
SDS 940 Lectures

Butler W. Lampson

This is a transcript of the lectures that I gave to the FFL Systems Group at White, Weld & Co in 1966.

The lectures were taped, transcribed by a secretary, and proofread by me at that time. A copy of the re-

sulting manuscript was scanned by Bob Frankston (a member of the group) in 2004, except that pages

83-123 and 151-153 were missing. I ran this scan through an OCR program in June 2004. A different

copy of the manuscript, but a complete one, was scanned by Steve Bellovin in December 2011 and the

missing pages OCRed by me. The following text is the result of these two OCRs. It has been edited and

proofread, but not with great care. I added the table of contents, and a few notes [enclosed in brackets].

The “working document” frequently referred to is the Time Sharing System Reference Manual, Project

Genie Document R-21. The October 1968 version of this document is available online, and it appears to

be pretty similar to the version that existed when these lectures were given. A later version produced by

SDS is also online, and it is quite a bit different.

I am trying to track down the source code, or at least the listings. The lectures frequently refer to the

details of this code.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 2

Contents

Introduction

Hardware

Memory hardware

the scheduler

Memory

Fork structure

Teletypes

Input-output

Subroutine files

Random drum files

Drum I/O code

SPS

Summary

Scheduler

Fork structure

Memory

I/O

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 3

To: FFL Systems Group Date: June 1, 1966 - July 1,1966

From: Butler W. Lampson Version: 1

Introduction

The, system comes in three major pieces; namely the monitor, the exec and the subsystems. The

monitor is the guts of the system. It is mostly resident in core and it eventually takes care of all interac-

tions between the programs and the outside world: all input-output, scheduling, swapping, handling the

drum or disc, handling teletypes etc., etc., etc. The exec is mostly non-resident, i.e., swapped; it runs as a

user program. Its function is to provide what you might call second level control. Namely, it takes care

of implementing the command language by which the user controls the system; it takes care of file nam-

ing, which allows the user to give symbolic names to his files and reference them afterwards, and it pro-

vides a number of special services such as floating-point, input-output, string handling operations and

one thing and another. This we will discuss perhaps in some detail. The third component of the system is

the subsystems. A subsystem is just some language or convenient facility which has been programmed

and inserted in the system in such a way that you can get at it by giving its name as a command to the

executive. A subsystem is regarded as a completely independent program, not closely connected to any

part of the system proper. It’s basically just like a user program. The only difference between a subsys-

tem and a user program is that the name of the subsystem is in an exec table together with information

about the location of the subsystem and its starting address. If a user types in its name the exec will find

it in the table, bring it into user core and start it up at the specified address. After that the user is talking

to it just as though it was one of his own programs. The subsystems include the debugging system, the

assembler, the editor, Fortran, Cal, Lisp, Snobol, etc., etc., etc. What we are going to be mostly con-

cerned with is the monitor in this discussion, because the monitor is the most complicated and the most

essential part of the system. The executive is much simpler, it interacts less with parts of itself, and it

also is much easier to change since it runs as a user program. The errors made in changing the executive

are likely to be less disastrous than errors made in changing the monitor.

That is the overall structure of the system. And as I say we’re going to be talking mostly about the

monitor. We won’t be talking about subsystems at all except maybe to make a list of them.

Hardware

The next thing we want to do is discuss all the hardware changes to the 940, everything which is dif-

ferent from what it says in the 930 manual. These changes come more or less under the following head-

ings:

modifications to the instructions

to the interrupt system

to the memory addressing and bussing

and finally, various new I/O devices

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 4

We’ll take these more or less systematically in order. As far as instructions are concerned there are

the following things. Two modes have been added to the standard 930. When the system is in normal

mode it is operating like a standard 930 and there are no changes at all. By doing an EOM you can put it

into system mode. In system mode it still works like a standard 930 except that some of the things that

we’ll discuss in the memory system are enabled as well as a couple of new instructions which we’ll also

discuss in a minute. You can get into user mode by doing a transfer with the sign bit of the instruction

set. This way you get from system mode to user mode. In user mode there are large number of instruc-

tions that are called privileged. This means that in user mode they cannot be executed. If a privileged

instruction is executed in user mode, it causes a trap. A trap is a forced transfer to a particular location in

lower core, 40 or 42, something like that. There are four traps, each one with a unique location. At this

location the system will put a transfer to a little subroutine that will do something about the trap. Name-

ly, it will type out a little message “You made an error” or something like that. Or whatever you want it

to do. Exactly what the system does do is something we will cover in more detail later on when we are

discussing the relevant parts of the monitor. What the hardware does when it sees a privileged instruc-

tion trying to be executed in user mode is to force a transfer into this fixed location. The privileged in-

structions are all input/output instructions and anything that might halt the machine (which includes not

only the explicit halt instructions but a whole lot of other instructions that are illegal for one reason or

another). There are a lot of undefined opcodes in the 930.

Then, there are a couple of new instructions. There’s an instruction for clearing interrupts called

BRI, which is exactly equivalent to branch indirect except for its effect on the interrupt system. In the

normal 930 any branch indirect clears an interrupt, in fact, clears one interrupt level, so that if you have

three interrupts hanging and you are sitting in the top priority one you do a BRU indirect which clears the

top priority interrupt and also leaves you sitting back in the routine which is processing the interrupt of

next lower priority. See figure 1. Because of the fact that the system sometimes wants to execute BRU

indirect without clearing an interrupt, we’ve added a special instruction (BRI); which specifically serves

to clear an interrupt and otherwise acts like a BRU indirect. BRU indirect then no longer clears interrupts.

This is effective only in system mode, of course. Another change: the EAX instruction (effective address

to index) has been modified. This instruction in the 930 computes its own effective address and puts it in

the bottom 14 bits of the X register. Since EAX may be indexed or indirectly addressed, and in the latter

case the indirect word may again be indexed or indirectly addressed, the computation involved may be

non-trivial.

Interrupt 1 running

Interrupt 3 interrupted at 4160

Interrupt 12 interrupted at 5381

Main program interrupted at 3141

a) Before BRI

Interrupt 3 running from 4160

Interrupt 12 interrupted at 5381

Main program interrupted at 3141

b) After BRI

 Fig. 1: Action of BRI

Example: if X contains 1212 and memory is

1000 LDA* 1400, 2
2612 BRU (12 + 12 + 12 = 1224)

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 5

then EAX* 1000 will put 01224 in the bottom 14 bits of X. This is a very important instruction.

It has been slightly modified in system mode so that in addition to setting the address part of the in-

dex register to the effective address, it will set the sign bit of the index register zero or one, depending

on whether the effective address was relabeled, was mapped or not. The mapping is simply determined

by whether the sign bit is turned on or not, in system mode. If the sign bit of the instruction is turned on

mapping starts right away. If it’s not, the first level will be done without mapping but if you go indirect

you may again have the possibility that the sign bit is on, in which case mapping will start at that point.

So, again, it’s not too easy to tell whether the final address is mapped or not. Consequently it’s very nice

to be able to find out without explicitly running down the chain looking at all those sign bits, whether

the address is mapped or not. And in order to accommodate this, in system mode EAX changes the top

bit of the index register to zero or one depending on whether the final effective address is or is not

mapped. The reason for this is that the way you normally use EAX is that a link has been put into loca-

tion 0, a subroutine link essentially, and what you do is you say EAX* 0. And what this does is it goes

out to 0 and in 0 there will be a link that was left by a POP. (See Fig. 2) Everyone knows about POPs?

Relabeled 2216 POP ABC,2

Absolute 0 ZRO* ABC,4

in POP routine EAX* 0

old contents of X 200

.resulting in X ABC + 200,4

 Fig, 2: Action of EAX in system mode

What the EAX is going to do is to go back and pick up the effective address of this POP, namely

ABC, 2, with the intention of using that as an argument. You do the EAX first, and that gives you the ef-

fective address in the X register and then in order to pick up the argument word all you have to do is say

LDA 0, 2. In order to pick up the second word of the argument you say LDA 1, 2 and so on. The diffi-

culty is that if you are in system mode and the address was mapped, then you must not say 0, 2 but you

must turn a sign bit on, and say 0, 6; otherwise you won’t get any mapping. So you have to know

whether you have mapping or not so you can decide whether to say 0, 2 or 0, 6. And this is the reason

for this little gimmick.

In some cases you don’t have to worry about this problem, in particular, if the only thing a POP

needs is the first word addressed: ABC, 2 itself and not any subsequent words. Suppose you want to get

that word into the A register. Just say LDA* 0, and that sends you indirect to 0, indirect to 2216 and off

to ABC, 2 and gets it to you right away. The mapping problem is taken care of automatically, because

when you go to 0 mapping is turned on because the sign bit is set.

All right, so if you want to use a single word then you can get it automatically with LDA indirect, be-

cause the mapping will be turned on automatically by the convention that it gets turned on when you go

indirect through a word that has a sign bit set. But if you need, say, ABC+1, 2 (for instance if you were

doing a floating point POP and were addressing a floating point number which takes up two words), then

you want to get the effective address in the X register so that you can do LDA 0,2 and LDA 1,2 and get

both words. But in that case you need to know about the mapping. The only way you can avoid worry-

ing about the mapping is to just assume that the POP came out of user mode. Then you always turn the

sign bit on in the instruction. Or you assume it came out of system mode and you never turn it on, But if

you want to have a POP that works both ways then you need this gimmick. The chances are good that

you will be adding some SYSPOPs. Basically the reason for this is that, for instance, when you get some-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 6

thing all set up and want to make a disk reference, the way you will probably do this is by executing a

SYSPOP. Why? In order to make that disk reference you have to look up in a table, which is going to be

permanently resident in core. It probably will be nice not to have that table in the user’s own relabeling.

The only time you need to reference that table is in this one case when you are actually ready to make a

disk reference. So this means that probably the way you want to reference that table is by having a

SYSPOP, so that when you are all set to reference it you put the relevant things in the A and B registers

or whatever and execute the SYSPOP. The SYSPOP then, running in system mode, can reference the ta-

ble by changing the relabeling or in some other way.

Now, what else is there about instructions? Oh yes, overflow instructions. The two basic input-

output instructions on the 930 are called EOM (which stands for Energize Output M. Why M, I don’t

know) and SKS. What EOM does is essentially to send signals to all the I/O devices and other miscellane-

ous hardware. Somebody is supposed to recognize the signal and say “That’s for me,” and turn itself on.

SKS stands for Skip on Signal. It looks at lines coming in from the outside world and the address field

selects one of these lines and skips or doesn’t skip depending on whether the line is on or off, up or

down. Normally, of course, these instructions are privileged. However, in the normal 930 these instruc-

tions have one non-privileged use. Namely, they are used to turn off and to test the overflow indicator. It

is necessary for the user to be able to do this. So, originally what we did is we had a whole lot of com-

plicated logic to say EOM is privileged but if it is an overflow EOM it’s all right, it’s not privileged. Well,

this was very messy. So in order to straighten out the situation we added a new instruction, opcode 22. I

guess it doesn’t have a mnemonic of its own. It can have three or four different addresses corresponding

to the three or four different overflow instructions that used to be handled by EOM and SKS. This instruc-

tion I guess even works in normal mode, although there is no particular reason to use it in normal mode.

As a result of this change we have been able to make all EOMs and SKSs privileged.

The next thing is the interrupt system. The normal 930 has a priority interrupt scheme and perhaps it

would be helpful it I describe it very briefly since most people will never get to the section of the manual

in which the priority interrupt scheme is described. Priorities work like this. You buy them in bunches of

two, and you can buy lots, so there are lots of priority interrupts. They are numbered: 1, 2, 3 up to 872

which is the most you can get. The idea is this. Each priority interrupt has a line from the outside world

attached to it. And each priority interrupt also has an address in memory, starting at 201, so the first one

has address 201 and the second one 202, etc. Signals can come in on these lines. And if a signal comes

in—suppose just one signal comes in, on line 4—the effect is that at the end of the execution of the cur-

rent instruction, whatever it is, the normal flow of execution will be stopped and the computer will

instead be forced to execute the instruction in location 204 since this is the fourth interrupt. This instruc-

tion will normally be a BRM which will store the location counter and transfer off to some subroutine

which is designed to process the interrupt. When the interrupt is processed you return from the subrou-

tine with the BRI instruction that I discussed earlier, which will clear the interrupt. This much is com-

mon to all interrupt schemes. The priority thing comes in the following way. Suppose that while I’m

processing interrupt number 4 a signal comes in on interrupt number 2.

Now 2 is regarded as being of higher priority than 4, and what this means is that I want to execute 2

right away regardless of whether I’m executing 4 or not. So 2, being higher priority than 4, is able to in-

terrupt 4, so that even though I am processing an interrupt on level 4 I am forced to execute the BRM at

202. And at this point, when I am in the routine specified by the BRM in 202, I have two interrupts go-

ing. Interrupt 4, which is not executing, just hangs. When I exit from 2 with a BRI I go back and start

executing 4 again.

Q Does it start all over again?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 7

A No. It starts wherever it was. Say you execute the instruction at 202, which may be BRM 1202. What

happens is that it stores the location counter in 1202 and goes to 1202+1, where there will be in-

structions that save the central registers: STA, STB, STX. After the routine at 1202 has run, it will re-

store everything with LDA LDB LDX, and then it’s going to say okay now I’m finished, so how do I

exit? I exit by saying BRI 1202. Now BRI is exactly like BRU indirect. Remember? So what it does

is to transfer off to the location specified in 1202, but it is exactly what was in the program counter

when we executed the BRM 1202. It was exactly the location of the instruction which was about to be

executed when the interrupt came along and said, “No stop, don’t do that!” So the effect is that I go

back and continue executing whatever I was doing when the interrupt came along without any dis-

turbance at all, provided, of course, the interrupt routine saves the central registers, It has to do that.

The only thing the BRI does is to clear the highest priority interrupt. So I come back now from inter-

rupt level 2 to interrupt level 4, which is restarted automatically. Eventually 4 gets finished, and then

its BRI sends me back to whatever main non-interrupt program was executing.

Q Did you say that the central registers are not preserved?

A Not automatically, but every interrupt routine of course should preserve them, and if it doesn’t horri-

ble things will happen.

Q It is never interrupted during the storing?

A It might be, it doesn’t matter. Suppose it’s interrupted after, doing STA. All right, that means some

other routine will go off to do its operation, which presumably will preserve the central registers

since it also has storing and loading instructions in it. When it comes back this one will just proceed

with its storing and there’s no disturbance. Okay? An interrupt routine is supposed to be completely

invisible to whatever it is interrupting, and if it’s not that means it wasn’t written right.

Now suppose on the other hand that I was in interrupt level 2 and interrupt 4 came along. Since 4 is

lower priority than 2 I do not want to stop executing 2 when 4 arrives. What happens is that 4 just sits

there and hangs. It’s an interrupt which is unfulfilled,—until 2 is finished. As soon as 2 is finished, 4,

which has been hanging there, immediately gets in, and starts to execute.

Q How many things can we have hanging?

A As many as you want. You can have them all hanging, waiting for number 1, okay? Naturally, be-

cause of this priority scheme, you want to make a great effort to keep the high level interrupts short

because they hang all the lower ones while they are going. It may be worthwhile to point out that

above these priority interrupts there are several built-in interrupts in the computer, the ones relating

to the TMCCs (2 for each), the clock interrupt and power fail. They are really in the priority scheme in

the same way, differing only in their numbering and the fact that they come with specific devices.

You can think of them as just being higher priority interrupts above 200.

Q The higher priority ones are in the middle there some place?

A Power fail is highest. Then comes the clock. Its location is 75. Then comes the W-buffer at 31 and

33, then other TMCCs and DACCs, then the regular priority interrupts.

Q There’s another priority in the channel?

A That’s right, each TMCC has two interrupts. The channels are higher than any of these 200s although

you can get this rewired. You can make it go any way you want.

This is what you buy on an ordinary 930. There is one other little goodie you can get which allows

you to say for each one of these interrupts whether you want anyone to pay any attention when the inter-

rupt arrives or not. If you are paying attention the interrupts are said to be armed, and if you are not pay-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 8

ing attention they are said to be disarmed. We use that feature in a couple of places. In addition, the

whole interrupt system can be enabled or disabled. If it is disabled, any interrupt that comes in just sits

there and waits. Disabled is sort of equivalent to saying, “Some really high priority thing has come along

that is more important than anybody else.” When you reenable the interrupts, any that are waiting im-

mediately start trying to get in and the highest priority one does.

Q Is there any possibility of losing an interrupt?

A No.

Q Suppose I made a 201 and is it possible 204 could get in twice?

A Yes, that is possible. If you have an interrupt coming up frequently, yes. Definitely.

Q Is this a normal occurrence?

A Never. That’s an absolute disaster. You arrange that device which generates interrupts so that it

doesn’t generate them at such a high frequency. You can build a device so that it never generates an

interrupt more often than every 5 milliseconds.

Q What if you disable the interrupts for 5 milliseconds?

A Then you’re a fool, and you deserve to lose! You may disable for a short period of time because if an

interrupt comes in during this time you may get badly confused. Particular reasons for disabling,

which will show up when you look at the system itself, are that you may be operating (outside of any

interrupt routine, in the main program) and you may want to fiddle a table that also gets fiddled by

an interrupt routine. If you get interrupted in the middle of the fiddling process the interrupt routine

will get very confused. So what you do is to turn interrupts off for the fiddling time. It must not be

very long or you are likely to get yourself into serious trouble.

Q This means that a routine can’t cause the same interrupt it is processing?

A External devices cause interrupts. The program is not an external device. A program is a program. It

cannot generate an interrupt.

Q But an interrupt routine may have I/O instructions in it?

A It depends on what the interrupt is. It may, yes. But the routine can’t cause an interrupt. The only

thing that the handling routine can do is fire the device up again. If the device is constructed so that

immediately when it’s fired up it generates the same interrupt again, probably there will be a mess. If

you have just fired the device up, there is no point in its causing an interrupt. You already know that

you fired up. The significance of an interrupt is to tell you something you didn’t know.

Q In effect, the interrupt disarms itself?

A No it doesn’t disarm itself. I don’t understand why you think that it should.

Q You said if something is mechanically wrong it could be hung up in that interrupt for hours. Why?

A Because the interrupt keeps coming through.

Q Why would the interrupt keep coming through?

A Because it’s being generated each time. Each time you leave the handling routine you get the same

interrupt again.

Q Why do you get an interrupt? What generates that interrupt?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 9

A If the device is malfunctioning so that it has its interrupt line all the time, then you can get into trou-

ble. You can get into trouble if you take a soldering iron and put it on top of the B register! If the

hardware is not working then you’re in trouble.

Q How is that handled?

A When the hardware is not working you call a service man to fix it.

Q How do you find out what’s wrong?

A You have a diagnostic routine to run around and check everything. And this is, by the way, one of

the significant problems of this system, because the diagnostic routines are not adequate.

We have modified the interrupt system slightly, in that it used to possible to shut out interrupts when

you were sitting in certain kinds of loop, particularly if you were sitting in a loop of the form BRU* or

BRX*. Also, something of the following form:

A LDA* B
B ZRO* A

could shut out interrupts. If the LDA is executed, then in following the indirection we go from A to B,

from B back to A, from A to B and it’s an infinite loop. This is obviously an error, but any user can w rite

this.

All three of these conditions in the 930 will tie up the interrupt system. All these things go so fast

that they never allow the machine to get into a state in which an interrupt can occur. And this is obvious-

ly disastrous, since it means that the user, by making an indirect loop, which is not at all impossible, can

hang the whole system forever. Once he starts there is no way to get out of it because there is no way to

get an interrupt in to stop it. So that’s very, very bad and the way we correct this situation is by jiggling

the insides of the machine so that there is no sequence of two instructions which don’t allow an interrupt

in the middle, with one exception, which is EOM. Between every two instruction executions in the 940 it

is possible to accept an interrupt. This means that the longest amount of time you could have to wait be-

fore an interrupt gets in is the longest amount of time for the longest executing instruction, which hap-

pens to be divide, which is 10 cycles, or 17.5 microseconds. So much for that.

Q Is time-slicing handled with interrupts?

A As we go through the system properly we will see all these interrupts and how they are handled one

at a time, but it might be helpful to make a list, of the important ones anyway: there’s the clock, the

W-buffer (which has two interrupts), the teletype interface, power fail, and the drum. There is also a

link to a subsidiary machine, the PDP-5. This is driven through the DMC and if you drive displays

through the DMC you will get an interrupt similar to this one. That’s all.

Q What about tapes, printer, etc.?

A They all go through the W-buffer.

Besides interrupts there are also traps. Traps are caused by illegal (privileged) instructions, memory

violations (which we will discuss below), read only violations and something called the user mode trap.

Those are the four traps. We will discuss them all in detail later on. Overflow is not a trap. Overflow just

occurs and sets an indicator which you have to look at. That’s an obsolete way of handling overflow, but

that’s the way it’s handled in the 930, the 930 being more or less an obsolete machine.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 10

Memory hardware

We have quite a lot of things associated with the memory and will start with the things in the bussing

hardware, which are less important. A 940 system always has at least two memory boxes. A memory

box is some number of words of memory (4000, 8000, or 16000). Its significant property is that it op-

erates independently of all other memory boxes. This means you can have memory references going on

in two separate memory boxes at the same time. The CPU can’t have memory references going in two

separate boxes because it needs to finish the first reference before it can start the second one. But you

could have one box being run by the CPU and one run by the channel, for instance. For convenience,

we’ll talk about a 32K machine which has two 16K memory boxes. Normally the way things are ar-

ranged is with addresses zero to 37777 in one box and 40000 to 77777 in the other.

We have modified this arrangement in the following way: all even addresses are in one box and all

odd addresses are in the other box. This is called interleaving. The reason for this is the following: when

you run I/O at very high speed, and particularly when you run our core speed drum, it transfers infor-

mation in blocks and this means that if the drum starts to run out of this box, starts at location 4000 and

wants to transfer from 4000 to 8000 say, it will take every memory cycle if it’s running at core speed,

which means that nobody else will be able to get a cycle if you’re using the non-interleaved scheme.

When the drum starts to run out of one box it will lock the CPU out of this box because it has priority

and has to get every cycle. It locks the CPU out of this box for 2000 memory cycles while it does the

transfer. And that’s very bad, because it means the system can’t run at all, no interrupts can be pro-

cessed, nothing. The CPU is completely hung. If you have interleaving, on the other hand, the drum will

take one reference out of the first box, then one out of the second, then one out of the first, etc. , which

means that the CPU can run at 50% of its normal speed at least. Probably it will be better than that. Inter-

leaving is very simple to implement. Suppose we have a short address, six bits, a 64 word memory (See

Fig. 3). You have address lines coming to the memory, the low order bit on the right. As the address

lines come out of the computer they go into the memory. The usual way to arrange it is that they go

straight into the memory. All you have to do to get interleaving is to interchange the low order and high

order lines. This means that it will be even or odd that decides what the first bit is going to be on the

lines coming into the memory. So where before it was the high order bit which decided which module

you get, now it’s the low order bit, which decides which module you are going to get. So it’s completely

trivial.

The second change in the memory itself is a little more subtle. Suppose we have the two modules

and two devices going. We have a CPU, which is generating memory references in some random way to

the two modules, and we also have the channels, say the RAD channel, which is also generating memory

references. Now the RAD is a synchronous device and every four memory cycles it generates a word

while it’s running. If the word isn’t disposed of by the time the next word comes along, a disaster has

occurred, because the word is lost. The RAD has a buffer which sits there holding the word, and some-

where else the next word is being assembled. When the next word is finished being assembled it comes

into the buffer, because there is no room for it anywhere else, and this means the first word has to be

emptied out of the buffer by the time the second word comes along. The easiest way to handle this prob-

lem is to say that the RAD has to have priority sometimes, so we’ll give it top priority all the time. When

it asks for this memory module we’ll give it this memory module and during the first cycle I guarantee

the word will be out of the RAD buffer as fast as possible. Now this has the following disadvantage: if

the CPU is asking for this box at the same time as the RAD, the CPU will get hung for one cycle while

the RAD is looking at the box. This is interference. In this particular case, with two modules and the

RAD getting one cycle out of four, there will be interference 1/8th of the time, so you get 12% degrada-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 11

tion in CPU performance, simply due to the fact that 12% of the time when the CPU wants a memory

cycle it has to wait

However, this analysis ignores an important point, namely, that when the RAD generates a memory

request, it can wait for three cycles because another word is not going to come along for four memory

cycles. So when it says, “I want memory,” what it really means is, “I’ve got to have one of the next four

cycles, but I don’t care which one it is, just as long as I have one of those four cycles.” Each device us-

ing the memory sends it address lines and data lines, and a priority line or request line which says, “I

want the memory”. Built in somewhere is a gadget that settles ties on the basis of built-in priorities for

the various lines. What you do is to make the priority line for the RAD a little bit more complicated: you

use two lines instead of one. This means that the RAD can say either, “I want the memory with high pri-

ority,” or, “I want it with low priority”. High priority means mine is higher than anybody else and low

priority means mine is lower than lots of people, anyway, lower than the CPU. So what the RAD does is

to ask for the memory with low priority on the first three cycles. If the CPU wants it the RAD has to wait.

On the fourth cycle it asks for high priority, because there’s another word coming along pretty soon. If

the CPU still wants the same module after three cycles, it will be hung on the fourth. In fact, the CPU al-

most never references the same module four times, because instructions, for one thing, go in alternating

modules because of the interleaving. Furthermore, if you take random instructions and random address-

es, it is 50-50 that the address will be in a different module than the instruction. So the chance of the

CPU wanting the same module four times in a row is less than 1%. This means that you effectively re-

duce the RADs interference with the CPU from 12% to zero at the cost of putting in this very simple pri-

ority device.

Q How does the RAD buffering really work?

A There’s a buffer which holds the assembled word and this is the buffer that is connected directly

with the memory. Then there is another buffer in which the RAD is assembling a word, six bits at a

time, as it comes off the disk. In this buffer there are control signals telling where to put the next six

bits, and when the fourth set of six bits is coming along that is the critical time. Probably, you can

take one of those control signals right off and use it for the priority lines. And this a $500 modifica-

tion. Mel invented this, he told Schmidt about it, and Schmidt asked SDS about it. They said they

didn’t know anything about it and Schmidt went through the roof. So he made a tremendous row and

got SDS to put it in.

So much for the modifications to the memory. The other thing about the memory is the relabeling,

and that’s complicated. We will discuss it in some detail. Built into the system are 8 six bit registers

which we usually draw like this. (see fig. 4) These are 48 flip flops. Each one of these six bit registers,

which we number zero to seven, is divided up into a five bit field and a one bit field, called A and R.

When the computer addresses memory, it does so by generating a 14 bit address field. It goes through all

kinds of gyrations: direct and indirect addressing, indexing, anything it wants, to generate these 14 bits.

When it’s all finished it has the 14 bits which are the effective address and it ships them out to the

memory

In between is the relabeling box, or the map. These terms are synonymous. The function of the map

to make some kind of transformation on these 14 address lines and ship out some new address lines to

the memory. In fact, there are 14 lines coming in here, 14 bits of address, enough for 16K. We have 65K

of real core, so 16 lines have to come out of the map. Now the question is, how does this map work? It

takes these 14 bits that come in and does some transformation and ships out 16 bits. It could be any

transformation. You could run the bits through a random number generator and you could produce 16

new bits but that probably wouldn’t be good. You could add 50 to the address. That wouldn’t be too

good either because you could have done that in the computer already.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 12

Q Is the 930 memory extension register involved?

A Memory extension has nothing to do with this scheme and is never used. What this box does is the

following: it takes a 14 bit address and divides it up into eleven bits and three. The latter is called the

page number P and the former the word address W. Pages are called blocks too. So eleven bits are

shipped off to the side for the moment and we don’t worry about them. The top three bits of P give

us some number from zero to 7. We use this number to select one of the 8 relabeling registers over

here. We take the A field out of the appropriate register. Now we are going to make a new address

which we are going to get by keeping the W field and gluing on the front of it A, which is the five bit

field we get from the relabeling register. The situation we have is a transformation yielding 11 bits of

W field and 5 bits of A field, or a 16 bit address. We got these 5 bits of A field by using the 3 bit P

field to select one of 8 relabeling registers. So we now have a 16 bit address, and this is the address

we feed to the memory.

The significance of this is that there are 8 pages in the memory that the user can address, and we can

make an arbitrary transformation, we can say that each individual one of these 8 pages is going to some

page of the physical memory. In physical memory there are 32 pages of 2K each. In addressable

memory, virtual memory we call it, there are 8 pages. These 8 registers define the relationship between

the 8 pages of virtual memory and some combination of pages of real memory.

Now, there are a couple of little points. If the A field is zero and the R field is 1, then that is regarded

as an error. The hardware generates a memory trap. That’s one of the four traps explained above. The

second kind of trap was for memory violations. And the way you get a memory violation trap is to go

through a relabeling register with 40 in it. That’s an error.

The R field is used in the following way. When the CPU ships out the address, it also ships a signal

which says, “This is a load”, or, “This is a store”. And if it is a store and the R bit is on, that causes a

read only trap. Thus, the R bit is turned on in each page which you want to protect from being changed.

Whenever a relabeled memory reference for a store is generated and the R bit in the corresponding rela-

beling register is on, that causes a read only trap, which again goes off to a special place in the system.

So this means that when you set up the relabeling, you can define for each virtual page whether it is pro-

tected from storing.

Note that real page zero cannot be made read-only, since 40 is interpreted as an error at all times.

This particular convention is at variance with all the rest of the rules. So the number 40 is interpreted in

a special way. Zero is interpreted in the normal way, as referring to real page zero.

For the pages of virtual memory that are unassigned the monitor will put 40 in the corresponding re-

labeling register. There is no reason why you should have 16,000 words of memory assigned to you if

your program doesn’t use 16,000 words. It’s a big waste of real memory. You should have only as much

memory assigned to you as you need. So what the system does is to assign as much memory as it thinks

you need (exactly what this is will be discussed later). It will put 40 in all the other relabeling registers.

If the user addresses a word in a page which has 40 in its relabeling register, there will be a trap gen-

erated by the hardware. The trap goes off to a specific routine in the system, and this routine will try to

figure out what to do, whether that really is an error or whether it should assign you some more memory.

Q If I put a zero in one of the relabeling registers is or is not that an error?

A No, that means that virtual page will correspond to real page zero.

Q I want to protect users from violating the monitor?

A Then I just never put zero in the user’s relabeling.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 13

Q Is the user free to change it on his own?

A He can change his pseudo relabeling, and when he does we check to see that he is doing it legally.

When we discuss pseudo-relabeling, which we will do in great detail, you will see exactly what the

restrictions are and how he can change this relabeling and what the relationship is between pseudo-

relabeling and real relabeling. It is completely impossible for the user to ever get real block zero in

his real relabeling.

Q How does he alter the monitor?

A Only by making a very special system call which causes very special things to happen.

A How is relabeling set up?

