
Open Vehicles

Apr 06, 2021

User Guides:

1 Open-Vehicle-Monitoring-System-3 (OVMS3) 1

2 User Guide 9

3 Plugins 77

4 BMW i3 / i3s 101

5 DBC Based Vehicles 105

6 DEMO Vehicle 109

7 Fiat 500e 111

8 Hyundai Ioniq vFL 113

9 Kia e-Niro 115

10 Kia Soul EV 117

11 Maxus eDeliver3 123

12 Mercedes-Benz B250E W242 125

13 MG EV 127

14 Mitsubishi Trio 129

15 Nissan Leaf/e-NV200 135

16 OBDII Vehicles 139

17 Renault Twizy 141

18 Renault Zoe 165

19 Smart ED Gen.3 167

20 Smart ED/EQ Gen.4 (453) 171

i

21 Tesla Model 3 173

22 Tesla Model S 175

23 Tesla Roadster 177

24 Tracking Vehicles 183

25 VW e-Up 185

26 VW e-Up via OBD2 199

27 VW e-Up via Comfort CAN (T26A) 209

28 Command Line Interpreter 217

29 CAN Bus Data Logging 223

30 CRTD CAN Log Format 227

31 Web Framework & Plugins 231

32 Scripting 311

33 CANopen 321

34 OVMS Server 331

35 OVMS Protocol v2 337

36 OVMS HTTP API 357

Index 367

ii

CHAPTER 1

Open-Vehicle-Monitoring-System-3 (OVMS3)

1.1 Introduction

The OVMS is an all open source vehicle remote monitoring, diagnosis and control system.

1

docs/source/userguide/ovms-intro.jpg

Open Vehicles

The system provides live monitoring of vehicle metrics like state of charge, temperatures, tyre pressures and diag-
nostic fault conditions. It will alert you about critical conditions and events like a charge abort, battery cell failure
or potential theft. Depending on the vehicle integration it allows you to take control over the charge process, cli-
mate control, tuning parameters of the engine and more. OVMS developers are enthusiasts trying hard to provide as
detailed information about the internals of a vehicle as possible.

While most new vehicles now include some kind of remote control system, very few allow deep insight, some will
not work in all regions and none will give you control over your personal data. The OVMS fills that gap, and also
enables you to add all these features to existing vehicles of any kind.

The OVMS can also be used for fleet monitoring. It allows a fleet manager to not only track the vehicle locations but
also to monitor the vehicle’s vitals, remotely check for fault conditions, offer services like automatic preheating for
users and take active control in case of abusive use. As the system is open source and fully scriptable, it can easily
integrate custom access and control systems.

For developers and technicians, the OVMS includes a range of CAN tools including multiple logging formats, a
configurable OBD2 translator, a DBC decoder, a reverse engineering toolkit and a CANopen client. The module
provides SSH access and WebSocket streaming and can stream and inject CAN frames via TCP. Both the module and
the web frontend can be customized by plugins. The module has three builtin CAN buses and can be extended by a
fourth one.

The OVMS base component is a small and inexpensive hardware module that connects to the vehicle OBD2 port. The
standard kit includes a 3G modem to provide GSM connectivity and GPS and comes with a ready-to-use Hologram.io
SIM card. The US kit has been FCC certified, the EU kit CE certified.

The module provides a built-in Web App user interface and remote control via native cellphone Apps available for
Android and iOS. It integrates into home/process automation systems via MQTT and provides data logging to SD
card and to a server.

1.2 Vehicle Support

• Native Integration

– Chevrolet Volt / Opel Ampera

– BMW i3 / i3s

– Fiat 500e

– Hyundai Ioniq vFL

– Kia e-Niro / Hyundai Kona

– Kia Soul EV

– Maxus eDeliver 3

– Mercedes-Benz B250E

– MG ZS EV

– Mitsubishi Trio (i-MiEV et al)

– Nissan Leaf / e-NV200

– Renault Twizy

– Renault Zoe

– Smart ED Gen.3

– Smart ED/EQ Gen.4 (453)

2 Chapter 1. Open-Vehicle-Monitoring-System-3 (OVMS3)

https://github.com/mjuhanne/OVMS-SWCAN
https://github.com/mjuhanne/OVMS-SWCAN
https://hologram.io/
https://docs.openvehicles.com/en/latest/components/vehicle_bmwi3/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_fiat500/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_hyundai_ioniqvfl/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_kianiroev/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_kiasoulev/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_maxus_edeliver3/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_mercedesb250e/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_mgev/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_mitsubishi/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_nissanleaf/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_renaulttwizy/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_renaultzoe/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_smarted/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_smarteq/docs/index.html

Open Vehicles

– Tesla Model S

– Tesla Roadster

– Think City

– VW e-Up

• General Support

– DBC File Based

– GPS Tracking

– OBD-II Standard

– Zeva BMS

1.3 Links

• User Resources

– User and Developer Guides

– User Support Forum

– Android App

– iOS App

• Distributors

– FastTech (global)

– OpenEnergyMonitor (UK/Europe)

• Servers

– Asia-Pacific

– Germany/Europe

• Developers

– Developer Guide

– Developer Mailing List & Archive

– Server Source

– Android App Source

– iOS App Source

1.3. Links 3

https://docs.openvehicles.com/en/latest/components/vehicle_teslamodels/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_teslaroadster/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_vweup/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_dbc/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_track/docs/index.html
https://docs.openvehicles.com/en/latest/components/vehicle_obdii/docs/index.html
https://docs.openvehicles.com/en/latest/
https://www.openvehicles.com/forum
https://play.google.com/store/apps/details?id=com.openvehicles.OVMS&hl=en_US
https://apps.apple.com/us/app/open-vehicles/id490098531
https://www.fasttech.com/search?ovms
https://shop.openenergymonitor.com/ovms/
https://www.openvehicles.com/
https://dexters-web.de/
https://docs.google.com/document/d/1q5M9Lb5jzQhJzPMnkMKwy4Es5YK12ACQejX_NWEixr0
http://lists.openvehicles.com/mailman/listinfo/ovmsdev
https://github.com/openvehicles/Open-Vehicle-Server
https://github.com/openvehicles/Open-Vehicle-Android
https://github.com/openvehicles/Open-Vehicle-iOS

Open Vehicles

1.4 Hardware

• Module Schematics and PCB Layouts

• Base Module

– Black injection-moulded plastic enclosure, approximately 99x73x29 mm excl. plugs

– ESP32 WROVER processor (16MB flash, 4MB SPI RAM, 520KB SRAM, dual core 160/240MHz Xtensa
LX6 processor)

– WIFI 802.11 b/g/n

– Bluetooth v4.2 BR/EDR and BLE

– 3x CAN buses

– 1x Micro USB connector (for flash download and serial console)

– 1x Micro SD card slot

– 1x Internal expansion slot

– 8x EGPIO, 2x GPIO

– 1x GSM antenna connector

– 1x GPS antenna connector

– 1x DB9 vehicle connector

– 1x DB26 expansion connector

• Modem Module

– US edition is SIM5360A (Dual-Band UMTS/HSPA+ 850/1900MHz, Quad-Band GSM/GPRS/EDGE
850/900/1800/1900MHz)

– EU edition is SIM5360J(E) (Dual-Band UMTS/HSPA+ 900/2100MHz, Quad-Band GSM/GPRS/EDGE
850/900/1800/1900MHz)

– 3G (EV-DO/HSPA+) dual band modem

– Includes 2G (GSM/GPRS) and 2.5G (EDGE) quad band

– GPS/GNSS

4 Chapter 1. Open-Vehicle-Monitoring-System-3 (OVMS3)

docs/source/userguide/slide-image-2.jpg
https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3/tree/master/vehicle/hardware

Open Vehicles

– Nano (4FF) SIM slot

– HOLOGRAM.IO nano sim included (can be exchanged if necessary)

1.4.1 Extensions

The external DB26 DIAG connector provides access to the three CAN buses and offers some free extension ports. The
internal PCB expansion connector allows stacked additions of further modules and serves for routing GPIO ports to
the external DIAG connector. See schematics for details.

A very nice first extension module has been developed by Marko Juhanne: OVMS-SWCAN

If you plan on developing a hardware extension or just want to do some custom adaptations, have a look at our
prototyping PCB kit. It’s available in packs of 3 PCBs and includes headers and mounting material:

If the kit isn’t available at the distributors, please contact Mark Webb-Johnson mark@webb-johnson.net.

1.5 Development and Contributions

New developers are very welcome on any part of the system, and we will gladly provide any help needed to get
started.

The purpose of this project is to get the community of vehicle hackers and enthusiasts to be able to expand the project.
We can’t do it all, and there is so much to do. What we are doing is providing an affordable and flexible base that the
community can work on and extend.

Everything is open, and APIs are public. Other car modules can talk to the server, and other Apps can show the status
and control the car. This is a foundation that others hopefully will interface to and and build upon.

If you’d like to contribute, please accept our code of conduct:

1.5. Development and Contributions 5

https://github.com/mjuhanne/OVMS-SWCAN
docs/source/userguide/prototyping-pcb.jpg
mailto:mark@webb-johnson.net

Open Vehicles

• Introduce yourself on the developer mailing list

• Be kind & polite

• Understand the framework concepts

• Ask if you need help

• Present your plans if in doubt

• Write decent code

• If you extend modules, stick to their code style

• Write brief but descriptive commit comments

• Add user level descriptions to the change history

• Provide documentation in the user guide

• Use pull requests to submit your code for inclusion

A note on pull requests:

Pull requests shall focus on one specific issue / feature / vehicle at a time and shall only mix vehicle specific changes
with framework changes if they depend on each other. If changes are not or only loosely related, split them into
multiple PRs (just as you would do with commits).

Usage hint: create a branch for each pull request, include only those commits in that branch (by cherry-picking if
necessary) that shall be included in the pull request. That way you can push further commits to that branch, Github
will automatically add them to an open pull request.

1.6 Donations

The OVMS is a non-profit community project. Hardware production and service can normally be financed by sales,
but some things (e.g. prototype development and certifications) need extra money. To help the project, you can make
a donation on the OVMS website: https://www.openvehicles.com/forum

Please also consider supporting the vehicle developers directly. Check out their web sites and support addresses for
their respective donation channels.

Thank you!

1.7 License

The project includes some third party libraries and components to which their respective licenses apply, see component
sources for details.

The project itself is published under the MIT license:

Copyright (c) 2011-2020 Open Vehicles

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

6 Chapter 1. Open-Vehicle-Monitoring-System-3 (OVMS3)

https://www.openvehicles.com/forum

Open Vehicles

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Software which uses other licenses will be annotated appropriately.

1.7. License 7

Open Vehicles

8 Chapter 1. Open-Vehicle-Monitoring-System-3 (OVMS3)

CHAPTER 2

User Guide

2.1 General Warnings

Warning!
OVMS is a hobbyist project, not a commercial product. It was designed by enthusiasts for enthusiasts. Installation
and use of this module requires some technical knowledge, and if you don’t have that we recommend you contact
other users in your area to ask for assistance.

Warning!
The OVMS module is continuously powered by the car, even when the car is off. While the OVMS module uses
extremely low power, it does continuously draw power from the car’s battery, so it will contribute to ‘vampire’ power
drains.

Do not allow your car battery to reach 0% SOC, and if it does, plug in and charge the car immediately. Failure to do

9

Open Vehicles

this can result in unrecoverable failure of the car’s battery.

The module can monitor the main and 12V battery and send alert notifications if the SOC or voltage drops below a
healthy level.

2.1.1 Average Power Usage

The power used by the module depends on the component activation. You can save power by disabling unused
components. This can be done automatically by the Power Management module to avoid deep discharging the 12V
battery, or you can use scripts to automate switching components off and on.

The base components need approximately these power levels continuously while powered on:

Component Avg Power 12V Current
Base System 200 mW 17 mA
Wifi 330 mW 28 mA
Modem 170 mW 13 mA
GPS 230 mW 19 mA
Total 930 mW 78 mA

This adds up to:

• ~ 22 Wh or 2 Ah / day

• ~ 156 Wh or 13 Ah / week

• ~ 680 Wh or 57 Ah / month

Note that depending on the vehicle type, the module may also need to wake up the ECU periodically to retrieve the
vehicle status. Check the vehicle specific documentation sections for hints on the power usage for this and options to
avoid or reduce this.

2.2 Components

2.2.1 The OVMS Module

The OVMS v3 module is housed in a plastic enclosure; held secure by four small screws. Once open, you can see the
main OVMS v3 motherboard, and an optional modem board.

At one end of the module is the main DB9 connector you will use to connect to the vehicle, as well as GSM (cellular)
and GPS (positioning) antenna connections.

10 Chapter 2. User Guide

Open Vehicles

At the other end of the module is the DA26 expansion connector, the USB diagnostic connector, and a Micro SD card
slot.

Warning: The USB port is a fragile PCB socket without reinforcement. Handle it carefully, do not apply force
when plugging or unplugging cables, to not bend the plug. If you need to use the port frequently, two dots of hot
glue at the port sides on the PCB can help to avoid breaking it off.

If you open the module and take out the board, take care to guide the port carefully and correctly into it’s case hole
when inserting the board into the casing again. Insert the board USB port side first.

If removing/installing optional expansion boards (such as used for cellular connectivity), please take care to ensure
you secure screw down the expansion board using the four pillar posts provided. Also, please ensure that the cellular
modem connections are correct (follow the printed table on the modem board to know which antenna is which).

Warning!
The OVMS v3 enclosure is not waterproof, and the components can be damaged by water. Do not get the module
wet, and do not connect it to your vehicle if it is wet.

2.2.2 Cellular Modem Option and GSM Antenna

The cellular modem option allows you to control your vehicle when out of wifi coverage range. The majority of
OVMS users choose this option, and you will require it if you want to monitor your vehicle when away from home or
office.

OVMS modules sold in USA and Europe are provided with a Hologram SIM card pre-installed. This low cost service
allows you to get cellular connectivity simply. It also allows you to roam between countries without worry. For
modules purchased from China, we recommend you purchase a Hologram SIM directly from the hologram.io store
(also available on Amazon).

Depending on settings, verbosity towards the OVMS server, rhythm of GPS tracking, etc, OVMS v3 will use between
1 and 3 Megabytes per month of data (when using the v2 server protocol).

You do not have to use the Hologram service. If you use another cellular provider, the Sim Card format required is
4FF Nano. Micro Sim cards are hard to recut into the smaller format, so please be careful to not damage the socket;
otherwise, ask your operator for a swap (some do it for free).

If you are using the cellular option, you should attach a suitable cellular antenna to the module, using the antenna
connector labeled “GSM”.

2.2. Components 11

Open Vehicles

2.2.3 GPS/GNSS Antenna

Some OVMS vehicles can read the GPS signals from the car communication networks directly, and do not require any
additional hardware. For others, the OVMS v3 modem option also includes a GNSS/GPS satellite tracking receiver.

If you are using this option, you should connect a suitable active GPS antenna to the connector labelled “GPS”.

2.2.4 Vehicle Connection

The connection to the vehicle is by the DB9 connector labelled “VEHICLE”. This provides power to the OVMS
module, as well as connection to the vehicle communication networks.

Different vehicles require different cables, so you should refer to the appropriate vehicle section of this user guide to
determine which is correct for yours.

2.2.5 OVMS Server v2

The OVMS Server v2 protocol is a proprietary protocol used to communicate between the vehicle and an OVMS v2
server, as well as from that server to the cellphone apps. To provide compatibility with existing OVMS v2 cellphone
apps and servers, OVMS v3 includes full support for the OVMS v2 protocol.

2.2.6 OVMS Server v3

The OVMS Server v3 protocol is MQTT. This is an industry standard protocol, and means an OVMS v3 module can
communicate with any standard MQTT server. While this is the future of OVMS, support for this is experimental at
the moment and production users should use OVMS Server v2 protocol.

2.2.7 Upgrading from OVMS v1/v2 to v3

The antenna and vehicle connectors for OVMS v3 are the same as for OVMS v2, and existing cables/antennas can
generally be re-used for OVMS v3. Note, however, that the frequency ranges supported by individual 3G networks
may be different than 2G, so may benefit from an antenna specifically designed for the 3G frequency ranges used

2.3 Installation

2.3.1 Pre-Installation Steps

Warning!
Prior to connecting the OVMS module to the vehicle, or computer via USB, if you have the GSM cellular option we
recommend you connect a GSM antenna. GSM systems are designed to always operate with an antenna, and
powering on one without could damage the equipment.

12 Chapter 2. User Guide

Open Vehicles

Prior to installation, please make sure you have the following available:

1. The OVMS v3 module in it’s enclosure.

2. A micro-usb cable suitable for connecting to your computer.

3. A laptop or desktop computer (if necessary).

4. A cable suitable for connecting to your vehicle.

5. A GSM antenna (if you are using the cellular option).

6. A GPS antenna (if your vehicle type requires one).

You should also have ready access to this User Guide, and wifi connectivity to the Internet.

2.3.2 OVMS Module Installation

Powering the module

If you intend to configure the module on your desk before connecting it to the vehicle, make sure your USB port
delivers power (around 500mA, depending on modem and wifi activity). We recommend using a USB hub with a
separate power supply or a direct port of your laptop / PC.

OVMS Server account

If you want to use the OVMS App and/or server based telemetry services, you’ll need an OVMS v2 server account. If
you have not registered for an OVMS server account yet, you can do so before starting the wizard to avoid needing to
switch networks in between. There are currently two public v2 OVMS servers:

1. Asia-Pacific: https://www.openvehicles.com/

2. Europe: https://dexters-web.de/

You will need to create a user account first. Within your user account you then need to create a vehicle account. You’ll
need to pick a unique vehicle ID for this, e.g. your vehicle license plate number.

Initial Connection (Wifi and Browser)

From the factory, or after a factory reset, your OVMS module will be running an access point, with the following
credentials:

SSID: OVMS Password: OVMSinit

As this is insecure, you should take care not to leave the module running unconfigured.

Using your laptop/tablet/phone, establish a wifi connection to the module. You should see an IP address in the range
192.168.4.x allocated, with a gateway at 192.168.4.1.

Note: Some smartphones (e.g Android) require mobile data to be switched off to use a WiFi connection without a
interent connectivity.

Launch your web browser, and connect as follows:

URL: http://192.168.4.1/

Once connected, you will be presented with a screen as follows:

2.3. Installation 13

https://www.openvehicles.com/
https://dexters-web.de/
http://192.168.4.1/

Open Vehicles

14 Chapter 2. User Guide

Open Vehicles

Setup wizard

The first thing to do is run the setup wizard. Click Start setup now. The wizard takes you through the initial setup in
five simple steps, telling you what it is doing and what to expect for each step.

2.3. Installation 15

Open Vehicles

16 Chapter 2. User Guide

Open Vehicles

The wizard will need to reconfigure the module for the Wifi setup, read the notes and be prepared to reconnect to the
module as necessary.

Note: we recommend not to use a password manager during the setup process. Some browsers, e.g. Chrome, will fill
in the module ID as the username, which is wrong. The login username needs to be admin.

The wizard should be able to restore access after problems occurring in the process. As a last resort if it fails to recover
at some point, you can always do a factory reset and start over again.

Manual configuration

After finishing the wizard or if you prefer to do a manual setup, the configuration menus will provide single pages for
each module function. These also contain advanced options for the features, so it’s worth having a look.

Vehicle Configuration

Go to Config / Vehicle:

You’ll want to enter your vehicle type, Vehicle ID (the same as you registered on the OVMS server), and distance units.
You can also optionally enter your timezone (see https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.
html for an article on GLIBC timezones for information on the format of this, a list of suitable zone strings can also
be found here: https://remotemonitoringsystems.ca/time-zone-abbreviations.php).

OVMS Server v2 Configuration

Go to Config / Server V2 to configure the connection to the OVMS v2 server you will be using:

2.3. Installation 17

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://remotemonitoringsystems.ca/time-zone-abbreviations.php

Open Vehicles

You should enter the server host (api.openvehicles.com, or ovms.dexters-web.de, usually), and vehicle password (aka
server password - as entered on the server when you registered your vehicle). The Vehicle ID field should already be
there, and the other parameters are optional.

Auto Start Configuration

OVMS has a powerful scripting language that can be used for complex configurations, but to get started it is simplest
to use the Auto Start system. You get to this from the web interface by clicking Config / Autostart.

18 Chapter 2. User Guide

Open Vehicles

You will usually want to click to Enable auto start, and Start server v2. The other fields should have been populated
correctly automatically for you. If you are using the optional modem module, you should also click Start modem to
enable the modem.

Once complete, you can Save & reboot to activate your new configuration.

Warning!
Do not set the Wifi mode to AP+Client or Client before having configured your Wifi network.

If you have configured this manually, the Wifi network may not start automatically. Log in using a USB terminal and
either do a factory reset (see Module Factory Reset) or (better) issue enable to enter secure mode, then issue config
set auto wifi.mode ap and reboot.

Networking Options

OVMS v3 has a number of networking options to choose from. You can either use these individually, or combine them
to provide failover and alternative network connectivity arrangements.

1. Wifi Client. OVMS can connect to a WiFi Access Point, using standard WiFi (802.11 b/g/n) protocols, to
connect to a SSID (Access Point name) with associated password. In simple client mode, you can connect only
to a single pre-specified SSID. Alternatively, you can use the scanning client mode to connect to any known

2.3. Installation 19

Open Vehicles

WiFi Access Point when within range (note, however, that this is not possible when you run both client and
access point on the same OVMS device).

2. Wifi Access Point. OVMS can operate as a WiFi Access Point itself, using standard WiFi (802.11 b/g/n) pro-
tocols. This allows users to connect to the OVMS module itself. Note that OVMS v3 is not intended to be a
hotspot and users cannot access the Internet via the OVMS module. Wifi Access Point mode can be combined
with simple Wifi Client mode, to provide an access point for maintenance of the module, as well as a client to
access the Internet via another Access Point within range.

3. Cellular Data. OVMS supports optional modems to provide cellular connectivity. These are configured via
Config / Modem.

2.3.3 GSM SIM Activation (Hologram)

OVMS has partnered with Hologram and to provide a Hologram GSM SIM pre-installed in every OVMS kit purchased
from our partners in Europe and USA. For modules purchased from China, we recommend you purchase a Hologram
SIM directly from the hologram.io store (also available on Amazon). In addition, Hologram have provided OVMS a
coupon code valid for US$5 off data usage:

Hologram Coupon Code: OVMS

To activate your Hologram SIM, register at https://dashboard.hologram.io/, then invoke “Activate SIM” in the dash-
board.

Note: You don’t need to purchase a phone number for your SIM right now, as there is no SMS support in V3 yet. For
the current status of SMS support, see. . .

• Issue #62 SMS Notifications

• Issue #63 SMS Command Gateway

When activating your Hologram SIM, you’ll need to enter the ICCID written on the SIM itself. You can also get that
electronically (without having to open up the enclosure) from the OVMS web or terminal shell (Tools > Shell) with
the following command:

OVMS# metric list m.net.mdm.iccid

The ICCID is also displayed during the setup process and on the modem configuration page when using the web user
interface.

20 Chapter 2. User Guide

https://dashboard.hologram.io/
https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3/issues/62
https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3/issues/63

Open Vehicles

2.3.4 Firmware Update

The factory firmware that is provided with the module may be quite out of date. You should perform a firmware update
to ensure that you have the latest firmware. You can do this either over Wifi client connections, or via an SD CARD.

We recommend using the auto update system. This will be preconfigured if you have used the setup wizard. The
automatic updates are done within a selectable hour of day, and only if Wifi connectivity is available at the time.

2.3. Installation 21

Open Vehicles

Flash from Web

You can typically just press the Flash now button and wait for completion.

Flash from File

Using an SD CARD formatted as FAT, download the firmware update and place it in a file called ovms3.bin in the
root directory of the SD CARD. Once the SD CARD is inserted the firmware update will start immediately.

2.3.5 12V Monitoring

Note: Since release 3.2.006 the 12V calibration and alert setup can be done from the web UI’s vehicle configuration
page.

As 12V batteries tend to die without warning and need to handle an additional unplanned constant load from the
OVMS, the module includes a 12V monitoring and alert system.

Calibration

The 12V voltage is measured using the incoming voltage that powers the OVMS. As the sensor used by the module
has some manufacturing tolerances you should do an initial calibration. Use a voltage meter to measure the actual
voltage somewhere suitable (e.g. at a 12V auxiliary equipment plug), calibrate the OVMS to show the same. The
calibration factor is set by. . . :

config set system.adc factor12v <factor>

Calculate the <factor> using: oldFactor * (displayedVoltage / actualVoltage)

• oldFactor is the old value set. If you have not changed it yet it is 195.7.

• displayedVoltage is the Voltage as displayed by the OVMS.

• actualVoltage is the Voltage as measured by hand using a voltmeter.

The voltage is read once per second and smoothed over 5 samples, so after changing the factor, wait 5-10 seconds for
the new reading to settle.

22 Chapter 2. User Guide

Open Vehicles

Configuration

The default 12V reference voltage (= fully charged & calmed down voltage level) can be set by. . . :

config set vehicle 12v.ref <voltage>

This config value initializes metric v.b.12v.voltage.ref on boot. The metric will then be updated automati-
cally if your vehicle supports the v.e.charging12v flag. The measured reference voltage reflects the health of the
12V battery and serves as the reference for the 12V alert, if it’s higher than the configured default.

The 12V alert threshold can be set by. . . :

config set vehicle 12v.alert <voltagediff>

The 12V alert threshold is defined by a relative value to the 12v reference voltage. If the actual 12V reading drops
below 12v.ref - 12v.alert, the 12V alert is raised.

The default reference voltage is 12.6V, the default alert threshold 1.6V, so the alert will be triggered if the voltage
drops below 11.0V. This is suitable for standard lead-acid type batteries. If you’ve got another chemistry, change the
values accordingly.

Related Metrics

Metric Example Value Meaning
v.b.12v.current 0.6A Momentary current level at the 12V battery
v.b.12v.voltage 13.28V Momentary voltage level at the 12V battery
v.b.12v.voltage.ref 12.51V Reference voltage of the fully charged & calmed down 12V battery
v.b.12v.voltage.alert no If the 12V critical alert is active (yes/no).
v.e.charging12v yes If the 12V battery is charging or not (yes/no)

Related Events

Event Data Purpose
vehicle.alert.12v.on 12V system voltage is below alert threshold
vehicle.alert.12v.off 12V system voltage has recovered
vehicle.charge.12v.start Vehicle 12V battery is charging
vehicle.charge.12v.stop Vehicle 12V battery has stopped charging

2.4 The OVMS Console

2.4.1 Console Connections

OVMS v3 includes a powerful command line console that can be accessed in various ways:

1. Using a micro USB cable to a host computer.

If the OVMS is not recognised via USB download the driver from SILABS website. You will also need a
suitable terminal emulator. The baud rate is 115200, and you should not enable hardware flow control.

2. TELNET (over wifi).

2.4. The OVMS Console 23

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Open Vehicles

Note that for security reasons, the telnet server component is not enabled in the default production
firmware (but may be available in custom builds). If Telnet is available telnet to the IP address of the
module (or <vehicleid>.local MDNS address).

3. SSH (over wifi).

SSH to the IP address of the module (or <vehicleid>.local MDNS address). Note that when first booted
with a network connection, the module takes a minute or so to generate server side keys (which are stored
in the config store).

4. Web Console SHELL tab.

Use a web browser to connect to the IP address of the module (or <vehicleid>.local MDNS address). A
SHELL tab is available for direct command line console access.

5. Remote Apps.

The OVMS Android App currently includes a shell screen that can be used to issue command line console
commands via the OVMS server v2. This functionality is not currently available in the iPhone/iPad App.

6. SMS.

Console commands can be issued via SMS.

USB Console

Our recommendations for the USB console are as follows:

1. You can use a Windows, Linux, Mac OSX workstation or an Android device with a USB OTG adapter cable.

2. If your operating system does not have the SILABS USB driver, you can download the driver from SILABS
website. If you use Linux and your distribution includes the braille display driver “brltty”, you may need to
uninstall that, as it claims any CP2102 device to be a braille device. This applies e.g. to openSuSE 15.0.

3. Plug in the module to your PC/laptop, using a micro USB cable. Check to ensure a serial port appears (using the
SILABS driver). For OSX and Linux this will normally appear as /dev/tty.SLAB_USBtoUART or /dev/ttyUSB0
(or 1/2/. . . if other serial devices are connected). List your devices using “ls /dev/*USB*”.

4. Once the serial port is available you will need a terminal emulator.

• For OSX, the simplest is the built-in SCREEN utility. You run this as screen -L /dev/tty.
SLAB_USBtoUART 115200 But note that the device path may be different for you - check with ‘ls
/dev/*USB*’. You can use ‘control-a control-y’ or ‘control-a k y’ (three key sequences) to exit the screen.
The “-L” option tells screen to capture a log of your session into the file “screenlog.<n>”.

• For Linux, the SCREEN utility is also simple to get. If it is not included with your distribution, you can simply
yum install screen, or apt-get install screen (depending on your distribution). From there, the command is the
same as for OSX. Alternatively, you can use minicom (which is included with many linux distributions).

• For Windows, a simple approach is to download the free PUTTY terminal emulator. This supports both direct
ASYNC (over USB) connections, as well as SSH (network). You can download putty using this link.

• For Android, there are multiple USB serial Apps in the Play store. A good recommendation is Serial USB
Terminal by Kai Morich.

5. Once you have established the connection, press ENTER to see the “OVMS>” prompt.

SSH Console

A workstation (Mac, Linux, Window), on the same wifi network as the OVMS module, can use the ssh protocol to
connect. In Windows you can use the free PUTTY ssh client. In Linux and OSX ssh is built-in.

24 Chapter 2. User Guide

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.putty.org/
https://play.google.com/store/search?q=usb+serial+terminal&c=apps
https://play.google.com/store/apps/details?id=de.kai_morich.serial_usb_terminal
https://play.google.com/store/apps/details?id=de.kai_morich.serial_usb_terminal

Open Vehicles

The syntax is simply:

ssh user@ip

Where ‘user’ is the username (normally ‘ovms’) and ‘ip’ is the IP address of the OVMS v3 module. In environments
supporting mDNS networking, you should also be able to connect using the mDNS name <vehicleid>.local. The
password you enter is the module password.

If you use ssh public/private key pairs, you can store your public key on the OVMS v3 module, to take advantage of
passwordless login.

OVMS# config set ssh.keys <user> <public-key>

In this case, ‘user’ is the username you use to ssh, and the public key is your RSA public key (the long base64 blob of
text you find in id-rsa.pub between ‘ssh-rsa’ and your username/comment).

You can also use SCP to copy files to and from the OVMS v3 VFS.

Note: With OpenSSH version 6.6 (or later), cipher aes128-cbc has been disabled by default and needs to be
enabled manually, either on the command line:

ssh -c aes128-cbc user@ip

. . . or by adding a host entry to your ~/.ssh/config file:

Host ovmsname.local
Ciphers +aes128-cbc

2.4.2 Console Basics

Let’s use SSH to demonstrate this:

$ ssh ovms@ovms.local

Welcome to the Open Vehicle Monitoring System (OVMS) - SSH Console
Firmware: 3.1.003-2-g7ea18b4-dirty/factory/main
Hardware: OVMS WIFI BLE BT cores=2 rev=ESP32/1

OVMS#

When first connecting using USB, the console will be in non-secure mode (as indicated by the “OVMS>” prompt).
Here, only a limited number of commands are available (such as viewing network status, modem status, or system
time). To get to secure mode, enter the command ‘enable’, and provide the module password. The prompt will then
change to “OVMS#”:

OVMS> enable
Password:
Secure mode
OVMS#

You can enter the ‘disable’ command to get out of secure mode, and ‘exit’ to exit the console completely.

When connecting via a pre-authenticated protocol such as SSH, you will be in secure mode automatically.

At any time, you can use “?” to show the available commands. For example:

2.4. The OVMS Console 25

Open Vehicles

OVMS# ?
. Run a script
boot BOOT framework
can CAN framework
charge Charging framework
co CANopen framework
config CONFIG framework
disable Leave secure mode (disable access to most commands)
egpio EGPIO framework
enable Enter secure mode (enable access to all commands)
event EVENT framework
exit End console session
help Ask for help
homelink Activate specified homelink button
location LOCATION framework
lock Lock vehicle
log LOG framework
metrics METRICS framework
module MODULE framework
network NETWORK framework
notify NOTIFICATION framework
obdii OBDII framework
ota OTA framework
power Power control
re RE framework
script Run a script
sd SD CARD framework
server OVMS Server Connection framework
simcom SIMCOM framework
stat Show vehicle status
store STORE framework
test Test framework
time TIME framework
unlock Unlock vehicle
unvalet Deactivate valet mode
valet Activate valet mode
vehicle Vehicle framework
vfs Virtual File System framework
wakeup Wake up vehicle
wifi WIFI framework

You can also use “?” as part of a command to expand on the available options within that command root:

OVMS# wifi ?
mode WIFI mode framework
scan Perform a wifi scan
status Show wifi status

OVMS# wifi mode ?
ap Acts as a WIFI Access Point
apclient Acts as a WIFI Access Point and Client
client Connect to a WIFI network as a client
off Turn off wifi networking

OVMS# wifi mode client ?
Usage: wifi mode client <ssid> <bssid>

Command tokens can be abbreviated so long as enough characters are entered to uniquely identify the command. Op-

26 Chapter 2. User Guide

Open Vehicles

tionally pressing TAB at that point will auto-complete the token. If the abbreviated form is not sufficient to be unique
(in particular if no characters have been entered yet) then TAB will show a concise list of the possible subcommands
and retype the portion of the command line already entered so it can be completed:

OVMS# wifi <TAB>
mode scan status
OVMS# wifi

Pressing TAB is legal at any point in the command; if there is nothing more that can be completed automatically then
there will just be no response to the TAB.

2.5 Logging

2.5.1 Logging to the Console

Components of the OVMS system output diagnostic logs (information, warnings, etc). You can choose to display
these logs on your connected console with the ‘log monitor yes/no’ command:

OVMS# log monitor ?
Usage: log monitor [no|yes]
no Don't monitor log
yes Monitor log

By default, the USB console will have log monitoring ‘yes’, SSH (and telnet if enabled) ‘no’.

The web shell does not use the log monitor command but has a checkbox in the upper right corner of the shell
panel instead. The keyboard shortcut for the checkbox is L (Alt-L or Alt-Shift-L depending on your browser). The
web frontend gets the continuous stream of log messages independent of the shell panel or the monitoring being active,
and shows the last 100 messages received when opening the shell panel.

Logs are output at various levels of verbosity, and you can control what is shown both globally and on a per-component
basis:

OVMS# log level ?
none No logging (0)
error Log at the ERROR level (1)
warn Log at the WARN level (2)
info Log at the INFO level (3)
debug Log at the DEBUG level (4)
verbose Log at the VERBOSE level (5)

(Note: sorted here for level clarity)

The syntax of this command is log level <level> [<component>]. If the component is not specified, the
level applies to all components that don’t get a level set explicitly afterwards. The levels increase in verbosity, and
setting a particular level will also include all log output at a lower level of verbosity (so, for example, setting level info
will also include warn and error output).

A log line typically looks like this:

I (32244049) ovms-server-v2: One or more peers have connected
Log message

Component name
Timestamp (milliseconds since boot)

Log level (I=INFO)

2.5. Logging 27

Open Vehicles

Log levels are applied on log message generation, so a later change to a higher level will not reveal messages generated
previously.

2.5.2 Logging to SD CARD

You can also choose to store logs on SD CARD. This is very useful to capture debugging information for the develop-
ers, as the log will show what happened before a crash or misbehaviour.

We recommend creating a directory to store logs, i.e.:

OVMS# vfs mkdir /sd/logs

To enable logging to a file, issue for example:

OVMS# log file /sd/logs/20180420.log

The destination file can be changed any time. To disable logging to the file, issue log close, to restart logging
after a close issue log open. You may choose an arbitrary file name, good practice is using some date and/or bug
identification tag. Note: logging will append to the file if it already exists. To remove a file, use vfs rm

File logging does not persist over a reboot or crash (unless configured as shown below), you can use a script bound to
the sd.mounted event to re-enable file logging automatically or configure automatic logging (see below).

You can use the webserver to view and download the files. The webserver default configuration enables directory
listings and access to files located under the document root directory, which is /sd by default. Any path not bound to
an internal webserver function is served from the document root. So you can get an inventory of your log files now at
the URL:

http://192.168.4.1/logs/

. . . and access your log files from there or directly by their respective URLs. Another option to retrieve the files without
unmounting the SD card is by scp if you have configured SSH access.

2.5.3 Logging Configuration

Use the web UI or config command to configure your log levels and file setup to be applied automatically on boot:

OVMS# config list log
log (readable writeable)

file.enable: yes
file.keepdays: 7
file.maxsize: 1024
file.path: /sd/logs/log
file.syncperiod: 3
level: info
level.simcom: info
level.v-twizy: verbose
level.webserver: debug

28 Chapter 2. User Guide

Open Vehicles

The log command can be used for temporary changes, if you change the configuration, it will be applied as a whole,
replacing your temporary setup.

If a maximum file size >0 is configured, the file will be closed and archived when the size is reached. The archive
name consists of the log file name with added suffix of the timestamp, i.e. /sd/logs/log.20180421-140356.
Using a logs directory will keep all your archived logs accessible at one place. If file.keepdays is defined, older
archived logs will automatically be deleted on a daily base.

Take care not to remove an SD card while logging to it is active (or any running file access). The log file should still
be consistent, as it is synchronized after every write, but the SD file system currently cannot cope with SD removal
with open files. You will need to reboot the module. To avoid this, always use the “Close” button or the log close
command before removing the SD card.

You don’t need to re-enable logging to an SD path after insertion, the module will watch for the mount event and
automatically start logging to it.

2.5.4 Performance Impact

SD card I/O has an impact on the module performance. So file logging should generally be switched off or run
on a low level (i.e. “info” or “warn”) unless you’re hunting some bug or checking some details of operation. We
also recommend using a fast SD card for logging (check the speed with sd status, check if you can raise config
sdcard maxfreq.khz to 20000 kHz).

2.5. Logging 29

Open Vehicles

File logging is done by a separate task, but flushing the file buffers to the SD card still may block the logging CPU
core or even both CPU cores for a short period. To reduce the impact of this, the log task by default only flushes the
buffer after 1.5 seconds of log inactivity. This means you may lose the last log messages before a crash.

To change the flush behaviour, set config file.syncperiod to. . .

• 0 = never flush (i.e. only at log close / log cycle)

• < 0 = flush every n log messages (i.e. -1 = flush after every message)

• > 0 = flush after n/2 seconds idle

The log task counts the time spent for flushes and outputs it with the log status command:

OVMS# log status
Log listeners : 3
File logging status: active

Log file path : /sd/logs/log
Current size : 817.0 kB
Cycle size : 1024 kB
Cycle count : 8
Dropped messages : 0
Messages logged : 70721
Total fsync time : 651.1 s

This is an example for the default configuration of file.syncperiod: 3, the logging here has on average taken
651.1 / 70721 = 9 ms per message.

2.6 Configuration

OVMS stores all it’s configuration in a standardised protected configuration area accessed by the ‘config’ command.
The configurations are organised as follows:

<parameter> <instance> = <value>

For example:

Parameter Instance Value
vehicle id OVMSBOX
wifi.ssid MYSSID MyPassword
auto init yes

Each parameter can be defined (by the component that owns it) as having readable and/or writeable attributes, and
these act as access control for the parameters.

• A ‘writeable’ parameter allows values to be created, deleted and modified.

• A ‘readable’ parameter allows values to be seen. Instance names can be seen on non-readable parameters (it is
just the values themselves that are protected).

For example, the ‘vehicle’ parameter is readable and writeable:

OVMS# config list vehicle
vehicle (readable writeable)

id: MYCAR
timezone: HKT-8

But the ‘wifi.ssid’ parameter is only writeable:

30 Chapter 2. User Guide

Open Vehicles

OVMS# config list wifi.ssid
wifi.ssid (protected writeable)

MYSSID
MyOtherSSID
MyNeighbour

The ‘config’ command is used to manipulate these configurations, as is fairly self-explanatory:

OVMS# config ?
list Show configuration parameters/instances
rm Remove parameter:instance
set Set parameter:instance=value

You can add new instances to parameters simply by setting them.

Beginning with firmware release 3.2.009, a dedicated configuration section usr is provided for plugins. Take care to
prefix all instances introduced by a unique plugin name, so your plugin can nicely coexist with others.

2.7 WiFi Networking

The OVMS WiFi system is based on the ESP32 integrated WiFi transceiver. It uses and provides WiFi protocols
802.11 b/g/n and WPA2 authentication. The current hardware can only use 2.4 GHz frequency bands.

The WiFi antenna is built into the ESP32 module (PCB antenna). It’s possible to replace that by an external antenna,
but you’ll need electronics knowledge and SMD soldering skills & equipment.

2.7.1 Client & Access Point Modes

The OVMS WiFi network can be configured as a client (connecting to existing WiFi networks) and/or access point
(providing it’s own private WiFi network). Both modes can be run simultaneously, which is the recommended default.
That way, you can always connect to your module via WiFi.

OVMS# wifi status
Power: on
Mode: Access-Point + Client mode

STA SSID: WLAN-214677 (-78.7 dBm) [scanning]
MAC: 30:ae:a4:5f:e7:ec
IP: 192.168.2.102/255.255.255.0
GW: 192.168.2.1
AP: 7c:ff:4d:15:2f:86

AP SSID: DEX106E
MAC: 30:ae:a4:5f:e7:ed
IP: 192.168.4.1
AP Stations: 0

In client mode, the module can connect to a fixed network, or automatically scan all channels for known networks to
connect to (“scanning mode”). Scanning mode is configured by enabling client mode without a specific client SSID.

The module will normally receive an IP address, gateway and DNS from the WiFi access point by DHCP. See below
on how to connect with a manual static IP setup.

2.7. WiFi Networking 31

Open Vehicles

In access point mode, the module provides access for other WiFi devices on a private network with the IP subnet
192.168.4.0/24. The module’s IP address on this network is 192.168.4.1. The module does not provide a
DNS or routing to a public WiFi or GSM network on this subnet.

You can define multiple AP networks, but only one can be active at a time.

Use the wifi mode command to manually set the mode, use the auto start configuration to configure your default
mode and networks.

Note: The module cannot act as a mobile hotspot, i.e. provide access to the internet via it’s modem connection.
That’s in part due to security considerations, and in part due to hardware limitations. If you need this, consider
installing a dedicated mobile hotspot and using that one via WiFi instead of the modem for the module’s internet
access (you won’t need the modem in this setup).

2.7.2 Scanning for Networks

To manually scan your environment for available WiFi networks, do a wifi scan:

OVMS# wifi scan
Scanning for WIFI Access Points...

AP SSID MAC ADDRESS CHAN RSSI AUTHENTICATION
================================ ================= ==== ==== ==============
WLAN-214677 7c:ff:4d:15:2f:86 1 -83 WPA2_PSK
Telekom_FON 78:dd:12:09:dc:be 11 -84 OPEN
WLAN-184248 78:dd:12:09:dc:bc 11 -85 WPA2_PSK
===
Scan complete: 3 access point(s) found

This can also be done in the web UI’s WiFi client network configuration page by clicking on the Select button.

After the module lost connection to a network, a scan is performed automatically every 10 seconds until a new con-
nection can be established. If you’d like to see the background scans and results in the log, enable log level verbose
for component esp32wifi.

Scan Troubleshooting

If the module doesn’t find your access point, or can only see it occasionally in the scan results, you may need to raise
your scan times. This has been observed on some older Android hotspots.

By default, the module will scan each channel for 120 milliseconds. To raise that, set your scan time in milliseconds
using the config command like this, e.g. to 200 milliseconds:

OVMS# config set network wifi.scan.tmin 200

200 milliseconds have been reported to solve the Android hotspot issue. In addition to the tmin configuration you
may need to allow more time looking for further access points after finding the first one. Do so by setting tmax, e.g.:

OVMS# config set network wifi.scan.tmax 300

Note that every increase will increase the time a full scan takes, so don’t set too high values. Too high values may
result in connection drops on the AP network of the module.

32 Chapter 2. User Guide

Open Vehicles

2.7.3 WiFi Signal Quality

The module monitors the WiFi client signal quality and drops a WiFi connection (switches to modem if available) if it
becomes too bad. The WiFi connection will be kept active and monitored, and as the signal recovers, the module will
automatically reconnect to the AP.

The default threshold is to stop using the connection if it drops below -89 dBm. A connection is assumed to be usable
if the signal is above -87 dBm.

Depending on your WiFi environment, the WiFi connection may still be usable at lower signal levels.

To tweak the thresholds, use the web UI WiFi configuration or change the following configuration variables:

OVMS# config set network wifi.sq.good -87.0
OVMS# config set network wifi.sq.bad -89.0

2.7.4 WiFi Mesh Configuration

In normal operation, the module will try to stick to an established connection as long as possible. If signal quality
drops, it will switch to the modem connection, but monitor the WiFi signal and reassociate to the current AP if possible.

If using a mesh network, you may want to force scanning for a better mesh AP as soon as the signal drops below the
“bad” threshold. To do so, set the network configuration wifi.bad.reconnect to true, either using the web UI
or by doing:

OVMS# config set network wifi.bad.reconnect yes

With this, the module will perform a full WiFi reconnect cycle as soon as the signal becomes bad.

2.7.5 Static IP / SSID Configuration

To connect with a static client address instead of using DHCP, use the wifi ip static command:

OVMS# wifi ip static [<ip> <subnet> <gateway>]

The gateway will also be used as the DNS.

To configure persistent static details for a known SSID, set these using the following configuration syntax:

OVMS# config set wifi.ssid "<ssid>.ovms.staticip" "<ip>,<subnet>,<gateway>"

You can also force connection to a specific AP by it’s MAC address, “BSSID” in WiFi terms. To do so, you need to
supply the MAC address as a second argument to the wifi mode client or as the third argument to the wifi
mode apclient command:

OVMS# wifi mode client <ssid> <bssid>

OVMS# wifi mode apclient <apssid> <ssid> <bssid>

This currently needs manual activation by command. Hint: use a script, for example bound to a location.

2.7.6 AP Bandwidth Configuration

In normal operation, the default AP bandwidth is set to 20Mhz to reduce interference and improve the signal quality. If
a wider 40Mhz bandwidth is preferred, eg for high throughput logging, set the network configuration wifi.ap.bw

2.7. WiFi Networking 33

Open Vehicles

with the command:

OVMS# config set network wifi.ap.bw 40

Once the parameter is set the module will require rebooting to take effect. The default bandwidth can be restored by
either removing the parameter or setting it to 20.

2.8 Virtual File System (VFS)

OVMS includes a Virtual File System (VFS) used to unify all storage in the system. The primary configuration and
scripting storage is mounted as ‘/store’, and the SD card as ‘/sd’. A ‘vfs’ set of commands is provided for basic
manipulation of these stores:

OVMS# vfs ?
append VFS Append a line to a file
cat VFS Display a file
cp VFS Copy a file
edit VFS Edit a file
ls VFS Directory Listing
mkdir VFS Create a directory
mv VFS Rename a file
rm VFS Delete a file
rmdir VFS Delete a directory
stat VFS Status of a file
tail VFS Output tail of a file

Please take care. This is a very small microcontroller based system with limited storage. The /store area should only
be used for storage of configurations and small scripts. The /sd SD CARD area is more flexibly and can be used for
storing of configuration logs, firmware images, etc.

2.8.1 Network Access

Network access to the VFS is available via SCP or through the web server.

SCP can access the whole file system and is read/write:

#copy a new firmware to the sd card on an OVMS named "leaf" in my ssh config
scp build/ovms3.bin leaf:/sd/dev_ovms3.bin

#copy a config backup from OVMS named "leaf" to my local directory
scp leaf:/sd/backup/cfg-2019-12-05.zip .

In the upload example the firmware can then be loaded with the OTA flash vfs command

The web server offers read access rooted at the sd card. An example retrieving that same config file from the SCP
example would look like:

http://leaf-abr.local/backup/cfg-2019-12-05.zip

2.9 Metrics

Metrics are at the heart of the OVMS v3 system. They are strongly typed named parameters, with values in specific
units (and able to be automatically converted to other units). For example, a metric to record the motor temperature

34 Chapter 2. User Guide

Open Vehicles

may be an integer in Celsius units, and may be convertible to Fahrenheit.

The full list of metrics available can be shown:

OVMS# metrics list
m.freeram 4232852
m.hardware OVMS WIFI BLE BT cores=2 rev=ESP32/1
m.monotonic 3568Sec
...
v.p.latitude 22.2809
v.p.longitude 114.161
v.p.odometer 100000Km
v.p.satcount 12
v.p.speed 0Kph
v.p.trip 0Km
v.t.alert 0,0,0,1
v.t.health 95,93,96,74%
v.t.pressure 206.843,216.483,275.79,175.79kPa
v.t.temp 33,33,34,38°C
v.type DEMO

You can filter the metrics list output for names matching a given substring, for example metrics list
volt will show all voltage related metrics.

A base OVMS v3 system has more than 100 metrics available (see below), and vehicle modules can add more for their
own uses (see vehicle sections).

In general, vehicle modules (and some other system components) are responsible for updating the metrics, and server
connections read those metrics, reformat them, and send them on to servers and Apps (for eventual display to the user).
Status commands (such as STAT) also read these metrics and display them in user-friendly forms:

OVMS# stat
Not charging
SOC: 50.0%
Ideal range: 200Km
Est. range: 160Km
ODO: 100000.0Km
CAC: 160.0Ah
SOH: 100%

For developer use, there are also some other metric commands used to manually modify a metric’s value (for testing
and simulation purposes), and trace changes:

OVMS# metrics ?
list Show all metrics
persist Show persistent metrics info
set Set the value of a metric
trace METRIC trace framework

Some metrics are presistent across warm reboots. This prevents values such as SOC from being lost when firmware is
updated (or in the event of a crash). You can display these with metrics list -p and view general information
about presistent metrics with metrics persist.

2.9.1 Standard Metrics

2.9. Metrics 35

Open Vehicles

Metric name Example value Description
m.freeram 3275588 Total amount of free RAM in bytes
m.hardware OVMS WIFI BLE BT. . . Base module hardware info
m.monotonic 49607Sec Uptime in seconds
m.net.mdm.iccid 89490240001766080167 SIM ICCID
m.net.mdm.model 35316B09SIM5360E Modem module hardware info
m.net.mdm.network congstar Current GSM network provider
m.net.mdm.sq -101dBm . . . and signal quality
m.net.provider WLAN-214677 Current primary network provider
m.net.sq -79dBm . . . signal quality
m.net.type wifi . . . and type (none/modem/wifi)
m.net.wifi.network WLAN-214677 Current Wifi network SSID
m.net.wifi.sq -79.1dBm . . . and signal quality
m.serial Reserved for module serial no.
m.tasks 20 Task count (use module tasks to list)
m.time.utc 1572590910Sec UTC time in seconds
m.version 3.2.005-155-g3133466f/. . . Firmware version
m.egpio.input 0,1,2,3,4,5,6,7,9 EGPIO input port state (ports 0. . . 9, present=high)
m.egpio.monitor 8,9 EGPIO input monitoring ports
m.egpio.output 4,5,6,7,9 EGPIO output port state
s.v2.connected yes yes = V2 (MP) server connected
s.v2.peers 1 V2 clients connected
s.v3.connected yes = V3 (MQTT) server connected
s.v3.peers V3 clients connected
v.b.12v.current 0A Auxiliary 12V battery momentary current
v.b.12v.voltage 12.29V Auxiliary 12V battery momentary voltage
v.b.12v.voltage.alert yes = auxiliary battery under voltage alert
v.b.12v.voltage.ref 12.3V Auxiliary 12V battery reference voltage
v.b.c.temp 13,13,. . . ,13°C Cell temperatures
v.b.c.temp.alert 0,0,. . . ,0 Cell temperature deviation alert level [0=normal, 1=warning, 2=alert]
v.b.c.temp.dev.max 1.43,0.86,. . . ,-1.29°C Cell maximum temperature deviation observed
v.b.c.temp.max 19,18,. . . ,17°C Cell maximum temperatures
v.b.c.temp.min 13,12,. . . ,12°C Cell minimum temperatures
v.b.c.voltage 4.105,4.095,. . . ,4.105V Cell voltages
v.b.c.voltage.alert 0,0,. . . ,0 Cell voltage deviation alert level [0=normal, 1=warning, 2=alert]
v.b.c.voltage.dev.max 0.0096,-0.0104,. . . ,0.0125V Cell maximum voltage deviation observed
v.b.c.voltage.max 4.135,4.125,. . . ,4.14V Cell maximum voltages
v.b.c.voltage.min 3.875,3.865,. . . ,3.88V Cell minimum voltages
v.b.cac 90.7796Ah Calculated battery pack capacity
v.b.consumption 0Wh/km Main battery momentary consumption
v.b.coulomb.recd 47.5386Ah Main battery coulomb recovered on trip/charge
v.b.coulomb.recd.total 947.5386Ah Main battery coulomb recovered total (life time)
v.b.coulomb.used 0.406013Ah Main battery coulomb used on trip
v.b.coulomb.used.total 835.406013Ah Main battery coulomb used total (life time)
v.b.current 0A Main battery momentary current (output=positive)
v.b.energy.recd 2.69691kWh Main battery energy recovered on trip/charge
v.b.energy.recd.total 3212.69691kWh Main battery energy recovered total (life time)
v.b.energy.used 0.0209496kWh Main battery energy used on trip
v.b.energy.used.total 3177.0209496kWh Main battery energy used total (life time)
v.b.health General textual description of battery health
v.b.p.level.avg 95.897% Cell level - pack average

Continued on next page

36 Chapter 2. User Guide

Open Vehicles

Table 1 – continued from previous page
Metric name Example value Description
v.b.p.level.max 96.41% Cell level - strongest cell in pack
v.b.p.level.min 94.871% Cell level - weakest cell in pack
v.b.p.level.stddev 0.548% Cell level - pack standard deviation
v.b.p.temp.avg 13°C Cell temperature - pack average
v.b.p.temp.max 13°C Cell temperature - warmest cell in pack
v.b.p.temp.min 13°C Cell temperature - coldest cell in pack
v.b.p.temp.stddev 0°C Cell temperature - current standard deviation
v.b.p.temp.stddev.max 0.73°C Cell temperature - maximum standard deviation observed
v.b.p.voltage.avg 4.1V Cell voltage - pack average
v.b.p.voltage.grad 0.0032V Cell voltage - gradient of current series
v.b.p.voltage.max 4.105V Cell voltage - strongest cell in pack
v.b.p.voltage.min 4.09V Cell voltage - weakest cell in pack
v.b.p.voltage.stddev 0.00535V Cell voltage - current standard deviation
v.b.p.voltage.stddev.max 0.00783V Cell voltage - maximum standard deviation observed
v.b.power 0kW Main battery momentary power (output=positive)
v.b.range.est 99km Estimated range
v.b.range.full 50.8km Ideal range at 100% SOC & current conditions
v.b.range.ideal 48km Ideal range
v.b.soc 96.3% State of charge
v.b.soh 85% State of health
v.b.temp 13°C Main battery momentary temperature
v.b.voltage 57.4V Main battery momentary voltage
v.c.12v.current 7.8A Output current of DC/DC-converter
v.c.12v.power 123W Output power of DC/DC-converter
v.c.12v.temp 34.5°C Temperature of DC/DC-converter
v.c.12v.voltage 12.3V Output voltage of DC/DC-converter
v.c.charging no yes = currently charging
v.c.climit 0A Maximum charger output current
v.c.current 1.25A Momentary charger output current
v.c.duration.full 25Min Estimated time remaing for full charge
v.c.duration.range -1Min . . . for sufficient range
v.c.duration.soc 0Min . . . for sufficient SOC
v.c.efficiency 87.6% Momentary charger efficiency
v.c.kwh 2.6969kWh Energy sum for running charge
v.c.kwh.grid 3.6969kWh Energy drawn from grid during running session
v.c.kwh.grid.total 256.69kWh Energy drawn from grid total (life time)
v.c.limit.range 0km Sufficient range limit for current charge
v.c.limit.soc 80% Sufficient SOC limit for current charge
v.c.mode standard standard, range, performance, storage
v.c.pilot no Pilot signal present
v.c.power 125kW Momentary charger input power
v.c.state done charging, topoff, done, prepare, timerwait, heating, stopped
v.c.substate scheduledstop, scheduledstart, onrequest, timerwait, powerwait, stopped, interrupted
v.c.temp 16°C Charger temperature
v.c.time 0Sec Duration of running charge
v.c.timermode yes = timer enabled
v.c.timerstart Time timer is due to start, seconds since midnight UTC
v.c.type undefined, type1, type2, chademo, roadster, teslaus, supercharger, ccs
v.c.voltage 0V Momentary charger supply voltage

Continued on next page

2.9. Metrics 37

Open Vehicles

Table 1 – continued from previous page
Metric name Example value Description
v.d.cp yes yes = Charge port open
v.d.fl yes = Front left door open
v.d.fr yes = Front right door open
v.d.hood yes = Hood/frunk open
v.d.rl yes = Rear left door open
v.d.rr yes = Rear right door open
v.d.trunk yes = Trunk open
v.e.alarm yes = Alarm currently sounding
v.e.aux12v yes = 12V auxiliary system is on (base system awake)
v.e.awake no yes = Vehicle is fully awake (switched on by the user)
v.e.c.config yes = ECU/controller in configuration state
v.e.c.login yes = Module logged in at ECU/controller
v.e.cabintemp 20°C Cabin temperature
v.e.cabinfan 100% Cabin fan
v.e.cabinsetpoint 24°C Cabin set point
v.e.cabinintake fresh Cabin intake type (fresh, recirc, etc)
v.e.cabinvent feet,face Cabin vent type (comma-separated list of feet, face, screen, etc)
v.e.charging12v no yes = 12V battery is charging
v.e.cooling yes = Cooling
v.e.drivemode 33882626 Active drive profile code (vehicle specific)
v.e.drivetime 0Sec Seconds driving (turned on)
v.e.footbrake 0% Brake pedal state [%]
v.e.gear Gear/direction; negative=reverse, 0=neutral
v.e.handbrake yes = Handbrake engaged
v.e.headlights yes = Headlights on
v.e.heating yes = Heating
v.e.hvac yes = HVAC active
v.e.locked yes = Vehicle locked
v.e.on no yes = Vehicle is in “ignition” state (drivable)
v.e.parktime 49608Sec Seconds parking (turned off)
v.e.regenbrake yes = Regenerative braking active
v.e.serv.range 12345km Distance to next scheduled maintenance/service [km]
v.e.serv.time 1572590910Sec Time of next scheduled maintenance/service [Seconds]
v.e.temp Ambient temperature
v.e.throttle 0% Drive pedal state [%]
v.e.valet yes = Valet mode engaged
v.g.generating no True = currently delivering power
v.g.climit 0A Maximum generator input current (from battery)
v.g.current 1.25A Momentary generator input current (from battery)
v.g.duration.empty 25Min Estimated time remaining for full discharge
v.g.duration.range -1Min . . . for range limit
v.g.duration.soc 0Min . . . for SOC limit
v.g.efficiency 87.6% Momentary generator efficiency
v.g.kwh 2.6969kWh Energy sum generated in the running session
v.g.kwh.grid 3.6969kWh Energy sent to grid during running session
v.g.kwh.grid.total 256.69kWh Energy sent to grid total
v.g.limit.range 0km Minimum range limit for generator mode
v.g.limit.soc 80% Minimum SOC limit for generator mode
v.g.mode standard Generator mode (TBD)

Continued on next page

38 Chapter 2. User Guide

Open Vehicles

Table 1 – continued from previous page
Metric name Example value Description
v.g.pilot no Pilot signal present
v.g.power 125kW Momentary generator output power
v.g.state done Generator state (TBD)
v.g.substate Generator substate (TBD)
v.g.temp 16°C Generator temperature
v.g.time 0Sec Duration of generator running
v.g.timermode false True if generator timer enabled
v.g.timerstart Time generator is due to start
v.g.type Connection type (chademo, ccs, . . .)
v.g.voltage 0V Momentary generator output voltage
v.i.temp Inverter temperature
v.i.power 42.7kW Momentary inverter motor power (output=positive)
v.i.efficiency 98.2% Momentary inverter efficiency
v.m.rpm Motor speed (RPM)
v.m.temp 0°C Motor temperature
v.p.acceleration 0m/s2 Vehicle acceleration
v.p.altitude 327.8m GPS altitude
v.p.direction 31.2° GPS direction
v.p.gpshdop 1.3 GPS horizontal dilution of precision (smaller=better)
v.p.gpslock no yes = has GPS satellite lock
v.p.gpsmode AA <GPS><GLONASS>; N/A/D/E (None/Autonomous/Differential/Estimated)
v.p.gpsspeed 0km/h GPS speed over ground
v.p.latitude 51.3023 GPS latitude
v.p.location Home Name of current location if defined
v.p.longitude 7.39006 GPS longitude
v.p.odometer 57913.1km Vehicle odometer
v.p.satcount 8 GPS satellite count in view
v.p.speed 0km/h Vehicle speed
v.p.trip 0km Trip odometer
v.t.alert 0,0,0,1 TPMS tyre alert levels [0=normal, 1=warning, 2=alert]
v.t.health 95,93,96,74% TPMS tyre health states
v.t.pressure 206.8,216.4,. . . kPa TPMS tyre pressures
v.t.temp 33,33,34,38°C TPMS tyre temperatures
v.type RT Vehicle type code
v.vin VF1ACVYB012345678 Vehicle identification number

2.10 Over The Air (OTA) Updates

OVMS v3 includes 16MB flash storage. This is partition as:

4MB for factory application image (factory)
4MB for the first OTA application image (ota_0)
4MB for a second OTA application image (ota_1)
1MB for /store configuration and scripting storage
The remainder for bootloader, generic non-volatile storage, and other data

In general, the factory application firmware is stored in flash at the factory, during module production. That firmware
is never changed on production modules, and is always kept as a failover backup.

That leaves two firmwares for Over The Air (OTA) updates. If the currently running firmware is the factory one, an
OTA updated firmware can be written to either of the OTA partitions. If the current running firmware is ota_0, then

2.10. Over The Air (OTA) Updates 39

Open Vehicles

any new OTA updates will be written to ota_1 (and similarly if ota_1 is currently running, then new OTA updates will
be written to ota_0). In this way, the currently running firmware is never modified and is always available as a failover
backup.

You can check the status of OTA with the ‘ota status’ command:

OVMS# ota status
Firmware: 3.1.003-2-g7ea18b4-dirty/factory/main (build idf v3.1-dev-453-
→˓g0f978bcb Apr 7 2018 16:26:57)
Server Available: 3.1.003
Running partition: factory
Boot partition: factory

That is showing the currently running firmware as a custom image v3.1.003-2-g7ea18b4-dirty running in factory
partition. The running currently running partition is factory and the next time the system is booted, it will run from
factory as well.

As a convenience, if there is currently active wifi connectivity, a network lookup will be performed and the currently
available firmware version on the server will be shown. In this case, that is the standard 3.1.003 release (as shown in
the ‘Server Available:’ line).

If we wanted to boot from ota_1, we can do this with ‘ota boot ota_1’:

OVMS# ota boot ota_1
Boot from ota_1 at 0x00810000 (size 0x00400000)

OVMS# ota status
Firmware: 3.1.003-2-g7ea18b4-dirty/factory/main (build idf v3.1-dev-453-
→˓g0f978bcb Apr 7 2018 16:26:57)
Server Available: 3.1.003
Running partition: factory
Boot partition: ota_1

If the bootloader fails to boot from the specified OTA firmware, it will failover and boot from factory.

We can flash firmware to OTA either from a file on VFS (normally /sd), or over the Internet (via http). Let’s try a
simple OTA update over HTTP:

OVMS# ota flash http
Current running partition is: factory
Target partition is: ota_0
Download firmware from api.openvehicles.com/firmware/ota/v3.1/main/ovms3.bin to ota_0
Expected file size is 2100352
Preparing flash partition...
Downloading... (100361 bytes so far)
Downloading... (200369 bytes so far)
Downloading... (300577 bytes so far)
...
Downloading... (1903977 bytes so far)
Downloading... (2004185 bytes so far)
Download complete (at 2100352 bytes)
Setting boot partition...
OTA flash was successful

Flashed 2100352 bytes from api.openvehicles.com/firmware/ota/v3.1/main/ovms3.bin
Next boot will be from 'ota_0'

OVMS# ota status
Firmware: 3.1.003-2-g7ea18b4-dirty/factory/main (build idf v3.1-dev-453-
→˓g0f978bcb Apr 7 2018 16:26:57)

(continues on next page)

40 Chapter 2. User Guide

Open Vehicles

(continued from previous page)

Server Available: 3.1.003
Running partition: factory
Boot partition: ota_0

Rebooting now (with ‘module reset’) would boot from the new ota_0 partition firmware:

OVMS# ota status
Firmware: 3.1.003/ota_0/main (build idf v3.1-dev-453-g0f978bcb Apr 7 2018
→˓13:11:19)
Server Available: 3.1.003
Running partition: ota_0
Boot partition: ota_0

2.11 Boot Status

OVMS maintains a record of the reason for each boot, in RAM that survives a reboot. It can show you how long the
module has been running for, and the reason for the last reboot:

OVMS# boot status
Last boot was 2244 second(s) ago

This is reset #9 since last power cycle
Detected boot reason: SoftReset
Crash counters: 0 total, 0 early
CPU#0 boot reason was 12
CPU#1 boot reason was 12

If an unexpected (not ‘module reset’) reboot occurs within the first 10 seconds of startup (usually during the boot-time
auto-loading of modules, scripts, etc), the crash counters are incremented. If those crash counters reach 5 (without a
clean reset in between), then the auto-loading of modules is disabled for the 6th boot.

In case of a crash, the output will also contain additional debug information, i.e.:

Last crash: abort() was called on core 1
Backtrace:
0x40092ccc 0x40092ec7 0x400dbf1b 0x40176ca9 0x40176c6d 0x400eebd9 0x4013aed9
0x4013b538 0x40139c15 0x40139df9 0x4013a701 0x4013a731

If the module can access the V2 server after the crash reboot, it will also store this information along with the crash
counters in the server table “*-OVM-DebugCrash”, which will be kept on the server for 30 days.

Please include this info when sending a bug report, along with the output of “ota status” and – if available – any log
files capturing the crash event (see Logging to SD CARD). If you can repeat the crash, please try to capture a log at
“log level verbose”.

2.12 Events

Internally, OVMS raises events whenever significant events occur. An event is a lightweight message of a name plus
optionally associated internal binary data. Event names are top-down structured (so can be filtered by prefix) and
sufficient to identify the source and type of the event. Individual vehicle types may also issue their own events, and
custom user events are also possible.

2.11. Boot Status 41

Open Vehicles

To bind a script to an event, save the script in directory /store/events/<eventname> (hint: directories can
be created using the web UI editor). Whenever events are triggered, all the scripts in the corresponding /store/
events/<eventname> directory are executed. Event scripts are executed in alphanumerical order of their names.
Good practice is to prefix script names with 2-3 digit numbers in steps of 10 or 100 (i.e. first script named 50-...),
so new scripts can easily be integrated at a specific place. If the event script is written in Javascript, be sure to add the
suffix .js to the name. Other names will be executed using the standard command interpreter.

If you want to introduce a custom event (e.g. for a plugin), prefix the event name by usr.<pluginname>.
followed by the event purpose. Example: Foglight

Be aware events are processed in series from a queue, so depending on the system load and the list of registered
event listeners, there may be some delay from event generation to e.g. a script execution.

2.12.1 Commands

• event list [<key>] – Show registered listeners for all or events matching a key (part of the name)

• event trace <on|off> – Enable/disable logging of events at the “info” level. Without tracing, events are
also logged, but at the “debug” level. Ticker events are never logged.

• event raise [-d<delay_ms>] <event> – Manually raise an event, optionally with a delay. You can
raise any event you like, but you shouldn’t raise system events without good knowledge of their effects.

