. P r B | M A .

PRACTICAL PROGRAMMING SERIES

SYMANTEC.

OBJECT-ORIENTED PROGRAMMING
FUNDAMENTALS FOR THE MACINTOSH

Includes Macintosh Simulator C++—
an Innovative Tutorial Program on Disk!

e Unleash the Full Power of Your Macintosh—Even if You Are Not a Programmer
* Learn Macintosh Programming Fundamentals Quickly and Easily
* Master the Basics of Symantec C++ Programming Language from the Ground Up

VALUABLE MAC ol

SIMULATOR C++ Sl MACINTOSH [

SOFTWARE E: SERIES
INCLUDED 3

ISBN 1-55958-633-8

0 ""86874"00633"" 1

Symantec

Now Available from Prima!

Advanced PageMaker 4.0 for Windows

CompuServe Information Manager for Windows: The Complete Membership Kit
& Handbook (with two 314" disks)

Computers Don't Byte—The Absolute Begmner s Guide to

Corel DRAW! 4 Revealed!

Create Wealth with Quicken

DESQview: Everything You Need to Know

DOS 6.2: Everything You Need to Know

Free Electronic Networks

Harvard Graphics for Windows: The Art of Presentation

Improv for Windows Revealed! (with 3%4" disk)

Lotus Notes 3 Revealed!

LotusWorks 3: Everything You Need to Know

Making Movies with Your PC

Microsoft Office In Concert, Professional Edition

NetWare 3.x: A Do-It-Yourself Guide

Novell NetWare Lite: Simplified Network Solutions

1-2-3 for Windows: The Visual Learning Guide

PageMaker 5 for the Mac: Everything You Need to Know

Quattro Pro 4: Everything You Need to Know

QuickTime: Making Movies with Your Macintosh

The Software Developer’s Complete Legal Companion (with 3%2" disk)

SuperPaint 3: Everything You Need to Know

Think THINK C (with two 3%2" disks)

WinFax PRO: The Visual Learning Guide

Word for Windows 6: The Visual Learning Guide

WordPerfect 5.1 for Windows Desktop Publishing By Example

WordPerfect 6 for Windows: How Do I...?

Upcoming Books

Corel DRAW! 5 Revealed!

Excel 5 for the Mac: The Visual Learning Guide
Word 6 for the Mac: The Visual Learning Guide

How to Order:

Individual orders and quantity discounts are available from the publisher, Prima Publishing,
PO. Box 1260BK, Rocklin, CA 95677-1260; phone: (916) 632-4400. On your letterhead
include information concerning the intended use of the books and the number of books
you wish to purchase. Turn to the back of the book for more information.

Symantec

Object-Oriented Programming Fundamentals
for the Macintosh

Dan Parks Sydow

Prima Publishing

PO. Box 1260BK
Rocklin, CA 95677-1260
(916) 632-4400

Prima Computer Books is an imprint of Prima Publishing, Rocklin, California 95677

© 1994 by Dan Parks Sydow. All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without written permission from
Prima Publishing, except for the inclusion of quotations in a review.

Executive Editor: Roger Stewart

Managing Editor: Neweleen A. Trebnik
Acquisitions Editor: Sherri Morningstar

Project Editor: Steven Martin

Copy Editor: Betsy Ahl

Indexer: Lynn Brown

Technical Reviewer: Peter Ferrante

Design and Production: Susan Glinert, BookMakers
Cover Design: Page Design, Inc.

If you have problems installing or running Symantec C++, notify the Symantec Corporation.
Prima Publishing cannot provide software support.

Information contained in this book has been obtained by Prima Publishing from sources
believed to be reliable. However, because of the possibility of human or mechanical error by
our sources, Prima Publishing, or others, the publisher does not guarantee the accuracy, ade-
quacy, or completeness of any information and is not responsible for any errors or omissions of
the results obtained from use of such information

ISBN: 1-55958-633-8
Library of Congress Catalog Card Number: 94-066733
Printed in the United States of America

94959697BC10987654321

To my wife, Nadine

vi

Contents at a Glance

Acknowledgments

Introduction

Using the Symantec C++ Compiler
Introduction to C++ and OOP
The C Language: The Basis of C++
Additions to C... Means C++
Classes and Objects

Derived Classes

Abstract Classes

Dynamic Binding

Objects and the User

Windows as Objects

A Complete Example

Getting and Using QuickTime
Menu Handling

Index

xiii
XV

31

51

77
109
159
199
221
265
309
345
387
403
417

Contents

Acknowledgments

Introduction

Whom This Book and Software Are For xvi
What You Need xvi
Using the Book xuvii
Running the Simulator C++ Software xvii
Running the Example Programs xviii
How to Use This Book and Software xviii
Using the Symantec C++ Examples xviii
Using the Simulator C++ Software xviii
Features of the Simulator Software xx
Installing the Simulator C++ Software xx
Using the Simulator Software xxiv
Running the Simulator C++ Software xxiv
Pages and the Control Panel xxiv
Simulator Pages xxvii

Chapter | Using the Symantec C++ Compiler

Creating a New Project |
Creating a Project Using Symantec C++ 6.0 3
Creating a Project Using Symantec C++7.0 5

vii

viii

Symantec C++

Adding Files to a Project 9
Adding Libraries to a C++ Project 9
Adding a Source Code File to a C++ Project 12
Segmenting a Project 15
C++ Code: Writing It and Running It 17
Using the Symantec Debugger 19
Debugger Basics 20
Debugging a Program 23
Turning Code into an Application 26
Using the Included Projects 28
About That Code... 28
Chapter Summary 29

Chapter 2 Introduction to C++ and OOP 31

C++ and Object-Oriented Programming 31
C,C++,and OOP 32
From C to C++ to OOP 33
Procedural and Object Programming 34
Procedural Programming 34
Object-Oriented Programming 35
The Advantages of Object-Oriented Programming 38
Classes 42
The Class—the Pattern of Objects 42
Creating Multiple Objects 43
Object-Oriented Programming and C 45
Everything Need Not Be an Object 45
C++UsesC 46
Chapter Summary 49

Chapter 3 The C Language: The Basis of C++ 51

Basic Data Types 51
Integral Numbers 52
Floating-Point Numbers 53
Characters and Strings 53

'Preprocessor Directives 54

The #define Directive 55

The #include Directive 55
Operators 56
Looping Statements 56

The while Loop 57

The do-while Loop 57

The for Loop 60
Branching Statements 60

The if Branch 60

The if-else Branch 62

The else-if Branch 63

The switch Branch 65
Structures 67

Defining and Declaring a struct 67

Contents ix

Accessing struct Members 68
The struct and class Data Types 71
Chapter Summary 75

Chapter 4 Additions to C... Means C++ 77

The Very Basics 77
Functions 78
Comments 79
Function Overloading 79
Functions with a Different Number of Arguments 79
Functions with Different Argument Types 83
Why Create Functions with the Same Name! 84
Allocating Memory in C 85
Pointer Review 85
Using Pointers 86
Pointers and struct Variables 89
Using the Symantec Debugger 92
Using the Debugger to Verify a Proper Memory Allocation 92
Using the Debugger to Examine Bad Memory Allocation 94
Allocating Memory in C++ 99
The Scope Resolution Operator 105
Chapter Summary 107

Chapter 5 Classes and Objects 109

Declaring a Class 109
Defining Member Functions 112
Writing the Header of a Member Function 112
Writing the Body of a Member Function 115
Working with Objects 117 :
Declaring an Object 117
Objects and Member Functions 121
Invoking a Member Function 122
Objects and Member Functions—Round Two 127
Deleting an Object 129
Multiple Objects 130
Accessing Data Members 134
Data Access via Member Functions 134
Using the private and public Keywords to Limit Access |34
Accessing Data without Using Member Functions 135
The this Operator 139
Constructors and Destructors 143
Constructors 143
Destructors 149
Chapter Summary 156

Chapter 6 Derived Classes 159

Multiple Classes 159
Derived Classes 162
Why Create Derived Classes? 162

X

Symantec C++

The Base Class 166
The Derived Class 167
Working with Derived Class Objects 169
Creating Derived Objects 170
Using Derived Objects 171
Derived Objects and Data Member Access 173
An Example Using Derived Objects 178
A Second Example Using Derived Objects 180
Overriding Member Functions 185
Why Override Member Functions? 185
Overriding a Function 187
An Overriding Example 191
Chapter Summary 197

Chapter 7 Abstract Classes 199

Why Abstract Classes? 199
Creating an Abstract Class 201

The Abstract Class Data Members 201

The Abstract Class Member Functions 202
Creating a Family of Classes 204

The Derived Classes 204

The Member Functions of the Derived Classes 206
An Abstract Example 209
The Class Hierarchy 216
Chapter Summary 219

Chapter 8 Dynamic Binding 221

Returning Objects from Functions 222

A Shape as an Object 222

Returning an Object 227

Function Prototypes and Forward References 229

A Returned Object Example 230
Returned Objects and Derived Classes 233

Rectangles and Derived Classes 233

Dynamic Binding 239

A Dynamic Binding Example 243

The Rectangle Class—Still an Abstract Class? 249
Passing Objects to Functions 249

A Rectangle Object as a Parameter 249

The PassedRectangle Example Program 254
Returned Objects and the Animal Class 257
Chapter Summary 263

Chapter 9 Objects and the User 265

Using an Alert to Create a New Object 265
Alert Resources 267
Using the Alert to Select an Object Type 268
An Alert Example 269

Contents

Updating an Object 274
The Need to Redraw a Window’s Contents 274
Update Events and Redrawing a Window’s Contents 276
Testing the Object Update 279
Updating an Object—an Example 284

Using a Dialog Box to Create a New Object 289
Dialog Box Resources 289
Handling Radio Button Items in a Dialog Box 291
Handling Edit Text Items in a Dialog Box 293
Creating a New Object Using a Dialog Box 294
A Dialog Box Example Program 299

Chapter Summary 308

Chapter 10 Windows as Objects

Window Basics 309

Opening a Window 310

Window Data Types 310

Windows and Events 313

A Multiple-Windows Example Program 317
Representing Windows as Objects 325

The Window Class 325

Windows and the Constructor Function 327

Verifying That Objects Are Distinguishable 333

Windows and Events 335

An Example of Windows as Objects 336
Chapter Summary 343

Chapter |1 A Complete Example

DerivedWindows: A Complete OOP Example 345
What the Program Does 346
The DerivedWindows Resources 350
The DerivedWindow Classes 353
The WindowClass Member Functions 357
The PictWindow Member Functions 359
The PetWindow Member Functions 361
Updating Object Windows 362
Menus and Objects 363
Objects and User Input 365
The DerivedWindows Source Code 369
What’s Next? 385

Appendix A Getting and Using QuickTime

Getting QuickTime 387
Downloading from America Online 388
Downloading from CompuServe 390
Downloading from GEnie 395
Installing and Using QuickTime 401

.
Xi

309

345

387

xii Symantec C++

Appendix B Menu Handling

Menu Resources 403
Menu Code 405
Menu Example 408

‘Index

403

417

Acknowledgments

I'd like to take this opportunity to thank the several people who helped
make this book a reality:

Steven Martin, Prima Publishing Project Editor, for having a sense of
humor while keeping things moving through the production cycle.

Peter Ferrante, Apple Computer, for a technical edit that resulted in a
wealth of helpful comments and suggestions.

Betsy Ahl, SBI Inc., for a copyedit that once again made my grammar
look like it ain't all that bad!

Susan Glinert, BookMakers, for a page layout that made the book
look as good as it does.

Carole McClendon, Waterside Productions, for making this book
happen.

Betty Sydow, for encouragement and for displaying copies of my
books on her bookshelf—even if she can't imagine what they're all about!
Thanks mom.

xiii

Introduction

These days, it’s hard to hold a conversation about computer programming
without the topics of C++ and object-oriented programming surfacing.
You've surely heard such opinions as “C++ is the programming language of
the nineties” and “the future of programming is C++.” While many will
argue the notion that C++ is the most worthy recipient of the title “the future
of programming,” one simple fact stands out—it wi// be the dominant lan-
guage for at least the next several years.

You are probably aware that C++ is here to stay. Yet you might have
resisted the switch from your current language—Pascal or C, perhaps—to
C++. If that is indeed the case, you have probably hesitated because you've
heard that the C++ language is a complicated one to learn. You've probably
heard the same said about object-oriented programming—the set of pro-
gramming techniques that define how a C++ program is organized. Before
you turn this page, I'd like you to cast aside your fears and keep one thought
in mind—C++ and object-oriented programming aren’t difficult; theyre
different.

This book and the disk that accompanies it exist to eliminate the frus-
tration that many people feel as they attempt to make the transition from a
procedurallanguage like C to an object-oriented language like C++. The book
starts with a series of very small and simple examples designed to teach the

XV

xvi

Symantec C++

basics of C++. This step-by-step approach builds a foundation for the more
comprehensive examples that appear later in the book—examples that use
C++ and object-oriented techniques to create Mac programs that include
menus and windows.

All of the source code for the examples in the book are provided on the
included disk. The disk also holds a software tutorial called Simulator C++
that is meant to accompany the text. While the book contains plenty of
figures to help clarify programming concepts, there are times when ideas
can be better presented using a little animation. The Simulator C++
software does just that. In Simulator C++, screens of information corre-
spond to the pages of a book. You click a button to page through them.
And, quite often, a page will open up a supplementary window that con-
tains a QuickTime movie. You can play and replay this movie to “bring to
life” a key programming concept.

Whom This Book and Software Are For

Symantec C++: Object-Oriented Programming Fundamentals for the Mac-
intosh was written for C programmers who want to move on and move up
to C++ programming. The book is ideal for people who fall into one or
more of the following categories:

m People who have programmed the Mac using C and now want to
program it using C++.

m People who have the combined Symantec C++/THINK C compiler but
haven’t taken advantage of the C++ features of it.

m People who know a little about the C++ lanaguage but don’t know how
to use it to write a Mac program.

m People who want to learn how C++ is used to write object-oriented pro-

grams (OOP).

What You Need

The Symantec C++: Object-Oriented Programming Fundamentals for the
Macintosh package is a comprehensive Macintosh C++ programming guide,
but there are a couple of things that will help you to get the maximum
benefit from it.

Introduction xvii

Using the Book

The C++ language is based on C. So it makes sense that you should know
the basics of C before trying to tackle C++. If you've programmed the Mac
but not in C or you've never written a Mac program, you might want to
consider getting a copy of Think THINK C!, also published by Prima Pub-
lishing. If you have programmed the Mac using C but feel a little rusty, then
take a close look at the material in Chapter 3.

Running the Simulator C++ Software

TABLE I-1

QuickTime is Apple’s movie-playing system software extension. Because the
Simulator C++ tutorial software included with this book uses QuickTime,
youll need a Macintosh computer capable of running it. QuickTime
requires a Mac that has a 68020, 68030, 68040, or PowerPC micropro-
cessor. That shouldn't be a problem; every Mac made in the past several
years has one of those chips. Only a few of the older Macintosh models
dont—the Mac Plus, the Mac SE, the Mac Classic, and the PowerBook 100.
Every other model, including all those listed in Table 1, is capable of
running QuickTime—and the Simulator C++ software.

If you have one of the Macs listed in Table I-1 and version 6.0.7 or
later of the Macintosh operating system—including any version of System
7—jyou’re all set. Just make sure you have a copy of the QuickTime
extension in the Extensions folder in your System Folder. If you don’t, refer
to Appendix A. There you'll find out how to get a free copy of QuickTime
and how to install it. You do 70z need a compiler to run the Simulator C++

software.

Macintosh models that can run QuickTime and the Simulator C++ software

Any LC I
SE/30 lIx
Classic Il llex
Any Quadra 11fx
Any Performa livx
Any Duo llci
Any Centris lIsi
Any PowerBook except the 100 lvi

Any Power Macintosh

xviii

How to Use This Book an

Symantec C++

Running the Example Programs

In addition to the Simulator C++ tutorial software, the included disk con-
tains about two dozen example programs. Many are very small and
demonstrate just a single C++ concept. Others are much larger and demon-
strate how a real-world Macintosh C++ program is written. If you want to
examine the code and experiment with the examples, you'll need a copy of
the Symantec C++ compiler. The best way to learn to program is to work
with examples, so the purchase of a C++ compiler is a very sound
investment. All the code in this book and on the disk works with either the
Symantec C++ 7.0 compiler or the older Symantec C++ 6.0.

d Software

e

The disk that accompanies this book contains example C++ source code
and a software program called the Simulator C++. The example code and
the Simulator C++ program are separate items that do not depend on one
another. Figure I-1 highlights this point.

Using the Symantec C++ Examples

If you own the Symantec C++ compiler, you can use the Think Project
Manager that is part of that package to view, edit, compile, and run the
example source code that is in the Symantec C++ Examples folder. Chapter
1 provides step-by-step instructions for doing this.

Using the Simulator C++ Software

The Simulator C++ program is a software tutorial that accompanies this
book. If object-oriented programming and the C++ language are taught
in this book, why also include a software tutorial? Because Prima Pub-
lishing believes that every person has a different style and pace of
learning. Many people find that some programming concepts are best
learned through interactive study—the method that the Simulator C++
software uses.

The Simulator C++ program uses the analogy of a book to teach you
how to program your Macintosh using the C++ language. Screens are
referred to as pages and can be flipped through much as you would the
pages in a book. Pages are grouped into chapters and topics that correspond

FIGURE 1-1

Introduction Xix

18 items

Symantec C++ Examples

If you own Symantec C++ you You donot need to own

can use that package's THINK Symantec C++ to run the
Project Manager to run all of : software tutorial program
the included examples Simulator C++

Example programs work with Symantec C++. The Simulator program runs on its
own.

to those found in this book. That makes it easy for you to use both the book
and the software to study a single topic.

If you're using the software to study a topic and you want to refer to
that same topic in the book, just note the chapter and topic names in the
software; you'll find a corresponding chapter and topic in the book. To
reverse this process and go from the book to the Simulator C++ program,
look in the Simulator’s pop-up Table of Contents menu to find the corre-
sponding topic.

The Simulator software contains the same programming topics found
in the book, but it is not just on-screen duplication of the book’s text.
Instead, the software covers the material in a way not possible in the printed
pages of a book. The tutorial software uses the animation of QuickTime
movies to present material in a dynamic way. It also constantly tests your
knowledge by asking you questions, and it provides immediate feedback to
let you know what areas you need to concentrate on.

XX Symantec C++

The following are a few tips for using the the book and software
package. Start by running the Simulator software. Then,

m open the book to the same topic. It offers different wording, a different
figure, or a different piece of source code than that found in the Simu-
lator.

m if you want to take notes, mark up the book as you view on-screen pages
in the Simulator.

m if youre away from your Macintosh, take the book with you!

Features of the Simulator Software

The Simulator software uses a friendly, interactive approach to teaching you
the many concepts needed to write Macintosh programs using the C++ lan-
guage. Among the features of the software are the following:

m A pop-up Table of Contents, which lets you move to any topic at any
time.

m Highlight words, which can optionally be clicked on to get supple-
mental information about a topic. These boldfaced words provide an
additional layer of learning. When you encounter a word in boldface
type, just click on it to open a window that contains more background
information.

m Movie pages, which provide on-screen animation to bring to life dif-
ficult concepts that just cant be clearly explained on the static pages of a
book. Each movie page holds a QuickTime movie that can played as
often as you like.

® Question pages, which constantly test your knowledge and provide
helpful feedback.

m A Status page at the end of each chapter topic to let you know how well
you've answered the questions posed in the current topic. From the Status
page you'll be returned to skipped and missed questions so that you can
consider a topic mastered before leaving it.

Installing the Simulator C++ Software

The Simulator software is easy to install. Follow the steps provided here to
get your Simulator C++ program up and running,.

Introduction xxi

The Simulator software comes in a single compressed file on a single
1.4MB disk, which you will find in a pocket at the back of this book. The
many individual files that make up the Simulator tutorial, as well as the
Symantec C++ source code examples, have all been compressed into one file
to save disk space. This file is self-extracting. This means that you do not
have to own any special program to decompress the files back to their
original sizes.

You'll want to copy the single compressed file to your hard drive before
decompressing it. This serves two purposes: it makes the decompression run
smoothly, and it allows you to work with a copy of the file, thus preserving

the original file and disk for backup.

You can copy the single compressed file directly to the hard drive of
your Macintosh; you don’t have to create any new folders. After copying the
file, you'll have a file titled Simulator.sea on your hard drive, as shown in
Figure I-2. Of course, because the other programs and folders on your hard
disk are different from mine, your hard disk folder won’t look exactly like
the one pictured.

The next step is to decompress the file. Decompressing the file extracts
all the original files and programs that are currently combined in the one
compressed file. Double-click on the Simulator.sea file. You'll be presented
with a dialog box like the one pictured in Figure I-3. This dialog box asks
you to specify where you want the extracted files to be placed. The Simu-
lator.sea file has been created in such a way that the extraction process will

182 6 MBln dlSk 17.4 MB available

IBtems

E
Graphics Programs Programm1 ng N

'm

'3
Simulator .sea

Word Processors

FIGURE I-2 The compressed file on your hard drive

xxii Symantec C++

FIGURE I-3

Select Destination Folder...

Uolume: > Hard Disk Bacl
Folder: [= Hard Disk ¥ |

Desktop

Finance

Graphics Programs ' Cancel
Programming

Simulator.sea

Word Processors

The Extraction dialog box

automatically create the necessary folders. That means you need specify
nothing at this dialog box. It doesn’t matter what folder or filename happens
to be highlighted in the Extraction dialog box. Simply click on the Extract
button, as shown in Figure I-3. Again, your list of folders and files will not
match ours.

If you already have the Simulator C software from Prima Publishing’s Think
THINK C book on your hard drive, don’t be alarmed. This new Simulator C++
software package will not delete or overwrite any of the folders or files associ-
ated with that software.

After clicking on the Extract button, you have nothing to do but sit
back and watch; the extraction processes runs on its own. You'll see a dialog
box—pictured in Figure I-4—that marks the progress of the extraction.

When the extraction is complete, the progress dialog box will disappear
and you will be returned to the Mac desktop. On your hard drive, you'll find
one new folder, titled Simulator C++ Folder. Within this folder are two more
folders and the Simulator C++ program, as shown in Figure I-5.

Introduction xxi

Extracting: Simulator C++

Files remaining to be extracted: 14

Compacted by Compact Pro™ AutoExtractor™ © 1992 Bill Goodman »

FIGURE -4 The extraction progress indicator

The last step is to move the Simulator.sea file into your trash can.
You've extracted all the files you need from this one compressed file; get rid
of it and free up the disk space it occupies. If you later determine that some-
thing went wrong during the extraction process, you still have the original
self-extracting file on your floppy disk, so you can repeat the process.

IMPORTANT

Keep the Simulator_Files folder and the Simulator C++ program in the same
folder, as shown in Figure |1-5. As the Simulator program runs, it will look for
files contained in the Simulator_Files folder. It assumes that the Simulator_Files
folder is right nearby.

EE=— Simulator C++ Foldler =—=W
18 items 182.6 MBindisk 17.4 MB available
i

el

Simulator_Files

Sumantec t‘+ + Examples

Simulator C++

G

FIGURE I-5 The contents of the Simulator C++ Folder

XXiv Symantec C++

Using the Simulator Software

The Simulator software has several easy-to-use features that help you learn
Macintosh object-oriented programming and the C++ language. This
section provides a look at each.

Running the Simulator C++ Software

To run the Simulator C++ program, just double-click on the Simulator C++
program icon.

Pages and the Control Panel

The Simulator software uses the analogy of a book in that screens are
thought of as pages. Moving from one screen of information to another is
like turning the pages of a book. As you work with the Simulator software,
you'll always see two windows on the screen—the page window and the
control panel window. Figure I-6 shows a typical page. Figure I-7 shows the
control panel.

Tou've seen that to test a prograin you select Run from the Project menu.
If all goes well, your program will start running. If there are errors in your
source code, however, you'll see the Compile Errors window—as pictured
here:

Double-click on
an error message
to find the error
in your source
code file

File “Hellolorld.cp®; Line 5
Harning: value of expression is not used

FIGURE I-6 A typical Simulator C++ page

Introduction XXV

FIGURE I-7

The control panel

FIGURE 1-8

The control panel pictured in Figure -7 is a window opened by the Simulator
software and is not related to the Control Panels folder that comes with your
Macintosh system.

Pages are turned by clicking on the Next page or Previous page icon
found on the Simulator program’s control panel window. Figure I-8 shows
these icons.

If you want to go back to a particular page—perhaps one that
appeared much earlier in a topic—use the control panel’s Back 5 icon.
Clicking once on this icon moves you back five pages. Similarly, the
Forward 5 icon jumps you ahead five pages with each click. Figure I-9
shows these icons.

Click here to go to Click here to go to
the previous page the next page

The control panel’s Previous page and Next page icons

Xxvi Symantec C++

FIGURE 1-9

FIGURE I-10

Click here to go Click here to go
5 pages back 5 pages forward

The control panel’s Back 5 pages and Forward 5 pages icons

The Simulator has one chapter for each chapter of the book. To move
from one chapter to another, click on the control panel’s Table of Contents

" icon. This icon is shown in Figure I-10.

Clicking on the Table of Contents icon displays a hierarchical menu
that lists every chapter. Move the mouse to highlight any chapter title; then
move the mouse to the right to display a submenu of chapter topics. Release
the mouse button on a topic to start that topic. Figure I-11 shows an
example.

The control panel’s Table of Contents icon

Introduction xxvii

Using the Symantec C++ Compiler
Intro to C++ and 0DOP

The C Language: the Basis of C++
Additions to C Mean. .. C++
Objects and Classes

Derived Classes and Inheritance
Abstract Classes

Dynamic Binding

Objects and the User

Windows as Objects

A Complete Erample

Multiple Classes
Derived Classes '
Working With Objects

Overriding Functions

vvwvwvwidvvvvwv

- 00 00 ~JEuE LA L NN -

Selecting a topic from Chapter 6 by clicking on the control panel’s Table of Contents
icon

When you've read each page and answered each question in a topic,
that topic is said to be complete. When that happens, a check mark will
appear beside the topic name. Once a topic has been marked, it will remain
so—even between runnings of the Simulator program. This allows you to
keep track of which topics you've completed. Figure I-12 shows that two
topics from Chapter 6 have been completed.