A This machine has two instructions called POT and PIN (parallel output and parallel input). If you say

POT OUTLOC it finds location OUTLOC and takes the 24 bits from there and puts them out on 24 lines

and that’s all it does. What happens to the 24 lines is someone else’s responsibility. PIN likewise

looks at the 24 lines and sticks them in the memory word addressed. What happens to these 24 lines

after a POT is determined by what you do immediately before the POT, and what you normally do

immediately before the POT is an EOM. So before the POT you specify the destination with an EOM.

The EOM will have an address field which will be interpreted by the hardware to set some flip flops,

which will decide what happens to the information provided by the POT.

In particular there are two EOMs for setting relabeling register one and relabeling register two (rela-

beling register one being the first four of the six bit relabeling registers and relabeling register two

being the second four). The way you set the relabeling registers is to say EOM 20400B; POT RR1;

EOM 21000B; POT RR2, and the contents of RR1 and RR2 will be used to set the relabeling. There is

no way of reading the relabeling registers; you are just supposed to remember what you put in them.

Q You said if you put 40 in a relabeling register you got a memory violation when you address it. How

did you get that?

A When you do this POT, you are outputting a certain memory word which you address. So you put

into that memory word whatever you want to have in the relabeling registers.

Q This is done by the system.

A Yes. The system sometimes sets up the relabeling with 40 in some of the relabeling registers.

Q Why?

A Because it doesn’t want you to have 16K of memory. If you have a 4K program it’s ridiculous to as-

sign you 16K of memory because this takes up 16K of valuable cores.

Q Just clear up one point. You never give the EOM and POT instructions to set the relabeling registers?

A Who’s “you”?

Q The user.

A The user can’t give an EOM—it’s privileged. Only the system sets the hardware relabeling.

The next question is we have all this glorious machinery, but when is it used? The answer is this: all

memory references generated by a program running in user mode are relabeled. Addresses generated by

a program running in system mode are not relabeled. However, if the instruction has the sign bit set then

the address normally will be relabeled. Furthermore, if the instruction goes indirect through a word that

has the sign bit set addressing will become relabeled from that point on. In the assembly language set-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 14

ting of the sign bit is indicated by a ,4: LDA 0,4. The thing following the comma is the number which

tells what is supposed to go in the top three bits of the instruction word. 0,2 means indexing, 0,4 rela-

beling (in system mode only). You could write 0,6, which would be both. You can also set the third bit

with 0,1, but that is the POP bit and you normally don’t set it this way, but with the opcode.

Q There was something about the sign bit indicating relocation in the 930 manual?

A The significance of that is that the standard 930 loader interprets that top bit as determining whether

or not to relocate the address. It’s strictly a software function. We do not use it that way.

This is the explanation of how you get relabeling in system mode. The sign bit of the instruction is

set, or the sign bit of some word in the indirect chain is set and soon as you see the sign bit on you

switch over to relabeled addressing. In the indirect chain you continue to relabel all the addresses after

this point.

Q Why isn’t it possible for the system, the assembler, to set that bit for you?

A The assembler doesn’t know what you mean. If I am writing a system mode program, there is a defi-

nite difference between writing ABC and writing ABC,4. And the assembler has no way of figuring

out which one I meant.

Q The assembler could do something like this: when the program exceeds the page then all refer-

ences—

A That has nothing to do with it. The significance of the bit is whether the system wants to look in the

user’s memory. For instance, when a SYSPOP is executed and you come out to the part of the system

that is executing the SYSPOP, you will have to look back into the user’s memory for the address of

the argument of the SYSPOP. This will be done by invoking relabeling. That’s why we have this rule

about indirection and sign bits which we discussed earlier when I was talking about EAX. When you

do a SYSPOP the hardware sets location zero to contain the address of the SYSPOP and turns the indi-

rect bit on. If the call came out of user mode it turns the sign bit on also. The same thing is true, by

the way, of BRM. When BRM stores that link in system mode (for instance after an interrupt) it stores

one or zero in the sign bit depending on whether it came out of user mode or not. So there is always

this convention that an address which is relabeled has the sign bit on; a full word which contains a

relabeled address has the sign bit on. This means that whenever I indirect through that word I auto-

matically get relabeling activated without saying specifically that I want it. This is very nice. You

don’t have to think in the program about whether relabeling is being activated or not.

Q Do I have to set the sign bit in user mode?

A In user mode everything is always relabeled. No, it would be disastrous if the user addressed any-

thing absolute.

Q What happens if I set the sign bit in user mode? Does it matter?

A No, it has no effect in a regular instruction. If the POP bit is set, then it becomes a SYSPOP. In user

mode if you execute a POP with the sign bit on, that is the signal that says “This is a SYSPOP, go to

system mode”. Normally if you execute a POP in user mode everything is done in the normal way:

you put the link in user location zero and you transfer to user location 100 plus the address of the

POP. If you put the sign bit on, this is a signal that says SYSPOP, put the link in absolute location ze-

ro and transfer to absolute location 100 plus the address. In those 64 words the system will put 64

links, 64 addresses which branch off to the 64 routines which are handling the 64 SYSPOPs. From

there on it will do whatever it sees fit.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 15

So the sign bit has two functions. The first thing it’s used for is to indicate relabeling in system

mode. The second thing it’s used for is to indicate a SYSPOP in user mode. The third thing this bit is

used for, which is really an adjunct of the first thing, is this: if I’m in system mode and I do any kind

of transfer to a relabeled address, I automatically go into user mode. Suppose the user has executed a

SYSPOP, which means that the link has been put into location 0. I start executing the SYSPOP, the

SYSPOP goes cruising along and executes and finally it finishes and wants to return. The way a POP

normally returns is with BRR 0 which means transfer to the address given in 0 plus one, which is

exactly what you want. So the SYSPOP does BRR 0. Now what happens? The BRR goes off to 0 and

it says “I’m supposed to go to this address plus one”, so it figures that out. Then it looks at the sign

bit and it says, “Is that address relabeled or not?”

If it’s not relabeled, if the SYSPOP was called out of system mode, it just goes off to the absolute ad-

dress that was specified. If the SYSPOP was called out of user mode, then it will go back to user

mode automatically, because a transfer to a relabeled address sends you back into user mode. This

means that the SYSPOP returns immediately into user mode without any disturbance, with having to

say explicitly to the hardware, “I want to go back to user mode.” Everything is taken care of by this

bit being on or off. A system mode routine can also go into user mode explicitly, as it were, by writ-

ing BRU *+1,4.

Q Where does the POP find the sign bit?

A The sign bit can be anywhere along the chain of words you go through to get the address. So that, in

particular, it can be in the instruction itself. For instance, I can do BRU ABC,4. The sign bit means

that I will take ABC as relabeled and when I transfer to ABC I will go into user mode. If I do BRR 0

and 0 contains an address with the sign bit set, then the 0 will be taken as an absolute 0 since I’m in

system mode and I go to absolute 0. BRR is similar to indirect addressing—so it works the same as

BRU indirect. The only difference from BRU indirect is that it adds one to the address. So I go to this

word, (0) which is absolute, and I say “Aha, I am still running down the chain”, so I have to add one

to the address in 0. Now I have to look to see if the next step is to be relabeled or not. The sign bit in

0 being on means that I’m now relabeled.

Q So the address that you go to has the sign bit?

A The word containing the address has the sign bit. I called a SYSPOP. It’s definitely not necessary for

the word I return to have the sign bit on. That has nothing to do with it. The word that has the sign

bit on is absolute.

Q You have your BRR indirect or whatever you have. It picks up the address and where the address is is

where the sign bit is to be on?

A That depends. If it goes indirect the sign bit is anywhere in the addressing chain. It could be set in

the instruction. That is not the way it usually is, but it doesn’t matter how it usually is. The point is to

understand what the hardware does. It is not helpful to try to understand what it usually does, be-

cause then if it does something unusual you’ll foul up. What the hardware does is to look at the sign

bits of all the words involved in the addressing chain, starting with the instruction and working down

as many levels as is indicated by whatever the instruction says and whatever indirect bits may be on.

Anytime during this chain when it finds the sign bit set, it switches to relabeled mode. When it’s all

finished if it winds up in relabeled mode and if it’s a transfer instruction, then it transfers to user

mode at the time it does the transfer.

Q How does it know when it’s a transfer?

A Because if it’s BRU it says transfer. The transfer instructions are BRU, BRM, BRI, BRR.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 16

To summarize the action of relabeling, there are 8 six bit relabeling registers, customarily drawn as

in fig. 4. When I generate a relabeled address and the hardware ships it out to the memory, it ships it out

along with a line that says relabel this before you send it to the memory. That means it goes through the

relabeling box. What the relabeling box does is to separate the top 3 bits from the bottom 11 bits—11

plus 3 equals 14—take the 3 bits and use them to look up one of the 8 six bit relabeling registers. It takes

the bottom 5 bits of those 6 bits and glues them on the front of the 11 bits, getting a 16 bit address. And

this is the address it uses to reference absolute, real memory. This means that these 8 registers can be

regarded as defining a map. They are explicit tabular definition of the map from the integers 0 through 7

to the integers 0 through 63. In this way each of the user’s virtual pages which he can address with 16K

of address space is associated with one of the 32 pages which exist in the real memory. This association

is completely arbitrary. The fact that virtual page 0 is associated with real page 23 has no connection

with the fact that virtual page 1 is associated with real page 14 and that virtual page 2 is said to be illegal

because 40 is in the relabeling register. Each one of the 8 pages operates completely independently of all

the others.

Q You’ve got 5 there, 5 bits gives you 32 pages, each 2K long, so you have 32 chunks of 2K each and

2K address portion is the 11 bits, the real page number itself is 5 bits, the page number is the 3 bits

which give you 16K?

A Of virtual memory, right. Which is translated into 65 K of real memory.

Q The map is set up on a dynamic basis by the system itself?

A Correct. When the system finds a particular user it figures out from its tables which blocks of

memory it has put the user’s program in and sets up the relabeling so that the user will see what he

expects to see, regardless of how much convolution has been going on in the memory since the last

time the user was around. You see, horrible things can happen, the user gets dismissed, he gets

swapped out, lots of people come in and out and a long time later he comes in and he is just not an-

ywhere like the same place in memory that he was in before.

Q Also the program can be non-contiguous?

A Right. Obviously, there is no relationship between one page and the next.

Q It is non-contiguous as far as pages are concerned but it is also non-contiguous as far as memory

banks is concerned?

A The memory banks are interleaved. Nobody sees that except way, way down in the hardware.

It is even possible to give two virtual pages to the same real page. You can do anything. What I’m

trying to explain is the hardware, and you should understand it well enough so that you can understand

all the things that can be done with it regardless of whether they are reasonable or not. It’s hard to tell

beforehand which ones are reasonable and which ones aren’t. If you understand the hardware then you

will be able to figure out any application regardless of whether it initially seems reasonable or not. If

you try to understand it on the basis of what you want to do now, then you are just going to get confused

when you find somebody doing something that is not what you originally had in mind. The hardware

doesn’t care what you want to do. It says, “You give me certain bits and I’ll do certain things.” It’s very

well defined and not too complicated and the most important thing is to understand exactly what it is the

hardware is doing in terms of bits received and bits transmitted.

Q How long does relabeling take?

A It takes 20 nanoseconds but that’s slack. It’s 20 nanoseconds being wasted in the 930. In fact, there’s

a lot more than 20 nanoseconds being wasted in the 930 at the moment. Relabeling is a trivial opera-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 17

tion, a table lookup, and you can do it very fast. There is no logic required and you are not compar-

ing anything with anything else, or doing anything the least bit complex.

Q How long does it take to set the register, about 7 microseconds?

A To do a POT takes 3 cycles, so the EOM plus POT takes 4 cycles.

There is one more thing to be brought up which is a minor extension of what we already have. In ad-

dition to these 8 relabeling registers there are 2 more which are regarded as being part of another full

word in which the other 2 registers don’t exist. This is called the monitor relabeling, the monitor map.

The significance is the following: normally when the monitor addresses memory, if it has not been rela-

beled, it gets absolute memory. If the monitor addresses location 4720 it will get absolute location 4720

in the real absolute memory. We have put in the following little gimmick, however: if the monitor ad-

dresses something in the top 2 pages of its absolute addressing space, that is, if it addresses anything

above 30000, it will be mapped automatically even though relabeling wasn’t specified, and it’s mapped

through these additional registers. The reason for that is that the monitor can refer to memory which is

neither absolute nor part of the user’s current relabeling without having to change the user’s current re-

labeling. For instance, the way these registers are used is that the top block is always defined to be the

temporary storage block for the current user, which means the monitor can get at the information in the

temporary storage block for the current user without having to do any relabeling twiddling. You can’t do

that absolute, because that block is swapped like everything else. The way we used to handle this prob-

lem is that the monitor would have to explicitly change the relabeling. We had to get a word which has

the relabeling for the temporary storage block, POT it out into one of the two regular relabeling words,

and then fix that back up before going back to the user. But that was most unsatisfactory and this is

much better.

Q Is that the zero page in the user’s core?

A No, the temporary storage block is something the user himself never sees. It’s block in which the

system keeps the information about the user which it needs, as well as the drum buffers. The user

never has access to that block. It’s a disaster if he gets access to it. It’s almost as bad as getting ac-

cess to the system proper because all kinds of pointers and things are there—the system, for instance,

keeps in that block information about what the user’s relabeling is, and a lot of other information like

that. That block is sacred.

Q Another thing I don’t understand. You say the top 2 pages of the monitor itself are mapped, above

30000. If the monitor operates like a user, how does it have more than 16K?

A 30000 octal. Addresses are always in octal. Sizes of things are often in decimal but addresses are

always in octal.

Q Will you tell us exactly what goes into that monitor map?

A I’m talking about the hardware. You can put anything in it you want. These are two registers which

operate exactly the same way as the 8 user mode relabeling registers. The only thing is that what in-

vokes them is a little bit different. In particular, the way the hardware works, of course, it that it

looks at an address coming out from the monitor. The address is again divided up 3 and 11. We want

to map the top 2 pages. That means that we want to say, “If these 2 bits are one, then we are in the

top 2 pages. Use the next bit to select a monitor relabeling register.” Instead of using all 3 bits to se-

lect one of 8 registers, the way it does in user mode, it only activates relabeling if the top two bits are

ones, and uses the third bit to select one of the two registers.

Q What about the extension registers?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 18

A They’re not useful. They’re much too difficult to handle and they can only address 32K and general-

ly they’re not—they’re just very inflexible and confusing and not at all nice.

By the way, the monitor registers don’t have read only capability. That’s not a fact of any great sig-

nificance, because the monitor, which is the only person using them, is supposed to know whether it

should clobber the system or not.

There’s one more thing to cover under modifications to the hardware. There were four traps which

we listed earlier, and we discussed three of them—illegal instruction, memory violation, and read only

traps. There is one more trap, which is called the user mode trap, and its significance is that if it is on (it

can be turned on or off by an EOM), whenever a transition occurs to user mode by way of a branch to a

relabeled address (that’s the only way you can get a transition to user mode) the branch will be sup-

pressed and the trap will occur instead.

Q What was that again?

A The user mode trap can be turned on or off, and when it’s on whenever a transition occurs into user

mode, which happens by way of a branch to a relabeled address, the transfer will be suppressed and

the trap will occur instead.

Q What is it for?

A If the clock interrupt occurs which says the user should be dismissed and you are in the middle of a

SYSPOP of some kind you can’t dismiss him right away because you may leave the system in a bad

state. You have to wait until the system is finished and goes back to user mode. In user mode you

can dismiss him at any time, but you can’t necessarily dismiss him in system mode because the sys-

tem may be doing something, and the clock interrupt routine doesn’t particularly know what the sys-

tem is doing. What this means is that when the clock interrupts and figures out that it should dismiss

the user, it looks to see whether it came out of system mode or not, which it can do so by looking at

the sign bit of the address stored by the BRM. If it came out of user mode it dismisses him right away

and if it came out of system mode it turns on the user mode trap. This means that when the system

finishes whatever it was doing and goes back into user mode, a trap will occur and at that point the

user will be dismissed. This sounds trivial, but it actually turned out to be quite important. The way

we were handling this problem before is that the clock would set a flag, and practically every single

exit from the system into user mode would check this flag, which was a damn nuisance, somewhat

wasteful of time and very inconvenient.

Q Does this guarantee a certain number of microseconds of processing time?

A That is not the idea. The system can continue in system mode as long as it wants. Unless there is a

bug in it, it is controlled and it doesn’t stay in system mode for very long.

That covers the modifications fairly exhaustively. These things are all described in the paper which

is referenced in the outline. Some of them aren’t; the user mode trap and the monitor map were added

since this paper was written, but most of the things are described and many of them in some detail.

We ought to conclude by describing the unusual pieces of hardware that are attached to the system.

Interrupt arming we already discussed. The clock is very simple, it’s a device which 60 times a second

generates an interrupt, a very high priority interrupt, higher than anything except power fail. 60 times a

second you get this interrupt. What you do with it is up to you.

Q Doesn’t the system keep track of it?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 19

A The system keeps track of lots of things. It increments various counters, and decides whether it

should dismiss people and one thing and another. But we will do that all in detail when we look at

the system proper. We are looking at the hardware at the moment.

Q There’s only one clock?

A There’s one clock. Right. It generates an interrupt 60 times a second. Every time an interrupt occurs

the system does something. Usually it just increments or decrements a counter. Under some circum-

stances it will do more things.

There’s the teletype interface, which is a box called the CTE 11 which is provided by SDS. Its char-

acteristics are roughly the following: a lot of wires come into it. Something is on the end of these wires

and this something has to have certain properties; it sends things down these wires in the certain way. If

it sends 10,000 volts down the wires it will blow up the teletype interface, so it’s got to do something

reasonable! It doesn’t have to be a teletype; it just has to be something that looks like a teletype. On the

other side is the computer. There are the following connections: 24 lines, the POT-PIN lines, and there’s

an interrupt line, or two interrupt lines. Whenever a character comes from the teletype, the teletype inter-

face generates an interrupt. The computer in processing this interrupt does a PIN which reads 24 bits

from the teletype, from the POT-PIN lines. These 24 bits contain two pieces of information: the number

of the channel on which the character was input and the character itself, 8 bits o character.

Q There are eleven bits per character?

A Three bits are not part of the code, but are used for synchronization. Eight bits are the code.

On output the CPU does a POT out to the teletype in which it specifies a teletype number and a char-

acter to be output. This character goes and sits in a buffer in the interface, and the interface does what’s

necessary to output it. When the output is finished, after 100 milliseconds, there is a little timer, which

causes the interface to generate an output interrupt. The CPU can do a PIN and find out which teletype is

responsible for the output interrupt. The significance of the output interrupt is “I’ve finished outputting

that character. You can give me another character if you want”. In this way the CPU can read input from

the teletype interface and send output to the teletype interface. In both cases the teletype number as well

as the character involved is sent.

There are two interrupts which the teletype system generates, one to say “I’ve got a character ready

for you to read”, and the other to say, “I finished outputting what you told me to output and I’m ready to

output something else.” Individual channels on the teletype interface operate, from the computer’s point

of view, complete independently. Any interrupt may come from any of the channels and the fact that

output is going on in another one. Those are the essential characteristics of the teletype interface hard-

ware.

Q Do you have an interrupt for each teletype?

A No, two interrupts in all. It’s because there is only one interrupt for input and one for output that you

have to provide the teletype number in the POT-PIN operation. This is obviously better because with

64 teletypes it is ridiculous to have 128 interrupts.

Q Why is it that it works on a character basis than on a double character basis, for instance?

A Because you don’t want to work that way. You want everything character by character. That’s one

reason. Another reason is that if you work on a double character basis, you have to twice as much

buffering in the interface. The buffering represents about 2/3rds of the cost of the teletype interface,

and it would be expensive to have more. If the interface has to collect—for instance, if you use the

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 20

double character scheme for output—you ship two characters instead of one to the interface—the in-

terface has to have storage for those two characters instead of for just one.

Q Doesn’t it have 24 bits for the 24 lines?

A Oh, no that’s quite different, there’s no 24 flip flops there. The way these lines are set up is this: a lot

of them are always zero, the ones in the middle. The 8 lines for the character come from a character

buffer, and the lines for the tty number come from some unary to binary decoder which sees line

such and such and encodes it into binary. When you do the POT you send out 24 lines, 24 bits. When

you PIN you read in 24 bits. Those 24 bits contain a character over on the left-hand side, the teletype

number on the right-hand side and zeros in the middle.

That’s the hardware. What you can do as a user is very involved and

is one of the things we will spend quite a bit of time on. There’s a lot of

machinery associated with making the teletypes work the way the user

wants them to work.

There’s one more piece of significant hardware and that is the drum

or RAD and I will probably call it drum most of the time. This is primarily a swapping device. It oper-

ates at half core speed, full core speed, or one-quarter speed depending on what it is. The RAD operates

at quarter core speed, and it runs over a special direct access to memory channel (DACC). Normally it is

run with blocks of reasonable size, either 2000 words at a clip or 256 words at a clip, depending on

whether it is being used for swapping or for file storage. Physically I believe the RAD can operate on

units as small as 64 words. It is basically like any other I/O device with one exception. The channel has

a little gimmick in it called the channel map. Memory is divided up into 2000 word pages, so that in the

user’s relabeled memory absolute address 13777 may be right next to absolute 50000, because the pag-

es are completely independent. If the user says, “I want output from 3700 to 4300, one 256 word block,

this is normally read or written from one 256 word block on the RAD. The RAD channel works on abso-

lute memory addresses, not on relabeled addresses, and this means a serious problem here, because this

256 word block is not a single block in absolute memory. If we start at 13700 and end at 50277 there is

no way to tell the channel that we really want 13700 to 13777 and 50000 to 50277. The way the situa-

tion is corrected is the channel has a small map in it which essentially allows it to say, “When I cross the

page boundary, I can switch from absolute addressing to addressing through the map, which allows me

to get a different absolute page.”

The scheduler

The scheduler is what decides when programs get run, when they don’t get run, what happens when

they have to wait for I/O, what happens if they compute for too long, etc. The relevant section of the

working document is section 2. The relevant section of the listing is the huge package called SPAC. PAC

stands for “program active”, and this section of the listings contains a large amount of code. It contains

the scheduler code at the beginning where it says “Scheduler” in the comment, and then it contains a lot

of code associated with forks and a lot of code associated with the swapper, which we will have occa-

sion to discuss later.

The idea is the following: there are these things in the system called processes. They are sometimes

also called forks. In fact, they are always called forks in the working document. I will probably call them

both. A process is a collection of information which suffices to allow a program to be executed. Looking

at it in another way it is an entity which can execute instructions. The way a process is defined is this:

suppose a process has been set running by some mystical process and we want to stop it. A process is

defined by all the things we must save when we stop it if we are to start it up again in such a way that it

Char 0 0 0 0 0 0 0 0 tty #

0-7 8-17 18-23

PIN/POT Lines

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 21

will not know it has been stopped. What are these things? First of all, there is the map. Then there are

the central registers, the A, B & X registers and the program counter. Besides that there is some kind of

status information which says why we stopped it and when we should restart it. In actual fact there are

some other things that are used to define a process besides these which have to do with other features of

the system. These will be discussed later on.

All this information for each process is kept in a table called the PAC table or program active table,

which you will find in the working document immediately following page 2-1.

Q Is there one of these for every active process?

A There is one PAC table entry for every process, every active program, every fork, every whatever you

want to call it.

And it is this entry which essentially defines the program. If you have one of these you have a pro-

cess and you can run it. If you don’t have one of these you have nothing. That’s what an active program

is and these active programs are the things with which the scheduler deals. Each one of them, as I have

said, is defined by a PAC table entry and is identified to the scheduler by its index in the PAC table,

which is a negative number called PACPTR, a number which you will find occurring throughout the sys-

tem. The significance of PACPTR is the following: that there is a bunch of symbols in the system called

PX, PL, PB, etc. , etc. which you find running down the left hand side of the page 2A, and if you write

something like this

LDA PL, 2

and you have PACPTR in X, you will then get PL word for that particular program, for the program iden-

tified by PACPTR.

Now the meaning of this from the point of view of the PAC table is the following: if the PAC table is

a section of core, PL, PB, etc. are symbols whose values are addresses at the end of this section, and

PACPTR is always negative. The first program in PAC is the one in the earliest core locations and has the

biggest negative PACPTR. The smallest negative pack pointer is -12, since a PAC entry has 12 words.

The size of PAC is a parameter; it is defined in MSYMS. Why the PACPTR is negative I’m not exactly

sure, but we are now irrevocably committed to its being negative because there are lots of places where

we do SKN.

PACPTR is the handle on the program, and whatever you do with this active program, whether it’s

running or whether it’s sitting on some queue somewhere waiting for this or that, it is always identified

by this number. If you ever get an entry in the PAC table which has no PACPTR pointing to it, then that

entry is lost for good; you’ll never find it again.

The next question is the following: suppose we have an active program—suppose we have lots of ac-

tive programs—we have the following obvious problem. We can’t run them all at once, since we have

only one CPU, so we have to run them one at a time. This means that first of all we have to be able to

start them up and stop them. Secondly, we have to have some sort of rule for deciding which one we run

next.

Q Where is the PACPTR kept?

A It depends. It’s just a number; you can put it anywhere. It may sit in some table or be in some queue

entry, or anything. There is a word in the system called PACPTR which holds the PAC address of the

program currently running.

Q How do you get it?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 22

A Who is “you”?

Q The user.

A The user never sees a PACPTR. He has nothing to do with that. Remember, he doesn’t know that

there’s time-sharing going on. He just has this big computer to himself.

Q This is set up in the beginning?

A When the monitor establishes a process it finds an empty slot in the PAC table for it. Maybe I should

explain about that. There is this thing called the free program list, FPLST, which is essentially a list

chained through all the empty entries in the PAC table. When you need a new entry in the PAC table,

you pick one off the front of FPLST. And in the very beginning of the world the monitor sets up

FPLST by putting all the entries in the PAC table on it. When you need an entry from the PAC table

you take one from FPLST, and when one becomes obsolete you put it back on FPLST.

Q How do you know which number is the number for PACPTR.

A For what? Which number? For what PACPTR? That depends on which program it is for. Suppose a

program is dismissed because it’s waiting for teletype 64, Then presumably somehow associated

with teletype 64 there will be a word which contains the PACPTR of the program that’s waiting for

teletype 64. When teletype 64 comes along and says “O. K., it’s time to go”, you can find in that lo-

cation the PACPTR for the appropriate program. Exactly how these things are organized is the func-

tion of the various parts of the system. You’ll see lots of places where PACPTRs show up. I can take

PACPTR and put it in cell 103 and then I can come back later, take it out of cell 103 and do some-

thing with it.

Q But it’s usually kept in one place?

A No, it’s kept in lots of different places depending on what’s going on. The program will get dis-

missed for all kinds of different things, and PACPTR winds up in all kinds of different places.

Q Including the program?

A The program itself never sees its own PACPTR. It doesn’t know about that, remember?

Q Are there quite a number of these things, of PAC slots?

A It’s a system parameter how many there are. Look in MDBG and MSYMS.

We now proceed to discuss the operation of the scheduler. First, activation and dismissal. First of all,

if a program is running how can it get dismissed? A dismissal occurs as the result of one of the follow-

ing things: You might be waiting for I/O. For instance, you ask for a character from a teletype and the

character is not there yet because the guy went for coffee. So there’s no character. Well, it’s ridiculous

to leave you sitting there waiting for the character tying up the CPU while the guy gets his coffee. You

get dismissed and eventually when the character arrives you get reactivated. Or alternatively, maybe you

have 350 characters to type out. If the teletype output buffer is only 30 characters long, you ship 30

characters out one at a time to the teletype. Then you come along with the 31st character and there isn’t

any room for it. So you have to be dismissed until there is more room. Again, you could request dismis-

sal explicitly, usually on some specified condition like time or waiting for another process, or some oth-

er thing like that. Finally, you could compute too long; that’s called quantum overflow. Those are the

important things.

So basically there are three ways to get dismissed: you could be dismissed if you asked for I/O that’s

not ready, because of your explicit request, or because you computed for a long time and the computer

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 23

decided it was somebody else’s turn. Of these three kinds of dismissal, two are produced by your explic-

it request to the system. The other is produced essentially by an interrupt (the clock), and is involuntary.

Q What is the amount of time for which a program gets to run?

A It is defined in a very complicated way which I am about to explain.

Q How long can a program wait for a character, say, before it gets dismissed?

A If it asks for the character and the character is not there it gets dismissed immediately. You don’t sit

there waiting for the character. That’s ridiculous because the time involved in getting the character is

very long compared to the time involved in the CPU. At least 100 milliseconds, even if things are go-

ing full blast.

You’ve gotten yourself dismissed. Now the next thing is how you get reactivated. That is controlled

by a word of the PAC table called PTEST. The exact details of how we get PTEST set up will be dis-

cussed in a minute, but the significance of PTEST is the following: it contains essentially two pieces of

information, the activation condition and an address of some kind. The activation condition happens to

be kept in the opcode bits of the word, and the address is kept in the address field. This is not essential.

Q How do we reactivate? What do I have to do, look at PTEST?

A Somebody is going to look at PTEST to decide about reactivation. Now the exact way in which we

do that we will get to in a minute, but I want to explain how activation works first.

When the program is dismissed the thing that dismisses it will know why it’s being dismissed. May-

be the teletype routine is dismissing it because it asked for a character and none is there. Or maybe the

drum routine is dismissing it because it asked for drum I/O and there are already six other people wait-

ing for the drum so it’s down in some queue somewhere waiting for the drum. Or maybe it’s being dis-

missed waiting for 3 o’clock. The routine to process dismissals waiting for 3 o’clock knows it’s until 3

o’clock that it’s supposed to be waiting. In any event, whoever is doing the dismissing knows why the

thing is supposed to be dismissed. If the dismissal is because of the quantum overflow there is no partic-

ular condition for reactivation. If the computer gets around to the process, it should be reactivated.

There are lots and lots of dismissal conditions. There are dozens of different things which can cause

dismissal, many different kinds of I/O conditions and lots and lots of specific requests. The idea is the

following: you do not want the scheduler to be aware of all these details of different possible conditions

for reactivation. If it is, it has to know far too much about other parts of the system. We would like to

have the scheduler decoupled from other parts of the system as much as possible. In other words, we

would like to have a mechanism by which the scheduler really only knows that it’s supposed to go to

some word and look at bit 23. If bit 23 is on then program is activated, otherwise not.

Somebody else is responsible for how bit 23 gets turned on. If it’s the teletype dismissal, the teletype

should be responsible for figuring out that “I should turn bit 23 on”, the scheduler is only responsible for

looking at bit 23. In fact, we don’t even have the ability to look at bit 23; we have much more simple-

minded things than that. The activation conditions are listed on page 2-4 of the working documents—

and you see that there are not very many. The most commonly used ones are 0, 1, 2, and 3, which essen-

tially say “Go and look at the word in the address over here and find out whether it’s >0, ≤0, ≥0 etc.

