years. 
But it is new to most people. In the past, most programs were traditionally 
and historically written using a procedural language, classically speaking. 

Procedural Programming 

FIGURE 2-2 

In a procedural, or structured, programming language such as C or Pascal, 
variables are defined to hold data. Routines are then written to operate, or 
act, on that data. In procedural programming, there is no correlation 
between data and the routines that can act on that data-until a routine is 
called. Only when data is passed to a routine-in the form of parameters­
does it become associated with that routine. Figure 2-2 shows this. 

int cats ; 
int dogs ; 
int cars ; 
int trucks ; 

. int total ; 

int Add_ Nurnbers( int a , int b ) 
{ 

return a + b; 

No association between 
data and function 

total = Add_ Nurnbers( cats, dogs ) ; 0 
0 

Here the function 
becomes associated 
with the animal data 

total= Add_Nurnbers( cars , trucks ) ; Here the function 
becomes associated 
with the vehicle data 

In a procedural language, data and functions are not clearly related. 



Chapter 2 Introduction to C++ and OOP 35 

NOTE ;~ 

Routine is a general term for a procedure or function. The Pascal language calls 
a routine that returns a value a function and a routine that doesn't return a 
value a procedure. In C, all routines are called functions 

A program written in a procedural language almost always relies on at 
least some of the program's data being stored in global variables. Program 
data that is kept as a global variable can be accessed by any and all functions 
that appear in that program. Thus, data that will be used by multiple rou­
tines-such as data that is read, manipulated, stored, and printed-is 
usually a candidate for a global variable. While global data makes a pro­
grammer's life easier, it also allows for corruption of data. Because all 
functions have access to global data, a programmer may inadvertently write 
a routine that alters the value of a global variable. 

Despite its drawbacks, including a reliance on global data and an 
unnatural division of data and the operations that work with data, procedural 
languages have been used in the vast majority of the programs written in the 
last couple of decades. Only recently have programmers begun to make the 
change from procedural programming to object-oriented programming. 

Object-Oriented Programming 
You've just seen that procedural programming data and the actions that 
work on data are separate and seemingly unrelated; The removal of this arti­
ficial division between data and functions is the primary difference between 
procedural and object-oriented programming. In procedural programming, 
the necessary data structures are first created. Then, routines that operate on 
the data are defined. Each routine may operate on some, much, or all of the 
data. In object-oriented programming, data and actions are kept together. 
As data is defined, so are the actions, or functions, that work with that data. 
Not only are data and functions defined at the same time, they are also tied 
together in the form of objects. Figure 2-3 shows this difference. 

Even though the two programming methodologies shown in Figure 2-3 
define the same data and the same functions, there is a big difference between 
them. In the procedural example, it is not clear which of the two functions 
works with which of the three pieces of data. In the object-oriented example 
in that same figure, it is clear that both functions are capable of working with 
all three data elements. By packaging data and functions together, the need for 
global data diminishes or disappears altogether in object-oriented 
programmmg. 



36 Symantec C++ 

Procedural Programming 

Data 
structures 

Routines 

that act 
on data 

[ 
l rntegerl ~ 
I 1ntege r 2 ~ 

I integer3 J 

[ I~ Ente~r_Numbe~rs I 
I Add_Numbers I 

Object ­
contains 
both data 
structures 
and the 
routines 
that act on 
the data 

Object-Oriented Programming 

int eger! 1 ... -
; 

integer2 
t ; 

integer3 • ! 

Enter_Numbers 

Add_Numbers 

FIGURE 2-3 A procedural language doesn't clearly relate data to functions; an object-oriented lan­
guage does. 

As you have surely surmised, objects are the key element in object­
oriented programming. Because a shape is naturally thought of as an object, 
let's explore objects in greater depth by looking at an example that repre­
sents a rectangle as an object. 

On the Macintosh, a rectangle is defined by the pixel coordinates of its 
four corners. So these are the four data elements my rectangle object will 
need. In C++, an object's data-the variables the object works with-are 
called data members. The names of the functions that act on the object's data 
members are referred to as the object's member functions. Like the number of 
data members an object has, the number of member functions it has 
depends on what t}:i.e object is representing. While I could think of dozens 
of different things to do with a rectangle-rotate it, shrink it, color it-for 
the sake of simplicity I'll define just three operations. Drawing and erasing 
the rectangle seem like necessities, and for variety I'll also allow the rectangle 
to grow. Figure 2-4 shows the data members and member functions I would 
define for my rectangle object. 

Data members are sometimes called instance variables. Member functions can 
also be referred to as methods. This book will use the terms data members and 
member functions. 



Data 
members 

Member 
functions 

Chapter 2 Introduction to C++ and OOP 37 

Rectangle object 

FIGURE 2-4 One way of implementing an object that represents a rectangle 

What variables will be needed by the three functions that act on the 
rectangle? Only the four data members that are a part of the rectangle 
object. And how many different operations can be performed on a rect­
angle? Just the three that are named by the object's member functions. 

In a procedural program, an action is carried out by calling a routine­
a function or procedure. In a program that works with objects, the program 
tells an object to carry out an action by sending it a message. The message 
tells the object which of its built-in member functions should be executed. 
In Figure 2-5, a program sends a rectangle object a draw message so that the 
object executes its Draw_Rectangle member function. In Figure 2-6, the 
same program sends the same object a grow message so that the object exe­
cutes its Grow _Rectangle member function. 

Figures 2-5 and 2-6 highlight a key difference between procedural 
and object programming. In procedural programming, you call a routine. 
In object programming, you send a message to an object. The message tells 
the object which of its routines to use. 



38 Symantec C++ 

D 

FIGURE 2-5 A program sends a rectangle object a draw message. 

D 

FIGURE 2-6 A program sends a rectangle object a grow message. 

The Advantages of Object-Oriented Programming 
Keeping together a data structure and the functions that operate on that 
data structure is called encapsulation. Encapsulation is one of the primary 
advantages of object-oriented programming over procedural programming. 
Another benefit is ease of code modification. It is easier to make changes in 
an object-oriented program than it is to make similar changes in a proce­
dural program. 



Chapter 2 Introduction to C++ and OOP 39 

As a case in point, consider a Macintosh programmer who works for 
the Acme Information Center. This company has been asked to create a 
program that will offer users recommendations as to where to shop, what 
doctor to see, and a host of other bits of information. The recommenda­
tions will be based on several pieces of information, one of which is the 
gender of the user. Being well-versed in C, the programmer writes a proce­
dural program consisting of thousands of lines of code, some of which are 
shown in Figure 2-7. 

Since there are only two sexes, the programmer is feeling pretty smug 
about his selection of data and functions. That is, until his eccentric boss 
tells him to make the program capable of handling unisex aliens. Now, the 
programmer must go through the thousands of lines of code, searching for 
routines like Do_Stuff(). That routine, part of which is shown in Figure 2-7, 
handles what our unfortunate programmer thought would be the only two 
gender cases-male and female. Now, he will have to add more global vari­
ables-variables that will apply to activities specific to the aliens. And 

#define FEMALE 1 
#define MALE 2 

int sex; 
Str255 clothes _store; 
Str255 health_club; 
Str255 maternity_doctor; 

void Do_StuH (void) 

if ( sex == MALE ) 
Do_Manly_Stuff(); 

else if ( sex == FEMALE 
Do_womanly_Stuff(); 

FIGURE 2-7 Some typical procedural language code 

void Do_Manly_Stuff(void) 

clothes_store= "Men's Wear"; 
health_club ="Gold's Gym"; 



40 Symantec C++ 

speaking of specifics, was he wise to make maternity_ doctor a global 
variable, when, before the arrival of the unisex alien, it applied to only one 
of the two genders? 

While aliens don't turn up in typical programs, changes like the ones 
shown here do. So while not entirely realistic, the alien example serves to 
illustrate the problems inherent in procedural programming. Data and the 
functions that operate on the data are not closely bound. The addition of a 
single new data type-like the alien-may require a great deal of work, 
because all of the source code must be searched for affected sections. 

By binding data and the functions that work on that data, object­
oriented programming avoids the pitfalls of procedural programming. If 
Acme's programmer had used object-oriented programming, his initial pro­
gramming effort would have looked more like the one shown in Figure 2-8. 

Male object 

Female object 

clothes_store 
I, 

health_club 

maternity_doctor 

II code that works with objects 

FIGURE 2-8 Using two objects to represent two different things 



Chapter 2 Introduction to C++ and OOP 41 

While I've shown the object version in only a general way, you should 
still be able to make some observations about it. First, notice that each 
object contains only the data that it needs. Thus, the maternity doctor 
data is. no longer global. It now appropriately appears in only th~ female 
object. Second, notice that the routines that act on each gender are now 
closely associated with the data that they use. 

What about the request from the programmer's boss? What is required 
to add a new data type-the alien? Figure 2-9 answers the question. 

Using object-oriented programming, when faced with a new data 
type-the alien-the programmer can give thought to the data members 
and member functions that will be appropriate for this new type. And 
because the data and functions that will apply to the alien are encapsulated 
and hidden from the other objects-the male and female objects-the pro­
grammer has little concern for how the new code will affect previously 
written code. 

Alien 
object · 

Male 
object 

I I slight modification to the 
II code that works with objects 

Female 
object 

FIGURE 2-9 Little effort is needed to add a new type of object to a program. 



42 Symantec C++ 

Classes 

So far I've discussed object-oriented programming in general terms, but 
you've seen no actual object source code. In this section, I'll delve a little 
deeper into objects, again using generalities. Don't worry about the specifics 
of C++ objects, though. There's plenty of time for that-hundreds of pages, 
in fact. 

The Class-the Pattern of Objects 
Up to this point, I've discussed an object as if it were defined and then used 
by the program. That's not entirely accurate. What is really defined is a class. 
A class is a pattern from which objects are created. Figure 2-10 shows that 
once a class is defined, more than one object can be created from it. 

Class definition 

afu:zTO~ar 
[ 

pi ....... : 
lnrnh•ln: 
zhon- ~dd:a:: 

FJbblla: 
.,.oldC211fldll: 
"'-old Gduzl;llmJI: 
lnrRuzl'll;ll•U: 

~u 
EJEJEJ 

Objects • members of the class 

FIGURE 2-10 Many objects can be created from a single class definition. 



Chapter 2 Introduction to C++ and OOP 43 

All right, I'll bend a little and throw a bit of code at you. In C++ there is a class 
keyword. Defining a class in C++ is much like defining a struct in C. In fact, the 
class is built on the concept of the struct. Chapter 5 will provide all the detail 
you'll need to write your own classes. For now, look at this example C++ class 
definition and note its similarities to the C struct data type: 

class .MyClass 
{ 

private: 
Str255 name; 
short age; 

public: 
void Add_lnfo( Str255, short); 
void Write_Info( void); 

Why would you want more than one of the same type of object? Think 
of a class as just another data type-like the int, short, and float data types 
in C. You don't use these data types directly in a program. Rather, you 
declare variables to be of these types. And you quite often declare more than 
one variable of a given type. You are not limited to declaring a single int 
variable in a program. Nor are you limited to creating a single object from 
one class definition. 

Creating Multiple Objects 
Let's dig a little deeper into the idea of creating multiple objects from one 
class. Again, I'll use a simple example-though this one will be a little closer 
to real-world programming. 

The Acme Bolt and Nut Company sells a large number of hardware 
items through various catalogs. The company wants to maintain certain 
information about each item-information such as the item name, part 
number, and which catalog the item appears in. To oblige the company, 
Acme's computer programmer (who is, incidentally, a Macintosh pro­
grammer) writes a program that defines a single class. This part information 
class is shown in Figure 2-11. 



44 Symantec C++ 

In Figure 2-11, you can see that the programmer feels that a class con­
taining three data members and three member functions will suffice to 
describe and work with any item the company carries. The three data 
members should be self-explanatory. The three member functions need only 
a brief explanation. 

The New_Part member function.allows a user of the program to add 
information about a new type of item-Acme is forever designing and pro­
ducing new types of bolts. The Write_Part_Info member function allows 
the program user to print out information about the part-its name and 
part number and the volume of the catalog in which it appears. Delete_Part 
lets the program user remove information about a discontinued part. 

The definition of a class doesn't create any objects of that class; it 
merely defines what an object based on this class will look like. Remember, 
a class is like a data type. It is a pattern from which 1, 10, or 10,000 objects 
can be created, as shown in Figure 2-12. 

Data 
members 

Member 
functions 

Part Info Class 

FIGURE 2-11 A class to represent a single part in a catalog 



Chapter 2 Introduction to C++ and OOP 45 

Part Info Class 

part name I 
part number I 

cat:.alog volume I <? 
New_Part I ~ 

~W~rite~_Par~t_In~fo ~I ~ 
Delete_Part 

Objects 

Object ! 

part narn~ : 112• bolt: 

part number : 6042 

catalog volume: 

Object2 

part name: 

par;t n~er : 

cat}llog volume : 

Object 3 

5/8• bolt 

6043 

part name : ,3/4~ 

part n~~r : 6044 
catalog volume : 

FIGURE 2-12 A class is the pattern from which objects are created. 

Objects can be declared in your source code, just as variables based on 
C data types are declared. They can also be created dynamically, or on the fly. 
That is, all the objects a program will use do not have to be declared in your 
code; only the class or classes must be declared. Objects can be created as the 
program runs and as the need arises. This is typically the case, as Acme's 
programmer finds out. The program must be capable of creating and 
deleting objects at the user's whim. Because the programmer doesn't know 
in advance how many items will be listed in each catalog, he can't account 
for every object beforehand. 

Object-Oriented Programming and C 

In writing a C++ program, not every line of code you write will be object­
like; much of it will closely resemble Macintosh C language code you've 
written in the past. There are two reasons for this, as you're about to see. 

Everything Need Not Be an Object 
Not all programming concepts lend themselves to object-oriented pro­
gramming. OOP is most useful when you have a well-defined data object 
and a number of well-defined actions that will be performed on it. Working 



46 Symantec C++ 

with a shape-like the rectangle discussed earlier-is an example of a situ­
ation in which object-oriented methods are practical. 

Another good candidate for representation as an object is a record, as 
shown in the Acme Bolt and Nut Company's use of objects to keep track of its 
inventory of parts. The bits of information that make up a record and the 
actions that are to be performed on them can be clearly and concisely defined. 
For Acme, the information is the part name and number and the catalog in 
which the item appeared. The actions are the creation, printing, and deletion 
of a part. Each record, of which there may be thousands, stores the same types 
of information and has the same types of actions performed on it. 

A Macintosh window, intuitively thought of as an object by most users, 
can be easily represented as an object. In the next section, you'll see in a little 

. more detail how a window is represented in this way. Later in this book, I'll 
present the source code for a C++ program that uses windows as objects. 

So far, I've discussed things that can be turned into objects. What 
about things that can't, or shouldn't, be turned into objects? There are many 
instances in which there is an action to perform but nothing clearly defined 
on which to act. For example, I may want to evoke a sound from the Mac's 
built-in speaker. That's an action, but there is no object to perform the 
action upon. I don't need to try to represent the Macintosh speaker as an 
object. I simply call the Toolbox routine SysBeep(). Attempting to turn a 
simple action into object-based code undermines the purpose of object­
oriented programming. Don't add unnecessary complexity to your programs. 

C++ on the Macintosh, like C on the Mac, makes extensive use of 
Toolbox calls. It also uses other common C code, such as for and while 
loops and if and switch branches-especially in nonobject portions of your 
C++ code. An example is an event loop. The event loop of a Mac C++ 
program looks very much like an event loop in a Macintosh C program. 

C++ Uses C 
Objects have member functions that carry out actions on their data 
members. In the classes you've seen so far, the member functions have been 
shown as just function names. That is, in fact, how member functions are 
listed in a class definition. The actual body of code that makes up a member 
function appears elsewhere in your source code. Because I just mentioned 
that a Macintosh window is a good candidate for representation as an 
object, I'll use a window as an example. Figure 2-13 shows the class defi­
nition for a window. I've deliberately left much of the class obscure so that 
we can focus on just a couple of the member functions. 

My window class definition has at least two member functions. I've 
shown the Drag_ Wind and Grow_ Wind member functions in Figure 2-13. 



Chapter 2 Introduction to C++ and OOP 47 

Window Class 

FIGURE 2-13 Part of a class that defines a window 

You now know that the code that makes up these functions appears outside 
of the class. Here's a look at how I implemented the Drag_ Wind member 
function: 

void Window:: Drag_Wind( Point where) 
{ 

DragWindow( the_window, where, &drag_rect ); 
} 

While the double colons in the first line may seem a little cryptic, the 
body of the function should be very familiar. It's simply a call to the Toolbox 
function DragWindow(). This line of code appears just as it would in a 
Macintosh program written in C. Recall that C++ is a superset of C. Most 
valid C code is also valid C++ code. That's why much of your C++ source 
code will look like C code. 



48 Symantec C++ 

k further proof that C++ relies heavily on C, take a look at the code I 
wrote for the Grow_ Wind member function. You may not understand the 
purpose of each line, but that's not important. What is important is that you 
notice that the Grow_ Wind member function is made up of local vari­
ables-all of which are declared to be of data types found in Macintosh C­
and quite a few Toolbox calls. · 

long Window:: Grow_Wind( Point where) 
{ 

long 
Re ct 
GrafPtr 

wind_.:.size; 
min_wind_size; 
save_port; 

min wind size = this->min_rect; 

wind size = GrowWindow( the_window, where, 
&min_wind_size ); 

if ( wind_size != 0 ) 
{ 

GetPort( &save_port ); 
SetPort( the_window ); 
EraseRect( &the_window->portRect ); 
SizeWindow( the~window, LoWord(wind_size), 

HiWord(wind_size), true); 
InvalRect( &the_window->portRect ); 
SetPort( save_port ); 

return wind size); 

It should be encouraging to you to know that none of the effort you have put 
into learning C and Macintosh programming has been wasted. You'll use all of 
your knowledge of C and the Macintosh Toolbox in your C++ programs. Don't 
think of learning C++ as learning an entirely new language; think of it as adding 
to your existing knowledge base. 



Chapter 2 Introduction to C++ and OOP 49 

Chapter Summary 

The C++ language is a superset of the C language. That means that C++ 
includes all of the elements of C plus some additional ones. Any time and 
effort you've spent learning C will not be wasted on your journey to learning 
C++. 

Programs written in C++ usually work with objects, but they don't 
have to. OOP, or object-oriented programming, is not in itself a pro­
gramming language. Rather, it is a way of organizing a program. ·The 
additions to the C language that spawned the C++ language were primarily 
those that allow programs to become object-oriented. A C++ program 
doesn't have to take advantage of these elements, though. If it doesn't, there 
is little difference between it and a C program, and it isn't considered an 
object-oriented program. 

A procedural language, like Pascal or C, has variables that hold data 
and routines that act on those variables. There is, however, no direct con­
nection between a given routine and a given piece of data. In object­
oriented programming there is. Data and the functions that act on that data 
are grouped to form classes. From these class definitions come objects. An 
object is a variable that is of a certain class type. Object-oriented pro­
gramming allows the programmer to create as many objects from one class 
definition as needed, just as a programmer can declare several variables of a 
standard data type such as a short or a float. 



hapter 3 

The C Language: The Basis of C+ + 

The C++ language is built on the data types and keywords that make up the 
C language, so you'll want to have a good understanding of C before you 
tackle C++. Are you well-versed in C? Are you familiar with all of the basic 
data types, branching statements, and looping statements? Do you recall 
how to declare and use a struct-the C data type upon which the C++ class 
data type is built? If you do, then feel free to skip this chapter; it's a review of 
C. You won't find anything that's strictly C++ here; that begins in Chapter 
4. If you know C but feel a little rusty, skim this chapter for a refresher. 

Basic Data Types 

Whole numbers, floating-point numbers, and characters and strings-those 
are the three basic types of data found in both C and C++. This section pro­
vides a quick review of the data types that fall within those general data 
categories. 

51 



52 Symantec C++ 

Integral Numbers 
In C, and in C++, whole numbers, or integral numbers, are represented by 
variables of type short, int, and long. A short occupies two bytes of memory, 
an int occupies four bytes, and a long occupies four bytes. 

The four-byte specification for an int applies to the Symantec C++ com­
piler. If you've used Symantec's THINK C compiler, you may know that in 
that environment the size of an int can be either two bytes or four bytes, 
depending on the option you've selected in the Compiler Settings screen of 
the THINK C options dialog. This variance in the size of an int can cause 
incompatibility and portability problems for a programmer who wants to 
move code from one environment to another. For this reason, I strongly rec­
ommend that you always use short and long variables rather than ints. 

A variable declared to be a short can range in value from -32,768 to 
+32,767. If you need a larger number and don't plan to use negative valties, 
you can declare a variable to be an unsigned short, the range of which is 0 to 
+65,535. 

For a long variable, the range is -2,147,483,648 to +2,147,483,647. 
As with a short, you can declare a long variable to be unsigned, in which 
case the range is from 0 to +4,294,967,295. Here are a few example 
declarations: 

short dogs; II max. value is 32,767 
unsigned short more_dogs; II max. value is 65,535 
long usa_population; II max. value is 2,147,483,647 
unsigned long asia_population II max. value is 4,294,967,295 

Some Toolbox routines insist on a parameter of type long. Since a long 
occupies four bytes of memory, the parameter you pass must also occupy four 
bytes. If you see example code that has OL as one of the parameters passed to 
a Toolbox routine, rather than just a zero, it's because of this requirement. An 
integral constant, such as zero, doesn't necessarily occupy four bytes. In C and 
C++, appending the letter L to a number forces it to occupy four bytes and 
tells the compiler that you want the integer to be treated as a long. Here's how 
0 would be forced to occupy the space of a long: 

OL 

While a routine may accept an integral constant that hasn't been forced 
to the size of a long, there's no guarantee that it will. 



Chapter 3 The C Language: The Basis of C++ 53 

Floating-Point Numbers 
Integral numbers are easy to work with and useful data types, but they 
cannot be used for numbers that contain decimal points. C and C++ use 
variables of the data types float, double, and long double to hold floating­
point numbers-numbers that have decimal points. A float occupies four 
bytes of memory. Doubles and long doubles occupy either eight or ten 
bytes, depending on settings in the Compiler Settings screen of the 
Symantec C++ options dialog box. 

The size of floating-point numbers will seldom be an issue for you. In 
Macintosh programming, double is the preferred floating-point data type. 
Whether the compiler is set to store a double in eight or ten bytes of 
memory, the range of values a variable of type double holds should be plenty 
large enough for your needs. 

The following are examples of floating-point declarations and 
initializations: 

float cost = 19.95; 
double distance = 6.5e2; 
long double great_distance = 7.25e6; 

Characters and Strings 
In C and C++ you use the char data type to hold a single character. Enclose 
the character in single quotes, like this: 

char first_initial = 'D'; 

Multiple characters, or strings, are held in variables of type Str255. 
Precede the characters that make up the string with a backslash and the 
letter p; then enclose the whole works in double quotes, like this: 

"\plhis is a string" 

A string variable can be given a value at initialization, as in: 

Str255 the_str = "\pSymantec C++"; 

Once declared, though, a string cannot be given a value in an 
assignment statement. While the following looks as if it should work, it 
doesn't. 



54 Symantec C++ 

Str255 the_str; 

the_str = "\pSymantec C++"; II This WON'T work 

To give a string variable a value after it has been declared, use a 
function that moves a string constant into the string variable, byte-by-byte. 
The following is a short, simple routine that does just that. You might want 
to copy it into your source code: 

void Fill_Str255( Str255 the_str, Str255 fill_with_str ) 
{ 

short str_length; II length in characters of string 
short i; II loop counter 

str_length = *fill_with_str; 

for ( i = str_length; i >= O; i-­
the_str[i] 

Call the Fill_Str255() routine whenever you want to give a string 
variable a value. Pass to Fill_Str255() the variable to fill along with a string 
constant. Here's a code snippet that does that and then writes the string to 
the active window or dialog box: 

Str255 the_str; 
Fill_Str255( the_str, "\pTesting 123"); 
MoveTo( 20, 30 ); 
Drawstring( the str ); 

Preprocessor Directives 

The Symantec C and C++ compilers contain a preprocessor that makes a pass 
through your source code before compiling. The preprocessor can substitute 
numbers or characters for symbols and replace a single line with the con­
tents of an entire source file. 



Chapter 3 The C Language: The Basis of C++ 55 

The #define Directive 
Data that is preset at the start of a program and doesn't change value is said 
to be constant. In C and C++, constants can be established through the use 
of the #define preprocessor directive. The following sets the name, or 
symbol, CENTS_PER_DOLIAR to the value 100: 

#define CENTS PER DOLLAR ·100 

Now, wherever the symbolic name CENTS_PER_DOLIAR appears, 
the compiler will replace it with the number 100 during the preprocessor's 
pass through the code. 

The liberal use of #define directives has the positive effect of pre­
venting numbers from being scattered about your source code. Instead, all 
numbers appear at the start of the file or in their own separate source code 
file. Here are some examples of #define directives and the code that uses 
them: 

#define INTEREST RATE 0.06 
#define RATE STR 11 \pThe interest rate is currently 6% 11 

double base amount = 1000; 
double interest; 

Drawstring( RATE_STR ); 
interest= (base_amount * INTEREST_RATE ); 

The #include Directive 
The second most common preprocessor directive is the #include. An 
#include, followed by a filename, tells the compiler to substitute the entire 
contents of the named file for the #include line. The following are two 
examples: 

#include 11 Initialize.h 11 

#include <GestaltEqu.h> 

Most #include files are header files-files containing #defines and 
function prototypes rather than executable code. When including a header 
file of your own, enclose the name in quotes. That tells the compiler to · 
begin its search for the file in the directory that contains the original source 
code file. When including Apple-supplied header files, surround th.e 



56 Symantec C++ 

Table 3-1 Some of the Commonly Used C Operators 

Operator Description Operator Description 

+ Addition < Less than 

- Subtraction <= Less than or equal 

* Multiplication > Greater than 

I Division >= Greater than or equal 

++ Increment -- Logical equals 

-- Decrement != Logical NOT equals 

& Address of && Logical AND 

Direct selection II Logical OR 

-> Indirect selection = Assignment 

filename with the < and > symbols. That tells the compiler to begin its 
search in the folders of #include files in the Symantec C++ folder. 

Operators 

The C language provides many ways to process the data you have stored in 
different types of variables. Operators are the symbols that do the processing, 
and C has a rich set of them. The C operators allow you perform math 
operations, make comparisons, alter variable values, and more. If you've 
mastered C operators, your skills won't be wasted-C++ uses them all. Table 
3-1 lists the most commonly used C operators. 

Looping Statements 

Controlling the flow of a program is an important programming concept­
in C and every other language. Looping statements provide a program with 
the means of easily repeating blocks of code. The C language has three kinds 



Chapter 3 The C Language: The Basis of C++ 57 

of loops-while, do-while, and for. All three types can be used in C++ 
programs. 

The while Loop 
The while statement performs a test on an expression to determine if the 
statement below the expression should execute. The while loop has the 
general form shown here: 

while ( expression ) 
statement 

The first line of a while loop is the conditional test. If the expression 
that lies between the parentheses evaluates to true, then the statement below 
the expression executes. If the expression evaluates to false, then the 
statement below is skipped. The statement part of the while loop can be a 
single statement or a block of code-a compound statement-nested 
between opening and closing braces. Here's an example of a loop that will 
execute 10 times (from x = 0 to x = 9): 

short x = O; 
short total = O; 

while ( x < 10 ) 
{ 

total += 5; 
x++; 

Figure 3-1 shows the flow of control for a section of code that contains 
a while loop. The code that increments the loop counter is found within the 
loop body. 

The do-while Loop 
Related to the while loop is a second type of looping statement-the do­
while loop. In the do-while, the test condition appears at the end of the loop 
body: 

do 
statement 

while (expression ); 



58 Symantec C++ 

FIGURE 3-1 Program flow of a while loop 

Having the test expression appear at the end of the loop means that the 
loop will always execute at least once. Here's an example of a do-while loop: 

short count = O; 
short total = 1; 

do 
{ 

total += 5; 
++count; 

while (count< 3); 

For conciseness, the incrementing of the loop counter can take place 
within the test expression, as shown here: 



Chapter 3 The C Language: The Basis of C++ 59 

FIGURE 3-2 Program flow of a do-while loop 

do 
{ 

total += 5; 
while (count++< 3); 

Figure 3-2 shows the program flow of a do-while loop. While the 
incrementing of the loop counter is shown after the loop body, it could be 
contained within the body itself. 



60 Symantec C++ 

The for Loop 
The third C loop type is the for loop. The for loop performs three actions 
within the parentheses that follow the for keyword: it initializes a counter to 
a starting value, compares the counter to an ending value, and increments 
the counter. The first of these three actions is performed only once. The 
other two are performed after each pass through the body of the loop. Here's 
the format of the for loop: 

for ( initialize counter; test counter; increment counter) 
statement 

Here's an example of a for loop: 

short count; 
short total l; 

for (count = O; count < 2; count++) 
total *= 3; 

Figure 3-3 shows the program flow of a for loop. The test of the 
expression occurs before each pass through the loop body. 

Branching Statements 

Looping statements control the flow of a program. Another way to control 
program flow-and to add complexity and decision-making power-is to 
use branching statements. For branching, both C and C++ rely on the if, if 
else, else-if, and switch statements. 

The if Branch 
The if statement performs a test on an expression. The result of the eval­
uated expression determines if the statement below the expression 1s 
executed once. The if statement has the form shown below. 

if ( expression 
statement 

The first line of the if statement holds the conditional test. If the test 
between the parentheses evaluates to true, the statement below the 



Chapter 3 The C Language: The Basis of C++ 61 

FIGURE 3-3 Program flow of a for loop 

expression is executed. If the expression evaluates to false, the statement 
below the expression is skipped. As in loops, the statement below the if can 
be either a single statement or a compound statement. Here's an example of 
an if statement whose test evaluates to true: 

short x = O; 
short total = O; 

if ( x < 10 } 
{ 

total += 5; 
MoveTo( 20, 30 }; 
Drawstring( 11 \pTotal has been increased by 5. 11 }; 



62 Symantec C++ 

FIGURE 3-4 Program flow of an if branch 

Figure 3-4 shows the flow of control for a section of code that contains 
an if branch. 

The if-else Branch 
The if statement either executes a statement or it doesn't. On some occa­
sions you will want your program to execute a second statement when the if 
test fails. For cases such as this, use an expanded form of the if statement­
the if-else. Here's the general form of the if-else: 

if ( expression ) 
statement 1 

else 
statement 2 



Chapter 3 The C Language: The Basis of C++ 63 

When you want to have the ability to handle two separate cases, sup­
plement the if statement with an else section. Here's an example: 

short x = 15; 
short total = O; 

if ( x < 10 ) 
{ 

total += 5; 
MoveTo( 20, 30 ); 
DrawSt ring ( 11 \p Total has been increased by 5. 11 ) ; 

else 
{ 

total = O; 
MoveTo( 20, 30 ); 
Drawstring( 11 \pTotal was too high, it was reset to 0. 11 ); 

In the above example, the else section of the if-else will be executed. 
That's because x starts with a value of 15-a value greater than or equal to 
10. When the if test fails, the code below the else is executed. Had x been 
initialized to a value less than 10 or assigned a value less than 10 at some 
other point in the code, the code under the if statement would have been 
executed. Figure 3-5 shows the program flow for a section of code that con­
tains an if-else branch. 

The else-if Branch 
The if-else handles a situation that can result in either of two outcomes. For 
a condition that can have more than two outcomes, use the else-if branch. 
Its general usage is shown here: 

if ( expression_l ) 
statement 1 

else if ( expression_2 ) 
statement 2 

else 
statement 3 



64 Symantec C++ 

FIGURE 3-5 Program flow of an if-else branch 

When an executing program reaches an else-if, it starts at the top and 
examines each test condition until one of them evaluates to true. Once a test 
is true, the statement under it is executed and the remainder of the else-if is 
skipped. While more than one test could be true, only the code under the 
first test that passes will be executed. Here's an example: 

if ( days >= 365 ) 
Drawstring( "\pit's been at least a year." ) ; 

else if ( days >= 7 ) 
Drawstring( 11 \plt IS been at least a week." ) ; 

else 
Drawstring( 11 \pLess than a week has elapsed." ) ; 



FIGURE 3-6 

Chapter 3 The C Language: The Basis of C++ 65 

Program flow of an else-if branch 

Figure 3-6 illustrates program flow for a section of code that has an 
else-if branch in it. 

The switch Branch 
For situations in which there are only a few possible branch paths, the if 
statement and its variations work just fine. When you want to handle a 
single situation that has multiple options, however, you'll find it more con­
venient to use the switch statement. Here's the format of the switch: 



66 Symantec C++ 

switch ( integer variable ) 
{ 

case constant 1: 
statement 
break 

case constant 2: 
statement 
break 

default: 
statement 
break 

The switch statement compares the value of the variable that appears 
in parentheses with the constant value that follows each case label. When a 
match is made, the statement that follows the matching case label is exe­
cuted. When the break keyword is reached, the program exits the body of 
the switch; therefore, a break must appear after the last statement under 
each case label. 

If the value of the variable named in the first line of the switch matches 
none of the case constants, the statement following the optional default 
keyword is executed. Here's an example of a switch statement: 

short card_total; 

switch ( card_total 
{ 

case 21: 
DrawString("\pBlack Jack!"); 
break; 

case 20: 
case 19: 
case 18: 
case 17: 

DrawString("\pStand on 17 - 20."); 
break; 



Chapter 3 The C Language: The Basis of C++ 67 

default: 
DrawString("\pBust on 22 or higher, hit on 16 or less."); 
break; 

More than one case value can cause a given statement to execute, as the 
above switch example shows. If card_ total has a value of 17, 18, 19, or 20, 
the same DrawString() will execute. 

When will the code under the default keyword execute? When 
ca rd_ total has a value not specifically listed in a case label. For the above 
example, that means that a ca rd_ total value ofless than 17 or greater than 
21 will cause the default code to execute. 

Structures 

A solid understanding of the C language struct is important to working 
with C++. That's because the class, which is the pattern, or definition, of an 
object, is based on the struct data type. Chapter 5 discusses the class data 
type in great depth. Here, I review the struct data type so that you'll be well 
prepared for the C++ class data type. 

Defining and Declaring a struct 
When a need arises to group several pieces of data together in a common 
variable, you'll want to use a struct. A structure template describes a single 
type of structure. Here is an example that creates a structure template called 
AutoDescription. Its purpose is to hold descriptive information about a 
single car: ' 

struct AutoDescription II template for one automobile 
{ 

Str255 make; II Chrysler, Pontiac, etc. 
Str255 model; II New Yorker, Bonneville, etc. 
long year; II 1987, 1993, etc. 

} ; 

A structure template begins with the C keyword struct, followed by the 
template name. In the above example the template name, or tag, is AutoDe­
scription. A structure is a record of information. The information is 



68 Symantec C++ 

enclosed in the body of the structure between the braces that follow the 
structure name. The body contains the structure members. A structure may 
contain as few or as many members as needed. Each member is a decla­
ration. The AutoDescription structure template has three members: the 
make of the auto, stored as a string-a Str25 5; the model of the auto, which 
is also a Str255; and the car's year of manufacture, which is stored as a long 
integer. 

The definition of a structure template tells the compiler what the 
structure will look like, but it doesn't create a structure. The structure tem­
plate is a rype rather than a variable, just as Str255, short, and float are data 
types, not variables. What type is it? Whatever name you've selected as the 
template tag. In the above example, I've created a struct type of 
Auto Description. 

After you've created a structure template, you can declare variables of 
the struct type. In the following example, two AutoDescription struct vari­
ables are declared. The example also declares a variable of type short-just 
to show that struct variables can be declared right along with your other 
variables. 

struct AutoDescription my_junker; 
struct AutoDescription better_car; 
short num_cars; 

Accessing struct Members 
A structure variable holds several pieces of data, so you need a way to get at 
a given field. That's called member access. To assign a value to a structure 
member, you use the structure member operator, which is simply. a period 
(.).In the following example, the member operator is used to assign a value. 
to one member of the my _junker variable. 

struct AutoDescription 
{ 

} ; 

Str255 make; 
Str255 model; 
long year; 

struct AutoDescription my_junker; 

my_junker.year = 1981; 



Chapter 3 The C Language: The Basis of C++ 69 

When you apply the member operator to a struct variable, as in the 
case of my _junker. year, then that struct and that member together act like 
any variable of the member's type. You can use my_junker.year as you 
would any long integer variable: 

struct AutoDescription my_junker; 
long the_year; 

my_junker.year = 1981; II assign my_junker.year a value 
the_year = my_junker.year; II the year now has a value of 1981 

Assigning values to the other two values in the AutoDescri pt ion 
variable is just a little trickier. The problem isn't with the struct itself but, 
rather, with the way Macintosh C and C++ work with strings. Earlier in this 
chapter, you saw a routine I named Fill_Str255(). Pass it a string variable 
and a string, and the routine will fill the Str255 variable with the string. 
That's how you assign a value to a string-whether the string is a member of 
a struct or not. The example below uses Fill_Str255() to assign values to the 
two Str255 members of the my _junker struct variable. 

struct AutoDescription 
{ 

} ; 

Str255 make; 
Str255 model; 
long year; 

struct AutoDescription my_junker; 

Fill_Str255( my_junker.make, 11 \pChevrolet 11 ); 

Fi ll_Str255( my_junker.model, 11 \pCitation 11 ); 

my_junker.year = 1981; 

Now that the members of the struct variable have been assigned values, 
those values can be easily drawn to a ~indow: 

MoveTo( 20, 20 ); 
Drawstring( my_junker.make ); 
MoveTo( 20, 35 ); 



70 Symantec C++ 

Drawstring( my_junker.model ); 
MoveTo( 20, 50 ); 
NumToString( my_junker.year, the str ); 
Drawstring( the_str ); 

Notice that in the above code my junker.make and my junker.model 
are treated just like normal Str255 v~iables; the Toolbox function Draw­
String() accepts them as Str255 parameters. The same applies to the year 
member of the my_junker struct. It's declared as a long variable, and the 
Toolbox function NumToString(), which requires a long as its first 
parameter, takes my_junker.year. 

It's always good to look at a complete source code example to see how 
· a programming concept works. The following program-aptly named Car­
Struct-uses the above code to create a struct, assign values to the struct 
members, and write the member values to a window. 

II******************* CarStruct.cp ****************** 

struct AutoDescription II template for one automobile 
{ 

} ; 

Str255 make; 
Str255 model; 
long year; 

II Chrysler, Pontiac, etc. 
II New Yorker, Bonneville, etc. 
II 1987, 1993, etc. 

struct AutoDescription my_junker; II declare a struct 
II variable 

void main( void ) 
{ 

WindowPtr the_window; 
Re ct 
Str255 

window_rect; 
the_str; 

InitGraf( &thePort ); 
In it Fonts(); 
InitWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 



Chapter 3 The C Language: The Basis of C++ 71 

the window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

"\pNew Window", true, 
noGrowDocProc, (WindowPtr) -ll, 
true, 0 ); 

Fil l_Str255( my_junker.make, "\pChevrolet"); 
Fil l_Str255( my_junker.model, "\pCitation"); 
my_junker.year 1981; 

MoveTo( 20, 20 ); 
Drawstring( my_junker.make ); 
MoveTo( 20, 35 ); 
Drawstring( my_junker.model ); 
MoveTo( 20, 50 ); 
NumToString( my_junker.year, the str ); 
Drawstring( the_str ); 

while ( !Button() ) 

Remember, Fill_Str255() isn't a Toolbox routine. It's a short utility function I've 
written to fill a variable of type Str255 with a string. You'll find the source code 
for it in the Characters and Strings section of this chapter. 

You'll find the project file and source code for the CarStruct program 
on the accompanying disk along with the project files and code for every 
complete example program presented in this book. If you have Symantec 
C++ 6.0 or 7.0, fire it up and try CarStruct for yourself. When you do, 
you'll see a window like the one shown in Figure 3-7. 

The struct and class Data Types 
In Chapter 2, I discussed a C++ data structure called the class. There I said 
that the class was a template from which objects were created. Though I 
didn't go into the specifics of how a class was created in C++, I did mention 



72 Symantec C++ 

FIGURE 3-7 

Chevrolet 
Citation 
1981 

The output of the CarStruct program 

New Window 

that the class was based on the struct. The example I used in Chapter 2 was 
for the Acme Bolt and Nut Company. They wanted a program that would 
keep track of information about each item in their catalogs of hardware 
parts. Figure 3-8 shows how a class might be set up for such a program. 

Data 
members 

Member 
functions 

Part Info Class 

FIGURE 3-8 The struct can be used to represent the data members of a class. 



Chapter 3 The C Language: The Basis of C++ 73 

In Figure 3-8, the member functions have been dimmed. That's 
because I'm going to give an example of how a struct might be used to hold 
at least some of the information that is shown in the class template. Using a 
struct, I'll be able to create a data structure that holds the information held 
in the data members of the class, but I won't be able to include the function 
information-the member functions-that are contained in the class. 
Here's a look at the struct I'm talking about: 

struct Cataloglnfo 
{ 

} ; 

Str255 
long 
long 

part_name; 
part_number; 
catalog_vol; 

II template for one catalog item 

II the name of the part 
II the part number 
II volume of catalog it 
II appears in 

Now let's create a variable of Cataloglnfo type and assign each member 
a value: 

struct Cataloglnfo half_inch_bolt; 

Fill_Str255( half_inch_bolt.part_name, 11 \p~ in. bolt 11 ); 

half _inch_bolt.part_number = 5002; 
half_inch_bolt.catalog_vol = 4; 

I've tied together the code from the catalog example to make a short 
program called CatalogStruct. You'll find the source code for it here and on 
the disk. 

II***************~* CatalogStruct.cp ***************** 

struct Cataloglnfo II template for one catalog item 
{ 

} ; 

Str255 part_name; 
long part_number; 
long catalog_vol; 

II the name of the part 
II the part number 
II volume of catalog it 
II appears in 

struct Cataloglnfo half_inch_bolt; II declare a 
II struct variable 



74 Symantec C++ 

void main( void ) 

WindowPtr the_window; 
Rect window_rect; 
Str255 the_str; 

InitGraf( &thePort ); 
In it Fonts(); 
lnitWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

11 \pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ) ; 

Fill_Str255( half_inch_bolt.part_name, 11 \p~ in. bolt"); 
half_inch_bolt.part_number = 5002; 
half_inch_bolt.catalog_vol = 4; 

MoveTo( 20, 20 ); 
Drawstring( half_inch_bolt.part_name ); 

NumToString( half_inch_bolt.part_number, the_str ); 
MoveTo( 20, 35 ); 
Drawstring( the_str ); 

MoveTo( 20, 50 ); 
NumToString( half_inch_bolt.catalog_vol, the_str ); 
Drawstring( the_str ); 

while ( !Button() ) 



1/2 in. bolt 
5002 
4 

Chapter 3 The C Language: The Basis of C++ 75 

New Window 

FIGURE 3-9 The output of the CatalogStruct program 

Figure 3-9 shows the window that you would see if you ran the. Cata­
logStruct program. 

Using a struct, I've succeeded in keeping the catalog information 
together in one data structure. I've also managed to assign values to the 
fields of information and print them to the screen. But I wasn't able to bind 
these operations to the data itself-as the C++ class data structure and 
object-oriented programming techniques would have allowed me to. To 
find out how to do that, you'll have to wait until Chapter 5. 

Chapter Summary 

Because the C++ language is built on the C language, you'll want to have a 
good understanding of C before you start learning C++. 

You'll use all of the C data types that hold numbers, including short, 
int, long, and float, in your C++ programs. To hold strings of text, you'll 
count on the Str255 data type. If you need to assign a value to a Str255 
variable after declaring it, you'll want to write your own short utility 
function like the Fill_Str255() routine found in this chapter. 

Like the Symantec THINK C compiler, the Symantec C++ compiler 
contains a preprocessor that makes a pass through your source code before 
compiling it. The preprocessor is capable of substituting numbers or char­
acters for symbols. You'll use #define directives to create these symbols. The 
preprocessor also can replace a single line with the contents of an entire 
source file; use the #include directive to accomplish that task. 

The wealth of operators that are part of the C language are also part of 
the C++ language. Refer to Table 3-1 to see a list of the most commonly 
used operators. 



76 Symantec C++ 

C++ code doesn't consist solely of objects; you must write supporting 
code to make things happen with the objects. A large part of this code will 
make use of standard C looping and branching statements. The while, do­
while, and for loops found in C are also part of C++. The same applies to 
the if, if-else, else-if, and switch branching statements. 

Before tackling C++, you'll want to be sure you have a solid under­
standing of the C language struct data type. The C++ class data type-the 
pattern from which objects are created-is based on the struct data type. 



hapter 4 

Additions to C ... Means C + + 

C++ is based on the C language. That's good for you, because it means that 
the time and energy you put into learning C will not have been wasted. And 
speaking of learning, the period of review is over. Now is the time to buckle 
down and learn some specifics of C++. 

In this chapter, you'll see how C++ allows you to use fanction over­
loading to create multiple versions of a function. You'll also learn about C++ 
memory allocation-how it's similar to C and how it's different. Finally, you 
will read about scope resolution-4:.he C++ technique that gives you control 
in determining which of two identically named variables will be used in a 
given statement. 

The Very Basics 

Before delving into the really important differences between C and C++, I'll 
take just a page or two to cover two very basic differences. 

77 



78 Symantec C++ 

FIGURE 4-1 

Return type 
Function 

name 
Argument Argument 

type name 

long My_Function( short value); 

Return type 
Function 

name 
Argument 

type 

long My_Function( short); 

Two forms of function prototypes 

Semicolon 

Semicolon 

Functions 
In C++, functions work just as they do in C. But whereas a C compiler may 
be forgiving if you don't include function prototypes, a C++ compiler is not. 
A function prototype tells the compiler what a function will look like­
before the compiler ever actually sees the function. A function prototype 
can have either of two forms, as shown in Figure 4-1. 

The only difference between the two forms of prototypes shown in 
Figure 4-1 is that in one form you list both the type and the name of each 
argument, while in the other form you list only the argument type. The 
compiler doesn't care which of the two forms you use-it's simply a matter 
of preference. In this book, function prototypes will be shown without the 
argument names, as in the prototype at the bottom of Figure 4-1. 

If you haven't used function prototypes in the past, start using them 
now. Here are a few more examples: 



Chapter 4 Additions to C ... Means C++ 79 

void Write_Warning( void); 

void Write_Message( Str255 ); 

long Add_Numbers( long, long); 

Comments 

II no return value, 
II no arguments 
II no return value, 
II one argument 
II return value, 
II two arguments 

You've already seen how comments can be written in C and C++. Because 
this chapter deals with the features found in C++ but not C, I thought it 
best to mention the subject again. 

In both C and C++, comments begin with /* and end with */. C++ 
goes C one step better by providing a second method of identifying com­
ments. In C++, you can use a double slash to make a single line a comment. 
Here is an example of each comment type: 

I* This line is a comment in both C and C++. As you can 
see, it can occupy more than one line *I 

II This line is a comment in C++. It's limited to one line 

Function Overloading 

In C, two functions cannot share an identical name. That makes perfect 
sense. If two functions did have the same name and your source code made 
a call to one, how would the compiler know which of the two functions to 
execute? While having multiple functions with the same name is not per­
missible in C, it is in C++. 

Functions with a Different Number of Arguments 
In C++, two functions can have the same name as long as they have a dif­
ferent number of arguments. Below you'll see the function prototypes for 
two functions, both of which are named Draw_Line(). 

void Draw_Line( void); 
void Draw_Line( short, short); 



80 Symantec C++ 

The first of the two functions has no parameters. Calling it results in a 
line 200 pixels long being drawn. Here's the code for the first 
Draw_Line(): 

void Draw_Line( void ) 
{ 

Line( 200, 0 ) ; II draw a horizontal line 

The second Draw _Line() is a more versatile line-drawing routine. It 
accepts two parameters. The first is the thickness of the line, and the second 
is the length of the line. Here's the code for the second version of 
Draw_Line(): 

void Draw_Line( short thickness, short length ) 
{ 

PenSize( 1, thickness ); 
Line( length, 0 ); 
Pen Norma 1 () ; 

II change the pen size 
II draw a horizontal line 
II set the pen to a 
II thickness of 1,1 

Now let's take a look at two calls to Draw_Line(): 

MoveTo( 20, 20 ); 
Draw_Line(); 

MoveTo( 20, 40 ); 
Draw_Line( 5, 100 ); 

In the above code, the compiler knows which of the two Draw _Line() 
functions to execute at each Draw _Line() call. The different number of 
arguments is the key that helps the C++ compiler resolve which function to 
execute. Figure 4-2 shows that when a call to Draw_Line() is made with 
two parameters passed to it, the C++ compiler properly determines which 
function to execute-the Draw_Line() that accepts two parameters. 

I've taken the Draw_Line() code and placed it in a C++ program 
named Function Overload. The program first opens a window and then calls 
Draw_Line() twice. Figure 4-3, shows the results of running Function­
Overload. If you have Symantec C++, run the FunctionOverload program 
included on the disk to verify that the program does indeed execute both 
functions. 



FIGURE 4-2 

FIGURE 4-3 

Draw_Line( 3 , 200 ) ; 

Chapter 4 Additions to C ... Means C++ 81 

Draw_Line(short, short) 
{ 

Compiler .··" .. 

Draw_Line { void 

Function overloading: the compiler determines which function to execute. 

New Window 

The output of the FunctionOverload program 



82 Symantec C++ 

II*************** FunctionOverload.cp **************** 

void Draw_Line( void); 
void Draw_Line( short, short); 

II function prototype 
II function prototype 

void Draw_Line( void ) 
{ 

Li ne ( 200, O ) ; 

void Draw_Line( short thickness, short length ) 
{ 

PenSize( 1, thickness ); 
Line( length, 0 ); 
PenNonnal(); 

void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
In it Fonts() ; 
lnitWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

MoveTo( 20, 20 ); 
Draw_Line(); 

MoveTo( 20, 40 ); 

11 \pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 

II call one version of Draw_Line() 



Chapter 4 Additions to C. .. Means C++ 83 

Draw_Line( 5, 100 ); II call a DIFFERENT version of 
I I Draw_ Line() 

while ( !Button() ) 

Functions with Different Argument Types 
The technique of overloading a function can also be used to create functions 
with the same name and same number of arguments-provided the argu­
ments are of different types. Determine_ Tax_Rate() accepts a float variable 
that represents a person's income. Based on the value of the passed 
parameter, the function determines a tax rate and returns it as a float. Here's 
the function prototype for Determine_Tax_Rate(): 

float Determine_Tax_Rate( float ); 

Now, what if I want the program I'm writing to also accept a person's 
income as an integer, and I want the tax rate to be rounded to a whole 
number rather than a float? If that's the case I'll create a second 
Determine_Tax_Rate() function that satisfies those requirements. This is 
the function prototype for the second version of the function: 

short Determine_Tax_Rate( long); 

Each of the two functions accepts a single parameter, but each 
parameter is of a different type. And that difference is what allows the 
Symantec C++ compiler to determine which function is executed in 
response to a call to Determine_ Tax_Rate(). 

Note that only the function argument type, not the return type, differentiates 
one function from another. Overloaded functions must have either different 
numbers of arguments or different types of arguments (or both). Having dif­
ferent return types alone will not do it. Thus, the following two functions could 
not both be used in the same program-in C or C++. 

float Convert_String_To_Number( Str255 ); 
long Convert_String_To_Number( Str255 ); 

\ 
\ 



84 Symantec C++ 

The first function converts a string to a float; the second converts a string to a 
long. But each has the same number of arguments-one-and the same type 
of argument-a string. And that's not good. 

Why Create Functions with the Same Name? 
Function overloading is an interesting, almost mystical, programming tech­
nique; it demonstrates just how powerful the C++ compiler is. But that 
doesn't explain why you would want to create different functions with the 
same name. 