Simulator Pages

- 0 0 00 =Jf=d Cn

Each page, or screen, of the Simulator may contain text, graphics, or both.
Additionally, there are four special types of pages that you will occasionally

come across.

Objects and Classes » |

Derived Classes and Inheritance) B [=RN BT
Abstract Classes »|+v Derived Classes
Dynamic Binding Working With 0bjects
Objects and the User Overriding Functions
Windows as Objects
A Complete Example

rvwVvwvw

A check mark appears beside a completed topic

xxviii Symantec C++

Chapter 5: Objects and Classes____Topic: Classes ===

Instance
pvariable

class TCatalogInfo

|
eighthInchBolt I

private: 671
long fPartNumber; 3
long fCatalogVol: sl 2 1£InchBolt

public: 672
void New Part(long, long);| 3

void Write_Info(wvoid): ‘-I—

FIGURE I-13

A typical Movie page

Movie Pages

Some pages have QuickTime movies on them. Why movies? Because some
topics can best be explained through the use of animation. Figure 1-13
shows a typical Movie page.

You'll recognize a Movie page by the movie controller that appears on
the page. The movie controller is Apple’s standardized way of allowing a
user to play a movie. By clicking the Play button on the controller, you can
play a movie as many times as you want. If the movie goes too fast for your
liking, you can use one of the Step buttons to step through it slowly. A few
movies include sound. To change the volume, use the controller’s Speaker
button. Figure I-14 summarizes the purposes of the buttons on a movie
controller.

Highlight Word Pages

Some pages contain one or more Highlight words. If a word appears in bold
on a page, use the mouse to move the cursor over the word; then click the
mouse button. The word will change color if you have a color system or
change to an italic style if you have a black-and-white system. A new
window that contains more information about the word will open. Figure
I-15 shows Project menu as a Highlight word.

Introduction XxXix

Step
Speaker Play backward Step
volume . . foward

FIGURE I-14 The buttons on a movie controller

Chapter 1: Using the Symantec C++ Compiler Topic: Errors

YoEl=— supplemental Note ==L.1c.t Run from the Project meay.
If{ A reminder: use the Run menu unning. If there are errors in your
sof item to test your code, and the pile Errors window—as pictured

he| Build Application itetn to turn '
your code into a program.

Close Project
Close ¥ Compact

Switch To Project P i ndowPtr*

Set Project Type...

Remove Objects not used

Bring Up To Date 2U
Check Link L
Build Library...

Build Application...

Use Debugger
Run 3R

FIGURE I-15 The Highlight words Project menu appear on a page. The Supplemental Note opens
when you click anywhere on those words.

XXX Symantec C++

Highlight words are a form of Aypertext; clicking on one gives you
additional information. Clicking on a Highlight word is optional. High-
light words exist to provide an additional layer of information. If you
already know the meaning of a Highlight word, you can feel free to move on
without clicking on it.

Question Pages

Throughout a topic, the Simulator software will challenge you with an
occasional Question page. The purpose of the questions is to verify that you
understand the material just covered. Questions are either multiple choice
or true/false. Just click anywhere on the choice you think best answers the
question. A check mark will be placed beside your choice. If you're right,
you'll be congratulated. If youre wrong, you will receive helpful feedback.
Figure I-16 shows a typical Question page.

You're allowed two chances to answer any one question. All subsequent
choices will be ignored. Once you get to the last page of a topic, the Status
page, you'll be returned to all missed and skipped questions for that topic.
There you'll be given another opportunity to answer the questions.

Chapter 5: Objects and Classes Tapic: Classes

QUESTION:

Class data and functions declared “private” are accessible:

v e to all functions of a program
e only to functions declared in the class

e only to the class and its subclass
e to functions in other programs

Click on one of the answers.

FEEDBACK: No. Rememmber, the “private” section is the most restrictive

FIGURE I-16

of the three data hiding sections. Try again

A typical Question page with feedback

Introduction xxxi

Chapter 5: Objects and Classes Topic: Classes

Status Page

Chapter 5 Topic 3

FIGURE 1-17

Number of Questions in Topic
Number of Questions Attempted
Number of Questions Correct
Percentage Correct

Number of Missed Questions
Number of Skipped Questions

A Status page at the end of a topic

Status Pages

At the end of every topic is a Status page. This page shows you how well
you've mastered the topic. Figure I-17 shows a Status page. After giving you
a few seconds to look over your score for the topic questions, the Simulator
will take you back to the first missed or skipped question of the topic. There
you'll be given two more chances to answer the question. If you still get it
wrong, the Simulator will help you out by checking the correct answer. The
purpose of a Question page is not to frustrate you, but rather to provide a
review that points out your strengths and weaknesses. After finishing all
missed and skipped questions, you'll be returned to the Status page. Then
it’s time to select a new topic from the Table of Contents icon found on the
Simulator’s control panel window.

hapter | /

Using the Symantec C+-+ Compiler

In the world of Symantec C++, a program begins life as a project. A project
organizes all of the source code that is to become a program. In this chapter,
you'll see how to create a new project and how to work with a project—that
is, how to add files to the project and how to compile those files. You'll also
see how to turn a project into an application—a stand-alone Macintosh
program.

To demonstrate how to work with a project, you'll walk through the
creation of a very simple C++ application called HelloWorld. In this
chapter, you'll cover each step of the process of creating a Macintosh
program using the Symantec C++ compiler—from creating a new Hel-
loWorld project to turning your work into the HelloWorld application.

Creating a New Project

The THINK Project Manager is the C++ compiler, source code editor, and
project file organizer, all rolled into one environment. When you edit a

2 Symantec C++

Development

FIGURE -1

10items 187.1 MBindisk 12.9 MB available
|
S[@== Symantec C++ for Macintosh FE|
18 items 187.1 MBindisk 12.9 MB available
Sumantec C++ for Macintosh
Mac Libraries THINK Project Manager

The THINK Project Manager icon, found in the Symantec C++ for Macintosh folder

source code file, youre using the THINK Project Manager. When you
compile that same source code file, you're again using the THINK Project
Manager. And the same applies when it comes time to turn your code into a
Macintosh application. So while you will be using Symantec’s C++ com-
piler, you'll be doing so from within the environment of the THINK Project
Manager. That's why we'll talk so much more about the THINK Project
Manager than the Symantec C++ compiler.

The THINK Project Manager can be found in the Symantec C++ for
Macintosh folder, which is in the Development folder. The program’s icon is
shown in Figure 1-1.

When you originally installed the Symantec software, the installer created the
Development folder. If you've since renamed it, you might want to consider
changing its name back to Development so that your folders match those
shown in the figures in this chapter.

The THINK Project Manager uses a single project file to store the
source code files, compiled code, and libraries of code that are used to create
a program. The next two sections deal with the creation of a project file. If
youre using version 7.0 of Symantec’s C++ compiler, skip the following
section and go to the next one—Cireating a Project Using Symantec C++
7.0. If you're using Symantec C++ 6.0, read on.

Chapter 1 Using the Symantec C++ Compiler 3

If you've worked with Symantec’s THINK C compiler, much of this chapter will
look very familiar—so familiar; in fact, that you may be tempted to skip it. If you
haven’t worked with the Symantec C++ compiler; please don’t give in to that
temptation. There are a few topics that you’ll want to make sure you take note
of, such as which libraries are added to a typical Symantec C++ project.

Creating a Project Using Symantec C++ 6.0

FIGURE 1-2-

Before starting the THINK Project Manager program, create a folder to hold
the soon-to-be created project. Because this chapter will walk through the cre-
ation of a simple program named HelloWorld, I've named my folder
HelloWorld f. The f character stands for folder and is created by pressing
(Option}-f. Make sure the folder is in the Development folder, as shown in
Figure 1-2. Keeping a project folder in the Development folder but not

inside the Symantec C++ for Macintosh folder makes it easy for the
THINK Project Manager to find the files it needs.

Next, open the Symantec C++ for Macintosh folder and double-click
on the THINK Project Manager. You'll be presented with a dialog box like
the one shown in Figure 1-3. Click on the New button.

Next you'll see a dialog box like the one pictured in Figure 1-4. Use
the pop-up menu at the top of the dialog box to work your way into the
Development folder. Then double-click on the HelloWorld f folder to move
inside it. Now type in the name of the project. The project name is generally
the name you’'ll give the program, followed by the T symbol. Create the ©

S0=———— Development &=———=0
11 items 187.1 MBindisk 12.9 MB available
hin
HelloWorld § Sumantec C++ for Macintosh
<l

Keep your project folders in the Development folder.

4 Symantec C++

[0 Mac #includes

[0 Mac Libraries

[0 oops Libraries

O Projects

[0 Standard Libraries

O THINK Class Library 1.1.3
[Tools

[Translators

Desktop

Cancel .

FIGURE 1-3 Creating a new project

character by pressing (Option}-{P). After typing in the project name, click on
the Create button.

The THINK Project Manager will open a new, empty project window,

as shown in Figure 1-5.

= HelloWorld f

Y Development ‘ <#| = Hard Disk
= Hard Disk
& Desktop fivet

Name new project:

[Helloworld.w | (cancel)

FIGURE I-4 Creating a new project in the HelloWorld ffolder

Chapter | Using the Symantec C++ Compiler 5

HelloWorld.w

Name Code

Totals 578 _Q

@[]

FIGURE I-5 The empty HelloWorld project window

Now you'e all set to add the necessary files to the project. Skip the
next section, which discusses creating a project using the new version of
Symantec’s C++ compiler. Go directly to the section titled Adding Files to a
Project.

Creating a Project Using Symantec C++ 7.0

Opening the Symantec C++ for Macintosh folder and double-clicking on
the THINK Project Manager icon is the first step in creating a project using
Symantec C++ 7.0. The first thing you’ll see is the dialog box pictured in
Figure 1-6. Click on the New button.

After you click on the New button, the dialog box will be dismissed
and will be replaced by the one shown in Figure 1-7. Version 7.0 lets you
create several different types of projects; you can see some of them in the list
in the dialog box shown in Figure 1-7. In this book, you'll always be
starting with an empty project and adding files to it. Click on Empty
Project in the scrollable list; then click on the Create button. Be sure to leave
the Create Folder check box as it is—checked.

After clicking on the Create button, still another dialog box appears, as
shown in Figure 1-8. The THINK Project Manager will create a new folder
in which the project file will be stored. Use the pop-up menu at the top of
the dialog box to move into the Development folder, which is where you
want the new folder to be placed.

6 Symantec C++

Iﬁl Symantec C++ for Macin...

e Hard Disk
0 (Project Models)
0 (Tools) et
[0 Aliases
O Inspector Libraries
[0 Mac #includes
[0 Mac Libraries
[0 oops Libraries
O Projects

Desktop

Cancel
FIGURE I-6 Creating a new project file

Now type in the name of project. The convention for naming a project
is to give the project the name you'll give the program, followed by the 7
symbol ((Option}{P]). After typing in the project name, click on the Save

button, as shown in Figure 1-9.

=== Nelw Prnject

Select the type of project to create:

ANSI Project
C++ 10Streams Project
C++ Project

Mac Application Project

[€ Create folder

FIGURE I1-7 Selecting the Empty Project as the type of new project to create

Chapter | Using the Symantec C++ Compiler 7

3 Symantec C++ for Macintosh | = Hard Disk

= Development -
Eject

e Hard Disk

B8 Desktop | Desktop |

7 oops Libraries :
O Projects | (New 7]

1 Standard Libraries 5% [—

Name new project:

FIGURE 1-8 Moving into the Development folder in preparation for creating the new project

When you click on the Save button, a new, empty project window, like
the one shown in Figure 1-10, will open.

Before adding any files to the new project, you might want to take a
look at your hard drive’s main folder—the one that opens when you double-
click on the hard drive icon. When you installed your Symantec compiler, a

|£2 Development v | © Hard Disk

G Temos

0O Online Documentation

O Scripting gt Desktop

0O symantec C++ for Macint

£ TCL Demos | [(New]

O Utilities s —

Name new pro ject:
[Helloworid.w |

FIGURE I-9 Naming and saving a new project

8 Symantec C++

=== HelloWorld. 7

Name Code
Totals 578 [}

Ell

FIGURE 1-10 The empty HelloWorld project window

folder named Development was placed in that folder. In the Development
folder you'll see a new folder titled HelloWorld f, as shown in Figure 1-11.
That’s the folder that the THINK Project Manager created. When you
create a new project, the THINK Project Manager creates a new folder and
gives it the same name you have given the project. But instead of the T
symbol, the folder has the f symbol after its name.

SF=———— Development =—— =
11 items 187.1 MBindisk 12.9 MB available

HelloWorld § Symantec C++ for Macintosh

EREEED

FIGURE I-11 The new HelloWorld f folder created by the THINK Project Manager

Chapter | Using the Symantec C++ Compiler 9

Adding Files to a Project

A project file is the THINK Project Manager’s way of organizing all the
code that will be used for one program. The THINK Project Manager

allows you to easily add the files you'll need to create a Macintosh program.

Adding Libraries to a C++ Project

The THINK Project Manager organizes not just the source code you write
but certain functions written by others—namely, Apple and Symantec. This
source code—already compiled for you—appears in /ibraries. A library con-
sists of precompiled code that is ready to use as is. For a Symantec C++
project, you'll always want to add the same three libraries to your project—
MacTraps, ANSI++, and CPlusLib. The MacTraps library lets your pro-
grams access Toolbox functions such as GetNewWindow(). The ANSI++
library contains the precompiled code for standard ANSI functions, and the
CPlusLib library contains routines used by the Symantec C++ compiler to
create and delete objects. You'll learn about objects and object-oriented pro-
gramming later in this book.

Now that you know what you need to add...go ahead, add it. Select
Add Files from the Source menu, as shown in Figure 1-12.

When you select Add Files, you'll see the dialog box pictured in Figure
1-13. This figure also shows the associated pop-up menu. Use this menu to
move into the Symantec C++ for Macintosh folder. From the pop-up menu
in Figure 1-13, you can see the path you need to traverse to get to the Mac
Libraries folder. Once there, double-click on the Mac Libraries folder; that’s
where the MacTraps library file can be found. Figure 1-13 shows where the
Mac Libraries folder is located.

The Mac Libraries folder is in the Symantec C++ for Macintosh folder,
which is, in turn, in the Development folder. Once in the proper location,
click on the MacTraps name in the list and then click on the Add button, as
is being done in Figure 1-14.

Clicking on the Add button moves the selected file to the list at the
bottom of the dialog box, as shown in Figure 1-15.

The Add Files dialog box allows you to add more than one file at a
time. So before dismissing the dialog box, add the other two libraries that
youll want in a C++ project—ANSI++ and CPlusLib. Both of these
libraries are located in the Standard Libraries folder. Use the pop-up menu
in the dialog box to move back to the Symantec C++ for Macintosh folder.

10 Symantec C++

Source
Add Files...
Bemouve
Get Info

Debug 81
SourceServer

Check Syntan %Y

Preprocess
Disassemble
Precompile...
Compile K
Make... b
Browser $8dJ

FIGURE I-12 Selecting the Add Files menu item from the Source menu

=) Mac Libraries v
O Ap] S Symantec C++ for Macintosh % Disk
D Cof<3 Development
O 6rd= Hard Disk | Eject

&8 Desktop
O MatTraps [pesktop

O MacTraps2

O nAppleTalk foase

0O 01d MacTraps Cancel

Add Al

gpmpye

FIGURE 1-13 Maneuvering into the Mac Libraries folder

Chapter I Using the Symantec C++ Compiler B

|3 Mac Libraries ¥ |

[0 AppleTalk = Hard Disk
O CommToolbox

0 Graf3D £iedd
0O HyperHLib

Desktop

0O MacTraps2
0O nAppleTalk :
0O 01d MacTraps Cancel

Bone

Add Al

Bpmnuy

FIGURE I-14 Adding the MacTraps library to the project

|=2 Mac Libraries ¥ |

1 AppleTalk 4| = Hard Disk
[0 CommToolbox "

O Graf3D fiecl
O HyperHLib

[0 MacTraps2
0O nAppleTalk
0O 01d MacTraps
O osL

Desktop

MacTraps

Add Al

Bemsyy

FIGURE I-15 The added file appears in the list at the bottom of the Add Files dialog box.

12 Symantec C++

== Standard Libraries "
0O (€3 Symantec C++ for Macintosh’ Hard Disk
0O |2 Development
0 (e Hard Disk
g Dl_!sktp Desktop

O C headers

[C sources
O C++ headers

MacTraps

{emnue

FIGURE 1-16 Moving into the Standard Libraries folder

Once there, double-click on the Standard Libraries folder. Figure 1-16
shows the path that was traversed to get into the Standard Libraries folder.

Once in the Standard Libraries folder, double-click on the ANSI++
filename in the list. That’s a shortcut for clicking on a filename and then
clicking on the Add button. Next, scroll down to the CPlusLib library and
double-click on it. The names of the three libraries your project needs will
now be listed at the bottom of the dialog box. Click on the Done button, as
shown in Figure 1-17.

After you click on the Done button, the three libraries will appear in
the formerly empty project window. Figure 1-18 shows how your Hel-
loWorld project window should now look.

Adding a Source Code File to a C++ Project

There’s only one file left to add to complete your project—a source code
file. To create a new source code file, select New from the File menu. A new,
empty source code file will open. Name the file right away by selecting Save
As from the File menu. Using the pop-up menu in the dialog box that
appears, make your way into the Development folder. Once there, double-
click on the HelloWorld f folder. Now you're ready to name and save the
new file. Type HelloWorld.cp and click on the Save button. Figure 1-19

Chapter | Using the Symantec C++ Compiler 13

i+ = Hand Disk

O ANSI-A4

| D ANSI-A4++ :
{ .| O ANSI—small

D ANSI—small++ Desktop
O C headers

[C sources

[C++ headers Cancel

fect

ANS|++
CPlusLib
MacTraps Add All

‘empup

FIGURE 1-17 The Done button completes the addition of the listed files to the project.

= HelloWorld.n =

CPlusLib u]
MacTraps 0
Totals 582

FIGURE I1-18 The project window after the addition of the three library files

14 Symantec C++

+=] HellolWorld f !

3 Development X = Hard Disk
= Hard Disk B

& Desktop Eipgt

Save file as:

HelloWorld.cp | (cancel)
]

FIGURE 1-19 Naming a source code file

shows the path to your HelloWorld f folder and the name that the new file
is being given.

The THINK Project Manager recognizes a file as a C++ source code
file if it ends with the extension .cp or .cpp. For this example and for all
others in this book, .cp will be used. Be sure to give all of your source code
files this extension.

Your source code file, shown in Figure 1-20, now has the name Hel-
loWorld.cp in its title bar. Even though it’s still empty, you'll want to add it
to the project; simply creating a new file doesn’t automatically place it in the

Efi=———— HelloWorld.cp

=i

FIGURE 1-20 The new, empty source code file with the name in its title bar

FIGURE [-21

Segmenting a Project

Chapter | Using the Symantec C++ Compiler 15

Source
Add ‘HelloWorld.cp®
Add Files...

Removue
Gel Info
Debug %1
SourceServer 3

Check Syntax Y

Preprocess
Disassemble
Precompile...
Compile EK
Make... 8
Browser 38

Adding the new source code file to the HelloWorld project

project. To do this, select the very first menu item in the Source menu—
Add ‘HelloWorld.cp’, which is shown in Figure 1-21. This menu item will
appear dim after the file has been added to the project. Once you create and
save a new file, however, the menu item is enabled and takes on the name of
the file. This menu item is simply a shortcut to adding the source file to
your project—it saves you the work of using the Add Files menu option.

Figure 1-22 shows how your HelloWorld project window now looks.
Notice the name—Segment 2—next to the inverted triangle. To help the
Mac operating system work with large programs, Macintosh programs are
divided into segments, each of which can be no larger than 32K. Since the
ANSI++ library is close to 30K all by itself, it should be obvious that this
project requires more than one segment. To move a file into a new segment,
click on its name. With the mouse button still pressed, drag the file below
the word Totals in the project window. Then release the mouse button. In
Figure 1-23 the ANSI++ library is being moved into its own segment. On

16 Symantec C++

=—— HelloWorld.n =——|
Name Code

< Segment 2 4 [

ANS 4+ ol
CPlusLib 0
HelloWorld.cp 0
MacTraps 0
Totals 582

M

|

FIGURE 1-22 The project window with the three libraries and one source code file in it
the left, you see the file being dragged to the bottom of the window. On the
right, you see the new segment that is created by this action.

Next, drag the CPlusLib library until the mouse is over the ANSI++
library name; then release the mouse button. That places the CPlusLib
library in the same segment as the ANSI++ library. The final segmentation
of the project is shown in Figure 1-24.

== HelloWorld.n =—— HelloWorld.n =—
| Hame Code Hame Code

H Segment 2 4 |4 ¥ Segment 2 4 (4%

CPlusLib ol |
CPlusLib u} HelloWorld.cp 0
Hello%or1d.cp 0 MacTraps 0
MacTraps 8} 7 Segment 3 4
Totals 582 ANS -+ 0
Totals 586

O]

] |

FIGURE 1-23

Moving the ANSI++ library into a new segment

Chapter | Using the Symantec C++ Compiler 17

C++ Code: Writing It and Running It

With the preliminaries out of the way, its time to write a simple C++
program. If you've closed the empty HelloWorld.cp source code file, open it
now. You can do that by double-clicking on its name in the project window.
When the file is open, type in the short program that is shown in Figure 1-25.
Type carefully and compare your file to the one pictured here.

After typing the code, select Save from the File menu. To test it, select
Run from the Project menu, as shown in Figure 1-26.

Choosing Run presents you with the dialog box shown in Figure 1-27.
Here the THINK Project Manager wants you to verify that it is okay for it
to go ahead and compile your source code and to make the added libraries a
part of your project by loading them. Click on the Update button to let the
THINK Project Manager do its thing.

The simple program you typed in opens a window and writes the
words “Hello, World!” to it. If all went well, you’ll see a window like the one
pictured in Figure 1-28. If you see a different window—one that lists an
error message—refer to Appendix B at the end of this book. That appendix
lists common mistakes and ways to correct them.

To end the HelloWorld program, click the mouse button. That closes
the window and returns you to the THINK Project Manager environment.
Before you ran your program, the right side of the project window showed a

HelloWorld.w
Name Code
= Segment 2 4
Hello'world.cp u}
MacTraps u}
¥ Segment 3 4
0

]

6

B2

ANS |++
CPlusLib
Totals 58

Il

FIGURE 1-24 The segmented HelloWorld project

18 Symantec C++

= HelloWorld.cp

void main(void >

HindowPtr the_window;
Rect window_rect;

InitGraf(&thePort >;
Ini tFonts();
InitHindows(>;

SetRect(&window_rect, 50, 50, 350, 150);

the_window = Newlindow(OL, &window_rect, "\pNew Window", true,
noGrowDocProc, (WindowPtr) -1L, true, 0 J;

SetPort(the_window J;

MoveTo(20, 30 J;
DrawString("\pHello, World!" 3;

while ¢ !Button(> >

FIGURE 1-25 The HelloWorld C++ source code

Project

Close Project

Close & Compact
Switch To Project §

Set Project Type...
Remove Objects

Bring Up To Date 38U
Check Link 8L
Build Library...

Build Application...

Use Debugger

FIGURE 1-26 Selecting Run from the Project menu to give the code a test run

=

Chapter | Using the Symantec C++ Compiler 19

Q Bring the project up to date?

e e

Don’t Update

FIGURE 1-27 Telling the THINK Project Manager to update the project

Efi=——— New Window

Hello, World!

FIGURE 1-28 The result of running the code in the HelloWorld project

column with several numbers—many of them zeros—in it. Take a close
look at the project window, shown in Figure 1-29, now. Notice that each
filename now has a new number to the right of it. That number represents
the size of the compiled code from that file. The size of a source code file
isn’t known until it has been compiled, and the size of a library isnt known
until it has been loaded. Selecting Run from the Project menu accomplishes
these tasks.

In Figure 1-29, notice that both segments have a total size of less than
32K—as the THINK Project Manager requires.

Using the Symantec Debugger

Programming errors, or bugs, creep into the programs of every developer. The
best way to find the cause of an error—or to just see what’s going on as a

20

Symantec C++

HelloWorld.n =——=]

MName Code
% Segment 2 7184 [
HelloWorld.cp 106 [|
MacTraps 7074
¥ Segment 3 30272
28492
1776
38034
]
&

FIGURE 1-29 The project window displays the size of each file in the project.

program executes—is to use a debugger. Many people shy away from
debuggers because they assume they need a knowledge of assembly language
to understand how memory and variable values are displayed. This is certainly
true for some debuggers—but not for the one included with your Symantec
C++ package.

Debugger Basics

The Symantec source debugger works behind the scenes; you don’t run it
from the desktop as you do other software applications. All you do to
activate it is select Use Debugger from the Project menu. Figure 1-30 shows
that menu item. '

Selecting Use Debugger doesn’t do anything noticeable—not just yet.
The debugger doesnt run until you select Run from the Project menu.
Then two windows open—the Source window and the Data window. The
Source window displays your project’s source code. The title bar of the
Source window displays the name of the source code file that’s about to
execute. The Data window allows you to enter the names of variables you
want to monitor as the program executes. The title bar of the Data window
displays the word Data. These two windows are shown in Figure 1-31.

To familiarize you with the debugger, I'll walk through a very short
program called DebuggerDemo, which is included on the accompanying
disk. The source code listing for DebuggerDemo appears below. Figure 1-32
shows the results of running the program.

Chapter | Using the Symantec C++ Compiler 21

Close Project
Close & Compact
Switch To Project »

Set Project Type...
Remove Objects

Bring Up To Date 38U
Check Link 8L
Build Library...

Build Application...