For instance, the simplest possible way you could handle a dismissal would be the following: you

dismiss the program until a word is ≤0 and set the word to +1. Then when it’s time to reactivate the pro-

gram the interrupt that gets it reactivated sets the word to -1. Then the next time the scheduler comes

along and test the activation it will say, “Aha, time to reactivate the guy”.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 24

Is this mechanism clear to everyone? This is quite important. The significance of it is that scheduler

which decides to activate is decoupled completely from the routine which decides whether activation is

permissible. Communication is achieved only through contents of certain memory cells. There are some

activation conditions that are sort of funny and do have a little bit of relationship to the real world, like

number 3. which is word < teletype early warning, early warning being a system parameter which says

essentially how many characters you should allow to pile up in the teletype input buffer before activat-

ing a program. We’ll discuss that in more detail when we get to the teletype logic. And number 4, which

refers to time delay, has an explicit reference to the clock. Number 6, which is sort of a funny one, word

equals address of word plus 2, results from the conventions used in the I/O part of the system. All the

I/O buffers have the form of 2 header words followed by the data words. The buffer is in some sort of

initial state when the first header word points to the first data word, i. e. , points to the second word after

itself. That’s the reason for condition 6.

Q Why don’t you show what happens in a typical I/O operation?

A Okay, suppose I am a program executing a TCI. I go bouncing off to the teletype routine and the tel-

etype routine looks to see if there are any characters. Now there’s a word somewhere that says how

many characters there are in the teletype buffer, It looks at that word, that word is zero. No charac-

ters. So the teletype routine sets up the activation condition, and the activation condition is this: there

is a word in the teletype table which essentially says “It’s time to run this guy now, because a break

character has come in” when it is positive; every break character increments it by 1. So when the

teletype routine recognizes that it is time to dismiss the guy it sets the word to -1, and it sets up an

activation condition which says activate on word non-negative. This means that every time the

scheduler tests this condition it’s going to ask “Is this word > 0? “ and the answer is going to be

“No”, as long as no break character comes in on the teletype. When the teletype interrupt routine is

fired up by the arrival of a character and it observes that this character is a break character, it will in-

crement the word.

Q This allows you to completely decouple the scheduler from all the routines that might cause an inter-

rupt in the program?

A Exactly and this goes both ways. The scheduler doesn’t have to know about them and they don’t

have to know about the scheduler. All the teletype interrupt routine knows is that if a break character

arrives there’s this magic word it’s supposed to increment. All the scheduler knows is that there’s

this magic word it’s supposed to look at to see whether it is negative or not. That’s the extent of the

communication.

This, by the way, is a technique used throughout the system and explains many things which you

otherwise might find extremely puzzling. The system is not organized on the basis of a subroutine

which calls 6 second level subroutines each of which calls 6 third level subroutines etc. Very rarely

do you call subroutines to more than two levels. Communication is always accomplished through ta-

bles in memory, and what happens is that one routine will set up a table and then it will go away.

Later on some interrupt will come along and fire some other routine which will look at that table and

on the basis of what it sees it will decide something. This is the philosophy on which the system is

written. It is not the way most programs are written and is a little bit difficult to understand.

Q What’s a break character?

A A break character is a character which essentially says that the program is supposed to pay attention

to this character right away. We’ll discuss that in more detail when we get to it.

So enough on activation and dismissal. Now, the question is how to organize all these programs?

Say we have three programs that are dismissed that are waiting to run. How do we organize them?

y

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 25

Somehow the scheduler will have to be able to find them so it can look at their PTEST words. The stu-

pidest way to do it would be to say “The scheduler will scan the PAC table, starting at the beginning and

going to the end, and it will check the PTEST at each slot”. This is how we did it for a while and this

system has the virtue of simplicity; there’s nothing to get out of order. There’s really a lot to be said for

having a big table and just scanning it, because you don’t have lists and queues and little pointers and

things and there’s so many fewer little pointers that can be pointing to the wrong place. If you just have

this simple scan there’s no way for the scheduler to get into a loop, whereas if you have a list and the list

becomes circular the scheduler will go round and round and round and never gets out. And that, in fact,

has happened.

Unfortunately, this scheme is basically not satisfactory in spite of the advantage of simplicity. First

of all, it incorporates no mechanism for priority, because the position of the program in the PAC table is

fixed and consequently there is no way of saying “This program is more important” by looking at it first.

The second objection is the PAC table is very large and many of the slots are empty or are devoted to

programs which are of no interest to the scheduler for. one reason or another. Consequently you waste a

lot of time looking at things.

So we established a somewhat more ingenious scheme which involves having three scheduler

queues. This mechanism is described rather compactly on page 2-5. The queues are called QTI, QIO and

QQE. QTI stands for teletype queue. QIO stands for input-output queue, and QQE is for quantum exceed-

ed, meaning you computed too long, you got time sliced. Whenever a program is dismissed, it is put on

one of these queues, and the queues are organized in the following way: Each one has one word associ-

ated with it called the header word, and then the queue entries, which are PAC table entries, chained

through PNEXT. There will be some programs on the teletype queue, and there will be some programs on

the I/O queue and there will be some programs on the quantum exceeded queue. The first word of the

header for next queue, which in turn points to the first program, which points to the second program,

which points to 0 [this description seems wrong]. And so it goes. Now we can define the priorities of the

programs. There are three priorities corresponding to the three queues. QTI has the highest priority, QIO

is the next highest priority, and QQE the lowest priority. You can always add more queues if you like.

That’s not very hard.

Q For instance, if a guy comes out of QQE and executes and then is hung up on QTI? There’s no facility

to scan QTI and give this guy higher priority than someone already on QTI.

A No, there is not at the moment. However, there is a standard routine for putting people on queues

and you could modify this routine quite easily. The routines called QPUT and QGET are responsible

for putting people on queues.

Q All they do is splice pointers?

A That’s right. At the moment there is no mechanism in the scheduler to establish priority.

Q To establish a new queue all you do is establish a new header word?

A That’s right. And you have to find the place in the system where the headers are initialized. After

that everything should take care of itself.

Q You can establish a new queue just like that?

A You have to change the system to establish a new queue, but the point is that is not very hard. You

cannot establish a queue at any time, definitely not. What I’m doing is explaining the mechanism

which is used and pointing out that it’s not very difficult to add queues.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 26

So this is the queue mechanism and it’s obvious how people dismissed for the various conditions go

on the various queues. The algorithm the scheduler uses is the following: when it decides that it’s time

to look for a new program to run, and how it decides that is something we haven’t discussed, but when it

decides that it starts off on the teletype queue and goes cruising down the teletype queue looking for

someone to be activated. If it finds somebody to activate it takes him, since he is the highest priority

guy. If it doesn’t find anybody, it goes right on, cruising down QIO looking for somebody to be activat-

ed. If it finds somebody there it activates him, and if it doesn’t find anybody it goes right on cruising

down QQE looking for somebody to activate. And if it doesn’t find anybody at all it goes right back to

the beginning and starts over again because it has nothing better to do.

Q After a process has been run, do you run the next process in the queue?

A No, because in the meantime somebody earlier in the queue structure may have become activatable.

When you put people on the queues you normally put them on the end, although there are a few

places where you put people on the beginning on a queue. So this is the queue mechanism. Now we

should conclude by discussing the timing, which controls how people get dismissed and reactivated.

You may be dismissed for I/O; that happens because you made an I/O request and the I/O’s not ready.

Then you get put on the appropriate I/O queue, whether QTI or QIO, and you are then dismissed and the

scheduler goes on to somebody else.

The mechanism by which it is handled, by the way, is almost always the following: suppose you do a

TCI and the character is not ready. It dismisses you, leaving in the entries of your PAC slot the contents

of the central registers, and in particular leaving in the entry for the program counter, the address of the

TCI instruction. When you get reactivated the scheduler doesn’t know that you were doing teletype in-

put; that’s not in the picture at all. All it does is to set up your map and gets your memory into core, and

then it transfers to the specified location. So the way in which you finally get the character is that the

TCI instruction is executed all over again from the beginning. And this is normally the mechanism that’s

used.

This has serious implication for what TCI can do, for what the routine that implements TCI can do.

In particular it cannot do anything irrevocable before it figures out whether or not to dismiss the pro-

gram, because that irrevocable thing is going to be done a second time when the instruction is re-

executed. If the TCI increments some counter, for instance, and then decides to dismiss the guy, it had

better decrement the counter, because the net effect on the guy who is dismissed is as though the TCI

was never executed. It is as though there had been an instruction that said “check” sitting immediately in

front of the TCI and that it was the check instruction that caused the dismissal, because when the guy’s

reactivated you come back and you redo the TCI routine from the very beginning. No information is

available which says that you already did it once and got dismissed. That information is completely lost.

Is this clear? It is very important, if you add dismissal conditions, that you understand this mechanism.

There are some cases in which this restriction is intolerable, and for those cases there is a special

gimmick called the “phantom user” which is given the responsibility for doing things where you can’t

just go back and start at the beginning. It is very horrible.

Q You’re worrying about doing something twice. Why can’t you naturally conclude one thing and then

start where you left off?

A Because the difficulty is preserving information that tells where to start. If you get half way through

the teletype input routine and decide, “Okay, it’s time to dismiss the guy, but there are 16 temporary

storage locations that I’ve used that I want saved,” then somewhere there has to be space for saving

those 16 temporary storage locations, because somebody else is going to come along and use the tel-

etype routine while you are dismissed. And furthermore, it’s different for each routine that can cause

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 27

dismissal. The storage allocation becomes very messy. Also slow. Furthermore it’s very important to

handle things so that all the dismissal conditions are treated in exactly the same way, because other-

wise the scheduler will have to take different action for each dismissal condition when it re-activates

the program, finding the temporary storage locations that were saved here and restoring them. Each

time I added a new condition I would have to add more machinery and it would get out of control

before you had a quarter of a system done. Hence the rule that normally when you dismiss a guy,

you dismiss him in such a way that when he is reactivated the instruction that caused the dismissal

will be re-executed. This has implications about what the routine processing this instruction can do.

Say, for instance, it might be convenient in the implementation to increment some counter that says

how many characters have been taken out, or something like that, before you actually find out that

there are no characters there. It’s hard to know without looking at the implementation what problems

may arise. However, it’s important to be aware of the fact that when you do implement the TCI rou-

tine you don’t have complete freedom in how you do it because of the possibility that you may have

to dismiss the guy. If you do dismiss the guy you must make sure that everything is clean.

Note that all of this is of course invisible to the user. As far as he is concerned, each instruction is

executed exactly once.

Q Is the TCI routine very long?

A A couple of hundred instructions. It has about six different special cases it has to look at.

Q Why don’t you make it reentrant?

A Then you’d have to remember the program counter of the location of the TCI instruction. That

would be one more thing to remember.

Q Why are you discussing this in so much detail if the user never has to worry about it. Why do we

care about the system problems?

A I realize you don’t care about our problems in the TCI instruction, but if you want to make an addi-

tion to the system which involves dismissing somebody, you better be aware of what the situation is,

because otherwise your addition is not going to work. Worse, it’s going to not work in a very ob-

scure way. The whole point of these lectures is for you to understand the system, so that if you want

to make some change you can make it. Otherwise you could just read the working document. That

tells you all the external things you need to know.

The next thing to discuss is the quantum overflow machinery. The details are quite complex, but the

idea is essentially the following: every process has associated with it two quanta called the short quan-

tum and the long quantum. These two numbers are both parameters. In fart, they are not only parameters

in the system, but the long quantum ran be different for different users. There is a little table of 16 possi-

ble long quanta. If you look in the PAC table picture, you will see that there is a word called PQU which

contains a field called QUTAB, a 4 bit number which tells which long quantum is being used. You could

use this for the short quantum also. We haven’t chosen to do that but maybe we will. At the moment

there is only one short quantum and it’s set at 8 clock cycles. This choice very much depends on what

kind of performance you want from the system.

This arrangement gives you quite a bit of flexibility. You could change the long quantum on the ba-

sis of a user request, or you can change it on the basis of a system calculation involving, say, the size of

the user. If he is really big, it’s a lot of work to bring him in, so he should run for longer once we do

bring him in. There are lots of different things you can do which you can figure out for yourselves.

The two numbers are used like this. Suppose that I have a user who is going to compute for many

hours. There is no possibility that he is getting dismissed for I/O or anything, he is just going to com-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 28

pute. I fire him up and he is guaranteed that he will be allowed to run for the time given by his short

quantum. He will definitely be allowed that much time, independently of anything that happens in the

outside world except for somebody coming along with a hammer and smashing the computer. After that

his life becomes considerably more problematical. In particular, if anybody who is waiting for I/O be-

comes activatible at any time after the guy’s short quantum has run out, he will be dismissed right away,

on the next clock cycle. If nobody waiting for I/O has become ready to run, he will be allowed to con-

tinue running until his long quantum runs out. He always gets to run for a short quantum.

Q After he’s in a short quantum the second time around...

A He doesn’t get into a short quantum the second time around. He runs for the short quantum and then

he gets into the long quantum. At any time during the long quantum he can be dismissed as the result

of somebody being ready to run who was on QTI or QIO. If that situation doesn’t occur, he will be

allowed to continue running until the long quantum runs out. At this point he will be dismissed if

there is anybody waiting for any reason at all, in particular if someone else is waiting to compute.

The implication of all this is the following: Suppose you have a system with no I/O going on at all,

but lots of people computing. Each person will be allowed to run for a time equal to his long quantum.

Then he will be dismissed in favor of the next person. There will be a fair round robin, with the length of

the time slice for each person being given by the long quantum.

Now, if a person gets dismissed for I/O you save the amount of the long quantum that’s left in the QR

field of PQU. When he is reactivated he will continue to use up this long quantum. Eventually he will be

dismissed for quantum overflow and the users waiting to compute will get a chance. The exact mecha-

nism is sort of confusing. We will look at it in detail when we go over the code.

The following obvious question arises: how is it that we go about testing whether anyone is waiting

for I/O after a short quantum has run out. We can’t do it by running through the scheduler each time a

clock interrupt occurs; that’s too slow. Instead, we have this word called ACTR (which by the way is de-

scribed in the working document). ACTR stands for activation counter. It is normally set to minus one.

Whenever any interrupt routine comes along which makes somebody activatible, it increments ACTR.

This means that the only thing that the clock interrupt has to do is to test ACTR. If it is still negative,

there is no chance of activating anybody who is waiting for I/O because the only way that somebody

waiting for I/O can become ready to run is for some interrupt routine to come along and make him ready

to run. So that’s the mechanism, and it is described in gory detail towards the end of Section 2.

Before we start talking about the PAC code, maybe I’ll say a few words about the organization of the

system. It comes in packages, each package being represented in the listings which you have by separate

bunches of pieces of paper stapled together and identified by a name beginning with S which you find at

the top of each page of the listing. There are several packages which consist of code: PAC which is the

scheduler, fork structure, swapper etc.; W, which contains the W-buffer logic; TTY, which contains the

teletype logic; DRM, which contains the drum I/O; and SIO, which contains the routines to handle the

general user interface for I/O in the system. Then there is a package called MSYMS which contains the

constants and temporary storage locations and tables for the monitor, and there is a package called MDBG

which contains a large number of flags and OPDs and macro definitions which are common to all the

packages of the system. You will notice in the middle of page 8 of MDBG there is in solitary splendor the

word FREEZE. The meaning of that is that assembling MDBG will cause the assembler to put itself into a

state in which you can assemble the other packages of the system with the assembler thinking that each

one includes the portion of MDBG before the FREEZE. What the FREEZE does is to convince the assem-

bler that all the symbols and macros that have already been defined are permanently built in. After hav-

ing done this FREEZE we use the same copy of the assembler, without allowing it to reinitialize itself, to

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 29

assemble all the other packages. Thus they will all be assembled with the same collection of OPDs, con-

stants, etc. which we put in the 8 pages of MDBG which contains all system flags and parameters, together

with a collection of standard macros. So you’ll find throughout references to various things that show up

in MDGB. You also find reference to lots of things in MSYMS, which are always storage locations of one

kind or another. Things in MDBG are mostly flags and operation definitions and things like that. MSYMS

isn’t used like MDBG. It is assembled by itself and it uses the external linking facilities of the loader.

MDGB is different. It has all these parameters and things which are going to be used to control the assem-

bly and to define table sizes and things like that, so you can’t handle them with external linking.

Another thing which should be explained is that these programs are listed on a 1401 which has 48

characters. We have used the overprinting feature to generate the missing 15 characters in various ob-

scure ways. In particular semicolon is generated by a comma overprinted with a minus sign. Semicolon,

by the way, in the assembler is exactly equivalent to carriage return.

We now begin looking at PAC. On page 2 there is a comment: trapped feature. Now TRP is a macro

which is defined in MDBG, and what it does is to make all those symbols equivalent to the symbol TRAP,

which is the address of a location which causes the system to generate an illegal instruction trap. The

reason that these are trapped features is that these are all the features that aren’t implemented. There are

various tables which point to these symbols, which are supposed to be the beginning of routines to han-

dle these features. The tables can be set up as though the features were there, and if we simply equate all

these symbols to TRAP, we can trap all the unavailable features. As we implement them, we can take the

appropriate symbols out of the argument list of TRP without any change in the main tables.

The heart of the scheduler is the code starting at POPX which is in the middle of page 3, so we will

look at that first and we will then go back and look at other things. The scheduler starts there and it goes

on right into the middle of Page 5. POPX is a routine which is the standard exit for system program oper-

ators. It restores the central registers from locations called SS01, SS02 and SS03, which are the stand-

ard places in which the central registers are put by system programmed operators. In particular, the op-

erator called BRS, which is the sort of all-purpose operator whose address is used to indicate lots of dif-

ferent routines, always puts the central registers in these locations. If you add BRSs to the system, which

you probably will, that’s something you should bear in mind. POPX then goes to XPOP, which is the

standard exit for SYSPOPs after the central registers have been fixed up. If the SYSPOP wants to change

some of the central registers it can just set them up and then go to XPOP. Once you get to this point you

assume that the address in the user program which you are supposed to return to is in zero, which is

where it will normally be after the POP has been executed. If zero gets clobbered the routine that comes

back to POPX or XPOP is responsible for setting it back up to this user program address before coming to

one of these locations.

TIME is the short quantum count, and if it is not negative the short quantum has not run out, and you

definitely exit with BRR 0, which takes you right back to the user program because the link for the user

program is in 0, as I just explained. If TIME has gone negative, then the short quantum has run out, so

we look to see if the long quantum has run out by saying SKN TTIME, TTIME being the word containing

the long quantum. If the long quantum has run out we do SKN 0 which tests whether we came out of

user mode or not. If we did come out of user mode then the sign bit of the link in 0 will be set. If TTIME

has gone negative, in other words, if the long quantum is used up, then we test to see whether we came

out of user mode or system mode. If we came out of system mode we return, (since a system mode pro-

gram cannot be dismissed); if we came out of user mode we know that quantum overflow has definitely

occurred.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 30

If, on the other hand, the long quantum has not run out we test ACTR. If ACTR is negative, then we

know that even though we are in the long quantum, no I/O interrupt has occurred, and therefore we re-

turn. If ACTR is not negative we know that some interrupt has occurred and that we should dismiss the

guy unless we came out of system mode. If we came out of user mode, then we come down where quan-

tum overflow occurred, and we know that we are supposed to dismiss the guy. So we save the central

registers in SS01, SS02 and SS03. We then come to the location called SQO. Anytime you go there the

guy you were running is going to be dismissed for quantum overflow. There are two ways to get there.

One is from XPOP or POPX which we have just described. The other way to get there is by an explicit

transfer to SQO, which is done by BRS 45. The user can execute a BRS, namely, BRS 45, to simulate

quantum overflow, to get himself dismissed as though his quantum ran out. This is what he does when,

for instance, he wants to check some external condition but not tie up the CPU by testing all the time. He

says, “Dismiss me on quantum overflow,” which means that after everyone also gets a chance to run I’ll

come back in and test the condition again.

So we have come to the point where we are being dismissed on quantum overflow. We increment 0,

the reason being that what we are going to do now is to go into the main body of the scheduler, which

expects to find in 0, the address to which it will return control. Since we just came out of a POP we want

to return control to the location after the POP. This means we have to increment the link. If we were in

the POP we would return with BRI, which automatically does the incrementing. Now we are going into

the main body of the scheduler, which is going to return exactly to the address in 0, not to that plus one.

In order to make the return go to that plus one, we have to increment.

Then we set TTIME to -1, which indicates that the long quantum has definitely overflowed. There’s

two ways that could happen. The long quantum might not really have overflowed, because we might

have gotten dismissed on ACTR, but if we do get dismissed on ACTR we are going to pretend that the

long quantum did overflow. There are times when we preserve the long quantum, namely, if a guy is

getting dismissed on I/O we keep the long quantum around. If we didn’t do that he could devise the fol-

lowing strategy: compute for an amount of time just less than a long quantum and get himself dismissed

for some trivial I/O operation, which would get him on a high priority queue. When that I/O is finished

he could come back, and if we reset the long quantum at that time then he would never get dismissed for

quantum overflow. Whenever the guy’s dismissed for quantum overflow (on to QQE) he gets to start

over again.

Then we fall down to PACQE which is where we go to dismiss somebody on to QQE. There are some

places in the system that transfer directly to PACQE having already taken care of all the things that we

have now done. There we do LDB PACDMB; LDX =QQE. In other words, we put into the B register a dis-

missal condition and into the X register the address of a queue, namely the quantum overflow queue.

Then we go to POPDMS, which is a location that dismisses somebody with the dismissal condition speci-

fied in B onto the queue specified in X. PACDMB is defined at the very beginning of PAC on page 1 in

about the sixth line. It is defined to be ZRO *,* meaning the current location. In other words, it is a

number with zero in the op field, and the address is the word itself. Activation condition zero says “Ac-

tivate on word > 0,” which means that if we use PACDMB as an activation condition we will always acti-

vate. Therefore this is the proper activation condition to use for somebody being dismissed on quantum

overflow, because we want to always activate him.

The significance of POPDMS, which is not exactly explained by the comment, is that if we get to

there we’re going to dismiss the program which we are currently running with the PTEST word specified

in B and onto the queue specified in X. There are several places in the system which come directly to

POPDMS. In fact, I think all the places that dismiss programs come to POPDMS after setting things up

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 31

properly. PACLVL is a temporary storage location. What we do is to pick up PACPTR, which tells which

program we are running. We put that into A. We now have PACPTR in A, the dismissal condition in B,

and the queue in X. Now we call QPUT, which is a separate routine which is responsible for putting a

program onto a queue. It is at the end of PAC, and I don’t think we will look at it in detail because it is

not particularly deep.

We have now put the program on the queue, and we are guaranteed that someday the scheduler will

come around and pick it up again. Now before we start up the next program we have to make sure that

everything is set up properly in the PAC slot, the central registers and everything else. Thus when the

scheduler does come around to reactivate this program everything will be all right. The program counter

we expect to find in 0, which is why we have this LDA 0 at POPINS. We mask out in significant bits of

this, and we store it in PL,2, namely, in the program counter location for this particular PAC slot. The

reason for the ETR and ADM is that if you look in the PAC table picture you will see that there are 6 bits in

PL which are used for something else, and we have to protect those 6 bits. We mask them out with this

extract and put them back in. Then we save the central registers by picking up SS01, SS02 and SS03

and storing them away in PA,2; PB,2; and PX,2 at the top of page 4.

Now we deal with the quantum. This is to make sure that in the QR field of PQU we set up the proper

number for the quantum remaining. So what we do is to pick up PQU and shift it enough to get the

QUTAB field in the A register. In other words, this allows us to get the index in the table which will tell

us how big the long quantum should be. Then we pick up TTIME and we ask if it’s bigger than -1. If

there is any long quantum remaining we keep what’s remaining, otherwise we pick up a fresh long quan-

tum from the table. Then we pick up PACPTR again and we do the necessary fiddling to put this long

quantum into the QR field PQU, which is accomplished with the XMA, ETR and ADM.

Now we are just about ready to start to try to find another program. We have just about finished put-

ting away the old program. The only thing we have still to do is to change TJOB, which is a cell used for

accounting. Every time a clock interrupt occurs one of the things we do is MIN *TJOB. This location is a

counter of some kind, an elapsed time counter. We are incrementing somebody’s elapsed time counter.

When a program is running, TJOB is set to point to the elapsed time counter of the user who owns the

program. When no program is running, TJOB is set to increment the elapsed time counter for the system.

What we are doing now is to arrange that if a clock interrupt occurs while we are in the scheduler we

will charge the system for it. This means we have a rather crude accounting scheme in which we charge

people for elapsed time essentially by charging a user 1/60th of a second if his program happens to be

around when the clock interrupt occurs. It’s obvious that over a period of one second this isn’t going to

be very accurate. But over a period of an hour it’s going to be pretty good, because all the inequity is

going to even itself out. Sometimes you get charged while the system is actually doing somebody else’s

interrupt routine, but other times it’s doing your interrupt routine and somebody else is charged, so that

it evens itself out pretty well.

Q If we are processing when this happens then we are charged for it but if we’re in any dormant state...

A We’re not, because TJOB is set to somebody else. However, I would like to point out that it’s possi-

ble that the work that is actually being done is not work for you, because it may be some interrupt

routine. In that case you get charged anyway, but it’s fair because some other time somebody else

will get charged for work that is set for you.

Q We change TJOB every time we change programs?

A Exactly, but not for interrupt routines.

Q Is there a header block or something set up some place which contains information relative to a job?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 32

A Yes, there are lots of things. We’ll get to that too. The tables in the system are essentially indexed in

three different ways, by PACPTR for tables which contain information which is different for different

processes; by teletype number for tables which differ for different teletypes; and by job for tables

which differ for different jobs. The teletype tables and the job tables are quite closely tied together

and we’ll look at them in detail when we look at the teletype logic.

The last thing we do before leaving this program is a BRM DPT. This is a routine to make sure that

everything connected with the drum I/O is all right before we switch processes. It is in the drum pack-

age.

Now we come to PACGO. This means, “Everything is all right, I’m supposed to find somebody to

run.” The assumption is that by the time you got to PACGO everything from the last process is cleared up.

There are a couple of ways to get to PACGO other than going through all this logic for dismissing the

previous guy.

We are going to keep in the cell called PACLVL the number of the queue that we are working on

now, and that initially is QTI. The code that follows is going to run down QTI and when it finds the end

it is going to know from PACLVL which queue it’s working on. Thus it’s going to be able to go to the

next queue. During the scheduling process we are going to keep in PACPTR the address of the process

for which we are currently trying to decide whether it is okay to activate it or not. This PACPTR is going

to move down the various processes which occur on each queue. It starts out pointing to the header

word.

The main loop starts at PEST and it goes down to the comment “activate program”. If we get down

to PACACT it means we have found an activatible program. If we don’t get down to PACACT then we will

just run around in the loop indefinitely. We pick up PACPTR, i.e. the program that we have been looking

at, and now we are going to pick up the next program in the queue. The pointer to the next program in

the queue’s stored in a word called PNEXT in the PAC slot. We look to see if PNEXT is negative. If it’s

not negative then we have come to the end, since normally PNEXT is a (negative) PACPTR. We go to

handle new queues at PACNXQ, which is at the bottom of the page. If we have a new PAC slot we save

the old PACPTR in a word called PPREV, and we put the new PAC slot in PACPTR. Now we pick up

PTEST for the new PAC slot and we get its activation condition into X. We use the activation condition to

index a list called CACLST (which stands for complete activation condition list) which essentially con-

tains a bunch of transfers off to the little routines which test the various activation conditions. We put

the word that we get out of CACLST into T.

Each one of these little activation condition routines expects to find certain things in the central reg-

isters when it is called: PACPTR in X and the word addressed by PTEST in A. The activation condition

routines are on page 5. CACLST is about the fifth line on page 5. It refers to activation routines 0, 1, 2, 3,

4 and 9. If the activation number is 5 we will always activate and we go to PACACT. If it is 6, 7 and 8 we

never activate since we go to PEST which is the scheduler loop. Most of the CAC routines defined in a

rather obscure way with this macro called CACR which is defined in MDBG The result is always to go to

PACACT or PEST, depending on whether the activation condition is satisfied or not.

If we get to PACACT we are going to have to actually activate a program. The code to do this runs

from PACACT to PACNXQ. Note that the instruction just before PACNXQ is BRU* 0. This is the instruction

that starts up the program again, if we get that far, but very horrible things can happen before that, as we

will now see in detail.

We pick up PACPTR and we go to this routine called PGET which is responsible for getting the pro-

gram into core. This is actually a call on the swapper. You will find the routine on page 7. You can as-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 33

sume that after PGET has been called the guy has been brought into core and can ignore the fact that the

swapper may have gone through horrible gyrations to get him into core.

PGET skips if successful. If it’s not successful that’s because you have a drum error, in which case

we abandon the attempt to run this guy and go back to PEST to try to run somebody else. If we are suc-

cessful in bringing this guy in, we change his activation condition to 7 with an address of 1, which indi-

cates the guy is now running in case anybody should happen to look at the activation condition.

Q Do you give any indication that a drum error has occurred.

A The assumption is that the drum error will be corrected later. If the drum error is irretrievable, then

the guy will never get in, but there’s this little counter that counts drum errors, and it will start count-

ing up rapidly. We can look at it and try to figure out what’s going on.

We save the old value of the activation condition in FK04, which we don’t have to worry about for

the moment, and we then have to take the program off the queue which it was on, because it is now

about to be run and must not stay in the queue structure. If it does stay in the queue structure then as we

keep on dismissing it more and more copies of it will get into the queue structure and eventually the

thing will clog up. It is taken off the queue by the routine called QGET, which expects to be called with

the address of the previous thing in the queue in the X register. We saved that address away in PPREV,

you may recall, back at PEST. The address of the thing itself should be in the A register.

Now we pick up PACPTR again and get the quantum word. Remember, we put the quantum word

away back on the previous page. Now we undo what we did there and put QR in TTIME. That’s the long

quantum word. We now set up the short quantum word, which is always NSQ, the current standard value

for the short quantum. That is a parameter which occurs in MDBG at the bottom of page 3.

Q You always give the user a full short quantum.

A Right. This is on the theory that if we went to the trouble of bringing him in, he should be allowed to

run for at least a short quantum; otherwise it’s just too expensive to bring him in.

So we set up TIME, then we set up UMTF, which is a magic cell which says essentially whether user

mode trap is enabled or not. Then we pick up T. What’s in T is what was left over from PEST, namely,

the address of the word in CACLST which was determined by the activation condition. If you look at

CACLST on the next page you will see that most of the opcodes are zero. But some of them are non-zero,

in particular the one that says 1 PACACT. What we are going to do now is transfer on the opcode field of

the CACLST word. We add =ACTLST+1, and transfer depending on whether the opcode field of the word

in CACLST was zero or one. The significance of this is that if the word was one that meant the activation

condition really said, “An interrupt occurred for this process.” And for that we have to do a very special

thing. If anything else happened we go to PACSRT, which is just the next instruction on page 4 after the

branch off. We are allowing with this device for the possibility of having some funny kinds of activation

conditions which cause the program to be activated in a different way. At the moment the only one

that’s in there is this one for interrupts. Now we pick up the program counter and store it in 0, we restore

the overflow bit, pick up the central registers from PA, PE and PX, and branch through 0.