For large projects, function overloading minimizes the number of 
function names you have to keep track 0£ Mathematical functions are espe­
cially good applications for overloading. A simplistic example might involve 
several functions named Add_Numbers(). Each would be responsible for 
adding numbers, but the parameters and return types would be different. 
Consider the following prototypes for four identically named functions: 

long Add_Numbers( long, long); 
long Add_Numbers( long, long, long ); 
float Add_Numbers( float, float); 
float Add_Numbers( float, float, float); 

Below I've shown how these four functions might look: 

long Add_Numbers( long a, long b ) 
{ 

return (a+ b ); 

long Add_Numbers( long a, long b, long c ) 
{ 

return (a+ b + c ); 

float Add_Numbers( float a, float b ) 
{ 

return (a+ b ); 



Chapter 4 Additions to C ... Means C++ 85 

float Add_Numbers( float a, float b, float c ) 
{ 

return (a+ b + c ); 

Your source code could then use all four, and each would yield dif­
ferent results. Here's a code snippet that calls two of the above functions: 

long al, bl, cl, dl; 

cl= Add_Numbers( al, bl); 
dl = Add_Numbers( al, bl, cl); 

The technique of function overloading has another important use. 
Objects, created from class definitions, benefit from function overloading­
as you'll see later in the book. 

Allocating Memory in C 

This section discusses the C language method of allocating memory. In par­
ticular, I will emphasize how pointers are used with struct variables. C++ 
does things a little bit differently than C does-so why spend time working 
with C? Because there are strong similarities between the two. And the class 
data type, which you'll be working with in Chapter 5, is based on the struct. 

Pointer Review 
A pointer is a variable that holds the address of a different variable. For the 
compiler, working with the address of a variable, rather than the variable 
itself, has certain advantages. Pointers make the passing of data to a function 
easy, for example. Passing the memory address of data, rather than the data 
itself, eliminates the need for the receiving function to be concerned with 
the size of the data. 

In Figure 4-4, a function named Do_Stuff() is being called. A pointer 
to the data held in a variable named my_ data is being passed. The figure 
shows that the address of the start of the data, rather than the actual data, is 
passed. Because Do_Stuff() is receiving a pointer, it isn't concerned with the 
size ofmy_data. 



86 Symantec C++ 

Do_Stuff ( &my_data ) ; 

FIGURE 4-4 Passing a pointer to a function 

Using Pointers 

void Do_Stuff(Data •data_ptr) 
( 

In C, the first step in reserving, or allocating, memory for data is to declare 
a pointer to a data type. In a declaration, preceding a variable name with an 
asterisk tells the compiler that the declared variable is to be a pointer. After 
declaring a pointer to a data type, you allocate memory by using a standard 
C routine like malloc(). The following code declares a pointer to a long and 
then allocates memory to hold one long integer: 

long *long_ptr; 

long_ptr = (long*) malloc( sizeof{long) ); 

The one parameter that malloc() requires is a number that represents 
the size of the data to allocate memory for. The sizeof() function is used to 
provide that number. In the above example, I want to allocate memory for a 
single long integer. That's why I've asked the sizeof() function to return the 
size of the long data type. The use of sizeof() in the call to malloc() is shown 
in Figure 4-5. 

Now that malloc() knows how much memory it should allocate, it 
does so. It then returns a pointer to that memory, as shown in Figure 4-6. 

When malloc() returns a pointer to your program, it returns a generic 
pointer-a pointer that has no particular type associated with it. Since I do 



FIGURE 4-5 

FIGURE 4-6 

Chapter 4 Additions to C ... Means C++ 87 

These data types match 

long_ptr = (long*) malloc( sizeof(long) ); 

The sizeof () routine returns the amount 
of memory needed to store a piece of data of 
the type listed-in this case, a long 

Using the sizeof() function to determine the amount of memory malloc() should 
allocate 

long *long_ptr; 

long_ptr = (long*) malloc( sizeof(long) ); 

After calculating how much memory to allocate, 
malloc () reserves it and then returns a pointer to it 

The malloc() function allocates memory and returns a pointer to it. 



88 Symantec C++ 

FIGURE 4-7 

FIGURE 4-8 

These types match 

long_ptr = long* ) malloc( sizeof(long) ); 

Placing a data type and the * operator before 
malloc ( ) changes the type of the returned pointer 

Typecasting turns the pointer into one that has the data type associated with it. 

need a particular kind of pointer-a pointer to a long-I have to typecast 
the generic pointer to a long pointer. Figure 4-7 shows how this is done. 

Figure 4-8 summarizes the above discussion. It shows what memory 
might look like after each of the following two lines of code: 

4000 
long_ptr 

long *long_ptr; 

???? 

long_ptr = (long *)malloc (sizeof (long)); 

4000 
long_ptr 

???? 

5000 

Memory after the execution of two different lines of code 



Chapter 4 Additions to C ... Means C++ 89 

long *long_ptr; 

long_ptr = (long*) malloc( sizeof(long) ); 

On the left side of Figure 4-8 you can see that while the declaration of 
a pointer sets aside memory for that pointer, the declaration doesn't allocate 
memory to hold whatever it is that the pointer will eventually point to. For 
that, you have to call malloc(), as shown on the left side of Figure 4-8. 

NME ~ 

If you use malloc(), you must include the stdlib.h header file. This file tells the 
compiler what the malloc() function looks like-what its arguments and return 
type are. Don't worry about the stdlib.h file too much, though. Later in this 
chapter you'll see how C++ simplifies memory allocation, allowing you to 
reserve memory without using either stdlib.h or malloc(). 

Pointers and struct Variables 
Pointers aren't used only with variables like the long type. They can also be 
used when working with struct variables. In Chapter 3, you saw the fol­
lowing structure definition: 

struct AutoDescription 
{ 

} ; 

Str255 make; 
Str255 model; 
long year; 

This same structure can also be defined usmg a slightly different 
syntax: 

typedef struct 
{ 

Str255 make; 
Str255 model; 
1 ong year; 

AutoDescription; 



90 Symantec C++ 

The above two forms yield the same result-a new data type called 
AutoDescription. The second form is advantageous in that it makes it easy 
to create a pointer type to the structure as well: 

typedef struct 
{ 

Str255 make; 
Str255 model; 
long year; 

AutoDescription, *AutoDescPtr; 

The following snippet contains a struct definition, along with the def­
inition of a pointer to a struct. Here I'm defining a Personlnfo structure 
type and a data type called PersonPtr that can be used to point to such a 
structure: 

typedef struct 
{ 

Str255 name; 
Str255 job; 
long age; 

} Personlnfo, *PersonPtr; 

Here's a second example that defines both a structure and a pointer to 
the structure: 

typedef struct 
{ 

short days; 
short months; 
short years; 

}. Timelnfo, *TimelnfoPtr; 

Now that I've defined my own pointer data type, I can declare a 
variable of that type: 

TimelnfoPtr time_ptr; 

Before using the ti me _pt r pointer I'll have to write a statement that 
allocates memory for the pointer to point to: 

time_ptr =· ( TimelnfoPtr )malloc( sizeof( Timelnfo) ); 



Chapter 4 Additions to C ... Means C++ 91 

NOTE "" %), 

In the above code, notice that the * operator isn't used in typecasting the 
pointer. That's because unlike the earlier example of malloc(), which reserved 
memory for a long, TimelnfoPtr is already a pointer data type. 

The above example makes ti me _pt r a valid pointer-valid in the sense 
that it now points to a particular memory location that has been set aside to 
hold one Timelnfo data structure. To place values in the memory location 
pointed to by ti me _pt r I would use the -> operator, like this: 

time_ptr->days 31; 
time_ptr->months 6; 
time_ptr->years 4; 

The following program, named GoodCAllocation, shows how a 
pointer and the malloc() function can be used to allocate memory for a 
structure. It also uses assignment statements to assign values to the members 
of the struct-via the pointer to the struct. When it no longer needs the 
memory allocated by malloc(), the program calls free()-a routine that 
frees, or releases, the memory that was occupied by the memory allocated 
using malloc(). 

The GoodCAllocation program appears on the accompanying disk. 
Before running it, read the next section to see how you can use the 
Symantec debugger to better understand what's happening as the code runs. 

II**************** GoodCAllocation.cp *************** 

#include <stdlib.h> 

typedef struct 
{ 

short days; 
short months; 
short years; 

Timelnfo, *TimelnfoPtr; 

TimelnfoPtr time_ptr; 

II header file for malloc 
II definition - needed so that 
II calls to malloc() and free() 
II are recognized 



92 Symantec C++ 

·void main( void ) 
{ 

time_ptr = ( TimelnfoPtr )malloc( sizeof( Timelnfo ) ); 

time_ptr->days = 1; 
time_ptr->months = 2; 
time_ptr->years = 3; 

free( time_ptr ); 

Using the Symantec Debugger 
A source-level debugger like the one included with Symantec C++ is a tool 
that can be invaluable in tracking down errors in your programs. Watching 
a program execute while the debugger is turned on is the best way to find 
out what's going on in a program that uses pointers. For that reason the next 
two sections of this chapter will show the output of the debugger while code 
that uses pointers and structs is running. If you need a refresher on how the 
debugger works, refer to Chapter 1. 

Using the Debugger to Verify a Proper Memory 
Allocation 

Pointers and memory allocation are often misunderstood. Here, we'll use 
the debugger to verify that the following lines of code do in fact set a pointer 
"pointing in the right direction." 

TimelnfoPtr time_ptr; 

time_ptr = ( TimelnfoPtr )malloc( sizeof( Timelnfo) ); 

Just a few paragraphs ago, you were introduced to a short program 
called GoodCAllocation. I'll use that very same source code to peek inside 
memory and make sure that my pointer is working as intended. If you have 
the Symantec compiler, follow along (the GoodCAllocation project is on 
the accompanying disk and is all set up to run with the compiler). If you 
don't have Symantec C++ you can follow along in Chapter 4 of the Simu­
lator C++ tutorial software. 



• 

Chapter 4 Additions to C ... Means C++ 93 

After selecting Run from the Project menu, you'll see the two debugger 
windows. Click on the Go button so that the program moves to the break­
point, as pictured in Figure 4-9. Remember, the line of code that the 
debugger stops at is the line that is to be executed next; it has not yet been 
executed. That's why the value oft i me _pt r->days isn't 1 yet. 

Next, click on the Step button. That causes the current line to be exe­
cuted. The assignment to ti me _pt r->days is made, and the days member of 
the Timelnfo structure takes on a value of 1, as shown in Figure 4-10. 

Now the true test. Click on the Step button again. The black arrow in 
the Source window moves down a line as yet another line of code is executed. 
And the value oftime_ptr->days? It remains at 1, as shown in Figure 4-11. 
Why is this a test of the validity of time_ptr? If time_ptr hadn't been 
properly set up, the value of something it pointed to-ti me _ptr->days, for 
example-might not retain its value. While there is a chance it might hold 
and maintain the correct value, it might not. You don't want to take a chance 
to find out. In the next section, you'll see just why this is so. 

typedef struct 
{ 

TimelnfoPtr time_ptr ; 

void main ( void ) 
{ 

ti me_ptr = <Ti me I nfoPtr )ma I m!!l 

~: ~=:!~~= ~ ~~~~hs ~ ~'. l!ll~ 
time_ptr->years = 3; 

free < time_ptr ) ; 

Data 

._ __ _....10~ 
time_ptr->days 0 

Before the assignment 
to days is made, days 

has a "garbage" value 

FIGURE 4-9 The debugger windows after clicking on the Go button in the Source window 



94 Symantec C++ 

• 

short days; 
short months; 
short years; 

} Timelnfo, *TimelnfoPtr; 

TimelnfoPtr time_ptr; 

void main< void ) 
{ 

time_ptr = <TimelnfoPtr)mal 

time_ptr->days = 1; 
time_ptr->months = 2; 
time_ptr->years = 3; 

free< time_ptr >; 

main 

Data 

time_ptr->days 

Immediately after the 
assignment, days has 
the assigned value of 1 

FIGURE 4-10 The debugger windows after clicking on the Step button once 

Using the Debugger to Examine Bad Memory 
Allocation 

The name of the example program presented in the last section-Good­
CAllocation-provided a hint that there might be a wrong way to allocate 
memory. The BadCAllocation program demonstrates just that. 

A common mistake of some programmers is to create a pointer to a 
data structure and then think that they can immediately work with the data 
structure-without allocating memory. After all, when you declare, say, a 
long variable, you can simply begin to work with it: 

long the_long; II declare a variable of type long 

the_long = 5; II start using it 



• 

typedef struct 
{ 

short days; 
short months; 
short years ; 

Timelnfo, *TimelnfoPtr; 

TimelnfoPtr time_ptr; 

void main( vo id ) 
{ 

time_ptr->days = 1; 
time_ptr- >months = 2; 
time_ptr- >years = 3 ; 

free < time_ptr ) ; 

Chapter 4 Additions to C ... Means C++ 95 

I 
Data 

10[8] 
time_ptr->days 1 ifr 

~ to 
I-'--

"'I ... 
The value of days will 

remain the same as the 

program executes 

FIGURE 4-11 The debugger windows after clicking on the Step button a second time 

When you define a structure data type and a data type that points to 
such a structure and then declare a variable of the pointer type, it might 
seem as if you could then begin to work with the pointer type. That's the 
reasoning that leads some programmers to omit the malloc() statement 
that allocates memory and assigns the pointer to point to a particular 
location: 

TimeinfoPtr time_ptr; 

time_ptr->days = 1; II time_ptr has not been assigned to 
II point to a particular memory 
II location 

At a later point in a program, when it's time to retrieve the information 
held in time_ptr, there's a good chance that the expected information will 
not be found. As a program runs, the Mac often shifts the contents of 



96 Symantec C++ 

memory about; that's a one of its normal memory management chores. 
Only pointers that have been properly initialized to point to the location of 
a declared variable will be usable a&er such memory shifting. The line that 
performs that "proper initialization" is shown below: 

time_ptr = ( TimelnfoPtr )malloc( sizeof( Timelnfo) ); 

The following program, BadCAllocation, is the GoodCAllocation 
program with two changes-two lines have been omitted. Those lines are 
the ones that contain the malloc{) and free{) calls. 

The purpose of BadCAllocation is to demonstrate what happens 
when a programmer writes code that relies on an unassigned pointer. In 
the previous section, you used the source debugger to monitor the value of 
a variable in the GoodCAllocation. After you run the BadCAllocation 
source code, you'll again use the debugger to see what's going on in -
memory. 

II**************** BadCAllocation.cp **************** 

#include <stdlib.h> 

typedef struct 
{ 

short days; 
short months; 
short years; 

} Timelnfo, *TimelnfoPtr; 

TimelnfoPtr time_ptr; 

void main( void ) 
{ 

II malloc() omitted 

time_ptr->days = 1; 
time_ptr->months = 2; 
time_ptr->years = 3; 

Incidentally, the BadCAllocation project compiles just fine-with 
nary an error message. That, in fact, is the reason that invalid pointer 
usage can occur in the first place. If you have Symantec C++, you can 



• 

typedef struct 
{ 

short dciys ; 
short months; 
short yecirs; 

Timelnfo, *TimelnfoPtr; 

Time lnfoPtr time_ptr ; 

vo id mciin < vo id ) 
{ 

II omitted mcil loc( ) 

time_ptr- >dciys = 1; 
time_ptr- >months = 2; 
time_ptr- >yecirs = 3; 

II omitted free() 

main 'Q 

· Chapter 4 Additions to C ... Means C++ 97 

I 

mm 

Data 

10[8] 
time_ptr- >dciys 165 13 & 

"" 
-0 I-'-

._ 
Before the assignment, the 

value of days is a random 

garbage value 

FIGURE 4-12 The debugger windows before clicking on the Go button 

compile the included BadCAllocation code yourself. Try running the Bad­
CAllocation example, too. Make sure that Use Debugger is checked in the 
Project menu. If you don't have Symantec C++, check out Chapter 4 in 
the Simulator C++ software; it includes a QuickTime movie that animates 
this lesson. 

Now let's see how the BadCAllocation program runs. With the Use 
Debugger item checked, I'll choose Run from the Project menu. Before I 
click on the Go button, you can see that the value I'm monitoring, 
ti me _pt r->days , holds garbage-whatever value was last left at the 
memory location that time_ptr->days now occupies. Figure 4-12 illus­
trates this. 

After clicking on the Go button, the assignment to time_ptr->days is 
made. The black arrow in the Source window has moved down a line, and the 
Data window shows that time_ptr->days now has a value of 1. Figure 4--13 
shows this. 



98 Symantec C++ 

• 

Now comes the interesting part-the part that really makes the use of a 
debugger worthwhile. Clicking on the Step button executes the line that 
assigns a value to time_ptr->months. Looking at the Data window, I see that 
after this step has been completed, the value oft i me _pt r->days has changed. 
It has lost its previously assigned value of 1 and has returned to some mystery 
value. This is pictured in Figure 4-14. Why did the assignment of a value to 
time_ptr->months change the value of time_ptr->days? It didn't. It wasn't 
this particular assignment statement that affected ti me _pt r->days; it was the 
fact that something happened. The ti me _pt r pointer was never properly ini­
tialized, so any one of a hundred things could have caused a change in the 
value stored in the memory location that ti me _pt r->days points to. 

Figure 4-14 shows why you must allocate memory. In the next section, 
you'll see how C++ simplifies memory allocation. 

short days ; 
short months; 
short years; 

Timelnfo , *TimelnfoPtr; 

TimelnfoPtr time_..ptr; 

vo id main ( void ) 
{ 

II omitted mal loc( ) 

time_..ptr- >days = 1; 
time_..ptr- >months = 2; 
time_..ptr- >years = 3; 

II omitted free() 

main 

Data 

time_..ptr->days 

Immediately after the 

assignment, days has 
the assigned value of I 

FIGURE 4-13 The debugger windows after clicking on the Go button 



• 

typedef s truc t 
{ 

short days ; 
short months ; 
short years; 

Timelnfo , *TimelnfoPtr; 

TimelnfoPtr time_ptr ; 

vo id mai n< vo id ) 
{ 

II omitted mal loc() 

time_ptr->days = 1; 
time_ptr->months = 2; 
time_ptr~ > years = 3; 

I I omitted free() 

Chapter 4 Additions to C ... Means C++ 99 

I 
Data 

10[8] 
time_ptr->days 15513 .Q 

jlt. ~ 
I-"-

._ 
Soon after the assignment to 
days has been made, the value 
of days loses its assigned value 

FIGURE 4-14 The debugger windows after clicking on the Step button once 

Allocating Memory in C++ 

In C++, a pointer is initialized through use of the new operator. The new 
operator is unique to C++, so don't page through your C books to find it. 
Here's an example that declares a pointer to a long and then assigns to the 
pointer the address of a block of memory: 

long *long_ptr; 

long_ptr = new long; 

II declare a pointer to a long 

II obtain memory. set pointer to 
II point to it 

Figure 4-15 shows what a section of memory could look like after each 
of the two above lines of code executed. 



I 00 Symantec C++ 

.long *long_ptr; long_ptr = new long 

5000 
???? 

4000 4000 
long_ptr ???? long_ptr 5000 

FIGURE 4-15 Memory after declaring a pointer and initializing the pointer using the newer 
-operator 

Compare the above allocation that uses the new operator with the way 
I achieved the same result using C: 

long *long_ptr; 

long_ptr = {long*) malloc( sizeof(long) ); 

The new operator can be used with any data type-including the 
struct. Since you are accustomed to seeing the Timelnfo structure, I'll use 
that struct in this snippet that defines a struct, declares a pointer to it, and 
then uses the new operator to make the struct pointer valid: 



typedef struct 
{ 

short days; 
short months; 
short years; 

Timelnfo, *TimelnfoPtr; 

TimelnfoPtr time_ptr; 

Chapter 4 Additions to C ... Means C++ IOI 

II declare a pointer to 
II struct data 

time_ptr =new Timelnfo; II obtain memory, set pointer 
II to point to it 

For comparison, here's how you could achieve the above results in C: 

typedef struct 
{ 

short days; 
short months; 
short years; 

Timelnfo, *TimelnfoPtr; 

TimelnfoPtr time_ptr; 
time_ptr = ( TimelnfoPtr )malloc( sizeof( Timelnfo) ); 

The new operator obtains, or sets aside, an appropriately sized block of 
memory and returns a pointer to its starting point. What is the appropriate 
amount of memory? Whatever amount is needed to hold a variable of the 
type specified after the new operator. Because a long occupies four bytes of 
memory, the following lines of code set aside four bytes: 

long *long_ptr; 

long_ptr = new long; 

The new operator is always smart enough to determine the amount of 
memory to obtain-even when it is used with data types that you define, 
such as the struct. Because a short is stored in two bytes and my Timelnfo 
struct consists of three shorts, using new to obtain memory for a Timelnfo 
structure would result in a block of six bytes being reserved: 



I 02 Symantec C++ 

typedef struct 
{ 

short days ; 
short months ; 
short years; 

Timeinfo , *TimeinfoPtr ; 

TimeinfoPtr timel_ptr; 
TimeinfoPtr time2_ptr; 
long *long_ptr ; 

timel_ptr = new Timeinfo; 
time2_ptr = new Timeinfo; 
long_ptr = new long; 

6000 
four bytes 

5200 

six bytes 

4500 

six bytes 

timel_ptr 4500 

time2_ptr 5200 

long_ptr 6000 

FIGURE 4-16 Memory after using the new operator to initialize three pointer variables 

typedef struct 
{ 

short days; II two bytes 
short months; II two bytes 
short years; II two bytes 

Timelnfo, *TimelnfoPtr; 

TimelnfoPtr time_ptr; 

time_ptr = new Timelnfo; II reserve six bytes 

Figure 4-16 shows how memory might look after the declaration of 
two TimelnfoPtr pointers and a long pointer. 

Once you have used new to obtain the memory for a pointer to point 
to, you can access the pointed to memory just as you did in C. Use the -> 
operator to access what a pointer points to, as shown here: 



Chapter 4 Additions to C ... Means C++ I 03 

TimelnfoPtr time_ptr; 

time_ptr = new Timelnfo; 

time_ptr->days = 1; 

When your program is finished with a pointer, the memory allocated 
by the new operator should be disposed of, or released, by using the delete 
operator. 

TimelnfoPtr time_ptr; 

time_ptr = new Timelnfo; II allocate memory 

II do stuff with the pointer 

delete time_ptr; II dispose of memory 

Disposing of the memory that an unused pointer points to isn't man­
datory; your program will continue to run if you don't do it-that is, if it 
doesn't run out of memory. Until you use delete on an unused pointer, the 
memory block that the pointer points to cannot be reused by your program. 
While my forgetting to dispose of the six bytes that an unused Timelnfo 
structure occupies probably won't matter, forgetting to dispose of several 
much larger structures may. When you no longer need a data structure, 
always call delete to return the allocated memory to the pool of free memory 
available for your program's use. 

NOTE ~R 

As you've seen, the malloc() and free() library functions do work properly in 
C++. The preferred method of C++ memory allocation, however, is through 
the use of new and delete. If you're using malloc() and free(), get in the habit of 
replacing them with calls to new and delete 

The new and delete operators will get a workout with the class data 
type covered in Chapter 5. Until then, take a look at the NewDelete 
program to see a simple example of the new and delete operators in 
action. If you'd like, you can step through the program using the 
Symantec debugger. If you do, you'll notice that the values to which 



104 Symantec C++ 

ti me _pt r points will contain garbage-even after the new operator is 
used. The new operator doesn't place any values in memory; it just allo­
cates the memory. Once ti me _pt r is used in assignment statements, 
however, ti me _pt r will point to valid data-data that remains valid while 
the program is running. 

II******************* NewDelete.cp ******************* 

typedef struct 
{ 

short days; 
short months; 
short years; 

Timelnfo, *TimelnfoPtr; 

TimelnfoPtr time_ptr; 

void main( void ) 
{ 

time_ptr = new Timelnfo; 

time_ptr->days 1; 
time_ptr->months 2; 
time_ptr->years 3; 

delete time_ptr; 

When memory is allocated using the new operator, it can be freed with the 
delete operator. But don't try using delete without first allocating memory 
with new. What will be the result? I don't know. And that's just the point. The 
program will attempt to free memory that hasn't been allocated to it, and the 
results will be unpredictable at best, disastrous at worst. 



Chapter 4 Additions to C ... Means C++ I 05 

The Scope Resolution Operator 

In C, two variables can have the same name-provided they have a different 
scope. That is, they cannot both be declared within the same function. In 
the following code, a long variable named days is declared globally­
outside all functions-and locally to the main() function. If days is used 
within main(), which value will the program be working with, 365 or 31? 
Here's that code: 

long days = 365; 

void main( void ) 
{ 

long days = 31; 
long days_in_year; 

days_in_year = days; 

II global to entire program 

II local to main() 

II won't work as intended 

The last comment in the above code gives away the answer as to which 
days is used-the one declared in the main() function. Ifl was expecting to 
assign days_ in _year a value of 365, I'd be disappointed. In C, the compiler 
uses the variable that is "closest to home." Because the days in year 
assignment statement is in the main() function, the compiler first~he~ks to 

see if a days variable has been declared in main(). It has, so it uses the value 
of that variable-not the globally declared variable as my program intended. 

When confronted with multiple variables with the same name, a com­
piler needs to have a set of rules for determining which variable to use. 
Otherwise, it can't achieve predictable results. C compilers use the scope of 
a variable to resolve issues that arise when identically named variables are 
present. C++ compilers do the same thing. But C++ compilers also provide 
the programmer with a way to override the compiler's scope resolution 
rules. By using the scope resolution operator, you can specify which variable to 
use when more than one identically named variable exists. I've repeated the 
previous example below, with one change: 



I 06 Symantec C++ 

31 

365 

New Window 

FIGURE 4-17 The output of the ScopeOperator program 

long days = 365; 

void main( void ) 
{ 

long days = 31; 
long days_in_year; 

II global to entire program 

II local to main() 

days_in_year = ::days; II works as intended!! 

By preceding a variable name with two colons-the scope resolution 
operator-you tell the compiler to look outside the current function. In the 
above example, the assignment statement that gives days_ in _year a value 
tells the compiler to search outside of main() for a variable named days and 
to ignore the days variable that is local to main(). 

The following program, ScopeOperator, is an example of the use of the 
scope resolution operator. When you run the program, you should see a 
window like the one shown in Figure 4-17. 

II***************** ScopeOperator.cp ***************** 

long days = 365; 

void main( void ) 
{ 

Str255 the_str; 
WindowPtr the_window; 
Rect window_rect; 

II global to entire program 



long days = 31; 

InitGraf( &thePort ); 
InitFonts(); 
Ini tWi ndows (); 

Chapter 4 Additions to C ... Means C++ I 07 

II local to main() 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

"\pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 

MoveTo( 20, 30 ); 
NumToString( days, the_str ); II uses the local 

II variable 
Drawstring( the str ); 

MoveTo( 20, 50 ); 
NumToString( ::days, the_str ); II uses the global 

II variable 
Drawstring( the_str ); 

while ( !Button() ) 

While the scope resolution operator occasionally comes in handy for 
working with variables, its greatest power appears when working with the 
member functions that are a part of each class you define. You'll see plenty 
of examples of this in the next chapter. 

Chapter Summary 

While C++ is based on C, it contains both minor and major enhancements. 
One of these differences concerns the use of function prototypes. In this 



108 Symantec C++ 

area, C++ is less forgiving than C. If you haven't used function prototypes in 
the past, you should start using them now. A second change you'll want to 
adjust to is in the use of comments. C++ uses both the C style comment and 
its own brand of single-line comments. Provided your text doesn't occupy 
more than one line, you can preface it by a double slash (I I) to turn it into a 
comment. 

In C, two functions cannot share an identical name; in C++, they can. 
As long as two functions have either a different number of arguments or dif­
ferent types of arguments, the functions can have the same name. This 
feature of C++ is called function overloading. 

Memory allocation in C++ differs from allocation in C. For the pro­
grammer, this is good news, because the C++ way of doing things is easier. 
Instead of using the malloc() and free() library functions, you'll simply use 
the new and delete operators to allocate blocks of memory. 

In C, two variables can have the same name only if they have different 
scopes-that is, they can't reside in the same function. In C++ you can use 
the scope resolution operator(::) to allow the use of identically named vari­
ables anywhere in your program. 



hapter 5 

Classes and Objects 

Chapter 3 was a review of the C language-with great emphasis on working 
with the struct type. I have already mentioned several times in this book 
that the C++ class type is based on the C struct type; now, your study of the 
struct is going to pay off. In this chapter, you'll see the specifics of how 
classes are written in C++. 

A class defines what data an object of that class type will hold and what 
actions can be performed on that data. Once you have defined a class, you 
can use it as the basis for creating as many objects as you like, and in this 
chapter, you'll do just that. 

This chapter is one of the longest in the book, and there's good reason 
for the extra paper; together, classes and objects are object-oriented 
programmmg. 

Declaring a Class 

In this section, you'll learn how to declare a class. If you understand how to 
create a C struct, you're half way to understanding how to create a C++ 

109 



110 Symantec C++ 

FIGURE 5-1 

Data 
members 

Member 
functions 

Representation of an object that holds information about a catalog item 

class. Since you're already familiar with Acme Bolt and Nut Company's 
efforts to write an inventory program, I'll carry on with that example. 

For the sake of simplicity, let's assume that Acme will be satisfied with 
a program that keeps track of only the part number and the catalog in which 
that part appears. Not only that, but the company will be happy if the 
program just allows the user to enter information about a new part or print 
the information about an existing part. With those specifications in mind, 
an object that defines a single part will look-figuratively-like the object 
pictured in Figure 5-1. 

Using Figure 5-1 as my guide, I created a class type called Partlnfo, 
which is shown here: 

cl ass Partlnfo 
{ 

private: 
long part_number; 
long catalog_vol; 

public: 

II data member 
/I data member 



FIGURE 5-2 

} ; 

Chapter 5 Classes and Objects I 11 

void New_Part( long, long); 
void Write_Info( void); 

II member function 
II member function 

The Partlnfo class, like most classes, consists of data members and 
member functions. Figure 5-2 sheds some light on the format of a class 
declaration. 

Figure 5-2 shows that a class begins with the class keyword, followed 
by the name of the class. As you would for a struct, you supply a name that 
describes what the data structure will be used for. The contents of the class 
lie between braces. As mentioned, the contents of the class are the class data 
members and member functions. Don't forget to end the class definition 
with a semicolon after the closing brace. ~ 

Both of the data members of the Partlnfo class are of type long, but 
members can be declared to be of any valid C++ type, including short, long, 

class keyword 

Data 
members 

Member 

functions 

class name 

class Partinfo 

} ; 

private: 

long part_nUillber; 
long catalog_vol; 

public: 

void New_Part( long, long ) ; 
void Write_Info( void); 

End with a semicolon 

Declaring a class named Partlnfo 



112 Symantec C++ 

Str255, and pointers to those types. Data members are defined in the same 
way that the members of a struct are defined. And, in fact, they behave 
much as the members of a struct behave. Member functions, on the other 
hand, have no struct analogy. They are the part of a class that binds the class 
data to the actions that are performed on the data, and they are the part of a 
class that makes a class much more powerful than a struct. 

The Partlnfo class includes two C++ keywords that I haven't dis­
cussed-private and public. I'll have more to say about these keywords later 
in this chapter. 

Defining Member Functions 

The member functions listed in a class declaration are the names of the 
functions that are to be part of the class; they are not the functions them­
selves. You must define each member function elsewhere in your code. 

Writing the Header of a Member Function 
My Partlnfo class lists two member functions, so I'll have to write two func­
tions. I've repeated the Partlnfo class declaration below, along with the start 
of the two member functions. 

class Partlnfo 
{ 

} ; 

private: 
long part_number; 
long catalog_vol; 

public: 
void New_Part( long, long); 
void Write_lnfo( void); 

II data member 
II data member 

II member function 
II member function 

void Partlnfo :: New_Part( long part, long catalog) 
{ 

II function code here 



Chapter S Classes and Objects 113 

void Partlnfo :: Write_lnfo( void) 
{ 

II function code here 

The very first line of a C function is the function header. The header 
consists of the function return type, the function name, and the list of 
function arguments. For a C++ member function, the syntax of the header 
is a little different-but not much. The difference is the presence of a class 
name and the scope resolution operator. In Chapter 4, you saw the scope 
resolution operator used to help the compiler resolve which of two identi­
cally named variables it should use. Here's that example: 

long days = 365; 

void main( void ) 
{ 

long days = 31; 
long days_in_year; 

II global to entire program 

II local to main() 

days_in_year = ::days; II use global version of this 
II variable 

When working with classes, the scope resolution operator is the glue 
that binds a function to a class. In the header of the Write_Info() member 
function, note that the name of the class to which the member function 
belongs appears before the scope resolution operator: 

void Partlnfo :: Write_lnfo( void) 

II function code here 

Without the :: operator, the compiler would not know that the 
function was meant to be a part of the Partlnfo class. The relationship 
between a class and one of its member functions is shown in Figure 5-3. 

Since the function Write_Info() is listed in the class declaration, you 
may wonder why the C++ compiler isn't smart enough to make the con­
nection without the use of the scope resolution operator. The answer to that 



114 Symantec C++ 

FIGURE 5-3 

class Partlnfo 

); 

private : 
long part_number; 
long catalog_vol; 

public : 
void New_ Part( long, long); 
void Write_Info( void) ; 

void Partlnfo : : Write_ Info( void ) 

II function code here 

The relationship between a class and one of the functions listed as a class member 
function 

question lies in a topic covered in Chapter 4-function overloading. 
Remember, C++ allows more than one function to share the same name. If 
my program had two Write_lnfo() functions and the class and scope reso­
lution operator weren't used, how would the compiler know which one to 
bind to the Partlnfo class? 

NOTE ·i·~, 

While many of the functions in a C ++ program may be member functions, not 
all of them are. C++ programs also have "normal" functions. The header of a 
C ++ function that is not a member function looks just like a C function header. 
Later in this book, you'll see example source code that includes both member 



Chapter 5 Classes and Objects 115 

functions and regular functions. Already though, you have seen one non­
member function-the main() function. 

Writing the Body of a Member Function 
The body, or contents, of a member function is written such that it per­
forms the required action on the appropriate class data member or 
members. A member function acts on data members of the same class as the 
member function. Thus, my Write_Info() member function for the 
Partlnfo class should perform some action on either or both of the Partlnfo 
data members-part_number and catalog_vol. The purpose of 
Write_Info() is to write the values of both class data members to the active 
window, so it works with both data members. Here's that function: 

void Partinfo :: Write_Info( void) 
{ 

Str255 the_str; 

NumToString( part_number, the_str ); 
Drawstring( the_str ); 

Move( 20, 0 ); 

NumToString( catalog_vol, the_str ); 
Drawstring( the_str ); 

Write_Info() first converts the value of the part number data member 
from a long integer to a Str255. That allows the val~e to be written using 
the Toolbox function DrawString(). After moving several pixels across the 
window, the function does the same with the ca ta 1 og vo 1 data member. 
Aside from the class name and :: that appear in th-;; function header, 
Write_Info() looks much like a function found in a C language program. 

Notice that in the Write_Info() routine the data members are used as 
variables. To make use of a data member in a member function you do not 
have to dereference the data member as you would a struct member. Nor is 
there any need to specify which class the members are from-that's spelled 
out in the very first line of the function: 

void Partinfo :: Write_Info( void) II Partinfo class 



116 Symantec C++ 

FIGURE 5-4 

Because this function is a member function of the Partlnfo class, the 
compiler assumes that any name that matches a Partlnfo data member name 
is in fact that data member. Figure 5-4 illustrates this idea. 

Now that you've seen the Write_Info() member function, the other 
Partlnfo member function, New_Part(), will make sense: 

void Partinfo :: New_Part( long part, long catalog 

part_number 
catalog_vol 

part; 
catalog; 

A member 

function 

accesses 
data 

members 

class Partinf o 

} ; 

long part_number; 
long catalog_vol; 

public: 

void New_Part ( long, long ) ; 
void Write_Info( void); 

Wri te_Info () is 

a member function 

void Partinfo :: Write_Info( void) 
{ 

Str255 the_str; 

NumToString( part_number, the_str ); 

MoveTo( 20, 30 ); 

Class data member names can be used in a member function belonging to that class. 



Chapter 5 Classes and Objects I 17 

New _Part() is a member function of the Partlnfo class, so it contains 
the name of that class and the scope resolution operator in its header. It also 
contains something the other member function didn't have-arguments. 
Member functions, like other C and C++ functions, may have parameters 
passed to them. The New _Part() function will receive two parameters­
both of type long: 

void Partlnfo :: New_Part( long part, long catalog) 

The purpose of New_Part() is to add the information about a new 
hardware part to the Acme company's inventory. The information about a 
part is held in the two class members of the Partlnfo class, so New _Part() 
will act on these two class members. To do this, the New _Part() function 
uses two assignment statements: 

part_number 
catalog_vol 

part; 
catalog; 

The first line assigns to the class member pa rt_ number whatever value 
was passed to New_Part() in part. The second line assigns the class member 
catalog_vol the value that was passed in catalog. If it appears that 
New_Part() is acting like a C function, your powers of observation are keen. 
And if you've guessed that member functions are invoked-and passed 
parameters-much as C functions are, you're again correct. The next 
section provides more details about the calling of member functions. 

Working with Objects-

A class declaration is a pattern that defines what a C++ object will look like; 
it does not, however, actually create an object. This section will examine 
how to create and work with objects. 

Declaring an Object 
In the past I've likened C++ classes to C structures. I'll do that again here as 
I discuss how objects are created. 

In C, you first set up a struct template. You then declare variables of 
that struct type or variables that are pointers to that struct. The following 
example defines a struct template that holds audio CD information. It con­
sists of two members-Str255 types that hold the tide of the CD and the 
name of the musical group. After defining the structure, a struct pointer 



118 Symantec C++ 

FIGURE 5-5 

variable is declared. Then memory is allocated so that the pointer points to 
something. 

typedef struct 
{ 

Str255 title; 
Str255 band; 

}; CDlnfo, *CDinfoPtr; 

CDinfoPtr the_CD; 

the_CD = ( CDinfoPtr) malloc( sizeof( CDinfo ) ); 

Figure 5-5 shows the above code snippet and a section of memory. 
The left side of Figure 5-5 shows how memory looks after the struct tem­
plate is declared. The right side of the figure shows memory after the 
variable is declared and memory is allocated. 

typedef struct 
{ 

Str255 title; 
Str255 band; 

) CDinfo, *CDinfoPtr; 

the_CD CDinfoPtr; 

the_CD = (CDinfoPtr)rnalloc 
(sizeof{CDinfo)); 

6500 

the_CD->title ???? 

the_CD->band ???? 

the_CD 6500 

Memory is allocated for a struct using malloc()-but not for a struct type declaration. 



Chapter 5 Classes and Objects 119 

The point of Figure 5-5 is that the definition of a struct template uses 
no memory. The definition is just an indicator of what variables of the 
struct type will eventually look like. Not until a variable of type struct is 
declared is memory set aside. A similar situation occurs when defining class 
templates in C++. 

The definition of a class-like the definition of a struct-reserves no 
memory. To allocate memory you rhust create an instance of the class. An 
instance of the class is more commonly called an object. The following code 
snippet uses Partlnfo as the class definition from which an object is created: 

class Partlnfo 
{ 

} ; 

private: 
long ·part_number; 
long catalog_vol; 

public: 
void New_Part( long, long); 
void Write_lnfo( void); 

II data member 
II data member 

II member function 
II member function 

Partlnfo *the_bolt; II a pointer to an object 

the bolt = new Partlnfo; 

Instance and object mean the same thing. For consistency, I'll use object in this 
book. Be aware that in other books you may see objects referred to as 
instances. 

To create an object, first . declare an object pointer. That simply 
involves declaring a pointer to the · class. Then use the new operator to 
allocate the memory for the object. In C++, the new operator is used instead 
of malloc(). Recall from Chapter 4 that the new operator, followed by a data 
type, sets aside an amount of memory equal to the size of that data type. 
The new operator also returns a pointer to the allocated memory. Here 
Partlnfo is the data type, and the_ bolt is the pointer that holds the address 
of the memory reserved for the new object. 



120 Symantec C++ 

IMPORTANT "~~, 

FIGURE 5-6 

A variable declared to be of type struct is called just that-a struct variable. A 
variable declared to be of type class, on the other hand, is called by its own 
special name-an object. 

Figure 5-6 shows how memory looks after the class template is 
declared and after memory is set aside for a new object. 

As in the case of the declaration of the struct template, a declaration of 
a class template reserves no memory. Figure 5-6 emphasizes that point. 
Memory allocation takes place when an object is created via use of the new 
operator, as Figure 5-6 shows. You may have noticed that I've left the 
memory contents in Figure 5-6 a bit unclear. The figure doesn't specifically 
show how the memory devoted to the object is divvied up. That will 
become clear in the next section when you take a close look at how member 
functions are accessed. 

class Partinfo 

); 

private : 
long part_nurnber; 
long catalog_vol; 

public : 
void New_Part( long, long); 
void Write_Info ( void ) ; 

6500 

Partinfo *the_ bolt; 

the_bolt = new Partinfo; 

Part Info 
object 

the_bol t 6500 

Memory is allocated for an object, but not for a class declaration. 



Chapter 5 Classes and Objects 121 

Objects and Member Functions 
Earlier in this chapter, you saw that you must define each member function 
in your code. When an object is created, pointers to the member functions 
are also created. The member functions that are a part of an object are 
simply pointers to functions; they are not the functions themselves . 

. In Figure 5-7, a single object of the Partlnfo class type is created using 
the new operator. The object pointer, the_ bolt, points to the memory that 
holds one object. The object itself consists of two longs-part_ number and 
catalog_ vol-and two pointers-a pointer to the code that makes up the 
New_Part() member function and a pointer to the code that makes up the 
Write_Info() member function. Figure 5-7 doesn't show exactly where in 
memory the code that makes up these functions appears. Nor does it show 
the address of the object pointer or the object itself. You need not be con­
cerned about where these things end up in memory. After all, it's the 
pointer's job to keep track of these things-not yours. You might want to 
note, however, that an object's data members are data, while an object's 
member functions are pointers to the actual functions. 

class Partinfo 
{ 

} ; 

private: 
long part_number; 
long catalog_ vol; 

public: 
void New_Part ( long, long· ) ; 
void Write_Info( void ) ; 

Partinfo *the__bolt; 

the_bolt = new Partinfo; 

A single C++ object­
an instance of the 
Partinfo class 

the_bolt 

part_number 

catalog_ vol 

New_Part() 

Wri te_Info () 

FIGURE 5-7 An object and the pointer that points to it in memory 



122 Symantec C++ 

Once a class is defined, you can create as many instances, or objects, of 
that class as you wish. Below I've declared two pointers to objects of the 
Partlnfo class and then used the new operator to allocate memory and set 
the pointers to point to that memory. 

Partlnfo *the_bolt; II first pointer to a 
II Partlnfo object 

Partlnfo *the_washer; II second pointer to a 
II Partlnfo object 

the bolt =new Partlnfo; II allocate first object 
II memory 

the_washer = new Partlnfo; II allocate second object 
II memory 

Figure 5-8 shows how memory will look after two Partlnfo objects 
have been created. Note that while each of the two objects has its own 
part_number and catalog_ vol data members, they both point to the same 
New _Part() and Write_Info() member functions. 

An object needs its own data members so that it can hold information 
specific to itsel£ In the catalog example I've been using, each object represents 
a hardware part, or item, in the catalog. So each object must keep track of the 
part number of a single part. On the other hand, the actions performed on ·an 
object, which are represented by the object's member functions, can be 
common to all the objects of a class. For that reason, all objects of a class can 
make use of the same functions. That's why a single function like New_Part() 
is loaded into memory and used by all Partlnfo class objects. 

Invoking a Member Function 
A member function is invoked using the -> operator. After an object is 
created, follow the object's name with the -> operator and the name of the 
member function to call. If the member function requires that parameters 
be passed to it, include them as you would in a normal function call. The 
next bit of code I show calls the New_Part() member function. Here's a 
reminder of what that function looks like: 

void Partlnfo :: New_Part( long part, long catalog) 
{ 

part_number = part; 
catalog_vol = catalog; 



FIGURE 5-8 

Chapter 5 Classes and Objects 123 

The following example declares a Partlnfo object (actually, a pointer to 
an object), allocates the memory for the object, and then calls the 
New _Part() member function: 

Partlnfo *the_bolt; 

the bolt = new Partlnfo; 

the_bolt->New_Part( 5002, 4 ); 

part_ number 

c atal og_ vo l 

New_ Part ( ) 

Write_ Info() 

part_ number 

catal og_ vol 

New_ Part () 

Wri t e_ Info () 

Write_ Info () 

function code 

New_ Part () 
function code 

Two objects in memory and the functions they point to 



124 Symantec C++ 

Partinfo *the_bolt; 

the_bolt = new Partinfo; 

the_bolt 

6000 
part_number 

catalog_ vol 

New_Part() 

Wri te_Info () 

6000 

???? 

???? 

7500 

7800 

the_bolt->New_Part(5002, 4); 

the_bolt 6000 

6000 
part_number 5002 

catalog_ vol 4 

New_Part() 7500 

Wri te_Info () 7800 

FIGURE 5-9 Using an object's member function to assign values to object data members 

The effect of the above code is to create a Partlnfo object and then set 
the object's part_number data member to 5002 and its catalog_vol 
member to 4. Figure 5-9 offers a glimpse of how memory is affected by this 
snippet of code. 

A member function is like a normal function--except for the manner in which 
it is invoked. You call a member function only via an object. In Chapter 2, I said 
that a program tells an object to carry out an action by sending it a message. 
The message tells the object which member function should execute. A line 



Chapter 5 Classes and Objects 125 

like the following is then sending a message to the Partlnfo object the bo 1 t. 
And the message is? To execute the New_Part() function. -

the_bolt->New_Part( 5002, 4 ); 

The program MemberFunctions, found on the accompanying disk, is 
an example of a program that makes use of a class and an object. It declares 
a class and its member functions, creates an object, and then invokes the 
object's member functions. The MemberFunctions program invokes the 
New_Part() member function to assign values to the object's two data 
members and then calls the object's Write_Info() member function to write 
that information to the active window. Figure 5-10 shows what the 
program window looks like after running MemberFunctions. 

II*************** MemberFunctions.cp **************** 

cl ass Partlnfo 
{ 

} ; 

private: 
long part_number; 
long catalog_vol; 

public: 
void New_Part( long, long); 
void Write_Info( void); 

§lfi New Window 

5002 4 

FIGURE 5-10 The output of the MemberFunctions program 

II data member 
II data member 

II member function 
II member function 



126 Symantec C++ 

void Partlnfo :: New_Part( long part, long catalog) 
{ 

} 

part_number = part; 
catalog_vol = catalog; 

void Partlnfo :: Write_Info( void) 
{ 

Str255 the_str; 

NumToString( part_number, the_str ); 
Drawstring( the_str ); 

Move( 20, O ); 

NumToString( catalog_vol, the_str ); 
Drawstring( the_str ); 

Partlnfo *the_bolt; II declare an object of type 
II Partlnfo 

Partlnfo *the_washer; II declare an object of type 
11 Partlnfo 

void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
InitFonts (); 
I nitWi ndows () ; 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

11 \pNew Window", true, 
noGrowDocProc, (WindowPtr) -ll, 
true, 0 ); 



Chapter 5 Classes and Objects 127 

SetPort( the_window ); 

the_bolt = new Partlnfo; II allocate object memory 

the_bolt->New_Part( 5002, 4 ); II invoke member function 

MoveTo( 20, 30 ); 
the_bolt->Write_lnfo(); 

while ( !Button() ) 

II invoke member function 

Objects and Member Functions-Round Two 
In previous sections, you saw objects being declared through the use of 
pointers. That's how I'll be declaring them throughout this book. For the 
sake of completeness, however, I'll mention here that objects can also be 
declared directly-without using pointers. Again, it's similar to the way in 
which you work with structs: 

typedef struct 
{ 

short days; 
short months; 
short years; 

Timelnfo, *TimelnfoPtr; 

TimelnfoPtr the_time; 
Time Info another~time; 

the time= ( TimelnfoPtr )malloc( sizeof( Timelnfo) ); 

the_time->days = 31; 

another_time.days = 28; 

In the above example, you can see that the information for a single 
struct can be stored in memory using malloc() and then accessed using a 
pointer-the_ ti me: 



128 Symantec C++ 

TimelnfoPtr the_time; 

the_time = ( TimeinfoPtr )malloc( sizeof( Timelnfo) ); 

the_time->days = 31; 

Additionally, information for a struct can be kept track of by declaring 
a variable of the struct type itself. This type of declaration allocates memory 
without the use of malloc(): 

Timelnfo another_time; 

another_time.days = 28; 

NOTE :~~';,, 

Since declaring a struct variable eliminates the need for using malloc(), why not 
just always use struct variables rather than struct pointers? Because with struct 
variables, you must know in advance how many structs you' ll be working with. 
Then you declare a variable for each. It's more advantageous to use pointers, 
because you can work with them dynamically-that is, as the user works with 
your completed program, memory is allocated and released using malloc() and 
free() or new and delete. 

Classes work the same way. Although I've been working with pointers 
to an object, you can declare objects directly. 

cl ass Partinfo 
{ 

} ; 

private: 
long part_number; 
long catalog_vol; 

public: 
void New_Part( long, long ); 
void Write_Info( void); 

Partlnfo *the_bolt; 

II data member 
II data member 

II member function 
II member function 



Chapter 5 Classes and Objects 129 

Partlnfo another_bolt; 

the bolt new Partlnfo; 

the_bolt->New_Part( 5002, 4 ); 

another_bolt.New_Part( 5003, 5 ); 

NOTE :~. 
&' 

The direct selection, or dot, operator (.) is used to access members through a 
class variable. The indirect operator (->) is used to access members using a 
class pointer just as it is for structs. 

Using class pointers and the new operator has advantages over working 
directly with objects. These advantages will become evident in later 
chapters. 

Deleting an Object 
Chapter 4 mentioned the new and delete operators. There you saw how 
both of these C++ operators could be used on pointers: 

TimelnfoPtr time_ptr; 

time_ptr = new Timelnfo; II use new to allocate memory 

II do stuff with the pointer here 

delete time_ptr; If use delete to dispose 
II the pointer 

You've seen that the new operator is used to allocate memory for an 
object. And by now you've probably guessed that when you have finished 
with an object, it's the delete operator that is used to dispose of it. 

Partlnfo *the_bolt; II declare an object 

the bolt = new Partlnfo; II allocate object memory 



130 Symantec C++ 

II do stuff with the object here 

delete the_bolt; II delete the object 

Keep in mind that when you delete, or dispose of, a pointer you are not 
actually deleting memory. You're freeing up the memory that the pointer refer­
enced-making it available for future use by your program. 