2.12.2 Standard Events

Event Data Purpose
app.connected One or more remote Apps have connected
app.disconnected No remote Apps are currently connected
canopen.node.emcy <event> CANopen node emergency received
canopen.node.state <event> CANopen node state change received
canopen.worker.start <worker> CANopen bus worker task started
canopen.worker.stop <worker> CANopen bus worker task stopping
clock.HHMM Per-minute local time, hour HH, minute MM
clock.dayN Per-day local time, day N (0=Sun, 6=Sat)
config.changed Configuration has changed
config.mounted Configuration is mounted and available
config.unmounted Configuration is unmounted and unavailable
egpio.input.<port>.<state> EGPIO input port change (port=0. . . 9, state=high/low)
egpio.output.<port>.<state> EGPIO output port change (port=0. . . 9, state=high/low)
gps.lock.acquired GPS lock has been acquired
gps.lock.lost GPS lock has been lost
housekeeping.init Housekeeping has initialised
location.alert.flatbed.moved GPS movement of parked vehicle detected
location.enter.<name> <name> The specified geolocation has been entered
location.leave.<name> <name> The specified geolcation has been left
network.down All networks are down
network.interface.change Network interface change detected
network.interface.up Network connection is established
network.mgr.init Network manager has initialised
network.mgr.stop Network managed has been stopped
network.modem.down Modem network is down
network.modem.up Modem network is up

Continued on next page

42 Chapter 2. User Guide

Open Vehicles

Table 2 – continued from previous page
Event Data Purpose
network.reconfigured Networking has been reconfigured
network.up One or more networks are up
network.wifi.down WIFI network is down
network.wifi.sta.bad WIFI client has bad signal level
network.wifi.sta.good WIFI client has good signal level
network.wifi.up WIFI network is up
retools.cleared.all RE frame log has been cleared
retools.cleared.changed RE frame change flags cleared
retools.cleared.discovered RE frame discovery flags cleared
retools.mode.analyse RE switched to analysis mode
retools.mode.discover RE switched to discovery mode
retools.started RE (reverse engineering) toolkit started
retools.stopped RE toolkit stopped
retools.pidscan.start RE OBD2 PID scan started
retools.pidscan.stop RE OBD2 PID scan stopped
retools.pidscan.done RE OBD2 PID scan completed
sd.insert The SD card has just been inserted
sd.mounted The SD card is mounted and ready to use
sd.remove The SD card has just been removed
sd.unmounted The SD card has completed unmounting
sd.unmounting The SD card is currently unmounting
server.v2.authenticating V2 server connection is authenticating
server.v2.connected V2 server connection established online
server.v2.connecting V2 server connection in progress
server.v2.connectwait V2 server is pausing before connection
server.v2.disconnected V2 server connection has been lost
server.v2.stopped V2 server has been stopped
server.v2.waitnetwork V2 server connection is waiting for network
server.v2.waitreconnect V2 server is pausing before re-connection
server.v3.authenticating V3 server connection is authenticating
server.v3.connected V3 server connection established online
server.v3.connecting V3 server connection in progress
server.v3.connectwait V3 server is pausing before connection
server.v3.disconnected V3 server connection has been lost
server.v3.stopped V3 server has been stopped
server.v3.waitnetwork V3 server connection is waiting for network
server.v3.waitreconnect V3 server is pausing before re-connection
server.web.socket.closed <cnt> Web server lost a websocket client
server.web.socket.opened <cnt> Web server has a new websocket client
system.modem.down Modem has been disconnected
system.modem.gotgps Modem GPS has obtained lock
system.modem.gotip Modem received IP address from DATA
system.modem.lostgps Modem GPS has lost lock
system.modem.muxstart Modem MUX has started
system.modem.netdeepsleep Modem is deep sleeping DATA network
system.modem.nethold Modem is pausing DATA network
system.modem.netloss Modem has lost DATA network
system.modem.netsleep Modem is sleeping DATA network
system.modem.netstart Modem is starting DATA network

Continued on next page

2.12. Events 43

Open Vehicles

Table 2 – continued from previous page
Event Data Purpose
system.modem.netwait Modem is pausing before starting DATA
system.modem.poweredon Modem is powered on
system.modem.poweringon Modem is powering on
system.modem.received.ussd <ussd> A USSD message has been received
system.modem.stop Modem has been shut down
system.shutdown System has been shut down
system.shuttingdown System is shutting down
system.start System is starting
system.vfs.file.changed <path> VFS file updated (note: only sent on some file changes)
system.wifi.ap.sta.connected WiFi access point got a new client connection
system.wifi.ap.sta.disconnected WiFi access point lost a client connection
system.wifi.ap.sta.ipassigned WiFi access point assigned an IP address to a client
system.wifi.ap.start WiFi access point mode starting
system.wifi.ap.stop WiFi access point mode stopping
system.wifi.down WiFi is shutting down
system.wifi.scan.done WiFi scan has been finished
system.wifi.sta.connected WiFi client is connected to a station
system.wifi.sta.disconnected WiFi client has disconnected from a station
system.wifi.sta.gotip WiFi client got an IP address
system.wifi.sta.lostip WiFi client lost it’s IP address
system.wifi.sta.start WiFi client mode starting
ticker.1 One second has passed since last ticker
ticker.10 Ten seconds have passed
ticker.300 Five minutes have passed
ticker.3600 One hour has passed
ticker.60 One minute has passed
ticker.600 Ten minutes have passed
vehicle.alarm.off Vehicle alarm has been disarmed
vehicle.alarm.on Vehicle alarm has been armed
vehicle.alert.12v.off 12V system voltage has recovered
vehicle.alert.12v.on 12V system voltage is below alert threshold
vehicle.alert.bms BMS cell/pack volts/temps exceeded thresholds
vehicle.asleep Vehicle systems are asleep
vehicle.awake Vehicle systems are awake
vehicle.aux.12v.on Vehicle 12V auxiliary system is on (base system awake)
vehicle.aux.12v.off Vehicle 12V auxiliary system is off
vehicle.charge.12v.start Vehicle 12V battery is charging
vehicle.charge.12v.stop Vehicle 12V battery has stopped charging
vehicle.charge.finished Vehicle charge has completed normally
vehicle.charge.mode <mode> Vehicle charge mode has been set
vehicle.charge.pilot.off Vehicle charge pilot signal is off
vehicle.charge.pilot.on Vehicle charge pilot signal is on
vehicle.charge.prepare Vehicle is preparing to charge
vehicle.charge.start Vehicle has started to charge
vehicle.charge.state <state> Vehicle charge state has changed
vehicle.charge.stop Vehicle has stopped charging
vehicle.charge.timermode.off Vehicle charge timer mode has been switched off
vehicle.charge.timermode.on Vehicle charge timer mode has been switched on
vehicle.headlights.off Vehicle headlights are off

Continued on next page

44 Chapter 2. User Guide

Open Vehicles

Table 2 – continued from previous page
Event Data Purpose
vehicle.headlights.on Vehicle headlights are on
vehicle.locked Vehicle has been locked
vehicle.off Vehicle has been switched off
vehicle.on Vehicle has been switched on
vehicle.require.gps A vehicle has indicated it requires GPS
vehicle.require.gpstime A vehicle has indicated it requires GPS time
vehicle.type.cleared Vehicle module has been unloaded
vehicle.type.set <type> Vehicle module has been loaded
vehicle.unlocked Vehicle has been unlocked
vehicle.valet.off Vehicle valet mode deactivated
vehicle.valet.on Vehicle valet mode activated

2.13 Geofenced Locations

This section of the manual is still under development.

2.14 Notifications

Notifications can be simple text messages or transport structured data. To distinguish by their purpose and origin,
notifications have a type and a subtype.

Notifications are sent by the module via the available communication channels (client/server connections). If a channel
is temporarily down (e.g. due to a connection loss), the notifications for that channel will be kept in memory until the
channel is available again. (Note: this message queue does not survive a crash or reboot of the module.)

Channels process notifications differently depending on the way they work. For example, a v2 server will forward text
notifications as push messages to connected smart phones and email readers, a v3 server will publish them under an
MQTT topic, and the webserver will display the message as a modal dialog. See the respective manual sections for
details.

Notification types currently defined:

• info – informational text messages

• alert – alert text messages

• error – error code messages

• data – historical data records, usually CSV formatted

• stream – live data streaming (high bandwidth), usually JSON formatted

The standard subtypes used are listed below, these can be used to filter messages. Vehicles may introduce custom
notifications and replace standard notifications, see the respective user guide section for details.

Subtypes by convention are given in lower case, with dots ‘’.” as structural separators.

Notification channels currently defined:

• ovmsv2 – server v2 connection

• ovmsv3 – server v3 connection

• ovmsweb – websocket connections

• pushover – pushover text messaging service

2.13. Geofenced Locations 45

Open Vehicles

Channels may have multiple active instances (“readers”), for example you can open multiple websocket connections.
Channels may exclude notification types. Currently stream records are only supported on a websocket connection,
all other types are supported on all channels.

Use notify status to see the currently registered channels (“readers”). Example:

OVMS# notify status
Notification system has 3 readers registered

pushover(1): verbosity=1024
ovmsv2(2): verbosity=1024
ovmsweb(3): verbosity=65535

Notify types:
alert: 0 entries
data: 0 entries
error: 0 entries
info: 0 entries
stream: 0 entries

The channel’s “verbosity” defines the supported maximum length of a textual notification message on that channel.
Notification senders should honor this, but not all may do so. If messages exceed this limit, they may be truncated.

2.14.1 Sending notifications

You can send custom notifications from the shell or command scripts by using the notify raise command. The
command can send the output of another command, an error code (implies type error), or any text you enter. For
example, to send a custom text message, do:

OVMS# notify raise text info usr.anton.welcome "Hello, wonderful person!"

In this case, the type would be info and the subtype usr.anton.welcome. The type must match one of the
defined types, the subtype can be chosen arbitrarily. Please use a unique usr. prefix for custom notifications to avoid
collisions.

To send a battery status command result, do:

OVMS# notify raise command info battery.status "stat"

To send notifications from Duktape scripts, use the API call OvmsNotify.Raise().

2.14.2 Suppress notifications

You can filter the channels to be used for notifications by their subtypes. By default, no subtypes are filtered on any
channel, so all notifications are sent to all clients.

To disable (suppress) notifications, create a config entry based on the respective subtype, that lists the channels to
include or exclude:

OVMS# config set notify <subtype> <channels>

<channels> options are:

a) explicit inclusion: e.g. ovmsv2,pushover (only enable these)

b) explicit exclusion: e.g. *,-ovmsv3,-ovmsweb (only disable these)

c) - (dash) to disable all

d) empty/* to enable all

46 Chapter 2. User Guide

Open Vehicles

Example: to disable the OTA update notifications on all channels, do:

OVMS# config set notify ota.update -

2.14.3 Standard notifications

Type Subtype Purpose / Content
alert alarm.sounding Vehicle alarm is sounding
alert alarm.stopped Vehicle alarm has stopped
alert batt.12v.alert 12V Battery critical
alert batt.12v.recovered 12V Battery restored
alert batt.bms.alert Battery pack/cell alert (critical voltage/temperature deviation)
alert batt.soc.alert Battery SOC critical
info charge.done stat on charge finished
info charge.started stat on start of charge
info charge.stopped stat on planned charge stop
alert charge.stopped stat on unplanned charge stop
data debug.crash Transmit crash backtraces (→ *-OVM-DebugCrash)
data debug.tasks Transmit task statistics (→ *-OVM-DebugTasks)
alert flatbed.moved Vehicle is being transported while parked - possible theft/flatbed
info heating.started stat on start of heating (battery)
data log.grid Grid (charge/generator) history log (see below) (→ *-LOG-Grid)
data log.trip Trip history log (see below) (→ *-LOG-Trip)
alert modem.no_pincode No PIN code for SIM card configured
alert modem.wrongpincode Wrong pin code
info ota.update New firmware available/downloaded/installed
info pushover Connection failure / message delivery response
stream retools.list.update RE toolkit CAN frame list update
stream retools.status RE toolkit general status update
info valet.disabled Valet mode disabled
info valet.enabled Valet mode enabled
alert valet.hood Vehicle hood opened while in valet mode
alert valet.trunk Vehicle trunk opened while in valet mode
alert vehicle.idle Vehicle is idling / stopped turned on

2.14.4 Grid history log

The grid history log can be used as a source for long term statistics on your charges and typical energy usages and to
calculate your vehicle energy costs.

Log entries are created on each change of the charge or generator state (v.c.state / v.g.state).

You need to enable this log explicitly by configuring a storage time via config param notify log.grid.
storetime (in days) or via the web configuration page. Set to 0/empty to disable the log. Already stored log
entries will be kept on the server until expiry or manual deletion.

Note: the stability of the total energy counters included in this log depends on their source and persistence on the
vehicle and/or module. If they are kept on the module, they may lose their values on a power outage.

• Notification subtype: log.grid

• History record type: *-LOG-Grid

2.14. Notifications 47

Open Vehicles

• Format: CSV

• Archive time: config notify log.grid.storetime (days)

• Fields/columns:

– pos_gpslock

– pos_latitude

– pos_longitude

– pos_altitude

– pos_location

– charge_type

– charge_state

– charge_substate

– charge_mode

– charge_climit

– charge_limit_range

– charge_limit_soc

– gen_type

– gen_state

– gen_substate

– gen_mode

– gen_climit

– gen_limit_range

– gen_limit_soc

– charge_time

– charge_kwh

– charge_kwh_grid

– charge_kwh_grid_total

– gen_time

– gen_kwh

– gen_kwh_grid

– gen_kwh_grid_total

– bat_soc

– bat_range_est

– bat_range_ideal

– bat_range_full

– bat_voltage

– bat_temp

48 Chapter 2. User Guide

Open Vehicles

– charge_temp

– charge_12v_temp

– env_temp

– env_cabintemp

– bat_soh

– bat_health

– bat_cac

– bat_energy_used_total

– bat_energy_recd_total

– bat_coulomb_used_total

– bat_coulomb_recd_total

2.14.5 Trip history log

The trip history log can be used as a source for long term statistics on your trips and typical trip power usages, as well
as your battery performance in different environmental conditions and degradation over time.

Entries are created at the end of a trip (specifically v.e.on transition to off). Configure a minimum trip length for
logging by the config variable notify log.trip.minlength or via the web UI.

You need to enable this log explicitly by configuring a storage time via config param notify log.trip.
storetime (in days) or via the web configuration page. Set to 0/empty to disable the log. Already stored log
entries will be kept on the server until expiry or manual deletion.

• Notification subtype: log.trip

• History record type: *-LOG-Trip

• Format: CSV

• Archive time: config notify log.trip.storetime (days)

• Fields/columns:

– pos_gpslock

– pos_latitude

– pos_longitude

– pos_altitude

– pos_location

– pos_odometer

– pos_trip

– env_drivetime

– env_drivemode

– bat_soc

– bat_range_est

– bat_range_ideal

2.14. Notifications 49

Open Vehicles

– bat_range_full

– bat_energy_used

– bat_energy_recd

– bat_coulomb_used

– bat_coulomb_recd

– bat_soh

– bat_health

– bat_cac

– bat_energy_used_total

– bat_energy_recd_total

– bat_coulomb_used_total

– bat_coulomb_recd_total

– env_temp

– env_cabintemp

– bat_temp

– inv_temp

– mot_temp

– charge_12v_temp

– tpms_temp_min

– tpms_temp_max

– tpms_pressure_min

– tpms_pressure_max

– tpms_health_min

– tpms_health_max

2.15 Time

This section of the manual is still under development.

2.16 SSL/TLS

2.16.1 SSL/TLS Trusted Certificate Authorities

A default minimal list of trusted certificate authorities (CA) is provided with the firmware. you can see the current
loaded list with the tls trust list command:

50 Chapter 2. User Guide

Open Vehicles

OVMS# tls trust list
AddTrust External CA Root length 1521
1521 byte certificate: AddTrust External CA Root

cert. version : 3
serial number : 01
issuer name : C=SE, O=AddTrust AB, OU=AddTrust External TTP Network,

→˓CN=AddTrust External CA Root
subject name : C=SE, O=AddTrust AB, OU=AddTrust External TTP Network,

→˓CN=AddTrust External CA Root
issued on : 2000-05-30 10:48:38
expires on : 2020-05-30 10:48:38
signed using : RSA with SHA1
RSA key size : 2048 bits
basic constraints : CA=true
key usage : Key Cert Sign, CRL Sign

If you want to add to this list, you can place the PEM formatted root CA certificate in the /store/trustedca
directory on your config partition using the text editor. Then, reload the list with:

OVMS# tls trust reload
Reloading SSL/TLS trusted CA list
SSL/TLS has 4 trusted CAs, using 5511 bytes of memory

On boot, the trusted Certificate Authorities provided in firmware, and put in your /store/trustedca directory,
will be automatically loaded and made available.

These trusted certificate authorities are used by the various module in the OVMS system, when establishing SSL/TLS
connections (in order to verify the certificate of the server being connected to).

2.16.2 How to get the CA PEM for a Server

Download from CA

If you know the CA, check their download section.

Using a Browser

This only works for https servers:

1. Open the website you want to access

2. Open the encryption info (e.g. Chrome: lock icon at URL → show certificate)

3. Display the certificate chain (e.g. Chrome: tab “Details”, first element)

4. Select the last entry before the actual server certificate

5. Export the certificate in PEM format (usually the default)

6. Install the file contents as shown above

Using OpenSSL or GNU TLS CLI

This works for all servers and ports:

2.16. SSL/TLS 51

Open Vehicles

openssl s_client -connect HOSTNAME:PORT -servername HOSTNAME -showcerts </dev/null \
| sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p'

. . . or. . . :

gnutls-cli --print-cert --port PORT HOSTNAME </dev/null \
| sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p'

Substitute HOSTNAME and PORT accordingly, e.g. https = port 443. The sed just strips the other info from the
output and can be omitted to check for errors or details.

There should be two certificates in the output, look for BEGIN and END markers. The first one is the server certificate,
the second one the CA certificate. Copy that second certificate into the editor, take care to include the BEGIN and
END lines.

2.17 Scripting

2.17.1 Command Scripts

Lists of commands can be entered into a script file and stored in the VFS for execution (in the /store/scripts
directory). These are called ‘command scripts’ and are simple sequential lists of OVMS commands. A command
script can be executed with:

OVMS# . <script>
OVMS# script run <script>

Command scripts can also be stored in the /store/events/<eventname> directory structure. Whenever events
are triggered, all the scripts in the corresponding /store/events/<eventname> directory are executed. Event
scripts are executed in alphanumerical order of their names. Good practice is to prefix script names with 2-3 digit
numbers in steps of 10 or 100 (i.e. first script named 50-...), so new scripts can easily be integrated at a specific
place.

Output of background scripts without console association (e.g. event scripts) will be sent to the log with tag script
at “info” level.

Note that the developer building firmware can optionally set the OVMS_DEV_SDCARDSCRIPTS build flag. If that
is set, then the system will also check /sd/scripts and /sd/events for scripts. This should not be used for
production builds, as you could hack the system just by plugging in an SD card.

In addition to command scripts, more sophisticated scripting capabilities may be enabled if the JavaScript environment
is enabled in the build. This is discussed in the next section of this guide.

2.17.2 JavaScripting

OVMS v3 includes a powerful JavaScript engine. In addition to the standard, relatively fixed, firmware flashed to
the module, JavaScripting can be used to dynamically load script code to run alongside the standard firmware. This
javascript code can respond to system events, and perform background monitoring and other such tasks.

The simplest way of running javascript is to place a piece of javascript code in the /store/scripts directory, with
the file extension .js. Then, the standard mechanism of running scripts can be employed:

OVMS# . <script.js>
OVMS# script run <script.js>

52 Chapter 2. User Guide

Open Vehicles

Short javascript snippets can also be directly evaluated with:

OVMS# script eval <code>

Such javascript code can also be placed in the /store/events/<eventname> directories, to be automatically
executed when the specified event is triggered. The script file name suffix must be .js to run the Javascript interpreter.

Note: The scripting engine used is Duktape. Duktape supports ECMAScript E5/E5.1 with some additions from later
ECMAScript standards. Duktape does not emulate a browser environment, so you don’t have window or document
objects etc., just core Javascript plus the OVMS API and plugins.

Duktape builtin objects and functions: https://duktape.org/guide.html#duktapebuiltins

2.17.3 Persistent JavaScript

When a javascript script is executed, it is evaluated in the global javascript context. Care should be taken that local
variables may pollute that context, so it is in general recommended that all JavaScript scripts are wrapped:

(function(){
... user code ...

})();

It is also possible to deliberately load functions, and other code, into the global context persistently, and have that
code permanently available and running. When the JavaScript engine initialises, it automatically runs a special startup
script:

/store/scripts/ovmsmain.js

That script can in turn include other code. If you make a change to such persistent code, and want to reload it, you can
with:

OVMS# script reload

2.17.4 JavaScript Modules

The OVMS JavaScript engine supports the concept of modules (using the node.js style of exports). Such modules can
be written like this:

exports.print = function(obj, ind) {
var type = typeof obj;
if (type == "object" && Array.isArray(obj)) type = "array";
if (!ind) ind = '';

switch (type) {
case "string":

print('"' + obj.replace(/\"/g, '\\\"') + '"');
break;

case "array":
print('[\n');
for (var i = 0; i < obj.length; i++) {
print(ind + ' ');
exports.print(obj[i], ind + ' ');
if (i != obj.length-1) print(',');

(continues on next page)

2.17. Scripting 53

https://duktape.org/
http://www.ecma-international.org/ecma-262/5.1/
https://duktape.org/guide.html#duktapebuiltins

Open Vehicles

(continued from previous page)

print('\n');
}
print(ind + ']');
break;

case "object":
print('{\n');
var keys = Object.keys(obj);
for (var i = 0; i < keys.length; i++) {
print(ind + ' "' + keys[i] + '": ');
exports.print(obj[keys[i]], ind + ' ');
if (i != keys.length-1) print(',');
print('\n');

}
print(ind + '}');
break;

default:
print(obj);

}

if (ind == '') print('\n');
}

By convention, modules such as this are placed in the /store/scripts/lib directory as <modulename>.js.
These modules can be loaded with:

JSON = require("lib/JSON");

And used as:

JSON.print(this);

To automatically load a custom module on startup, add the MyPlugin = require("lib/MyPlugin"); line
to ovmsmain.js.

There are a number of internal modules already provided with the firmware, and by convention these are provided
under the int/<modulename> namespace. The above JSON module is, for example, provided as int/JSON and
automatically loaded into the global context. These internal modules can be directly used (so JSON.print(this)
works directly).

2.17.5 Testing JavaScript / Modules

Use the editor (see Tools menu) to test or evaluate arbitrary Javascript code. This can be done on the fly, i.e. without
saving the code to a file first. Think of it as a server side Javascript shell.

Testing modules normally involves reloading the engine, as the require() call caches all loaded modules until
restart. To avoid this during module development, use the following template code. This mimics the require() call
without caching and allows to do tests within the same evaluation run:

// Load module:
mymodule = (function(){
exports = {};

// ... insert module code here ...

return exports;

(continues on next page)

54 Chapter 2. User Guide

Open Vehicles

(continued from previous page)

})();

// Module API tests:
mymodule.myfunction1();
JSON.print(mymodule.myfunction2());

As the module is actually loaded into the global context this way just like using require(), anything else using the
module API (e.g. a web plugin) will also work after evaluation.

2.17.6 Internal Objects and Functions/Methods

A number of OVMS objects have been exposed to the JavaScript engine, and are available for use by custom scripts
via the global context.

The global context is the analog to the window object in a browser context, it can be referenced explicitly as this
on the JavaScript toplevel or as globalThis from any context.

You can see the global context objects, methods, functions and modules with the JSON.print(this) method:

OVMS# script eval 'JSON.print(this)'
{

"performance": {
"now": function now() { [native code] }

},
"assert": function () { [native code] },
"print": function () { [native code] },
"OvmsCommand": {
"Exec": function Exec() { [native code] }

},
"OvmsConfig": {
"Delete": function Delete() { [native code] },
"Get": function Get() { [native code] },
"Instances": function Instances() { [native code] },
"Params": function Params() { [native code] },
"Set": function Set() { [native code] }

},
"OvmsEvents": {
"Raise": function Raise() { [native code] }

},
"OvmsLocation": {
"Status": function Status() { [native code] }

},
"OvmsMetrics": {
"AsFloat": function AsFloat() { [native code] },
"AsJSON": function AsJSON() { [native code] },
"Value": function Value() { [native code] }

},
"OvmsNotify": {
"Raise": function Raise() { [native code] }

},
"OvmsVehicle": {
"ClimateControl": function ClimateControl() { [native code] },
"Homelink": function Homelink() { [native code] },
"Lock": function Lock() { [native code] },
"SetChargeCurrent": function SetChargeCurrent() { [native code] },
"SetChargeMode": function SetChargeMode() { [native code] },

(continues on next page)

2.17. Scripting 55

Open Vehicles

(continued from previous page)

"SetChargeTimer": function SetChargeTimer() { [native code] },
"StartCharge": function StartCharge() { [native code] },
"StartCooldown": function StartCooldown() { [native code] },
"StopCharge": function StopCharge() { [native code] },
"StopCooldown": function StopCooldown() { [native code] },
"Type": function Type() { [native code] },
"Unlock": function Unlock() { [native code] },
"Unvalet": function Unvalet() { [native code] },
"Valet": function Valet() { [native code] },
"Wakeup": function Wakeup() { [native code] }

},
"JSON": {
"format": function () { [ecmascript code] },
"print": function () { [ecmascript code] }

},
"PubSub": {
"publish": function () { [ecmascript code] },
"subscribe": function () { [ecmascript code] },
"clearAllSubscriptions": function () { [ecmascript code] },
"clearSubscriptions": function () { [ecmascript code] },
"unsubscribe": function () { [ecmascript code] }

}
}

Global Context

• assert(condition,message) Assert that the given condition is true. If not, raise a JavaScript exception
error with the given message.

• print(string) Print the given string on the current terminal. If no terminal (for example a background
script) then print to the system console as an informational message.

• performance.now() Returns monotonic time since boot in milliseconds, with microsecond resolution.

JSON

The JSON module extends the native builtin JSON.stringify and JSON.parse methods by a format and a
print method, to format and/or print out a given javascript object in JSON format. Both by default insert spacing
and indentation for readability and accept an optional false as a second parameter to produce a compact version for
transmission.

• JSON.print(data) Output data (any Javascript data) as JSON, readable

• JSON.print(data, false) . . . compact (without spacing/indentation)

• str = JSON.format(data) Format data as JSON string, readable

• str = JSON.format(data, false) . . . compact (without spacing/indentation)

• JSON.stringify(value[, replacer[, space]]) see MDN JSON/stringify

• JSON.parse(text[, reviver]) see MDN JSON/parse

Note: The JSON module is provided for compatibility with standard Javascript object dumps and for readability. If
performance is an issue, consider using the Duktape native builtins JSON.stringify() / Duktape.enc() and
JSON.parse() / Duktape.dec() (see Duktape builtins and Duktape JSON for explanations of these).

56 Chapter 2. User Guide

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
https://github.com/svaarala/duktape/blob/master/doc/json.rst

Open Vehicles

For example, Duktape.enc('JC', data) is equivalent to JSON.format(data, false) except for the
representation of functions. Using the JX encoding will omit unnecessary quotings.

HTTP

The HTTP API provides asynchronous GET & POST requests for HTTP and HTTPS. Requests can return text and
binary data and follow 301/302 redirects automatically. Basic authentication is supported (add username & password
to the URL), digest authentication is not yet implemented.

The handler automatically excludes the request objects from garbage collection until finished (success/failure), so you
don’t need to store a global reference to the request.

• req = HTTP.Request(cfg) Perform asynchronous HTTP/HTTPS GET or POST request.

Pass the request parameters using the cfg object:

– url: standard URL/URI syntax, optionally including user auth and query string

– post: optional POST data, set to an empty string to force a POST request. Note: you need
to provide this in encoded form. If no Content-Type header is given, it will default to
x-www-form-urlencoded.

– headers: optional array of objects containing key-value pairs of request headers. Note:
User-Agent will be set to the standard OVMS user agent if not present here.

– timeout: optional timeout in milliseconds, default: 120 seconds.

– binary: optional flag: true = perform a binary request (see response object).

– done: optional success callback function, called with the response object as argument, with this
pointing to the request object.

– fail: optional error callback function, called with the error string as argument, with this point-
ing to the request object.

– always: optional final callback function, no arguments, this = request object.

The cfg object is extended and returned by the API (req). It will remain stable at least until the request
has finished and callbacks have been executed. On completion, the req object may contain an updated
url and a redirectCount if redirects have been followed. Member error (also passed to the fail
callback) will be set to the error description if an error occurred. The always callback if present is called
in any case, after a done or fail callback has been executed. Check this.error in the always
callback to know if an error occurred.

On success, member object response will be present and contain:

– statusCode: the numerical HTTP Status response code

– statusText: the HTTP Status response text

– headers: array of response headers, each represented by an object { <name>: <value> }

– body: only for text requests: response body as a standard string

– data: only for binary requests: response body as a Uint8Array

Notes: any HTTP response from the server is considered success, check response.statusCode for
server specific errors. Callbacks are executed without an output channel, so all print outputs will be
written to the system log. Hint: use JSON.print(this, false) in the callback to get a debug log
dump of the request.

Examples:

2.17. Scripting 57

Open Vehicles

// simple POST, ignore all results:
HTTP.Request({ url: "http://smartplug.local/switch", post: "state=on&when=now
→˓" });

// fetch and inspect a JSON object:
HTTP.Request({

url: "http://solarcontroller.local/status?fmt=json",
done: function(resp) {

if (resp.statusCode == 200) {
var status = JSON.parse(resp.body);
if (status["power"] > 5000)
OvmsVehicle.StartCharge();

else if (status["power"] < 3000)
OvmsVehicle.StopCharge();

}
}

});

// override user agent, log completed request object:
HTTP.Request({

url: "https://dexters-web.de/f/test.json",
headers: [{ "User-Agent": "Mr. What Zit Tooya" }],
always: function() { JSON.print(this, false); }

});

• HTTP.request() Legacy alias for HTTP.Request(), please do not use.

Note: SSL requests (https) can take up to 12 seconds on an idle module. SSL errors also may not reflect the actual
error, for example an empty server response with code 400 may be reported as a general “SSL error”. If you get “SSL
error” on a valid request, you may need to install a custom root CA certificate; see SSL/TLS.

VFS

The VFS API provides asynchronous loading and saving of files on /store and /sd. Text and binary data is
supported. Currently only complete files can be loaded, the saver supports an append mode. In any case, the data to
save/load needs to fit into RAM twice, as the buffer needs to be converted to/from Javascript.

The handler automatically excludes the request objects from garbage collection until finished (success/failure), so you
don’t need to store a global reference to the request.

Loading or saving protected paths (/store/ovms_config/...) is not allowed. Saving to a path automatically
creates missing directories.

See AuxBatMon: 12V History Chart for a complete application usage example.

• req = VFS.Load(cfg) Perform asynchronous file load.

Pass the request parameters using the cfg object:

– path: full file path, e.g. /sd/mydata/telemetry.json

– binary: optional flag: true = perform a binary request, returned data will be an Uint8Array)

– done: optional success callback function, called with the data content read as the single argument,
this pointing to the request object

– fail: optional error callback function, called with the error string as argument, with this point-
ing to the request object

58 Chapter 2. User Guide

Open Vehicles

– always: optional final callback function, no arguments, this = request object

The cfg object is extended and returned by the API (req). It will remain stable at least until the request
has finished and callbacks have been executed. On success, the req object contains a data property (also
passed to the done callback), which is either a string (text mode) or a Uint8Array (binary mode).

Member error (also passed to the fail callback) will be set to the error description if an error occurred.
The always callback if present is called in any case, after a done or fail callback has been executed.
Check this.error in the always callback to know if an error occurred.

Example:

// Load a custom telemetry object from a JSON file on SD card:
var telemetry;
VFS.Load({
path: "/sd/mydata/telemetry.json",
done: function(data) {
telemetry = Duktape.dec('jx', data);
// ...process telemetry...

},
fail: function(error) {
print("Error loading telemetry: " + error);

}
});

• req = VFS.Save(cfg) Perform asynchronous file save.

Pass the request parameters using the cfg object:

– data: the string or Uint8Array to save

– path: full file path (missing directories will automatically be created)

– append: optional flag: true = append to the end of the file (also creating the file as necessary)

– done: optional success callback function, called with no arguments, this pointing to the request
object

– fail: optional error callback function, called with the error string as argument, with this point-
ing to the request object

– always: optional final callback function, no arguments, this = request object

The cfg object is extended and returned by the API (req). It will remain stable at least until the request
has finished and callbacks have been executed.

Member error (also passed to the fail callback) will be set to the error description if an error occurred.
The always callback if present is called in any case, after a done or fail callback has been executed.
Check this.error in the always callback to know if an error occurred.

Example:

// Save the above telemetry object in JSON format on SD card:
VFS.Save({

path: "/sd/mydata/telemetry.json",
data: Duktape.enc('jx', telemetry),
fail: function(error) {

print("Error saving telemetry: " + error);
}

});

2.17. Scripting 59

Open Vehicles

Warning: File I/O, especially saving, can cause short freezes of the module!

Minimize save frequency and, if possible, avoid saving while the vehicle is in operation (driving / charging), by
using a check like:

// Saving to VFS may cause short blockings, so only allow when vehicle is off:
function allowSave() {

return !OvmsMetrics.Value("v.e.on") && !OvmsMetrics.Value("v.c.charging");
}

PubSub

The PubSub module provides access to a Publish-Subscribe framework. In particular, this framework is used to deliver
events to the persistent JavaScript framework in a high performance flexible manner. An example script to print out
the ticker.10 event is:

var myTicker=function(msg,data){ print("Event: "+msg+"\n"); };

PubSub.subscribe("ticker.10",myTicker);

The above example created a function myTicker in global context, to print out the provided event name. Then, the
PubSub.subscribe module method is used to subscribe to the ticker.10 event and have it call myTicker
every ten seconds. The result is “Event: ticker.10” printed once every ten seconds.

• id = PubSub.subscribe(topic, handler) Subscribe the function handler to messages of the
given topic. Note that types are not limited to OVMS events. The method returns an id to be used to
unsubscribe the handler.

• PubSub.publish(topic, [data]) Publish a message of the given topic. All subscribed handlers will
be called with the topic and data as arguments. data can be any Javascript data.

• PubSub.unsubscribe(id | handler | topic) Cancel a specific subscription, all subscriptions of
a specific handler or all subscriptions to a topic.

OvmsCommand

• str = OvmsCommand.Exec(command) The OvmsCommand object exposes one method “Exec”. This
method is passed a single parameter as the command to be executed, runs that command, and then returns
the textual output of the command as a string. For example:

print(OvmsCommand.Exec("boot status"));
Last boot was 14 second(s) ago

This is reset #0 since last power cycle
Detected boot reason: PowerOn (1/14)
Crash counters: 0 total, 0 early

OvmsConfig

• array = OvmsConfig.Params() Returns the list of available configuration parameters.

• array = OvmsConfig.Instances(param) Returns the list of instances for a specific parameter.

• string = OvmsConfig.Get(param,instance,default) Returns the specified parame-
ter/instance value.

60 Chapter 2. User Guide

Open Vehicles

• object = OvmsConfig.GetValues(param, [prefix]) Gets all param instances matching the
optional prefix with their associated values. If a prefix is given, the returned property names will have
the prefix removed. Note: all values are returned as strings, you need to convert them as needed.

• OvmsConfig.Set(param,instance,value) Sets the specified parameter/instance value.

• OvmsConfig.SetValues(param, prefix, object) Sets all properties of the given object as
param instances after adding the prefix. Note: non-string property values will be converted to their string
representation.

• OvmsConfig.Delete(param,instance) Deletes the specified parameter instance.

Beginning with firmware release 3.2.009, a dedicated configuration parameter usr is provided for plugins. You
can add new config instances simply by setting them, for example by OvmsConfig.Set("usr", "myplugin.
level", 123) or by the config set command.

Read plugin configuration example:

// Set default configuration:
var cfg = { level: 100, enabled: "no" };

// Read user configuration:
Object.assign(cfg, OvmsConfig.GetValues("usr", "myplugin."));

if (cfg["enabled"] == "yes") {
print("I'm enabled at level " + Number(cfg["level"]));

}

Keep in mind to prefix all newly introduced instances by a unique plugin name, so your plugin can nicely coexist with
others.

OvmsEvents

This provides access to the OVMS event system. While you may raise system events, the primary use is to raise
custom events. Sending custom events is a lightweight method to inform the web UI (or other plugins) about simple
state changes. Use the prefix usr. on custom event names to prevent conflicts with later framework additions.

Another use is the emulation of the setTimeout() and setInterval() browser methods by subscribing to a
delayed event. Pattern:

function myTimeoutHandler() {
// raise the timeout event again here to emulate setInterval()

}
PubSub.subscribe('usr.myplugin.timeout', myTimeoutHandler);

// start timeout:
OvmsEvents.Raise('usr.myplugin.timeout', 1500);

• OvmsEvents.Raise(event, [delay_ms]) Signal the event, optionally with a delay (milliseconds,
must be given as a number). Delays are handled by the event system, the method call returns immediately.

OvmsLocation

• isatlocation = OvmsLocation.Status(location) Check if the vehicle is currently in a loca-
tion’s geofence (pass the location name as defined). Returns true or false, or undefined if the
location name passed is not valid.

2.17. Scripting 61

Open Vehicles

Note: to get the actual GPS coordinates, simply read metrics v.p.latitude, v.p.longitude and v.p.
altitude.

OvmsMetrics

• str = OvmsMetrics.Value(metricname [,decode]) Returns the typed value (default) or string
representation (with decode = false) of the metric value.

• num = OvmsMetrics.AsFloat(metricname) Returns the float representation of the metric value.

• str = OvmsMetrics.AsJSON(metricname) Returns the JSON representation of the metric value.

• obj = OvmsMetrics.GetValues([filter] [,decode]) Returns an object of all metrics match-
ing the optional name filter/template (see below), by default decoded into Javascript types (i.e. numerical
values will be JS numbers, arrays will be JS arrays etc.). The object returned is a snapshot, the values
won’t be updated.

The filter argument may be a string (for substring matching as with metrics list), an array of full
metric names, or an object of which the property names are used as the metric names to get. The object
won’t be changed by the call, see Object.assign() for a simple way to merge objects. Passing an
object is especially convenient if you already have an object to collect metrics data.

The decode argument defaults to true, pass false to retrieve the metrics string representations instead
of typed values.

With the introduction of the OvmsMetrics.GetValues() call, you can get multiple metrics at once and let the
system decode them for you. Using this you can for example do:

// Get all metrics matching substring "v.b.c." (vehicle battery cell):
var metrics = OvmsMetrics.GetValues("v.b.c.");
print("Temperature of cell 3: " + metrics["v.b.c.temp"][2] + " °C\n");
print("Voltage of cell 7: " + metrics["v.b.c.voltage"][6] + " V\n");

// Get some specific metrics:
var ovmsinfo = OvmsMetrics.GetValues(["m.version", "m.hardware"]);
JSON.print(ovmsinfo);

This obsoletes the old pattern of parsing a metric’s JSON representation using eval(), JSON.parse() or
Duktape.dec() you may still find in some plugins. Example:

var celltemps = eval(OvmsMetrics.AsJSON("v.b.c.temp"));
print("Temperature of cell 3: " + celltemps[2] + " °C\n");

Warning: Never use eval() on unsafe data, e.g. user input! eval() executes arbitrary Javascript, so can
be exploited for code injection attacks.

OvmsNotify

• id = OvmsNotify.Raise(type, subtype, message) Send a notification of the given type and
subtype with message as contents. Returns the message id allocated or 0 in case of failure. Examples:

// send an info notification to the user:
OvmsNotify.Raise("info", "usr.myplugin.status", "Alive and kicking!");

(continues on next page)

62 Chapter 2. User Guide

Open Vehicles

(continued from previous page)

// send a JSON stream to a web plugin:
OvmsNotify.Raise("stream", "usr.myplugin.update", JSON.format(streamdata,
→˓false));

// send a CSV data record to a server:
OvmsNotify.Raise("data", "usr.myplugin.record", "*-MyStatus,0,86400,Alive");

OvmsVehicle

The OvmsVehicle object is the most comprehensive, and exposes several methods to access the current vehicle. These
include:

• str = OvmsVehicle.Type() Return the type of the currently loaded vehicle module

• success = OvmsVehicle.Wakeup() Wakeup the vehicle (return TRUE if successful)

• success = OvmsVehicle.Homelink(button,durationms) Fire the given homelink button

• success = OvmsVehicle.ClimateControl(onoff) Turn on/off climate control

• success = OvmsVehicle.Lock(pin) Lock the vehicle

• success = OvmsVehicle.Unlock(pin) Unlock the vehicle

• success = OvmsVehicle.Valet(pin) Activate valet mode

• success = OvmsVehicle.Unvalet(pin) Deactivate valet mode

• success = OvmsVehicle.SetChargeMode(mode) Set the charge mode (“standard” / “storage” /
“range” / “performance”)

• success = OvmsVehicle.SetChargeCurrent(limit) Set the charge current limit (in amps)

• success = OvmsVehicle.SetChargeTimer(onoff, start) Set the charge timer

• success = OvmsVehicle.StartCharge() Start the charge

• success = OvmsVehicle.StopCharge() Stop the charge

• success = OvmsVehicle.StartCooldown() Start a cooldown charge

• success = OvmsVehicle.StopCooldown() Stop the cooldown charge

2.17.7 Test Utilities

You can use the web UI editor and shell to edit, upload and test script files. If you need many test cycles, a convenient
alternative is to use shell scripts to automate the process.

If you’ve configured ssh public key authentication, you can simply use scp to upload scripts and ssh to execute
commands:

#!/bin/bash
Upload & execute a script file:

FILE="test.js"
PATH="/store/scripts/"

OVMS_HOST="yourovms.local"

(continues on next page)

2.17. Scripting 63

Open Vehicles

(continued from previous page)

SCP="/usr/bin/scp -q"
SSH="/usr/bin/ssh"

Upload:
$SCP "${FILE}" "${OVMS_HOST}:${PATH}${FILE}"

Execute:
$SSH "${OVMS_HOST}" "script run ${FILE}"

Customize to your needs. If you want to test a plugin, simply replace the script run command by script
reload followed by some script eval calls to your plugin API.

Note: this may be slow, as the ssh session needs to be negotiated for every command.

A faster option is using the OVMS HTTP REST API. The following script uses curl to upload and execute a script:

#!/bin/bash
Upload & execute a script file:

FILE="test.js"
PATH="/store/scripts/"

OVMS_HOST="http://yourovms.local"
OVMS_USER="admin"
OVMS_PASS="yourpassword"

CURL="/usr/bin/curl -c .auth -b .auth"
SED="/usr/bin/sed"
DATE="/usr/bin/date"

Login?
if [[-e ".auth"]] ; then

AUTHAGE=$(($($DATE +%s) - $($DATE +%s -r ".auth")))
else

AUTHAGE=3600
fi
if [["$AUTHAGE" -ge 3600]] ; then
RES=$($CURL "${OVMS_HOST}/login" --data-urlencode "username=${OVMS_USER}" --data-

→˓urlencode "password=${OVMS_PASS}" 2>/dev/null)
if [["$RES" =~ "Error"]] ; then
echo -n "LOGIN ERROR: "
echo $RES | $SED -e 's:.*\([^<]*\).*:\1:g'
rm .auth
exit 1

fi
fi

Upload:
RES=$($CURL "${OVMS_HOST}/edit" --data-urlencode "path=${PATH}${FILE}" --data-
→˓urlencode "content@${FILE}" 2>/dev/null)
if [["$RES" =~ "Error"]] ; then
echo -n "UPLOAD ERROR: "
echo $RES | $SED -e 's:.*\([^<]*\).*:\1:g'
rm .auth
exit 1

fi

(continues on next page)

64 Chapter 2. User Guide

Open Vehicles

(continued from previous page)

Execute:
$CURL "${OVMS_HOST}/api/execute" --data-urlencode "command=script run ${FILE}"

2.18 Factory Reset

2.18.1 Module Configuration

A standard factory reset erases the configuration store. After a factory reset, you will be able to access the USB
console with an empty module password and the “OVMS” wifi access point with the initial password “OVMSinit”.
We recommend using the setup wizard to configure the module or restoring a configuration backup as soon as possible,
as the module is accessible by anyone knowing the initial password.

The standard factory reset does not revert OTA firmware installs. See below for methods to switch back to and
optionally replace the factory firmware.

Method 1: Command

If you have console command access, a factory reset can be accomplished with this command:

OVMS# module factory reset
Reset configuration store to factory defaults, and lose all configuration data (y/n):
→˓y
Store partition is at 00c10000 size 00100000
Unmounting configuration store...
Erasing 1048576 bytes of flash...
Factory reset of configuration store complete and reboot now...

That command will erase all configuration store, and reboot to an empty configuration.

Note: to issue this command from the web shell or a remote shell (App, Server, . . .), you need to skip the confirmation
step by adding the option -noconfirm, i.e.:

OVMS# module factory reset -noconfirm

Method 2: SD card

If you don’t have console access, you can perform a factory reset by placing an empty file named factoryreset.
txt in the root directory of an SD card and insert that SD into the (running) module. The file will be deleted and the
module will reboot within about 30 seconds.

Method 3: Switch S2

You can also open the module case, remove any SD card (important!), power on the module, wait 10 seconds, then
push and hold switch “S2” for 10 seconds. “S2” is located here:

2.18. Factory Reset 65

Open Vehicles

Method 4: USB

If you don’t have console access and don’t have an SD card, you can perform a factory reset from a PC via USB using
the esptool.py tool from the Espressif ESP-IDF toolkit (see below for installation):

esptool.py \
--chip esp32 --port /dev/tty.SLAB_USBtoUART --baud 921600 \
erase_region 0xC10000 0x100000

Note: the port needs to be changed to the one assigned by your system, i.e. /dev/ttyUSB0 on a Linux system or
COMx on Windows. After using esptool.py to manually erase the config region, you should go into the console and do
the module factory reset step to properly factory reset.

Note: Methods 1, 2 and 3 need a running system, i.e. will not work if your module cannot boot normally. In this case
first try method 4. If that doesn’t help also switch back to the factory firmware as shown below.

2.18.2 Module Factory Firmware

You can switch back to factory firmware with this command:

OVMS# ota boot factory
Boot from factory at 0x00010000 (size 0x00400000)

Or, without console access (lost module password), using the esptool.py from the Espressif ESP-IDF toolkit:

66 Chapter 2. User Guide

Open Vehicles

esptool.py \
--chip esp32 --port /dev/tty.SLAB_USBtoUART --baud 921600 \
erase_region 0xd000 0x2000

Note: the device needs to be changed to the one assigned by your system, i.e. /dev/ttyUSB0 on a Linux system or
COMx on Windows.

2.18.3 Flash Factory Firmware via USB

esptool.py can also be used to flash a new factory firmware. Download the firmware file ovms3.bin you want
to flash, then issue:

esptool.py \
--chip esp32 --port /dev/tty.SLAB_USBtoUART --baud 921600 \
--before "default_reset" --after "hard_reset" \
write_flash --compress --flash_mode "dio" --flash_freq "40m" --flash_size detect \
0x10000 ovms3.bin

Note: if you were running an OTA partition before, you also need to switch back to the factory partition as shown
above.

2.18.4 Full Reflash via USB

If you accidentally did an erase_flash or erased the wrong region, you will need to do a full reflash of your module
(including the boot loader and partitioning scheme).

The need for a full reflash will typically show by the USB output of the module boot being just something like:

rst:0x10 (RTCWDT_RTC_RESET),boot:0x3f (SPI_FAST_FLASH_BOOT)
flash read err, 1000
ets_main.c 371
ets Jun 8 2016 00:22:57

To do a full reflash, download the three .bin files from the release you want to flash, e.g. from

https://ovms.dexters-web.de/firmware/ota/v3.2/edge/

Then issue:

esptool.py \
--chip esp32 --port /dev/tty.SLAB_USBtoUART --baud 921600 \
--before "default_reset" --after "hard_reset" \
write_flash --compress --flash_mode "dio" --flash_freq "40m" --flash_size detect \
0x1000 bootloader.bin 0x10000 ovms3.bin 0x8000 partitions.bin

. . . replacing the port and file paths accordingly for your system.

If this fails, open a support ticket on https://www.openvehicles.com and attach a log of the boot process, or install the
developer environment and do a make flash.

2.18.5 Installing esptool.py

The esptool.py package and installation instructions can be found here:

https://github.com/espressif/esptool

2.18. Factory Reset 67

https://ovms.dexters-web.de/firmware/ota/v3.2/edge/
https://www.openvehicles.com
https://github.com/espressif/esptool

Open Vehicles

The package normally can be installed without manual download using the python package manager “pip”, i.e. on
Unix/Linux:

sudo pip install esptool

Warning: You can brick your module using the esptool. Only use the commands shown above.

2.19 OBDII ECU

2.19.1 Purpose

The OBDII interface is a connector, electrical specification, and protocol used for viewing the operation and status
of a car. It is mandated in all light duty vehicles sold in North America beginning in 1996, and while the focus of
the information it provides is for monitoring the emissions of Internal Combustion Engines, it has proven to be a
handy port for connecting a variety of aftermarket displays and monitors to a car. Electric Vehicles have no need for
emissions monitoring, so often omit the port from the car, thus making the these aftermarket devices incompatible.
The OBDII ECU capability of the OVMS v3 is used to create a simulated OBDII port, which can be used to attach
many of these aftermarket devices to the car.

2.19.2 Cabling

The cable and OBDII connector are not provided with the OVMSv3 module, and can be built using the diagram below.
Alternatively, you can purchase the OVMS V3 HUD / OBD II-F Cable from FastTech.

DA26 OBDII Female Signal name
6 14 CAN3-L
16 6 CAN3-H
8 4 & 5 Chassis & Signal Ground
18 16 +12v switched output to HUD/dongle

N.B. Also place a 120 ohm resistor between OBDII pins 14 & 6 for bus termination

2.19.3 Setup

From the Web Interface, check the “Start OBD2ECU” box, and select CAN3 from the dropdown menu (if using the
wiring diagram above). This will enable the OBDII ECU Task to run the next time the OVMSv3 module is powered
on or reset. Also check the “Power on external 12V” box in order to feed 12v power through to the device. Click on
Save at the bottom of the page.

From the command line, the following commands are available:

obdii ecu start can3 Starts the OBDII ECU task.
obdii ecu stop Stops the OBDII ECU task
obdii ecu list Displays the parameters being served, and their current value
obdii ecu reload Reloads the map of parameters, after a config change

power ext12v on Turns on power feed to the device
power ext12v off Turns off power feed to the device

68 Chapter 2. User Guide

https://www.fasttech.com/product/9652027-ovms-v3-hud-obd-ii-f-cable

Open Vehicles

2.19.4 Operation

During operation, an OBDII device, for example, a Head-Up Display (HUD) or OBDII Diagnostic module, will make
periodic requests, usually a few times per second, for a set of parameters. The OVMSv3 module will reply to those
parameters with the metric if configured to do so, on an individual basis. These parameters can be common items
such as vehicle speed, engine RPM, and engine coolant temperature, but because of the differences between ICE and
EV vehicles, many of the parameters do not have equivalent values in an EV. Speed and engine (motor) RPM can be
directly mapped, but there is typically no “engine coolant”. That parameter (in fact, most parameters) can be mapped
to some other value of interest. For example, the Engine Coolant display on the HUD can be configured to display
motor or battery temperature instead. Engine Load (PID 4, a percentage value), is mapped by default to battery State
of Charge (also a percentage). However, note that not all vehicle metrics may be supported by all vehicles.

Parameters requested by the OBDII device are referred to by “PID value”. Note that each PID has a specific range of
allowed values, and that it is not possible to directly represent values outside that range. For example, PID 5 (Engine
coolant temperature) has a range of -40 to +215; it would not be possible to map the full range of motor RPMs to this
parameter. Values outside the allowed range are limited to the range boundary value. The complete table of possible
parameters are described here: https://en.wikipedia.org/wiki/OBD-II_PIDs#Mode_01

Vehicle metrics are referred to by name. See the table in Appendix 1 for a list of available metrics, which vehicles
report them, and which of those are of a format that can be mapped by the OBDII ECU task.

2.19.5 Defaults and customization

By default, the following mapping of PID value to OVMSv3 metric is used:

PID (Dec) PID (Hex) Requested Parameter Mapped Metric Value Metric Name
4 0x04 Engine Load Battery SOC v.b.soc
5 0x05 Coolant Temp Motor Temp v.m.temp
12 0x0c Motor RPM Motor RPM v.m.rpm
13 0x0d Vehicle Speed Vehicle Speed v.p.speed
16 0x10 MAF Air Flow 12v Battery v.b.12v.voltage

The OBDII ECU task supports the remapping and reporting of PIDs 4-18, 31, 33, 47, and 51 (all decimal). PIDs #0
and 32 are used by the OBDII protocol for management, and not available for assignment. Other PIDs return zero.

PIDs requested for which no mapping has been established are ignored by the OBDII ECU task. As an aid for discov-
ering which PIDs are being requested, the configuration parameter ‘autocreate’ may be used to populate entries into
the obdii ecu list display. (‘config set obd2ecu autocreate yes’). Such autocreated entries are marked as “Unimple-
mented”, and return zero to the device. They are not added to the configured (saved) obd2ecu.map, and get cleared at
each boot or reset. They may be mapped to a supported metric, if desired, using:

config set obd2ecu.map <PID> <metric name>

Example:

OVMS# config set obd2ecu.map 5 v.b.temp
(map battery temp to engine coolant temp)

OVMS# vfs edit /store/obd2ecu/10
(script for fuel pressure PID; see below)

OVMS# obdii ecu reload
OBDII ECU pid map reloaded

(continues on next page)

2.19. OBDII ECU 69

https://en.wikipedia.org/wiki/OBD-II_PIDs#Mode_01

Open Vehicles

(continued from previous page)

OVMS# obdii ecu list

PID Type Value Metric
0 (0x00) internal 0.000000
4 (0x04) internal 95.000000 v.b.soc
5 (0x05) metric 16.000000 v.b.temp
10 (0x0a) script 0.000000
11 (0x0b) unimplemented 0.000000
12 (0x0c) internal 0.000000 v.m.rpm
13 (0x0d) internal 0.000000 v.p.speed
16 (0x10) internal 13.708791 v.b.12v.voltage
32 (0x20) internal 0.000000

Types: * “internal” means default internal handling of the PID. * “metric” means a user-set mapping of PID to the
named metric * “unimplemented” are PIDs requested by the device, but for which no map has been set * “script”
means the user has configured a script to handle the PID

2.19.6 Special handling

Several PIDs are handled specially by the OBDII ECU task.

• PIDs 0 and 32 are bit masks that indicate what other PIDs are being reported by the OBDII ECU task. These are
maintained internally based on the default, mapped, and scripted PID table. Note that some OBDII devices use
PID 0 as a test for ECU presence and operating mode (standard or extended), and ignore the returned values.
The OBDII ECU task supports both modes.

• PID 12, Engine RPM, is often monitored by the OBDII device to detect when the car is turned off. Since an
EV’s motor is not rotating when the car is stopped, a HUD may decide to power down when it sees the RPM
drop below a particular value, or if there is no variation (jitter) in its value. To prevent this, the OBDII ECU task
will source a fake value of 500 rpm, plus a small periodic variation, if the car is not moving (vehicle speed is
less than 1). To actually let the device turn off, see “External Power Control”, below.

• PID 16, MAF Air Flow, is commonly used by OBDII devices to display fuel flow, by measuring the amount of
air entering the engine in support of combustion. Since this is irrelevant to an EV, the OBDII ECU task maps
this metric to a simple integer. Most HUDs displays limit this to a range of 0-19.9 liter/hr, which is acceptable to
display the +12v battery voltage. Since the conversion factors are complicated, this value is at best approximate,
in spite of its implied precision.

• Mode 9, PID 2, VIN, is used to report the car’s DMV VIN to the attached OBDII device. Since the rest of
the parameters reported by the OBDII ECU task are simulated, and some OBDII devices may use the VIN for
tracking purposes, the reporting of the VIN may be turned off by setting the privacy flag to “yes”. The command
is ‘config set obd2ecu privacy yes’. Setting it to ‘no’, which is the default, allows the reporting of the VIN.

• Mode 9, PID 10, ECU Name, is statically mapped to report the OVMSv3’s Vehicle ID field (vehicle name, not
VIN). This string may be customized to any printable string of up to 20 characters, if not used with the OVMS
v2 or v3 mobile phone applications. (‘config set vehicle id car_name’)

2.19.7 Metric Scripts

Should one desire to return a value not directly available by a single named metric, it is possible to map a PID to a short
script, where combinations of metrics, constants, etc. may be used to create a custom value. Note that the restrictions
on PID value ranges still applies. Also note that the special handling for PID 12 (engine RPM) is not applied in the
OBDII ECU task, so it must be included in the script if driving a HUD.

70 Chapter 2. User Guide

Open Vehicles

Scripts should be placed in the directory /store/obd2ecu/PID, where PID is the decimal value of the PID to be pro-
cessed. Example for creating a “kw per km” sort of metric:

ret1=OvmsMetrics.AsFloat("v.p.speed");
ret2=OvmsMetrics.AsFloat("v.b.power");
out=0.0;
if (ret1 > 0) { out=ret2/ret1; }
out;

Put this text in a file /store/obd2ecu/4 to map it to the “Engine Load” PID. See “Simple Editor” chapter for file editing,
or use ‘vfs append’ commands (tedious). Note however, that Vehicle Power (v.b.power) is not supported on all cars
(which is why this is not the default mapping for this PID).

Warning: The error handling of the scripting engine is very rough at this writing, and will typically cause a full module
reboot if anything goes wrong in a script.

2.19.8 External Power Control

Since the OVMSv3 module remains powered at all times, and the normal means for deducing that a car has been
turned off don’t work on an EV (see PID #12, above), an external OBDII device needs to be explicitly turned on and
off. This is currently done with short event scripts. The following commands configure the OVMSv3 to make the
external 12v feed follow the vehicle on/off state, or use the vfs edit command to create or modify the files:

vfs mkdir /store/events
vfs mkdir /store/events/vehicle.on
vfs mkdir /store/events/vehicle.off

vfs append 'power ext12v on' /store/events/vehicle.on/ext12v
vfs append 'power ext12v off' /store/events/vehicle.off/ext12v

2.20 EGPIO

2.20.1 Hardware

The OVMS has 10 general purpose I/O ports, provided by a MAX7317 I/O expander.

The MAX7317 ports can be individually configured as either an open-drain output, or an overvoltage-protected Schmitt
input. Being open-drain, you need to add pull-up resistors for input and output switch uses to get a defined high level
(e.g. 10K to 3.3V). See the datasheet for details on maximum current & voltage ratings.

Depending on your hardware configuration, up to 4 ports may be used by the module. 6 are generally free to use.

Port Signal(s) Exp.Pin Default usage
0 MDM_EN 15 Modem enable
1 SW_CTL – Ext12V control (SW_12V)
2 CAN1_EN + EIO_1 17 CAN1 transceiver enable
3 MDM_DTR + EIO_2 19 Modem sleep control
4 EIO_3 21 -free-
5 EIO_4 20 -free-
6 EIO_5 18 -free-
7 EIO_6 16 -free-
8 EIO_7 14 -free-
9 EIO_8 12 -free-

2.20. EGPIO 71

https://datasheets.maximintegrated.com/en/ds/MAX7317.pdf

Open Vehicles

SW_CTL (port 1) controls a BTS452R power switch, which could deliver a nominal output of 25W or 1.8A, and up to
40W or 2.9A short term at the SW_12V pin, but the main fuse of the module (located at the corner near the DB9 plug)
limits the 12V current total sum of the board plus any external hardware to continuous 0.75A on a revision 3.1 board
and 1.0A on a revision 3.2 board. The unswitched EXT_12V pin is also behind the fuse.

The module including modem needs a 12V current share of ~80mA in full operation. Calculate with 100mA to be
on the safe side. That leaves continuous 0.65A on a revision 3.1 board and 0.9A on a revision 3.2 board for external
devices and addons powered by the module. The fuse has a little headroom, but don’t rely on that.

SW_12V is meant to power auxiliary devices from the OVMS, for example head-up displays. Of course you can as
well power a standard 12V automotive relay or fan directly from this without additional hardware.

The EGPIO (EIO) ports are not connected directly to the DA26 connector but are available at
the internal expansion port. To route an EGPIO port to the DA26 connector, connect it to one
of the GEP_1...7 lines at the expansion port, either directly or via some additional driver.

Fig. 1: Expansion Port (Prototype PCB)
Fig. 2: DA26 Connector

Example: to route EIO_8 (port 9) to GEP_7 (pin 21 on the DA26), set
a jumper on pins 10+12 on the expansion port.

2.20.2 Commands

EGPIO control is provided by the egpio command set:

• egpio output <port> <level> [<port> <level>
...] – set output level(s)

• egpio input <port> [<port> ...] – query input
level(s)

• egpio status – show output, input & monitor status

• egpio monitor <on|off> [ports] – enable/disable
monitoring

• egpio monitor status – show current monitoring status

72 Chapter 2. User Guide

https://www.infineon.com/dgdl/Infineon-BTS452R-DS-v01_01-en.pdf?fileId=db3a30431ddc9372011ddd17aba80002

Open Vehicles

To configure a port for input, it needs to be switched to output level
high (1). That is done automatically by the input and monitor com-
mands.

If you set multiple outputs, the ports will be set one at a time, so output
levels will change with a slight delay. You can use this behaviour to set
data lines before a clock line, e.g. when sending bits serially into a shift
register.

Note: The MAX7317 needs active polling to detect input state changes. Monitoring is disabled by default, it can be
enabled manually or configured to start automatically on module init. Without monitoring, only manual input queries
will update the input state, trigger input events and input metric updates.

2.20.3 Configuration

Parameter Instance Description
auto egpio yes = Start monitoring on boot (default: no)
egpio monitor.ports List of ports to monitor by default (space separated)
egpio monitor.interval Polling interval in milliseconds (min 10, default 50)

The default interval of 50 ms (= 20 Hz) means an input signal needs to be at least 50 ms long to be detected. This
polling frequency produces a CPU load of ~0.5% on core 1 and is normally sufficient to detect even very short button
pushes.

2.20.4 Metrics

Metric name Example value Description
m.egpio.input 0,1,2,3,4,5,6,7,9 EGPIO input port state (ports 0. . . 9, present=high)
m.egpio.monitor 8,9 EGPIO input monitoring ports
m.egpio.output 4,5,6,7,9 EGPIO output port state

Hint: to process these metrics from Javascript, read them into an array using eval() and test for the presence of a
port number using e.g. the includes() method in a browser plugin. Duktape does not support includes(), you
can test indexOf(port) instead.

Example:

var input = eval(OvmsMetrics.AsJSON("m.egpio.input"));
if (input.indexOf(9) < 0)

print("Input port 9 (EIO8) is currently low\n");

2.20.5 Events

Event Data Purpose
egpio.input.<port>.<state> – EGPIO input port change (port=0. . . 9, state=high/low)
egpio.output.<port>.<state> – EGPIO output port change (port=0. . . 9, state=high/low)

2.20. EGPIO 73

Open Vehicles

Hint: to listen to events from Javascript, bind to msg:event on a .receiver object from browser context or use
PubSub from module context.

Example:

PubSub.subscribe("egpio.input.9.low", function(){
print("Input port 9 (EIO8) is now low\n");

});

2.21 TPMS

OVMS v3 includes a capability to read and write sets of TPMS wheel sensors IDs from the vehicle TPMS ECU, and
store in your configuration. Support for this is vehicle-specific, and may require optional hardware boards, so please
follow your individual vehicle guides for further information.

The command to read the current TPMS wheel sensor IDs from the car is:

OVMS# tpms read SET

(replace SET with your own identifier for this set of wheels, such as ‘summer’, ‘winter’, etc)

You can check the stored wheel sensor ID sets with:

OVMS# tpms list

If you change wheels, you can write the new wheel IDs to the TPMS ECU in the car with:

OVMS# tpms write SET

(replace SET with your own identifier for this set of wheels, such as ‘summer’, ‘winter’, etc)

Note that in most cases the car must be switched on for the above commands to work. Please refer to your vehicle
specific user guide for more information on this.

Note also that OVMS doesn’t have any radio capable of receiving TPMS signals and cannot read the IDs from the
wheel sensors themselves. OVMS can only read the IDs from the TPMS ECU in the car itself. You can, however,
drop by pretty much any garage (or use any of a large number of TPMS tools) to trigger and read these IDs from the
wheels. Once your garage gives you the sensor IDs (each expressed as an 8 character hexadecimal ID), you can enter
them into OVMS as:

OVMS# tpms set SET ID1 ID2 ID3 ID4 . . . (replace SET with your own identifier for this set of wheels,
and ID1.. with the hexadecimal sensor ID)

2.22 Optional K-Line Expansion Board

The optional K-Line Expansion Board is available to extend the capabilities of the OVMS system. It can be used to
talk to vehicle ECUs using K-Line communication standards.

74 Chapter 2. User Guide

Open Vehicles

There are two installation options:

1. If you are using a modem module, you install the K-Line Expansion Board on top of the modem. Unscrew the
four black screws holding the modem in place. In your K-Line expansion board kit you will find four brass
stand offs with holes at one end and small bolts at the other. Use these to screw down the modem. Now, orient
the K-line Expansion Board so the top left corner (marked with a white triangle) matches the white triangle on
the modem board. Carefully push the K-Line Expansion Board into place (making sure that the pins align and
are not bent). Once done, the four black screws can be used to secure it in place.

2. If you are not using a modem module, you install the K-Line Expansion Board directly onto the main OVMS
board. Screw the provided standoffs into the main board, and Carefully attach the provided pin headers into
the main OVMS board. Now, orient the K-line Expansion Board so the top left corner (marked with a white
triangle) matches the white triangle on the main OVMS board. Carefully push the K-Line Expansion Board into
place (making sure that the pins align and are not bent). Once done, the four black screws can be used to secure
it in place.

2.22. Optional K-Line Expansion Board 75

Open Vehicles

Next, the K-Line expansion board will need to be configured to match your vehicle’s K-Line bus and ECU hardware
requirements. Refer to your vehicle specific guide for information on what your vehicle requires:

• S1 is used to turn on/off the extra ‘master’ mode components. For most vehicles, this should be OFF.

• SW1 is used to select the power source for the K-Line bus. It can be #0 (no power connected), #1 (5v power
from USB bus), #2 (5v power converted from vehicle’s 12v power), or #3 (12v power direct from the vehicle).
For most vehicles, either #2 or #3 is used.

The K-Line bus from the vehicle is connected via a vehicle specific cable. This connection is usually to pin #1 on the
DB9 connector. On OVMS modules v3.2 and later (as well as v3.1 boards labelled on board as July 2018 or later),
this is internally connected to GEP7 (General Expansion Pin #7). This is necessary to bring the K-Line bus up to the
internal expansion pins (for the K-Line Expansion Board to be able to reach it).

If you have an earlier board, there is a relatively simply wiring modification that can be made to upgrade to this:

1. You will need a soldering iron, solder, and a small length of insulated wire.

2. Pin #1 on the DB9 connector is the K-Line pin from the vehicle.

3. Pin #21 on the DA26 connector is GEP 7 (which is also connected to a pin on internal expansion connector).

4. On the underside of the board you can solder a jumper wire between DB9 pin #1 and DA26 pin #21 to make
this connection.

Please refer to the vehicle specific guides for further information on this.

76 Chapter 2. User Guide

CHAPTER 3

Plugins

The OVMS can easily be extended by plugins. Plugins may consist of any combination of module scripts (Javascript)
and web UI extensions (HTML).

Installation currently needs to be done manually, but is simple. See below and the plugin documentation on specific
steps and on how to use the plugin functions. A plugin store with simplified download and optional automatic updating
will be provided in the future.

This page is intended as an overview of all plugins currently available in the OVMS repository. If you’re a plugin
developer and want to add your plugin here, please submit a pull request containing your plugin directory. Organize
your files and include a README.rst as shown here.

3.1 ABRP: abetterrouteplanner.com

Send live data to abetterrouteplanner.com

Overview

abetterrouteplanner is probably the best website to plan a route with an EV and optimize the number of stops needed
and where to charge your vehicle.

Moreover, it has a wonderful functionality, to update your plan, taking into account your live data, to adjust with
the real consumption of the vehicle, by connecting an obd device and soft like EVNotify or Torque Pro.

This plugin sends your live data from the OVMS box.

Author David S Arnold

New in version 1.2: Your own parameters (car model, abrp token but also api-url) are now stored as config param-
eters, you can consult them using the shell with config list usr or modify with config set command.

77

http://abetterrouteplanner.com

Open Vehicles

Contents

• ABRP: abetterrouteplanner.com

– Installation

– Script code

– Usage

3.1.1 Installation

You can use the embedded website tools/shell and tools/editor of the OVMS box to create the directory and file. This
editor will allow you to paste the plugin code from the documentation.

Files to be created in /store/scripts/:

• ovmsmain.js, if not already exists

• sendlivedata2abrp.js, by copying the file below

Next, configure your car model, API URL & token:

Note: ABRP only supports live data feeds for some car models. You can request a notification when support has been
added for your car. Do not feed live data using other car models! Also, ABRP has not yet added this OVMS plugin
as a general data source, so you need to disguise as “Torque”.

If using the ABRP 4 UI:

• Login to abetterrouteplanner

• Open “Settings”, enable detailed setup

• Add your car (if ABRP has no live support for your car model, it will display “Live data not available”)

• Click “Link Torque”, click “Next” 3 times

• Set the “Webserver URL” by config set usr abrp.url "..." * Note: according to Iternio,
the URL http://api.iternio.com/1/tlm/send should generally be used here instead of the
Torque specific one displayed

• Set the “User Email Address” (API token) by config set usr abrp.user_token "..."

If using ABRP classic UI:

• Login to abetterrouteplanner in classic view

• In Settings/more Settings, there’s an item ‘Live Car Connection’ with 2 buttons: ‘Setup’ and ‘View live
data’

• Click on Setup (if there is no Setup button, live data support isn’t available for your car model)

• Click on Torque

• Set the “Webserver URL” by config set usr abrp.url "..."

• Set the “User Email Address” (API token) by config set usr abrp.user_token "..."

Determine your car model code:

• Open API car models list

78 Chapter 3. Plugins

http://abetterrouteplanner.com
https://abetterrouteplanner.com/classic
https://api.iternio.com/1/tlm/get_carmodels_list?api_key=32b2162f-9599-4647-8139-66e9f9528370

Open Vehicles

• To improve readability, optionally paste the page into JSONlint.com

• Search for your car brand and model, the code is the field following the car specification, for example
renault:zoe:20:52:r110

• Set the code by config set usr abrp.car_model "..."

Finally reboot your OVMS module. This was a one-time configuration.

You’re now ready. Test it with the shell page in the embedded web server using the command script eval abrp.
info() and then with the command script eval abrp.onetime(). You can also do it with the mobile app.

3.1.2 Script code

This is a javascript code, to extract in the file sendlivedata2abrp.js.