Run %R

FIGURE 1-30 Turning the debugger on in Symantec C++

Source window Data window

DebuggerDemo.cp =

WindowPtr the_window;

Rect window_rec t %"
lohg num—1;

long num_2

long total;

Str255 the_str;

#» InitGraf(&thePort);
InitFonts();
Ini tlindows(>;

SetRect(&window_rect,

3o 000

FIGURE I-31 The Source window and the Data window of the Symantec debugger

22 Symantec C++

void main(void)

{
WindowPtr the_window;
Rect window_rect;
Tong num_1;
Tong num 2;
long total;
Str255 the_str;

InitGraf(&thePort);
InitFonts();
InitWindows();

SetRect(&window_rect, 50, 50, 350, 150);

the window = NewW1ndow(OL, &window_rect,
“\pNew Window", true,
noGrowDocProc, (WindowPtr)-1L, true, 0);

SetPort(the window);

num_ 1 = 3.2
num 2 = 6.8;
total = num_1 + num 2;

NumToString(total, the str);

MoveTo(20, 30);
DrawString(the str);

wﬁi]e (!Button())

DebuggerDemo opens a window, assigns values to two variables, adds
the values of the variables together, and writes the resulting total to the
window. The NumToString() routine is a Toolbox function that accepts a
long variable and a Str255 variable as parameters. The function converts the
number to a string and places it in the Str255 variable. Since the sum of 3.2
and 6.8 is 10, I was assuming that NumToString() would convert the number
10 to the string 10. Then I'd be all set to write the string to the window using
DrawString(). You can see in Figure 1-32 that instead of 10 being written to
the window, 9 was. The program contains a very fundamental error, which

Chapter | Using the Symantec C++ Compiler 23

FIGURE 1-32 The results of running the DebuggerDemo program

you may have caught just by looking at the source code. The purpose of this
example isnt to stump you, though; it’s to allow you to see the debugger in
action. So let’s assume that neither you nor I know just what went wrong.
That means its time to run the DebuggerDemo program with the Symantec
debugger turned on.

Debugging a Program

To run the debugger, make sure that Use Debugger is checked in the Project
menu. Then select Run from that same menu. I've done that with Debug-
gerDemo. You saw how the Source window and the Data window look for
DebuggerDemo back in Figure 1-31.

With the debugger running, the first thing you'll do is type in the
name of a variable whose value you want to monitor, or follow, as the
program runs. Type the variable name in the box at the top of the Data
window; then press (Enter]. Do this for each of the variables you want to
watch. In Figure 1-33, I've entered the num_1 and num_2 variable names and
am about to do the same for the total variable.

You can see that in Figure 1-33 the variables num_1 and num 2 have
values—before they have even been used in assignment statements. At the
start of a program a variable contains a “garbage” value, which turns out to
be whatever value was last left at the memory location that the variable
occupies. This value is sometimes 0, but it can be any number at all.

After entering variable names in the Data window, you'll want to set a
breakpoint in the Source window. A breakpoint specifies the line of code at
which you want the debugger to pause. When you click on the Go button
in the debugger Source window, the program will start executing. If you
don’t have at least one breakpoint set, the program will run from start to
finish without pausing. You'll never get a chance to look at the values of the

24 Symantec C++

FIGURE 1-33

To monitor a variable
type its name here, then
press the Return key

DebuggerDemo.cp

i

WindowPtr the_window;

Rect window_rect;
lohg num—1;

long num_2;

long total ;
Str255 the_str;

B |nitGraf(&thePort ;-
InitFontsdl;
InitHindows(;

3 < oo

Entering the names of variables whose values are to be monitored as the program
runs

variables—and that’s the whole point of debugging. You set a breakpoint by
clicking on the small diamond that appears to the left of the line of code at
which you want the program to halt. Figure 1-34 shows a breakpoint set in
the DebuggerDemo program.

With a breakpoint set, it’s time to start your program running by
clicking on the Go button in the Source Window. The program will execute
up to the breakpoint. In Figure 1-34, you can see a black arrow just to the
right of the breakpoint diamond. The arrow indicates where the program
has stopped. It’s important to note that the line to which the arrow points
hasn’t yet executed—it is the next line of code that will execute. You can
verify this by looking at the Data window in Figure 1-34. The value of
num_1 is still 372; it hasnt yet taken on the value it will be given in the
assignment statement.

To execute the single line of code that the black arrow points to, click
on the Step button in the Source window. You'll see the arrow move down a
line to indicate that the line at which the program was halted has now exe-

FIGURE 1-34

Chapter | Using the Symantec C++ Compiler 25

Click the Go button Once the program has been
to start the program started, click the Step button

Click a

diamond

to seta

breakpoint

at a line
0» num_1 = 3.2;
O num-2 = 6.8;
< total = num_1 + num_2;
o MunToStringC total, the [i
el
i MoveTo¢ 20, 30);
< DrawString(the_str J;
ol while ¢ !Button¢> >
> -

Setting a breakpoint and using the Go and Step buttons in the debugger

cuted. You can click on the Step button again and again to single-step
through as much of the program as you want. In Figure 1-35, you can see
that the Step button was clicked once and that the arrow now points to the
line following the num_1 assignment. The Data window shows you that the
value of num_1 has changed from 372 to 3.

The Data window in Figure 1-35 shows the values of the variables
after the following line has executed:

num_1 = 3.2;

Note that the value for num_1 in the Data window is 3—not 3.2. The
variables num_1, num 2, and total were all declared to be of type long.
Recall from C that the long is a form of integer. Integers don’t hold the
decimal, or fractional, portion of a number. Therein lies the reason for
total having a value of 9 rather than 10. After the program runs, num_1 has
a value of 3 and num_2 has a value of 6.

You might have been able to detect the bug in the DebuggerDemo
program without the use of the Symantec debugger, but now that you're
familiar with its use, you'll be able to solve much trickier programming
problems.

26

Symantec C++

After the line num_1 = 3.2; executes,

this number changes to 3
The arrow
moves down
a line, telling
you that the
above line
executed
< SetPort(the_window J;
*: num-1 = 3.2;
o%» num2 = 6.8;
<& total = num-1 + num_2; i
! MNumToString¢ total, the |
<&
<& MoveTo(20, 30 >;
<& DrawStringl the_str J;
<& while ¢ IButton() >
» main e

FIGURE 1-35 After the Step button is clicked, the black arrow moves down a line and the values in

Turning Code into an Application

the Data window are updated.

o

The THINK Project Manager makes it easy to turn any project into a
stand-alone Macintosh application. If you haven’t selected Run from the
Project menu to test your project, do that now. When you're satisfied that
the code works properly, choose Build Application from the Project menu,
as is being done in Figure 1-36.

Before building the application, the THINK Project Manager lets you
enter the name you want to give the program. In Figure 1-37, the program

is being given the name HelloWorld.

Click on the Save button, and, after just a second or two, you'll have a
new Mac program. To verify this, go to the desktop and open the Hel-
loWorld f foldér that’s in your Development folder. There, along with the
project file and the source code file, will be the icon for your new appli-
cation, as shown in Figure 1-38.

Chapter | Using the Symantec C++ Compiler 27

Close Project
Close & Compact
Switch To Project §

Set Project Type...
Remove Objects

Bring Up To Date 38U
Check Link $8L

Build Library...
Build Application...

Use Debugger
Run %R

FIGURE 1-36 Turning the code into a stand-alone application

[c2HelloWorid § ¥ |
0 getinifioridep 13 = Hard Disk
0 Helipifioridy —
Desktop

=

Save application as:

[Helloworid]

{ [Smart Link

FIGURE 1-37 Giving the application a name

28

Using the Included Projects

Symantec C++

The Symantec C++ project file and source code for each example program
in this book can be found on the included disk. If you dont have the
THINK Project Manager running, you can open any existing project by
simply double-clicking on its icon. If the THINK Project Manager is
already running, you must first close the current project. Select Close
Project from the Project menu. A dialog box will open. Use the pop-up
menu in it to move into the Symantec C++ Examples folder that’s located in
the Simulator C++ folder. Once there, you can double-click on any folder in
the list.

If you have the Symantec C++ compiler, try running the HelloWorld.w
project in the (CO1)HelloWorld f folder. All the examples in this book work
for both version 6.0 and version 7.0 of Symantec C++. If you're using
Symantec C++ 6.0 and you double-click on one of the included projects,
the project will open. If youre using Symantec C++ 7.0, you'll first see a
dialog box like the one shown in Figure 1-39. Click on the Convert button.
The dialog box will be dismissed, and the project will open.

About That Code...

If you've written a Macintosh program using the C language, the Hel-
loWorld source code should look very familiar to you. If it does, you should
congratulate yourself for remembering C, because that’s exactly what the

ESI=————— HellolWorld f ==
3 items 187.1 MBindisk 12.9 MB available
i

.

Helloworld.or HelloWorld.cp Helloorld

|]

<l 2

FIGURE 1-38 The icon for the new application will be in the HelloWorld f folder

FIGURE 1-39

Chapter | Using the Symantec C++ Compiler 29

This project was created by an earlier
version of the THINK Project Manager.
Convert it to the current format? This
operation will Remove Objects!

G .

Opening one of the included example projects using Symantec C++ 7.0

source code is! Remember the definition of the C++ language: it’s the C lan-
guage, plus. In the HelloWorld program, I intentionally chose not to
include any of the “plus” features. The purpose of this chapter was to famil-
iarize you with the environment of the Symantec compiler, not to have you
master a new language. You have the remainder of the book for that—
starting with the very next chapter....

Chapter Summary

Any program that was created using the Symantec C++ compiler started out
as a project file. A project file holds the names of the source code files and
library files needed to compile a single program. When code is compiled,
the resulting object code is also stored in the project file. The THINK
Project Manager—the combined programming environment that consists
of a text editor, compiler, linker, and interface for these components—keeps
track of the contents of a project file.

Almost all THINK C++ projects need three libraries in order to suc-
cessfully compile. You'll use the Add Files menu item from the Source menu
to add the MacTraps, ANSI++, and CPlusLib libraries to each of your
projects. You'll use this same menu item to add your source code file to the
project—after creating the new file by selecting New and Save As from the
File menu.

Projects consist of segments—sections of source code that must not
exceed 32K. If a single segment goes beyond this size limit, you can move

30

Symantec C++

files about within the project window to regroup existing segments or create
additional ones.

After typing in your source code, select Run from the Project menu to
compile and test the code. If youve made mistakes in your code, the
THINK Project Manager will open a Compile Errors window that describes
the problems the compiler encountered. For errors whose source is less than
obvious, you'll want to use the THINK debugger. The debugger is activated
by selecting Use Debugger from the Project menu before you run the code.
When you run your code, two windows will open. These debugger windows
allow you to step through your code line-by-line and monitor the values of
the variables as the code executes.

When you're satisfied that your code is functional, you'll turn it into a
stand-alone application by selecting Build Application from the Project
menu. The result will appear on your Macintosh desktop in the form of an
executable program with its own icon.

Introduction to C++ and Q0P

While often thought of as one and the same, C++ and object-oriented pro-
gramming are not the same at all. In this chapter, you'll see the differences
and similarities between C and C++, and you'll learn how OOP—object-
oriented programming—is used to create programs in the C++ language.
Object-oriented programming uses objects to represent the data and
the actions, or operations, that are performed on that data. This chapter will
take a long, hard look at objects and the data structure that defines an

object—the class.

C++ and Object-Oriented
Programming

A program written in the C++ language is an object-oriented program,
right? Not necessarily. While a C++ program usually does, in fact, work with
objects, it doesn’t have to.

31

32 Symantec C++

FIGURE 2-1 The C++ language includes all of the C language—and more.

C, C++, and OOP

If you've programmed using C, your skills will not be lost as you make the
transition to C++. That’s because the C++ language is a superset of the C lan-
guage, which means C++ includes all of the C language and more. Figure 21
gives emphasis to this point.

Some of the programming features, or elements, that are found in C++
but not in C are trivial, while others are much more important. The features
found in C++ but not in C that are considered the most crucial are those that
make objects possible. Although C++ programs are usually object-oriented,
they don' have to be. Consider this very simple C++ program:

void main(void)

{
int 1i; /* declare an integer */
int j = 0; // declare and initialize an
// integer
for (i=0; i < 10; i++) // loop ten times
j +=5; // increment j by 5 at each
// pass

Chapter 2 Introduction to C++ and OOP 33

In the C language, comments begin with /* and end with *. This
method of writing a comment also applies to C++. C++, however, also lets
you identify a single-line comment by using a double slash. The above C++
program contains both types of comments.

While the above program is very trivial—and in itself useless—it does
serve to demonstrate one point. A C++ program does not Aave to be object-
oriented. This example is nothing more than a trivial C program with a few
C++ style comments. There’s nothing object-like about it.

OOP is not a programming language. It is a programming method-
ology—a way of organizing or structuring a program. You may have noticed
programmers using C++ and OOP almost interchangeably. That’s because
while programs written in C++ don't have to be object-oriented, they almost
always are. The elements that were added to the C language to make C++
are, for the most part, elements that allow programs to become object-
oriented. If a C++ program doesn't take advantage of those elements, there is
little difference between it and a C program.

From C to C++ to OOP

Since C++ is built on C, and OOP is a way of working with the elements of
the C++ language, it would make sense to present the material in this book
in an order that follows this progression. And so, of course, it does. Here’s a
summary of the next three chapters.

Chapter 3 is a summary of C. It is not intended to be a complete ref-
erence to C. Instead, it highlights the basic elements of the C language—
those parts of C that are also basic to C++ and used regularly in C++
programs. '

Chapter 4 covers many of the C++ additions to the C language but not
the C++ elements that allow object programming. You've already seen one
such element—the use of the double slash to denote a comment.

Chapter 5 covers more of the programming elements that are found in
C++ but not in C. In particular, this chapter discusses the features of C++
that enable you to write object-oriented programs.

Chapters 3, 4, and 5 present plenty of source code examples to illus-
trate the programming discussions. This chapter doesnt. Instead, the
remainder of this chapter consists of an overview of the ways in which an
object-oriented program differs from a procedural one and a general look at
the programming elements of C++ that make objects possible.

34 Symantec C++

Procedural and Object Programming

Object-oriented programming isn’t new; it has been around for many years.
But it is new to most people. In the past, most programs were traditionally
and historically written using a procedural language, classically speaking.

Procedural Programming

In a procedural, or structured, programming language such as C or Pascal,
variables are defined to hold data. Routines are then written to operate, or
act, on that data. In procedural programming, there is no correlation
between data and the routines that can act on that data—until a routine is
called. Only when data is passed to a routine—in the form of parameters—
does it become associated with that routine. Figure 2-2 shows this.

FIGURE 2-2

cats;
dogs;
cars;
trucks;
total; }

int Add_Numbers(int a, int b)
{

return a + b;

No association between
data and function

total Add_Numbers(cats, dogs);

B Here the function
. . becomes associated
| ®% with the animal data
. Here the function
] == becomes associated

with the vehicle data

Add_Numbers(cars, trucks);

In a procedural language, data and functions are not clearly related.

Chapter 2 Introduction to C++ and OOP 35

Routine is a general term for a procedure or function. The Pascal language calls
a routine that returns a value a function and a routine that doesn’t return a
value a procedure. In C, all routines are called functions

A program written in a procedural language almost always relies on at
least some of the program’s data being stored in global variables. Program
data that is kept as a global variable can be accessed by any and all functions
that appear in that program. Thus, data that will be used by multiple rou-
tines—such as data that is read, manipulated, stored, and printed—is
usually a candidate for a global variable. While global data makes a pro-
grammers life easier, it also allows for corruption of data. Because all
functions have access to global data, a programmer may inadvertently write
a routine that alters the value of a global variable.

Despite its drawbacks, including a reliance on global data and an
unnatural division of data and the operations that work with data, procedural
languages have been used in the vast majority of the programs written in the
last couple of decades. Only recently have programmers begun to make the
change from procedural programming to object-oriented programming.

Object-Oriented Programming

You've just seen that procedural programming data and the actions that
work on data are separate and seemingly unrelated. The removal of this arti-
ficial division between data and functions is the primary difference between
procedural and object-oriented programming. In procedural programming,
the necessary data structures are first created. Then, routines that operate on
the data are defined. Each routine may operate on some, much, or all of the
data. In object-oriented programming, data and actions are kept together.
As data is defined, so are the actions, or functions, that work with that data.
Not only are data and functions defined at the same time, they are also tied
together in the form of objects. Figure 2-3 shows this difference.

Even though the two programming methodologies shown in Figure 2-3
define the same data and the same functions, there is a big difference between
them. In the procedural example, it is not clear which of the two functions
works with which of the three pieces of data. In the object-oriented example
in that same figure, it is clear that both functions are capable of working with
all three data elements. By packaging data and functions together, the need for
global data diminishes or disappears altogether in object-oriented
programming.

36 Symantec C++

FIGURE 2-3

Procedural Programming Object-Oriented Programming

Data
structures

integerl B :

| =
m—— Object — . integer2

2 both data | sneegers

and the

1 § Enter_Numbers
thatacton] .

routines

structures R

Enter_Numbers
Routines

that act
on data

the data o
Add_Numbers
Add_Numbers a .

A procedural language doesn't clearly relate data to functions; an object-oriented lan-
guage does.

As you have surely surmised, objects are the key element in object-
oriented programming. Because a shape is naturally thought of as an object,
let’s explore objects in greater depth by looking at an example that repre-
sents a rectangle as an object.

On the Macintosh, a rectangle is defined by the pixel coordinates of its
four corners. So these are the four data elements my rectangle object will
need. In C++, an object’s data—the variables the object works with—are
called data members. The names of the functions that act on the object’s data
members are referred to as the object’s member functions. Like the number of
data members an object has, the number of member functions it has
depends on what the object is representing. While I could think of dozens
of different things to do with a rectangle—rotate it, shrink it, color it—for
the sake of simplicity I'll define just three operations. Drawing and erasing
the rectangle seem like necessities, and for variety I'll also allow the rectangle
to grow. Figure 2—4 shows the data members and member functions I would
define for my rectangle object.

Data members are sometimes called instance variables. Member functions can
also be referred to as methods. This book will use the terms data members and
member functions.

FIGURE 2-4

Chapter 2 Introduction to C++ and OOP 37

Rectangle object

Data
members

Member
functions

rieisiad,

| Grow_Rectangle

Erase_Rectangle

One way of implementing an object that represents a rectangle

What variables will be needed by the three functions that act on the
rectangle? Only the four data members that are a part of the rectangle
object. And how many different operations can be performed on a rect-
angle? Just the three that are named by the object’s member functions.

In a procedural program, an action is carried out by calling a routine—
a function or procedure. In a program that works with objects, the program

_tells an object to carry out an action by sending it a message. The message

tells the object which of its built-in member functions should be executed.
In Figure 2-5, a program sends a rectangle object a draw message so that the
object executes its Draw_Rectangle member function. In Figure 2-6, the
same program sends the same object a grow message so that the object exe-
cutes its Grow_Rectangle member function.

Figures 2-5 and 2-6 highlight a key difference between procedural
and object programming. In procedural programming, you call a routine.
In object programming, you send a message to an object. The message tells
the object which of its routines to use.

38 Symantec C++

Draw
message

FIGURE 2-5 A program sends a rectangle object a draw message.

FIGURE 2-6 A program sends a rectangle object a grow message.

The Advantages of Object-Oriented Programming

Keeping together a data structure and the functions that operate on that
data structure is called encapsulation. Encapsulation is one of the primary
advantages of object-oriented programming over procedural programming.
Another benefit is ease of code modification. It is easier to make changes in
an object-oriented program than it is to make similar changes in a proce-
dural program. '

Chapter 2 Introduction to C++ and OOP 39

As a case in point, consider a Macintosh programmer who works for
the Acme Information Center. This company has been asked to create a
program that will offer users recommendations as to where to shop, what
doctor to see, and a host of other bits of information. The recommenda-
tions will be based on several pieces of information, one of which is the
gender of the user. Being well-versed in C, the programmer writes a proce-
dural program consisting of thousands of lines of code, some of which are
shown in Figure 2-7.

Since there are only two sexes, the programmer is feeling pretty smug
about his selection of data and functions. That is, until his eccentric boss
tells him to make the program capable of handling unisex aliens. Now, the
programmer must go through the thousands of lines of code, searching for
routines like Do_Stuff(). That routine, part of which is shown in Figure 27,
handles what our unfortunate programmer thought would be the only two
gender cases—male and female. Now, he will have to add more global vari-
ables—variables that will apply to activities specific to the aliens. And

FIGURE 2-7

#define FEMALE 1
#define MALE 2

int . sex:;

Str255 clothes_store;
Str255 health_club; :
Str255 maternity_doctor; ;

void Do_stuff(void)

if (sex == MALE)
Do_Manly_Stuff();

else if (sex == FEMALE)
Do_Womanly. Stuff();

void Do_Manly_Stuff (void)

clothes_store= "Men's Wear";
health_club ="Gold's Gym";

Some typical procedural language code

40

Symantec C++

speaking of specifics, was he wise to make maternity doctor a global
variable, when, before the arrival of the unisex alien, it applied to only one
of the two genders?

While aliens don’t turn up in typical programs, changes like the ones
shown here do. So while not entirely realistic, the alien example serves to
illustrate the problems inherent in procedural programming. Data and the
functions that operate on the data are not closely bound. The addition of a
single new data type—like the alien—may require a great deal of work,
because all of the source code must be searched for affected sections.

By binding data and the functions that work on that data, object-
oriented programming avoids the pitfalls of procedural programming. If
Acme’s programmer had used object-oriented programming, his initial pro-
gramming effort would have looked more like the one shown in Figure 2-8.

Female object

Male object

clothes_store |

maternity_doctor

Do_Womanly_Stuff

FIGURE 2-8 Using two objects to represent two different things

FIGURE 2-9

Chapter 2 Introduction to C++ and OOP 41

While I've shown the object version in only a general way, you should
still be able to make some observations about it. First, notice that each
object contains only the data that it needs. Thus, the maternity _doctor
data is no longer global. It now appropriately appears in only the female
object. Second, notice that the routines that act on each gender are now
closely associated with the data that they use.

What about the request from the programmer’s boss? What is required
to add a new data type—the alien? Figure 2-9 answers the question.

Using object-oriented programming, when faced with a new data
type—the alien—the programmer can give thought to the data members
and member functions that will be appropriate for this new type. And
because the data and functions that will apply to the alien are encapsulated
and hidden from the other objects—the male and female objects—the pro-
grammer has little concern for how the new code will affect previously
written code.

// slight modification to the
// code that works with objects

Little effort is needed to add a new type of object to a program.

42 Symantec C++

Classes

So far I've discussed object-oriented programming in general terms, but
you've seen no actual object source code. In this section, I'll delve a little
deeper into objects, again using generalities. Don't worry about the specifics

of C++ objects, though. There’s plenty of time for that—hundreds of pages,
in fact.

The Class—the Pattern of Objects

Up to this point, I've discussed an object as if it were defined and then used
by the program. That’s not entirely accurate. What is really defined is a c/ass.
A class is a pattern from which objects are created. Figure 2—10 shows that
once a class is defined, more than one object can be created from it.

Class definition

alaxzx TObmkor
4

Privans:
Inr TThain:
Thor faddxx

Pubia:
uzid Cxdfad]]: 1
void Gdaxdgdz||:

Inr Rexdtign|]: :

 Object2 ~ Object3

Objects - members of the class

FIGURE 2-10 Many objects can be created from a single class definition.

Chapter 2 Introduction to C++ and OOP 43

All right, I'll bend a little and throw a bit of code at you. In C++ there is a class
keyword. Defining a class in C++ is much like defining a struct in C. In fact, the
class is built on the concept of the struct. Chapter 5 will provide all the detail
you’ll need to write your own classes. For now, look at this example C++ class
definition and note its similarities to the C struct data type:

class MyClass

{
private:
Str255 name;
short age;
public:

void Add Info(Str255, short);
void Write Info(void);

Why would you want more than one of the same type of object? Think
of a class as just another data type—Tlike the int, short, and float data types.
in C. You don’t use these data types directly in a program. Rather, you
declare variables to be of these types. And you quite often declare more than
one variable of a given type. You are not limited to declaring a single int
variable in a program. Nor are you limited to creating a single object from
one class definition.

Creating Multiple Objects

Let’s dig a little deeper into the idea of creating multiple objects from one
class. Again, I'll use a simple example—though this one will be a little closer
to real-world programming.

The Acme Bolt and Nut Company sells a large number of hardware
items through various catalogs. The company wants to maintain certain
information about each item—information such as the item name, part
number, and which catalog the item appears in. To oblige the company,
Acme’s computer programmer (who is, incidentally, a Macintosh pro-
grammer) writes a program that defines a single class. This part information
class is shown in Figure 2—-11.

44 Symantec C++

FIGURE 2-11

In Figure 2—11, you can see that the programmer feels that a class con-
taining three data members and three member functions will suffice to
describe and work with any item the company carries. The three data
members should be self-explanatory. The three member functions need only
a brief explanation.

The New_Part member function allows a user of the program to add
information about a new type of item—Acme is forever designing and pro-
ducing new types of bolts. The Write_Part_Info member function allows
the program user to print out information about the part—its name and
part number and the volume of the catalog in which it appears. Delete_Part
lets the program user remove information about a discontinued part.

The definition of a class doesn’t create any objects of that class; it
merely defines what an object based on this class will look like. Remember,
a class is like a data type. It is a pattern from which 1, 10, or 10,000 objects
can be created, as shown in Figure 2-12.

Part Info Class

Data
members

Member
functions

A class to represent a single part in a catalog

Chapter 2

Introduction to C++ and OOP

Part Info Class

| paxc name __§
P e |
catalog volum -

New_Part

Write_Part_Info

] Delete_Part

Objects

Object1 , ;
part name: 1/2® bolt

part number: - i .
catalog volume: 3

Object 2 \
- part name: 5/8% bolt
pert mumber: . 6043

cat{a&dg" volume: 3
- oeis.
part number: 44
catalog volume: 3

FIGURE 2-12 A class is the pattern from which objects are created.

45

Objects can be declared in your source code, just as variables based on
C data types are declared. They can also be created dynamically, or on the fly.
That is, all the objects a program will use do not have to be declared in your
code; only the class or classes must be declared. Objects can be created as the
program runs and as the need arises. This is typically the case, as Acme’s
programmer finds out. The program must be capable of creating and
deleting objects at the user’s whim. Because the programmer doesnt know
in advance how many items will be listed in each catalog, he can’t account

for every object beforehand.

Object-Oriented Programming and C

In writing a C++ program, not every line of code you write will be object-
like; much of it will closely resemble Macintosh C language code you've

written in the past. There are two reasons for this, as you're about to see.

Everything Need Not Be an Object

Not all programming concepts lend themselves to object-oriented pro-
gramming. OOP is most useful when you have a well-defined data object
and a number of well-defined actions that will be performed on it. Working

46

Symantec C++

with a shape—like the rectangle discussed earlier—is an example of a situ-
ation in which object-oriented methods are practical.