Multiple Objects 
Once a class is declared, your program can create as many objects of that 
class type as it needs-that's one of the powers of object-oriented pro­
gramming. As you saw several pages back, to create two objects you simply 
declare two pointers and use the new operator twice: 

Part Info *the_bolt; II first pointer to a 
II Partlnfo object 

Partinfo *the_washer; II second pointer to a 
II Partinfo object 

the bolt new Partlnfo; 11 allocate first object 
II memory 

the washer = new Partinfo; 11 allocate second object 
II memory 

While each of the two objects has its own data members, they both 
share the same member functions. To assign each object's data members 
values, invoke the New_Part() member.function for each: 

the_bolt->New_Part( 5002, 4 ); 
the_washer->New_Part( 37, 3 ); 

Looking at the code for the New _Part() member function, you might 
wonder how the function knows which object's data members should be 
assigned values. After all, neither of the function's two assignment state­
ments mentions a particular object, and no object is passed as a function 
parameter: 



Chapter S Classes and Objects 131 

void Partlnfo :: New_Part( long part, long catalog) 
{ 

part_number = 
catalog_ vol 

part; 
catalog; 

The New_Part{) function knows which object's data members to work 
with by the way it is invoked. New _Part{) performs its actions on the data 
members that belong to the object whose name is used in the function call. 
Remember, you must preface the function call with the name of an object 
and the -> operator. You can't just directly call New _Part()-or any other 
member function: 

New_Part( 5002, 4 ); 

the_bolt->New_Part( 5002, 4 ); II this is correct 

Figure 5-11 shows how a call to the_bolt->New_Part{) causes data 
members belonging to the the_bolt object, not the data members of the 
the_ washer object, to be affected. 

void Part Info : : New_Part ( ... 
{ 

pai:t..iturilbe~ .. · = part; 
catalog_vol = catalog; 

the_bolt->New_Part ( 5002, 4 ) ; 

part_number 

catalog_ vol 

New_Part() 

Write_Info () 

part_nurnber 

catalog_ vol 

New_Part () 

Wri te_Info () 

FIGURE 5-11 A member function acts only on the object that invoked it. 

l'iilil1 

the_bolt 

,. 
l'iilil1 

the_washer 

I~ 



132 Symantec C++ 

The MultipleObjects program that is found on the accompanying disk 
demonstrates how to create two objects from the same class type. If you 
understood this chapter's MemberFunctions program, you'll easily be able 
to follow what's going on in the MultipleObjects program. MultipleObjects 
is the MemberFunctions program with just a few lines added to it. Study the 
code; then look at Figure 5-12 to see what the program's output looks like. 

II*************** MultipleObjects.cp **************** 

cl ass Partinfo 
{ 

} ; 

private: 
long part_number; 
long catalog_vol; 

public: 
void New_Part( long, long); 
void Write_lnfo( void); 

II data member 
II data member 

II member function 
II member function 

void Partlnfo :: New_Part( long part, long catalog) 
{ 

part_number = part; 
catalog_vol = catalog; 

void Partlnfo :: Write_lnfo( void) 
{ 

Str255 the_str; 

NumToString( part_number, the_str ); 
Drawstring( the_str ); 

Move( 20, 0 ); 

NumToString( catalog_vol, the_str ); 
Drawstring( the_str ); 



Partlnfo *the_bolt; 

Partlnfo *the_washer; 

void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
In it Fonts(); 
InitWi ndows (); 

Chapter 5 Classes and Objects 133 

II declare an object of type 
II Partlnfo 
II declare an object of type 
II Partlnfo 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

"\pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 

SetPort( the_window }; 

the bolt = new Partlnfo; 
the_washer = new Partlnfo; 

II allocate object memory 
II allocate object memory 

the_bolt->New_Part( 5002, 4 }; II invoke member function 
the_washer->New_Part( 37, 3 ); II invoke member function 

MoveTo( 20, 30 ); 
the_bolt->Write_Info(); 
MoveTo( 20, 50 ); 
the_washer->Write_Info{); 

while ( !Button() ) 

delete the_bolt; 
delete the_washer; 

II invoke member function 

II invoke member function 

II delete the object 
II delete the object 



134 Symantec C++ 

: [[J New Window 

5002 4 

37 3 

FIGURE 5-12 The output of the MultipleObjects program 

Accessing Data Members 

In object-oriented programming, an object's data and the functions that act 
on that data are bound together within an object. This concept of binding 
data and action routines is called encapsulation. Another important idea in 
OOP is data hiding-the prevention of access to an object's data by routines 
that are not declared in the object's list of member functions. 

Data Access via Member Functions 
You've already seen that an object's data members can be accessed through 
the object's member functions. For example, to set the values of the data 
members of a Partlnfo object, you invoke the object's New_Part() member 
function. To examine, or display, the values of Partlnfo data members, you 
use Write_Info(). 

An object's member functions can always be used to access the object's 
data members, as shown in Figure 5-13. 

Using the private and public Keywords 
to Limit Access 

You now know that an object's member functions are used to access the 
object's data members. But can an object's members be accessed without 
going through a member function? The answer to that is, "yes and no." 
When declaring a class, you set the level of access control for the data 
members. To set the access control, you use the C++ keywords private and 
public. 



Member functions of 
this class can access 
data members of this 
class 

Chapter 5 Classes and Objects 135 

part--nurnber; 
long catalog.:.._vol; 

void New.:...Part( long, long); 
void Writei""'Info( void); 

FIGURE 5-13 Data members are accessed via member functions 

The private and public keywords let your program know if code that is 
not part of an object can access code that is part of the object. Parts of an 
object marked as private cannot be accessed by outside code, while parts 
that are marked as public can be. 

Typically, the data members of an object will be marked private, while 
the object's member functions will be marked public. Making data private 
limits access to it. Only something that is private to the class-namely a 
member function-can access the data. Making the member functions 
public allows code outside of the object-public code-to call the member 
functions. This is shown in Figure 5-14. 

In Figure 5-14, you see that the private data members of Partlnfo are 
being accessed by Write_Info(). That's all right, because Write_Info() is a 
member function. The figure also shows that the Partlnfo member function 
Write_Info() is being called from within main()-a function that isn't a 
part of Partlnfo .. This too is all right, because the member functions have 
been marked as public. 

Accessing Data without Using Member Functions 
Marking an object's data members as private severely limits your program's 
access to that data. Only the marked object's member functions can work 
with that object's data, as Figure 5-15 shows. 



136 Symantec C++ 

class Partinfo 

}; 

private: 
long part_number; 
long catalog_vol; 

public: 
void New_Part(long, long}; 

void Write_Info (void); 

void main ( void ) 

the_bolt->write_Info(); 

Only member functions 
can access private data 

void Partinfo : : Write_Info ( ••. 
{ 

Str255 the_str; 

NumToString ( part__number, •.• 

Any code can access 
public functions 

FIGURE 5-14 Private data can be accessed only through member functions, while public functions 
can be referenced anywhere in a program. 

Data members marked 
as private ... 

... can be 
accessed 
only by 
member 
functions 

Part Info 

private : 

long part_nurnber; 
long catalog_vol; 

public: 

void New_Part( long, long); 
void Write_Info( void); 

FIGURE 5-15 The private keyword prevents access to data by any means other than a member 
function. 



Chapter 5 Classes and Objects 137 

This access restriction may cause you to wonder if there's a way around 
the limitations of the private keyword. There is, but I won't recommend its 
use. I will, however, cover it here so that you get a better understanding of 
the public and private keywords. 

Data members don't have to be priva~e. You can declare any or all of 
them public. In the following code, part_number is public and 
catalog_ vol is private. 

cl ass Partinfo 
{ 

} ; 

public: 
long part_number; 

private: 
long catalog_vol; 

public: 
void New_Part( long, long ); 
void Write_Info( void ); 

Now that part_number is public, how does its level of access 
change? You can now work with the data member directly-without 
first going through a member function. To do that, use the -> operator 
with the object's name. In the following snippet, I set the value of 
part_number directly rather than through the New_Part() member 
function. 

Partlnfo *the_bolt; 

the_bolt = new Partlnfo; 

the_bolt->part_number = 6789; 

The above example shows that using the public keyword makes it 
easier to access an object's data members than using the private keyword. In 
programming, however, easy isn't always synonymous with good. This is one 
such case. 

Encapsulation-the binding of an object's data with the routines 
that operate on that data-breaks down when data members are made 
public. When class data is kept private, a glance at the class member func-



138 Symantec C++ 

If data is marked as private, 
only member functions can act on it 

public: 
void New_Part( long, long); 
void Write_Info( void); 

FIGURE 5-16 When the private keyword is applied to class data, encapsulation is maintained. 

tions reveals all the possible actions that can be performed on an object of 
that class type. Because private data cannot be accessed by functions other 
than member functions, you know that the list of public member func­
tions tells the entire story of what actions can be performed on the data of 
an object of a class. Figure 5-16 illustrates this idea. Figure 5-17 shows 
how class data that is declared to be public can be accessed by functions 
other than class member functions. 

Many people who have programmed in C recognize the similarity 
between stucts and classes, and they instinctively try to work with a class in 
the same way they worked with a struct. While it is understandable that a 
person would gravitate toward the familiar, doing so in the case of trying to 

work with a class as you would a struct defeats the purpose of object­
oriented programming. One of the key concepts of object-oriented pro­
gramming is that objects are acted on only through their public member 
functions. This makes an object self-contained. Not just any function 
should have the ability to examine or alter the member variables of an 
object. Restricted access to object data is one of the key advantages of object­
oriented programming; don't override this feature by making data members 
public. 



If data is marked as public, 
any function can act on it 

long part_number; 
long catalog_vol; 

public: 

Chapter 5 Classes and Objects 139 

v oid New_Part( long, long ) ; 
void Write_Info( void); 

void Do_ Stuff( void ) 
{ 

the_bolt- >part_number = 2001; 

FIGURE 5-17 When the public keyword is applied to class data, encapsulation is lost. 

The this Operator 

You've seen that the code that makes up a member function acts upon the . 
data of the object that invoked it, as shown in Figure 5-18. In that figure, 
an object named the_bolt is invoking the New_Part() member function, 
so the values of the data members of the object the_bolt are changed in 
memory. 

The C++ compiler always knows that a member function is working 
with the data of an object. But for humans-especially humans used to pro­
gramming in a procedural language like C-it would be nice to be 
reminded of this. While it isn't necessary to specify that an assignment used 
in a member function is working on an object's data member, it would be 



140 Symantec C++ 

void Partinfo : : New_Part { ... 
{ 

part_number ;;:; paJ;t; 
catalog-_vol :::: catalog; 

the_bolt->New_Part (5002, 4); 

part_nurnber 

catalog_ vol 

New_Part () 

Write_Info () 

FIGURE 5-18 An object's data is altered using object member functions. 

] the_bolt 

nice if a programmer had the option of clarifying this fact. In C++, that's 
exactly what the this keyword is used for. 

In C++, this serves as a generic object pointer. Its use, which is 
optional, lets you or anyone reading your code quickly see that a statement 
is working with an object's data member. Here now is the New_Part() 
member function, written twice-once without the this keyword and once 
with it. Keep in mind that both functions have identical outcomes. 

void Partinfo :: New_Part( long part, long catalog) 
{ 

part_number 
catalog_vol = 

part; 
catalog; 

void Partinfo :: New_Part( long part, long catalog) 
{ 

this->part_number 
this->catalog_vol 

part; 
catalog; 

Whether or not I choose to use the this keyword in the New_Part() 
function, the compiler knows to treat part_number and catalog_vol as 



Chapter 5 Classes and Objects 141 

data members of the object that invoked New _Part(). If I call New _Part() 
through an object named the_ bolt-as the following lines of code do-the 
compiler uses the the_ bolt object in the New _Part() function, as shown in 
Figure 5-19. 

Partlnfo *the_bolt; 

the bolt new Partlnfo; 

the_bolt->New_Part( 5002, 4 ); 

Using the this keyword reminds you that a member function is 
working with an object's data members. This reminder is especially helpful 
if your program uses a local or global variable that has a name similar to the 
name of a data member declared in a class. For instance, what if a program 
I wrote declared a global variable named part_ number? In the following 
code, which part_number would be used by New_Part() in the first 

void Partinfo : : New_Part ( ... 

catalog_vol = catalog; 

the_bolt->New~Part(5002, 4); 

FIGURE 5-19 A member function always acts on the data of the object that invokes the function. 



142 Symantec C++ 

assignment statement of that function-the global variable or the object's 
data member? 

cl ass Partlnfo 
{ 

private: 
long part_number; 
long catalog_vol; 

public: 

II data member 

void New_Part( long, long ); 
void Write_Info( void); 

} ; 

void Partinfo :: New_Part( long part, long catalog) 
{ 

part_number = part; 
catalog_vol = catalog; 

Partinfo *the_bolt; 
long part_number; 

the bolt = new Partinfo; 

the_bolt->New_Part( 5002, 4); 

II global variable 

The answer is that a member function acts on the data members of the 
object that invoked the member function. Thus, when faced with two 
part_number variables, New_Part() will use the object data member rather 
than the global variable. By rewriting New _Part() to include the this 
keyword, as I've done below, you lessen the potential for confusion. 

void Partinfo :: New_Part( long part, long catalog) 
{ 

this->part_number = part; 
this->catalog_vol = catalog; 



Chapter 5 Classes and Objects 143 

Confusion can also be reduced by choosing sensible variable names. In a small 
program written by one person, it's easy to ensure that variable names aren't 
similar to data member names. In a large OOP program-'-One on which 
several programmers may be working, for example-variable names that are 
similar to data member names can occur. That's when the use of the this 
keyword can really help to minimize mix-ups. 

Since the this keyword can keep C++ code clear, I'll be using it in the 
remainder of the book. 

Constructors and Destructors 

Supplying a data structure with initial, or default, values is a chore every 
programmer encounters. And, when he or she has finished with a data 
structure, cleaning up-which usually involves disposing of allocated 
memory-is another responsibility of the programmer. Through the use of 
two special member functions-the constructor and the destructor---4:,++ 
makes these tasks a little easier. And, perhaps more important, it makes it 
very evident where in your code these tasks take place. 

Constructors 
Every class you write can contain an optional member function called a con­
structor. When an object is created using the new operator, the constructor 
function-if declared as part of the class the object is based on-will auto­
matically be called. 

The purpose of a constructor function is to initialize data members or 
allocate additional memory. The format of the definition of a constructor 
function is always the same-the constructor's name is the class name. And 
it does not have a return type listed. Here's how the Partlnfo class would 
look if it had a constructor: 

cl ass Part Info 

private: 
long part_number; 
long catalog_vol; 



144 Symantec C++ 

} ; 

public: 
Partinfo( void}; 

void New_Part( long, long ) ; 
void Write_Info( void}; 

II constructor 
II member function 
II member function 

The header of a member function consists of the function's return 
type, the class name, the scope resolution operator, the member function's 
name, and the list of arguments. Here's the header for the New_Part() 
member function: 

void Partinfo :: New_Part( long part, long catalog) 

The header for a constructor follows the same pattern as that of any 
other member function-with one exception. No return type is listed. 
Here's the header for the Partlnfo constructor: 

Partinfo :: Partinfo( void) 

Now let's take a look at an actual constructor. A Partlnfo object has 
two data members-part_number and catal og_vol. Although I've made it 
a practice to assign values to these data members soon after an object is 
created, it might be a good idea to initialize the values to 0. If for some 
reason my program fails to call New _Part() to give values to the data 
members, at least I'll know that the object won't have data member values 
that duplicate those of some other object. Here's the code for the Partlnfo 
constructor: 

Partinfo :: Partinfo( void) 
{ 

this->part_number = 0; 
this->catalog_vol = O; 

The constructor function is called automatically each time a new 
object is created. The new operator is responsible for making the call to the 
constructor; you'll never have to explicitly call the function yourself. Figure 
5-20 illustrates this idea. 

A constructor doesn't have to contain only assignment statements. It 
can do anything that a normal C or C++ function can do. I'll demonstrate 



Chapter 5 Classes and Objects 145 

that by adding a couple of lines to the Partlnfo constructor. The new 
version of the constructor writes out a message to the active window to let 
the user know that a new part was indeed created: 

Partlnfo :: Partlnfo( void) 
{ 

this->part_number O; 
this->catalog_vol O; 
MoveTo( 20, 30 ); 
Drawstring( "\pltem created." ) ; 

The Constructor program uses the above constructor to initialize the 
data members of a Partlnfo object. Look over the code and the output of the 
program-shown in Figure 5-21. The program is included on the disk, so 
you can verify the results yourself. 

Partinfo : : Partinfo ( void ) 
{ 

this->part_number = 0; 
this->catalog_vol = O; 

CU The new operator first allocates memory for one object. 

G) Next, the new operator calls the object's constructor'. 

catalog_ vol 

New_Part() 

Write_Info () 

Q Finally, the constructor does its thing. Here it initializes the object's data members. 

FIGURE 5-20 If an object has a constructor function, the new operator will cause it to execute. 



146 Symantec C++ 

II****************** Constructor.cp ****************** 

cl ass Partlnfo 
{ 

} ; 

private: 
long part_number; 
long catalog_vol; 

public: 
Partlnfo( void); 

void New_Part( long, long); 
void Write_Info( void); 

Partlnfo :: Partlnfo( void) 
{ 

this->part_number = O; 
this->catalog_vol = 0; 
MoveTo( 20, 30 ); 
Drawstring( 11 \pltem created. 11 ) ; 

II constructor 
II member function 
II member function 

void Partlnfo :: New_Part( long part, long catalog) 
{ 

this->part_number = part; 
this->catalog_vol = catalog; 

void Partlnfo :: Write_lnfo( void) 
{ 

Str255 the_str; 

NumToString( this->part_number, the_str ); 
MoveTo( 20, 50 ); 
Drawstring( the_str ); 



Chapter 5 Classes and Objects 147 

NumToString( this->catalog_vol, the_str ); 
MoveTo( 20, 70 ); 
Drawstring( the_str ); 

Partlnfo *the_bolt; 

void main( void ) 
{ 

WindowPtr 
Re ct 

the_window; 
window_rect; 

InitGraf( &thePort ); 
In it Fonts(); 
Ini tWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

the_bolt = new Partlnfo; 

11 \pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 

the_bolt->New_Part( 5002, 4 ); 

the_bolt->Write_Info(); 

delete the_ bolt; 

while ( !Button() 

The fact that the string Item created appears in the window should 
be enough proof that the constructor function was really invoked, because 
the constructor is the function that writes this text. If you want additional 



148 Symantec C++ 

Item created. 

5002 

4 

New Window 

FIGURE 5-21 The output of the Constructor program 

proof, try running the program with the Use Debugger option in the 
Project menu selected. When you select Run from the Project menu, the 
debugger windows will open. Scroll to the constructor function and click 
on the diamond that appears to the left of the first line of that function, as 
shown 1n Figure 5-22. 

Next, click on the Go button in the Source window. The program will 
run until it hits a breakpoint. You've only set one-in the constructor 
function-and that's exactly where the program stops. Even though you 
never wrote a call to the Partlnfo constructor, the program enters that 
routine. 

Now, click on the Step button. That moves the arrow down a line in 
the constructor. Click on the Step button until the black arrow points to the 
very last line in the constructor. Then, click on the Step button one more 
time. The arrow moves out of the constructor and back into main(). In par­
ticular, it moves to the line of code that creates the Partlnfo object, as shown 
in Figure 5-23. This line, which contains the new operator, is the line that 
called the Partlnfo constructor. 

In Figure 5-23, note that the arrow is hollow. This means that the 
program has just returned from executing a function (the constructor) and 
there are still several instructions left to execute. 

I said that a constructor holds data member initializations and 
memory allocation code. That last part may seem redundant. Doesn't the 
new operator allocate memory for an object when the object is created? Yes. 
So you have to allocate additional memory for an object only in certain 
instances. I'll discuss such an instance in the next section, and you'll see an 
example later in this book when I create a class that represents a window. 



Set a breakpoint 
at the first line 
of the constructor 

Chapter 5 Classes and Objects 149 

Constructor.cp 

Part Info : : Part Info< void 
{ 

this->part...number = O; 
this->catalog_vol = O; 
MoveTo< 20, 70 >; 
DrawStr i ng< "\p I tern created." ) ; 

liJ 

FIGURE 5-22 Setting a breakpoint in the debugger 

Destructors 
Knowing that the new operator calls a special constructor function has 
probably made you wonder whether the delete operator also ·calls a 
function. It does-the destructor. Like the constructor, the class destructor 
is optional. If you list one as a member function of a class, any object of that 
class will call the destructor when it is deleted. 

The purpose of the destructor function is usually to free any additional 
memory that may have been allocated by an object. The format of the defi­
nition of a destructor is class name preceded by a tilde. Like the constructor, 
it does not have a return type listed. Here's the Partlnfo class with both a 
constructor and destructor: 



150 Symantec C++ 

01 
oi 

:-0-
Se tRec t< &w i ndow...rec t , 50, 50, 350 :;:;:; 
the_window = NewWindow( OL, &windo \Hili 

noGrowDocP ilili1 After stepping 

through the 
constructor, the 
program will 
return to the line 

that creates the 

object 

~:* 
Se tPor t ( the_w i ndow ) ; 111111 

the...bolt =new Partlnfo; 

the...bolt->New_part( 5002, 4 ); 

01 the...bolt- >Write_lnfo() ; 

01 while ( !Button( ) ) 

• 

FIGURE 5-23 Stepping through part of the program and back to the object allocation line 

class Partinfo 
{ 

} ; 

private: 
long 
long 

public: 

part_number; 
catalog_vol; 

Partinfo( void); 
-Partinfo( void); 

void New_Part( long, long); 
void Write_Info( void); 

II constructor 
II destructor 
II member function 
II member function 



Chapter 5 Classes and Objects I 5 I 

The header for a destructor looks like that of the constructor-with 
the addition of the tilde. This is how the header for the Partlnfo destructor 
would look: 

Partlnfo :: -Partlnfo( void) 

The following code shows what a very simple destructor might look 
like. This one simply writes a message to the active window to let the user 
know a part was deleted from the catalog: 

Partlnfo :: -Partlnfo( void ) 
{ 

MoveTo( 20, 90 ); 
Drawstring( "\pltem deleted."); 

The primary purpose of a destructor is to deallocate memory, and my 
Partlnfo class doesn't allocate any special memory. True, an object created of 
this class type will occupy memory. But memory for such things as the long 
data members part_ number and catalog_ vol will be deallocated by the 
delete operator-without the help of a destructor. After all, the purpose of 
delete is to return to the free pool of memory the memory that an object 
occupied. 

Figure 5-24 shows an example of a situation in which a destructor 
might be necessary. On the left of the figure is the Partlnfo class along with 
one Partlnfo object in memory. When delete is used to dispose of the 
object, the delete operator returns all of the memory to the program. On the 
right of the figure is a different class-WindClass. Like Partlnfo, this class 
has two data members and two member functions. Unlike Partlnfo, one of 
the data members is a pointer-a window pointer. 

When an object of the WindClass is disposed of, the delete operator 
returns only the memory that was occupied by the two data members and 
the two member function pointers. The delete operator does not deallocate 
the memory that the wind data member pointed to-the WindowRecord. 
All WindowPtrs point to WindowRecords. And unless you specifically 
release the memory occupied by the WindowRecord, it will be unusable by 
your program. The WindClass would be an ideal candidate for a destructor 
function-one that released the WindowRecord memory. Later in this 
book, you'll see an example that does just that. 



152 Symantec C++ 

class Pa.rtinfo 

); 

private: 
long part_number; 
long catalog_ vol; 

public: 
void New_Part(long, long); 

void Wr i te_Info (void) ; 

fiiiiilll part_number 

catalog_ vol 
object 

New_Part() 

Wri te_Info () 

i.:;;;. 

object 

class WindClass 

); 

private : 
WindowPtr wind ; 
long x; 

public : 
void Func_A (void) ; 
void Func_B {void) ; 

WindowRecord 

fiiiiilll wind 

x 

Func_A() 

Func_B() 

i.:;;;. 

FIGURE 5-24 Objects that use pointers as data members allocate additional memory. 

Paying attention to memory that is allocated is important. Each program has a 
finite amount of memory that it is allowed to work with-no matter how 
much RAM the user of your program might have. Not releasing used memory 
can eventually lead to your program running out of memory. 

IMPORTANT :;;~ 
''01! 

If special steps must be taken to properly free up the memory occupied by 
something a data member points to-such as the WindowRecord that a Win­
dowPtr points to-then shouldn't similar steps be taken for the member 
functions? After all, they're simply pointers to other code-the code that 
makes up the functions themselves. No, because those functions stay in 
memory, to be used by all objects of that class. 



Chapter 5 Classes and Objects 153 

New Window 

I tern created. 

5002 

4 
Item deleted. 

FIGURE 5-25 The output of the Destructor program 

The Destructor program-the code for which you'll find below and 
on the accompanying disk-adds both a constructor and a destructor to the 
Partlnfo class. You've already seen all the code that makes up this program; 
Destructor just ties it all together. When you run the program, you'll see a 
window like the one pictured in Figure 5-25. 

II****************** Destructor.cp ****************** 

cl ass Partlnfo 
{ 

} ; 

private: 
long part_number; 
long catalog_vol; 

public: 
Partlnfo( void); 

-Partlnfo( void); 
void New_Part( long, long); 
void Write_lnfo( void); 

Partlnfo :: Partlnfo( void 
{ 

this->part_number = O; 
this->catalog_vol = O; 
MoveTo( 20, 20 ); 
Drawstring( 11 \pltem created. 11 

) ; 

II constructor 
II destructor 
II member function 
II member function 



154 Symantec C++ 

Partlnfo :: -Partlnfo( void) 

MoveTo( 20, 90 ); 
DrawSt ring ( 11 \p Item deleted. 11 ) ; 

void Partinfo New_Part( long part, long catalog ) 

this->part_number = part; 
this->catalog_vol = catalog; 

void Partinfo :: Write_Info( void) 
{ 

Str255 the_str; 

NumToString( this->part_number, the_str }; 
MoveTo( 20, 50 }; 
Drawstring( the_str }; 

NumToString( this->catalog_vol, the_str }; 
MoveTo( 20, 70 }; 
Drawstring( the_str }; 

Partinfo *the_bolt; 

void main( void ) 
{ 

WindowPtr 
Rect 

the_window; 
window_rect; 

InitGraf( &thePort ); 
In it Fonts(); 



Chapter 5 Classes and Objects 155 

Ini tWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

the_bolt = new Partlnfo; 

"\pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true,O); 

the_bolt->New_Part( 5002, 4 ); 

the_bolt->Write_Info(); 

delete the_bolt; 

while ( !Button() 

Note that I delete the Partlnfo object before the while statement near the end 
of the code rather than after the while as I've done in the past. Normally, I wait 
until the user clicks the button and ends the program before deleting the 
program's object. If I did that here, however, you wouldn't see the output of 
the destructor-the line of text that says Item de 1 eted That's because the 
destructor is called only after the delete operator is used. If I waited until the 
program ended before calling delete, the window would be closing as the 
destructor wrote its text to it. 

It's been a long chapter-the longest of the book. But the knowledge 
you've gained about classes and objects will be the base from which you'll 
create all your object-oriented programming. 



I 56 Symantec C++ 

Chapter Summary 

As a standard C or C++ data type defines the nature of a variable, a class 
defines the nature of an object. Together, classes and objects are object­
oriented programming. 

To define a class you begin with the class keyword, followed by the 
name of the class. The contents of the class lie between braces. The class 
contents consist of data members and member functions. Data members, 
obviously enough, hold data. Use the private keyword before listing data 
members to ensure that the data is accessible only to objects of the class 
type. Member functions are the functions that act on, or work with, the 
class data members. Use the public keyword before listing member func­
tions so that member functions can be called from anywhere in your source 
code. Data members can be likened to the members of a struct data 
structure. Member functions have no C language analog. 

The class definition lists the names of the functions that are the class 
member functions, but the definition doesn't actually define the body of 
those functions. They are defined outside of the class. The body of a 
member function might look like that of a normal C function. The dif­
ference between a C++ member function and a C function isn't in the 
content of the function but, rather, in the fact that a C++ member function 
is always associated with a particular set of data (the class data members), 
while a C function works with any data. 

Once a class is defined, it is an easy matter to create objects based on 
that class. Usually a pointer to an object is declared by listing first the class 
name and then the pointer name preceded by the * operator. The decla­
ration doesn't allocate memory for an object or create a new object. To do 
that you'll use the new operator. Once an object is created, its data members 
can be accessed by using the -> operator. The short code snippet below 
demonstrates how to work with an object. First, a pointer to an object of a 
class named Partlnfo is declared. Then memory is allocated for the object 
using the new operator, and data members of the object are accessed 
through a member function named New_Part(). Finally, the object is 
deleted using the delete operator: 

Partlnfo *the_bolt; 

the_bolt = new Partlnfo; 
the_bolt->New_Part( 5002, 4 ); 
delete the_bolt; 



Chapter 5 Classes and Objects 157 

Two special class-related functions are the constructor function and 
the destructor function. The class constructor is invoked automatically 
when an object is created using the new operator. The class destructor 
function is invoked automatically when an object is deleted using the delete 
operator. 



hapter 6 

Derived Classes 

In Chapter 5, you saw that the class is a powerful programming feature. But 
there's more to come. Classes aren't created indiscriminately in a C++ 
program. Instead, a program usually has several classes that are related to 

one another. Rather than forcing you to create each related class from 
scratch, C++ allows you to name one class as a base from which other classes 
are derived. These derived classes automatically inherit the data and actions 
of the class on which they are based. 

Derived classes and inheritance are powerful object-oriented features 
that you'll use in every C++ program you write. And in this chapter you'll 
discover exactly how to create derived classes. 

Multiple Classes 

In Chapter 5, you saw that a C++ program can have more than one object of 
a single class. That, in fact, is one of the advantages of the class type. 

159 



160 Symantec C++ 

Partlnfo *the_bolt; II first pointer to a 
II Partlnfo object 

Partlnfo *the_washer; II second pointer to a 
II Partlnfo object 

the bolt = new Partlnfo; II allocate first object in 
II memory 

the_washer = new Partlnfo; II allocate second object in 
II memory 

Nor does a C++ program have restrictions on the number of different 
classes you can use. Although the examples to this point have consisted of a 
single class, you're free to create more than that. 

The MultipleClasses program is a very simple example of a program 
that defines two classes-the PersonClass and the VehicleClass. Each class 
consists of nothing more than a constructor member function. When an 
object of either class is created, a single line is written to a window. Figure 
6-1 shows the output of MultipleClasses. 

II**************** MultipleClasses.cp **************** 

class PersonClass 
{ 

public: 
PersonClass( void); 

} ; 

class VehicleClass 
{ 

public: 
VehicleClass( void ); 

} ; 

PersonClass :: PersonClass( void) 
{ 

MoveTo( 20, 30 ); 
Drawstring( 11 \pPerson object created 11 ) ; 



Chapter 6 Derived Classes 161 

VehicleClass :: VehicleClass( void) 
{ 

MoveTo( 20, 50 }; 
Drawstring( 11 \pVehicle object created 11 ) ; 

PersonClass *the_man; 

VehicleClass *the_car; 

void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
In it Fonts(); 
InitWi ndows (); 

II declare object of type 
II PersonClass 
II declare object of type 
II VehicleClass 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

11 \pNew Window 11 , true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ) ; 

the_man =new PersonClass; II allocate memory 
II PersonClass object 

the_car = new VehicleClass; II allocate memory 
II VehicleClass object 

while ( !Button() ) 



162 Symantec C++ 

New Window 

Person object created 
Vehicle object created 

FIGURE 6-1 The output of the MultipleClasses program 

Derived Classes 

When two similar classes are needed, you may be tempted to jump right in 
and write them-perhaps copying and pasting information from one to 
form another. With derived classes, you don't have to do that. Instead, in 
just a few lines of code you can create a second class that has all the features 
of a first class-and more. 

Why Create Derived Classes? 
A pet store owner wants to write a program to keep track of the different 
types of animals in his shop. The owner just happens to be a Mac enthusiast 
who programs in C but doesn't know C++. He starts with a very simple data 
structure that consists of a string that will hold the type of one animal­
dog, mouse, and so forth. Here's that structure: 

struct Animal 
{ 

Str255 type; 

He then writes a few functions that allow him to access the Animal 
data, including a function to add a new animal and a function to write out 
information about an animal. After doing this, he realizes that it would be a 
good idea to be able to store and write out supplemental information about 
certain animals. For instance, he wants to mark certain animals as less 
suitable pets than others. Because he's programming in C, he modifies his 
data structure to look like this: 



#define NO XTRA INFO 0 - -
#define BAD PET INFO 1 

typedef struct 
{ 

Str255 type; 
short misc_info; 

Animal, *AnimalPtr; 

Chapter 6 Derived Classes 163 

He then declares two struct pointer variables, as shown here: 

AnimalPtr the_dog; 
AnimalPtr the_snake; 

After allocating memory, he can add the extra information: 

the_dog->misc_info = NO_XTRA_INFO; 
the_snake->misc_info = BAD_PET_INFO; 

When it comes time to write information to a window, he'll use a 
function that receives a pointer to a pet. Within that function he'll have to 
include code that looks something like this: 

if ( the_pet->misc_info == BAD_PET_INFO ) 
{ 

MoveTo( 20, 50 ); 
Drawstring( "\pDangerous pet!" ); 

While this method will work, there are a couple of drawbacks to it. 
First, the pet shop owner may think of new classifications of pets over time. 
When he does, he'll have to modify his program in several places. He'll have 
to add new #define directives and then search for the code that makes use of 
them. Second, the complexity of his program increases as he adds decision­
making code: 

if ( the_pet->misc_info == BAD_PET_INFO ) 
II write message 

else if ( the_pet->misc_info == EXOTIC_PET_INFO ) 
II write message 

else if ( the_pet->misc_info == EXPENSIVE_PET_INFO ) 
II write message 



164 Symantec C++ 

else if ( the_pet->misc_info 
II write message 

INEXPENSIVE PET INFO ) 

If the program eventually has a dozen functions that access the pet 
information, there will be at least a dozen such cascaded else-if sections of 
code. This is exactly the type of situation that object-oriented programming 
methods seek to avoid. And C++ avoids it through the use of derived classes. 
A derived class can also be called a subclass. 

Figure 6-2 shows two classes-one a base class, the other a derived 
class. Any C++ class can serve as a base class. From the base class is derived a 
second class. Not surprisingly, that class is called a derived class. You can't 
distinguish a base class from a derived class by looking at their contents, 
because both consist of data members and member functions, as shown in 
Figure 6-2. 

Figure 6-2 is simply a block diagram of two classes; it doesn't show off 
the special properties of a derived class, namely, that a derived class inherits 
the data members and member functions of the class on which it is based. 
The derived class then adds its own data members and functions to those 
inherited from the base class, as shown in Figure 6-3. 

Base class 
data members 
and member 
functions 

Base Class Derived Class 

] Derived class 
data members 
and member 
functions 

FIGURE 6-2 Base classes and derived classes contain data members, member functions, or both. 



Chapter 6 Derived Classes 165 

How would the pet shop owner write his program if he knew object­
oriented programming? He could begin by creating a single base class called 
Animals. In that class would be the data members and member functions 
that would be common to all the pets he had in his shop. For instance, each 
animal would have a type, like dog or cat, so the base class would have a 
Str255 data member to hold this information. The base class would also 
have member functions to enter a new animal and write out information 
about an animal-actions common to all types of animals. 

What about the derived class? In the case of the less suitable pet­
the snake, for example-the derived class could consist of simply a 
single member function that would write out a warning message. 
Because the derived class inherits all of the data members and member 
functions of the base class, the derived class would still be able to store 
the type of animal and use the member functions that add the animal 
and write the animal information. Figure 6-4 shows how this base and 
derived class might look like. 

Base Class Derived Class 

Base class 
data members 
and member 
functions 

Derived class 
data members 
and member 
functions 

FIGURE 6-3 A derived class inherits the contents of the class on which it is based-the base class. 



166 Symantec C++ 

Base Class 

[ Member 
functions 

FIGURE 6-4 An example of a base class and a derived class 

Derived Class 

';I Member d functions 

Figure 6-4 doesn't provide all the detail you need to write your own 
base and derived classes, however. For that, you'll have to read the remainder 
of this chapter. 

The Base Class 
A derived class is based on another class-the base class. So before delving 
into the derived class, I'll define a class that can serve as the base class. Since 
our neighborhood pet store owner is determined to learn C++, I'll carry on 
with the animal database. 

Assuming that all animals have a name, or type, the base class will have 
a data member called type. We'll need a way to add a new animal, so there 
must be a member function that adds a new animal. New_Animal() will do 
that. The program should be able to write out the information about the 
animal, a task that will be handled by the member function Write_Info(). 
Here's the class that will serve as the base class: 

class Animal 
{ 

} ; 

private: 
Str255 type; 

public: 
void New_Animal( Str255 ); 
void Wr"ite_lnfo( void); 

II data member 

II member function 
II member function 



Chapter 6 Derived Classes 167 

Creating a new animal will consist of creating a new object and then 
setting the name, or type, of that animal using the New_Animal() function. 
That function will simply accept a string that serves as the animal type and 
then call my own Fill_Str255 function to place that string in the type data 
member. You can flip back to Chapter 3 if you don't remember what the 
Fill_Str255() function looks like. 

void Animal :: New_Animal( Str255 name) 
{ 

Fill_Str255( this->type, name); 
} 

Because the Animal class contains only one data member, writing the 
information requires only moving to the appropriate window location and 
calling DrawString() once. Here's a look at the Write_Info() member 
function: 

void Animal :: Write_lnfo( void) 
{ 

Drawstring( this->type ); 

The way the Animal class was declared and the things that the class is 
composed of-data members and member functions-shouldn't look much 
different from the classes you encountered in the previous chapter. So what 
makes a base class different from any other class? Absolutely nothing. Any 
class can serve as a base class. The difference lies in the derived class-as you 
are about to see. 

The Derived Class 
To create a class that is derived from another class, you include the name of 
the base class on the first line of the derived class definition. But it's not 
enough to just give the class a name and then specify the class on which it 
will be based. You must also provide an access specifier. In almost all circum­
stances you'll want to use the public keyword as the access specifier. Here's 
an example: 

class BadPet : public Animal 

The colon between the class name and the access specifier lets the com­
piler know that this is to be a derived class. Figure 6--5 shows the syntax for 
the first line of a derived class declaration. 



168 Symantec C++ 

class 
keyword 

derived 
class name 

c las s BadPet 

colon 

• 

FIGURE 6-5 The format of the definition of a derived class 

public 
keyword 

base 
class name 

IMPORTANT , , ? , , . 
The public access specifier tells the compiler to include everything from the 
base class as is. That means that all data members and member functions 
inherited from the base class will retain the public and private keywords that 
are associated with them. 

You can also use the private and protected keywords as access specifiers. They 
are used so infrequently, however, that I won't discuss them here. You will, 
however, see both of these keywords later in this chapter when I discuss the 
use of access specificiation within a class definition. 

Since the derived class will include all the data members and member 
functions of class on which it is based, you need only define data and func­
tions that are unique to the derived.class. If the purpose of my derived class, 
which I've named BadPet, is to hold information about less desirable pets, 
then the only thing that BadPet might need is a member function that 
writes out a warning message. Here's how my derived class looks: 

class BadPet : public Animal 
{ 

public: 
void Write_Warning( void); II member function 

} ; 



Chapter 6 Derived Classes 169 

The derived 
class inherits class Animal 

}; 

private: 
St r255 type; 

public: 
void New_Animal (Str255) ; 
void Wri t e_Info(void ) ; 

class BadPet 

public: 
void Wr ite_Warning(void) ; 

}; 

Follow the name 
of the derived 
class with a colon 
and the name of 

the base class 

FIGURE 6-6 The BadPet derived class inherits the contents of the Animal base class. 

Figure 6-6 shows that the BadPet class will inherit the data and func­
tions of the Animal class. Figure 6-7 takes things a step further by 
illustrating how one could imagine that the BadPet derived class is the com­
bination of both the base class and the derived class itself. 

You write a member function of a derived class just as you would write 
a member function for any other class. List the return type, the class name, 
two colons, and the function name. Include any argument the function 
takes. Here's how I wrote the Write_ Warning() member functions: 

void BadPet :: Write_Warning( void) 

Drawstring( "\pDangerous pet!" ); 

Working with Derived Class Objects 
.............................. llllllllllllRIRl&I~~ 

Now that you can define base and derived classes, you're ready to create 
objects of both types. And you're ready to implement those objects in a C++ 
program that is truly object-oriented. 



170 Symantec C++ 

BadPet can be thought 
of as the combination of 
the BadPet class and 
the Animal class 

Animal class 

Bad.Pet class 

class BadPet : public Animal 
{ 

private: 
Str255 type; 

public: 
void New...)lnimal(Str255); 
void Write_Info(void); 

public: 
void Write_Warning(void); 

} ; 

FIGURE 6-7 The BadPet derived class can be described as a combination of itself and the base 
class. 

Creating Derived Objects 
You declare an object to be of a derived class just as you would declare an 
object of any other class. Here's the declaration of an Animal object and a 
BadPet object: 

Animal *the_dog; 

BadPet *the_snake; 

II declare object of type 
11 Animal 
II declare object of type 
II BadPet 

Before working with.an object, you must allocate memory for it. Use 
the new operator as I have done here to create an Animal object and a 
BadPet object. 

the_dog 
the snake 

new Animal; 
new BadPet; 



class Animal 

}; 

Private: 
Str2 55 .. type; 

public, 

vofd N\l>IJ\nimal{Str255); 
~:'~id .. :- ':W±:.it-¢:._Info (void) ; 

Aniirtal------~_-the.::..dog; 

the-dog 
[

. 1---typ-e ----11 
New_Animal () 

Wri te_Info () 

Chapter 6 Derived Classes 171 

class BadPet :- _public Animal 
{ 

public: 
void Wi-ite:_warning (void) ; 

}; 

BadP~t -- *-the_snake; 

I""'" type 

New_Animal () 
the_snake 

t 
Write_Info () 

Write_Warning () 

FIGURE 6-8 An Animal object and a BadPet object in memory 

Figure 6-8 shows what memory looks like after the above objects have 
been created. As you examine the figure, keep in mind that each of the 
objects has its own rype data member. Thus the the_ dog object can call 
New_Animal() to set its type data to Labrador dog while the the_snake 
object can call New_Animal() to set its own type data to Python snake. 

Derived objects always have their own versions of inherited data 
members. Inherited member functions are a little different. That's because 
member functions are pointers to the functions themselves. So the derived 
class inherits the list of member functions. Both the base class and the 
derived class point to the same functions. Figure 6-9 shows how the list of 
member functions for an Animal object and the list for a BadPet object both 
point to the same functions in memory. 

Using Derived Objects 
An object of a derived class inherits the data and functions of its base class. 
So an object of a derived class can call all the member functions listed in the 
base class. Even though the BadPet class doesn't explicitly define the func-



172 Symantec C++ 

type 

New_ Anirnal ( ) 

Wri te_ Info ( ) 

type 

New_Anirnal () 

Write_ Info ( ) 

Wr i te_ Warn ing ( ) 

Write_ Warning () 

function code 

Wr i te_ Info ( ) 

function code 

New_Anirnal ( ) 

function code 

the_ dog 

the_ snake 

FIGURE 6-9 Because a derived class inherits the member functions of a base class, objects of both 
types have pointers to the same functions. 

tions New_Animal() and Write_Info(), objects of this derived class can call 
these functions: 

the_snake->New_Animal ( 11 \pPython snake" }; II call base 
II member function 

the_snake->Write_Info(); II call base 
II member function 

Because these two functions are defined in the Animal class, objects 
that are of the Animal type can, of course, call these functions as well: 

the_dog->New_Animal ( 11 \plabrador dog" }; 11 call base 
II member function 



Chapter 6 Derived Classes 173 

the_dog->Write_Info(); 11 call base 

II member function 
What about the Write_ Warning() function that was listed in the 

BadPet class? That function can be called only by a BadPet object: 

the_snake ->Write_Warning(); II call derived member 
II function 

An Animal object can't call Write_ Warning(), because it has no 
knowledge of, or access to, data members or member functions that are 
created in derived classes. 

Derived Objects and Data Member Access 
The BadPet class has a single member function, the code for which I've 
repeated below. 

void BadPet :: Write_Warning( void) 
{ 

Drawstring( 11 \pDangerous pet! 11 ); 

The Write_ Warning() function doesn't attempt to access type, the data 
member that BadPet inherits from the Animal class. Could it? The answer is 
"no." For an explanation of why that's so, you'll have to look at the defi­
nition of the base class-the Animal class. Notice that the private keyword 
is used to define the level of access to the type data member: 

class Animal 
{ 

} ; 

private: 
Str255 type; 

public: 
void New_Animal( Str255 ); 
void Write_Info( void); 

II base class 

II data member 

II member function 
II member function 

Recall from Chapter 5 that the only functions that can access a private 
data member of a class are the member functions of that same class. In the 
case of the type data member of the Animal class, only the New_Animal() 



174 Symantec C++ 

and Write_Info() member functions of the Animal class can be used to 
access type. While classes that are derived from the Animal base class (such 
as BadPet) inherit the type data member, these derived classes can access the 
type data member only via the member functions derived from the Animal 
base class, as shown in Figure 6-10. 

Can this access limitation be overcome? Yes. There are two ways to go 
about it, but one method is much better than the other. Let's take a look at 
the less preferable way first, because it's the more obvious method. 

The Animal class declares the type data member to be private. By 
declaring the type data member to be public, access to it is increased. IfI do 
that, when BadPet inherits type it will inherit it as a public data member 
that can be accessed directly by any BadPet object; there will be no need to 
use an Animal member function-or any function at all, for that matter. 

Private members can 
be accessed only via 
member functions of 
that same class 

class Animal 

} ; 

private 
Str255 type; 

public: 
void New_Animal(Str255); 
void Write_Info(void); 

class BadPet public Animal 
{ 

public: 
void Write_Warning(void); 

} ; 

FIGURE 6-10 Only class member functions can access private class data members. 



Chapter 6 Derived Classes 175 

Assuming that type has been declared public, the following definition of 
Write_ Warning() will work: 

void BadPet :: Write_Warning( void) 
{ 

Drawstring( this->type ); 

Drawstring( "\pDangerous pet!" ) ; 

II access to "type" 
II now okay 

Continuing on with the assumption that the Animal data member 
type is public, an object of BadPet type can then call the new version of 
Write_ Warning() to access type. Because type is public, the same object can 
also access the type data member without the use of a member function. 
Examples of both of these cases are shown here: 

BadPet *the_snake; 

the_snake = new BadPet; 

the_snake->Write_Warning(); 
Fill _Str255( the_ snake->type, 11 \pPython snake" ) ; 

Figure 6-11 shows how the public keyword affects data member 
access. Note how the Animal class data can be changed from anywhere in a 
program. 

Declaring base class data members to be public isn't the preferred 
method of allowing derived class access, because it has a significant negative 
consequence. As pointed out in Chapter 5, restricting access to class data 
members is a very important part of object-oriented programming. 
Opening up access to a class data member makes that data member behave 
like a global variable. Any function or object can then modify its value, 
which is something that is best avoided. 

The correct way to give derived classes access to data members of the 
base class is to declare those data members protected. The protected keyword 
is a compromise between private and public. When a base class data 
member is protected, it can be accessed by member functions of that class as 
well as member functions of any class derived from that class. But it cannot 
be accessed by any other function or be accessed directly by an object. Here's 
the ideal way to define the Animal class: 



176 Symantec C++ 

cl ass Animal II base class 
{ 

protected: 
Str255 type; II data member 

public: 
void New_Animal( Str255 ); 
void Write_lnfo( void); 

II member function 
II member function 

} ; 

When written this way, a member function of a derived class can access 
the type data member. With that in mind, you could rewrite the BadPet 

Public members can 
be accessed by any 
function 

class Animal 

public : 
Str255 type; 

public: 
void New_Animal (Str255); 
void Write_Info(vqid); 

class BadPet public Animal 

Public: 
void w:r:ite.,.WarningJvoidl 

Fill~Str2S.5·(the.:.S!lake->type, •\pe0brq:") .; 

FIGURE 6-11 Public data members can be accessed from anywhere in a program. 



Protected members can 
be accessed by base 
member functions and 
derived member 
functions 

Chapter 6 Derived Classes 177 

class Animal 

}; 

protected : 
Str255 type; 

public : 
void New_Animal(Str255) ; 
void Write_Info(void) ; 

class BadPet public Animal 

public : 
void Write_Warning(void); 

_FIGURE 6-12 Protected data members can be accessed by class member functions and by derived 
classes. 

member function Write_ Warning() to write out the string stored in the 
type data member, followed by the warning string: 

void BadPet :: Write_Warning( void) 

Drawstring( this->type ); 
DrawSt ring ( 11 \p. . . is a dangerous pet! 11 

) ; 

Figure 6-12 shows how the protected keyword yields the perfect level 
of access for base data members. 

Earlier in this chapter you read that the protected keyword would not be used 
as a derived class access specifier in this book. That use of the protected 
keyword is different from this use. The derived class access specifier tells the 



178 Symantec C++ 

compiler how data should be inherited by a derived class and is used in the first 
line of a derived class declaration. Using the public keyword as the derived 
class access specifier guarantees that data is inherited with the same level of 
access as was initially given to it in the base class. Here's an example of the 
public keyword being used as a derived class access specifier: 

class BadPet : public Animal 
{ 

The private, public, and protected keywords are also used to specify the access 
level of class data members and member functions. As you've just seen, for 
class member access, all three keywords will be used in this book. 

An Example Using Derived Objects 
The accompanying disk contains the source code for a program called 
DerivedClassl. This program uses the Animal base class and BadPet derived 
class discussed in this chapter. Figure 6-13 shows what you'll see after you 
run DerivedClassl. 

II ***************** DerivedClassl.cp 

class Animal 
{ 

} ; 

} ; 

protected: 
Str255 type; 

public: 
void New_Animal( Str255 ); 
void Write_Info( void); 

class BadPet public Animal 

public: 
void Write_Warning( void); 

***************** 

II base class 

II data member 

II member function 
II member function 

II derived class 

II member function 



Chapter 6 Derived Classes 179 

void Animal :: New_Animal( Str255 name) 
{ 

Fill_Str255( this->type, name); 

void Animal : : Write_Info( void ) 
{ 

Drawstring( this->type ); 

void BadPet :: Write_Warning( void) 
{ 

DrawStri ng ( 11 \pDangerous pet! 11 ) ; 

Animal *the_dog; 
BadPet *the_snake; 

void main( void ) 
{ 

WindowPtr the_window; 

II declare object of type Animal 
II declare object of type BadPet 

Rect window_rect; 

InitGraf('&thePort ); 
InitFonts(); 
lnitWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

11 \pNew Window 11 , true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 



180 Symantec C++ 

Labrador dog 

Python snake 
Dangerous pet! 

FIGURE 6-13 The output of the DerivedClass I program 

} 

the_dog new Animal; 

the snake = new BadPet; 

II allocate memory for an 
II Animal object 
II allocate memory for a 
II BadPet object 

the_dog->New_Animal( 11 \plabrador dog"); 
MoveTo( 20, 30 ); 
the_dog->Write_Info(); 

the_snake->New_Animal ( "\pPython snake" ); 
MoveTo( 20, 60 ); 
the_snake->Write_Info(); 
MoveTo( 20, 75 ); 
the_snake->Write_Warning(); 

while ( !Button() ) 

A Second Example Using Derived Objects 
The BadPet derived class in the Derived Class 1 program inherited the data 
members and member functions of the Animal class. It also contained a single 
member function of its own. A C++ program can also contain a derived class 
that has its own data members. DerivedClass2 is such a program. 

The DerivedClass2 program is DerivedClassl with a few modifica­
tions-hence the clever name. The base class, Animal, is exactly the same as 



Chapter 6 Derived Classes 181 

you've seen in the past. The derived class, BadPet, has a couple of additions. 
Here's the new version: 

class BadPet : public Animal 
{ 

} ; 

private: 
Str255 reason; 

public: 
void Add_Reason( Str255 ); 
void Write_Warning( void); 

II derived class 

II data member 

II member function 
II member function 

The BadPet class now has its own data member-a string named 
reason. This member will hold the reason that the pet is considered less 
desirable than others. The BadPet class has also gained a new member 
function-Add_Reason(). Since the new data member is private, the 
program has to have a way of accessing it from within the class. That's the 
purpose of Add_Reason(). 

void BadPet :: Add_Reason( Str255 why) 
{ 

Fill_Str255( this->reason, why ); 

After declaring and creating a BadPet object, you can set the reason 
data member as follows: 

the_snake->Add_Reason( 11 \pFirm grip!" ); 

Here's the complete source code listing for DerivedClass2. Figure 6--14 
shows the output of the program. Figure 6--15 shows what memory might 
look like after an Animal object and a BadPet object have been created using 
the new operator. 