Warning: note the minimum firmware version: 3.2.008-147

1 /**
2 * /store/scripts/sendlivedata2abrp.js
3 *
4 * Module plugin:
5 * Send live data to a better route planner
6 * This version uses the embedded GSM of OVMS, so there's an impact on data

→˓consumption
7 * /!\ requires OVMS firmware version 3.2.008-147 minimum (for HTTP call)
8 *
9 * Version 1.3 2020 inf0mike (forum https://www.openvehicles.com)

10 *
11 * Enable:
12 * - install at above path
13 * - add to /store/scripts/ovmsmain.js:
14 * abrp = require("sendlivedata2abrp");
15 * - script reload
16 *
17 * Usage:
18 * - script eval abrp.info() => to display vehicle data to be sent to abrp
19 * - script eval abrp.onetime() => to launch one time the request to abrp server
20 * - script eval abrp.send(1) => toggle send data to abrp
21 * - (0) => stop sending data
22 * - script eval abrp.resetConfig() => reset configuration to defaults
23 *
24 * Version 1.3 updates:
25 * - Fix for rounding of fractional SOC causing abrp to report SOC off by 1
26 * - Fix for altitude never being sent
27 * - New convenience method to reset config to defaults
28 *
29 * Version 1.2 updates:
30 * - based now on OVMS configuration to store user token, car model and url
31 * - review messages sent during charge
32 * - send a message when vehicle is on before moving to update abrp
33 *
34 * Version 1.1 fix and update:
35 * - fixed the utc refreshing issue
36 * - send notifications
37 * - send live data only if necessary

(continues on next page)

3.1. ABRP: abetterrouteplanner.com 79

https://jsonlint.com/

Open Vehicles

(continued from previous page)

38 **/
39

40

41

42 /*
43 * Declarations:
44 * CAR_MODEL: find your car model here: https://api.iternio.com/1/tlm/get_carmodels_

→˓list?api_key=32b2162f-9599-4647-8139-66e9f9528370
45 * OVMS_API_KEY : API_KEY to access to ABRP API, given by the developer
46 * MY_TOKEN : Your token (corresponding to your abrp profile)
47 * TIMER_INTERVAL : to subscribe to a ticker event
48 * URL : url to send telemetry to abrp following: https://iternio.com/index.php/

→˓iternio-telemetry-api/
49 * CR : Carriage Return for console prints
50 *
51 * objTLM : JSON object containing data read
52 * objTimer : timer object
53 */
54

55 const CAR_MODEL = "@@:@@:@@:@@:@@";
56 const OVMS_API_KEY = "32b2162f-9599-4647-8139-66e9f9528370";
57 const MY_TOKEN = "@@@@@@@@-@@@@-@@@@-@@@@-@@@@@@@@@@@@";
58 const TIMER_INTERVAL = "ticker.60"; // every minute
59 const EVENT_MOTORS_ON = "vehicle.on";
60 const URL = "http://api.iternio.com/1/tlm/send";
61

62 const DEFAULT_CFG = {
63 "url": URL,
64 "user_token": MY_TOKEN,
65 "car_model": CAR_MODEL
66 };
67

68 const CR = '\n';
69

70 var objTLM;
71 var objTimer, objEvent;
72 var sHasChanged = "";
73 var bMotorsOn = false;
74

75 // initialise from default
76 var abrp_cfg = JSON.parse(JSON.stringify(DEFAULT_CFG));
77

78 // check if json object is empty
79 function isJsonEmpty(obj) {
80 for(var key in obj) {
81 if(obj.hasOwnProperty(key))
82 return false;
83 }
84 return true;
85 }
86

87 // Read & process config:
88 function readConfig() {
89 // check if config exist
90 var read_cfg = OvmsConfig.GetValues("usr", "abrp.");
91 print(JSON.stringify(read_cfg) + CR);
92 if (isJsonEmpty(read_cfg) == true) {

(continues on next page)

80 Chapter 3. Plugins

Open Vehicles

(continued from previous page)

93 // no config yet, set the default values
94 OvmsConfig.SetValues("usr","abrp.",abrp_cfg);
95 } else {
96 // config existing
97 abrp_cfg.url = read_cfg.url;
98 abrp_cfg.user_token = read_cfg.user_token;
99 abrp_cfg.car_model = read_cfg.car_model;

100 }
101 }
102

103 // Make json telemetry object
104 function InitTelemetryObj() {
105 return {
106 "utc": 0,
107 "soc": 0,
108 "soh": 0,
109 "speed": 0,
110 "car_model": abrp_cfg.car_model,
111 "lat": 0,
112 "lon": 0,
113 "alt": 0,
114 "ext_temp": 0,
115 "is_charging": 0,
116 "batt_temp": 0,
117 "voltage": 0,
118 "current": 0,
119 "power": 0
120 };
121 }
122

123 // Fill json telemetry object
124 function UpdateTelemetryObj(myJSON) {
125 if(!myJSON){
126 // if the data object is undefined or null then return early
127 return false;
128 }
129 var read_num = 0;
130 var read_str = "";
131 var read_bool = false;
132

133 sHasChanged = "";
134

135 if (bMotorsOn) {
136 sHasChanged = "_MOTORS-ON";
137 bMotorsOn = false;
138 }
139

140 // using Math.floor avoids rounding up of .5 values to next whole number
141 // as some vehicles report fractional values. Abrp seems to only support integer

→˓values
142 read_num = Math.floor(Number(OvmsMetrics.Value("v.b.soc")));
143 if (myJSON.soc != read_num) {
144 myJSON.soc = read_num;
145 sHasChanged += "_SOC:" + myJSON.soc + "%";
146 }
147

148 read_num = Number(OvmsMetrics.Value("v.b.soh"));
(continues on next page)

3.1. ABRP: abetterrouteplanner.com 81

Open Vehicles

(continued from previous page)

149 if (myJSON.soh != read_num) {
150 myJSON.soh = read_num;
151 sHasChanged += "_SOH:" + myJSON.soh + "%";
152 }
153

154 if ((myJSON.soh + myJSON.soc) == 0) {
155 // Sometimes the canbus is not readable, and abrp doesn't like 0 values
156 print("canbus not readable: reset module and then put motors on" + CR);
157 return false;
158 }
159

160 //myJSON.lat = OvmsMetrics.AsFloat("v.p.latitude").toFixed(3);
161 //above code line works, except when value is undefined, after reboot
162

163 read_num = OvmsMetrics.AsFloat("v.p.latitude");
164 read_num = read_num.toFixed(3);
165 if (myJSON.lat != read_num) {
166 myJSON.lat = read_num;
167 sHasChanged += "_LAT:" + myJSON.lat + "°";
168 }
169

170 read_num = Number(OvmsMetrics.AsFloat("v.p.longitude"));
171 read_num = read_num.toFixed(3);
172 if (myJSON.lon != read_num) {
173 myJSON.lon = read_num;
174 sHasChanged += "_LON:" + myJSON.lon + "°";
175 }
176

177 read_num = Number(OvmsMetrics.AsFloat("v.p.altitude"));
178 read_num = read_num.toFixed(1);
179 if (read_num <= (myJSON.alt - 2) || read_num >= (myJSON.alt + 2)) {
180 myJSON.alt = read_num;
181 sHasChanged += "_ALT:" + myJSON.alt + "m";
182 }
183

184 read_num = Number(OvmsMetrics.Value("v.b.power"));
185 myJSON.power = read_num.toFixed(1);
186

187 myJSON.speed=Number(OvmsMetrics.Value("v.p.speed"));
188 myJSON.batt_temp=Number(OvmsMetrics.Value("v.b.temp"));
189 myJSON.ext_temp=Number(OvmsMetrics.Value("v.e.temp"));
190 myJSON.voltage=Number(OvmsMetrics.Value("v.b.voltage"));
191 myJSON.current=Number(OvmsMetrics.Value("v.b.current"));
192

193 myJSON.utc = Math.trunc(Date.now()/1000);
194 //myJSON.utc = OvmsMetrics.Value("m.time.utc");
195

196 // read_bool = Boolean(OvmsMetrics.Value("v.c.charging"));
197 // v.c.charging is also on when regen => not wanted here
198 read_str = OvmsMetrics.Value("v.c.state");
199 if ((read_str == "charging") || (read_str == "topoff")) {
200 myJSON.is_charging = 1;
201 read_str = OvmsMetrics.Value("v.c.mode");
202 if (sHasChanged != "") {
203 sHasChanged += "_CHRG:" + read_str + "(" + OvmsMetrics.Value("v.c.charging")

→˓+ ")";
204 print("Charging in mode " + read_str + CR);

(continues on next page)

82 Chapter 3. Plugins

Open Vehicles

(continued from previous page)

205 }
206 } else {
207 myJSON.is_charging = 0;
208 }
209

210 myJSON.car_model = abrp_cfg.car_model;
211

212 return (sHasChanged !== "");
213 }
214

215 // Show available vehicle data
216 function DisplayLiveData(myJSON) {
217 var newcontent = "";
218 newcontent += "altitude = " + myJSON.alt + "m" + CR; //GPS altitude
219 newcontent += "latitude = " + myJSON.lat + "°" + CR; //GPS latitude
220 newcontent += "longitude= " + myJSON.lon + "°" + CR; //GPS longitude
221 newcontent += "ext temp = " + myJSON.ext_temp + "°C" + CR; //Ambient

→˓temperature
222 newcontent += "charge = " + myJSON.soc + "%" + CR; //State of charge
223 newcontent += "health = " + myJSON.soh + "%" + CR; //State of health
224 newcontent += "bat temp = " + myJSON.batt_temp + "°C" + CR; //Main battery

→˓momentary temperature
225 newcontent += "voltage = " + myJSON.voltage + "V" + CR; //Main battery

→˓momentary voltage
226 newcontent += "current = " + myJSON.current + "A" + CR; //Main battery

→˓momentary current
227 newcontent += "power = " + myJSON.power + "kW" + CR; //Main battery

→˓momentary power
228 newcontent += "charging = " + myJSON.is_charging + CR; //yes = currently

→˓charging
229 print(newcontent);
230 }
231

232 function InitTelemetry() {
233 objTLM = InitTelemetryObj();
234 sHasChanged = "";
235 }
236

237 function UpdateTelemetry() {
238 var bChanged = UpdateTelemetryObj(objTLM);
239 if (bChanged) { DisplayLiveData(objTLM); }
240 return bChanged;
241 }
242

243 function CloseTelemetry() {
244 objTLM = null;
245 sHasChanged = "";
246 }
247

248 // http request callback if successful
249 function OnRequestDone(resp) {
250 print("response="+JSON.stringify(resp)+CR);
251 //OvmsNotify.Raise("info", "usr.abrp.status", "ABRP::" + sHasChanged);
252 }
253

254 // http request callback if failed
255 function OnRequestFail(error) {

(continues on next page)

3.1. ABRP: abetterrouteplanner.com 83

Open Vehicles

(continued from previous page)

256 print("error="+JSON.stringify(error)+CR);
257 OvmsNotify.Raise("info", "usr.abrp.status", "ABRP::" + JSON.stringify(error));
258 }
259

260 // Return full url with JSON telemetry object
261 function GetUrlABRP() {
262 var urljson = abrp_cfg.url;
263 urljson += "?";
264 urljson += "api_key=" + OVMS_API_KEY;
265 urljson += "&";
266 urljson += "token=" + abrp_cfg.user_token;
267 urljson += "&";
268 urljson += "tlm=" + encodeURIComponent(JSON.stringify(objTLM));
269 print(urljson + CR);
270 return urljson;
271 }
272

273 // Return config object for HTTP request
274 function GetURLcfg() {
275 var cfg = {
276 url: GetUrlABRP(),
277 done: function(resp) {OnRequestDone(resp)},
278 fail: function(err) {OnRequestFail(err)}
279 };
280 return cfg;
281 }
282

283 function SendLiveData() {
284 if (UpdateTelemetry()) {
285 HTTP.Request(GetURLcfg());
286 }
287 }
288

289 function Reactivate_MotorsOn() {
290 bMotorsOn = true;
291 SendLiveData();
292 }
293

294 function InitTimer() {
295 objTimer = PubSub.subscribe(TIMER_INTERVAL, SendLiveData);
296 objEvent = PubSub.subscribe(EVENT_MOTORS_ON, SendLiveData);
297 }
298

299 function CloseTimer() {
300 PubSub.unsubscribe(objEvent);
301 PubSub.unsubscribe(objTimer);
302 objEvent = null;
303 objTimer = null;
304 }
305

306 // API method abrp.onetime():
307 // Read and send data, but only once, no timer launched
308 exports.onetime = function() {
309 readConfig();
310 InitTelemetry();
311 SendLiveData();
312 CloseTelemetry();

(continues on next page)

84 Chapter 3. Plugins

Open Vehicles

(continued from previous page)

313 }
314

315 // API method abrp.info():
316 // Do not send any data, just read vehicle data and writes in the console
317 exports.info = function() {
318 readConfig();
319 InitTelemetry();
320 UpdateTelemetry();
321 CloseTelemetry();
322 }
323

324 // API method abrp.resetConfig()
325 // Resets stored config to default
326 exports.resetConfig = function() {
327 OvmsConfig.SetValues("usr","abrp.", DEFAULT_CFG);
328 print(JSON.stringify(abrp_cfg));
329 OvmsNotify.Raise("info", "usr.abrp.status", "ABRP::config changed");
330 }
331

332 // API method abrp.send():
333 // Checks every minut if important data has changed, and send it
334 exports.send = function(onoff) {
335 if (onoff) {
336 readConfig();
337 if (objTimer != null) {
338 print("Already running !" + CR);
339 return;
340 }
341 print("Start sending data..." + CR);
342 InitTelemetry();
343 SendLiveData();
344 InitTimer();
345 OvmsNotify.Raise("info", "usr.abrp.status", "ABRP::started");
346 } else {
347 if (objTimer == null) {
348 print("Already stopped !" + CR);
349 return;
350 }
351 print("Stop sending data" + CR);
352 CloseTimer();
353 CloseTelemetry();
354 OvmsNotify.Raise("info", "usr.abrp.status", "ABRP::stopped");
355 }
356 }

3.1.3 Usage

How to make it run:

• install as described in ‘Installation’

• add to /store/scripts/ovmsmain.js: abrp = require("sendlivedata2abrp");

• script reload

With command lines in the OVMS android or iOS app, in the messages part:

3.1. ABRP: abetterrouteplanner.com 85

Open Vehicles

• script eval abrp.info() => to display vehicle data to be sent to abrp

• script eval abrp.onetime() => to launch one time the request to abrp server

• script eval abrp.send(1) => toggle send data to abrp

• script eval abrp.send(0) => stop sending data

• script eval abrp.resetConfig() => reset configuration to defaults

Also in the messages part, configuration can be updated with:

• config set usr abrp.car_model <value>

• config set usr abrp.url <value>

• config set usr abrp.user_token <value>

3.2 AuxBatMon: 12V History Chart

Web chart showing last 24 hours of 12V battery metrics (similar to Android App)

Version 2.0 by Michael Balzer <dexter@dexters-web.de>

The module plugin records the relevant 12V battery metrics (voltage, reference voltage, current, charger and environ-
ment temperatures) once per minute for up to 24 hours by default.

The web plugin renders these recordings into a time series chart and continues feeding live updates into the chart. The
chart is zoomable and can be panned along the X axis.

Since version 2.0, metrics history data is stored in a file and restored automatically on reboot/reload. This needs
OVMS firmware >= 3.2.008-235 to work (will fallback to no saving on earlier versions).

86 Chapter 3. Plugins

mailto:dexter@dexters-web.de

Open Vehicles

3.2.1 Installation

1. Save auxbatmon.js as /store/scripts/lib/auxbatmon.js

2. Add line to /store/scripts/ovmsmain.js:

• auxbatmon = require("lib/auxbatmon");

3. Issue script reload or evaluate the require line

4. Install auxbatmon.htm web plugin, recommended setup:

• Type: Page

• Page: /usr/auxbatmon

• Label: 12V History

• Menu: Tools

• Auth: Cookie

3.2.2 Configuration

No live config currently. You can customize the sample interval (default: 60 seconds) and the history size (default:
24 hours) by changing the constants in the code. Take care to match a customization in both the module and the web
plugin.

The persistent history storage file is /store/usr/auxbatmon.jx. It needs ~25 kB with the default sample
configuration. If space is tight on your /store partition you can change the file location to /sd/... in the source
code.

3.2.3 Usage

[script eval] auxbatmon.dump() -- dump recorded history data in JSON format

3.3 ChgInd: Charge State Indicator

Control three LEDs to indicate charging & SOC level

Version 1.0 by Michael Balzer <dexter@dexters-web.de>

Following an idea by “green_fox” on the german Twizy forum (not limited to the Twizy) to implement an externally
visible charge indicator.

Use a red, a green and a blue LED to signal charge state:

• OFF = not charging

• RED = charging, SOC below 20%

• YELLOW (RED+GREEN) = charging, SOC 20% . . . 80%

• GREEN = charging, SOC above 80%

• BLUE = fully charged (held for 15 minutes)

This plugin uses three EGPIO lines to control the three LEDs (KISS). By using a shift register this could be reduced
to two lines, by using a serial protocol to one line. The latter would need protocol support in the EGPIO (todo).

3.3. ChgInd: Charge State Indicator 87

mailto:dexter@dexters-web.de

Open Vehicles

3.3.1 Installation

1. Save chgind.js as /store/scripts/lib/chgind.js

2. Add line to /store/scripts/ovmsmain.js:

• chgind = require("lib/chgind");

3. Issue script reload or evaluate the require line

3.3.2 Configuration

// EGPIO ports to use:
const LED_red = 4; // EIO_3
const LED_green = 5; // EIO_4
const LED_blue = 6; // EIO_5

// Time to hold BLUE state after charge stop:
const holdTimeMinutes = 15;

3.3.3 Plugin API

chgind.set(state) -- set LED state ('off'/'red'/'yellow'/'green'/'blue')

3.4 ChgThrottle: Protect Charger

Throttle charge current / stop charge if charger gets too hot

Version 1.2 by Michael Balzer <dexter@dexters-web.de>

The plugin monitors the charger temperature. It can reduce the charge current or stop a running charge process if the
charger temperature exceeds on of three defined thresholds.

3.4.1 Installation

1. Save chgthrottle.js as /store/scripts/lib/chgthrottle.js

2. Add line to /store/scripts/ovmsmain.js:

• chgthrottle = require("lib/chgthrottle");

3. Issue script reload

3.4.2 Configuration

Param Instance Description Default
usr chgthrottle.enabled yes = enable throttling yes
usr chgthrottle.t1.temp temperature threshold 1 50
usr chgthrottle.t1.amps charge current at threshold 1 25
usr chgthrottle.t2.temp threshold 2 55
usr chgthrottle.t2.amps current 2 15

(continues on next page)

88 Chapter 3. Plugins

mailto:dexter@dexters-web.de

Open Vehicles

(continued from previous page)

usr chgthrottle.t3.temp threshold 3 60
usr chgthrottle.t3.amps current 3 -1

Set t1. . . 3 to ascending temperature thresholds. Below t1.temp, the current is set to unlimited.

Set temp to empty/0 to disable the level.

Set amps to -1 to stop the charge at that level.

3.4.3 Usage

Simply configure as desired, the plugin will monitor the charger temperature automatically and react as configured.

Use config set usr chgthrottle.enabled no to disable the plugin, ... yes to enable again.

State changes are logged and sent as notifications. Use info() to show the current state:

script eval chgthrottle.info()

Notifications are sent initially, then only on level-up during charge, and only on level-down while not charging.

3.5 Edimax: Smart Plug Control

Smart Plug control for Edimax models SP-1101W, SP-2101W et al

Version 2.0 by Michael Balzer <dexter@dexters-web.de>

Note: may need HTTP.request() digest auth support to work with newer Edimax firmware (untested)

The smart plug can be bound to a defined location. Automatic periodic recharging or charge stop can be configured
via main battery SOC level and/or 12V battery voltage level. The plugin can also switch off power at the charge stop
event of the main and/or 12V battery.

3.5.1 Installation

1. Save edimax.js as /store/scripts/lib/edimax.js

2. Add line to /store/scripts/ovmsmain.js:

• edimax = require("lib/edimax");

3. Issue script reload

4. Install edimax.htm web plugin, recommended setup:

• Type: Page

• Page: /usr/edimax

• Label: Edimax Smart Plug

• Menu: Config

• Auth: Cookie

5. Install edimax-status.htm web plugin, recommended setup:

• Type: Hook

3.5. Edimax: Smart Plug Control 89

mailto:dexter@dexters-web.de

Open Vehicles

• Page: /status

• Hook: body.post

The edimax-status.htm plugin adds power control to the Status page’s vehicle panel.

3.5.2 Configuration

Use the web frontend for simple configuration.

Param Instance Description
usr edimax.ip Edimax IP address
usr edimax.user ... username, "admin" by default
usr edimax.pass ... password, "1234" by default
usr edimax.location optional: restrict auto switch to this location
usr edimax.soc_on optional: switch on if SOC at/below
usr edimax.soc_off optional: switch off if SOC at/above
usr edimax.chg_stop_off optional: yes = switch off on vehicle.charge.stop
usr edimax.aux_volt_on optional: switch on if 12V level at/below
usr edimax.aux_volt_off optional: switch off if 12V level at/above
usr edimax.aux_stop_off optional: yes = switch off on vehicle.charge.12v.stop

3.5.3 Usage

script eval edimax.get()
script eval edimax.set("on" | "off")
script eval edimax.info()

Note: get() & set() do an async update (if the location matches), the result is logged. Use info() to show the
current state.

3.5.4 Events

usr.edimax.on
usr.edimax.off
usr.edimax.error

3.6 Foglight: Speed Adaptive Foglight

Automatic speed adaptive fog light using OVMS GPIO port

• foglight.js – module script

• foglight.htm – web dashboard extension

Details: https://docs.openvehicles.com/en/latest/components/ovms_script/docs/foglight.html

3.7 PwrMon: Trip Power Chart

Web chart showing average speed, power & energy use on the road

90 Chapter 3. Plugins

https://docs.openvehicles.com/en/latest/components/ovms_script/docs/foglight.html

Open Vehicles

Version 1.0 by Michael Balzer <dexter@dexters-web.de>

The plugin calculates average speed (kph), power (kW) & energy use (Wpk = Wh/km) from the odometer, altitude
and energy counters (metrics v.b.energy.used & v.b.energy.recd), so the vehicle needs to provide these
with reasonable precision & resolution.

The optional module plugin continuously records and stores the metrics history, so the chart can load the last 20 km
(by default) when opened. The chart will then continue to add live metrics data. Without the module plugin, the chart
will only display live data.

The chart is zoomable and can be panned along the X axis. The four data series can be selected and shown/hidden as
usual by clicking on the series names in the legend, click into the chart to highlight a specific data point.

The live data may be more accurate than the data stored by the module plugin, as it will react directly to the odometer
change, while the module plugin can only check the odometer once per second.

3.7.1 Installation

1. Install pwrmon.htm web plugin, recommended setup:

• Type: Page

• Page: /usr/pwrmon

• Label: Trip Power Chart

• Menu: Tools

• Auth: Cookie

2. Optionally:

• Save pwrmon.js as /store/scripts/lib/pwrmon.js

• Add line to /store/scripts/ovmsmain.js:

– pwrmon = require("lib/pwrmon");

3.7. PwrMon: Trip Power Chart 91

mailto:dexter@dexters-web.de

Open Vehicles

• Issue script reload or evaluate the require line

3.7.2 Configuration

No live config currently. You can customize the sample interval (default: 0.3 km) and the history size (default: 20 km)
by changing the constants in the code. The storage file and interval (1 km) can also be changed.

On the web plugin, you can customize the live sample interval (default 0.3 km, doesn’t need to match the module
plugin) and the initial zoom (default: 8 km).

The persistent history storage file is /store/usr/pwrmon.jx. It needs ~9 kB with the default sample configura-
tion. If space is tight on your /store partition you can change the file location to /sd/... in the source code or
disable the file by setting an empty string as the filename.

3.7.3 Plugin API

pwrmon.dump() -- dump (print) recorded history data in JSON format
pwrmon.data() -- get a copy of the history data object

3.8 RegenMon: Regen Brake Monitor

Live monitoring for regenerative brakelight & acceleration level

• regenmon.htm

Details: https://docs.openvehicles.com/en/latest/components/ovms_webserver/docs/regenmon.html

3.9 REPIDScan: OBD2 PID Scanner UI

Web UI for the OVMS3 RE toolkit’s OBD2 PID scanner

Version 2.1 by Michael Balzer <dexter@dexters-web.de>

• 1.0: Initial release

• 2.0: Highlight differences between scan results

• 2.1: PID step support

92 Chapter 3. Plugins

https://docs.openvehicles.com/en/latest/components/ovms_webserver/docs/regenmon.html
mailto:dexter@dexters-web.de

Open Vehicles

This is a web frontend for the re obdii scan commands.

Some basic usage notes are included, but you really should have some knowlegde of how accessing ECU and other
onboard devices via OBD-II/UDS works. Some pointers to get started:

• https://en.wikipedia.org/wiki/OBD-II_PIDs

• https://en.wikipedia.org/wiki/Unified_Diagnostic_Services

You will need OVMS firmware release 3.2.015-324 or higher to be able to use all features.

The UI allows to easily define and keep multiple scans along with notes. Scan results of two successive runs can be
compared directly. The UI checks if vehicle NONE is loaded and shows a button to switch to that otherwise. The CAN
buses can be started from the UI as well.

Scan results are shown in plain text form as delivered by the underlying commands.

Feel free to improve and extend (and submit your results).

3.9.1 Installation

1. Install repidscan.htm web plugin, recommended setup:

• Type: Page

• Page: /usr/repidscan

• Label: RE PID Scanner

3.9. REPIDScan: OBD2 PID Scanner UI 93

https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/Unified_Diagnostic_Services

Open Vehicles

• Menu: Tools

• Auth: Cookie

3.9.2 Usage

Warning: The scanner allows to use any poll type! Requests will be sent with PIDs only though, but some
devices may fail to validate the request length, so be careful not to use any write or control poll types.

The OBD2 PID scanner performs a series of OBD/UDS requests for a range of PIDs and displays the results. Only
PIDs with positive results (responses) will be shown in the results.

Enter all values hexadecimal (case irrelevant). Default RXID is TXID+8, try RXID range 500-7FF if you don’t know
the responding ID. To send broadcast requests, set TXID to 7DF and RXID to 7E8-7EF. The PID range must match
the poll type PID constraints (8/16 bit).

Click “Start” to run a scan. Only one scan can be active at a time, but you don’t need to stop a scan to start another
run.

Scan results will be shown automatically when the scan has been completed. Scanning a large range of PIDs may take
some time, to get intermediate results, click “Status”. You can also start the scan, do something else and return to the
tool later.

Differences between two scans are highlighted in both result tabs, with added PIDs being marked green (yellow in
night mode), and byte value changes being marked red. No highlighting is applied if the scans don’t share any PIDs.

On the next scanner start, the previous results (if any) will be copied to the “Previous” tab. You can switch tabs by the
mouse or keyboard to compare them and look for differences, e.g. after having changed some control on the car.

All inputs and outputs can be saved to and loaded from files on the module or SD card. Use this to define your areas
of interest, so you can easily re-run a previously defined scan the next day. File format is plain readable JSON, so you
can continue analysis or prepare scans offline.

Notes: to avoid clashing of scan polls with vehicle polls, use the scanner only with the vehicle module NONE. The
CAN bus to use needs to have been started in active mode. The scanner does not send session or tester presence
messages, if you need these, use the re obdii tester tool or the obdii canX request command.

3.10 REtools: Reverse Engineering UI

Preliminary web UI for the OVMS3 RE toolkit

Version 0.1 by Michael Balzer <dexter@dexters-web.de>

94 Chapter 3. Plugins

mailto:dexter@dexters-web.de

Open Vehicles

This is a first implementation of a web frontend for the re commands.

You’ll need some understanding of the re system, the UI lacks user guidance. You can read about the re system on
the developer list.

Feel free to improve and extend (and submit your results ;-)).

3.10.1 Installation

1. Install retools.htm web plugin, recommended setup:

• Type: Page

• Page: /usr/retools

• Label: RE Toolkit

• Menu: Tools

• Auth: Cookie

3.11 Renault Twizy

3.11.1 Dashboard-Tuneslider

Add recuperation control to the dashboard

• dashboard-tuneslider.htm

Details: https://docs.openvehicles.com/en/latest/components/ovms_webserver/docs/plugin-twizy/
dashboard-tuneslider.html

3.11.2 eDriver BMS Monitor

Status monitor for the Twizy custom eDriver BMS by Pascal Ripp

3.11. Renault Twizy 95

https://docs.openvehicles.com/en/latest/components/ovms_webserver/docs/plugin-twizy/dashboard-tuneslider.html
https://docs.openvehicles.com/en/latest/components/ovms_webserver/docs/plugin-twizy/dashboard-tuneslider.html

Open Vehicles

Version 2.0 by Michael Balzer <dexter@dexters-web.de>

This is a simple web page plugin to display the standard battery cell info along with the additional custom data provided
by the eDriver BMS on one page.

Additional custom data:

• Main state

• Error state

• BMS internal temperature

• AUX relay state

• Cell balancing states

Note: these are read from their respective custom metrics xrt.bms...., see Custom Metrics.

Overall SOC, voltage, current and coulomb/energy counters are also shown to simplify battery capacity and current
sensor calibration.

Check out the eDriver BMS Manual for details or contact Pascal in case of questions.

Installation

1. Install edrvmon.htm web plugin, recommended setup:

• Type: Page

• Page: /usr/edrvmon

• Label: eDriver BMS Monitor

• Menu: Vehicle

• Auth: Cookie

History

• V2.0 – Added cell balancing time totals + SOC & voltage use/charge range

• V1.0 – Initial release

96 Chapter 3. Plugins

mailto:dexter@dexters-web.de

Open Vehicles

3.11.3 Page-Command

only command options as UI

Version 0.2 Matthias Greiling <matthias@greiling.de>

Details:

This view only presents commands to OVMS. While driving you can choose between different drive modes. The
coloured area indicates the active drive mode. Activate an other mode by touching or clicking the grey bordered area.
To change again simply click or touch again the same or another ares. Furthermore you can limit the speed online to
predefined values. The speed limit signs are common in germany and display km/h. Just activate the sign you want to
be limited to - another touch will deactivates the limit of the chosen one.

Installation

1. Install page-command.html web plugin, recommended setup:

• Type: Page

• Page: /usr/command

• Label:

• Menu: Main

• Auth: Cookie

History

• V0.2 – Simplfy backgrounds/ icons of command row

• V0.1 – Initial release

3.11. Renault Twizy 97

mailto:matthias@greiling.de

Open Vehicles

3.11.4 WifiConsole

Backend for WifiConsole hardware extension

• WifiConsole.js

Details: https://github.com/dexterbg/WifiConsole

3.12 Installing Module Plugins

A module plugin normally consists of a single Javascript file that needs to be placed in the /store/scripts/lib/
directory. The plugin is then loaded by a require() call, which can be done manually as needed or automatically
on boot by adding it to the /store/scripts/ovmsmain.js file.

1. Menu Tools → Editor

2. Cancel the open dialog

3. Paste the plugin source into the editor

4. Save as. . . → /store/scripts/lib/... using the name as shown in the plugin documentation

5. Open → (one level up) → ovmsmain.js

6. Add the require() call as shown in the plugin documentation

7. Save

8. Reload JS Engine

The plugin is now installed and activated.

Hint: you can now try out the commands provided by the plugin directly from the editor. Clear the editor, fill in the
command or Javascript snippet, click Evaluate JS. The output will be shown below the input field.

To deactivate a plugin, comment out the require() call by prefixing the line with // and do another JS engine
reload. To remove a plugin, remove the require() call and delete the file using vfs rm /store/scripts/
lib/....

3.13 Installing Web Plugins

A web plugin normally consists of a single HTML file. Web plugins can be meant to render new pages or to hook into
an existing page. They need an initial registration to work:

1. Menu Config → Web Plugins

2. (add)

3. Set type and name as suggested in the plugin documentation

4. Save

5. Edit

6. Set attributes as suggested in the plugin documentation

7. Paste the plugin source into the content area

8. Save

98 Chapter 3. Plugins

https://github.com/dexterbg/WifiConsole

Open Vehicles

The plugin is now installed and activated.

Hint: you can use the text editor (tools menu) to change or update an already installed web plugin. Simply edit the
plugin file in folder /store/plugin/ directly, the system will reload the plugin as soon as you save it.

To deactivate a web plugin, set the state to “off”. To remove a plugin, click → Save.

3.13. Installing Web Plugins 99

Open Vehicles

100 Chapter 3. Plugins

CHAPTER 4

BMW i3 / i3s

Vehicle Type: BMWI3

This vehicle type supports the BMW i3 and i3s models. All model years should be supported.

The OVMS support was developed Jan 2021.

It was developed against the author’s 2018 120Ah i3s BEV. I would welcome engagement from the owner of a REX
type to further develop metrics related to the REX engine. Testing by drivers of LHD models, as well as those with
the smaller batteries will also be helpful.

As of this release this vehicle support is read-only and cannot send commands to the car.

4.1 Support Overview

“tba” item are still on the to-do list and are not currently supported.

101

Open Vehicles

Function Support Status
Hardware Any OVMS v3 (or later) module.
Vehicle Cable OBD-II cable: left-handed cable worked best in my RHD car
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (or any compatible antenna)
SOC Display Yes
Range Display Yes
Cabin Pre-heat/cool Control tba
GPS Location Yes (from modem module GPS)
Speed Display Yes
Temperature Display Yes
BMS v+t Display Yes
TPMS Display tba
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control tba
Lock/Unlock Vehicle tba
Valet Mode Control No
Others 12v battery voltage/current, battery true SOC, etc

4.2 WARNINGS

4.2.1 Alarm behaviour

As standard, the i3 will sound the alarm if anything is left connected to the OBD-II port when the car is locked.

A tool like Bimmercode will allow you to disable this. Alternatively you will need to disconnect the OVMS unit before
locking the car.

A future version may add a command to allow you to disable this alarm directly from your OVMS shell.

4.2.2 12V Battery drain

The i3 has a small 20Ah AGM 12v battery. Whilst care has been taken to minimize OVMS’ power usage, OVMS
could eventually drain this battery if the car is left unplugged and locked. OVMS will also send an alert if 12V drops
under 12V alert threshold. (See 12V Calibration section).

HOWEVER: If you are going to leave the car for a fews days, it is recommended to unplug OVMS.

4.3 Car status

The car is accessible over the OBD-II port when it is running (ignition on) and for a short time (40 seconds or so) after
it is turned off or the car is “tweaked” (lock button pushed, connected-drive command received, etc).

Unfortunately this means that when your car is standing or charging OVMS only has intermittent access to data from
the car.

By observation, whilst the car is charging it wakes up now and then (seems to be every 30 minutes). So at those times
we can update our SOC etc.

102 Chapter 4. BMW i3 / i3s

Open Vehicles

Metrics “v.e.awake” tells you if the car is awake or not. Metric “xi3.s.age” will tell you how many minutes have passed
since we last received data from the car.

You may also refer to metric xi3.s.pollermode as follows:

Mode Meaning
0 Car is asleep - no OBD-II data traffic
1 Car OBD-II is awake - we are seeing data traffic
2 Car is ready to drive or driving
3 Car is charging

4.4 Custom metrics

Metric name Example value Description
xi3.s.age 5Min How long since we last got data from the car
xi3.s.pollermode 0 OBD-II polling mode as explained above
xi3.v.b.p.ocv.avg 4.0646V Main battery pack - average open-circuit voltage
xi3.v.b.p.ocv.max 4.067V Main battery pack - highest open-circuit voltage
xi3.v.b.p.ocv.min 4.063V Main battery pack - lowest open-circuit voltage
xi3.v.b.range.bc 245km Available range per trip computer (based on current driving mode and style)
xi3.v.b.range.comfort 217km Available range if you use Comfort mode
xi3.v.b.range.ecopro 245km Available range if you use EcoPro mode
xi3.v.b.range.ecoproplus 247km Available range if you use EcoPro+ mode
xi3.v.b.soc.actual 85% Actual physical state-of-charge of the main battery pack
xi3.v.b.soc.actual.highlimit 93.7% Highest physical charge level permitted (shown as 100% SOC)
xi3.v.b.soc.actual.lowlimit 10.5% Minimum physical charge level permitted (shown as 0% SOC)
xi3.v.c.chargecablecapacity 0A Maximum power capacity of connected charge cable per the charging interface
xi3.v.c.chargeledstate 0 Colour of the “ring light” on the charging interface.
xi3.v.c.chargeplugstatus Not connected Charging cable connected?
xi3.v.c.current.dc 0A Power flowing on the DC side of the AC charger
xi3.v.c.current.dc.limit 0.100003A Limit
xi3.v.c.current.dc.maxlimit 16A Maximum limit
xi3.v.c.current.phase1 0A Power being drawn on AC phase 1
xi3.v.c.current.phase2 0A Power being drawn on AC phase 2
xi3.v.c.current.phase3 0A Power being drawn on AC phase 3
xi3.v.c.dc.chargevoltage 0V Voltage seen on the DC charger input
xi3.v.c.dc.contactorstatus open DC contactor state (closed implies we are DC charging)
xi3.v.c.dc.controlsignals 0 DC charger control signals (always see 0?)
xi3.v.c.dc.inprogress no DC charging in progress?
xi3.v.c.dc.plugconnected no Is DC charger plug connected (doesn’t seem to work)
xi3.v.c.deratingreasons 0 Reasons why charging rate is derated
xi3.v.c.error 0 Charging error codes
xi3.v.c.failsafetriggers 0 Failsafe trigger reasons
xi3.v.c.interruptionreasons 0 Charging interruption reasons
xi3.v.c.pilotsignal 0A Charge rate pilot signal being received from EVSE
xi3.v.c.readytocharge no Are we ready to charge
xi3.v.c.temp.gatedriver 40°C Charger gatedrive mosfet temperature
xi3.v.c.voltage.dc 8.4V Charger output DC voltage being seen (for AC charging, not DC)
xi3.v.c.voltage.dc.limit 420V Maximum permitted DC voltge

Continued on next page

4.4. Custom metrics 103

Open Vehicles

Table 1 – continued from previous page
Metric name Example value Description
xi3.v.c.voltage.phase1 0V Voltage seen on AC charger input phase 1
xi3.v.c.voltage.phase2 0V Voltage seen on AC charger input phase 2
xi3.v.c.voltage.phase3 0V Voltage seen on AC charger input phase 3
xi3.v.d.chargeport.dc no Is the charger port DC cover open (doesn’t seem to work)
xi3.v.e.autorecirc no Ventilation is in “auto-recirculate” mode
xi3.v.e.obdtraffic no Are we seeing OBD-II frames from the car?
xi3.v.p.tripconsumption 127Wh/km Average consumption for the current or most recent trip
xi3.v.p.wheel1_speed 0km/h Wheel 1 speed
xi3.v.p.wheel2_speed 0km/h Wheel 2 speed
xi3.v.p.wheel3_speed 0km/h Wheel 3 speed
xi3.v.p.wheel4_speed 0km/h Wheel 4 speed
xi3.v.p.wheel_speed 0km/h Average wheel speed

4.5 To be researched

Can we start/stop charging?

Can we pre-heat?

Can we lock/unlock the car?

Can we disable the OBD-II alarm

Still looking for the trip regen kWh

Can we get the voltage state of each individual cells rather than just the battery min / max / average?

104 Chapter 4. BMW i3 / i3s

CHAPTER 5

DBC Based Vehicles

Vehicle Type: DBC

The DBC based vehicle reads a specified DBC file describing CAN bus messages and produces vehicle metrics from
that. It is under development, experimental, and not generally available.

5.1 Support Overview

Function Support Status
Hardware This is vehicle specific. The DBC vehicle module can be configured to use any or all of

the 3 CAN buses.
Vehicle Cable Vehicle specific
GSM Antenna Standard GSM antenna
GPS Antenna Vehicle specific. Standard OVMS GPS supported.
SOC Display Yes, if DBC maps it
Range Display Yes, if DBC maps it
GPS Location Yes, if DBC maps it, otherwise OVMS GPS
Speed Display Yes, if DBC maps it
Temperature Display Yes, if DBC maps it
BMS v+t Display Not currently supported
TPMS Display Yes, if DBC maps it
Charge Status Display Yes, if DBC maps it
Charge Interruption
Alerts

Yes, if DBC maps it

Charge Control Not supported by DBC format, maybe by extension
Cabin Pre-heat/cool
Control

Not supported by DBC format, maybe by extension

Lock/Unlock Vehicle Not supported by DBC format, maybe by extension
Valet Mode Control Not supported by DBC format, maybe by extension
Others None

105

Open Vehicles

5.2 Contents

5.2.1 DBC Introduction

DBC is a CAN data description file format introduced by Vector Informatik GmbH. DBC files are text files so can be
created and edited using a simple text editor like the one built into the OVMS web UI.

DBC files can be used to support vehicles that don’t have a dedicated native adaption yet. This is done using the
generic DBC vehicle type, which can use DBC files to translate CAN data into metrics.

This section tries to show you how to create and use a DBC specification on the OVMS. Of course you’ll need to know
how to decode your vehicle’s CAN frames first. You can use the OVMS RE (reverse engineering) toolkit to identify
which messages are on the bus and which changes correlate to actions and status on the car.

There’s also a very good general introduction to DBC from CSS Electronics including an explanatory video: https:
//www.csselectronics.com/screen/page/can-dbc-file-database-intro/language/en

DBC files only specify the passive (reading) part, they don’t provide a means to define transmissions. If you need to
send frames to request certain information, you can still use the OVMS DBC engine to decode the results (instead of
doing the decoding in C++ code). So a DBC file can be used as a base for a real vehicle module. To request OBD2
data during development, you can use the re obdii commands.

Basic Example

Warning: The DBC support is usable, but considered to be an alpha release. The way it works may change in the
future.

This example is taken from the Twizy, which sends some primary BMS status data at CAN ID 0x155 (341). Note: the
Twizy module actually does not use DBC, this is just an example how you would decode this message if using DBC.

Message example: 05 96 E7 54 6D 58 00 6F

• Byte 0: charge current limit [A], scaled by 5, no offset: 05→ 25A

• Bytes 1+2: momentary battery current [A], big endian, lower 12 bits, scaled by -0.25, offset +500: _6 E7 →
58.25A

• Bytes 4+5: SOC [%], big endian, scaled by 0.0025, no offset: 6D 58→ 69.98%

These can be translated to metrics directly:

• Charge current limit: v.c.climit

• Momentary battery current: v.b.current

• Battery SOC: v.b.soc

Create DBC File

Copy & paste the following into a new editor window:

VERSION "DBC Example 1.0"

BS_: 500000 : 0,0

BO_ 341 BMS_1: 8 Vector__XXX

(continues on next page)

106 Chapter 5. DBC Based Vehicles

https://www.vector.com/
https://www.csselectronics.com/screen/page/can-dbc-file-database-intro/language/en
https://www.csselectronics.com/screen/page/can-dbc-file-database-intro/language/en

Open Vehicles

(continued from previous page)

SG_ v_c_climit : 7|8@0+ (5,0) [0|35] "A" Vector__XXX
SG_ v_b_current : 11|12@0+ (-0.25,500) [-500|1000] "A" Vector__XXX
SG_ v_b_soc : 39|16@0+ (0.0025,0) [0|100] "%" Vector__XXX

What does this mean?

• BS_ defines the bus speed (500 kbit in this example) and bit timings (unused)

• BO_ defines the data object, a CAN frame of length 8 with ID 341 (0x155) (“BMS_1” is just an arbitrary name)

• SG_ lines define the signals (values) embedded in the object (see below)

• Vector__XXX is just a placeholder for any sender/receiver (currently unused by the OVMS)

Signals are defined by their. . .

• Name (= metric name with . replaced by _)

• Start position (bit position) and bit length (7|8)

• Endianness: 0 = big endian (most significant byte first), 1 = little endian (least significant byte first) (Note: the
DBC format documentation is wrong on this)

• Signedness: + = unsigned, - = signed

• Scaling and offset: (-0.25,500) => real value = raw value * -0.25 + 500

• Minimum/maximum: [-500|1000] = valid real values are in the range -500 to 1000

• Unit: e.g. "A" (ignored/irrelevant, defined by the metric)

The metric to set can be given as the name of the signal. You may use the metric name directly on the OVMS, but to
conform to the DBC standard, replace the dots by _.

Bit positions are counted from byte 0 upwards by their significance, regardless of the endianness. The first message
byte has bits 0. . . 7 with bit 7 being the most significant bit of the byte. The second byte has bits 8. . . 15 with bit 15
being the MSB, and so on:

[7 6 5 4 3 2 1 0] [15 14 13 12 11 10 9 8] [23 22 21 20 ...
`----- Byte 0 ----´ `------- Byte 1 --------´ `----- Byte 2 ...

For big endian values, signal start bit positions are given for the most significant bit. For little endian values, the start
position is that of the least significant bit.

Note: On endianness: “big endian” means a byte sequence of 0x12 0x34 decodes into 0x1234 (most significant
byte first), “little endian” means the same byte sequence decodes into 0x3412 (least significant byte first). “Big
endian” is the natural way of writing numbers, i.e. with their most significant digit coming first, “little endian” is
vice versa. Endianness only applies to values of multiple bytes, single byte values are always written naturally / “big
endian”.

Use DBC File

Save the DBC example as: /store/dbc/twizy1.dbc (the directory will be created by the editor)

Open the shell. To see debug logs, issue log level debug dbc-parser and log level debug v-dbc.

Note: the DBC parser currently isn’t graceful on errors, a wrong DBC file may crash the module. So you should
only enable automatic loading of DBC files on boot when you’re done developing and testing it.

5.2. Contents 107

Open Vehicles

So let’s first try if the DBC engine can parse our file. The dbc autoload command loads all DBC files from the
/store/dbc directory:

OVMS# dbc autoload
Auto-loading DBC files...
D (238062) dbc-parser: VERSION parsed as: DBC Example 1.0
D (238062) dbc-parser: BU_ parsed 1 nodes
D (238062) dbc-parser: BO_ parsed message 341
D (238072) dbc-parser: SG_ parsed signal v_c_climit
D (238072) dbc-parser: SG_ parsed signal v_b_current
D (238082) dbc-parser: SG_ parsed signal v_b_soc

Looks good. dbc list can tell us some statistics:

OVMS# dbc list
twizy1: DBC Example 1.0: 1 message(s), 3 signal(s), 56% coverage, 1 lock(s)

The coverage tells us how much of our CAN data bits are covered by signal definitions.

Now let’s load the file into the DBC vehicle:

OVMS# config set vehicle dbc.can1 twizy1
Parameter has been set.

OVMS# vehicle module NONE
I (1459922) v-none: Generic NONE vehicle module

OVMS# vehicle module DBC
I (249022) v-dbc: Pure DBC vehicle module
I (249022) v-dbc: Registering can bus #1 as DBC twizy1

Nice. Let’s simulate receiving our test frame and check the decoded metrics:

OVMS# can can1 rx standard 155 05 96 E7 54 6D 58 00 6F
OVMS# me li v.b.soc
v.b.soc 69.98%
OVMS# me li v.b.current
v.b.current 58.25A
OVMS# me li v.c.climit
v.c.climit 25A

So the decoding apparently works.

To configure DBC mode for autostart we now just need to set the DBC vehicle mode to be loaded on vehicle startup,
and to enable autoloading of the DBC files from /store/dbc. You can do so either by using the user interface page
Config → Autostart (check “Autoload DBC files” and set the vehicle type to “DBC”), or from the shell by. . .

OVMS# config set auto dbc yes
OVMS# config set auto vehicle.type DBC

Try a reboot to see if everything works.

You can now add more objects and signals to your DBC file.

Note: During development of a DBC file, you’ll need to reload the file frequently. The DBC engine locks the currently
used vehicle, so you’ll need to unload the DBC vehicle (vehicle module NONE), then reload the DBC file (dbc
autoload), then reactivate the DBC vehicle (vehicle module DBC).

108 Chapter 5. DBC Based Vehicles

CHAPTER 6

DEMO Vehicle

Vehicle Type: DEMO

The demonstration vehicle can be used to verify module functionality, but is mostly used for development purposes.
The vehicle itself updates system metrics with simulated data. It can respond to charge, and other similar, commands.

6.1 Support Overview

Function Support Status
Hardware Demonstration data only, no vehicle connection
Vehicle Cable None, not required (other than power)
GSM Antenna Standard GSM antenna
GPS Antenna None, not required
SOC Display Yes
Range Display Yes
GPS Location Yes
Speed Display Yes
Temperature Display Yes
BMS v+t Display Not currently supported
TPMS Display Yes
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control Yes
Cabin Pre-heat/cool Control Not currently supported
Lock/Unlock Vehicle Yes
Valet Mode Control Yes
Others None

109

Open Vehicles

110 Chapter 6. DEMO Vehicle

CHAPTER 7

Fiat 500e

Vehicle Type: FT5E

The Fiat 500e vehicle support will be documented here.

7.1 Support Overview

Function Support Status
Hardware tba
Vehicle Cable tba
GSM Antenna tba
GPS Antenna tba
SOC Display tba
Range Display tba
GPS Location tba
Speed Display tba
Temperature Display tba
BMS v+t Display tba
TPMS Display tba
Charge Status Display tba
Charge Interruption Alerts tba
Charge Control tba
Cabin Pre-heat/cool Control tba
Lock/Unlock Vehicle tba
Valet Mode Control tba
Others tba

111

Open Vehicles

112 Chapter 7. Fiat 500e

CHAPTER 8

Hyundai Ioniq vFL

Hyundai Ioniq Electric (28 kWh)

• Vehicle Type: HIONVFL

• Log tag: v-hyundaivfl

• Namespace: xhi

• Maintainers: Michael Balzer

• Sponsors: Henri Bachmann

• Credits: EVNotify

113

mailto:dexter@dexters-web.de
https://github.com/EVNotify

Open Vehicles

8.1 Support Overview

Function Support Status
Hardware OVMS v3 (or later)
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes
Range Display No
GPS Location Yes (from modem module GPS)
Speed Display Yes
Temperature Display Partial
BMS v+t Display Yes
SOH Display Yes
TPMS Display No
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control No
Cabin Pre-heat/cool Control No
Lock/Unlock Vehicle No
Valet Mode Control No
Others

8.2 Custom Metrics

Metric name Example value Description
xhi.b.soc.bms 78.5% Internal BMS SOC
xhi.c.state 128 Charge state flags

8.3 Debug Logs

To see all PID poll results in your log, set log level verbose for component v-hyundaivfl.

114 Chapter 8. Hyundai Ioniq vFL

CHAPTER 9

Kia e-Niro

Vehicle Type: KN

The Kia e-Niro vehicle support will be documented here.

9.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module
Vehicle Cable 9658635 Kia OBD-II to DB9 Data Cable for OVMS
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes
Range Display Yes (based on consumption of past 20 trips longer than 1km)
GPS Location Yes
Speed Display Not currently supported
Temperature Display Yes
BMS v+t Display Yes
TPMS Display Yes
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control Not currently supported
Cabin Pre-heat/cool Control Not currently supported
Lock/Unlock Vehicle Yes
Valet Mode Control Not currently supported
Others ODO Not currently supported

115

Open Vehicles

9.2 OBD-II cable

The Kia e-Niro have one CAN-bus available on the OBD-II port: D-can. You can use the standard OBD-II to DB9
cable from Fasttech.

In case you want to build your own cable, here’s the pinout:

J1962-M DB9-F Signal
4 3 Chassis / Power GND
6 7 CAN-0H (C-can High)
14 2 CAN-0L (C-can Low)
16 9 +12V Vehicle Power

A simple approach is to buy an OBDII (J1962-M) pigtail, and solder the DB9-F connector end appropriately.

9.3 Configuration

TODO. Configuration is quite similar to the Kia Soul, so please check that out. Please use the Web based configuration!

9.4 Estimated Range

Currently, there is no known way to get the estimated range directly from the car, so the estimated range is calculated
by looking at the consumption from the last 20 trips that are longer than 1 km.

9.5 12V battery drain

OVMS will eventually drain the 12V battery, but steps have been taken to minimize the drain. However, if you are
going to leave the car for a fews days, it is recommended to unplug OVMS. OVMS will send an alert if 12V drops
under 12V alert threshold. See 12V Calibration section.

116 Chapter 9. Kia e-Niro

CHAPTER 10

Kia Soul EV

Vehicle Type: KS

The Kia Soul EV vehicle support will be documented here.

10.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module
Vehicle Cable 9658635 Kia OBD-II to DB9 Data Cable for OVMS
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes
Range Display Yes
GPS Location Yes
Speed Display ?
Temperature Display Yes
BMS v+t Display Yes
TPMS Display Yes
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control Not currently supported
Cabin Pre-heat/cool Control Not currently supported
Lock/Unlock Vehicle Yes
Valet Mode Control Not currently supported
Others

117

Open Vehicles

10.2 OBD-II cable

The Kia Soul EV have two different CAN-busses available on the OBD-II port: C-can and M-can.

C-can is the main can-bus and M-can is the multimedia bus. The latter one is not necessary for OVMS, but some
metrics are fetched from the M-bus and these metrics will be empty if you don’t have the proper cable. The standard
OBD-II to DB9 cable from Fasttech supports only C-can, so make sure you buy the Kia Soul specific one.

In case you want to build your own cable, here’s the pinout:

J1962-M DB9-F Signal
1 5 CAN-1H (M-can High)
4 3 Chassis / Power GND
6 7 CAN-0H (C-can High)
9 4 CAN-1L (M-can Low)
14 2 CAN-0L (C-can Low)
16 9 +12V Vehicle Power

A simple approach is to buy an OBDII (J1962-M) pigtail, and solder the DB9-F connector end appropriately.

10.3 Configuration

There are a few Kia Soul EV specific settings that you have to consider in order to get the most out of OVMS. These
are battery size, real life ideal range, remote command pincode and charge port remote control.

10.4 Battery size

Up until the 2018 version of Kia Soul, all models had a 27kWh battery. The 2018-version have a 30kWh battery.
OVMS is by default set up with 27000Wh, but you can change this configuration to fit your car using this command
in the OVMS-shell:

config set xks cap_act_kwh 27000

NB! Even though it says cap_act_kwh, the number must be in Wh.

10.5 Real life ideal range

Even though the Kia Soul EV is equipped with a pretty good and conservative GOM, most experienced drivers know
how far the car can go on a charge. This is what we call the ideal range. You can set the ideal range in kilometers,
experienced at 20 degrees celsius, by using this command:

config set xks maxrange 160

This setting is set to 160 km by default, and matches the author driving a 2015 Kia Soul Classic in 20 degrees in
southern Norway. Your mileage may vary, so please set it accordingly.

The ideal range, as shown in the OVMS APP, are then derived from this number, multiplied by the state of charge and
adjusted using a combination of the outside temperature and the battery temperature.

118 Chapter 10. Kia Soul EV

Open Vehicles

10.6 Open charge port using key fob

By default, OVMS listens for the the third button on the key fob and opens the charge port if Pressed. If you don’t
want this behaviour, you can disable it by using this command:

config set xks remote_charge_port 0

10.7 Security pin code for remote commands

Remote commands like lock and unlock doors, among others, require a pin code. This pin code can be set using the
web configuration or using this command:

config set password pin 1234

Please set this pin as soon as possible.

10.8 Soul specific metrics

NB! Not all metrics are correct or tested properly. This is a work in progress.

There are a lot of extra metrics from the Kia Soul. Here’s the current ones:

Metric Description
xks.b.cell.volt.max The highest cell voltage
xks.b.cell.volt.max.no The cell number with the highest voltage
xks.b.cell.volt.min The lowest cell voltage
xks.b.cell.volt.min.no The cell number with the lowest voltage
xks.b.cell.det.max The highest registered cell deterioration in percent.
xks.b.cell.det.max.no The cell with the highest registered deterioration.
xks.b.cell.det.min The lowest registered cell deterioration in percent.
xks.b.cell.det.min.no The cell with the lowest registered deterioration.
xks.b.min.temp The lowest temperature in the battery
xks.b.max.temp The highest temperature in the battery
xks.b.inlet.temp The air temperature at the air inlet to the battery
xks.b.heat1.temp The temperature of the battery heater 1
xks.b.heat2.temp The temperature of the battery heater 2
xks.b.bms.soc The internal state of charge from BMS
xks.c.power Charge power in kW.
xks.c.speed The charge speed in kilometer per hour.
xks.ldc.out.volt The voltage out of the low voltage DC converter.
xks.ldc.in.volt The voltage into the low voltage DC converter.
xks.ldc.out.amps The power drawn from the low voltage DC converter.
xks.ldc.temp The temperature of the LDC.
xks.obc.pilot.duty The duty cycle of the pilot signal
xks.e.lowbeam Low beam on/off
xks.e.highbeam High beam on/off
xks.e.inside.temp Actual cabin temperature
xks.e.climate.temp Climate temperature setting
xks.e.climate.driver.only Climate is set to driver only
xks.e.climate.resirc Climate is set to recirculate

Continued on next page

10.6. Open charge port using key fob 119

Open Vehicles

Table 1 – continued from previous page
Metric Description
xks.e.climate.auto Climate is set to auto
xks.e.climate.ac Air condition on/off
xks.e.climate.fan.speed Climate fan speed
xks.e.climate.mode Climate mode
xks.e.preheat.timer1.enabled Preheat timer 1 enabled/disabled
xks.e.preheat.timer2.enabled Preheat timer 2 enabled/disabled
xks.e.preheating Preheating on/off
xks.e.pos.dist.to.dest Distance to destination (nav unit)
xks.e.pos.arrival.hour Arrival time, hour part (nav unit)
xks.e.pos.arrival.minute Arrival time, minute part(nav unit)
xks.e.pos.street Current street? Or Next street?
xks.v.seat.belt.driver Seat belt sensor
xks.v.seat.belt.passenger Seat belt sensor
xks.v.seat.belt.back.right Seat belt sensor
xks.v.seat.belt.back.left Seat belt sensor
xks.v.traction.control Traction control on/off
xks.v.cruise.control.enabled Cruise control enabled/disabled
xks.v.emergency.lights Emergency lights enabled/disabled
xks.v.steering.mode Steering mode: Sport, comfort, normal.
xks.v.power.usage Power usage of the car
xks.v.trip.consumption.kWh/100km Battery consumption for current trip
xks.v.trip.consumption.km/kWh Battery consumption for current trip

Note that some metrics are polled at different rates than others and some metrics are not available when car is off. This
means that after a restart of the OVMS, some metrics will be missing until the car is turned on and maybe driven for
few minutes.

Climate and navigation-metrics are fetched from navigation unit and needs the Kia Soul compatible OBDII-cable.

10.9 Soul specific shell commands

There are a few shell commands made for the Kia Soul. Some are read only, others can enable functions and some are
used to write directly to a ECU and must therefore be used with caution.

10.9.1 Read only commands

xks trip

Returns info about the last trip, from you put the car in drive (D or B) and til you parked the car.

xks tpms

Shows the tire pressures.

xks aux

Prints out the voltage level of the auxiliary battery.

xks vin

120 Chapter 10. Kia Soul EV

Open Vehicles

Prints out some more information taken from the cars VIN-number. Not complete.

10.9.2 Active Commands

xks trunk <pin code>

Opens up the trunk

xks chargeport <pin code>

Opens up the charge port

xks ParkBreakService <on/off>

Not yet working.

xks IGN1 <on/off><pin>

Turn on or off IGN1-relay. Can be used to wake up part of the car.

xks IGN2 <on/off><pin>

Turn on or off IGN2-relay. Can be used to wake up part of the car.

xks ACC <on/off><pin>

Turn on or off ACC-relay. Can be used to wake up part of the car.

xks START <on/off><pin>

Turn on or off START-relay. Can be used to wake up part of the car.

xks headlightdelay <on/off>

Turn on/off the “follow me home” head light delay function.

xks onetouchturnsignal <0=Off, 1=3 blinks, 2=5 blinks, 3=7 blinks>

Configure one touch turn signal settings.

xks autodoorunlock <1=Off, 2=On vehicle off, 3=On shift to P, 4=On driver door
unlock>

Configure auto door unlock settings.

xks autodoorlock <0=Off, 1=On speed, 2=On shift>

Configure auto door unlock settings.

10.9. Soul specific shell commands 121

Open Vehicles

10.9.3 ECU-write commands

These commands are for the extra playful people. Use with caution.

xks sjb <b1><b2><b3>

Send command to smart junction box.

xks bcm <b1><b2><b3>

Send command to body control module.

10.10 12V battery drain

OVMS will eventually drain the 12V battery, but steps have been taken to minimize the drain. However, if you are
going to leave the car for a fews days, it is recommended to unplug OVMS.

122 Chapter 10. Kia Soul EV

CHAPTER 11

Maxus eDeliver3

Vehicle Type: MED3

The Maxus eDeliver3 will be documented here.

11.1 Support Overview

Function Support Status
Hardware OVMS v3 (or later)
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes
Range Display Yes
GPS Location Yes (from modem module GPS)
Speed Display No
Temperature Display Yes (External Temp and Battery)
BMS v+t Display No
TPMS Display No
Charge Status Display No
Charge Interruption Alerts No
Charge Control No
Cabin Pre-heat/cool Control No
Lock/Unlock Vehicle No
Valet Mode Control No
Others

123

Open Vehicles

124 Chapter 11. Maxus eDeliver3

CHAPTER 12

Mercedes-Benz B250E W242

Vehicle Type: SE

The Mercedes-Benz B-Klasse Electric Drive will be documented here.

12.1 Support Overview

Function Support Status
Hardware OVMS v3 (or later)
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display No
Range Display Yes
GPS Location Yes (from modem module GPS)
Speed Display Yes
Temperature Display No
BMS v+t Display No
TPMS Display No
Charge Status Display No
Charge Interruption Alerts No
Charge Control No
Cabin Pre-heat/cool Control No
Lock/Unlock Vehicle No
Valet Mode Control No
Others

125

Open Vehicles

12.2 Contents

12.2.1 Standard Metrics

Metric name Notes
ms_v_mot_rpm
ms_v_env_throttle Resolution of 0.4 %
ms_v_pos_speed Resolution of 0.1 km/h
ms_v_pos_odometerResolution of 0.1 km
ms_v_bat_12v_voltageResolution of 0.1 V
ms_v_bat_power Car reports percents, so the kW is just calculated by multiplying by 132 kW. Negative side is

saturated to -50 kW. This is just guess work..
ms_v_bat_range_est
ms_v_bat_consumptionInstantious consumption, Wh/km
ms_v_tpms_*_p
ms_v_env_cabinsetpointThere are two figures, left and right. Using just one for now.

12.2.2 Custom Metrics

Metric name Example value Description
xmb.v.display.trip.reset 2733.2km Dashbord Trip value since Reset
xmb.v.display.trip.start 17.5km Dashbord Trip value since Start (today)
xmb.v.display.consumption.start 25.9 kWh Dashbord Trip consumption since Start (today)
xmb.v.display.accel 89% Eco score on acceleration over last 6 hours
xmb.v.display.const 18% Eco score on constant driving over last 6 hours
xmb.v.display.coast 100% Eco score on coasting over last 6 hours
xmb.v.display.ecoscore 69% Eco score shown on dashboard over last 6 hours
xmb.v.fl_speed 37.83 km/h Front Left wheel speed
xmb.v.fr_speed 37.85 km/h Front Right wheel speed
xmb.v.rl_speed 37.80 km/h Rear Left wheel speed
xmb.v.rr_speed 37.82 km/h Rear Right wheel speed

126 Chapter 12. Mercedes-Benz B250E W242

CHAPTER 13

MG EV

Vehicle Type: MGEV

This vehicle type supports the MG ZS EV (2019-).

MG5 is not yet supported in this build.

13.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module. Vehicle support: 2019-
Vehicle Cable Right hand OBDII cable (RHD), Left hand OBDII cable (LHD)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (or any compatible antenna)
SOC Display Yes
Range Display Yes (BMS calculated and WLTP range from SoC)
Cabin Pre-heat/cool Control tba
GPS Location Yes (from modem module GPS)
Speed Display Yes
Temperature Display Yes
BMS v+t Display Yes
TPMS Display Yes
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control tba
Lock/Unlock Vehicle tba
Valet Mode Control No
Others tba

127

Open Vehicles

13.2 Development notes

To compile the code you will need to check out the repository, check out the components mongoose, libzip and zlib
and copy the file

sdkconfig.default.hw31

from the OVMS.V3/support folder to the OVMS.V3 folder and rename it to

sdkconfig

13.3 Community documentation

This module is developed from the work provided by the My MG ZS EV community at
https://discourse.mymgzsev.com/ Please join the Slack channel for support and the latest builds.

13.4 Car status

The car is accessible over the OBD port when it is running (ignition on) and for around 40 seconds after it is turned
off or the car is “tweaked” (lock button pushed, etc).

The OBD port may be kept awake by using the “tester present” message to the gateway ECU. This keeps a lot of
systems awake and draws roughly 5A on the 12V bus, so it’s not a good idea to do.

The MGEV module now monitors (and automatically calibrates) the 12V status and will automaticaly switch on when
the 12V exceeds 12.9V. When it does this it will try to poll the vehicle for data.

There are 4 Poll States

• 0 ListenOnly: the OVMS module is quiet and stops sending polls, it will enter this state after 50s of being
< 12.9V

• 1 Charging: the OVMS module sends charging specific queries

• 2 Driving: the OVMS module sends driving specific queries

• 3 Backup: the OVMS module cannot get data from the car when it is charging so just retries SoC queries

The Gateway (GW, GWM) is the keeper of all the data of the car and will enter a locked state when it is woken by the
car starting charging and the car is locked. This we have called “Zombie Mode”, and we have developed an override
for this.

This override, however causes a few strange things to happen:

• If Zombie mode override is active, the car will not unlock the charge cable. To fix this dusrupt the charge
and wait 50s for OVMS to go back to sleep and the cable should release (or unplug OVMS)

• Zombie mode override resets the “Accumulated Total Trip” on the Cluster

• Zombie mode override sets the gearshift LEDs switch on

128 Chapter 13. MG EV

CHAPTER 14

Mitsubishi Trio

Vehicle Type: MI

This should be used to support the Mitsubishi i-Miev (Citroen C-Zero, Peugeot iOn) vehicles.

14.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes
Range Display Yes
GPS Location Yes
Speed Display Yes
Temperature Display No
BMS v+t Display Yes
TPMS Display Not currently supported
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control No
Cabin Pre-heat/cool Control Not currently supported
Lock/Unlock Vehicle Not currently supported
Valet Mode Control Not currently supported
Others

129

Open Vehicles

14.2 Trio specific metrics

NB! Not all metrics are correct or tested properly. This is a work in progress.

Metric Description
xmi.b.power.min The battery minimum power usage
xmi.b.power.max The battery maximum power usage
xmi.e.lowbeam Low beam light status
xmi.e.highbeam High beam light status
xmi.e.frontfog Front fog light status
xmi.e.rearfog Rear fog light status
xmi.e.rightblinker Right blinker status
xmi.e.leftblinker Left blinker status
xmi.e.warninglight Warning light status
xmi.c.kwh.dc Charge energy on DC side in kWh
xmi.c.kwh.ac Charge energy on AC side in kWh
xmi.c.efficiency Charge efficiency (DC/AC)
xmi.c.power.ac Charge power on AC side in kW
xmi.c.power.dc Charge power on DC side in kW
xmi.c.time Charge time (h:mm.ss)
xmi.c.soc.start Charge start soc in %
xmi.c.soc.stop Charge stop soc in %
xmi.e.heating.amp Heating energy usage in A
xmi.e.heating.watt Heating energy usage in W
xmi.e.heating.temp.return Heater return water temperature
xmi.e.heating.temp.flow Heater flow water temperature
xmi.e.ac.amp AC energy usage in A
xmi.e.ac.watt AC energy usage in W
xmi.e.trip.park Trip start odometer in km
xmi.e.trip.park.energy.used Energy used in kWh
xmi.e.trip.park.energy.recuperated Recuperated energy in kWh
xmi.e.trip.park.heating.kwh Heater energy usage on trip in kWh
xmi.e.trip.park.ac.kwh AC energy usage on trip in kWh
xmi.e.trip.park.soc.start Trip start soc
xmi.e.trip.park.soc.stop Trip stop soc
xmi.e.trip.charge Trip start odometer in km since charge
xmi.e.trip.charge.energy.used Energy used in kWh since charge
xmi.e.trip.charge.energy.recuperated Recupe.. energy in kWh since charge
xmi.e.trip.charge.heating.kwh Heating usage in kWh since charge
xmi.e.trip.charge.ac.kwh AC energy usage in kWh since charge
xmi.e.trip.charge.soc.start Trip start soc since charge
xmi.e.trip.charge.soc.stop Trip stop soc since charge

Note that some metrics are polled at different rates than others and some metrics are not available when car is off. This
means that after a restart of the OVMS, some metrics will be missing until the car is turned on and maybe driven for
few minutes.

130 Chapter 14. Mitsubishi Trio

Open Vehicles

14.3 Custom Commands

14.3.1 Read only commands

xmi trip

Returns info about the last trip, from you start the car with key.

xmi tripc

Returns info about the trip since last charge.

xmi aux

Prints out the voltage level of the auxiliary battery.

xmi vin

Prints out some more information taken from the cars VIN-number.

14.4 Trio Regen Brake Light Hack

14.4.1 Parts required

• 1x DA26 / Sub-D 26HD Plug & housing * Note: housings for Sub-D 15 fit for 26HD * e.g. Assmann-WSW-A-
HDS-26-LL-Z * Encitech-DPPK15-BK-K-D-SUB-Gehaeuse

• 1x 12V Universal Car Relay + Socket * e.g. Song-Chuan-896H-1CH-C1-12V-DC-Kfz-Relais * GoodSky-
Relaissockel-1-St.-GRL-CS3770

• 1x 1 Channel 12V Relay Module With Optocoupler Isolation * 12V 1 channel relay module with Optocoupler
Isolation

Car wire-tap connectors, car crimp connectors, 0.5 mm2 wires, zipties, shrink-on tube, tools

Note: if you already use the switched 12V output of the OVMS for something different, you can use one of the free
EGPIO outputs. That requires additionally routing an EGPIO line to the DA26 connector at the expansion slot (e.g.
using a jumper) and using a relay module (2/b: relay shield) with separate power input instead of the standard car
relay.

I use 2/b (relay shield) variant: Be aware the MAX71317 outputs are open drain, so you need a pull up resistor to e.g.
+3.3. According to the data sheet, the current should stay below 6 mA.

Inside OVMS Box: Connect JP1 Pin10 (GEP7) to Pin12 (EGPIO_8) with jumper

In DA26 connector:

pin 24(+3.3) ----- [680 Ohms] ---+--- [Relay board IN]
|

pin 21 (EGPIO_8)
pin 9 ----- [Relay board DC+]
pin 8 ----- [Relay board DC-]
[Relay board COM] ----- Brake pedal switch one side
[Relay board NO] ----- Brake pedal switch other side

14.3. Custom Commands 131

Open Vehicles

14.4.2 Configuration

See OVMS web user interface, menu Trio → Brake Light:

Set the port as necessary and the checkbox to enable the brakelight.