Another good candidate for representation as an object is a record, as
shown in the Acme Bolt and Nut Company’s use of objects to keep track of its
inventory of parts. The bits of information that make up a record and the
actions that are to be performed on them can be clearly and concisely defined.
For Acme, the information is the part name and number and the catalog in
which the item appeared. The actions are the creation, printing, and deletion
of a part. Each record, of which there may be thousands, stores the same types
of information and has the same types of actions performed on it.

A Macintosh window, intuitively thought of as an object by most users,
can be easily represented as an object. In the next section, you'll see in a little

- more detail how a window is represented in this way. Later in this book, I'll

present the source code for a C++ program that uses windows as objects.

So far, I've discussed things that can be turned into objects. What
about things that can', or shouldn', be turned into objects? There are many
instances in which there is an action to perform but nothing clearly defined
on which to act. For example, I may want to evoke a sound from the Mac’s
built-in speaker. That’s an action, but there is no object to perform the
action upon. I don't need to try to represent the Macintosh speaker as an
object. I simply call the Toolbox routine SysBeep(). Attempting to turn a
simple action into object-based code undermines the purpose of object-
oriented programming. Don't add unnecessary complexity to your programs.

C++ on the Macintosh, like C on the Mac, makes extensive use of
Toolbox calls. It also uses other common C code, such as for and while
loops and if and switch branches—especially in nonobject portions of your
C++ code. An example is an event loop. The event loop of a Mac C++
program looks very much like an event loop in a Macintosh C program.

C++ Uses C

Objects have member functions that carry out actions on their data
members. In the classes you've seen so far, the member functions have been
shown as just function names. That is, in fact, how member functions are
listed in a class definition. The actual body of code that makes up a member
function appears elsewhere in your source code. Because I just mentioned
that a Macintosh window is a good candidate for representation as an
object, I'll use a window as an example. Figure 2—13 shows the class defi-
nition for a window. I've deliberately left much of the class obscure so that
we can focus on just a couple of the member functions.

My window class definition has at least two member functions. I've
shown the Drag_Wind and Grow_Wind member functions in Figure 2-13.

Chapter 2 Introduction to C++ and OOP 47

Window Class

Drag_Wind
e

FIGURE 2-13 Part of a class that defines a window

You now know that the code that makes up these functions appears outside
of the class. Here’s a look at how I implemented the DragWind member
function:

void Window :: Drag _Wind(Point where)

{

DragWindow(the window, where, &drag_rect);

While the double colons in the first line may seem a little cryptic, the
body of the function should be very familiar. It’s simply a call to the Toolbox
function DragWindow(). This line of code appears just as it would in a
Macintosh program written in C. Recall that C++ is a superset of C. Most
valid C code is also valid C++ code. That’s why much of your C++ source
code will look like C code.

48 Symantec C++

As further proof that C++ relies heavily on C, take a look at the code I
wrote for the Grow_Wind member function. You may not understand the
purpose of each line, but that’s not important. What is important is that you
notice that the Grow_Wind member function is made up of local vari-
ables—all of which are declared to be of data types found in Macintosh C—
and quite a few Toolbox calls.

Tong Window :: Grow Wind(Point where)
{

Tong wind_size;

Rect min_wind_size;

GrafPtr save port;

min_wind_size = this->min_rect;

wind size = GrowWindow(the_window, where,
&min wind size);

if (wind_size !=0)

{
GetPort(&save port);
SetPort(the window);
EraseRect(&the window->portRect);
SizeWindow(the window, LoWord(wind size),

HiWord(wind size), true);

InvalRect(&the window->portRect);
SetPort(save port);

}

return (wind size);

It should be encouraging to you to know that none of the effort you have put
into learning C and Macintosh programming has been wasted. You'll use all of
your knowledge of C and the Macintosh Toolbox in your C++ programs. Don’t
think of learning C++ as learning an entirely new language; think of it as adding
to your existing knowledge base.

Chapter 2 Introduction to C++ and OOP 49

Chapter Summary

The C++ language is a superset of the C language. That means that C++
includes all of the elements of C plus some additional ones. Any time and
effort you've spent learning C will not be wasted on your journey to learning

C++.

Programs written in C++ usually work with objects, but they don'
have to. OOD or object-oriented programming, is not in itself a pro-
gramming language. Rather, it is a way of organizing a program. The
additions to the C language that spawned the C++ language were primarily
those that allow programs to become object-oriented. A C++ program
doesn’t have to take advantage of these elements, though. If it doesn’, there
is little difference between it and a C program, and it isn’t considered an
object-oriented program.

A procedural language, like Pascal or C, has variables that hold data
and routines that act on those variables. There is, however, no direct con-
nection between a given routine and a given piece of data. In object-
oriented programming there is. Data and the functions that act on that data
are grouped to form classes. From these class definitions come objects. An
object is a variable that is of a certain class type. Object-oriented pro-
gramming allows the programmer to create as many objects from one class
definition as needed, just as a programmer can declare several variables of a
standard data type such as a short or a float.

The (Language: The Basis of (++

The C++ language is built on the data types and keywords that make up the
C language, so you'll want to have a good understanding of C before you
tackle C++. Are you well-versed in C? Are you familiar with all of the basic
data types, branching statements, and looping statements? Do you recall
how to declare and use a struct—the C data type upon which the C++ class
data type is buile? If you do, then feel free to skip this chapter; it’s a review of
C. You won' find anything that’s strictly C++ here; that begins in Chapter
4. If you know C but feel a little rusty, skim this chapter for a refresher.

Basic Data Types

Whole numbers, floating-point numbers, and characters and strings—those
are the three basic types of data found in both C and C++. This section pro-
vides a quick review of the data types that fall within those general data
categories.

51

52

Symantec C++

Integral Numbers

In C, and in C++, whole numbers, or integral numbers, are represented by
variables of type short, int, and long. A short occupies two bytes of memory,
an int occupies four bytes, and a long occupies four bytes.

The four-byte specification for an int applies to the Symantec C++ com-
piler. If you've used Symantec’s THINK C compiler, you may know that in
that environment the size of an int can be either two bytes or four bytes,
depending on the option you've selected in the Compiler Settings screen of
the THINK C options dialog. This variance in the size of an int can cause
incompatibility and portability problems for a programmer who wants to
move code from one environment to another. For this reason, I strongly rec-
ommend that you always use short and long variables rather than ints.

A variable declared to be a short can range in value from —32,768 to
+32,767. If you need a larger number and don't plan to use negative values,
you can declare a variable to be an unsigned short,the range of which is 0 to
+65,535.

For a long variable, the range is —2,147,483,648 to +2,147,483,647.
As with a short, you can declare a long variable to be unsigned, in which
case the range is from 0 to +4,294,967,295. Here are a few example
declarations:

short dogs; // max. value is 32,767
unsigned short more_dogs; // max. value is 65,535
Tong usa_population; // max. value is 2,147,483,647

unsigned long asia_population // max. value -is 4,294,967,295

Some Toolbox routines insist on a parameter of type long. Since a long
occupies four bytes of memory, the parameter you pass must also occupy four
bytes. If you see example code that has OL as one of the parameters passed to
a Toolbox routine, rather than just a zero, it’s because of this requirement. An
integral constant, such as zero, doesnt necessarily occupy four bytes. In C and
C++, appending the letter L to a number forces it to occupy four bytes and
tells the compiler that you want the integer to be treated as a long. Here’s how
0 would be forced to occupy the space of a long:

oL

While a routine may accept an integral constant that hasn’t been forced
to the size of a long, there’s no guarantee that it will.

Chapter 3 The C Language: The Basis of C++ 53

Floating-Point Numbers

Integral numbers are easy to work with and useful data types, but they
cannot be used for numbers that contain decimal points. C and C++ use
variables of the data types float, double, and long double to hold floating-
point numbers—numbers that have decimal points. A float occupies four
bytes of memory. Doubles and long doubles occupy either eight or ten
bytes, depending on settings in the Compiler Settings screen of the
Symantec C++ options dialog box.

The size of floating-point numbers will seldom be an issue for you. In
Macintosh programming, double is the preferred floating-point data type.
Whether the compiler is set to store a double in eight or ten bytes of
memory, the range of values a variable of type double holds should be plenty
large enough for your needs.

The following are examples of floating-point declarations and
initializations:

float cost = 19.95;
double distance = 6.5e2;
Tong double great distance = 7.25e6;

Characters and Strings

In C and C++ you use the char data type to hold a single character. Enclose
the character in single quotes, like this:

char first_initial = 'D';

Multiple characters, or strings, are held in variables of type Str255.
Precede the characters that make up the string with a backslash and the
letter p; then enclose the whole works in double quotes, like this:

"\pThis is a string"
A string variable can be given a value at initialization, as in:
Str255 the str = "\pSymantec C++";

Once declared, though, a string cannot be given a value in an
assignment statement. While the following looks as if it should work, it
doesnt.

54

Preprocessor Directives

Symantec C++

Str255 the str;

the str = "\pSymantec C++"; // This WON'T work

To give a string variable a value affer it has been declared, use a
function that moves a string constant into the string variable, byte-by-byte.
The following is a short, simple routine that does just that. You might want
to copy it into your source code:

void Fill_Str255(Str255 the str, Str255 fill_with_str)
{
short str length; // length in characters of string
short 1i; // loop counter

str_Tength = *fill_with_str;

for (i = str_length; i >= 0; i--)
the_str[i]

Call the Fill_Str255() routine whenever you want to give a string
variable a value. Pass to Fill_Str255() the variable to fill along with a string
constant. Here’s a code snippet that does that and then writes the string to
the active window or dialog box:

Str2bb the_str;

Fil1 Str255(the str, "\pTesting 123");
MoveTo(20, 30);

DrawString(the str);

The Symantec C and C++ compilers contain a preprocessor that makes a pass
through your source code before compiling. The preprocessor can substitute
numbers or characters for symbols and replace a single line with the con-
tents of an entire source file.

Chapter 3 The C Language: The Basis of C++ 55

The #define Directive

Data that is preset at the start of a program and doesn't change value is said
to be constant. In C and C++, constants can be established through the use
of the #define preprocessor directive. The following sets the name, or

symbol, CENTS_PER_DOLLAR to the value 100:
#define CENTS_PER _DOLLAR "100

Now, wherever the symbolic name CENTS_PER_DOLLAR appears,
the compiler will replace it with the number 100 during the preprocessor’s
pass through the code.

The liberal use of #define directives has the positive effect of pre-
venting numbers from being scattered about your source code. Instead, all
numbers appear at the start of the file or in their own separate source code
file. Here are some examples of #define directives and the code that uses

them:

#define INTEREST_RATE 0.06
#define RATE_STR "\pThe interest rate is currently 6%"

double base_amount = 1000;
double interest;

DrawString(RATE_STR);
interest = (base_amount * INTEREST RATE);

The #include Directive

The second most common preprocessor directive is the #include. An
#include, followed by a filename, tells the compiler to substitute the entire
contents of the named file for the #include line. The following are two
examples:

#include "Initialize.h"
#include <GestaltEqu.h>

Most #include files are header files—files containing #defines and
function prototypes rather than executable code. When including a header
file of your own, enclose the name in quotes. That tells the compiler to
begin its search for the file in the directory that contains the original source
code file. When including Apple-supplied header files, surround the

56 Symantec C++

Table 3-1 Some of the Commonly Used C Operators
Operator Description Operator Description

+ Addition < Less than

- Subtraction <= Less than or equal

¥ Multiplication > Greater than

/ Division >= Greater than or equal

++ Increment == Logical equals

-- Decrement 1= Logical NOT equals

& Address of && Logical AND
Direct selection I Logical OR

> Indirect selection = Assignment

filename with the < and > symbols. That tells the compiler to begin its
search in the folders of #include files in the Symantec C++ folder.

Operators

vt

The C language provides many ways to process the data you have stored in
different types of variables. Operators are the symbols that do the processing,
and C has a rich set of them. The C operators allow you perform math
operations, make comparisons, alter variable values, and more. If you've
mastered C operators, your skills won't be wasted—C++ uses them all. Table
3—1 lists the most commonly used C operators.

Looping Statements

Controlling the flow of a program is an important programming concept—
in C and every other language. Looping statements provide a program with
the means of easily repeating blocks of code. The C language has three kinds

Chapter 3 The C Language: The Basis of C++ 57

of loops—uwhile, do-while, and for. All three types can be used in C++
programs.

The while Loop

The while statement performs a test on an expression to determine if the
statement below the expression should execute. The while loop has the
general form shown here:

while (expression)
statement

The first line of a while loop is the conditional test. If the expression
that lies between the parentheses evaluates to true, then the statement below
the expression executes. If the expression evaluates to false, then the
statement below is skipped. The statement part of the while loop can be a
single statement or a block of code—a compound statement—nested
between opening and closing braces. Here’s an example of a loop that will
execute 10 times (from x =0 to x = 9):

short x = 0;
short total = 0;

while (x <10)
{
total += 5;

X++;

Figure 3—1 shows the flow of control for a section of code that contains
a while loop. The code that increments the loop counter is found within the
loop body.

The do-while Loop

Related to the while loop is a second type of looping statement—the do-
while loop. In the do-while, the test condition appears at the end of the loop

body:

do
statement
while (expression);

58 Symantec C++

FIGURE 3-1 Program flow of a while loop

Having the test expression appear at the end of the loop means that the
loop will always execute at least once. Here’s an example of a do-while loop:

n
- O

we we

short count
short total

do

{
total += 5
++count;

} while (count < 3);

For conciseness, the incrementing of the loop counter can take place
within the test expression, as shown here:

FIGURE 3-2

Chapter 3 The C Language: The Basis of C++ 59

Program flow of a do-while loop

do

{
total += 5;
} while (count++ < 3);

Figure 3-2 shows the program flow of a do-while loop. While the
incrementing of the loop counter is shown after the loop body, it could be
contained within the body itself.

60

Symantec C++

The for Loop

The

Branching Statements

The third C loop type is the for loop. The for loop performs three actions
within the parentheses that follow the for keyword: it initializes a counter to
a starting value, compares the counter to an ending value, and increments
the counter. The first of these three actions is performed only once. The

other two are performed after each pass through the body of the loop. Here’s
the format of the for loop:

for (initialize counter; test counter; increment counter)
statement

Here’s an example of a for loop:

short count;
short total = 1;

for (count = 0; count < 2; count++)
total *= 3;

Figure 3-3 shows the program flow of a for loop. The test of the
expression occurs before each pass through the loop body.

Looping statements control the flow of a program. Another way to control
program flow—and to add complexity and decision-making power—is to
use branching statements. For branching, both C and C++ rely on the if, i
else, else-if, and switch statements.

if Branch

The if statement performs a test on an expression. The result of the eval-
uated expression determines if the statement below the expression is
executed once. The if statement has the form shown below.

if (expression)
statement

The first line of the if statement holds the conditional test. If the test
between the parentheses evaluates to true, the statement below the

FIGURE 3-3

Chapter 3 The C Language: The Basis of C++ 6l

Program flow of a for loop

expression is executed. If the expression evaluates to false, the statement
below the expression is skipped. As in loops, the statement below the if can
be either a single statement or a compound statement. Here’s an example of
an if statement whose test evaluates to true:

short x = 0;
short total = 0;

if (x<10)
{
total += 5;
MoveTo(20, 30);
DrawString("\pTotal has been increased by 5.");

62 Symantec C++

: test.
expression

 next statement

FIGURE 34 Program flow of an if branch

Figure 3—4 shows the flow of control for a section of code that contains
an if branch.

The if-else Branch

The if statement either executes a statement or it doesn’t. On some occa-
sions you will want your program to execute a second statement when the if

test fails. For cases such as this, use an expanded form of the if statement—
the if-else. Here’s the general form of the if-else:

if (expression)

statement_1
else

statement 2

Chapter 3 The C Language: The Basis of C++ 63

When you want to have the ability to handle two separate cases, sup-
plement the if statement with an else section. Here’s an example:

short x = 15;
short total = 0;

if (x<10)
{
total += 5;
MoveTo(20, 30);
DrawString("\pTotal has been increased by 5.");

}
else
{
total = 0;
MoveTo(20, 30);
DrawString("\pTotal was too high, it was reset to 0.");
}

In the above example, the else section of the if-else will be executed.
That’s because x starts with a value of 15—a value greater than or equal to
10. When the if test fails, the code below the else is executed. Had x been
initialized to a value less than 10 or assigned a value less than 10 at some
other point in the code, the code under the if statement would have been
executed. Figure 3—5 shows the program flow for a section of code that con-
tains an if-else branch.

The else-if Branch

The if-else handles a situation that can result in either of two outcomes. For
a condition that can have more than two outcomes, use the else-if branch.
Its general usage is shown here:

if (expression_1)
statement_1 v

else if (expression 2)
statement 2

else
statement_3

64 Symantec C++

FIGURE 3-5

test
expression

next statement

Program flow of an if-else branch

When an executing program reaches an else-if, it starts at the top and
examines each test condition until one of them evaluates to true. Once a test
is true, the statement under it is executed and the remainder of the else-if is
skipped. While more than one test could be true, only the code under the
first test that passes will be executed. Here’s an example:

if (days >= 365)

DrawString("\pIt's been at least a year.");
else if (days >= 7)

DrawString("\pIt's been at least a week.");
else

DrawString("\pLess than a week has elapsed.");

Chapter 3 The C Language: The Basis of C++ 65

‘ else-ifboay

FIGURE 3-6 Program flow of an else-if branch

Figure 36 illustrates program flow for a section of code that has an
else-if branch in it.

The switch Branch

For situations in which there are only a few possible branch paths, the if
statement and its variations work just fine. When you want to handle a
single situation that has multiple options, however, you'll find it more con-
venient to use the switch statement. Here’s the format of the switch:

66 Symantec C++

switch (integer variable)
{
case constant_1:
statement
break

case constant_2:
statement
break

default:
statement
break

The switch statement compares the value of the variable that appears
in parentheses with the constant value that follows each case label. When a
match is made, the statement that follows the matching case label is exe-
cuted. When the break keyword is reached, the program exits the body of
the switch; therefore, a break must appear after the last statement under
each case label.

If the value of the variable named in the first line of the switch matches
none of the case constants, the statement following the optional default
keyword is executed. Here’s an example of a switch statement:

short card_total;

switch (card_total)
{
case 21:
DrawString("\pBlack Jack!");
break;
case 20:
case 19:
case 18:
case 17:
DrawString("\pStand on 17 - 20.");
break;

Chapter 3 The C Language: The Basis of C++ 67

default:
DrawString("\pBust on 22 or higher, hit on 16 or less.");
break;

More than one case value can cause a given statement to execute, as the
above switch example shows. If card_total has a value of 17, 18, 19, or 20,
the same DrawString() will execute.

When will the code under the default keyword execute? When
card_total has a value not specifically listed in a case label. For the above
example, that means that a card_total value of less than 17 or greater than
21 will cause the default code to execute.

Structures

A solid understanding of the C language struct is important to working
with C++. That’s because the class, which is the pattern, or definition, of an
object, is based on the struct data type. Chapter 5 discusses the class data
type in great depth. Here, I review the struct data type so that you'll be well
prepared for the C++ class data type.

Defining and Declaring a struct

When a need arises to group several pieces of data together in a common
variable, you'll want to use a struct. A structure template describes a single
type of structure. Here is an example that creates a structure template called
AutoDescription. Its purpose is to hold descriptive information about a
single car:

struct AutoDescription // template for one automobile

{
Str255 make; // Chrysler, Pontiac, etc.
Str255 model; // New Yorker, Bonneville, etc.
long year; // 1987, 1993, etc.

ks

A structure template begins with the C keyword struct, followed by the
template name. In the above example the template name, or zag, is AutoDe-
scription. A structure is a record of information. The information is

68

Symantec C++

enclosed in the body of the structure between the braces that follow the
structure name. The body contains the structure members. A structure may
contain as few or as many members as needed. Each member is a decla-
ration. The AutoDescription structure template has three members: the
make of the auto, stored as a string—a Str255; the model of the auto, which
is also a Str255; and the car’s year of manufacture, which is stored as a long
integer. :

The definition of a structure template tells the compiler what the
structure will look like, but it doesn’t create a structure. The structure tem-
plate is a zype rather than a variable, just as Str255, short, and float are data
types, not variables. What type is it? Whatever name you've selected as the
template tag. In the above example, I've created a struct type of
AutoDescription.

After you've created a structure template, you can declare variables of
the struct type. In the following example, two AutoDescription struct vari-
ables are declared. The example also declares a variable of type short—just
to show that struct variables can be declared right along with your other
variables.

struct AutoDescription my_junker;
struct AutoDescription better car;
short num_cars;

Accessing struct Members

A structure variable holds several pieces of data, so you need a way to get at
a given field. That’s called member access. To assign a value to a structure
member, you use the structure member operator, which is simply a period
(). In the following example, the member operator is used to assign a value -
to one member of themy junker variable.

struct AutoDescription

{
Str255 make;
Str255 model;
long year;

}s
struct AutoDescription my_junker;

my_junker.year = 1981;

Chapter 3 The C Language: The Basis of C++ 69

When you apply the member operator to a struct variable, as in the
case of my_junker.year, then that struct and that member together act like
any variable of the member’s type. You can use my junker.year as you
would any long integer variable:

struct AutoDescription my_junker;
long the_year;

my_junker.year = 1981; // assign my_junker.year a value
the_year = my_junker.year; // the_year now has a value of 1981

Assigning values to the other two values in the AutoDescription
variable is just a little trickier. The problem isn’t with the struct itself but,
rather, with the way Macintosh C and C++ work with strings. Earlier in this
chapter, you saw a routine I named Fill_Str255(). Pass it a string variable
and a string, and the routine will fill the Str255 variable with the string.
That’s how you assign a value to a string—whether the string is a member of
a struct or not. The example below uses Fill_Str255() to assign values to the
two Str255 members of the my_junker struct variable.

struct AutoDescription

{
Str255 make;

Str255 model;
long year;

}s

struct AutoDescription my junker;

Fil1_Str255(my_junker.make, "\pChevrolet");
Fi11_Str255(my_junker.model, "\pCitation");
my_junker.year = 1981;

Now that the members of the struct variable have been assigned values,
those values can be easily drawn to a window:

MoveTo(20, 20);
DrawString(my_junker.make);
MoveTo(20, 35);

70 Symantec C++

DrawString(my_junker.model);

MoveTo(20, 50);

NumToString(my_junker.year, the str);
DrawString(the str);

Notice that in the above code my_junker.make and my_junker.model
are treated just like normal Str255 variables; the Toolbox function Draw-
String() accepts them as Str255 parameters. The same applies to the year
member of the my_junker struct. It’s declared as a long variable, and the
Toolbox function NumToString(), which requires a long as its first
parameter, takes my_junker.year.

It’s always good to look at a complete source code example to see how

'a programming concept works. The following program—aptly named Car-

Struct—uses the above code to create a struct, assign values to the struct
members, and write the member values to a window.

// kkkkhkkhkkkhkkkkhkhkkkkkikk CarStruct Cp khkkkkkkkkkkkkkikkkk

struct AutoDescription // template for one automobile

{

Str255 make; // Chrysler, Pontiac, etc.
Str255 model; // New Yorker, Bonneville, etc.
Tong year; // 1987, 1993, etc.

}s

struct AutoDescription my junker; // declare a struct
// variable

void main(void)

{
WindowPtr the window;
Rect window_rect;
Str255 the str;

InitGraf(&thePort);
InitFonts();
InitWindows();

SetRect(&window rect, 50, 50, 350, 150);

Chapter 3 The C Language: The Basis of C++ 71

the window = NewWindow(OL, &window_rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr) -1L,
true, 0);

SetPort(the window);

Fil1_Str255(my_junker.make, "\pChevrolet");
Fill _Str255(my_ junker.model, "\pCitation");
my junker.year = 1981;

MoveTo(20, 20);

DrawString(my junker.make);

MoveTo(20, 35);

DrawString(my junker.model);

MoveTo(20, 50);

NumToString(my junker.year, the str);
DrawString(the str);

while (!Button())

Remember, Fill_Str255() isn’t a Toolbox routine. It’s a short utility function I've
written to fill a variable of type Str255 with a string. You'll find the source code
for it in the Characters and Strings section of this chapter.

You'll find the project file and source code for the CarStruct program
on the accompanying disk along with the project files and code for every
complete example program presented in this book. If you have Symantec
C++ 6.0 or 7.0, fire it up and try CarStruct for yourself. When you do,
you'll see a window like the one shown in Figure 3-7.

The struct and class Data Types

In Chapter 2, I discussed a C++ data structure called the class. There I said
that the class was a template from which objects were created. Though I
didn’t go into the specifics of how a class was created in C++, I did mention

72 Symantec C++

SE=——— New Window

Chevrolet
Citation
1981

FIGURE 3-7 The output of the CarStruct program

that the class was based on the struct. The example I used in Chapter 2 was
for the Acme Bolt and Nut Company. They wanted a program that would
keep track of information about each item in their catalogs of hardware
parts. Figure 3-8 shows how a class might be set up for such a program.

Part Info Class

Data
members

Member
functions

FIGURE 3-8 The struct can be used to represent the data members of a class.

Chapter 3 The C Language: The Basis of C++ 73

In Figure 3-8, the member functions have been dimmed. Thats
because I'm going to give an example of how a struct might be used to hold
at least some of the information that is shown in the class template. Using a
struct, I'll be able to create a data structure that holds the information held
in the data members of the class, but I won’t be able to include the function
information—the member functions—that are contained in the class.
Here’s a look at the struct I'm talking about:

struct CatalogInfo // template for one catalog item
{
Str255 part_name; // the name of the part
Tong part_number; // the part number
long catalog vol; // volume of catalog it
// appears in
b

Now let’s create a variable of CatalogInfo type and assign each member
a value:

struct CatalogInfo half_inch_bolt;

Fi11_Str255(half_inch_bolt.part_name, "\p; in. bolt");
half_inch_bolt.part number = 5002;
half_inch_bolt.catalog vol = 4;

I've tied together the code from the catalog example to make a short
program called CatalogStruct. You'll find the source code for it here and on
the disk.