II***************** DerivedClass2.cp ***************** 

class Animal II base class 
{ 

protected: 
Str255 type; II data member 



182 Symantec C++ 

} ; 

public: 
void New_Animal( Str255 ); 
void Write_Info( void); 

class BadPet public. Animal 
{ 

} ; 

private: 
Str255 reason; 

public: 
void Add_Reason( Str255 ); 
void Write_Warning( void); 

II member function 
II member function 

II derived class 

II data member 

II member function 
II member function 

void Animal :: New_Animal( Str255 name) 
{ 

Fill_Str255( this->type, name); 

void Animal :: Write_Info( void) 
{ 

Drawstring( this->type ); 

void BadPet :: Write_Warning( void) 
{ 

Drawstring( "\pDangerous pet!" ); 
Move( 10, 0 ) ; 
Drawstring( this->reason ); 

void BadPet :: Add_Reason( Str255 why) 
{ 

Fill_Str255( this->reason, why); 



Animal *the_dog; 
BadPet *the_snake; 

void main( void ) 
{ 

WindowPtr the_window; 

Chapter 6 Derived Classes 183 

II declare object of type Animal 
II declare object of type BadPet 

Rect window_rect; 

InitGraf( &thePort ); 
InitFonts(); 
Ini tWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

"\pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 

the_dog =new Animal; II allocate memory for an 
II Animal object 

the_snake =new BadPet; II allocate memory for a 
II BadPet object 

the_dog->New_Animal ( "\plabrador dog" ); 
MoveTo( 20, 30 ); 
the_dog->Write_Info(); 

the_snake->New_Animal ( "\pPython snake" ); 
MoveTo( 20, 60 ); 
the_snake->Add_Reason( "\pFirm grip!" ); 
the_snake->Write_Info(); 
MoveTo( 20, 75 ); 
the_snake->Write_Warning(); 

while ( !Button() ) 



184 Symantec C++ 

New Window 

Labrador dog 

Python snake 
Dangerous pet! Fi rm grip ! 

FIGURE 6-14 The output of the DerivedClass2 program 

Animal 
object 

the_dog = new Animal ; 

the_ dog 

type 

New_ Anirnal () 

Write_ Info () [ 
Bad Pet 
object 

FIGURE 6-15 The Animal and BadPet objects in memory 

the_ snak e = new BadPet; 

the_snake 

fiiiil I 
type 

New_ Anirnal () 

Write _ Info () 

reason 

Add_Reason () 

i.:.. 
Write_Warning () 



Chapter 6 Derived Classes 185 

Overriding Member Functions 

When a class is derived from a base class, it inherits the member functions 
of the base class. But what if you want the derived object to perform an 
action that's just a little different from that performed by an inherited 
member function? Rather than require you to add a new function to the 
derived class, C++ provides a mechanism that allows you to alter the 
inherited function. 

Why Override Member Functions? 
Writing a warning message for bad pets is an idea that appeals to the pet 
shop owner. He wants to expand on it by including a text message for each 
type of animal in his shop-not just bad pets. Since most of his animals are 
good pets, he decides to modify the Write_Info() function of the Animal 
class so that it adds the message Good pet! after writing the animal type. 
This is how you've seen the Write_Info() routine in the past: 

void Animal : : Write_lnfo( void ) 
{ 

Drawstring( this->type); 

Instead of just writing the value of the type data member, the new 
version of Write_Info() also moves over 10 pixels and writes the Good pet! 
message. Here's how the new version ofWrite_Info() looks: 

void Animal :: Write_Info( void) 
{ 

Drawstring( this->type); 
Move( 10, 0 ) ; 
Drawstring( "\pGood pet!" ) ; 

The DerivedClass3 program is identical to the DerivedClass2 program, 
with the exception of the Write_Info() function. DerivedClass3 contains the 
new version shown above. Because of that, I won't provide the entire source 
code listing here. Instead, I'll just repeat the lines that work with the two 
objects: 



186 Symantec C++ 

the_dog->New_Animal( 11 \plabrador dog"); 
MoveTo( 20, 30 ); 
the_dog->Write_lnfo(); 

the_snake->New_Animal ( 11 \pPython snake" ); 
the_snake->Add_Reason( 11 \pFirm grip!" ); 
MoveTo( 20, 60 ); 
the_snake->Write_Info(); 
MoveTo( 20, 75 ); 
the_snake->Write_Warning(); 

The first line in the above code assigns to the type data member of the 
Animal object the_ dog the string Labrador dog. The next two lines move to 
the location to start drawing and then write out the animal information. At 
this point the output appears as shown in Figure 6-16. 

So far, so good. The first task of the next lines of code, which are 
repeated below, is to assign to the type data member of the BadPet object 
the_ snake a value of Python snake. Then the reason for giving this pet the 
bad pet status is assigned. Next, all the information is written out in a call to 
the inherited function Write_Info() and a call to BadPet's own member 
function Write_ Warning(). Figure 6-17 shows how the program's output 
looks after the following code has run: 

the_snake->New_Animal ( 11 \pPython snake" ); 
the_snake->Add_Reason( 11 \pFirm grip!" ); 
MoveTo( 20, 60 ); 
the_snake->Write_Info(); 
MoveTo( 20, 75 ); 
the_snake->Write_Warning(); 

New Window 

Labrador dog Good pet! 

FIGURE 6-16 Part of the output of the DerivedClass3 program 



Chapter 6 Derived Classes 187 

New Window 

Labrador dog Good pet! 

Python snake Good pet! 
Dangerous pet! Firm grip! 

FIGURE 6-17 The final output of the DerivedClass3 program 

The output shown in the window in Figure 6-17 isn't quite what 
the pet shop owner had hoped for. The above code calls Write_Info() 
for the object the_snake so that the animal type can be written. But the 
owner has to remember that, when called, the Write_Info() function 
found in the Animal data class will also write the string Good pet! Since 
most of his pets are good pets, that's usually all right. But for excep­
tions-as in the case of the bad pet-the owner needs a way to write the 
animal type but not the Good pet! message. A slightly modified version 
of Write_Info() would be useful here. In fact, two versions of 
Write_Info()-one for the Animal class and one for the BadPet class­
would be ideal. In C++, he can do that thanks to a concept called 
member function overriding. 

·Overriding a Function 
Any function that appears in a base class can have an identically named 
function in a class derived from the base class. When an object of the base 
class calls the function, the base class function will execute. When an object 
of the derived class calls the same function, the version that appears in the 
derived class will execute instead. The derived class functiOn overrides the 
base class function. Figure 6-18 clarifies this. 

Previously, you saw that the pet shop owner wanted to come up with 
two separate Write_Info() routines-one for the Animal base class and one 
for the BadPet derived class. Member function overriding will provide a way 
to accomplish this. The following are new versions of the Animal and 
BadPet classes. In Animal, the Write_Info() function is now preceded by the 
C++ keyword virtual. And in BadPet, the Write_ Warning() routine has 
been replaced by Write_Info(). I've used bold text to emphasize these 
changes: 



188 Symantec C++ 

Base Class Derived Class 

The:.C.Functicm ( ) The.-Functiori O · 

Base Object Derived Object 

FIGURE 6-18 When function overriding is used, base and derived objects use different versions of a 
member function. 

class Animal 
{ 

} ; 

protected: 
Str255 type; 

public: 
void New_Animal( Str255 ); 
virtual void Write_Info( void); 

class BadPet public Animal 
{ 

II base class 

II data member 

II member function 
II member function 

II derived class 



} ; 

private: 
Str255 reason; 

public: 
void Add_Reason( Str255 ); 
void Write_Info( void }; 

Chapter 6 Derived Classes 189 

II data member 

II member function 
II member function 

Before we discuss the virtual keyword, take a look at how I've written 
the two Write_Info() functions. The first version-the one associated with 
the Animal class-remains as it was written in the DerivedClass3 program. 
The new version-the one associated with the BadPet class-writes the type 
data member string and then a warning message. 

void Animal :: Write_Info( void) 
{ 

Drawstring( this->type ); 
Move( 10, O ) ; 
DrawSt ring ( 11 \pGood pet! 11 ) ; 

void BadPet :: Write_lnfo( void) 
{ 

Drawstring( this->type ); 
Move( 10, 0 ) ; 
Drawstring( 11 \pDangerous pet! 11 ) ; 

Move( 10, 0 ) ; 
Drawstring( this->reason ); 

Overriding a member function has no impact on the way objects are 
declared and created. Thus, the following code, which allocates memory for 
an Animal base class object and a BadPet derived class object should look 
very familiar: 

Animal *the_dog; 
BadPet *the_snake; 

the_dog =new Animal; 
the_snake = new BadPet; 



190 Symantec C++ 

To send a Write_Info() message to either object, just call the function 
as you've done in the past: 

the_dog->Write_Info(); 
the_snake->Write_Info(); 

The above code will execute two different functions. Sending the same 
message to objects of two different classes is an object-oriented feature called 
polymorphism. How does the compiler know which Write_Info() should be 
called for each object? The virtual keyword provides the answer. 

The virtual keyword lets the compiler know that there will be more 
than one version of a function. When creating a derived class function that 
is to override a base class function, precede the base class function with the 
word virtual. That's all there is to it. The compiler then keeps track of all 
derived classes that have a function of the same name. When an object 
receives a message to invoke a function, the compiler knows which version 
of the function to execute. Figure 6-19 illustrates this. 

New_Animal () 

function code 

type type --1[ object New__J\nimal () New_Animal () 

Write_Info () BadPet reason 
object 

Add_Reason () 

Base class Write_Info () Wri te_Info () 
function function code 

Add_Reason () 

function code 

Dervived 
class function Wri te_Info () 
(overridden by function code 
BadPet class) 

FIGURE 6-19 A base object, a derived object, and the functions they use 



Chapter 6 Derived Classes 191 

NOOE ~ 

Member function overriding is different from function overloading, which was 
discussed in Chapter 4. 

Function overloading is a C ++ feature that allows you to give two functions an 
identical name as long as the functions have a different number of arguments or 
different types of arguments. Function overloading can be used in object­
oriented programs, but it isn't necessarily an object-oriented technique. 

Member function overriding applies only to object-oriented programming. It 
allows a derived class to declare a function that overrides, or replaces, a like­
named function in the base class. A derived class member function that over­
rides a base class member function can have both the same number of 
arguments and same type of arguments. 

An Overriding Example 
The Overriding program uses the Animal and BadPet classes with which 
you are already familiar. The derived class BadPet has a Write_lnfo() 
function that overrides the base class Write_lnfo() function. 

The Overriding program produces the results the pet shop owner was 
looking for. Before looking over the Overriding source code listing, be sure 
that you understand why the program works. First take another look at the 
Animal base class; you'll want to refer to it as you walk through these lines of 
code from the Overriding program. 

class Animal II base class 

protected: 
Str255 type; II data member 

public: 
void New_Animal( Str255 ); '//member function 
virtual void Write_lnfo( void); II member function 

} ; 

The following lines from main() work with the Animal object 
the dog. The first line invokes the New_Animal() function. This routine 
simply copies the string Labrador dog into the type data member. After pre­
paring to write out the Animal information, Write_Info() is called: 



192 Symantec C++ 

the_dog->New_Animal ( "\plabrador dog" ) ; 
MoveTo( 20, 30 ); 
the_dog->Write_Info(); 

Which of the two Write_Info() functions is called? The one associated 
with the Animal class. The virtual keyword in the Animal class definition 
doesn't affect this function in any way. It only tells the compiler that classes 
derived from the Animal class may override it. Here's the Write_Info() 
routine that is called: 

void Animal :: Write_Info( void 
{ 

Drawstring( this->type ); 
Move( 10, 0 ) ; 
Drawstring( "\pGood pet!" ); 

Recall that this, when used in a member function, refers to the object 
that invoked the function. Here, the object is the_ dog, and the value of type 
for the_ dog is the string Labrador dog. After this string is written, the words 
Good pet! are drawn to the window. At this point, the program output 
appears as shown in Figure 6-20. 

Next, the program works with the BadPet object the_ snake. Here's 
another look at the derived class BadPet: 

class BadPet : public Animal II derived class 
{ 

private: 
Str255 reason; II data member 

New Window 

Labrador dog Good pet! 

FIGURE 6-20 Part of the output of the Overriding program 



} ; 

public: 
void Add_Reason( Str255 ); 
void Write_Info( void); 

Chapter 6 Derived Classes 193 

II member function 
II member function 

First, New_Animal() is called to set the type data member belonging 
to the the_snake object to the string Python snake. The program has only 
one New_Animal() function, which is defined in the Animal class. The 
derived BadPet class inherits it: 

the_snake->New_Animal( 11 \pPython snake11 ); 

Next, the Add_Reason() function is called to set the reason data 
member of the snake. Both the data member reason and the member 
function Add_R~ason() are a part of the BadPet class; they are not inherited 
from the Animal base class. 

the_snake->Add_Reason( 11 \pFirm grip!" ); 

Finally, a message is sent to the the snake object to invoke the 
Write_Info() function: 

MoveTo( 20, 60 ); 
the_snake->Write_lnfo(); 

Because Write_Info() was declared with the virtual keyword in the base 
class, the compiler knows to check to see if the BadPet derived class has its 
own copy ofWrite_Info(). It does, so that version ofWrite_Info() is used: 

void BadPet : : Write_ Info( void ) 
{ 

Drawstring( this->type ); 
Move( 10, 0 ) ; 
Drawstring( 11 \pDangerous pet! 11 ) ; 

Move( 10, 0 ) ; 
Drawstring( this->reason ); 

Instead of writing the type data member and the Good pet! string as 
the Animal class Write_Info() does, this version ofWrite_Info() writes the 
type data member-a string that says Dangerous pet!-and the value in the 



194 Symantec C++ 

New Window 

Labrador dog Good pet! 

Python snake Dangerous pet! Fi rm grip! 

FIGURE 6-21 The final output of the Overriding program 

object's reason data member. Figure 6-21 shows how the program's window 
now looks: 

Here, in its entirety, is the Overriding source code listing. You'll also 
find the source code on the accompanying disk. 

II******************* Overriding.cp ****************** 

class Animal II base class 
{ 

protected: 
Str255 type; II data member 

public: 
void New_Animal ( Str255 ); II member function 
virtual void Write_Info( void); II member function 

} ; 

class BadPet public Animal 
{ 

} ; 

private: 
Str255 reason; 

public: 
void Add_Reason( Str255 ); 
void Write_lnfo( void ); 

II derived class 

II data member 

II member function 
II member function 



Chapter 6 Derived Classes 195 

void Animal :: New_Animal( Str255 name) 
{ 

Fill_Str255{ this->type, name); 

void Animal :: Write_Info( void) 
{ 

Drawstring( this->type ); 
Move( 10, 0 ) ; 
Drawstring( 11 \pGood pet! 11 ); 

void BadPet :: Write_lnfo( void) 
{ 

Drawstring( this->type ); 
Move( 10, O ) ; 
Drawstring( 11 \pDangerous pet! 11 ); 

Move( 10, 0 ) ; 
Drawstring( this->reason ); 

void BadPet :: Add_Reason( Str255 why) 
{ 

Fill_Str255( this->reason, why); 

Animal · *the_dog; 
BadPet *the_snake; 

void main{ void ) 
{ 

II declare object of type Animal 
II declare object of type BadPet 

WindowPtr the_window; 



196 Symantec C++ 

Rect window_rect; 

InitGraf( &thePort ); 
InitFonts(); 
InitWindows(); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect,-

SetPort( the_window ); 

11\pNew Window", true, 
noGrowDocProc, (WindowPtr)-ll, 
true, 0 ); 

the_dog =new Animal; II allocate memory for an 
II Animal object 

the_snake =new BadPet; II allocate memory for a 
II BadPet object 

the_dog->New_Animal( 11 \plabrador dog"); 
MoveTo( 20, 30 ); 
the_dog->Write_Info(); 

the_snake->New_Animal( 11 \pPython snake11 ); 

the_snake->Add_Reason( 11 \pFinn grip! 11 ); 

MoveTo( 20, 60 ); 
the_snake->Write_Info(); 

while ( !Button() ) 



Chapter 6 Derived Classes 197 

Chapter Summary 

Object-oriented programs usually consist of more than one class, and often 
those classes are related to one another. To simplify the process of defining 
new classes and to imply a relationship between classes, C++ allows you to 
name one class as a base from which other classes are derived. These derived 
classes automatically inherit the data members and member functions of the 
base class on which they are based. 

You need do nothing special to a class to make it a base class-any class 
will work. To define a class as a class derived from a base class, however, you 
must add a few things to the class header. First, add the name of the base 
class. Then add a colon followed by the public keyword. The following is 
the definition of a derived class named BadPet that is derived from a base 
class named Animal: 

class BadPet : public Animal 
{ 

II BadPet data members and member functions 
} ; 

Pointers to objects-whether the objects are of a base class or a derived 
class-are declared by listing the class name followed by the * operator and 
the object name. Objects of a derived class are then created just as are 
objects of a base class-by using the new operator. 

An object of a derived class inherits the data and functions of its base 
class. So an object derived from a base class can call all the member func­
tions listed in the base class. If the base member function doesn't have the 
exact functionality that the derived class needs, the derived class can override 
the base class function and supply a new function with the same name. To 
give derived classes permission to override its member functions, the base 
class must use the virtual keyword before the member function's name in 
the base class definition. Here a base class named Animal makes its member 
function Write_Info() available for overriding by derived classes: 

class Animal 

public: 
virtual void Write_Info( void); 

} ; 



hapter 7 

Abstract Classes 

Good object-oriented programming technique involves the careful planning 
of what classes should be created to represent the data and actions that 
program objects will need. Past chapters introduced you to classes and 
objects but didn't dwell on how to choose the data members and member 
functions of the classes. Now that you understand the basics of classes, it's 
time to learn how to define a program's classes. 

In Chapter 6, you saw that one or more classes can be derived from a 
single base class. These derived classes inherit the data and functions of the 
class from which they are derived. So it would seem that a wise choice of a 
base class is an important part of object-oriented programming. This 
chapter takes a close look at base classes. In particular, the focus will be on a 
special kind of base class called an abstract class. 

Why Abstract Classes? 

One very common use of a base class is to make it an abstract class. An abstract 
class can be thought of as a common ancestor of a family of derived classes. 

199 



200 Symantec C++ 

An abstract base class differs from an ordinary base class in only one 
respect-objects of the abstract class type are never created. Instead, objects 
are created using the class types derived from the abstract class. Figure 7-1 
illustrates this idea. 

With the introduction of a class from which objects are never created 
comes a logical question: Why create an abstract class? While objects are 
created from classes that are derived from an abstract class, it is the abstract 
class that holds the definition of what those objects will do. A close look at 
the definition of an abstract class should give you a good idea of the kinds of 
data and types of actions that derived objects can hold and do. 

Abstract 
Class 

Derived 
Classes 

Objects 

FIGURE 7-1 Objects are created from classes derived from the abstract class-not from the 
abstract class itself. 



Chapter 7 Abstract Classes 20 I 

Creating an Abstract Class 

The pet shop owner, not having read a C++ book, became overwhelmed by 
object-oriented programming and allowed me to take over his database 
program. Since you're familiar with the pet shop example, I'll carry on with 
it throughout the remainder of this book. 

Like any good programmer, I gave some serious thought to what the 
program should do. I came up with a single base class that will serve as an 
abstract class. The abstract base class is the Animal class-with a few addi­
tions. Here's how the Animal class definition now looks: 

class Animal 
{ 

protected: 
Str255 type; 
Str255 desc; 
long cost; 

public: 
virtual void Set_Type( Str255 ); 
virtual void Get_Type{ Str255 ); 
virtual void Set_Desc( Str255 ); 
virtual void Get_Desc( Str255 ); 
virtual void Set_Cost( long); 
virtual long Get_Cost( void); 
virtual void Write_Info( void); 

} ; 

Remember, an abstract class defines what its derived classes can do. I've 
filled out the Animal class so that it can store and work with all the animal 
information the pet shop owner will need to keep track of. 

The Abstract Class Data Members 
The Animal class now has three data members. You're familiar with the first 
member, type. The type member keeps track of the type of animal in the 
form of a string-White rat, for example. 

The second data member, desc, is a string that holds a description of 
the animal-not popular, for example. In previous versions of the Animal 
class the description was passed to Write_Info(). It makes more sense, 



202 Symantec C++ 

however, to store the description as a part of the object. Then it can be 
saved, changed, or written to a window at any time. 

Keeping track of names is a very important part of many data struc­
tures. That's why I've used string data members in the class examples. But 
numbers are just as important, so Animal now has a long data member that 
can be used in future examples. The cost data member is a long integer that 
holds the dollar amount that the pet shop charges for an animal of this type. 

The Abstract Class Member Functions 
The Animal class has seven member functions, each of which is preceded by 
the virtual keyword. That means that any of the member functions can be 
overridden by any class that is derived from Animal. Will each derived class 
in fact override each member function? That's not important. What is 
important is that you give derived classes the power to do so. The virtual 
keyword does just that. 

You'll notice the words Get and Set in most of the member function 
names. A program needs to be able to set a data member's value and get that 
member's value. Because data members are accessed through the class 
member functions, there are usually two member functions for each data 
member-one to set a data member and one to get, or return, a member. As 
an example, the type data member has the Set_ Type() function to provide it 
with a value and the Get_ Type() function to return its value to the program. 
Here are those functions: 

void Animal :: Set_Type( Str255 name) 
{ 

Fill_Str255( this->type, name); 

void Animal :: Get_Type( Str255 name) 
{ 

Fill_Str255( name, this->type ); 

Set_Type(), which you've seen before as New_Animal(), assigns, or 
sets, the type member by calling Fill_Str255() to assign to type the value of 
the passed-in string. Get_ Type() simply copies the string in the type 
member to. the passed-in string variable name. After a Get_ Type() message 
is passed to an object, the variable name will hold the value of the object's 
type data member. 



Chapter 7 Abstract Classes 203 

Just as the type data member has Set and Get functions, so does the 
desc data member. Because desc is a Str255, the member functions that set 
and get its value work in the same way that the ones for the type Str255 data 
member work: 

void Animal :: Set_Desc( Str255 desc) 
{ 

Fill_Str255( this->desc, desc ); 

void Animal :: Get_Desc( Str255 comment) 
{ 

Fill_Str255( comment, this->desc ); 

To set the cost data member, Set_Cost() simply accepts a single 
passed-in parameter that holds the price of the pet. To get the value of the 
cost data member, Get_Cost() uses the return keyword to pass the cost 
back to the program. Get_ Cost() is the first example of a member function 
that has a return type other than void. 

void Animal :: Set_Cost( long price 
{ 

this->cost = price; 

long Animal :: Get_Cost( void) 
{ 

return ( this->cost ); 

Remember your C: the return keyword passes back the value of whatever lies 
after it. Passes back to where? To the calling function. 



204 Symantec C++ 

The last member function in the Animal abstract class is Write_Info(). 
This routine writes all the information about one animal to a window. 

void Animal :: Write_Info( void) 

Str255 str; 

MoveTo( 20, 30 ); 
Drawstring( this->type ); 
MoveTo( 20, 45 ); 
Drawstring( this->desc ); 
NumToString( this->cost, str ); 
MoveTo( 20, 60 ); 
Drawstring( 11 \p$ 11

); 

Drawstring( str ); 

Creating a Family of Classes 

This chapter has an example program that uses the Animal class. But the 
program does not declare any Animal objects. Instead, the example creates 
objects only from classes derived from the Animal class. That's what makes 
the Animal class an abstract class. The abstract class, along with the class 
derived from it, can be thought of as a family of classes. 

The Derived Classes 
At this point I've identified two different general types of animals in the pet 
shop-animals that are considered good pets and animals that might be 
considered bad pets. With that in mind, I've created two classes-the 
BadPet class and the GoodPet class, both of which are derived from the 
Animal class. 

class BadPet public Animal 
{ 

public: 
void Write_Info( void); 

} ; 



Chapter 7 Abstract Classes 205 

class GoodPet public Animal 
{ 

public: 
void Write_lnfo( void); 

} ; 

Both the BadPet class and the GoodPet class look trivial. But keep in 
mind that each inherits every data member and member function of its base 
class-the Animal class. An object of the BadPet class, for example, would 
look like an object of the Animal class. The only difference would be that 
the pointer to the Write_Info() function would point to a different version 
of Write_lnfo() for each of the two objects. That's because the BadPet class 
overrides the Animal Write_Info() member function. Figure 7-2 reinforces 
this idea. 

type type 

desc desc 

cost cost 

Set_Type() Set_Type() 

Animal Get_Type() Get_Type() BadPet 
object 

Set_Desc() Set_Desc() 
object 

Get_Desc() Get_Desc() 

Set_Cost() Set_cost() 

Get_Cost() Get_Cost() 

Wri te_Info ( ) Wri te_Info ( ) 

Point to different Wri te_Info ( ) functions 

FIGURE 7-2 A derived class inherits the elements of the base class but may override one or more 
base class functions. 



206 Symantec C++ 

I said that objects are not created from the abstract class, yet Figure 7-2 shows. 
what an Animal object would look like. There's nothing about an abstract class 
definition that prevents objects being created from it. It's the programmer's 
choice to not do so. 

The Member Functions of the Derived Classes 
Both the BadPet and the GoodPet class are content to use the six Get and 
Set functions as defined by the Animal base class. Only the Write_lnfo() 
class will be overridden. Here's how BadPet overrides Writelnfo(): 

void BadPet :: Write_Info( void) 
{ 

Animal :: Write_lnfo(); 
MoveTo( 20, 75 ); 
Drawstring( "\p** OMIT?**"); 

The first line in the body ofWrite_lnfo() should be of interest to you: 

Animal :: Write_Info(); 

Recall from Chapter 4 that the scope resolution operator can be used 
to tell the compiler which variable to use when confronted with two like­
named variables: 

long days = 365; 

void main( void ) 
{ 

II global to entire program 

long days= 31; II local to main() 
long days_in_year; 

days_in_year = ::days; II uses global version of days 



Chapter 7 Abstract Classes 207 

More recently, you've seen the scope resolution operator used in the 
headers of class member functions. For the Write_Info() function of the 
BadPet class, the header looks like this: 

void BadPet :: Write_Info( void) 

Here the:: operator tells the compiler that this version ofWrite_lnfo() 
should be associated with the BadPet class. The:: operator can also be used 
when making a call to a class member function. A member function can be 
invoked via an object, as is being done here: 

the_dog->Write_Info(); 

In this example, all member functions but the Write_lnfo() member function of 
the Animal abstract class work as is for the derived class. This isn't always the 
case, however. While an abstract class should define the actions common to its 
derived classes, it does not necessarily have to provide the functionality of those 
actions. Thus, an abstract class may list several member functions, but many of 
the functions may be overridden by the member functions of a derived class. 

A member function can also be called from within a different member 
function. That's what the first line in the Write_Info() function is doing. 
Here's that function again: 

void BadPet :: Write_Info( void) 
{ 

Animal :: Write_Info(); 
MoveTo( 20, 75 ); 
Drawstring( "\p** OMIT?**"); 

The first line in the function body calls the Write_lnfo() function. But 
which one? All three classes-Animal, BadPet, and GoodPet-have defined 
a Write_Info() function. By prefacing the function call with the name of the 
class associated with the function, you're telling the compiler which version 
to use. 

Because Write_lnfo() is listed as a virtual function in the Animal class and 
is also listed in the BadPet class, the function is overridden in BadPet. Thus, a 



208 Symantec C++ 

FIGURE 7-3 

call to Write_Info() by a BadPet object will result in the BadPet version of the 
function being called. But within the BadPet version, the Animal version is 
called! What is the net effect of a call to the BadPet version of Write_Info()? 
Both it and the Animal version are called, as shown in Figure 7-3. 

Calling a base member function from within a derived member 
function is a common action. It allows a class to both override a base class 
member function and make use of the overridden function. With this 
option of calling a base member function, it turns out that a member 
function can override a base member function in order to replace it or 
override the function in order to supplement it, as shown in Figure 7--4. 

In Figure 7--4, a base class called BClass is defined along with one 
derived class named DClass. DClass inherits The_Func()-the one 
member function ofBClass. It then overrides it by listing it as one of its own 
functions. When the DClass version of The_Func() is created, it can be 
written in one of two ways. By invoking the base class version of the 
function, you can supplement the base class version. The function can also 
be written so that it completely replaces the base class version. To do that, 
you would not invoke the BClass version. Figure 7--4 shows both options 
for writing an overriding function. 

BadPet * the_rat; 

the_rat->Write_Info(); 

void Animal:: Write_Info(void) 
{ 

Str255 str; 

MoveTo(20, 30); 
DrawString(this->type); 

Member functions can invoke, or call, other member functions. 



FIGURE 7-4 

Chapter 7 Abstract Classes 209 

class BClass 

public : 
virtual void The_Func(void) ; 

class DClass : public BClass 

An overriding function 
can completely replace 
the version it overrides, 
or it can supplement it 

public : 
void The_Func(void) ; 

void DClass : : The_Func(void) 
{ 

DrawStri ng("\pReplace") ; 

void DClass : : The_Func(void) 
{ 

BaseClass: :The_Func(); 
DrawString("\pSupplement "); 

A function can override another function so that it replaces or supplements the base 
function. 

An Abstract Example 

AbstractClass is a program that puts to use the Animal abstract base class 
and the GoodPet and BadPet derived classes that you've seen throughout 
this chapter. Since this example is meant to illustrate how an abstract class 
works, it declares no Animal objects. Instead, the program declares one 
GoodPet object and one BadPet object: 

GoodPet *the_dog; 
BadPet *the_rat; 

II declare object of type GoodPet 
II declare object of type BadPet 

The program opens a window and allocates memory for the BadPet 
object. Then four messages are sent to the object: 



210 Symantec C++ 

the_dog->Set_Type( 11 \pWhite rat 11 ); 

the_dog->Set_Desc( 11 \pNot popular11 ); 

the_dog->Set_Cost( 5 ); 
the_dog->Write_Info(); 

The first three messages invoke member functions-Set_Type(), 
Set_Desc(), and Set_Cost{)-that were inherited from the Animal class but 
were not overridden. The last message invokes Write_Info()-an inherited 
routine that is overridden. Here's how BadPet defines ·its version of 
Write_Info(): 

void BadPet :: Write_Info( void) 
{ 

Animal : : Write_Info(); 
MoveTo( 20, 75 ); 
Drawstring( 11 \p** OMIT? ** 11 ); 

The first thing the BadPet Write,.._Jnfo() routine does is invoke the 
Animal Write_Info() routine. Here's the Animal version: 

void Animal :: Write_Info( void) 
{ 

Str255 str; 

MoveTo( 20, 30 ); 
Drawstring( this->type ); 
MoveTo( 20, 45 ); 
Drawstring( this->desc ); 
NumToString( this->cost, str ); 
MoveTo( 20, 60 ); 
Drawstring( 11 \p$ 11 ); 

Drawstring( str ); 

Because the BadPet version of Write_Info() calls the Animal version of 
Write_Info(), you should expect to see the output generated from the 
Animal version in a window, as shown in Figure 7-5. 

Invoking the Animal version of Write_Info() isn't the only thing that 
the BadPet Write_Info() routine does. It also writes the string** OMIT?**. 



White rat 
Not popular 
$5 

New Window 

Chapter 7 Abstract Classes 211 

FIGURE 7-5 The results window after one Write_lnfo() routine invokes the Animal :: Write_lnfo() 
routine 

So after the execution of the entire BadPet Write_Info() routine, you'll see 
results like those pictured in Figure 7-6. 

To demonstrate that the GoodPet class workS, the AbstractClass 
program opens a second window and sends to a GoodPet ·object the fol­
lowing four messages: 

the_dog->Set_Type{ 11 \plabrador dog 11 
); 

the_dog->Set_Desc( 11 \pFriendly 11
); 

the_dog->Set_Cost( 100 ); 
the_dog->Write_Info{); 

This output is from 
the Animal version 
of Wri te_Info ( ) 

This output is from 
the BadPet version 
of Wri te_Info ( ) 

White rat 
Not popular 

$5 

** OMIT? ** 

New Window 

FIGURE 7-6 Program output comes from two separate Write_lnfo() functions. 



212 Symantec C++ 

White mt 
Not popular 
$5 
**OMIT?** 

Labrador dog 
Friendly 
$100 

Nelli lllindom 

New WindQW 

** GOOD PET ** 

FIGURE 7-7 The final output of the AbstractClass program is drawn in two separate windows. 

The GoodPet derived class has its own version of the Write_lnfo() 
function. Here's a look at it: 

void GoodPet :: Write_Info( void) 
{ 

Animal :: Write_Info(); 
MoveTo( 20, 75 ); 
Drawstring( "\p** GOOD PET **"); 

When the program has run, two windows will be on the screen. The 
program output is shown in Figure 7-7. 

II***************** AbstractClass.cp ***************** 

class Animal II abstract base class 

protected: 
Str255 type; 



Chapter 7 Abstract Classes 

Str255 desc; 
long cost; 

public: 
virtual void Set_Type( Str255 ); 
virtual void Get_Type{ Str255 ); 
virtual void Set_Desc( Str255 ); 
virtual void Get_Desc( Str255 ); 
virtual void Set_Cost( long); 
virtual long Get_Cost( void); 
virtual void Write_Info( void ); 

} ; 

class BadPet public Animal 
{ 

II derived class 

public: 
void Write_Info( void); 

} ; 

class GoodPet public Animal II derived class 
{ 

public: 
void Write_Info( void); 

} ; 

void Animal :: Set_Type( Str255 name) 
{ 

Fill_Str255( this->type, name ); 

void Animal :: Get_Type{ Str255 name) 
{ 

Fill_Str255( name, this->type ); 

213 



214 Symantec C++ 

void Animal :: Set_Desc( Str255 desc) 
{ 

Fill_Str255( this->desc, desc ); 

void Animal :: Get_Desc( Str255 conment) 
{ 

Fill_Str255( comment, this->desc ); 

void Animal :: Set_Cost( long price) 
{ 

this->cost = price; 

long Animal :: Get_Cost( void) 
{ 

return ( this->cost ); 

void Animal :: Write_Info( void) 
{ 

Str255 str; 

MoveTo( 20, 30 ); 
Drawstring( this->type ); 
MoveTo( 20, 45 ); 
Drawstring( this->desc ); 
NumToString( this->cost, str ); 
MoveTo( 20, 60 ); 
Drawstring( 11 \p$ 11 ); 

Drawstring( str ); 



void BadPet :: Write_Info( void) 
{ 

Animal : : Write_lnfo(); 
MoveTo( 20, 75 ); 
Drawstring( 11 \p** OMIT? ** 11 ); 

void GoodPet :: Write_Info( void) 
{ 

Animal : : Write_Info(); 
MoveTo( 20, 75 ); 
Drawstring( "\p** GOOD PET**"); 

Chapter 7 Abstract Classes 21 S 

GoodPet *the_dog; 
BadPet *the_rat; 

II declare object of type GoodPet 
II declare object of type BadPet 

void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
In it Fonts(); 
Ini tWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

the_rat = new BadPet; 

11 \pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 



216 Symantec C++ 

the_rat->Set_Type( 11 \pWhite rat 11 
) ; 

the_rat->Set_Desc( 11 \pNot popular 11
); 

the_rat->Set_Cost( 5 ); 
the_rat->Write_lnfo(); 

SetRect( &window_rect, 50, 200, 350, 300 ); 
the window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

the_dog = new GoodPet; 

11 \pNew Window 11
, true, 

noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 

the_dog->Set_Type( 11 \plabrador dog 11 
); 

the_dog->Set_Desc( 11 \pFriendly 11
); 

the_dog->Set_Cost( 100 ); 
the_dog->Write_Info(); 

while ( !Button() ) 

The Class Hierarchy 

A base class and the classes that are derived from it form a class hierarchy. 
For simple programs, like this chapter's AbstractClass example, it's easy fo 
visualize this hierarchy, as shown in Figure 7-8. 

It probably seems like overkill to draw a class hierarchy for a program 
as simple as AbstractClass, because you can easily visualize in your head just 
how the three classes are related. But for larger programs with several base 
classes and many more derived classes, a pictorial class hierarchy does help 
you keep track of things. 

Symantec C++ makes it easy to obtain a view of your program's class 
hierarchy. When you're in the THINK Project Manager, the class hierarchy 
is just a mouse dick away. With a project open and compiled, select the 
Browser menu item from the Source menu, which is shown in Figure 7-9. 



Chapter 7 Abstract Classes 217 

Animal 

GoodPet BadPet 

FIGURE 7-8 The class hierarchy for the AbstractClass program 

When you select Browser, a THINK Class Browser window will open. 
The Browser is a tool that displays the class hierarchy of the classes in any 
THINK project. Figure 7-10 shows the window that opens when Browser 
is selected for this chapter's AbstractClass project. 

The Browser displays the root class-the class that has no base class­
on the far left side of the window. For AbstractClass, the root class is the 
Animal class. Lines run from the root class to each class that is derived from 
it. For AbstractClass, those lines run from Animal to BadPet and from 
Animal to GoodPet, as shown in Figure 7-10. 

Clicking on a class name in the Class Browser window displays a pop­
up menu that lists the member functions of the class. In Figure 7-11, I've 
clicked on the GoodPet class. The pop-up menu displays the one member 
function that is defined in GoodPet-the Write_lnfo() function. Note that 
only member functions that are defined in the class-not inherited member 
functions-are displayed. To see all the inherited member functions, click 
on the Animal class. 



218 Symantec C++ 

aY!IDu:.m 
Rdd lllindow 
Rdd Files ... 
Remoue 
liet Info 
Debug 00 I 
SourceSeruer ~ 

Check SyntaH 3CY 
Preprocess 
Disassemble 

Pree: om pile ... 
Load Project 3CK 
Make ... 3€\ 

Browser ::tt:J 

FIGURE 7-9 Selecting the Browser item from the THINK Project Manager's Source menu 

-[ii Class Browser -~ 
Bad Pet J .Q 

[ Animal 
Good Pet J 

-0 
¢1 1¢ Iii 

FIGURE 7-10 The class hierarchy for the AbstractClass program as displayed in the Class Browser 



Chapter 7 Abstract Classes 219 

;;;;ii Class Brows~r Iii] 
Bad Pet J S: 

I [ Animal 
GoodPet T Write lnfo(void)l -'f 

-0 
¢1 1¢ II 

FIGURE 7-11 Using the Browser to view the member functions of the GoodPet class 

At this point, the Browser may seem to be of limited use. But as your 
programs grow in size and complexity, the Browser will become a much 
more valuable resource. The C++ language allows you to derive classes from 
other derived classes. In a program that does that, the class hierarchy can 
become quite complex. · 

Chapter Summary 

Derived classes inherit the data members and member functions of the class 
from which they are derived. When a program declares object variables, it 
can declare them to be of the base class type or of any one of the derived 
class types. But in most programs that use derived classes, objects are never 
declared to be of the base class. Instead, the base class is used only as the 
pattern from which a family of derived classes is defined. When this situ­
ation occurs, the base class is said to be an abstract class. 

A base class and the classes that are derived from it form a class hier­
archy. For simple programs that consist of only a few classes, it's very easy to 
visualize what this hierarchy looks like For larger programs that contain 
several classes, however, a pictorial class hierarchy helps to keep track of 
things. The THINK Project Manager makes it easy to obtain a view of your 
program's class hierarchy. To do so, first compile your project's source code. 
Then select the Browser menu item from the Source menu. A THINK 
Class Browser window will open, and in it will be displayed the class hier­
archy of the classes in the currently opened project. 



hapter 8 

Dynamic Binding 

Objects that are derived from a base class often have member functions that 
override those found in the base class. That means that a program may have 
several different types of objects, each making calls to like-named functions. 
Although the functions have the same name, they are represented by dif­
ferent code. To add to this complexity, programs often create objects at 
runtime-or, "on the fly." That means that at the time the source code is 
compiled, the compiler might not know what type of object is being 
created. Yet the compiler will still allow this object of unknown type to 
make calls to member functions. How the compiler allows this to happen 
and how the compiled application handles these unresolved situations is 
through dynamic binding. 

On your way to discovering just what dynamic binding is, you'll see 
several example programs that introduce a set of new classes-classes that 
work with shapes. In these examples, you'll see how objects can be used in 
functions-functions that are associated with a class and functions that 

' arent. 

221 



222 Symantec C++ 

Returning Objects from Functions 

In Chapter 2, I mentioned that shapes are naturally thought of as objects. 
As such, they serve as good examples in object-oriented texts. I'll set aside 
the pet shop database for the time being while I introduce a new example­
one that involves shapes. After defining a rectangle class, I'll use objects of 
this type in some examples of how an object can be used just as a variable of 
any other data type is used. 

A Shape as an Object 
Chapter 2 discussed the rectangle shape and how it can be thought of as an 
object in C++. As a refresher, look at Figure 8-1, which is the same figure I 
used back in Chapter 2. 

Because Macintosh programming languages define the Rect data type 
as a data structure that conveniently holds all four values that define a rect­
angle, I'll use it in place of the four individual data members pictured in 
Figure 8-1. And now that you know that most objects have member func­
tions to set and get the values of the data members, I'll include a function to 
set the Rect data member. For the sake of simplicity I'll forego the "get" 
member function, as well as the member functions to grow and erase the 
rectangle object. To give the object something to do, I'll just include a 
member function to draw the rectangle. Figure 8-2 shows what my simple 
rectangle object will look like. 

The Rectangle class has two member functions, both of which I'll 
define to be virtual functions. If in the future I decide to create any derived 
classes from the Rectangle class, the derived classes can override any of the 
Rectangle member functions. Here's the Rectangle class: 

class Rectangle 
{ 

} ; 

protected: 
Rect aRect; 

public: 
virtual void Set_Rectangle( short, short, short, short); 
virtual void Draw_Rectangle( void); 



Data 
members 

Member 
functions 

Chapter 8 Dynamic Binding 223 

Rectangle object 

Draw_Rectangle 

Grow_Rectangle 

FIGURE 8-1 Representation of a rectangle as an object 

To establish the coordinates of the aRect member, Set_Rectangle{) will 
be called. Pass the four coordinates to Set_Rectangle{), and it will call the 
Toolbox routine SetRect{). Because SetRect{) accepts a pointer to a Rect as 
its first argument, I'll preface this->aRect with the & operator. Here's the 
"set" member function for the Rectangle class: 

void . Rectangle : : Set_ Rectangle ( short L, short T, 
short R, short B ) 

SetRect( &this->aRect, L, T, R, B }; 



224 Symantec C++ 

Data 
members 

Member 
functions 

Rectangle object 

FIGURE 8-2 Another way of representing a rectangle as an object 

I'll define drawing a rectangle to mean framing it. I could make things 
more complex, and more interesting, by having Draw_Rectangle() accept a 
Pattern as an argument and then fill and frame the rectangle. But again, 
simplicity wins out. Here's the Draw_Rectangle() member function: 

void Rectangle :: Draw_Rectangle( void) 
{ 

FrameRect( &this->aRect ); 

Before seeing how an object is used as the return value of a function, 
let's test the new class by taking a look at a short program called Rectangle­
Class. Three lines of RectangleClass do the work of creating a new 
Rectangle object, setting its boundaries, and then drawing it to a window: 



Chapter 8 Dynamic Binding 225 

New Window 

FIGURE 8-3 The output of the RectangleClass program 

the_rect = new Rectangle; 

the_rect->Set_Rectangle( 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle(); 

Figure 8-3 shows what the window opened by RectangleClass will 
look like. 

Now, the code for RectangleClass. You'll also find the code and project 
on the accompanying disk. 

II***************** RectangleClass.cp **************** 

class Rectangle 
{ 

} ; 

protected: 
Rect aRect; 

public: 
virtual void Set_Rectangle( short, short, short, 

short); 
virtual void Draw_Rectangle( void); 

void Rectangle Set_Rectangle( short L, short T, 
short R, short B ) 

SetRect( &this->aRect, L, T, R, B ); 



226 Symantec C++ 

void Rectangle :: Draw_Rectangle( void ) 
{ 

FrameRect( &this->aRect }; 

Rectangle *the_rect; 

void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort }; 
InitFonts(); 
In itWi ndows () ; 

II declare object of type 
II Rectangle 

SetRect( &window_rect, 50, 50, 350, 150 }; 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window }; 

"\pNew Window", true, 
noGrowDocProc, (WindowPtr)-ll, 
true, 0 ); 

the_rect = new Rectangle; 

the_rect->Set_Rectangle( 50, 25, 200, 75 }; 
the_rect->Draw_Rectangle{); 

while ( !Button() ) 



Chapter 8 Dynamic Binding 227 

Returning an Object 
As discussed in Chapter 5, once a class is defined, an instance, or object, of 
that class is created using the new operator: 

Rectangle *the_rect; //declare object of type Rectangle 

the_rect = new Rectangle; 

So far, you've only seen the new operator used from within 
main(); all new objects have been created in main(). As the heading of this 
section indicates, an object can be created outside of main(). And if it is, it 
can be returned to main() or any other function using the return keyword. 
The New_Rectangle() function listed below is an example. 

Rectangle *New_Rectangle( void ) 
{ 

Rectangle *temp; 

temp = new Rectangle; 

return (temp); 

The return type of New_Rectangle() is an pointer to a Rectangle 
object. The function itself declares a variable named temp to be a pointer to 
a rectangle. The new operator sets aside memory for the Rectangle, and the 
return keyword passes this pointer back to the calling routine. Let's see how 
a call to New_Rectangle() looks: 

Rectangle *New_Rectangle( void ) 
{ 

Rectangle *temp; 

temp = new Rectangle; 

return (temp); 

Rectangle *the_rect; //declare object of type Rectangle 



228 Symantec C++ 

FIGURE 8-4 

void main( void ) 
{ 

II initialize Mac, open a window 

the_rect = New_Rectangle(); 

II remainder of the program 

New_Rectangle() uses a variable named temp to allocate the memory 
for the Rectangle. Because temp is a local variable, its scope is confined to the 
New_Rectangle() function. On the left side of Figure 8-4 you can see how 
memory might look after the new operator is executed in New_Rectangle(). 
There a block of memory has been allocated, and temp points to it. The 
global Rectangle pointer variable the _rect hasn't yet received a value. When 
the call to New_Rectangle() has been completed, memory appear as pic­
tured on the right side of Figure 8-4. There, the_rect has been assigned the 

Rectangle *New_Rectangle ( ) 
( 

Rectangle *temp ; 

temp = new Rectangle ; 

return { temp ) ; 

temp 6000 

6000 
Rectangle 

object 

the_ rect ???? 

Creating an object via a function 

void main (voi d) 

6000 

the_re c t 

SetPort ( the_window ) ; 

the_ rect = New_Rectangl e () ; 

Re c tang l e 

object 

6000 



Chapter 8 Dynamic Binding 229 

value that temp had-the address of the block of memory that holds the 
Rectangle object. Variable temp isn't shown on the right side of the figure, 
because at this point the program is back in main(), and the local variable 
temp is no longer accessible. 

You may wonder about the purpose of defining and calling a function 
whose only effect is to replace the single line of code that uses the new 
operator. In this situation, there is no advantage. When a program uses several 
classes that are derived from the same abstract class, however, the advantages 
of this technique become readily apparent-as you'll see later in this chapter. 

Function Prototypes and Forward References 
Function prototypes are listed at the start of a source code listing so that the 
compiler knows the properties of each function it will encounter. The 
function properties are its name, return type, and arguments. Here is the 
function prototype for the New _Rectangle() function, followed by the 
function itself: 

Rectangle *New_Rectangle( void ); II prototype 

Rectangle *New_Rectangle( void ) II function 
{ 

Rectangle *temp; 

temp = new Rectangle; 

return (temp); 

A function that has C or C++ data types as arguments and a C or C++ 
data type as the return type requires only a single-line prototype. But for a 
function that has either an argument or a return type that isn't a C or C++ 
keyword, you'll have to add an additional statement. The New_Rectangle() 
function is just such as routine. Its return type is Rectangle-a type that isn't 
a keyword, and thus a type the compiler is not familiar with. Remember, 
function prototypes are traditionally listed at the top of the source code­
before variable declarations and class definitions. When the compiler 
encounters the New_Rectangle() prototype, it hasn't yet seen the Rectangle 
class definition. Figure 8-5 shows the error messages the Symantec compiler 
gave me when I attempted to compile a program with the New_Rectangle() 
prototype. The error messages you would see might vary depending on the 
version of Symantec C++ you're using. 



230 Symantec C++ 

File ttReturnedRectangle.cpN; Line 3 
Error: '=', ';' or',' expected 

Fi le ttReturnedRectangle.cpN; Line 17 
Error: 'Rectangle' must be a class na~e preceding 

File ttReturnedRectangle.cpN; Line 19 
Error: undefined identifier 'this' 

FIGURE 8-5 Error message when a class name is used in a function prototype 

The first error in the Compile Errors window in Figure 8-5 is referring 
to the prototype. Because the compiler is completdy baftled by the word 
Rectangle, it doesn't know what to make of the prototype statement. In fact, 
it doesn't even recognize it as a statement. To overcome this dilemma you 
can use the class keyword in a forward reference. A forward reference is used 
to name a class before defining it. In a sense, you're prototyping the class. 
That is, you're making the class known to the compiler before defining it­
just as a function prototype makes a function known to the compiler before 
it is defined. Now, using the class keyword, let's take a look at the order of 
things in the source code: 

class Rectangle; II forward reference 

Rectangle *New_Rectangle( void); II function prototype 

II Rectangle class definition here 

II New Rectangle() function definition here 

The forward reference informs the compiler that Rectangle is a class. 
From that point on, the compiler will accept statements-including 
function prototypes-that make use of Rectangle. You'll see examples of 
forward references in some of the example programs later in this chapter. 

A Returned Object Example 
As is normally the practice in this book, I'll end the section with the source 
code for a brief example that demonstrates the main concept discussed in 



Chapter 8 Dynamic Binding 231 

New Window 

FIGURE 8-6 The output of the ReturnedRectangle program 

the section. The program ReturnedRectangle does just that; it returns a 
rectangle to the calling function. You'll see the output of the program in 
Figure 8-6. Notice that the results of running ReturnedRectangle are the 
same as those produced by the previous example, RectangleClass. The only 
difference between the two programs is how the Rectangle variable the _rect 
is assigned its value. In RectangleClass, the _rect receives its value directly 
using the new operator: 

the_rect = new Rectangle; 

In ReturnedRectangle, the _rect receives its value indirectly through a 
call to a function: 

the_rect = New_Rectangle(); 

•In either case, once the _rect has a value-that is, once it points to 
memory allocated for a Rectangle object-its member functions can be 
accessed. 

II**************** ReturnedRectangle.cp *************** 

class Rectangle; II at this point the compiler hasn't 
II seen the Rectangle class definition 
II - use as a forward reference here 

Rectangle *New_Rectangle( void ); II function prototype 



232 Symantec C++ 

class Rectangle 
{ 

} ; 

protected: 
Rect aRect; 

public: 
virtual void Set_Rectangle( short, short, short, 

short); 
virtual void Draw_Rectangle( void ); 

void Rectangle Set_Rectangle( short L, short T, 
short R, short B ) 

SetRect( &this->aRect, L, T, R, B ); 

void Rectangle :: Draw_Rectangle( void) 
{ 

FrameRect( &this->aRect ); 

Rectangle *New_Rectangle( void ) 
{ 

Rectangle *temp; 

temp = new Rectangle; 

return (temp); 

Rectangle *the_rect; //declare object of type Rectangle 

void main( void ) 



WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
InitFonts(); 
InitWi ndows (); 

Chapter 8 Dynamic Binding 233 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

"\pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ) ; 

the_rect = New_Rectangle(); 

the_rect->Set_Rectangle( 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle(); 

while ( !Button() ) 

Returned Objects and Derived 
Classes 

An object that is of a derived class can be created and returned by a function 
just as an object of a base class can be. So why devote a whole section of this 
chapter to the topic? Because when objects are created in this way, dynamic 
binding occurs- and dynamic binding is the topic that all the preceding 
pages have been leading to. 