Q Have you any idea how long it—do you have any statistics on the amount of processing time associ-

ated with activating the programs.

A It’s less than 5%. Definitely. Except when swap time begins to swallow things. This is very bad. The

thing that’s slow is the swapper, which has to decode the relabeling. At the moment that’s not done

efficiently at all. We hope to improve that, but that’s much the slowest thing.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 34

Q All the housekeeping and all the scheduling and all that business is less than 5% with the exception

of the swapping.

A No, the whole thing is still less than 5%. But most of that overhead is the map computation. In other

words, when the swapper writes somebody out it gets his pseudo relabeling and has to figure out

what the absolute relabeling is and what should be read onto the drum and set up the drum command

list.

Q All this is included in the 5%?

A Yes, definitely. The scheduler is negligible.

Now the only thing that remains is PACNXQ. This was where we went when we ran off the end of a

queue. What we do is pick up PNEXT, and test to see whether it is QQE or not. What PACNXQ does is the

following: all it does is check to see whether the queue that it is going on to is QQE or not. If it is, we re-

set ACTR, that magic counter that tells us whether we have somebody to run on the higher queues. Then

we go back to PACSCN, which picks up a new queue and goes cruising on. That is the scheduler. You

have now seen it.

Q Are interrupts disabled here?

A No. An interrupt routine never tampers with the scheduler.

Q You get interrupts in this code?

A Yes. The only thing the interrupt routine can possibly do that the scheduler cares about is to change

some word that’s being looked at by the activation routine. If the interrupt occurs before the activa-

tion routine is called, then, that’s fine. If it occurs after, that’s too bad, but we’ll get it the next time

around. In any case it doesn’t make any difference.

There’s one more piece, the piece that actually causes program interrupts. Maybe I should explain

briefly about program interrupts at this point so we can understand this piece, as its a fairly simple idea.

You will find it described in section 4 of the working document. Every process has software implement-

ed interrupts associated with it and there are 20 of them. When one of these interrupts occurs, the pro-

cess is forced to execute an SBRM * 200 + interrupt number. PACINT is doing the SBRM *.

The next topic is going to be the memory allocation system and the swapper, and we will operate on

amore general level than we did yesterday. We will not look at code. Before we go into this I want to

say a few words about this thing called the “phantom user.” This code you will find starting on page 5 of

SPAC . There are places within the system where you are sitting, for example, in an interrupt routine and

you discover you have to do something very complex. It may even be something which requires a swap.

You cannot just sit there in an interrupt routine while the swap takes place, because the swap will take a

long time. It may take several hundred milliseconds if there are other people waiting to be swapped. So

this means that the interrupt routine has to have some way of putting some information somewhere

which says “do something as soon as you can but not with such absolute top priority as an interrupt rou-

tine.” Is this idea more or less clear?

For example, one of the things that started it all off was the handling of the rubout button on the tele-

type—a panic condition which causes all kinds of terrible gyrations in the system: information has to be

read from one part of memory into another and all kinds of other things have to happen. Furthermore,

the person that they are happening to is probably not in core when the rubout button is pushed, because

anybody could be in core and there’s no reason why this particular person should be. This means that the

reaction to the rubout button is a rather complicated one which is not related to the program which is

currently being run and, furthermore, which is too complicated to do in an interrupt routine. Of course,

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 35

there are lots of actions which are not related to the program that’s currently being run. In fact, every-

thing that’s done in interrupt routines is like that. Most of these, however, are fairly short and are just

handled by interrupt routines right away. For instance, when a teletype character comes in, a small

amount of processing has to be done which is completely disconnected from whatever happens to be go-

ing on the instant the teletype character

This works fine for anything that can be handled in less than a millisecond, but for anything compli-

cated it works very badly because you can’t just sit there in the interrupt routine tying up everything

else. Hence there has to be some mechanism for getting system functions performed with high priority

but not in the interrupt routine. Furthermore, it seems desirable not to try to perform these functions

within the framework of the scheduler.

In theory what you could do is say, “Okay, let’s make a new process to execute this rubout, and let’s

give it a PAC slot and put it on some queue and eventually the scheduler will get around to running it.”

This isn’t such a bad idea; in fact we considered it very seriously. The major objections to this idea are

two: first of all, you use up a whole PAC slot for this and have much more space than you really need,

because a PAC slot has room in it for all kinds of information that’s completely irrelevant to just getting

the simple job of processing a rubout done. Secondly, this involves going through all the rigmarole of

the scheduler, which is pretty complicated and time consuming, and this is something you’d like to do

quickly and efficiently.

In order to avoid these problems we set up this thing called the phantom user. The phantom user

consists of one queue of things to do and this queue consists of a number of small entries. We’ll discuss

the form of an entry in somewhat more detail when we start talking about the W buffer logic. Each one

essentially specifies an activation condition and someplace to go and one or two parameters. There is a

permanent entry on the front of QTI for the phantom user, so that he is run every time the scheduler is

entered. If there are any entries on his queue, he is supposed to run down it and get all the processing

that is specified by those entries done.

Perhaps it would be helpful if I gave a couple of fairly specific examples of just what’s involved

here. One example is the rubout example I gave you before: the rubout arrives, the teletype input inter-

rupt routine observes that it is a rubout—it tests for that explicitly—and having found that it’s a rubout it

generates this phantom user queue entry which says “This is a rubout. It came in on teletype such-and-

such.” (that’s the parameter) The entry also contains the address of the rubout processing routine. The

activation condition is “always activate” since you can process the rubout right away. Then the teletype

input interrupt routine goes away. Now the next time the scheduler is entered it will observe that the

phantom user has something to do and it will start it up.

The phantom user code is at PUSCN, at the bottom of page 5. The first thing it will do is to pick up

this entry corresponding to the rubout and go to the rubout processing routine. That routine computes

and figures out what to do, and it may have to read in some of the user’s memory in order to leave some

information for him about what happened. When it has to do that it will generate a new phantom user

entry, the function of which is essentially to say “I’m waiting for a swap to finish, a swap which is going

to bring in this memory on which the rubout processing routine is going to do some work, and when the

swap is finished fire me up again so that I can do what I wanted to do with that memory.” So then the

rubout routine goes away again, and more time passes. When the swap is finished, the rubout routine is

reactivated. Then it finishes the computation and exits. So what the phantom user really is then is a

scheduler in miniature. You will notice that it really is true that we could have handled this problem by

just making a new process and running it through the regular scheduler; the reasons for not doing that

are the ones that I outlined.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 36

Another example is the following: suppose that we have a W buffer (a TMCC) which has the card

reader and printer on it. Now the channel is such that you can only run one device at a time. Suppose

then there are two people that want to use it—one wants to use the card reader and the second wants to

print. There has to be some mechanism for sharing the W-buffer. Several mechanisms have been tried in

the system, one after another, but the one we have settled on at the moment is essentially the following:

we proceed as though there were lots of W buffers and no possibility of conflicts, until we get up to the

critical point where we are actually about to activate the channel. Then we test to see whether the chan-

nel is available. If it is not available—(by this time the system has committed itself irrevocably—it can-

not use the scheme which it normally uses of going back and dismisses the guy until channel is ready

and then re-executing the instruction which caused everything to start)—we make a phantom user entry.

This entry has an activation condition which says “Wait for the W buffer to be ready”, and the address

that it wants to go to is exactly the place where the W buffer is about to be fired up. The parameter es-

sentially says what device is involved. So as usual there is an activation condition, there’s a starting ad-

dress and there’s this one parameter in the phantom user. Now sometimes W buffer requests will wait

only a little while. For instance, if a card is being read the W buffer will be ready within 100 millisec-

onds or less.

On the other hand, if you’re waiting for a tape rewind it may take several minutes, and at frequent

intervals during that several minutes six or seven instructions will be executed which cause the system to

check for the tape rewind to be finished (this is necessary because a completed rewind does not generate

an interrupt)

Q The phantom user is primarily associated with I/O problems?

A Almost entirely with I/O problems. There may be teletype problems, there may be drum problems,

there may be problems with other I/O devices. One of the things the phantom user is used for a lot is

the thing I indicated above. Namely, if you get deeply involved in some process in the system and

you discover you need to swap, you just have to sort of hang there and wait for the swap. Rather than

tying the whole system up while the swap is going on, you put this phantom user request on so you

get yourself restarted, when the swap is finished.

Memory

It is to be hoped that everyone understands about hardware relabeling. Otherwise life is going to be

confusing. We are directing our attention to Section 5 of the working document. Section 5 is rather

compact and makes it rather less clear than it might be what’s going on, so we will talk at considerable

length.

The idea of relabeling is the following: there are many places in the system where it is necessary to

have some record of what the state of the user’s memory is, and what that really means is, what memory

will be in the hardware relabeling when I run this user. But even that does not state the whole question

for the following reason: what will be in the hardware relabeling essentially tells me what real physical

blocks of real core memory will be assigned to the user when I run it. That’s not what I really want to

know. What I really want to know is what will be in those blocks, because at the time when I look at the

record the user may not be in core. The only place where any record of what was in his memory exists is

on the drum. At the time when he is on the drum I can specify what’s in his memory by pointing to cer-

tain drum blocks and say “Look, page zero is supposed to have the contents of that 2000 word sector of

the drum in it and page 5 is supposed to have the contents of this other 2000 word sector on the drum.”

I understand intuitively that there is some meaning attached to this statement, “Look, here’s some of

this guy’s memory.” There’s something there that does not change, and from the user’s point of view he

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 37

really doesn’t know about swapping and he really doesn’t understand about pseudo relabeling; he just

knows that he’s got this 16,000 words of memory and he expects it to still be there 2 milliseconds from

now or 2 seconds or 2 hours from now. So somewhere, even though all these fantastic gyrations are go-

ing on, and words have been flying back and forth between the drum and the memory at 500,000 per

second, there has to be some way of getting a handle on memory and saying, “Look, that block in the

user’s memory is the one I want and I want to be able to identify with some number that’s still going to

be the same number an hour from now.”

So this is the problem. There is 2000 words of the user’s memory which exists in some form some-

where, but the form in which it exists and the physical location of it will be changing from one second to

the next. However, most parts of the system are not really interested in the physical location of the thing

or anything about it except that it has some individual existence of its own. They only need some way to

refer to it. And that’s the function of pseudo relabeling, to give you some way to refer to each piece of

the user’s memory. Because we have this paging hardware, the most reasonable units to use would seem

to be 2,000 word pages of user memory. We could, of course, divide the memory up into any size units

we wanted. We could, for instance, say we will refer to memory only in 16,000 word units. This is not

satisfactory for a number of reasons. First of all, users don’t always have 16,000 words of memory. Sec-

ondly, the 16,000 words may not be all in one place, they may be scattered around, some of them may

be on the drum, some may be in core. When it is in core it may be all scrambled, because logically it ex-

ists in 8 independent 2,000 word pages and they can be scattered anywhere we want because we have

this arbitrary mapping defined by the hardware relabeling. Furthermore, from the point of view of utility

we would like to have a scheme that’s more general than just being able to refer to 16,000 words of

memory. Since we do have this hardware facility for breaking the memory up into pieces it seems that

the user can make some use of the ability to manipulate his memory in independent pages of some rea-

sonable size, like 2,000 words, and that he would prefer not to be constrained to just thinking of his

memory as a 16,000 word monolith.

Somewhere in the world there’s a table called the pseudo memory table (PMT). It essentially defines

the user’s memory. It has entries which are numbered starting at 1. Each entry in the pseudo memory

table specifies one 2K block, where by “specifies” I mean it contains a pointer to some place where that

block is now located. This is the sole connection between all parts of the system that are not directly

concerned with memory allocation and the real world. The PAC table, for instance, contains the user’s

map. That means it contains two words of pseudo relabeling, 8 numbers which refer to 8 entries in this

table. This table is the only connection between that PAC table map, which after all is intended to define

the user’s program, or to serve as part of the definition, and the real world. Without this table I have no

way of getting from the PAC table’s statement of what the user’s memory is to the real bits that the user

actually put there at some previous time.

Each entry of this table contains several status bits and either a core block number or a drum address.

There’s a bit that says whether it’s in core or on the drum, another bit that says whether it’s read only or

not, a bit that says whether it’s executive or not, and one more bit about which we will defer discussion

for the moment.

What you’ve gotten so far is a very systems oriented view of this thing. The user will not think of

pseudo relabeling in this way, but this is the way it really is, if you like. This is really the guts of it, and

if you understand this it will be easier to see all the different ways in which the mechanism can be used.

So there is this table which defines the user’s memory. Its length is a system parameter. Each slot con-

tains either 0 or a word which consists of certain bits describing the block and a pointer which says

where it is. At times which are essentially arbitrary with respect to anything which the rest of the system

does, the swapper may come along and pitch the block out of core onto the drum. It will change the bit

that says whether it’s in core or on the drum and set up the drum address. Or it may come along and

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 38

switch the block from the drum back into core, in which case it will set up the core block number and

change the bit back, to indicate core rather than the drum. The swapper acts independently of everybody

else, and the only way in which other people have of knowing what the swapper has done, is to come

and look at the core/drum bit in PMT. The only part of the system that ever fiddles this PMT entry is the

swapper.

So the function of this table is to provide the rest of the system with minimal handles on memory.

You notice, by the way, that PMT does not at all define what the user’s map is going to be at any particu-

lar moment. In order to define that you must have pseudo relabeling registers which specify for each of

the 8 blocks of the user’s virtual memory which of the blocks defined in PMT is to be used.

Q Where is PMT.

A It’s in system core.

Q Is it associated with each process?

A No, with each user. There may be many processes belonging to the same user and using the same

PMT.

Q It is always kept in core?

A Right.

Q Who owns a PMT?

A Each user who is currently entered, each job. Each job the system is running, each entity which it

knows about for accounting purposes, has a PMT. This job may have lots of processes all working on

the same PMT.

How can we put together real memory that we can run a program inside of? Well, to do that we have

to specify relabeling registers. Now when we discussed the hardware relabeling we pointed out that the

essential function of these 8 relabeling registers was to specify some combination of 8 blocks of real

core, out of the 32 that are available, which are going to be in the virtual memory of a running program

at some particular time. That we could, for instance, say, “Okay, we’re going to put real block 23 into

virtual block zero, we are going to put real block 13 into virtual block one, we’re going to put real block

23 again into virtual block two and leave the others blank. The pseudo relabeling registers are exactly

the same thing except that instead of referring to real core they refer, of course, to entries in PMT. This

means that there is a considerable gap between a set of pseudo relabeling registers and anything which

can run on the physical hardware. There is a rather complicated part of the system called the swapper

which is responsible for producing from a set of pseudo relabeling registers some real relabeling regis-

ters that we can actually put into the hardware relabeling. So it’s really a long way from this 8 bytes of

pseudo relabeling to anything can actually be run, and a lot of involved code has to be executed to make

that happen. The situation we have now is that there’s some process which has some memory, and each

block of that memory exists as an entry in PMT.

Suppose the scheduler has decided that it’s going to run the process that has this particular map.

What it will do then is to call the swapper, delivering to it this map, and it will ask the swapper, “Please

set up some real relabeling registers which will allow this process to run.” What is involved in doing

this? First of all, you have to make sure that all this memory is in core. If it isn’t in core the process can’t

run because it can’t actually physically address the memory unless it’s there. So the first thing the swap-

per must do is to look, for each one of these bytes, at the core/drum bits. If the block is on the drum, it

must find an empty core block to put it into and must set up a drum read command which will cause the

block to be read from the drum into the empty core block. It must change the bit from drum to core and

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 39

set up the core block number in the PMT entry. It’s then known what core block the memory is actually

physically present in. This is called swapping.

To get this empty core block it may have to evict somebody else, which it will do by finding his PMT

entry, selecting a space on the drum to write the block out into and again changing the bits appropriately

so that a record is left of where the evicted block was put on the drum.

When the swapper is finished with this job it is known that all of the blocks of memory in the map

are in core. That means that each PMT entry specified by a pseudo relabeling byte has an address number

which tells us where in core the block is. We can now proceed to step 2, which is to construct real rela-

beling which contains the real core block number which corresponds to each one of the PMT indexes in

the pseudo-relabeling. At any given time, the swapper keeps around real relabeling essentially for one

process, namely, the one that is currently running. That’s not quite true, but almost true.

So when you call the swapper it does all these horrible things that are required in order to get the

memory into core and construct the real relabeling. Then it puts that real relabeling in two fixed registers

where the system can always find it. Furthermore, it POTs this real relabeling out to the real relabeling

registers, the hardware registers. This means that when the swapper returns to the scheduler the sched-

uler knows the relabeling has been properly set up so that this user can run, and if it now sets up the cen-

tral registers correctly and transfers to the location specified in the PAC table entry for this process, the

process will then proceed to run and will, if everything has gone properly, be unaware of the fact that it

has been dismissed.

Q How can you be sure when you go to pseudo relabeling registers and cheek the PMT to find out

whether a block is core that it will still be in core when you have read in the missing blocks?

A That has to do with the more detailed mechanisms of the swapping process itself which I am getting

to.

Q What’s the maximum amount of memory a job can have?

A A job can have as many processes as it wants. The processes are completely independent of the

memory. If you insist on having an independent 16K for each process then you can have no more

processes than there is room for in PMT, which at the very most would be 4.

Q That is the limitation on the number of processes?

A If they are all to have a full 16K of completely independent memory—the limitations are actually

more stringent than that, as we will see a little later, but I’ll explain exactly how it works.

Q Does the swapper always read 2K blocks?

A Yes because the bottom 11 bits the relabeling doesn’t tamper with at all; they could be anything.

From the point of view of the system one page is 2000 words, but whether or not you use all those

words is up to you.

We are now going to discuss in a little more detail the precise mechanism involved in making swap-

ping take place the way you want it to. Most of the stuff will be basic and will not change. Suppose now

that you’re the swapper and you were just given some pseudo relabeling and you are going to see to it

that this memory gets into core, which is, after all, the primary function of the swapper. Now you as the

swapper have the following resources at your disposal: the portion of the drum reserved for swapping,

core minus the part used by the system (which is probably 8K), the PMT tables, a table called RMT,

(which stands for real memory table), and finally a table called RMC which is the lock table. These last

two tables are the same size as the amount of available real memory. Each one of them contains one en-

try for each block of real memory. RMT tells you what each block of real memory is, at this moment, as-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 40

signed to, i.e., it tells you what user and what PMT entry for that user is currently occupying this block of

real memory. This means that the swapper can look at RMT and tell exactly what is being done with each

block of real memory at the moment. RMC is a table of counters, one for each block of real memory.

Each word of RMC contains a number which tells how many different things have attached this real

block.

To explain what this means I’m going to have to tell you exactly when this counter is incremented

and decremented. It is incremented once for each pseudo relabeling byte which refers to this real block

and belongs to a process which is currently regarded as being entirely in memory. There may be several

processes at one time which the system thinks of as being entirely in memory. Once the process is read

in the system keeps track of how long it remains completely resident—the system remembers the pro-

cess until it has to write some of this memory out, at which time it essentially regards the memory as

being pretty much lost. Of course, the PMT word will still show the memory in core, so that it will not be

read in again if it is needed, but there will be nothing to keep the swapper from deciding to abandon it.

So the system remembers about processes which are entirely in memory. The exact decision about what

to remember is one which I will discuss in a minute, those parts which are not changing too much. This

means, you notice, that one process may cause the counter to be incremented more than once. In particu-

lar, a pseudo relabeling register might read 06061400,06000000; in other words it might refer to

block six 3 times. This means that if this process is entirely in memory the RMC word corresponding to

block six will be incremented 3 times. Correspondingly, the location will be decremented for each byte

of pseudo relabeling belonging to a process which ceases to be completely in memory. This means that

when the swapper brings the process in it increments the RMC word for all the bytes involved and when

it throws it away it decrements those words.

Q It throws away only one page in the process?

A It releases all the pages. If the page hasn’t actually been clobbered, the record of who it belongs to

will still be in RMT; but at the time when it gives up its hold on that process, the swapper decrements

all the counters. If it didn’t do that, the problem of figuring out when to increment them and when to

decrement them would become hopelessly complex.

In addition to this mechanism one of these RMC words can be incremented by any part of the system

which wants to make sure that a block of memory does not get swapped out. For example, when drum

I/O is taking place the drum I/O itself takes place independently of the process that started it up, which

gets dismissed while the I/O is taking place and in fact may be mostly swapped out. However, if I/O is

taking place from the user’s core instead of through a buffer, which it sometimes is, this means that the

core which is being read into or written out of obviously can’t be swapped out, because if it is then there

is no way for the drum to get at it. Therefore the drum I/O routines will increment the RMC word for each

block of memory which they are actually using for input-output. When they are finished using it they

will decrement it.

Another thing that could happen is that a user, if he is properly authorized, can specify that he wants

a particular block to remain resident. What happens in this case is that the RMC word is incremented.

When he says “I don’t want it anymore,” it is decremented.

The significance of this is very simple. Any RMC word which is negative corresponds to a block

which doesn’t have to be in memory. Any which is positive corresponds to a block which somebody ex-

pects is still in memory. Before you throw it out in the swapper you had better make sure that whoever

expects it to be in memory stops expecting it. Zero corresponds to one use of the block, and one corre-

sponds to two uses so that the RMC word will be conveniently negative when nobody is using the block.

It’s easy to test for negative with SKN.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 41

So now suppose that I’m the swapper and that I come along and discover, by looking at pseudo rela-

beling registers I’ve been given, that I need three blocks of memory. What I do is to go running down

RMC looking to see if there’s three blocks that aren’t in use (i.e. RMC word negative). I pick off unused

blocks as I come to them and set up drum commands to read into these unassigned blocks. Maybe I find

three blocks by the time I get to the end and maybe not. If I have found three blocks then all is well. I

fire the drum up and it starts to read, and I’m finished. After a while the drum will finish and the

memory I wanted will be in core. Now this may not happen; there may not be enough unused blocks.

What this means is that I have to go around through the processes that I think of as being resident in

memory and abandon some of them.

I don’t want to abandon just any one. For example, the swap may be initiated sort of as an after-

thought just to keep the drum going while some other process is running. In that case the process that’s

running obviously should not be thrown away. But under normal circumstances, with a reasonable

amount of core, there will be several processes resident at one time. Some have just finished running and

some are just about to run and one is really supposed to be run. I will go through the list of processes

that are available and find one that seems satisfactory. Then I will go through the pseudo relabeling, dec-

rementing RMC words for all the bytes. Now I can make another scan through RMC.

Q How do you decide which process to abandon?

A That is a complicated, tricky question which is not really decided. But the idea on which we are cur-

rently working is the following: the way the swapper will function is that it will swap somebody in

and then it will look ahead and on the basis of what it sees in the queues it will set up swaps for as

many other people as it can find room for. Then it will run the guy that it brought in first, so that

while he’s running some other people will be coming in. This is what you might call look-ahead. It

will try to read in people that are going to be the next people to run, while it is running the guy that it

has now. The pool of available space in real memory will consist of those processes which I have

finished running but haven’t yet thrown away. I keep them around in case one comes up for running

again. Then I can run it right away without throwing it out. So the situation will be this: there will be

a buffer with pointers to the current processes, the oldest one still around, and the one most recently

read.

See Figure 6

Pointer 2 refers to processes that I have run that I’m now throwing away. Therefore when I need

more space I pick it off the process pointed to by this pointer and move it up by 1. When I catch up to

pointer 1, I have to stop reading because this is the process that’s currently running. When I read a new

process in, I move pointer 3 and put the process in at that point. This is very schematic, and of course

this diagram really isn’t like this because the ordering of things is very much confused by the priority

logic of the scheduler, but this is the basic idea. You try to look ahead and you throw away processes

from behind.

Q Will you have a table of processes in various queues in the monitor someplace?

A Well, you have those queues themselves. The swapper maintains its own tables. The question of

whether a process is in memory is really independent of its relationship to the queues. So the swap-

per maintains its own tables of processes that are in memory and the way it decides who to tack on

for new things is to go and look at the scheduler queues.

This is the basic idea of how the swapper logic works. You notice that this lock table is a very im-

portant component of the whole thing. What it means is that some other part of the system can reach out

and say “lock that block” without having to know too much about the internal workings of the swapper.

If the W buffer, for instance, wants to do I/O directly out of some user memory all it has to know is that

around.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 42

it’s block 16, and it goes and looks at word 16 of RMC and increments it by one. From then on the swap-

per will be prevented from using that block until the W buffer decrements it. This of course imposes the

danger of forgetting to decrement the counter. In this case the block will get lost. This swapper will

come to the delusion that it can never use it.

Q Why does this incrementing lock the block?

A Because it guarantees that the counter will never go negative, so that the swapper will never choose

to write it out.

Another possibility, suppose there are two processes both using the same block. This means that the

block will not get swapped out until both processes have been abandoned. In the case of something like

DDT where there are maybe six or eight processes using, it becomes extremely unlikely that the DDT

blocks will ever go negative, so they will never get swapped out at all, which is what you want because

there’s a lot of people using DDT and it’s very desirable to keep it around.

So this is a mechanism that serves two purposes: one is that it makes it easy for other parts of the

system to force blocks to become resident without having to get involved in the intricacies of the swap-

per; the other is that to some extent it makes it likely that blocks that you want to keep around will stay

around; that is because if a block is used a great deal it will be in the pseudo-relabeling of many process-

es and this means that it will tend to be incremented most of the time. Only the case where all the pro-

cesses become inactive will it ever get down to minus one.

Now, there is one mechanism which I mentioned above and which is described in detail in the work-

ing document: it allows you to say “I want this block to become resident.” That block’s RMC word will

be incremented. You have to release it explicitly. This mechanism is dangerous, since if too many

blocks become permanently resident the system will become choked up.

I will now proceed to introduce a further complication which is described in the working document.

In addition to PMT there is another table called the shared memory table (SMT). Its function is essentially

to keep track of blocks of memory that are used by more than one user. If you have several processes

belonging to the same user, they share the same PMT and no special machinery is required for them to

share memory. If the several processes belong to different users they have different PMTs and some new

mechanism is necessary if they are to communicate. This is the SMT table, which has essentially the

same format as PMT. It is divided into two parts; the entries from 1 up to NCMEM-1 (at the moment

NCMEM is equal to 48, but that is just a parameter) are one class, and the ones above that are another

class. The words have exactly the same format, but the mechanism for getting at them is quite different.

A pseudo-relabeling byte is interpreted in the following way (which is different from what I said earli-

er). You look to see if it is bigger than NCMEM or not. If it is not then it does not refer to PMT at all. In-

stead it indicates a word of SMT, one of the words between 1 and NCMEM-1. If it is bigger than NCMEM

then it refers to PMT. We see that every user thus has available to him NCMEM pages of permanent shared

memory. This means that the maximum amount of memory available to the user is 64-NCMEM pages.

You don’t have to make NCMEM equal to 48. You can make it anything or whatever you want, within cer-

tain restrictions.

Q Suppose you made it 0.

A You had better not make it 0 because that will foul our system up something awful. You can make it

10 and get away with it. The reason you can’t make it 0 is this: that the function of this part of SMT is

to contain the pointers for various blocks of memory which are important to the system, namely for

all of the swappable portions of the system proper and for the important subsystems like DDT, QED

and some others. Of course, these blocks are read-only.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 43

Q What you do here is set the value of NCMEM to a smaller or a larger value depending on whether or

not there is a large amount of interaction between programs and system.

A That’s right. I want NCMEM to be as large as possible subject to how much memory I insist on having

available in PMT, because there are lots of advantages to having NCMEM large. Besides allowing me to

share things conveniently it cuts down on the size of all the PMTs. You only have one SMT, but you

have lots of PMTs—one for each user. There is no sense in allocating a lot of space for them if you

don’t really need it.

Q The fact that NCMEM is set at 48 means that I have two processes with independent 16 K memory.

A Then you can only have two. Right. Why you would want two processes with entirely independent

memories is not clear to me.

Q The reason for wanting to have more than one process is because you want to have a large program,

a 64 K program, and you want to operate this in time sharing as a complete independent program un-

to itself. It doesn’t use anything else, it’s a real big large program.

A It will be one process in that case. Remember the memory doesn’t have to be assigned to any one

process at any one time. It is possible to have blocks of memory which are in PMT but not in any-

one’s pseudo-relabeling.

Q I don’t quite get you?

A Well, you remember them and you put them back in your pseudo-relabeling when you want them.

We’ll discuss that in more detail later on.

So we fill up the space in SMT below NCMEM with as many of the common subsystems as we have

room for. The other common subsystems are handled in a slightly different way. Notice that this pro-

vides an automatic mechanism for sharing NCMEM-1 blocks of memory. No matter how many people

want to use DDT, there only has to be one physical block for the drum and there only has to be one entry

for DDT in SMT (per block). There may be subsystems which won’t fit in this space, in fact there almost

certainly will be as the system expands. We still want to be able to share them: if there’s a re-entrant

sub-system and two people are using it, it is ridiculous to have two copies of it.

So you have to have some way of addressing more of SMT than the first NCMEM entries. The answer

to that is very simple: we go back to PMT and remember that a PMT entry contains either the absolute

drum address or the absolute core address of a block. There is a third possibility: the PMT entry may also

contain a pointer to SMT. And then it is possible to have two PMTs which contain pointers to the same

word of SMT, two different users, two different jobs pointing to the same shared block. That block could

be either a subsystem or some data block that both are working on.

Q Are there two ways of getting to the SMT table?

A That’s right. Anything below NCMEM can be gotten at directly by simply setting the pseudo-

relabeling byte in the correct way. Anything above NCMEM has to be gotten at indirectly. The reason

for having all this elaboration in the thing is simply because of the restricted size of a pseudo-

relabeling byte.

So much for SMT and so much for pseudo-relabeling and swapping. Except that we now have to dis-

cuss acquisition and releasing, and we have to discuss this question of re-entrancy. I think we’ll take

them up more or less in that order.

So far we have been talking about memory from the point of view of the system. The system has all

these processes and they all have maps and they are all running like crazy. It has to figure out who to run

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 44

and just how to find his memory. Now we want to talk about this whole business from the point of view

of the user. Now he is not interested in how a swapper works, but he wants to have some flexible meth-

od of controlling the amount of memory he gets. Also, if he is a novice he does not want to think about

this at all, he wants this whole thing to be completely automatic if he doesn’t choose to use any machin-

ery.

Before we were discussing the system running full blast and two processes with pseudo-relabeling

coming in and out. The obvious question is “How did it get that way?” And the answer to that question

is more or less like this: When a user comes in and enters the system there’s a special little routine in the

monitor which initializes all the tables belonging to this user and makes one process for him which con-

tains in its map the blocks corresponding to the executive and one block which is called the temporary

storage block. Each user, each job has a single temporary storage block which is used to hold various

things the system needs to know about this user, plus temporary storage which the various executive

routines need while they are working for him, plus drum buffers. Those three things fill up the tempo-

rary storage block. The reason they do is that you assign enough drum buffers to fill it out. So by magi-

cal processes at the beginning the guy is started off with this single process which has a map consisting

of the executive and one temporary storage block. Everything that happens from then on happens

through mechanisms which are equally available to the executive and to the user. It’s only this first ini-

tial thing that’s magical. So that’s how the first pseudo-relabeling gets established.