// kkkkkkkkkkkkkkkkk Cata'l ogStr\uct . Cp khkkkkkkkkkhhkkkkkk

struct CatalogInfo // template for one catalog item
{
Str255 part_name; // the name of the part
Tong part_number; // the part number
long catalog_vol; // volume of catalog it
// appears in

}s

struct CatalogInfo half_inch_bolt; // declare a
// struct variable

74

Symantec C++

{

void main(void)

WindowPtr the window;
Rect window_rect;
Str255 the_str;

InitGraf(&thePort);
InitFonts();
InitWindows();

SetRect(&window_rect, 50, 50, 350, 150);

the_window = NewWindow(OL, &window_rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr)-1L,
true, 0);

SetPort(the_window);

Fil1_Str255(half_inch_bolt.part_name, "\pj in. bolt");
half_inch_bolt.part_number = 5002;
half_inch_bolt.catalog_vol = 4;

MoveTo(20, 20);
DrawString(half_inch_bolt.part_name);

NumToString(half_inch_bolt.part_number, the str);
MoveTo(20, 35);
DrawString(the_str);

MoveTo(20, 50);
NumToString(half_inch_bolt.catalog vol, the str);
DrawString(the str);

while (!Button())

FIGURE 3-9

Chapter 3 The C Language: The Basis of C++ 75

[{HH]

[H=——— New Window

1/2 in. bolt
5002
4

The output of the CatalogStruct program

Figure 3-9 shows the window that you would see if you ran the Cata-
logStruct program.

Using a struct, I've succeeded in keeping the catalog information
together in one data structure. I've also managed to assign values to the
fields of information and print them to the screen. But I wasnt able to bind
these operations to the data itself—as the C++ class data structure and
object-oriented programming techniques would have allowed me to. To
find out how to do that, you'll have to wait until Chapter 5.

Chapter Summary

Because the C++ language is built on the C language, you'll want to have a
good understanding of C before you start learning C++.

You'll use all of the C data types that hold numbers, including short,
int, long, and float, in your C++ programs. To hold strings of text, you'll
count on the Str255 data type. If you need to assign a value to a Str255
variable after declaring it, you'll want to write your own short utility
function like the Fill_Str255() routine found in this chapter.

Like the Symantec THINK C compiler, the Symantec C++ compiler
contains a preprocessor that makes a pass through your source code before
compiling it. The preprocessor is capable of substituting numbers or char-
acters for symbols. You'll use #define directives to create these symbols. The
preprocessor also can replace a single line with the contents of an entire
source file; use the #include directive to accomplish that task.

The wealth of operators that are part of the C language are also part of
the C++ language. Refer to Table 3—1 to see a list of the most commonly
used operators.

76 Symantec C++

C++ code doesn't consist solely of objects; you must write supporting
code to make things happen with the objects. A large part of this code will
make use of standard C looping and branching statements. The while, do-
while, and for loops found in C are also part of C++. The same applies to
the if, if-else, else-if, and switch branching statements.

Before tackling C++, you'll want to be sure you have a solid under-
standing of the C language struct data type. The C++ class data type—the
pattern from which objects are created—is based on the struct data type.

Additions to C... Means C+-l-

C++ is based on the C language. That’s good for you, because it means that
the time and energy you put into learning C will not have been wasted. And
speaking of learning, the period of review is over. Now is the time to buckle
down and learn some specifics of C++.

In this chapter, you'll see how C++ allows you to use function over-
loading to create multiple versions of a function. You'll also learn about C++
memory allocation—how it’s similar to C and how it’s different. Finally, you
will read about scope resolution—the C++ technique that gives you control
in determining which of two identically named variables will be used in a
given statement.

The Very Basics

Before delving into the really important differences between C and C++, I'll
take just a page or two to cover two very basic differences.

77

78 Symantec C++

FIGURE 4-I

Function Argument Argument

Return type name type name Semicolon

long My Function(short wvalue);

Function Argument

Return type name type Semicolon

long My Function(short);

Two forms of function prototypes

Functions

In C++, functions work just as they do in C. But whereas a C compiler may
be forgiving if you don't include function prototypes, a C++ compiler is not.
A function prototype tells the compiler what a function will look like—
before the compiler ever actually sees the function. A function prototype
can have either of two forms, as shown in Figure 4-1.

The only difference between the two forms of prototypes shown in
Figure 4-1 is that in one form you list both the type and the name of each
argument, while in the other form you list only the argument type. The
compiler doesn care which of the two forms you use—it’s simply a matter
of preference. In this book, function prototypes will be shown without the
argument names, as in the prototype at the bottom of Figure 4-1.

If you haven't used function prototypes in the past, start using them
now. Here are a few more examples:

Chapter 4 Additions to C... Means C++ 79

void Write Warning(void); // no return value,
// no arguments
void Write Message(Str255); // no return value,

// one argument
Tong Add_Numbers(Tong, Tong); // return value,
// two arguments

Comments

You've already seen how comments can be written in C and C++. Because
this chapter deals with the features found in C++ but not C, I thought it
best to mention the subject again.

In both C and C++, comments begin with /*and end with *. C++
goes C one step better by providing a second method of identifying com-
ments. In C++, you can use a double slash to make a single line a comment.
Here is an example of each comment type:

/* This line is a comment in both C and C++. As you can
see, it can occupy more than one line */

// This line is a comment in C++. It's limited to one line

Function Overloading

In C, two functions cannot share an identical name. That makes perfect
sense. If two functions did have the same name and your source code made
a call to one, how would the compiler know which of the two functions to
execute? While having multiple functions with the same name is not per-
missible in C, it is in C++.

Functions with a Different Number of Arguments

In C++, two functions can have the same name as long as they have a dif-
ferent number of arguments. Below you’ll see the function prototypes for
two functions, both of which are named Draw_Line().

void Draw Line(void);
void Draw Line(short, short);

80

Symantec C++

The first of the two functions has no parameters. Calling it results in a
line 200 pixels long being drawn. Heres the code for the first
Draw_Line():

void Draw_Line(void)
{

Line(200, 0); // draw a horizontal Tine
}

The second Draw_Line() is a more versatile line-drawing routine. It
accepts two parameters. The first is the thickness of the line, and the second

is the length of the line. Heres the code for the second version of
Draw_Line():

void Draw_Line(short thickness, short length)

{
PenSize(1, thickness); // change the pen size
Line(Tength, 0); // draw a horizontal Tine
PenNormal () ; // set the pen to a
// thickness of 1,1
}

Now let’s take a look at two calls to Draw_Line():

MoveTo(20, 20);
Draw_Line();

MoveTo(20, 40);
Draw_Line(5, 100);

In the above code, the compiler knows which of the two Draw_Line()
functions to execute at each Draw_Line() call. The different number of
arguments is the key that helps the C++ compiler resolve which function to
execute. Figure 4-2 shows that when a call to Draw_Line() is made with
two parameters passed to it, the C++ compiler properly determines which
function to execute—the Draw_Line() that accepts two parameters.

I've taken the Draw_Line() code and placed it in a C++ program
named FunctionOverload. The program first opens a window and then calls
Draw_Line() twice. Figure 4-3, shows the results of running Function-
Overload. If you have Symantec C++, run the FunctionOverload program

included on the disk to verify that the program does indeed execute both
functions.

Chapter 4 Additions to C... Means C++ 8l

Draw_Line (short, short)
{

}

Draw_Line(3, 200);

Compiler .

FIGURE 4-2 Function overloading: the compiler determines which function to execute.

=—— New Window ==

FIGURE 4-3 The output of the FunctionOverload program

82 Symantec C++

// *kkkkkkkkkkkkkk Functi onOver\] Oad . cp *kkkkkkkkkkkkkkk

void Draw_Line(void); // function prototype
void Draw_Line(short, short); // function prototype

void Draw_Line(void)

{
Line(200, 0);
}
void Draw_Line(short thickness, short length)
{ |
PenSize(1, thickness);
Line(Tength, 0);
PenNormal();
}

void main(void)

{
WindowPtr the window;
Rect window_rect;

InitGraf(&thePort);
InitFonts();
InitWindows();

SetRect(&window_rect, 50, 50, 350, 150);

the_window = NewWindow(OL, &window_rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr)-1L,

true, 0);
SetPort(the window);
MoveTo(20, 20);

Draw_Line(); // call one version of Draw_Line()

MoveTo(20, 40);

Chapter 4 Additions to C... Means C++ 83

Draw Line(5, 100); // call a DIFFERENT version of
// Draw_Line()

while (!Button())

£

Functions with Different Argument Types

The technique of overloading a function can also be used to create functions
with the same name and same number of arguments—provided the argu-
ments are of different types. Determine_Tax_Rate() accepts a float variable
that represents a person’s income. Based on the value of the passed
parameter, the function determines a tax rate and returns it as a float. Here’s
the function prototype for Determine_Tax_Rate():

float Determine Tax Rate(float);

Now, what if I want the program I'm writing to also accept a person’s
income as an integer, and I want the tax rate to be rounded to a whole
number rather than a float? If thats the case I'll create a second
Determine_Tax_Rate() function that satisfies those requirements. This is
the function prototype for the second version of the function:

short Determine Tax Rate(Tong);

Each of the two functions accepts a single parameter, but each
parameter is of a different type. And that difference is what allows the
Symantec C++ compiler to determine which function is executed in
response to a call to Determine_Tax_Rate().

Note that only the function argument type, not the return type, differentiates
one function from another. Overloaded functions must have either different
numbers of arguments or different types of arguments (or both). Having dif-
ferent return types alone will not do it. Thus, the following two functions could
not both be used in the same program—in C or C++.

float Convert String To Number(Str255);
Tong Convert String To Number(Str255);

84

Symantec C++

The first function converts a string to a float; the second converts a string to a
long. But each has the same number of arguments—one—and the same type
of argument—a string. And that’s not good.

P

Why Create Functions with the Same Name?

Function overloading is an interesting, almost mystical, programming tech-
nique; it demonstrates just how powerful the C++ compiler is. But that
doesn't explain why you would want to create different functions with the
same name.

For large projects, function overloading minimizes the number of
function names you have to keep track of. Mathematical functions are espe-
cially good applications for overloading. A simplistic example might involve
several functions named Add_Numbers(). Each would be responsible for
adding numbers, but the parameters and return types would be different.
Consider the following prototypes for four identically named functions:

Tong Add_Numbers(long, long);

Tong Add_Numbers(long, long, long);
float Add Numbers(float, float);

float Add Numbers(float, float, float);

Below I’ve shown how these four functions might look:

Tong Add Numbers(long a, Tong b)
{

return (a +b);

}

Tong Add_Numbers(long a, long b, Tong c)
{

}

return (a+b+c);

float Add Numbers(float a, float b)
{

return (a +b);

}

Chapter 4 Additions to C... Means C++ 85

float Add Numbers(float a, float b, float c)
{

return (a+ b +c);

}

Your source code could then use all four, and each would yield dif-
ferent results. Here’s a code snippet that calls two of the above functions:

long aL, bL, cL, dL;

el
dL

Add_Numbers(aL, bL);
Add_Numbers(aL, bL, cL);

The technique of function overloading has another important use.
Objects, created from class definitions, benefit from function overloading—
as you'll see later in the book.

Allocating Memory in C

This section discusses the C language method of allocating memory. In par-
ticular, I will emphasize how pointers are used with struct variables. C++
does things a little bit differently than C does—so why spend time working
with C? Because there are strong similarities between the two. And the class
data type, which you'll be working with in Chapter 5, is based on the struct.

Pointer Review

A pointer is a variable that holds the address of a different variable. For the
compiler, working with the address of a variable, rather than the variable
itself, has certain advantages. Pointers make the passing of data to a function
easy, for example. Passing the memory address of data, rather than the data
itself, eliminates the need for the receiving function to be concerned with
the size of the data.

In Figure 4—4, a function named Do_Stuff() is being called. A pointer
to the data held in a variable named my_data is being passed. The figure
shows that the address of the start of the data, rather than the actual data, is
passed. Because Do_Stuff() is receiving a pointer, it isn’t concerned with the
size of my_data.

86 Symantec C++

void Do_Stuff (Data *data_ptr)
{

Do_Stuff(&my_data);

)...

FIGURE 44 Passing a pointer to a function

Using Pointers

In C, the first step in reserving, or allocating, memory for data is to declare
a pointer to a data type. In a declaration, preceding a variable name with an
asterisk tells the compiler that the declared variable is to be a pointer. After
declaring a pointer to a data type, you allocate memory by using a standard
C routine like malloc(). The following code declares a pointer to a long and
then allocates memory to hold one long integer:

Tong *long ptr;

Tong_ptr = (long *) malloc(sizeof(long));

The one parameter that malloc() requires is a number that represents
the size of the data to allocate memory for. The sizeof() function is used to
provide that number. In the above example, I want to allocate memory for a
single long integer. That’s why I've asked the sizeof() function to return the
size of the long data type. The use of sizeof() in the call to malloc() is shown
in Figure 4-5.

Now that malloc() knows how much memory it should allocate, it
does so. It then returns a pointer to that memory, as shown in Figure 4-6.

When malloc() returns a pointer to your program, it returns a generic
pointer—a pointer that has no particular type associated with it. Since I do

FIGURE 4-5

Chapter 4 Additions to C... Means C++

These data types match

7

long *long ptr;

long_ptr = (long *) malloc

The sizeof () routine returns the amount
of memory needed to store a piece of data of
the type listed—in this case, a long

Using the sizeof() function to determine the amount of memory malloc() should
allocate

FIGURE 4-6

long *long_ptr;

long_ptr = (long *) malloc(sizeof(long));

After calculating how much memory to allocate,
malloc() reserves it and then returns a pointer to it

The malloc() function allocates memory and returns a pointer to it.

88 Symantec C++

These types match

long *long_ptr¥R

1ong;ptr = (long *) malloc(sizeof(long));

Placing a data type ahd the * operator before
malloc() changes the type of the returned pointer

FIGURE 4-7 Typecasting turns the pointer into one that has the data type associated with it.

need a particular kind of pointer—a pointer to a long—I have to typecast
the generic pointer to a long pointer. Figure 4-7 shows how this is done.

Figure 4-8 summarizes the above discussion. It shows what memory
might look like after each of the following two lines of code:

long *long_ptr; B long_ptr = {(long *)malloc(sizeof(long)); i

7777

4000
long_ptr 2?7?

4000
long_ptr 5000

FIGURE 4-8 Memory after the execution of two different lines of code

Chapter 4 Additions to C... Means C++ 89

Tong *long ptr;

Tong ptr = (Tong *) malloc(sizeof(Tong));

On the left side of Figure 4-8 you can see that while the declaration of
a pointer sets aside memory for that pointer, the declaration doesn't allocate
memory to hold whatever it is that the pointer will eventually point to. For
that, you have to call malloc(), as shown on the left side of Figure 4-8.

If you use malloc(), you must include the stdlib.h header file. This file tells the
compiler what the malloc() function looks like—what its arguments and return
type are. Don’t worry about the stdlib.h file too much, though. Later in this
chapter you'll see how C++ simplifies memory allocation, allowing you to
reserve memory without using either stdlib.h or malloc().

Pointers and struct Variables

Pointers aren’t used only with variables like the long type. They can also be
used when working with struct variables. In Chapter 3, you saw the fol-
lowing structure definition:

struct AutoDescription
{
Str255 make;
Str255 model;
long years;

¥

This same structure can also be defined using a slightly different
syntax: '

typedef struct

{
Str255 make;
Str255 model;
long years;

} AutoDescription;

90

Symantec C++

The above two forms yield the same result—a new data type called
AutoDescription. The second form is advantageous in that it makes it easy
to create a pointer type to the structure as well:

typedef struct
{
Str255 make;
Str255 model;
long year;
} AutoDescription, *AutoDescPtr;

The following snippet contains a struct definition, along with the def-
inition of a pointer to a struct. Here I'm defining a PersonInfo structure
type and a data type called PersonPtr that can be used to point to such a
structure:

typedef struct

{
Str255 name;

Str255 job;
long age;
} PersonInfo, *PersonPtr;

Here’s a second example that defines both a structure and a pointer to
the structure:

typedef struct
{ .

short days;
short months;
short years;
} TimeInfo, *TimeInfoPtr;

Now that I've defined my own pointer data type, I can declare a

variable of that type:
TimeInfoPtr time ptr;

Before using the time_ptr pointer I'll have to write a statement that
allocates memory for the pointer to point to:

time_ptr = (TimeInfoPtr)malloc(sizeof(TimeInfo));

Chapter 4 Additions to C... Means C++ 91

In the above code, notice that the * operator isn’t used in typecasting the
pointer. That’s because unlike the earlier example of malloc(), which reserved
memory for a long, TimelnfoPtr is already a pointer data type.

The above example makes time_ptr a valid pointer—uvalid in the sense
that it now points to a particular memory location that has been set aside to
hold one Timelnfo data structure. To place values in the memory location
pointed to by time_ptr I would use the -> operator, like this:

time ptr->days = 31;
time ptr->months = 6;
time_ptr->years = 4;

The following program, named GoodCAllocation, shows how a
pointer and the malloc() function can be used to allocate memory for a
structure. It also uses assignment statements to assign values to the members
of the struct—via the pointer to the struct. When it no longer needs the
memory allocated by malloc(), the program calls free()—a routine that
frees, or releases, the memory that was occupied by the memory allocated
using malloc().

The GoodCAllocation program appears on the accompanying disk.
Before running it, read the next section to see how you can use the
Symantec debugger to better understand what’s happening as the code runs.

// *kkkkkkkkkkkkkkk GOOdCA] '| ocat-i on. Cp kkkkkkkkkkkkkkk

#include <stdlib.h> // header file for malloc
// definition - needed so that
// calls to malloc() and free()
// are recognized
typedef struct
{
short days;
short months;
short years;
} TimeInfo, *TimeInfoPtr;

TimeInfoPtr time ptr;

92

Symantec C++

“void main(void)
{

time ptr = (TimeInfoPtr)malloc(sizeof(TimeInfo));

time_ptr->days = 1;
time_ptr->months = 2;
time_ptr->years = 3;

free(time ptr);

Using the Symantec Debugger

A source-level debugger like the one included with Symantec C++ is a tool
that can be invaluable in tracking down errors in your programs. Watching
a program execute while the debugger is turned on is the best way to find
out what’s going on in a program that uses pointers. For that reason the next
two sections of this chapter will show the output of the debugger while code
that uses pointers and structs is running. If you need a refresher on how the
debugger works, refer to Chapter 1.

Using the Debugger to Verify a Proper Memory
Allocation

Pointers and memory allocation are often misunderstood. Here, we'll use
the debugger to verify that the following lines of code do in fact set a pointer
“pointing in the right direction.”

TimeInfoPtr time ptr;

time ptr = (TimeInfoPtr)malloc(sizeof(TimeInfo));

Just a few paragraphs ago, you were introduced to a short program
called GoodCAllocation. I'll use that very same source code to peek inside
memory and make sure that my pointer is working as intended. If you have
the Symantec compiler, follow along (the GoodCAllocation project is on
the accompanying disk and is all set up to run with the compiler). If you
don’t have Symantec C++ you can follow along in Chapter 4 of the Simu-
lator C++ tutorial software.

Chapter 4 Additions to C... Means C++ 93

After selecting Run from the Project menu, you'll see the two debugger
windows. Click on the Go button so that the program moves to the break-
point, as pictured in Figure 4-9. Remember, the line of code that the
debugger stops at is the line that is to be executed next; it has not yet been
executed. That's why the value of time ptr->days isnt 1 yet.

Next, click on the Step button. That causes the current line to be exe-
cuted. The assignment to time_ptr->days is made, and the days member of
the Timelnfo structure takes on a value of 1, as shown in Figure 4-10.

Now the true test. Click on the Step button again. The black arrow in
the Source window moves down a line as yet another line of code is executed.
And the value of time_ptr->days? It remains at 1, as shown in Figure 4-11.
Why is this a test of the validity of time ptr? If time ptr hadnt been
properly set up, the value of something it pointed to—time_ptr->days, for
example—might not retain its value. While there is a chance it might hold
and maintain the correct value, it might not. You don’t want to take a chance
to find out. In the next section, you'll see just why this is so.

FIGURE 4-9

» time_ptr->days

odChilocation.cp = Data

}gpedef struct tine_ptr—>dags
short days;
short months;
short years;

} Timelnfo, *TimelnfoPtr;

TimelnfoPtr time_ptr;

void maint void » Before the assignment
to days is made, days

has a “garbage” value

time_ptr = (TimelnfoPtrimal

time_ptr-:months = 2;
time_ptr-ryears =

freel time_ptr 2;

¥ 0 o0 O

main

The debugger windows after clicking on the Go button in the Source window

94

Symantec C++

» time_ptr->months

}gpedef struct time_ptr—>dags

short days;
short months;
short years;
} Timelnfo, *TimelnfoPtr;

TimelnfoPtr time_ptr;

void main(void) Immediately after the
time_ptr = (TimelnfoPtr ima assignment, days has
the assigned value of 1

time_ptr->days

nnun
N
.

time_ptr-ryears

free time_ptr J;

3oC _oo® O

FIGURE 4-10 The debugger windows after clicking on the Step button once

Using the Debugger to Examine Bad Memory
Allocation

The name of the example program presented in the last section—Good-
CAllocation—provided a hint that there might be a wrong way to allocate
memory. The BadCAllocation program demonstrates just that.

A common mistake of some programmers is to create a pointer to a
data structure and then think that they can immediately work with the data
structure—without allocating memory. After all, when you declare, say, a
long variable, you can simply begin to work with it:

Tong the_Tong; // declare a variable of type long

the Tong = 5; // start using it

Chapter 4 Additions to C... Means C++ 95

GoodCRllocation.cp = Data

typedef struct
{gpe ey time_ptr->days

short days;
short months;

short years;
} Timelnfo, *TimelnfoPtr;

TimelnfoPtr time_ptr;

void maint void 2 The value of days will

remain the same as the

& time_ptr = (TimelnfoPirimal
rogram executes
+ time_ptr-rdays = 1; e
& time_ptr-!months = 2;
[o3 time_ptr-ryears = 3;
& freel time_ptr J;
i}
» main

FIGURE 4-11

The debugger windows after clicking on the Step button a second time

When you define a structure data type and a data type that points to
such a structure and then declare a variable of the pointer type, it might
seem as if you could then begin to work with the pointer type. That’s the
reasoning that leads some programmers to omit the malloc() statement
that allocates memory and assigns the pointer to point to a particular
location:

TimeInfoPtr time ptr;

time ptr->days = 1; // time ptr has not been assigned to
// point to a particular memory
// Tocation

At a later point in a program, when it’s time to retrieve the information
held in time_ptr, there’s a good chance that the expected information will
not be found. As a program runs, the Mac often shifts the contents of

96

Symantec C++

memory about; that’s a one of its normal memory management chores.
Only pointers that have been properly initialized to point to the location of
a declared variable will be usable after such memory shifting. The line that
performs that “proper initialization” is shown below:

time_ptr = (TimeInfoPtr)malloc(sizeof(TimeInfo));

The following program, BadCAllocation, is the GoodCAllocation
program with two changes—two lines have been omitted. Those lines are
the ones that contain the malloc() and free() calls.

The purpose of BadCAllocation is to demonstrate what happens
when a programmer writes code that relies on an unassigned pointer. In
the previous section, you used the source debugger to monitor the value of
a variable in the GoodCAllocation. After you run the BadCAllocation
source code, you'll again use the debugger to see what’s going on in-
memory.

// kkkkkkkkkkkkkkkk BadCA] 'I ocat-i on. Cp kkkkkkkkkkkkkkkk

#include <stdlib.h>

typedef struct
{

short days;
short months;
short years;
} TimeInfo, *TimeInfoPtr;

TimeInfoPtr time ptr;

void main(void)

{
// malloc() omitted
time_ptr->days = 1;
time_ptr->months = 2;
time_ptr->years = 3;
}

Incidentally, the BadCAllocation project compiles just fine—with
nary an error message. That, in fact, is the reason that invalid pointer
usage can occur in the first place. If you have Symantec C++, you can

 Chapter 4 Additions to C... Means C++ 97

BadCRIllocation.c

typedef struct
{gpe o e time_ptr-rdays
short days;
short months;
short years;
} Timelhfo, *TimelnfoPtr;

TimelnfoPtr time_ptr;

void main¢ void 2 Before the assignment, the

// omitted malloc) wilnpat Seyeismieicn
garbage value

» time_ptr-rdays =
time_ptr-*months = 2;
time_ptr-ryears =

& el

/7 omitted freedll

FIGURE 4-12 The debugger windows before clicking on the Go button

compile the included BadCAllocation code yourself. Try running the Bad-
CAllocation example, too. Make sure that Use Debugger is checked in the
Project menu. If you don’t have Symantec C++, check out Chapter 4 in
the Simulator C++ software; it includes a QuickTime movie that animates
this lesson.

Now let’s see how the BadCAllocation program runs. With the Use
Debugger item checked, I'll choose Run from the Project menu. Before I
click on the Go button, you can see that the value 'm monitoring,
time_ptr->days, holds garbage—whatever value was last left at the
memory location that time ptr->days now occupies. Figure 4-12 illus-
trates this.

After clicking on the Go button, the assignment to time_ptr->days is
made. The black arrow in the Source window has moved down a line, and the
Data window shows that time_ptr->days now has a value of 1. Figure 4-13
shows this.

98

Symantec C++

Now comes the interesting part—the part that really makes the use of a
debugger worthwhile. Clicking on the Step button executes the line that
assigns a value to time_ptr->months. Looking at the Data window, I see that
after this step has been completed, the value of time ptr->days has changed.
It has lost its previously assigned value of 1 and has returned to some mystery
value. This is pictured in Figure 4-14. Why did the assignment of a value to
time_ptr->months change the value of time_ptr->days? It didn't. It wasn't
this particular assignment statement that affected time_ptr->days; it was the
fact that something happened. The time_ptr pointer was never properly ini-
tialized, so any one of a hundred things could have caused a change in the
value stored in the memory location that time_ptr->days points to.

Figure 4-14 shows why you must allocate memory. In the next section,
you'll see how C++ simplifies memory allocation.