Rectangles and Derived Classes 
DerivedRectangles is a program that will be used in the next section when 
dynamic binding is finally discussed. DerivedRectangles defines two classes 
derived from the Rectangle class-FatRect and FancyRect. Each of these 



234 Symantec C++ 

I I 

FIGURE 8-7 Result of drawing an object of the FatRect class 

derived classes consists of a single member function­
Draw _Rectangle()-which it inherits from the Rectangle class and then 
overrides: 

class FatRect public Rectangle 
{ 

public: 
void Draw_Rectangle( void); 

} ; 

class FancyRect public Rectangle 
{ 

public: 
void Draw_Rectangle( void); 

} ; 

II derived class 

II derived class 

The FatRect version of Draw _Rectangle() changes the pen size and 
then frames the class data member rectangle aRect. The routine ends by 
returning the pen to its normal state-one pixel by one pixel. When a 
FatRect object sends a message to Draw_Rectangle(), the result is a rect­
angle like the one pictured in Figure 8-7. 

void FatRect :: Draw_Rectangle( void) 
{ 

PenSize( 5, 5 ); 
FrameRect( &this->aRect ); 
PenNorma l () ; 



Chapter 8 Dynamic Binding 235 

New Window 

FIGURE ~ Result of drawing an object of the FancyRect class 

The FancyRect version of Draw _Rectangle() is more involved than the 
FatRect version. This routine uses a loop to continually inset the object's 
rectangle, framing it each time. The number of times the loop runs is 
dependent on the height of the object's rectangle. Draw_Rectangle() first 
determines the height of the rectangle and saves that value in the local 
variable height. This number is divided by four to give the number of inset 
rectangles to draw. Because the rectangle will be inset repeatedly, a tem­
porary reqangle is used. That way the size of the rectangle that is a part of 
the object won't be altered by the routine. Figure 8-8 shows what a rectangle 
with a height of 50 pixels would look like. 

void FancyRect Draw_Rectangle( void 
{ 

short i ; 
short height; 
short num_rects; 
Re ct temp; 

II loop counter 
II height of the rectangle 
II number of inset rects to draw 
II work with a temporary rectangle 

height= this->aRect.bottom - this->aRect.top; 
num_rects = ( heightl4 ); 

temp = this->aRect; 

for ( i = O; i <= num_rects; i++ 
{ 

FrameRect( &temp); 
InsetRect( &temp, 2, 2 ); 



236 Symantec C++ 

Note that aside from the use of the this keyword, the body of the 
Draw_Rectangle() function looks like a Macintosh C program-a reminder 
that your knowledge of C will go a long way in your C++ programming 
endeavors. 

DerivedRectangle creates a FancyRect object and draws it to the 
window using these lines: 

the_rect = new FancyRect; 

the_rect->Set_Rectangle( 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle(); 

If you want to see a FatRect object, you'll have to modify the program 
or continue reading this chapter. 

II**************** DerivedRectangle.cp *************** 

class Rectangle 
{ 

} ; 

protected: 
Rect aRect; 

public: 
virtual void Set_Rectangle( short, short, short, 

short ); 
virtual void Draw_Rectangle( void); 

class FatRect public Rectangle II derived class 

public: 
void Draw_Rectangle( void); 

} ; 



Chapter 8 Dynamic Binding 237 

class FancyRect public Rectangle II derived class 
{ 

public: 
void Draw_Rectangle( void); 

} ; 

void Rectangle Set_Rectangle( short L, short T, 
short R, short B ) 

SetRect( &this->aRect, L, T, R, B ); 

void Rectangle :: Draw_Rectangle( void) 
{ 

FrameRect( &this->aRect ); 

void FatRect :: Draw_Rectangle( void) 
{ 

PenSize( 5, 5 ); 
FrameRect( &this->aRect ); 
PenNormal (); 

void FancyRect .. Draw_Rectangle( void) 
{ 

short i ; 
short height; 
short num_rects; 
Re ct temp; 

II loop counter 
II height of the rectangle 
II number of inset rects to draw 
II work with a temporary rectangle 

height = this->aRect.bottom - this->aRect.top; 
num rects = ( heightl4 ); 



238 Symantec C++ 

temp = this->aRect; 

for ( i = O; i <= num_rects; i++ ) 
{ 

FrameRect( &temp); 
InsetRect( &temp, 2, 2 ); 

FancyRect *the_rect; //declare object of type FancyRect 

void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
Ini tFonts (); 
InitWindows(); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL~ &window_rect, 

SetPort( the_window ); 

11 \pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 

the_rect = new FancyRect; 

the_rect->Set_Rectangle{ 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle(); 

while ( !Button() ) 



Chapter 8 Dynamic Binding 239 

Dynamic Binding 
The DerivedRectangle program has a serious drawback in that there is no 
decision-making code that provides for a choice of which type of object 
should be created. If my C++ programs are to evolve into true Macintosh 
applications, they must have a Macintosh interface with menus and dialog 
boxes, and they must give the user more control over what happens. All of 
these faults will be remedied in the remainder of this book, but I'll begin to 
improve on the decision-making abilities of my programs right now. 

DerivedRectangle defines a single base class, Rectangle, and two 
derived classes, FatRect and FancyRect. What I would ideally like to include 
in my programs is the ability to let the user choose from which of the two 
classes an object should be created-something like this: 

if ( choice == 1 ) 
temp new FatRect; 

else 
temp = new FancyRect; 

The problem-or what appears to be the problem-with the above 
code is that the variable temp is being used with two different classes. The 
question is, should temp be declared as a pointer to a FatRect or a pointer to 
a FancyRect? The answer is, neither! Variable temp should be declared to be 
a pointer to a . Rectangle-the base class. Examine the following 
New _Rectangle() function; then read on to discover how the function 
works. 

Rectangle *New_Rectangle( short choice ) 
{ 

Rectangle *temp; 

if ( choice == 1 ) 
temp = new FatRect; 

else 
temp = new FancyRect; 

return (temp ); 

Object-oriented programming allows a programmer to assign an 
object pointer of a derived class to an object pointer of its base class. In the 
above example, temp-declared to be a Rectangle pointer-could, of course, 



240 Symantec C++ 

Rectangle *temp; 

temp 

Rectangle 

object 

FatRect 

object 

FancyRect 

object 

FIGURE 8-9 A variable that is a pointer to a base class may point to a base class or a derived class 
object. 

point to a Rectangle object. Because I'm using Rectangle as an abstract class, 
I'll have temp point to one of the derived class objects instead. Knowing that 
I can have a base class pointer point to a derived class object, I can use the 
same temp variable on the receiving end of the two statements that create 
new objects. 

Figure 8-9 shows that if I had a base class object and two derived class 
objects in memory, the rules of object-oriented programming would allow 
me to have temp point to any one of the three objects. 

Figure 8-9 shows the general concept that a base class pointer variable 
is allowed to point to an object of the base class or an object of any class 



Chapter 8 Dynamic Binding 241 

derived from the base class. Figure 8-10 highlights my particular case. The 
temp variable will point to an object of one of two types-either a FatRect 
object or a FancyRect object. Figure 8-10 shows that temp will point to a 
location in memory-it just isn't clear at this time what type of object will be 
at that location. 

The New_Rectangle() function will set a Rectangle pointer to point to 
either a FatRect or FancyRect object. It will then return that pointer to the 
line of code that invoked the function. Here's a look at New _Rectangle(), 
and a call to it: 

Rectang],e *temp; 

if ( choice == 1 ) 
temp "' new FatRect; 

else 
temp = new ·FancyRect; 

temp 

? • 

FatRect 

object 

FancyRect 

object 

FIGURE 8-10 Until the code is executed, it is unclear which type of object temp will point to. 



242 Symantec C++ 

Rectangle *New_Rectangle( short choice ) 
{ 

Rectangle *temp; 

if ( choice == 1 ) 
temp = new FatRect; 

else 
temp = new FancyRect; 

return (temp); 

Rectangle *the_rect; II declare object of type Rectangle 

the_rect = New_Rectangle( 2 ); 

After the above code executes, the_rect will be pointing to a Fan­
cyRect object. Because I passed a value of 2 to New_Rectangle(), the else 
portion of the if-else executed, creating a new FancyRect object. 

The variable the_rect is declared to be a pointer to a Rectangle object. 
Yet it points to a FancyRect object. While the type of variable the_ rect is a 
Rectangle pointer, the class of the object that the_rect points to is Fan­
cyRect. Again, this is permissible in C++. 

This situation leads to one very interesting question: When a program 
that includes the above code executes, and a Draw _Rectangle message is 
sent, how does the program know which Draw_Rectangle() routine to 
execute? Variable the_rect points to a FancyRect object, yet the_rect was 
declared to be of type Rectangle. Remember, both object types-Rectangle 
and FancyRect-have a Draw_Rectangle{) member function. The answer 
to the question is that the FancyRect Draw_Rectangle() function will 
execute. 

When code is compiled, certain things may be unclear. Consider this 
situation: 

Rectangle *the_rect; 
short rect_type; 

II declare object of type Rectangle 
II type of rect: FatRect or 
I I FancyRect 

II prompt the user to enter a value for rect_type 



Chapter 8 Dynamic Binding 243 

the_rect = New_Rectangle( rect_type ); 

the_rect->Set_Rectangle( 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle(); 

In the above code, the type of object that will be returned by 
New _Rectangle() isn't known, and can't be known, until runtime. The 
object's type won't be known until the user chooses the type of object-after 
the code is compiled and executed. Yet the code goes on to send the 
the_rect object a Draw_Rectangle message. When the compiler reaches this 
section of code, how does it mark, or indicate in any way, which 
Draw _Rectangle() function is to execute? The answer is, it doesn't. That 
decision is made each time the compiled program, the executable, runs. The 
determination of which class an object belongs to is reserved for the actual 
running of the application. There's a name for this object-oriented feature, 
and, if you haven't already guessed, the name is dynamic binding. 

The ability to send the same message to objects of different classes is 
called polymorphism. The implementation of polymorphism is done 
through dynamic binding. Dynamic binding involves the building of 
tables-lookup tables that are used by the program-by the compiler. 
Thankfully, the details of these tables remain transparent to the program 
user and to the programmer who writes the program. You won't ever have to 
concern yourself with how dynamic binding works-just that it does work. 

Dynamic binding is a very powerful-and sometimes difficult to 
grasp-programming concept. Figure 8-11 serves to further clarify this 
important feature of object-oriented programming. It shows that when a 
program sends a message to an object, that message is used by the lookup 
table to determine which of the functions with that name should be exe­
cuted. As promised, I've spared you the details of precisely what takes place 
in the lookup table and memory. 

A Dynamic Binding Example 
In the pages of this chapter, you have been presented with all the code you 
need to write a short program that uses dynamic binding-you just haven't 
seen it neatly packaged. The program that appears at the end of this section 
does just that. 

This section's program includes the Rectangle abstract class and the 
FatRect and FancyRect derived classes with which you're already familiar. 
The program uses the New _Rectangle() function to return either a FatRect 
object pointer or a FancyRect object pointer-in the form of a Rectangle 
pointer. Here's one more look at that important function: 



244 Symantec C++ 

function 
code 

Lookup Table 
__:___:_ ·.··· ... I 

lf.S:1Q RQlCIS 
:s ... aa s:iiC.re: 
:!lolf'W ell Ille 
'!!Ow..fe rwm 

function 
code 

My Program 

lf.Sevt s:iraa1 
C151C'«< GSi'M"e 

function 
code 

FIGURE 8-11 When an application is running, a lookup table is used to determine which function to 
execute. 

Rectangle *New_Rectangle( short choice ) 
{ 

Rectangle *temp; 

if ( choice == 1 ) 
temp new FatRect; 

else 
temp = new FancyRect; 

return (temp); 

The program passes a value of 2 to New _Rectangle() to cause that 
routine to return a pointer to an object of the FancyRect class. You can 
change this parameter value to a 1 if you want to get a pointer to a FatRect 
object instead: 

the rect New_Rectangle( 1 ); 



Chapter 8 Dynamic Binding 245 

New Window 

FIGURE 8-12 The output of the ReturnDerivedRect program 

Regardless of the type of object created, the program goes on to send 
two messages to the object: 

the_rect->Set_Rectangle( 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle(); 

Variable the_rect, declared to be a pointer to a Rectangle, will execute 
the proper Draw _Rectangle() routine-regardless of the class of the object 
that the_rect ends up pointing to. That's dynamic binding in action. 

The program that appears next is named ReturnDerivedRect. If you 
run it as is, you'll see a window like the one shown in Figure 8-12. If you 
change the parameter to New _Rectangle() to a 1, you'll see the window pic-
tured in Figure 8-13. · 

New Window 

I I 

FIGURE 8-13 The output of ReturnDerivedRect if the parameter to New_Rectangle is changed to a 
value of I 



246 Symantec C++ 

II***************** ReturnDerivedRect.cp ************** 

class Rectangle; II forward reference 

Rectangle *New_Rectangle( short ); II function prototype 

class Rectangle 
{ 

protected: 
Rect aRect; 

public: 
virtual void Set_Rectangle( short, short, short, 

short ); 
virtual void Draw_Rectangle( void ); 

} ; 

class FatRect public Rectangle 
{ 

public: 
void Draw_Rectangle( void ); 

} ; 

class FancyRect public Rectangle 
{ 

public: 
void Draw_Rectangle( void); 

}; 

II derived class 

II derived class 

void Rectangle •• Set_Rectangle( short L, short T, 
short R, short B ) 

SetRect( &this->aRect, L, T, R, B ); 
} 



Chapter 8 Dynamic Binding 247 

void Rectangle :: Draw_Rectangle( void) 
{ 

FrameRect( &this->aRect ); 

void FatRect :: Draw_Rectangle{ void) 
{ 

PenSize( 5, 5 ); 
FrameRect( &this->aRect ); 
PenNonna 1 () ; 

void FancyRect 
{ 

Draw_Rectangle( void ) 

short i; 
short height; 
short num_rects; 
Rect temp; 

II loop counter 
II height of the rectangle 
II number of inset rects to draw 
II work with a temporary rectangle 

height= this->aRect.bottom - this->aRect.top; 
num_rects = ( heightl4 ); 

temp = this->aRect; 

for ( i = O; i <= num_rects; i++ ) 
{ 

FrameRect( &temp); 
InsetRect( &temp, 2, 2 ); 

Rectangle *New_Rectangle( short choice ) 
{ 

Rectangle *temp; 



248 Symantec C++ 

if ( choice == 1 ) 
temp = new FatRect; 

else 
temp = new FancyRect; 

return ( temp ) ; 

Rectangle *the_rect; II declare object of type Rectangle 

void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
Ini tFonts (); 
Ini tWi ndows (); 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

11 \pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 

the_rect = New_Rectangle( 2 ); 

the_rect->Set_Rectangle( 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle(}; 

while ( !Button() ) 



Chapter 8 Dynamic Binding 249 

The Rectangle Class-Still an Abstract Class? ~ 
Chapter 7 defined an abstract class as a class that serves as a common 
ancestor of a family of derived classes. It was further defined as a class from 
which no objects are defined. Instead, objects are defined from the various 
classes that are derived from the abstract class. The previous example, for 
instance, used the Rectangle class as an abstract class. In that program, 
objects are always of either the FatRect derived class or the FancyRect 
derived class. Notice that in the previous example, however, I declared a 
variable to point to the Rectangle base class: 

Rectangle *the_rect; //declare object of type Rectangle 

So, is the Rectangle class still considered an abstract class? Yes. 
Although a pointer to a Rectangle variable is declared, it never actually 
points to a Rectangle object. You won't find the new operator used with the 
Rectangle class anywhere in the source code of the previous program. 
Instead, the _rect is always assigned to point to one of the two classes 
derived from the Rectangle abstract class. 

Passing Objects to Functions 

This chapter has demonstrated that objects can be returned by functions­
just as other data types such as shorts and floats are returned. The 
New_Rectangle() function developed in this chapter returns an object (or, 
more accurately, a pointer to an object). This may have led you to wonder if 
objects can also be used as parameters to functions. From the tide of this 
section, you've probably figured out that objects can indeed be used as 
parameters. 

A Rectangle Object as a Parameter 
An object can be used as a parameter to a function-but not to just any 
function. Recall that, when working with objects, the general access strategy 
is to declare class data members to be protected. That means that only 
objects of that class-or of a derived class-can access said members. Thus 
functions that aren't member functions of a class are unable to access or 
manipulate objects. Since you're familiar with shapes as objects, I'll elab­
orate by using an example that includes the Rectangle class. 

First, let's see what we can't do. If I want a function to do something 
with a Rectangle object (whether an object of the base class or a derived 



250 Symantec C++ 

Compile Errors 

Fi le "PassedRectangle . cp»; Line 91 
Error: member 'Rectangle: :aRect' of class 'Rectangle' is not accessible 

FIGURE 8-14 The error message reported when an object is passed to a function 

class), I can't just write a function and pass it an object or a pointer to an 
object. For instance, let's say I want to write a function that changes the size 
of a rectangle. The Change_Size() routine I wrote to do this task didn't 
work; it gave me the error message shown in Figure 8-14: 

void Change_Size( Rectangle *from rect 
{ 

short L, T, R, B; 

L = from_rect->aRect.left; 

II rest of function here 

What doesn't the compiler like about my Change_Size() function? 
The function tries to work with the Rectangle class data member aRect, 
which is declared to be protected: 

class Rectangle 
{ 

} ; 

protected: 
Rect aRect; 

public: 
virtual void Set_Rectangle{ short, short, short, short); 
virtual void Draw_Rectangle( void); 



Chapter 8 Dynamic Binding 251 

Only member functions of the Rectangle class or a class derived from 
the Rectangle class are aware of the aRect member. When Change_Size() 
attempts to look at one of the four coordinates of the Rect data structure, 
the compiler complains that Change_Size() has no right to do so. While at 
times like this data hiding may appear to get in my way, I'll be sure to keep 
in mind that encapsulation is one of the strengths of object-oriented 
programmmg. 

So, how does one pass an object to a function in order to access the 
object's data? By making the function a part of the object. In the code below 
I've modified the Rectangle class to include Change_Size() as one of its 
member functions: 

class Rectangle 
{ 

} ; 

protected: 
Rect aRect; 

public: 
virtual void Set_Rectangle( short, short, short, 

short); 
virtual void Draw_Rectangle( void); 
virtual void Change_Size( Rectangle*); 

Next, I wrote the Change_Size() function-being sure to use the 
scope resolution operator along with the Rectangle class name: 

void Rectangle :: Change_Size( Rectangle *from_rect) 
{ 

short L, T, R, B; 

L = from_rect->aRect.left; 
T = from_rect->aRect.top; 
R = from_rect->aRect.right; 
B = from_rect->aRect.bottom; 

this->Set_Rectangle( L, T, R, B ); 

The Change_Size() function is invoked by a Rectangle object. When 
Change_Size() is called, a pointer to a different Rectangle object is passed. 



252 Symantec C++ 

void Rectangle '' ......... ,,. ....... L~a .. 
{ . 

·.· ·~ ·~ fr011Lrect~>~~~ol:.i~t~i'; 
· 'I'·= frOJiLrect->itR&ct~~~ik:;· 

FIGURE 8-15 The Change_Size() function changes the size of the aRect data member of an object. 

The function accesses the aRect member of the passed-in object to get each 
of its four coordinates. Then it sets the aRect member of the object that 

· received the message to these new coordinates. Figure 8-15 illustrates what 
the function is doing. On the left side of the figure, you can see that Rect­
angle object A is calling Change_Size() and passing the larger Rectangle 
object B. At the bottom left of the figure are the two rectangles before the 
call. After the call, object A is the same size as object B-as shown in the 
bottom right portion of Figure 8-15. 

To make use of the Change_Size() function I'll have to declare two 
objects: 

Rectangle *the_rect; II declare object of type 
II Rectangle 

Rectangle *another_rect; II declare object of type 
II Rectangle 

I then allocate memory for the first object and set its size. This will be 
the object that is passed to the Change_Size(). I'll send the object a draw 
message to see what it looks like. The results are shown in Figure 8-16. 



Chapter 8 Dynamic Binding 253 

New Window 

I I 
FIGURE 8-16 The result of drawing the first object-the_rect. 

the_rect = new FatRect; 
the_rect->Set_Rectangle( 40, 20, 200, 90 ); 
the_rect->Draw_Rectangle(); 

Next I allocate memory for the second object and set its size. I've made 
this object a FancyRect, and I've positioned it in the upper left corner of the 
window. This object will be the one that invokes Change_Size(). Again, I 
send the new object a draw message to see what's going on. The results are 
shown in Figure 8-17. 

another_rect = new FancyRect; 
another_rect->Set_Rectangle( 10, 10, 35, 35 ); 
another_rect->Draw_Rectangle(); 

Ne.w Window 

I I 
FIGURE 8-17 The result of drawing the second object-another _rect 



254 Symantec C++ 

New Window 

FIGURE 8-18 The result of drawing the another _rect-after its size has been changed 

Now, to test the Change_Size() function, I'll invoke it through the 
FancyRect object, passing the FatRect object as the parameter. When 
Change_Size() has executed, the calling object, another _rect, should be the 
size of the passed object, the _rect . I'll send another _rect a draw message 
and, if all has gone well, another _rect should draw right over the rectangle 
that the_rect drew. Figure 8-18 shows that that's exactly what happened. 

another_rect->Change_Size( the_rect }; 
another_rect->Draw_Rectangle(}; 

The PassedRectangle Example Program 
PassedRectangle is a program that brings together the code used in this 
section. You'll find the source code and project for PassedRectangle on the 
accompanying disk. 

If you'd like to see exactly how PassedRectangle works, select Use 
Debugger from the THINK Project Manager's Project menu before 
running the program. Step through the code to see each of the three rect­
angles drawn to the program's one window. 

II**************** PassedRectangle.cp **************** 

class Rectangle 
{ 

protected: 
Rect aRect; 

public: 
virtual void Set_Rectangle( short, short, short, 

short); 



Chapter 8 Dynamic Binding 255 

virtual void Draw_Rectangle( void); 
virtual void Change_Size( Rectangle*); 

} ; 

class FatRect public Rectangle 
{ 

public: 
void Draw_Rectangle( void); 

} ; 

class FancyRect public Rectangle 
{ 

public: 
void Draw_Rectangle( void ); 

} ; 

II derived class 

II derived class 

void Rectangle Set_Rectangle( short L, short T, 
short R, short B ) 

{ 

SetRect( &this->aRect, L, T, R, B ); 
} 

void Rectangle :: Draw_Rectangle( void) 
{ 

FrameRect( &this->aRect ); 

void Rectangle:: Change_Size( Rectangle *from_rect) 
{ 

short L, T, R, B; 

L = from_rect->aRect.left; 
T = from_rect->aRect.top; 
R = from_rect->aRect.right; 



256 Symantec C++ 

B = from_rect->aRect.bottom; 

this->Set_Rectangle( L, T, R, B ); 

void FatRect :: Draw_Rectangle( void) 
{ 

PenSize( s, s ); 
FrameRect( &this->aRect ); 
Pen Normal () ; 

void FancyRect Draw_Rectangle( void ) 
{ 

short i; II loop counter 
short height; II height of the rectangle 
short num_rects; II number of inset rects to draw 
Rect temp; 

height = this->aRect.bottom - this->aRect.top; 
num_rects = ( heightl4 ); 

temp = this->aRect; 

for ( i = O; i <= num_rects; i++ ) 
{ 

FrameRect( &temp); 
InsetRect( &temp, 2, 2 ); 

Rectangle *the_rect; II declare object of type 
II Rectangle 

Rectangle *another_rect; II declare object of type 
II Rectangle 



void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
I nit Fonts() ; 
I nitWi ndows () ; 

Chapter 8 Dynamic Binding 257 

SetRect( &window_rect, 50, 50, 350, 150 ); 
· the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

"\pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ) ; 

the_rect = new FatRect; 
the_rect->Set_Rectangle( 40, 20, 200, 90 ); 
the_rect->Draw_Rectangle(); 

another_rect = new FancyRect; 
another_rect->Set_Rectangle( 10, 10, 35, 35 ); 
another_rect->Draw_Rectangle(); 

another_rect->Change_Size( the_rect ); 
another_rect->Draw_Rectangle(); 

while ( !Button() ) 

Returned Objects and the Animal 
Class 

So as not to leave the pet shop owner in the dark about the exciting pro­
gramming technique called dynamic binding, I've updated his Animal 



258 Symantec C++ 

database to include a function that returns an Animal pointer that points to 
one of the two Animal derived classes-GoodPet or BadPet. I stole the 
New _Rectangle() routine and modified it to work with the Animal class. 
Here's a look at New_Animal(): 

Animal *New_Animal( short choice) 
{ 

Animal *temp; 

if ( choice == 1 ) 
temp = new GoodPet; 

else 
temp = new BadPet; 

return (temp); 

Because the compiler won't know what an Animal is at the very top of 
the source code, I use a forward reference before writing the 
New_Animal() prototype: 

class Animal; II forward reference 

Animal *New_Animal (short); II function prototype 

Creating a new GoodPet object or a BadPet object is done using the 
same technique as was used in the rectangle examples: declare a pointer to 
an object of the base class; then assign that pointer to point to an object of 
either of the derived classes by invoking a function. Here's how that's done: 

Animal *the_pet; II declare object of type Animal 

the_pet = New_Animal( 1 ); 

Once the _pet is pointing to an object, I can send the object messages. 
Since I'm passing to New_Animal() a value that I know will create a 
GoodPet object, I'll include appropriate parameters for a popular pet: 

the_pet->Set_Type( 11 \pTropical fish" ); 
the_pet->Set_Desc( 11 \pContainable! 11 ); 

the_pet->Set_Cost( 20 ); 
the_pet->Write_Info(); 



Tropical fish 
Containable! 
$20 

Chapter 8 Dynamic Binding 259 

New Window 

** GOOD PET ** 

FIGURE 8-19 The output of the ReturnDerivedPet program 

All of the above code appears in the program that follows-Return­
DerivedPet. When you run ReturnDerivedPet, you'll see a window like the 
one shown in Figure 8-19. 

If you want to create a BadPet object, simply pass New_Animal() a 
value other than 1. You'll also want to include message parameters for less 
desirable pets. Here's an example: 

the_pet = New_Animal( 2 ); 

the_pet->Set_Type{ "\pStriped skunk" ); 
the_pet->Set_Desc( "\pDistinct odor" ); 
the_pet->Set_Cost( 75 ); 
the_pet->Write_lnfo{); 

If you use the above code in ReturnDerivedPet, you'll see a window 
like the one pictured in Figure 8-20. 

Striped skunk 
Di stinct odor! 
$75 
** OMIT?** 

New Window 

FIGURE 8-20 The output of ReturnDerivedPet when code to create a BadPet object is used 



260 Symantec C++ 

II**************** ReturnDerivedPet.cp *************** 

class Animal; II forward reference 

Animal *New_Animal( short); II function prototype 

void Fill_Str255( Str255, Str255 ); 

class Animal II base class 
{ 

protected: 
Str255 type; 
Str255 desc; 
long cost; 

public: 
virtual void Set_Type( Str255 ); 
virtual void Get_Type( Str255 ); 
virtual void Set_Desc( Str255 ); 
virtual void Get_Desc( Str255 ); 
virtual void Set_Cost( long ); 
virtual long Get_Cost( void ); 
virtual void Write_lnfo( void); 

} ; 

class BadPet public Animal II derived class 
{ 

public: 
void Write_Info( void); 

} ; 

class GoodPet public Animal 
{ 

public: 
void Write_Info( void); 

} ; 

II derived class 



Chapter 8 Dynamic Binding 261 

void Animal :: Set_Type( Str255 name) 
{ 

Fill_Str255( this->type, name); 

void Animal :: Get_Type( Str255 name) 
{ 

Fill_Str255( name, this->type ); 

void Animal :: Set_Desc( Str255 desc) 
{ 

Fill_Str255( this->desc, desc ); 

void Animal :: Get_Desc( Str255 conment) 
{ 

Fill_Str255( conment, this->desc ); 

void Animal :: Set_Cost( long price) 
{ 

this->cost = price; 
} 

long Animal :: Get_Cost( void) 
{ 

return ( this->cost ); 



262 Symantec C++ 

void Animal :: Write_Info( void) 

Str255 str; 

MoveTo( 20, 30 ); 
Drawstring( this->type }; 
MoveTo( 20, 45 }; 
Drawstring( this->desc ); 
NumToString( this->cost, str ); 
MoveTo( 20, 60 ); 
Drawstring( 11 \p$ 11 ); 

Drawstring( str ); 

void BadPet :: Write_Info( void) 

Animal :: Write_Info(); 
MoveTo( 20, 75 }; 
Drawstring( 11 \p** OMIT? ** 11 ); 

void GoodPet :: Write_Info( void) 
{ 

Animal :: Write_Info(); 
MoveTo( 20, 75 ); 
Drawstring( 11 \p** GOOD PET ** 11}; 

Animal *New_Animal( short choice) 
{ 

Animal *temp; 

if ( choice == 1 ) 
temp = new GoodPet; 

else 
temp = new BadPet; 



return (temp); 

Animal *the_pet; 

void main( void ) 
{ 

WindowPtr the_window; 
Rect window_rect; 

InitGraf( &thePort ); 
I nit Fonts(); 
In itWi ndows () ; 

Chapter 8 Dynamic Binding 263 

II declare object of type Animal 

SetRect( &window_rect, 50, 50, 350, 150 ); 
the_window = NewWindow( OL, &window_rect, 

SetPort( the_window ); 

"\pNew Window", true, 
noGrowDocProc, (WindowPtr)-lL, 
true, 0 ); 

the_pet =New_ Animal ( 1 ); 

the_pet->Set_Type( "\pTropical fish" ); 
the_pet->Set_Desc( "\pContainable!" ); 
the_pet->Set_Cost( 20 ); 
the_pet->Write_Info(); 

while ( !Button() ) 

Chapter Summary 

A base class may have any number of derived classes, each with its own set of 
member functions that override those defined in the base class. When that 



264 Symantec C++ 

happens, a program may have several objects of different class types, each 
calling like-named member functions. While these functions have the same 
name, they represent different code. Additionally, an object pointer can be 
declared to be a base class pointer, yet end up pointing to a derived object 
once the program is running. To resolve these issues, an object-oriented 
program uses dynamic binding. An object pointer declared to be a base class 
pointer is not bound to that base class until after the program is compiled 
and running. Only then, when the object that the pointer will point to is 
created, does the pointer become hound to either the base class or one of the 
classes derived from the base class. 

Objects act as other standard C or C++ variables in that they can be 
passed to functions and returned from functions. This applies to normal 
functions as well as class member functions. 



hapter 9 

Objects and the User 

Windows are one of the most important elements of a graphical user 
interface; they're the vehicle for displaying information to the user. A 
program's text and graphics are always drawn to a window, as all of this 
book's example programs have demonstrated. While windows are great for 
output, they don't allow input-for that, you must use alerts and dialog 
boxes. 

In this chapter, you'll see how to use an alert to let the user decide 
which type of object your program should create. The alert, however, will be 
just a stepping stone to the dialog box. Dialog boxes put users in complete 
control by letting them specify not only the type of object to create but all of 
the individual features of each object. 

Using an Alert to Create a New Object 

The source code examples in Chapter 8 show how your programs can work 
with objects without knowing which type of objects they are. In particular, 
the New _Rectangle() function developed in the previous chapter creates an 

265 



266 Symantec C++ 

object whose type is based on the value of a parameter passed to the routine. 
The ability to declare an object variable to be of a base class and then allow 
that variable to repr~ent an object of a derived class instead is a very pow­
erful feature of object-oriented programming. 

When a program sends a message to an object of a derived class, 
dynamic binding ensures that the proper member function is executed. 
Here's how dynamic binding was implemented in Chapter 8: 

Rectangle *New_Rectangle( short choice ) 
{ 

Rectangle *temp; 

if ( choice == 1 ) 
temp = new FatRect; 

else 
temp = new FancyRect; 

return (temp}; 

Rectangle *the_rect; 

the_rect = New_Rectangle( 2 ); 

the_rect->Set_Rectangle( 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle{}; 

Macintosh programs place the user in charge-that's what makes them 
user-friendly. The New _Rectangle() function attempts to be user-friendly 
by not limiting itself to the generation of a single type of object. While the 
function is a step in the right direction, a program that uses it will have 
certain limitations. There's still a lot of information hard-coded into the 
above code-information in the form of unvarying numbers rather than 
variables that can take on different values. Any truly useful program will 
give the user the opportunity to input most or all of the values. To do that, 
I'll have to start including more elements of the Macintosh user interface. 

So far, I've included a window in each program so that I could view the 
program's output. Now, I'll have to start including a way for a user of my pro­
grams to enter information. Menus, alerts, and dialog boxes are three 
methods. Since the alert is the easiest to create and maintain, I'll start with it. 



FIGURE 9-1 

Chapter 9 Objects and the User 267 

RLRT ID = 128 from Rlert I nput.11.rsrc 

.ii: fllll ldll 9iildDUrt:lll WlndDW 

C111k1*1 1un,rl1tl l1tt11 ftr tt1 t.•• 
1f'rnt11 111 1lJ11t,11~ Ilk• 1r11tlf . 

[ F1tln1l1 1 11 ) [ fllh 111111 1 11 

Top: ~15_0~ 

Le ft: ._I 4_o _ _. 

Height: 1140 

Width: 1360 

Color: @ Default 
0 Custom 

Dill ID: ~11_2_8_~ 

The ALRT resource for a program that uses an alert 

Alert Resources 
The disk that accompanies this book includes an example program named 
Alertlnput. This is the first example that makes use of a resource file. The 
resource file-named Alertlnput.7t.rsrc-consists of three resources. Two of 
these resources-an ALRT and a DITL-will be used by the program to post 
an alert. Figure 9-1 shows how the ALRT resource looks in the resource 
editor ResEdit, while Figure 9-2 shows the DITL that is used by the ALRT. 

~lfil D Ill ID = 128 from Rlert I nput.11.rsrc 

Click the appropriate button for the type 3 

of rectangle object you'd like created. 

[ =: ~at Rectangle _j [ Fancy Rectangle~ 

FIGURE 9-2 The DITL resource for a program that uses an alert 



268 Symantec C++ 

-Ii§ Alert I nput.11.rsrc ~Iii 
i} 

···-·- I a·-·-=-=- CJ 
ALRT DITL WIND 

FIGURE 9-3 A resource file with resources for an alert and a window 

The third resource in the file is a WIND. Since none of my previous 
examples used a resource file, I've used the routine NewWindow()· to supply 
window-defining information to the Toolbox. Now that I'll be using a 
resource file, I'll define window attributes in a WIND resource and use the 
Toolbox function GetNewWindow() to load this information into memory. 
Figure 9-3 shows the resource types present in the Alertlnput.1t.rsrc file. 

Using the Alert to Select an Object Type 
Items 1 and 2 in the DITL of the alert are push buttons that will give the 
user the ability to choose the object type. Figure 9-4 shows what the user 
will see when running a program that posts the alert. 

Click the appropriate button for the type 
of rectangle object you'd like created. 

(( Fat Rectangle JJ ( Fancy Rectangle J 

FIGURE 9-4 The alert that results from the ALRT and DITL resources 



Chapter 9 Objects and the User 269 

The Toolbox routine Alert() does all the work of posting an alert and 
monitoring the user's actions while the alert is on the screen. When the user 
dismisses the alert by clicking the mouse on one of the alert's buttons, 
Alert() returns the item number of the clicked-on item. I've added a call to 
Alen() to the New _Rectangle() function. Here's how that routine now 
looks: 

Rectangle *New_Rectangle( void ) 
{ 

Rectangle *temp; 
short choice; 

choice= Alert( 128, nil ); 

if ( choice == 1 ) 
temp = new FatRect; 

else 
temp = new FancyRect; 

return (temp); 

When the Alert() is dismissed, variable choice will hold the item 
number of the clicked-on button. New_Rectangle() uses that value in an if­
else statement to determine which type of object to create. Using the alert 
eliminates the need to pass a parameter to New_Rectangle(). Now the 
routine is called as shown here: 

Rectangle *the_rect; 

the_rect = New_Rectangle(}; 

the_rect->Set_Rectangle( 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle{); 

An Alert Example 
Alertlnput is a program very similar to the ReturnDerivedRect program 
found in Chapter 8. The main difference is in the way Alertlnput uses an 
alert to let the user be in charge of selecting the type of object to create. The 
program also differs from ReturnDerivedRect in that it uses a WIND 



270 Symantec C++ 

resource to display a window. The last change is purely cosmetic; because 
the example programs are getting larger, I've added some fancy comments to 
separate the program into sections. 

IMPORTANT ,~,'.;~ , 

Don't forget about the Symantec resource file naming convention. A project's 
resource file must have the same name as the project, with .rsrc appended to it. 
Thus for my Alertlnput.1t project, the resource file is named Alertlnput.n.rsrc. 
You can verify this by checking out the Alertlnput example on the accompanying 
disk. 

II******************* Alertlnput.cp ****************** 

ll~-------------11 forward references 

class Rectangle; 

II _____________ _ 

II function prototypes 

Rectangle *New_Rectangle( void); 

II 
II #define directives 

#define WIND ID 128 
#define ALRT ID 128 

II 
II global variables 

Rectangle *the_rect; 



Chapter 9 Objects and the User 271 

class definitions 

class Rectangle 
{ 

} ; 

protected: 
Rect aRect; 

public: 
virtual void Set_Rectangle( short, short, short, 

short); 
virtual void Draw_Rectangle( void); 

class FatRect public Rectangle 
{ 

public: 
void Draw_Rectangle( void); 

} ; 

class FancyRect public Rectangle 
{ 

public: 
void Draw_Rectangle( void); 

} ; 

II _____________ _ 
II 

void Rectangle 

member function definitions 

Set_Rectangle( short L, short T, 
short R, short B ) 

SetRect( &this->aRect, L, T, R, B ); 



272 Symantec C++ 

void Rectangle :: Draw_Rectangle( void) 
{ 

FrameRect( &this->aRect ); 

void FatRect :: Draw_Rectangle( void) 
{ 

PenSize( 5, 5 ); 
FrameRect( &this->aRect ); 
PenNormal{); 

void FancyRect Draw_Rectangle( void ) 
{ 

short i; II loop counter 
short height; II height of the rectangle 
short 
Rect 

num_rects; 
temp; 

II number of inset rects to draw 
II work with a temporary rectangle 

height = this->aRect.bottom - this->aRect.top; 
num_rects = ( heightl4 ); 

temp = this->aRect; 

for ( i = O; i <= num_rects; i++ ) 
{ 

FrameRect( &temp); 
InsetRect( &temp, 2, 2 ); 

II _____________ _ 
II main() 

void main( void ) 



WindowPtr the_window; 

lnitGraf( &thePort ); 
lnitFonts(); 
lni tWi ndows (); 
InitCursor(); 

Chapter 9 Objects and the User 273 

the_window = GetNewWindow( WIND_ID, nil, (WindowPtr)-lL ); 
SetPort( the_window ); 

the_rect = New_Rectangle{); 

the_rect->Set_Rectangle( 50, 25, 200, 75 ); 
the_rect->Draw_Rectangle{); 

while ( !Button() ) 

II _____________ _ 
II open alert and create new object 

Rectangle *New_Rectangle( void ) 
{ 

Rectangle *temp; 
short choice; 

choice= Alert( ALRT_ID, nil ); 

if ( choice == 1 ) 
temp = new FatRect; 

else 
temp = new FancyRect; 

return ( temp); 



274 Symantec C++ 

Updating an .Object 

While objects can be defined to do nothing more than hold information, 
they usually also have the ability to output at least some information to a 
window. For example, a Rectangle object stores the coordinates of a rect­
angle and has a member function that draws that rectangle to a window. An 
Animal object holds a pet's name, cost, and suitability and has a member 
function that writes all of this information to a window. 

When you write a program that make use of windows-as all of mine 
do-you should give the program the ability to update, or redraw, the con­
tents of a window-whether you're using an object-oriented language or a 
procedural one. Up to this point I haven't been doing that. That's because, 
to keep the programs as simple as possible, I've kept windows "frozen" on 
the screen; the user could take no action to move or obscure a window. Now 
that the examples are becoming more Mac-like, I'll have to handle windows 
in a more appropriate manner. 

The Need to Redraw a Window's Contents 
Since you've just finished with the Alertlnput program, I'll use it as an 
example of why updating windows is so important. I can easily modify the 
Alertlnput example to create two objects instead of one. I just declare a 
second Rectangle variable and call New _Rectangle() a second time: 

Rectangle *the_rect; 
Rectangle *another_rect; 

the_rect = New_Rectangle{); II create first object 

the_rect->Set_Rectangle( 20, 20, 150, 80 ); 
the_rect->Draw_Rectangle{); 

another_rect = New_Rectangle(); II create second object 

another_rect->Set_Rectangle( 200, 40, 275, 70 ); 
another_rect->Draw_Rectangle{); 

If I designate the first object a FatRect object and the second object a 
FancyRect object, the program's window should look like the one pictured 
in Figure 9-5. Right? 



Chapter 9 Objects and the User 275 

New Window 

I I 

FIGURE 9-5 The expected output after creating two objects 

When I ran a program that contained the above code snippet, I didn't 
see the results shown in Figure 9-5. Instead, I saw only the second object in 
the window, as shown in Figure 9-6. 

What happened to the first object? It was drawn, but when 
New_Rectangle() was called a second time, the alert obscured the window, 
as shown in Figure 9-7. 

When the alert was dismissed, the window's contents were empty. 
Then the second object was sent one message to establish the coordinates of 
its rectangle and another message to draw its rectangle: 

another_rect->Set_Rectangle( 200, 40, 275, 70 ); 
another_rect->Draw_Rectangle(); 

What should have happened before the above code ran? When the 
alert was dismissed, my program should have determined that the contents 
of the obscured window needed to be redrawn, or updated. What my 

New Window 

FIGURE 9-6 The actual output after creating two objects 



276 Symantec C++ 

Click the appropriate button for the type 
of rectangle object you'd like created. 

(( Fat Rectangle JJ ( Fancy Rectangle J 

FIGURE 9-7 An alert obscuring part of a window 

program needs is a means of determining when an update is necessary. That 
means that it's time for the addition of a real event loop to my program. 

Update Events and Redrawing 
a Window's Contents 

A Mac program should be event-driven; it should be aware of, and respond 
to, events such as mouse clicks and keystrokes. For the sake of simplicity, my 
examples haven't been event-driven. This chapter and the ones that follow 
will be discussing Macintosh-specific topics rather than generic object-ori­
ented topics. Programs that include interface features, such as alerts and 
dialog boxes for entering object information and windows for outputting 
information, require a knowledge of events. My event loop, shown below, 
doesn't provide this information. 

while ( !Button() ) 

The above while loop is aware of only one type of event-a click of the 
mouse button. A better way of doing things is to have an infinite loop that 
repeatedly calls a function that examines a single event and acts accordingly: 

for ( ; ; ) 
Handle One_Event(); 

If you've programmed the Mac using C, the Handle_ One_Event() 
routine will look very familiar. It calls the Toolbox function 



Chapter 9 Objects and the User 277 

WaitNextEvent() to grab hold of the most recent event. Then a switch 
statement is used to determine how to best handle this particular event. 

void Handle_One_Event( void 
{ 

EventRecord the_event; 
WindowPtr 
GrafPtr 

window; 
old_port; 

WaitNextEvent( everyEvent, &the_event, 15L, OL ); 

switch ( the_event.what 
{ 

case mouseDown: 
if ( the_rect != nil ) 

delete the_rect; 
ExitToShell (); 
break; 

case updateEvt: 
window = (WindowPtr)the_event.message; 
GetPort( &old_port ); 
SetPort( window); 
BeginUpdate( window); 

EraseRgn( window->visRgn ); 
if ( the_rect != nil ) 

the_rect->Draw_Rectangle(); 
EndUpdate( window); 
SetPort( old_port ); 
break; 

In keeping with my philosophy of providing examples that have a 
minimum of code, I'll continue to simply use a click of the mouse button to 
end the program. A mouse click is an event, and WaitNextEvent() will 
respond by placing a value of mouseDown in the what field of the Event­
Record variable the event. Handle_One_Event() will then delete the 
the _rect object, if pr~ent, and then call the Toolbox function ExitToShell() 
to exit the program. 



278 Symantec C++ 

NOOE -~ 

A nil pointer is a pointer that hasn't been assigned to point to anything. When 
the rect is declared, it has a value of nil. After the new operator is used to 
assign the pointer to point to an object, it will have a value other than nil. 

Is it important that I delete the the _rect object b~fore quitting the 
program? That depends. If the object has a destructor member function, 
then it is important, because the deletion of an object is what triggers the 
object's destructor function. The Toolbox function ExitToShell() doesn't 
delete objects, so no destructors will be called as the program exits. The 
examples in the last several chapters haven't had objects with destructors, 
nor do the ones in this chapter. Since I'm starting to fill in my source code 
to make it more like a full-featured program, however, I'll get in the habit of 
properly cleaning up before exiting-whether I use destructors or not. 

After a mouseDown event, the second type of event the 
Handle_ One_Event() function responds to is an updateEvt. When any part 
of an obscured window comes back into view, the system generates an 
update event. That's what happens when an alert that is covering (or par­
tially covering) a window is dismissed. If a program includes an event loop 
with a call to WaitNextEvent() in it, the update event will be captured, and 
the loop can respond to it. 

If more than one window is on the screen, your program must know 
which window needs updating. That information is held in the message 
field of the EventRecord returned by WaitNextEvent(). Before attempting 
to update the window, extract this information and cast it to a WindowPtr. 
Then call GetPort() to save the current port and SetPort() to set the active 
port to the window that needs updating. 

window = (WindowPtr)the_event.message; 
GetPort( &old_port ); 
SetPort( window); 

IMPORTANT :tJ: 
Skipping the steps that save and set ports may work in a single-window program. 
Then again, it may not. And if you ever change your program to include more 
than one window, a failure to keep track of graphics ports will almost always lead 
to problems drawing to windows and updating them. Save those ports! 



Chapter 9 Objects and the User 279 

BeginUpdate( window}; 
EraseRgn( window->visRgn }; 
if ( the_rect != nil ) 

the_rect->Draw_Rectangle(); 
EndUpdate( window}; 

Once you've told the Mac which port-or window-· it will be 
working with, go ahead and begin the update. Window updating is some­
thing that you, the programmer, are responsible for. The Mac doesn't know 
exactly when you're going to take care of the updating, so you have to tell it. 
That's exactly what the calls to Begin Update() and EndUpdate() do. Events 
are stored· in an event queue, or holding area. When you call the 
BeginUpdate() and EndUpdate() pair of Toolbox routines, the Mac knows 
that this one event has been handled and that it's time to remove it from the 
queue. 

Between the calls to BeginUpdate() and EndUpdate() lies the code 
that does the actual updating. EraseRgn() lets QuickDraw know which part 
of the window needs redrawing. Then, it's up to you to draw the window 
contents. For my example, simply redrawing the the_rect object does the 
trick. As I did for the mouseDown event, I first make sure that the object 
exists. I know that it was declared, but I don't know at exactly what point in 
the execution of the program it was created. If the object has any value other 
than nil, memory has been allocated for it. That means it's safe to draw its 
rectangle data member. 

Before I consider my handling of the update event complete, I have to 
reset the graphics port to whatever port was active before the update began. 
I don't have to attempt to figure out which port that was; I saved that infor­
mation at the start of the update when I called GetPort(). Now I call 
SetPort() to restore the saved port to the active port: 

SetPort( old_port }; 

Testing the Object Update 
To test the updating of a window to which object information has been 
drawn, I'll write a simple program that opens a window, creates a Rectangle 
object, and then draws the object's rectangle to the window. Next, I'll open 
an alert. The only purpose of the alert will be to obscure the window. When 
the alert is dismissed, the rectangle that was in the window should be 
redrawn-if the updateEvt is handled properly by my event loop. 

The resource file for my test program will need resources for two alerts. 
The first alert you've already seen-it's the one posted by New_Rectangle() 



280 Symantec C++ 

RLRTs from UpdateObject.1l'.rsrc: 
!Q. Size Name 

128 12 
129 12 

F:li Dills from UpdateObject.11.rsrc _!iij 
!Q. Size Name 

,___ 128 156 tit 
129 170 

~ • 
FIGURE 9-8 A program that has two alerts requires two ALRT resources and two DITL resources. 

to allow the user to select an object type. The second alert will exist only to 
obscure the program's window. Figure 9-8 shows the resource IDs of the 
two ALRT resources and the two DITL resources my program will need. 

Figure 9-9 is a look at the DITL resource for the second alert. It con­
sists of a button to dismiss the alert and a text item that tells what the alert 
is· doing. 

In my source code I'll include code that opens a window, sets the port, 
creates a new object, and draws the object's rectangle. Then I'll post the alert 

i o ITL ID = 129 frt>in Upda 

When this alert is dismisse1]1 
an update euent (updateEuO 
will occur. That will trigger 
the code that redraws the 
contents of the window. 

[ OK ~ 

FIGURE 9-9 The DITL resource for the second alert 

8 Button 

181 Check Box 

@ Radio Button 

I;] Control 

T: Static Text 

::i.l.::~~~:t.:!.~i.t.:~:::::: 
& Icon 

la Picture ............................................ 
llilll! User Item 



Chapter 9 Objects and the User 281 

New Window 

_._ __._ 

When this alert is dismissed, 
an update euent (updateEut) 
will occur. That will trigger 
the code that redraws the 
contents of the window. 

[!]) 

FIGURE 9-10 The second alert will obscure part of the window. 

that obscures the window. Figure 9-10 shows what the user will see after the 
call to Alert(). 

the_window = GetNewWindow( WIND_ID, nil, (WindowPtr)-lL ); 
SetPort( the_window ); 

the_rect = New_Rectangle{); 
the_rect->Set_Rectangle( 20, 20, 150, 80 ); 
the_rect->Draw_Rectangle(); 

Alert( 129, nil ) ; 

Let's see what happens when the user dismisses the alert. I ran my test 
program with the Use Debugger feature turned on so that I could step 
through it. I set a break point at the first line in the updateEvt section of my 
Handle_ One_Event() routine. Sure enough, when the alert was dismissed, 
the program stopped at this breakpoint. Figure 9-11 shows what my screen 
looked like. Note that the lower part of the program window is blank­
that's the part that was covered by the alert. Also notice the value of the 
object pointer variable the_rect, which is shown in the Data window in 
Figure 9-11. Its exact value isn't important. What is significant is that it 
doesn't have a value of OxOOOOOOOO. A pointer that has a value of all zeros is 
a nil pointer. Because the_rect was assigned to point at an object earlier in 
the program, it shouldn't be-and isn't-a nil pointer. 