After that various things can happen. The executive can read in his program and fire it up, start up

sub-systems, and one thing and another. One thing that can happen is this. The executive maintains for

each user a pair of registers called the user’s program re-labelling. It is just one pair of pseudo-

relabelling registers which contains the memory which the executive and DDT think is the user’s pro-

gram at the moment. It starts out cleared to 0. If this is all zeros, it doesn’t do us much good. How do we

get something other than zero in there? Well, the user can ask the executive to read a program into this

space from someplace where it’s been saved. If he does that, the exec will grab enough memory to hold

the program with the mechanism I’ll describe in a minute. Now the user says (at the teletype) “Start me

up at location 423.” So the exec does so, giving the program the map which was constructed when it was

read in, and the program starts to run. After a while it becomes ambitious and decides that one block is

not enough and that it should have more.

Q The program decides this.

A The program decides this. Right.

The program is now running, the executive out of the picture. So what does it do? It wants more

memory. Well, how does it get it? Remember, we don’t want the novice to have to worry about all this

elaborate machinery. We don’t want him to have to call the system and say to him give me another

block, explicitly. He thinks that he has all this memory, 16 K, and that’s all there is to it. Fine. So, think-

ing that he has it, he addresses a little bit. He says LDA 20004. Well, what happens. 20004 arrives at

the re-labelling hardware, which finds 0 for that page. PANIC. It generates a trap. So you go to location

43 or wherever it is the trap goes to. Now 43 contains a BRM to a system routine for processing memory

traps. The system has to figure out what to do about this memory trap.

The most idiot thing you could do is to say that memory traps are a disaster. I will type out a mes-

sage, and abort. And sometimes it does that, but it does a lot more sophisticated things than that too, be-

cause there are a lot of cases in which a memory trap is not to be regarded as a disaster, but as a signal

that the user has asked you to do something, even if he’s asking implicitly rather than explicitly by call-

ing on the system. So what’s the rule? The rule is this: the user process may be in one of three modes as

regards memory acquisition. It may not be allowed to access any more memory at all. This means that a

trap is a disaster. In this case the exec generates a memory panic and what happens to the memory panic

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 45

is something we will discuss when we go into forks. But that’s a catastrophe. Now the second mode,

which we might call the normal mode, is that the process is allowed to access more memory, and if it

does it is to be given additional memory. What happens in this case is that the executive memory trap

routine calls on the swapper and says “give me a new block”. The swapper runs around its tables and if

necessary writes some block out and comes back and says “Here, you have block 43”. Then the memory

acquisition routine runs around in PMT looking for an empty slot, that isn’t being used, [say slot 14] and

it plugs in block 43 in this empty slot. Then it starts this little loop that goes through block 43 and clears

that to zero. Next it finds the user’s pseudo-relabeling and puts 14 into virtual block 4, which is the one

that corresponds to address 20004. It used to be zero, because it used to be unassigned. The user now

has block 4 assigned, and it happens to be assigned to PMT entry 14. We can now go back and re-execute

the instruction that caused the trap, and it will execute successfully this time, because the block is now

there. The user can do this with all the blocks. He can, for instance, do LDA 30000 to get another block,

and so on. It takes exactly eight instructions to grab 16 K of memory. Of course you’ve got to pay for

the 16 K: it’s going to take longer to swap you, and you’ll probably get charged for it.

Q Once you get that memory it is swapped every time?

A Definitely. It’s important to understand there is nothing in the system that is completely free. You

can address 16 K, but you pay for it. This means it is to your advantage not to use 16 K. Actually for

the simple-minded user who doesn’t understand this mechanism, the memory allocation will normal-

ly be more or less optimal. He’ll start with a little program and if his tables do grow larger he’ll get

more memory. If it doesn’t grow larger, he’ll stick with a small memory. Of course if the tables do

grow larger, then get smaller again, he’ll have to understand something about the mechanism in or-

der to take advantage of that fact.

We’ll start today by explaining the mechanisms for twiddling memory from the user’s point of view.

The user has for each process that is currently running, a pair of pseudo-relabeling registers. There are

two operations which the user can use to read and set the pseudo-relabeling. He can do BRS 43, which

reads the pseudo-relabeling into A and B; and he can do BRS 44 which takes the contents of the A and B

registers and makes them the new pseudo-relabeling. Now, when BRS 44 is executed the system will

check to make sure that what the guy is asking for makes sense, namely that he doesn’t put any numbers

in any of these bytes which refer in blocks that are unassigned in PMT, and also that he doesn’t try to re-

fer to any blocks which for some reason or other the system won’t let him refer to. For example, he will

in general not be allowed to refer to his own TS block. If he puts a number in one of these bytes corre-

sponding to his own TS block, the BRS 44 will indicate an error, because he is not allowed to address

his own TS block. It is reserved by the system for its own purposes, and if he changes it he can cause a

lot of trouble.

Q How is the error indicated?

A It generates an illegal instruction trap. That is normally the way errors manifest themselves.

By the way, speaking of errors, in looking through the system code you will often find places where

it does BRU TRAP. This is what the system does when it detects an error: going to TRAP has exactly the

same effect as executing an illegal instruction at the location specified by the contents of absolute loca-

tion 0. The reason for this is that what normally happens is that the guy executed a SYSPOP of some kind

which left the link in 0. Then he goes off to the system, which discovers his error and just transfers to

TRAP. If it does this without ever having changed 0 then 0 will contain exactly the location of the

SYSPOP which caused the error. So there are many places throughout the listing where you will find the

system will check for something or other, and when it doesn’t find what it likes it goes transferring off to

TRAP. The system when it goes to TRAP does exactly the same thing as it would have done if hardware

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 46

had seen an illegal instruction, because the hardware trap routine—the routine which the system puts at

the hardware location where legal instruction traps go—does exactly the same thing: it goes straight to

TRAP after putting the link into zero.

So there are these two operations by which the user can read and set his pseudo-relabeling. When he

sets his pseudo-relabeling he changes his map completely. Suppose he starts out with a map in which he

has blocks 3, 4, 5 assigned and the rest unassigned (relabeling registers 03040500,0). Suppose he’s

sitting at location 4500, that’s in block one. Now suppose at location 4500 we have a BRS 44 and the

contents of the A and B registers at that time are 06070800,0. When this BRS 44 is executed, the map

at that moment will change from containing blocks 3, 4, and 5 in the first three pages to containing

blocks 6, 7, and 8. When the system returns from the BRS 44 it will return to location 4501, which will

now be in an entirely different piece of program from the one we had before, because location 4501 is

the 501st location of block 7, whereas the location 4500 containing the BRS 44 is the 500th location of

block 4. In most cases this will be a nonsense thing, to do.

Q It is in a different page?

A It’s in a different page. The process is immediately executing a wildly different program. Normally

you will not do this. Normally when you change your pseudo-relabeling, some of it will be the same

as it was before. In particular the instruction which actually does the changing will be in a page

which is left alone by the change. It doesn’t have to be that way. It’s important to understand that

this is a possible thing to do, and it’s not a priori unreasonable to do this.

In this way the user may acquire memory, read his relabeling to see what blocks he’s acquired, keep

a record somewhere of what blocks they were, and then set the relabeling to take those blocks away.

Then later on he can reset it to put some of them back or to put them back in different combinations or

anything he wants. Of course he can also lose track completely of which blocks he has acquired. In that

case the blocks will have a slight tendency to be lost. The system of course will still know which ones

they were, but the user will not have any handle on them, so he won’t be able to get at them anymore. In

this case what he can do is go back to the Exec and ask for a listing of the memory assigned to him, so

that he can find out again what blocks are assigned, and maybe release them if he doesn’t want them an-

ymore. If he doesn’t do that, blocks that have been assigned and later lost by him will simply pile up un-

til all his memory is used up and then he won’t be able to get any more.

Q He can only use BRS 44 with numbers in the A and B registers pointing to blocks which already ex-

ist in PMT?

A That’s right, otherwise it doesn’t make any sense.

Q What if he put a number in there that wasn’t for one of his blocks? What would happen then?

A An illegal instruction trap.

Q In his BRS 44?

A Yes. Right.

Q How can the user cause entries to be created in his PMT table?

A That’s the only way. That’s just about the only way anyone could cause such an entry to be made.

The only way to make an entry in PMT is to grab some memory.

Q He can get memory that way though.

A How?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 47

Q Couldn’t he get memory that way?

A By doing BRS 44? No.

Q If he uses a new block...?

A No. That’s an error. It does not cause any new memory to be assigned. The only way you can get

new memory is to address a block which at the moment is not assigned to you, to address a word

which corresponds to a block which has a zero in the relabeling. That’s the only way. You can attach

system memory, namely that the memory corresponding to byte numbers < NCMEM. Even though

you haven’t explicitly got them in your PMT, they are always around and you can think of them as

always being an appendage on your PMT.

Note that all this has nothing to do with forks. Remember, a fork is an independent process. It is

something which is executing instructions independent of some other process which is also executing

instructions. What we have here is one process which is taking instructions out of one block of memory

and then switching for the next few instructions to another block. But there is nothing here any different

from calling a subroutine, which doesn’t create a new process.

Q Well, do you call this tasking or something?

A No. Tasking is the same as forking, and it is having multiple processes.

The way you can distinguish independent processes from anything else is this: independent process-

es are processes which would run simultaneously if you had two central processors.

Q Are the imbedded calls assigned...?

A What’s an imbedded call?

Q A call to a routine of some sort in the Fortran system.

A OK.

Q Is all of this memory assigned to those subroutines during loading, or only when the call comes to be

executed?

A During the loading, in all the Fortran systems I know of that either exist or will exist for the 940. It’s

not logically necessary to do it that way.

Q Well, they can do it in the GE 645 [the Multics machine].

A I know it’s possible. It’s not clear whether they do or not. In some systems the memory is assigned,

even though stuff isn’t there in core, when you do the loading. You can’t call the subroutine unless

it’s been loaded even though the actual linkage may not have been established. You could have that

here too, yes.

Q Yes. But what I’m trying to get at here is: is all the memory that the program is going to use assigned

to the PMT during loading, except with regard to data areas? Is that correct?

A That is the way the Fortran systems that we now have work.

Q The assembler doesn’t?

A No. The assembler has nothing to do with assigning memory during loading. The assembler just cre-

ates binary. When you load your program with DDT the way you normally do it is to load the entire

program. But you don’t have to do it that way. You can imagine a situation in which for some reason

or other you constructed a system which didn’t load all of its pieces all at one time, and when you

called a subroutine you would check to see if it had been loaded. If not, you would call on the loader

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 48

to load it. That’s a possibility, I don’t think anyone’s done that yet but it’s certainly possible. IBJOB

overlay works a little like that.

Q You could put an imbedded call in the program to get at the loader.

A Yes. You certainly could.

Q But the normal case is to load everything

A Right. Of course there is really no distinction between program and data memory. What is program

memory to you is data to the loader, for instance.

Q Can I take a 32 K program, assemble it, and get it all on the drum and in my PMT?

A Yes, of course. How would you do that? You come into DDT and say ;T ‘PROGRAM l’ (this is the

load command), so that DDT, which started out with no program memory, grabs the memory the

program wants. Now you look at this memory by doing BRS 43 and you find out that, say the

blocks it grabbed were 4 and 5. Now you use the DDT command (or you execute the BRS 44—

there’s two different ways to do it) to clear those blocks from the map. Now you say ;T all over

again with program 2, so that DDT grabs some more memory to hold program 2, say blocks 6, 7, and

8.

Q You have to do this yourself in DDT rather than have the monitor take care of it.

A You have to specify it in some way. The situation at the moment is that nobody has thought about

the problem enough to figure out an automated way of specifying it. I can’t imagine any simple ar-

rangement would be satisfactory. The kind of memory operation available in this system is too lim-

ited. After all, when a program has once been loaded all the addresses are fixed, and although the 2

K block which exists is largely independent of other 2 K blocks, if the program was loaded so that it

was supposed to run from locations 1000 to 1200, then that block had better be the second block of

any map it occurs in. The program is going to have instructions in it like BRU 1014, and if you put

this in block 4, it is not going to go into itself.

It is not like the 645 where everything is done with base registers and you really have complete free-

dom to put any combination of blocks you want in at one time. This means that if you want to be ingen-

ious you have to understand your problem pretty well. This isn’t as bad as it sounds because normally

you don’t go through all the trouble of doing overlays unless you have a complex problem which is

worth some trouble, But the 645 can be a lot nicer, there is no doubt about that.

We will now proceed to discuss how to actually release a block of memory. Everything we’ve ex-

plained so far indicates that one can acquire memory and once one has acquired it, it is there for all time.

I may not use it, it may not be in my pseudo-relabeling, but it’s still there and if I hold onto the number,

then having that number I can always put it back in my pseudo-relabeling anytime and get the memory

back.

Q There is a permanent PMT entry?

A That’s right, and there’s physical memory on the drum or in core or wherever it happens to be, the

bits that I put there a long time ago are there, unless the system crashes, indefinitely.

There is, however, a mechanism for throwing memory away completely, for pointing to a PMT entry

and saying “I don’t want that entry anymore, take it out.” The way you do that is the following: of

course you don’t point to a PMT entry explicitly, what you do is you put into A an address, say 4000, and

then you do BRS 4. What this does is to release the PMT entry corresponding to the page of your virtual

memory in which this address appears. Since 4000 is an address in block 1, if the pseudo-relabeling is

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 49

01020410,16000000, this will cause PMT entry 2 to be cleared away, and the 2 here to be replaced by

0. Furthermore any 2’s which appear in any other pseudo-relabeling corresponding to any other process-

es will also be replaced by 0. That block is gone for good. It’s empty, free, finished, its contents are lost.

BRS 4 is arranged in such a way that if you don’t want to think about the possibility of changing pseu-

do-relabeling, you don’t have to. It refers to addresses within the 16 K you now have. The way that is to

be interpreted if you are thinking in terms of being able to change the pseudo-relabeling is that it refers

to the current pseudo-relabeling. I am never required to point explicitly to a PMT block.

I want to fill in a few things I might have left out in connection with the swapper. One has to do with

how you assign blocks on the drum and the other one has to do with the device called write-ahead.

The drum has bands, each with its own head. Each band has 8 sectors of 2 K words. The same sector

on each band can be accessed at the same time, but only one band at a time. There’s obviously some

problem about allocating space on this drum. We are only looking at the part which is used for swap-

ping. This problem has two parts: one is to allocate storage and the other one is to arrange that for each

particular user the space is allocated in such a way you can read it in one revolution, or better in a mini-

mum amount of time. In particular, suppose the guy has four blocks. You obviously want to put one of

them in sector 1, one in sector 2, one in sector 3, one in sector 4. This means it only takes half a revolu-

tion to get them in. If you have all four of them in sector 1 (on different bands of course) it takes four

revolutions to get them in, because you can only read one band at a time and you have to wait for a

whole revolution before you can do the next one.

It doesn’t make any difference which bands the blocks are in, it’s only the sectors you’re concerned

with since there’s plenty of time in the intersector gap to switch bands. So we want to be able to keep

track of space on the drum, and secondly we want to be able to optimize it. The way we do this is with a

bit table. Let’s suppose for simplicity that we have 24 bands that we’re using for swapping. So we have

an 8 word table, one word for each of the eight sectors. A bit in this table is turned on if the correspond-

ing sector is in use. There is one bit for each 2 K block: 24 bands and eight sectors in each band. Now

when we’re ready to write a guy out, we look to see where the drum is now, and we start writing in the

next sector from the one it’s in now, to give us time to do the computation; if the drum is sitting in sector

2, then we say we are going to put the first block in sector 3. We pick up the third word of the table and

we look to see if there are any 0 bits. When we find a 0 we say “OK, we’ll use that sector to put the first

block in.” So we turn that 0 into 1, and we record the drum address in PMT and set up a drum command;

then we look at the next block that we want to write out. We put the first one in the third sector so we’d

better put the next one in the fourth sector, because that way when we read it back in, it’ll be right there

and we won’t have to worry. So we do that, we put the next one in the fourth sector, and we do that by

picking up the fourth word and scanning for a zero bit. As soon as we find it, we set it to 1 and write out

the second block. We keep on doing this until we’ve taken care of all the blocks. If we find no zero bits

in one of these words then we just move on to the next word. That means that the process will be a little

less optimal, because one sector will be skipped without any useful work being done. All this means that

the writing out of this guy will be optimal and also the reading back in—if you read back in exactly the

same blocks the reading will also be optimal.

Second point: the swapper has an algorithm that says, “If you have nothing better to do, find some

block that’s already in core and more or less inactive and write it out. Then make the block read-only so

that if the guy stores into it again you know that he changed it. If he didn’t change it by the time you ac-

tually get ready to get rid of it it’s already written out and you don’t have to write it out.” That’s called

write ahead. The swapper does this whenever it doesn’t have anything else to do.

Q Nothing else to do?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 50

A That’s right. It prefers to do things that it knows are useful. This write ahead is problematic; it might

not do any good. The block might get changed before we actually get ready to write it out for real. If

it doesn’t get changed we gain something. Consequently we only do it when there’s nothing else to

do. It’s not clear entirely that this is a good idea, although in the 940 it will certainly be a good idea

because the interference is so small. In our system [at Berkeley] the interference between the drum

and the CPU is not negligible even with the priority scheme because the drum is quite a bit faster,

and so it’s not clear that we really will want to do this.

Q What is the definition of when the swapper has nothing else to do?

A When there are no blocks to be read in or out, as determined by the algorithm that we discussed

above. The swapper tries to do as much as it can. Another possibility is this: suppose the swapper

knows it has to write a block at sector three and another block at sector 6, but has nothing to do with

sector 4 and 5. It might as well find something to do in sectors 4 and 5 because the drum is going to

be wasted during that time anyway.

So much for the swapper. We will now discuss how to write re-entrant programs for this machine.

Now if everyone understands relabeling so well, there will be absolutely no difficulty in understanding

something this simple. What’s the idea of a re-entrant program? A re-entrant program is a program that

does not modify itself at all. The program exists in certain pages of memory, and no word in any of these

pages is changed when the program is running. So what is required for reentrant programs?

1. Do not modify instructions.

That’s obvious. If you compute an address and store it in an instruction, you change the program,

and that’s not allowed because some other guy running the same program is going to compute a differ-

ent address and store it. The result will be a mess, because the two users are using the same word.

2. Keep data storage in a separate page from the program. This means that it is necessary to collect

all the temporary storage and see to it that when the loader does its loading, it is loaded in a different

page. There are several ways to do this—one of them is to put the TS in an entirely separate package and

make the load origin for that package the beginning of a new page. The other one is to keep the TS in the

same package but have some algorithm with it that computes where the end of the program is and how

far to go ahead before allocating space for it.

The first scheme is the one normally used, because the external linking facilities in the assembler

and the loader are very good, so that there is normally no objection to keeping the temporary storage in a

different package.

Q By different package you mean different process?

A No. A package is something that gets assembled separately. It has nothing to do with processes. Re-

entrancy is always a question of memory. It has nothing to do with processes.

3. Do not use BRM, which is the ordinary subroutine call instruction. When you do a BRM X, it puts

the link in location X and goes to X+1 where X and X+1 are going to be in a part of the program. That

means that you change part of the program, which isn’t allowed. What it means is that if you do a BRM

and then somebody else comes along and does another BRM, he’ll clobber your link. Instead of doing

that use the SYSPOP called SBRM, which puts the link indirect through its address and goes to the address

plus 1. So this means that the subroutine will start with the link storage word address. The code starts

with the next word. The link will be stored indirect through the first word. SBRM is a cross between BRM

and BRM*. BRM* would put the link in the same place that SBRM would put it in, but it would transfer to

link word plus 1.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 51

The return from the subroutine is not by BRR but by BRR*. There’s a SYSPOP called SBRR which is

exactly equivalent to BRR* and in fact converts itself into BRR*.

Q And it’s a SYSPOP.

A Yes. The reason we put it in is that we thought we might want to change the linking scheme, so we

didn’t want to have a lot of BRR* instructions built into programs.

If you have done these three things you then potentially have a re-entrant program. We’ve arranged

that everything that changes is in a different page from everything that is not changed. Say the program

is in virtual pages 0, 1 and 2, which are PMT entries 7, 8, and 9. We have two processes that want to use

this program. Well, it’s not hard. Let one process have the map 07101100,20210000 (assuming that

the program uses 20000-27777 for storage) and the other the map 07101100,22230000. Then the

data is entirely disjoint between the two processes, and no unfavorable interaction can occur.

Fork structure

Today we are going to talk about fork structure, or multiple processes. The relevant sections of the

working document are 3 and 4, where 3 really discusses forks and 4 is for miscellaneous goodies. I hope

from the preceding discussion of the scheduler everyone’s going to have a fuzzy idea of what a fork is,

so that we are not going to discuss that in great detail. The idea is that a fork is an independent process.

The reason it’s called a fork is that one user might have several processes and if he does they are ar-

ranged in a hierarchical structure in which one process generates others by forking the path of control so

that when there used to be just one path of control executing instructions, represented by the one original

process, there are now two paths of control with two processes, one of which may be regarded as the

original continuing on, and the other which may be regarded as a sub-process. There’s a picture of hier-

archical processes on page 3A of the working document. This picture does not exactly show how the

path of control runs, so figure 5 is a picture that does show that. It is an exact image of page 3A. There

are ten different places where instructions can be independently executed.

Q Why isn’t there a line from 1 that says you’re going down to 2, 4, and 5, since there are lines 1 to 2,

2 to 1.

A It would be very undesirable to have that line. I’ll explain in a minute why, when I discuss in detail

the structure of these pointers. It was because we couldn’t figure out how we could avoid having that

line that we delayed implementing this for a long time.

In figure 5, the lines represent the execution of instructions, and each place where there’s a branch

represents the execution of a BRS 9. Is it clear what the relationship between this picture and this pic-

ture is?

Q No.

A Well, we’ll discuss the pointer structure, and then we’ll go back and ask again whether it’s clear.

Associated with each active process there are three pointers having to do with fork structure, and

these pointers are called PFORK, PDOWN and PPAR, PAR standing for parallel. PFORK points up in fork

structure to the fork which owns this one, which created this one. It can be zero if there is no creating

fork, and the only time when that can happen is when you’re in the top level fork which is created by the

monitor to start this one up, and that fork is always running the executive. PDOWN is a pointer from the

fork to essentially a list of the subsidiary forks—all of them. PPAR is a pointer which chains all the sub-

sidiary forks together. The significance of the picture is that 2, 4, and 5 are forks which are subsidiary to

1, and in order to find 2, 4, and 5 starting at 1, you take the down pointer of 1 which takes you to 2. You

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 52

then take the parallel or cross pointer of 2, which takes you to 4, the cross pointer of which takes you to

5, and the cross pointer of 5 which is zero, meaning that the list is finished. Now you only have to have

these three pointers for each fork, and the number of pointers you have for a fork is not a function of

how many subsidiary forks you have. This is very nice, because it means that there is no storage alloca-

tion problem. It has the slight disadvantage that I can’t get to all of the subsidiary forks quite as directly

from the controlling one, but because I don’t want to do that very often it doesn’t really matter.

Q There’s one thing that bothers me. There’s an ambiguity between a down fork created at level 1 and

a parallel fork created at level 2.

A Parallel forks cannot be created. A fork which is parallel to me is one that I have no control over.

The meaning of it being parallel to me is that we are both created by the same higher level fork, and

the only way that a parallel fork can come into existence is for the higher level fork to create it. I

cannot create a fork that is parallel to me—I can only create things I have control over.

The difference between PDOWN and PPAR is that PDOWN points to one of the subsidiary forks and

PPAR points from one subsidiary fork to the next subsidiary fork, so that the subsidiary forks are chained

on a list, a particular example of this list being forks 2, 4 and 5 in the picture. PDOWN from the creating

fork (1) points to one of these subsidiary forks (2) and then PPAR, which is the third little box in each

big box, points along the list (across the page). So 2 points to 4, 4 points to 5 and 5 says that’s it, I don’t

want any more.

Q We could say that PDOWN at a second level is equivalent to PPAR?

A More or less. It would be possible to send the PDOWN from fork 1 to any of 2, 4 and 5 and adjust the

PPAR appropriately, so that eventually you can get to all of them.

So, that is the basic idea of fork structure, which is not at all complex. We now see that it is possible

for a program to generate subsidiary forks, so the next thing to do is to see specifically how it generates

them and just what relationship the fork can have to its subsidiary forks. This is a little bit more complex

because there has to be a certain amount of machinery provided to do all the things you want to do.

A controlling fork generates a subsidiary fork by executing BRS 9. We must be able to identify the

fork in some way. The way in which the fork is identified is that you put into the A register the address

of a table, called the panic table for the subsidiary fork. A controlling fork identifies the subsidiary fork

by its panic table address. All subsidiary forks must have different panic table addresses. The panic table

consists of the objects listed at the very beginning of section 3, namely the program counter, the A, B

and X registers, the map and a word for status. When the fork is activated, it is defined by the first six

words of the panic table; the program counter, the central registers and the map are defined at the time

when the fork is activated. In other words, the activating fork specifies the contents of the central regis-

ters, specifies the program counter and specifies the map. There are option bits in the word that we put

into A; we can set certain of the top bits to indicate certain things. In particular, if we don’t want to both-

er figuring out what the map should be, we can leave bit 1 zero, and that will mean that we use the same

map as the creating fork. If we want to specify the map explicitly, we turn bit 1 on and then it takes the

map from the panic table. In many cases you don’t change the map; you are creating a fork for other rea-

sons and you don’t want to worry about the map.

When the fork is terminated for any reason, and also under certain other circumstances, its current

state will be read into the panic table: the current values of program counter, A, B and X registers and

relabeling will be read into the panic table. Furthermore, the status word, the last word of the panic table,

will be set up to one of the values which come immediately after the description of the panic table in

section 3, which describe what the fork was doing when you looked at its status. I think those are self-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 53

explanatory. You will observe that the fork can do illegal things, and if it does things that are sufficiently

illegal, like executing an illegal instruction, it will be terminated. That means, it will cease to exist, it

will disappear from the fork structure. The panic table will, however, contain its final state and the status

word, which will be set in the case of an illegal instruction to 1. This means that the fork which created

it can monitor its progress, and when it is finally terminated, it can find out that it was terminated (there

are various mechanisms for doing this which we will look at in a minute) and recognize from the status

word what it did wrong.

Q How does the initial state of a fork get defined? By the system?

A We must define the initial state of the fork. It doesn’t make any sense to define that automatically. In

fact, the user must put into the panic table the value of the program counter and A, B and X registers

with which he wants the fork to start its existence. Now, the program counter is always significant,

since it tells what instruction is going to be executed first. He may not care about the A, B and X reg-

isters; maybe the fork immediately reloads them. I explained how he can avoid setting up the map by

using the option bit.

Before we go on, we should look at the other option bits. This will involve an extension of the dis-

cussion of memory allocation. Option bit 0 says, “Make the fork executive if the controlling program is

executive.” The significance of being executive is that lots of things that are illegal in an ordinary pro-

gram are legal to an executive program. Executivity is being sort of a compromise between being a user

and being in system mode. An executive program runs in user mode and is exactly like a user program

except that it can make a lot of system calls, it can do a lot of SYSPOPs and BRSs which are normally

illegal for the user or restricted in some way. In other words, it can ask the system to do things for it that

the system will not in general do for users. An example would be that an executive fork may change its

relabeling with BRS 44 in an arbitrary way, whereas the user fork can only change its relabeling by

moving around blocks which are not executive. The executive program can change the relabeling any

way that it pleases. For example, among the permanent entries in SMT are entries which point directly to

the system itself in lower core. The reason for having these is so that one can look at the system while it

is running. A user fork is definitely not ever allowed to get those entries.

We discussed option bit 1, which has to do with whether to set up the relabeling from the panic table

or not. Option bit 2 propagates the rubout button. See below. Option bits 3 and 4 have to do with

memory and they work in the following way. You remember that we mentioned in our discussion of

memory allocation that there were three ways of getting memory assigned. You could be allowed no

more memory, you could get new memory when you grabbed it, and there was a third way we did not

discuss. One of these three ways is selected by the setting of option bits 3 and 4. If you turn 3 on, you

have fixed memory. If you turn 4 on, you have what’s called local memory, which means that you get

your memory independently. That is the second possibility. But if neither one of those is turned on then

you have the third way of acquiring memory, called propagating memory, which is the following. Sup-

pose that we have a creating fork which has relabeling 01020710,04020300, and it creates a subsidi-

ary fork which it gives the map 01000000,0. Now, suppose that this fork has been started up with

propagating memory and that it addresses block 2, which is not assigned to it at the moment. If it had the

fixed memory option, that would be an error. If it had the local memory option, we would put in a new

block, say 16, which would be cleared to zero. The third possibility, which is the one we are considering

at the moment, is that you look up through the fork structure at all the creating forks until you find one

which has virtual block 2 already assigned, and if you find such a fork, you propagate the memory down

through all the intervening forks to the one which caused the trap. In other words, in this particular ex-

ample the relabeling for the subsidiary fork which caused the trap becomes 01000600,0. If in the

course of the upward search you do not find any creating fork which has this memory before you come

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 54

to a local memory fork, then you assign a new block that is propagated to all forks looked at. If you en-

counter a fixed memory fork which does not have the block assigned, you cause a trap.

A specific example of how you might use this facility, which is by no means hypothetical: Suppose

that you have a program which is running and it has the following characteristics. There is a small piece

of it, say 2,000 words worth of it, which is constantly being used. In those 2,000 words we have the

main processing loop and all the common subroutines. In addition there are 8,000 words containing rou-

tines which are used relatively infrequently, statistical routines, matrix routines, whatever, it doesn’t

matter. These things we don’t use very often, but they have to be around, because sometimes the excep-

tional condition occurs and we do use them. One very nice way to handle the situation is the following.

You make a fork which has the whole program in it, that is five blocks of program (we said 10,000

words) and data blocks. This fork then creates a subsidiary fork, whose map contains only the common-

ly used code and the data blocks. It doesn’t have the rest of the program. You create this fork with prop-

agating memory. Now you fire this fork up and it starts to run. It runs in the 2000 words, and everything

is just fine until suddenly the guy types in some unusual request, say for multiple regression. The pro-

gram transfers to the multiple regression routine, which is in the infrequently used code, say in block 3.

This of course causes a trap, since block 3 is not in the subsidiary fork’s map. The system receives the

trap and it looks around and says, “This thing is running with the propagating option,” so it looks at its

creating fork and finds an entry for block 3, say 12, which is what the higher level fork has in that block.

So it propagates the 12 down to block 3 for the lower fork, which starts going again. Everything is fine.

It runs. So there is no difficulty.