For monitoring and fine tuning, use the „regenmon“ web plugin: https://github.com/openvehicles/
Open-Vehicle-Monitoring-System-3/blob/master/vehicle/OVMS.V3/components/ovms_webserver/dev/regenmon.
htm

132 Chapter 14. Mitsubishi Trio

https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3/blob/master/vehicle/OVMS.V3/components/ovms_webserver/dev/regenmon.htm
https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3/blob/master/vehicle/OVMS.V3/components/ovms_webserver/dev/regenmon.htm
https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3/blob/master/vehicle/OVMS.V3/components/ovms_webserver/dev/regenmon.htm

Open Vehicles

14.4. Trio Regen Brake Light Hack 133

Open Vehicles

134 Chapter 14. Mitsubishi Trio

CHAPTER 15

Nissan Leaf/e-NV200

Vehicle Type: NL

This vehicle type supports the Nissan Leaf (24kWh & 30kWh) and Nissan e-NV200 (24kWh & 40kWh).

15.1 Support Overview

15.1.1 Hardware

Item Support Status
Module Any OVMS v3 (or later) module. Vehicle support: 2011-2017 (24kWh & 30kWh LEAF, 24kWh &

40KWh e-Nv200 & custom battery e.g Muxsan)
Vehicle
Cable

1779000 Nissan Leaf OBD-II to DB9 Data Cable for OVMS

GSM An-
tenna

1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)

GPS An-
tenna

1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)

15.1.2 Controls

Function Support Status
Charge Control Start charge only (Stop charge in beta firmware stage)
Cabin Pre-heat/cool Control Yes1 (see info below)
Lock/Unlock Vehicle Yes3 (see info below)
Valet Mode Control Not currently supported

1 OVMS currently supports 2011-2017 Nissan LEAF and Nissan e-NV200
3 Lock/Unlock will work if CAR can bus is awake, this can be activated by turning on A/C

135

Open Vehicles

15.1.3 Metrics

Item Support Status
SOC Yes (by default based on GIDS)[4]
Range Yes (by default based on GIDS)
GPS Location Yes (from modem module GPS)
Speed Yes (from vehicle speed PID)
Cabin Temperature Yes (from vehicle temperature PIDs)
Ambient Temperature Yes (from vehicle temperature PIDs)
SetPoint Temperature Yes (from vehicle hvac PIDs)2

HVAC Fan Speed Yes (from vehicle hvac PIDs)2

HVAC Heating/Cooling Status Yes (from vehicle hvac PIDs)2

HVAC On Status Yes (from vehicle hvac PIDs)2

HVAC Temperature Setpoint Yes (from vehicle hvac PIDs)2

HVAC Ventilation Mode Yes (from vehicle hvac PIDs)2

BMS v+t Yes
TPMS Yes (If hardware available)
Charge Status Yes
Charge Interruption Alerts Yes

15.2 Remote Climate Control

15.2.1 2011-2013 models (ZE0)

Gen1 Cars (ZE0, 2011-2013) require a hardware modification to enable OVMS to control remote climate. Wire RC3
to TCU pin 11, more info

15.2.2 2014-2016 models (AZE0)

To use OVMS to activate remote climate the Nissan TCU (Telematics Control Unit) module must be unplugged if
fitted (only on Acenta and Tekna models). The TCU is located behind the glovebox on LHD cars or on the right hand
side of the drivers foot well on RHD cars. The large white plug on the rear of the TCU should be unplugged, push
down tab in the middle and pull to unplug, see video for RHD cars and this page for LHD cars.

Note: Unplugging the TCU will disable Nissan EV connect / CARWINGS features e.g Nissan mobile app. All other
car functions will not be effected e.g GPS, maps, radio, Bluetooth, microphone all work just the same as before.
OVMS can be used to more than substitute the loss of Nissan Connect features. The TCU can be plugged back in at
any point in the future if required.

OVMS remote climate support will ‘just work’ on LEAF Visia models and Visia/Acenta e-NV200 since these models
do not have a TCU fitted.

Note: If you prefer not to unplug the Nissan TCU, all OVMS functions appart from remote climate will function just
fine alongside the Nissan TCU.

2 Some HVAC Status Items have been only verified with 2013-2016 MY cars and will only work if the year is set in configuraiton. Also HVAC
needs to be in ON position before powering down the vehicle for the metrics to work during pre-heat.

136 Chapter 15. Nissan Leaf/e-NV200

https://carrott.org/emini/Nissan_Leaf_OVMS#Remote_Climate_Control)
https://photos.app.goo.gl/MuvpCaXQUjbCdoox6
http://www.arachnon.de/wb/pages/en/nissan-leaf/tcu.php

Open Vehicles

15.2.3 2016-2017 models (AZE0)

Remote climate control will only work when plugged in and actively charging on 2016-2017 models. This is
because in 2016 Nissan moved the TCU from the EV CAN bus to the CAR CAN bus.

Set the model year as follows and if necessary configure 30 kWh model:

config set xnl modelyear 2016

or

config set xnl modelyear 2017

Note: in latest OVMS fimware version model year and battery size can be set via the web config interface.

15.2.4 2018+ models (ZE1)

2018+ 40/62kWh LEAF is not yet supported. Please get in touch if your interested in helping to add support. Relevant
2018 CANbus messages have already been decoded and documented, see MyNissanLEAF thread.

15.2.5 Specific battery configs

For models with a 30 kWhr battery pack, set the capacity manually with:

config set xnl maxGids 356 config set xnl newCarAh 79

For models with a 40 kWhr battery pack, set the capacity manually with:

config set xnl maxGids 502 config set xnl newCarAh 115

For models with a 62 kWhr battery pack, set the capacity manually with:

config set xnl maxGids 775 config set xnl newCarAh 176

Note: In latest OVMS firmware version, model year and battery size can be set via the web config interface. This is
easier and also the preferred method.

Note 2: OVMS fully supports battery upgraded LEAFs, just set the capacity according to what battery is currently
installed.

15.3 Range Calculation

The OVMS uses two configuration options to calculate remaining range, whPerGid (default 80Wh/gid) and km-
PerKWh (default 7.1km/kWh). The range calculation is based on the remaining gids reported by the LBC and at
the moment does not hold 5% in reserve like LeafSpy. Feedback on this calculation is welcomed.

15.4 Resources

• Nissan LEAF support added by Tom Parker, see his wiki for lots of documentation and resources. Some info is
outdated e.g climate control now turns off automatically.

• Nissan LEAF features are being added by Jaunius Kapkan, see his github profile to track the progress.

• MyNissanLEAF thread for Nissan CANbus decoding discussion

• Database files (.DBC) for ZE0 and AZE0 Leaf can be found here: Github LEAF Canbus database files

15.3. Range Calculation 137

https://mynissanleaf.com/viewtopic.php?f=44&t=4131&start=480
https://carrott.org/emini/Nissan_Leaf_OVMS
https://github.com/mjkapkan/Open-Vehicle-Monitoring-System-3
http://www.mynissanleaf.com/viewtopic.php?f=44&t=4131&hilit=open+CAN+discussion&start=440
https://github.com/dalathegreat/leaf_can_bus_messages

Open Vehicles

Assistance is appreciated as I haven’t had time to try to override the TCU using the OVMS or find an alternative
solution to prevent the TCU overriding the messages while still allowing the hands free microphone to work.

138 Chapter 15. Nissan Leaf/e-NV200

CHAPTER 16

OBDII Vehicles

Vehicle Type: O2

Support for generic OBDII is provided by this module.

139

Open Vehicles

16.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module. Vehicle support: Not widely tested, but should be all that

support OBDII standard PIDs over CAN bus.
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes (based on fuel level PID)
Range Display No
GPS Location Yes (from modem module GPS)
Speed Display Yes (from vehicle speed PID)
Temperature Dis-
play

Yes (from vehicle temperature PIDs)

BMS v+t Display No
TPMS Display No
Charge Status Dis-
play

No

Charge Interrup-
tion Alerts

No

Charge Control No
Cabin Pre-
heat/cool Control

No

Lock/Unlock
Vehicle

No

Valet Mode Con-
trol

No

Others VIN and RPMs should be available

140 Chapter 16. OBDII Vehicles

CHAPTER 17

Renault Twizy

Vehicle Type: RT

141

Open Vehicles

17.1 Support Overview

Function Support Status
Hardware No specific requirements (except for regen brake light

control, see below)
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right,

or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any

compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or

any compatible antenna)
SOC Display Yes
Range Display Yes
GPS Location Yes
Speed Display Yes
Temperature Display Yes
BMS v+t Display Yes
TPMS Display No
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control Current limit, stop, SOC/range limit
Cabin Pre-heat/cool Control No
Lock/Unlock Vehicle Mapped to dynamic speed lock
Valet Mode Control Mapped to odometer based speed lock
Others

• Battery & motor power & energy monitoring
• Battery health & capacity
• SEVCON monitoring & tuning (Note: tuning

only SC firmware <= 0712.0002 / ~07/2016)
• Kickdown
• Auto power adjust
• Regen brake light
• Extended trip & GPS logging

Note: regarding the Twizy, V3 works very similar to V2. All telemetry data tables and tuning profiles are fully
compatible, and the commands are very similar. Therefore, the basic descriptions and background info from the V2
manual are valid for V3 as well.

• V2 FAQ (english)

• V2 FAQ (german)

• V2 documents directory

• V2 user manual (PDF)

17.2 Hints on V3 commands vs. V2

• V3 commands need to be in lower case.

• When accessing via USB terminal, first issue enable (login).

• V3 commands are similar to V2 commands, just structured slightly different.

142 Chapter 17. Renault Twizy

https://dexters-web.de/faq/en
https://dexters-web.de/faq
https://github.com/openvehicles/Open-Vehicle-Monitoring-System/tree/master/docs/Renault-Twizy
https://github.com/openvehicles/Open-Vehicle-Monitoring-System/raw/master/docs/Renault-Twizy/OVMS-UserGuide-RenaultTwizy.pdf

Open Vehicles

• Try help, ? and xrt ?. Twizy commands are subcommands of xrt.

• TAB only works via USB / SSH. Shortcuts can be used generally, e.g. mo t instead of module tasks.

• A usage info is shown if a command syntax is wrong or incomplete.

17.3 Contents

17.3.1 Configuration

The Twizy configuration is stored in the OVMS config parameter (section) xrt. To list the current values, issue:

config list xrt

For reference, the following table includes the equivalent OVMS V2 feature or parameter number & bit value where
applicable. You may use the parameter & feature editors on the App (values are mapped), the commands have been
merged into the config command in V3.

17.3. Contents 143

Open Vehicles

Config instance
name

Example
value

V2
F/P

Description

autopower yes F15/8 Bool: SEVCON automatic power level adjustment (Default: yes)
autoreset yes F15/2 Bool: SEVCON reset on error (Default: yes)
aux_charger_port 0 – EGPIO port to control auxiliary charger (Default: 0 = disabled)
aux_fan_port 0 – EGPIO port to control auxiliary charger fan (Default: 0 = disabled)
canwrite yes F15/1 Bool: CAN write enabled (Default: no)
cap_act_prc 82.2288 F13 Battery actual capacity level [%] (Default: 100.0)
cap_nom_ah 108 – Battery nominal capacity [Ah] (Default: 108.0)
chargelevel 0 F7 Charge power level [1-7] (Default: 0=unlimited)
chargemode 0 F6 Charge mode: 0=notify, 1=stop at sufficient SOC/range (Default: 0)
console no F15/16 -unused- (reserved for possible V3 SimpleConsole presence)
dtc_autoreset no – Reset DTC statistics on every drive/charge start (Default: no)
gpslogint 5 (F8) Seconds between RT-GPS-Log entries while driving (Default: 0 =

disabled)
kd_compzero 120 F2 Kickdown pedal compensation (Default: 120)
kd_threshold 35 F1 Kickdown threshold (Default: 35)
kickdown yes F15/4 Bool: SEVCON automatic kickdown (Default: yes)
lock_on 6 – Speed limit [kph] to engage lock mode at (Default: undefined = off)
maxrange 55 F12 Maximum ideal range at 20 °C [km] (Default: 80)
motor_rpm_rated 2050 – Powermap V3 control: rated speed [RPM] (Default: 0 = V2)
mo-
tor_trq_breakdown

210.375 – Powermap V3 control: breakdown torque [Nm] (Default: 0 = V2)

profileNN XaZwt5ehZQ. . .(P16-
21)

Tuning profile #NN [NN=01. . . 99] base64 code

profileNN.label PWR – . . . button label
profileNN.title Power – . . . title
profile_buttons 0,1,2,3 – Tuning drivemode button configuration
profile_cfgmode 2 – Tuning profile last loaded in config (pre-op) mode
profile_user 2 P15 Tuning profile last loaded in user (op) mode
suffrange 0 F11 Sufficient range [km] (Default: 0=disabled)
suffsoc 80 F10 Sufficient SOC [%] (Default: 0=disabled)
type – – Twizy custom SEVCON/Gearbox type: [SC80GB45,SC45GB80]

(Default: - = auto detect)
valet_on 12345.6 – Odometer limit [km] to engage valet mode at (Default: undefined =

off)

17.3.2 Custom Metrics

Metric name Example value Description
co.can1.nd1.emcy.code SEVCON emergency code
co.can1.nd1.emcy.type SEVCON emergendy type
co.can1.nd1.state Operational SEVCON state (preop/op)
xrt.b.u.soc.max 70.52% Current trip/charge pack SOC max
xrt.b.u.soc.min 50.8% Current trip/charge pack SOC min
xrt.b.u.temp.max 20°C Current trip/charge pack temp max
xrt.b.u.temp.min 18.1429°C Current trip/charge pack temp min
xrt.b.u.volt.max 55V Current trip/charge pack volt max
xrt.b.u.volt.min 50.2V Current trip/charge pack volt min

Continued on next page

144 Chapter 17. Renault Twizy

Open Vehicles

Table 1 – continued from previous page
Metric name Example value Description
xrt.bms.balancing 2,4,8,10,13,14 Custom BMS: cell balancing status
xrt.bms.error 0 Custom BMS: error status
xrt.bms.state1 4 Custom BMS: main state
xrt.bms.state2 1 Custom BMS: auxiliary state
xrt.bms.temp 52°C Custom BMS: internal temperature
xrt.bms.type 1 Custom BMS: type (0=VirtualBMS, 1=eDriver BMS, 7=Standard)
xrt.cfg.applied yes Tuning working set has been applied to SEVCON
xrt.cfg.base 2 Tuning base profile (preop mode params)
xrt.cfg.profile 144,110,111,182,. . . Tuning profile params
xrt.cfg.type Twizy80 Tuning vehicle type
xrt.cfg.unsaved yes Tuning working set has unsaved changes
xrt.cfg.user 2 Tuning user/live profile (op mode params)
xrt.cfg.ws 0 Tuning profile last loaded into working set
xrt.i.cur.act 0A SC monitor: motor current level
xrt.i.frq.output 0 SC monitor: motor output frequency
xrt.i.frq.slip 0 SC monitor: motor slip frequency
xrt.i.pwr.act 0kW SC monitor: motor power level
xrt.i.trq.act 0 SC monitor: motor torque level
xrt.i.trq.demand 0 SC monitor: motor torque demand
xrt.i.trq.limit 0 SC monitor: motor torque limit
xrt.i.vlt.act 0V SC monitor: output voltage level (motor)
xrt.i.vlt.bat 0 SC monitor: input voltage level (battery)
xrt.i.vlt.cap 0A SC monitor: capacitor voltage level
xrt.i.vlt.mod 0% SC monitor: motor modulation factor
xrt.m.version 1.2.4 Sep 17 2019 OVMS Twizy component version
xrt.p.stats.acc.dist 0.6267km Power stats: accelerating: distance
xrt.p.stats.acc.recd 1.30133e-05kWh Power stats: accelerating: energy recovered
xrt.p.stats.acc.spdavg 2.7km/h/s Power stats: accelerating: speed average
xrt.p.stats.acc.used 0.17692kWh Power stats: accelerating: energy used
xrt.p.stats.cst.dist 0.5331km Power stats: coasting: distance
xrt.p.stats.cst.recd 4.23289e-05kWh Power stats: coasting: energy recovered
xrt.p.stats.cst.spdavg 26.18km/h Power stats: coasting: speed average
xrt.p.stats.cst.used 0.09703kWh Power stats: coasting: energy used
xrt.p.stats.dec.dist 0.5436km Power stats: decelerating: distance
xrt.p.stats.dec.recd 0.0140886kWh Power stats: decelerating: energy recovered
xrt.p.stats.dec.spdavg 2.6km/h/s Power stats: decelerating: speed average
xrt.p.stats.dec.used 0.0379027kWh Power stats: decelerating: energy used
xrt.p.stats.ldn.dist 0.2km Power stats: downwards: distance
xrt.p.stats.ldn.hsum 3m Power stats: downwards: height sum
xrt.p.stats.ldn.recd 0.00300565kWh Power stats: downwards: energy recovered
xrt.p.stats.ldn.used 0.0356104kWh Power stats: downwards: energy used
xrt.p.stats.lup.dist 1.31km Power stats: upwards: distance
xrt.p.stats.lup.hsum 66m Power stats: upwards: height sum
xrt.p.stats.lup.recd 0.010866kWh Power stats: upwards: energy recovered
xrt.p.stats.lup.used 0.263831kWh Power stats: upwards: energy used
xrt.s.b.pwr.drv SC monitor: virtual dyno drive power levels
xrt.s.b.pwr.rec SC monitor: virtual dyno recup power levels
xrt.s.m.trq.drv SC monitor: virtual dyno drive torque levels
xrt.s.m.trq.rec SC monitor: virtual dyno recup torque levels

Continued on next page

17.3. Contents 145

Open Vehicles

Table 1 – continued from previous page
Metric name Example value Description
xrt.v.b.alert.12v no Display service indicator: 12V alert
xrt.v.b.alert.batt no Display service indicator: Battery alert
xrt.v.b.alert.temp no Display service indicator: Temperature alert
xrt.v.b.status 0 Internal BMS status (CAN frame 628)
xrt.v.c.status 0 Internal Charger status (CAN frame 627)
xrt.v.i.status 0 Internal SEVCON status (CAN frame 629)
xrt.v.e.locked.speed 0 Speed limit [kph] set for Twizy lock mode
xrt.v.e.valet.odo 0 Odometer limit [km] set for Twizy valet mode

17.3.3 Events

The Renault Twizy module emits these specific events additionally to the general OVMS events:

Event Data Purpose
vehicle.charge.substate.scheduledstop Charge stopped by user request (command)
vehicle.ctrl.cfgmode SEVCON in configuration mode (preop)
vehicle.ctrl.loggedin SEVCON session established
vehicle.ctrl.runmode SEVCON in normal mode (op)
vehicle.drivemode.changed SEVCON tuning profile changed
vehicle.dtc.present <dtc_descr> OBD2 DTC (diagnostic trouble code) present
vehicle.dtc.stored <dtc_descr> OBD2 DTC stored
vehicle.fault.code <code> SEVCON fault code received
vehicle.kickdown.engaged Kickdown detected, drive power changed
vehicle.kickdown.released Kickdown mode end, normal power restored
vehicle.kickdown.releasing Kickdown mode about to end

17.3.4 Custom Commands

Note: This is currently just a brief overview to feed the search engine. See each command’s usage info and where
applicable corresponding V2 manual entries on details.

• V3 commands need to be in lower case.

• When accessing via USB terminal, first issue enable (login).

• V3 commands are similar to V2 commands, just structured slightly different.

• Try help, ? and xrt ?. Twizy commands are subcommands of xrt.

• TAB only works via USB / SSH. Shortcuts can be used generally, e.g. mo t instead of module tasks.

• A usage info is shown if a command syntax is wrong or incomplete.

OVMS# xrt ?
batt Battery monitor
ca Charge attributes
cfg SEVCON tuning
dtc Show DTC report / clear DTC
mon SEVCON monitoring
obd OBD2 tools
power Power/energy info

146 Chapter 17. Renault Twizy

Open Vehicles

Battery Monitor

OVMS# xrt batt ?
data-cell Output cell record
data-pack Output pack record
reset Reset alerts & watches
status Status report
tdev Show temperature deviations
temp Show temperatures
vdev Show voltage deviations
volt Show voltages

Note: Also see standard BMS commands (bms ?).

Charge Attributes

OVMS# xrt ca ?
Usage: xrt ca [R] | [<range>] [<soc>%] [L<0-7>] [S|N|H]

Note: Also see standard charge control commands (charge ?).

SEVCON Tuning

OVMS# xrt cfg ?
brakelight Tune brakelight trigger levels
clearlogs Clear SEVCON diag logs
drive Tune drive power level
get Get tuning profile as base64 string
info Show tuning profile
load Load stored tuning profile
op Leave configuration mode (go operational)
power Tune torque, power & current levels
pre Enter configuration mode (pre-operational)
querylogs Send SEVCON diag logs to server
ramplimits Tune max pedal reaction
ramps Tune pedal reaction
read Read register
recup Tune recuperation power levels
reset Reset tuning profile
save Save current tuning profile
set Set tuning profile from base64 string
showlogs Display SEVCON diag logs
smooth Tune pedal smoothing
speed Tune max & warn speed
tsmap Tune torque/speed maps
write Read & write register
writeonly Write register

17.3. Contents 147

Open Vehicles

Show DTC Report / Clear DTC

OVMS# xrt dtc ?
clear Clear stored DTC in car
reset Reset OVMS DTC statistics
show Show DTC report

SEVCON Monitoring

OVMS# xrt mon ?
reset Reset monitoring
start Start monitoring
stop Stop monitoring

OBD2 Tools

OVMS# xrt obd ?
request Send OBD2 request, output response
OVMS# xrt obd request ?
bms Send OBD2 request to BMS
broadcast Send OBD2 request as broadcast
charger Send OBD2 request to charger (BCB)
cluster Send OBD2 request to cluster (display)
device Send OBD2 request to a device

Power/Energy Info

OVMS# xrt power ?
report Trip efficiency report
stats Generate RT-PWR-Stats entry
totals Power totals

17.3.5 Notifications

The Renault Twizy module sends the custom or customized notifications described here additionally to the system
notifications.

See Notifications for general info on notifications.

148 Chapter 17. Renault Twizy

Open Vehicles

Type Subtype Purpose / Content
alert battery.status Battery pack/cell alert status report (alerts & watches)
alert bms.status Battery management system alert (for custom BMS only)
info charge.status.sufficient Sufficient charge reached (SOC/range as configured)
alert valetmode.odolimit Odometer limit reached, speed reduction engaged
alert vehicle.dtc OBD2 DTC (diagnostic trouble code) alert
data xrt.battery.log Battery pack/cell monitoring log
data xrt.gps.log Extended GPS log
data xrt.obd.cluster.dtc OBD2 DTC log for cluster (display/UCH)
data xrt.power.dyno SEVCON live monitoring (virtual dyno) data
data xrt.power.log Power statistics
info xrt.power.totals Current usage cycle power totals
data xrt.trip.log Trip history log
info xrt.trip.report Trip energy usage report
alert xrt.sevcon.fault SEVCON fault condition detected
data xrt.sevcon.log SEVCON faults & events logs
info xrt.sevcon.profile.reset A tuning RESET has been performed
info xrt.sevcon.profile.switch Tuning profile switch result

Trip history log

The trip history log can be used as a source for long term statistics on your trips and typical trip power usages, as well
as your battery performance in different environmental conditions and degradation over time.

Entries are created at the end of a trip and on each change in the charge state, so you can also see where charges
stopped or how long they took and how high the temperatures got.

• Notification subtype: xrt.trip.log

• History record type: RT-PWR-Log

• Format: CSV

• Maximum archive time: 365 days

• Fields/columns:

– odometer_km

– latitude

– longitude

– altitude

– chargestate

– parktime_min

– soc

– soc_min

– soc_max

– power_used_wh

– power_recd_wh

– power_distance

17.3. Contents 149

Open Vehicles

– range_estim_km

– range_ideal_km

– batt_volt

– batt_volt_min

– batt_volt_max

– batt_temp

– batt_temp_min

– batt_temp_max

– motor_temp

– pem_temp

– trip_length_km

– trip_soc_usage

– trip_avg_speed_kph

– trip_avg_accel_kps

– trip_avg_decel_kps

– charge_used_ah

– charge_recd_ah

– batt_capacity_prc

– chg_temp

Extended GPS log

The extended GPS log contains additional details about power and current levels, the BMS power limits and the
automatic power level adjustments done by the OVMS. You can use this to create detailed trip power charts and to
verify your auto power adjust settings.

The log frequency is once per minute while parking/charging, and controlled by config xrt gpslogint (web UI:
Twizy → Features) while driving. Logging only occurs if logged metrics have changed.

• Notification subtype: xrt.gps.log

• History record type: RT-GPS-Log

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns:

– odometer_mi_10th

– latitude

– longitude

– altitude

– direction

– speed

150 Chapter 17. Renault Twizy

Open Vehicles

– gps_fix

– gps_stale_cnt

– gsm_signal

– current_power_w

– power_used_wh

– power_recd_wh

– power_distance

– min_power_w

– max_power_w

– car_status

– max_drive_pwr_w

– max_recup_pwr_w

– autodrive_level

– autorecup_level

– min_current_a

– max_current_a

Battery pack/cell monitoring log

The extended GPS log contains additional details about power and current levels, the BMS power limits and the
automatic power level adjustments done by the OVMS. You can use this to create detailed trip power charts and to
verify your auto power adjust settings.

The standard log frequency is once per minute, logging only occurs if logged metrics have changed. Additional
records are created on battery alert events. Note: an entry consists of a pack level record (RT-BAT-P) and up to 16
(for LiFePO4 batteries) cell entries (RT-BAT-C).

• Notification subtype: xrt.battery.log

• History record type: RT-BAT-P (pack status)

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns:

– packnr

– volt_alertstatus

– temp_alertstatus

– soc

– soc_min

– soc_max

– volt_act

– volt_min

17.3. Contents 151

Open Vehicles

– volt_max

– temp_act

– temp_min

– temp_max

– cell_volt_stddev_max

– cmod_temp_stddev_max

– max_drive_pwr

– max_recup_pwr

– bms_state1

– bms_state2

– bms_error

– bms_temp

• Notification subtype: xrt.battery.log

• History record type: RT-BAT-C (cell status)

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns:

– cellnr

– volt_alertstatus

– temp_alertstatus

– volt_act

– volt_min

– volt_max

– volt_maxdev

– temp_act

– temp_min

– temp_max

– temp_maxdev

– balancing

– been_balancing

– balancetime

Power statistics

The power statistics are the base for the trip reports and can be used to analyze trip sections regarding speed and
altitude changes and their respective effects on power usage. The log is also written when charging, that data can be
used to log changes in the charge current, for example triggered externally by some solar charge controller.

Log frequency is once per minute, logging only occurs if metrics have changed.

152 Chapter 17. Renault Twizy

Open Vehicles

• Notification subtype: xrt.power.log

• History record type: RT-PWR-Stats

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns:

– speed_const_dist

– speed_const_use

– speed_const_rec

– speed_const_cnt

– speed_const_sum

– speed_accel_dist

– speed_accel_use

– speed_accel_rec

– speed_accel_cnt

– speed_accel_sum

– speed_decel_dist

– speed_decel_use

– speed_decel_rec

– speed_decel_cnt

– speed_decel_sum

– level_up_dist

– level_up_hsum

– level_up_use

– level_up_rec

– level_down_dist

– level_down_hsum

– level_down_use

– level_down_rec

– charge_used

– charge_recd

OBD2 cluster DTC log

This server table stores DTC occurrences for one week. This is mostly raw data, and the DTCs are internal Renault
values that have not yet been decoded.

See: https://www.twizy-forum.de/ovms/86362-liste-df-codes-dtc

• Notification subtype: xrt.obd.cluster.dtc

17.3. Contents 153

https://www.twizy-forum.de/ovms/86362-liste-df-codes-dtc

Open Vehicles

• History record type: RT-OBD-ClusterDTC

• Format: CSV

• Maximum archive time: 7 days

• Fields/columns:

– EntryNr

– EcuName

– NumDTC

– Revision

– FailPresentCnt

– G1

– G2

– ServKey

– Customer

– Memorize

– Bt

– Ef

– Dc

– DNS

– Odometer

– Speed

– SOC

– BattV

– TimeCounter

– IgnitionCycle

SEVCON faults & events

These logs are created on request only, e.g. by the SEVCON logs tool in the Android App, or by using the xrt cfg
querylogs command. The command queries the SEVCON (inverter) alerts, faults, events and statistics (SEVCON
needs to be online). The results are then transmitted to the server using the following records.

• Notification subtype: xrt.sevcon.log

• History record type: RT-ENG-LogKeyTime

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns:

– KeyHour

– KeyMinSec

• Notification subtype: xrt.sevcon.log

154 Chapter 17. Renault Twizy

Open Vehicles

• History record type: RT-ENG-LogAlerts

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns:

– Code

– Description

– TimeHour

– TimeMinSec

– Data1

– Data2

– Data3

• Notification subtype: xrt.sevcon.log

• History record type: RT-ENG-LogSystem

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns:

– Code

– Description

– TimeHour

– TimeMinSec

– Data1

– Data2

– Data3

• Notification subtype: xrt.sevcon.log

• History record type: RT-ENG-LogCounts

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns:

– Code

– Description

– LastTimeHour

– LastTimeMinSec

– FirstTimeHour

– FirstTimeMinSec

– Count

• Notification subtype: xrt.sevcon.log

17.3. Contents 155

Open Vehicles

• History record type: RT-ENG-LogMinMax

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns:

– BatteryVoltageMin

– BatteryVoltageMax

– CapacitorVoltageMin

– CapacitorVoltageMax

– MotorCurrentMin

– MotorCurrentMax

– MotorSpeedMin

– MotorSpeedMax

– DeviceTempMin

– DeviceTempMax

SEVCON live monitoring

These records store the measurement results of the virtual dyno included in the SEVCON live monitor (Twizy →
SEVCON Monitor). The virtual dyno records a torque/power profile from the actual car performance during driving.
The profile has four data sets:

• Maximum battery drive power over speed (metric xrt.s.b.pwr.drv, unit kW)

• Maximum battery recuperation power over speed (metric xrt.s.b.pwr.rec, unit kW)

• Maximum motor drive torque over speed (metric xrt.s.m.trq.drv, unit Nm)

• Maximum motor recuperation torque over speed (metric xrt.s.m.trq.rec, unit Nm)

Power is measured at the battery, so you can derive the efficiency. Speed is truncated to integer, the value arrays take
up to 120 entries (0 . . . 119 kph).

These datasets are visualized by the web UI using a chart, and transmitted to the server on any monitoring “stop” or
“reset” command in the following records:

• Notification subtype: xrt.power.dyno

• History record types: RT-ENG-BatPwrDrv, RT-ENG-BatPwrRec, RT-ENG-MotTrqDrv,
RT-ENG-MotTrqRec

• Format: CSV

• Maximum archive time: 24 hours

• Fields/columns: max 120 values for speed levels beginning at 0 kph

17.3.6 Twizy Regen Brake Light Hack

156 Chapter 17. Renault Twizy

Open Vehicles

Why?

The Twizy recuperation levels are very low by default, regenerative braking is so weak it doesn‘t need to trigger the
brake light – so a regen braking indication has been omitted by Renault. The Twizy can be tuned to one pedal driving
though with high neutral braking power.

The SEVCON normally can generate a regen braking signal itself. That signal can be configured using the xrt cfg
brakelight tuning command. Pin 11 on the SEVCON main connector will go to GND on activation. The problem
is, that pin is not connected on the Twizy, using it needs modification of the connector. To my knowledge this hasn‘t
been done successfully up to now, so we don‘t even know if the Twizy SEVCON firmware includes that functionality.

How does it work?

The OVMS generates a secondary regen braking signal itself. That signal is used to control a relay to provide power
to the brake light independant of the brake pedal.

Integration is simple and does not require to change the existing connections:

The Twizy UCH/display recognizes the regen brake light activation despite the foot brake being pushed and turns on
the SERV indicator. Depending on your preferences you may see this as a problem or as an indicator for the regen
braking.

Switching the 65A line does not avoid the SERV indicator (tested). Most probably the brake light is monitored by the
current flowing at the fuse box, so the SERV indicator cannot be avoided without changing that system.

Parts required

1. 1x DA26 / Sub-D 26HD Plug & housing

• Note: housings for Sub-D 15 fit for 26HD

• e.g. Assmann-WSW-A-HDS-26-LL-Z

17.3. Contents 157

https://www.voelkner.de/products/45955/Assmann-WSW-A-HDS-26-LL-Z-D-SUB-Stiftleiste-180-Polzahl-26-Loetkelch-1St..html

Open Vehicles

• Encitech-DPPK15-BK-K-D-SUB-Gehaeuse

2. 1x 12V Universal Car Relay + Socket

• e.g. Song-Chuan-896H-1CH-C1-12V-DC-Kfz-Relais

• GoodSky-Relaissockel-1-St.-GRL-CS3770

3. Car wire-tap connectors, car crimp connectors, 0.5 mm2 wires, zipties, shrink-on tube, tools

Note: if you already use the switched 12V output of the OVMS for something different, you can use one of the free
EGPIO outputs. That requires additionally routing an EGPIO line to the DA26 connector at the expansion slot (e.g.
using a jumper) and using a relay module (relay shield) with separate power input instead of the standard car relay.

Build

1. Solder ~ 40 cm two-core wire to the DA26 plug pins 8 (GND) and 18 (+12V switched), use shrink-on tubes to
protect the terminals, mount the housing

2. Crimp 6.3mm sockets to the other ends of the wire, isolate using shrink-on tube, crimp 6.3mm plugs to the relay
coil (pins 85 + 86), isolate using shrink-on tube

158 Chapter 17. Renault Twizy

https://www.voelkner.de/products/1043836/Encitech-DPPK15-BK-K-D-SUB-Gehaeuse-Polzahl-15-Kunststoff-180-Schwarz-1St..html
https://www.voelkner.de/products/37453/Song-Chuan-896H-1CH-C1-12V-DC-Kfz-Relais-12-V-DC-50A-1-Wechsler.html
https://www.voelkner.de/products/54579/GoodSky-Relaissockel-1-St.-GRL-CS3770.html

Open Vehicles

3. Extend the relay switch terminals by ~ 30 cm wires, crimp on plugs for the tap connectors

4. Unmount the Twizy glovebox; locate the red wire on the right above the parking brake:

17.3. Contents 159

Open Vehicles

5. Crimp a tap connector onto the red wire and connect it to the relay (pin 30):

160 Chapter 17. Renault Twizy

Open Vehicles

6. Connect switched +12V likewise to pin 87 of the relay

• +12V may be taken from the radio or 12V aux socket to simplify things

• the dedicated brake light supply is fuse no. 23, which is very hard to reach without dismounting the whole fuse
holder

7. Place the relay in the free area on the upper left of the fuse holder (not below the door dampener, that may crush
the relay), secure the relay using a ziptie

8. Pull the OVMS DIAG cable through the glovebox bottom hole and connect it to the relay inputs (pins 85/86,
polarity doesn‘t matter)

9. Do a test: plug in the OVMS (Note: the relay switches on during the first OVMS boot), switch on the Twizy,
issue commands:

• egpio output 1 1 should activate the brakelight

• egpio output 1 0 should deactivate the brakelight

• Note: if you‘re using another EGPIO port, use the according port number (3-9) instead

10. Mount the glovebox and you‘re done.

Configuration

See OVMS web user interface, menu Twizy → Brake Light:

17.3. Contents 161

Open Vehicles

Set the port as necessary and the checkbox to enable the brakelight.

For monitoring and fine tuning, use the regenmon web plugin:

https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3/blob/master/vehicle/OVMS.V3/components/
ovms_webserver/dev/regenmon.htm

17.3.7 Auxiliary Charge Fan

The builtin Elips 2000W charger’s officially specified temperature operation range is -20..+50 °C. This is exceeded
by the Twizy easily even on moderate summer days. The charger temperature can easily rise above 60 °C, and this is

162 Chapter 17. Renault Twizy

https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3/blob/master/vehicle/OVMS.V3/components/ovms_webserver/dev/regenmon.htm
https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3/blob/master/vehicle/OVMS.V3/components/ovms_webserver/dev/regenmon.htm

Open Vehicles

possibly the main reason why Twizy chargers eventually die. It also leads to the Twizy reducing the maximum charge
power available, resulting in charges taking much longer than usual.

A counter measure can be to add an additional fan to cool the charger, and switch that fan on as necessary (see
below). The fan can be controlled using one of the OVMS EGPIO output ports (see EGPIO). The easiest way is to use
the switched 12V supply available at the DA26 expansion plug without additional hardware. The 12V port can deliver
a nominal output of 25W or 1.8A, and up to 40W or 2.9A short term, so can be used to power many auxiliary fans
directly.

To enable the auxiliary fan, simply configure the EGPIO to be used in config parameter xrt aux_fan_port. For
example, to use the switched 12V port = EGPIO port 1, do:

OVMS# config set xrt aux_fan_port 1

Set the port to 0 to disable the feature.

Mode of operation:

• The OVMS continously monitors the charger temperature. It turns on the fan when the charger temperature
rises above 45 °C (>= 46 °C), and off when the temperature drops below 45 °C (<= 44 °C).

• After end of charge (Twizy system switched off), the OVMS does not get temperature updates, so it keeps the
fan running for another 5 minutes.

The fan control works during charging and driving, as during driving the charger also has to supply +12V by the
builtin DC/DC converter (heating up the charger), and a trip may start with an already hot charger.

17.3.8 Auxiliary Charger

The Elips 2000W (as the name says) does only charge with ~2 kW, thus needing 3-3.5 hours to charge the original
Twizy battery. That‘s quite slow and gets worse when replacing the battery by a larger one.

The Elips is running a special Renault firmware and also taking a crucial role in the Twizy system communication, for
example to control the BMS. So it cannot easily be replaced by a third party charger.

But a third party charger can run in parallel to the Elips to boost the charge power. This can be done best from
the “rear end”, i.e. using the battery main connector as the power input (like the SEVCON does during regenerative
braking).

Some documented examples of additional chargers:

• https://www.twizy-forum.de/werkstatt-twizy/84935-twizy-schnelllader

• https://www.twizy-forum.de/projekte-twizy/83603-schnell-lader-extern

• https://www.twizy-forum.de/tipps-und-tricks-twizy/80814-twizy-schnellladen-die-wave-kann-kommen

The caveat: to avoid damaging the battery, additional charge power should not be supplied when the battery is nearly
full. So the additional charger needs to be switched off before the main charger finishes.

The OVMS can automate switching the additional charger both on and off. Any of the available EGPIO output ports
(see EGPIO) can be used for this task. If the charger has no digital power control input, a convenient way is to use the
switched 12V supply available at the DA26 expansion plug without additional hardware. The 12V port can deliver a
nominal output of 25W or 1.8A, and up to 40W or 2.9A short term, so can be used to power a standard automotive
relay directly.

Configuration:

Simply set the EGPIO to be used in config parameter xrt aux_charger_port. For example, to use the switched
12V port = EGPIO port 1, do:

17.3. Contents 163

https://github.com/dexterbg/Twizy-Virtual-BMS
https://www.twizy-forum.de/werkstatt-twizy/84935-twizy-schnelllader
https://www.twizy-forum.de/projekte-twizy/83603-schnell-lader-extern
https://www.twizy-forum.de/tipps-und-tricks-twizy/80814-twizy-schnellladen-die-wave-kann-kommen

Open Vehicles

OVMS# config set xrt aux_charger_port 1

Set the port to 0 to disable the feature.

Mode of operation:

• The port is switched ON when the Twizy charges, is below 94% SOC, is still within the CC phase (i.e. not
topping off / balancing), and the charge current is not under user control.

• The port is switched OFF when the Twizy stops charging, reaches 94% SOC or enters the topping off phase
(whichever comes first), or when you set a custom charge current.

Charge current control:

If you set the charge current to level 7 (35 A), only the original charger will run, but at full power. You can set levels
6. . . 1 (30. . . 5 A) to reduce the charge power, only using the Elips charger. Setting the current to level 0 (no charge
throttling) will allow maximum charge current from the Elips charger and additionally enable the second charger.

164 Chapter 17. Renault Twizy

CHAPTER 18

Renault Zoe

Vehicle Type: RZ

The Renault Zoe will be documented here.

18.1 Support Overview

Function Support Status
Hardware OVMS v3 (or later)
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes
Range Display Yes
GPS Location Yes (from modem module GPS)
Speed Display Yes
Temperature Display Yes (External Temp and Battery)
BMS v+t Display No
TPMS Display Yes (pressure only)
Charge Status Display Yes
Charge Interruption Alerts No
Charge Control No
Cabin Pre-heat/cool Control No
Lock/Unlock Vehicle No
Valet Mode Control No
Others

165

Open Vehicles

166 Chapter 18. Renault Zoe

CHAPTER 19

Smart ED Gen.3

Vehicle Type: SE

The Smart ED will be documented here.

19.1 Support Overview

Function Support Status
Hardware OVMS v3 (or later)
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes
Range Display Yes
GPS Location Yes (from modem module GPS)
Speed Display Yes
Temperature Display Yes
BMS v+t Display Yes
TPMS Display No
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control Current limit
Cabin Pre-heat/cool Control When charging and CAN-Bus Active
Lock/Unlock Vehicle No
Valet Mode Control No
Others

167

Open Vehicles

19.2 Contents

19.2.1 Custom Metrics

Metric name Example value Description
xse.mybms.HW.rev 12,38,0 BMS hardware-revision year, week, patchlevel
xse.mybms.SW.rev 12,35,1 BMS soft-revision year, week, patchlevel
xse.mybms.adc.cvolts.max 4171 maximum cell voltages in mV, add offset +1500
xse.mybms.adc.cvolts.mean 4165 average cell voltage in mV, no offset
xse.mybms.adc.cvolts.min 4145 minimum cell voltages in mV, add offset +1500
xse.mybms.adc.volts.offset 103 calculated offset between RAW cell voltages and ADCref, about 90mV
xse.mybms.amps 65483A battery current in ampere (x/32) reported by by BMS
xse.mybms.amps2 2046.34A battery current in ampere read by live data on CAN or from BMS
xse.mybms.batt.vin WME4513901K661441 VIN stored in BMS
xse.mybms.dc.fault 0 Flag to show DC-isolation fault
xse.mybms.hv total voltage of HV system in V
xse.mybms.hv.contact.cycles.left 281991 counter related to ON/OFF cyles of the car
xse.mybms.hv.contact.cycles.max 300000 static, seems to be maxiumum of contactor cycles
xse.mybms.isolation 10239 Isolation in DC path, resistance in kOhm
xse.mybms.power 794.186kW power as product of voltage and amps in kW
xse.v.b.c.capacity 18491,18536,18536,. . . Cell capacity [As]
xse.v.b.c.capacity.dev.max 45.1,90.1,90.1,. . . Cell maximum capacity deviation observed [As]
xse.v.b.c.capacity.max 18491,18536,18536,. . . Cell maximum capacity [As]
xse.v.b.c.capacity.min 18491,18536,18536,. . . Cell minimum capacity [As]
xse.v.b.energy.used.reset 16.34kWh Energy used Reset (Dashbord)
xse.v.b.energy.used.start 16.9kWh Energy used Start (Dashbord)
xse.v.b.hv.active no HV Batterie Status
xse.v.b.p.capacity.as.average 18625 cell capacity statistics from BMS measurement cycle
xse.v.b.p.capacity.as.maximum 19193 cell capacity statistics from BMS measurement cycle
xse.v.b.p.capacity.as.minimum 18843 cell capacity statistics from BMS measurement cycle
xse.v.b.p.capacity.avg 18445.9 Cell capacity - pack average [As]
xse.v.b.p.capacity.combined.quality 0.515328 some sort of estimation factor??? constantly updated
xse.v.b.p.capacity.max 18670 Cell capacity - strongest cell in pack [As]
xse.v.b.p.capacity.max.cell 9 Cell capacity - number of strongest cell in pack
xse.v.b.p.capacity.min 18229 Cell capacity - weakest cell in pack [As]
xse.v.b.p.capacity.min.cell 59 Cell capacity - number of weakest cell in pack
xse.v.b.p.capacity.quality 0.742092 some sort of estimation factor??? after measurement cycle
xse.v.b.p.capacity.stddev 90.8 Cell capacity - current standard deviation [As]
xse.v.b.p.capacity.stddev.max 90.8 Cell capacity - maximum standard deviation observed [As]
xse.v.b.p.hv.lowcurrent 0Sec counter time of no current, reset e.g. with PLC heater or driving
xse.v.b.p.hv.off.time 0Sec HighVoltage contactor off time in seconds
xse.v.b.p.last.meas.days 13 days elapsed since last successful measurement
xse.v.b.p.ocv.timer 2676Sec counter time in seconds to reach OCV state
xse.v.b.p.voltage.max.cell 1 Cell volatage - number of strongest cell in pack
xse.v.b.p.voltage.min.cell 5 Cell volatage - number of weakest cell in pack
xse.v.b.real.soc 97.8% real state of charge
xse.v.bus.awake no CAN-Bus Status
xse.v.c.active no Charging Status
xse.v.display.time 738Min Dashbord Time
xse.v.display.trip.reset 2733.2km Dashbord Trip value at Reset

Continued on next page

168 Chapter 19. Smart ED Gen.3

Open Vehicles

Table 1 – continued from previous page
Metric name Example value Description
xse.v.display.trip.start 17.5km Dashbord Trip value at Start
xse.v.nlg6.amps.cablecode 0A Onboard Charger Ampere Cable
xse.v.nlg6.amps.chargingpoint 0A Onboard Charger Ampere . . .
xse.v.nlg6.amps.setpoint 41A Onboard Charger Ampere setpoint
xse.v.nlg6.dc.current 0A Onboard Charger LV current Ampere
xse.v.nlg6.dc.hv 0V Onboard Charger HV Voltage
xse.v.nlg6.dc.lv 13.5V Onboard Charger LV Voltage
xse.v.nlg6.main.amps 0,0,0A Onboard Charger main Phasen Ampere
xse.v.nlg6.main.volts 0,0,0V Onboard Charger main Phasen Voltage
xse.v.nlg6.pn.hw 4519820621 Onboard Charger Hardware Serial No.
xse.v.nlg6.present no Onboard Charger OBL or NLG6 present
xse.v.nlg6.temp.coolingplate 0°C Onboard Charger coolingplate Temperature
xse.v.nlg6.temp.reported 0°C Onboard Charger reported Temperature
xse.v.nlg6.temp.socket 0°C Onboard Charger socket Temperature
xse.v.nlg6.temps Onboard Charger Temperatures
xse.v.pos.odometer.start 41940km Odo at last Ignition on. For Trip calc Value
xse.v.display.accel 89% Eco score on acceleration over last 6 hours
xse.v.display.const 18% Eco score on constant driving over last 6 hours
xse.v.display.coast 100% Eco score on coasting over last 6 hours
xse.v.display.ecoscore 69% Eco score shown on dashboard over last 6 hours

19.2.2 Custom Commands

xse trip

show last Trip value

xse recu up

xse recu down

set Rekuperation up or down. Works only if Rekuperation is enabled in car

xse charge

set charge and leave Time.

Example:

xse charge 7 15 off

set Time at 7:15 clock with pre climate off

xse charge 9 55 on

set Time at 9:55 clock with pre climate on

19.2.3 BMS Diagnose Tool

xse rptdata get a Battery Status Report

xse bmsdiag get Battery Diagnose Report

Original Tool ED BMSdiag

description DE

description EN

19.2. Contents 169

https://github.com/MyLab-odyssey/ED_BMSdiag#ed-bmsdiag
https://www.eqpassion.de/Die_Restkapazitaet_eines_smart_EQ_selbst_auslesen#SchnelluebersichtallerWertedieermitteltwerdenkoennen
https://www.eqpassion.de/en-gb-die-restkapazitaet-eines-smart-eq-selbst-auslesen-fxpfh#SchnelluebersichtallerWertedieermitteltwerdenkoennen

Open Vehicles

170 Chapter 19. Smart ED Gen.3

CHAPTER 20

Smart ED/EQ Gen.4 (453)

Vehicle Type: SQ

The Smart ED/EQ Gen.4 will be documented here.

20.1 Support Overview

Function Support Status
Hardware OVMS v3 (or later)
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes
Range Display Yes
GPS Location Yes (from modem module GPS)
Speed Display Yes
Temperature Display Yes (External Temp and Battery)
BMS v+t Display only Cell Volts atm.
TPMS Display No
Charge Status Display Yes
Charge Interruption Alerts No
Charge Control No
Cabin Pre-heat/cool Control No
Lock/Unlock Vehicle No
Valet Mode Control No
Others

171

Open Vehicles

172 Chapter 20. Smart ED/EQ Gen.4 (453)

CHAPTER 21

Tesla Model 3

Vehicle Type: T3

At present, support for the Tesla Model 3 in OVMS is experimental and under development. This vehicle type should
not be used by anyone other than those actively involved in development of support for this vehicle.

21.1 Support Overview

Function Support Status
Hardware tba
Vehicle Cable tba
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna tba
SOC Display tba
Range Display tba
GPS Location tba
Speed Display tba
Temperature Display tba
BMS v+t Display tba
TPMS Display tba
Charge Status Display tba
Charge Interruption Alerts tba
Charge Control tba
Cabin Pre-heat/cool Control tba
Lock/Unlock Vehicle tba
Valet Mode Control tba
Others tba

173

Open Vehicles

174 Chapter 21. Tesla Model 3

CHAPTER 22

Tesla Model S

Vehicle Type: TS

At present, support for the Tesla Model S in OVMS is experimental and under development. This vehicle type should
not be used by anyone other than those actively involved in development of support for this vehicle.

22.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module. Vehicle support: Not widely tested, but should be

all.
Vehicle Cable 9665972 OVMS Data Cable for Early Teslas
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna None, not required
SOC Display Yes
Range Display Yes
GPS Location Yes (from car’s built in GPS)
Speed Display Yes
Temperature Display Yes
BMS v+t Display Yes
TPMS Display Not currently supported
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control Not currently supported
Cabin Pre-heat/cool Con-
trol

Not currently supported

Lock/Unlock Vehicle Not currently supported
Valet Mode Control Not currently supported
Others Adhesive velcro strips useful for vehicle attachment

175

Open Vehicles

22.2 TPMS Option

Reading and writing TPMS wheel sensor IDs from/to the Baolong TPMS ECU is supported by OVMS in Tesla Model
S cars using the Baolong system (vehicles produced up to around August 2014). You can easily tell if you have this
Tesla Model S Baolong TPMS system as Tesla doesn’t support displaying tyre pressures in the instrument cluster. By
contrast, the later Continental TPMS system does show the pressures in the instrument cluster.

OVMS directly supports the Baolong TPMS in Tesla Model S cars, without any extra hardware required. You simply
need the usual OVT1 cable.

To read the current wheel sensor IDs from the Baolong TPMS ECU, ensure that the car is ON (simplest is to wake the
car up and put in drive), and issue the ‘tpms read’ command in OVMS.

Similarly, to write wheel sensor IDs to the Baolong TPMS ECU, ensure that the car is ON, and issue the ‘tpms write’
command in OVMS.

176 Chapter 22. Tesla Model S

CHAPTER 23

Tesla Roadster

Vehicle Type: TR

The Tesla Roadster support in OVMS is perhaps the most mature in the project. All versions (1.x, 2.x, and 3.x) are
supported, for both North American and other variants.

23.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module. Vehicle support: 1.x, 2.x, and 3.0 roadsters (all

markets).
Vehicle Cable 9665972 OVMS Data Cable for Early Teslas
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna None, not required
SOC Display Yes
Range Display Yes
GPS Location Yes (from car’s built in GPS)
Speed Display Yes
Temperature Display Yes
BMS v+t Display Not currently supported
TPMS Display Yes
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control Yes
Cabin Pre-heat/cool Con-
trol

Not currently supported

Lock/Unlock Vehicle Yes
Valet Mode Control Yes
Others Adhesive velcro strips useful for vehicle attachment

177

Open Vehicles

23.2 Module Installation in the vehicle

The OVMS module is connected to your Roadster via the CAN bus diagnostic port connector, which is located in the
passenger footwell. It is made of plastic that is wrapped in grey foam, as shown in the photo. Typically, the connector
is wedged into the front wall near the center console so it won’t rattle. Pull the connector out and note the orientation
of the pins, especially the void above the +12V and Ground pins.

The OVMS Data Cable for Tesla Roadster can then be plugged in, connecting the car to the OVMS module. Make
sure to tighten the screws holding the module-side DB9 connector.

At this point, check the car. Tap on the VDS in the centre console and make sure it turns on. Insert the key, turn on the
car, and make sure everything works as expected. If you see any problems at all with the car, disconnect the OVMS
module and contact Open Vehicles support for assistance.

Warning!
If, when you plug the OVMS into the car, you see any interference to, or strange behaviour of, car systems
immediately unplug the module and contact Open Vehicles for assistance. Never leave a module connected in such
circumstances.

The OVMS Module is best secured to the front wall of the passenger footwell using adhesive velcro tape. With the
module connected to the car diagnostics port connector, experiment with various placements until you find a suitable
spot. For the velcro attachment to work, you’ll want to choose a spot on the front wall that’s flat for the entire size of
the module (hint: avoid the big round black plastic plug).

Mounting is straightforward:

1. Ensure that both velcro strips are fixed together.

2. Remove the adhesive backing from one side; fasten it to the back of the OVMS module.

3. Using a clean dry cloth, clean the area of the car passenger footwell wall to which you are going to attach the
module.

4. Remove the adhesive backing from the side of the velcro strip facing the car, and then firmly push the OVMS
module into place - holding it still for a few seconds to allow the adhesive to work.

5. You can then remove and reinstall the OVMS module as desired via the velcro.

178 Chapter 23. Tesla Roadster

Open Vehicles

23.3 Antenna Installation

You will find the performance of this antenna fantastic - and much better than even your cellphone, but proper place-
ment is essential. Since it has a very long cable, you can place the antenna just about wherever you want, but please
ensure it is high-up on the car and away from any metal objects that might interfere with the signal.

Possible areas include the bottom of the windscreen/windshield on the passenger side, the top of the windscreen on
the passenger side (hidden by the sun visor), behind the passenger on the side pillar, in the rear window, or under the
dashboard (for the brave and experienced at dismantling Tesla Roadster dashboards).

The antenna is connected to the port marked GSM on the OVMS v3 module. The GPS port is not used on the Tesla
Roadster (as your car already has GPS installed and we can read that positioning information off the CAN bus directly).

23.3.1 Antenna beside rear passenger headrest

The antenna cable is long enough to reach back to the area around the left side seat head. This approach is generally
easiest. The module is placed in the left seat footwell, near the diagnostic port connector. From there, the antenna
cable is routed through the base of the waterfall, under the door sill, and up the side of the door frame.

The door sill is held in place by velcro and is easily removed. You may have to loosen the waterfall (held in place by
four screws around the fuse box area). The antenna cable can then be placed on top of the metal of the chassis sill,
between the velcro strips, and routed up through the existing plastic trunking. At this point, the door sill can then be
put back in place.

23.3.2 Antenna on windshield/windscreen

To route the antenna cable up to the front windshield/windscreen, you will need to remove the fuse-box cover (one
screw that needs to be turned 90 degrees), then two screws from the box below the fuse box (these screws should be
completely removed in order to be able to remove the box and access the compartment beneath). You do not need to
adjust anything in the fuse box - you only need the cover removed to make it easier to route the cable.

Start with the cable at the windscreen/windshield and route it down the side of the left side door front pillar. The
plastic corner can be pulled back slightly, and you can push the cable through into the open bottom compartment.
Pull the cable through there so that the antenna is where you want it and there is no loose cable outside the box. The
antenna itself can be mounted to the windscreen/windshield by first cleaning the area with a clean dry cloth, removing
the adhesive backing tape, then firmly pushing the antenna against the glass and waiting a few seconds for the adhesive
to stick.

Now for the tricky bit. You need to get the cable through to the passenger footwell, but it is tight. It is much easier to
get a guide wire up into the fuse box compartment than to get the antenna cable down into the passenger footwell. So,
we recommend you use a small (12 inches / 30 cm or so) piece of stiff wire to use as a guide and push it up from the
area marked by the green arrow on the bottom right of the picture below. Once the guide wire is in the fuse box, push
it down into the lower compartment you opened and wrap it around the antenna cable. You can then pull the guide
wire back down into the passenger footwell, bringing the antenna cable with it.

The antenna cable can then be screwed in to the OVMS module. You can then tidy up any loose cable, and screw-back
the lower compartment box (two screws) and fuse box cover (one screw 90 degrees to lock).

23.4 Configuration Options

The Tesla Roadster specific configuration options are in configuration parameter xtr:

23.3. Antenna Installation 179

Open Vehicles

Instance Default Description
digital.speedo no Set to yes to enable digital speedometer (2.x cars only)
digital.speedo.reps 3 Number of CAN bus repeat transmissions
cooldown.timelimit 60 Number of minutes after which cooldown is stopped
cooldown.templimit 31 Temperature (in Celcius) after which cooldown is stopped
protect.lock yes Refuse to lock vehicle when switched on

23.5 Tesla Roadster Notes

1. In general, the OVMS module in a Tesla Roadster acts exactly like the little VDS screen. We should be able to
do anything that screen can do, but no more. Here are some notes:

2. The lock/unlock and valet functions rely on a PIN code. This is the same PIN code you enter into the vehicle
using the VDS screen when activating valet mode. If you don’t know the PIN code, either try the default 1234
or contact Tesla for assistance.

3. While OVMS can lock/unlock the doors of all Tesla Roadster models, cars outside North America are fitted with
an immobiliser and neither OVMS nor the VDS will disarm/arm that. The OVMS lock/unlock functionality only
applies to the doors, not the alarm in vehicles sold outside North America.

4. OVMS v3 can calculate an overall battery health metric. This metric is calculated using our own algorithm and
is in no way approved by Tesla. Battery health is dependent on many factors, and hard to bring down to just one
simple number.

5. The Tesla Roadster requires the ignition key to be on, and manual switches turned, to cool/heat the cabin. It is
not technically possible to do this remotely via OVMS.

The digital speedometer function replaces the AMPS display in the dashboard instrument cluster with the vehicle
speed. It is only supported on v2.x cars (not v1.5). This is an experimental feature, and works 99% of the time, but
sometimes the car wins and displays AMPS for a split second. A better solution is to use the HUD functionality of
OVMS v3 and install an external Heads Up Display in the car.

23.6 TPMS Option

Reading and writing TPMS wheel sensor IDs from/to the Baolong TPMS ECU is supported in v2.x Tesla Roadsters
using the optional OVMS K-Line Expansion Board. You will need a v3.2 module (or v3.1 module labelled on board
as July 2018 or later, with K-line pin connected), and an OVT1 vehicle cable (clearly labelled with “OVT1” on the
cable).

The optional OVMS K-line Expansion Board should be configured with SW1 set to position #2 (LDO 5v), and S1 in
to OFF position (away from the ON label).

To read the current wheel sensor IDs from the Baolong TPMS ECU, ensure that the ignition switch is ON (so instru-
ment panel lights are on), and issue the ‘tpms read’ command in OVMS.

Similarly, to write wheel sensor IDs to the Baolong TPMS ECU, ensure that the ignition switch is ON (so instrument
panel lights are on), and issue the ‘tpms write’ command in OVMS.

Note that this functionality will not work with v1.5 Tesla Roadsters (that use a different TPMS ECU to the v2.x cars).

180 Chapter 23. Tesla Roadster

Open Vehicles

23.7 Thanks

There are so many people to thank for Tesla Roadster support in OVMS. W.Petefish for sourcing the car connector,
Fuzzylogic for the original hardware and software design and demonstration of it working, Scott451 for figuring out
many of the Roadster CAN bus messages, Tom Saxton for v1.5 Roadster testing, Michael Thwaite for pictures of
antenna installation, Bennett Leeds for wordsmithing the manual, Mark Webb-Johnson for CAN bus hacking and
writing the vehicle module support, Sonny Chen for beta testing and tuning, and many others for showing that this
kind of thing can work in the real world.

23.7. Thanks 181

Open Vehicles

182 Chapter 23. Tesla Roadster

CHAPTER 24

Tracking Vehicles

Vehicle Type: XX

The track vehicle will be documented here.

24.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module. Vehicle support: Not widely tested, but should be all.
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left), or any cable

proving power
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display No
Range Display No
GPS Location Yes (from modem module GPS)
Speed Display Yes (from modem module GPS)
Temperature Display No
BMS v+t Display No
TPMS Display No
Charge Status Display No
Charge Interruption
Alerts

No

Charge Control No
Cabin Pre-heat/cool
Control

No

Lock/Unlock Vehicle No
Valet Mode Control No
Others None

183

Open Vehicles

184 Chapter 24. Tracking Vehicles

CHAPTER 25

VW e-Up

Vehicle Type: VWUP

This vehicle type supports the VW e-UP (2013-, 2020-), Skoda Citigo E IV and the Seat MII electric (2020-). Con-
nection can be made via the OBD2 port to the top left of the driving pedals and/or the Comfort CAN bus, e.g. below
the passenger seat (T26 connector, instead of the VW OCU there).

The main difference currently is that the OBD connection enables access to way more metrics (e.g. down to cell
voltages), while the Comfort CAN connection is necessary if write access is needed, e.g. for remote climate control.
The Comfort CAN also provides data in more cases without turning on the car or charging, as the bus wakes on many
events (e.g. opening of doors) and can also be woken via OVMS.

For the full experience, making both connections is recommended.

Connection to OBD2 is done with the standard OVMS OBD2-cable just below the fuses left of the driving pedals:

185

Open Vehicles

Connection to Comfort CAN can be done by removing the OCU below the passenger seat using a custom 26-pin
adapter cable to the T26A plug (advantage: the connections for the GSM & GPS-antennas of the car can be used using
a Fakra-SMA adapter):

186 Chapter 25. VW e-Up

Open Vehicles

(The passenger seat doesn’t have to be removed, it can also be done by fiddling around a bit :))

If both connections are to be made simultaneously, an adapter cable has to be made with the following connections:

The cable used between the OBD plug and the DB9-F plug needs to be twisted to avoid transmission problems. A
good cable to use here is a CAT-5 or CAT-6 double shielded network cable. Be shure to not only connect CAN hi and
CAN lo, but also connect ground.

187

Open Vehicles

T26 OBD DB9-F Signal
26 4 3 Chassis / Power GND
. 14 2 can1 L (Can Low)
. 6 7 can1 H (Can High)
. . 4 can2 L (Can Low, not used)
. . 5 can2 H (Can High, not used)
2 . 6 can3 L (Comfort-can Low)
14 . 8 can3 H (Comfort-can High)
1 . 9 +12V Vehicle Power

After selecting the VW e-Up vehicle module, the corresponding settings have to be made in the web interface via the
“VW e-Up” menu under “Features”:

By default, both connections are activated.

For more details on the two connection types, please see the corresponding projects:

VW e-Up via Comfort CAN (T26A)

VW e-Up via OBD2

The initial code is shamelessly copied from the original projects for the Comfort CAN by Chris van der Meijden and
for the OBD2 port by SokoFromNZ.

List of (possible) metrics via OBD2: https://www.goingelectric.de/wiki/Liste-der-OBD2-Codes/

188 Chapter 25. VW e-Up

https://www.goingelectric.de/wiki/Liste-der-OBD2-Codes/

Open Vehicles

If OBD is selected, a sample page with some charging metrics is shown in the web interface:

189

Open Vehicles

Beware: obviously, these values have great uncertainties (in my car, the DC output voltage of the charger is always
lower than the voltage of the battery. . .) But e.g. the internal energy counters are very informative :)

Additional custom web pages (code for the example above is below) can be defined as described here: https://docs.
openvehicles.com/en/latest/plugin/README.html?highlight=web%20plugin#installing-web-plugins

190 Chapter 25. VW e-Up

https://docs.openvehicles.com/en/latest/plugin/README.html?highlight=web%20plugin#installing-web-plugins
https://docs.openvehicles.com/en/latest/plugin/README.html?highlight=web%20plugin#installing-web-plugins

Open Vehicles

25.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module. Vehicle support: 2013-
Vehicle Ca-
ble

Comfort CAN T26A (OCU connector cable, located under front passenger seat) to DB9 Data Cable
for OVMS using pin 6 and 8 for can3 _AND_ OBD-II to DB9 Data Cable for OVMS (1441200
right, or 1139300 left) for can1

GSM
Antenna

T4AC - R205 with fakra_sma adapter cable or 1000500 Open Vehicles OVMS GSM Antenna (or
any compatible antenna)

GPS An-
tenna

T4AC - R50 with fakra_sma adapter cable or 1020200 Universal GPS Antenna (or any compatible
antenna)

SOC Dis-
play

Yes

Range Dis-
play

Yes

Cabin Pre-
heat/cool
Control

Yes

GPS Loca-
tion

Yes (from modem module GPS)

Speed Dis-
play

Yes

Tempera-
ture Display

Yes (see list of metrics below)

BMS v+t
Display

Yes

TPMS Dis-
play

tba

Charge Sta-
tus Display

Yes

Charge
Interruption
Alerts

Yes (per notification on the charging state)

Charge
Control

tba

Lock/Unlock
Vehicle

No

Valet Mode
Control

No

Others See list of metrics below

25.2 Supported Standard Metrics

The second column specifies the bus from which the metrics are obtained. Metrics via OBD are only updated when the
vehicle is on (ignition started) or some in charging mode. Metrics via T26 (Comfort CAN) can be updated on demand
by waking the Comfort CAN from the OVMS module. During charging, the Comfort CAN automatically wakes every
5% of SoC.

25.1. Support Overview 191

Open Vehicles

Metric name bus Example value Description
v.b.12v.voltage direct 12.9 V Current voltage of the 12V battery
v.b.consumption OBD 0Wh/km Main battery momentary consumption
v.b.current OBD 23.2 A Current current into (negative) or out of (positive) the main battery
v.b.energy.recd.total OBD 578.323 kWh Energy recovered total (life time) of the main battery (charging and recuperation)
v.b.energy.used.total OBD 540.342 kWh Energy used total (life time) of the main battery
v.b.power OBD 23.234 kW Current power into (negative) or out of (positive) the main battery.
v.b.range.est T26 99km Estimated range
v.b.range.ideal T26 48km Ideal range
v.b.soc OBD, T26 88.2 % Current usable State of Charge (SoC) of the main battery
v.b.temp OBD 22.5 °C Current temperature of the main battery
v.b.voltage OBD 320.2 V Current voltage of the main battery
v.c.12v.current OBD 7.8A Output current of DC/DC-converter
v.c.12v.power OBD 0.123kW Output power of DC/DC-converter
v.c.12v.temp OBD 34.5°C Temperature of DC/DC-converter
v.c.12v.voltage OBD 12.3V Output voltage of DC/DC-converter
v.c.charging T26 true Is vehicle charging (true = “Vehicle CHARGING” state. v.e.on=false if this is true)
v.c.climit fixed 16/32A Maximum charger output current
v.c.current OBD 1.25A Momentary charger output current
v.c.efficiency OBD 91.3 % Charging efficiency calculated by v.b.power and v.c.power
v.c.kwh OBD 2.6969kWh Energy sum for running charge
v.c.mode T26 standard standard, range, performance, storage
v.c.pilot T26 no Pilot signal present
v.c.power OBD 7.345 kW Input power of charger
v.c.state T26 done charging, topoff, done, prepare, timerwait, heating, stopped
v.c.substate T26 scheduledstop, scheduledstart, onrequest, timerwait, powerwait, stopped, interrupted
v.c.temp OBD 16°C Charger temperature
v.c.time T26 0Sec Duration of running charge
v.c.voltage OBD 0V Momentary charger supply voltage
v.d.cp T26 yes yes = Charge port open
v.d.fl T26 yes = Front left door open
v.d.fr T26 yes = Front right door open
v.d.hood T26 yes = Hood/frunk open
v.d.rl T26 yes = Rear left door open
v.d.rr T26 yes = Rear right door open
v.d.trunk T26 yes = Trunk open
v.e.awake T26 no yes = Vehicle/bus awake (switched on)
v.e.cabintemp T26 20°C Cabin temperature
v.e.drivetime T26 0Sec Seconds driving (turned on)
v.e.headlights T26 yes = Headlights on
v.e.hvac T26 yes = HVAC active
v.e.locked T26 yes = Vehicle locked
v.e.on T26 true Is ignition on and drivable (true = “Vehicle ON”, false = “Vehicle OFF” state)
v.e.parktime T26 49608Sec Seconds parking (turned off)
v.e.serv.range OBD 12345km Distance to next scheduled maintenance/service [km]
v.e.serv.time OBD 1572590910Sec Time of next scheduled maintenance/service [UTC]
v.e.temp OBD, T26 Ambient temperature
v.i.temp OBD Inverter temperature
v.m.temp OBD 0°C Motor temperature
v.p.odometer OBD, T26 2340 km Total distance traveled
v.p.speed T26 0km/h Vehicle speed

Continued on next page

192 Chapter 25. VW e-Up

Open Vehicles

Table 1 – continued from previous page
Metric name bus Example value Description
v.vin T26 VF1ACVYB012345678 Vehicle identification number

25.3 Custom Metrics

In addition to the standard metrics above the following custom metrics are read from the car or internally calculated
by OVMS using read values.