282 Symantec C++ 

I 

Nell' lllindow 

I 

i f < the.-rec:t ! = n i I ) 

~~~!~i~~=l~~~;"ect; ill 
, case updateEvt: ili1i1

w i ndow = < W i ndowP tr >the-event . mm
Ge tPor t < &o I d_por t) ; i~ni
SetPort< window >; llli1i
Beg i nUpdate< window) ; iHt!l

EraseRgn(window- > vi sRgn) ; i~j1~!
if < the.-rect != ni I) '•·k

the.-rect->Draw...Rectangl
EndUpdate< window) ;

• Handle_Dne_Event(void)

I
the_rect

FIGURE 9-11 The test program paused at a breakpoint by the update event

Data

l0[g]
Ox01638036 ~

-0
I-'-

To verify that my update code is working, I stepped through the upda­
teEvt case. Figure 9-12 shows that, because the object pointer isn't nil, the
code under the if statement is executed. The the~rect object gets a draw
message sent to it, and the object's rectangle is again drawn to the window.

A nil pointer is one that doesn't point to any valid data. That's repre­
sented by a value of OxOOOOOOOO. To verify my assumptions about the _rect,
I reran my test program. This time, before clicking on the Go button, I set
a breakpoint at the line of code that gives the _rect its value. In Figure 9-13,
you can see that the program is stopped at this point. The arrow pointing to
the New_Rectangle() line means this line of code is the next line to execute.
That means that the _rect shouldn't have a value at this point; it doesn't get
a value until this line executes. Notice in the Data window in Figure 9-13
that the rect does indeed have a nil value. ·

Chapter 9 Objects and the User 283

Data

I l0[g]
<> ! i f (the..rect ! = n i I

gi oo~;:!~::::~~;"~l; I
+ i w i ndow = (W i ndowP tr)the.-even t . W!ii
<>! GetPort< &old_port >; !ilil!
<>! SetPort< window) ; Hl!ii
<> ! Beg i nUpda te (w i ndow) ; i!i!ii
<> l EraseRgn (w i ndow-> v i sRgn) ; mm
<> ! i f (the..rec t ! = n i I) ''""

the..rect Ox0163BD36 &.

<> • the..rect- >Draw.....Rectang I
<> j EndUpdate(window >;

""""""""'""""~"""" • Handle....One-Event(void) ~
75 µ::..

FIGURE 9-12 The test program paused at a breakpoint just before the window is updated

Data

I l0[g]
<>!

l :::::::o:h:;,:::=:::: :• ND_ID, ~I
<> l the..rect->Set.....Rectang I e(20, 20, 150 ;,11'.!i'.:J

<> i the..rect->Draw.....Rectang I e<);

the..rect OxOOOOOOOO &.
Ii

<>i Alert< 129, ni I >;

<> j for (; ;) ~ µ::.. • main

FIGURE 9-13 The object pointer has a value of nil before New_Rectangle() is called.

Clicking on the Step button once executes the line of code that holds
the call to the New_Rectangle() routine. Whe~ the call is completed,
the_rect should be pointing to an object, and the black arrow should move
down a line. Figure 9-14 shows that this is exactly what has happened. You
can see in the Data window that the _rect is no longer a nil pointer. It is now

284 Symantec C++

Data

I l0[g]
In i ti.Ii ndows <);

i~~~i~~~~~;~;~;;;:~,: I:~':~ I
the....rect- >Draw....Rectangle<>;

the....rect Ox0163BD36 ~

)

Alert< 129, ni I >;

for<; ;> to
11m1

r--

FIGURE 9-14 After the object is created, the object pointer no longer has a value of nil.

pointing to the start of the data that describes what the _rect is-the data
that holds the new object created in the New_Rectangle() function.

Updating an Object-an Example
UpdateObject is a program that demonstrates the updating of a window
that holds object information. You've seen its source code throughout this
chapter, so I'll spare you a detailed explanation. When you run Upda­
teObject, you'll see an alert that lets you create an object. When you dismiss
the alert, a rectangle will be drawn to the program's window. After that,
you'll see a second alert that obscures the window. Dismissing that alert
causes an update event and the redrawing of the window's contents. If you
have the Symantec C++ compiler, try running the program with the Use
Debugger feature enabled so that you can verify the concepts discussed in
the previous section.

II***************** UpdateObject.cp *****************

ll~~~~~~~~~~~~~-
11 forward references

class Rectangle;

Chapter 9 Objects and the User 285

function prototypes

Rectangle *New_Rectangle(void);
void Handle_One_Event(void);

II
II #define directives

#define WIND ID 128
#define ALRT ID 128
#define OBSCURE ALRT ID 129 - -

II
II global variables

Rectangle *the_rect;

class definitions

class Rectangle
{

protected:
Rect aRect;

public:
virtual void Set_Rectangle{ short, short, short,

short);
virtual void Draw_Rectangle(void);

} ;

class FatRect : public Rectangle
{

public:

286 Symantec C++

void Draw_Rectangle(void);
} ;

class FancyRect public Rectangle
{

public:
void Draw_Rectangle(void);

} ;

member function definitions

void Rectangle Set_Rectangle(short L, short T,
short R, short B)

SetRect(&this->aRect, L, T, R, B);

void R~ctangle :: Draw_Rectangle(void)
{

FrameRect(&this->aRect);

void FatRect :: Draw_Rectangle(void)
{

PenSize(5, 5);
FrameRect(&this->aRect);
PenNorma l () ;

void FancyRect Draw_Rectangle(void)
{

short i;
short height;

II loop counter
II height of the rectangle

Chapter 9 Objects and the User 287

short
Re ct

num_rects;
temp;

II number of inset rects to draw
II work with a temporary rectangle

height = this->aRect.bottom - this->aRect.top;
num_rects = (heightl4);

temp = this->aRect;

for (i = O; i <= num_rects; i++)
{

FrameRect(&temp);
InsetRect(&temp, 2, 2);

void main(void)
{

WindowPtr the_window;

InitGraf(&thePort);
Ini tFonts ();
Ini tWi ndows ();
Ini tCursor();

the_window = GetNewWindow(WIND_ID, nil,
(WindowPtr)-lL);

SetPort(the_window);

the_rect = New_Rectangle();
the_rect->Set_Rectangle(20, 20, 150, 80);
the_rect->Draw_Rectangle();

Alert(OBSCURE_ALRT_ID, nil);

for (; ;)

main()

288 Symantec C++

Handle_One_Event(};

II ________________________________ _
II open alert and create new object

Rectangle *New_Rectangle(void)
{

}

Rectangle *temp;
short choice;

choice= Alert(ALRT_ID, nil);

if (choice == 1)
temp = new FatRect;

else
temp = new FancyRect;

return (temp);

II ____________ _
II

void Handle_One_Event(void)
{

EventRecord the_ event; ·
WindowPtr
GrafPtr

window;
old_port;

handle single event

WaitNextEvent(everyEvent, &the_event, 15L, OL };

switch (the_event.what)
{

case mouseDown:
if (the_rect != nil)

delete the_rect;

ExitToShel l ();
break;

case updateEvt:

Chapter 9 Objects and the User 289

window = (WindowPtr)the_event.message;
GetPort(&old_port);
SetPort(window);
BeginUpdate(window);

EraseRgn(window->visRgn);
if (the_rect != nil)

the_rect->Draw_Rectangle{);
EndUpdate(window);
SetPort(old_port);
break;

Using a Dialog Box to Create
a New Object

From the programmer's vantage point, an alert is very easy to handle-a call
to the Toolbox routine Alert() does all the work. Ease-of-use was, in fact,
my reason for using an alert to introduce the idea of an object-oriented
program receiving object information from the user. But an alert has several
limitations that make it impractical when your program requires interaction
that is anything more than a simple choice. To move to the next level, you'll
want to use a dialog box.

Dialog Box Resources
My earliest attempts at using a function to vary the type of object created
required no intervention on the part of the user. I made the decision by
passing a particular value to the function:

the_rect = New_Rectangle(2);

Using an alert to place this decision in the hands of the user is a step in
the right direction, but it doesn't go far enough. The user doesn't have any

290 Symantec C++

New Object Dialog BoH

Rectangle type: Rectangle coordinates:

O Fat Rectangle Left: l._1_0 _ _,
® Fancy Rectangle

Right: l a_o _ _.

Top: 1 1_0 _ _.

Bottom: l a_o _ __. () OK

FIGURE 9-15 A dialog box that lets the user provide the specifications for an object

say in establishing the size of the object's rectangle. That is still decided by
me when I set the parameters for a call to Set_Rectangle():

the_rect->Set_Rectangle(20, 20, 150, 80);

A better approach would be to use a dialog box. With a little planning,
a single dialog box will allow the user to supply all the information necessary
to define an object. For a program that uses the Rectangle class, a dialog box
like the one pictured in Figure 9-15 would be perfect.

A dialog box requires a DLOG resource and a DITL resource. Figure
9-16 shows the DITL I created for a dialog box like the one pictured in
Figure 9-15. From the name of the resource file, you can see that this DITL
will be used in a program named Dialoglnput. You'll see the complete
source code listing for that program later in this chapter

In Figure 9-16, item 1 is a push button. Items 2 and 3 are radio
buttons, and items 4 through 7 are edit text boxes. The remaining items are
static text items. Figure 9-16 shows how the DITL looks in ResEdit when
the Show Item Numbers menu option is selected. I'll need these item
numbers when it comes time to write my source code. If you have enough
memory on your Mac, you might want to run your resource editor and the
Symantec C++ compiler at the same time. Then you can simply switch from
the resource editor to the compiler and type in some #define directives as
you work on the resource file-just as I've done here:

Chapter 9 Objects and the User 291

· •~ D ITL IQ ;= 128 frqll• Dialo Input. 'JJ' .rsrc

!New Object Dialog B@

!Rectangle typ@

lo Fat Rectangle lil
lo Fancy Rectangle Laj

[OK L1j

!Rectangle coordinatajaj

~1110 WI
IRighl2J 111 00 WI
~1110 WI

IBottdlL) 11so wl

FIGURE 9-16 The DITL resource used to create the dialog box

#define WIND ID 128
#define DLOG ID 128
#define OK BUTTON 1
#define FAT OBJECT TYPE 2 - -
#define FANCY OBJECT TYPE 3 - -
#define LEFT ITEM 4 -
#define RIGHT ITEM 5
#define TOP ITEM 6
#define BOTTOM ITEM 7

Handling Radio Button Items • a Dialog Box 1n
The code that supports my dialog box must be able to handle radio buttons
and edit text boxes. I'll examine the handling of radio buttons first. To keep
my code nice and portable, I'll write a simple utility routine that handles the
turning off of one radio button and the turning on of another. That's how
groups of radio buttons always work; when a radio button is clicked on, it is
turned on and the button that was on goes off. I'll call the clicked-on button
the new button, and the button that should be turned off the old button.
Here's the function that handles that chore:

292 Symantec C++

void Set_Radio_Buttons(DialogPtr dlog, short *old_radio,
short new_radio)

Handle hand;
short type;
Rect box;

GetDitem(dlog, *old_radio, &type, &hand, &box);
SetCtlValue((ControlHandle)hand, 0);

GetDitem(dlog, new_radio, &type, &hand, &box);
SetCtlValue((ControlHandle)hand, 1);

*old radio new_radio;

The Set_Radio_Buttons() function has three arguments. The first is a
pointer to the dialog box that holds that button. The second argument is a
pointer to the old button-the one that is to be turned off. The third argument
is the item number of the new radio button-the button that is to be turned on.

A call to GetDitem() provides information about the old radio button.
Note that since o l d _radio was passed in as a pointer, I have to use the *
operator here to dereference the pointer. My only purpose in calling this
function is to get a handle to the item. GetDitem() returns one in the hand
variable. Once I have a handle to the button, I can cast it to a Control­
Handle and use it as a parameter in a call to SetCtlValue(). This function
will turn a control-such as a radio button-on or off. The second
parameter to SetCtlValue() tells the routine whether the control should be
turned on or off. A value of 1 turns it on, and a value of 0 turns it off. I'll
pass in a 0 to turn the old radio button off.

Set_Radio_Buttons() makes second calls to GetDitem() and
SetCtlValue() to turn the new radio button on. Then, an assignment is made.
Now that the new radio button is turned on, I'll want to consider it the old
button. That way; when the user again dicks on a radio button, the proper pair
of button item numbers will be sent to Set_Radio_Buttons(). The changing of
old_radio from its current value to the value of new_radio explains why
o l d _radio was passed in as a pointer. Since the function is changing the value of
a variable-old _radio-that variable had to be passed in as a pointer.

My dialog-handling routine, which you'll see shortly, will respond to a
mouse click on a radio button by setting the value of new_ radio to the item

Chapter 9 Objects and the User 293

number of the clicked-on item. Then a call to Set_Radio_Buttons() will be
made-like this:

DialogPtr dlog;
short item;
short new_radio;
short old_radio;

II open dialog box
II set item equal to item number of clicked-on item

new_radio = item;
Set_Radio_Buttons(dlog, &old_radio, new_radio);

Handling Edit Text Items in a Dialog Box
The handling of edit text items is done a little differently than the handling
of radio buttons. When a user clicks on a radio button, your code must
respond immediately to change the button settings. When a user types in an
edit box, however, the program need do nothing. The user can type, edit,
and retype in an edit box as much as he or she wants-without any inter­
vention on your program's part. It's not until the user is done with the dialog
box-when a click on the OK button confirms that the values in the edit
boxes are correct-that your program need take action.

My dialog box has four edit boxes-one for each coordinate of the new
rectangle object that's about to be created. Because I'll be repeating the same
code four times, I've written a short function that can be called to get the
information from each of the edit boxes. Because I pass the function a pointer
to the dialog box that holds the edit text boxes, the function is generic enough
that it can be used for any dialog box-in this program or any other program
I write. Here's a look at the Get_ Text_From_Edit() routine:

void Get_Text_From_Edit(DialogPtr dlog, short edit_item,
Str255 the_str)

Handle hand;
short type;
Rect box;

GetDitem(dlog, edit_item, &type, &hand, &box);
GetIText(hand, the_str);

294 Symantec C++

In addition to a pointer to the dialog box, Get_Text_From_Edit()
receives the item number of an edit box and a Str255 as parameters. A call
to GetDitem() returns a handle to the edit box, and a call to GetIText()
makes use of that handle to get the text from that edit box. GetIText()
places that text in the Str255 variable. When the function completes, the
calling routine will have the edit text item text in the Str255 variable
the_str. The code snippet that follows shows a call to
Get_Text_From_Edit(). The call passes to Get_Text_From_Edit() the item
number of the edit box that holds the user-entered value that will serve as
the left coordinate of the rectangle object.

DialogPtr dlog;
Str255 the_str;
long L, T, R, B;

II open dialog box
II when OK button is clicked on, get edit box info

Get_Text_From_Edit(dlog, LEFT_ITEM, the_str };
StringToNum(the_str, &L };

After the call to Get_Text_From_Edit(), the above code makes a call to
StringToNum(). That Toolbox function will convert the string value to the
number it represents and store that number in the short variable L.

Creating a New Object Using a Dialog Box
Now that I've covered the handling of radio buttons and edit text boxes,
covering the function that opens the dialog box will be straightforward. My
previous version of New_Rectangle() posted an alert that let the user select
the object type. This latest version of New_Rectangle() will open a dialog
box. Handling a dialog box requires a greater effort on the part of the pro­
grammer, so New_Rectangle() has grown -but not unmanageably so. I'll
show the function in its entirety, and then explain it in detail.

Rectangle *New_Rectangle(void)
{

DialogPtr dlog;
Boolean dlog_done = false;
short item;
short new_radio;
short old_radio;

II pointer to dialog
II done with dialog?
II clicked-on item
II radio button to turn on
II radio button to turn off

Chapter 9 Objects and the User 295

Str255 the_str;
long L, T, R, B;

II string from an edit box
II rectangle coordinates
II FatRect or FancyRect short object_type;

Rectangle *temp; II pointer to rectangle
II object

dlog = GetNewDialog(DLOG_ID, nil, (WindowPtr)-lL);

old_radio = FANCY_OBJECT_TYPE;
new_radio = FAT_OBJECT_TYPE;
Set_Radio_Buttons(dlog, &old_radio, new_radio);
object_type = FAT_OBJECT_TYPE;

while (dlog_done == false)
{

ModalDialog(nil, &item);

switch (item)
{

case FAT OBJECT TYPE: - -
new_radio = item;
Set_Radio_Buttons(dlog, &old_radio,

new_radio);
object_type = FAT_OBJECT_TYPE;
break;

case FANCY OBJECT TYPE: - -
new_radio = item;
Set_Radio_Buttons(dlog, &old_radio,

new_radio);
object_type = FANCY_OBJECT_TYPE;
break;

case OK BUTTON:
Get_Text_From_Edit(dlog, LEFT_ITEM, the_str);
StringToNum(the_str, &L);
Get_Text_From_Edit(dlog, RIGHT_ITEM,

the_str);

296 Symantec C++

StringToNum(the str, &R);
Get_Text_From_Edit(dlog, TOP_ITEM, the_str);
StringToNum(the_str, &T);
Get_Text_From_Edit(dlog, BOTTOM_ITEM,

the_str);
StringToNum(the_str, &B);
switch (object_type)
{

case FAT OBJECT TYPE: - -
temp = new FatRect;
break;

case FANCY OBJECT TYPE: - -
temp = new FancyRect;
break;

temp->Set_Rectangle(L, T, R, B);
dlog_done = true;
break;

DisposDialog(dlog);

return (temp);

The first thing New_Rectangle() does is open the dialog box. A call to
GetNewDialog(), with the ID of the DLOG resource to use serving as the
first parameter, accomplishes this task:

dlog = GetNewDialog(DLOG_ID, nil, (WindowPtr)-lL);

When a dialog box that contains radio buttons opens, none of the
radio buttons will be turned on-that's a task for the programmer. The
program uses a #define directive for each of the item numbers of the dialog
box items. I'll use these values in setting the radio buttons:

#define
#define

FAT OBJECT TYPE - -
FANCY OBJECT TYPE - -

2
3

Chapter 9 Objects and the User 297

I set the old radio button to a value ofFANCY_OBJECT_TYPE and
the new radio button to a value of FAT_OBJECT_TYPE, and then I call
Set_Radio_Buttons(). Because this routine turns a radio button off before
turning one on, I have to pass in the item number of a button to turn off.
The buttons are all off at the start, so it really doesn't matter which item
number I set the old_radio variable to. After calling Set_Radio_Buttons(), I
set the object type variable to the item number of the radio button that is
turned on. By ~ways keeping the value of this variable the same as the value
of the item number of the turned-on button, I'll always know what type of
object the user wants to create.

old_radio = FANCY_OBJECT_TYPE;
new_radio = FAT_OBJECT_TYPE;
Set_Radio_Buttons(dlog, &old_radio, new_radio);
object_type = FAT_OBJECT_TYPE;

After setting the radio buttons, New_Rectangle(} enters a while loop,
which will run until the user clicks on the OK button. A call to
ModalDialog(} is at the start of the loop body. If the user clicks on an item,
ModalDialog() will return its DITL item number. A switch statement
within the while loop examines the returned item number and compares it
to the item numbers of the radio buttons and push button. If a match is
made, the code under the appropriate case label is executed. In the code
snippet below, I've replaced that code with comments that summarize what
happens when a mouse click occurs on any of the buttons.

while (dlog_done == false)
{

ModalDialog(nil, &item);

switch (item)
{

case FAT OBJECT TYPE: - -II handle a click on a radio button

case FANCY OBJECT TYPE: - -II handle a click on a radio button

298 Symantec C++

case OK BUTTON:
II done with the dialog, get edit box infonnation:
II get the strings from the four edit text boxes
II create the new object
II set the coordinates of the object's rectangle
II exit the while loop

If the user clicks on a radio button, the new radio variable is set to the
DITL item number of the clicked-on b~tton. Then a call to
Set_Radio_Buttons() turns the old button off and this new button on. The
object_ type variable is then updated so that it indicates the object type the
user wants created. Below is the code that executes in response to a click on
the radio button labeled Fancy Rectangle. Since the code that handles a
click on the Fat Rectangle radio button is so similar, I won't cover it.

case FANCY OBJECT TYPE: - -
new_radio = item;
Set_Radio_Buttons(dlog, &old_radio, new_radio);
object_type = FANCY_OBJECT_TYPE;
break;

A click on the OK button signals that the user is finished with the
dialog box. That means it's time to get the final values that are in the four
edit boxes. A call to Get_Text_From_Edit() and StringToNum() is made
for each. Then, based on the value of object_ type, a new object is created.
The object's aRect data member is given the values from the edit boxes
through a call to Set_Rectangle(). Finally; dl og_ done is set to true so that the
while loop will end.

case OK BUTTON:
Get_Text_From_Edit(dlog, LEFT_ITEM, the_str);
StringToNum(the_str, &L);
Get_Text_From_Edit(dlog, RIGHT_ITEM,

the_str);
StringToNum(the_str, &R);
Get_Text_From_Edit(dlog, TOP_ITEM, the_str);
StringToNum(the_str, &T);
Get_Text_From_Edit(dlog, BOTTOM_ITEM,

the_str);

StringToNum(the_str, &B);
switch (object_type)
{

case FAT OBJECT TYPE: - -
temp = new FatRect;
break;

case FANCY OBJECT TYPE: - -
temp = new FancyRect;
break;

Chapter 9 Objects and the User 299

temp->Set_Rectangle(L, T, R, B);
dlog_done = true;
break;

NOTE .~

Before New_Rectangle() could be considered complete, it would have to have
some error-checking added to it. For instance, what if the user enters a
word-rather than a number-in one of the edit boxes? The function should
check for mistakes such as this and post an alert that tells the user what
mistake was made. Forgive me if I end this note by saying that the addition of
error-checking is left as an exercise for the reader.

When the while loop ends, the dialog box is dismissed by disposing it
with a call to DisposDialog(). Then the newly created object is returned to
the routine that called New_Rectangle():

DisposDialog(dlog);

return (temp);

A Dialog Box Example Program
As always, I'll end the section with an example program. Dialoglnput uses
the New _Rectangle() routine developed in this chapter to display a dialog
box like the one shown in Figure 9-17.

If the user were to enter the values shown in the dialog box in Figure
9-17, the rectangle would look like the one shown in Figure 9-18.

300 Symantec C++

New Object Dialog BoH

Rectangle type: Rectangle coordinates:

O Fat Rectangle Left: 10

®Fancy Rectangle
Right: 80

Top: 10

(OK) Bottom: 80

FIGURE 9-17 A dialog box that lets the user provide the specifications for an object

New Object Dialog BoH

Rectangle type: Rectangle coordinates:

0 Fat Rectangle Left: 10
® Fancy Rectangle

Right: 80

Top: 10

(OK) Bottom: 80

FIGURE 9-18 The rectangle that is drawn after the user creates an object

Chapter 9 Objects and the User 30 I

II******************* Dialoginput.cp ******************

II~~~~~~~~~~~~~~~~
II forward references

class

Rectangle
void
void
void

II
II
#define
#define
#define
#define
#define
#define
#define
#define
#define

II
II
Rectangle

Rectangle;

*New_Rectangle(void);
Handle_One_Event(void);

function prototypes

Set_Radio_Buttons(DialogPtr, short*, short);
Get_Text_From_Edit(DialogPtr, short, Str255);

#define directives

WIND ID 128
DLOG ID 128
OK BUTTON 1
FAT OBJECT TYPE 2 - -
FANCY OBJECT TYPE 3 - -
LEFT ITEM 4 -
RIGHT ITEM 5
TOP ITEM 6
BOTTOM ITEM 7

global variables

*the_rect;

302 Symantec C++

II _____________ _
II class definitions

class Rectangle
{

} ;

protected:
Rect aRect;

public:
virtual void Set_Rectangle(short, short, short,

short);
virtual void Draw_Rectangle(void);

class FatRect public Rectangle
{

public:
void Draw_Rectangle{ void);

} ;

class FancyRect public Rectangle
{

public:
void Draw_Rectangle(void);

} ;

II _____________ _
II member function definitions

void Rectangle .. Set_Rectangle{ short L, short T,
short R, short B)

SetRect(&this->aRect, L, T, R, B);

Chapter 9 Objects and the User 303

void Rectangle :: Draw_Rectangle(void)
{

FrameRect(&this->aRect);

void FatRect :: Draw_Rectangle(void)
{

PenSize(5, 5);
FrameRect(&this->aRect);
PenNorma l () ;

void FancyRect
{

short i ;
short height;

Draw_Rectangle(void)

II loop counter
II height of the rectangle

short
Rect

num_rects;
temp;

II number of inset rects to draw
II work with a temporary rectangle

height = this->aRect.bottom - this->aRect.top;
num rects = (heightl4);

temp = this->aRect;

for (i = O; i <= num_rects; i++)
{

FrameRect(&temp);
InsetRect(&temp, 2, 2);

void main(void)

main()

304 Symantec C++

WindowPtr the_window;

InitGraf(&thePort);
InitFonts();
Ini tWi ndows ();
Ini tCursor();

the_window = GetNewWindow(WIND_ID, nil,
(WindowPtr)-lL);

SetPort(the_window);
the_rect = New_Rectangle();

the_rect->Draw_Rectangle();

for (; ;)
Handle_One_Event();

open dialog and create new object

Rectangle *New_Rectangle{ void)
{

DialogPtr dlog;
Boolean dlog_done = false;
short i tern;
short
short
Str255

new_radio;
old_radio;
the_str;

long L, T, R, B;
short object_type;
Rectangle *temp;

dlog = GetNewDialog(DLOG_ID, nil, {WindowPtr)-lL);

old_radio = FANCY_OBJECT_TYPE;
new_radio = FAT_OBJECT_TYPE;

Chapter 9 Objects and the User 305

Set_Radio_Buttons(dlog, &old_radio, new_radio);
object_type = FAT_OBJECT_TYPE;

while (dlog_done == false)
{

ModalDialog(nil, &item);

switch (item)
{

case FAT OBJECT TYPE: - -
new_radio = item;
Set_Radio_Buttons(dlog, &old_radio,

new_radio);
object_type = FAT_OBJECT_TYPE;
break;

case FANCY OBJECT TYPE: - -
new_radio = item;
Set_Radio_Buttons(dlog, &old_radio,

new_radio);
object_type = FANCY_OBJECT_TYPE;
break;

case OK BUTTON:
Get_Text_From_Edit(dlog, LEFT_ITEM, the_str);
StringToNum(the_str, &L);
Get_Text_From_Edit(dlog, RIGHT_ITEM,

the_str);
StringToNum(the_str, &R);
Get_Text_From_Edit(dlog, TOP_ITEM, the_str);
StringToNum(the_str, &T);
Get_Text_From_Edit(dlog, BOTTOM_ITEM,

the_str);
StringToNum(the_str, &B);
switch (object_type)
{

case FAT OBJECT TYPE: - -
temp = new FatRect;
break;

306 Symantec C++

case FANCY OBJECT TYPE: - -
temp = new FancyRect;
break;

temp->Set_Rectangle(L, T, R, B);
dlog_done = true;
break;

DisposDialog(dlog);

return (temp);

II _______________ _
II handle single event

void Handle_One_Event(void)
{

EventRecord the_event;
WindowPtr
Graf Ptr

window;
old_port;

WaitNextEvent(everyEvent, &the_event, 15L, OL);

switch (the_event.what)
{

case mouseDown:
if (the_rect != nil)

delete the_rect;
ExitToShell ();
break;

case updateEvt:
window = (WindowPtr)the_event.message;
GetPort(&old_port);
SetPort(window);

Chapter 9 Objects and the User 307

BeginUpdate(window);
EraseRgn(window->visRgn);
if (the_rect != nil)

the_rect->Draw_Rectangle();
EndUpdate(window);
SetPort(old_port);
break;

set radio buttons

void Set_Radio_Buttons(DialogPtr dlog, short *old_radio,
short new_radio)

Handle hand;
short type;
Rect box;

GetDitem(dlog, *old_radio, &type, &hand, &box);
SetCtlValue((ControlHandle}.hand, O);

GetDitem(dlog, new_radio, &type, &hand, &box);
SetCtlValue((ControlHandle)hand, 1);

*old_radio = new_radio;

II ____________ _
II get edit box contents

void Get_Text_From_Edit(DialogPtr dlog, short edit_item,
Str255 the_str)

Handle hand;
short type;

308 Symantec C++

Rect box;

GetDitem(dlog, edit_item, &type, &hand, &box);
GetIText(hand, the_str);

Chapter Summary

Windows are the part of the graphical user interface that gives feedback to a
program's user. Menus, alerts, and dialog boxes are the parts that allow the
user to provide input to the program. In this chapter, you saw how alerts
and dialog boxes can be used to give a program information about an object
that is about to be created.

As your programs become more sophisticated through the inclusion of
alerts and dialog boxes, it's important that the windows that display infor­
mation be updated properly. Having your program respond to update
events is the way to keep the contents of a program's window properly
drawn.

hapter 10

Windows as Objects

Windows are intuitively thought of as objects-"things" that can opened,
moved, and closed. So it makes sense that an object-oriented program
would define a class to represent a window and then create as many
instances, or window objects, as needed. That's exactly what this chapter is
all about.

Before delving into OOP techniques, you'll have an opportunity to
brush up on the basics of windows and how a program handles events that
involve them. Though the techniques covered at the start of the chapter deal
with procedural programming, they'll apply directly to the main topic
covered in the remainder of the chapter-the representation of windows as
objects.

Window Basics

This chapter starts with a discussion of the basic techniques for handling
windows-but not in an object-oriented program. Before you go jumping

309

310 Symantec C++

ahead, keep in mind that almost all of the material covered here, though not
OOP, will apply to the use of windows as objects.

Opening a Window
A window is always based on the information held in a window record.
There are two ways in which you can supply the Window Manager with the
data that fills a window record. The first way is to supply it as parameters in
a call to NewWindow():

WindowPtr the_window;
Rect window_rect;

SetRect(&window_rect, 50, 50, 350, 150 };
the_window = NewWindow(OL, &window_rect, 11 \pNew Window",

true, noGrowDocProc,
(WindowPtr)-ll, true, 0);

The second way to give the Window Manager the information it needs
is to create a WIND resource to hold the information and then let the
Window Manager know about it using a call to GetNewWindow().
Assuming that I created a WIND resource with a resource ID of 128, a call
to GetNewWindow() would look like this:

#define WIND ID 128

WindowPtr the_window;

the_window = GetNewWindow(WIND_ID, nil, (WindowPtr)-lL);

Window Data Types
While the WindowPtr is by far the most commonly used window data type,
there two others-the WindowRecord and the WindowPeek. You'll want to
know about these data types for the upcoming discussions on using
windows as objects.

Every window has its own set of properties that define what it looks
like and how it behaves. So it makes sense that every window has its own
data structure to hold this information. The WindowRecord is a struct data
type with 17 members. It's .not important that you know the purpose of
each of these fields but, for the sake of completeness, I've shown the entire
data structure below:

Chapter I 0 Windows as Objects 311

struct WindowRecord
{

Graf Port port;
short windowKind;
Boolean visible;
Boolean hilited;
Boolean goAwayFlag;
Boolean spareFlag;
RgnHandle strucRgn;
RgnHandle contRgn;
RgnHandle updateRgn;
Handle windowDefProc;
Handle dataHandle;
StringHandle titleHandle;
short titleWidth;
Control Handle control List;
struct WindowRecord *nextWindow;
PicHandle windowPic;
1 ong refCon;

} ;

If you do want to know about every field in the WindowRecord or about
other nontrivial data types, consider buying one or more volumes of Apple's
Inside Macintosh series of books.

Their names should make the purposes of some of the fields of the
WindowRecord obvious. The hilited member, for example, tells whether
the window is in the foreground and highlighted or in the background with
highlighting off.

The WindowRecord member of most importance to the programmer
is the very first one-the port field. The port, which is of type GrafPort,
holds information about the graphics port of the window. The graphics port
is the window's drawing environment. That is, it holds information such as
the font that words will be drawn in and the size of the lines that will be
used to draw shapes.

312 Symantec C++

The port member-the GrafPort fidd-is what a WindowPtr points
to. You use a WindowPtr to locate a WindowRecord in memory and to then
work with the graphics port of that window. In most cases, the window's
graphics port is the only WindowRecord member you'll have to access.
Occasionally, however, you'll have to work with one or more of the other
WindowRecord members. In cases like this, you'll use a WindowPeek
instead of a WindowPtr.

Unlike a WindowPtr, which lets you access only the port member of a
WindowRecord, the WindowPeek lets you access any WindowRecord
member. Figure I 0-1 shows the difference between these two data types.

A WindowPeek
variable can access
all of the fields of a
WindowRecord
data structure

port

windowKind

visible

hilited

windowPic

ref Con

: ~< ' ~·1'.
.J:J_ . i ·' ·~

] AWindowPtr
variable can access
only the port field of
a WindowRecord
data structure

FIGURE 10-1 A WindowPtr allows access to only the port, while a WindowPeek allows access to
the entire WindowRecord.

Chapter I 0 Windows as Objects 313

If it seems to you that the Window Peek is a more powerful data type than
the WindowPtr, you're right. The two data types weren't, however, designed to
compete with one another; they were created to complement each other. The
WindowPtr can access ori.ly the WindowRecord's port member because that's
the most-used data member. The rest of the data members remain hidden from
the WindowPtr-and from accidental tampering by the programmer. If you
want to access a field of a WindowRecord other than the port field, you usually
won't do so directly. Instead, you'll use a Toolbox routine that was written
expressly for accessing a WindowRecord. For instance, to change a window's
title you won't manipulate the WindowRecord's titleHandle field yourself
Instead, you'll call SetWTitle() to do the work for you.

The WindowRecord fields other than the port field are hidden from the
outside world. Here you see that while data hiding is generally thought of as a
technique used in object-oriented programming, it applies to other areas of
programming as well. To take the OOP analogy a little further, you might think
of Toolbox functions that access WindowRecord members (like SetWTitle{))
as member functions that access class data members.

The WindowPeek was designed for those few times when a pro­
grammer must directly access WindowRecord fields other than the port
field. The most common use of a WindowPeek is to change or examine the
last member in the WindowRecord-the refCon field. This long integer
can be used to hold a value that helps the programmer keep track of a par­
ticular window in a program that uses multiple windows. Later in this
chapter, you'll see that the refCon field will become very important to the
success of a program that represents windows as objects.

Windows and Events
Once your program has a window open, you'll want to be able to work with
the window-to have the window respond to events as they happen. Of
course, you'll rely on the event-handling routine that is invoked repeatedly
by the main() function:

void main(void)
{

WindowPtr the_window;

314 Symantec C++

Initialize_Toolbox();

the_window = GetNewWindow(WIND_ID, nil,
(WindowPtr)-lL);

for (; ;)
Handle_One_Event{);

Mac programs are primarily concerned with two event types-a click
of the mouse button, or mouseDown event, and an update event, or upda­
teEvt. For clarity, once the event type is determined, it is usually handled by
a separate routine. I use this approach in the Handle_One_Event() function
that's listed below:

void Handle_One_Event(void)
{

EventRecord the_event;
WindowPtr
GrafPtr

window;
old_port;

WaitNextEvent(everyEvent, &the_event, 15L, OL);

switch (the_event.what)
{

case mouseDown:
Handle_Mouse_Down(&the_event);
break;

case updateEvt:
window = (WindowPtr)the_event.message;
GetPort(&old_port);
SetPort(window);
BeginUpdate(window);

EraseRgn(window->visRgn);
Update(window);

EndUpdate(window);
SetPort(old_port);
break;

Chapter I 0 Windows as Objects 315

A click of the mouse button sends the program to a mouse-handling
routine-I've called mine Handle_Mouse_Down(). A call to the Toolbox
function FindWindow() tells Handle_Mouse_Down() in which part of the
screen or window the mouse click occurred and in which window (if any). A
switch statement is then used to execute the code appropriate to the location
of the mouse-button click.

void Handle_Mouse_Down(EventRecord *the event)
{

WindowPtr
short

window;
the_part;

the_part = FindWindow the_event->where, &window);

switch (the_part)
{

}

case inSysWindow:
SystemClick (the_event, window);
break;

case inDrag:
DragWindow(window, the_event->where,

&screenBits.bounds);
break;

case inContent:
SelectWindow(window);
break;

case inGoAway:
if (TrackGoAway(window, the_event->where)

DisposeWindow(window);
break;

A click in a system window-that is, a nonapplication window such as
a desk accessory-brings about a call to SystemClick(). This Toolbox
function takes control and handles the event by activating the clicked-on

316 Symantec C++

desk accessory. SystemClick() then takes further action, such as dragging or
closing the desk accessory window.

case inSysWindow:
SystemClick (the_event, window);
break;

A click in the drag bar of an application window results in a call to the
Toolbox function DragWindow{). As long as the user holds the mouse
button down in the window's title bar, DragWindow{) will stay in effect,
moving the window as the user drags the mouse.

case inDrag:
DragWindow(window, the_event->where, &screenBits.bounds);
break;

If the user clicks the mouse button in the content of an application
window, the Toolbox routine SelectWindow{) is called to activate that
window. If the window was in the background before the mouse click, it
will be brought to the foreground.

case inContent:
SelectWindow(window);
break;

Clicking in a window's go away box-its close box-brings about a
call to the Toolbox function TrackGoAway{). TrackGoAway() will monitor
the user's actions as the mouse is moved in and out of the go away box. If the
user releases the mouse button while over an application window's go away
box, the program will call Dispose Window() to release the memory
occupied by the window's WindowRecord.

case inGoAway:
if (TrackGoAway(window, the_event->where))

DisposeWindow(window);
break;

That covers a click of the mouse button-a mouseDown event. What
about when a part of a window that was obscured is brought back into view?
That's an updateEvt, and the Handle_ One_Evem() routine responds to
that event type by first determining which window needs updating. That
information is held in the message field of EventRecord variable the_ event.

Chapter I 0 Windows as Objects 317

Next, the current port is saved, and the port belonging to the window that
needs updating is made active. Calls to BeginUpdate() and EndUpdate()
surround the code that does the actual updating. In this example, that code
is handled by a call to a routine I've named Update():

case updateEvt:
window = (WindowPtr)the_event.message;
GetPort(&old_port);
SetPort(window);
BeginUpdate(window);

EraseRgn(window->visRgn);
Update(window);

EndUpdate(window);
SetPort(old_port);
break;

The Update() routine will be applicatiori-specific. That is, there is no
one set way of writing it; its contents depend entirely on what .your appli­
cation is doing. In all cases, the update routine should draw the entire
contents of the window-whatever they are. In this example, I've simply
chosen to have the window hold a rectangle and a line of text.

void Update(WindowPtr window)
{

Rect. the_rect;

SetRect(&the_rect, 10, 30, 80, 80);
MoveTo(10, 20);
DrawStri ng ("\pUpdated ! ") ;

A Multiple-Windows Example Program
Before moving on to the handling of windows as objects, it may help to look
at the source code for a complete application that handles multiple
windows-without using object-oriented programming. The NoOb­
jectWindows program demonstrates the window-handling techniques
discussed to this point-techniques that don't deal with OOP.

NoObjectWindows opens two identical windows from within main().
Figure 10-2 shows what the two windows look like.

318 Symantec C++

void main(void)
{

WindowPtr the_window;

Initialize_Toolbox();

the_ window= GetNewWi ndow(WIND_ ID, ni 1, (Wi ndowPtr)-lL);
the_ window= GetNewWi ndow(WIND_ ID, ni 1, (Wi ndowPtr)-lL);

for (; ;)
Handle_One_Event();

Notice that the WindowPtr variable the window is declared inside
main(), ma.king it unavailable to the rest of the p-;ogram. There is no single
global WindowPtr variable that keeps track of either or both of the
windows. When an event that involves a window occurs, information con­
cerning which window the event took place in will be held in the message
field of the EventRecord variable that WaitNextEvent() fills. Any routine
that works with a window can use the information in the message field­
cast to a WindowPtr-as a parameter. Figure 10-3 illustrates this.

In Figure 10-3, WaitNextEvent() fills the EventRecord variable
the event with information about a mouse click in one of the two windows.

New Window

Updated! Ill~ Ne111 lUindpuf D Updated!

D

FIGURE I 0-2 The output of the NoObjectWindows program

Chapter I 0 Windows as Objects 319

The Toolbox fills the message field of
the EventRecord with a reference to
the window in which the event took place

void Handle_One_Event (void)
{

EventRecord the_event;
WindowPtr window;
GrafFtr old_port;

WaitNextEvent(everyEvent, &the_event, 151, OL);

switch (the_event.what)
{

case updateEvt:
window= (WindowPtr)the_event.rnessage;
GetPort(&old_port);
SetPort (window) ;

After this
infonnation is
typecast to a
WindowPtr,
it can be used
throughout the
program

FIGURE 10-3 The message field of an EventRecord provides a reference to a clicked-on window.

Later, the message field of the EventRecord is used to give a local Win­
dowPtr variable named window a value-the value being a pointer to the
window in which the mouse click took place. A couple of lines later, this
WindowPtr is used to make the port of the clicked-on window the active
port-ready for updating later in the code.

When the NoObjectWindows program receives an update event, the
Handle_One_Event() function uses the method shown in Figure 10-3 to
determine which window needs updating. Then an updating routine
named Update() is invoked to do the actual drawing to the window:

void Update(WindowPtr window)

Rect the_rect;
SetRect(&the_rect, 10, 30, 80, 80);

FrameRect(&the_rect };
MoveTo(10, 20);
DrawStri ng (11 \pUpdated ! 11) ;

320 Symantec C++

As you'll see when you run the program, this approach works well­
but only when all windows have identical contents. The routine will draw to
the proper window-thanks to the information supplied in the message
field of the EventRecord-but it will always draw the same thing.

Unlike the NoObjectWindows program, few Mac programs have mul­
tiple windows with identical contents. So for most programs, simply
distinguishing between windows is not enough; the program must also
know how windows differ so that the proper text or graphics can be drawn.
One way of doing this is to define certain types of windows-usually by
giving each type a number:

#define
#define

MY GRAPHICS WINDOW TYPE - - -
MY TEXT WINDOW TYPE - - -

1
2

Then, each time a window is opened, the programmer will embed the
number that represents the window's type in the refCon field of the
window's Window Record. Figure 10-4 shows how this scheme works to
differentiate between windows.

WllBr ftm:i111nd
t111nm11dk1 a'f
tllll lnlUltl tfa
•• tblt auldll ftldl
dft.lla unttan
atlautt11H1111.

port

ref Con = 1

port

WindowRecord

WindowRecord

FIGURE I G-4 The refCon field of a WindowRecord can be used to keep track of window types.

Chapter I 0 Windows as Objects 321

In Figure 10-4, two open windows are shown on the left side of the
figure. One holds graphics; the other holds text. At the center of the figure is
a representation of a section of memory. Within the memory are two Win­
dowRecords-one structure per window. The refCon fields of the
WindowRecords have been set to distinguish the type of each of the two
windows. On the right side of the figure is a simplified updating routine.
This routine checks the value of the refCon for the window that needs
updating. Based on this value, the Update() function calls the appropriate
routine to draw or write to the window in need of updating.

The NoObjectWindows program doesn't use the above method for
updating ·its windows. Nevertheless, the time you have just spent reading
about using a WindowRecord's refCon field hasn't been wasted; you'll use
this knowledge in the next section of this chapter.

When you run NoObjectWindows, two windows will open-one on top of
the other. Drag one window aside to see the second window.

You'll find the source code file for NoObjectWindows-along with the
resource file that holds a single WIND resource-on the accompanying
disk.

II****************** NoObjectWindows.cp ****************

II~~~~~~~~~~~~~
II function prototypes

void Initialize_Toolbox(void);
void Handle_One_Event(void);
void Handle_Mouse_Down(EventRecord *);
void Update(WindowPtr);

#define directives

#define WIND ID 128

322 Symantec C++

void main(void)

WindowPtr the_window;

Initialize_Toolbox();

the_window = GetNewWindow(WIND_ID, nil,
(WindowPtr)-lL);

the_window = GetNewWindow(WIND_ID, nil,
(WindowPtr)-lL);

for (; ;)
Handle_One_Event();

main()

initialize the Mac

void Initialize_Toolbox(void)
{

InitGraf(&thePort);
In it Fonts();
lni tWi ndows ();
InitMenus ();
TEinit();
InitDialogs(OL);
FlushEvents(everyEvent, OL);
InitCursor();

handle single event

Chapter I 0 Windows as Objects 323

void Handle_One_Event(void)
{

EventRecord the_event;
WindowPtr window;
GrafPtr old_port;

WaitNextEvent(everyEvent, &the_event, 15L, OL);

switch (the_event.what)

case mouseDown:
Handle_Mouse_Down(&the_event);
break;

case updateEvt:
window = (WindowPtr)the_event.message;
GetPort(&old_port);
SetPort(window);
BeginUpdate(window);

EraseRgn(window->visRgn);
Update(window);

EndUpdate(window);
SetPort(old_port);
break;

II ____________ _
II handle a click of the mouse

void Handle_Mouse_Down(EventRecord *the_event)
{

WindowPtr
short

window;
the_part;

the_part = FindWindow (the_event->where, &window);

switch (the_part)

324 Symantec C++

case inSysWindow:
SystemClick (the_event, window);
break;

case inDrag:
DragWindow(window, the_event->where,

&screenBits.bounds);
break;

case inContent:
SelectWindow(window);
break;

case inGoAway:
if (TrackGoAway(window, the_event->where))
{

DisposeWindow(window};
Exi tToShe 11 ();

break;

void Update(WindowPtr window)
{

Rect the_rect;

SetRect(&the_rect, 10, 30, 80, 80 };
FrameRect(&the_rect };
MoveTo(10, 20);
DrawStri ng ("\pUpdated ! ") ;

update a window

Chapter I 0 Windows as Objects 325

Representing Windows as Objects

Now that you know the basics of working with windows, you can apply
many of the procedural programming techniques to OOP window han­
dling. But, of course, you'll also have to learn a few additional tricks in order
to get windows to properly behave as objects.

The Window Class
When designing an object, determine the data the object should hold and
the actions that will be taken on the object. Figure 10-5 shows one model of
how a window could be represented as an object.

FIGURE 10-5 A figurative representation of a window as an object

326 Symantec C++

My representation of a window object has two data members. A
window object will need a window, of course. The data member
the_ window will be a WindowPtr that points to the object's window. There is
a rectangle that defines the boundaries within which a window can be
dragged on the screen. This rectangle is usually the entire desktop area of
the monitor or monitors of the Mac on which the program is running. The
secqnd data member, drag_rect, will be a Rect variable that holds these drag
boundaries.

The window object has seven member functions, two of which are the
class constructor and destructor functions. Each of the other five handles a
specific window-related task (the function names should tell you what those
tasks are).

My representation of a window object is functional, but it is by no means com­
plete. I could have included member functions to do any number of other
window-related tasks. For example, I could have separate member functions to
hide, show, and zoom the window. You can probably think of several additional
functions as well.

Using Figure 10-5 as a guide, I defined a class named WindowClass,
which is shown here:

class WindowClass
{

} ;

protected:
WindowPtr the_window;
Rect drag_rect;

public:
WindowClass(void);

-WindowClass(void);

virtual void Select(void);
virtual void Drag (Point) ;
virtual void Close (void) ;
virtual void TrackClose(Point);
virtual void Update(void);

Chapter I 0 Windows as Objects 327

Windows and the Constructor Function
While constructor and destructor functions aren't always necessary, the
nature of some class types makes their inclusion very helpful. In Chapter 5,
I used a class that defined a window object as an example. In that chapter I
spoke in general terms. Now I can be more specific. The data member
the_ window will serve as a pointer to the graphics port of a window that is
associated with a WindowClass object. When the new operator is used to
create a WindowClass object, memory will be allocated for the object.
Here's the code that would accomplish that:

WindowClass wind;

wind = new WindowClass;

On the left side of Figure 10-6, you'll see the above code snippet,
along with a look at how a section of memory has been affected by the
code-it holds an object. Notice that memory is allocated for the data

WinCloWClciss · ·. wind;

wiriCf-= :ciiew: wihdowciass;

the_window

drag_rect

Update ()

WindowClass

object

this->the_window ': G"tl\leWWindow (..

_____]
the_window

drag_rect

port

field of a
WindowRecord

WindowClass

object

FIGURE 10-6 Memory allocation for a WindowRecord isn't provided for by the new operator.

328 Symantec C++

member the_ window, but no memory is allocated for a Window Record. The
data member the_ window is only a pointer to a window-not a window.
Only after a call to one of the Toolbox functions NewWindow() or
GetNewWindow() is memory for the WindowRecord allocated. On the
right side of Figure 10-6, you can see that this is exactly what is happening.
The code that allocates the WindowRecord memory-GetNewWindow{)­
has been placed in the constructor function of the WindowClass class. That
way, when the new operator is used to create a new WindowClass object, the
constructor will be automatically invoked, and a new window will be loaded
into memory and placed on the screen.

Below is the complete constructor function for the WindowClass. The
first line in the function body allocates memory for the WindowRecord.
The second line sets the WindowRecord's refCon field to a unique value
that will enable the program to distinguish this one window from all others
that may be on the screen. The address of the newly created object serves as
this unique value.

WindowClass :: WindowClass(void)
{

this->the_window = GetNewWindow(WIND_ID, nil,
(WindowPtr)-lL);

SetWRefCon(this->the_window, (long)this);

Earlier in this chapter, you read that Mac programs written in a proce­
dural language like Pascal or C often use the refCon field of a window's
WindowRecord to store identifying information about the window. That's
what's happening in the WindowClass constructor. The Toolbox function
SetWRefCon() accepts a pointer to a window and a long integer as its
parameters. It then sets the refCon field of the WindowRecord pointed to
by the first parameter to the value passed in as the second parameter.

Let's look at the two parameters I'm passing to SetWRefCon(). The
first is the WindowPtr returned by the constructor's call to
GetNewWindow(). The second is a little trickier. In Chapter 5, you saw
that the this keyword is used as a reminder that a member function is
working with an object-whichever object invoked it. The this keyword
serves as a pointer to the object being worked with. So when this is used on
its own, it is referring to the address of the object being worked with, as
shown in Figure 10-7.

Chapter I 0 Windows as Objects 329

this 6500

6500

object

FIGURE I 0-7 The this keyword is a pointer to an object; it holds the address of an object.

Figure 10-7 shows that this is a pointer-an address. In the constructor,
the pointer is typecast to a long integer. That makes it a number that is
acceptable for use as a parameter in the call to SetWRefCon():

SetWRefCon(this->the_window, (long)this);

What is the net effect of the above call to SetWRefCon()? The refCon
field is set to the same value as the address of the object. Because each object
will have its own place in memory and its own starting address, this
approach ensures that the refCon field will always hold a unique number­
a number that will never appear in the refCon field of any other Window­
Record. Figure 10-8 illustrates this.

Setting the refCon gives an object its own unique reference number,
but how does a program make use of this information? Any time a window-

330 Symantec C++

related event occurs, a program should look at the value of the refCon of the