The lower level fork normally runs with only 8K of memory instead of 16 and therefore can be

swapped in and out twice as fast. Then it needs extra memory, When it needs parts of the bigger pro-

gram, it simply goes ahead and addresses them and it gets them automatically, if they aren’t there,

brought down from a higher level fork. Now naturally, if this sort of program runs for a long time, it will

probably eventually address all of these blocks, and the map will then look exactly like the map of the

creating fork and we are not getting any benefit. This means that probably what you want to do with this

program is that at suitable intervals you want to clear out the pseudo-relabeling, taking away the four

blocks you don’t normally use.

In this way, however, you have a mechanism by which the lower level fork can run with less

memory than it really needs without any thinking. It doesn’t have to keep a little table of subroutines

which are not there, and do some special things whenever it wants to call one of them. Everything is be-

ing taken care of by the system.

Q The multiple regression routine runs in the original fork?

A The original fork has nothing to do with it. The original fork is dismissed the whole time.

This thing is sort of a substitute for a partial paging out. What we have done is that instead of saying

“The system will try to figure out which pages should be swapped in and which pages should not, we

say, “I will give the user a mechanism for defining for me a set of pages which he needs and then I will

make it automatic that if he forgets some things or occasionally needs other pages, I will get them, so he

doesn’t have to worry about it.” Basically, this transfers the load of partial paging from the system to the

user, which for us seems to be quite a reasonable thing to do, since our pages are so large and the user is

better informed. In most cases it will not be a great burden on the user to do this because it will be done

in some higher level language, where it is appropriate for the programmer of the language to think about

this question, and the actual user of the language will not be thinking about it.

So much for the option bits. Now we have explained about the pointer structure, we should now con-

sider how forks get terminated. That is the next thing. A creating fork is connected to its subsidiary fork

•

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 55

in several ways, which are outlined starting on page 3-3. First of all, there are some operations which the

creating fork can execute, which will have some influence or provide some information about the sub-

sidiary fork. BRS 30 will read the status of the subsidiary fork into the panic table. BRS 31 will dismiss

the creating fork. That means the creating fork will go away, it will no longer be on any scheduling

queue in fact, it will be in limbo. And it will stay gone away until one of its subsidiary forks terminates.

At this point, the creating fork will be reactivated. So BRS 31 is the kind of operation you use, for in-

stance, when you have DDT and you are starting up a user program. When the user program has been

started up, DDT has no reason to run anymore. It wants to dismiss itself until the user program is fin-

ished. By finished is meant that it did something illegal or that it said in some specific way that it is fin-

ished. Whether it came to a breakpoint or whatever doesn’t really matter. You want to dismiss DDT until

the user program stops running, at which point you want to come back and start running DDT again, so

that the user at his teletype can debug.

BRS 32 is what you use when one of your forks has gone wild. It says, “STOP”. Each one of these

operations must identify the subsidiary fork which it is working on, and the way it does that is by putting

the panic table address in A. If that address doesn’t correspond to any panic table, then it is an error. The

panic table is one of the entries in the PAC table.

Q Isn’t BRS 31 a swapping operation.

A BRS 31 is really a scheduling function and not a swapper function for the following reasons. Sup-

pose that I am running and I don’t execute the BRS 31, what am I going to do? I have to do some-

thing, since I am executing instructions all the time. I could write a little loop that says, “Did the

subsidiary fork terminate? If so, go off, otherwise loop.” This is obviously bad; it means I am com-

puting and wasting machine time in this little loop, which actually does me no good at all. So this is

really a scheduling function and not a swapping function. The relationship of the swapper is just in-

cidental to the fact, which is primarily important in scheduling, that this program is no longer run-

ning. If it’s no longer running, it doesn’t have to be in core.

When the program goes into limbo it isn’t even on any scheduler queue. There is no activation con-

dition for it. The reason there doesn’t have to be an activation condition is that the only way it can get

reactivated is by the subsidiary fork doing something, and there is a direct pointer from the subsidiary

fork up to this fork, so that when the subsidiary fork does something, the system will arrange to put the

fork that was dismissed at the beginning, back on a queue. This has an advantage in the sense that it

tends to keep the scheduler queues somewhat less cluttered than otherwise.

In addition, there are some more operations. BRS 106 is sort of a global BRS 31. The latter says,

“Dismiss me until this particular subsidiary fork terminates.” BRS 106 says, “Dismiss me until any of

my subsidiary forks terminate.” BRS 107 and BRS 108 are more global operations, namely they read the

state of or terminate all of the subsidiary forks, not just a particular one. These are very valuable opera-

tions. For instance, if you lose the panic table address of some fork, which can happen, you can never

identify the subsidiary fork. There has to be some way to get you out of this situation. You can execute

the global operation, which works on all forks.

The next thing we will discuss is how forks get terminated. And after that we’ll talk about interrupts.

How can a fork get terminated? There are the following possibilities. It can do something illegal, it can

ask to be terminated or it can get involved with the rubout button. We will discuss these three possibili-

ties carefully.

First of all, it can do something illegal. It can execute an illegal instruction, or it can cause a memory

violation, (i.e. address something which is not assigned to it and which for some reason cannot be as-

signed to it). Those correspond to status conditions 1 and 2. A fork may also terminate itself in the

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 56

‘normal’ way by executing BRS 10, which essentially says to the system, “Terminate me and I’m a good

guy, so transmit a 0 status word to the controlling fork, which can then recognize this is being a normal

termination.” The third possibility is the rubout button.

We now have to explain about the rubout button; this is the appropriate place to do it. There is a but-

ton on the teletype labeled rubout, which transmits the character 377 and which has the following char-

acteristics in our system. There is for each user one fork which is designated as the fork which will re-

ceive rubouts. When a rubout occurs, it is directed to this fork, and one of two things will happen. Either

an interrupt will occur, and we’ll discuss that in a minute, or the fork will be terminated. So (ignore the

interrupt for the moment), there is one fork which is designated as being the fork which receives ru-

bouts, and when a rubout comes in that fork is terminated with a status word of 0, so it looks like a BRS

10 termination. The difference is of course, that if you look at the location counter in the panic table it

will point to a BRS 10 if it is a BRS 10 termination and will not if it was a rubout termination.

Now some more things about termination. When a fork is terminated, all of its subsidiary forks are

also terminated, regardless of what they are doing. Whenever a fork is terminated, its status is always

written into its panic table. There is an explicit instruction for setting the target of the rubout button, i.e.

for specifying which fork is terminated by the rubout. If nobody has said anything about it, the highest

level fork which is not executive is the one which will be terminated. However, a fork may declare that

it is the one to be terminated by executing BRS 90.

The rubout button has the following characteristics. If it causes the fork to be terminated, it always

clears the teletype input buffer, and furthermore, if the fork being terminated is executive it clears the

output buffer as well. Clearing the input buffer means that anything the guy happens to type before the

rubout which has not yet been processed will be lost. Clearing the output buffer means that anything the

program has output which has not actually been typed out yet will be lost. The reason for this is that the

idea of rubout is to stop what you are doing. In particular, if I gave you a command it was probably a

mistake, so I don’t want you to see it; if you are typing out, I don’t want to see any more. One of the

things rubout is nice for is that it allows the user to signal the program without the program having to

look for the signal.

There are several ways to get the same effect without using the rubout button. One of them is to set

up a subsidiary fork which will just do a TCI, which means that it will wait for teletype input. When the

input arrives, the subsidiary fork will start up again and then it can do whatever it wants, e.g. send a sig-

nal to the main fork. But this involves setting up the subsidiary fork, which is tiresome.

The second thing you can do is to sit in the main fork and test at intervals to see whether the input

buffer is empty. If it isn’t empty, then the guy has typed something and you can look to see what it is.

But what you can not do, of course, is execute a TCI in the main fork without checking that characters

are present in the buffer, because that will cause the main fork to be dismissed. The rubout button is nice

because it is automatic. It is a method which is already built into the system.

By the way, there is another special bonus feature attached to the rubout button, which is that when

you push it twice in very rapid succession, like within a tenth of a second, which may not be too easy to

do by hand, but always easy to do by holding down the repeat key, you can get directly back to the ex-

ecutive, regardless of what you were doing. The reason for this feature is that it is very easy to write a

program which, as soon as it recognizes the rubout button, takes immediate action to neutralize it, like

setting up again the fork which was terminated. This would be a bug in the program. It is a very bad type

of bug because it is a kind of bug I can never recover from. I have no way to get to the system, because

what I happen to be talking to is my program and it’s not listening. There has to be some sure way of

getting back to the system, and the sure way is to push down the rubout button very rapidly twice. You

go right back to the executive, no matter what’s going on.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 57

You don’t have to create a fork to process a rubout. There are other ways to do it, with interrupts.

This is discussed below. In many cases, by the way, when you receive a rubout the appropriate thing to

do is to keep executing the program, for a while anyway. For example, suppose you have a list pro-

cessing program and when the rubout occurs you happen to be right in the middle of inserting a word on

the list. It is clear that if you just stop at this point, you’ve left the list structure in a very bad state. If you

want to keep things in good shape you must keep going to a point where all tables are in an acceptable

form.

Suppose, for instance, that CAL is running, and in the middle of a computation it gets a rubout. CAL

has been interrupted in the middle of building a list. Now what you want rubout to do is to cause CAL to

tell where it was interrupted and to wait for instructions. If it does that without ever completing the op-

eration on the list, the list will be unusable. So you have to make sure that the fork goes back and finish-

es whatever it was doing. The way this is handled in CAL is that each time CAL starts to execute a state-

ment it checks to see whether the rubout was pushed during the execution of the preceding statement. In

other words, pushing rubout starts a higher fork, which does two things. First of all it checks to see if

rubout was pushed twice in a row. If it was, this is an indication that the running program got into some

kind of a loop. If it hasn’t been pushed twice, all the higher fork does is to turn on the panic flag. It then

restarts. Each time the program starts executing a new statement, it checks to see if the panic flag is

turned on.

There are two more things about termination. See pages 3-6 to 3-8. BRS 73, which is sort of a super

BRS 10, turns off lots of forks at once. Then there is another mechanism which we will not discuss in

detail which is specifically designed for DDT. If you don’t understand it, it is not important.

As you all know, there exist hardware interrupts which are handled by hardware; the machine is

forced to execute an instruction at location 200 + interrupt number instead of doing whatever it was go-

ing to do next. These hardware interrupts are of course not available to the user. Instead, he has software

interrupts. A process has in its PAC table a 20 bit field called the interrupt mask. It may read this mask

with BRS 49 and set it with BRS 78. Each bit is regarded as an arming bit for one interrupt. The first four

interrupts are reserved by the system and the remaining 16 are available to the user. He may do whatever

he wants with those 16. Let’s consider the user interrupts first. If the user arms any one of the 16 user

interrupts, nothing happens at that time. At a later time, some other fork may generate this interrupt. The

way you generate an interrupt is to put the interrupt number in the A register and execute BRS 79. This

causes the interrupt to be generated. The program continues to execute after the BRS 79 as though noth-

ing has happened. It’s exactly like a CPU sending signals to other CPUs. Of course, the interrupting fork

may dismiss itself after generating the interrupt if it wishes, but it need not.

What happens to the signal is the following. It runs around in the fork structure, passing first of all

through each of the forks parallel to the one which generated the signal and after that going up to the hi-

erarchy along the PFORK pointers, i. e. looking at each of the creating forks in turn. To make this pre-

cise, look at the diagram on page 3A. If fork 8 generates an interrupt, it will go first to 7 and then to 2

and then to 1, not to 4 and 5. It goes around the forks parallel to the one generated by the signal and then

goes directly up to the hierarchy. For each fork it goes through, it looks at the arming bit corresponding

to the interrupt. If the bit is off, it just keeps going. If the bit is on, the specified interrupt occurs in that

fork and the signal then dies. If none of the arming bits are on, the signal has no effect. When the inter-

rupt occurs, the following thing happens. The fork in which the interrupt occurs is forced to execute an

SBRM* through location 200 + the interrupt number. In other words, you must put in locations 200 to

224 (if you intend to use the interrupts) the addresses of 20 interrupt routines. Because of the SBRM* the

location at which the interrupt occurred is available to the interrupt routine, and in fact the whole opera-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 58

tion is entirely analogous to that of hardware interrupts. Note that the SBRM* does not actually exist; it is

simulated by the system.

When the interrupt is generated and arrives at a fork and finds the bit armed and decides that it can

interrupt this fork, then it changes the activation condition from whatever it was to the special activation

condition that says interrupt number n occurred. When the scheduler finally gets around to activating

this fork, it will, recognizing the special activation condition, simulate the execution of the SBRM*,

which means that the location counter will be stored and execution of the interrupt routine will be start-

ed. The interrupt routine may do whatever it likes. When it finishes, it has the location counter available

so that it can go back and continue executing a main program in exactly the same manner as a hardware

interrupt.

All this action takes place in the fork which is being interrupted. The fork which generates the inter-

rupt does nothing except to execute the BRS 79. Then it just goes cruising on. It has generated the signal.

It then has no further responsibility. The signal goes off into the blue and eventually it may hit some-

thing.

Q Is it possible for an interrupt routine to transfer control to a different fork?

A The interrupt routine may do whatever it likes. If, for instance, the fork that got interrupted was the

controlling fork of the one that generated the interrupt, it may, of course, terminate the fork that gen-

erated the interrupt. Or the fork that generated the interrupt may terminate itself. It doesn’t have to

do that but it can, since it is a free agent. Again, the fork which is being interrupted may say, “To

hell with you, I see this interrupt but I am not interested,” and just return to its main program. Any-

thing can happen.

Now, what might you use this facility for? Well, the most obvious use is if you have two forks pro-

ceeding on a more or less independent basis, but you want to have some communication between them.

Now, there are lots of ways to do this. For instance, one fork can write out a file and the other fork can

read it in. Or, they can share memory. One fork can put a flag somewhere and the other fork could test

it. But if you want to have the kind of interaction which is commonly associated with interrupts, which

essentially means you are not wasting any time of the process that is being interrupted unless the inter-

rupt occurs, then you really want an interrupt. This is what interrupts are for. It is a substitute for a lot of

superfluous flag testing.

Suppose, for instance, I have a program that is doing a lot of computation, and it has a fork which is

doing some subsidiary computation for it and which also does some I/O. I have a big matrix inversion

program and over here on the side, I have a subsidiary fork of it which is doing some little calculation

which the matrix inversion is going to need some day—or perhaps the fork on the side is receiving in-

structions from the user at his teletype which might suggest to the matrix inversion that it should change

its policy. Perhaps the user is watching the progress of the iteration and it seems that some iteration con-

stant should be changed. Okay. The fork that is receiving the information from the user will eventually

acquire enough information to do something, and at that point it may wish to interrupt the main fork that

is doing the computation in order to cause the main fork to actually change its policy somewhat. The

device is very simple. What you might use it for is something you might have to turn over in your mind.

Q Is there a limit to the number of forks?

A That is subject to table size limitations. You can change those by changing a parameter when you

assemble the system.

Q What happens to subsidiary forks when the main executive fork is dismissed?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 59

A Dismissal has nothing to do with subsidiary forks. Forks interact with each other only in the ways

which have been described. A fork is terminated. Subsidiary forks get terminated.

Q What is the relationship between the number of forks and the time-slicing algorithm?

A Every process is time-sliced, not every user. The processes are completely independent and act as

independent users in all ways except the ways we have discussed.

Q So that a subsidiary fork is like a user all by itself?

A That’s correct except for the things that have been described, like the rubout button. Also files go

with the user.

There are limits to the total size of the PAC table. Furthermore, there is a little thing in the system

which checks how many forks you are creating, and if you create too many it stops you on the theory

that you probably made a mistake. But you can tell it, “Look, I intend to create 15 forks. That feature is

not implemented yet, but it will be. Otherwise, you see, you can create a whole lot of forks and fill up

the PAC table and that tends to paralyze any other activity that is going on.

There are four special purpose interrupts which are treated in special ways, and they are described,

along with the whole interrupt facility, in Section 4, on page 4-1 and, in particular, 4-2.

If you (a fork) arm interrupt 1, and if the rubout button is directed to you, and rubout is pushed, then

instead of your being terminated, interrupt 1 will be caused. Termination is pretty drastic and I may not

want it. If the rubout button is going to cause termination and I want to maintain control of it, then I es-

sentially have to make a special fork whose sole function is to be terminated by rubout. I would have to

have a higher fork over the special one to catch it when it gets terminated. If I don’t want to do that, I

just want rubout to give me information, it’s much nicer to have an interrupt occur.

Q This is a real interrupt?

A What do you mean by real?

Q Well, a hardware interrupt.

A No, this is a software interrupt. The rubout button, of course, has hardware involved in it in the sense

that when I push the key, the interface causes the hardware interrupt. This is a software interrupt

generated by the system. So if interrupt 1 is on, the rubout button will cause an interrupt rather than

termination if it is directed to that fork. In particular, it will cause an execution of SBRM* 201.

If interrupt 2 is armed, a memory violation will cause an interrupt, instead of a termination.

If interrupt 3 is armed, it will cause an interrupt whenever any subsidiary fork terminates. There are

lots of other mechanisms we have already described for waiting for subsidiary forks to terminate and for

finding out whether they terminated or not, by reading their status and looking to see whether they are

still running or not. In many cases, however, you start all your forks going and you want to compute

yourself, and you just want to know when something happens to one of these subsidiaries. Then you can

turn this interrupt on and you will be interrupted.

Finally, interrupt 4 will occur, if it is armed, whenever you get any unusual condition on input-

output. It is exactly analogous to the hardware unusual condition interrupts. If, for instance, you’re doing

an input-output operation and get an end of file, various flag bits are turned on which allow you to find

out where the end of file is. You may not want to test these bits every time on the grounds that the end of

file only occurs once every 20,000 words. If interrupt 4 is armed, you can just get an interrupt when the

end of file occurs and then, at that point, take whatever action is appropriate.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 60

Q What is the relation between the hardware EOF on tape, say, and the software signal provided to the

user by the system?

A If you see EOF on the tape, it will be a long time between the time the hardware sees the EOF and the

time the program gets a signal that EOF has occurred. I will digress briefly into the discussion of the

tape format to make this point clear.

Tape is handled in fixed-length records of 200 words. Each one of these records contains an initial

word which tells how many data words there are in the record. This word will always be 199, except for

the last record. So when you’re reading the tape, suppose you read with WIO, you read one word at a

time from a tape file. Every 199 words the tape will be activated to read the new record, and then 199

words will be fed to you out of the tape buffer. When you get to the end of the buffer a new record will

be read, but you won’t see any of this, of course. These are physical records and they have nothing to do

with logical record structure. There isn’t a logical record structure on the tape. Well, I take that back,

there is a logical record structure on the tape, but we won’t discuss it. So when you get to the EOF, what

happens? The hardware reads off the last record and sees the EOF mark. The hardware is now sitting just

after the file mark and the system is aware that an EOF has occurred.

So what the software does is to turn on this little bit somewhere in the file structure which says,

“Look, there really aren’t 199 words in this record, there are only 120 and then an EOF.” The user pro-

gram keeps on doing WIOs long, long after the hardware activity has occurred. It eventually uses up the

120 words of the last record and then, at that point only, when it tries to get to the 121st word, the sys-

tem recognizes that there is no 121st word and that what there really is is an EOF. At that point, it will

generate the software EOF interrupt.

Q To make it clearer: When you read the tape, you are not reading the information right from the unit?

A Certainly not. No. It is being buffered. So when you go to read a record from the tape, you are really

reading the data from memory. There is some marker at the end of that buffer in memory that says,

an EOF occurred a long time ago.

There seems to be a fundamental point that hasn’t quite come over, and it is this: that people keep

thinking there’s some direct connection between all these software things I am talking about and the

hardware conditions. Well, there is no direct connection. Hardware always goes through the monitor,

and the chain of instructions which is executed between the time the hardware generates a signal and the

reaction on the user program is a long and complex one. There is no direct connection at all. A user pro-

gram can never connect itself directly to a hardware interrupt (except by a very special mechanism

which is not entirely thought out and is altogether special and different).

Q There is no hardware interrupt with a direct effect on the user program?

A True, a hardware interrupt has no direct effect on the user program. It has direct effect on pieces of

the system, of course, but not on the user program. Usually, it won’t even have a direct effect on the

scheduler. For instance, the clock interrupt occurs and what happens is that it goes up to the clock in-

terrupt routine, which almost never goes directly to the scheduler. Usually it just increments a bunch

of counters and flags and then turns things on and off. At some later date, someone else will look at

these things. Other interrupts never go directly to the scheduler. When a drum interrupt occurs, it

may cause some more drum I/O, or it may cause an activation condition to be changed, a word to be

changed, which will eventually cause some program to be activated. There is no direct connection

there with the scheduler.

By the way, there are some things which sort of come under the general heading of the areas we

have already discussed that I have not mentioned, for instance, there are these timer BRSs, and some

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 61

other items like that. These things are pretty trivial and they are in the working document so that when

we finish these lectures, everyone should read the working document again and try to pick up some of

the features that are not being discussed.

You can get some sort of idea of all the features in the system in the following way. When the lec-

tures are finished, you should be able to read the BRS table, which is in Appendix A, and the SYSPOP

table, which is in Appendix B of the working document. You should be able to recognize what each one

of those BRSs and SYSPOPs are. For any one which hasn’t been mentioned, there is a reference to some

page in the manual which describes what it does. If there is any confusion, then you should come and

ask questions. Don’t try to do that now because there is a lot that will still be incomprehensible.

Q These locations where the interrupts go (201 etc.) are obviously relocatable locations?

A They’re not. Virtual locations, not relocatable.

Q Can they be absolute locations?

A Certainly not. This is entirely a user operation. The user, remember, doesn’t know anything about

absolute locations.

Q Each user program has its own set of interrupt routines?

A Each process can have its own set of interrupt routines if it has a different block zero from other pro-

cesses. If it has the same block zero, of course, it will have the same interrupt routines.

We want to look at the clock interrupt routine now, which is short. I just want to give you some idea

of what actually happens. The clock routine is on page 19 of SPAC, where it says CLINT.

What it does is the following: It comes in. It increments REAL, which is a word which is always in-

cremented at every clock interrupt. It essentially keeps track of real time for the system. Then it incre-

ments indirect through TJOB, which contains the address of the word being used to count elapsed time

for somebody. That is used for billing purposes and also for keeping track of the actual computer time

used by various people. Maybe they are interested in knowing whether they used computer for a minute

or six minutes. We saw TJOB already in the scheduler. Then it tests the sign bit of CLINT to see whether

the clock interrupted out of system mode or user mode. If the SKN doesn’t skip, it came out of system

mode and so we increment STIME which is a counter which tells how much time is spent in system

mode. It is only for information. Then we count down TTIME, which is the long quantum counter. If the

SKR skips, then TTIME has gone negative and in that case we go to CLOUT. This means that we want to

dismiss the guy. The way we do that is we look to see if the user mode trap is on—the flag is on—and if

it’s not, we execute UMTN, which is a macro defined on page 1 of MDBG. Don’t bother to look at that. The

reason that it is a macro is it is going to be changed when we get the real user mode trap in. Then it will

turn on the user mode trap. This will cause the user mode trap, which will send us to the scheduler to

occur as soon as we return to user mode. This means that the user will be dismissed as soon as possible.

When we get to CLOUT, we want to dismiss the guy for quantum overflow, but we don’t want to dismiss

him until he comes back into user mode because when he is in system mode, the system may be doing

something which it can’t be interrupted out of.

If TIME has not run out, then we do the SKR TIME, TIME being the short quantum time. If the short

quantum hasn’t run out either, then we just return. (If neither the long quantum nor the short quantum

has run out, then we definitely do not want to dismiss the guy.) If the short quantum has run out, then we

want to test ACTR. If ACTR is still negative, we want to exit, because that means that even though the

short quantum has run out, there is nobody who can be activated on the I/O queues. If ACTR is positive,

it is possible to activate somebody on an I/O queue and we want to do that, so again we go to CLOUT.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 62

Teletypes

We will now turn to the section on teletypes, and we will begin by essentially reading out of the

working document what the user can do. Then we will go and look at the code, and see how he is able to

do it. We are looking at Section 7 of the working document.

The most fundamental straightforward thing you can do with the teletype is to use two instructions

caused TCO and TCI. TCO stands for teletype character output and TCI stands for teletype character in-

put. One of them prints a character from memory on the teletype, and the other one brings the character

in from the teletype and puts it in memory.

Now, before we go on and explain the other I/O operations, it is worthwhile to discuss the many

ways in which the operations TCI and TCO can be modified by various things you can do to the teletype.

Teletypes have certain properties. They have echo tables associated with them, and they have links asso-

ciated with them. They also have owners and various status bits. When you type the character in on the

teletype, as you know, the system operates in full duplex. The character is not printed by the teletype

hardware on to the piece of paper sitting in the teletype. The way the character gets on that piece of pa-

per is that the system looks at the character which is input, figures out what to echo back to the teletype,

and echoes it. There are several different modes that are possible for echoing. Which mode you use for

echoing depends on which echo table we are using. An echo table is a collection of 32 words, each di-

vided up into three bytes, for a total of 96 bytes, corresponding to the 96 ASCII characters which in in-

ternal code are 0-77 and 140-177. These are all the printing characters and all the characters that you

can get by holding down the control button and pushing various keys. These characters, by the way, are

not the same as external ASCII. External ASCII is obtained by subtracting 140 from internal mod 28.

Q The system does not use the teletype’s characters as they are?

A That’s right. The system makes a transformation on the characters to convert them from external

form to a convenient internal form in which the printing characters range from 0 to 77.

There is an echo table which contains 96 entries for these 96 characters. When a character comes in,

the appropriate byte corresponding to that character is collected from an echo table and something is

echoed, depending on what the bottom 7 bits of that byte are. The 8th bit is for something else. If the

bottom 7 bits are zero, the character is discarded completely as though it never existed in the world (ex-

cept that it might be a break). If the bottom 7 bits are one, then the character is put into the input buffer

but there is no echo generated. Otherwise, the character which shows up those bottom 7 bits is echoed in

place of the character which was typed in.

Now, the 8th bit is used to perform a different function. When a TCI is executed, if there is a charac-

ter in the input buffer of the teletype, it will be delivered immediately to the program. If there is no char-

acter in the input buffer, the program will be dismissed waiting for teletype input. When it will be reac-

tivated depends on exactly what is typed on the teletype. Whenever a break character, which we will de-

fine in a minute, arrives on the teletype, the program will be reactivated. If the input buffer comes within

some fixed number of characters of being filled, the program will be re-activated anyway, regardless of

whether any break characters have been typed in or not. This fixed number is called the early warning

margin. It is currently 6. This is to make sure that the program has time to take some characters out of

the input buffer before enough other characters come in to overflow it. Whether a character is a break

character as determined by the top bit of its byte in the echo table. If that bit is on, it is regarded as a

break character, otherwise not. In theory, the user can provide his own echo table and he can set up any

echoes he wants. In actual practice, we don’t allow this because the echo table must be resident.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 63

We provide four standard echo tables in this system, identified by the numbers 0, 1, 2 and 4, and

they provide for the following: The first three tables will echo everything, exactly as it was typed in, ex-

cept, of course, the control characters which take no action (and the only control characters which do

take any action in our standard echo tables are bell, carriage return and line feed). This means, for in-

stance, that if a teletype is equipped with tabs, you will never be able to generate a tab on that teletype

by pushing Ic because the system will never echo it. So those three tables have the same echo character-

istics, they differ only in the break characters. In table 0, everything is a break character. In table 1, eve-

rything is a break character except letters, digits and space. In table 2, the only break characters are con-

trol characters. These three tables are for applications in which you require steadily decreasing amounts

of interaction with the program. Table 2, in particular, is suitable when you are interacting with the pro-

gram on a line by line basis.

The fourth possible echo table is one in which everything is a break character and nothing is echoed.

Because nothing is echoed, the program may figure out for itself what it wants to echo, and echo it.

The user may set the echo table by executing a system call. In particular what he does is, he puts an

echo table number in the A register, and a teletype number in the X register and he executes BRS 12.

That sets the echo table to the number specified in the A register. For convenience, he may specify his

controlling teletype, the one which he is entered on, with teletype number -1, so he does not actually

have to know its number. If, however, he is controlling other teletypes explicitly through mechanisms

we will describe in a minute, he must then specify the number of the teletype.

One more thing, and that is the matter of deferred echos. It is possible, because the system is full du-

plex, for the user to type in while the system is typing out. If he does this, a question is raised about what

should be done with the echo. The simplest and stupidest thing you could do is just tack the echo on the

end of the output buffer, which means that somewhere randomly interspersed with the characters being

typed out will be the echos of the characters being typed in. This, however, is probably not what you

have in mind, because probably the system is typing out some connected string of characters.

Q What is 8 level mode?

A 8 level mode is a mode in which a teletype operates by transferring 8 bits from somewhere to some-

where else with no conversion, no checking for the possibility that an input character might be ru-

bout, no echos, no nothing. It turns the teletype input routine into a completely transparent thing

which makes no changes whatsoever in the data which is coming in from the teletype. In other

words, 8 bits come in from the teletype and the same 8 bits are shipped out to the program.

Q What happens if it is converted?

A A transformation is made which changes standard ASCII into the internal form, in which the printing

characters are in the range from 0 to 77. When conversion is done a check is also made for the pos-

sibility that a rubout was typed in, in which case drastic actions are taken. Finally, an echo is usually

generated in the normal mode. All of these things are suppressed in 8 level mode.

Q 8 level mode takes no cognizance of break characters?

A That is correct. The early warning margin, however, is increased in 8 level mode, since it is likely

that characters are coming from the paper tape reader. This means that the stuff is coming in pretty

fast and it is advisable to leave a little extra warning margin to make sure that the program comes in

time.

It is worth pointing out that if by some chance the input buffers should overflow, you normally get

an unmistakable indication of this, because if the input buffer overflows, no echo is generated. This

means that if you are typing you get a clear indication of what went into the input buffer. Anything that

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 64

doesn’t get typed out got lost; either it got lost because of input buffer overflow or the program changed

the echo table and omitted to echo anything. In 8 level mode you do not have this protection since there

is normally no echo in 8 level mode.

Next we wish to discuss teletype links, which work in the following way. Associated with each tele-

type there are four bit tables called the absolute and the relative link control words, for input and output.

In our system, each one of these is one word in length, since there are less than 24 teletypes. In a link

control word there is one bit corresponding to each teletype. The basic idea of a link control word, say

the output link control word, is that if a character is being output to a teletype (which we may call the

source teletype) it will also be output to all teletypes for which the corresponding bit is turned on in the

output link word for the source teletype. A character being output to a teletype means any character

which the computer causes to be printed; that includes echos. This means that if I am typing and I am

linked to somebody, both the echos which the computer generates for me and the things which my pro-

gram outputs will appear on his teletype. Furthermore, if he is linked back to me anything typed out on

his teletype will also appear on mine. There are some slight complications to this idyllic picture; having

described the basic idea, I will now proceed to consider the complications.