Metric
name

bus Example
value

Description

xvu.b.cell.deltaOBD 0.012 V Delta voltage between lowest and highest cell voltage
xvu.b.soc.abs OBD 85.3 % Current absolute State of Charge (SoC) of the main battery
xvu.c.soc.normOBD 80.5 % Current normalized State of Charge (SoC) of the main battery as reported by

charge management ECU
xvu.c.ac.i1 OBD 5.9 A AC current of AC charger phase 1
xvu.c.ac.i2 OBD 7.0 A AC current of AC charger phase 2 (only for model 2020+)
xvu.c.ac.p OBD 7.223 kW Current charging power on AC side (calculated by ECU’s AC voltages and

AC currents)
xvu.c.ac.u1 OBD 223 V AC voltage of AC charger phase 1
xvu.c.ac.u2 OBD 233 V AC voltage of AC charger phase 2 (only for model 2020+)
xvu.c.dc.i1 OBD 1.2 A DC current of AC charger 1
xvu.c.dc.i2 OBD 1.2 A AC current of AC charger 2 (only for model 2020+)
xvu.c.dc.p OBD 6.500 kW Current charging power on DC side (calculated by ECU’s DC voltages and

DC currents)
xvu.c.dc.u1 OBD 380 V DC voltage of AC charger 1
xvu.c.dc.u2 OBD 375 V DC voltage of AC charger 2 (only for model 2020+)
xvu.c.eff.calc OBD 90.0 % Charger efficiency calculated by AC and DC power
xvu.c.eff.ecu OBD 92.3 % Charger efficiency reported by the Charger ECU
xvu.c.loss.calc OBD 0.733 kW Charger power loss calculated by AC and DC power
xvu.c.loss.ecu OBD 0.620 kW Charger power loss reported by the Charger ECU
xvu.e.serv.daysOBD 78 days Time to next scheduled maintenance/service [days]
xvu.m.soc.abs OBD 85.3 % Current absolute State of Charge (SoC) of the main battery as reported by

motor electronics ECU
xvu.m.soc.normOBD 80.5 % Current normalized State of Charge (SoC) of the main battery as reported by

motor electronics ECU

25.4 Example Code for Web Plugin with some custom metrics:

<div class="panel panel-primary">
<div class="panel-heading">Custom Metrics</div>
<div class="panel-body">

<hr/>

<div class="receiver">
<div class="clearfix">
<div class="metric progress" data-metric="v.b.soc" data-prec="1">
<div class="progress-bar value-low text-left" role="progressbar"

(continues on next page)

25.3. Custom Metrics 193

Open Vehicles

(continued from previous page)

aria-valuenow="0" aria-valuemin="0" aria-valuemax="100" style="width:0%">
<div>
SoC
?
%

</div>
</div>

</div>
<div class="metric progress" data-metric="xvu.b.soc.abs" data-prec="1">
<div class="progress-bar progress-bar-info value-low text-left" role="progressbar

→˓"
aria-valuenow="0" aria-valuemin="0" aria-valuemax="100" style="width:0%">
<div>
SoC (absolute)
?
%

</div>
</div>

</div>
</div>
<div class="clearfix">
<div class="metric number" data-metric="v.b.energy.used.total" data-prec="2">
TOTALS:

→˓ Used
?
kWh

</div>
<div class="metric number" data-metric="v.b.energy.recd.total" data-prec="2">
Charged
?
kWh

</div>
<div class="metric number" data-metric="v.p.odometer" data-prec="0">
Odo
?
km

</div>
<div class="metric number" data-metric="v.e.serv.range" data-prec="0">
SERVICE: &

→˓nbsp; Range
?
km

</div>
<div class="metric number" data-metric="xvu.e.serv.days" data-prec="0">
Days
?

</div>
</div>

<h4>Battery</h4>

<div class="clearfix">
<div class="metric progress" data-metric="v.b.voltage" data-prec="1">
<div class="progress-bar value-low text-left" role="progressbar"
aria-valuenow="0" aria-valuemin="300" aria-valuemax="420" style="width:0%">
<div>

(continues on next page)

194 Chapter 25. VW e-Up

Open Vehicles

(continued from previous page)

Voltage
?
V

</div>
</div>

</div>
<div class="metric progress" data-metric="v.b.current" data-prec="1">
<div class="progress-bar progress-bar-danger value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="-200" aria-valuemax="200" style="width:0%">
<div>
Current
?
A

</div>
</div>

</div>
<div class="metric progress" data-metric="v.b.power" data-prec="3">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="-70" aria-valuemax="70" style="width:0%">
<div>
Power
?
kW

</div>
</div>
</div>

</div>
<div class="clearfix">
<div class="metric number" data-metric="v.b.temp" data-prec="1">
Temp
?
°C
</div>
<div class="metric number" data-metric="xvu.b.cell.delta" data-prec="3">
Cell delta
?
V
</div>

</div>

<h4>Temperatures</h4>

<div class="clearfix">
<div class="metric progress" data-metric="v.e.temp" data-prec="1">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="-10" aria-valuemax="40" style="width:0%">
<div>
Ambient
?
°C

</div>
</div>
</div>
<div class="metric progress" data-metric="v.e.cabintemp" data-prec="1">

(continues on next page)

25.4. Example Code for Web Plugin with some custom metrics: 195

Open Vehicles

(continued from previous page)

<div class="progress-bar progress-bar-warning value-low text-left" role=
→˓"progressbar"

aria-valuenow="0" aria-valuemin="-10" aria-valuemax="40" style="width:0%">
<div>
Cabin
?
°C

</div>
</div>

</div>
<div class="metric progress" data-metric="v.b.temp" data-prec="1">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="-10" aria-valuemax="40" style="width:0%">
<div>
Battery
?
°C

</div>
</div>
</div>
<div class="metric progress" data-metric="v.c.temp" data-prec="1">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="-10" aria-valuemax="40" style="width:0%">
<div>
Charger
?
°C

</div>
</div>
</div>
<div class="metric progress" data-metric="v.c.12v.temp" data-prec="1">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="-10" aria-valuemax="40" style="width:0%">
<div>
DC/DC-Converter
?
°C

</div>
</div>
</div>
<div class="metric progress" data-metric="v.i.temp" data-prec="1">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="-10" aria-valuemax="40" style="width:0%">
<div>
Inverter
?
°C

</div>
</div>
</div>
<div class="metric progress" data-metric="v.m.temp" data-prec="1">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
(continues on next page)

196 Chapter 25. VW e-Up

Open Vehicles

(continued from previous page)

aria-valuenow="0" aria-valuemin="-10" aria-valuemax="40" style="width:0%">
<div>
Motor
?
°C

</div>
</div>

</div>
</div>

</div>
</div>

</div>

25.4. Example Code for Web Plugin with some custom metrics: 197

Open Vehicles

198 Chapter 25. VW e-Up

CHAPTER 26

VW e-Up via OBD2

Vehicle Type: VWUP.OBD

This vehicle type supports the VW e-UP (new model from year 2020 onwards). Untested (so far) but probably working:
The older models of the e-Up as well as Skoda Citigo E IV and Seat MII electric.

Connection is via the standard OBD-II port (above the drivers left foot):

All communication with the car is read-only. For changing values (i.e. climate control) see the T26A connection to
the Comfort CAN bus.

26.1 Support Overview

Function Support Status
Hardware No specific requirements
Vehicle Cable OBD-II to DB9 Data Cable for OVMS (1441200 right, or 1139300 left)
GSM Antenna 1000500 Open Vehicles OVMS GSM Antenna (or any compatible antenna)
GPS Antenna 1020200 Universal GPS Antenna (SMA Connector) (or any compatible antenna)
SOC Display Yes
Range Display Yes
GPS Location Yes
Speed Display Yes
Temperature Display Yes
BMS v+t Display Yes (including cell details)
TPMS Display Yes
Charge Status Display Yes
Charge Interruption Alerts Yes
Charge Control No
Cabin Pre-heat/cool Control No
Lock/Unlock Vehicle No
Valet Mode Control No
Others See list of metrics below

199

Open Vehicles

26.2 Vehicle States

Warning: For proper state detection, the 12V calibration is crucial. Calibrate using the OVMS Web UI: Config
→ Vehicle → 12V Monitor

Three vehicle states are supported and detected automatically:

Vehicle ON The car is on: It is drivable.

Vehicle CHARGING The car is charging: The car’s Charger ECU is responsive and reports charging activity.

Vehicle OFF The car is off: It hasn’t drawn (or charged) any current into the main battery for a period of time and
the 12V battery voltage is smaller than 12.9V.

26.3 Supported Standard Metrics

Metrics updated in state “Vehicle ON” or “Vehicle CHARGING”

Metric name Example
value

Description

v.e.on yes Is ignition on and drivable (true = “Vehicle ON”, false = “Vehicle OFF”
state)

v.c.charging yes Is vehicle charging (true = “Vehicle CHARGING” state. v.e.on=false if this
is true)

v.c.limit.soc 100% Current/next charge timer mode SOC destination
v.c.mode range “range” = charging to 100% SOC, else “standard”
v.c.timermode no Yes = current/next charge under timer control
v.c.state done charging, stopped, done
v.c.substate scheduledstop scheduledstop, scheduledstart, onrequest, timerwait, stopped, interrupted
v.b.12v.voltage1 12.9 V Current voltage of the 12V battery
v.b.voltage 320.2 V Current voltage of the main battery
v.b.current 23.2 A Current current into (negative) or out of (positive) the main battery
v.b.power 23.234 kW Current power into (negative) or out of (positive) the main battery.
v.b.energy.used.total 540.342 kWh Energy used total (life time) of the main battery
v.b.energy.recd.total 578.323 kWh Energy recovered total (life time) of the main battery (charging and recu-

peration)
v.b.temp 22.5 °C Current temperature of the main battery
v.p.odometer 2340 km Total distance traveled

Metrics updated only in state “Vehicle ON”

Metric name Example value Description
v.b.soc2 88.2 % Current usable State of Charge (SoC) of the main battery

Metrics updated only in state “Vehicle CHARGING”
1 Also updated in state “Vehicle OFF”
2 Restriction by the ECU. Supplied when the ignition is on during charging. Use xvu.b.soc as an alternative when charging with ignition off.

200 Chapter 26. VW e-Up via OBD2

Open Vehicles

Metric name Example value Description
v.c.power 7.345 kW Input power of charger
v.c.efficiency 91.3 % Charging efficiency calculated by v.b.power and v.c.power

26.4 Custom Metrics

In addition to the standard metrics above the following custom metrics are read from the car or internally calculated
by OVMS using read values.

State metrics

Metric name Example value Description
xvu.e.hv.chgmode 0 High voltage charge mode; 0=off, 1=Type2, 4=CCS
xvu.e.lv.autochg 1 Auxiliary battery (12V) auto charge mode (0/1)
xvu.e.lv.pwrstate 0 Low voltage (12V) power state (0=off, 4=12V, 8=HVAC, 15=on)

Timed charge metrics

Metric name Example value Description
xvu.c.limit.soc.max 80% Charge schedule maximum SOC
xvu.c.limit.soc.min 20% Charge schedule minimum SOC
xvu.c.timermode.def yes Charge timer defined & default

xvu.c.timermode.def tells if a charge schedule has been configured and enabled. If so, the car uses timed
charging by default (the charge mode button will be lit). v.c.timermode tells if the charge timer is or will actually
be used for the current or next charge, i.e. reflects the mode selected by pushing the button.

With timed charging, the car first charges to the minimum SOC as soon as possible (when connected). If the maximum
SOC configured for the schedule hasn’t been reached by then, it will then wait for the timer to signal the second phase
to charge up to the maximum SOC. v.c.limit.soc reflects the current phase, i.e. will be the minimum SOC
during phase 1, the maximum (if configured) during phase 2. After reaching the timer defined final SOC, it will switch
to 100%.

Note: xvu.c.limit.soc.min will show the configured minimum SOC also if no schedule is currently enabled.
xvu.c.limit.soc.max shows the maximum for the current/next schedule to apply. If no schedule is enabled, it
will be zero.

Metrics updated in state “Vehicle ON” or “Vehicle CHARGING”

Metric name Example value Description
xvu.b.cell.delta 0.012 V Delta voltage between lowest and highest cell voltage
xvu.b.soc 85.3 % Current absolute State of Charge (SoC) of the main battery

Metrics updated only in state “Vehicle CHARGING”

26.4. Custom Metrics 201

Open Vehicles

Metric name Example
value

Description

xvu.c.eff.ecu3 92.3 % Charger efficiency reported by the Charger ECU
xvu.c.loss.ecu3 0.620 kW Charger power loss reported by the Charger ECU
xvu.c.ac.p 7.223 kW Current charging power on AC side (calculated by ECU’s AC voltages and AC

currents)
xvu.c.dc.p 6.500 kW Current charging power on DC side (calculated by ECU’s DC voltages and DC

currents)
xvu.c.eff.calc 90.0 % Charger efficiency calculated by AC and DC power
xvu.c.loss.calc 0.733 kW Charger power loss calculated by AC and DC power
xvu.c.ccs.u4 331.5V CCS charger supplied voltage [V]
xvu.c.ccs.i4 62.2A CCS Charger supplied current [A]
xvu.c.ccs.p4 20.6193kW CCS Charger supplied power [kW]

26.5 Battery Capacity & SOH

e-Up Model Total capacity Usable capacity
Gen 1 (2016) 18.7 kWh / 50 Ah 16.4 kWh / 43.9 Ah (87.7%)
Gen 2 (2020) 36.8 kWh / 120 Ah 32.3 kWh / 105.3 Ah (87.7%)

There are currently two ways to get an estimation of the remaining capacity of the e-Up:

1. By deriving a usable energy capacity from the MFD range estimation.

2. By deriving a total coulomb capacity from the coulombs charged.

Note: Consider the capacity estimations as experimental / preliminary. We need field data to optimize the
readings. If you’d like to help us, see below.

The MFD range estimation seems to include some psychological factors with an SOC below 30%, so we only provide
this and the derived capacity in two custom metrics. The capacity derivation is only calculated with SOC >= 30%,
but if so is available immediately after switching the car on. This can serve as a quick first estimation, relate it to the
usable capacity of your model.

The charge coulomb based estimation provides a better estimation but will need a little more time to settle. Usable
measurements need charges of at least 30% SOC, the more the better. Estimations are only calculated if a charge has
exceeded 30% SOC, and results are smoothed over multiple charges to provide stable readings.

• To get a rough capacity estimation, charge at least 30% normalized SOC difference.

• To get a good capacity estimation, do at least three charges with each covering 60% or more normalized SOC
difference.

Charging by CCS (DC) apparently yields higher results, especially on the energy estimations. We don’t know yet the
reason or if we need to compensate this.

Note: the SOH (state of health) is currently coupled directly and solely to the calculated amp-hour capacity CAC.

To log your capacity data on a connected V2 server, do:
3 Only supplied by ECU when the car ignition is on during charging.
4 These are not measurements by the car but provided as is by the charger and typically deviate from the battery metrics. According to IEC

61851, CCS currents may be off by +/- 3% and voltages by +/- 5%. The power figures displayed by some chargers also typically won’t match these
values, possibly because the charger displays the power drawn from the grid (including losses).

202 Chapter 26. VW e-Up via OBD2

Open Vehicles

OVMS# config set xvu log.chargecap.storetime 30

30 is the number of days to keep the data, set to 0 to disable. The counters will be stored in table
XVU-LOG-ChargeCap, with one entry every 2.4% absolute SOC difference. Resulting CAC/SOH updates will
be logged in table XVU-LOG-ChargeCapSOH. You can also extract the data from your module log file by filtering
lines matching ChargeCap.

26.5.1 Capacity and SOH metrics

Metric name Example value Description
xvu.b.cap.ah.abs 122.71Ah Total coulomb capacity estimation
xvu.b.cap.ah.norm 113.63Ah Usable coulomb capacity estimation
xvu.b.cap.kwh.abs 39.1kWh Total energy capacity estimation
xvu.b.cap.kwh.norm 36.21kWh Usable energy capacity estimation
xvu.b.cap.kwh.range 32.8947kWh Usable energy capacity estimation from MFD range
xvu.b.energy.range 18.5kWh Current energy used by MFD range estimation

26.5.2 Provide Data to the Developers

To help us with optimizing the capacity estimations, first of all enable file logging if not already enabled. Then enable
extended polling and logging before a charge by. . . :

OVMS# config set xvu dc_interval 30
OVMS# log level verbose v-vweup

After the charge, disable the extended polling and logging:

OVMS# config set xvu dc_interval 0
OVMS# log level info v-vweup

Then download all log files written during the charge (archived and current), zip them and mail the zip to Michael
Balzer <dexter@dexters-web.de>. The log data will only be used for technical analysis and deleted afterwards.

Note: if you forgot enabling the local log but still have chargecap logs on the server: these can help as well.

Thanks!

26.6 Custom Status Page for Web UI

Note: This plugin is obsolete, use the standard page VW e-Up → Charging Metrics instead. We keep the source
here as a base for user customization.

The easiest way to display custom metrics is using the Web Plugins feature of OVMS (see Installing Web Plugins).

This page plugin content shows the metrics in a compact form which can be displayed on a phone in landscape mode
on the dashboard of the car. Best approach is to connect the phone directly to the OVMS AP-WiFi and access the web
UI via the static IP (192.168.4.1) of OVMS.

26.6. Custom Status Page for Web UI 203

mailto:dexter@dexters-web.de

Open Vehicles

<div class="panel panel-primary">
<div class="panel-heading">VW eUp</div>
<div class="panel-body">

<hr/>

<div class="receiver">
<div class="clearfix">
<div class="metric progress" data-metric="v.b.soc" data-prec="2">
<div class="progress-bar value-low text-left" role="progressbar"
aria-valuenow="0" aria-valuemin="0" aria-valuemax="100" style="width:0%">
<div>
SoC
?
%

</div>
</div>

</div>
<div class="metric progress" data-metric="xvu.b.soc" data-prec="2">
<div class="progress-bar progress-bar-info value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="0" aria-valuemax="100" style="width:0%">
<div>
SoC (absolute)
?
%

(continues on next page)

204 Chapter 26. VW e-Up via OBD2

Open Vehicles

(continued from previous page)

</div>
</div>

</div>
</div>
<div class="clearfix">
<div class="metric number" data-metric="v.b.energy.used.total" data-prec="3">
TOTALS: &

→˓nbsp; Used
?
kWh

</div>
<div class="metric number" data-metric="v.b.energy.recd.total" data-prec="3">
Charged
?
kWh

</div>
<div class="metric number" data-metric="v.p.odometer" data-prec="0">
Distance
?
km

</div>
</div>

<h4>Battery</h4>

<div class="clearfix">
<div class="metric progress" data-metric="v.b.voltage" data-prec="1">

<div class="progress-bar value-low text-left" role="progressbar"
aria-valuenow="0" aria-valuemin="300" aria-valuemax="350" style="width:0%">
<div>
Voltage
?
V

</div>
</div>

</div>
<div class="metric progress" data-metric="v.b.current" data-prec="1">
<div class="progress-bar progress-bar-danger value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="-200" aria-valuemax="200" style="width:0%">
<div>
Current
?
A

</div>
</div>

</div>
<div class="metric progress" data-metric="v.b.power" data-prec="3">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="-70" aria-valuemax="70" style="width:0%">
<div>
Power
?
kW

</div>
</div>

(continues on next page)

26.6. Custom Status Page for Web UI 205

Open Vehicles

(continued from previous page)

</div>
</div>
<div class="clearfix">
<div class="metric number" data-metric="v.b.temp" data-prec="1">
Temp
?
°C

</div>
<div class="metric number" data-metric="xvu.b.cell.delta" data-prec="3">
Cell delta
?
V

</div>
</div>

<h4>Charger</h4>

<div class="clearfix">
<div class="metric progress" data-metric="xvu.c.ac.p" data-prec="3">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="0" aria-valuemax="8" style="width:0%">
<div>
AC Power
?
kW

</div>
</div>

</div>
<div class="metric progress" data-metric="xvu.c.dc.p" data-prec="3">
<div class="progress-bar progress-bar-warning value-low text-left" role=

→˓"progressbar"
aria-valuenow="0" aria-valuemin="0" aria-valuemax="8" style="width:0%">
<div>
DC Power
?
kW

</div>
</div>

</div>
</div>
<div class="clearfix">
<div class="metric number" data-metric="v.c.efficiency" data-prec="1">

Efficiency (total)
?
%

</div>
<div class="metric number" data-metric="xvu.c.eff.calc" data-prec="1">
Efficiency (charger)
?
%

</div>
<div class="metric number" data-metric="xvu.c.loss.calc" data-prec="3">
Loss (charger)
?
kW

</div>
(continues on next page)

206 Chapter 26. VW e-Up via OBD2

Open Vehicles

(continued from previous page)

</div>
</div>
</div>

</div>

26.6. Custom Status Page for Web UI 207

Open Vehicles

208 Chapter 26. VW e-Up via OBD2

CHAPTER 27

VW e-Up via Comfort CAN (T26A)

Vehicle Type: integrated in VWUP

This part was the initial code for the OVMS VWUP vehicle module. Development started in January 2020 by Chris
van der Meijden.

It supports the VW e-UP (2013-, 2020-), Skoda Citigo E IV and the Seat MII electric (2020-) directly connected to
the comfort can bus through the ‘T26A’ socket.

209

Open Vehicles

27.1 Support Overview

Function Support Status
Hardware Any OVMS v3 (or later) module. Vehicle support: 2020- (2013- VW e-Up as well)
Vehicle Cable Comfort CAN T26A (OCU connector cable, located under front passenger seat) to DB9 Data

Cable for OVMS using pin 6 and 8 for can3
GSM Antenna T4AC - R205 with fakra_sma adapter cable or 1000500 Open Vehicles OVMS GSM Antenna

(or any compatible antenna)
GPS Antenna T4AC - R50 with fakra_sma adapter cable or 1020200 Universal GPS Antenna (or any com-

patible antenna)
SOC Display Yes
Range Display Yes
Cabin Pre-
heat/cool Control

Yes

GPS Location Yes (from modem module GPS)
Speed Display Yes
Temperature Dis-
play

Yes (outdoor, cabin)

BMS v+t Display No
TPMS Display No
Charge Status Dis-
play

Yes

Charge Interrup-
tion Alerts

Yes (per notification on the charging state)

Charge Control tba
Lock/Unlock
Vehicle

No

Valet Mode Con-
trol

No

Others Odometer, trip, VIN, status of lock, plug, lights, doors, trunk and bonnet

27.2 Pinout OCU T26A - OVMS DB9 adapter

For the T26A approach we directly tap into the comfort can bus via the original OCU cable.

The OCU connector is located under the passenger seat.

210 Chapter 27. VW e-Up via Comfort CAN (T26A)

Open Vehicles

Advantage is the direct write access to the comfort can bus.

Disadvantage is that we won’t be able to access all control units of the car.

OCU DB9-F Signal
26 3 Chassis / Power GND
. 2 can1 L (Can Low, not used)
. 7 can1 H (Can High, not used)
. 4 can2 L (Can Low, not used)
. 5 can2 H (Can High, not used)
2 6 can3 L (Comfort-can Low)
14 8 can3 H (Comfort-can High)
1 9 +12V Vehicle Power

For confectioning the T26A adapter cable you can use a standard 26 pin ribbon cable (2x13 pins, 2,54mm grid dimen-
sion) and a DB9 female D-Sub connector. You will need to grind down the rim of the socket of the ribbon cable.

To make a GSM/GPS adapter cable to connect to the original VW fakra socket you can use a double fakra male
connector with two SMA male connectors attached.

27.2. Pinout OCU T26A - OVMS DB9 adapter 211

Open Vehicles

27.3 User notes

• Remove the passenger seat (on right hand drive cars the driver’s seat).

• Open the carpet lid.

• Disconnect the T26A cable and the fakra cable from the OCU (online communication unit).

• Remove the OCU.

• Connect the confectioned T26A adapter DB9 cable attached to the OVMS to the VW T26A connector of the
car.

• Connect your GMS/GPS fakra adapter to the VW fakra cable.

• Fit OVMS in the compartment.

• Close the carpet lid.

• Reinstall the passenger seat.

• Configure OVMS as described in the OVMS user manual.

• Configure ‘Model year’, ‘Can write access’ and ‘Connection type’ under VW e-Up -> Features.

• ‘Model year’ and ‘Can write access’ can also be set from within the app (FEATURES 20 and 15).

• Register and connect OVMS to a server (as guided within the OVMS setup).

• Turn the ignition in the car on and off to receive initial values (also needed after updates).

• Install the OVMS app on your smartphone or tablet and configure it to connect to the server.

212 Chapter 27. VW e-Up via Comfort CAN (T26A)

Open Vehicles

• Enjoy :-)

27.4 Climate control

Climate control works, as long as write access to the comfort can has been enabled in the app or in the OVMS
webinterface (VW e-Up -> Features).

To turn on or off the AC from within the Android app just press the “A/C” button. Within the iOS app press “Homelink
1” for AC on and “Homelink 2” for AC off.

Once the AC is turned on by the app there will be a delay of about 17 seconds untill the AC actually starts in the car.
Further 10 seconds all communication from the app to the car is blocked.

The communication from the app to the car is also blocked for 10 seconds after the “AC off” command from the app
to the car. There is no delay between the “AC off” signal of the app and the actually turning off in the car.

In rare cases ‘AC off’ does not respond. There will be a delay of 40 seconds before you can try again.

The cabin target temperature can be set from the OVMS webinterface (VW e-Up (Komfort CAN) -> Climate control)
or via the app under FEATURES 21.

27.4. Climate control 213

Open Vehicles

27.5 IDs on Comfort CAN Bus

ID Conversion Unit Function
61A d7/2 % State of Charge (relative)
320 (d4<<8+d3-1)/190 km/h Speed
65F 3 Msg d5-7,d1-7,d1-7 String VIN number
571 5+(.05*d0) Volt 12 Volt battery voltage
65D d3&f<<12|d2<<8|d1 km Odometer
3E3 (d2-100)/2 °C Cabin temperature
527 (d5/2)-50 °C Outdoor temperature
531 d0 00 Headlights off
52D d0 +255 if d1 41 km Calculated range
381 d0 02 Status doors locked
470 d1 1,2,4,8,20,10 Integer Doors, trunk, hood opened or closed
3E1 d4 Integer Blower speed?(57,66,7D,98,BB,DE,FA)
575 d0 00 to 0F Integer Key position
575 d3 00 or 10 windshield heater (off or on)
569 b07 “AC”-LED
69C d1/10+10 °C temperature setpoint for remote AC (only in message D2 <d1> 00 1E 1E

0A 00 00)
61C d2 < 07 bool Charging detection
43D d1 01 or 11 TX: Working or sleeping in the ring
5A7 d1 16 TX: OCU AC blocking signal
5A9 all 00 TX: OCU heartbeat
69E multiple msg d0 C1 d6

xx
°C TX: AC on / off signals TX: set cabin temperature for 69C

214 Chapter 27. VW e-Up via Comfort CAN (T26A)

Open Vehicles

27.6 Development notes

Under this vehicle component part we use the original T26A approach, which can write to the comfort can and is able
to manage the climate control of the car.

You will normally use the OVMS binaries provided i.e. here.

The VWUP T26A component part with working climate control is publicly available within the OVMS binary version
3.2.15 ‘edge’ and upwards (‘main’, ‘eap’ and ‘edge’). The Android app version has to be 3.17.1 or higher to have
access to the climate control functions for this vehicle component.

If you want to compile the binary yourself you will need to read the OVMS development documentation on how to set
up the tool chain, check out the repository and the submodules and copy the file

sdkconfig.default.hw31

from the OVMS.V3/support folder to the OVMS.V3 folder and rename it to

sdkconfig

27.7 Vehicle log files

To be able to implement the VWUP vehicle component for OVMS the CAN logging of the VW e-UP provided by
‘sharkcow’ was of tremendous help.

The implementation of this vehicle component could not have been done without these great files.

They can be found here:

https://github.com/sharkcow/VW-e-UP-OBD-CAN-logs/

27.6. Development notes 215

https://dexters-web.de/
https://github.com/sharkcow/VW-e-UP-OBD-CAN-logs/

Open Vehicles

216 Chapter 27. VW e-Up via Comfort CAN (T26A)

CHAPTER 28

Command Line Interpreter

The command line interpreter or command parser presented by the OVMS async serial console is constructed as a tree
of command word tokens. Enter a single question mark followed by RETURN to get the root command list, like this:

OVMS# ?
. Run a script
bms BMS framework
boot BOOT framework
can CAN framework
...

A root command may be followed by one of a list of additional tokens called subcommands which in turn may be
followed by further subcommands down multiple levels, forming a tree. The command and subcommand tokens may
be followed by parameters. Use question mark at any level in the command sequence to get the list of subcommands
applicable at that point. If the next item to be entered is a parameter rather than a subcommand, then a usage mes-
sage will be displayed to indicate the required or optional parameters. The usage message will also be shown if the
command as entered is not valid. The usage message is described in further detail below.

Command tokens can be abbreviated so long as enough characters are entered to uniquely identify the command. Op-
tionally pressing TAB at that point will auto-complete the token. If the abbreviated form is not sufficient to be unique
(in particular if no characters have been entered yet) then TAB will show a concise list of the possible subcommands
and retype the portion of the command line already entered so it can be completed. Pressing TAB is legal at any point
in the command; if there is nothing more that can be completed automatically then there will just be no response to
the TAB.

28.1 OvmsCommand API

Each command word token in the tree is represented by an OvmsCommand object. The
OvmsCommand::RegisterCommand() function is used to create and add a command or subcommand to-
ken object into the tree, returning an OvmsCommand* pointer to the new object. New commands are added to the
root of the tree using the global MyCommandApp.RegisterCommand(). Subcommands are added as children
of a command by calling RegisterCommand() using the OvmsCommand* pointer to the parent object, thus
building the tree. For example:

217

Open Vehicles

OvmsCommand* cmd_wifi = MyCommandApp.RegisterCommand("wifi","WIFI framework", wifi_
→˓status);
cmd_wifi->RegisterCommand("status","Show wifi status",wifi_status);
cmd_wifi->RegisterCommand("reconnect","Reconnect wifi client",wifi_reconnect);

The RegisterCommand() function takes the following arguments:

• const char* name – the command token

• const char* title – one-line description for the command list

• void (*execute)(...) – does the work of the command

• const char *usage – parameter description for “Usage:” message

• int min – minimum number of parameters allowed

• int max – maximum number of parameters allowed

• bool secure – true for commands permitted only after enable

• int (*validate)(...) – validates parameters as explained later

The RegisterCommand() function tolerates duplicate registrations of the same name at the same node of the tree
by assuming that the other arguments are also the same and returning the existing object. This allows mulitple modules
that can be configured independently to share the same top-level command. For example, the obdii command is shared
by the vehicle and obd2ecu modules.

Modules that can be dynamically loaded and unloaded must remove their commands from the tree using
UnregisterCommand(const char* name) before unloading.

It’s important to note that many of the arguments to RegisterCommand() can and should be defaulted. The default
values are as follows:

execute = NULL
usage = ""
min = 0
max = 0
secure = true
validate = NULL

For example, for secure, non-terminal commands (those with child subcommands), such as the top-level framework
commands like bms in the list of root commands shown earlier, the model should simply be:

RegisterCommand("name", "Title");

For secure, terminal subcommands (those with no children) that don’t require any additional parameters, the model
should be:

RegisterCommand("name", "Title", execute);

This model also applies if the command has children but the command itself wants to execute a default operation if no
subcommand is specified. It is incorrect to specify min = 0, max = 1 to indicate an optional subcommand; that is
indicated by the presence of the execute function along with a non-empty array of child subcommands.

Any command with required or optional parameters should provide a “usage” string hinting about the parameters in
addition to specifying the minimum and maximum number of parameters allowed:

RegisterCommand("name", "Title", execute, "usage", min, max);

218 Chapter 28. Command Line Interpreter

Open Vehicles

The usage argument only needs to describe the parameters that follow this (sub)command because the full usage
message is dynamically generated. The message begins with the text “Usage: ” followed by the names of the ancestors
of this subcommand back to the root of the tree plus the name of this subcommand itself. That is, the message starts
with all the tokens entered to this point. The message continues with a description of subcommands and/or parameters
that may be entered next, as specified by the usage string.

Note: The usage message is not resricted to a single line; the usage string can include additional lines of explana-
tory text, separated by \n (newline) characters, to help convey the meaning of the paramters and the purpose of the
command.

The usage string syntax conventions for specifying alternative and optional parameters are similar to those of usage
messages in Unix-like systems. The string can also include special codes to direct the dynamic generation of the
message:

• $C expands to the list of children commands as child1|child2|child3.

• [$C] expands to list optional children as [child1|child2|child3].

• G expands to the usage string of the first child; this would typically used after $C so the usage message shows
the list of children and then the parameters or next-level subcommands that can follow the children. This is
useful when the usage string is the same for all or most of the children as in this example:

Usage: power adc|can1|can2|can3|egpio|esp32|sdcard|simcom|spi|wifi
→˓deepsleep|devel|off|on|sleep|status

• $Gfoo$ expands to the usage of the child named “foo”; this variant would be used when not all the children
have the same usage but it would still be helpful to show the usage of one that’s not first.

• $L lists a full usage message for each of the children on separate lines. This provides more help than just
showing the list of children but at the expense of longer output.

For subcommands that take parameters, the usage string contains explicit text to list the parameters:

• Parameter names or descriptions are enclosed in angle brackets to distinguish the them from command tokens,
for example <metric> <value>. Since the angle brackets demarcate each parameter, spaces may be in-
cluded in the description.

• Parameters that are optional are further enclosed in square brackets, like <id> <name> [<value>].

• When there are alternative forms or meanings for a parameter, the alternatives are separated by vertical bar as
in <task names or ids>|*|= which indicates that the parameter can be either of the characters * or =
instead of a list of task names or ids. A variant form encloses the alternatives in curly braces as in <param>
{<instance> | *}.

• One or more additional lines of explanatory text can be included like this:

"<id>\nUse ID from connection list / 0 to close all"

For non-terminal commands (those with children subcommands) the usage argument can be omitted because the
default value of "" is interpreted as $C. For commands that have children subcommands that are optional (because an
execute function is included) the default usage argument is interpreted as [$C].

28.1.1 Execute Function

The execute function performs whatever work is required for the command. Its signature is as follows:

28.1. OvmsCommand API 219

Open Vehicles

void (*execute)(int verbosity, OvmsWriter* writer, OvmsCommand* cmd, int argc, const
→˓char* const* argv)

• int verbosity – tells how much output is appropriate (e.g., shell vs. SMS)

• OvmsWriter* writer – object to which output is delivered, e.g. console

• OvmsCommand* cmd – the command that held the execute function pointer

• int argc – how many parameters are being supplied to the function

• const char* const* argv – the parameter list

Any output appropriate for the command is accomplished through puts() or printf() calls on the writer
object. The cmd pointer may allow sharing one execute function among multiple related command objects and
provides access to members of the command object such as GetName().

The argc count will be constrained to the min and max values specified for the cmd object, so if the minimum and
maximum are the same then the execute function does not need to check. However, if parameters are expected then
their values must be validated.

28.1.2 Validate Function

Most commands do not need to specify a validate function. It supports extensions of the original command parser
design for two use cases:

1. For commands that store the possible values of a parameter in a NameMap<T> or CNameMap<T>, the
validate function enables TAB auto-completion when entering that parameter.

2. The original design only allowed parameters to be collected by the terminal subcommand. That forced an
unnatural word order for some commands. The validate function enables non-terminal subcommands to
take one or more parameters followed by multiple levels of children subcommands. The parameters may be
strings looked up in a NameMap<T> or CNameMap<T> or they could be something else like a number that can
be validated by value. The validate function must indicate success for parsing to continue to the children
subcommands. The return value is the number of parameters validated if successful or -1 if not.

The signature of the validate function is as follows:

int (*validate)(OvmsWriter* writer, OvmsCommand* cmd, int argc, const char* const*
→˓argv, bool complete)

• OvmsWriter* writer – object to which output is delivered, e.g. console

• OvmsCommand* cmd – the command that held the validate function pointer

• int argc – how many parameters are being supplied to the function

• const char* const* argv – the parameter list

• bool complete – true for TAB completion of the last parameter (case 1), false when validating intermediate
parameters before calling execute on the terminal descendant command (case 2)

The writer and cmd arguments are the same as for the execute function. The argc count is never more than max
and, if complete is false, never less than min. However, when complete is true to request TAB auto-completion
and max is greater than 1, argc will be at least 1 but may be less than min because it indicates how many parameters
have been entered so far. The TAB auto-completion is performed on the last parameter entered after validating any
preceding parameters. If min and max are both 1 then it is not necessary to check argc.

If the acceptable values of a parameter are stored in a NameMap<T> or CNameMap<T>, those maps implement a
Validate() function that will perform the validation needed for the validate function covering both the true

220 Chapter 28. Command Line Interpreter

Open Vehicles

and false cases of complete. Those maps also implement a FindUniquePrefix() function that may be used to
validate preceding parameters for commands that take multiple parameters.

The config_validate() function for the config command in main/ovms_config.cpp is an example imple-
mentation of use case 1 for a command taking three parameters with TAB auto-completion on the first two:

int config_validate(OvmsWriter* writer, OvmsCommand* cmd, int argc, const char*
→˓const* argv, bool complete)
{
if (!MyConfig.ismounted())
return -1;

// argv[0] is the <param>
if (argc == 1)
return MyConfig.m_map.Validate(writer, argc, argv[0], complete);

// argv[1] is the <instance>
if (argc == 2)
{
OvmsConfigParam* const* p = MyConfig.m_map.FindUniquePrefix(argv[0]);
if (!p) // <param> was not valid, so can't check <instance>
return -1;

return (*p)->m_map.Validate(writer, argc, argv[1], complete);
}

// argv[2] is the value, which we can't validate
return -1;
}

The location command in components/ovms_location/src/ovms_location.cpp is an example of use
case 2 as it includes an intermediate parameter and also utilizes the $L form of the usage string:

OVMS# location action enter ?
Usage: location action enter <location> acc <profile>
Usage: location action enter <location> homelink 1|2|3
Usage: location action enter <location> notify <text>

The following excerpt shows the implementation of the location_validate() function and a subset of the
RegisterCommand() calls to build the command subtree. This example shows how simple the validation code
can be – sometimes just one line to call Validate(). In this case the code does need to check argc because the
function is shared by multiple subcommand objects taking 1 or 2 parameters.

int location_validate(OvmsWriter* writer, OvmsCommand* cmd, int argc, const char*
→˓const* argv, bool complete)
{
if (argc == 1)
return MyLocations.m_locations.Validate(writer, argc, argv[0], complete);

return -1;
}

OvmsCommand* cmd_location = MyCommandApp.RegisterCommand("location","LOCATION
→˓framework");
OvmsCommand* cmd_action = cmd_location->RegisterCommand("action","Set an action for

→˓a location");
OvmsCommand* cmd_enter = cmd_action->RegisterCommand("enter","Set an action upon

→˓entering a location", NULL, "<location> $L", 1, 1, true, location_validate);
OvmsCommand* enter_homelink = cmd_enter->RegisterCommand("homelink","Transmit

→˓Homelink signal");
enter_homelink->RegisterCommand("1","Homelink 1 signal",location_homelink,"", 0, 0,

→˓true);
enter_homelink->RegisterCommand("2","Homelink 2 signal",location_homelink,"", 0, 0,

→˓true); (continues on next page)

28.1. OvmsCommand API 221

Open Vehicles

(continued from previous page)

enter_homelink->RegisterCommand("3","Homelink 3 signal",location_homelink,"", 0, 0,
→˓true);
cmd_enter->RegisterCommand("acc","ACC profile",location_acc,"<profile>", 1, 1,

→˓true);
cmd_enter->RegisterCommand("notify","Text notification",location_notify,"<text>", 1,

→˓ INT_MAX, true);

222 Chapter 28. Command Line Interpreter

CHAPTER 29

CAN Bus Data Logging

OVMS can be used as CAN bus datalogging tool.

29.1 Physical Connections

OVMS hardware V3 supports up to three CAN bus connections. The connections to OVMS are as follows:

DB9-F Signal
----- ------

2 CAN1-L
7 CAN1-H

4 CAN2-L
5 CAN2-H

6 CAN3-L
8 CAN3-H

Note: the board schematics refer to CAN0,1,2. These correspond to CAN1,2,3 here in the documentation and source
code. The first is handled by ESP32 i/o lines directly, and CAN2/3 are handled by MCP2515 ICs via SPI from the
ESP.

CAN1 is the fastest bus, use this one if possible. The CAN logging tool is able to log all buses at the same time, to the
same file or stream.

Vehicle CAN bus(s) are usually accesable via the vehicle’s OBD2 port. Most modern cars have multiple CAN busses.
The OBD2 ‘standard’ CAN will be available on OBD2 pin 6: CAN-H and pin 14: CAN-L. However, modern vehicles
(especially EV’s) often have other CAN buses available on non-standard OBD2 pins.

A voltmeter (ideally oscilloscope) can be used to determine which OBD2 pins contain CAN data:

• Can high pins should normally be between 2.5 and 3.5 volts (to ground) - maybe 2.7 to 3.3 volts if there is
traffic.

• Can low pins should normally be between 1.5 and 2.5 volts (to ground) - maybe 1.7 to 2.3 volts if there is traffic.

223

Open Vehicles

Pre-fabricated OBD2 > DB9-F for several specific vehicles can be purchased via OpenVehicles.

29.2 Enable OVMS CAN bus

Once physical connections has been made and OVMS is up and running connect to OVMS shell via web browser /
SSH or serial.

If a specific vehicle module is loaded the CAN bus will already be enabled in OVMS. To check which CAN buses are
enabled use:

OVMS# can list

If no vehicle module is selected the CAN bus must be started e.g

OVMS# can can1 start listen 500000

This will enable CAN1 in listen mode (read only) at 500k baud, active can be used instead of listen to enable
read-write mode. To stop a CAN1 bus:

OVMS# can can1 stop

OVMS supports the following CAN bauds rates: 100000, 125000, 250000, 500000, 1000000.

29.3 Logging to SD card

It is possible to view CAN data directly in OVMS monitor shell, however since modern cars have very busy CAN
buses there is often too much data which swamps the monitor or exceeds the logging queue, resulting in dropped
messages. Logging to SD card is the better option.

If using a good quality SD card with a current OVMS V3 module (i.e. PCB revision 3.2 / 2019.05.23 or later), increase
the SD card speed for best performance with:

config set sdcard maxfreq.khz 20000

Start logging all CAN messages using CRTD log file format with:

ovms# can log start vfs crtd /sd/can.crtd

or log specific CAN packets by applying a filter e.g 0x55b the Nissan LEAF SoC CAN message

ovms# can log start vfs crtd /sd/can.crtd 55b

Other CAN log file formats are supported e.g crtd, gvret-a, gvret-b, lawricel, pcap, raw.

Check CAN logging satus with:

ovms# can log status

To Stop CAN logging:

ovms# can log stop

Note: the can logging must be stopped before the file can be viewed

To View the CAN log:

ovms# vfs head /sd/can.crtd

tail and cat commands can also be used. However, be careful the log file can quickly become very large, cat may
overwhelm the shell.

The log file can also be viewed in a browser with http://<ovms-ipaddress>/sd/can.crtd

224 Chapter 29. CAN Bus Data Logging

Open Vehicles

The logfiles can then be imported into a tool like SavvyCan for analysis.

29.4 Network Streaming

CAN data can be streamed directly to SavvyCan (or other compatible application) using the OVMS tcpserver CAN
logging feature over a local network. Start tcpserver CAN logging with:

OVMS# can log start tcpserver discard gvret-b :23

This will start a tcpserver on port 23 (as required by SavvyCan) using the GVRET format supported by SavvyCAN.

Once OVMS CAN logging tcpserver is running open up SavvyCan and select:

Connection > Add New Device Connection > Network Connection

then enter the OVMS WiFi local network IP address (no port number required). CAN packets should now appear
streaming into SavvyCan.

Note: CAN tcpserver network streaming is a beta feture currently in edge firmware and may be buggy

29.5 Optimizing the Performance

On can log stop, the system will output some statistics. Check especially the dropped frame count. Frame
drops can occur because the system was busy with other tasks like handling network traffic. There are two options to
optimize this:

a) Reduce background activities, i.e. stop all services not needed for the logging. If possible, do the logging
without an active vehicle module (e.g. set the “empty” vehicle via vehicle module NONE).

b) Raise the log queue size. The default queue size has a capacity of 100 frames. To e.g. allow 200 frames, do:
config set can log.queuesize 200.

29.4. Network Streaming 225

Open Vehicles

226 Chapter 29. CAN Bus Data Logging

CHAPTER 30

CRTD CAN Log Format

30.1 Introduction

The CRTD CAN Log format is a textual log file format designed to store information on CAN bus frames and events.

Files, or network data streams, in CRTD format contain only textual data in UTF-8, with each record being on an
individual line terminated by a single linefeed (ascii 10) character.

Each line is made up from the following fields separated by single spaces (ASCII 32):

• Timestamp: Julian timestamp, seconds and milliseconds/microseconds, separated by a decimal point

• Record Type: Mnenomic to denote the record type

• Record Data: The remaining data is dependant on the record type

Here are some examples:

1542473901.020305 1R11 ...
1542473901.020305 2T11 ...
1542473901.020305 R11 ...
1542473901.021 1R11 ...

30.2 Timestamps

In general, timestamps should be in UTC. A comment may optionally be placed at the start of the file to describe the
timezone.

If the timestamp contains 3 digits after the decimal point, it should be consider millisecond precision, and handled
appropriately. Similarly, if the timestamp contains 6 digits after the decimal point, it should be considered microsecond
precision.

227

Open Vehicles

30.3 CAN Bus Designation

Record types may optionally be prefixed by the CAN bus number (1 . . . n). If no bus number is provided, #1 should
be assumed.

30.4 Record Types

30.4.1 Comment Record

Comment records start with the letter ‘C’, and the record type has two characters following to denote the sub-type.
The rest of the record is to be considered a comment.

The following comment record types are defined:

• CXX: General textual comment

• CER: An indication of a (usually recoverable) error

• CST: Periodical statistics

• CEV: An indication of an event

Here are some examples:

169.971289 CXX Info Type:crtd; Path:'/sd/can3.crtd'; Filter:3:0-ffffffff;
→˓Vehicle:TSHK;
19292.299819 CEV vehicle.alert this is a textual vehicle alert
198923.283738 CST intr=0 rxpkt=0 txpkt=0 errflags=0 rxerr=0 txerr=0 rxovr=0 txovr=0
→˓txdelay=0 wdgreset=0
2783.384726 CER intr=0 rxpkt=0 txpkt=0 errflags=0 rxerr=0 txerr=0 rxovr=0 txovr=0
→˓txdelay=0 wdgreset=0

30.4.2 Received Frame Record

Received frame records describe a frame received from the CAN bus, and start with the letter ‘R’. Two types are
defined:

• R11: A standard 11bit ID CAN frame

• R29: An extended 29bit ID CAN frame

The record type is followed by the frame ID (in hexadecimal), and then up to 8 bytes of CAN frame data.

Here are some examples:

1542473901.020305 1R11 213 00 00 00 00 c0 01 00 00
1542473901.020970 2R11 318 92 0b 13 10 11 3a 00 00
1542473901.021259 2R11 308 00 ff f6 a6 06 03 80 00
1542473901.021560 2R11 408 00
1542473901.030341 1R11 358 18 08 20 00 00 00 00 20
1542473901.034872 2R11 418 80
1542473901.035514 1R11 408 10
1542473901.036694 3R11 41C 10
1542473901.040289 R11 428 00 30
1542473901.042516 2R11 168 e0 7f 70 00 ff ff ff
1542473901.042809 2R11 27E c0 c0 c0 c0 00 00 00 00
1542473901.043073 1R11 248 29 29 0f bc 01 10 00

228 Chapter 30. CRTD CAN Log Format

Open Vehicles

30.4.3 Transmitted Frame Record

Transmitted frame records describe a frame transmitted onto the CAN bus, and start with the letter ‘T’. Two types are
defined:

• T11: A standard 11bit ID CAN frame

• T29: An extended 29bit ID CAN frame

The record type is followed by the frame ID (in hexadecimal), and then up to 8 bytes of CAN frame data.

Here are some examples:

1542473901.020305 1T11 213 00 00 00 00 c0 01 00 00
1542473901.020970 2T11 318 92 0b 13 10 11 3a 00 00
1542473901.021259 2T11 308 00 ff f6 a6 06 03 80 00
1542473901.021560 2T11 408 00
1542473901.030341 1T11 358 18 08 20 00 00 00 00 20
1542473901.034872 2T11 418 80
1542473901.035514 1T11 408 10
1542473901.036694 3T11 41C 10
1542473901.040289 T11 428 00 30
1542473901.042516 2T11 168 e0 7f 70 00 ff ff ff
1542473901.042809 2T11 27E c0 c0 c0 c0 00 00 00 00
1542473901.043073 1T11 248 29 29 0f bc 01 10 00

30.5 Conclusions

Being a textual format, CRTD files are designed to be human readable and manipulated/analysed with standard text
processing tools. They are not at all sophisticated, or compact.

30.5. Conclusions 229

Open Vehicles

230 Chapter 30. CRTD CAN Log Format

CHAPTER 31

Web Framework & Plugins

31.1 TL;DR: Examples

The following examples include their documentation in the HTML page and source. Read the source and install them
as plugins (see below) to see how they work.

31.1.1 Metric Displays

OVMS V3 is based on metrics. Metrics can be single numerical or textual values or complex values like sets and arrays.
The web framework keeps all metrics in a global object, which can be read simply by e.g. metrics["v.b.soc"].

Metrics updates (as well as other updates) are sent to all DOM elements having the receiver class. To hook into
these updates, simply add an event listener for msg:metrics.

Listening to the event is not necessary though if all you need is some metrics display. This is covered by the metric
widget class family as shown here.

231

Open Vehicles

Single Values & Charts

The following example covers. . .

• Text (String) displays

• Number displays

• Progress bars (horizontal light weight bar charts)

• Gauges

• Charts

Gauges & charts use the HighCharts library, which is included in the web server. The other widgets are simple standard
Bootstrap widgets extended by an automatic metrics value update mechanism.

Highcharts is a highly versatile charting system. For inspiration, have a look at:

• https://www.highcharts.com/demo

• https://www.highcharts.com/docs

We’re using styled mode so some options don’t apply, but everything can be styled by standard CSS.

Install the example as a web page plugin:

metrics.htm (hint: right click, save as)

232 Chapter 31. Web Framework & Plugins

https://www.highcharts.com/demo
https://www.highcharts.com/docs
https://www.highcharts.com/docs/chart-design-and-style/style-by-css

Open Vehicles

1 <!--
2 Test/Development/Documentation page; install as plugin to test
3 -->
4

5 <div class="panel panel-primary">
6 <div class="panel-heading">Metrics Displays Test/Demo</div>
7 <div class="panel-body">
8

9 <p>OVMS V3 is based on metrics. Metrics can be single numerical or textual values
→˓or complex values

10 like sets and arrays. The web framework keeps all metrics in a global object,
→˓which can be read

11 simply by e.g. <code>metrics["v.b.soc"]</code>.</p>
12

13 <p>Metrics updates (as well as other updates) are sent to all DOM elements having
→˓the

14 <code>receiver</code> class. To hook into these updates, simply add an event
→˓listener for

15 <code>msg:metrics</code>. Listening to the event is not necessary if all you
→˓need is some metrics

16 display. This is covered by the <code>metric</code> class family as shown here.
→˓</p>

17

18 <p>
19 <button type="button" class="btn btn-default action-gendata">Generate random

→˓data</button>
20 <button type="button" class="btn btn-default action-showsrc">Show page source</

→˓button>
21 </p>
22

23 <hr/>
24

25 <div class="receiver">
26

27 <h4>Basic usage</h4>
28

29 <p>All elements of class <code>metric</code> in a <code>receiver</code> are
→˓checked for the

30 <code>data-metric</code> attribute. If no specific metric class is given, the
→˓metric value

31 is simply set as the element text: <span class="metric" data-metric="m.net.
→˓provider">?

32 is your current network provider.</p>
33

34 <h4>Text & Number</h4>
35

36 <p><code>number</code> & <code>text</code> displays get the metric value
→˓set in their child of

37 class <code>value</code>. They may additionally have labels and units. <code>
→˓data-prec</code> can

38 be used on <code>number</code> to set the precision, <code>data-scale</code>
→˓to scale the raw

39 values by a factor. They have fixed min widths and float by default, so you
→˓can simply put

40 multiple displays into the same container:</p>
41

42 <div class="clearfix">

(continues on next page)

31.1. TL;DR: Examples 233

Open Vehicles

(continued from previous page)

43 <div class="metric number" data-metric="v.e.throttle" data-prec="0">
44 Throttle:
45 ?
46 %
47 </div>
48 <div class="metric number" data-metric="v.b.12v.voltage.ref" data-prec="1">
49 ?
50 V_{ref}
51 </div>
52 <div class="metric text" data-metric="m.net.provider">
53 Network:
54 ?
55 </div>
56 </div>
57

58 <h4>Progress Bar</h4>
59

60 <p>Bootstrap <code>progress</code> bars can be used as lightweight graphical
→˓indicators.

61 Labels and units are available, also <code>data-prec</code> and <code>data-
→˓scale</code>.

62 Again, all you need is a bit of markup:</p>
63

64 <div class="clearfix">
65 <div class="metric progress" data-metric="v.e.throttle" data-prec="0">
66 <div class="progress-bar progress-bar-success value-low text-left" role=

→˓"progressbar"
67 aria-valuenow="0" aria-valuemin="0" aria-valuemax="100" style="width:0%">
68 <div>
69 Throttle:
70 ?
71 %
72 </div>
73 </div>
74 </div>
75 <div class="metric progress" data-metric="v.b.12v.voltage.ref" data-prec="1">
76 <div class="progress-bar progress-bar-info value-low text-left" role=

→˓"progressbar"
77 aria-valuenow="0" aria-valuemin="5" aria-valuemax="15" style="width:0%">
78 <div>
79 12V ref:
80 ?
81 V
82 </div>
83 </div>
84 </div>
85 </div>
86

87 <h4>Gauges & Charts</h4>
88

89 <p>The OVMS web framework has builtin support for the highly versatile
→˓Highcharts library

90 with loads of chart types and options. <code>chart</code> metric examples:</p>
91

92 <div class="row">
93 <div class="col-sm-6">
94 <div class="metric chart" data-metric="v.e.throttle" style="height:220px">

(continues on next page)

234 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

95 <div class="chart-box gaugechart" id="throttle-gauge"/>
96 </div>
97 </div>
98 <div class="col-sm-6">
99 <div class="metric chart" data-metric="v.b.c.voltage,v.b.c.voltage.min"

→˓style="height:220px">
100 <div class="chart-box barchart" id="cell-voltages"/>
101 </div>
102 </div>
103 </div>
104

105 <p><button type="button" class="btn btn-default action-gendata">Generate random
→˓data</button></p>

106

107 <p>For charts, a little bit of scripting is necessary.
108 The scripts for these charts contain the chart configuration, part of which

→˓is the update
109 function you need to define. The update function translates metrics data into

→˓chart data.
110 This is trivial for single values like the throttle, the cell voltage chart

→˓is an example
111 on basic array processing.</p>
112

113 <p>Also, while charts can be defined with few options, you'll love
→˓ to explore

114 all the features and fine tuning options provided by Highcharts. For
→˓inspiration,

115 have a look at the
→˓Highcharts demos

116 and the Highcharts
→˓documentation.

117 We're using <a target="_blank" href="https://www.highcharts.com/docs/chart-
→˓design-and-style/style-by-css">

118 styled mode, so some options don't apply, but everything can be styled by
→˓standard CSS.</p>

119

120 </div>
121

122 </div>
123 </div>
124

125 <script>
126 (function(){
127

128 /* Get page source before chart rendering: */
129 var pagesrc = $('#main').html();
130

131 /* Init throttle gauge: */
132 $("#throttle-gauge").chart({
133 chart: {
134 type: 'gauge',
135 spacing: [0, 0, 0, 0],
136 margin: [0, 0, 0, 0],
137 animation: { duration: 500, easing: 'easeOutExpo' },
138 },
139 title: { text: "Throttle", verticalAlign: "middle", y: 75 },
140 credits: { enabled: false },

(continues on next page)

31.1. TL;DR: Examples 235

Open Vehicles

(continued from previous page)

141 tooltip: { enabled: false },
142 plotOptions: {
143 gauge: { dataLabels: { enabled: false }, overshoot: 1 }
144 },
145 pane: [{
146 startAngle: -125, endAngle: 125, size: '100%', center: ['50%', '60%']
147 }],
148 yAxis: [{
149 title: { text: '%' },
150 className: 'throttle',
151 reversed: false,
152 min: 0, max: 100,
153 plotBands: [
154 { from: 0, to: 60, className: 'green-band' },
155 { from: 60, to: 80, className: 'yellow-band' },
156 { from: 80, to: 100, className: 'red-band' },
157],
158 minorTickInterval: 'auto', minorTickLength: 5, minorTickPosition: 'inside',
159 tickPixelInterval: 40, tickPosition: 'inside', tickLength: 13,
160 labels: { step: 2, distance: -28, x: 0, y: 5, zIndex: 2 },
161 }],
162 series: [{
163 name: 'Throttle', data: [0],
164 className: 'throttle',
165 animation: { duration: 0 },
166 pivot: { radius: '10' },
167 dial: { radius: '88%', topWidth: 1, baseLength: '20%', baseWidth: 10,

→˓rearLength: '20%' },
168 }],
169 /* Update method: */
170 onUpdate: function(update) {
171 // Create gauge data set from metric:
172 var data = [metrics["v.e.throttle"]];
173 // Update chart:
174 this.series[0].setData(data);
175 },
176 });
177

178 /* Init cell voltages chart */
179 $("#cell-voltages").chart({
180 chart: {
181 type: 'column',
182 animation: { duration: 500, easing: 'easeOutExpo' },
183 },
184 title: { text: "Cell Voltages" },
185 credits: { enabled: false },
186 tooltip: {
187 enabled: true,
188 shared: true,
189 headerFormat: 'Cell #{point.key}:
',
190 pointFormat: '{series.name}: {point.y}
',
191 valueSuffix: " V"
192 },
193 legend: { enabled: true },
194 xAxis: {
195 categories: []
196 },

(continues on next page)

236 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

197 yAxis: [{
198 title: { text: null },
199 labels: { format: "{value:.2f}V" },
200 tickAmount: 4, startOnTick: false, endOnTick: false,
201 floor: 3.3, ceiling: 4.2,
202 minorTickInterval: 'auto',
203 }],
204 series: [{
205 name: 'Current', data: [],
206 className: 'cell-voltage',
207 animation: { duration: 0 },
208 },{
209 name: 'Minimum', data: [],
210 className: 'cell-voltage-min',
211 animation: { duration: 0 },
212 }],
213 /* Update method: */
214 onUpdate: function(update) {
215 // Note: the 'update' parameter contains the actual update set.
216 // You can use this to reduce chart updates to the actual changes.
217 // For this demo, we just use the global metrics object:
218 var
219 m_vlt = metrics["v.b.c.voltage"] || [],
220 m_min = metrics["v.b.c.voltage.min"] || [];
221 // Create categories (cell numbers) & rounded values:
222 var cat = [], val0 = [], val1 = [];
223 for (var i = 0; i < m_vlt.length; i++) {
224 cat.push(i+1);
225 val0.push(Number((m_vlt[i]||0).toFixed(3)));
226 val1.push(Number((m_min[i]||0).toFixed(3)));
227 }
228 // Update chart:
229 this.xAxis[0].setCategories(cat);
230 this.series[0].setData(val0);
231 this.series[1].setData(val1);
232 },
233 });
234

235 /* Test metrics generator: */
236 $('.action-gendata').on('click', function() {
237 var td = {};
238 td["m.net.provider"] = ["hologram","Vodafone","Telekom"][Math.floor(Math.

→˓random()*3)];
239 td["v.e.throttle"] = Math.random() * 100;
240 td["v.b.12v.voltage.ref"] = 10 + Math.random() * 4;
241 var m_vlt = [], m_min = [];
242 for (var i = 1; i <= 16; i++) {
243 m_vlt.push(3.6 + Math.random() * 0.5);
244 m_min.push(3.4 + Math.random() * 0.2);
245 }
246 td["v.b.c.voltage"] = m_vlt;
247 td["v.b.c.voltage.min"] = m_min;
248 $('.receiver').trigger('msg:metrics', $.extend(metrics, td));
249 });
250

251 /* Display page source: */
252 $('.action-showsrc').on('click', function() {

(continues on next page)

31.1. TL;DR: Examples 237

Open Vehicles

(continued from previous page)

253 $('<div/>').dialog({
254 title: 'Source Code',
255 body: '<pre style="font-size:85%; height:calc(100vh - 230px);">'
256 + encode_html(pagesrc) + '</pre>',
257 size: 'lg',
258 });
259 });
260

261 })();
262 </script>

Vector Tables

Some metrics, for example the battery cell voltages or the TPMS tyre health data, may contain vectors of arbitrary
size. Besides rendering into charts, these can also be displayed by their textual values in form of a table.

The following example shows a live view of the battery cell voltages along with their recorded minimum, maximum,
maximum deviation and current warning/alert state. Alert states 0-2 are translated into icons.

The metric table widget uses the DataTables library, which is included in the web server. The DataTables Javascript
library offers a wide range of options to create tabular views into datasets.

Install the example as a web page plugin:

metrics-table.htm (hint: right click, save as)

1 <!--
2 Web UI page plugin: DataTables metrics widget demonstration
3 -->
4

5 <style>
6 td i {

(continues on next page)

238 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

7 font-style: normal;
8 font-size: 140%;
9 line-height: 90%;

10 font-weight: bold;
11 }
12 td i.warning { color: orange; }
13 td i.danger { color: red; }
14 </style>
15

16

17 <div class="panel panel-primary panel-single receiver" id="my-receiver">
18 <div class="panel-heading">Metrics Table Widget Example</div>
19 <div class="panel-body">
20

21 <p>The following table shows a live view of the battery cell voltages along with
→˓their recorded

22 minimum, maximum, maximum deviation and current warning/alert state.</p>
23 <p>Try resizing the window or using a mobile phone to see how the table adapts to

→˓the screen
24 width. The table will also keep the selected sorting over data updates.</p>
25 <p>Hint: if you don't have live battery cell data, click the generator button to

→˓create
26 some random values. The random data is only generated in your browser, not on

→˓the module.</p>
27

28 <div class="metric table"
29 data-metric="v.b.c.voltage,v.b.c.voltage.min,v.b.c.voltage.max,v.b.c.voltage.

→˓dev.max,v.b.c.voltage.alert">
30 <table class="table table-striped table-bordered table-hover" id="v-table" />
31 </div>
32

33 <p>See DataTables manual
→˓ for all

34 options and API methods available.</p>
35

36 </div>
37 <div class="panel-footer">
38 <p><button type="button" class="btn btn-default action-gendata">Generate random

→˓data</button></p>
39 </div>
40 </div>
41

42

43 <script>
44 (function(){
45

46 // Utilities:
47 var alertMap = {
48 0: '',
49 1: '<i class="warning"></i>',
50 2: '<i class="danger"></i>',
51 };
52

53 function fmtCode(value, map) {
54 return (map[value] !== undefined) ? map[value] : null;
55 }
56 function fmtNumber(value, prec) {

(continues on next page)

31.1. TL;DR: Examples 239

Open Vehicles

(continued from previous page)

57 return (value !== undefined) ? Number(value).toFixed(prec) : null;
58 }
59

60 // Init table:
61 $('#v-table').table({
62 responsive: true,
63 paging: true,
64 searching: false,
65 info: false,
66 autoWidth: false,
67 columns: [
68 { title: "#", className: "dt-body-center", width: "6%",

→˓responsivePriority: 1 },
69 { title: "Voltage", className: "dt-body-right", width: "22%",

→˓responsivePriority: 3 },
70 { title: "Minimum", className: "dt-body-right", width: "22%",

→˓responsivePriority: 4 },
71 { title: "Maximum", className: "dt-body-right", width: "22%",

→˓responsivePriority: 5 },
72 { title: "Max.Dev.", className: "dt-body-right", width: "22%",

→˓responsivePriority: 2 },
73 { title: "Alert", className: "dt-body-center", width: "6%",

→˓responsivePriority: 1 },
74],
75 rowId: 0,
76 onUpdate: function(update) {
77 // Get vector metrics to display:
78 var v = [
79 metrics["v.b.c.voltage"] || [],
80 metrics["v.b.c.voltage.min"] || [],
81 metrics["v.b.c.voltage.max"] || [],
82 metrics["v.b.c.voltage.dev.max"] || [],
83 metrics["v.b.c.voltage.alert"] || [],
84];
85 var lcnt = 0;
86 v.map(el => lcnt = Math.max(lcnt, el.length));
87 // Transpose vectors to columns:
88 var l, d = [];
89 for (l = 0; l < lcnt; l++) {
90 d.push([
91 l+1,
92 fmtNumber(v[0][l], 2),
93 fmtNumber(v[1][l], 2),
94 fmtNumber(v[2][l], 2),
95 fmtNumber(v[3][l], 3),
96 fmtCode(v[4][l], alertMap),
97]);
98 }
99 // Display new data:

100 this.clear().rows.add(d).draw();
101 },
102 });
103

104

105 // Test data generator:
106 $('.action-gendata').on('click', function() {
107 var td = {};

(continues on next page)

240 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

108 var m_vlt = [], m_min = [], m_max = [], m_devmax = [], m_alert = [];
109 for (var i = 1; i <= 16; i++) {
110 m_vlt.push(3.6 + Math.random() * 0.5);
111 m_min.push(3.4 + Math.random() * 0.2);
112 m_max.push(3.8 + Math.random() * 0.2);
113 m_devmax.push(-0.2 + Math.random() * 0.4);
114 m_alert.push(Math.floor(Math.random() * 3));
115 }
116 td["v.b.c.voltage"] = m_vlt;
117 td["v.b.c.voltage.min"] = m_min;
118 td["v.b.c.voltage.max"] = m_max;
119 td["v.b.c.voltage.dev.max"] = m_devmax;
120 td["v.b.c.voltage.alert"] = m_alert;
121 $('.receiver').trigger('msg:metrics', $.extend(metrics, td));
122 });
123

124 })();
125 </script>

31.1.2 Command Buttons & Monitors

commands.htm (hint: right click, save as)

1 <!--
2 Test/Development/Documentation page; install as plugin to test
3 -->
4

5 <style>
6 h3 {
7 margin-top: 40px;
8 margin-bottom: 20px;
9 }

10 </style>
11

12 <div class="panel panel-primary">
13 <div class="panel-heading">Commands & Monitors</div>
14 <div class="panel-body">
15

16 <p>Command execution is only allowed for an authorized session. The command API will
17 output "Unauthorized" and a Login button as necessary. The login state is also
18 available in the global variable <code>loggedin</code>. To send the user to the
19 login page and return to the current page after login, call <code>login()</code>:

→˓</p>
20

21 <p>
22 <button type="button" class="btn btn-default action-login" onclick="login()">Login

→˓</button>
23 <button type="button" class="btn btn-default action-logout" onclick="logout()">

→˓Logout</button>
24 </p>
25

26 <script>
27 $('.action-login').prop('disabled', loggedin);
28 $('.action-logout').prop('disabled', !loggedin);
29 </script>

(continues on next page)

31.1. TL;DR: Examples 241

Open Vehicles

(continued from previous page)

30

31

32 <h3>Command Execution on Load</h3>
33

34 <p>To execute a command automatically on page load, simply add the <code>monitor</
→˓code> class

35 to an output element, set <code>data-updcmd</code> to the command to be executed
→˓and

36 <code>data-updcnt</code> to 1:</p>
37

38 <pre class="monitor" data-updcmd="boot status" data-updcnt="1">Fetching boot
→˓status...</pre>

39

40 <p>Output elements typically are <code>samp</code> or <code>pre</code>, as commands
41 normally output formatted plain text, but any element can be used. <code>samp</

→˓code>
42 by default compresses white space and has no visible area, while <code>pre</code>
43 is visible and preserves all spacing.</p>
44

45 <p><code>updcnt</code> will count down to zero and stop, or run indefinitely if
→˓started

46 below zero. The execution interval can be given in <code>data-updint</code> (in
→˓seconds).