window that was involved in the event. That will lead the program to the
object involved in the event.

Let's look at the occurrence of a mouseDown event in the content area
of a window to see how a program determines which object is involved in
the event. After a mouseDown event, a call to FindWindow() is made to
determine in which window the event occurred and in which part of the

this 6500

the_window

drag_rect

object

Update ()
~

port

WindowRecord

ref Con = 6500

FIGURE I 0-8 The refCon field of a WindowRecord can be used to hold the address of an object.

Chapter I 0 Windows as Objects 331

window the mouse button was pressed. This line of code 1s from
Handle_Mouse_Down():

the_part = FindWindow (the_event->where, &window);

After the call to FindWindow(), the variable window-a Win­
dowPtr-will point to the window in which the mouse click occurred.
What I'll have to do is examine the refCon of the WindowRecord of this
window to see which object it belongs to. The following snippet does that:

1 ong wind_ ID;

wind_ID = ((WindowPeek)window)->refCon;

What the above code does is typecast the WindowPtr variable window
to a WindowPeek. Recall from earlier in this chapter that a WindowPeek
differs from a WindowPtr in that it allows you to access all of the fields of a
WindowRecord-not just the port field. Once the WindowPtr is turned
into a WindowPeek, I can access the refCon field. The result is a long
integer, which I've assigned to the variable wind_ ID.

The value that was in the refCon is the address of the object. Refer back
to Figure 10-8 to verify that. If I typecast this refCon value to an object
pointer, I'll have a pointer to the object that's to be involved in the updating:

long wind_ID;
WindowClass *temp;

wind_ID = ((WindowPeek)wind)->refCon;

temp = (WindowClass *)wind_ID;

Every time a window-related event occurs, I'll want to execute the
above code so that I can determine which object is involved. To simplify
things, I'll roll it into a function called Which_Object(). This function
returns a pointer to the object involved in the window-related event.

WindowClass *Which_Object(WindowPtr wind)
{

long wind_ID;
WindowClass *temp;

wind ID = ((WindowPeek)wind)->refCon;

332 Symantec C++

temp = (WindowClass *)wind_ID;

return (temp);

When a window-related event occurs, I'll call Which_Object(),
passing in a pointer to the window that received the event. Which_ Object()
will typecast the WindowPtr to a WindowPeek, access the refCon field of
the window's WindowRecord, and then typecast the resulting long integer
value to an object pointer. The result? A pointer to the object to which the
window belongs. This next code snippet shows how a mouse click in a
window's content area would result in the Select() member function being
invoked for the proper object. Figure 10-9 illustrates this.

void Handle_Mouse_Down(EventRecord *the event)
{

WindowPtr window;
short the_part;
WindowClass *wind_obj;

the_part = FindWindow (the_event->where, &window);

switch (the_part)
{

case inContent:
wind_obj = Which_Object(window);
wind_obj->Select();
break;

WindowClass *Which_Object(WindowPtr wind)
long wind_ID;
WindowClass *temp;

wind_ID = ((WindowPeek)wind)->refCon;

temp = (WindowClass *)wind_ID;
return (temp);

Chapter I 0 Windows as Objects 333

void Handle_Mouse_Down(EventRecord *the_event
WindowPtr
to clicked-on
window

{

Return the
object pointer

WindowPtr window;
short the_part;
WindowClass *wind_obj;

the_part = FindWindow the_event->where, &window);

switch (the_part)
{

case inContent:
wind_obj = Which_Object(
wind_obj->Select();
break;

window) ;

Pass the
WindowPtr

WindowClass *Which_Object(WindowPtr wind)
{

long wind_ID; A. Cast WindowPtr to WindowPeek

WindowClass *temp; ~
wind_ID = ((WindowPeek) wind) ->refCon; Access the

refCon field
temp = (WindowClass

return (temp) ;

*)wind_ID;

!:) Cast the refCon value
to an object pointer

FIGURE I 0-9 After a mouse click occurs in a window, determine which object owns the window.

Verifying That Objects Are Distinguishable
To verify that the technique of placing an object's address in the refCon field
works, I'll step through a few lines of a program that uses it. I've set a break..:
point in the constructor function of the WindowClass and then used the
new operator to create a WindowClass object. The creation of the object
invoked the constructor, and the program stopped at the breakpoint. In
Figure 10-10, the value of thiJ--the pointer to the object-is shown in the
Data window of the debugger.

Next, I set a breakpoint in the Which_ Object() function and then
clicked on the Go button. When I clicked the mouse on the window of my

334 Symantec C++

WindowCl ass *Which....Object (WindowPtr wind)
{

01
••
oi }

long
WindowClass

w·ind_IO ;
*temp;

wind_ IO = ((WindowPeek)wind)- >refCon;

temp = <WindowClass *)wind_IO ;

re turn < temp) ;

•Yhich_ YindovOb ject(Gr afPort ~)

Data

I l0[R]
this ~ wind_IO Ox0153BCFO

I
izy
r-1

FIGURE 10-11 Identifying the window-owning object by accessing the window's refCon

program, Which_Object() was invoked; the program had to determine
which of possibly several objects received the mouse click. Note in Figure
10-11 that the wind_ ID variable, which has the value of the refCon field of
the object's window, is the same as the this value in Figure 10-10.

Data

I l0[R]
th is Ox0153BCFO

WindowClass : : WindowC lass < void) 0
wind_IO i--

{
o! the_window = GetNewWindow < WINO_ IO,

drag..rect = screenBits .bounds;

SetWRefCon(the_w indow, <long)this);

SetPort < the_window);

• YindovClass : :YindovClass(void) f<;i l iil!!i!lli!!m:m:mflim ~ ~

II
-01
r--1

FIGURE I 0-10 The refCon of a window is set to the address of the object that owns the window.

Chapter I 0 Windows as Objects 335'

Windows and Events
In response to an event, a program that uses window objects will want to
determine which object owns the window involved with the event. You can
see in the following snippet that Handle_Mouse_Down() calls
Which_ Object() whenever there's a mouse click in the drag region, content
area, or go away box of a window.

case inDrag:
wind_obj = Which_Object(window);
wind_obj->Drag(the_event->where);
break;

case inContent:
wind_obj = Which_Object(window);
wind_obj->Select{);
break;

case inGoAway:
wind_obj = Which_Object(window);
wind_obj->TrackClose(the event->where);
break;

After the object that owns the window is determined, it's just a matter of
sending that object the appropriate message. For example, a click on the drag
bar of a window will result in a call to the owning object's Drag() member
function. Here's a look at how that function could be implemented:

void WindowClass :: Drag(Point where)
{

DragWindow(this->the_window, where,
&this->drag_rect);

The Drag() function simply calls the Toolbox routine Drag Window(),
passing a WindowPtr to the object's window and the object's drag_rect data
member. Other member functions are just as simple as Drag():

void WindowClass :: Select(void)
{

SelectWindow(this->the_window);

336 Symantec <;++

void WindowClass
{

delete this;

Close(void)

void WindowClass :: TrackClose(Point where)
{

if (TrackGoAway(this->the_window, where))
thi s->Cl ose ();

Note that the Close() function need only delete the memory allocated
for the object; it doesn't have to delete the extra memory allocated for the
WindowRecord of the object's window. When the delete operator is used on
the object, the object's destructor will be called to take care of deaning up
the WindowRecord memory:

WindowClass :: -WindowClass(void)
{

DisposeWindow(this->the_window);
ExitToShell ();

After disposing of the window, the destructor ends the program by
calling ExitToShell(). In the next chapter, you'll see a more Mac~like way of
ending a program-through the use of a Quit menu item.

An Example of Windows as Objects
The ObjectWindows program presented here does the same thing that the
NoObjectWindows program does. ObjectWindows opens two windows­
one on top of the other-and allows you to select either one and drag it
about the screen. Clicking in the dose box of either window doses it and
ends the program. Figure 10-12 shows what you'll see when you run
Object Windows.

The differences between ObjectWindows and NoObjectWindows is
not in what the programs do but how they do it. ObjectWindows uses the

Chapter I 0 Windows as Objects 337

New lllindow

Updated! --~ New. IQindow D Updated!

D

FIGURE I 0-12 The output of the ObjectWindows program

object-oriented techniques discussed in this chapter to create the windows,
keep track of them, and respond to actions performed on them.

Object Windows uses the technique of using the refCon as a means of
keeping track of each open window. That allows the program to properly
respond to a mouse click that occurs anywhere in a window. What
ObjectWindows can't do is update windows that have different window
contents, which is the same shortcoming that the NoObjectWindows
program had. The reason for this is simple: although the program knows
which window needs updating and draws to the correct window, it always
draws the same thing-whatever has been defined in the Update() member
function. This serious flaw will be remedied in Chapter 11, which is
devoted to the development of an OOP program that treats each window
individually and includes the contents of the window.

As always, you'll find the source file and resource file for the program
on the accompanying disk.

II***************** ObjectWindows.cp ******************

forward references

class WindowClass;

338 Symantec C++

void Initialize_Toolbox(void);
void Handle_One_Event(void);

function prototypes

void Handle_Mouse_Down(EventRecord *);
WindowClass *Which_Object(WindowPtr);

#define WIND ID 128

class WindowClass
{

protected:
WindowPtr the_window;
Rect drag_rect;

public:
WindowClass(void);

-WindowClass(void);

virtual void Select(void);
virtual void Drag(Point);
virtual void Close(void);

#define directives

class definitions

virtual void TrackClose(Point);
virtual void Update(void);

} ;

member function definitions

WindowClass WindowClass(void)

Chapter I 0 Windows as Objects 339

this->the_window = GetNewWindow(WIND_ID, nil,
(WindowPtr)-lL);

this->drag_rect = screenBits.bounds;

SetWRefCon(this->the_window, (long)this);
SetPort(this->the_window);

WindowClass :: -WindowClass(void)
{

DisposeWindow(this->the_window);
ExitToShell ();

void WindowClass :: Select(void)
{

SelectWindow(this->the_window);

void WindowClass :: Drag(Point where)
{

DragWindow(this->the_window, where,
&this->drag_rect);

void WindowClass
{

delete this;

void WindowClass

Close(void)

TrackClose(Point where)

340 Symantec C++

if (TrackGoAway(this->the_window, where)
this->Close();

void WindowClass :: Update(void)

WindowPtr save_port;
Rect the_rect;

GetPort(&save_port);
SetPort(this->the_window);

BeginUpdate(this->the_window);
SetRect(&the_rect, 10, 30~ 80, 80);
FrameRect(&the_rect);
MoveTo(10, 20);
Drawstring("\pUpdated!");

EndUpdate(this->the_window);

SetPort(save_port);

II _______________ _
II

void main(void)
{

WindowClass *window;

Initialize_Toolbox();

window = new WindowClass;
window = new WindowClass;

for (; ;)
Handle_One_Event();

main()

Chapter I 0 Windows as Objects 341

initialize the Mac

void Initialize_Toolbox(void)
{

}

InitGraf(&thePort);
Ini tFonts ();
Ini tWi ndows ();
InitMenus();
TEinit();
InitDialogs(OL);
FlushEvents(everyEvent, OL);
Ini tCursor();

handle single event

void Handle_One_Event(void)
{

EventRecord the_event;
WindowClass *wind_obj;

WaitNextEvent(everyEvent, &the_event, 15L, OL);

switch (the_event.what)
{

case mouseDown:
Handle_Mouse_Down(&the_event);
break;

case updateEvt:
wind_obj = Which_Object((WindowPtr)

the_event.message);
wind_obj->Update();
break;

342 Symantec C++

handle a click of the mouse

void Handle_Mouse_Down(EventRecord *the_event)
{

WindowPtr window;
short the_part;
WindowClass *wind_obj;

the_part = FindWindow (the_event->where, &window);

switch (the_part)
{

case inSysWindow:
SystemClick (the_event, window);
break;

case inDrag:
wind_obj = Which_Object(window);
wind_obj->Drag(the_event->where);
break;

case inContent:
wind_obj = Which_Object(window);
wind_obj->Select();
break;

case inGoAway:
wind_obj = Which_Object(window);
wind_obj->TrackClose(the_event->where);
break;

Chapter I 0 Windows as Objects 343

WindowClass *Which_Object(WindowPtr wind)
{

long wind_ID;
WindowClass *temp;

wind_ID = ((WindowPeek)wind)->refCon;

temp = (WindowClass *)wind_ID;

return (temp);

Chapter Summary

Mac programmers and users alike tend to think of a window as an object­
something that can be opened and closed, drawn to or written in. So the
window serves as a good element of the Macintosh user interface to model
as an object-oriented object.

The information that defines a window is held in a WindowRecord
data structure. A WindowPtr is a pointer that points to the first member of
a WindowRecord-the window's graphics port. If you want to access other
members of a WindowRecord you'll use a WindowPeek rather than a Win­
dowPtr. One reason to access a WindowRecord member is to mark each
new window that opens with its own ID. The ID will relate a particular
window with a particular object. You can do this by using a WindowPeek to
access the refCon member of a window's WindowRecord. Later, when a
window-related event occurs, you can again access this member of the
involved window to find out which object the window belongs to.

hapter 11

A Complete Example

At this point you've learned the basics of C++ and object-oriented pro­
gramming. And a little more. OOP concepts like returning objects from
functions and dynamic binding are powerful-and often daunting-skills
to master. Learning these techniques individually and seeing them in action
in short example programs helped ease the transition from procedural pro­
gramming to object-oriented programming. Now, it's time to apply all of
the things you've learned to the creation of a single Macintosh OOP
application.

DerivedWindows: A Complete
OOP Example

The example programs in the previous two chapters have used the Rectangle
class, neglecting the pet shop owner and his unfinished animal database
program. In this chapter, I'll apply all the concepts covered in the previous

345

346 Symantec C++

New Picture ...
New Pet ...

Quit

FIGURE 11-1 The File menu for the DerivedWindows program

chapters-and a few new ones-to the unfinished animal database. The
result will be a program called DerivedWindows.

What the Program Does
The complete source code listing for DerivedWindows appears at the end of
this chapter. You won't have to be familiar with the source code to be able to
see what the program is capable of doing; I can cover that up front.

DerivedWindows displays three menus, but only one-the File
menu-will be of real interest. Figure 11-1 shows the menu items in that
menu.

Chapter 9 discussed using dialog boxes to solicit object information
from the user. Selecting the New Picture item will display the dialog box
shown in Figure 11-2. Here the user can choose which one of two pictures
to display in a new window.

After the user selects one of the radio buttons, a click on the OK
button dismisses the dialog box and opens a window that displays the

New Picture Dialog BoH

Select Picture:

O Shop Owner's Wife
®Parrot (OK)

FIGURE 11-2 Selecting a picture to display in the DerivedWindows program

Chapter 11 A Complete Example 347

~@' __ New ~indfJ..W

FIGURE 11-3 A picture window in the DerivedWindows program

appropriate picture. The radio button labeled Shop Owner's Wife will
display the picture shown in Figure 11-3. While the typical businessman
keeps a picture of his wife on his desk, this is the digital age, and the shop
owner prefers to keep a picture of his wife readily available on his computer.

If the radio button labeled Parrot was turned on at the time the dialog
box was dismissed, a window with the picture shown in Figure 11-4 will be
displayed. While this option might not please the shop owner's wife, we are
after all, working on a database to hold information about pets.

In its current state the DerivedWindows program is capable of dis­
playing only a picture of the pet shop owner's favorite pet-the parrot. An
enhancement to the program would be a series of radio buttons-or
perhaps a scrollable list-that would allow the owner to display the picture
of any one of a number of exotic animals that he can order but doesn't keep
in stock. An inquiring customer could then be quickly shown a picture of
any one of those animals.

Selecting New Pet from the File menu opens the dialog box shown in
Figure 11-5. In this dialog box, the user can enter the name of an animal
and its selling price.

348 Symantec C++

§lfi . New Window

FIGURE 11-4 Another picture window from the DerivedWindows program

After clicking on the OK button in the New Animal dialog box, the
dialog box is dismissed, and a new window that displays the entered infor­
mation opens. An example of such a window is shown in Figure 11-6.

Perhaps the best feature of the program is that it has the ability to open
as many windows as the user likes. Each window can hold either of the two
pictures or any animal information the user enters. And each window will
be properly updated as windows are covered and uncovered. Figure 11-7
shows the program running with five open windows.

New Animal Dialog BoH

Enter Animal Info:

Name: I Labrador dog

Price: I 100 (OK J

FIGURE 11-5 Entering animal information in the DerivedWindows program

Chapter 11 A Complete Example 349

-lfj New Window

Labrador dog
$100

FIGURE 11-6 A pet information window displayed in the DerivedWindows program

New Window ~---L---------~
New Window

Labrador dog
$100

~[!j . Ne_llJ Window

White rat
$5

FIGURE 11-7 The DerivedWindows program allows any number of windows to be displayed

350 Symantec C++

DeriuedWindows.11 .rsrc

ALRT DITL DLOG

PICT W'IND

1f ~·-..............
·--­-·--

MBAR MENU

FIGURE 11-8 The resource file for DerivedWindows

The DerivedWindows Resources
DerivedWindows needs several resource types to run properly. Figure 11-8
shows the resource file for the program.

DerivedWindows displays three menus-thus it has three MENU
resources. They're shown in Figure 11-9. Figure 11-10 shows the MBAR
resource that holds the IDs of the three MENU resources.

While I have the resource file open, I'll take note of the resource IDs
and the menu items. This information will be used later when I write the
program's source code:

MENUs from DeriuedWindows.11.rsrc

Hbout Deriued W1'4

128

New Picture ...
New Pet ..•

Quit

129

r-~-:~----1
i Copy i
I Paste ;

I
! ······································-··i

130

FIGURE 11-9 The three MENU resources that will be displayed in the menu bar

Chapter 11 A Complete Example 351

Iii~ .MBAR .10 = 1.28 from :DeriuedWindoQJ$:·no.rsrc

of menus 3

1) *****
Menu res ID I 12a
2) *****
Menu res ID I 129

3) *****
Menu res ID 1130
4) *****

FIGURE 11-10 The MBAR resource that defines the menu bar

#define MENU BAR ID 128

#define APPLE MENU ID 128 - -
#define SHOW ABOUT ITEM 1 - -
#define FILE MENU ID 129 - -
#define NEW PICT ITEM 1 - -
#define NEW PET ITEM 2
11 item 3 is a dashed line 3
#define QUIT_ITEM 4
#define EDIT MENU ID 130 - -

Earlier you saw that DerivedWindows displays two dialog boxes. The
first allows the user to select which picture a window will display. The DITL
resource for that dialog is shown in Figure 11-11. The DITL resource for
the second dialog box-the one that allows the user to enter information
about an animal-is shown in Figure 11-12.

Along with the DITL items, the program will, of course, have two
DLOG resources, the IDs of which will match those of the DITL resources
they use. Again, I've taken this opportunity to take note of the resource IDs.

352 Symantec C++

~ DIR JD= 1itJ.fnunDsril!edJ11jndcaws•11.~r1,i.

!New Picture Dialog Boa laj

!Select Picture: Ii)

IO Shop owner's Wifelaj [
OK W p Parrot l1j ___ =:]_

FIGURE 11-11 The DITL that defines the items in the New Picture dialog box

•~DIR ID= l29fn:tm Deriuedl.IJindoWf.•11.rs~

INew Hnimal Dialog Boa Laj

!Enter Hnimal Info: Ii)

!Name: l!J llLabrador dog ®I
!Price: !1J 111 00 L!JI [OK L1j

FIGURE 11-12 The DITL that defines the items in the New Pet dialog box

#define PICT DLOG ID 128 - -
#define OK BUTTON 1
#define WIFE BUTTON 2
#define BIRD BUTTON 3

#define PET DLOG ID 129 - -
II OK BUTTON 1 defined above
#define NAME ITEM 2
#define PRICE ITEM 3

Chapter 11 A Complete Example 353

IDeriued Windows Laj
luersion 1.0 W
(Done l1j

FIGURE 11-13 The DITL that defines the items in the About alert

There's one last DITL that the program requires. The About menu
item in the Apple menu displays an alert with information about the
program. I've kept that information short and simple, as you can see from
the DITL shown in Figure 11-13. The ALRT resource has an ID of 130, as
does the DITL it uses:

#define ABOUT ALRT ID 130 - -

The last resources the program needs are the PICT resources that are
used to display pictures in the program's windows. DerivedWindows has
just two; you may want to modify the program to use several more. Figure
11-14 shows the two PICT resources, and I've listed their IDs here:

#define
#define

WIFE PICT ID - -
BIRD PICT ID - -

128
129

The resource file is completed by the addition of a standard WIND
resource.

The DerivedWindow Classes
DerivedWindows defines three classes. The first is the WindowClass
developed in Chapter 10. There's one addition to this class-a member
function named Draw(). The purpose of this function will be described
later in this chapter.

354 Symantec C++

PI CTs from DeriuedWindows. n .rs re

~' ~ ~ : t .. ~
128

FIGURE 11-14 The PICT resources for the DerivedWindows program

class WindowClass
{

} ;

protected:
WindowPtr the_window;
Rect drag_rect;

public:
WindowClass(void);

-WindowClass(void);

virtual void Select(void);
virtual void Drag (Point) ;
virtual void Close(void);
virtual void TrackClose(Point
virtual void Update(void);
virtual void Draw(void) ;

) ;

129

Chapter 11 A Complete Example 355

Here, WindowClass will be used as an abstract class. From Window­
Class, two classes are derived-Pet Window and PictWindow. PetWindow is
similar to the Animal base class used earlier in the book.

class PetWindow : public WindowClass
{

} ;

protected:
Str255 type;
Str255 cost;

public:
void Set_Type(Str255);
void Get_Type(Str255);
void Set_Cost(Str255);
void ~et_Cost(Str255);
void Draw(void);

Because Pet Window is derived from WindowClass, it will have its own
the window and drag rect data members, and it will inherit all of the Win­
dm~Class member f~nctions. That means objects of the PetWindow class
will have all the functionality provided by WindowClass as well as the
ability to store and use information about a pet. The data that Pet Window
keeps track of are the type of pet and the cost of the pet. The Pet Window
member functions-except for the Draw() function-exist to set and get
the data members. Draw() is defined in the base class, so it is inherited and
overridden by PetWindow. It will be used in window updating-as you'll
see a little later on.

NOTE · ·. ·~~,

Gone are the GoodPet and BadPet classes developed earlier. While they were
useful for the simpler examples in the early chapters, those two classes were
too similar to one another to really warrant separate class definitions. If I want
to keep track of the suitability of a pet, I can just add another data member to
the PetWindow class at a later time.

When an object of the PetWindow class is created, its inherited
the_ window data member will point to a window. The program will be able
to set the values of the type and cost data members by sending the object

356 Symantec C++

Ii" New Window

Labrador dog
$100

FIGURE 11-15 A typical pet information window created by a PetWindow object

Set_ Type() and Set_ Cost() messages. When it comes time to write the
information to the object's window, the object will be sent Get_ Type() and
Get_ Cost() messages. Then a Draw() message will be sent to the object to
write this information to the object's window. The result will be similar to
the window pictured in Figure 11-15.

The second class derived from the WindowClass is the PictWindow
class. Like the Pet Window class, it inherits all of the data and functions of
the WindowClass. That means that a PictWindow object will have its own
window. Here's a look at

the PictWindow class:

class PictWindow : public WindowClass
{

} ;

protected:
short pi ct_ ID;

public:
void Set_Pict_ID(short) ;
void Draw(void);

Chapter 11 A Complete Example 357

§IE] New Window

FIGURE 11-16 A typical picture window created by a PictWindow object

The PictWindow has a single data member-a short integer named
pi ct_ ID, which will hold the ID of a PICT resource. Earlier you saw that the
resource file for the DerivedWindow project holds two PICT resources. A
Pict Window object will be able to display either one of those pictures. To do
so, the program sends a Set_Pict_ID() message to a PictWindow object to
set the pi ct ID to the ID of one of the two PICT resources. Then a Draw
message is s~nt to the object to load this picture into memory and draw it to
the object's window. The result will be a window with a picture in it, as
shown in Figure 11-16.

The WindowClass Member Functions
You saw the definitions for the WindowClass member functions in Chapter
10, so I'll save a little paper by not repeating them here. If you feel inclined,
you can flip ahead several pages to the source code listing for a look at them.
What I will do, though, is repeat the definition of the WindowClass so you
can see the names of each of those functions:

358 Symantec C++

class WindowClass
{

} ;

protected:
WindowPtr the_window;
Rect drag_rect;

public:
WindowClass(void);

-WindowClass(void);

virtual void Select(void);
virtual void Drag(Point);
virtual void Close(void);
virtual void TrackClose(Point
virtual void Update(void);
virtual void Draw(void);

) ;

One of the WindowClass functions has changed from the last time
you saw it-but only slightly. In Chapter I 0, you saw that the
Update() function was responsible for drawing the contents of a Window­
Class object's window. Here the function prepares for drawing (as last
chapter's version did) but doesn't perform the actual drawing. Instead it
invokes another member function-Draw():

void WindowClass :: Update(void)
{

WindowPtr save_port;
Rect the_rect;

GetPort(&save_port);
SetPort(this->the_window);

BeginUpdate(this->the_window);
thi s->Draw();

EndUpdate(this->the_window);

SetPort(save_port);

Chapter 11 A Complete Example 359

The Draw() member function wasn't present in the Chapter 10
version of the WindowClass. Here's the definition for Draw():

void WindowClass :: Draw(void)

No, it's not a misprint. The function body is intentionally empty. The
Draw() function, like all of the WindowClass functions, is inherited by
both the PetWindow class and the PictWindow class. But, unlike the other
WindowClass functions, these derived classes override the function. Each
supplies its own version of what Draw() does. And because the Window­
Class is an abstract class-meaning no objects are ever created from it­
there's no need to have it do anything.

IMPORTANT ~'"

Because Draw() is in the list of WindowClass member functions, a definition
must appear for it-even if it is a definition that doesn't do anything.

The PictWindow Member Functions
Now let's turn to the member function of the PictWindow class. Here's
another look at that class definition:

class PictWindow : public WindowClass
{

} ;

protected:
short pict_ID;

public:
void Set_Pict_ID(short);
void Draw(void);

Set_Pict_ID() does just what its name implies-it sets the
Pict Window data member pi ct_ ID to whatever value is passed to the
function:

360 Symantec C++

void PictWindow :: Set_Pict_ID(short the_ID)
{

this->pict_ID = the_ID;

Once a Pict Window object has its pi ct_ ID data member set, the object
can draw the picture to the object's window through a call to Draw(). Here's
what the Pict Window version of this function looks like:

void PictWindow :: Draw(void)
{

Rect pict_rect;
PicHandle pict_handle;
short pict_wd;
short pict_ht;

pict_handle = GetPicture(this->pict_ID);

pict_rect = (**(pict_handle)).picFrame;

pict_wd = pict_rect.right - pict_rect.left;
pict_ht = pict_rect.bottom - pict_rect.top;

SetRect(&pict_rect, 5, 10, 5 + pict_wd, 10 + pict_ht);

DrawPicture(pict_handle, &pict_rect);

Draw() uses the object's pict_ID in a call to the Toolbox function
GetPicture(). This routine loads the PICT resource with an ID of pict ID
into memory and returns a handle to the picture. Draw() then dereferen~es
this handle twice to access the picFrame field of the picture. This field is a
Rect that holds the boundaries of the picture. From this rectangle, the
routine determines the width and the height of the picture. Then a call to
SetRect() establishes a rectangle the size of the picture and sets it at the
desired location. This call to SetRect() sets the display rectangle to the
upper-left corner of the window to which the picture will be drawn. A call
to the Toolbox function DrawPicture() does the actual drawing of the
picture.

Chapter 11 A Complete Example 361

The PetWindow Member Functions
The Pet Window class is so similar to the Animal class that I'll only cover its
member functions in passing. One difference worth noting, however, is the
data type of the cost data member. In the past it was a long; here it's a
Str255 type. Here's the PetWindow class definition:

class PetWindow : public WindowClass
{

} ;

protected:
Str255 type;
Str255 cost;

public:
void Set_Type(Str255);
void Get_Type(Str255);
void Set_Cost(Str255);
void Get_Cost(Str255);
void Draw(void);

The Set_ Type() and Set_ Cost{) functions set the values of the two
data members, while the Get_Type() and Get_Cost() functions retrieve
those values from the data members. Here are the definitions for those
functions:

void PetWindow :: Set_Type(Str255 name)
{

Fill_Str255(this->type, name);

void PetWindow :: Get_Type(Str255 name)

Fill_Str255(name, this->type);

void PetWindow :: Set_Cost(Str255 amount)
{

Fill_Str255(this->cost, amount);

362 Symantec C++

void PetWindow :: Get_Cost(Str255 amount)

Fill_Str255(amount, this->cost);

The Draw() function is inherited from the WindowClass base class
and then overridden. The Pet Window version of this function simply writes
out the string values of the two Pet Window data members:

void PetWindow :: Draw(void)
{

}

Str255 str;

MoveTo(20, 30);
Drawstring(this->type);
MoveTo(20, 45);
Drawstring("\p$") ;
Drawstring(this->cost);

Updating Object Windows
The ObjectWindows example you saw in Chapter 10 had an Update()
member function that did the drawing-and updating-for the window of
each object. It simply had a couple of calls to graphics routines "hard coded"
into it. A call to DrawString() drew a line of text, and a call to FrameRect()
drew a rectangle. Because of this, the window for every object the program
created had the same things drawn to it-definitely not very Mac-like.

DerivedWindows overcomes the serious flaw of ObjectWindows by
providing each type of object-PictWindow and PetWindow-with its
own drawing routine. Figure 11-17 illustrates this. In the figure, the
window belongs to an object of the PictWindow class. Part of the window
that was covered has become exposed, so it needs updating. The
Handle_One_Event() function determines which object the window
belongs to and then sends that object an Update() message. The Update()
routine was inherited from the WindowClass-the class that the
PictWindow class was derived from. Update() relies on an object's Draw()
routine to do the actual drawing. Because this object is a PictWindow
object, it's the PictWindow version of Draw() that is executed in this
example. This ensures that a picture-and not the text that the PetWindow
class Draw() routine uses-is drawn in the window.

Chapter 1 1 A Complete Example 363

void Handle_One_Event (void)
(

I I get next event

case updateEvt :
wind_obj = Which_Object(...
wind_obj ->Update () ;

void WindowClass : : Update (void)
{

I I save and set ports
BeginUpdate(this->the_window);

this->Draw() ;

dUpdate (this->the_window);

restore old port

void PictWindow : : Oraw(void)
{

I I draw the picture

FIGURE 11-17 Each class has its own drawing member function to update an object's window

DerivedWindows goes beyond just providing a separate drawing
routine for each class. The Draw() routines don't simply draw predefined
graphics. Instead, they base what is to be drawn on the data members of
each object. Because every object contains its own copy of each data
member, every object can draw something unique to its window. In Figure
11-17, the Pict Window Draw() function will use the pi ct ID data member
value of this particular object to draw the correct picture t~ the window.

Menus and Objects
None of the example programs in the first 10 chapters includes menus. For
the sake of brevity, menu resources and menu code were omitted. That kept
examples short and to the point. Of course, now that it's time for a complete
example, I'll want to add menus. There isn't anything object-oriented about
the way I'm handling menus, so if you're already familiar with menu
resources and the display and handling of menus, there won't be any sur­
prises here. If you need some brushing up on how menus are implemented

364 Symantec C++

and handled, refer to Appendix B. It provides explanations, as well as the
source code for a simple program that uses a menu to create an object.

DerivedWindows handles menus as described earlier in this chapter.
While the implementation of the program's menus doesn't use object­
oriented techniques, the result of making menu selections does. In par­
ticular, selecting any one of the three menu items in the File menu will cause
objects to be either created or disposed 0£ A selection from the File menu
results in a call to Handle_File_Choice(), shown here:

void Handle_File_Choice(int the_item)
{

PetWindow
PictWindow
WindowPtr

*pet_obj;
*pi ct_obj;
front_ wind;

WindowClass *wind_obj;

switch (the_item)
{

case NEW PICT ITEM: - -
pict_obj = New_Pict_Object();
break;

case NEW PET ITEM:
pet_obj = New_Pet_Object();
break;

case QUIT_ITEM:
while ((front_wind = FrontWindow()) != nil)
{

}

wind_obj = Which_Object(front_wind);
delete wind_obj;

Exi tToShe 11 ();
break;

The New Picture menu item results in a call to New_Pict_Object{).
This function will display a dialog box that lets the user provide some input

Chapter 11 A Complete Example 365

concerning the PictWindow object that is to be created. When the dialog box
is dismissed, New_Pict_Object() returns a PictWindow object.

The New Pet menu item works just like the New Picture item. The
New_Pet_Object() function opens a dialog box and returns a PetWindow
object.

Selecting the Quit menu item ends the program by calling Exit­
ToShell(). Before that, however, a while loop ensures that each object-no
matter how few or how many there are-will be deleted. The while loop
calls the Toolbox routine FrontWindow() to find out which window is in
the foreground. If there is a window open, the body of the loop determines
to which object the window belongs. Then that object is deleted. Deleting
the object causes its destructor to execute, which disposes of the window
and frees the memory it occupied-and that's good memory management.
Deleting each object is a necessary step if you want to ensure that your
program calls the destructor function of each object. Remember, it's the
delete operator that triggers the calling of an object's destructor.

Objects and User Input
DerivedWindows creates an object in much the same way that the example
programs in Chapter 9 did-by posting a dialog box that lets the user input
information about the object and then returning a new object to the
program.

If the user selects the New Picture menu item from the File menu,
function New_Pict_Object{) is called to open the dialog box pictured in
Figure 11-18. The user can use the radio buttons to determine which one
of two pictures will be associated with the object.

New Picture Dialog BoH

Select Picture:

0 Shop Owner's Wife

®Parrot (OK)

FIGURE 11-18 The New Picture dialog box in the DerivedWindows program

366 Symantec C++

New_Pict_Object{) is similar to the New_Rectangle() function
developed in Chapter 9. The function begins by opening the dialog box and
turning on one of the two radio buttons.

As the user clicks on radio buttons, the short integer variable pi ct_ ID
changes value. This variable holds the ID of the PICT resource associated
with each radio button. When the OK button is clicked on, a new
Pict Window object is created, and its pi ct_ ID data member is immediately
set to the PICT resource ID that corresponds to the last radio button
selected. The dialog box is then disposed of, and the new object is returned
to the program. Here's a look at the New _Pict_ Object{) function:

PictWindow *New_Pict_Object(void)
{

DialogPtr
Boolean
short
short
short
short

dlog;
dlog_done = false;
item;
new_radio;
old_radio;
pi ct_ ID;

PictWindow *temp;

dlog = GetNewDialog(PICT_DLOG_ID, nil,
(WindowPtr)-ll);

old_radio = BIRD_BUTTON;
new_radio = BIRD_BUTTON;
Set_Radio_Buttons(dlog, &old_radio, new_radio);
pict_ID = BIRD_PICT_ID;

while (dlog_done == false)
{

ModalDialog(nil, &item);

switch (item)
{

case BIRD BUTTON:
new_radio = item;

•

Set_Radio_Buttons(dlog, &old_radio,
new_radio);

pict_ID = BIRD_PICT_ID;
break;

}

}

case WIFE BUTTON:
new_radio = item;

Chapter 11 A Complete.Example 367

Set_Radio_Buttons(dlog, &old_radio,
new_radio);

pict_ID = WIFE_PICT_ID;
break;

case OK BUTTON:
temp = new PictWindow;
temp->Set_Pict_ID(pict_ID);
dlog_done = true;
break;

DisposDialog(dlog);

return (temp);

The handling of a New Pet menu item selection is similar to the han­
dling of a New Picture choice. A function named New _Pet_ Object() is
called to open the dialog box pictured in Figure 11-19. The user enters text
in the edit boxes to provide information about the animal that is to be
added to the program.

The New_Pet_Object{) function opens the dialog box shown in
Figure 11-19. The function then waits for the user to click on the OK

New Animal Dialog_BoH

Enter Animal Info:

Name: I Labrador dog

Price: I 100 (OK J

FIGURE 11-19 The New Pet dialog box in the DerivedWindows program

368 Symantec C++

button. When that happens, the strings from the two edit boxes are
obtained, a new PetWindow object is created, and the edit box strings are
used in the setting of the object's two data members. The dialog box is then
disposed of, and the new object is returned.

PetWindow *New_Pet_Object(void)
{

DialogPtr
Boolean
short
Str255
Str255
PetWindow

dlog;
dlog_done = false;
item;
name_str;
price_str;
*temp;

dlog = GetNewDialog(PET_DLOG_ID, nil, (WindowPtr)-ll);

while (dlog_done == false)
{

ModalDialog(nil, &item);

switch (item)
{

case OK BUTTON:
Get_Text_From_Edit(dlog, NAME_ITEM,

name_str);
Get_Text_From_Edit(dlog, PRICE_ITEM,

price_str);

temp = ~ew PetWindow;
temp->Set_Type(name_str);
temp->Set_Cost(price_str);
dlog_done = true;
break;

DisposDialog(dlog);

return (temp);

Chapter I I A Complete Example 369

DeriuedWindows.-u
Name

'V" Segment 2
DerivedW'indows .cp

Code
. 9080 {t-

2050

.......... ~.~~.!.~~-~~ !.9.~~--
'V" Segment 3 29882
~S~+ ~1~

CPluslib 1690
Totals 39540

FIGURE 11-20 The DerivedWindows project file

The DerivedWindows Source Code
Now it's time for a look at the complete source code listing for Derived­
Windows. You'll find the source code on the accompanying disk in a single
file named DerivedWindows.cp. The project file, also included, is pictured
in Figure 11-20.

After compiling the code, I performed a simple test to see if I'd
properly defined the PetWindow and PictWindow classes to be derived
from WindowClass. I selected Browser from the Source menu in the
THINK Project Manager. Sure enough, the Browser found that these two
classes were derived from the WindowClass. Figure 11-21 shows what the
Browser reported to me.

Pet'v/indow
WindowClass

Pict'v/indow

FIGURE 11-21 The DerivedWindows classes, displayed in the THINK Project Manager's Class
Browser

370 Symantec C++

II***************** DerivedWindows.cp ****************

ll~----------------11 forward references

class WindowClass;
class PictWindow;
class PetWindow;

II _______________ _
II function prototypes

void Set_Up_Menu_Bar(void);
void Initialize_Toolbox(void);
void Handle_One_Event(void);
void Handle_Mouse_Down(EventRecord *);
void Handle_Menu_Choice(long);
void Handle_Apple_Choice(int);
void Handle_File_Choice(int);
PictWindow *New_Pict_Object(void);
PetWindow *New_Pet_Object(void);
WindowClass *Which_Object(WindowPtr);
void Set_Radio_Buttons(DialogPtr, short *,

short);
void Get_Text_From_Edit(DialogPtr, short,

Str255);
void Fill_Str255(Str255, Str255);

II
II #define directives

#define MENU BAR ID 128
#define APPLE MENU ID 128 - -
#define SHOW ABOUT ITEM 1 - -
#define FILE MENU ID 129 - -
#define NEW PICT ITEM 1 - -
#define NEW PET ITEM 2

Chapter 11

#define QUIT_ITEM
#define EDIT MENU ID - -

#define ABOUT ALRT ID - -
#define WIND ID
#define WIFE PICT ID - -
#define BIRD PICT ID - -
#define PICT DLOG ID - -
#define OK BUTTON
#define WIFE BUTTON
#define BIRD BUTTON
#define PET DLOG ID - -
#define NAME ITEM
#define PRICE ITEM

class WindowClass
{

protected:
WindowPtr the_window;
Rect drag_rect;

public:
WindowClass(void);

-WindowClass(void);

4
130

130
128
128
129
128

1
2
3

129
2
3

virtual void Select(void);
virtual void Drag(Point);
virtual void Close(void);
virtual void TrackClose(Point);
virtual void Update(void);
virtual void Draw(void);

} ;

A Complete Example 371

class definitions

372 Symantec C++

class PetWindow : public WindowClass
{

} ;

protected:
Str255 type;
Str255 cost;

public:
void Set_Type(Str255);
void Get_Type(Str255);
void Set_Cost(Str255);
void Get_Cost(Str255);
void Draw(void);

class PictWindow : public WindowClass
{

};

protected:
short pict_ID;

public:
void Set_Pict_ID(short);
void Draw(void);

II ____________ _
II WindowClass member function definitions

WindowClass :: WindowClass(void)
{

this->the_window = GetNewWindow(WIND_ID, nil,
(WindowPtr)-ll);

this->drag_rect = screenBits.bounds;

SetWRefCon(this->the_window, (long)this);

SetPort(this->the_window);

Chapter 11 A Complete Example 373

WindowClass :: -WindowClass(void)
{

DisposeWindow(this->the_window);

void WindowClass :: Select(void)
{

SelectWindow(this->the_window);

void WindowClass :: Drag(Point where)
{

DragWindow(this->the_window, where, &this->drag_rect);

void WindowClass :: Close(void)
{

delete this;

void WindowClass :: TrackClose(Point where)
{

}

if (TrackGoAway(this->the_window, where))
thi s->Cl ose ();

void WindowClass :: Update(void)
{

WindowPtr save_port;
Rect the_rect;

GetPort(&save_port);

374 Symantec C++

SetPort(this->the_window);

BeginUpdate(this->the window);
thi s->Draw();

EndUpdate(this->the_window);

SetPort(save_port);

void WindowClass •. Draw(void)
{
}

II~~~~~~~~~~~~~
II PictWindow member function definitions

void PictWindow :: Set_Pict_ID(short the_ID)
{

this->pict_ID = the_ID;

void PictWindow :: Draw(void)
{

Rect pict_rect;
PicHandle pict_handle;
short pict_wd;
short pict_ht;

pict_handle = GetPicture(this->pict_ID);

pict_rect = (**{ pict_handle)).picFrame;

pict_wd = pict_rect.right - pict_rect.left;
pict_ht = pict_rect.bottom - pict_rect.top;

SetRect(&pict_rect, 5, 10, 5 + pict_wd, 10 + pict_ht);

Chapter 11 A Complete Example 375

DrawPicture(pict_handle, &pict_rect);

PetWindow member function definitions

void PetWindow :: Set_Type(Str255 name)
{

Fill_Str255(this->type, name);

void PetWindow :: Get_Type(Str255 name)
{

Fill_Str255(name, this->type);

void PetWindow :: Set_Cost(Str255 amount)
{

Fill_Str255(this->cost, amount);

void PetWindow :: Get_Cost(Str255 amount)
{ .

Fill_Str255(amount, this->cost);

void PetWindow :: Draw(void)
{

Str255 str;

MoveTo(20, 30);
Drawstring(this->type);
MoveTo(20, 45);

376 Symantec C++

Drawstring(11 \p$ 11) ;

Drawstring(this->cost);

void main(void)
{

Initialize_Toolbox();

Set_Up_Menu_Bar();

for (; ;)
Handle_One_Event();

void Initialize_Toolbox(void)
{

InitGraf(&thePort);
Ini tFonts ();
Ini tWi ndows ();
Ini tMenus ();
TEinit();
InitDialogs(OL);
FlushEvents(everyEvent, OL);
Ini tCursor();

void Set_Up_Menu_Bar(void)

initialize the Mac

set up menu bar and menus

Chapter 11 A Complete Example 377

Handle menu_bar_handle;
MenuHandle apple_menu;

menu_bar_handle = GetNewMBar(MENU_BAR_ID);

SetMenuBar(menu_bar_handle);
DisposHandle(menu_bar_handle);

apple_menu = GetMHandle(APPLE_MENU_ID);
AddResMenu(apple_menu, 'DRVR');

DrawMenuBar();

void Handle_One_Event(void)
{

EventRecord the_event;
WindowClass *wind_obj;

handle single event

WaitNextEvent(everyEvent, &the_event, 15L, OL);

switch (the_event.what)
{

case mouseDown:
Handle_Mouse_Down(&the_event);
break;

case updateEvt:
wind_obj = Which_Object((WindowPtr)

the_event.message);
wind_obj->Update();
break;

378 Symantec C++

II~~~~~~~~~~~~~~~~
II handle a click of the mouse

void Handle_Mouse_Down(EventRecord *the_event)
{

WindowPtr window;
short the_part;
long menu_choice;
WindowClass *wind_obj;

the_part = FindWindow (the_event->where, &window);

switch (the_part)
{

case inMenuBar:
menu_choice = MenuSelect(the_event->where);
Handle_Menu_Choice(menu_choice);
break;

case inSysWindow:
SystemClick (the_event, window);
break;

case inDrag:
wind_obj = Which_Object(window);
wind_obj->Drag(the_event->where);
break;

case inContent:
wind_obj = Which_Object(window);
wind_obj->Select();
break;

case inGoAway:
wind_obj = Which_Object(window);
wind_obj->TrackClose(the_event->where);
break;

Chapter 11 A Complete Example 379

handle a click on a menu

void Handle_Menu_Choice(long menu_choice)
{

int the_menu;
int the_menu_item;

if (menu_choice != 0)
{

the_menu = HiWord(menu_choice);
the_menu_item = LoWord(menu_choice };

switch (the_menu)
{

case APPLE MENU ID: - -
Handle_Apple_Choice(the_menu_item };
break;

case FILE MENU ID: - -
Handle_File_Choice(the_menu_item);
break;

case EDIT MENU ID: - -
break;

}
HiliteMenu(O};

handle a click in the Apple menu

void Handle_Apple_Choice(int the_item)

380 Symantec C++

Str255 desk_acc_name;
int desk_acc_number;
MenuHandle apple_menu;

switch (the_item)
{

case SHOW ABOUT ITEM - -
Alert(ABOUT_ALRT_ID, nil);
break;

default :
apple_menu = GetMHandle(APPLE_MENU_ID);
Getitem(apple_menu, the_item, desk_acc_name);
desk_acc_number = OpenDeskAcc(desk_acc_name);
break;

handle a click in the File menu

void Handle_File_Choice(int the_item)
{

PetWindow
PictWindow
WindowPtr

*pet_obj;
*pict_obj;
front_wind;

WindowClass *wind_obj;

switch (the_item)
{

case NEW PICT ITEM: - -
pict_obj = New_Pict_Object();
break;

case NEW PET ITEM:
pet_obj = New_Pet_Object();
break;

Chapter 11 A Complete Example 381

case QUIT_ ITEM:
while ((front_wind = FrontWindow()) != nil)
{

wind_obj = Which_Object(front_wind);
delete wind_obj;

}
ExitToShell ();
break;

open new Picture object dialog

PictWindow *New_Pict_Object(void)
{

DialogPtr
Boolean
short
short
short
short
PictWindow

dlog;
dlog_done = false;
item;
new_radio;
old_radio;
pict_ID;
*temp;

dlog = GetNewDialog(PICT_DLOG_ID, nil,
(WindowPtr)-lL);

old_radio = BIRD_BUTTON;
new_radio = BIRD_BUTTON;
Set_Radio_Buttons(dlog, &old_radio, new_radio);
pict_ID = BIRD_PICT_ID;

while (dlog_done == false)
{

ModalDialog(nil, &item);

switch (item)

382 Symantec C++

}

case BIRD BUTTON:
new_radio = item;
Set_Radio_Buttons(dlog, &old_radio,

new_radio);
pict_ID = BIRD_PICT_ID;
break;

case WIFE BUTTON:
new_radio = item;
Set_Radio_Buttons(dlog, &old_radio,

new_radio);
pict_ID = WIFE_PICT_ID;
break;

case OK BUTTON:
temp = new PictWindow;
temp->Set_Pict_ID(pict_ID);
dlog_done = true;
break;

DisposDialog(dlog);

return (temp);

II ____________ _
II open new Picture object dialog

PetWindow *New_Pet_Object(void)
{

DialogPtr dlog;
Boolean dlog_done = false;
short
Str255

· Str255
PetWindow

item;
name_str;
price_str;
*temp;

Chapter 11 A Complete Example 383

dlog = GetNewDialog(PET_DLOG_ID, nil, (WindowPtr)-lL);

while (dlog_done == false)
{

ModalDialog(nil, &item);

switch (item)
{

case OK BUTTON:
Get_Text_From_Edit(dlog, NAME_ITEM,

name_str);
Get_Text_From_Edit(dlog, PRICE_ITEM,

price_str);

temp = new PetWindow;
temp->Set_Type(name_str);
temp->Set_Cost(price_str);
dlog_done = true;
break;

DisposDialog(dlog);

return (temp);

detennine which window object to work with

WindowClass *Which_Object(WindowPtr wind)
{

long wind_ID;
WindowClass *temp;

wind_ID = ((WindowPeek)wind)->refCon;

temp = (WindowClass *)wind_ID;

384 Symantec C++

~eturn (temp);

set radio buttons

void Set_Radio_Buttons(DialogPtr dlog, short *old_radio,
short new_radio)

}

Handle hand;
short type;
Rect box;

GetDitem(dlog, *old_radio, &type, &hand, &box);
SetCtlValue((ControlHandle)hand, 0);

GetDltem(dlog, new_radio, &type, &hand, .&box) ;
SetCtlValue((ControlHandle)hand, 1);

*old_radio = new_radio;

get edit box contents

void Get_Text_From_Edit(DialogPtr dlog, short edit_item,
Str255 the_str)

{

Handle hand;
short type;
Rect box;

GetDitem{dlog, edit_item, &type, &hand, &box);
GetIText(hand, the_str);

Chapter 11 A Complete Example 385

fill the str with fill with str - - -

. void Fill_Str255{ Str255 the_str, Str255 fill_with_str)
{

short str_length; // length in characters of string
short i; //loop counter

str_length = *fill_with_str;

for (i = str_length; i >= 0; i-­
the_str [i] = fill_with_str[i];

What's Next?

If you're serious about programming, object-oriented programming is a
must. In the coming years, you'll see it become the standard in pro­
gramming. And now, you're ready to be a knowledgeable participant in this
wave of the 90s.

So what comes next? You might want to continue practicing your
object-oriented skills by modifying the DerivedWindows program. You can
easily make the PetWindow class more powerful by just adding more data
members and Get and Set member functions to access the new members.
Modify the input dialog to let the user enter this new information. Then,
with a few additions to the New_Pet_Object() function, you can have
PetWindow objects take on this new data.

If DerivedWindows is to become a true database, it must be able to
save the information that is entered. For that, you'll want to learn how to
write data to files. Another welcome addition would be the ability to print
out the information in the data base.

Examining and modifying existing source code is one of the best ways
to learn about programming. The disk that is included with this book has
more than two dozen programs-so go to it!

ppendix.A

Getting and Using Quicklime

QuickTime is an Apple system software extension that adds movie-playing
capabilities to your Macintosh. An extension is a piece of software that is
loaded into memory when your computer is turned on and remains there
until the computer is turned off. By itself, QuickTime doesn't do much.
Instead, other programs make use of Quick Time to play movies. One such
program is the Simulator C++ software included with this book

If you have QuickTime, you're all set to use the Simulator C++
program. Just make sure QuickTime is in the Extensions folder in your
System Folder. If you don't have Quick Time, get it. And not just for the
sake of using the Simulator C++ software. Many new programs require
QuickTime to be present on the user's Mac.

Getting Quicklime

Apple wants Mac owners to have QuickTime, so they distribute it freely.
The most common place to find it is on one of the online services. If you or
someone you know is a member of one of these services, you can download

387

388 Symantec C++

FIGURE A-1

Welcome to Rmerica Online
Departments

I I

Directory of Seruices
Lobby ~L

:;;ia--~ Go to Ke word - ----!Hi'.'.

Enter keyword: l~m_o_s ----~

[Keyword Help J n OK 1

Entering a keyword using the Keyword menu item

the Quick Time file. The remainder of this section describes how to find the
QuickTime file on the three most popular online services-America
Online, CompuServe, and GEnie.

Downloading from America Online

FIGURE A-2

To download QuickTime from America Online, first log on. Select
Keyword from the Go To menu. Type mos for Macintosh Operating
System in the dialog box that opens, as shown in Figure A-1.

To move into the software libraries section of the Macintosh Operating
Systems forum, click on the Software Libraries icon shown in Figure A-2.

Next, search for the QuickTime file. To do this, first dick on the
Software Search icon shown in Figure A-3.

Macintosh Operating systems

the orum
Weekly Forum Update
Apple Software Licens e

-0- Frequently Asked Questions
t:J Uirus Information Center
t:J Aoo

The Software Libraries icon in the MOS forum

Software
Libraries

Message
Boards

Appel'!dix A Getting and Using Quicklime 389

MOS Software Libraries