First of all, it is not necessary for you to be linked to yourself. If you are not linked to yourself then

you do not get your own output. Normally, of course, you are linked to yourself. Secondly, the reason

that these words are called relative link control words is that there are also words called absolute link

control words. The reason for these is the following. Suppose that teletype 1 has a relative link control

word saying, “I want to be linked to teletype 2” and that teletype 2 has a relative link control word say-

ing, “I want to be linked to teletype 3.” Since the rule is that anything output on teletype 1 will appear on

teletype 2 and that anything output on teletype 2 will appear on teletype 3, it follows that anything out-

put on teletype 1 will also appear on teletype 3. There are two ways of handling this problem. One way

is to follow down the chain of links explicitly each time a character must be output. This has obvious

disadvantages in terms of efficiency. Furthermore, if 2 is linked back to 1, there will be a slight tenden-

cy for the character to be typed out an infinite number of times on both teletypes, and the routine follow-

ing down the chain must check for this explicitly. Instead of that we do the following: whenever any-

body changes any relative link control word, we recompute all absolute link control words, and the abso-

lute link control words for a teletype have a bit turned on for each teletype linked to the source teletype

or for each teletype which is linked to a teletype which is linked to the source teletype, etc., etc. In other

words, the bits in the absolute link control word are turned on for all the teletypes to which the charac-

ters should go. This computation is made once and for all, every time a relative link control word is

changed. It is then the absolute and not the relative link control words which are used in generating char-

acters through a link.

For those of you who are mathematically inclined, you may recognize that the process of computing

the absolute link control words is essentially generating the infinite Boolean product of the Boolean ma-

trix of the relative link control words. That is, you take the Boolean product of the relative link control

word matrix with itself and continue doing this until it ceases to change. There is a cute little algorithm

in the system for doing that, taken from a J. ACM paper by Irons.

So much for output links. There are also input links. If a teletype is input linked to another teletype,

every character typed in on the first teletype will appear in the input buffer of the teletype which it is

linked to. To summarize, output linking refers to characters which show up on the paper of a teletype;

they will also show up on the paper of every teletype to which the original one is output linked. Input

linking refers to characters which show up in the input buffer of a teletype; they will also show up in the

input buffer of every teletype to which this one is input linked.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 65

It is clear that running through this linking machinery all the time is rather time-consuming, and con-

sequently it is only done when necessary. There is therefore a single bit in the teletype table (by the way,

there is a picture of the teletype tables on page 7A of the working document) which indicates that there

is something funny about the teletype. This bit is the top bit of the word labeled TTYTBL. Funny things

include 8 level input or 8 level output and any kind of linking. If there is nothing funny about the tele-

type, the link word is never examined. This means that you don’t have to pay for this machinery when

you are not using it.

It is clear that it is intolerable for teletypes to be randomly linked to other teletypes, since this offers

entirely too much scope for inadvertent error or deliberate mischief. The protection against this works in

the following way: there are two bits associated with each teletype called the accept messages bit and

the accept input bit. When the accept messages bit is off, it is illegal for anybody to output link to that

teletype. If the accept input bit is off, it is illegal for anybody to input link to that teletype.

These are separate, because input linking is regarded as more serious than output linking. With out-

put linking all you can do is look at and interfere with the output. With input linking you can actually

affect the operation of the program.

There is an operation called read echo table, BRS 40, which accepts a teletype number in the X regis-

ter and reads back into the A register the following information: the echo table currently being used, the

8 level input and output bits and the accept messages and the accept input bits. This allows you to find

out about all these things. Then there is another BRS which essentially accepts all these bits. The normal

setting of the accept messages bit is on, of the accept input bit is off. Executive commands as well as

BRSs are available for changing the setting of these bits. The normal organization of this system with

regard to all these funny features is that they are implemented through BRSs which the user program

may execute if it has the proper authorization. The executive then has commands whose programs essen-

tially do nothing but execute these BRSs.

There is one other feature which sort of goes along with linking, and this is described at the very end

of section 7 on page 7-8. It is called Simulate Teletype Input. When you do STI, you put a character in

the A register and address a teletype. The effect of this is to simulate the typing in of that character on

the specified teletype. It is legal only if the program is executive or the accept input bit for the teletype is

on. In other words, if you put the character M in the A register, and do STI =14, you simulate the effect

of pushing the key labeled M on teletype 14.

There are still some more things associated with teletypes. In particular, there is a lot of machinery

for dealing with teletypes other than your own controlling teletype. First of all, if you want to own a

teletype, you can attach it. You do this by putting its number in some register and doing the appropriate

system call. If you are authorized to attach teletypes and that teletype is not owned by anyone else, the

teletype is attached to you. This means that you own it; you may set its echo table and all of its funny

bits and do any operation to it regardless of whether the permissive bits are set or not. Generally, you

have complete control of that teletype. You keep this control until you explicitly give this teletype up or

are logged out.

Q Does this mean that we here internally will be able to attach any teletype from this system, regard-

less of where it is?

A Yes. If somebody is already logged in on the teletype, of course, it is not attachable.

Q Only dormant teletypes are attachable then?

A Yes.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 66

Then, there are operations for reading input from and directing output to specified teletypes. These

are called OST and IST, Output to Specified Teletype and Input from Specified Teletype. They take the

character from the A register or leave it in the A register and address the teletype which you wish to read

from or write on to. You are not allowed to do IST or OST unless the teletype has the accept messages

bit turned on. This provides a facility which in some sense is complementary to that provided by linking.

Linking arranges that automatically any characters going out on one teletype go out on another one. This

facility allows a program to specifically direct a character to a specific teletype.

You might use these operations to communicate with your own attached teletype or to talk specifi-

cally to some other teletype belonging to some other user.

There are actually three ways in which OST can be legal. a) if the teletype is attached to the user; b)

if its accept messages bit is on; c) if you are executive. All of these conditions must fail for the OST to be

illegal.

Finally, there is one more thing in the teletype user interface. One can also address the teletype using

the standard system input-output operations, of which the most important is CIO. CIO stands for Charac-

ter Input-Output and you address a file number with it. The I/O takes place to and from the A register.

Whether the operation is to be input or output is determined by the nature of the file. Normally a file has

to be opened before it can be used. The teletypes are however, permanently open files. In particular,

there are file 0, which refers to input on the controlling teletype; file 1, output to the controlling teletype;

file 1000 + teletype number, input from a specified teletype; and file 2000 + teletype number, output to

the specified teletype. These provide an alternate set of instructions which you can use instead of TCI,

TCO, OST and IST to do teletype I/O.

They have the following advantage: a program using these instructions can easily be changed to use

another I/O device. It is normally possible to use CIO for input-output rather than a specific teletype in-

struction. This leads to the obvious question: “why do we provide the specific teletype instructions at

all?” Which is a good question and has the following answers:

1. That the specific teletype operations are somewhat faster since they have to do less error checking.

2. That the teletype instructions were designed long before CIO was invented.

I believe that we have now said everything that there is to say about the user interface for teletypes.

All of these matters are discussed precisely although concisely in the working document. We will now

turn to the teletype code. This will enable us to see, among other things, how interrupt routines really

work.

The first thing we observe about the teletype code is that in the very beginning there is a whole

bunch of tables defined. At the top of that bunch of table definitions, there is a comment that says: “Ta-

bles indexed by teletype number.” There are 16 of these tables. This means that every time you add a

teletype to this system, you add 16 words, one in each of these tables. A word corresponding to a partic-

ular teletype in one of these tables is obtained by using the base address of the table in an indexed in-

struction and putting the teletype number in the index register.

These tables are roughly explained by the comments and we will see in more detail what they do as

we look through the code. The tables labeled TIS-something or other, have to do with teletype input.

Those labeled TOS-something or other are involved with teletype output. The link control words are at

the bottom of page 1, and in between there are a bunch of words with obscure names like TTYTBL,

whose structure and function are described in the working document. The last entry in this collection,

TTYTIM, is used to record the value of the clock at the last rubout. It is this word which allows us to im-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 67

plement the feature which I described last time, of having two rubouts which come close enough togeth-

er send the program directly back to the exec.

Next are the echo tables, which are defined by a macro called ECHR, whose definition is found in

MDBG. Then there are the teletype buffers. These are organized in the following way: the input and out-

put buffers share the same words according to the picture at the beginning of section 7: Each word has

one character of input buffer, one character of output buffer and one character of deferred echo. This

means that the length of an input buffer is the same as the length of an output buffer. These lengths are

defined by a system parameter called NTTYC. Notice that the teletype buffers are defined toward the end

of page 3 by TTYBUF BSS LTTY, where LTTY has just been defined to be the number of teletypes mul-

tiplied by a length of a teletype buffer plus 1.

The code starts off with the teletype input interrupt routine. Before we plunge into that, it will be

worth pointing out that in order to start up the teletype logic, it is necessary to execute a routine called

TTYSET, which occurs on page 16 of STTY. The function of this routine is to set up properly all of the

input and output pointers and all of the little bits and to make sure that everything has its proper initial

state. It does one thing which is rather puzzling and may be worth pointing out in detail.

The teletype buffers are, as we have seen, one huge table. Each individual teletype has a section in

this table assigned to it. This section is terminated with a word whose contents is minus the length of a

teletype buffer. It is this word which allows the teletype routines to detect when they have come to the

end of the buffer.

We now return to the teletype interrupt routine. It has space for the A, B and X registers and a few

other temporary storage locations. TII at the top of page 4 is the address of the teletype interrupt rou-

tine. Location 201 is set up to contain BRM TII. The routine saves the A, B and X registers, does TTYS,

which an EOM which tells the teletype interface that the computer wishes to read the character, followed

by a PIN which reads in the character.

As we have already discussed, the 24 bits read by the PIN have a character in the top 8 bits and a tel-

etype number in the bottom 6. After the manipulation in the second line of TII we wind up in the third

line with the teletype number in the A register. We check to see that it isn’t too big and if it is, we go off

to TII4, which exits immediately. This can happen only if the teletype interface has fouled up, or if

there are more teletypes attached than the system is prepared to deal with. This guarantees that if some

random teletype number, say 150, comes in, we do not go out and attempt to find the pointers to teletype

150 in the teletype table. These pointers would, of course, simply be random numbers.

Next, we check the top bit of TTYTBL. If it isn’t off, the teletype is funny and we go off to TII4 to

check for 8 level input. Otherwise, we get the character to the A register, mask out all but the bottom 7

bits, and check for rubout with the SKG =177. If it is not a rubout we go off to TII1, which processes a

normal character. If it is a rubout we do something quite different. First, we look to see if the bits of

TTYASG corresponding to the job number are zero or not. If the bits are non-zero, then the teletype is

either unassigned or is a controlling teletype. If they are zero, it is an attached teletype, in which case we

wish to treat rubout as an ordinary character.

Q How did the job number get in there?

A It was put there when the guy entered.

Q The guy is required to supply a job number?

A No, the system provides it for him. We will see this being done in a few minutes.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 68

If we get through all this we have a valid rubout. We save the value of the clock and then we check

to see whether the clock differs from its old value by more than 8 clock cycles. If it does not, then we set

some indicator which will cause the rubout to go directly back to the exec instead of simply terminating

a single fork.

Q What exactly is going on with TTYTIM?

A Every time a rubout occurs, the current value of the clock is saved. It is also compared with the pre-

vious saved value, and if they differ by 7 cycles or less the rubout causes all forks lower than the ex-

ecutive itself to be terminated. This matter is discussed in more detail in the sections on fork struc-

ture. The clock value is saved in the TTYTIM table.

What happens next is the following: The teletype interrupt routine is a high priority interrupt, so we

cannot afford to spend a long time fiddling around in it. What we are going to do in order to process ru-

bout is to fire up the 207 interrupt. This is done in the following way: the 207 interrupt is permanently

tied on; it is normally, however, disarmed. We intend to use this interrupt to process things which we do

not have time to process in a high priority interrupt. 207 is the lowest priority interrupt we have, which

means that it is OK to spend as much time in 207 as you want, since no other interrupt can be hung by

your sitting in 207, only the main program. What we do when we wish to activate 207 is to arm it. As

soon as it is armed, the interrupt will occur. Since we are in the 201 interrupt routine, no interrupt will

occur until we leave the 201 interrupt. At that time, if no interrupts between 201 and 207 are waiting,

the 207 interrupt will occur and the rubout will be processed at leisure. Rubouts are processed in the

207 interrupt routine because of the considerable complexity of the processing involved. The other thing

processed in the 207 interrupt is links.

All of the little tables labeled ATIS are designed to tell the 207 interrupt routine what is going on.

The way the 207 interrupt routine is worked is that it has a ring buffer called ATTBUF which is used to

hold the things for the 207 interrupt to do. ATIS4 is a pointer which tells the 207 interrupt where to

read out the next thing to do, and ATIS5 is a pointer which says where to put the next thing to be added

to the buffer. ATIS2 tells us how many things there are in the ring buffer. When this number is zero, the

207 interrupt knows that all of the currently scheduled work is complete. The rubout logic then is in-

crementing the write-in pointer and then checking to see whether the word pointed to by the write-in

pointer is negative. The reason for this is that the word following the thirty words of ATTBUF is -30. All

entries in that buffer will be positive, which means that if the SKN skips, we have run off the end of

ATTBUF. To wrap around the ring buffer, we need only add the -30 to the pointer. This will suffice to

reset the pointer to the beginning of the ring buffer.

By the way, it may be as well to comment briefly on what a ring buffer is. A ring buffer is a block of

core which is used to maintain a linear list of things which is being added to on one end and taken off

from on the other. In this case the teletype interrupt routine is doing the adding and the 207 interrupt

routine the taking off. The two pointers, to the last thing added and the next thing to be taken off, pre-

cess around the buffer. This is why it is called a ring buffer. When the pointers run off the end of the

buffer, we wish to reset them to the beginning, since the end of the buffer is not a significant point.

This is what is going on at this point. Exactly the same device is used in the teletype input and output

buffers. Ring buffers are very useful devices, although because of this wrap around business they are a

little bit more difficult to manage than ordinary buffers. There are many applications in which they are

invaluable.

Q What do you do when the pointers collide?

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 69

A That varies. In the case of teletype input you simply throw the character away. In the case of teletype

output, we dismiss the guy. In this particular case of the 207 interrupt routine, the collision condition

is not checked for. This is unfortunate.

To return to the code under consideration on page 4 at TII6A+6, the second instruction is an SKN*

ATIS5. If that skips, then ATIS5 is looking at the -30 and it must wrap around the buffer, as explained

above. We now proceed to put the teletype number, which we get from TIIS2, into the 207 buffer.

Then we arm the 207 interrupt with this AIR and POT sequence. The AIR is an EOM which says that the

next POT will be an interrupt arming word. After arming the 207 interrupt, we exit immediately. We

have now transferred responsibility for the rubout to the 207 interrupt. As soon as it gets a chance, it

will come in and process the rubout.

We have now dealt with rubout, and we won’t look at the 207 interrupt. We will go on to cover all

the rest of the teletype input interrupt routine; there are a couple more pages of it.

TII1 is where we go when we have decided that there is nothing special about a character and we

are going to treat in a perfectly normal way. We say SKN TTYFLG,2; this word will be negative if the

teletype is alive and otherwise it will be non-negative. In other words, if the SKN does not skip, this tele-

type is dead and we want to ignore the character completely. So we go to TII4. We will see later how

TTYFLG gets set. Otherwise, we do this multiplication by this obscure number which happens to be one

third in octal. The reason we multiply by one third is that we want to get into the echo table, which is

organized three characters per word. The multiply leaves the word address for the echo in A and the

character address in the top two bits of B. We add the word address to the echo table address in TTYTBL

and get the echo table word. Then we do some shifting and some masking whose net result is to get the

echo table byte we want into the top of the B register. Then we pick up the character and tty number into

X from TIIS2. We send it to A, and we add X3. This constant is defined in SIO. It is three in the top oc-

tal digit of the word, which is 140 in the top character. We are therefore adding 140 to the character mod

28; this is the transformation from external to internal.

And then we mask so all we have is the seven bits of the character at the left end of the A register.

Now we do two SKBs, which are designed to isolate the possibility that the echo character is 0 or 1,

which are the special cases that we mentioned. If the first one skips then the character must be either 0

or 1. If the second one does not skip, then the character must have been 1; we put it into the buffer, but

we don’t echo it, so we go to TII0, skipping over the echo logic.

In the third case, it is 0 and we ignore it completely except that we have to check for the possibility

that it is a break character, which we do by going to TII1A.

If we get to TII1B we have to generate an echo, and the echo character is sitting in the B register

where we put it as a result of our machinations with the echo table. The register change instruction has

the E bit turned on, which says, “Only manipulate the bottom 9 bits in doing the operation.” The bottom

9 bits of X replace the bottom 9 bits of B, which now contains a word which can be used to output the

echo, since the tty number is in the bottom 9 bits. Then we save away the echo in TIIS4 for the mo-

ment.

Now, we look to see if TTYTBL is negative. The bit that is being tested is the funny bit; if there is

anything funny about the teletype, we will defer the echo. This is obsolete code, but its effect is to defer

the echo if there is a link. The reason is that the link computations are too long to be done in the 201 in-

terrupt, and the defer guarantees that they will be done in the TCI routine. We now handle links in the

207 interrupt, however.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 70

If there is nothing funny about the teletype, we look at TOS2 and see if it is negative. TOS2 tells us

how many characters are left to be typed, and if it’s negative the teletype is not typing out anything.

Consequently, if the SKN doesn’t skip then we know it is typing and we have to defer the echo. If it does

skip, we don’t have to defer it. We still have to check for the possibility that we deferred some previous

echo, in which case we have to defer the current one. The way we do that is to pick up TIS2, the number

of characters sitting in the input buffer, and compare it with 0. If there are no characters in the buffer, we

definitely don’t have to defer. We immediately output the echo by doing the teletype EOM and PCT. Then

we MIN TOS2.

If on the other hand TIS2 is not 0, we go to TII3A which checks whether the preceding character

was deferred. TIS4 points to this character, so we load indirect through it and look to see whether any of

the deferred echo bits are non-zero. If all are zero, we go back and output the thing.

When we’ve made it through all of this, we have arrived at TII0, which is going to put the character

away in the input buffer. We increment TIS4, which is the write-in pointer of the input buffer. If the

200 bit of the word it is pointing to is on, then that word is the one after the end of the input buffer, and

it is necessary to wrap around the buffer.

Having taken care of this possibility, we store A into the first and third characters of the buffer word

(the input and echo fields). Then we increment the character count and check to see whether it is bigger

than the length of the input buffer. This is a test for collision. If the buffer is full, then we are going to

make TTYFLG positive. TTYFLG was tested way back, and if it was positive we just ignored the charac-

ter completely. It can be positive under two circumstances: if the teletype is dormant, or if it gets set

positive because of collision. Every time a TCI is executed it is set negative.

Then we pick up the character count and test for early warning. TTY early warning is a number

which is currently equal to 6. If you get within six characters of filling up the buffer, you want to pretend

that you saw a break character, even if you really didn’t. If we don’t have early warning, we check the

top bit of the echo character, which is still in the B register, to see if we are processing a break character.

In either case we go to TII7, which is responsible for doing the right thing about break characters. Oth-

erwise, we go to the standard exit at TII4 which restores the A, B and X registers and returns.

So we’ve now made it through the main sequence of this routine. There are still a number of things

to clean up. The first is the break character handler at TII7. Here we MIN location TTYBRK, which is

negative if no break characters have come in. Every time we see a break character, we increment it. The

activation condition will be TTYBRK ≥ 0. Then we increment ACTR, since now we have someone to

activate, and we go to TII4.

Next is TII6, where we will check for 8-level input. We pick up TTYTBL and look at the 8-level bit.

8RB is just a number which has one bit on, namely the bit corresponding to the 8-level input bit; it is de-

fined in MDBG. If the bit is off, we go back to TII6A. If we do have an 8-level input, then we proceed

quite differently, checking the possibility that the character might be the 8-level EOF character, which is

kept in TTYTBL. If it is, we are about to leave 8-level, so we go through a lot of rigmarole whose func-

tion is to turn off the 8-level mode and also to turn off the funny bit if there is no reason to leave it on.

Having disposed of that possibility, we go on to TII2, which is where we have an 8-level character

which is not an end of file. In that case we pick up the character from TIIS2, we mask everything else

out, clear the B register (no break) and go off to TII0, where we file it away.

I think we will pass over the rubout handling logic, which is in the 207 interrupt, and go on to con-

sider the TCI routine, which actually processes a user request for a teletype character. This routine starts

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 71

on page 12 where it says TCI. It begins by storing away the B and X registers; it doesn’t need to save the

A register.

It picks up the user teletype number into X and calls TI, which is to be found in the middle of page

11. What this routine does is to pick up TIS2, which is the character count, and look to see if it’s bigger

than zero. If not, it goes to TI3 and dismisses the program, because there aren’t any characters. Other-

wise, we increment the read pointer TIS5 and pick up the character out of the buffer (testing to see

whether the 200 bit of that word is on, in which case we have to wrap around). Then we get the charac-

ter into the bottom of A and check for a deferred echo. If there is one, we go off to TI1. Otherwise, we

count down the character count of the buffer, put -1 into TTY FLG and exit.

Next, we look at the place where we do the dismissing, which is TI3. Send -1 to TTYBRK, which is

the word that is going to be tested by the dismissal condition, which we now proceed to construct. We

copy the teletype number into A, mask it, and add in 200000 + TTYBRK. This gives dismissal condi-

tion 2 and the address of the TTYBRK corresponding to this teletype in the address field. TI returns with

a skip, leaving that dismissal condition in the B register.

If we have to print a delayed echo (TI1 on the top of page 12) we get the echo character and call TO,

which is the routine which is responsible for outputting characters. If we are successful in outputting it,

we go to TI6, which restores the character and goes back to what we were doing before. If TO is not able

to output the character, (because the output buffer is full), then it returns with a skip and the dismissal

condition in B, and we have to dismiss the guy. We have to move the read pointer back down because

we already incremented it. Remember, what is going to happen when the program is reactivated is that

the TCI will be re-executed.

Going back to the place where we call TI, if it does not skip, we go to TCIP1, otherwise to TIODMS,

which is where we are going to dismiss the guy, putting QTI in X and going to POPDMS in the scheduler.

So then the guy is gone and we won’t see him again until we start him up again at the TCI.

If we get to TCIP1, we pick up the X register, we pick up the B register, we store the A register indi-

rect to zero (because TCI sends the character not only to the A register but also to memory) and we re-

turn.

I would like to go on now by going through the teletype code and pointing out what all of the rou-

tines do and any peculiarities they may have, without actually looking at any of the code. We have al-

ready gotten ourselves as far as page 6, which is where the 207 interrupt routine is. On page 6, we see

the logic to process rubout which is tedious. Then on page 7 there is a routine called TIP which is called

from the phantom user and which is responsible for doing the final job on rubout. The way rubouts are

being handled now is that in the 201 routine we immediately activate the 207, in the 207 routine we set

up a phantom user request and the phantom user then comes along and executes TIP, which is responsi-

ble for actually processing the rubout. There are the following cases. It may be an ordinary rubout,

which goes to RPAN; it may be a catastrophic rubout (one in which rubout was pushed twice within sev-

en clock cycles); or it may be an initial rubout.

Furthermore, if it is ordinary, it may be one which is going to cause an interrupt, if the interrupt is on

(we discussed interrupts and rubout when we talked about the fork structure). It will also be necessary to

clear the input buffer, and it may be necessary to clear the output buffer if the program is executive.

If the teletype is not attached to anyone, the significance of the rubout is that a new user has arrived

and we must initialize him. You remember when we talked about forks, we said there was a mystical

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 72

process which got the user started up. Well, here it is, TSON. We find the user a job number and we go

through all kinds of rigmarole to get him started up. So much for rubouts.

Now, at the bottom of page 9 there is a routine called TSOF which is responsible for turning off a tel-

etype. I don’t think it has any particular peculiarities. The teletype is a controlling teletype, which means

that there is a job number that has to be released and a PAC slot which has to be released in the course of

turning off this teletype. This is the routine that essentially performs the function of LOGOUT and it is

called by a BRS. It is possible to cause the logging out of a different teletype than your own. Notice in

the middle of page 10 it says, BRU PACGO (suicide). If this routine discovers that the teletype it is log-

ging out is its own controlling teletype, it goes straight to PACGO and the scheduler will activate some-

body else.

Now there is the teletype output interrupt routine, TOI, which is pretty trivial. It is started by the in-

terrupt which says: “I have just finished output of the characters”, so it looks to see if there are any more

characters to output. If there are, it picks one up and outputs it. Otherwise, it POTs out to the teletype in-

terface a standard word which say: “I am through with you, go away.” In the case where it actually out-

puts something, it will consider the possibility that maybe it should indicate that the guy can be activat-

ed, if the output buffer is nearly empty.

On the bottom of page 12 and page 13 there is a routine called STI, which is responsible for pro-

cessing the STI SYSPOP, simulate teletype input. This routine duplicates a lot of the things in the inter-

rupt routine; it is not possible to call on the interrupt directly, because if an interrupt came along in the

middle there would be a terrible mess.

Then there is TO, which is responsible for teletype output. This is a fairly complex routine, which has

to consider the possibility that the buffer might be full, in which case it will return with the dismissal

condition. If it didn’t have to dismiss the guy, it goes right into the buffer, just the way the teletype input

interrupt routine does, putting the character to be output into the buffer. It also has to check links, which

it does down here at TO6. If it finds links, it goes into the link code, which starts at the bottom of page

14 and goes on for some time. The rest of the link logic is to be found starting at the middle of page 19

and going on page 21. That part computes link words. Here is the part that actually does the linking, in

this routine called TLOM, and the way this works is that at TLM3 (toward the beginning of page 15) it is

picking up the link control word and doing this NOD, which essentially shifts the word to the first one bit.

It takes action on that teletype and it goes on to the next one. The link logic has the following peculiari-

ty: it goes through all the linked teletypes twice, once to make sure that there is room in all the output

buffers and a second time actually to do the outputting. If it finds, in looking through the output buffers,

any that are full, then it abandons the whole process and dismisses the guy. When you are outputting a

character to a single teletype, you check whether its buffer is full and if it is, you dismiss. If you are out-

putting to linked teletypes you must make sure that all the buffers are free. TLOM is not a routine which

actually does any work. What it does, is to go scanning through all the teletypes, finding all the ones that

are linked to the one we are looking at. For each one it calls a routine that is given to it as a parameter so

that you can call it with several different routines, depending on what you want done.

The next thing is teletype output, which is in TOF, in the middle of page 15 (the actual teletype out-

put POP is TCO, at the bottom of page 15). Then OST is handled at the top of page 16. In the middle of

page 16 there is a routine called TTYSET which is responsible for initialization of the teletype tables and

clearing out the teletype interface. It has no peculiarities except the funny rigmarole that it goes through

to set up the word consisting of minus the length of the teletype buffer at the end of each teletype buffer,

which is the thing that makes the wrap-around work.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 73

On page 17, there are routines to implement several BRSs dealing with things like clearing input

buffers, and then on page 18 there is a routine to handle accept message bits and attaching and releasing

teletypes, and also there is a routine to turn a teletype off, that is to empty out all of its buffers and set all

its counters to standard values. On page 19 are the routines that turn on and turn off 8-level mode,

The most obscure part of it, I think is the part we looked at, namely the teletype input and output

routines.

Input-output

Today we’re talking about I/O.

First we’re going to describe the sequential file machinery, and then we will go to see how it works

inside. A sequential file is the most general kind of file in the system. Any I/O device may be thought of

as a sequential file. A sequential file is identified for the purposes of doing input-output on it by a file

number. Some sequential files are always available for input-output: that is, they are always open. In this

case they have permanently assigned file numbers. Other sequential files must be opened explicitly by

the user when he wishes to use them. At the time when the user opens the file, the system will give him

a file number which he can use to identify it while he does his input-output, and which he also uses to

identify it when he closes it.

The files which are permanently open are the teletype and a file called nothing which simply absorbs

any output directed to it and returns no indication whatsoever of anything. It is a convenient file to have

around when one has a program that generates output and one doesn’t want the output.

The teletype files which are permanently opened are described in Section 9. They are the user’s own

controlling teletype, which is 0 for input and 1 for output, or any particular teletype which he may

choose to specify which is 1000 + tty number for input and 2000 + tty number for output. All other files

do not have permanent file numbers and must be explicitly opened.

You can open a file by using an operation called BRS 1, and what this does is to accept some identi-

fication of the file from you, cause the file to be opened and return a file number to you. In general, a

user is not allowed to execute BRS 1; only the executive is allowed to execute BRS 1, and if the user

wishes to open a file, he must supply to the executive the name of the file. The executive will then figure

out where the file is and obtain the necessary information to supply BRS 1.What you give to BRS 1 is

something called a device number (and in the case of some devices a unit number) in A. For a drum file,

this would be the location of the first index block, which then identifies the file to the world. The device

numbers are listed on page 9-6 with the exception of those for sequential drum files, which are listed on

page 9-1. BRS 1 skips if it is successful, and if it returns without skipping this means that for some rea-

son it was unable to open the file. When it returns without skipping, it returns some kind of status word

which explains why it was unable to open a file. And after that it’s up to you to hold onto the file num-

ber, since you can’t do anything with the file unless you have the file number.

In the case of a device such as paper tape or mag tape, when the file is opened by one user it is de-

nied, of course, to all other users. This can be one reason why BRS 1 could fail. The other reason which

would cause BRS 1 to fail would be an illegal device number. In that case, however, it will not return at

all, but will generate an illegal instruction trap.

Now, once you open the file, you can do I/O, which we’ll describe in a minute, and you can also

close it. You do that by putting the file number A and executing BRS 2. In case you forgot about your

file numbers you can close all your files by executing BRS 8. Whenever you go back to the exec, it

closes all the files for you.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 74

Now, input-output for sequential files is done through three instructions called CIO, WIO and BIO.

CIO takes a character from the A register and outputs it to the file; or if it is working on input, it reads

the character from the file and puts in the A register. WIO does the same thing except for a word. BIO

takes a core starting address in A and a count in X and inputs or outputs a specified number of words to

memory. These are the three sequential file operations. You notice they work indifferently for input and

output; the reason for this is that whether the file in input or output is determined by the way it is

opened. You use different numbers for files depending on whether they are being used for input or out-

put.

Q With BIO, is output in words or characters?

A It takes words out of core.

The success of a CIO or WIO does not depend on whether the device involved is word or character

oriented, because the system will do all necessary packing and unpacking. It is, for instance, quite legal

to do a WIO on the teletype. The result is that three characters will be typed on the teletype. If you say

BIO with a block length of 5 (output 5 words), this may involve transmitting 5 words to the device or 15

characters, depending on whether it is a character or a word oriented device. In any case, all 120 bits will

be written out.

Now, it is often convenient to be able to switch between input and output in a sequential drum file. It

doesn’t make sense on paper tape to switch between input and output, but in a drum file it often does.

Consequently there is this operation called BRS 82 which allows you to do this switch. There is ma-

chinery provided, which is discussed in Section 12, for making a file read only. If the file is made read

only then, of course, it’s not legal to switch it to output; you get an illegal instruction trap if you try to do

that.