47 You can set the data attributes any time using jQuery, all monitors are checked
→˓and

48 updated by the framework once per second.</p>
49

50

51 <h3>Command Execution on Events</h3>
52

53 <p>To automatically trigger a monitor update on OVMS events, additionally set the
54 <code>data-events</code> attribute to a regular expression matching the event(s)

→˓of
55 interest. This example monitor lists the active network channels and automatically
56 updates on all server connection events:</p>
57

58 <p><pre class="monitor"
59 data-events="server.*(connect|open|close|stop)"
60 data-updcmd="network list"
61 data-updcnt="1"></pre></p>
62

63 <p>
64 Try:
65 <a class="btn btn-default" onclick="window.open('/', '_blank', 'width=400,

→˓height=500')">Open new window
66 Stop V2 server
67 Start V2 server
68 Send

→˓fake event
69 </p>
70

71

72 <h3>Command Buttons</h3>
73

74 <p>A bootstrap button has the base class <code>btn</code>. Add the command to
→˓execute

75 as attribute <code>data-cmd</code> and optionally the output element as
(continues on next page)

242 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

76 <code>data-target</code> and you're done.</p>
77

78 <div class="row">
79

80 <div class="col-sm-6">
81 <button type="button" class="btn btn-default" data-target="#out1" data-cmd=

→˓"wifi status">
82 Wifi Status → <code><samp></code>
83 </button>
84 <samp id="out1" />
85 </div>
86

87 <div class="col-sm-6">
88 <button type="button" class="btn btn-default" data-target="#out2" data-cmd=

→˓"wifi status">
89 Wifi Status → <code><pre></code>
90 </button>
91 <pre id="out2" />
92 </div>
93

94 </div>
95

96 <p>Add class <code>samp-inline</code> or wrap in a <code>ul.list-inline</code> to
→˓place

97 the output element on the same line with the button. Prefix the target with a "+"
→˓to

98 append to it:</p>
99

100 <p>
101 External 12V power
102 <button type="button" class="btn btn-info" data-target="+#out3" data-cmd="power

→˓ext12v on">on</button>
103 <button type="button" class="btn btn-info" data-target="+#out3" data-cmd="power

→˓ext12v off">off</button>
104 <samp class="samp-inline" id="out3" />
105 </p>
106

107

108 <h3>Combining Buttons & Monitors</h3>
109

110 <p>By combination of a button and a monitor, you can let the button start a repeated
111 execution of a command: set <code>data-watchcnt</code> on the button to the

→˓number of
112 repetitions (default 0) and <code>data-watchint</code> to the interval in seconds
113 (default 2).</p>
114

115 <p>
116 <button type="button" class="btn btn-default" data-target="#out4"
117 data-cmd="power simcom on" data-watchcnt="-1" data-watchint="3">
118 Power on modem & get status updates every 3 seconds
119 </button>
120 <pre class="monitor" id="out4" data-updcmd="simcom status" />
121 </p>
122

123 <p>Note: to stop a monitor, set <code>data-updcnt</code> to 0:
124 <button type="button" class="btn btn-default" onclick="$('#out4').data('updcnt',

→˓0)">
(continues on next page)

31.1. TL;DR: Examples 243

Open Vehicles

(continued from previous page)

125 Stop updates
126 </button></p>
127

128

129 <h3>Execute Javascript</h3>
130

131 <p>To execute Javascript code directly (i.e. without calling <code>script eval</
→˓code>),

132 simply exchange the <code>data-cmd / data-updcmd</code> attribute by
133 <code>data-js / data-updjs</code>. Example:</p>
134

135 <p>
136 <button type="button" class="btn btn-default" data-target="#out5"
137 data-js="JSON.print(OvmsConfig.GetValues('vehicle'))">
138 Show vehicle config
139 </button>
140 <pre id="out5" />
141 </p>
142

143 </div>
144 </div>
145

146

147 <script>
148 (function(){
149 /* Show page source: */
150 var pagesrc = $('#main').html();
151 $('.panel-heading').prepend('<button type="button" class="btn btn-sm btn-info

→˓action-showsrc"' +
152 ' style="float:right; position:relative; top:-5px;">Show page source</button>');
153 $('.action-showsrc').on('click', function() {
154 $('<div/>').dialog({
155 title: 'Source Code',
156 body: '<pre style="font-size:85%; height:calc(100vh - 230px);">'
157 + encode_html(pagesrc) + '</pre>',
158 size: 'lg',
159 });
160 });
161 })();
162 </script>

31.1.3 Notifications

notifications.htm (hint: right click, save as)

1 <!--
2 Test/Development/Documentation page
3 - enable web server file access
4 - upload to web file path, e.g. /sd/dev/notifications.htm
5 - open in framework by e.g. http://test1.local/#/dev/notifications.htm
6 -->
7

8 <div class="panel panel-primary">
9 <div class="panel-heading">Notification Test/Demo</div>

10 <div class="panel-body">

(continues on next page)

244 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

11 <h4>Receiver</h4>
12 <!--
13 You can use data-subscriptions to preconfigure subscriptions.
14 Note: types "info", "error" and "alert" get sent to all receivers.
15 -->
16 <pre id="log" class="receiver" data-subscriptions="notify/stream/myapp/#">I'm

→˓preconfigured to receive notify/stream/myapp/#</pre>
17 </div>
18 <div class="panel-footer">
19 <div>
20 <label for="topics">Test command:</label>
21 <input type="text" class="form-control font-monospace" id="cmd" value="notify

→˓raise text stream myapp.input 'my first stream'">
22 <p>JSON example: <code class="autoselect">notify raise text stream myapp.input '

→˓{"my":"JSON stream","pi":3.141,"fib":[1,2,3,5,8,13]}'</code></p>
23 <button type="button" class="btn btn-default" id="action-exec">Execute</button>
24 <samp id="cmdres" />
25 </div>
26 <div>
27 <label for="topics">Topic subscription (separate topics by space):</label>
28 <input type="text" class="form-control font-monospace" id="topics" value=

→˓"notify/stream/myapp/#">
29 <button type="button" class="btn btn-default" id="action-sub">Sub</button>
30 <button type="button" class="btn btn-default" id="action-unsub">Unsub</button>
31 <button type="button" class="btn btn-default" id="action-unsuball">Unsub all</

→˓button>
32 </div>
33 </div>
34 </div>
35

36 <script>
37

38 // Receiver event handling:
39 $('#log').on('msg:notify', function(ev, msg) {
40 // You normally should filter by type/subtype here, e.g.:
41 // if (subtype.startsWith('myapp')) { ... }
42 // msg has type, subtype and value
43 // Dump the msg into the receiver to show the structure:
44 $(this).text(JSON.stringify(msg, null, 2));
45

46 // A convenient way to transport complex data is JSON.
47 // To decode a JSON string, use JSON.parse().
48 // Note: JSON.parse() needs strict JSON syntax, i.e. quoted names.
49 var payload;
50 try {
51 payload = JSON.parse(msg.value);
52 if (payload) {
53 $(this).append("<div>Found JSON payload:</div>")
54 .append($("<div />").text(JSON.stringify(payload, null, 2)).html());
55 console.log(payload);
56 }
57 } catch(e) {
58 // no JSON
59 console.log(e);
60 }
61 });
62

(continues on next page)

31.1. TL;DR: Examples 245

Open Vehicles

(continued from previous page)

63 // Topic subscription can be done on page load using the data-subscriptions attribute
64 // and/or on demand using the subscribe & unsubscribe calls:
65 $('#action-sub').on('click', function(ev) {
66 var topics = $('#topics').val();
67 $('#log').subscribe(topics).text("added " + topics);
68 });
69 // The receiver remembers the subscriptions and does an auto unsubscribe on unload.
70 // You can also unsubscribe topics dynamically. Your data producer can check for
71 // active subscriptions using the MyNotify.HasReader() method.
72 $('#action-unsub').on('click', function(ev) {
73 var topics = $('#topics').val();
74 $('#log').unsubscribe(topics).text("removed " + topics);
75 });
76 $('#action-unsuball').on('click', function(ev) {
77 $('#log').unsubscribe().text("removed all subscriptions");
78 });
79

80 // Command handler:
81 $('#action-exec').on('click', function(ev) {
82 var cmd = $('#cmd').val();
83 if (cmd) loadcmd(cmd, '#cmdres');
84 });
85 $('#cmd').on('keydown', function(ev) {
86 if (ev.which == 13) $('#action-exec').trigger('click');
87 });
88

89 </script>

31.1.4 Hook Plugins

hooks.htm (hint: right click, save as)

1 <!--
2 Test/Development/Documentation page
3 -->
4

5 <div class="panel panel-primary">
6 <div class="panel-heading">Page Hook Plugins</div>
7 <div class="panel-body">
8

9 <p>Plugins can provide pages on their own or extend existing pages. To extend an
→˓existing

10 page, the page needs to support this by offering hook points.</p>
11

12 <p>You are not limited to the hook points for page modifications. To insert your
→˓extensions

13 at arbitrary places:</p>
14
15 insert your extensions dynamically or with <code>display:none</code>,
16 register a onetime handler for the <code>load</code> event on <code>#main</

→˓code>,
17 move your extensions into place and show them from the event handler.
18
19

20 <p>...and yes, you're also not limited to adding stuff.</p>
(continues on next page)

246 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

21

22 <h3>Example</h3>
23

24 <p>The following hook plugin adds a custom menu and some color to <code>/home</code>
→˓:</p>

25

26 <pre id="plugindisplay" style="font-size:85%"></pre>
27

28 <h3>Available Hooks</h3>
29

30 <p>...as of January 2019. This is work in progress, if you miss a hook somewhere,
→˓contact us.</p>

31

32 <table class="table table-condensed font-monospace">
33 <tr><th colspan="2">Framework</th></tr>
34 <tr><td>/ </td><td>html.pre, head.post, body.post

→˓ </td></tr>
35 <tr><td>/home </td><td>body.pre, body.post

→˓ </td></tr>
36 <tr><td>/dashboard </td><td>body.pre

→˓ </td></tr>
37 <tr><td>/status </td><td>body.pre, body.post

→˓ </td></tr>
38 <tr><td>/shell </td><td>body.pre, body.post

→˓ </td></tr>
39 <tr><th colspan="2">Renault Twizy</th></tr>
40 <tr><td>/xrt/drivemode </td><td>body.pre, body.post

→˓ </td></tr>
41 <tr><td>/xrt/scmon </td><td>body.pre, body.post

→˓ </td></tr>
42 </table>
43

44 </div>
45 </div>
46

47 <script>
48 (function(){
49 var pluginsrc = $('#pluginsrc').html();
50 $('#plugindisplay').html(encode_html(pluginsrc.substr(1)));
51 })();
52 </script>
53

54 <div id="pluginsrc" style="display:none">
55 <!--
56 Hook plugin for /home:body.pre
57 - custom coloring of menu titles
58 - add custom menu "Test / Demo" after "Main"
59 -->
60

61 <style>
62 .menu legend {
63 color: brown;
64 }
65 </style>
66

67 <fieldset class="menu" id="fieldset-menu-demo1" style="display:none">
68 <legend>Test / Demo</legend>

(continues on next page)

31.1. TL;DR: Examples 247

Open Vehicles

(continued from previous page)

69 <ul class="list-inline">
70 Metrics </

→˓a>
71 Open Log File </

→˓li>
72
73 </fieldset>
74

75 <script>
76 $('#main').one('load', function(ev) {
77 $('#fieldset-menu-demo1').insertAfter('#fieldset-menu-main').show();
78 });
79 </script>
80 </div>

31.1.5 Solid Gauges

solidgauge.htm (hint: right click, save as)

1 <!--
2 Test/Development/Documentation page; install as plugin to test
3 -->
4

5 <style>
6 .solidgauge .highcharts-yaxis-grid .highcharts-grid-line,
7 .solidgauge .highcharts-yaxis-grid .highcharts-minor-grid-line {
8 display: none;
9 }

10 .solidgauge .highcharts-pane {
11 fill: #eee;
12 fill-opacity: 1;
13 stroke: #aaa;
14 stroke-width: 2px;
15 }
16 .night .solidgauge .highcharts-pane {
17 fill: #b1b1b1;
18 stroke: #b1b1b1;
19 }
20 .solidgauge .highcharts-point {
21 transition: fill 500ms, stroke 500ms; /* see stops styles note */
22 }
23 #throttle-gauge .highcharts-color-0 {
24 fill: #eee; /* initial colors = pane for smooth fade in */
25 stroke: #aaa;
26 fill-opacity: 0.8;
27 stroke-width: 3px;
28 stroke-opacity: 0.5;
29 }
30 #rpm-gauge .highcharts-color-0 {
31 fill: #55e;
32 stroke: none;
33 }
34 </style>
35

36 <div class="panel panel-primary">

(continues on next page)

248 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

37 <div class="panel-heading">Solid Gauge</div>
38 <div class="panel-body">
39

40 <div class="receiver">
41

42 <div class="row">
43 <div class="col-sm-6">
44 <div class="metric chart" data-metric="v.e.throttle" style="height:220px">
45 <div class="chart-box solidgauge" id="throttle-gauge"/>
46 </div>
47 <p>
48 Note: stops don't work by default in styled mode. This example includes a

→˓simple redraw
49 event callback that applies styles from the stops. To get a smooth color

→˓transition,
50 the CSS transition time needs to be equal to the chart animation time.
51 </p>
52 </div>
53 <div class="col-sm-6">
54 <div class="metric chart" data-metric="v.m.rpm" style="height:220px">
55 <div class="chart-box solidgauge gaugechart" id="rpm-gauge"/>
56 </div>
57 <p>
58 Note: the <code>gaugechart</code> CSS class pulls in the default styling

→˓for the bands,
59 labels and ticks here. You can also copy those CSS rules from <code>ovms.

→˓css</code>
60 and do your own styling.
61 </p>
62 </div>
63 </div>
64

65 <p><button type="button" class="btn btn-default action-gendata">Generate random
→˓data</button></p>

66

67 </div>
68

69 </div>
70 </div>
71

72 <script>
73 (function(){
74

75 /* Show page source: */
76 var pagesrc = $('#main').html();
77 $('.panel-heading').prepend('<button type="button" class="btn btn-sm btn-info

→˓action-showsrc"' +
78 ' style="float:right; position:relative; top:-5px;">Show page source</button>');
79 $('.action-showsrc').on('click', function() {
80 $('<div/>').dialog({
81 title: 'Source Code',
82 body: '<pre style="font-size:85%; height:calc(100vh - 230px);">'
83 + encode_html(pagesrc) + '</pre>',
84 size: 'lg',
85 });
86 });
87

(continues on next page)

31.1. TL;DR: Examples 249

Open Vehicles

(continued from previous page)

88 /* Init throttle gauge: */
89 $("#throttle-gauge").chart({
90 chart: {
91 type: 'solidgauge',
92 spacing: [0, 0, 0, 0],
93 margin: [0, 0, 0, 0],
94 animation: { duration: 500, easing: 'easeOutExpo' },
95 events: {
96 // Apply stops styles on redraw:
97 redraw: function(ev) {
98 var y = this.series[0].yData[0], $pt = $(this.renderTo).find('.highcharts-

→˓point');
99 $.map(this.yAxis[0].stops, function(stop) { if (y >= stop[0]) $pt.

→˓css(stop[1]); });
100 },
101 },
102 },
103 title: { text: "Throttle", verticalAlign: "middle", y: 75 },
104 credits: { enabled: false },
105 tooltip: { enabled: false },
106 plotOptions: {
107 solidgauge: { dataLabels: { enabled: false }, overshoot: 1 }
108 },
109 pane: [{
110 startAngle: -90, endAngle: 90, size: '140%', center: ['50%', '85%'],
111 background: { innerRadius: '60%', outerRadius: '100%', shape: 'arc' },
112 }],
113 yAxis: [{
114 title: { text: '%' },
115 className: 'throttle',
116 reversed: false,
117 min: 0, max: 100,
118 stops: [
119 [0, { fill: '#afa', stroke: '#4f4' }],
120 [50, { fill: '#ffa', stroke: '#ff4' }],
121 [80, { fill: '#faa', stroke: '#f44' }],
122],
123 tickPixelInterval: 40, tickPosition: 'inside', tickLength: 13,
124 labels: { step: 2, distance: 10, x: 0, y: 0, zIndex: 2 },
125 }],
126 series: [{
127 name: 'Throttle', data: [40],
128 className: 'throttle',
129 animation: { duration: 0 },
130 }],
131 /* Update method: */
132 onUpdate: function(update) {
133 // Create gauge data set from metric:
134 var data = [metrics["v.e.throttle"]];
135 // Update chart:
136 this.series[0].setData(data);
137 },
138 });
139

140 /* Init rpm gauge: */
141 $("#rpm-gauge").chart({
142 chart: {

(continues on next page)

250 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

143 type: 'solidgauge',
144 spacing: [0, 0, 0, 0],
145 margin: [0, 0, 0, 0],
146 animation: { duration: 500, easing: 'easeOutExpo' },
147 },
148 title: { text: "RPM", verticalAlign: "middle", y: 75 },
149 credits: { enabled: false },
150 tooltip: { enabled: false },
151 plotOptions: {
152 solidgauge: { dataLabels: { enabled: false }, overshoot: 1 }
153 },
154 pane: [{
155 startAngle: -90, endAngle: 90, size: '140%', center: ['50%', '85%'],
156 background: { innerRadius: '70%', outerRadius: '100%', shape: 'arc' },
157 }],
158 yAxis: [{
159 title: { text: 'rpm' },
160 className: 'rpm',
161 reversed: false,
162 min: 0, max: 11000,
163 plotBands: [
164 { from: 0, to: 7000, className: 'green-band' },
165 { from: 7000, to: 9000, className: 'yellow-band' },
166 { from: 9000, to: 11000, className: 'red-band' },
167],
168 minorTickInterval: 'auto', minorTickLength: 5, minorTickPosition: 'inside',
169 tickPixelInterval: 40, tickPosition: 'inside', tickLength: 10,
170 labels: { step: 2, distance: 10, x: 0, y: 0, zIndex: 2 },
171 }],
172 series: [{
173 name: 'RPM', data: [4500],
174 className: 'rpm',
175 animation: { duration: 0 },
176 innerRadius: '72%',
177 radius: '92%'
178 }],
179 /* Update method: */
180 onUpdate: function(update) {
181 // Create gauge data set from metric:
182 var data = [metrics["v.m.rpm"]];
183 // Update chart:
184 this.series[0].setData(data);
185 },
186 });
187

188 /* Test metrics generator: */
189 $('.action-gendata').on('click', function() {
190 var td = {};
191 td["v.e.throttle"] = Math.random() * 100;
192 td["v.m.rpm"] = Math.random() * 11000;
193 $('.receiver').trigger('msg:metrics', $.extend(metrics, td));
194 });
195

196 })();
197 </script>

31.1. TL;DR: Examples 251

Open Vehicles

31.1.6 Command Streaming

loadcmd.htm (hint: right click, save as)

1 <!--
2 Test/Development/Documentation page; install as plugin to test
3 -->
4

5 <div class="panel panel-primary">
6 <div class="panel-heading">Asynchronous Command Streaming</div>
7 <div class="panel-body">
8

9 <h3>Synopsis</h3>
10

11 <p class="lead"><code>[jqxhr=] loadcmd(command [,target] [,filter] [,timeout])</
→˓code></p>

12

13 <p>The <code>loadcmd()</code> function executes a shell command or evaluates
→˓javascript

14 code with asynchronous streaming of the output into a target element or onto a
→˓function.</p>

15

16

17 <h3>Basic Usage</h3>
18

19 <p>As this is the underlying function for command buttons, basic usage
20 is very similar, but fully scriptable:</p>
21

22 <p>
23 <button type="button" class="btn btn-default" onclick="loadcmd('boot status', '

→˓#out1')">
24 Show boot status
25 </button>
26 </p>
27 <pre id="out1" />
28

29 <p>As with command buttons, you can append the output by prefixing the target
30 selector with "+". You can omit the output by passing null as the target. If

→˓target
31 is a DOM element, loadcmd automatically sets the <code>loading</code> class on

→˓the
32 target while the command is processed.</p>
33

34 <p>The target element's min-height is automatically fixed to the current height
35 of the target before the output is set. This avoids page layout jumps when
36 reusing a target for commands.</p>
37

38 <p>If the target is scrollable and the content exceeds the visible area, the
39 element is automatically scrolled to show the new content, unless the user has
40 done a manual scrolling on the element.</p>
41

42 <p>If the command output stops for <code>timeout</code> seconds, the request is
43 aborted and a timeout error is shown. Default timeout is 20 seconds for standard
44 commands, 300 seconds for known long running commands.</p>
45

46

47 <h3>Evaluate Javascript Code</h3>
48

(continues on next page)

252 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

49 <p>To execute Javascript, either pass an object instead of the <code>command</
→˓code> string,

50 containing the command as property "command" and a second property "type" with
51 value "js", or simply use the wrapper call <code>loadjs()</code>. Example:</p>
52

53 <p>
54 <button type="button" class="btn btn-default"
55 onclick="loadjs('print(OvmsVehicle.Type())', '#out1js')">
56 Show vehicle type
57 </button>
58 </p>
59 <pre id="out1js" />
60

61 <p>Javascript evaluation is not limited to a single command or line. Hint: to
→˓avoid

62 encoding complex JS code in the onclick attribute, store the code in some hidden
63 DOM element and read it via <code>$(...).text()</code>.</p>
64

65

66 <h3>jqXHR Object</h3>
67

68 <p><code>loadcmd()</code> returns the jqXHR (XMLHttpRequest) object in charge for
69 the asynchronous execution of the request. This can be used to track the results
70 of the execution, check for errors or to abort the command.</p>
71

72 <p>
73 <button type="button" class="btn btn-default" id="startcg">Start chargen</

→˓button>
74 <button type="button" class="btn btn-default" id="abortcg" disabled>Abort

→˓chargen</button>
75 </p>
76 <pre id="out2" style="max-height:200px; overflow:auto;" />
77

78 <p>The jQuery XHR object is also a "thenable", so actions to be performed after
79 the command execution can simply be chained to the object. Example:</p>
80

81 <p><button type="button" class="btn btn-default" id="showstat">Show stat</button>
→˓</p>

82

83 <p>See jQuery
84 documentation for full details and options.</p>
85

86

87 <h3>Filter / Process Output</h3>
88

89 <p>Supply a filter function to hook into the asynchronous output stream. Use
→˓filters

90 to filter (ahem...) / preprocess / reformat the command output, scan the stream
→˓for some

91 info you'd like to know as soon as possible, or completely take over the output
92 processing.</p>
93

94 <p>The filter function is called when a new chunk of output has arrived or when
95 a stream error has occurred. The function gets a message object containing
96 the <code>request</code> object and either a <code>text</code> for normal

→˓outputs
97 or an <code>error</code>, which is a preformatted error output you can use or

(continues on next page)

31.1. TL;DR: Examples 253

Open Vehicles

(continued from previous page)

98 ignore.</p>
99

100 <p>If the filter function returns a string, that will be added to the output
→˓target.

101 If it returns <code>null</code>, the target will remain untouched.</p>
102

103 <p>Hint: if you just want to scan the text for some info, you can pass on the
→˓message

104 after your scan to the default <code>standardTextFilter()</code>.</p>
105

106 <p>Example: let's reformat a <code>can status</code> dump into a nice Bootstrap
→˓table:</p>

107

108 <p><button type="button" class="btn btn-default" id="canstatus">CAN1 status</
→˓button></p>

109

110 <table class="table table-condensed table-border table-striped table-hover" id=
→˓"canout">

111 <thead>
112 <tr><th class="col-xs-6">Key</th><th class="col-xs-6">Value</th></tr>
113 </thead>
114 <tbody/>
115 </table>
116

117 </div>
118 </div>
119

120 <script>
121 (function(){
122

123 /* Show page source: */
124 var pagesrc = $('#main').html();
125 $('.panel-heading').prepend('<button type="button" class="btn btn-sm btn-info

→˓action-showsrc"' +
126 ' style="float:right; position:relative; top:-5px;">Show page source</button>');
127 $('.action-showsrc').on('click', function() {
128 $('<div/>').dialog({
129 title: 'Source Code',
130 body: '<pre style="font-size:85%; height:calc(100vh - 230px);">'
131 + encode_html(pagesrc) + '</pre>',
132 size: 'lg',
133 });
134 });
135

136 /* Example: jqXHR.abort() */
137 var xhr;
138 $('#startcg').on('click', function() {
139 xhr = loadcmd('test chargen 20 600', '#out2');
140 $('#abortcg').prop('disabled', false);
141 });
142 $('#abortcg').on('click', function() {
143 xhr.abort();
144 });
145

146 /* Example: jqXHR.then() */
147 $('#showstat').on('click', function() {
148 loadcmd('stat').then(function(output) {

(continues on next page)

254 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

149 confirmdialog('STAT result', '<samp>' + output + '</samp>', ['Close']);
150 });
151 });
152

153 /* Example: filter / output processor */
154 $('#canstatus').on('click', function() {
155 var $table = $('#canout > tbody');
156 var buf = '';
157 $table.empty();
158 loadcmd('can can1 status', function(msg) {
159 if (msg.error) {
160 // Render error into table row:
161 $('<tr class="danger"><td colspan="2">' + msg.error + '</td></tr>').appendTo(

→˓$table);
162 }
163 else if (msg.text) {
164 // As this is a stream, the text chunks received need not be single or

→˓complete lines.
165 // We're interested in lines here, so we buffer the chunks and split the

→˓buffer at '\n':
166 buf += msg.text;
167 var lines = buf.split('\n');
168 if (lines.length > 1) {
169 buf = lines[lines.length-1];
170 for (var i = 0; i < lines.length-1; i++) {
171 // Skip empty lines:
172 if (lines[i] == "") continue;
173 // Split line into columns:
174 var col = lines[i].split(/: +/);
175 // Create table row & append to table, add some color on error counters:
176 if (col[0].match("[Ee]rr"))
177 $('<tr class="warning"><th>' + col[0] + '</th><td>' + col[1] + '</td></

→˓tr>').appendTo($table);
178 else
179 $('<tr><th>' + col[0] + '</th><td>' + col[1] + '</td></tr>').appendTo(

→˓$table);
180 }
181 }
182 }
183 // Filter has handled everything:
184 return null;
185 });
186 });
187

188 })();
189 </script>

31.1.7 File API

The file API enables web clients to read and write files at arbitrary VFS locations.

• API URL: /api/file

• Methods:

– GET – read file

31.1. TL;DR: Examples 255

Open Vehicles

– POST – write file

• Parameters:

– path – the full path to the file

– content – the new file content on POST

• Output:

– HTTP status: 200 (OK) or 400 (Error)

– HTTP body: file content on GET or error message

On writing, missing directories along the path will be created automatically.

Usage Example

The API can be accessed easily in the web frontend with the jQuery AJAX methods:

// Write object JSON encoded into file:
var json = JSON.stringify(object);
$.post("/api/file", { "path": "/sd/mystore/file1", "content": json })

.done(function() {
confirmdialog('Saved', '<p>File has been saved.</p>', ["OK"], 2);

})
.fail(function(jqXHR) {
confirmdialog('Save failed', jqXHR.responseText, ["OK"]);

});

// Read JSON encoded object from file:
$.get("/api/file", { "path": "/sd/mystore/file1" })

.done(function(responseText) {
var object = JSON.parse(responseText);
// ... process object ...

})
.fail(function(jqXHR) {
confirmdialog('Load failed', jqXHR.responseText, ["OK"]);

});

External Access

From external clients, the API can be used by either registering a session cookie or by supplying the apikey param-
eter (as explained in the general authorization overview).

Read example:

curl "http://192.168.4.1/api/file?apikey=password&path=/sd/mystore/file1"

Write example:

curl "http://192.168.4.1/api/file" -d 'apikey=password' \
-d 'path=/sd/mystore/file1' --data-urlencode 'content@localfile'

31.1.8 Longtouch Buttons

btn-longtouch.htm (hint: right click, save as)

256 Chapter 31. Web Framework & Plugins

Open Vehicles

1 <!--
2 Test/Development/Documentation page
3 - enable web server file access
4 - upload to web dir, e.g. scp testpage.htm test1.local:/sd/dev/
5 - open in framework by e.g. http://test1.local/#/dev/testpage.htm
6 -->
7

8 <div class="panel panel-primary">
9 <div class="panel-heading">Longtouch Buttons</div>

10 <div class="panel-body">
11

12 <p>Note: open this test page with a mobile / touch screen device or simulate
13 a mobile device using the web debugger of your browser.</p>
14

15 <p>The buttons below should work normally on a non-touch device.</p>
16

17 <p>On a touch screen device, touching the buttons starts a countdown
18 of 1.5 seconds, showing an overlay with a progress bar and giving vibration
19 signals (on devices supporting this). The button action is triggered only
20 after the countdown has finished while holding the touch.</p>
21

22 <p>This feature is meant to a) secure certain buttons against unintentional
→˓activation

23 and to b) allow secure usage of these buttons while driving, i.e. when the mobile
→˓phone /

24 tablet is mounted to a car holder.</p>
25

26 <p>Standard candidates for this are buttons triggering deep modifications, i.e.
27 changing the car tuning or drive mode.</p>
28

29 <p>To activate the feature on a button, simply add the class <code>btn-longtouch</
→˓code> to the button.

30 To activate it on a group of buttons, add the class to the container of the
→˓buttons.</p>

31

32 <p>The progress overlay shows the button title if set (HTML supported), else the
→˓button text.</p>

33

34 <form action="#">
35 <div class="btn-group btn-group-justified btn-longtouch">
36 <div class="btn-group btn-group-lg">
37 <button type="submit" name="load" value="0" id="prof-0" class="btn btn-

→˓default">STD</button>
38 </div>
39 <div class="btn-group btn-group-lg">
40 <button type="submit" name="load" value="1" id="prof-1" class="btn btn-

→˓default" title="Power Mode">PWR</button>
41 </div>
42 <div class="btn-group btn-group-lg">
43 <button type="submit" name="load" value="2" id="prof-2" class="btn btn-

→˓success">ECO</button>
44 </div>
45 <div class="btn-group btn-group-lg">
46 <button type="submit" name="load" value="3" id="prof-3" class="btn btn-

→˓default" title="Winter Mode">ICE</button>
47 </div>
48 </div>

(continues on next page)

31.1. TL;DR: Examples 257

Open Vehicles

(continued from previous page)

49 </form>
50

51 </div>
52 </div>

31.1.9 Basic Dialogs

dialogtest.htm (hint: right click, save as)

1 <!--
2 Test/Development/Documentation page
3 - enable web server file access
4 - upload to web dir, e.g. scp testpage.htm test1.local:/sd/dev/
5 - open in framework by e.g. http://test1.local/#/dev/testpage.htm
6 -->
7

8 <div class="panel panel-primary">
9 <div class="panel-heading">Dialog Test/Demo</div>

10 <div class="panel-body">
11 <h4>Core Widget</h4>
12 <button class="btn btn-default" id="action-load">Dialog 1</button>
13 <button class="btn btn-default" id="action-save">Dialog 2</button>
14 <button class="btn btn-default" id="action-both">Both together</button>
15 <button class="btn btn-default" id="action-dyn">Dynamic custom</button>
16 <hr />
17 <h4>Utility Wrappers</h4>
18 <button class="btn btn-default" id="action-info">Alert</button>
19 <button class="btn btn-default" id="action-confirm">Confirm</button>
20 <button class="btn btn-default" id="action-choice">Choice</button>
21 <button class="btn btn-default" id="action-prompt">Prompt</button>
22 <button class="btn btn-default" id="action-password">Password</button>
23 <hr />
24 <h4>Log</h4>
25 <pre id="log" />
26 </div>
27 </div>
28

29 <div id="dialog1" />
30 <div id="dialog2" />
31 <div id="dialog3" />
32

33 <script>
34

35 //
→˓===

36 // Dialog core widget:
37 // options: {
38 // title: '',
39 // body: '',
40 // show: false, / true = open directly on init
41 // remote: false,
42 // backdrop: true, background overlay
43 // keyboard: true, ESC = close
44 // transition: 'fade', / ''
45 // size: '', / 'sm' / 'lg'

(continues on next page)

258 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

46 // contentClass: '', added to .modal-content
47 // onShown: null, function(input)
48 // onHidden: null, function(input)
49 // onShow: null, function(input)
50 // onHide: null, function(input)
51 // onUpdate: null, function(input)
52 // buttons: [{}], see example
53 // timeout: 0, in seconds
54 // input: null, predefined/shared input object to use
55 // },
56

57 // Note: use static dialogs (attached to the document) for speed and to store reusable
58 // input, e.g. for a promptdialog.
59

60 // The default dialog will contain just a "Close" button:
61 $('#dialog1').dialog({
62 title: 'Please note',
63 body: '<p>This is just a test.</p>'
64 });
65 $('#dialog2').dialog({
66 title: 'Alert',
67 body: '<p>Danger, Will Robinson, danger!</p>',
68 contentClass: 'alert-danger', // note: looks strange, just an example -- don't use
69 });
70

71 // You can simply open preconfigured dialogs like this:
72 $('#action-load').on('click', function(){
73 $('#dialog1').dialog('show');
74 });
75 $('#action-save').on('click', function(){
76 $('#dialog2').dialog('show');
77 });
78

79 // ...or you can reconfigure dialogs on the fly like this:
80 // Note: the new configuration is stored in the dialog.
81 $('#action-both').on('click', function(){
82 $('#dialog1').dialog('show', { body: '<p>This is now another test.</p>' });
83 // This example also opens a second dialog on top of the first:
84 $('#dialog2').dialog('show', { body: '<p>This is a second layer dialog.</p>' });
85 });
86

87 // Use dynamic dialogs for single shot purposes:
88 $('#action-dyn').on('click', function(){
89 $("#log").text("");
90 $('<div />').dialog({
91 title: 'Dynamic...',
92 body: '<p>...dialog with custom buttons.</p>',
93 buttons: [
94 // Buttons default to auto hiding the dialog:
95 { label: "Nope" },
96 // You can get the button clicked in the onHidden callback, or you can
97 // add specific action callbacks to each button.
98 { label: "Maybe...", btnClass: "warning", autoHide: false, action:

→˓function(input) {
99 // input is the data container of the widget, with only predefined

100 // member being "button" = the button clicked (or null).
101 // You can use this container for custom extensions:

(continues on next page)

31.1. TL;DR: Examples 259

Open Vehicles

(continued from previous page)

102 input.clicked_maybe = true;
103 $(this).find(".modal-body").append("<p>You're now a maybe person.</p>");
104 } },
105 // autoHide callbacks are called on the hidden event, so a fade out
106 // is guaranteed to be finished in the callback.
107 { label: "Done", btnClass: "primary", action: function(input) {
108 $("#log").text(JSON.stringify(input, null, 2));
109 } },
110],
111 });
112 });
113

114

115 //
→˓===

116 // Dialog utility wrappers:
117 // confirmdialog(title, body, buttons, [callback,] timeout)
118 // promptdialog(type, title, body, buttons, callback)
119 // Both can be used plugin style or standalone for dynamic dialogs.
120

121 // Dynamic alert() style dialog with 5 seconds timeout:
122 $('#action-info').on('click', function(){
123 confirmdialog("Sorry...", "I'm afraid I can't do that, Dave.", ["OK"], 5);
124 // Note: you can also add a callback here to know when the dialog is dismissed.
125 });
126

127 // Dynamic confirm() style dialog:
128 $('#action-confirm').on('click', function(){
129 $("#log").text("");
130 confirmdialog("Load file", "Discard unsaved changes?", ["No", "Yes"],

→˓function(confirmed){
131 if (confirmed)
132 $("#log").text("Loading now...");
133 else
134 $("#log").text("Load aborted.");
135 });
136 });
137

138 // The callback argument is the index of the button clicked (or null), so
139 // simple choice dialogs can be done like this:
140 $('#action-choice').on('click', function(){
141 $("#log").text("");
142 confirmdialog("Select", "Please select the slot to use:", ["1", "2", "3", "4"],

→˓function(button){
143 if (button != null)
144 $("#log").text("Using slot " + (button+1));
145 else
146 $("#log").text("Abort.");
147 });
148 });
149

150 // Static prompt() style text input dialog (with #dialog3 keeping the dialog):
151 $('#action-prompt').on('click', function(){
152 $("#log").text("");
153 $('#dialog3').promptdialog("text", "Save data", "Please enter file name:", ["Cancel

→˓", "Save"], function(button, input){
154 if (button && input)

(continues on next page)

260 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

155 $("#log").text("Saving to file: " + input);
156 else
157 $("#log").text("Save aborted.");
158 });
159 });
160

161 // All single field HTML5 input types can be used:
162 $('#action-password').on('click', function(){
163 $("#log").text("");
164 promptdialog("password", "Authentication", "Please enter PIN:", ["Cancel", "Continue

→˓"], function(button, input){
165 if (button && input)
166 $("#log").text("PIN entered: " + input);
167 else
168 $("#log").text("Auth aborted.");
169 });
170 });
171

172 </script>

31.1.10 File Dialogs

filedialog.htm (hint: right click, save as)

1 <!--
2 Test/Development/Documentation page
3 - enable web server file access
4 - upload to web file path, e.g. /sd/dev/filedialog.htm
5 - open in framework by e.g. http://test1.local/#/dev/filedialog.htm
6 -->
7

8 <div class="filedialog" id="fileselect"/>
9

10 <div class="panel panel-primary">
11 <div class="panel-heading">FileDialog Test</div>
12 <div class="panel-body">
13

14 <h2>Dynamic API</h2>
15

16 <p>
17 <button class="btn btn-default" id="action-load">Load</button>
18 <button class="btn btn-default" id="action-save">Save</button>
19 </p>
20 <pre id="log"/>
21

22 <h2>Data API</h2>
23

24 <div class="input-group">
25 <input type="text" class="form-control font-monospace" placeholder="Enter file

→˓name"
26 name="filename" id="input-filename" value="" autocapitalize="none"

→˓autocorrect="off"
27 autocomplete="section-demo" spellcheck="false">
28 <div class="input-group-btn">
29 <!-- use data-toggle="filedialog", data-target & data-input on the button: -->

(continues on next page)

31.1. TL;DR: Examples 261

Open Vehicles

(continued from previous page)

30 <button type="button" class="btn btn-default" data-toggle="filedialog" data-
→˓target="#fd-api" data-input="#input-filename">Select</button>

31 </div>
32 </div>
33

34 <!-- This is the file dialog triggered by the button: -->
35 <div class="filedialog" id="fd-api" data-options='{
36 "title": "This is a data API dialog",
37 "path": "/sd/foo/",
38 "quicknav": ["/sd/", "/sd/foo/", "/sd/bar"]
39 }' />
40 <!-- ...that's it, no JS code necessary.
41 Note: JSON syntax needs to be strict here, see JS console for errors.
42 -->
43

44 </div>
45 </div>
46

47 <script>
48

49 //
→˓===

50 // FileDialog is a Dialog with an embedded FileBrowser.
51 //
52 // The input object combines the dialog button and the file browser data.
53 //
54 // Options:
55 // title: 'Select file', -- dialog title
56 // submit: 'Select', -- label of submit button
57 // select: 'f', -- 'f' = only files selectable (default), 'd

→˓' = only directories
58 // onSubmit: null, -- callback function(input)
59 // onCancel: null, -- callback function(input)
60 //
61 // ...inherited from FileBrowser:
62 // path: '',
63 // quicknav: ['/sd/', '/store/'],
64 // filter: null,
65 // sortBy: null,
66 // sortDir: 1,
67 //
68 // ...inherited from Dialog:
69 // backdrop: true,
70 // keyboard: true,
71 // transition: 'fade',
72 // size: 'lg',
73 // onUpdate: null,
74 //
75

76 // Init dialog:
77 $("#fileselect").filedialog({
78 path: '/store/scripts/',
79 quicknav: ['/store/scripts/', '/store/events/', '/store/obd2ecu/'],
80 });
81

82 $('#action-load').on('click', function(){
83 $('#log').empty();

(continues on next page)

262 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

84 $("#fileselect").filedialog('show', {
85 title: "Load Script",
86 submit: "Load",
87 onSubmit: function(input) {
88 // This is called when the user doubleclicks an entry or presses Enter in a

→˓directory.
89 // Note: you need to check if input.file is valid (empty = directory selected).
90 if (input.file)
91 $('#log').text('Loading: "' + input.path + '"\n');
92 else
93 $('#log').text('Directory selection: "' + input.path + '"\n');
94 },
95 onCancel: function(input) {
96 // This is called when the user cancels or closes the dialog.
97 $('#log').text('Load cancelled\n');
98 },
99 });

100 });
101

102 $('#action-save').on('click', function(){
103 $('#log').empty();
104 $("#fileselect").filedialog('show', {
105 title: "Save Script",
106 submit: "Save",
107 onSubmit: function(input) {
108 if (input.file)
109 $('#log').text('Saving: "' + input.path + '"\n');
110 else
111 $('#log').text('Directory selection: "' + input.path + '"\n');
112 },
113 onCancel: function(input) {
114 $('#log').text('Save cancelled\n');
115 },
116 });
117 });
118

119 </script>

31.1.11 File Browser Widget

filebrowser.htm (hint: right click, save as)

1 <!--
2 Test/Development/Documentation page
3 - enable web server file access
4 - upload to web file path, e.g. /sd/dev/filebrowser.htm
5 - open in framework by e.g. http://test1.local/#/dev/filebrowser.htm
6 -->
7

8 <style>
9 /* Note: set height or min-height on the filebrowser tbody.

10 Default height by class "filebrowser" is 310px (each file row has a height of 31px
→˓with the default font size) */

11 #myfilebrowser tbody {
12 height: 35vh;

(continues on next page)

31.1. TL;DR: Examples 263

Open Vehicles

(continued from previous page)

13 }
14 </style>
15

16 <div class="panel panel-primary">
17 <div class="panel-heading">FileBrowser Test/Demo</div>
18 <div class="panel-body">
19

20 <div class="filebrowser" id="myfilebrowser" />
21

22 <hr/>
23 <pre id="log"/>
24 <button type="button" class="btn btn-default" id="action-setpath">Set path to /sd/

→˓logs/log</button>
25 <button type="button" class="btn btn-default" id="action-stopload">Stop loading

→˓dir</button>
26 <button type="button" class="btn btn-default" id="action-filteron">Filter *.zip</

→˓button>
27 <button type="button" class="btn btn-default" id="action-filteroff">Filter off</

→˓button>
28 <button type="button" class="btn btn-default" id="action-sortoff">Sort off</

→˓button>
29 <p>Note: the test widget is configured to stop/inhibit loading on selection of a

→˓".txt" file or a directory matching "DCIM".</p>
30 </div>
31 </div>
32

33 <script>
34

35 //
→˓===

36 // FileBrowser Widget:
37 //
38 // Test/demo of init with all options.
39 // Note: you can init a filebrowser without any options.
40 // Defaults are path & quicknav as shown below, no sorting, no callbacks.
41 //
42 // The input object passed to all callbacks contains these fields:
43 // - path -- the full path (dir + "/" + file)
44 // - file -- the file part of the currently selected path
45 // - dir -- the directory part of the currently selected path
46 // - noload -- set to true to inhibit directory loading (see onPathChange)
47 //
48 // Note: path, file & dir are unvalidated user input.
49 //
50 // Note on sorting: disabling initial sorting improves user interaction while loading

→˓the
51 // directory, i.e. to select files/dirs while the loader is running. This may
52 // be an option especially for large directories. The user can still sort manually.
53 //
54 // Methods:
55 // - getInput() -- retrieve input object
56 // - setPath(newpath, reload) -- add trailing slash to enter dir w/o file

→˓selection
57 // - sortList(by, dir) -- sort file list
58 // - loadDir() -- trigger directory reload
59 // - stopLoad() -- abort directory loading
60 // - newDir() -- open create directory sub dialog

(continues on next page)

264 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

61 //
62

63 $('#myfilebrowser').filebrowser({
64 path: '/sd/',
65 quicknav: ['/sd/', '/store/'],
66 filter: null, // see Filter examples below
67 sortBy: "name", // ...or "size" or "date" or null (disable)
68 sortDir: 1, // ...or -1 for reverse
69 onUpdate: function(input) {
70 // This is called after any widget configuration update, use for custom

→˓extensions.
71 $('#log').append('onUpdate: ' + JSON.stringify(input) + '\n');
72 },
73 onPathChange: function(input) {
74 // Called whenever the path changes.
75 $('#log').append('onPathChange: ' + JSON.stringify(input) + '\n');
76 // To inhibit loading the directory for the new path, set input.noload to true:
77 if (input.dir.indexOf("DCIM") >= 0 || input.file.indexOf('.txt') >= 0) {
78 $('#log').append('inhibiting directory loading\n');
79 input.noload = true;
80 }
81 },
82 onAction: function(input) {
83 // This is called when the user doubleclicks an entry or presses Enter in a

→˓directory:
84 $('#log').append('onAction: ' + JSON.stringify(input) + '\n');
85 },
86 });
87

88 $('#action-setpath').on('click', function(ev) {
89 $('#myfilebrowser').filebrowser('setPath', '/sd/logs/log', true);
90 });
91 $('#action-stopload').on('click', function(ev) {
92 $('#myfilebrowser').filebrowser('stopLoad');
93 });
94 $('#action-sortoff').on('click', function(ev) {
95 $('#myfilebrowser').filebrowser('sortList', '');
96 });
97

98 // Filter example:
99 $('#action-filteron').on('click', function(ev) {

100 $('#myfilebrowser').filebrowser({
101 // The list filter may be given as a string (regular expression applied to file

→˓name):
102 filter: "\\.zip$",
103 // A string filter always lists directories.
104

105 // For advanced usage, you may alternatively specify a filter callback like this:
106 // filter: function(f) { return f.isdir || f.name.match("\\.zip$"); }
107 // The function is called per list entry object with...
108 // - isdir: true = is sub directory
109 // - name: the name part (file or directory, dir with trailing '/')
110 // - path: the full path of this entry
111 // - size: formatted size ('6.8k')
112 // - date: formatted date ('23-Nov-2018 17:42')
113 // - bytes: size in bytes, -1 for directories
114 // - isodate: ISO style date 'YYYY-mm-dd HH:MM'

(continues on next page)

31.1. TL;DR: Examples 265

Open Vehicles

(continued from previous page)

115 // - class: '', can be used to add a custom row class
116 // Return true to allow the entry to be added to the list.
117

118 // Note: list filters do not restrict the allowed path input. To do so,
119 // register onPathChange or onAction and check the input in your callback.
120 // See FileDialog widget "select" option handling for an example.
121 });
122 });
123 $('#action-filteroff').on('click', function(ev) {
124 $('#myfilebrowser').filebrowser({
125 filter: null
126 });
127 });
128

129 </script>

31.1.12 Slider Widget

input-slider.htm (hint: right click, save as)

1 <style>
2 /* Align multiple slider inputs by suitably fixing their value width: */
3 .form-inline .form-control.slider-value {
4 width: 80px;
5 }
6 </style>
7

8 <div class="panel panel-primary">
9 <div class="panel-heading">Slider Widget</div>

10 <div class="panel-body">
11

12 <h3>Standard Numerical Inputs</h3>
13

14 <p>The number input is just the bootstrap default:</p>
15

16 <input class="form-control" type="number" id="input-num1" name="num1" value="80"
→˓min="0" max="100" step="1">

17

18

19 <p>The range input has some styling optimization for touch devices:</p>
20

21 <input class="form-control" type="range" id="input-rng1" name="rng1" value="80"
→˓min="0" max="100" step="1">

22

23

24 <h3>Slider Widget</h3>
25

26 <p>
27 In many cases you'd like to give especially the touchscreen user a combination

→˓of these input
28 elements, and as sliding may be too imprecise you also need large buttons for

→˓single step changes.
29 That's what the slider widget does. It also adds the option of a checkbox and a

→˓default value to
30 reflect if the user control shall be applied.

(continues on next page)

266 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

31 </p>
32

33 <div class="row">
34 <div class="col-md-9">
35

36 <p>Sliders can easily be created from minimal markup using the <code>.slider()
→˓</code> plugin,

37 with configuration given by data attributes and/or dynamic options:</p>
38

39 <div class="form-control slider" id="sld1" data-min="-5" data-max="50" data-
→˓step="0.5"

40 data-default="40" data-unit="%" data-disabled="false" data-checked="true"
→˓data-value="10" />

41

42

43 <div class="form-control slider" id="sld2" />
44

45

46 <p>...and slider state, limits and value can be controlled using the same
→˓method:

47 <button type="button" class="btn btn-default" onclick="$('#sld1').slider({
→˓value:42 })">

48 Set sld1 value to 42
49 </button>
50 <button type="button" class="btn btn-default" onclick="$('#sld1').slider({

→˓checked:true })">
51 Check sld1
52 </button>
53 <button type="button" class="btn btn-default" onclick="$('#sld1').slider({

→˓disabled:true })">
54 Disable sld1
55 </button>
56 <button type="button" class="btn btn-default" onclick="$('#sld1').slider({

→˓disabled:false })">
57 Enable sld1
58 </button>
59 </p>
60

61

62 <p>If you need even more control, you can create the slider markup yourself
→˓as well:</p>

63

64 <div class="form-control slider" id="sld3" data-default="50" data-reset="false
→˓"

65 data-value="80" data-min="-10" data-max="100" data-step="1">
66 <div class="slider-control form-inline">
67 <input class="slider-enable" type="checkbox" checked>
68 <input class="form-control slider-value" type="number" id="input-sld3"

→˓name="sld3">
69 %
70 <input class="btn btn-default slider-down" type="button" value="">
71 <input class="btn btn-default slider-set" type="button" value="Lo" data-

→˓set="25">
72 <input class="btn btn-default slider-set" type="button" value="Hi" data-

→˓set="75">
73 <input class="btn btn-default slider-up" type="button" value="">
74 </div>

(continues on next page)

31.1. TL;DR: Examples 267

Open Vehicles

(continued from previous page)

75 <input class="slider-input" type="range">
76 </div>
77

78

79 </div>
80 <div class="col-md-3">
81

82 <p><u>Events & values</u>:</p>
83 <pre id="show-sldev"></pre>
84

85 </div>
86 </div>
87

88

89

90 <p>
91 Checkbox, buttons and unit are optional. You can reduce the widget to just a

→˓number or
92 just a range input, the input then needs to have the <code>slider-input</code>

→˓class.
93 </p>
94

95 <p>
96 The checkbox element defines the default value to be set on unchecking in
97 <code>data-default</code>. By default, the checkbox will restore the previous

→˓user
98 value when re-checked, to disable this, set <code>data-reset</code> to "true".
99 To reset the value to the default from a script, call the <code>.slider()</code>

100 method with <code>value: null</code> (this resets both the actual and the stored
101 user value).
102 </p>
103

104 <p>
105 Values and checkbox status need to be consistent on init, or be set by your

→˓script.
106 To hook into value changes, attach event handlers to events <code>input</code>
107 and/or <code>change</code> as usual. Read the <code>checked</code> property to

→˓get the
108 checkbox state.
109 </p>
110

111 </div>
112 </div>
113

114 <script>
115 (function(){
116

117 /* Show page source: */
118 var pagesrc = $('#main').html();
119 $('.panel-heading').prepend('<button type="button" class="btn btn-sm btn-info

→˓action-showsrc"' +
120 ' style="float:right; position:relative; top:-5px;">Show page source</button>');
121 $('.action-showsrc').on('click', function() {
122 $('<div/>').dialog({
123 title: 'Source Code',
124 body: '<pre style="font-size:85%; height:calc(100vh - 230px);">'
125 + encode_html(pagesrc) + '</pre>',

(continues on next page)

268 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

126 size: 'lg',
127 });
128 });
129

130 /* Init sliders: */
131 $('.slider').slider();
132 $('#sld2').slider({ min:-10, max:10, step:0.1, default:2.5, unit:'kW',

→˓checked:false, value:-3.8 });
133

134 /* Show slider events & values: */
135 var sldev = {};
136 $('#input-sld1, #input-sld2, #input-sld3').on('input change', function(ev) {
137 sldev[this.name] = $.extend(sldev[this.name], { checked: this.checked });
138 // Note: this.value is unvalidated here for a direct entry, but the validation is

→˓simple:
139 sldev[this.name][ev.type] = Math.max(this.min, Math.min(this.max, 1*this.value));
140 $('#show-sldev').text(JSON.stringify(sldev, null, 2));
141 });
142

143 })();
144 </script>

31.1.13 Regen Brake Monitor

This plugin defines a page including an acceleration level gauge chart, number metrics for the acceleration, speed and

31.1. TL;DR: Examples 269

Open Vehicles

battery power and two large indicators for the regen brake light and the brake pedal state.

It’s useful to fine tune the regen brake settings, as you can monitor the actual deceleration levels while driving and
check the smoothing level.

Install: add the source as a page plugin, e.g. /dev/regenmon.

regenmon.htm (hint: right click, save as)

1 <!--
2 Test/Development/Documentation page; install as plugin to test
3 -->
4

5 <style>
6 .indicator > .label {
7 font-size: 150%;
8 line-height: 200%;
9 margin: 10px;

10 padding: 10px;
11 display: block;
12 border-radius: 50px;
13 }
14 .metric.number .label {
15 min-width: 8em;
16 }
17 .metric.number {
18 display: block;
19 float: none;
20 text-align: center;
21 }
22 </style>
23

24 <div class="panel panel-primary">
25 <div class="panel-heading">Regen Brake Monitor</div>
26 <div class="panel-body">
27

28 <div class="receiver" id="regenmon-receiver">
29

30 <div class="row">
31 <div class="col-sm-6">
32 <div class="metric chart" data-metric="v.p.acceleration" style="height:300px

→˓">
33 <div class="chart-box gaugechart" id="accel-gauge"/>
34 </div>
35 <div class="metric number" data-metric="v.p.acceleration" data-prec="2">
36 Acceleration:
37 ?
38 m/s2
39 </div>
40 <div class="metric number" data-metric="v.p.speed" data-prec="1">
41 Speed:
42 ?
43 kph
44 </div>
45 <div class="metric number" data-metric="v.b.power" data-prec="1">
46 Battery power:
47 ?
48 kW
49 </div>

(continues on next page)

270 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

50 <br class="clearfix"/>
51 </div>
52 <div class="col-sm-6">
53 <div class="indicator" data-metric="v.e.regenbrake">
54 REGEN
55 </div>
56 <div class="indicator" data-metric="v.e.footbrake">
57 FOOT
58 </div>
59 </div>
60 </div>
61

62 </div>
63

64 </div>
65 </div>
66

67 <script>
68 (function(){
69

70 /* Init acceleration gauge: */
71 $("#accel-gauge").chart({
72 chart: {
73 type: 'gauge',
74 spacing: [0, 0, 0, 0],
75 margin: [0, 0, 0, 0],
76 animation: { duration: 250, easing: 'easeOutExpo' },
77 },
78 title: { text: "Acceleration", verticalAlign: "middle", y: 75 },
79 credits: { enabled: false },
80 tooltip: { enabled: false },
81 plotOptions: {
82 gauge: { dataLabels: { enabled: false }, overshoot: 5 }
83 },
84 pane: [{
85 startAngle: -120, endAngle: 120, size: '100%', center: ['50%', '60%']
86 }],
87 yAxis: [{
88 title: { text: 'm/s2' },
89 className: 'accel',
90 reversed: false,
91 min: -2, max: 2,
92 minorTickInterval: 0.1, minorTickLength: 5, minorTickPosition: 'inside',
93 tickInterval: 0.5, tickPosition: 'inside', tickLength: 13,
94 labels: { step: 1, distance: -28, x: 0, y: 5, zIndex: 2 },
95 }],
96 series: [{
97 name: 'Acceleration', data: [0],
98 className: 'accel',
99 animation: { duration: 0 },

100 pivot: { radius: '10' },
101 dial: { radius: '88%', topWidth: 1, baseLength: '20%', baseWidth: 10,

→˓rearLength: '20%' },
102 }],
103 /* Update method: */
104 onUpdate: function(update) {
105 // Create gauge data set from metric:

(continues on next page)

31.1. TL;DR: Examples 271

Open Vehicles

(continued from previous page)

106 var data = [metrics["v.p.acceleration"]];
107 // Update chart:
108 this.series[0].setData(data);
109 },
110 });
111

112 /* Init indicators: */
113 $('#regenmon-receiver').on('msg:metrics', function(e, update) {
114 $(this).find('.indicator').each(function() {
115 var $el = $(this), metric = $el.data("metric"), val = update[metric];
116 if (val == null)
117 return;
118 else if (val != 0)
119 $el.children().removeClass('label-default').addClass('label-danger');
120 else if (val == 0)
121 $el.children().removeClass('label-danger').addClass('label-default');
122 });
123 });
124

125 })();
126 </script>

31.1.14 Dashboard

A refined and configurable version of this plugin has been added to the standard OVMS web UI and gets automatically
configured by the vehicle modules with their respective vehicle parameters.

It’s a good example of the Highcharts gauge chart options and shows how to combine multiple gauge charts into a
single container (div #gaugeset1) and how to style the charts using CSS.

It also includes a simple test data generator so can be tested without actual vehicle data.

To add a new vehicle parameter set for the standard dashboard, simply override the GetDashboardConfig()
method in your vehicle class. Have a look at the existing overrides (for example Twizy, Kia Soul, Smart ED, . . .).

Install: not necessary for the standard dashboard. If you’re going to build your own dashboard from this, install it as
a page type plugin.

dashboard.htm (hint: right click, save as)

272 Chapter 31. Web Framework & Plugins

Open Vehicles

1 <!-- Main -->
2

3 <style>
4 @media (max-width: 767px) {
5 .panel-single .panel-body {
6 padding: 2px;
7 }
8 }
9 .dashboard .highcharts-data-label text {

10 font-size: 2em;
11 }
12 .dashboard .overlay {
13 position: absolute;
14 z-index: 10;
15 top: 62%;
16 text-align: center;
17 left: 0%;
18 right: 0%;
19 }
20 .dashboard .overlay .value {
21 color: #04282b;
22 background: #97b597;
23 padding: 2px 5px;
24 margin-right: 0.2em;
25 text-align: center;
26 border: 1px inset #c3c3c380;
27 font-family: "Monaco", "Menlo", "Consolas", "QuickType Mono", "Lucida Console",

→˓"Roboto Mono", "Ubuntu Mono", "DejaVu Sans Mono", "Droid Sans Mono", monospace;
28 display: inline-block;
29 }
30 .night .dashboard .overlay .value {
31 color: #fff;
32 background: #252525;
33 }
34 .dashboard .overlay .unit {
35 color: #666;
36 font-size: 12px;
37 }
38 .dashboard .overlay .range-value .value {
39 margin-left: 10px;
40 width: 100px;
41 }
42 .dashboard .overlay .energy-value {
43 margin-top: 4px;
44 }
45 .dashboard .overlay .energy-value .value {
46 margin-left: 18px;
47 width: 100px;
48 font-size: 12px;
49 }
50 </style>
51

52 <div class="panel panel-primary" id="panel-dashboard">
53 <div class="panel-heading">Dashboard</div>
54 <div class="panel-body">
55

56 <div class="receiver get-window-resize" id="livestatus">

(continues on next page)

31.1. TL;DR: Examples 273

Open Vehicles

(continued from previous page)

57 <div class="dashboard" style="position: relative; width: 100%; height: 300px;
→˓margin: 0 auto">

58 <div class="overlay">
59 <div class="range-value">0 0km

→˓</div>
60 <div class="energy-value">0.0 0.0<span class=

→˓"unit">kWh</div>
61 </div>
62 <div id="gaugeset1" style="width: 100%; height: 100%;"></div>
63 </div>
64 </div>
65

66 </div>
67 </div>
68

69

70 <!-- Chart -->
71

72 <style>
73 .highcharts-plot-band, .highcharts-pane {
74 fill-opacity: 0;
75 }
76 .highcharts-plot-band.border {
77 stroke: #666666;
78 stroke-width: 1px;
79 }
80

81 .green-band {
82 fill: #55BF3B;
83 fill-opacity: 0.4;
84 }
85 .yellow-band {
86 fill: #DDDF0D;
87 fill-opacity: 0.5;
88 }
89 .red-band {
90 fill: #DF5353;
91 fill-opacity: 0.6;
92 }
93 .violet-band {
94 fill: #9622ff;
95 fill-opacity: 0.6;
96 }
97 .night .violet-band {
98 fill: #9622ff;
99 fill-opacity: 0.8;

100 }
101

102 .highcharts-gauge-series .highcharts-pivot {
103 stroke-width: 1px;
104 stroke: #757575;
105 fill-opacity: 1;
106 fill: black;
107 }
108 .highcharts-gauge-series.auxgauge .highcharts-pivot {
109 fill-opacity: 1;
110 fill: #fff;

(continues on next page)

274 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

111 stroke-width: 0;
112 }
113 .night .highcharts-gauge-series.auxgauge .highcharts-pivot {
114 fill: #000;
115 }
116 .highcharts-gauge-series .highcharts-dial {
117 fill: #d80000;
118 stroke: #000;
119 stroke-width: 0.5px;
120 }
121 .highcharts-yaxis-grid .highcharts-grid-line,
122 .highcharts-yaxis-grid .highcharts-minor-grid-line {
123 display: none;
124 }
125 .highcharts-yaxis .highcharts-tick {
126 stroke-width: 2px;
127 stroke: #666666;
128 }
129 .night .highcharts-yaxis .highcharts-tick {
130 stroke: #e0e0e0;
131 }
132 .highcharts-yaxis .highcharts-minor-tick {
133 stroke-width: 1.8px;
134 stroke: #00000085;
135 stroke-dasharray: 6;
136 stroke-dashoffset: -4.8;
137 stroke-linecap: round;
138 }
139 .night .highcharts-yaxis .highcharts-minor-tick {
140 stroke: #ffffff85;
141 }
142 .highcharts-axis-labels {
143 fill: #000;
144 font-weight: bold;
145 font-size: 0.9em;
146 }
147 .night .highcharts-axis-labels {
148 fill: #ddd;
149 }
150 .highcharts-data-label text {
151 fill: #333333;
152 }
153 .night .highcharts-data-label text {
154 fill: #fff;
155 }
156

157 .highcharts-axis-labels.speed {
158 font-size: 1.2em;
159 }
160 </style>
161

162 <script type="text/javascript">
163

164 // Vehicle specific configuration:
165

166 var vehicle_config_twizy = {
167 yAxis: [{

(continues on next page)

31.1. TL;DR: Examples 275

Open Vehicles

(continued from previous page)

168 // Speed:
169 min: 0, max: 120,
170 plotBands: [
171 { from: 0, to: 70, className: 'green-band' },
172 { from: 70, to: 100, className: 'yellow-band' },
173 { from: 100, to: 120, className: 'red-band' }]
174 },{
175 // Voltage:
176 min: 45, max: 60,
177 plotBands: [
178 { from: 45, to: 47.5, className: 'red-band' },
179 { from: 47.5, to: 50, className: 'yellow-band' },
180 { from: 50, to: 60, className: 'green-band' }]
181 },{
182 // SOC:
183 min: 0, max: 100,
184 plotBands: [
185 { from: 0, to: 12.5, className: 'red-band' },
186 { from: 12.5, to: 25, className: 'yellow-band' },
187 { from: 25, to: 100, className: 'green-band' }]
188 },{
189 // Efficiency:
190 min: 0, max: 300,
191 plotBands: [
192 { from: 0, to: 150, className: 'green-band' },
193 { from: 150, to: 250, className: 'yellow-band' },
194 { from: 250, to: 300, className: 'red-band' }]
195 },{
196 // Power:
197 min: -10, max: 30,
198 plotBands: [
199 { from: -10, to: 0, className: 'violet-band' },
200 { from: 0, to: 15, className: 'green-band' },
201 { from: 15, to: 25, className: 'yellow-band' },
202 { from: 25, to: 30, className: 'red-band' }]
203 },{
204 // Charger temperature:
205 min: 20, max: 80, tickInterval: 20,
206 plotBands: [
207 { from: 20, to: 65, className: 'normal-band border' },
208 { from: 65, to: 80, className: 'red-band border' }]
209 },{
210 // Battery temperature:
211 min: -15, max: 65, tickInterval: 25,
212 plotBands: [
213 { from: -15, to: 0, className: 'red-band border' },
214 { from: 0, to: 50, className: 'normal-band border' },
215 { from: 50, to: 65, className: 'red-band border' }]
216 },{
217 // Inverter temperature:
218 min: 20, max: 80, tickInterval: 20,
219 plotBands: [
220 { from: 20, to: 70, className: 'normal-band border' },
221 { from: 70, to: 80, className: 'red-band border' }]
222 },{
223 // Motor temperature:
224 min: 50, max: 125, tickInterval: 25,

(continues on next page)

276 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

225 plotBands: [
226 { from: 50, to: 110, className: 'normal-band border' },
227 { from: 110, to: 125, className: 'red-band border' }]
228 }]
229 };
230

231 var vehicle_config_default = {
232 yAxis: [{
233 // Speed:
234 min: 0, max: 120,
235 plotBands: [
236 { from: 0, to: 70, className: 'green-band' },
237 { from: 70, to: 100, className: 'yellow-band' },
238 { from: 100, to: 120, className: 'red-band' }]
239 },{
240 // Voltage:
241 min: 310, max: 410,
242 plotBands: [
243 { from: 310, to: 325, className: 'red-band' },
244 { from: 325, to: 340, className: 'yellow-band' },
245 { from: 340, to: 410, className: 'green-band' }]
246 },{
247 // SOC:
248 min: 0, max: 100,
249 plotBands: [
250 { from: 0, to: 12.5, className: 'red-band' },
251 { from: 12.5, to: 25, className: 'yellow-band' },
252 { from: 25, to: 100, className: 'green-band' }]
253 },{
254 // Efficiency:
255 min: 0, max: 400,
256 plotBands: [
257 { from: 0, to: 200, className: 'green-band' },
258 { from: 200, to: 300, className: 'yellow-band' },
259 { from: 300, to: 400, className: 'red-band' }]
260 },{
261 // Power:
262 min: -50, max: 200,
263 plotBands: [
264 { from: -50, to: 0, className: 'violet-band' },
265 { from: 0, to: 100, className: 'green-band' },
266 { from: 100, to: 150, className: 'yellow-band' },
267 { from: 150, to: 200, className: 'red-band' }]
268 },{
269 // Charger temperature:
270 min: 20, max: 80, tickInterval: 20,
271 plotBands: [
272 { from: 20, to: 65, className: 'normal-band border' },
273 { from: 65, to: 80, className: 'red-band border' }]
274 },{
275 // Battery temperature:
276 min: -15, max: 65, tickInterval: 25,
277 plotBands: [
278 { from: -15, to: 0, className: 'red-band border' },
279 { from: 0, to: 50, className: 'normal-band border' },
280 { from: 50, to: 65, className: 'red-band border' }]
281 },{

(continues on next page)

31.1. TL;DR: Examples 277

Open Vehicles

(continued from previous page)

282 // Inverter temperature:
283 min: 20, max: 80, tickInterval: 20,
284 plotBands: [
285 { from: 20, to: 70, className: 'normal-band border' },
286 { from: 70, to: 80, className: 'red-band border' }]
287 },{
288 // Motor temperature:
289 min: 50, max: 125, tickInterval: 25,
290 plotBands: [
291 { from: 50, to: 110, className: 'normal-band border' },
292 { from: 110, to: 125, className: 'red-band border' }]
293 }]
294 };
295

296 var vehicle_config = vehicle_config_twizy;
297

298 var gaugeset1;
299

300 function get_dashboard_data() {
301 var rmin = metrics["v.b.range.est"]||0, rmax = metrics["v.b.range.ideal"]||0;
302 var euse = metrics["v.b.energy.used"]||0, erec = metrics["v.b.energy.recd"]||0;
303 if (rmin > rmax) { var x = rmin; rmin = rmax; rmax = x; }
304 var md = {
305 range: { value: "" + rmax.toFixed(0) + " " + rmin.toFixed(0) },
306 energy: { value: "" + euse.toFixed(1) + " " + erec.toFixed(1) },
307 series: [
308 { data: [metrics["v.p.speed"]] },
309 { data: [metrics["v.b.voltage"]] },
310 { data: [metrics["v.b.soc"]] },
311 { data: [metrics["v.b.consumption"]] },
312 { data: [metrics["v.b.power"]] },
313 { data: [metrics["v.c.temp"]] },
314 { data: [metrics["v.b.temp"]] },
315 { data: [metrics["v.i.temp"]] },
316 { data: [metrics["v.m.temp"]] }],
317 };
318 return md;
319 }
320

321 function update_dashboard() {
322 var md = get_dashboard_data();
323 $('.range-value .value').text(md.range.value);
324 $('.energy-value .value').text(md.energy.value);
325 gaugeset1.update({ series: md.series });
326 }
327

328 function init_gaugeset1() {
329 var chart_config = {
330 chart: {
331 type: 'gauge',
332 spacing: [0, 0, 0, 0],
333 margin: [0, 0, 0, 0],
334 animation: { duration: 0, easing: 'swing' },
335 },
336 title: { text: null },
337 credits: { enabled: false },
338 tooltip: { enabled: false },

(continues on next page)

278 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

339

340 pane: [
341 { startAngle: -125, endAngle: 125, center: ['50%', '45%'], size: '80%' }, //

→˓Speed
342 { startAngle: 70, endAngle: 110, center: ['-20%', '20%'], size: '100%' }, //

→˓Voltage
343 { startAngle: 70, endAngle: 110, center: ['-20%', '60%'], size: '100%' }, // SOC
344 { startAngle: -110, endAngle: -70, center: ['120%', '20%'], size: '100%' }, //

→˓Efficiency
345 { startAngle: -110, endAngle: -70, center: ['120%', '60%'], size: '100%' }, //

→˓Power
346 { startAngle: -45, endAngle: 45, center: ['20%', '100%'], size: '30%' }, //

→˓Charger temperature
347 { startAngle: -45, endAngle: 45, center: ['40%', '100%'], size: '30%' }, //

→˓Battery temperature
348 { startAngle: -45, endAngle: 45, center: ['60%', '100%'], size: '30%' }, //

→˓Inverter temperature
349 { startAngle: -45, endAngle: 45, center: ['80%', '100%'], size: '30%' }], //

→˓Motor temperature
350

351 responsive: {
352 rules: [{
353 condition: { minWidth: 0, maxWidth: 400 },
354 chartOptions: {
355 pane: [
356 { size: '60%' }, // Speed
357 { center: ['-20%', '20%'] }, // Voltage
358 { center: ['-20%', '60%'] }, // SOC
359 { center: ['120%', '20%'] }, // Efficiency
360 { center: ['120%', '60%'] }, // Power
361 { center: ['15%', '100%'] , size: '25%' }, // Charger temperature
362 { center: ['38.33%', '100%'], size: '25%' }, // Battery temperature
363 { center: ['61.66%', '100%'], size: '25%' }, // Inverter temperature
364 { center: ['85%', '100%'] , size: '25%' }], // Motor temperature
365 yAxis: [{ labels: { step: 1 } }], // Speed
366 },
367 },{
368 condition: { minWidth: 401, maxWidth: 450 },
369 chartOptions: {
370 pane: [
371 { size: '70%' }, // Speed
372 { center: ['-15%', '20%'] }, // Voltage
373 { center: ['-15%', '60%'] }, // SOC
374 { center: ['115%', '20%'] }, // Efficiency
375 { center: ['115%', '60%'] }, // Power
376 { center: ['15%', '100%'] , size: '27.5%' }, // Charger temperature
377 { center: ['38.33%', '100%'], size: '27.5%' }, // Battery temperature
378 { center: ['61.66%', '100%'], size: '27.5%' }, // Inverter temperature
379 { center: ['85%', '100%'] , size: '27.5%' }], // Motor temperature
380 },
381 },{
382 condition: { minWidth: 451, maxWidth: 600 },
383 chartOptions: {
384 pane: [
385 { size: '80%' }, // Speed
386 { center: ['-10%', '20%'] }, // Voltage
387 { center: ['-10%', '60%'] }, // SOC

(continues on next page)

31.1. TL;DR: Examples 279

Open Vehicles

(continued from previous page)

388 { center: ['110%', '20%'] }, // Efficiency
389 { center: ['110%', '60%'] }], // Power
390 },
391 },{
392 condition: { minWidth: 601 },
393 chartOptions: {
394 pane: [
395 { size: '85%' }, // Speed
396 { center: ['0%', '20%'] }, // Voltage
397 { center: ['0%', '60%'] }, // SOC
398 { center: ['100%', '20%'] }, // Efficiency
399 { center: ['100%', '60%'] }], // Power
400 },
401 }]
402 },
403

404 yAxis: [{
405 // Speed axis:
406 pane: 0, className: 'speed', title: { text: 'km/h' },
407 reversed: false,
408 minorTickInterval: 'auto', minorTickLength: 5, minorTickPosition: 'inside',
409 tickPixelInterval: 30, tickPosition: 'inside', tickLength: 13,
410 labels: { step: 2, distance: -28, x: 0, y: 5, zIndex: 2 },
411 },{
412 // Voltage axis:
413 pane: 1, className: 'voltage', title: { text: 'Volt', align: 'low', x: 90, y:

→˓35, },
414 reversed: true,
415 minorTickInterval: 'auto', minorTickLength: 5, minorTickPosition: 'inside',
416 tickPixelInterval: 30, tickPosition: 'inside', tickLength: 13,
417 labels: { step: 1, distance: -25, x: 0, y: 5, zIndex: 2 },
418 },{
419 // SOC axis:
420 pane: 2, className: 'soc', title: { text: 'SOC', align: 'low', x: 85, y: 35 },
421 reversed: true,
422 minorTickInterval: 'auto', minorTickLength: 5, minorTickPosition: 'inside',
423 tickPixelInterval: 30, tickPosition: 'inside', tickLength: 13,
424 labels: { step: 1, distance: -25, x: 0, y: 5, zIndex: 2 },
425 },{
426 // Efficiency axis:
427 pane: 3, className: 'efficiency', title: { text: 'Wh/km', align: 'low', x: -125,

→˓ y: 35 },
428 reversed: false,
429 minorTickInterval: 'auto', minorTickLength: 5, minorTickPosition: 'inside',
430 tickPixelInterval: 30, tickPosition: 'inside', tickLength: 13,
431 labels: { step: 1, distance: -25, x: 0, y: 5, zIndex: 2 },
432 },{
433 // Power axis:
434 pane: 4, className: 'power', title: { text: 'kW', align: 'low', x: -115, y: 35 }

→˓,
435 reversed: false,
436 minorTickInterval: 'auto', minorTickLength: 5, minorTickPosition: 'inside',
437 tickPixelInterval: 30, tickPosition: 'inside', tickLength: 13,
438 labels: { step: 1, distance: -25, x: 0, y: 5, zIndex: 2 },
439 },{
440 // Charger temperature axis:
441 pane: 5, className: 'temp-charger', title: { text: 'CHG °C', y: 10 },

(continues on next page)

280 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

442 tickPosition: 'inside', tickLength: 10, minorTickInterval: null,
443 labels: { step: 1, distance: 3, x: 0, y: 0, zIndex: 2 },
444 },{
445 // Battery temperature axis:
446 pane: 6, className: 'temp-battery', title: { text: 'BAT °C', y: 10 },
447 tickPosition: 'inside', tickLength: 10, minorTickInterval: null,
448 labels: { step: 1, distance: 3, x: 0, y: 0, zIndex: 2 },
449 },{
450 // Inverter temperature axis:
451 pane: 7, className: 'temp-inverter', title: { text: 'PEM °C', y: 10 },
452 tickPosition: 'inside', tickLength: 10, minorTickInterval: null,
453 labels: { step: 1, distance: 3, x: 0, y: 0, zIndex: 2 },
454 },{
455 // Motor temperature axis:
456 pane: 8, className: 'temp-motor', title: { text: 'MOT °C', y: 10 },
457 tickPosition: 'inside', tickLength: 10, minorTickInterval: null,
458 labels: { step: 1, distance: 3, x: 0, y: 0, zIndex: 2 },
459 }],
460

461 plotOptions: {
462 gauge: {
463 dataLabels: { enabled: false },
464 overshoot: 1
465 }
466 },
467 series: [{
468 // Speed value:
469 yAxis: 0, name: 'Speed', className: 'speed fullgauge', data: [0],
470 pivot: { radius: '10' },
471 dial: { radius: '88%', topWidth: 1, baseLength: '20%', baseWidth: 10,

→˓rearLength: '20%' },
472 },{
473 // Voltage value:
474 yAxis: 1, name: 'Voltage', className: 'voltage auxgauge', data: [0],
475 pivot: { radius: '85' },
476 dial: { radius: '95%', baseWidth: 5, baseLength: '90%' },
477 },{
478 // SOC value:
479 yAxis: 2, name: 'SOC', className: 'soc auxgauge', data: [0],
480 pivot: { radius: '85' },
481 dial: { radius: '95%', baseWidth: 5, baseLength: '90%' },
482 },{
483 // Efficiency value:
484 yAxis: 3, name: 'Efficiency', className: 'efficiency auxgauge', data: [0],
485 pivot: { radius: '85' },
486 dial: { radius: '95%', baseWidth: 5, baseLength: '90%' },
487 },{
488 // Power value:
489 yAxis: 4, name: 'Power', className: 'power auxgauge', data: [0],
490 pivot: { radius: '85' },
491 dial: { radius: '95%', baseWidth: 5, baseLength: '90%' },
492 },{
493 // Charger temperature value:
494 yAxis: 5, name: 'Charger temperature', className: 'temp-charger tempgauge',

→˓data: [0],
495 dial: { radius: '90%', baseWidth: 3, baseLength: '90%' },
496 },{

(continues on next page)

31.1. TL;DR: Examples 281

Open Vehicles

(continued from previous page)

497 // Battery temperature value:
498 yAxis: 6, name: 'Battery temperature', className: 'temp-battery tempgauge',

→˓data: [0],
499 dial: { radius: '90%', baseWidth: 3, baseLength: '90%' },
500 },{
501 // Inverter temperature value:
502 yAxis: 7, name: 'Inverter temperature', className: 'temp-inverter tempgauge',

→˓data: [0],
503 dial: { radius: '90%', baseWidth: 3, baseLength: '90%' },
504 },{
505 // Motor temperature value:
506 yAxis: 8, name: 'Motor temperature', className: 'temp-motor tempgauge', data:

→˓[0],
507 dial: { radius: '90%', baseWidth: 3, baseLength: '90%' },
508 }]
509 };
510

511 // Inject vehicle config:
512 for (var i = 0; i < chart_config.yAxis.length; i++) {
513 $.extend(chart_config.yAxis[i], vehicle_config.yAxis[i]);
514 }
515

516 gaugeset1 = Highcharts.chart('gaugeset1', chart_config,
517 function (chart) {
518 chart.update({ chart: { animation: { duration: 1000, easing: 'swing' } } });
519 $('#livestatus').on("msg:metrics", function(e, update){
520 update_dashboard();
521 }).on("window-resize", function(e){
522 chart.reflow();
523 });
524 }
525);
526 }
527

528 function init_charts() {
529 init_gaugeset1();
530 }
531

532 if (window.Highcharts) {
533 init_charts();
534 } else {
535 $.ajax({
536 url: window.assets.charts_js,
537 dataType: "script",
538 cache: true,
539 success: function(){ init_charts(); }
540 });
541 }
542

543 </script>
544

545

546

547 <!-- ***************** TESTDATENGENERATOR ****************** -->
548 <br class="clearfix">
549 <div id="viewportinfo">WxH</div>
550 <div id="debugfs"></div>

(continues on next page)

282 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

551 <button class="btn btn-info" id="mkmetrics">Make test metrics</button>
552 <br class="clearfix">
553 <script type="text/javascript">
554 $("#mkmetrics").on("click", function(){
555 var msg = {
556 metrics: {
557 "v.b.range.est": Math.random()*80,
558 "v.b.range.ideal": Math.random()*80,
559 "v.b.energy.used": Math.random()*20,
560 "v.b.energy.recd": Math.random()*20,
561 "v.p.speed": Math.random()*120,
562 "v.b.voltage": 45 + Math.random()*15,
563 "v.b.soc": Math.random()*100,
564 "v.b.consumption": Math.random()*300,
565 "v.b.power": Math.random()*40 - 10,
566 "v.c.temp": Math.random()*80,
567 "v.b.temp": Math.random()*80,
568 "v.i.temp": Math.random()*80,
569 "v.m.temp": Math.random()*80,
570 }
571 };
572 $.extend(metrics, msg.metrics);
573 $(".receiver").trigger("msg:metrics", msg.metrics);
574 });
575 $(window).on("resize", function(){
576 $("#viewportinfo").text($(window).width() + " x " + $(window).height());
577 }).trigger("resize");
578 </script>

31.1. TL;DR: Examples 283

Open Vehicles

31.1.15 Twizy: Dashboard Tuning Plugin

This plugin adds two sliders to adjust neutral and braking recuperation levels to the dashboard.