Iii MOS Soft ware Libraries

FIGURE A-3 The Software Search icon in the MOS forum

Software
Search

Click here

Type quicktime in the long edit box at the bottom of the search dialog
box. Then click on the List Matching Files button, as shown in Figure A-4.

America Online will display a new dialog box that lists all the files that
have something to do with QuickTime. Scroll through the list until you
find the Quick Time file itself and then double-dick on the filename. Figure
A-5 shows the Quick Time file in the scrollable list.

]ii From Rpple

List files made available during: (Click one)
® 811 dat

1
es 0 Past month O Past week

List files only in these categories: (Click on one or more)

D System 7.0
D Sample Code
D Documentation

D Rll Categories

D Old Systems
D Libraries
D Human Interface

D Utilities
D Tech Notes

List files vvith these words reflecting my interest: (Optional)

I quicktime

..___R_e_a_d_L_ic_e_n_s_e _ __,] fi List Matching Files D [Get Help & Info

FIGURE A-4 Searching for Quick Time-related files

Iii

l
\ii

390 Symantec C++

Category . Title
Sy st em MOS Chat

File List

DLs Uploader
186 AFR Genes

AFR Genes
AFR Genes

FIGURE A-5 Quick Time, followed by a version number, will appear in the list of files.

After double-clicking on the QuickTime filename, you will see the
dialog box shown in Figure A- 6, which describes the file and allows you to
download it. Click on the Download Now button to begin the download
process.

Downloading from CompuServe
To download QuickTime from CompuServe, first log on. Type go macdev
to go to the Macintosh Developers Forum, which is shown in Figure A-7.

Next, type 3 to enter the libraries section. Figure A-8 shows the Mac
Developers Forum menu.

-l!i Quicklime 1.6.1 !! !eIJ
Subj: QuickTime 1.6. 1 !! November 14, 1993
From: Sys7

File: QuickT i me 1.6. 1.sea (7 43839 bytes)
DL ti me (2400 baud): < 85 minutes
Download count: 4879

AUTHOR: Apple Computer
EQUIPMENT: 32bit Qu i ckDraw (factory) capable Mac
NEEDS: App l e Disk Copy 41 or later ~

Ii Download No~ II I Download Later I I Comment To Staff I
ll

FIGURE A-6 Starting the download of the Quick Time file

FIGURE A-7

FIGURE,A-8

Appendix A Getting and Using Quicklime 391

CompuServe TOP

1 Access Basic Services
2 Member Assistance <FREE)
3 Communications/Bulletin Bds.
4 News/Weather/Sports
5 Travel
5 The Electronic MALL/Shopping
7 Money Matters/Markets
8 Entertainment/Games
9 Hobbies/Lifestyles/Education

10 Reference
11 Computers/Technology
12 Business/Other Interests

Enter choice !go macdev

Moving to the Macintosh Developers Forum

-II Cotnpuserue

Mac Developers Forum+ Menu

1 INSTRUCTIONS
2 MESSAGES
3 LIBRARIES (Files)
4 CONFERENCING (0 participating)

5 ANNOUNCEMENTS from sysop
5 MEMBER directory
7 OPTIONS for this forum

Enter choice !3

Moving into the libraries section of the Mac Developers Forum

392 Symantec C++

Mac Developers Forum+ Libraries Menu

0 UPLOAD HERE
1 Help Files
2 BASIC
3 Assembly Language
4 C and Pascal
5 Object Oriented
6 Other Languages
7 Apple System Tools
8 Apple System Files
9 Dev. Environments

10 Scripting Month
11 Learn Programming
12 A/UX
13 Tools/Debuggers

FIGURE A-9 Moving into the Apple System Files library of files

The Mac Developers Forum contains several libraries of files. Type 8
to enter the Apple System Files library, as shown in Figure A-9.

Next, select menu option I to browse through the Apple system files.
At the first prompt, press [Enter I. That means the search will take place in
the current library. At the next prompt, type quicktime. At the final
prompt, press [Enter] so that all files, regardless of age, are included in the
search. Figure A-I 0 shows the responses you should enter.

A description of each file that has something to do with QuickTime
will be shown on the screen-one at a time. After each description, press
[Enter] until you reach the QuickTime extension. The title should include
the word Quick Time along with a version number, as shown in Figure A-11.
At that description, type choices to see a list of options.

At the list of choices, type 2 to download the file, as shown in Figure
A-12.

CompuServe will next provide a list of download options. XMODEM
is a very popular transfer protocol, and most communications software has
an XMODEM option. Type 1 to select this option. You'll see a message that
signals you to begin the download, as shown in Figure A-13.

Initiate the download by selecting the download menu item from the
communication software you're using. CompuServe will be sending you the
file, and you will be receiving it. Select the appropriate Receive menu item.

Appendix A Getting and Using Quicklime 393

Apple Sys t em Files
1 BROWSE Files
2 DIRECTORY of Files
3 UPLOAD a File <FREE)

CompuSerne

4 DOWNLOAD a file to your Computer
5 LIBRARIES

Enter choice ! 1

Enter 1 i brar i es (e .g . 1, 2, 4 or ALU
or <CR > for current 1 ibr ary :

Enter keywords <e.g. modem)
or <CR > for all : quicktime

Oldest files in days
or <CR > for all :

FIGURE A-10 Starting the search for Quick Time-related files

Iii CompuSerue

175703, 1030]
QT151 .SIT/Bin Bytes : 598528, Count : 2132 , 11-Aug-93

T i t 1 e Qu i ck t i me 1 . 5 . 1 w i th "Read Me" and tech notes
Keywords : QUICKTIME QUICK TIME

This file is part of Apple Computer's System Software . Soft
used only upon conditions stated in file LICENS . TXT . DOWNLO
CONSTITUTES CONSENT TO THE CONDITIONS . All s oftware Copyrig
Apple Computer , Inc . unless otherwise noted; all rights res
expressly provided. Download with MacBinary enabled, decomp
resulting file. Not a disk image!

Press <CR > for next or type CHOICES !choicesl

¢1

FIGURE A-11 The Quicktime extension file description

{}
1--

394 Symantec C++

-. compose rue

Mac Developers Forum+ Library Disposition

1 READ this file
2 DOWNLOAD this file
3 DESCRIPTION
4 RETURN to 1 ibrary menu

Enter choice or <CR> for next !21

¢

FIGURE A-12 Getting ready to download the Quick Time extension

II , compuSerq~

¢

Transfer protocols available -
1 XMODEM
2 CompuServe B+ and original B
3 DC2/DC4 <Capture)
4 YMODEM
5 CompuServe QB (8 w/send ahead)
6 Kermit
7 QUICKTEL
0 Abort transfer request

Enter choice ! 1
File QT161.SIT, 598528 Bytes, Lib 8
Starting XMODEM send.
Please initiate XMODEM receive
and press <CR> when the transfer
is complete.

FIGURE A-13 Selecting the XMODEM transfer protocol

Appendix A Getting and Using Quicklime 395

File Transfer

Send TeHt ...
Send MacBinary HMODEM .. .
Send to MacTerminal 1.1 .. .

Select Receiue Uolume ...
Re(eiue Ma(Binary HMOllEM

FIGURE A-14 Selecting the XMODEM download option in Microphone

As an example, Figure A-14 shows the proper menu item to choose if you're
using Microphone by Software Ventura Corp.

Downloading from GEnie
If you're a member of GEnie, you to can download Quick Time. Begin by
logging on. At any prompt type m 605 to move to the Macintosh Round­
Table. Figure A-15 shows how this is done.

Next, enter the Macintosh Software Libraries section by typing 3, as
shown in Figure A-16.

To find the QuickTime extension file, you must perform a file search.
Type 3 to begin the search process, as shown in Figure A-17.

GEnie 1ur
GE Information Services

1. About GEnie 2.
3. Hot & Happening Events On GEnie 4.
5. Computing Services 6.
7. Finance & Investing Services 8.
9. News, Sports & Features 10.

11. Career/Professional Services 12.
13. Leisure Pursuits & Hobbies 14.
15. Entertainment Services 16.
17. Research & Reference Services 18.

Enter #, <H>elp?m 6051

FIGURE A-15 Moving into the Macintosh RoundTable

New Members'
Communications
Travel Services
Online Shopping
GEnie Games
Business Servic
Education Servi
Symposiums on G
Leave GEnie <Lo

396 Symantec C++

GEnie Iii

GEnie

1.
3 .
5.
7.

8.
10.
12 .

MAC
GE-MUG <Macintosh) RoundTable

Macintosh Bulletin Board . 2 .
Macintosh Software Libraries 4.
RoundTable News (940228) 6.
GE-MUG Fi 1 e Of The 1.-ieek

Macintosh Product Support 9 .
GEnieLamp Mac Newsletter 11.
Computer & Electronics NewsCente

Macintosh Real­
About the Round
Send Mail to Ro

MacPro RoundTab
Newsbytes News

Enter •, <P>rev ious , or <H>elp?3I

FIGURE A-16 Moving into the Macintosh Software Libraries section

Iii GEnie

Macintosh RoundTable Software Library
Library: ALL Libraries

1. Description of this Library
2. Directory of Files
3. Search File Directory
4. Browse through Files
5 . Upload a New File
6 . Down 1 oad a F i l e
7. Delete a File You Own
8 . Set Software Library
9. Save Current Software Library

10 . Instructions for Software Exchange
11. Directory o.f New Files
12. Join/Ignore Library Category

Enter # or <P>revious?3I

Iii~
~

1--
-0

¢1 1¢ Iii

FIGURE A-17 Starting the file search process

Appendix A Getting and Using Quicklime 397

¢

GEnie

Enter Search String, or <RETURN > for ALL
?quicktime

Uploader Address , or <RETURN> for ALL
?

Number of days , or <RETURN> for ALL
?

String : quicktime
Uploader: ALL
Days Back : ALL

FIGURE A-18 Narrowing the search to all QuickTime-related files

..

¢Ii

Before beginning the search, GEnie will prompt you for three separate
responses. At the first question, type quicktime. That tells GEnie to search
for all QuickTime-related files. At the second prompt, press [Enter!. That
means that all Quick Time files will be sought, regardless of who originally
uploaded them. Finally, press I Enter I again to tell GEnie that you aren't con­
cerned with how long ago the files were uploaded.Figure A-18 shows what
your responses should be.

When the search is complete, a list of files will be displayed. Find the
name of the Quick Time file itself. It will be the word Qµick Time along with
a version number. When you find the file, make note of the number that
appears to the left of the filename. You'll need this number when you begin
the download. Figure A-19 shows the QuickTime extension in a list of
QuickTime-related files.

Next, type n when asked if you want another search to be performed,
as shown in Figure A-20.

Now it's time to download the file. Type 6 to start the download
process. You'll be prompted to enter the number of the file to download.
Enter the number of the QuickTime file, as shown in Figure A-21.

After you type the file number, a description of the QuickTime
extension file will appear. Typ~ d to tell GEnie you want to download the
file, as shown in Figure A-22.

398 Symantec C++

Take note
of the file's
number

¢

GEnie
Desc : Turn set of PICTs to QuickTime movie

25282 PLANETVENUS .SEA X MARYBROWN 921127
Desc: HypercardPictureBook,QuickTime

22087 POPCORN 1 . 0. 1 . SIT X MACG IC I AN 920119
Desc : QuickTime Movie Viewer & Editor

30355 POPCORN .SEA X ALADDINSYS 931008
Desc: Freeware QuickTime Viewer and Editor

25138 QTPLAY . CPT X JPW I ND 921117
Desc : QuickTime movie player XCMD - free

29555 QU I CKT I ME 1 . 5 . 1 . CPT X DRACO 9308 11
Desc : Apple's QuickTime, v1.5. 1

23552 QUICKTIME FILMFEST WINNE X A2 .GREGOR 920512
Desc : Interacti ve movie wins QT film fest

22055 QUICKTIME LOGO MOVIE.SIT X A.SIGMON 920114
Desc : A QuickTime Movie of a 3D QT logo

25458 QUICKTIME .LST X D.ATTRIDE 921202
Desc: List of QT movies available

FIGURE A:....19 Taking note of the file number of the QuickTime file

GEnie"'
22675 WHO.HAPPYPATROL .C.SIT X J.SIMS

Desc: 3 Compressed Color PICTs for
22576 WHO.PARADISET.C .SIT X J .SIMS

22677

22678

Desc: 4 Compressed Color
WHO . REMEMDALEKS .C.SIT
Desc : 4 Compressed Color
WHO .SUNMAKERS .C.SIT

PICTs for
X J .SIMS
PICTs for
X J.SIMS

920330
Dr .Who

920330
Dr.Who

920330
Dr.Who

920330
Desc: 5 Compressed Color PICTs for Dr .Who

5400

87808

109312

79488

128512

23111 WORD5 PIM REDISCLAIMER 7 A.WEEKS 920506 4712
Desc: Microsoft Word 5 PIM DisclaimerWord

23113 WORDMOVIE PIM FOR QUICKT X A.WEEKS 920506 587264
Desc: Microsoft Word Movie Plug in Module

End of Directory .

Search again? (Y/N)?nl

¢

FIGURE A-20 Ending the search process

1.
2 .
3.
4 .
5.
6.
7.
8.
9 .

10 .
11.
12 .

Appendix A Getting and Using Quicklime 399

Description of this Library
Directory of Files
Search File Directory
Browse through Files
Upload a New File
Down 1 oad a Fi 1 e
Delete a File You Own
Set Software Library
Save Current Software Library
Instructions for Software Exchange
Directory of New Files
Join/Ignore Library ·category

Enter # or <P>revious?6

Enter download request or <H>elp? 29655I

¢

FIGURE A-21 Telling GEnie which file you want to download

GEnie

Number: 29655 Name : QUICKTIME 1.6 . 1. CPT
Date : 930811 Address: DRACO

Approx imate # of bytes : 762752
Number of Accesses: 794 Library : 37
Description :
QUICKTIME 1.6. 1 software consists of the Quicklime system so1lii
new version of the Macintosh Scrapbook and a Scrapbook file u
movie . The Quicklime system software extension adds capabil ii
application programs integrate graphics , sound , video, and ar
documents . By providing a standar d way for all Mac intosh pro~
these multimedia elements, Quicklime makes them easier to use

F i 1 e : QU I CKTI ME 1 . 6 . 1 . CPT
is a BINARY File .

Press <RETURN > to skip, <D>ownload , <L >ist, or <Q>uit . .
?d

¢1

FIGURE A-22 Telling GEnie you want to download the file

400 Symantec C++

• GEnie -~
F i 1 e : QU I CKT I ME 1 . 6 . 1 . CPT 0

i--
is a BINARY File .

Press <RETURN> to skip, <D>ownload, <L>ist , or <Q>uit .
?d

Select Download Protocol

1. XMODEM I'
2. XMODEM (w/1K blocks)
3 . YMODEM
4 . ZMODEM

Enter # or <RETURN> to skip?1

1-:::-
{}

¢1 1¢ \ii

FIGURE A-23 Specifying the transfer protocol to be used in the download

When GEnie asks for the type of download protocol you'll be using,
type 1, as shown in Figure A-23. XMODEM is a popular transfer protocol
for downloading Macintosh files, and most communication software
packages include it.

Finally, initiate the download by selecting the download menu item
from the communication software you're using. GEnie will be sending you
the file, and your Macintosh will be receiving it. Select the appropriate
Receive menu item. Figure A-24 shows the menu item to use if you're using
Microphone by Software Ventura Corp. If you're using a different commu-

File Transfer

Send TeHt .•.
Send MacBinary HMODEM .. .
Send to MacTerminal 1.1 .. .

Select Receiue Uolume ...
ReceiL•e MacBinary HMOOEM

FIGURE A-24 Selecting the XMODEM download option in Microphone

Appendix A Getting and Using Quicklime 40 I

nication program, you'll have a similar Receive XMODEM item in one of
the program's menus.

Installing and Using Quicklime

Once you have Quick Time, you have to put it in the System Folder of your
Mac. To do this, drag the Quick Time icon to your closed System Folder. It's
important that the System Folder not be open at this time. If you're using a
version of System 7, an alert will appear to tell you that the file is going to be
placed in the Extensions folder. That's exactly what you want, so click on
the OK button.

Quick Time is loaded into the memory of your Macintosh each time
you start your computer. That's the only time it gets placed in memory. So
even though QuickTime is now in the proper folder, it hasn't been loaded
into memory. To do this, simply restart your Mac.

Now you're all ready to use the Simulator C++ program and all other
software that displays QuickTime movies.

ppendix B

Menu Handling

The Chapter 11 program, DerivedWindows, uses menus to allow the user
to create new objects. If you need some brushing up on creating and
working with menus, you're in the right spot. This appendix covers the
basics of menu resources and the source code you must use to bring these
resources to the screen. The source code for MenuDemo- a simple menu­
handling program- is also included here.

Menu Resources

Menus start out as resources. Each menu that appears in a progrcun's menu
bar has its own MENU resource. Figure B-1 shows how ResEdit displays
the three MENU resources for the MenuDemo program that is described at
the end of this section.

A program won't know which of the MENU resources to include in its
menu bar unless you tie them all together using an MBAR resource. Figure
B-2 shows the MBAR resource for the MenuDemo program.

403

404 Symantec C++

MEN Us from MenuDemo.1T .rsrc

New Object

Quit

128 129

FIGURE B-1 The MENU resources for the Menu Demo program

Cut
Copy
Paste

130

Iii

While you're in your resource editor, it's a good idea to note the IDs of
the resources you're creating. The following are the #define directives I'll be

Iii MBRR ID 128 from MenuDemo. n' .rs re

u of menus 3 ~

1) *****

Menu res ID 1128

2) *****
Menu res ID I 129

3) *****
Menu res ID I 130

4) ***** '{}
1i

FIGURE B-2 The MBAR resource for the MenuDemo program

Appendix B Menu Handling 40S

using in the MenuDemo program:

#define ABOUT ALRT ID 128
-

#define MENU BAR ID 128
#define APPLE MENU ID 128 - -
#define SHOW ABOUT ITEM 1 - -
#define FILE MENU ID 129 - -
#define NEW OBJECT ITEM 1 - -
11 item 2 is a dashed line 2
#define QUIT_ITEM 3
#define EDIT MENU ID 130 - -

Menu Code

Displaying a menu bar in a program is easy; the Menu Manager does all of
the work. Here's a routine that adds a menu bar:

void Set_Up_Menu_Bar(void)
{

Handle menu_bar_handle;
MenuHandle apple_menu;

menu_bar_handle = GetNewMBar(MENU_BAR_ID);

SetMenuBar(menu_bar_handle);
DisposHandle(menu_bar_handle);

apple_menu = GetMHandle(APPLE_MENU_ID);
AddResMenu(apple_menu, 'DRVR');

DrawMenuBar();

The Toolbox function GetNewMBar() uses the specified MBAR
resource to create a menu list containing a handle to each individual menu
that will appear in the menu bar. SetMenuBar() installs the menus in the
menu bar. Once the menus are installed, your program no longer needs the
handle to the menu bar, so dispose of it with a call to DisposHandle().

406 Symantec C++

You can get a handle to any single menu by making a call to GetM­
Handle(). You'll want to do that for the Apple menu. After your program
receives the MenuHandle, use it in a call to AddResMenu(). This Toolbox
function adds the contents of the Apple Menu Items folder-a folder found
in the System Folder of all Macs running System 7. If the program will run
on a Mac using a version of System 6, any system resources of type DRVR
will be added instead. Resources of this type are generally desk accessories.

With all the behind-the-scenes work done, it's time to display the
menu bar. A call to DrawMenuBar() takes care of this task.

Setting up the menu bar places it at the top of the screen, but there's
more work to be done. If the user clicks on the menu bar, you'll want the
Handle_Mouse_Down() routine to take notice. I've added an inMenuBar
case label to Hande_Mouse_Down() to handle a click in the menu bar:

void Handle_Mouse_Down(EventRecord *the event
{

WindowPtr window;
short the_part;
long menu_choice;

the_part = FindWindow(the_event->where, &window);

switch (the_part)
{

case inMenuBar:
menu_choice = MenuSelect(the_event->where);
Handle_Menu_Choice(menu_choice);
break;

The Toolbox routine MenuSelect() tracks the cursor as the user moves
the mouse over the menu bar. MenuSelect() is responsiple for the work
involved in dropping and hiding menus as the user passes over them. When
the mouse is released while on a menu item, MenuSelect() returns a long
integer value that contains a reference to both the menu and the menu item.
Pass this value on to a separate menu-handling routine such as my
Handle_Menu_ Choice():

void Handle_Menu_Choice(long menu choice)
{

int the_menu;
int the_menu_item;

if (menu_choice != O)
{

Appendix B Menu Handling 407

the_menu = HiWord(menu_choice);
the_menu_item = LoWord(menu_choice);

switch (the_menu)
{

case APPLE MENU ID: - -
Handle_Apple_Choice(the_menu_item);
break;

case FILE MENU ID: - -
Handle_File_Choice(the_menu_item);
break;

case EDIT MENU ID: - -
break;

HiliteMenu(O);

Handle_Menu_ Choice() uses calls to HiWord() and Lo Word() to
extract the two pieces of information held in the one menu_ choice variable.
It then uses a switch statement to branch off to a routine written to handle
selections from one menu.

Handle_Apple_Choice() handles a selection from the Apple menu.
This is a standard routine that can be pasted into just about any of your
programs:

void Handle_Apple_Choice(int the_item)
{

Str255 desk_acc_name;
int desk_acc_number;
MenuHandle apple_menu;

switch (the_item)

408 Symantec C++

New Object

Quit

FIGURE B-3 The menu bar displayed by MenuDemo

case SHOW ABOUT ITEM : - -
Alert(ABOUT_ALRT_ID, nil);
break;

default :
apple_menu = GetMHandle(APPLE_MENU_ID);
Getltem(apple_menu, the_item, desk ace name);
desk_acc_number = OpenDeskAcc(desk ace name);
break;

If the user selects the About menu item, Handle_Apple_Choice()
posts an alert that contains information about the program. Any other
menu selection results in a call to OpenDesk.Acc() to open the selected
desk accessory-or, in System 7, any other item found in the Apple menu.

Other menu-handling routines will be specific to your program. The
MenuDemo program, which is pFesented in the next section, demonstrates
how to handle a File menu that includes a menu item that creates a new
object and a Quit menu item.

Menu Example

MenuDemo is a program that uses the menu-handling techniques set forth
in this appendix. It uses the resources pictured in the figures of t~is
appendix, as well as an ALRT resource and a WIND resource. When you
run MenuDemo, you'll see a menu bar like the one pictured in Figure B-3.

Selecting the About item from the Apple menu displays an alert like
the one shown in Figure B-4.

Appendix B Menu Handling 409

Menu Demo

uersion 1.0

E Done ~

FIGURE 8-4 The alert displayed when the About menu item is selected

Choosing New Object from the File menu creates a new Rectangle
object. The user will see a window open with a rectangle drawn in it-as
pictured in Figure B-5.

It may seem to you that MenuDemo has regressed from the examples
in Chapter 9. First, it has only a single class-the Rectangle class. There are
no derived classes. Furthermore, a New Object menu selection creates an
object but requires no input from the user. A better way of doing things
would be to have this menu item open a dialog box that let the user supply
all the information about the object that is to be created. Since you're very
familiar with the Rectangle derived classes and the use of dialog boxes to
accept user input, I thought it would be best to shorten the example code
and place the emphasis on the menu code. In Chapter 11, you'll see a com­
plete example that ties menu items to dialog boxes that accept user input
and create new objects.

New Window

FIGURE B-5 A new object displays a window with a rectangle drawn in it.

410 Symantec C++

II******************** MenuDemo.cp *******************

II_~~~~~~-"-~~~~~
II forward references

class Rectangle;

II _____________ _
II function prototypes

void Initialize_Toolbox(void);
void Set_Up_Menu_Bar(void);
void Handle_One_Event(void);
void Handle_Mouse_Down(EventRecord *);
void Handle~Menu_Choice(long);
void Handle_Apple_Choice(int);
void Handle_File_Choice(int) ;

II
II
#define MENU BAR ID 128
#define ABOUT ALRT ID 128 - -
#define WIND ID 128
#define APPLE MENU ID 128 - -
#define SHOW ABOUT ITEM 1 - -
#define FILE MENU ID 129 - -
#define NEW OBJECT ITEM 1 - -
#define QUIT_ITEM 3
#define EDIT MENU ID 130 - -

II
II
Rectangle *the_rect;

#define directives

global variables

Appendix B Menu Handling 411

class definitions

class Rectangle
{

} ;

protected:
Rect aRect;

public:
virtual void Set_Rectangle(short L, short T,

short R, short B);
virtual void Draw_Rectangle(void);

II _____________ _
II member function definitions

void Rectangle Set_Rectangle(short L, short T,
short R, short B)

SetRect(&this->aRect, L, T, R, B);

void Rectangle :: Draw_Rectangle(void)
{

FrameRect(&this->aRect);

II _____________ _
II main()

void main(void)

WindowPtr the_window;

Initialize_Toolbox();

412 Symantec C++

Set_Up_Menu_Bar();

the_window = GetNewWindow(WIND_ID, nil,
(WindowPtr) -ll);

SetPort(the_window);

for (; ;)
Handle_One_Event();

void Initialize_Toolbox(void)
{

InitGraf(&thePort);
Initfonts();
Ini tWi ndows ();

initialize the Mac

Ini tMenus (); II using menus, need to
II initialize

TEI nit();
InitDialogs(OL);
FlushEvents(everyEvent, OL);
InitCursor();

II _____________ _
II

void Set_Up_Menu_Bar(void)
{

Handle menu_bar_handle;
MenuHandle apple_menu;

set up menu bar and menus

menu_bar_handle = GetNewMBar(MENU_BAR_ID);

Appendix B Menu Handling 413

SetMenuBar(menu_bar_handle);
DisposHandle(menu_bar_handle);

apple_menu = GetMHandle(APPLE_MENU_ID);
AddResMenu(apple_menu, 1 DRVR 1);

DrawMenuBar();

void Handle_One_Event(void)
{

EventRecord the_event;
WindowPtr
GrafPtr

window;
old_port;

handle single event

WaitNextEvent(everyEvent, &the_event, 15L, OL);

switch (the_event.what)
{

case mouseDown:
Handle_Mouse_Down(&the_event);
break;

case updateEvt:
window = (WindowPtr)the_event.message;
GetPort(&old_port);
SetPort(window);
BeginUpdate(window);

EraseRgn(window->visRgn);
if (the_rect != nil)

the_rect->Draw_Rectangle();
EndUpdate(window);
SetPort(old_port);
break;

414 Symantec C++

II ____________ _
II handle a click of the mouse

void Handle_Mouse_Down(EventRecord *the_event)
{

WindowPtr window;
short the_part;
long menu_choice;

the_part = FindWindow(the_event->where, &window);

switch (the_part)
{

case inMenuBar:
menu_choice = MenuSelect(the_event->where);
Handle_Menu_Choice(menu_choice);
break;

}

handle a click on a menu

void Handle_Menu_Choice(long menu_choice)
{

int the_menu;
int the_menu_item;

if (menu_choice != 0)
{

the_menu = HiWord(menu_choice };
the_menu_item = LoWord(menu_choice);

switch (the_menu)
{

case APPLE MENU ID: - -
Handle_Apple_Choice(the_menu_item);
break;

Appendix B Menu Handling 415

case FILE MENU ID: - -
Handle_File_Choice(the_menu_item);
break;

case EDIT MENU ID: - -
break;

Hil iteMenu(O);

handle a click in the Apple menu

void Handle_Apple_Choice(int the_item)
{

Str255 desk_acc_name;
int desk_acc_number;
MenuHandle apple_menu;

switch (the_item)
{

case SHOW ABOUT ITEM - -
·Alert(ABOUT_ALRT_ID, nil);

break;

default :
apple_menu = GetMHandle(APPLE_MENU_ID);
Getitem(apple_menu, the_item, desk_acc_name);
desk_acc_number = OpenDeskAcc(desk_acc_name);
break;

handle a click in the File menu

void Handle_File_Choice(int the_item)

416 Symantec C++

switch (the_item)
{

case NEW OBJECT ITEM: - -
the_rect = new Rectangle;
the_rect->Set_Rectangle(20, 20, 150, 80);
the_rect->Draw_Rectangle();
break;

case QUIT_ITEM:
if (the_rect != nil

delete the_rect;
ExitToShell ();
break;

Index

Symbols
. structure member operator, 68-69

: between class name and access specifier for
derived class, 167

:: scope resolution operator, 106, 113, 206-207
-> operator to invoke a member function, 122
~ preceding destructor class name, 149
" " to enclose name of included header file, 55
< > to enclose name of included Apple-supplied

header file, 55-56
f character for folder names, 3, 8

1t (pi) symbol, creating, 3-4, 6

A
abstract classes, 199-219. See also classes

as common ancestor of family of derived
classes, 199, 249

creating, 201-204
data members of, 201-202
difference between ordinary base class and, 200
member functions of, 202-204
reasons for creating, 200

417

AbstractClass sample program

class hierarchy for, 218
output of, 211-212
purpose of, 209-210
source code of, 212-216

access specifier, 167-168

Add Files dialog box, 9, 11
AddResMenu() Toolbox function, 406
Alert() Toolbox function, 269, 281, 289

Alertlnput sample program

output of, 275
purpose of, 267, 269-270, 274-276
resource file for, 267-268
source code for, 270-273

alerts

to create new objects, 265-273
example of, 269-273, 276
resources for, 267-268
to select object type, 268-269
for user to enter information, 266

ALRT resource, 267-268, 280, 408
America Online service, downloading Quick Time

from, 388-390

418 Symantec C++.

ANSI++ library, 9, 16

application
converting project's source code into, 26-27
icon for, 26, 28
naming, 26-27

arguments, functions with different number of,
79-83

B
BadCAllocation sample program

memory allocation in, 96-99
source code for, 96

base class
abstract. See abstract classes
data members and member functions in, 165
defined, 164
example of derived class and, 166
sample code for, 166-167

base objects, member functions used by, 187-188

BeginUpdateO Toolbox function, 279, 317
branching statements, 60-67

breakpoints during debugging, setting, 23-25,
148-149

c
C compiler, preprocessor in, 54

C language

allocating memory in, 85-99
basic differences between C++ language and,

77-79
as basis ofC++, 51-76
C++ as superset of, 32, 47
comments using I* and *I in, 33, 79
OOP and, 45-48

C++
additions made to C language to produce,

77-108
allocating memory in, 99-104
basic differences between C language and,

77-79
comments using I* or 11 in, 33, 79
defining a class in, 43
as dominant computer language, xv
example of, 345-385

introduction to, 31-49
as superset of C language, 32, 47

C++ code, writing and running, 17.,...19

C++ compiler

overview of using, 1-30
preprocessor in, 54

CarStruct sample program for struct, 70-72

CatalogStruct sample program, 73-75

char (character) data type, 51, 53-54

Class Browser window, 217-219, 369

class data type, 71-75

struct to represent data members of, 72
class hierarchy, 216-219

class keyword in a forward reference, 230

classes, 42-45. See also abstract classes; derived
classes

creating family of, 204-209
declaring, 45, 109-112
defined,42-43,353-357
defining, 43-44
instance of, 119
multiple, 159-162
objects and, 109-157

click of mouse button, events for, 314-316

close box, clicking in, 316

CloseO function, 336

comments in C and C++ languages, 33, 79

CompuServe online service, downloading Quick-
Time from, 390-395

constant

defined,55
setting, 55

Constructor sample program

output of, 148
source code for, 146-147

constructors, 143-149

called by new operator, 144, 148
headers for, 144
purpose of, 143
windows and, 327-333

control panel for Simulator C++, xxiv-xxv

starting topic from, xxvi
CPlusLib library, 9

D
data members

of abstract classes, 201-202
accessing, 134-139, 173-178
as data, 121
defined, 36
defining, 112
pointers as, memory allocation and dealloca-

tion for, 151-152
private, 135-137
protected, 175-178
setting and getting value of, 202
types of, 111-112

data types, basic, 51-54

Data window of Symantec debugger, 20-21

updating values in, 25-26
DebuggerDemo program, 20-26

debugging, 23-26
source code of, 22

#define directive, 55

delete operator

calling destructor after use of, 15 5, 36 5
memory not released by, 151
to release allocated memory, 103-104, 129

derived classes, 159-197. See also classes

creating, 164, 167-168, 204-206
data members and member functions inherited

in, 165, 185, 205
example of, 166
member functions of, 206-209
reasons to create, 162-166
returned objects and, 233-238

derived objects, 169-184

creating, 170-171
data member access and, 173-178
examples of, 178-184
member functions used by, 187-188
using, 171-173

DerivedClass 1 sample program
output of, 180
source code for, 178-180

DerivedClass2 sample program
derived class in, 181
output of, 184

source code for, 181-183
DerivedClass3 sample program

member functions of, 185-186
output of, 186-187

DerivedRectangle sample program

purpose of, 233-234
results of, 235
source code for, 236-238

Index 419

DerivedWindows sample program, 345-385
classes for, 353-357, 369
member functions for, 357-362
menus for, 346, 363-365
modifying, 385
objects created in, 365-368
project file for, 369
resources for, 350-354
source code for, 369-385
updating windows in, 362-363

Destructor sample program
output of, 155
source code for, 153-155

destructors, 149-15 5

calling, 155,365
headers for, 151
purpose of, 149, 151

Development folder, 2-3

dialog box, handling edit text items in, 293-299
dialog box to create new object, sample, 289-308

radio button items in, 291-293
resources for, 289-291
sample display of, 290

Dialoglnput sample program
output of, 300
purpose of, 299
source code for, 301-308

disk with this book

project files on, 28
running example programs from, xviii
source code on, xvi, 28

DisposeHandleO function, 405
DisposeWindowO function, 316
DITL resource for a dialog box, 267-268, 280,

290-291, 297-298,351-353
DLOG resource for a dialog box, 290, 296, 351

do-while loop, 57-59

420 Symantec C++

double variable, 53

drag bar, clicking in, 316
DragO member function, 335
DragWindowO Toolbox function, 316, 335
DrawMenuBar{) function, 406

DrawPictureO Toolbox function, 360

DRVR resource, 406

dynamic binding, 239-264

E

example of, 243-248
implementing, 266
polymorphism implemented through, 243

edit text items in a dialog box, 293-299
else-if branching statement, 60, 63-65

encapsulation

defined, 38, 137
public data members as breaking down,

137-139
as strength of OOP, 251

EndUpdate{) Toolbox function, 279, 317
EraseRgn() function, 279
error-checking capability, adding, 299
error messages, compiler, for passing object to a

function,250
error messages window, 17

event loops, 46, 279
events

update, 276-279
windows and, 313-317, 335-336

ExitToShellO Toolbox function, 277-278, 336,
365

Extraction dialog box, xxii

F
File menu

New option of, 12
Save As option of, 12

files

adding, to project, 9-15
decompressing, xxi-xxii
header (.h), 55
project (.n), 6, 369

resource (.rsrc), 267-270, 350
self-extracting, xxi-:xxiii
source code (.cp), 12-15

FindWindow{) Toolbox function, 315, 320

float variable, 53

floating-point number data type, 51

decimal points not permitted in, 53
folder. See also individual folders

creating, 3
opening, 3

for loop, 57, 60
forward references

defined, 230
function prototypes and, 229-230

FrontWindow{) Toolbox function, 365

function overloading, 77, 79-85

for identically named functions with different
argument types, 83-84

for identically named functions with different
numbers of arguments, 79-83

member function overriding distinct from, 191
reasons to use, 84-85

function overriding, 187-196

function prototypes

forms of, 78
forward references and, 229-230
in header files, 55
purpose of, 78

FunctionOverload sample program, 80-83

dual Draw _LineO functions in, 80-81
output of, 81
source code for, 82-83

functions

defined, 35

G

differences between C and C++, 78-79
different argument types for, 83
passing objects to, 249-257
returning objects from, 222-233
same name for multiple, 79-85

GEnie online service, downloading QuickTime
from, 395-401

GetMHandleO Toolbox function, 406

GetNewDialogQ function, 296

GetNewMBarQ Toolbox function, 405

GetNewWindowO Toolbox function, 268, 310,
328

GetPortO function, 278-279

global data

OOP's elimination of need for, 35

procedural programming languages' reliance
on,35

GoodCAllocation sample program, source code
for, 91-92

Grafl>ort fidd, 312

graphics port (Grafl>ort), 311

H
header (.h) files, 55

Hello World sample program

adding files to project for, 9-14
converting project source code into application

for, 26-17
creating project folder for, 3-8

debugging, 19-26
ending execution of, 17

error messages for, 17

running, 17-19, 28
segmenting project for, 15-17
source code for, 18
writing code for, 17-18

HiWordQ function, 407

hypertext defined, xxx

I
if branching statement, 60-62

if-else branching statement, 60, 62-64

#include directive, 55-56

inheritance in derived classes, 164-165

instance variables. See data: members

instances. See objects

int variable, variance in size of, 52

integral number data type, 51-52

Index 421

L
libraries

adding, to a project, 9-12
defined,9

long double variable, 53
long variable, 52

lookup table to determine which function to
execute, 243-244

looping statements, 56-60

purpose of, 56
types of C, 56-57

Lo WordQ function, 407

M
MacTraps library, 9

mainQ function

assignment statements in, 105
as nonmember function, 115

mallocQ function, 86-87, 89, 118, 127-128
MBAR resource, 351, 403

member access of struct members, 68-71
member functions

of abstract classes, 202-204
body of, writing, 115-117
data members accessed using, 134
defined, 36
defining, 112-117
of derived classes, 206-208
header of, 112-115, 144
invoking, 122-127
listed in class definition, 46
"normal" functions and, 114-115
objects and, 121-122
OOP sample program's, 357-362
overriding, 18 5-196
as part of a class, 112
as pointers to actual functions, 121
public, 135, 138
working with an object's data members,

139-141
member operator {.), 68-69

MemberFunctions sample program
output of, 125
source code for, 125-127

422 Symantec C++

memory allocation

in C, 85-99
in C++, 99-104
of pointers used as data members, 151-152
Symantec debugger to examine bad, 94-99
Symantec debugger to verify proper, 92-94

Menu Manager, 405
MENU resource, 403-404

MenuDemo sample program
purpose of, 408
source code for, 409-416

MenuSelect() Toolbox function, 406
menus,363-364,403-416

adding menu bars to, 405-408
resources for, 403-405
sample program to create, 408-416

message, function ofOOP's, 37-38, 124-125

methods. See member functions
movie controller, xxviii-xxix

MultipleClasses sample program
output of, 162
purpose of, 160
source code for, 160-161

MultipleObjects sample program
output of, 134
purpose of, 132
source code for, 132-133

N
new operator

call to constructor by, 144, 148
for memory allocation, 99-104, 121

New Project dialog box, 5-6
NewWindow() Toolbox function, 310, 328
nil pointers

defined,278,282
example of, 282-284

NoObjectWindows sample program
output of, 318
purpose of, 317
resource file for, 321
source code for, 321-324

update events received by, 319-320

0
object-oriented language, xv
object-oriented programming (OOP)

advantages of, 38-41, 138
Cand, 45-48
code modification in, 40-41
complete example of, 345-385
introduction to, 31-49
as programming methodology, 33

objects, 117-134
candidates for representation as, 45-46
classes and, 109-157
creating, 119, 200, 227-228, 265-273
creating multiple, 43-45, 130-134
data and functions tied together as, 35-36
declaring, 117-120, 127-128
deleting, 129-130
derived class. See derived objects
distinguishable, verifying, 333-334
instances of classes as, 119, 122
as key element in OOP, 36
member functions and, 121-122
memory allocation for, 148
OOP sample program's, 365-368
passing, to functions, 249-257
returned from functions, 222-233
shapes as, 222-227
updating, 274-289
users and, 265-308
variables declared as type class as, 120
windows as, 46, 309-343

ObjectWindows sample program
differences between NoObjectWindows pro-

gram and, 336-337
flaw in, 362
output of, 337
source code for, 337-343

OpenDeskAcc() function, 408
operators

of C language used by C++, 56
defined, 56
table of commonly used, 56

overriding member functions, 186-196

by calling base member function from within
derived member function, 208-209

reasons for, 185-187
Overriding sample program

base class in, 191

p

derived class in, 192-193
output of, 192, 194
source code for, 194-196

pages for Simulator C++ software, xxiv-xxxi

Highlight Word, xxviii-xxix
Movie, xxviii
Question, xxx
Status, xxxi

parameter, example of rectangle object passed as,
249-257

PassedRectangle sample program

results of, 253-254
source code for, 254-257

pet shop owner programming example
abstract classes for, 201-204, 209-216,

354-355
class hierarchy for, 216-219
classes defined for, 358, 359, 361
complete example for, 345-385
derived classes for, 162-187, 355
dialog boxes for, 346-348, 365-367
dynamic binding in, 257-263
family of classes for, 204-209
inheritance in, 355
member functions in, 357-362
menus for, 346, 363-365
modifying elements of, 385
objects created in, 365-368
overriding a function in, 187-196
project file for, 369resources for, 350-353, 357
updating windows in, 362-363
windows of pet information in, 348-349, 356
windows of pictures in, 346-349, 357

PICT resource, 353-354, 360, 366

pointers
advantages of, 85

declared to data types, 86
defined,85
deleting, 130

Index 423

to derived or base class, 239-241
generic, 86, 88
with new operator, 101-103
nil, 278, 282
review of, 85
struct variables and, 89-92
Symantec debugger used with code that con­

tains, 92-99
polymorphism

defined, 190
implemented through dynamic binding, 243

preprocessor directives, 54-56
private keyword

as access specifier, 168, 178
to limit access, 134-138

procedural programming

approach of, 34-35
code modification in, 38-40
shift away from, 35

procedural programming language, xv, 35

program execution
setting breakpoints during debugging for,

22-24
stepping through single lines of code for, 24-25

programming approaches, procedural and object,
34--41

project
adding files to, 9-15
adding libraries to, 9-12
application created from, 26-27
creating new, 1-8
defined, 1
naming, 3-4, 6
running, 17-19, 28
segmenting, 15-16
updating, 17, 19

Project menu
Build Application option of, 26-27
Run option of, 17-18, 20, 23, 148
Use Debugger option of, 20-21, 23

project window
opening new, 3-4

424 Symantec C++

showing library files, 13
showing size of program's compiled code, 19
showing source code file, 16

protected keyword as access specifier, 168, 175-178

public keyword
effect on data member access of, 175, 178
encapsulation lost by using, 137-139
to set access control, 134-135

Q
QuickTime, xvi, 387-401

to add movie-playing capabilities to system, 387
installing, 401
loaded into memory, 401
places to get, 387-401

R
radio button items in dialog box, 291-293

rectangle object

derived class example of, 233-238
example of, 222-227
as a parameter, 249-257

RectangleClass sample program

purpose of, 224
source code for, 225-226

refCon field

to hold address of an object, 320, 333-334
setting value for, 328-330
to track multiple windows, 313, 320-321, 337
typecasting value in, to object pointer, 331-332

resource file, 267-280

contents of, 350
naming convention for, 270

resources

alert,267-268
dialog box, 489-291
IDs for, 350
menu, 403-405
OOP sample program's, 350-353

return keyword, purpose of, 203, 227

ReturnDerivedPet sample program

output of, 259

pointer assignments in, 258
source code for, 260-263

ReturnDerivedRect sample program

output of, 245
source code for, 246-248

ReturnedRectangle sample program
output of, 231
source code for, 231-233

routine

s

called in a procedural language, 37
defined, 35
OOP message telling object to use specified,

37, 124-125

scope resolution defined, 77
scope resolution operator, 105-107, 113-114,

206-207
ScopeOperator sample program

output of, 106
source code for, 106-107 ·

segments, dividing project into, 15-17

Select() member function, 332
SelectWindow() Toolbox function, 316

SetMenuBar() function, 405
SetPort() function, 278-279

SetWRefCon() Toolbox function, 328-329
SetWTitle() Toolbox function, 313
shape as an object, 222-226

short variable, 52

Simulator C++ software tutorial, xvi
chapters of, xxvi
features of, xx
folder of, xxiii
installing, xx-xxiii
Quick Time used by, 387
running, xvii, xxiv
selecting topic from, xxvi-xxvii
using, xviii-xx, xxiv-xxxi

sizeof() function, 86-87

source code. See also individual sample programs
application created from project's, 26-27
for book's programs on disk, xvi

compiling, 17
files of, added to C++ project, 12-15

Source menu

Add Files option of, 9-10, 15
Browser option of, 216-219, 369

Source window of Symantec debugger, 20-21

setting breakpoints in, 23
Standard Libraries folder, 12
stdlib.h header file required to use mallocO func­

tion, 89

string data type, 51, 53

given a value after it is declared, 54
struct C language data type

as basis for C++ class data type, 51, 71-72
defining and declaring, 67-68
member access for, 68-71
Symantec debugger used with code that con­

tains, 92-99
struct variables, 120

need for using mallocO eliminated by using, 128
pointers and, 89-92

structure template, 67-68

declaring, 118-119
structures, 67-75

body of, 68
defined, 67
members of, 68

subclasses. See derived classes

Supplemental Note, xxix
switch branching statement, 60, 65-67
Symantec C++ 6.0, creating project using, 3-5

Symantec C++ 7.0, creating project using, 5-8

Symantec debugger, 19-26
for code that contains pointers and structs,

92-99
to examine bad memory allocation, 94-99
starting, 148
to verify a proper memory allocation, 92-94

SystemClickO Toolbox function, 315-316

T
THINK C compiler, 3
THINK Project Manager

checking proper class definitions using, 369

Index 425

editing a source code file using, 1-2
as environment of the Symantec C++ compiler, 2
running example source code using, xviii-xix
viewing class hierarchy using, 216-219

this operator

to refer to address of object, 328-329
as reminder that member function is working

with an object, 139-143, 192
value of, displayed in Data window of the

debugger, 333
Toolbox calls, C++ use of, 46

TrackGoAway() Toolbox function, 316

typecasting a generic pointer, 88, 91

u
update events

redrawing window's contents and, 276-279,
319

updateEvt for, 314, 316-317
UpdateObject sample program

purpose of, 280-281
resources for, 280
source code for, 284-289

user, objects and, 265-308

v
variable

monitoring value during debugging of, 23
sensible name for, 143

virtual keyword to inform compiler of multiple
versions of a function, 190, 192

w
WaitNextEvent(} Toolbox function, 276-278, 318

while loop, 57-58
whole number data type, 51-52

WIND resource, 353, 408
creating, 310
to define window attributes, 268-270

Window Manager, supplying data to, 310

window object, representing, 325-326

window record, 310
WindowPeek data type, 310, 312-313, 331

426 Symantec C++

WindowPtr data type, 310, 312-313, 328, 331

WindowRecord data type, 310-311

memory allocation for, 327-328

windows

basic techniques for handling, 309-324

clicking in, 314-316

constructor function and, 327-333

data types for, 310-313

defining types of, 320
events and, 313-317, 335-336
multiple, 317-324
as objects, 46, 309-343
opening, 310
pointers to, 328-332
redrawing contents of, 274-289
updating obscured, 316-317, 362-363

Prima Computer Books You Can Order Directly
WINDOWS Magazine Presents. Access from the Ground Up $19.95
Adventures in Windows $14.95
CompuServe Information Manager for Windows: The Complete Handbook & Membership Kit

(with two 3Y2" disks) $29.95
Computers Don't Byte: The Absolute Beginner's Guide to Getting Started

with the PC
Computing Strategies for Reengineering Your Organization
CordDRAW! 5 Revealed!
Create Wealth with Quicken
DOS 6: Everything You Need to Know
DOS 6.2: Everything You Need to Know
WINDOWS Magazine Presents. Encyclopedia for Windows
Excd 4 for Windows: The Visual Learning Guide
Excel 5 for Windows: The Visual Learning Guide
Free Electronic Networks
WINDOWS Magazine Presents. Freelance Graphics for Windows:

The Art of Presentation
Improv 2.1 Revealed! (with 3~" disk)
Internet After Hours
Lotus Notes 3 Revealed!
Making Movies with Your PC
Microsoft Office In Concert, Professional Edition
NetWare 3.x: A Do-It-Yourself Guide
Novell NetWare Lite: Simplified Network Solutions
Paradox 4.5 for DOS Revealed! (with 3W' disk)
PageMaker 5 for Windows: Everything You Need to Know
PC DOS 6.1: Everything You Need to Know
PowerPoint: The Visual Learning Guide
QuickTime: Making Movies with Your Macintosh
Smalltalk Programming for Windows (with 3W' disk)
Software Developer's Complete Legal Companion (with 3~ disk)
Superbase Revealed!
Think THINK C! (with two 3W' disks)
Visual Basic for Applications Revealed!
Windows 3.1: The Visual Learning Guide
Windows for Teens
WinFax PRO: The Visual Learning Guide
Word for Windows 2: The Visual Learning Guide
Word for Windows 2 Desktop Publishing By Example
Word for Windows 6: The Visual Learning Guide
WordPerfect 5.1 for Windows Desktop Publishing By Example
WordPerfect 6 for DOS: The Visual Learning Guide

$7.95
$24.95
$24.95
$19.95
$24.95
$24.95
$29.95
$19.95
$19.95
$24.95

$27.95
$27.95
$19.95
$24.95
$24.95
$27.95
$24.95
$24.95
$29.95
$19.95
$24.95
$19.95
$24.95
$39.95
$32.95
$29.95
$39.95
$27.95
$19.95
$14.95
$19.95
$19.95
$24.95
$19.95
$24.95
$19.95

To order by phone with Visa or MasterCard, call (916) 632-4400,
Monday-Friday, 9 a.m.- 4 p.m. Pacific Standard Time.

To order by mail fill out the information below and send with your
remittance to: Prima Publishing, P.O. Box 1260, Rocklin, CA 95677-1260

Quantity Title

Name

Street Address

City

Visa/MC No.

Signature

Unit Price

Subtotal

7.25% Sales Tax (CA only)

Shipping*

Total

State ZIP

Expires

Total

*$4.00 shipping charge for the first book and $0.50 for each additional book.

About This Disk
The 1.4MB disk that accompanies this book contains one self-extracting,
compressed file, which, when expanded, will give you 4MB of software.
Because it is self..:extracting, no additional software is required to decom­
press this file-everything you need is right here on this one disk. The
decompressed software consists of the Simulator C++ software tutorial and
the Symantec C++ project and source-code files for plenty of example Mac­
intosh programs.

The Simulator C++ software is a Macintosh program created especially
for Symantec C++: Object-Oriented Programming Fundamentals for the Mac­
intosh. Through the use of text, graphics, Quick Time movies, and
questions, this software tutorial enhances the C++ and OOP concepts
covered in the book. To run the Simulator C++ program, you will need a
Macintosh with any version of System 7. The Simulator will run on either a
black-and-white or a color system with any size monitor. Instructions for
the program's use appear in the book's introduction ...

Each of the over 30 C++ example programs 'Gsed in this book also·
appear on the disk, which saves you a lot of typing. You will find that the
Symantec project file and source code file for each example will work with
either version 6 or 7 of the Symantec C++ compiler.

Disclaimer and Notice of Limited Warranty
The enclosed disk is warranted by Prima Publishing to be free of physical
defects in materials and workmanship for a period of sixty (60) days from
end user's purchase of the book/disk combination. During the sixty-day
term of limited warranty, Prima will provide a replacement disk upon the
return of a defective disk.

The remedy for breach of this limited warranty shall consist entirely of
replacement of the defective disk and shall cover no other damages,
including loss or corruption of data, changes in the functional character­
istics of the hardware or operating system, deleterious interaction with other
software, or ariy other special, incidental, or consequential claims that arise.

Prima and the author specifically disclaim any and all other warranties,
either express or implied, including warranties of merchantability, suit­
ability to a particular task or purpose, or freedom frorri errors. In no event
shall Prima or the author be liable for damages in excess of the purchase
price paid for the book/ disk combination, even if Prima and/ or the author
have previously been notified that the possibility of such damages exist .

. ·.

8y BREAKING THIS SEAL, YOU AGREE TO ABIDE

BY THE CONDITIONS SET FORTH IN THE DIS­

CLAIMER AND NOTICE OF LIMITED WARRANTY
FOUND IN THIS SOOK.

Simulator C++ 1.0 A
11 _,.ny the book

Sym1ntec C++
lllljlct-llrilntld flntnl•Ml111
F-...wtlls "'the
MICilltnll

•

Master the Language of the Future Today!
Symantec(++: Object-Oriented Programming Fundamentals for the Macintosh is your
comprehensive guide to the world of C++ object-oriented programming. You learn the
basics of this dynamic language through the use of step-by-step examples designed not
only to hone the skills you already possess but also to provide you with the skills that wi ll
soon be required of all programmers. Best of all, the example codes contained in the book
and accessory disk will run on both the Mac and the Power Mac!

Bonus Interactive Software Enhances the Learning Process!
The companion 1.4-MB high-density disk contains all example source codes used throughout
the text and features Simulator C++, a friendly, multimedia software tutorial enlivened with
App!e's Quick'fime• mo ~ies . Use this state-of-the-art software to leaf through anima~ d pages
and "bring to life" key programming concepts-learn by doing!

This book, in combination with the multimedia software, enables you to:

..) Electronically walk through-at your own pace-scores of interactive examples,
each more challenging than the last

...) Learn C ++ using a hands-on, entertaining approach

...) Fully realize the potential of your Macintosh or Power Mac

..) Build up a storehouse of programming skills to prepare you for the object-oriented future

..) Acquire absolute fluency in C ++ with unmatched speed and ease

D.\N PARKS SYDOW, author ofThink THINK C! (also from Prima), is a professional software
engineer who has developed educational software for the Macintosh. He currently is a writer of
1acinto h programming books.

l scr Le, cl: lntcrmedilte

PRl\l\ CO\IP TER BOOKS
\n lmpnnt or Prima Publishing

U.S. $39.95
U.K. £37.49 Net (Inc. VAT)
Can. $55.95

Macintosh/ Programming

ISBN 1 55958 633 8

9 781559 586337