GG

time_ptr-*days = 1;
» time_ptr-*months = 2;
time_ptr-rysars = 3;

typedef
{gpe el time_ptr-rdays

short days;
short months;
short years;
} Timelnfo, *TimelnfoPtr;

TimelnfoPtr time_ptr;

void main{ vaoid 2

Immediately after the
assignment, days has
the assigned value of 1

£ oomitted mal locd >

/7 omitted freed)

FIGURE 4-13

The debugger windows after clicking on the Go button

Chapter 4 Additions to C... Means C++ 99

=—— BadCHIllocation.cp =

typedef t t

o time_ptr—>days 16513 5
short days; '
short months;
short uyears;

} Timelnfo, *TimelnfoPtr;

TimelnfoPtr time_ptr;

Soon after the assignment to
days has been made, the value
of days loses its assigned value

void main{ void >

/7 omitted mallocC)

& time_ptr-rdays = 1;
+ time_ptr-rmonths = 2;
Lo 3 time_ptr-ryears = 3;

/7 omitted freec)

FIGURE 4-14 The debugger windows after clicking on the Step button once

Allocating Memory in C++

In C++, a pointer is initialized through use of the new operator. The new

- operator is unique to C++, so don't page through your C books to find it.
Here’s an example that declares a pointer to a long and then assigns to the
pointer the address of a block of memory:

Tong *long ptr; // declare a pointer to a long

lTong ptr = new long; // obtain memory, set pointer to
// point to it

Figure 4-15 shows what a section of memory could look like after each
of the two above lines of code executed.

100 Symantec C++

long *long._ptr; long_ptr = new long

4000
long_ptr

FIGURE 4-15 Memory after declaring a pointer and initializing the pointer using the newer
-operator

Compare the above allocation that uses the new operator with the way
I achieved the same result using C:

Tong *long_ptr;

Tong_ptr = (long *) malloc(sizeof(long));

The new operator can be used with any data type—including the
struct. Since you are accustomed to seeing the Timelnfo structure, I'll use
that struct in this snippet that defines a struct, declares a pointer to it, and
then uses the new operator to make the struct pointer valid:

Chapter 4 Additions to C... Means C++ 101

typedef struct
{
short days;
short months;
short years;
} TimeInfo, *TimeInfoPtr;

TimeInfoPtr time ptr; // declare a pointer to
// struct data

time_ptr = new TimeInfo; // obtain memory, set pointer
// to point to it

For comparison, here’s how you could achieve the above results in C:

typedef struct
{
short days;
short months;
short years;
} TimeInfo, *TimeInfoPtr;

TimeInfoPtr time ptr;
time_ptr = (TimeInfoPtr)malloc(sizeof(TimeInfo));

The new operator obtains, or sets aside, an appropriately sized block of
memory and returns a pointer to its starting point. What is the appropriate
amount of memory? Whatever amount is needed to hold a variable of the
type specified after the new operator. Because a long occupies four bytes of
memory, the following lines of code set aside four bytes:

Tong *long ptr;

Tong _ptr = new long;

The new operator is always smart enough to determine the amount of
memory to obtain—even when it is used with data types that you define,
such as the struct. Because a short is stored in two bytes and my Timelnfo
struct consists of three shorts, using new to obtain memory for a Timelnfo
structure would result in a block of six bytes being reserved:

102 Symantec C++

typedef struct l- 6000
{ four bytes
short days;
short months;
short years;
} TimeInfo, *TimeInfoPtr;
5200
T%meInfoPtr t:.Lmel_ptr; six bytes
TimeInfoPtr time2_ptr;
long *long_ptr;
timel_ptr = new TimeInfo; AN
i = i fo; .
time2_ptr new TimelInfo six bytes
long_ptr = new long;
W
timel_ptr
time2_ptr
long_ptr
T e——

FIGURE 4-16 Memory after using the new operator to initialize three pointer variables

typedef struct

{
short days; // two bytes
short months; // two bytes
short years; // two bytes

} TimeInfo, *TimeInfoPtr;

TimeInfoPtr time ptr;

time ptr = new TimeInfo; // reserve six bytes

Figure 4—16 shows how memory might look after the declaration of
two TimelnfoPtr pointers and a long pointer.

Once you have used new to obtain the memory for a pointer to point
to, you can access the pointed to memory just as you did in C. Use the ->
operator to access what a pointer points to, as shown here:

Chapter 4 Additions to C... Means C++ 103

TimeInfoPtr time ptr;
time ptr = new TimelInfo;

time_ptr->days = 1;

When your program is finished with a pointer, the memory allocated
by the new operator should be disposed of; or released, by using the delete
operator.

TimeInfoPtr time ptr;
time_ptr = new TimeInfo; // allocate memory
// do stuff with the pointer

delete time ptr; // dispose of memory

Disposing of the memory that an unused pointer points to isnt man-
datory; your program will continue to run if you don't do it—that is, if it
doesnt run out of memory. Until you use delete on an unused pointer, the
memory block that the pointer points to cannot be reused by your program.
While my forgetting to dispose of the six bytes that an unused Timelnfo
structure occupies probably won't matter, forgetting to dispose of several
much larger structures may. When you no longer need a data structure,
always call delete to return the allocated memory to the pool of free memory
available for your program’s use.

As you've seen, the malloc() and free() library functions do work properly in
C++. The preferred method of C++ memory allocation, however, is through
the use of new and delete. If you're using malloc() and free(), get in the habit of
replacing them with calls to new and delete

The new and delete operators will get a workout with the class data
type covered in Chapter 5. Unitil then, take a look at the NewDelete
program to see a simple example of the new and delete operators in
action. If youd like, you can step through the program using the
Symantec debugger. If you do, you'll notice that the values to which

104 Symantec C++

time _ptr points will contain garbage—even after the new operator is
used. The new operator doesn’t place any values in memory; it just allo-
cates the memory. Once time_ptr is used in assignment statements,
however, time_ptr will point to valid data—data that remains valid while
the program is running.

// khkkkhkkhkkhkhkhhkhkhkkkkkx NewDe'l ete . Cp *kkkkkkkkhkkkrkkkkkk

typedef struct

{
short days;
short months;
short years;
} TimeInfo, *TimeInfoPtr;

TimeInfoPtr time ptr;
void main(void)

{

time_ptr = new TimeInfo;

1]
—
we

time_ptr->days
time_ptr->months 2
time_ptr->years

1}
w N
we

delete time_ptr;

IMPORTANT

When memory is allocated using the new operator, it can be freed with the
delete operator. But don'’t try using delete without first allocating memory
with new. What will be the result? | don’t know. And that’s just the point. The
program will attempt to free memory that hasn’t been allocated to it, and the
results will be unpredictable at best, disastrous at worst.

Chapter 4 Additions to C... Means C++ 105

The Scope Resolution Operator

In C, two variables can have the same name—provided they have a different
scope. That is, they cannot both be declared within the same function. In
the following code, a long variable named days is declared globally—
outside all functions—and locally to the main() function. If days is used
within main(), which value will the program be working with, 365 or 31?
Here’s that code:

long days = 365; // global to entire program

void main(void)

{

long days = 31; // local to main()

Tong days _in_year;

days_in_year = days; // won't work as intended
}

The last comment in the above code gives away the answer as to which
days is used—the one declared in the main() function. If I was expecting to
assign days_in_year a value of 365, I'd be disappointed. In C, the compiler
uses the variable that is “closest to home.” Because the days_in_year
assignment statement is in the main() function, the compiler first checks to
see if a days variable has been declared in main(). It has, so it uses the value
of that variable—not the globally declared variable as my program intended.

When confronted with multiple variables with the same name, a com-
piler needs to have a set of rules for determining which variable to use.
Otherwise, it can't achieve predictable results. C compilers use the scope of
a variable to resolve issues that arise when identically named variables are
present. C++ compilers do the same thing. But C++ compilers also provide
the programmer with a way to override the compiler’s scope resolution
rules. By using the scope resolution operator, you can specify which variable to
use when more than one identically named variable exists. I've repeated the
previous example below, with one change:

106

Symantec C++

EE=———— New Window =———1
31
365

FIGURE 4-17 The output of the ScopeOperator program

long days = 365; // global to entire program

void main(void)

{
long days = 31; // local to main()
long days_in_year;
days_in_year = ::days; // works as intended!!
}

By preceding a variable name with two colons—the scope resolution
operator—you tell the compiler to look outside the current function. In the
above example, the assignment statement that gives days_in_year a value
tells the compiler to search outside of main() for a variable named days and

to ignore the days variable that is local to main().

The following program, ScopeOperator, is an example of the use of the
scope resolution operator. When you run the program, you should see a

window like the one shown in Figure 4-17.

// kkkhkkkkkkkkkkhkkkkhkx ScopeOPerator. Cp kkkkhkkkhkkhkhhkkkk

long days = 365; // global to entire program

void main(void)

{
Str255 the_str;
WindowPtr the window;
Rect window_rect;

Chapter 4 Additions to C... Means C++ 107

Tong days = 31; // local to main()

InitGraf(&thePort);
InitFonts();
InitWindows();

SetRect(&window rect, 50, 50, 350, 150);

the_window = NewWindow(OL, &window rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr)-1L,
true, 0);

SetPort(the window);

MoveTo(20, 30);

NumToString(days, the str); // uses the Tocal
// variable

DrawString(the str);

MoveTo(20, 50);

NumToString(::days, the str); // uses the global
// variable

DrawString(the str);

while (!Button())

While the scope resolution operator occasionally comes in handy for
working with variables, its greatest power appears when working with the
member functions that are a part of each class you define. You'll see plenty
of examples of this in the next chapter.

Chapter Summary

While C++ is based on C, it contains both minor and major enhancements.
One of these differences concerns the use of function prototypes. In this

Symantec C++

area, C++ is less forgiving than C. If you haven't used function prototypes in
the past, you should start using them now. A second change you'll want to
adjust to is in the use of comments. C++ uses both the C style comment and
its own brand of single-line comments. Provided your text doesn’t occupy
more than one line, you can preface it by a double slash (//) to turn it into a
comment. :

In C, two functions cannot share an identical name; in C++, they can.
As long as two functions have either a different number of arguments or dif-
ferent types of arguments, the functions can have the same name. This
feature of C++ is called function overloading.

Memory allocation in C++ differs from allocation in C. For the pro-
grammer, this is good news, because the C++ way of doing things is easier.
Instead of using the malloc() and free() library functions, you'll simply use
the new and delete operators to allocate blocks of memory.

In C, two variables can have the same name only if they have different
scopes—that is, they can't reside in the same function. In C++ you can use
the scope resolution operator (::) to allow the use of identically named vari-
ables anywhere in your program.

(lasses and Objects

Chapter 3 was a review of the C language—with great emphasis on working
with the struct type. I have already mentioned several times in this book
that the C++ class type is based on the C struct type; now, your study of the
struct is going to pay off. In this chapter, you'll see the specifics of how
classes are written in C++.

A class defines what data an object of that class type will hold and what
actions can be performed on that data. Once you have defined a class, you
can use it as the basis for creating as many objects as you like, and in this
chapter, you'll do just that.

This chapter is one of the longest in the book, and there’s good reason
for the extra paper; together, classes and objects are object-oriented
programming,.

Declaring a Class

In this section, you'll learn how to declare a class. If you understand how to
create a C struct, youre half way to understanding how to create a C++

109

110 Symantec C++

FIGURE 5-I

catalog volume :

Data
members

Member
functions

Write_Part_Info

Representation of an object that holds information about a catalog item

class. Since youre already familiar with Acme Bolt and Nut Company’s
efforts to write an inventory program, I'll carry on with that example.

For the sake of simplicity, let’s assume that Acme will be satisfied with
a program that keeps track of only the part number and the catalog in which
that part appears. Not only that, but the company will be happy if the
program just allows the user to enter information about a new part or print
the information about an existing part. With those specifications in mind,
an object that defines a single part will look—figuratively—like the object
pictured in Figure 5-1.

Using Figure 5-1 as my guide, I created a class type called Partlnfo,
which is shown here:

class PartInfo

{
private:
Tong part_number; // data member
long catalog_vol; // data member

public:

FIGURE 5-2

Chapter 5 Classes and Objects 11

void New Part(long, long); // member function
void Write_Info(void); // member function

The Partlnfo class, like most classes, consists of data members and
member functions. Figure 5-2 sheds some light on the format of a class
declaration.

Figure 5-2 shows that a class begins with the class keyword, followed
by the name of the class. As you would for a struct, you supply a name that
describes what the data structure will be used for. The contents of the class
lie between braces. As mentioned, the contents of the class are the class data
members and member functions. Don' forget to end the class definition
with a semicolon after the closing brace. %

Both of the data members of the PartInfo class are of type long, but
members can be declared to be of any valid C++ type, including short, long,

class keyword

class PartInfo
{

private:

Databe long part_number;
members long catalog_vol;
public:
Mem,ber void New_Part(long, long);
functions

void Write Info(void);

Declaring a class named Partinfo

112

Defining Member Functions

Symantec C++

Str255, and pointers to those types. Data members are defined in the same
way that the members of a struct are defined. And, in fact, they behave
much as the members of a struct behave. Member functions, on the other
hand, have no struct analogy. They are the part of a class that binds the class
data to the actions that are performed on the data, and they are the part of a
class that makes a class much more powerful than a struct.

The Partlnfo class includes two C++ keywords that I havent dis-
cussed—private and public. I'll have more to say about these keywords later
in this chapter.

The member functions listed in a class declaration are the names of the
functions that are to be part of the class; they are not the functions them-
selves. You must define each member function elsewhere in your code.

Writing the Header of a Member Function

My Partlnfo class lists two member functions, so I'll have to write two func-
tions. I've repeated the PartInfo class declaration below, along with the start
of the two member functions.

class PartInfo

{
private:
long part_number; // data member
Tong catalog vol; // data member
public:
void New Part(Tong, long); // member function
void Write Info(void); // member function

void PartInfo :: New Part(long part, long catalog)
{

// function code here

}

Chapter 5 Classes and Objects 113

void PartInfo :: Write Info(void)
{

// function code here

}

The very first line of a C function is the function header. The header
consists of the function return type, the function name, and the list of
function arguments. For a C++ member function, the syntax of the header
is a little different—but not much. The difference is the presence of a class
name and the scope resolution operator. In Chapter 4, you saw the scope
resolution operator used to help the compiler resolve which of two identi-
cally named variables it should use. Here's that example:

long days = 365; // global to entire program

void main(void)

{
long days = 31; // local to main()
long days_in_year;

days_in_year = ::days; // use global version of this
// variable

When working with classes, the scope resolution operator is the glue
that binds a function to a class. In the header of the Write_Info() member
function, note that the name of the class to which the member function
belongs appears before the scope resolution operator:

void PartInfo :: Write Info(void)
{

// function code here

}

Without the :: operator, the compiler would not know that the
function was meant to be a part of the Partlnfo class. The relationship
between a class and one of its member functions is shown in Figure 5-3.

Since the function Write_Info() is listed in the class declaration, you
may wonder why the C++ compiler isnt smart enough to make the con-
nection without the use of the scope resolution operator. The answer to that

114 Symantec C++

FIGURE 5-3

) class PartInfo
{
private:
long part_number;
long catalog_vol;

public:
void New_Part(long, long):
void Write_Info(void);

void PartInfo :: Write_Info(void)
{

// function code here
}

The relationship between a class and one of the functions listed as a class member
function

question lies in a topic covered in Chapter 4—function overloading.
Remember, C++ allows more than one function to share the same name. If
my program had two Write_Info() functions and the class and scope reso-
lution operator weren’t used, how would the compiler know which one to
bind to the PartInfo class?

While many of the functions in a C++ program may be member functions, not
all of them are. C++ programs also have “normal” functions. The header of a
C++ function that is not a member function looks just like a C function header.
Later in this book, you’ll see example source code that includes both member

Chapter 5 Classes and Objects 115

functions and regular functions. Already though, you have seen one non-
member function—the main() function.

Writing the Body of a Member Function

The body, or contents, of a member function is written such that it per-
forms the required action on the appropriate class data member or
members. A member function acts on data members of the same class as the
member function. Thus, my Write_Info() member function for the
PartInfo class should perform some action on either or both of the PartInfo
data members—part number and catalog vol. The purpose of
Write_Info() is to write the values of both class data members to the active
window, so it works with both data members. Here’s that function:

void PartInfo :: Write_Info(void)

{
Str255 the_str;

NumToString(part_number, the str);
DrawString(the_str);

Move(20, 0);

NumToString(catalog_vol, the_str);
DrawString(the str);

Write_Info() first converts the value of the part_number data member
from a long integer to a Str255. That allows the value to be written using
the Toolbox function DrawString(). After moving several pixels across the
window, the function does the same with the catalog_vol data member.
Aside from the class name and :: that appear in the function header,
Wrrite_Info() looks much like a function found in a C language program.

Notice that in the Write_Info() routine the data members are used as
variables. To make use of a data member in a member function you do not
have to dereference the data member as you would a struct member. Nor is
there any need to specify which class the members are from—that’s spelled
out in the very first line of the function:

void PartInfo :: Write Info(void) // PartInfo class

116 Symantec C++

Because this function is a member function of the PartInfo class, the
compiler assumes that any name that matches a PartInfo data member name
is in fact that data member. Figure 54 illustrates this idea.

Now that you've seen the Write_Info() member function, the other
PartInfo member function, New_Part(), will make sense:

void PartInfo :: New Part(long part, long catalog)

{

part;
catalog;

part_number
catalog_vol

class PartInfo

long part_number;
long catalog_vol;

void New_Part(long, long);
Write_Info(void);

Write_Info() is
a member function

void PartInfo :: Write,_Info(void)

{

Str255 the_str;

NumToString(part_number, the_str);
MoveTo(20, 30);

FIGURE 5-4 Class data member names can be used in a member function belonging to that class.

Chapter 5 Classes and Objects 117

New_Part() is a member function of the PartInfo class, so it contains
the name of that class and the scope resolution operator in its header. It also
contains something the other member function didn’t have—arguments.
Member functions, like other C and C++ functions, may have parameters
passed to them. The New_Part() function will receive two parameters—

both of type long:
void PartInfo :: New Part(long part, long catalog)

The purpose of New_Part() is to add the information about a new
hardware part to the Acme company’s inventory. The information about a
part is held in the two class members of the PartInfo class, so New_Part()
will act on these two class members. To do this, the New_Part() function
uses two assignment statements:

part_number
catalog_vol

part;
catalog;

The first line assigns to the class member part_number whatever value
was passed to New_Part() in part. The second line assigns the class member
catalog vol the value that was passed in catalog. If it appears that
New_Part() is acting like a C function, your powers of observation are keen.
And if you've guessed that member functions are invoked—and passed
parameters—much as C functions are, youre again correct. The next
section provides more details about the calling of member functions.

Working with Objects

A class declaration is a pattern that defines what a C++ object will look like;
it does not, however, actually create an object. This section will examine
how to create and work with objects.

Declaring an Object

In the past I've likened C++ classes to C structures. I'll do that again here as
I discuss how objects are created.

In C, you first set up a struct template. You then declare variables of
that struct type or variables that are pointers to that struct. The following
example defines a struct template that holds audio CD information. It con-
sists of two members—Str255 types that hold the title of the CD and the
name of the musical group. After defining the structure, a struct pointer

I8 Symantec C++

FIGURE 5-5

variable is declared. Then memory is allocated so that the pointer points to
something.

typedef struct

{
Str255 title;
Str255 band;

}s CDInfo, *CDInfoPtr;

CDInfoPtr the CD;

the CD = (CDInfoPtr) malloc(sizeof(CDInfo));

Figure 5-5 shows the above code snippet and a section of memory.
The left side of Figure 5-5 shows how memory looks after the struct tem-
plate is declared. The right side of the figure shows memory after the
variable is declared and memory is allocated.

typedef struct

{
Str255 title;
Str255 band;

} CDInfo, *CDInfoPtr;

the_CD CDInfoPtr;

the_CD = (CDInfoPtr)malloc
(sizeof (CDInfo)):;

R —
6500

the_CD->title 2?7?77

the_CD->band 2922

the_CD 6500

Memory is allocated for a struct using malloc()—but not for a struct type declaration.

Chapter 5 Classes and Objects 119

The point of Figure 5-5 is that the definition of a struct template uses
no memory. The definition is just an indicator of what variables of the
struct type will eventually look like. Not until a variable of type struct is
declared is memory set aside. A similar situation occurs when defining class
templates in C++.

The definition of a class—like the definition of a struct—reserves no
memory. To allocate memory you must create an instance of the class. An
instance of the class is more commonly called an object. The following code
snippet uses PartInfo as the class definition from which an object is created:

class PartInfo

{
private:
Tong part_number; // data member
lTong catalog vol; // data member
public:
void New Part(Tong, long); // member function
void Write Info(void); // member function
}s
PartInfo *the bolt; // a pointer to an object

the_bolt = new PartInfo;

Instance and object mean the same thing. For consistency, I'll use object in this
book. Be aware that in other books you may see objects referred to as
instances.

To create an object, first declare an object pointer. That simply
involves declaring a pointer to the class. Then use the new operator to
allocate the memory for the object. In C++, the new operator is used instead
of malloc(). Recall from Chapter 4 that the new operator, followed by a data
type, sets aside an amount of memory equal to the size of that data type.
The new operator also returns a pointer to the allocated memory. Here
PartInfo is the data type, and the_bolt is the pointer that holds the address
of the memory reserved for the new object.

120 Symantec C++

IMPORTANT

FIGURE 5-6

A variable declared to be of type struct is called just that—a struct variable. A
variable declared to be of type class, on the other hand, is called by its own
special name—an object.

Figure 5-6 shows how memory looks after the class template is
declared and after memory is set aside for a new object.

As in the case of the declaration of the struct template, a declaration of
a class template reserves no memory. Figure 5-6 emphasizes that point.
Memory allocation takes place when an object is created via use of the new
operator, as Figure 5-6 shows. You may have noticed that I've left the
memory contents in Figure 5-6 a bit unclear. The figure doesn’t specifically
show how the memory devoted to the object is divvied up. That will
become clear in the next section when you take a close look at how member
functions are accessed.

class PartInfo I:

{
private:
long part_number;
long catalog_vol;

public:
void New_Part(long, long);

void Write_Info(void);
3 the_bolt = new PartInfo;

PartInfo *the_bolt;

6500

PartInfo
object

the_bolt 6500

Memory is allocated for an object, but not for a class declaration.

Chapter 5 Classes and Objects 121

Objects and Member Functions

Earlier in this chapter, you saw that you must define each member function
in your code. When an object is created, pointers to the member functions
are also created. The member functions that are a part of an object are
simply pointers to functions; they are not the functions themselves.

In Figure 5-7, a single object of the PartInfo class type is created using
the new operator. The object pointer, the_bolt, points to the memory that
holds one object. The ob)ect itself consists of two longs—part_number and
catalog_vol—and two pointers—a pointer to the code that makes up the
New_Part() member function and a pointer to the code that makes up the
Write_Info() member function. Figure 5-7 doesnt show exactly where in
memory the code that makes up these functions appears. Nor does it show
the address of the object pointer or the object itself. You need not be con-
cerned about where these things end up in memory. After all, it’s the
pointer’s job to keep track of these things—not yours. You might want to
note, however, that an object’s data members are data, while an object’s
member functions are pointers to the actual functions.

class PartInfo
{
private:
long part_number;
long catalog_vol;
public: the_bolt
void New_Part(long, long);
void Write_Info(void);

};

Partinfo *the_bolt;

the_bolt = new PartInfo;
o e

part_number

A single C++ object—
an instance of the
PartInfo class

catalog_vol

New_Part ()

Write_Info()

FIGURE 5-7 An object and the pointer that points to it in memory

122

Symantec C++

Once a class is defined, you can create as many instances, or objects, of
that class as you wish. Below I've declared two pointers to objects of the
PartInfo class and then used the new operator to allocate memory and set
the pointers to point to that memory.

PartInfo *the bolt; // first pointer to a
// PartInfo object
PartInfo *the washer; // second pointer to a

// PartInfo object

the bolt = new PartInfo; // allocate first object
// memory

the_washer = new PartInfo; // allocate second object
// memory

Figure 5-8 shows how memory will look after two PartInfo objects
have been created. Note that while each of the two objects has its own
part_number and catalog_vol data members, they both point to the same
New_Part() and Write_Info() member functions.

An object needs its own data members so that it can hold information
specific to itself. In the catalog example I've been using, each object represents
a hardware part, or item, in the catalog. So each object must keep track of the
part number of a single part. On the other hand, the actions performed on-an
object, which are represented by the object’s member functions, can be
common to all the objects of a class. For that reason, all objects of a class can
make use of the same functions. That’s why a single function like New. Pa:t()
is loaded into memory and used by all PartInfo class objects.

Invoking a Member Function

A member function is invoked using the -> operator. After an object is
created, follow the object’s name with the -> operator and the name of the
member function to call. If the member function requires that parameters
be passed to it, include them as you would in a normal function call. The
next bit of code I show calls the New_Part() member function. Here’s a

reminder of what that function looks like:

void PartInfo :: New Part(long part, long catalog)
{

part;
catalog;

part_number
catalog_vol

}

Chapter 5 Classes and Objects 123

The following example declares a PartInfo object (actually, a pointer to
an object), allocates the memory for the object, and then calls the
New_Part() member function:

PartInfo *the bolt;
the_bolt = new PartInfo;

the_bolt->New Part(5002, 4);

part_number

catalog_vol

New_Part ()

Write_Info()

part_number

catalog_vol

New_Part ()

Write_Info ()

Write_Info()
function code

New_Part ()
function code

FIGURE 5-8 Two objects in memory and the functions they point to

124 Symantec C++

FIGURE 5-9

PartInfo *the bolt;

the bolt = new PartInfo;

the_bolt

part_number
catalog_vol
New_Part ()

Write_Info()

the_bolt->New_Part (5002, 4);

the_bolt

6000 6000

part_number
catalog_vol
New_Part ()

Write_Info()

Using an object’s member function to assign values to object data members

The effect of the above code is to create a PartInfo object and then set
the objects part_number data member to 5002 and its catalog vol
member to 4. Figure 5-9 offers a glimpse of how memory is affected by this
snippet of code.

A member function is like 2 normal function—except for the manner in which
it is invoked. You call a member function only via an object. In Chapter 2, | said
that a program tells an object to carry out an action by sending it a message.
The message tells the object which member function should execute. A line

Chapter 5 Classes and Objects 125

like the following is then sending a message to the Partinfo object the_boTt.
And the message is? To execute the New_Part() function.

the_bolt->New Part(5002, 4);

The program MemberFunctions, found on the accompanying disk, is
an example of a program that makes use of a class and an object. It declares
a class and its member functions, creates an object, and then invokes the
objects member functions. The MemberFunctions program invokes the
New_Part() member function to assign values to the object’s two data
members and then calls the object’s Write_Info() member function to write
that information to the active window. Figure 5-10 shows what the
program window looks like after running MemberFunctions.