The sliders listen to driving profile changes and update accordingly.

If not yet logged in, the sliders are disabled.

Install: add the plugin as a hook type to page /dashboard, hook body.pre.

dashboard-tuneslider.htm (hint: right click, save as)

1 <!--
2 Hook plugin for /dashboard:body.pre or :body.post
3 - add sliders to adjust recuperation power levels
4 -->
5

6 <style>
7 #tuneslider {
8 margin: 10px 8px 0;
9 }

10 .form-inline .form-control.slider-value {
11 width: 80px;

(continues on next page)

284 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

12 }
13 </style>
14

15 <div class="receiver" id="tuneslider" style="display:none">
16 <div class="form-group">
17 <label class="control-label" for="input-neutral">Neutral recuperation:</label>
18 <div class="form-control slider" id="neutral" />
19 </div>
20 <div class="form-group">
21 <label class="control-label" for="input-brake">Brake recuperation:</label>
22 <div class="form-control slider" id="brake" />
23 </div>
24 </div>
25

26 <script>
27 (function(){
28

29 // Init sliders:
30 $('#neutral').slider({ min:0, max:100, step:1, unit:'%', default:18, value:18,

→˓checked:false });
31 $('#brake').slider({ min:0, max:100, step:1, unit:'%', default:18, value:18,

→˓checked:false });
32

33 // Update sliders on profile changes:
34 var profile;
35 $('#tuneslider').on('msg:metrics', function(ev, update) {
36 if (update["xrt.cfg.profile"] != null) {
37 profile = update["xrt.cfg.profile"];
38 var neutral = profile[7], brake = profile[8]; // see cfgconv.c tagnames for

→˓profile structure
39 $('#neutral').slider({ checked: (neutral!=-1), value: (neutral!=-1) ? neutral :

→˓null });
40 $('#brake').slider({ checked: (brake!=-1), value: (brake!=-1) ? brake : null });
41 }
42 });
43

44 // Update profile on slider changes:
45 $('#tuneslider .slider-value').on('change', function(ev) {
46 var neutral = $('#input-neutral').prop('checked') ? $('#input-neutral').val() : -

→˓1,
47 brake = $('#input-brake').prop('checked') ? $('#input-brake').val() : -1,
48 autorecup_minprc = profile[43], autorecup_ref = profile[44];
49 var cmd = "xrt cfg recup " + neutral + " " + brake + " " + autorecup_ref + " " +

→˓autorecup_minprc;
50 loadcmd(cmd, '#loadres');
51 });
52

53 // Install into panel:
54 $('#main').one('load', function(ev) {
55 if (!loggedin) {
56 $('#tuneslider .slider').slider({ disabled: true });
57 }
58 $('#tuneslider').appendTo('#panel-dashboard .panel-body').show();
59 });
60

61 })();
62 </script>

31.1. TL;DR: Examples 285

Open Vehicles

31.1.16 Twizy: Tuning Profile Editor

This plugin has been added to the Twizy code. It’s used here as a more complex example of what can be done by
plugins.

It’s a full featured SEVCON tuning profile editor including dialogs to load & save profiles from the OVMS configura-
tion and to create & read base64 profile codes.

See Twizy documentation for details on tuning profiles and capabilities.

Install: not necessary if vehicle Twizy is configured (see “Twizy” menu). If you’d like to test this for another vehicle,
add as a page plugin e.g. /test/profed.

profile-editor.htm (hint: right click, save as)

1 <!--
2 Twizy page plugin: Tuning Profile Editor
3 Note: included in firmware v3.2
4 -->
5

6 <style>
7 .form-inline .form-control.slider-value {
8 width: 70px;
9 }

10 .radio-list {
11 height: 313px;
12 overflow-y: auto;
13 overflow-x: hidden;
14 padding-right: 15px;
15 }

(continues on next page)

286 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

16 .radio-list .radio {
17 overflow: hidden;
18 }
19 .radio-list .key {
20 min-width: 20px;
21 display: inline-block;
22 text-align: center;
23 margin: 0 10px;
24 }
25 .radio-list kbd {
26 min-width: 60px;
27 display: inline-block;
28 text-align: center;
29 margin: 0 20px 0 10px;
30 }
31 .radio-list .radio label {
32 width: 100%;
33 text-align: left;
34 padding: 8px 30px;
35 }
36 .radio-list .radio label.active {
37 background-color: #337ab7;
38 color: #fff;
39 outline: none;
40 }
41 .radio-list .radio label.active input {
42 outline: none;
43 }
44 .night .radio-list .radio label:hover {
45 color: #fff;
46 }
47 </style>
48

49 <div class="panel panel-primary">
50 <div class="panel-heading">Tuning Profile Editor</div>
51 <div class="panel-body">
52 <form action="#">
53

54 <div class="form-group">
55 <div class="flex-group">
56 <button type="button" class="btn btn-default action-new">New</button>
57 <button type="button" class="btn btn-default action-load">Load...</button>
58 <input type="hidden" id="input-key" name="key" value="">
59 <input type="hidden" id="input-base64-reset" name="base64-reset" value="">
60 <input type="text" class="form-control font-monospace" placeholder="Base64

→˓profile code"
61 name="base64" id="input-base64" value="" autocapitalize="none" autocorrect=

→˓"off"
62 autocomplete="off" spellcheck="false">
63 </div>
64 </div>
65

66 <ul class="nav nav-tabs">
67 <li class="active"><a data-toggle="tab" href="#tab-drive" aria-expanded="true">

→˓Drive
68 <li class=""><a data-toggle="tab" href="#tab-recup" aria-expanded="false">Recup

→˓
(continues on next page)

31.1. TL;DR: Examples 287

Open Vehicles

(continued from previous page)

69 <li class=""><a data-toggle="tab" href="#tab-ramps" aria-expanded="false">Ramps
→˓

70
71 <div class="tab-content">
72

73 <div id="tab-drive" class="tab-pane section-drive active in">
74

75 <fieldset id="part-speed">
76 <legend>Speed</legend>
77 <div class="form-horizontal">
78 <div class="form-group">
79 <label class="control-label col-sm-2" for="input-speed">Max speed:</

→˓label>
80 <div class="col-sm-10"><div class="form-control slider" id="speed" /></

→˓div>
81 </div>
82 <div class="form-group">
83 <label class="control-label col-sm-2" for="input-warn">Warn speed:</

→˓label>
84 <div class="col-sm-10"><div class="form-control slider" id="warn" /></

→˓div>
85 </div>
86 </div>
87 </fieldset>
88

89 <fieldset id="part-power">
90 <legend>Power</legend>
91 <div class="form-horizontal">
92 <div class="form-group">
93 <label class="control-label col-sm-2" for="input-current">Current:</

→˓label>
94 <div class="col-sm-10"><div class="form-control slider" id="current" />

→˓</div>
95 </div>
96 <div class="form-group">
97 <label class="control-label col-sm-2" for="input-torque">Torque:</label>
98 <div class="col-sm-10"><div class="form-control slider" id="torque" /></

→˓div>
99 </div>

100 <div class="form-group">
101 <label class="control-label col-sm-2" for="input-power_low">Power low:</

→˓label>
102 <div class="col-sm-10"><div class="form-control slider" id="power_low" /

→˓></div>
103 </div>
104 <div class="form-group">
105 <label class="control-label col-sm-2" for="input-power_high">Power high:

→˓</label>
106 <div class="col-sm-10"><div class="form-control slider" id="power_high"

→˓/></div>
107 </div>
108 </div>
109 </fieldset>
110

111 <fieldset id="part-drive">
112 <legend>Drive</legend>
113 <div class="form-horizontal">

(continues on next page)

288 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

114 <div class="form-group">
115 <label class="control-label col-sm-2" for="input-drive">Drive level:</

→˓label>
116 <div class="col-sm-10"><div class="form-control slider" id="drive" /></

→˓div>
117 </div>
118 <div class="form-group">
119 <label class="control-label col-sm-2" for="input-autodrive_ref">Auto 100

→˓% ref:</label>
120 <div class="col-sm-10"><div class="form-control slider" id="autodrive_

→˓ref" /></div>
121 </div>
122 <div class="form-group">
123 <label class="control-label col-sm-2" for="input-autodrive_minprc">Auto

→˓min level:</label>
124 <div class="col-sm-10"><div class="form-control slider" id="autodrive_

→˓minprc" /></div>
125 </div>
126 </div>
127 </fieldset>
128

129 <fieldset id="part-tsmapd">
130 <legend>Torque/Speed-Map: Drive</legend>
131 <div class="form-horizontal">
132 <div class="form-group">
133 <label class="control-label col-sm-2" for="input-tsd_prc1">Trq level 1:

→˓</label>
134 <div class="col-sm-10"><div class="form-control slider" id="tsd_prc1" />

→˓</div>
135 </div>
136 <div class="form-group">
137 <label class="control-label col-sm-2" for="input-tsd_spd1">...at speed:

→˓</label>
138 <div class="col-sm-10"><div class="form-control slider" id="tsd_spd1" />

→˓</div>
139 </div>
140 <div class="form-group">
141 <label class="control-label col-sm-2" for="input-tsd_prc2">Trq level 2:

→˓</label>
142 <div class="col-sm-10"><div class="form-control slider" id="tsd_prc2" />

→˓</div>
143 </div>
144 <div class="form-group">
145 <label class="control-label col-sm-2" for="input-tsd_spd2">...at speed:

→˓</label>
146 <div class="col-sm-10"><div class="form-control slider" id="tsd_spd2" />

→˓</div>
147 </div>
148 <div class="form-group">
149 <label class="control-label col-sm-2" for="input-tsd_prc3">Trq level 3:

→˓</label>
150 <div class="col-sm-10"><div class="form-control slider" id="tsd_prc3" />

→˓</div>
151 </div>
152 <div class="form-group">
153 <label class="control-label col-sm-2" for="input-tsd_spd3">...at speed:

→˓</label>
(continues on next page)

31.1. TL;DR: Examples 289

Open Vehicles

(continued from previous page)

154 <div class="col-sm-10"><div class="form-control slider" id="tsd_spd3" />
→˓</div>

155 </div>
156 <div class="form-group">
157 <label class="control-label col-sm-2" for="input-tsd_prc4">Trq level 4:

→˓</label>
158 <div class="col-sm-10"><div class="form-control slider" id="tsd_prc4" />

→˓</div>
159 </div>
160 <div class="form-group">
161 <label class="control-label col-sm-2" for="input-tsd_spd4">...at speed:

→˓</label>
162 <div class="col-sm-10"><div class="form-control slider" id="tsd_spd4" />

→˓</div>
163 </div>
164 </div>
165 </fieldset>
166

167 </div>
168

169 <div id="tab-recup" class="tab-pane section-recup">
170

171 <fieldset id="part-recup">
172 <legend>Recup</legend>
173 <div class="form-horizontal">
174 <div class="form-group">
175 <label class="control-label col-sm-2" for="input-neutral">Neutral level:

→˓</label>
176 <div class="col-sm-10"><div class="form-control slider" id="neutral" />

→˓</div>
177 </div>
178 <div class="form-group">
179 <label class="control-label col-sm-2" for="input-brake">Brake level:</

→˓label>
180 <div class="col-sm-10"><div class="form-control slider" id="brake" /></

→˓div>
181 </div>
182 <div class="form-group">
183 <label class="control-label col-sm-2" for="input-autorecup_ref">Auto 100

→˓% ref:</label>
184 <div class="col-sm-10"><div class="form-control slider" id="autorecup_

→˓ref" /></div>
185 </div>
186 <div class="form-group">
187 <label class="control-label col-sm-2" for="input-autorecup_minprc">Auto

→˓min level:</label>
188 <div class="col-sm-10"><div class="form-control slider" id="autorecup_

→˓minprc" /></div>
189 </div>
190 </div>
191 </fieldset>
192

193 <fieldset id="part-tsmapn">
194 <legend>Torque/Speed-Map: Neutral</legend>
195 <div class="form-horizontal">
196 <div class="form-group">
197 <label class="control-label col-sm-2" for="input-tsn_prc1">Trq level 1:

→˓</label> (continues on next page)

290 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

198 <div class="col-sm-10"><div class="form-control slider" id="tsn_prc1" />
→˓</div>

199 </div>
200 <div class="form-group">
201 <label class="control-label col-sm-2" for="input-tsn_spd1">...at speed:

→˓</label>
202 <div class="col-sm-10"><div class="form-control slider" id="tsn_spd1" />

→˓</div>
203 </div>
204 <div class="form-group">
205 <label class="control-label col-sm-2" for="input-tsn_prc2">Trq level 2:

→˓</label>
206 <div class="col-sm-10"><div class="form-control slider" id="tsn_prc2" />

→˓</div>
207 </div>
208 <div class="form-group">
209 <label class="control-label col-sm-2" for="input-tsn_spd2">...at speed:

→˓</label>
210 <div class="col-sm-10"><div class="form-control slider" id="tsn_spd2" />

→˓</div>
211 </div>
212 <div class="form-group">
213 <label class="control-label col-sm-2" for="input-tsn_prc3">Trq level 3:

→˓</label>
214 <div class="col-sm-10"><div class="form-control slider" id="tsn_prc3" />

→˓</div>
215 </div>
216 <div class="form-group">
217 <label class="control-label col-sm-2" for="input-tsn_spd3">...at speed:

→˓</label>
218 <div class="col-sm-10"><div class="form-control slider" id="tsn_spd3" />

→˓</div>
219 </div>
220 <div class="form-group">
221 <label class="control-label col-sm-2" for="input-tsn_prc4">Trq level 4:

→˓</label>
222 <div class="col-sm-10"><div class="form-control slider" id="tsn_prc4" />

→˓</div>
223 </div>
224 <div class="form-group">
225 <label class="control-label col-sm-2" for="input-tsn_spd4">...at speed:

→˓</label>
226 <div class="col-sm-10"><div class="form-control slider" id="tsn_spd4" />

→˓</div>
227 </div>
228 </div>
229 </fieldset>
230

231 <fieldset id="part-tsmapb">
232 <legend>Torque/Speed-Map: Brake</legend>
233 <div class="form-horizontal">
234 <div class="form-group">
235 <label class="control-label col-sm-2" for="input-tsb_prc1">Trq level 1:

→˓</label>
236 <div class="col-sm-10"><div class="form-control slider" id="tsb_prc1" />

→˓</div>
237 </div>

(continues on next page)

31.1. TL;DR: Examples 291

Open Vehicles

(continued from previous page)

238 <div class="form-group">
239 <label class="control-label col-sm-2" for="input-tsb_spd1">...at speed:

→˓</label>
240 <div class="col-sm-10"><div class="form-control slider" id="tsb_spd1" />

→˓</div>
241 </div>
242 <div class="form-group">
243 <label class="control-label col-sm-2" for="input-tsb_prc2">Trq level 2:

→˓</label>
244 <div class="col-sm-10"><div class="form-control slider" id="tsb_prc2" />

→˓</div>
245 </div>
246 <div class="form-group">
247 <label class="control-label col-sm-2" for="input-tsb_spd2">...at speed:

→˓</label>
248 <div class="col-sm-10"><div class="form-control slider" id="tsb_spd2" />

→˓</div>
249 </div>
250 <div class="form-group">
251 <label class="control-label col-sm-2" for="input-tsb_prc3">Trq level 3:

→˓</label>
252 <div class="col-sm-10"><div class="form-control slider" id="tsb_prc3" />

→˓</div>
253 </div>
254 <div class="form-group">
255 <label class="control-label col-sm-2" for="input-tsb_spd3">...at speed:

→˓</label>
256 <div class="col-sm-10"><div class="form-control slider" id="tsb_spd3" />

→˓</div>
257 </div>
258 <div class="form-group">
259 <label class="control-label col-sm-2" for="input-tsb_prc4">Trq level 4:

→˓</label>
260 <div class="col-sm-10"><div class="form-control slider" id="tsb_prc4" />

→˓</div>
261 </div>
262 <div class="form-group">
263 <label class="control-label col-sm-2" for="input-tsb_spd4">...at speed:

→˓</label>
264 <div class="col-sm-10"><div class="form-control slider" id="tsb_spd4" />

→˓</div>
265 </div>
266 </div>
267 </fieldset>
268

269 </div>
270

271 <div id="tab-ramps" class="tab-pane section-ramps">
272

273 <fieldset id="part-rampsglobal">
274 <legend>General</legend>
275 <div class="form-horizontal">
276 <div class="form-group">
277 <label class="control-label col-sm-2" for="input-ramplimit_accel">Limit

→˓up:</label>
278 <div class="col-sm-10"><div class="form-control slider" id="ramplimit_

→˓accel" /></div>
(continues on next page)

292 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

279 </div>
280 <div class="form-group">
281 <label class="control-label col-sm-2" for="input-ramplimit_decel">Limit

→˓down:</label>
282 <div class="col-sm-10"><div class="form-control slider" id="ramplimit_

→˓decel" /></div>
283 </div>
284 <div class="form-group">
285 <label class="control-label col-sm-2" for="input-smooth">Smoothing:</

→˓label>
286 <div class="col-sm-10"><div class="form-control slider" id="smooth" /></

→˓div>
287 </div>
288 </div>
289 </fieldset>
290

291 <fieldset id="part-ramps">
292 <legend>Ramp Speeds</legend>
293 <div class="form-horizontal">
294 <div class="form-group">
295 <label class="control-label col-sm-2" for="input-ramp_start">Start/

→˓reverse:</label>
296 <div class="col-sm-10"><div class="form-control slider" id="ramp_start"

→˓/></div>
297 </div>
298 <div class="form-group">
299 <label class="control-label col-sm-2" for="input-ramp_accel">Accelerate:

→˓</label>
300 <div class="col-sm-10"><div class="form-control slider" id="ramp_accel"

→˓/></div>
301 </div>
302 <div class="form-group">
303 <label class="control-label col-sm-2" for="input-ramp_decel">Decelerate:

→˓</label>
304 <div class="col-sm-10"><div class="form-control slider" id="ramp_decel"

→˓/></div>
305 </div>
306 <div class="form-group">
307 <label class="control-label col-sm-2" for="input-ramp_neutral">Neutral:

→˓</label>
308 <div class="col-sm-10"><div class="form-control slider" id="ramp_neutral

→˓" /></div>
309 </div>
310 <div class="form-group">
311 <label class="control-label col-sm-2" for="input-ramp_brake">Brake:</

→˓label>
312 <div class="col-sm-10"><div class="form-control slider" id="ramp_brake"

→˓/></div>
313 </div>
314 </div>
315 </fieldset>
316

317 </div>
318

319 </div>
320

321

(continues on next page)

31.1. TL;DR: Examples 293

Open Vehicles

(continued from previous page)

322 <div class="form-horizontal">
323 <div class="form-group">
324 <label class="control-label col-sm-2" for="input-label">Label:</label>
325 <div class="col-sm-10">
326 <input type="text" class="form-control" placeholder="Short button label"
327 name="label" id="input-label" value="" autocapitalize="none" autocorrect=

→˓"off"
328 autocomplete="off" spellcheck="false">
329 </div>
330 </div>
331 <div class="form-group">
332 <label class="control-label col-sm-2" for="input-title">Title:</label>
333 <div class="col-sm-10">
334 <input type="text" class="form-control" placeholder="optional title/name"
335 name="title" id="input-title" value="" autocapitalize="none" autocorrect=

→˓"off"
336 autocomplete="off" spellcheck="false">
337 </div>
338 </div>
339 </div>
340

341

342 <div class="text-center">
343 <button type="button" class="btn btn-default action-reset">Reset</button>
344 <button type="button" class="btn btn-default action-saveas">Save as...</button>
345 <button type="button" class="btn btn-primary action-save">Save</button>
346 </div>
347

348 </form>
349 </div>
350 </div>
351

352 <div id="key-dialog" />
353

354 <script>
355 (function(){
356

357 // init sliders:
358

359 $('#speed').slider({ unit:'kph', min:6, max:120, default:80, value:80,
→˓checked:false });

360 $('#warn').slider({ unit:'kph', min:6, max:120, default:89, value:89, checked:false
→˓});

361

362 $('#current').slider({ unit:'%', min:10, max:123, default:100, value:100,
→˓checked:false });

363 $('#torque').slider({ unit:'%', min:10, max:130, default:100, value:100,
→˓checked:false });

364 $('#power_low').slider({ unit:'%', min:10, max:139, default:100, value:100,
→˓checked:false });

365 $('#power_high').slider({ unit:'%', min:10, max:130, default:100, value:100,
→˓checked:false });

366

367 $('#drive').slider({ unit:'%', min:10, max:100, default:100, value:100,
→˓checked:false });

368 $('#autodrive_ref').slider({ unit:'kW', min:0, max:25, step:0.1, default:0, value:0,
→˓ checked:false });

(continues on next page)

294 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

369 $('#autodrive_minprc').slider({ unit:'%', min:0, max:100, default:0, value:0,
→˓checked:false });

370

371 $('#tsd_prc1').slider({ unit:'%', min:0, max:100, default:100, value:100,
→˓checked:false });

372 $('#tsd_spd1').slider({ unit:'kph', min:0, max:120, default:33, value:33,
→˓checked:false });

373 $('#tsd_prc2').slider({ unit:'%', min:0, max:100, default:100, value:100,
→˓checked:false });

374 $('#tsd_spd2').slider({ unit:'kph', min:0, max:120, default:39, value:39,
→˓checked:false });

375 $('#tsd_prc3').slider({ unit:'%', min:0, max:100, default:100, value:100,
→˓checked:false });

376 $('#tsd_spd3').slider({ unit:'kph', min:0, max:120, default:50, value:50,
→˓checked:false });

377 $('#tsd_prc4').slider({ unit:'%', min:0, max:100, default:100, value:100,
→˓checked:false });

378 $('#tsd_spd4').slider({ unit:'kph', min:0, max:120, default:66, value:66,
→˓checked:false });

379

380 $('#neutral').slider({ unit:'%', min:0, max:100, default:18, value:18,
→˓checked:false });

381 $('#brake').slider({ unit:'%', min:0, max:100, default:18, value:18, checked:false }
→˓);

382 $('#autorecup_ref').slider({ unit:'kW', min:0, max:25, step:0.1, default:0, value:0,
→˓ checked:false });

383 $('#autorecup_minprc').slider({ unit:'%', min:0, max:100, default:0, value:0,
→˓checked:false });

384

385 $('#tsn_prc1').slider({ unit:'%', min:0, max:100, default:100, value:100,
→˓checked:false });

386 $('#tsn_spd1').slider({ unit:'kph', min:0, max:120, default:33, value:33,
→˓checked:false });

387 $('#tsn_prc2').slider({ unit:'%', min:0, max:100, default:80, value:80,
→˓checked:false });

388 $('#tsn_spd2').slider({ unit:'kph', min:0, max:120, default:39, value:39,
→˓checked:false });

389 $('#tsn_prc3').slider({ unit:'%', min:0, max:100, default:50, value:50,
→˓checked:false });

390 $('#tsn_spd3').slider({ unit:'kph', min:0, max:120, default:50, value:50,
→˓checked:false });

391 $('#tsn_prc4').slider({ unit:'%', min:0, max:100, default:20, value:20,
→˓checked:false });

392 $('#tsn_spd4').slider({ unit:'kph', min:0, max:120, default:66, value:66,
→˓checked:false });

393

394 $('#tsb_prc1').slider({ unit:'%', min:0, max:100, default:100, value:100,
→˓checked:false });

395 $('#tsb_spd1').slider({ unit:'kph', min:0, max:120, default:33, value:33,
→˓checked:false });

396 $('#tsb_prc2').slider({ unit:'%', min:0, max:100, default:80, value:80,
→˓checked:false });

397 $('#tsb_spd2').slider({ unit:'kph', min:0, max:120, default:39, value:39,
→˓checked:false });

398 $('#tsb_prc3').slider({ unit:'%', min:0, max:100, default:50, value:50,
→˓checked:false });

399 $('#tsb_spd3').slider({ unit:'kph', min:0, max:120, default:50, value:50,
→˓checked:false }); (continues on next page)

31.1. TL;DR: Examples 295

Open Vehicles

(continued from previous page)

400 $('#tsb_prc4').slider({ unit:'%', min:0, max:100, default:20, value:20,
→˓checked:false });

401 $('#tsb_spd4').slider({ unit:'kph', min:0, max:120, default:66, value:66,
→˓checked:false });

402

403

404 $('#ramplimit_accel').slider({ unit:'%', min:1, max:100, default:30, value:30,
→˓checked:false });

405 $('#ramplimit_decel').slider({ unit:'%', min:0, max:100, default:30, value:30,
→˓checked:false });

406 $('#smooth').slider({ unit:'%', min:0, max:100, default:70, value:70, checked:false
→˓});

407

408 $('#ramp_start').slider({ unit:'‰', min:1, max:250, default:40, value:40,
→˓checked:false });

409 $('#ramp_accel').slider({ unit:'%', min:1, max:100, default:25, value:25,
→˓checked:false });

410 $('#ramp_decel').slider({ unit:'%', min:0, max:100, default:20, value:20,
→˓checked:false });

411 $('#ramp_neutral').slider({ unit:'%', min:0, max:100, default:40, value:40,
→˓checked:false });

412 $('#ramp_brake').slider({ unit:'%', min:0, max:100, default:40, value:40,
→˓checked:false });

413

414 // profile handling:
415

416 const keys = [
417 "checksum",
418 "speed",
419 "warn",
420 "torque",
421 "power_low",
422 "power_high",
423 "drive",
424 "neutral",
425 "brake",
426 "tsd_spd1",
427 "tsd_spd2",
428 "tsd_spd3",
429 "tsd_spd4",
430 "tsd_prc1",
431 "tsd_prc2",
432 "tsd_prc3",
433 "tsd_prc4",
434 "tsn_spd1",
435 "tsn_spd2",
436 "tsn_spd3",
437 "tsn_spd4",
438 "tsn_prc1",
439 "tsn_prc2",
440 "tsn_prc3",
441 "tsn_prc4",
442 "tsb_spd1",
443 "tsb_spd2",
444 "tsb_spd3",
445 "tsb_spd4",
446 "tsb_prc1",

(continues on next page)

296 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

447 "tsb_prc2",
448 "tsb_prc3",
449 "tsb_prc4",
450 "ramp_start",
451 "ramp_accel",
452 "ramp_decel",
453 "ramp_neutral",
454 "ramp_brake",
455 "smooth",
456 "brakelight_on",
457 "brakelight_off",
458 "ramplimit_accel",
459 "ramplimit_decel",
460 "autorecup_minprc",
461 "autorecup_ref",
462 "autodrive_minprc",
463 "autodrive_ref",
464 "current",
465];
466

467 const scale = {
468 "autodrive_ref": 0.1,
469 "autorecup_ref": 0.1,
470 };
471

472 var profile = {};
473

474 var plist = [
475 { label: "-", title: "Working Set" },
476 { label: "PWR", title: "Power" },
477 { label: "ECO", title: "Economy" },
478 { label: "ICE", title: "Winter" },
479];
480

481 // load profile list:
482 var plistloader = loadcmd('config list xrt').then(function(data) {
483 var lines = data.split('\n'), line, i, key;
484 for (i = 0; i < lines.length; i++) {
485 line = lines[i].match(/profile([0-9]{2})\.?([^:]*): (.*)/);
486 if (line && line.length == 4) {
487 key = Number(line[1]);
488 if (key < 1 || key > 99) continue;
489 if (!plist[key]) plist[key] = {};
490 plist[key][line[2]||"profile"] = line[3];
491 }
492 }
493 });
494

495 // current control → power ranges:
496 function currentControl(on, trigger) {
497 if (on) {
498 $("#input-torque, #input-power_low, #input-power_high").

→˓slider({ max: 254 });
499 } else {
500 $("#input-torque, #input-power_high").slider({ max: 130 });
501 $("#input-power_low").slider({ max: 139 });
502 }

(continues on next page)

31.1. TL;DR: Examples 297

Open Vehicles

(continued from previous page)

503 }
504 $('#input-current').on('change', function(ev) {
505 currentControl(this.checked);
506 $("#input-torque, #input-power_low, #input-power_high").trigger('change');
507 });
508

509 // load profile into sliders:
510 function loadProfile() {
511 currentControl(profile["current"] >= 0);
512 $.map(profile, function(val, key) {
513 $('#input-'+key).slider({ value: (val >= 0) ? (val * (scale[key]||1)) : null,

→˓checked: (val >= 0) });
514 });
515 }
516

517 // calculate profile checksum:
518 function calcChecksum() {
519 var checksum, i;
520 checksum = 0x0101;
521 for (i=1; i<keys.length; i++)
522 checksum += profile[keys[i]] + 1;
523 if ((checksum & 0x0ff) == 0)
524 checksum >>= 8;
525 return (checksum & 0x0ff) - 1;
526 }
527

528 // load a base64 string into profile:
529 function loadBase64(base64) {
530 var bin = atob(base64);
531 $.map(keys, function(key, i) { profile[key] = (bin.charCodeAt(i)||0) - 1; });
532 if (profile["checksum"] == calcChecksum()) {
533 loadProfile();
534 return true;
535 } else {
536 confirmdialog("Profile Error", "Invalid base64 code (checksum mismatch)", [

→˓"Close"]);
537 return false;
538 }
539 }
540

541 // make a base64 string from profile:
542 function makeBase64() {
543 profile["checksum"] = calcChecksum();
544 var u8 = new Uint8Array(keys.length);
545 $.map(keys, function(key, i) { u8[i] = profile[key] + 1; });
546 return btoa(String.fromCharCode.apply(null, u8));
547 }
548

549 // load a profile:
550 function loadKey(key) {
551 if (key < 0 || key > 99) return;
552 plistloader.then(function() {
553 $('#input-label').val(plist[key] && plist[key]["label"] || "");
554 $('#input-title').val(plist[key] && plist[key]["title"] || "");
555 loadcmd('xrt cfg get ' + key).fail(function(request, textStatus, errorThrown) {
556 confirmdialog("Load Profile", xhrErrorInfo(request, textStatus, errorThrown),

→˓["Close"]);
(continues on next page)

298 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

557 }).done(function(res) {
558 var base64;
559 if (res.match(/error/i))
560 base64 = "AQ";
561 else
562 base64 = res.substr(res.lastIndexOf(' ')+1);
563 if (loadBase64(base64)) {
564 $('#input-key').val(key);
565 $('#input-base64, #input-base64-reset').val(base64);
566 $('#headkey').text('#' + key);
567 }
568 });
569 });
570 }
571

572 // save profile:
573 function saveKey(key) {
574 if (key < 0 || key > 99) return;
575 var base64 = $('#input-base64').val(),
576 label = $('#input-label').val().replace(/"/g, '\\"'),
577 title = $('#input-title').val().replace(/"/g, '\\"'),
578 ckey = 'profile' + ((key<10)?'0':'') + key;
579 var cmd = 'xrt cfg set ' + key + ' ' + base64 + ' "' + label + '" "' + title + '"

→˓';
580 loadcmd(cmd).fail(function(request, textStatus, errorThrown) {
581 confirmdialog("Save Profile", xhrErrorInfo(request, textStatus, errorThrown), [

→˓"Close"]);
582 }).done(function(res) {
583 confirmdialog("Save Profile", res, ["Close"]);
584 if (!res.match(/error/i)) {
585 if (key > 0) {
586 if (!plist[key]) plist[key] = {};
587 plist[key]["label"] = label;
588 plist[key]["title"] = title;
589 }
590 $('#input-key').val(key);
591 $('#input-base64-reset').val(base64);
592 $('#headkey').text('#' + key);
593 }
594 });
595 }
596

597 // base64 input:
598 $('#input-base64').on('change', function(ev) {
599 var base64 = $(this).val() || "AQ";
600 if (loadBase64(base64))
601 $('#input-base64-reset').val(base64);
602 });
603

604 // update profile & base64 on slider changes:
605 $('.slider-value').on('change', function(ev) {
606 var key = this.name;
607 var val = Math.max(this.min, Math.min(this.max, 1*this.value));
608 profile[key] = this.checked ? (val / (scale[key]||1)) : -1;
609 var base64 = makeBase64();
610 $('#input-base64').val(base64);
611 });

(continues on next page)

31.1. TL;DR: Examples 299

Open Vehicles

(continued from previous page)

612

613 // prep key dialog:
614 $('#key-dialog').dialog({
615 show: false,
616 onShow: function(input) {
617 var $this = $(this);
618 $this.addClass("loading");
619 plistloader.then(function(data) {
620 var curkey = $('#input-key').val() || 0, i, label, title;
621 $plist = $('<div class="radio-list" data-toggle="buttons" />');
622 for (i = 0; i <= Math.min(99, plist.length + 2); i++) {
623 if (plist[i] && (i==0 || plist[i].profile)) {
624 label = plist[i].label || "-";
625 title = plist[i].title || (plist[i].profile.substr(0, 10) + "...");
626 } else {
627 label = "-";
628 title = "-new-";
629 }
630 $plist.append('<div class="radio"><label class="btn">' +
631 '<input type="radio" name="key" value="' + i + '">' +
632 ((i==0) ? "WS" : ("#" + ((i<10)?'0':'') + i)) + ' <kbd>' +
633 encode_html(label) + '</kbd> ' + encode_html(title) + '</label></div>');
634 }
635 $this.find('.modal-body').append($plist).find('input[value="'+curkey+'"]')
636 .prop("checked", true).parent().addClass("active");
637 $plist
638 .on('dblclick', 'label.btn', function(ev) { $this.dialog('triggerButton',

→˓1); })
639 .on('keypress', function(ev) { if (ev.which==13) $this.dialog('triggerButton

→˓', 1); });
640 $this.removeClass("loading");
641 });
642 },
643 onShown: function(input) {
644 $(this).find('.btn.active').focus();
645 },
646 onHide: function(input) {
647 var $this = $(this), dlg = $this.data("dialog");
648 var key = $this.find('input[name="key"]:checked').val();
649 if (key !== undefined && input.button && input.button.index)
650 dlg.options.onAction.call(this, key);
651 },
652 });
653

654 // buttons:
655 $('.action-new').on('click', function(ev) {
656 $('.slider').slider({ value: null });
657 $('#headkey').text('Editor');
658 $('#input-base64, #input-label, #input-title').val('').trigger('change');
659 });
660 $('.action-reset').on('click', function(ev) {
661 $('#input-base64').val($('#input-base64-reset').val()).trigger('change');
662 });
663 $('.action-load').on('click', function(ev) {
664 $('#key-dialog').dialog({
665 show: true, title: 'Load Profile', body: '',
666 buttons: [{ label: 'Cancel', btnClass: 'default' },{ label: 'Load', btnClass:

→˓'primary' }], (continues on next page)

300 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

667 onAction: function(key) { loadKey(key) },
668 });
669 });
670 $('.action-saveas').on('click', function(ev) {
671 $('#key-dialog').dialog({
672 show: true, title: 'Save Profile', body: '',
673 buttons: [{ label: 'Cancel', btnClass: 'default' },{ label: 'Save', btnClass:

→˓'primary' }],
674 onAction: function(key) { saveKey(key) },
675 });
676 });
677 $('.action-save').on('click', function(ev) {
678 var key = $('#input-key').val();
679 if (key === "")
680 $('.action-saveas').trigger('click');
681 else
682 saveKey(key);
683 });
684

685 // start: load profile / open load dialog:
686 if (page.params["key"] !== undefined)
687 loadKey(page.params["key"]);
688 else
689 $('.action-load').trigger('click');
690

691 })();
692 </script>

31.1.17 Twizy: Drivemode Button Editor

This plugin has been added to the Twizy code. It’s used here as a more complex example of what can be done by
plugins.

It’s an editor for the drivemode buttons the Twizy adds to the dashboard for quick tuning profile changes. The editor

31.1. TL;DR: Examples 301

Open Vehicles

allows to change the layout (number and order of buttons) and the profiles to use.

It includes a profile selector built with the dialog widget, that retrieves the available profiles from the OVMS config
store.

Install: not necessary if vehicle Twizy is configured (see “Twizy” menu). If you’d like to test this for another vehicle,
add as a page plugin e.g. /test/dmconfig.

drivemode-config.htm (hint: right click, save as)

1 <!--
2 Twizy page plugin: Drivemode Button Configuration
3 Note: included in firmware v3.2
4 -->
5

6 <style>
7 .fullscreened .panel-single .panel-body {
8 padding: 10px;
9 }

10

11 .btn-group-lg>.btn,
12 .btn-lg {
13 padding: 10px 3px;
14 overflow: hidden;
15 }
16 #loadmenu .btn {
17 font-weight: bold;
18 }
19 .btn-group.btn-group-lg.exchange {
20 width: 2%;
21 }
22 #editor .btn:hover {
23 background-color: #e6e6e6;
24 }
25 #editor .btn-group-lg>.btn,
26 #editor .btn-lg {
27 padding: 10px 0px;
28 font-size: 15px;
29 }
30 #editor .exchange .btn {
31 font-weight: bold;
32 }
33 .night #editor .btn {
34 color: #000;
35 background: #888;
36 }
37 .night #editor .btn.focus,
38 .night #editor .btn:focus,
39 .night #editor .btn:hover {
40 background-color: #e0e0e0;
41 }
42

43 .radio-list {
44 height: 313px;
45 overflow-y: auto;
46 overflow-x: hidden;
47 padding-right: 15px;
48 }
49 .radio-list .radio {

(continues on next page)

302 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

50 overflow: hidden;
51 }
52 .radio-list .key {
53 min-width: 20px;
54 display: inline-block;
55 text-align: center;
56 margin: 0 10px;
57 }
58 .radio-list kbd {
59 min-width: 60px;
60 display: inline-block;
61 text-align: center;
62 margin: 0 20px 0 10px;
63 }
64 .radio-list .radio label {
65 width: 100%;
66 text-align: left;
67 padding: 8px 30px;
68 }
69 .radio-list .radio label.active {
70 background-color: #337ab7;
71 color: #fff;
72 outline: none;
73 }
74 .radio-list .radio label.active input {
75 outline: none;
76 }
77 .night .radio-list .radio label:hover {
78 color: #fff;
79 }
80 </style>
81

82 <div class="panel panel-primary">
83 <div class="panel-heading">Drivemode Button Configuration</div>
84 <div class="panel-body">
85 <form action="#">
86

87 <p id="info">Loading button configuration...</p>
88

89 <div id="loadmenu" class="btn-group btn-group-justified"></div>
90 <div id="editor" class="btn-group btn-group-justified">
91 <div class="btn-group btn-group-lg add back">
92 <button type="button" class="btn" title="Add button"></button>
93 </div>
94 </div>
95

96

97

98 <div class="text-center">
99 <button type="button" class="btn btn-default" onclick="reloadpage()">Reset</

→˓button>
100 <button type="button" class="btn btn-primary action-save">Save</button>
101 </div>
102

103 </form>
104 </div>
105 <div class="panel-footer">

(continues on next page)

31.1. TL;DR: Examples 303

Open Vehicles

(continued from previous page)

106 Dashboard
107 Drivemode</

→˓a>
108 </div>
109 </div>
110

111 <div id="key-dialog" />
112

113 <script>
114 (function(){
115

116 var $menu = $('#loadmenu'), $edit = $('#editor'), $back = $edit.find('.back');
117

118 var pbuttons = [0,1,2,3];
119 var plist = [
120 { label: "STD", title: "Standard" },
121 { label: "PWR", title: "Power" },
122 { label: "ECO", title: "Economy" },
123 { label: "ICE", title: "Winter" },
124];
125

126 // load profile list & button config:
127 $('.panel').addClass("loading");
128 var plistloader = loadcmd('config list xrt').then(function(data) {
129 var lines = data.split('\n'), line, i, key;
130 for (i = 0; i < lines.length; i++) {
131 line = lines[i].match(/profile([0-9]{2})\.?([^:]*): (.*)/);
132 if (line && line.length == 4) {
133 key = Number(line[1]);
134 if (key < 1 || key > 99) continue;
135 if (!plist[key]) plist[key] = {};
136 plist[key][line[2]||"profile"] = line[3];
137 continue;
138 }
139 line = lines[i].match(/profile_buttons: (.*)/);
140 if (line && line.length == 2) {
141 try {
142 pbuttons = JSON.parse("[" + line[1] + "]");
143 } catch (e) {
144 console.error(e);
145 }
146 }
147 }
148 });
149

150 // prep key dialog:
151 $('#key-dialog').dialog({
152 show: false,
153 title: "Select Profile",
154 buttons: [{ label: 'Cancel', btnClass: 'default' },{ label: 'Select', btnClass:

→˓'primary' }],
155 onShow: function(input) {
156 var $this = $(this), dlg = $this.data("dialog");
157 $this.addClass("loading");
158 plistloader.then(function(data) {
159 var curkey = dlg.options.key || 0, i, label, title;
160 $plist = $('<div class="radio-list" data-toggle="buttons" />');

(continues on next page)

304 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

161 for (i = 0; i <= Math.min(99, plist.length-1); i++) {
162 if (plist[i] && (i==0 || plist[i].profile)) {
163 label = plist[i].label || "-";
164 title = plist[i].title || (plist[i].profile.substr(0, 10) + "...");
165 } else {
166 label = "-";
167 title = "-new-";
168 }
169 $plist.append('<div class="radio"><label class="btn">' +
170 '<input type="radio" name="key" value="' + i + '">' +
171 ((i==0) ? "STD" : ("#" + ((i<10)?'0':'') + i)) + ' <kbd>' +
172 encode_html(label) + '</kbd> ' + encode_html(title) + '</label></div>');
173 }
174 $this.find('.modal-body').html($plist).find('input[value="'+curkey+'"]')
175 .prop("checked", true).parent().addClass("active");
176 $plist
177 .on('dblclick', 'label.btn', function(ev) { $this.dialog('triggerButton',

→˓1); })
178 .on('keypress', function(ev) { if (ev.which==13) $this.dialog('triggerButton

→˓', 1); });
179 $this.removeClass("loading");
180 });
181 },
182 onShown: function(input) {
183 $(this).find('.btn.active').focus();
184 },
185 onHide: function(input) {
186 var $this = $(this), dlg = $this.data("dialog");
187 var key = $this.find('input[name="key"]:checked').val();
188 if (key !== undefined && input.button && input.button.index)
189 dlg.options.onAction.call(this, key);
190 },
191 });
192

193 // profile selection:
194 $('#loadmenu').on('click', 'button', function(ev) {
195 var $this = $(this);
196 $('#key-dialog').dialog({
197 show: true,
198 key: $this.val(),
199 onAction: function(key) {
200 var prof = plist[key] || {};
201 $this.val(key);
202 $this.attr("title", prof.title || "");
203 $this.text(prof.label || ("#"+((key<10)?"0":"")+key));
204 },
205 });
206 });
207

208 // create buttons:
209

210 function addButton(key, front) {
211 var prof = plist[key] || {};
212 if ($menu[0].childElementCount == 0) {
213 $back.before('\
214 <div class="btn-group btn-group-lg add front">\
215 <button type="button" class="btn" title="Add button"></button>\

(continues on next page)

31.1. TL;DR: Examples 305

Open Vehicles

(continued from previous page)

216 </div>\
217 <div class="btn-group btn-group-lg remove">\
218 <button type="button" class="btn" title="Remove button"></button>\
219 </div>');
220 } else {
221 $back.before('\
222 <div class="btn-group btn-group-lg exchange">\
223 <button type="button" class="btn" title="Exchange buttons"></button>\
224 </div>\
225 <div class="btn-group btn-group-lg remove">\
226 <button type="button" class="btn" title="Remove button"></button>\
227 </div>');
228 }
229 var $btn = $('\
230 <div class="btn-group btn-group-lg">\
231 <button type="button" value="{key}" class="btn btn-default" title="{title}">

→˓{label}</button>\
232 </div>'
233 .replace("{key}", key)
234 .replace("{title}", encode_html(prof.title || ""))
235 .replace("{label}", encode_html(prof.label || "#"+((key<10)?"0":"")+key)));
236 if (front)
237 $menu.prepend($btn);
238 else
239 $menu.append($btn);
240 }
241

242 plistloader.then(function() {
243 var key, prof;
244 for (var i = 0; i < pbuttons.length; i++) {
245 addButton(pbuttons[i]);
246 }
247 $('.panel').removeClass("loading");
248 $('#info').text("Click button to select profile:");
249 });
250

251 // editor buttons:
252 $('#editor').on('click', '.add .btn', function(ev) {
253 addButton(0, $(this).parent().hasClass("front"));
254 }).on('click', '.remove .btn', function(ev) {
255 var $this = $(this), pos = $edit.find('.btn').index(this) >> 1;
256 $($menu.children().get(pos)).detach();
257 if (pos > 0 || $menu[0].childElementCount == 0)
258 $this.parent().prev().detach();
259 else if ($menu[0].childElementCount != 0)
260 $this.parent().next().detach();
261 $this.parent().detach();
262 }).on('click', '.exchange .btn', function(ev) {
263 var pos = $edit.find('.btn').index(this) >> 1;
264 if (pos > 0) $($menu.children().get(pos)).insertBefore($($menu.children().get(pos-

→˓1)));
265 });
266

267 // save:
268 $('.action-save').on('click', function(ev) {
269 pbuttons = [];
270 $menu.find('.btn').each(function() { pbuttons.push(this.value) });

(continues on next page)

306 Chapter 31. Web Framework & Plugins

Open Vehicles

(continued from previous page)

271 loadcmd('config set xrt profile_buttons ' + pbuttons.toString())
272 .fail(function(request, textStatus, errorThrown) {
273 confirmdialog("Save Configuration", xhrErrorInfo(request, textStatus,

→˓errorThrown), ["Close"]);
274 })
275 .done(function(res) {
276 confirmdialog("Save Configuration", res, ["Close"]);
277 });
278 });
279

280 })();
281 </script>

31.2 Installing Plugins

The framework supports installing user content as pages or extensions to pages. To install an example:

1. Menu Config → Web Plugins

2. Add plugin: type “Page”, name e.g. “dev.metrics” (used as the file name in /store/plugin)

3. Save → Edit

4. Set page to e.g. “/usr/dev/metrics”, label to e.g. “Dev: Metrics”

5. Set the menu to e.g. “Tools” and auth to e.g. “None”

6. Paste the page source into the content area

7. Save → the page is now accessible in the “Tools” menu.

Hint: use the standard editor (tools menu) in a second session to edit a plugin repeatedly during test / development.

31.3 Basics

The OVMS web framework is based on HTML 5, Bootstrap 3 and jQuery 3. Plenty documentation and guides on
these basic web technologies is available on the web, a very good resource is w3schools.com.

For charts the framework includes Highcharts 6. Info and documentation on this is available on Highcharts.com.

The framework is “AJAX” based. The index page / loads the framework assets and defines a default container structure
including a #menu and a #main container. Content pages are loaded into the #main container. The window URL
includes the page URL after the hash mark #:

• http://ovms.local/#/status – this loads page /status into #main

• http://ovms.local/#/dashboard?nm=1 – this loads the dashboard and activates night mode

Links and forms having id targets #... are automatically converted to AJAX by the framework:

• Edit index.txt – load
the editor

Pages can be loaded outside the framework as well (e.g. http://ovms.local/status). See index source on
framework scripts and styles to include if you’d like to design standalone pages using the framework methods.

31.2. Installing Plugins 307

https://www.w3schools.com/
https://www.highcharts.com/

Open Vehicles

If file system access is enabled, all URLs not handled by the system or a user plugin (see below) are mapped onto the
file system under the configured web root. Of course, files can be loaded into the framework as well. For example, if
the web root is /sd (default):

• http://ovms.local/#/mypage.htm – load file /sd/mypage.htm into #main

• http://test1.local/#/logs – load directory listing /sd/logs into #main

Important Note: the framework has a global shared context (i.e. the window object). To avoid polluting the global
context with local variables, good practice is to wrap your local scripts into closures. Pattern:

<script>
(function(){

... insert your code here ...
})();
</script>

31.4 Authorization

Page access can be restricted to authorized users either session based or per access. File access can be restricted using
digest authentication.

The module password is used for all authorizations. A user account or API key administration is not yet included, the
main username is admin.

To create a session, call the /login page and store the resulting cookie:

1. curl -c auth -b auth 'http://192.168.4.1/login' -d username=admin -d
password=...

2. curl -c auth -b auth 'http://192.168.4.1/api/execute?command=xrt+cfg+info'

To issue a single call, e.g. to execute a command from a Wifi button, supply the password as apikey:

• curl 'http://192.168.4.1/api/execute?apikey=password&command=xrt+cfg+info'

• curl 'http://192.168.4.1/api/execute?apikey=password&type=js&command=print(Duktape.
version)'

31.5 Web UI Development Framework

To simplify and speed up UI and plugin development, you can simply run a local web server from the dev directory
of the ovms_webserver component source.

Preparation: create your local git clone if you don’t have one already:

> cd ~
> git clone https://github.com/openvehicles/Open-Vehicle-Monitoring-System-3.git

Local web server options: List of static web servers

Example:

> cd ~/Open-Vehicle-Monitoring-System-3/vehicle/OVMS.V3/components/ovms_webserver/dev
> python3 -m http.server 8000
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

308 Chapter 31. Web Framework & Plugins

https://gist.github.com/willurd/5720255

Open Vehicles

Now open the development framework in your browser at URI http://localhost:8000. If that doesn’t work,
check your firewall settings for port 8000 on localhost.

You should see the examples home. Edit index.htm to add custom menus, edit home.htm to add custom home
buttons.

Hint: to test your plugin for mobile devices, use the mobile emulation mode of your browser’s development toolkit.
Mobile mode allows to test small screen resolutions, rotation and touch events.

A static local HTTP server allows to use all frontend features, but cannot emulate the backend API (command/script
execution). If using a CGI capable HTTP server, you can also add a proxy handler for /api/execute that forwards
the requests to your module by HTTP or SSH.

If you want to add your results to a C++ module, use the tools mksrc and mksrcf to convert your HTML files into
C++ compatible strings. mksrc is meant for static strings, mksrcf for strings with printf style placeholders.

31.5. Web UI Development Framework 309

Open Vehicles

310 Chapter 31. Web Framework & Plugins

CHAPTER 32

Scripting

32.1 Example: Foglight

This is an example for combining a script module implementing some functional extension with a web plugin to
provide a user interface.

The plugin realizes a fog light with automatic speed adaption, i.e. the light will be turned off above a configurable
speed and on again when the vehicle slows down again. It also switches off automatically when the vehicle is parked.

The plugin shows how to. . .

• read custom config variables

• use module state variables

311

Open Vehicles

• react to events

• send custom events

• read metrics

• execute system commands

• provide new commands

• provide a web UI

32.1.1 Installation

• Save foglight.js as /store/scripts/lib/foglight.js (add the lib directory as necessary)

• Add foglight.htm as a web hook type plugin at page /dashboard, hook body.pre

• Execute script eval 'foglight = require("lib/foglight")'

Optionally:

• To test the module, execute script eval foglight.info() – it should print config and state

• To automatically load the module on boot, add the line foglight = require("lib/foglight"); to
/store/scripts/ovmsmain.js

32.1.2 Commands / Functions

The module provides two public API functions:

Function Description
foglight.set(onoff) . . . switch fog light on (1) / off (0)
foglight.info() . . . output config & state in JSON format

To call these from a shell, use script eval. Example:

• script eval foglight.set(1)

32.1.3 Configuration

We’ll add the configuration for this to the vehicle section:

Config Default Description
foglight.port 1 . . . EGPIO output port number
foglight.auto no . . . yes = speed automation
foglight.speed.on 45 . . . auto turn on below this speed
foglight.speed.off 55 . . . auto turn off above this speed

Note: You can add arbitrary config instances to defined sections simply by setting them: config set vehicle
foglight.auto yes

312 Chapter 32. Scripting

Open Vehicles

Update: Beginning with firmware release 3.2.009, a general configuration section usr is provided for plugins. We
recommend using this for all custom parameters now. Keep in mind to prefix all instances introduced by the plugin
name, so your plugin can nicely coexist with others.

To store the config for simple & quick script access and implement the defaults, we introduce an internal module
member object cfg:

Listing 1: Module Plugin

28 var cfg = {
29 "foglight.port": "1",
30 "foglight.auto": "no",
31 "foglight.speed.on": "45",
32 "foglight.speed.off": "55",
33 };

By foglight = require(...), the module is added to the global name space as a javascript object. This object
can contain any internal standard javascript variables and functions. Internal members are hidden by default, if you
would like to expose the cfg object, you would simply add a reference to it to the exports object as is done below
for the API methods.

Reading OVMS config variables from a script currently needs to be done by executing config list and parsing
the output. This is done by the readconfig() function:

42 function readconfig() {
43 var cmdres, lines, cols, i;
44 cmdres = OvmsCommand.Exec("config list vehicle");
45 lines = cmdres.split("\n");
46 for (i=0; i<lines.length; i++) {
47 if (lines[i].indexOf("foglight") >= 0) {
48 cols = lines[i].substr(2).split(": ");
49 cfg[cols[0]] = cols[1];
50 }
51 }

Update: OVMS release 3.2.009 adds the OvmsConfig.GetValues() API. To use this, we would now omit the
“foglight.” prefix from our cfg properties. Reading the foglight configuration can then be reduced to a single line:

Object.assign(cfg, OvmsConfig.GetValues("vehicle", "foglight."));

32.1.4 Listen to Events

The module needs to listen to three events:

• config.changed triggers reloading the configuration

• ticker.1 is used to check the speed once per second

• vehicle.off automatically also turns off the fog light

The per second ticker is only necessary when the speed adaption is enabled, so we can use this to show how to
dynamically add and remove event handlers through the PubSub API:

32.1. Example: Foglight 313

Open Vehicles

Listing 2: Module Plugin

52 // update ticker subscription:
53 if (cfg["foglight.auto"] == "yes" && !state.ticker) {
54 state.ticker = PubSub.subscribe("ticker.1", checkspeed);
55 } else if (cfg["foglight.auto"] != "yes" && state.ticker) {
56 PubSub.unsubscribe(state.ticker);
57 state.ticker = false;
58 }

state is another internal object for our state variables.

32.1.5 Send Events

Sending custom events is a lightweight method to inform the web UI (or other plugins) about simple state changes. In
this case we’d like to inform listeners when the fog light actually physically is switched on or off, so the web UI can
give visual feedback to the driver on this.

Beginning with firmware release 3.2.006 there is a native API OvmsEvents.Raise() available to send events.

Before 3.2.006 we simply use the standard command event raise:

Listing 3: Module Plugin

61 // EGPIO port control:
62 function toggle(onoff) {
63 if (state.port != onoff) {
64 OvmsCommand.Exec("egpio output " + cfg["foglight.port"] + " " + onoff);
65 state.port = onoff;
66 OvmsCommand.Exec("event raise usr.foglight." + (onoff ? "on" : "off"));
67 }
68 }

The web plugin subscribes to the foglight events just as to any system event:

Listing 4: Web Plugin

64 // Listen to foglight events:
65 $('#foglight').on('msg:event', function(e, event) {
66 if (event == "usr.foglight.on")
67 update({ state: { port: 1 } });
68 else if (event == "usr.foglight.off")
69 update({ state: { port: 0 } });
70 else if (event == "vehicle.off") {
71 update({ state: { on: 0 } });
72 $('#action-foglight-output').empty();
73 }
74 });

Note: You can raise any event you like, but you shouldn’t raise system events without good knowledge of their
effects. Event codes are simply strings, so you’re free to extend them. Use the prefix usr. for custom events to avoid
potential conflicts with future system event additions.

314 Chapter 32. Scripting

Open Vehicles

32.1.6 Read Metrics

Reading metrics is straight forward through the OvmsMetrics API:

Listing 5: Module Plugin

74 var speed = OvmsMetrics.AsFloat("v.p.speed");

Use Value() instead of AsFloat() for non-numerical metrics.

Note: You cannot subscribe to metrics changes directly (yet). Metrics can change thousands of times per second,
which would overload the scripting capabilities. To periodically check a metric, register for a ticker event (as shown
here).

32.1.7 Provide Commands

To add commands, simply expose their handler functions through the exports object. By this, users will be able to
call these functions using the script eval command from any shell, or from any script by referencing them via
the global module variable, foglight in our case.

Listing 6: Module Plugin

99 // API method foglight.info():
100 exports.info = function() {
101 JSON.print({ "cfg": cfg, "state": state });
102 }

JSON.print() is a convenient way to communicate with a web plugin, as that won’t need to parse some potentially
ambigous textual output but can simply use JSON.parse() to read it into a variable:

Listing 7: Web Plugin

82 // Init & install:
83 $('#main').one('load', function(ev) {
84 loadcmd('script eval foglight.info()').then(function(output) {
85 update(JSON.parse(output));

Note: Keep in mind commands should always output some textual response indicating their action and result. If a
command does nothing, it should tell the user so. If a command is not intended for shell use, it should still provide
some clue about this when called from the shell.

32.1.8 Module Plugin

foglight.js (hint: right click, save as)

1 /**
2 * /store/scripts/lib/foglight.js
3 *
4 * Module plugin:
5 * Foglight control with speed adaption and auto off on vehicle off.

(continues on next page)

32.1. Example: Foglight 315

Open Vehicles

(continued from previous page)

6 *
7 * Version 1.0 Michael Balzer <dexter@dexters-web.de>
8 *
9 * Enable:

10 * - install at above path
11 * - add to /store/scripts/ovmsmain.js:
12 * foglight = require("lib/foglight");
13 * - script reload
14 *
15 * Config:
16 * - vehicle foglight.port ...EGPIO output port number
17 * - vehicle foglight.auto ...yes = speed automation
18 * - vehicle foglight.speed.on ...auto turn on below this speed
19 * - vehicle foglight.speed.off ...auto turn off above this speed
20 *
21 * Usage:
22 * - script eval foglight.set(1) ...toggle foglight on
23 * - script eval foglight.set(0) ...toggle foglight off
24 * - script eval foglight.info() ...show config & state (JSON)
25 *
26 */
27

28 var cfg = {
29 "foglight.port": "1",
30 "foglight.auto": "no",
31 "foglight.speed.on": "45",
32 "foglight.speed.off": "55",
33 };
34

35 var state = {
36 on: 0, // foglight on/off
37 port: 0, // current port output state
38 ticker: false, // ticker subscription
39 };
40

41 // Read config:
42 function readconfig() {
43 var cmdres, lines, cols, i;
44 cmdres = OvmsCommand.Exec("config list vehicle");
45 lines = cmdres.split("\n");
46 for (i=0; i<lines.length; i++) {
47 if (lines[i].indexOf("foglight") >= 0) {
48 cols = lines[i].substr(2).split(": ");
49 cfg[cols[0]] = cols[1];
50 }
51 }
52 // update ticker subscription:
53 if (cfg["foglight.auto"] == "yes" && !state.ticker) {
54 state.ticker = PubSub.subscribe("ticker.1", checkspeed);
55 } else if (cfg["foglight.auto"] != "yes" && state.ticker) {
56 PubSub.unsubscribe(state.ticker);
57 state.ticker = false;
58 }
59 }
60

61 // EGPIO port control:
62 function toggle(onoff) {

(continues on next page)

316 Chapter 32. Scripting

Open Vehicles

(continued from previous page)

63 if (state.port != onoff) {
64 OvmsCommand.Exec("egpio output " + cfg["foglight.port"] + " " + onoff);
65 state.port = onoff;
66 OvmsCommand.Exec("event raise usr.foglight." + (onoff ? "on" : "off"));
67 }
68 }
69

70 // Check speed:
71 function checkspeed() {
72 if (!state.on)
73 return;
74 var speed = OvmsMetrics.AsFloat("v.p.speed");
75 if (speed <= cfg["foglight.speed.on"])
76 toggle(1);
77 else if (speed >= cfg["foglight.speed.off"])
78 toggle(0);
79 }
80

81 // API method foglight.set(onoff):
82 exports.set = function(onoff) {
83 if (onoff) {
84 state.on = 1;
85 if (cfg["foglight.auto"] == "yes") {
86 checkspeed();
87 print("Foglight AUTO mode\n");
88 } else {
89 toggle(1);
90 print("Foglight ON\n");
91 }
92 } else {
93 state.on = 0;
94 toggle(0);
95 print("Foglight OFF\n");
96 }
97 }
98

99 // API method foglight.info():
100 exports.info = function() {
101 JSON.print({ "cfg": cfg, "state": state });
102 }
103

104 // Init:
105 readconfig();
106 PubSub.subscribe("config.changed", readconfig);
107 PubSub.subscribe("vehicle.off", function(){ exports.set(0); });

32.1.9 Web Plugin

foglight.htm (hint: right click, save as)

1 <!--
2 foglight.htm: Web plugin for hook /dashboard:body.pre
3 - add button to activate/deactivate foglight
4 - add indicator to show current foglight state
5

(continues on next page)

32.1. Example: Foglight 317

Open Vehicles

(continued from previous page)

6 Requires module plugin: foglight.js
7

8 Version 1.0 Michael Balzer <dexter@dexters-web.de>
9 -->

10

11 <style>
12 #foglight {
13 margin: 10px 8px 0;
14 }
15 #foglight .indicator > .label {
16 font-size: 130%;
17 line-height: 160%;
18 margin: 0px;
19 padding: 10px;
20 display: block;
21 border-radius: 50px;
22 }
23 </style>
24

25 <div class="receiver" id="foglight" style="display:none">
26 <form>
27 <div class="form-group">
28 <div class="col-xs-6">
29 <div class="indicator indicator-foglight">
30 FOGLIGHT
31 </div>
32 </div>
33 <div class="col-xs-6">
34 <div class="btn-group btn-group-justified action-foglight-set" data-toggle=

→˓"buttons">
35 <label class="btn btn-default action-foglight-0"><input type="radio" name=

→˓"foglight" value="0">OFF</label>
36 <label class="btn btn-default action-foglight-1"><input type="radio" name=

→˓"foglight" value="1">ON/AUTO</label>
37 </div>
38 <samp id="action-foglight-output" class="text-center"></samp>
39 </div>
40 </div>
41 </form>
42 </div>
43

44 <script>
45 (function(){
46

47 var foglight = { cfg: {}, state: { on: 0, port: 0 } };
48 var $indicator = $('#foglight .indicator-foglight > .label');
49 var $actionset = $('#foglight .action-foglight-set > label');
50

51 // State & UI update:
52 function update(data) {
53 $.extend(true, foglight, data);
54 // update indicator:
55 if (foglight.state.port)
56 $indicator.removeClass('label-default').addClass('label-danger');
57 else
58 $indicator.removeClass('label-danger').addClass('label-default');
59 // update buttons:

(continues on next page)

318 Chapter 32. Scripting

Open Vehicles

(continued from previous page)

60 $actionset.removeClass('active');
61 $actionset.find('input[value='+foglight.state.on+']').prop('checked', true).