// kkkkkkkkkkkkkkk MemberFunct-i ons. Cp *kkkkkkkkkkkkkik

class PartInfo

{

private:
Tong part_number; // data member
Tong catalog vol; // data member
public:
void New Part(Tong, long); // member function
void Write Info(void); // member function

=———— New Window =————|

5002 4

FIGURE 5-10 The output of the MemberFunctions program

126

Symantec C++

void PartInfo :: New_Part(long part, long catalog)
{

part_number
catalog_vol

}

part;
catalog;

void PartInfo :: Write_Info(void)

{
Str255 the_str;

NumToString(part number, the str);
DrawString(the_str);

Move(20, 0);

NumToString(catalog_vol, the str);
DrawString(the_str);

PartInfo *the bolt; // declare an object of type
// PartInfo

PartInfo *the washer; // declare an object of type
// PartInfo

void main(void)

{
WindowPtr the_window;
Rect window_rect;

InitGraf(&thePort);
InitFonts();
InitWindows();

SetRect(&window_rect, 50, 50, 350, 150);

the_window = NewWindow(OL, &window rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr) -1L,
true, 0);

Chapter 5 Classes and Objects 127

SetPort(the_window);
the_bolt = new PartInfo; // allocate object memory
the_bolt->New Part(5002, 4); // invoke member function

MoveTo(20, 30);
the_bolt->Write_Info(); // invoke member function

while (!Button())

}
Objects and Member Functions—Round Two

In previous sections, you saw objects being declared through the use of
pointers. That’s how I'll be declaring them throughout this book. For the
sake of completeness, however, I'll mention here that objects can also be
declared directly—without using pointers. Again, it’s similar to the way in
which you work with structs:

typedef struct

{
short days;
short months;
short years;
} TimeInfo, *TimeInfoPtr;

TimeInfoPtr the time;
TimeInfo another_time;

the_time = (TimeInfoPtr)malloc(sizeof(TimeInfo));
the_time->days = 31;

another_time.days = 28;

In the above example, you can see that the information for a single
struct can be stored in memory using malloc() and then accessed using a
pointer—the_time:

128 Symantec C++

TimeInfoPtr the time;
the time = (TimeInfoPtr)malloc(sizeof(TimeInfo));

the_time->days = 31;

Additionally, information for a struct can be kept track of by declaring
a variable of the struct type itself. This type of declaration allocates memory
without the use of malloc():

TimeInfo another time;

another_time.days = 28;

Since declaring a struct variable eliminates the need for using malloc(), why not
just always use struct variables rather than struct pointers? Because with struct
variables, you must know in advance how many structs you’ll be working with.
Then you declare a variable for each. It’s more advantageous to use pointers,
because you can work with them dynamically—that is, as the user works with
your completed program, memory is allocated and released using malloc() and
free() or new and delete.

Classes work the same way. Although I've been working with pointers
to an object, you can declare objects directly.

class PartInfo

{
private:
Tong part_number; // data member
Tong catalog vol; // data member
public:
void New Part(long, Tong); // member function
void Write Info(void); // member function

b

PartInfo *the bolt;

Chapter 5 Classes and Objects 129

PartInfo another bolt;
the_bolt = new PartInfo;

the_bolt->New Part(5002, 4);

another_bolt.New Part(5003, 5);

The direct selection, or dot, operator (.) is used to access members through a
class variable. The indirect operator (->) is used to access members using a
class pointer just as it is for structs.

Using class pointers and the new operator has advantages over working
directly with objects. These advantages will become evident in later
chapters.

Deleting an Object

Chapter 4 mentioned the new and delete operators. There you saw how
both of these C++ operators could be used on pointers:

TimeInfoPtr time ptr;
time_ptr = new TimeInfo; // use new to allocate memory
// do stuff with the pointer here

delete time ptr; // use delete to dispose
// the pointer

You've seen that the new operator is used to allocate memory for an
object. And by now you've probably guessed that when you have finished
with an object, it’s the delete operator that is used to dispose of it.

PartInfo *the bolt; // declare an object

the bolt = new PartInfo; // allocate object memory

130 Symantec C++

// do stuff with the object here

delete the bolt; // delete the object

Keep in mind that when you delete, or dispose of, a pointer you are not
actually deleting memory. You're freeing up the memory that the pointer refer-
enced—making it available for future use by your program.

Multiple Objects

Once a class is declared, your program can create as many objects of that
class type as it needs—that’s one of the powers of object-oriented pro-
gramming. As you saw several pages back, to create two objects you simply
declare two pointers and use the new operator twice:

PartInfo *the bolt; // first pointer to a
// PartInfo object
PartInfo *the washer; // second pointer to a

// PartInfo object

the bolt = new PartInfo; // allocate first object
// memory

the washer = new PartInfo; // allocate second object
// memory

While each of the two objects has its own data members, they both
share the same member functions. To assign each object’s data members
values, invoke the New_Part() member function for each:

the_bolt->New_Part(5002, 4);
the_washer->New Part(37, 3);

Looking at the code for the New_Part() member function, you might
wonder how the function knows which object’s data members should be
assigned values. After all, neither of the function’s two assignment state-
ments mentions a particular object, and no object is passed as a function
parameter:

FIGURE 5-11

Chapter 5 Classes and Objects 131

void PartInfo :: New Part(long part, Tong catalog)
{

part_number
catalog_vol

part;
catalog;

The New_Part() function knows which object’s data members to work
with by the way it is invoked. New_Part() performs its actions on the data
members that belong to the object whose name is used in the function call.
Remember, you must preface the function call with the name of an object
and the -> operator. You can't just directly call New_Part()—or any other
member function:

New Part(5002, 4); // won't compile - won't work
the_bolt->New Part(5002, 4); // this is correct
Figure 5-11 shows how a call to the_bolt->New_Part() causes data

members belonging to the the_bolt object, not the data members of the
the_washer object, to be affected.

void PartInfo :: New_Part(...
{
part_number = part;
catalog_vol = catalog;
}

part_number

catalog_vol

the_bolt

New_Part ()

Write_Info()

part_number

" the_bolt->New_Part(5002, 4);
catalog_vol

the_washer

New_Part ()

Write_Info()

A member function acts only on the object that invoked it.

132

Symantec C++

The MultipleObjects program that is found on the accompanying disk
demonstrates how to create two objects from the same class type. If you
understood this chapter's MemberFunctions program, you'll easily be able
to follow what’s going on in the MultipleObjects program. MultipleObjects
is the MemberFunctions program with just a few lines added to it. Study the
code; then look at Figure 5-12 to see what the program’s output looks like.

// kkkkkhkkkkkkkkkk Mu] t-l p'] eObj ects . Cp *kkkkkkhkkkkkkhkkk

class PartInfo

{
private:
long part _number; // data member
Tong catalog vol; // data member
public:
void New_Part(long, Tong); // member function
void Write_Info(void); // member function

}s

void PartInfo :: New_Part(long part, long catalog)
{

part_number
catalog_vol

part;
catalog;

}

void PartInfo :: Write_Info(void)

{
Str255 the_str;

NumToString(part_number, the str);
DrawString(the_str);

Move(20, 0);

NumToString(catalog_vol, the_str);
DrawString(the_str);

Chapter 5 Classes and Objects

PartInfo *the bolt; // declare an object of type

// PartlInfo

PartInfo *the washer; // declare an object of type

// PartInfo

void main(void)

{

WindowPtr the window;
Rect window_rect;

InitGraf(&thePort);
InitFonts();
InitWindows () ;

SetRect(&window_rect, 50, 50, 350, 150);

the_window = NewWindow(OL, &window_rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr)-1L,
true, 0);

SetPort(the_window);

the bolt
the_washer

new PartInfo; // allocate object memory
new PartInfo; // allocate object memory

the_bolt->New Part(5002, 4); // invoke member function
the_washer->New Part(37, 3); // invoke member function

MoveTo(20, 30);

the_bolt->Write Info(); // invoke member function
MoveTo(20, 50);
the_washer->Write_Info(); // invoke member function

while (!Button())

delete the_bolt; // delete the object
delete the washer; // delete the object

133

134

Symantec C++

New Window

HiH

5002 4
37 3

FIGURE 5-12 The output of the MultipleObjects program

Accessing Data Members

In object-oriented programming, an object’s data and the functions that act
on that data are bound together within an object. This concept of binding
data and action routines is called encapsulation. Another important idea in
OQRP is data hiding—the prevention of access to an object’s data by routines
that are not declared in the object’s list of member functions.

Data Access via Member Functions

You've already seen that an object’s data members can be accessed through
the object’s member functions. For example, to set the values of the data
members of a PartInfo object, you invoke the object’s New_Part() member
function. To examine, or display, the values of PartInfo data members, you
use Write_Info().

An object’s member functions can always be used to access the object’s
data members, as shown in Figure 5-13.

Using the private and public Keywords
to Limit Access

You now know that an object’s member functions are used to access the
object’s data members. But can an object’s members be accessed without
going through a member function? The answer to that is, “yes and no.”
When declaring a class, you set the level of access control for the data
members. To set the access control, you use the C++ keywords private and

public.

Chapter 5 Classes and Objects 135

class PartInfo
{ S
private:

long part: number;

Member functions of long catalog_vol;
this class can access
data members of this public:

void New_Part(long, long):
Write_Info(void);

class

FIGURE 5-13 Data members are accessed via member functions

The private and public keywords let your program know if code that is
not part of an object can access code that is part of the object. Parts of an
object marked as private cannot be accessed by outside code, while parts
that are marked as public can be.

Typically, the data members of an object will be marked private, while
the object’s member functions will be marked public. Making data private
limits access to it. Only something that is private to the class—namely a
member function—can access the data. Making the member functions
public allows code outside of the object—public code—to call the member
functions. This is shown in Figure 5-14.

In Figure 5-14, you see that the private data members of PartInfo are
being accessed by Write_Info(). That’s all right, because Write_Info() is a
member function. The figure also shows that the PartInfo member function
Write_Info() is being called from within main()—a function that isnt a
part of PartInfo.. This too is all right, because the member functions have
been marked as public.

Accessing Data without Using Member Functions

Marking an object’s data members as private severely limits your program’s
access to that data. Only the marked object’s member functions can work

with that object’s data, as Figure 5-15 shows.

136 Symantec C++

B

class PartInfo

{

private:
long part_number;
long catalog_vol;

public:
void New_Part(long, long);

Only member functions
can access private data

void PartInfo :: Write Info(...
{
Str255 the_str;

NumToString(part_pumber, ..
void Write_Info(void); RN

Y

.

void main(void)

{

Any code can access

the_bolt->Write_Info(); public functions

FIGURE 5-14 Private data can be accessed only through member functions, while public functions

can be referenced anywhere in a program.

Data members marked

as private . . .
class PartInfo
private

long part_number;
...canbe long catalog_vol;
accessed
only by public:
member } void New_Part(long, long);
functions void Write_Info(void);

FIGURE 5-15 The private keyword prevents access to data by any means other than a member

function.

Chapter 5 Classes and Objects 137

This access restriction may cause you to wonder if there’s a way around
the limitations of the private keyword. There is, but I wont recommend its
use. I will, however, cover it here so that you get a better understanding of
the public and private keywords.

Data members don't have to be private. You can declare any or all of
them public. In the following code, part number is public and
catalog_vol is private.

class PartInfo
{
public:
Tong part_number;
private:
long catalog_vol;

public: :
void New_Part(long, long);
void Write Info(void);

}s

Now that part_number is public, how does its level of access
change? You can now work with the data member directly—without
first going through a member function. To do that, use the -> operator
with the object’s name. In the following snippet, I set the value of
part_number directly rather than through the New_Part() member
function.

PartInfo *the bolt;
the_bolt = new PartlInfo;
the_bolt->part_number = 6789;

The above example shows that using the public keyword makes it
easier to access an object’s data members than using the private keyword. In
programming, however, easy isn't always synonymous with good. This is one
such case.

Encapsulation—the binding of an object’s data with the routines
that operate on that data—breaks down when data members are made
public. When class data is kept private, a glance at the class member func-

138 Symantec C++

FIGURE 5-16

If data is marked as private,
only member functions can act on it

part_nu.mbér;
long catalog_vol;

void New_Part(long, long);
Write_Info(void);

When the private keyword is applied to class data, encapsulation is maintained.

tions reveals all the possible actions that can be performed on an object of
that class type. Because private data cannot be accessed by functions other
than member functions, you know that the list of public member func-
tions tells the entire story of what actions can be performed on the data of
an object of a class. Figure 5-16 illustrates this idea. Figure 5-17 shows
how class data that is declared to be public can be accessed by functions
other than class member functions.

Many people who have programmed in C recognize the similarity
between stucts and classes, and they instinctively try to work with a class in
the same way they worked with a struct. While it is understandable that a
person would gravitate toward the familiar, doing so in the case of trying to
work with a class as you would a struct defeats the purpose of object-
oriented programming. One of the key concepts of object-oriented pro-
gramming is that objects are acted on only through their public member
functions. This makes an object self-contained. Not just any function
should have the ability to examine or alter the member variables of an
object. Restricted access to object data is one of the key advantages of object-
oriented programming; don’t override this feature by making data members
public.

Chapter 5

Classes and Objects 139

If data is marked as public,
any function can act on it

part_number;
catalog_vol;

New_Part(long, long);
Write Info(void);

void Do_Stuff(void)
{

the_bolt->part_number = 2001;

FIGURE 5-17 When the public keyword is applied to class data, encapsulation is lost.

The this Operator

You've seen that the code that makes up a member function acts upon the
data of the object that invoked it, as shown in Figure 5-18. In that figure,
an object named the_bolt is invoking the New_Part() member function,
so the values of the data members of the object the_bolt are changed in

memory.

The C++ compiler always knows that a member function is working
with the data of an object. But for humans—especially humans used to pro-
gramming in a procedural language like C—it would be nice to be
reminded of this. While it isn't necessary to specify that an assignment used
in a member function is working on an object’s data member, it would be

140 Symantec C++

e

part_number

void PartInfo :: New_Part(...

{ :
part_number = part;
catalog_vol = catalog;

}

catalog_vol

l the_bolt
New_Part ()

Write_Info()

i the_bolt->New_Part (5002, 4);

FIGURE 5-18 An object’s data is altered using object member functions.

nice if a programmer had the option of clarifying this fact. In C++, thats
exactly what the #bis keyword is used for.

In C++, this serves as a generic object pointer. Its use, which is
optional, lets you or anyone reading your code quickly see that a statement
is working with an object’s data member. Here now is the New_Part()
member function, written twice—once without the #his keyword and once
with it. Keep in mind that both functions have identical outcomes.

void PartInfo :: New Part(long part, lTong catalog)
{

part_number
catalog_vol

part;
catalog;

void PartInfo :: New _Part(long part, long catalog)
{

this->part_number
this->catalog_vol

part;
catalog;

Whether or not I choose to use the #is keyword in the New_Part()
function, the compiler knows to treat part_number and catalog_vol as

Chapter 5 Classes and Objects 141

data members of the object that invoked New_Part(). If I call New_Part()
through an object named the_bo1t—as the following lines of code do—the
compiler uses the the_bo1t object in the New_Part() function, as shown in
Figure 5-19.

PartInfo *the bolt;
the_bolt = new PartInfo;

the_bolt->New Part(5002, 4);

Using the his keyword reminds you that a member function is
working with an object’s data members. This reminder is especially helpful
if your program uses a local or global variable that has a name similar to the
name of a data member declared in a class. For instance, what if a program
I wrote declared a global variable named part_number? In the following
code, which part number would be used by New_Part() in the first

void PartInfo :: New_Part(...
art_number = part;

atalog_vol = catalog;

the_bolt->New_Part (5002, 4);

FIGURE 5-19 A member function always acts on the data of the object that invokes the function.

142 Symantec C++

assignment statement of that function—the global variable or the object’s
data member? :

class PartInfo
{
private:
Tong part_number; // data member
long catalog_vol;

public:
void New_Part(long, long);
void Write_Info(void);

void PartInfo :: New_Part(long part, long catalog)
{

part;
catalog;

part_number
catalog_vol

}

PartInfo *the bolt;
Tong part_number; // global variable

the_bolt = new PartInfo;

the_bolt->New_Part(5002, 4);

The answer is that a member function acts on the data members of the
object that invoked the member function. Thus, when faced with two
part_number variables, New_Part() will use the object data member rather
than the global variable. By rewriting New_Part() to include the #his
keyword, as I've done below, you lessen the potential for confusion.

void PartInfo :: New_Part(long part, long catalog)
{

this->part_number
this->catalog_vol

part;
catalog;

}

Chapter 5 Classes and Objects 143

Confusion can also be reduced by choosing sensible variable names. In a small
program written by one person, it’s easy to ensure that variable names aren’t
similar to data member names. In a large OOP program—one on which
several programmers may be working, for example—variable names that are
similar to data member names can occur. That's when the use of the this
keyword can really help to minimize mix-ups.

Since the his keyword can keep C++ code clear, I'll be using it in the
remainder of the book.

Constructors and Destructors

Supplying a data structure with initial, or default, values is a chore every
programmer encounters. And, when he or she has finished with a data
structure, cleaning up—which usually involves disposing of allocated
memory—is another responsibility of the programmer. Through the use of
two special member functions—the constructor and the destructor—C++
makes these tasks a little easier. And, perhaps more important, it makes it
very evident where in your code these tasks take place.

Constructors

Every class you write can contain an optional member function called a con-
structor. When an object is created using the new operator, the constructor
function—if declared as part of the class the object is based on—will auto-
matically be called.

The purpose of a constructor function is to initialize data members or
allocate additional memory. The format of the definition of a constructor
function is always the same—the constructor’s name is the class name. And
it does not have a return type listed. Here’s how the PartInfo class would
look if it had a constructor:

class PartlInfo
{
private:
Tong part_number;
Tong catalog vol;

144

Symantec C++

public:
PartInfo(void); // constructor
void New Part(long, long); // member function
void Write Info(void); // member function

}s

The header of a member function consists of the functions return
type, the class name, the scope resolution operator, the member function’s
name, and the list of arguments. Here’s the header for the New_Part()
member function:

void PartInfo :: New Part(long part, long catalog)

The header for a constructor follows the same pattern as that of any
other member function—with one exception. No return type is listed.
Here’s the header for the PartInfo constructor:

PartInfo :: PartInfo(void)

Now let’s take a look at an actual constructor. A PartInfo object has
two data members—part_number and catalog_vol. Although I've made it
a practice to assign values to these data members soon after an object is
created, it might be a good idea to initialize the values to 0. If for some
reason my program fails to call New_Part() to give values to the data
members, at least I'll know that the object won't have data member values
that duplicate those of some other object. Here's the code for the PartInfo
constructor:

PartInfo :: PartInfo(void)
{
this->part_number
this->catalog_vol

0;
0;

}

The constructor function is called automatically each time a new
object is created. The new operator is responsible for making the call to the
constructor; you'll never have to explicitly call the function yourself. Figure
5-20 illustrates this idea.

A constructor doesn't have to contain only assignment statements. It
can do anything that a normal C or C++ function can do. I'll demonstrate

FIGURE 5-20

Chapter 5 Classes and Objects 145

that by adding a couple of lines to the Partlnfo constructor. The new
version of the constructor writes out a message to the active window to let
the user know that a new part was indeed created:

PartInfo :: PartInfo(void)

{
this->part_number = 0; '
this->catalog_vol = 0;
MoveTo(20, 30);
DrawString("\pItem created.");
}

The Constructor program uses the above constructor to initialize the
data members of a PartInfo object. Look over the code and the output of the
program—shown in Figure 5-21. The program is included on the disk, so
you can verify the results yourself.

PartInfo :: PartInfo(void)
{
this->part_number
this->catalog_vol
}

nou
(=3

PartInfo *the_bolt; part_number

catalog_vol

New_Part ()

the_bolt = new PartInfo; Write_Info()

B

@ The new operator first allocates memory for one object.
@ Next, the new operator calls the object's constructor.

@ Finally, the constructor does its thing. Here it initializes the object's data members.

If an object has a constructor function, the new operator will cause it to execute.

146

Symantec C++

// ******************' Constructor.cp kkkkkkkkkkkkkkkkkk

class PartInfo
{
private:
Tong part_number;
Tong catalog_vol;

public:
PartInfo(void); // constructor
void New Part(long, Tong); // member function
void Write_Info(void); // member function

}s

PartInfo :: PartInfo(void)
{
this->part_number = 0;
this->catalog_vol = 0;
MoveTo(20, 30);
DrawString("\pItem created.");

void PartInfo :: New_Part(Tong part, long catalog)
{ .

this->part_number
this->catalog_vol

}

part;
catalog;

void PartInfo :: Write_Info(void)

{
Str255 the_str;

NumToString(this->part_number, the str);
MoveTo(20, 50);
DrawString(the str);

Chapter 5 Classes and Objects 147

NumToString(this->catalog_vol, the_str);
MoveTo(20, 70);
DrawString(the_str);

PartInfo *the_bolt;

void main(void)

{
WindowPtr the_window;
Rect window_rect;

InitGraf(&thePort);
InitFonts();
InitWindows();

SetRect(&window_rect, 50, 50, 350, 150);

the_window = NewWindow(OL, &window_rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr)-1L,
true, 0);

SetPort(the window);

the_bolt = new PartInfo;
the_bolt->New_Part(5002, 4);
the_bolt->Write_Info();
delete the bolt;

while (!Button())

The fact that the string Item created appears in the window should
be enough proof that the constructor function was really invoked, because
the constructor is the function that writes this text. If you want additional

148 Symantec C++

FIGURE 5-21

R=——— New Window ==———
Iltem created.
5002
4

The output of the Constructor program

proof, try running the program with the Use Debugger option in the
Project menu selected. When you select Run from the Project menu, the
debugger windows will open. Scroll to the constructor function and click
on the diamond that appears to the left of the first line of that function, as
shown in Figure 5-22.

Next, click on the Go button in the Source window. The program will
run until it hits a breakpoint. Youve only set one—in the constructor
function—and that’s exactly where the program stops. Even though you
never wrote a call to the Partlnfo constructor, the program enters that
routine.

Now, click on the Step button. That moves the arrow down a line in
the constructor. Click on the Step button until the black arrow points to the
very last line in the constructor. Then, click on the Step button one more
time. The arrow moves out of the constructor and back into main(). In par-
ticular, it moves to the line of code that creates the PartInfo object, as shown
in Figure 5-23. This line, which contains the new operator, is the line that
called the PartInfo constructor.

In Figure 5-23, note that the arrow is hollow. This means that the
program has just returned from executing a function (the constructor) and
there are still several instructions left to execute.

I said that a constructor holds data member initializations and
memory allocation code. That last part may seem redundant. Doesn’t the
new operator allocate memory for an object when the object is created? Yes.
So you have to allocate additional memory for an object only in certain
instances. I'll discuss such an instance in the next section, and you'll see an
example later in this book when I create a class that represents a window.

Chapter 5 Classes and Objects

149

Constructor.cp

Partinfo :: Partinfol void >
Set a breakpoint
at the first line + this-rpart_number =
of the constructor & this-»>catalogvol =
< MoveTo(20, 70 J;
& DrawStringC "\pltem
¢}
void Partinfo ::
< this-part_number =
< this-*catalogvol =
&}
»

FIGURE 5-22 Setting a breakpoint in the debugger

Destructors

creqted.”

part;
catalog;

2

New_Part(long part

Knowing that the new operator calls a special constructor function has
probably made you wonder whether the delete operator also calls a
function. It does—the destructor. Like the constructor, the class destructor
is optional. If you list one as a member function of a class, any object of that

class will call the destructor when it is

deleted.

The purpose of the destructor function is usually to free any additional
memory that may have been allocated by an object. The format of the defi-
nition of a destructor is class name preceded by a tilde. Like the constructor,
it does not have a return type listed. Here’s the Partlnfo class with both a

constructor and destructor:

150 Symantec C++

After stepping H-Nirdon =

through the
constructor, the
program will
return to the line
that creates the
object

& L B gy Sy B
W

Constructor.cp £

SetRect(&window_rect, 50, 50, 350
NewHindow!{ OL, Zwindo

SetPort(the_window >;
the_bolt = new Partlnfo;
the_bol t-*Mew_Part(5002, 4 »;
the_bol t-*Hrite_Infoll;

while ¢ !Button() >

noGrowDocP

FIGURE 5-23 Stepping through part of the program and back to the object allocation line

class PartInfo
{
private:
Tong part_number;
lTong catalog_vol;

public:
PartInfo(void);
~PartInfo(void);
void New Part(Tong, long);
void Write Info(void);

// constructor
// destructor
// member function
// member function

Chapter 5 Classes and Objects 151

The header for a destructor looks like that of the constructor—with
the addition of the tilde. This is how the header for the PartInfo destructor
would look:

PartInfo :: ~PartInfo(void)

The following code shows what a very simple destructor might look
like. This one simply writes a message to the active window to let the user
know a part was deleted from the catalog;

PartInfo :: ~PartInfo(void)

{
MoveTo(20, 90);
DrawString("\pItem deleted.");

}

The primary purpose of a destructor is to deallocate memory, and my
Partlnfo class doesn’t allocate any special memory. True, an object created of
this class type will occupy memory. But memory for such things as the long
data members part_number and catalog_vol will be deallocated by the
delete operator—w1thout the help of a destructor. After all, the purpose of
delete is to return to the free pool of memory the memory that an object
occupied.

Figure 5-24 shows an example of a situation in which a destructor
might be necessary. On the left of the figure is the PartInfo class along with
one Partlnfo object in memory. When delete is used to dispose of the
object, the delete operator returns all of the memory to the program. On the
right of the figure is a different class—WindClass. Like PartInfo, this class
has two data members and two member functions. Unlike PartInfo, one of
the data members is a pointer—a window pointer.

When an object of the WindClass is disposed of, the delete operator
returns only the memory that was occupied by the two data members and
the two member function pointers. The delete operator does not deallocate
the memory that the wind data member pointed to—the WindowRecord.
All WindowPtrs point to WindowRecords. And unless you specifically
release the memory occupied by the WindowRecord, it will be unusable by
your program. The WindClass would be an ideal candidate for a destructor
function—one that released the WindowRecord memory. Later in this
book, you'll see an example that does just that.

152

Symantec C++

{

long
long

void
void
}:

private:

public:

class PartInfo

part_number;
catalog_vol;

New_Part (long, long);

Write_Info(void);

class WindClass

private:

WindowPtr wind;
long X;

public:

void Func_A(void);
void Func_B(void);

EN

object

part_number

catalog_vol

New_Part ()

Write_Info()

object

WindowRecord

wind

Func_A()

Func_B()

FIGURE 5-24 Objects that use pointers as data members allocate additional memory.

Paying attention to memory that is allocated is important. Each program has a
finite amount of memory that it is allowed to work with—no matter how
much RAM the user of your program might have. Not releasing used memory

can eventually lead to your program running out of memory.

IMPORTANT

If special steps must be taken to properly free up the memory occupied by
something a data member points to—such as the WindowRecord that a Win-
dowPtr points to—then shouldn’t similar steps be taken for the member
functions? After all, they're simply pointers to other code—the code that
makes up the functions themselves. No, because those functions stay in

memory, to be used by all objects of that class.

Chapter 5 Classes and Objects 153

Item created.
5002

4
Item deleted.

FIGURE 5-25 The output of the Destructor program

The Destructor program—the code for which you'll find below and
on the accompanying disk—adds both a constructor and a destructor to the
PartInfo class. You've already seen all the code that makes up this program;
Destructor just ties it all together. When you run the program, you'll see a
window like the one pictured in Figure 5-25.

// kkkkkkkkkkkkkhkkkhkik Destructor.cp *kkkkkkkkkkkkkkkhkk

class PartInfo
{
private:
long part_number;
long catalog vol;

public:
PartInfo(void); // constructor
~PartInfo(void); // destructor
void New Part(long, long); // member function
void Write Info(void); // member function

¥

PartInfo :: PartInfo(void)
{

0
0;

this->part_number
this->catalog vol
MoveTo(20, 20);
DrawString("\pItem created.");

154 Symantec C++

PartInfo :: ~PartInfo(void)

{
MoveTo(20, 90);
DrawString("\pItem deleted.");

}

void PartInfo :: New_Part(long part, long catalog)

{

this->part_number
this->catalog_vol

part;
catalog;

}

void PartInfo :: Write_Info(void)

{
Str255 the_str;

NumToString(this->part_number, the str);
MoveTo(20, 50);
DrawString(the str);

NumToString(this->catalog_vol, the str);
MoveTo(20, 70);
DrawString(the_str);

PartInfo *the_ bolt;

void main(void)

{
WindowPtr the_window;
Rect window_rect;

InitGraf(&thePort);
InitFonts();

Chapter 5 Classes and Objects 155

InitWindows();

SetRect(&window rect, 50, 50, 350, 150);

the_window = NewWindow(OL, &window rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr)-1L,
true, 0);

SetPort(the window);

the_bolt = new PartInfo;

the_bolt->New Part(5002, 4);

the_bolt->Write Info();

delete the bolt;

while (!Button())

Note that | delete the Partinfo object before the while statement near the end
of the code rather than after the while as I've done in the past. Normally, | wait
until the user clicks the button and ends the program before deleting the
program’s object. If | did that here, however, you wouldn’t see the output of
the destructor—the line of text that says Item deleted That’s because the
destructor is called only after the delete operator is used. If | waited until the
program ended before calling delete, the window would be closing as the
destructor wrote its text to it.

It’s been a long chapter—the longest of the book. But the knowledge
you've gained about classes and objects will be the base from which you'll
create all your object-oriented programming,.

156

Symantec C++

Chapter Summary

As a standard C or C++ data type defines the nature of a variable, a class
defines the nature of an object. Together, classes and objects are object-
oriented programming.

To define a class you begin with the class keyword, followed by the
name of the class. The contents of the class lie between braces. The class
contents consist of data members and member functions. Data members,
obviously enough, hold data. Use the private keyword before listing data
members to ensure that the data is accessible only to objects of the class
type. Member functions are the functions that act on, or work with, the
class data members. Use the public keyword before listing member func-
tions so that member functions can be called from anywhere in your source
code. Data members can be likened to the members of a struct data
structure. Member functions have no C language analog.

The class definition lists the names of the functions that are the class
member functions, but the definition doesn’t actually define the body of
those functions. They are defined outside of the class. The body of a
member function might look like that of a normal C function. The dif-
ference between a C++ member function and a C function isnt in the
content of the function but, rather, in the fact that a C++ member function
is always associated with a particular set of data (the class data members),
while a C function works with any data.

Once a class is defined, it is an easy matter to create objects based on
that class. Usually a pointer to an object is declared by listing first the class
name and then the pointer name preceded by the * operator. The decla-
ration doesn’t allocate memory for an object or create a new object. To do
that you'll use the new operator. Once an object is created, its data members
can be accessed by using the -> operator. The short code snippet below
demonstrates how to work with an object. First, a pointer to an object of a
class named PartInfo is declared. Then memory is allocated for the object
using the new operator, and data members of the object are accessed
through -a member function named New_Part(). Finally, the object is
deleted using the delete operator:

PartInfo *the bolt;

the_bolt = new PartInfo;
the_bolt->New Part(5002, 4);
delete the bolt;

Chapter 5 Classes and Objects 157

Two special class-related functions are the constructor function and
the destructor function. The class constructor is invoked automatically
when an object is created using the new operator. The class destructor

function is invoked automatically when an object is deleted using the delete
operator.

i

hapter6/

Derived Classes

In Chapter 5, you saw that the class is a powerful programming feature. But
there’s more to come. Classes arent created indiscriminately in a C++
program. Instead, a program usually has several classes that are related to
one another. Rather than forcing you to create each related class from
scratch, C++ allows you to name one class as a base from which other classes
are derived. These derived classes automatically inherit the data and actions
of the class on which they are based.

Derived classes and inheritance are powerful object-oriented features
that you'll use in every C++ program you write. And in this chapter you'll
discover exactly how to create derived classes.

Multiple Classes

In Chapter 5, you saw that a C++ program can have more than one object of
a single class. That, in fact, is one of the advantages of the class type.

159

160 Symantec C++

PartInfo *the bolt; // first pointer to a
// PartInfo object
PartInfo *the washer; // second pointer to a

// PartInfo object

the_bolt = new PartInfo; // allocate first object in
, // memory

the_washer = new PartInfo; // allocate second object in
// memory

Nor does a C++ program have restrictions on the number of different
classes you can use. Although the examples to this point have consisted of a
single class, you're free to create more than that.

The MultipleClasses program is a very simple example of a program
that defines two classes—the PersonClass and the VehicleClass. Each class
consists of nothing more than a constructor member function. When an
object of either class is created, a single line is written to a window. Figure
6-1 shows the output of MultipleClasses.

// kkkkkkkkkkkkkkkk Mu] t] p'l eC'l asses. cp kkkkkkkkkkkkkkkk

class PersonClass

{
public:
PersonClass(void);

}s

class VehicleClass

{
public:

VehicleClass(void);

s

PersonClass :: PersonClass(void)

{
MoveTo(20, 30);
DrawString("\pPerson object created");

}

Chapter 6 Derived Classes

VehicleClass :: VehicleClass(void)

{

MoveTo(20, 50);
DrawString("\pVehicle object created");

}

PersonClass *the man; // declare object of type
// PersonClass

VehicleClass *the car; // declare object of type

// VehicleClass

void main(void)

{

WindowPtr the window;
Rect window_rect;

InitGraf(&thePort);
InitFonts();
InitWindows();

SetRect(&window rect, 50, 50, 350, 150);

the_window = NewWindow(OL, &window rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr)-1L,
true, 0);

SetPort(the window);

the man = new PersonClass; // allocate memory
// PersonClass object
the_car = new VehicleClass; // allocate memory

// VehicleClass object

while (!Button())

161

162 Symantec C++

Zfli==———— New Window

Person object created
Yehicle object created

FIGURE 6—-1 The output of the MultipleClasses program

Derived Classes

When two similar classes are needed, you may be tempted to jump right in
and write them—perhaps copying and pasting information from one to
form another. With derived classes, you don’t have to do that. Instead, in
just a few lines of code you can create a second class that has all the features
of a first class—and more.

Why Create Derived Classes?

A pet store owner wants to write a program to keep track of the different
types of animals in his shop. The owner just happens to be a Mac enthusiast
who programs in C but doesn’t know C++. He starts with a very simple data
structure that consists of a string that will hold the type of one animal—
dog, mouse, and so forth. Here’s that structure:

struct Animal

{
Str255 type;

He then writes a few functions that allow him to access the Animal
data, including a function to add a new animal and a function to write out
information about an animal. After doing this, he realizes that it would be a
good idea to be able to store and write out supplemental information about
certain animals. For instance, he wants to mark certain animals as less
suitable pets than others. Because he’s programming in C, he modifies his
data structure to look like this:

Chapter 6 Derived Classes I63

#define NO XTRA_INFO 0
#define BAD PET INFO 1

typedef struct

{
Str255 type;
short misc_info;
} Animal, *AnimalPtr;

He then declares two struct pointer variables, as shown here:

AnimalPtr the dog;
AnimalPtr the snake;

After allocating memory, he can add the extra information:

the_dog->misc_info
the_snake->misc_info

NO_XTRA_INFO;
BAD PET_INFO;

When it comes time to write information to a window, he’ll use a
function that receives a pointer to a pet. Within that function he’ll have to
include code that looks something like this:

if (the_pet->misc_info == BAD_PET_INFO)
{

MoveTo(20, 50);

DrawString("\pDangerous pet!");
}

While this method will work, there are a couple of drawbacks to it.
First, the pet shop owner may think of new classifications of pets over time.
When he does, he'll have to modify his program in several places. He'll have
to add new #define directives and then search for the code that makes use of
them. Second, the complexity of his program increases as he adds decision-
making code:

if (the_pet->misc_info == BAD_PET_INFO)
// write message

else if (the pet->misc_info =
// write message

else if (the_pet->misc_info =
// write message

EXOTIC_PET_INFO)

EXPENSIVE_PET_INFO)

164

Symantec C++

else if (the pet->misc_info == INEXPENSIVE_PET_INFO)
// write message

If the program eventually has a dozen functions that access the pet
information, there will be at least a dozen such cascaded else-if sections of
code. This is exactly the type of situation that object-oriented programming
methods seek to avoid. And C++ avoids it through the use of derived classes.
A derived class can also be called a subclass.

Figure 6-2 shows two classes—one a base class, the other a derived
class. Any C++ class can serve as a base class. From the base class is derived a
second class. Not surprisingly, that class is called a derived class. You can’t
distinguish a base class from a derived class by looking at their contents,
because both consist of data members and member functions, as shown in
Figure 6-2.

Figure 6-2 is simply a block diagram of two classes; it doesn’t show off
the special properties of a derived class, namely, that a derived class inberits
the data members and member functions of the class on which it is based.
The derived class then adds its own data members and functions to those
inherited from the base class, as shown in Figure 6-3.

Base class
data members
and member
functions

Base Class Derived Class ,

Derived class
data members
and member
functions

FIGURE 6-2 Base classes and derived classes contain data members, member functions, or both.

Chapter 6 Derived Classes 165

How would the pet shop owner write his program if he knew object-
oriented programming? He could begin by creating a single base class called
Animals. In that class would be the data members and member functions
that would be common to #// the pets he had in his shop. For instance, each
animal would have a type, like dog or cat, so the base class would have a
Str255 data member to hold this information. The base class would also
have member functions to enter a new animal and write out information
about an animal—actions common to all types of animals.

What about the derived class? In the case of the less suitable pet—
the snake, for example—the derived class could consist of simply a
single member function that would write out a warning message.
Because the derived class inherits all of the data members and member
functions of the base class, the derived class would still be able to store
the type of animal and use the member functions that add the animal
and write the animal information. Figure 6—4 shows how this base and

derived class might look like.

FIGURE 6-3

Base Class Derived Class

Base class
data members
and member
functions

Derived class
data members
and member

functions

A derived class inherits the contents of the class on which it is based—the base class.

166 Symantec C++

FIGURE 6-4

Base Class Derived Class

An example of a base class and a derived class

Figure 6—4 doesn provide all the detail you need to write your own
base and derived classes, however. For that, you'll have to read the remainder
of this chapter.

The Base Class

A derived class is based on another class—the base class. So before delving
into the derived class, I'll define a class that can serve as the base class. Since
our neighborhood pet store owner is determined to learn C++, I'll carry on
with the animal database.

Assuming that all animals have a name, or type, the base class will have
a data member called type. We'll need a way to add a new animal, so there
must be a member function that adds a new animal. New_Animal() will do
that. The program should be able to write out the information about the
animal, a task that will be handled by the member function Write_Info().
Here’s the class that will serve as the base class:

class Animal
{
private:
Str255 type; // data member

public:
void New Animal(Str255); // member function
void Write_Info(void); // member function

}s

Chapter 6 Derived Classes 167

Creating a new animal will consist of creating a new object and then
setting the name, or type, of that animal using the New_Animal() function.
That function will simply accept a string that serves as the animal type and
then call my own Fill_Str255 function to place that string in the type data
member. You can flip back to Chapter 3 if you don’t remember what the

Fill_Str255() function looks like.

void Animal :: New Animal(Str255 name)

{
}

Fill_Str255(this->type, name);

Because the Animal class contains only one data member, writing the
information requires only moving to the appropriate window location and
calling DrawString() once. Here’s a look at the Write_Info() member
function:

void Animal :: Write_Info(void)

{
}

DrawString(this->type);

The way the Animal class was declared and the things that the class is
composed of—data members and member functions—shouldn’t look much
different from the classes you encountered in the previous chapter. So what
makes a base class different from any other class? Absolutely nothing. Any
class can serve as a base class. The difference lies in the derived class—as you
are about to see.

The Derived Class

To create a class that is derived from another class, you include the name of
the base class on the first line of the derived class definition. But it’s not
enough to just give the class a name and then specify the class on which it
will be based. You must also provide an access specifier. In almost all circum-
stances you'll want to use the public keyword as the access specifier. Here’s
an example:

class BadPet : public Animal

The colon between the class name and the access specifier lets the com-
piler know that this is to be a derived class. Figure 6-5 shows the syntax for
the first line of a derived class declaration.

168 Symantec C++

FIGURE 6-5

class derived colon public base
keyword keyword class name

class BadPet 3 public Animal

The format of the definition of a derived class

IMPORTANT

The public access specifier tells the compiler to include everything from the
base class as is. That means that all data members and member functions
inherited from the base class will retain the public and private keywords that
are associated with them.

You can also use the private and protected keywords as access specifiers. They
are used so infrequently, however, that | won’t discuss them here. You will,
however, see both of these keywords later in this chapter when | discuss the
use of access specificiation within a class definition.

Since the derived class will include all the data members and member
functions of class on which it is based, you need only define data and func-
tions that are unique to the derived class. If the purpose of my derived class,
which I've named BadPet, is to hold information about less desirable pets,
then the only thing that BadPet might need is a member function that
writes out a warning message. Here’s how my derived class looks:

class BadPet : public Animal

{
pubTic:
void Write Warning(void); // member function

Chapter 6 Derived Classes 169

The derived Iﬁ

class inherits class Animal
the contents {
of the base private:
Str255 type;
class

public:
void New_Animal (Str255);
void Write_Info(void);

Follow the name
of the derived
class with a colon
and the name of
the base class

class BadPet
{
public:
void Write Warning(void);

FIGURE 6-6 The BadPet derived class inherits the contents of the Animal base class.

Figure 6-6 shows that the BadPet class will inherit the data and func-
tions of the Animal class. Figure 6-7 takes things a step further by
illustrating how one could imagine that the BadPet derived class is the com-
bination of both the base class and the derived class itself.

You write a member function of a derived class just as you would write
a member function for any other class. List the return type, the class name,
two colons, and the function name. Include any argument the function
takes. Here’s how I wrote the Write_Warning() member functions:

void BadPet :: Write Warning(void)

{
DrawString("\pDangerous pet!");

Working with Derived Class Objects

Now that you can define base and derived classes, you're ready to create
objects of both types. And you're ready to implement those objects in a C++
program that is truly object-oriented.

170

FIGURE 6-7

Symantec C++

BadPet can be thought
of as the combination of
the BadPet class and
the Animal class

class BadPet : public Animal .
¢ ;

private:
Str255 type;

Animal class public: ‘
void New_Animal (Str255);
void Write Info(void);
BadPet class _ publie:

void Write_Warning (void) ;-

The BadPet derived class can be described as a combination of itself and the base
class.

Creating Derived Objects

You declare an object to be of a derived class just as you would declare an

object of any other class. Here’s the declaration of an Animal object and a
BadPet object:

Animal *the_dog; // declare object of type
// Animal

BadPet *the snake; // declare object of type
// BadPet

Before working with an object, you must allocate memory for it. Use

the new operator as I have done here to create an Animal object and a
BadPet object.

the_dog
the_snake

new Animal;
new BadPet;

FIGURE 6-8

Chapter 6 Derived Classes

class Animal
{
private:
Str255 type;

class BadPet : public Animal
{
public: .
void Write Warning(void);

171

)i
public: :
void New_Animal (Str255); BadPet *the_snake;
void Write_Info(void);

}i

Animal *the_dog;

type type

New_Animal () New_Animal ()

the_snake

Write_Info() Write_Info()

Write_Warning()

An Animal object and a BadPet object in memory

Figure 6-8 shows what memory looks like after the above objects have
been created. As you examine the figure, keep in mind that each of the
objects has its own type data member. Thus the the_dog object can call
New_Animal() to set its type data to Labrador dog while the the_snake
object can call New_Animal() to set its own type data to Python snake.

Derived objects always have their own versions of inherited data
members. Inherited member functions are a little different. That’s because
member functions are pointers to the functions themselves. So the derived
class inherits the list of member functions. Both the base class and the
derived class point to the same functions. Figure 6-9 shows how the list of
member functions for an Animal object and the list for a BadPet object both
point to the same functions in memory.

Using Derived Objects

An object of a derived class inherits the data and functions of its base class.
So an object of a derived class can call all the member functions listed in the
base class. Even though the BadPet class doesn’t explicitly define the func-

172 Symantec C++

FIGURE 6-9

type the_dog

New_Animal ()

Write_Info()

type the_snake

New_Animal ()

Write_Info()

Write_Warning ()

Write_Warning()
function code

Write_Info()
function code

New_Animal ()
function code

Because a derived class inherits the member functions of a base class, objects of both
types have pointers to the same functions.

tions New_Animal() and Write_Info(), objects of this derived class can call
these functions:

the_snake->New_Animal("\pPython snake"); // call base

// member function
the_snake->Write Info(); // call base

// member function

Because these two functions are defined in the Animal class, objects
that are of the Animal type can, of course, call these functions as well:

the_dog->New Animal("\pLabrador dog"); // call base
// member function

- Chapter 6 Derived Classes 173

the_dog->Write_Info(); // call base

// member function

What about the Write_Warning() function that was listed in the
BadPet class? That function can be called only by a BadPet object:

the_snake ->Write_Warning(); // call derived member
// function

An Animal object cant call Write_Warning(), because it has no
knowledge of, or access to, data members or member functions that are
created in derived classes.

Derived Objects and Data Member Access

The BadPet class has a single member function, the code for which I've
repeated below.

void BadPet :: Write Warning(void)

{
DrawString("\pDangerous pet!");

}

The Write_Warning() function doesnt attempt to access type, the data
member that BadPet inherits from the Animal class. Could it? The answer is
“no.” For an explanation of why that’s so, you'll have to look at the defi-
nition of the base class—the Animal class. Notice that the private keyword
is used to define the level of access to the type data member:

class Animal // base class
{
private:
Str255 type; // data member
public:
void New_Animal(Str255); // member function
void Write_Info(void); // member function

}s

Recall from Chapter 5 that the only functions that can access a private
data member of a class are the member functions of that same class. In the
case of the type data member of the Animal class, only the New_Animal()

174 Symantec C++

and Write_Info() member functions of the Animal class can be used to
access type. While classes that are derived from the Animal base class (such
as BadPet) inherit the type data member, these derived classes can access the
type data member only via the member functions derived from the Animal
base class, as shown in Figure 6-10.

Can this access limitation be overcome? Yes. There are two ways to go
about it, but one method is much better than the other. Let’s take a look at
the less preferable way first, because it’s the more obvious method.

The Animal class declares the type data member to be private. By
declaring the type data member to be public, access to it is increased. If I do
that, when BadPet inherits type it will inherit it as a public data member
that can be accessed directly by any BadPet object; there will be no need to
use an Animal member function—or any function at all, for that matter.

class Animal
{
private
Str255 type;

public:
void New_Animal (Str255);
void Write_Info(void);
}i :

Private members can

be accessed only via

member functions of class BadPet : public Animal
that same class {

public:
void Write_Warning(void);.

}i

FIGURE 6-10 Only class member functions can access private class data members.

Chapter 6 Derived Classes 175

Assuming that type has been declared public, the following definition of)
Write_Warning() will work:

void BadPet :: Write Warning(void)

{
DrawString(this->type); // access to "type"
// now okay
DrawString("\pDangerous pet!");

}

Continuing on with the assumption that the Animal data member
type is public, an object of BadPet type can then call the new version of
Write_Warning() to access type. Because type is public, the same object can
also access the type data member without the use of a member function.
Examples of both of these cases are shown here:

BadPet *the_snake;
the_snake = new BadPet;

the_snake->Write_Warning();
Fill_Str255(the_snake->type, "\pPython snake");

Figure 6-11 shows how the public keyword affects data member
access. Note how the Animal class data can be changed from anywhere in a
program.

Declaring base class data members to be public isn't the preferred
method of allowing derived class access, because it has a significant negative
consequence. As pointed out in Chapter 5, restricting access to class data
members is a very important part of object-oriented programming.
Opening up access to a class data member makes that data member behave
like a global variable. Any function or object can then modify its value,
which is something that is best avoided.

The correct way to give derived classes access to data members of the
base class is to declare those data members protected. The protected keyword
is a compromise between private and public. When a base class data
member is protected, it can be accessed by member functions of that class as
well as member functions of any class derived from that class. But it cannot
be accessed by any other function or be accessed directly by an object. Here’s

the ideal way to define the Animal class:

176 Symantec C++

class Animal // base class
{
protected:
Str255 type; // data member
public:
void New Animal(Str255); // member function
void Write_Info(void); // member function
b

When written this way, a member function of a derived class can access
the type data member. With that in mind, you could rewrite the BadPet

Public members can
be accessed by any
function

class Animal
{

public :
Str255 type;

public:
void New_Animal (Str255);
void Write_Info(void);

class BadPet : public Animal
{

public:
void Write Warning(void);

Fill_Str255 (the_snake->type,

"\pCobra");

FIGURE 6-11 Public data members can be accessed from anywhere in a program.

Chapter 6 Derived Classes 177

Protected members can
be accessed by base
member functions and
derived member
functions

class Animal

{
protected
Str255 type;

public:
void New_Animal (Str255);
void Write_Info(void);

Lo

class BadPet : public Animal
{
public:
void Write Warning(void) ;
sy

FIGURE 6-12 Protected data members can be accessed by class member functions and by derived
classes.

member function Write_Warning() to write out the string stored in the
type data member, followed by the warning string:

void BadPet :: Write Warning(void)
{
DrawString(this->type);
DrawString("\p. . . is a dangerous pet!");

Figure 6-12 shows how the protected keyword yields the perfect level
of access for base data members.

IMPORTANT

Earlier in this chapter you read that the protected keyword would not be used
as a derived class access specifier in this book. That use of the protected
keyword is different from this use. The derived class access specifier tells the

178 Symantec C++

compiler how data should be inherited by a derived class and is used in the first
line of a derived class declaration. Using the public keyword as the derived
class access specifier guarantees that data is inherited with the same level of
access as was initially given to it in the base class. Here’s an example of the
public keyword being used as a derived class access specifier:

class BadPet : public Animal

{

o o o

The private, public, and protected keywords are also used to specify the access
level of class data members and member functions. As you've just seen, for
class member access, all three keywords will be used in this book.

An Example Using Derived Objects

The accompanying disk contains the source code for a program called
DerivedClass1. This program uses the Animal base class and BadPet derived
class discussed in this chapter. Figure 6-13 shows what you'll see after you
run DerivedClass1.

// *khkkkkkkkkhkkkkkkk Der--i VedC] aSS]. . cp kkkkkkkkkkkkkkkkk

class Animal // base class
{
protected:
Str255 type; // data member
public:
void New_Animal(Str255); // member function
void Write_Info(void); // member function
}s
class BadPet : public Animal // derived class
{
public:

void Write_Warning(void); // member function

}s

Chapter 6 Derived Classes

void Animal :: New Animal(Str255 name)

{
Fill Str255(this->type, name);
}

void Animal :: Write_Info(void)
{
DrawString(this->type);

}

void BadPet :: Write Warning(void)

{
DrawString("\pDangerous pet!");
}
Animal *the_dog; // declare object of type Animal
BadPet *the_snake; // declare object of type BadPet

void main(void)

{
WindowPtr the window;
Rect window_rect;

InitGraf (' &thePort);
InitFonts();
InitWindows();

SetRect(&window_rect, 50, 50, 350, 150);

the_window = NewWindow(OL, &window_rect,
"\pNew Window", true,
noGrowDocProc, (WindowPtr)-1L,
true, 0);

SetPort(the_window);

179

180 Symantec C++

Labrador dog

Python snake
Dangerous pet!

FIGURE 6~13 The output of the DerivedClass| program

the dog = new Animal; // allocate memory for an
// Animal object
the snake = new BadPet; // allocate memory for a

// BadPet object

the_dog->New_Animal("\pLabrador dog");
MoveTo(20, 30);
the_dog->Write_Info();

the_snake->New Animal("\pPython snake");
MoveTo(20, 60);

the_snake->Write Info();

MoveTo(20, 75);

the_snake->Write Warning();

while (!Button())

E]

}

A Second Example Using Derived Objects

The BadPet derived class in the DerivedClass] program inherited the data
members and member functions of the Animal class. It also contained a single
member function of its own. A C++ program can also contain a derived class
that has its own data members. DerivedClass2 is such a program.

The DerivedClass2 program is DerivedClass1 with a few modifica-
tions<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>