→˓parent().addClass('active');
62 }
63

64 // Listen to foglight events:
65 $('#foglight').on('msg:event', function(e, event) {
66 if (event == "usr.foglight.on")
67 update({ state: { port: 1 } });
68 else if (event == "usr.foglight.off")
69 update({ state: { port: 0 } });
70 else if (event == "vehicle.off") {
71 update({ state: { on: 0 } });
72 $('#action-foglight-output').empty();
73 }
74 });
75

76 // Button action:
77 $('#foglight .action-foglight-set input').on('change', function(e) {
78 foglight.state.on = $(this).val();
79 loadcmd('script eval foglight.set('+foglight.state.on+')', '#action-foglight-

→˓output');
80 });
81

82 // Init & install:
83 $('#main').one('load', function(ev) {
84 loadcmd('script eval foglight.info()').then(function(output) {
85 update(JSON.parse(output));
86 $('#foglight').appendTo('#panel-dashboard .panel-body').show();
87 });
88 });
89

90 })();
91 </script>

32.1. Example: Foglight 319

Open Vehicles

320 Chapter 32. Scripting

CHAPTER 33

CANopen

33.1 CANopen Basics

33.1.1 Communication Objects

A CANopen network consists of “masters” and “slaves”, masters are clients, slaves are servers. At most one master
may be active at a time.

CANopen supports addressing of up to 127 slaves on a bus using node IDs 1-127. Node address 0 is used for broadcasts
to all nodes. Node addressing is simply mapped onto CAN IDs by adding the node id to a base ID.

The CANopen protocol mainly consists of. . .

• PDO (process data objects)

• SDO (service data objects)

• NMT (network management)

• SYNC (synchronisation)

• EMCY (emergency events)

PDO are regular, normally periodical, status update frames, for example sensor data. You can log them using the
CAN monitor (can log start monitor ...). PDOs can be sent at any CAN ID except those reserved for
other CANopen services.

SDO are memory registers of nodes that can be read and written by masters on request. SDO requests are normally sent
at ID 0x600 + nodeid, responses at ID 0x580 + nodeid. SDOs are addressed by a 16 bit index + 8 bit subindex. Reg-
isters and data types for a given device are documented by the device specific object dictionary, normally represented
as an EDS (electronic data sheet) file.

NMT are short datagrams to control node startup / shutdown. There’s a special node state “pre-operational” allowing
access to all operation and communication parameters of a node in a standardized way. NMT requests are sent at ID
0x000, responses and unsolicited updates (aka heartbeats) are sent at ID 0x700 + nodeid with length 1.

SYNC messages are datagrams of length 0, normally sent at ID 0x080.

321

Open Vehicles

EMCY messages are sent if a node encounters some kind of alert or warning condition, they are normally sent at ID
0x080 + nodeid with a length of 8 bytes.

CAN IDs Communication objects
0x000 NMT requests
0x080 SYNC
0x081 - 0x0FF EMCY
0x581 - 0x5FF SDO responses
0x601 - 0x67F SDO requests
0x701 - 0x77F NMT responses / heartbeats

So if any of these IDs look familiar to you, chances are you’ve got a CANopen network.

Note: CANopen coexists nicely with OBD-II and often does in a vehicle (i.e. Renault Twizy). OBD-II devices
normally are addressed at IDs > 0x780 so are outside the CANopen ID range. Even if they use non-standard IDs, the
devices normally will detect and ignore frames not matching their protocol.

33.1.2 SDO Addresses

The SDO address space layout is standardized:

Index (hex) Object
0000 not used
0001-001F Static Data Types
0020-003F Complex Data Types
0040-005F Manufacturer Specific Complex Data Types
0060-007F Device Profile Specific Static Data Types
0080-009F Device Profile Specific Complex Data Types
00A0-0FFF Reserved for further use
1000-1FFF Communication Profile Area
2000-5FFF Manufacturer Specific Profile Area
6000-9FFF Standardised Device Profile Area
A000-BFFF Standardised Interface Profile Area
C000-FFFF Reserved for further use

See CiA DS301 for details on standard SDOs.

For example, a device shall tell about the PDOs it transmits or listens to, their IDs, update frequency and content
structure at SDO registers 1400-1BFF. This is mandatory in theory but real devices may not fully comply to that rule.

CANopen compliant standard device types like motor controllers need to implement some standard profile registers.
See CiA DS401 for the generic I/O device class definition and CiA DS402 for motor controllers.

Most devices will require some kind of login before allowing you to change operational parameters. This is also done
using SDO writes, but there is no standard for this, so you’ll need to dig into the device documentation.

Of course there’s a lot more on CANopen, but this should get you going.

33.1.3 CAN in Automation

More info on the standard and specific device profiles can be found on the CiA website:

322 Chapter 33. CANopen

https://www.can-cia.org/standardization/specifications/
https://www.can-cia.org/standardization/specifications/
https://www.can-cia.org/standardization/specifications/

Open Vehicles

https://www.can-cia.org/

CAN in Automation (CiA) is the international users’ and manufacturers’ group for the CAN network (Controller Area
Network), internationally standardized in the ISO 11898 series. The nonprofit association was established in 1992.
The aim is to provide an unbiased platform for future developments of the CAN protocol and to promote the image of
the CAN technology.

33.2 How to detect and identify CANopen nodes

So you’ve got a CAN bus with some devices, but you don’t know which of them speaks “CANopen”, if any? The
OVMS v3 will help you to detect them and open their CANs ;)

33.2.1 Before you begin

. . . you need to activate the CAN bus(es) you’re going to use. As a CANopen master needs to write to the network,
you need to start the interfaces in active mode, i.e. . . . :

OVMS# can can1 start active 500000
OVMS# can can2 start active 125000

. . . and then start the CANopen master for the bus(es), i.e.:

OVMS# copen can1 start
OVMS# copen can2 start

33.2.2 Detecting CANopen nodes

The “open” in “CANopen” means any implementation can decide how much of the standard it implements. There are
some few mandatory features though, a CANopen slave has to implement, if it wants to comply with the standard.

The mandatory features helping to detect and identify CANopen nodes on a CAN bus are:

• NMT (network management), especially RESET and PREOP

• NMT bootup event messages

• Standard SDO access in pre-operational mode

If you’ve got CANopen nodes on a bus, even silent ones, issuing copen ... nmt reset will tell all of them to
reboot, and as bootup messages are mandatory, you will see them in the OVMS log output like this:

I (162904) canopen: can1 node 1 new state: Booting

The OVMS CANopen master continously monitors the network for NMT and EMCY messages. After bootup of all
nodes, you can get a list of all nodes that have been detected by issuing metrics list co.:

OVMS# metrics list co.
co.can1.nd1.emcy.code
co.can1.nd1.emcy.type
co.can1.nd1.state Operational

Note: if you request a reset, nodes may decide to boot into pre-operational state. That may produce some error
messages. Don’t worry, you can resolve this anytime by issuing copen ... nmt start.

33.2. How to detect and identify CANopen nodes 323

https://www.can-cia.org/

Open Vehicles

33.2.3 Identifying CANopen nodes

In pre-operational state, a CANopen node must be accessible at the CANopen default IDs. That means if the node
supports SDO access, we can query some standard attributes from it.

That’s what copen ... info and copen ... scan do:

• copen ... info queries the standard device attributes from a specific node,

• copen ... scan queries all 127 node IDs.

Caution: There may be non-CANopen devices on the bus producing regular data frames at CANopen response
IDs and/or reading and possibly misinterpreting CANopen requests sent to node IDs not planned by the manufac-
turer. Chances are low this triggers problems, but you should be ready to switch off the vehicle when doing a scan
– just in case.

A complete scan takes about 20 seconds. A typical scan could look like this:

OVMS# level debug canopen
OVMS# copen can1 scan
Scan #1-127...
Node #1:

Device type: 0x00000000
Error state: 0x00
Vendor ID: 0x0000001e
Product: 0x0712302d
Revision: 0x00010019
S/N: 0x47c5............
Device name: Gen4 (Renault Twizy)11 November 2011 12
HW version: 0x00000003
SW version: 0712.0001

Node #23: SDO access failed
Node #25: SDO access failed
Node #27: SDO access failed
Node #30: SDO access failed
Node #87: SDO access failed
Done.
D (227994) canopen: ReadSDO #23 0x1000.00: InitUpload failed, CANopen error code
→˓0xffffffff
D (228194) canopen: ReadSDO #25 0x1000.00: InitUpload failed, CANopen error code
→˓0xffffffff
D (228444) canopen: ReadSDO #27 0x1000.00: InitUpload failed, CANopen error code
→˓0xffffffff
D (228844) canopen: ReadSDO #30 0x1000.00: InitUpload failed, CANopen error code
→˓0xffffffff
D (238384) canopen: ReadSDO #87 0x1000.00: InitUpload failed, CANopen error code
→˓0xffffffff

This means one CANopen node was found, and some non-CANopen frames were received on IDs 0x580 +23, +25,
+27, +30 and +87.

33.2.4 Great! What now?

As you now know there’s a CANopen node, you can look for documentation on it. You can also try to access more
default SDOs to see if you can control and configure the node.

324 Chapter 33. CANopen

Open Vehicles

• If you’re lucky, the device will provide its own EDS file at SDO 1021.00. You can check that by issuing. . . :

OVMS# copen <bus> readsdo <nodeid> 1021 0

• Check out the CiA specifications, for CANopen standards, for example. . .

– DS301 for details on general standard SDOs

– DS401 for the generic I/O device class definition

– DS402 for motor controller SDOs

• Look up the manufacturer of your device by it’s vendor ID:

https://www.can-cia.org/services/canopen-vendor-id/

• Contact the manufacturer of your device for specific documentation and EDS files.

33.3 CANopen Shell Commands

Show status report

copen status

Start / stop workers

copen <bus> start
copen <bus> stop

• stop will fail if clients are still running.

Send NMT commands

copen <bus> nmt <start|stop|preop|reset|commreset> [id=0] [timeout_ms=0]

• id 0 = broadcast

• timeout > 0: wait for state change (heartbeat), 3 tries Note: state change response is not a mandatory
CANopen feature.

Read SDO

copen <bus> readsdo <id> <index_hex> <subindex_hex> [timeout_ms=50]

• index & subindex: hexadecimal without “0x” or “h”

• defaults to 3 tries on timeout

Write SDO

copen <bus> writesdo <id> <index_hex> <subindex_hex> <value> [timeout_ms=50]

• index & subindex: hexadecimal without “0x” or “h”

• value: prefix “0x” = hex, else decimal, string if no decimal

• defaults to 3 tries on timeout

Show node core attributes

33.3. CANopen Shell Commands 325

https://www.can-cia.org/standardization/specifications/
https://www.can-cia.org/services/canopen-vendor-id/

Open Vehicles

copen <bus> info <id> [timeout_ms=50]

• prints device type, error register, device name etc.

• Note: some attributes read are optional and may be empty/zero.

Scan bus for nodes

copen <bus> scan [[startid=1][-][endid=127]] [timeout_ms=50]

• loops “info” over multiple node ids (default: all)

• Note: a full scan with default timeout takes ~20 seconds

33.4 CANopen API Usage

33.4.1 Synchronous API

The synchronous use is very simple, all you need is a CANopenClient instance.

On creation the client automatically connects to the active CANopen worker or starts a new worker instance if neces-
sary.

The CANopenClient methods will block until the job is done (or has failed). Job results and/or error details are
returned in the caller provided job.

Caution: Do not make synchronous calls from code that may run in a restricted context, e.g. within a metric
update handler. Avoid using synchronous calls from time critical code, e.g. a CAN or event handler.

Example

#include "canopen.h"

// find CAN interface:
canbus* bus = (canbus*) MyPcpApp.FindDeviceByName("can1");
// ...or simply use m_can1 if you're a vehicle subclass

// create CANopen client:
CANopenClient client(bus);

// a CANopen job holds request and response data:
CANopenJob job;

// read value from node #1 SDO 0x1008.00:
uint32_t value;
if (client.ReadSDO(&job, 1, 0x1008, 0x00, (uint8_t)&value, sizeof(value)) == COR_OK) {
// read result is now in value

}

// start node #2, wait for presence:
if (client.SendNMT(&job, 2, CONC_Start, true) == COR_OK) {

// node #2 is now started
}

(continues on next page)

326 Chapter 33. CANopen

Open Vehicles

(continued from previous page)

// write value into node #3 SDO 0x2345.18:
if (client.WriteSDO(&job, 3, 0x2345, 0x18, (uint8_t)&value, 0) == COR_OK) {

// value has now been written into register 0x2345.18
}

Main API methods

/**
* SendNMT: send NMT request and optionally wait for NMT state change

* a.k.a. heartbeat message.

*
* Note: NMT responses are not a part of the CANopen NMT protocol, and

* sending "heartbeat" NMT state updates is optional for CANopen nodes.

* If the node sends no state info, waiting for it will result in timeout

* even though the state has in fact changed -- there's no way to know

* if the node doesn't tell.

*/
CANopenResult_t SendNMT(CANopenJob& job,

uint8_t nodeid, CANopenNMTCommand_t command,
bool wait_for_state=false, int resp_timeout_ms=1000, int max_tries=3);

/**
* ReceiveHB: wait for next heartbeat message of a node,

* return state received.

*
* Use this to read the current state or synchronize to the heartbeat.

* Note: heartbeats are optional in CANopen.

*/
CANopenResult_t ReceiveHB(CANopenJob& job,

uint8_t nodeid, CANopenNMTState_t* statebuf=NULL,
int recv_timeout_ms=1000, int max_tries=1);

/**
* ReadSDO: read bytes from SDO server into buffer

* - reads data into buf (up to bufsize bytes)

* - returns data length read in job.sdo.xfersize

* - ... and data length available in job.sdo.contsize (if known)

* - remaining buffer space will be zeroed

* - on result COR_ERR_BufferTooSmall, the buffer has been filled up to bufsize

* - on abort, the CANopen error code can be retrieved from job.sdo.error

*
* Note: result interpretation is up to caller (check device object dictionary

* for data types & sizes). As CANopen is little endian as ESP32, we don't

* need to check lengths on numerical results, i.e. anything from int8_t to

* uint32_t can simply be read into a uint32_t buffer.

*/
CANopenResult_t ReadSDO(CANopenJob& job,

uint8_t nodeid, uint16_t index, uint8_t subindex, uint8_t* buf, size_t bufsize,
int resp_timeout_ms=50, int max_tries=3);

/**
* WriteSDO: write bytes from buffer into SDO server

* - sends bufsize bytes from buf

* - ... or 4 bytes from buf if bufsize is 0 (use for integer SDOs of unknown type)
(continues on next page)

33.4. CANopen API Usage 327

Open Vehicles

(continued from previous page)

* - returns data length sent in job.sdo.xfersize

* - on abort, the CANopen error code can be retrieved from job.sdo.error

*
* Note: the caller needs to know data type & size of the SDO register (check

* device object dictionary). As CANopen servers normally are intelligent,

* anything from int8_t to uint32_t can simply be sent as a uint32_t with

* bufsize=0, the server will know how to convert it.

*/
CANopenResult_t WriteSDO(CANopenJob& job,

uint8_t nodeid, uint16_t index, uint8_t subindex, uint8_t* buf, size_t bufsize,
int resp_timeout_ms=50, int max_tries=3);

If you want to create custom jobs, use the low level method ExecuteJob() to execute them.

33.4.2 Asynchronous API

The CANopenAsyncClient class provides the asynchronous interface and the response queue.

To use the asynchronous API you need to handle asynchronous responses, which normally means adding a dedicated
task for this. A minimal handling would be to simply discard the responses (just empty the queue), if you don’t need
to care about the results.

Example

Instantiate the async client for a CAN bus and a queue size like this:

CANopenAsyncClient m_async(m_can1, 50);

Example response handler task:

void MyAsyncTask()
{

CANopenJob job;
while (true) {
if (m_async.ReceiveDone(job, portMAX_DELAY) != COR_ERR_QueueEmpty) {

// ...process job results...
}

}
}

Sending requests is following the same scheme as with the synchronous API. Standard result code is COR_WAIT, an
error may occur if the queue is full.

if (m_async.WriteSDO(m_nodeid, index, subindex, (uint8_t*)value, 0) != COR_WAIT) {
// ...handle error...

}

Main API methods

The API methods are similar to the synchronous methods (see above).

328 Chapter 33. CANopen

Open Vehicles

CANopenResult_t SendNMT(uint8_t nodeid, CANopenNMTCommand_t command,
bool wait_for_state=false, int resp_timeout_ms=1000, int max_tries=3);

CANopenResult_t ReceiveHB(uint8_t nodeid, CANopenNMTState_t* statebuf=NULL,
int recv_timeout_ms=1000, int max_tries=1);

CANopenResult_t ReadSDO(uint8_t nodeid, uint16_t index, uint8_t subindex,
uint8_t* buf, size_t bufsize,
int resp_timeout_ms=100, int max_tries=3);

CANopenResult_t WriteSDO(uint8_t nodeid, uint16_t index, uint8_t subindex,
uint8_t* buf, size_t bufsize,
int resp_timeout_ms=100, int max_tries=3);

CANopenJob objects are created automatically by these methods. Jobs done need to be fetched by looping
ReceiveDone() until it returns COR_ERR_QueueEmpty.

If you want to create custom jobs, use the low level method SubmitJob() to add them to the worker queue.

33.4.3 Error Handling

If an error occurs, it will be given as a CANopenResult_t other than COR_OK or COR_WAIT, either by a method
result or by the CANopenJob.result field.

Result codes are:

COR_OK = 0,

// API level:
COR_WAIT, // job waiting to be processed
COR_ERR_UnknownJobType,
COR_ERR_QueueFull,
COR_ERR_QueueEmpty,
COR_ERR_NoCANWrite,
COR_ERR_ParamRange,
COR_ERR_BufferTooSmall,

// Protocol level:
COR_ERR_Timeout,
COR_ERR_SDO_Access,
COR_ERR_SDO_SegMismatch,

// General purpose application level:
COR_ERR_DeviceOffline = 0x80,
COR_ERR_UnknownDevice,
COR_ERR_LoginFailed,
COR_ERR_StateChangeFailed

Additionally, if an SDO read/write error occurs, an abortion error code may be given by the slave. These codes follow
the CANopen standard and may be extended by device specific codes.

To translate a CANopenResult_t and/or a known SDO abort code into a string, use the CANopen class utility
methods:

std::string GetAbortCodeName(const uint32_t abortcode);
std::string GetResultString(const CANopenResult_t result);

(continues on next page)

33.4. CANopen API Usage 329

Open Vehicles

(continued from previous page)

std::string GetResultString(const CANopenResult_t result, const uint32_t abortcode);
std::string GetResultString(const CANopenJob& job);

Example

if (job.result != COR_OK) {
ESP_LOGE(TAG, "Result for %s: %s",
CANopen::GetJobName(job).c_str(),
CANopen::GetResultString(job).c_str());

}

33.4.4 Custom Address Schemes

The standard clients use the CiA DS301 default IDs for node addressing, i.e.:

NMT request → 0x000
NMT response → 0x700 + nodeid
SDO request → 0x600 + nodeid
SDO response → 0x580 + nodeid

If you need another address scheme, create a sub class of CANopenAsyncClient or CANopenClient and over-
ride the Init...() methods as necessary.

33.4.5 More Code Examples

• See shell commands in canopen_shell.cpp

• See classes SevconClient and SevconJob in the Twizy SEVCON module

330 Chapter 33. CANopen

CHAPTER 34

OVMS Server

34.1 Welcome

The OVMS (Open Vehicle Monitoring System) team is a group of enthusiasts who are developing a means to remotely
communicate with our cars, and are having fun while doing it.

The OVMS module is a low-cost hardware device that you install in your car simply by installing a SIM card, con-
necting the module to your car’s Diagnostic port connector, and positioning a cellular antenna. Once connected, the
OVMS module enables remote control and monitoring of your car.

This guide documents the installation and operation of an OVMS server.

You should, however, start by asking yourself the question ‘do I need this?’. You don’t need to run your own OVMS
server, as you can just use one of the public Open Vehicles OVMS servers. The choice is yours.

34.2 Installation

34.2.1 Prerequisites

You’ll need a Linux. OSX, BSD, or other flavour of Unix, server with a public IP address and a shell account able to
setup a daemon listening on a port. You’ll need a modern version of perl running on that server, and a bunch of perl
modules (from cpan).

You’ll need a MYSQL server running on the same machine, or another machine, and credentials to be able to create a
database and accounts.

This could possibly run on a windows server, but you are on your own ;-) [let us know instructions if you manage to
get it running]

34.2.2 Clone from GitHub

Start the installation with a clone from GitHub:

331

Open Vehicles

git clone https://github.com/openvehicles/Open-Vehicle-Server.git

You can then change into the v3/server directory, and start the installation process.

34.2.3 Perl Module Installation

You will need, at a minimum, the following modules from CPAN (or from your distribution’s package manager):

• Config::IniFiles

• Digest::MD5

• Digest::HMAC

• Crypt::RC4::XS

• MIME::Base64

• DBI

• DBD::mysql

• EV

• AnyEvent

• AnyEvent::HTTP

• AnyEvent::HTTPD

• HTTP::Parser::XS

• Data::UUID

• Email::MIME

• Email::Sender::Simple

• Net::SSLeay

• JSON::XS

• Protocol::WebSocket

34.2.4 MySQL Setup

Create a mysql database “openvehicles” and use the ovms_server.sql script to create the necessary ovms_* tables.
Create a mysql username and password with access to the database.

Insert a record into the ovms_cars table, to give you access to your own car:

vehicleid: DEMO
owner: 1
carpass: DEMO
userpass: DEMO
cryptscheme: 0
v_ptoken:
v_lastupdate: 0000-00-00 00:00:00

Obviously, change the vehicleid, carpass and userpass as necessary. The only required fields are vehicleid and carpass.

If you are upgrading from server v2 to v3, you can instead source the ovms_server_v2_to_v3.sql code to migrate your
database schema.

332 Chapter 34. OVMS Server

https://github.com/openvehicles/Open-Vehicle-Server.git
HTTP::Parser::XS
Data::UUID

Open Vehicles

34.2.5 OVMS Server Configuration

Copy conf/ovms_server.conf.default to conf/ovms_server.conf to provide a template for your configuration. Then
modify the configuration as appropriate.

34.2.6 OVMS Server Access to MySQL

In the config/ovms_server.conf file, define the access to the mysql database:

[db]
path=DBI:mysql:database=openvehicles;host=127.0.0.1
user=<mysqlusername>
pass=<mysqlpassword>

If the host is remote, change the host= parameter to be the remote IP address. Use 127.0.0.1 for local.

Test the connection with:

$ mysql -h 127.0.0.1 -u <mysqlusername> -p
Enter password: <mysqlpassword>
Welcome to the MySQL monitor. Commands end with ; or \g.

If you get “ERROR 1044 (42000): Access denied”, fix it before proceeding. The most likely cause is a mistake in
your mysql user grant rights.

34.2.7 Enable SSL (optional)

If you want to support SSL connections to your server (port 6869 for the REST API, port 6870 for OVMS MP), you
need to supply a certificate. You can create a self-signed certificate or get a certificate signed by some root CA for
your server.

In both cases you need to merge the private key PEM and the chain PEM into the file “ovms_server.pem” located in
the same directory as the “ovms_server.pl”. Also take care to secure the file, as it now contains your private key.

To create a self-signed certificate, do:

$ openssl req -sha256 -newkey rsa:4096 -nodes -keyout privkey.pem -x509 -days 365 -
→˓out fullchain.pem
$ cat privkey.pem fullchain.pem >conf/ovms_server.pem
$ chmod 0600 conf/ovms_server.pem

Or, if you want to reuse e.g. your Let’s Encrypt server certificate, do this as root:

cat /etc/letsencrypt/live/yourhost/privkey.pem /etc/letsencrypt/live/yourhost/
→˓fullchain.pem >conf/ovms_server.pem
chmod 0600 conf/vms_server.pem
chown youruid. conf/ovms_server.pem

. . . and add a cron job or certbot hook to check for renewals and redo these steps as necessary.

34.2.8 Configure the Plugins

The OVMS Server v3 is based on a pluggable architecture. The plugins themselves are stored in plugins/system and
plugins/local directories. You must configure (in conf/ovms_server.conf) the plugins that you require.

We recommend the following:

34.2. Installation 333

Open Vehicles

[plugins]
load=<<EOT
VECE
DbDBI
AuthDrupal
ApiV2
Push
PushAPNS
PushGCM
PushMAIL
ApiHttp
ApiHttpCore
ApiHttpMqapi
EOT

34.2.9 Run The Server

You can run the server manually with:

$./ovms_server.pl

If your linux host is running systemd, you can also look at support/ovms_server.service and support/ovms.logrotate as
examples for how you can run this as a background daemon.

7. ENJOY

Any questions/comments, please let us know.

Mark Webb-Johnson March 2020

34.3 Plugins

34.3.1 ApiHttp

This plugin provides an HTTP (and optional HTTPS) server and is used by subsequent API plugins to provide HTTP
services. The HTTP server is on port tcp/6868. If you provide a conf/ovms_server.pem file, it will also use that to
launch a HTTPS server on port tcp/6869.

34.3.2 ApiHttpCore

This plugin provides support for the HTTP API in OVMS Server v3. It supports the /api HTTP endpoint.

If you want to use this plugin, you need to also include ‘ApiHttp’ before loading this.

34.3.3 ApiHttpFile

This plugin provides support serving static files from the httpfiles directory. It supports the /file HTTP endpoint.

If you want to use this plugin, you need to also include ‘ApiHttp’ before loading this.

334 Chapter 34. OVMS Server

Open Vehicles

34.3.4 ApiHttpMqapi

This plugin provides support for Mosquitto API functions for authentication and ACL access control. It supports the
/mqapi HTTP endpoint.

If you want to use this plugin, you need to also include ‘ApiHttp’ before loading this.

You will also need to configure your mosquitto.conf to include:

auth_opt_superusers <your-superuser-username>
auth_opt_acl_cacheseconds 300
auth_opt_auth_cacheseconds 300
auth_opt_backends http
auth_opt_http_ip 127.0.0.1
auth_opt_http_port 6868
auth_opt_http_getuser_uri /mqapi/auth
auth_opt_http_superuser_uri /mqapi/superuser
auth_opt_http_aclcheck_uri /mqapi/acl

34.3.5 ApiV2

This plugin provides support for the v2 OVMS protocol, including crypto protocols 0x30 and 0x31. It provides a raw
v2 protocol server on tcp/6867. If you provide a conf/ovms_server.pem file, it will also launch an SSL enabled v2
protocol server on tcp/6870.

34.3.6 AuthDrupal

This plugin provides support for authentication via the Drupal database. It also provides a facility to periodically
synchronise drupal users to OVMS owner table records.

Note that only one Auth* plugin should be enabled.

34.3.7 AuthNone

This is a stub authentication plugin. It will always fail authentication, and is only provided as an example (or for use
in systems where user authentication is not required).

Note that only one Auth* plugin should be enabled.

34.3.8 DbDBI

This is the core database plugin for perl DBI style SQL databases. It is used, for example, to provide access to MySQL
databases.

34.3.9 Push

This provides the core support for Push Notifications. The actual notifications themselves are issued by sub-plugins
which register with this.

34.3. Plugins 335

Open Vehicles

34.3.10 PushAPNS

This plugin supports the ‘apns’ notification type, for push notifications to Apple devices (iPhones, iPads,
etc). It requires apple certificates, in PEM format, to be placed in conf/ovms_apns_sandbox.pem and
conf/ovms_apns_production.pem.

34.3.11 PushGCM

This plugin supports the ‘gcm’ notification type, for push notifications to Android devices. It requires a google API
key to be placed in the conf/ovms_server.conf file under [gcm] section, parameter ‘apikey’. You can obtain that key
by:

Log in to your Google account # Open https://developers.google.com/mobile/add # Select platform “Android”
Enter an arbitrary project name, e.g. “MyOvmsServer” # Package name should be “com.openvehicles.OVMS” #
Activate “Cloud Messaging” and generate the key # Note the API key and project number (= GCM sender ID)

34.3.12 PushMAIL

This plugin supports the ‘mail’ notification type, for push notifications by eMail. It simply requires a sendmail style
mailer installed on the server.

You can configure conf/ovms_server.conf [mail] section parameter ‘sender’ as the sender address to be used (otherwise
defaulting to ‘notifications@openvehicles.com’.

34.3.13 VECE

This plugin extends the notification system to translate error codes into textual error messgaes. It uses files in the vece
directory, named <vehicletype>.vece (for example, tr.vece, va.vece, etc).

The vece files themselves are ini style files.

336 Chapter 34. OVMS Server

https://developers.google.com/mobile/add
mailto:'notifications@openvehicles.com

CHAPTER 35

OVMS Protocol v2

35.1 Welcome

The OVMS (Open Vehicle Monitoring System) team is a group of enthusiasts who are developing a means to remotely
communicate with our cars, and are having fun while doing it.

The OVMS module is a low-cost hardware device that you install in your car simply by installing a SIM card, con-
necting the module to your car’s Diagnostic port connector, and positioning a cellular antenna. Once connected, the
OVMS module enables remote control and monitoring of your car.

This developer’s guide documents version 2 of the OVMS protocol.

35.2 Terms

Server The OVMS server

Car The OVMS car module

App An OVMS client application, one of:

• Active client: interactive user applications, i.e. mobile App (Note: the car module will raise the update
frequency when active clients are connected)

• Batch client: a non-interactive application, i.e. shell script

35.3 Startup

On startup, there is no banner/welcome message from the server. The caller initiates the protocol by sending a welcome
message to the server:

1. For cars

MP-C <protection scheme> <token> <digest> <car id>

337

Open Vehicles

2. For interactive user apps

MP-A <protection scheme> <token> <digest> <car id>

3. For noninteractive batch apps

MP-B <protection scheme> <token> <digest> <car id>

4. For servers

MP-S <protection scheme> <token> <digest> <car id>

The server responds with a welcome message to the caller:

MP-S <protection scheme> <token> <digest>

35.4 Encryption Scheme 0x30

This scheme is based on using shared secrets, hmac digest for authentication and encryption key negotiation, with
RC4 stream cipher and base64 encoding.

Upon startup, both the server and callers generate random tokens (encoded as textual characters). Each party then
hmac-md5s the token with the shared secret to create a digest, base64 encoded.

Note that the server will only issue it’s welcome message after receiving and validating the caller’s welcome message.

Validation of the welcome message is performed by:

1. Checking the received token to ensure that it is different from its own token, and aborting the connection if the
same.

2. Hmac-md5s the received token with the shared secret and comparing the result to the received digest.

3. If the digest match, then the partner had authenticated itself (proven it knows the shared secret, or has listened
to a previous conversation).

4. If the digests don’t match, then abort the connection as the partner doesn’t agree with the shared secret.

Once the partner has been authenticated:

1. Create a new hmac-md5 based on the client and server tokens concatenated, with the shared secret.

2. Use the new hmac digest as the key for symmetric rc4 encryption.

3. Generate, and discard, 1024 bytes of cipher text.

From this point on, messages are rc4 encrypted and base64 encoded before transmission. Lines are terminated with
CR+LF.

35.5 Encryption Scheme 0x31

This scheme is based on server authentication, and is supported in OVMS server v3 and later. Typically, servers
provide two methods of authentication:

• Username + Password: The usual username and associated password, as used when registering on the server.

• Username + ApiToken: An API token based authentication scheme, where each user may maintain one or more
access tokens (which can be created or revoked at will).

The arguments to the MP-* startup command are:

• <protection scheme>: Must be set to ‘1’ (0x31)

338 Chapter 35. OVMS Protocol v2

Open Vehicles

• <token>: Must be the username pre-registered with the server

• <digest>: Must be the password, or api token, for that user

• <car id>: Must be the vehicle ID to connect to, or the special value ‘*’ to request connection to the first vehicle
on that user’s account

Once the partner has been authenticated, a response ‘MP-S 1 <user> <vehicleid> <list-of-all-other-vehicles>’ will be
sent from the server to indicate a successful authentication.

From then onwards, the messages are in plaintext with no further encryption or encoding. Lines are terminated with
CR+LF.

Note that this scheme is intended to be used with external encryption schemes, such as SSL/TLS.

35.6 Auto Provisioning

A caller can perform auto-provisioning at any time (authenticated or not). However, only one auto-provision can be
performed for each connection.

Auto-Provisioning relies on two secrets known both to the server and client. The first is usually the VIN of the vehicle
and the second is usually the ICCID of the SIM card in the vehicle module. The reason these two are chosen is that
they can be auto-determined by the vehicle module, but also clearly seen by the user (for entry into the server).

The mechanism works by the client module first determining its VIN and ICCID secrets, then connecting to the server
and sending a AP-C message to the server proving its VIN. The server will then lookup the auto-provisioning record,
and reply with that to the client (via a AP-S or AP-X message).

The auto-provisioning record itself is platform dependent, but will typically be an ordered space separated list of
parameter values. For OVMS hardware, and OVMS.X PIC firmware, these are merely parameters #0, #1, #2, etc, to
be stored in the car module.

35.6.1 Auto Provisioning Protection Scheme 0x30

1. For cars

AP-C <protection scheme> <apkey>

2. For servers

AP-S <protection scheme> <server token> <server digest> <provisioning>

AP-X

When the provisioning record is created at the server, a random token is generated (encoded as textual characters). The
server then hmac-md5s this token with the shared secret (usually the ICCID known by the server) to create a digest,
base64 encoded. Using this hmac digest, the server generates and discards 1024 bytes of cipher text. The server
then rc4 encrypts and base64 encodes the provisioning information and stores its token, digest and encoded provision
record ready for the client to request.

The car knows its VIN and ICCID. With this information, it makes a connection to the OVMS service on the server,
and provides the VIN as the <apkey> in a AP-C message to the server.

The server will ensure that it only responds to one AP-C message for any one connection. Once responded, all
subsequent AP-C requests will always be replied with a AP-X message.

Upon receiving the AP-C message, the server looks up any provisioning records it has for the given <apkey>. If it has
none, it replies with an AP-X message.

35.6. Auto Provisioning 339

Open Vehicles

If the server does find a matching provisioning record, it replies with an AP-S message sending the previously saved
server token, digest and encoded provisioning record to the car.

If the car receives an AP-X message, it knows that auto-provisioning was not successful.

If the car receives an AP-S message, it can first validate the server authenticity. By producing its own hmac-md5 of
the server token and secret ICCID, the car can validate the server-provided digest is as expected. If this validation step
does not succeed, the car should abort the auto-provisioning.

If acceptable, the car can decrypt the provisioning record by first generating and discarding 1024 bytes of cipher text,
then decoding the provisioning record provided by the server.

35.7 Backwards Compatibility

Typically, comma-separated lists are used to transmit parameters. Applications, Servers and the Car firmware should
in general ignore extra parameters not expected. In this way, the protocol messages can be extended by adding extra
parameters, without breaking old Apps/Cars that don’t expect the new parameters.

Similarly, unrecognized messages should due ignored. Unrecognised commands in the “C” (command) message
should be responded to with a generic “unrecognized” response (in the “c” (command response) messages).

35.8 Messages

35.8.1 Car <-> Server <-> App

After discarding CR+LF line termination, and base64 decoding, the following protocol messages are defined.

<message> ::= <magic> <version> <space> <protmsg>

<magic> ::= MP-

<version> ::= 1 byte version number - this protocol is 0x30

<space> ::= ‘ ‘ (ascii 0x20)

<protmsg> ::= <servertocar> | <cartoserver> | <servertoapp> | <apptoserver>

<servertocar> ::- “S” <payload>

<cartoserver> ::= “C” <payload>

<servertoapp> ::= “s” <payload>

<apptoserver> ::= “c” <payload>

<payload> ::= <code> <data>

<code> ::= 1 byte instruction code

<data> ::= N bytes data (dependent on instruction code)

35.8.2 Ping message 0x41 “A”

This message may be sent by any party, to test the link. The expected response is a 0x61 ping acknowledgement.
There is no expected payload to this message, an any given can be discarded.

340 Chapter 35. OVMS Protocol v2

Open Vehicles

35.8.3 Ping Acknowledgement message 0x61 “a”

This message is sent in response to a 0x41 ping message. There is no expected payload to this message, an any given
can be discarded.

35.8.4 Command message 0x43 “C”

This message is sent <apptoserver> then <servertocar> and carries a command to be executed on the car. The message
would normally be paranoid-encrypted.

<data> is a comma-separated list of:

• command (a command code 0..65535)

• parameters (dependent on the command code)

For further information on command codes and parameters, see the command section below.

35.8.5 Command response 0x63 “c”

This message is sent <cartoserver> then <servertoapp> and carries the response to a command executed on the car.
The message would normally be paranoid-encrypted.

<data> is a comma-separated list of:

• command (a command code 0..65535)

• result (0=ok, 1=failed, 2=unsupported, 3=unimplemented)

• parameters (dependent on the command code and result)

For result=0, the parameters depend on the command being responded to (see the command section below for further
information).

For result=1, the parameter is a textual string describing the fault.

For result=2 or 3, the parameter is not used.

35.8.6 Car Environment message 0x44 “D”

This message is sent <cartoserver> “C”, or <servertoapp> “s”, and transmits the environment settings of the vehicle.

<data> is comma-separated list of:

Door state #1

• bit0 = Left Door (open=1/closed=0)

• bit1 = Right Door (open=1/closed=0)

• bit2 = Charge port (open=1/closed=0)

• bit3 = Pilot present (true=1/false=0) (always 1 on my 2.5)

• bit4 = Charging (true=1/false=0)

• bit5 = always 1

• bit6 = Hand brake applied (true=1/false=0)

• bit7 = Car ON (“ignition”) (true=1/false=0)

35.8. Messages 341

Open Vehicles

Door state #2

• bit3 = Car Locked (locked=1/unlocked=0)

• bit4 = Valet Mode (active=1/inactive=0)

• bit6 = Bonnet (open=1/closed=0)

• bit7 = Trunk (open=1/closed=0)

Lock/Unlock state

• 4 = car is locked

• 5 = car is unlocked

Temperature of the PEM (celcius)

Temperature of the Motor (celcius)

Temperature of the Battery (celcius)

Car trip meter (in 1/10th of a distance unit)

Car odometer (in 1/10th of a distance unit)

Car speed (in distance units per hour)

Car parking timer (0 for not parked, or number of seconds car parked for)

Ambient Temperature (in Celcius)

Door state #3

• bit0 = Car awake (turned on=1 / off=0)

• bit1 = Cooling pump (on=1/off=0)

• bit6 = 1=Logged into motor controller

• bit7 = 1=Motor controller in configuration mode

Stale PEM,Motor,Battery temps indicator (-1=none, 0=stale, >0 ok)

Stale ambient temp indicator (-1=none, 0=stale, >0 ok)

Vehicle 12V line voltage

Door State #4

• bit2 = alarm sounds (on=1/off=0)

Reference voltage for 12v power

Door State #5

• bit0 = Rear left door (open=1/closed=0)

• bit1 = Rear right door (open=1/closed=0)

• bit2 = Frunk (open=1/closed=0)

• bit4 = 12V battery charging

• bit5 = Auxiliary 12V systems online

• bit7 = HVAC running

342 Chapter 35. OVMS Protocol v2

Open Vehicles

Temperature of the Charger (celsius)

Vehicle 12V current (i.e. DC converter output)

Cabin temperature (celsius)

35.8.7 Paranoid-mode encrypted message 0x45 “E”

This message is sent for any of the four message <protmsg> types, and represents an encrypted transmission that the
server should just relay (or is relaying) without being able to interpret it. The encryption is based on a shared secret,
between the car and the apps, to which the server is not privy.

<data> is:

• <paranoidtoken> | <paranoidcode>

• <paranoidtoken> ::= “T” <ptoken>

• <paranoidcode> ::= “M” <code> <data>

In the case of <paranoidtoken>, the <ptoken> is a random token that represent the encryption key. It can only be
sent <cartoserver> or <servertoapp>. Upon receiving this token, the server discards all previously stored paranoid
messages, sends it on to all connected apps, and then stores the token. Every time an app connects, the server also
sends this token to the app.

In the case of <paranoidcode>, the <code> is a sub-message code, and can be any of the codes listed in this document
(except for “A”, “a” and “E”). The <data> is the corresponding encrypted payload message. The encryption is
performed on the <data> by:

• Create a new hmac-md5 based on the <ptoken>, with the shared secret.

• Use the new hmac digest as the key for symmetric rc4 encryption.

• Generate, and discard, 1024 bytes of cipher text.

and the data is base64 encoded. Upon receiving a paranoid message from the car, the server forwards it on the all
connected apps, and then stores the message. Every time an app connects, the server sends all such stored messages.
Upon receiving a paranoid message from an app, if the car is connected, the server merely forwards it on to the car,
otherwise discarding it.

35.8.8 Car firmware message 0x46 “F”

This message is sent <cartoserver> “C”, or <servertoapp> “s”, and transmits the firmware versions of the vehicle.

<data> is comma-separated list of:

• Car firmware version

• Car VIN

• GSM signal level

• Write-enabled firmware (0=read-only, 1=write-enabled)

• Car type (TR=Tesla Roadster, others may follow)

• GSM lock

35.8. Messages 343

Open Vehicles

35.8.9 Server firmware message 0x66 “f”

This message is sent <servertocar> “S”, or <servertoapp> “s”, and transmits the firmware versions of the server.

<data> is comma-separated list of:

• Server firmware version

35.8.10 Car group subscription message 0x47 “G”

This message is sent <apptoserver> “A”, and requests subscription to the specified group.

<data> is comma-separated list of:

• Group name

35.8.11 Car group update message 0x67 “g”

This message is sent <cartoserver> “C”, or <servertoapp> “s”, and transmits a group location message for the vehicle.

<data> is comma-separated list of:

• Vehicle ID (only <servertoapp>, not sent <cartoserver>)

• Group name

• Car SOC

• Car Speed

• Car direction

• Car altitude

• Car GPS lock (0=nogps, 1=goodgps)

• Stale GPS indicator (-1=none, 0=stale, >0 ok)

• Car latitude

• Car longitude

35.8.12 Historical Data update message 0x48 “H”

This message is sent <cartoserver> “C, and transmits a historical data message for storage on the server.

<data> is comma-separated list of:

• type (unique storage class identification type)

• recordnumber (integer record number)

• lifetime (in seconds)

• data (a blob of data to be dealt with as the application requires)

The lifetime is specified in seconds, and indicates to the server the minimum time the vehicle expects the server to
retain the historical data for. Consideration should be made as to server storage and bandwidth requirements.

The type is composed of <vehicletype> - <class> - <property>

<Vehicletype> is the usual vehicle type, or ‘*’ to indicate generic storage suitable for all vehicles.

344 Chapter 35. OVMS Protocol v2

Open Vehicles

<Class> is one of:

• PWR (power)

• ENG (engine)

• TRX (transmission)

• CHS (chassis)

• BDY (body)

• ELC (electrics)

• SAF (safety)

• SEC (security)

• CMF (comfort)

• ENT (entertainment)

• COM (communications)

• X** (unclassified and experimental, with ** replaced with 2 digits code)

<Property> is a property code, which the vehicle decides.

The server will timestamp the incoming historical records, and will set an expiry date of timestamp + <lifetime>
seconds. The server will endeavor to retain the records for that time period, but may expend data earlier if necessary.

35.8.13 Historical Data update+ack message 0x68 “h”

This message is sent <cartoserver> “C”, or <severtocar> “c”, and transmits/acknowledges historical data message for
storage on the server.

For <cartoserver>, the <data> is comma-separated list of:

• ackcode (an acknowledgement code)

• timediff (in seconds)

• type (unique storage class identification type)

• recordnumber (integer record number)

• lifetime (in seconds)

• data (a blob of data to be dealt with as the application requires)

The ackcode is a numeric acknowledgement code - if the server successfully receives the message, it will reply with
“h” and this ackcode to acknowledge reception.

The timediff is the time difference, in seconds, to use when storing the record (e.g.; -3600 would indicate the record
data is from one hour ago).

The lifetime is specified in seconds, and indicates to the server the minimum time the vehicle expects the server to
retain the historical data for. Consideration should be made as to server storage and bandwidth requirements.

For <servertocar>, the <data> is:

• ackcode (an acknowledgement code)

The <cartoserver> message sends the data to the server. The <servertocar> message acknowledges the data.

35.8. Messages 345

Open Vehicles

35.8.14 Push notification message 0x50 “P”

This message is sent <cartoserver> “C”, or <servertoapp> “s”. When used by the car, it requests the server to send a
textual push notification alert message to all apps registered for this car. The <data> is 1 byte alert type followed by N
bytes of textual message. The server will use this message to send the notification to any connected apps, and can also
send via external mobile frameworks for unconnected apps.

35.8.15 Push notification subscription 0x70 “p”

This message is sent <apptoserver> A”. It is used by app to register for push notifications, and is normally at the start
of a connection. The <data> is made up of:

<appid>,<pushtype>,<pushkeytype>,<vehicleid>,<netpass>,<pushkeyvalue>

The server will verify the credentials for each vehicle, and store the required notification information.

Note: As of June 2020, only one vehicleid can be subscribed at a time. If multiple vehicles are required, then they
should each be subscribed in individual messages.

35.8.16 Server -> Server Record message 0x52 “R”

This message is sent <servertoserver> “S”, and transmits an update to synchronized database table records.

Sub-type RV (Vehicle record): <data> is comma-separated list of:

• Vehicleid

• Owner

• Carpass

• v_server

• deleted

• changed

Sub-type RO (Owner record): <data> is comma-separated list of:

• Ownerid

• OwnerName

• OwnerMail

• PasswordHash

• OwnerStatus

• deleted

• changed

35.8.17 Server -> Server Message Replication message 0x72 “r”

This message is sent <servertoserver> “S”, and replicates a message for a particular car.

<data> is comma-separated list of:

• vehicleid

• message code

346 Chapter 35. OVMS Protocol v2

Open Vehicles

• message data

35.8.18 Car state message 0x53 “S”

This message is sent <cartoserver> “C”, or <servertoapp> “s”, and transmits the last known status of the vehicle.

<data> is comma-separated list of:

• SOC

• Units (“M” for miles, “K” for kilometers)

• Line voltage

• Charge current (amps)

• Charge state (charging, topoff, done, prepare, heating, stopped)

• Charge mode (standard, storage, range, performance)

• Ideal range

• Estimated range

• Charge limit (amps)

• Charge duration (minutes)

• Charger B4 byte (tba)

• Charge energy consumed (1/10 kWh)

• Charge sub-state

• Charge state (as a number)

• Charge mode (as a number)

• Charge Timer mode (0=onplugin, 1=timer)

• Charge Timer start time

• Charge timer stale (-1=none, 0=stale, >0 ok)

• Vehicle CAC100 value (calculated amp hour capacity, in Ah)

• ACC: Mins remaining until car will be full

• ACC: Mins remaining until car reaches charge limit

• ACC: Configured range limit

• ACC: Configured SOC limit

• Cooldown: Car is cooling down (0=no, 1=yes)

• Cooldown: Lower limit for battery temperature

• Cooldown: Time limit (minutes) for cooldown

• ACC: charge time estimation for current charger capabilities (min.)

• Charge ETR for range limit (min.)

• Charge ETR for SOC limit (min.)

• Max ideal range

35.8. Messages 347

Open Vehicles

• Charge/plug type ID according to OpenChargeMaps.org connectiontypes (see http://api.openchargemap.io/v2/
referencedata/)

• Charge power output (kW)

• Battery voltage (V)

• Battery SOH (state of health) (%)

• Charge power input (kW)

• Charger efficiency (%)

35.8.19 Car update time message 0x53 “T”

This message is sent <servertoapp> “s”, and transmits the last known update time of the vehicle.

<data> is the number of seconds since the car last sent an update message

35.8.20 Car location message 0x4C “L”

This message is sent <cartoserver> “C” and transmits the last known location of the vehicle.

<data> is comma-separated list of:

• Latitude

• Longitude

• Car direction

• Car altitude

• Car GPS lock (0=nogps, 1=goodgps)

• Stale GPS indicator (-1=none, 0=stale, >0 ok)

• Car speed (in distance units per hour)

• Car trip meter (in 1/10th of a distance unit)

• Drive mode (car specific encoding of current drive mode)

• Battery power level (in kW, negative = charging)

• Energy used (in Wh)

• Energy recovered (in Wh)

• Inverter motor power (kW) (positive = output)

• Inverter efficiency (%)

• GPS mode indicator (see below)

• GPS satellite count

• GPS HDOP (see below)

• GPS speed (in distance units per hour)

GPS mode indicator: this shows the NMEA receiver mode. If using the SIM5360 modem for GPS, this is a two
character string. The first character represents the GPS receiver mode, the second the GLONASS receiver mode. Each
mode character may be one of:

• N = No fix. Satellite system not used in position fix, or fix not valid

348 Chapter 35. OVMS Protocol v2

http://api.openchargemap.io/v2/referencedata/
http://api.openchargemap.io/v2/referencedata/

Open Vehicles

• A = Autonomous. Satellite system used in non-differential mode in position fix

• D = Differential (including all OmniSTAR services). Satellite system used in differential mode in position fix

• P = Precise. Satellite system used in precision mode. Precision mode is defined as: no deliberate degradation
(such as Selective Availability) and higher resolution code (P-code) is used to compute position fix

• R = Real Time Kinematic. Satellite system used in RTK mode with fixed integers

• F = Float RTK. Satellite system used in real time kinematic mode with floating integers

• E = Estimated (dead reckoning) Mode

• M = Manual Input Mode

• S = Simulator Mode

GPS HDOP: HDOP = horizontal dilution of precision. This is a measure for the currently achievable precision of
the horizontal coordinates (latitude & longitude), which depends on the momentary relative satellite positions and
visibility to the device.

The lower the value, the higher the precision. Values up to 2 mean high precision, up to 5 is good. If the value is
higher than 20, coordinates may be off by 300 meters from the actual position.

See https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation) for further details.

35.8.21 Car Capabilities message 0x56 “V”

This message is sent <cartoserver> “C”, or <servertoapp> “s”, and transmits the vehicle capabilities. It was introduced
with v2 of the protocol.

<data is comma-separated list of vehicle capabilities of the form:

• C<cmd> indicates vehicle support command <cmd>

• C<cmdL>-<cmdH> indicates vehicle will support all commands in the specified range

35.8.22 Car TPMS message 0x57 “W” (old/obsolete)

Note: Message “W” has been replaced by “Y” (see below) for OVMS V3. The V3 module will still send “W”
messages along with “Y” for old clients for some time. Clients shall adapt to using “Y” if available ASAP, “W”
messages will be removed from V3 in the near future.

This message is sent <cartoserver> “C”, or <servertoapp> “s”, and transmits the last known TPMS values of the
vehicle.

<data> is comma-separated list of:

• front-right wheel pressure (psi)

• front-right wheel temperature (celcius)

• rear-right wheel pressure (psi)

• rear-right wheel temperature (celcius)

• front-left wheel pressure (psi)

• front-left wheel temperature (celcius)

• rear-left wheel pressure (psi)

35.8. Messages 349

https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation

Open Vehicles

• rear-left wheel temperature (celcius)

• Stale TPMS indicator (-1=none, 0=stale, >0 ok)

35.8.23 Car TPMS message 0x59 “Y”

This message is sent <cartoserver> “C”, or <servertoapp> “s”, and transmits the last known TPMS values of the
vehicle.

<data> is comma-separated list of:

• number of defined wheel names

• list of defined wheel names

• number of defined pressures

• list of defined pressures (kPa)

• pressures validity indicator (-1=undefined, 0=stale, 1=valid)

• number of defined temperatures

• list of defined temperatures (Celcius)

• temperatures validity indicator (-1=undefined, 0=stale, 1=valid)

• number of defined health states

• list of defined health states (Percent)

• health states validity indicator (-1=undefined, 0=stale, 1=valid)

• number of defined alert levels

• list of defined alert levels (0=none, 1=warning, 2=alert)

• alert levels validity indicator (-1=undefined, 0=stale, 1=valid)

Note: Pressures are transported in kPa now instead of the former PSI. To convert to PSI, multiply by
0.14503773773020923.

35.8.24 Peer connection message 0x5A “Z”

This message is sent <servertocar> or <servertoapp> to indicate the connection status of the peer (car for <server-
toapp>, interactive apps for <servertocar>). It indicates how many peers are currently connected.

It is suggested that the car should use this to immediately report on, and to increase the report frequency of, status - in
the case that one or more interactive Apps are connected and watching the car.

Batch client connections do not trigger any peer count change for the car, but they still receive the car peer status from
the server.

<data> is:

• Number of peers connected, expressed as a decimal string

350 Chapter 35. OVMS Protocol v2

Open Vehicles

35.9 Commands

35.9.1 Commands and Expected Responses

For message types “C” and “c”, the following commands and responses are expected to be supported.

35.9.2 1 - Request feature list

Command parameters are unused and ignored by the car.

Response is a sequence of individual messages with each message containing the following parameters:

• feature number

• maximum number of features

• feature value

Registered features are:

• 0: Digital SPEEDO (experimental)

• 8: Location STREAM mode (consumes more bandwidth)

• 9: Minimum SOC

• 15: CAN bus can write-enabled

Note that features 0 through 7 are ‘volatile’ and will be lost (reset to zero value) if the power is lost to the car module,
or module is reprogrammed. These features are considered extremely experimental and potentially dangerous.

Features 8 through 15 are ‘permanent’ and will be stored as parameters 23 through 31. These features are considered
more stable, but optional.

35.9.3 2 - Set feature

Command parameters are:

• feature number to set

• value to set

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.4 3 - Request parameter list

Command parameters are unused and ignored by the car.

Response is a sequence of individual messages with each message containing the following parameters:

• parameter number

• maximum number of parameters

• parameter value

Registered parameters are:

• 0: Registered telephone number

• 1: Registration Password

35.9. Commands 351

Open Vehicles

• 2: Miles / Kilometer flag

• 3: Notification method list

• 4: Server IP

• 5: GPRS APN

• 6: GPRS User

• 7: GPRS Password

• 8: Vehicle ID

• 9: Network Password

• 10: Paranoid Password

Note that some parameters (24 through 31) are tied directly to the features system (for permanent features) and are
thus not directly maintained by the parameter system or shown by this command.

35.9.5 4 - Set parameter

Command parameters are:

• parameter number to set

• value to set

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.6 5 - Reboot

Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of the result. Shortly after sending the
response, the module will reboot.

35.9.7 6 - Charge Alert

Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of the result. Shortly after sending the
response, the module will issue a charge alert.

35.9.8 7 - Execute SMS command

Command parameter is:

• SMS command with parameters

Response is the output of the SMS command that would otherwise have been sent as the reply SMS, with LF characters
converted to CR.

The caller id is set to the registered phone number. Return code 1 is used for all errors, i.e. authorization failure,
command failure and unknown/unhandled commands.

Note: SMS commands with multiple replies are not yet supported, only the last reply will be returned.

352 Chapter 35. OVMS Protocol v2

Open Vehicles

35.9.9 10 - Set Charge Mode

Command parameters are:

• mode (0=standard, 1=storage,3=range,4=performance)

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.10 11 - Start Charge

Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.11 12 - Stop Charge

Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.12 15 - Set Charge Current

Command parameters are:

• current (specified in Amps)

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.13 16 - Set Charge Mode and Current

Command parameters are:

• mode (0=standard, 1=storage,3=range,4=performance)

• current (specified in Amps)

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.14 17 - Set Charge Timer Mode and Start Time

Command parameters are:

• timermode (0=plugin, 1=timer)

• start time (0x059F for midnight GMT, 0x003B for 1am GMT, etc)

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.15 18 - Wakeup car

Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of the result.

35.9. Commands 353

Open Vehicles

35.9.16 19 - Wakeup temperature subsystem

Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.17 20 - Lock Car

Command parameters are:

• pin (the car pin to use for locking)

Response parameters are unused, and will merely indicate the success or not of the result.

N.B. unlock/lock may not affect the immobilizer+alarm (when fitted)

35.9.18 21 - Activate Valet Mode

Command parameters are:

• pin (the car pin to activate valet mode)

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.19 22 - Unlock Car

Command parameters are:

• pin (the car pin to use for unlocking)

Response parameters are unused, and will merely indicate the success or not of the result.

N.B. unlock/lock does not affect the immobilizer+alarm (when fitted)

35.9.20 23 - Deactivate Value Mode

Command parameters are:

• pin (the car pin to use for deactivating value mode)

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.21 24 - Home Link

Command parameters are:

• button (home link button 0, 1 or 2)

Response parameters are unused, and will merely indicate the success or not of the result.

35.9.22 25 - Cooldown

Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of the result.

354 Chapter 35. OVMS Protocol v2

Open Vehicles

35.9.23 30 - Request GPRS utilization data

Command parameters are unused and ignored by the car.

Response is a sequence of individual messages with each message containing the following parameters:

• record number

• maximum number of records

• date

• car received bytes

• car transmitted bytes

• apps received bytes

• apps transmitted bytes

Note that this request is handled by the server, not the car, so must not be sent in paranoid mode. The response (from
the server) will also not be sent in paranoid mode.

N.B. Dates (and GPRS utilization data) are in UTC.

35.9.24 31 - Request historical data summary

Command parameters are:

• since (optional timestamp condition)

Response is a sequence of individual messages with each message containing the following parameters:

• type number

• maximum number of types

• type value

• number of unique records (per type)

• total number of records (per type)

• storage usage (in bytes, per type)

• oldest data timestamp (per type)

• newest data timestamp (per type)

N.B. Timestamps are in UTC.

35.9.25 32 - Request historical data records

Command parameters are:

• type (the record type to retrieve)

• since (optional timestamp condition)

Response is a sequence of individual messages with each message containing the following parameters:

• response record number

• maximum number of response records

• data record type

35.9. Commands 355

Open Vehicles

• data record timestamp

• data record number

• data record value

35.9.26 40 - Send SMS

Command parameters are:

• number (telephone number to send sms to)

• message (sms message to be sent)

Response parameters are unused, and will merely indicate the success or not of the submission (not delivery) of the
SMS.

35.9.27 41 - Send MMI/USSD Codes

Command parameters are:

• USSD_CODE (the ussd code to send)

Response parameters are unused, and will merely indicate the success or not of the submission (not delivery) of the
request.

35.9.28 49 - Send raw AT Command

Command parameters are:

• at (the AT command to send - including the AT prefix)

Response parameters are unused, and will merely indicate the success or not of the submission (not delivery) of the
request.

356 Chapter 35. OVMS Protocol v2

CHAPTER 36

OVMS HTTP API

36.1 Welcome

For some time now I’ve wanted to offer an HTTP API for OVMS. The existing car<->server and server<->app protocol
is cool, but requires going through some hoops (perl, whatever) to handle the encryption and protocol level stuff. An
HTTP API would make this much easier to externally script, and would be great for pulling down logs and other such
things.

This document describes this HTTP API.

Mark, February 2013.

36.2 Format

The API is a RESTfull service running at:

• http://api.openvehicles.com:6868/api/. . .

• https://api.openvehicles.com:6869/api/. . .

Other OVMS servers should provide this API on the same ports, but for the rest of this manual we will simply refer to
api.openvehicles.com as the server being used.

The return data is a json formatted array of hashes. Each record is one for one vehicle and shows you the vehicle id,
as well as counts for the number of apps currently connected to that vehicle, and whether the vehicle is connected to
the net (server) or not.

From the server point of view, we can treat an api session just like an app session. From the vehicle point of view there
will be no difference - once an API connects to a vehicle, the server will send a “Z 1” message to tell the module it has
a connection. If the session times out or is logged out, the server will inform the modules in the vehicles.

357

http://api.openvehicles.com:6868/api/
https://api.openvehicles.com:6869/api/

Open Vehicles

36.2.1 Example

For example, once authenticated you can request a list of vehicles on your account:

$ curl -v -X GET -b cookiejar http://api.openvehicles.com:6868/api/vehicles

* About to connect() to api.openvehicles.com port 6868 (#0)

* Trying api.openvehicles.com....

* connected

* Connected to tmc.openvehicles.com (64.111.70.40) port 6868 (#0)
> GET /api/vehicles HTTP/1.1
User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0
OpenSSL/0.9.8r zlib/1.2.5
Host: api.openvehicles.com:6868
Accept: */*
Cookie: ovmsapisession=9ed66d0e-5768-414e-b06d-476f13be40ff

* HTTP 1.0, assume close after body
< HTTP/1.0 200 Logout ok
< Connection: close
< Content-Length: 280
< Cache-Control: max-age=0
< Content-Type: application/json
< Date: Fri, 22 Feb 2013 12:44:41 GMT
< Expires: Fri, 22 Feb 2013 12:44:41 GMT
<
[

{"id":"DEMO","v_apps_connected":0,"v_net_connected":1},
{"id":"MARKSCAR","v_apps_connected":1,"v_net_connected":1},
{"id":"QCCAR","v_apps_connected":0,"v_net_connected":0},
{"id":"RALLYCAR","v_apps_connected":0,"v_net_connected":0},
{"id":"TESTCAR","v_apps_connected":0,"v_net_connected":0}

]

(note that the above is re-formatted slightly, to make it clearer to read).

36.3 Authentication

36.3.1 Alternatives

Each API call must be authenticated, and there are currently three options for this:

Username+Passsword authentication: Specify parameters ‘username’ and ‘password’ in the URL, and they will be
validated against registered users on the server. # Username+ApiToken authentication: Specify parameter ‘username’
as the registered user, and ‘password’ as a registered API token, in the URL, and they will be validated against
registered API tokens for that user on the server. # Cookie authentication: A cookie may be obtained (by either of the
above two authentication methods), and then used for subsequent API calls.

36.3.2 Cookie Based Authentication

Cookie based authentication avoids the requirement to authenticate each time. It is also a requirement for session
based API calls. This is done with a http “GET /api/cookie” passing parameters ‘username’ and ‘password’ as your
www.openvehicles.com username and password (or API token) respectively:

358 Chapter 36. OVMS HTTP API

Open Vehicles

$ curl -v -X GET -c cookiejar
http://api.openvehicles.com:6868/api/cookie?username=USERNAME\&password=PASSWORD

* About to connect() to tmc.openvehicles.com port 6868 (#0)

* Trying 64.111.70.40...

* connected

* Connected to tmc.openvehicles.com (64.111.70.40) port 6868 (#0)
GET /api/cookie?username=USERNAME&password=PASSWORD HTTP/1.1
User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0
OpenSSL/0.9.8r zlib/1.2.5
Host: tmc.openvehicles.com:6868
Accept: */*

* HTTP 1.0, assume close after body
< HTTP/1.0 200 Authentication ok
< Connection: close
< Content-Length: 9
< Cache-Control: max-age=0
< Content-Type: text/plain

* Added cookie ovmsapisession="9ed66d0e-5768-414e-b06d-476f13be40ff" for domain tmc.
→˓openvehicles.com, path /api/, expire 0
< Set-Cookie: ovmsapisession=9ed66d0e-5768-414e-b06d-476f13be40ff
< Date: Fri, 22 Feb 2013 12:43:56 GMT
< Expires: Fri, 22 Feb 2013 12:43:56 GMT
<
Login ok

Once logged in, all subsequent requests should pass the cookie (ovmsapisession). The session will expire after 3
minutes of no use, or you can specifically terminate / logout the session by calling “DELETE /api/cookie”.

The cookie can be destroyed (and session logged out) using the DELETE method (passing the original cookie):

$ curl -v -X DELETE -b cookiejar
http://api.openvehicles.com:6868/api/cookie

36.3.3 API Token Maintenance

An API token can be created with a POST to the /api/token API endpoint:

$ curl -v -X POST -F 'application=<app>' -F 'purpose=<purpose>' -F 'permit=<permit>'
http://api.openvehicles.com:6868/api/token

Note that the ‘purpose’ and ‘application’ fields are comments attached to the token and are intended to identify the
application that created/uses the token and the purpose that token is used for.

The ‘permit’ field defines the list of rights granted to the user of this token.

Any of the three authentication mechanisms can be used for this, so long as the permissions include either ‘to-
ken.admin’ or ‘admin’ rights.

An API token can be deleted with a DELETE to the /api/token/<TOKEN> API endpoint:

$ curl -v -X DELETE http://api.openvehicles.com:6868/api/token/<TOKEN>

36.3. Authentication 359

Open Vehicles

36.4 Requests

36.4.1 GET /api/cookie

Login and return a session cookie.

36.4.2 DELETE /api/cookie

Delete the session cookie and logout.

36.4.3 GET /api/token

Return a list of registered API tokens.

36.4.4 POST /api/token

Create an API token.

36.4.5 DELETE /api/token/<TOKEN>

Delete the specified API token.

36.4.6 GET /api/vehicles

Return a list of registered vehicles:

• id Vehicle ID

• v_net_connected Number of vehicles currently connected

• v_apps_connected Number of apps currently connected

• v_btcs_connected Number of batch clients currently connected

36.4.7 GET /api/protocol/<VEHICLEID>

Return raw protocol records (no vehicle connection):

• m_msgtime Date/time message received

• m_paranoid Paranoid mode flag

• m_ptoken Paranoid mode token

• m_code Message code

• m_msg Message body

360 Chapter 36. OVMS HTTP API

Open Vehicles

36.4.8 GET /api/status/<VEHICLEID>

Return vehicle status:

• soc

• units

• idealrange

• idealrange_max

• estimatedrange

• mode

• chargestate

• cac100

• soh

• cooldown_active

• fl_dooropen

• fr_dooropen

• cp_dooropen

• pilotpresent

• charging

• caron

• carlocked

• valetmode

• bt_open

• tr_open

• temperature_pem

• temperature_motor

• temperature_battery

• temperature_charger

• tripmeter

• odometer

• speed

• parkingtimer

• temperature_ambient

• carawake

• staletemps

• staleambient

• charging_12v

• vehicle12v

36.4. Requests 361

Open Vehicles

• vehicle12v_ref

• vehicle12v_current

• alarmsounding

36.4.9 GET /api/tpms/<VEHICLEID>

Return tpms status:

• fr_pressure

• fr_temperature

• rr_pressure

• rr_temperature

• fl_pressure

• fl_temperature

• rl_pressure

• rl_temperature

• staletpms

36.4.10 GET /api/location/<VEHICLEID>

Return vehicle location:

• latitude

• longitude

• direction

• altitude

• gpslock

• stalegps

• speed

• tripmeter

• drivemode

• power

• energyused

• energyrecd

36.4.11 GET /api/charge/<VEHICLEID>

Return vehicle charge status:

• linevoltage

• battvoltage

362 Chapter 36. OVMS HTTP API

Open Vehicles

• chargecurrent

• chargepower

• chargetype

• chargestate

• soc

• units

• idealrange

• estimatedrange

• mode

• chargelimit

• chargeduration

• chargeb4

• chargekwh

• chargesubstate

• chargetimermode

• chargestarttime

• chargetimerstale

• cac100

• soh

• charge_etr_full

• charge_etr_limit

• charge_limit_range

• charge_limit_soc

• cooldown_active

• cooldown_tbattery

• cooldown_timelimit

• charge_estimate

• charge_etr_range

• charge_etr_soc

• idealrange_max

• cp_dooropen

• pilotpresent

• charging

• caron

• temperature_pem

• temperature_motor

36.4. Requests 363

Open Vehicles

• temperature_battery

• temperature_charger

• temperature_ambient

• carawake

• staletemps

• staleambient

• charging_12v

• vehicle12v

• vehicle12v_ref

• vehicle12v_current

36.4.12 GET /api/historical/<VEHICLEID>

Request historical data summary (as array of):

• h_recordtype

• distinctrecs

• totalrecs

• totalsize

• first

• last

36.4.13 GET /api/historical/<VEHICLEID>/<DATATYPE>

Request historical data records:

• h_timestamp

• h_recordnumber

• h_data

36.4.14 Not Yet Implemented

• GET /api/vehicle/<VEHICLEID> Connect to, and return vehicle information

• DELETE /api/vehicle/<VEHICLEID> Disconnect from vehicle

• PUT /api/charge/<VEHICLEID> Set vehicle charge status

• DELETE /api/charge/<VEHICLEID> Abort a vehicle charge

• GET /api/lock/<VEHICLEID> Return vehicle lock status

• PUT /api/lock/<VEHICLEID> Lock a vehicle

• DELETE /api/lock/<VEHICLEID> Unlock a vehicle

• GET /api/valet/<VEHICLEID> Return valet status

364 Chapter 36. OVMS HTTP API

Open Vehicles

• PUT /api/valet/<VEHICLEID> Enable valet mode

• DELETE /api/valet/<VEHICLEID> Disable valet mode

• GET /api/features/<VEHICLEID> Return vehicle features

• PUT /api/feature/<VEHICLEID> Set a vehicle feature

• GET /api/parameters/<VEHICLEID> Return vehicle parameters

• PUT /api/parameter/<VEHICLEID> Set a vehicle parameter

• PUT /api/reset/<VEHICLEID> Reset the module in a particular vehicle

• PUT /api/homelink/<VEHICLEID> Activate home link

36.4. Requests 365

Open Vehicles

366 Chapter 36. OVMS HTTP API

Index

A
App, 337

C
Car, 337

S
Server, 337

367

	Open-Vehicle-Monitoring-System-3 (OVMS3)
	User Guide
	Plugins
	BMW i3 / i3s
	DBC Based Vehicles
	DEMO Vehicle
	Fiat 500e
	Hyundai Ioniq vFL
	Kia e-Niro
	Kia Soul EV
	Maxus eDeliver3
	Mercedes-Benz B250E W242
	MG EV
	Mitsubishi Trio
	Nissan Leaf/e-NV200
	OBDII Vehicles
	Renault Twizy
	Renault Zoe
	Smart ED Gen.3
	Smart ED/EQ Gen.4 (453)
	Tesla Model 3
	Tesla Model S
	Tesla Roadster
	Tracking Vehicles
	VW e-Up
	VW e-Up via OBD2
	VW e-Up via Comfort CAN (T26A)
	Command Line Interpreter
	CAN Bus Data Logging
	CRTD CAN Log Format
	Web Framework & Plugins
	Scripting
	CANopen
	OVMS Server
	OVMS Protocol v2
	OVMS HTTP API
	Index