There are a couple of other things to know. (All these things are written down in Section 9.3). Cer-

tain flag bits are set on every I/O operation. The flag bits are 0, 6, 7 and 8 in the file number, which is

the thing addressed by CIO. Bit 0 is turned on whenever any flag is set, and the other bits indicate end of

record, end of file and error conditions on the file. So you can find out whether some funny thing hap-

pened by looking at the flag bits in the file number. In addition there is a convention for what the system

sends back when it sees end of record or end of file on input. End of record sends back 134 characters

and end of file sends back 137 characters. If you’re operating in word mode you’ll get a whole word of

134s or 137s.

There’s two more ways of finding out if you’ve got unusual conditions on the file. One is that BIO

will skip if it didn’t see any unusual conditions and fail to skip if it did see an unusual condition. The

second is that you can get interrupt 4, if it is armed, whenever any flag bit is turned on during an I/O op-

eration.

Some files have additional structure; they are more than just being strings of bits. Among these are

mag tape files and drum files. Drum files have a lot of structure, mag tape files have less. So I think I’ll

dispose of mag tape and other funny device files before taking up the drum.

The mag tape is organized in the following way. The system writes 200 word physical records on the

mag tape. You (the user) write logical records on the mag tape and read them, and you can do this disre-

garding the physical records completely; the system takes care of all necessary conversion. A two word

logical record is quite inefficient, because it takes at least one physical record to hold each logical rec-

ord. There are a certain number of operations provided for doing things to the mag tape other than just

reading or writing. They are called control operations and they are defined on page 9-6.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 75

To do a control operation you address the file number and put the control you want to do in the A

register. The following ones are available: 1 = end of record, 2 = back space record, 3 = forward space

file, 4 = back space file, 5 = write three inches of blank tape, 6 = rewind and 7 = write end of file. So this

allows you to move the tape around and do other funny things on it that you might want to do.

Q These are logical records?

A Everything refers to logical records, right.

Q Is there any way to read the physical records?

A No.

Q Say you have an 80 character record. Can you read it?

A No. The only kind of mag tape records the system can handle are the 200 word ones that it writes

itself.

Q So how can we read a tape with card images on it?

A There are two possibilities. I’m not sure what would be the best thing to do. One way to handle the

problem would be to modify the system to handle more general records. The other way would be to

write a special program to run out of time-sharing and convert the tape to TSS format. It might be

worthwhile to indicate specifically what the format of a record is on the tape. It consists of 200

words. The first word contains a word count—how many data words are significant of the 199 data

words actually written. Following that there are the 199 data words. The records on the tape are 200

words, one word count word and 199 data words. The sign bit is turned on for the last physical rec-

ord of a logical record. There is no numbering of the records,

Now, there are some other devices. There is the paper tape reader, which also has logical records.

These are exactly the same as the physical records on paper tape and are simply defined by gaps (sec-

tions of blank tape). There is also the paper tape punch. These devices have no control operations, ex-

cept for a single end of record one for the punch: write end of record. This simply generates a gap on the

tape by punching an inch of leader.

Then there is the card reader. Substantial transformations are made on the card reader input. First of

all, code conversion is done (which it is not on any other device) to convert the SDS code that the card

reader sent to the CPU into ASCII. Our card reader driver, the one that’s built in, reads BCD cards but

does not read binary cards. To put in a binary driver wouldn’t be very hard.

There are some other transformations made on the card reader input (see page 9-7). A carriage return

and a line feed are generated after each card. If you read characters from a card with 80 zeros on it you’ll

get 80 zeros followed by carriage return followed by line feed, 82 characters in all. Secondly, any trail-

ing blanks on the card are suppressed. Any embedded blank strings of more than 2 blanks are converted

to a 135 character followed by the number of blanks. This is the system convention for storing multiple

blanks, and it also used by the teletype output routine. Finally, the card is not regarded as a logical rec-

ord; there is no possible way to get an end of record from the card reader. You can get an end of file

from the card reader if you push the end of file button.

That takes care of all the devices other than the drum files, which I will now proceed to explain in a

little bit more detail than the manual.

A sequential drum file consists of logical records. Operations within one logical record are just the

CIO, WIO and BIO that I have already described. You can also, however, perform controls on drum files,

and they are considerably more flexible than those for any of the other devices. They are described on

page 9-4. You can write end of record, you can backspace a specified number of records, you can for-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 76

ward space a specified number of records, you can delete a specified number of records, you can space

to the end of the file and backspace, or you can space to the beginning of the file and forward space.

These are controls 1 through 6. Control 7 is insert logical record, which inserts a new logical record at

the point that you are now sitting at. These operations allow you to move around freely on the drum file

and to treat the logical records as independent or interdependent, whichever you choose.

Then there are a lot of other piddling operations. You can read the amount of information in your

file. If you are executive you can set up an index block, give up an index block, or you can read an index

block explicitly into core.

The drum is physically organized into 256 word blocks. The user, however, never sees this organiza-

tion. He only sees what I have already talked about. The way this miracle is accomplished is that associ-

ated with each drum file, in addition to the data blocks which hold the actual information in the file, are

things called index blocks. Any index block contains two pointers to the preceding and following index

blocks. A file can have any number of index blocks, which are chained together by these pointers. The

first index block, of course, has zero in the backwards pointer and the last index block has zero in the

forward one. In addition to these two pointers, the index block contains the addresses of 78 drum blocks.

Each word of the index block corresponds to one physical drum block and points directly to it. The bot-

tom 15 bits are used to hold the address of the drum block which is being pointed to by the word in the

index block.

The top bit of the index word is turned on if it points to the last physical block of a logical record.

The remaining bits are used to specify the number of data words in this block. This, of course, will al-

ways be 256 except for the last block of a logical record. The convention, in other words, is very similar

to the mag tape convention. For a logical record consisting of 700 words, there will be three index block

words. The first one will point to a full 256 word data block, the second will point to a second full 256

word date block and the third one will have the sign bit turned on and will have a word count of 700 mi-

nus 512.

When you insert new logical records, the system takes care of moving the pointers in the index

block. In a sequential file, the pointers in the index block are always compact. Each word points to a

physical block. By scanning down the pointers, you can find all the words of the file. Now, this should

make it reasonably clear how these control operations are actually implemented.

The reason for this mechanism, by the way, the reason that we just didn’t put in something more

simpleminded, is that this provides a facility which very many user programs need. Of course, a user

could simulate the whole thing by having a big file and explicitly keeping pointers to the logical records.

It’s nice to have the system do it, first of all because the system can do it more efficiently than you can

do it; and secondly, because it means a lot less for the user to worry about. He has a very nice and flexi-

ble piece of machinery built. It will be satisfactory for many of his applications without any modifica-

tions at all.

Q If the record is written out with CIO, does he have to read it back in with CIO?

A Definitely not. Remember, a record is not written out by a single command. A single command

writes out one character or word. The only way an end of record can be specified is by explicitly giv-

ing the control operation which says end of record, or by closing the file, which implies end of rec-

ord. If you mix CIO and WIO, somewhat peculiar things will happen; that should be avoided. But

certainly you can write the file out with one of the operations and read it in with another.

I think that more or less covers the user interface for sequential files. I would like now to talk about

the implementation. In the Tymshare system, and I presume in yours also, there will be a mechanism for

actually keeping files on the disc and only bringing them onto the RAD when they seem to be needed,

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 77

since the RAD isn’t big enough to hold them all. Half the disc space is reserved for your fixed data and

the other half is available for files. The block operation, BIO, is done directly out of the user’s memory

in units of 256 words. In other words, if there is any 256 word block which falls within the scope of one

BIO, it will be done directly out of the user’s core and will go much faster. In all other cases, I/O is done

through a drum buffer. Drum buffers are kept in the users TS storage block, where there is room for 4 of

them. A drum buffer consists of a 256 word area for a data block, a 78 word section for an index block,

(only 78 words are used in the index block, although it occupies a full 256 word drum sector), and about

15 words of pointers and things which the system needs in order to keep track of what’s going on in the

file. All of these things constitute a drum buffer.

Now, all files that are not permanently opened have associated with them things called file control

blocks. The file control blocks are taken from a standard table in the system which has room for some

reasonable number of file control blocks—50 or 60. It’s a system parameter whose value depends on

how many users you expect to run the system with. The file control block format is depicted on page 9-

8. It is essentially indexed directly by the file number, so when you deliver the file number to the sys-

tem, it goes immediately to the file control block which is suppose to tell it everything it needs to know

about the file: first, who the user is who owns the file. This is very important, because the first thing it

does is to check that the user who is trying to use the file is the same guy who owns it. If he isn’t, then

that’s an error.

Q How are users identified?

A By the I/O number, which is not quite the same as the teletype number. Normally it is. Normally one

controlling teletype equals one job. However, background jobs are possible, and they don’t have tel-

etypes.

Then there is a number which essentially identifies the file if it’s one which is not sufficiently identi-

fied by the device number. This number is the index block address, the tape unit number, or the address

of the subroutine for a subroutine file (which we have not yet discussed). Next is a word which is used

for packing and unpacking operations, followed by a word called FD which has a whole slew of little

bits telling one thing and another, and also the device number. Finally there is a word which contains the

character count for the packing and unpacking operations and the drum buffer address in the case of

drum files. I think it will be fairly clear to you superficially what the significance of the various fields in

the file control block are. When we come to places in the system where they are used, you won’t be so

baffled.

All right, with this introduction, I would like to start looking at some of the code for input/output.

Now, this code comes in three major sections. There’s a package called IO which is essentially respon-

sible for the user interface for sequential files. There’s a package called W which is responsible for the W

buffer, and there’s a package called DRM which is responsible for the drum. I think that most of our at-

tention will be concentrated on the first two packages.

I direct your attention to the beginning of the package labeled IO. It starts out with a large number of

tables. First of all there are four words labeled ERRBIT, EOFBIT, EORBIT and EOTBIT, which have the

appropriate bits turned on corresponding to the flag bits which can be set by these conditions. Then

there’s a whole bunch of symbols called X0 through X7 and XN7 through XN1, which are just the num-

bers 0 through 7 in the top octal digit of the word. Then some more words with useful bits, then the file

control block area, which I just finished discussing, and finally the device dispatcher, which is called

DEV and which has one entry in it for each of the possible device numbers. The exact significance of the

entry is obscure as hell—the table called DEV is not written in a way which makes it very clear what’s

going on. There is a number in the address field which is either just the device number or is the address

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 78

of a special routine for the file. In the latter case, bit 1 will be turned on (,2 tag). The bottom bit of the

opcode field is turned on if the device is an output device. The top bit of the opcode field is turned on for

drum files and the second opcode bit for random drum files. The 2 bit is used to indicate a character-

oriented device.

Q Why the funny opcodes?

A These words are definitely not instructions. It’s unfortunate that Peter chose to set the opfield bits

with specific opcode mnemonics; it’s very confusing because you can’t tell what’s going on.

This DEV table also contains entries for the permanent teletype files. It is indexed by the device

number, which you normally get out of the file control block. In the case of the permanently opened

files, you get the device number from the file number by a little computation which we’ll see.

The next table, BUF, contains the addresses of the buffers for various devices. The buffers them-

selves are mostly defined in the package labeled W. This table is also indexed by the device number.

Then there’s a dispatcher, mostly for W buffer devices, called the driver dispatcher. You go indirect

though this table when you’re actually ready to activate the routine which does the I/O. Finally, there’s a

BIO driver dispatcher which you go indirect through in activating the routines to do BIO.

Then there is ACTR, a word we all know well, and AIRWD, which is the word the system uses to arm

interrupts.

Before we look at any code in detail, I want to go briefly over this whole package and explain what

everything is. The first thing is the CIO driver, followed by the BIO driver. These are somewhat inter-

connected. Then there is the kludge BIO driver which is used to handle block I/O for devices such as the

paper tape reader which do not lend themselves to efficient handling of block I/O. Next is a routine

called IOI which is used to check legality of the file number. You get back from it various information

which you need about the file, as indicated in the comment in front of it (this is at the bottom of page 3).

Then there is a glorious routine called GPW (on page four) which is essentially responsible for acti-

vating device drivers. You feed it the device number and the word or character on output. It takes care of

dismissal, if that is necessary, and of sorting out the various kinds of devices. That is all the basic I/O

stuff there is. The drivers themselves are in other packages, the drum drivers in DRM and the W buffer

drivers in W.

Now there is some more stuff in this package. There is the routine to handle controls, which is on

page 5. Then on pages 6, 7 and 8 there is the PDP5 link I/O, which we will definitely not look at in de-

tail. It is significant because it is an example of how to program a DMC (data multiplex channel) within

the framework of the system.

At the top of page 6 there’s a routine called IOPSET which is the initialization routine for the tables

in this package. Then there are some things that haven’t anything to do with I/O: SBRM and SBRR

SYSPOPs and the BRS table, and the code for BRS 3, 43 and 44.

The BRS dispatch table contains one entry for each BRS in the system. It is called BST and is at the

bottom of page 8. Each entry contains the address of the routine to be called in the address field. In the

opcode field it contains one of three things depending on what kind of BRS it is. If it is a monitor BRS

which does not execute any SYSPOPs, the opcode is BRU. What you do, by the way, is to execute this

instruction with EXU. The BRU will therefore send control immediately to the BRS. If it doesn’t have BRU

in the address field, there are two other possibilities, namely it could be a swapper BRS, or it could be a

BRS which is resident and runs in system mode but calls other SYSPOPs (usually to do I/O).

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 79

BRSs of this last kind are, for instance, the one which reads numbers, BRS 38. It does a TCI and at

that point will get dismissed if the guy hasn’t typed a character. This means that special action has to be

taken to see to it that when it gets reactivated, everything is still all right. For instance, the return loca-

tion must be explicitly saved from BRSs of that type have EAX in the opfield.

Those which have NOP in the opfield are swappable and run in user mode. They require special

treatment. Appropriate machinery surrounds the BST tables to take care of these three possible cases.

Finally, there are two routines called MONOPN and MONCLS which are responsible for handling BRS

1 and BRS 2, i.e. for opening and closing files.

I will now try to explain more or less the sequence of events involved in getting a CIO executed. It

puts the character it is supposed to be handling in T and checks explicitly for the possibility that the file

number is 0 or 1. Those are the controlling teletype files. If it’s one of those two, then CIO is essentially

going to simulate TCI or TCO. It does that explicitly by transferring off to FTCI or FTCO, depending on

which one it was. Otherwise it comes down to CI1, where it calls IOI, which guarantees that the file

number is good and sets up the device number in DEV, the file number in FILE and the buffer address

(which it gets out of the buffer table that we looked at earlier) in BUFF.

Let’s turn to IOI briefly, IOI has to check the file number for the possibility that it refers to a tele-

type file i.e. if it’s equal to 1000+ teletype number or 2000+ teletype number. If it is a teletype file, it

checks that the teletype number is legal. Otherwise it checks that the file number is not too big for the

file control block table.

If not then we pick up the first word of the file control block and check that the job number is the

same as the number of the guy who executed the instruction. If it’s not, then it’s illegal for the guy to use

that file and he gets an illegal instruction trap. That’s taken care of at IOI4 at the top of page 4.

The next thing we do is to set up BUFF and to check for a drum file, in which case we consider the

possibility that it is a random drum file. If it’s a random drum file we go out to DIODMS, otherwise set up

BUFF from the file control block.

We now return to CIO. The main thing CIO is responsible for is doing the necessary packing and un-

packing of characters to accommodate itself to whether it is working on a word or a character oriented

device. This fact is determined by the setting of CHRBIT in the DEV table, as we have already seen. If it’s

a word oriented device, then CIO either packs the character away in the FW word, or if the word is full it

calls GPW to get the I/O done. If it’s a character oriented device, then the CIO transmits the character di-

rectly to GPW. Note that input files are treated differently than output files in the packing and unpacking

for obvious reasons. If CIO is called for output and only one character has been provided, then that’s not

enough to fire the device up; you have to get two more characters before you fire the device up. If on the

other hand, the device is a character oriented device, then you do the I/O directly by calling GPW.

We haven’t nearly gotten to the point of doing physical I/Os yet, you realize. We’ve only gotten to

the point of calling GPW, which is still pretty far away from doing physical I/O. The function of CIO is

simply to accomplish the character to word conversion that may be necessary.

Now, WIO is a very similar operation which has similar problems. If it is working on a word oriented

device, it transmits the word directly to GPW or gets it from GPW. If, on the other hand, WIO is working on

a character oriented device, then it calls WIT, which is just after WIO and is essentially responsible for

doing the character to word conversion. In other words, if you deliver an output word to WIO it has to

break that word apart into three characters and call GPW three times to get the three characters output. On

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 80

input, it has to collect three characters to make into a word before it can give the word to you, since you

asked for a whole word.

Q Does GPW stand for something?

A It stands for Get and Put Word.

Then there’s BIO, which is essentially like WIO except that it has a loop. It does the job the necessary

number of times. Notice that the BIO either calls GPW directly, for word oriented devices, or it calls WIT.

Q What’s the BRU* BSEL2?

A There’s a BIO dispatch table which we saw a little earlier, BSEL. The first thing the BIO does is to

branch through the dispatch table. That will send it in most cases to BIO which handles the normal

BIO. In the case of the drum it will send it off to an entirely different place which handles drum BIO.

Now we come to GPW. It puts the device number in X, picks up the word out of the DEV table and

looks at the X2 bit. If the X2 bit is turned on, the word has a special driver. This is the case for most de-

vices. The special drivers perform a wide variety of functions, as we shall see. If we don’t have any spe-

cial driver, we just go to these three very interesting instructions which test whether the contents of the

word BUFF is bigger than the contents of the word addressed by BUFF. To explain why we’re making

this test, I will have to explain the structure of the system I/O buffers. Such a buffer consists of n+2

words. The first 2 words are the header and the remainder of the buffer is data. The convention is that

the first word of the buffer points to the currently active word of data and the second points to the end of

data. If the first word of the header is less than its own address, i.e. if it does not point into the data, then

the buffer is busy; that means you are not allowed to perform operations on it. If the buffer is busy, nor-

mally I/O is actually being done on it. The driver has been called and the channel is reading out of or

into the buffer. During that time, it is obviously not acceptable to allow programs to write into the buffer

or read from it because the state of the buffer is unknown.

Q You’ve only got one buffer?

A One buffer for each device.

Q Why not more?

A More complicated than it’s worth. We considered having double buffers, but we decided the amount

of overhead and miscellaneous junk added were just far too big to be worthwhile. You can do your

own double-buffering with forks, so we save a lot of energy in the system as a result of not having to

do that.

So the function of CXA; SKG 0,2 is to test whether the buffer is busy. BUFF, of course, has been set

up by IOI to have in it the address of the first word of the buffer, so whenever the buffer is not busy, the

first word of the buffer is pointing into the buffer, to the currently active word in the buffer. So if the

buffer is busy, we have to dismiss the program, and the way we do that is to set up activation condition 6

with the contents of BUFF in the address field. We go to POPDMS with QIO in X, which means the guy is

going to be dismissed on to the I/O queue. Activation condition 6 is a screwball activation which says

“Test whether the word is equal to the address of the word plus 2.” That is the normal state in which the

buffer will be left when the channel is finished whatever it’s doing. When the interrupt routine comes

along and sees that the buffer should not be busy anymore, it will set up the first word of the buffer to

point to the third word, which is the first data word.

If the buffer is not busy, we go to GPW3 (near end of the page), which is actually going to do the I/O.

It picks up the second word of the buffer, subtracts the first pointer, and looks to see whether the address

field is 0. If so, then the buffer is empty. The top of the second word is used to hold flags, the flags that I

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 81

mentioned in connection with CIO. This is why we test for 0 with SKA. If the buffer is empty, we test to

see whether any flag bits are on. If there are no flag bits, we start the device. If there are flags, we go to

GPW8, which is responsible for transmitting the flags back to the file number and generating an interrupt

if that’s necessary. Here we test for the error bit and the end of record bit and go off to GPW8A or GPW8B

depending on which one is on. If it’s not error or end of record, it must be end of file, in which case we

go through all the gyrations at GPW12. When you come to GPW12 the situation is like this: you have in

the B register either a word full of 134 characters (for end of record) or a word full of 137 characters

(for end of file) and in the A register the appropriate flag bits. GPW12 puts the flag bits into the top of the

file number and stores the result in the word addressed by the I/O pop.

Then it sends B to A and extracts with GPWC, which will contain either 377 in the case of character

I/O or -1 in the case of word I/O. The resulting word or character will be transmitted back to the user if

input is taking place. That’s what all the machinations with FC and FD are. Next we call IIR, which is

the routine which generates an interrupt. The 2000B tells what interrupt to generate (4 for unusual I/O

condition). If the IIR succeeds in generating an interrupt, we return immediately, because the program

will be sent off to the interrupt location. If the interrupt is not caused, we just return to GPW in the normal

way.

If we get to GPW8B, then we have an end of record rather than end of file. We make sure that the on-

ly flag which is turned on is the end of record flag, because we’re not interested in the others. Then we

proceed as we do with end of file. If we get to GPW8A, then we have an I/O error and go through similar

but slightly different machinery, which can also generate an interrupt and do various other things, but

doesn’t generate the 134 and 137 words. We won’t look at that in detail. Note that all the physical

machinations involved in the error have already been taken care of long ago. For example, if it was a

mag tape error, the system has already made all reasonable attempts to correct the error. The user sees

the error only when the system has decided that there is no longer any hope for correcting it. This can

happen after many attempts to correct in the case of mag tape, or it could happen after no attempts to

correct if for instance it’s a card reader which the system has no chance to correct.

Now let’s return to the normal case at GPW3 at the bottom of page 4. We have just succeeded in con-

vincing ourselves that there aren’t any flags, so we’re going to start the device up in the normal way.

This is actually what is going to get us down to the driver. What we do is to pick up the file number into

A, and the old original contents of the X register, which was saved away in SSO3 this whole time, into X.

Then we look to see whether 0 has the indirect bit on or not. If it has the indirect bit on, then GPW was

called out of CIO or WIO, and we want to clear the flag bits in the file number. So we store the file num-

ber with no flag bits, indirect through 0. We restored X to allow for the possibility that the POP was in-

dexed. If on the other hand, GPW was not called directly out of a POP we avoid this step.

We are now ready to call the device. We pick up the device word into B and check to see whether it

is a drum file. If it is a drum file we go to GPW7. Otherwise we move the device into X and pick up the

proper word of SEL, which is the driver dispatcher table in the middle of page 2. We pick up BUFF into

X and call EDW. EDW is the W buffer device driver and it is found in the W buffer package, which we will

look at later. It has three possible exits, depending upon the degree of disaster which occurred in the at-

tempt to activate the W buffer. The idea is that in all cases when you activate the W buffer, you get the

guy dismissed, because always you have to wait for the I/O to finish. The way you get him dismissed

can vary. If EDW doesn’t skip, it means that everything went through, and you go to IOPDMS which gen-

erates the dismissal condition which says wait for buffer to become non-busy. Otherwise you would go

to IOQDMS which means that EDW has generated its own dismissal condition which it’s put into B al-

ready. This will be some different dismissal condition which will have been generated because the W

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 82

buffer was tied up in some obscure way. We’ll see what these things are in more detail when we look at

EDW, but is the idea clear?

If it was a drum file, on the other hand, GPW7 goes either to DRMSO or DRMSI, depending on whether

it’s an output or an input file. Those routines are in the drum package.

Now there are some other things in GPW which are worth pointing out. GPW is equipped for handling

subroutine files, and when we come to discuss subroutine files as part of the user interface, we’ll look

and see how it’s done. In addition, GPW has special drivers in it to handle mag tape and to do a couple of

special things about the drum. These special drivers are accessed through the address field of the words

in the DEV table.

You’ve now seen I/O carried down to the point where we are actually ready to activate the physical

device and I think now that rather than go and look at controls, which are the other important thing in

SIO, we will go and actually look at the W-buffer code.

The W buffer has two interrupts, 31 and 33, one of which happens to be for end of word and one for

end of transmission. We just used 31 exclusively except in the mag tape routines. Now, the difficulty

with the W buffer arises basically because when an interrupt comes in, you don’t exactly know what to

do with it because it could have been caused by a lot of things, depending on what it was that last set up

the W buffer. The way this problem is handled is that there is a cell called BLK31 which contains the

address of the subroutine which is responsible for the next 31 or 33 interrupt, or 0 if no interrupt is ex-

pected. An I31 interrupt always comes to INT31 at the top of page 2, and you notice that INT 33 is

equated to INT 31 so the 33 interrupt comes there too. What this routine does is to store the central reg-

isters, pick up the contents of BLK31 and do BRM* through it after setting BLK31 to 0.

On to returns from the I31 interrupt. Before returning, however, it looks at BLK31, which was set to

zero before the subroutine was called, but which may have been changed by it. If BLK31 was changed,

namely if it was made bigger than zero, then that essentially means that nothing interesting happened.

The W buffer is still being used by the same device that was using it before. If it was left equal to zero,

the interrupt routine decided it didn’t want the W buffer anymore. In that case, ACTR is incremented,

since the I/O operation is complete and the program waiting for it can be activated.

Q What is the significance of the skip?

A We’ll see that when we look at these routines. It has to do whether you need to call the phantom user

or not.

Now, the W buffer is always activated through the routine called EDW. It looks to see whether the W

buffer is busy and if it’s not, it starts the device. If it is, it puts the request on the phantom user queue.

EDW is called with the buffer address in X and the contents of the appropriate word of the SEL table,

which is the device driver address, in B. It stores the driver address in EDWD. Then it tests to see wheth-

er the buffer is busy. If it is, we go to EDWB and dismiss with activation condition 6; EDW returns with

one skip. If we get past the buffer busy test, we compute the distance between the contents of the first

word in the buffer and the beginning of the data part of the buffer, which is the third word. I.e., we com-

pute the number of data words, and put it back in the first word of the buffer. Now, we check to see

whether B31 is zero or not. If not, there is some interrupt pending on I31; in other words, someone is

using the channel.

In that case, we go up to EDWS. Otherwise we call the driver with BRM* EDWD. If this returns without

a skip, the device has been started successfully. Otherwise we also wind up at EDWS; this happens if the

driver decides that the device cannot be used, e.g. because the tape is rewinding or the card reader is not

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 83

ready. EDWS puts something on the phantom user queue. It sets up the file number in A. Then it disables

the interrupts and calls EPU, and then it MINs EDW so that in this case EDW will skip twice on returning.

EPU is simply a routine which you will find around the middle of PAC which puts something on the

phantom user queue.

To summarize, there are three possibilities. The first is that we call the driver and return normally.

The second is the buffer was busy, in which case we come down to EDWB, set up a dismissal condition to

wait for the buffer not to be busy and return with one skip. The third is that we cannot initiate the opera-

tion for some other reason in which case we come to EDWS, put an entry on the phantom user queue and

skip twice.

We will now proceed to look at some devices and interrupt routines in detail. I think a good one to

start with is the paper tape reader, because it’s so simple. It is at the beginning of page 3. First is the

reader buffer. It contains RTCNT+2 words. Next is the reader driver, RTX, at the top of page 3. It says

SETINT RTI—You will find the macro defined in MDBG; what it does is to put RTI into BLK31—and

does the necessary EOMs to fire up the W buffer for paper tape. Then it returns.

RTI is the interrupt routine. It does this ACW which tells how many words got read in off the paper

tape. It initializes the buffer by putting the address of the first data word of the buffer into the first point-

er word. It tests for error and end of record and sets the bits in the second pointer word of the buffer,

which as you will remember from GPW, is where the flag bits are kept. Then it returns. You notice that it

does not tamper with BLK31. This means it is always assumed in the case of paper tape that one inter-

rupt equals one operation, and the paper tape reader routine releases the W buffer after performing one

operation. The W buffer will not be grabbed again until the guy who had the paper tape does some more

CIOs, since he must exhaust the characters which have just been read in first.

Next we look at the paper tape punch driver; it is a good example of an output driver. The whole

thing is enclosed by this IF PEXF, which means you can suppress it if you don’t have a paper tape

punch. Then comes the paper tape punch buffer, which is called PNBUF. It is preceded by a magic word

which contains the address of the word immediately following the punch buffer. An output buffer al-

ways has this word preceding it. The paper tape punch driver is called PNX, and you notice it’s a little

more complex than the paper tape reader driver. The tail of it is the same: It fires up the punch and exits.

But before that, it computes the word to be filled out and stores it in PNI. This is necessary because the

number of words to be written depends on the number supplied by the user, whereas a full block is read

on input. PENOR is a routine which is called by control 1 for the paper tape to punch an inch of leader.

The other routines are more complicated because of idiosyncrasies of particular I/O devices. The

card reader has a conversion table which converts SDS internal code into ASCII. It also does a number of

other interesting things which we have already discussed. This is all done in the card reader interrupt

routine, and that is why the card reader interrupt routine is so complicated. The driver is still pretty sim-

ple. It’s pretty much the same as the paper tape. The difference is that it starts by executing CRTW, the

test for card reader ready. If the card reader is ready, it skips and goes on to set the interrupt. If the card

reader is not ready, it goes to CRX1 where it tests for end of file. If it doesn’t find end of file, CRX returns

with a skip without doing anything. This causes the program to be dismissed and a phantom user entry

to be made. The function of the PU entry will be to keep testing for card reader ready at suitable inter-

vals. If there is an end of file, then we normalize the buffer, turn on the end of file bit and return without

doing any I/O. That just transmits back to GPW the information that end of file was received. The inter-

rupt routine we won’t look at because it’s sort of complicated, and the complexity arises entirely from

these transformations it’s performing.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 84

Next thing we come to is the glorious mag tape routines, which start on page 6. We’re not going to

look at those too carefully because they are not simple, but we’ll go over all the routines and point out

what they all do. First of all, there’s this big table of things, each consisting of one call of TDT, which is

another one of the system macros. Its function is to make two of the same EOM for two different tape

units, 0 and 1. The SDS method 6or driving tapes has a serious drawback; the tape unit number is em-

bodied in the I/O instruction itself. This means that you actually have to physically change the instruc-

tions to handle different units. Whenever the tape routines want to do anything with the tape, instead of

directly executing an EOM, they put the tape unit number in the X register and do an EXU on one of these

little two word tables.

Then there are some odds and ends like the proper word for writing file marks; TNO which tells

which tape number is currently being used; and TXS1, which is where the system reads in how many

words were actually transmitted by the W buffer. TXS2 and TXS3 are obvious. Then there is the tape

buffer, TBUF. There a special routine for opening the mag tape called MTPOPN, which is called from the

BRS 1 routine which is in SIO. Its function is to test a number of things untested by the normal opening

routine. Among them are the fact that a program must be executive in order to open the mag tape, that

there are various conditions like the tape not being ready under which the attempt to open it may fail,

and that the monitor has in it a cell called MTFL which keeps track of how many words have been writ-

ten on or read from the tape, and it forcibly prevents you from writing or reading any more words than

that. This call is initially set up to be the largest possible number. It is usually reset by the exec. Next is a

little routine called MTDI which I don’t pretend to understand, whose function is to turn off a runaway

tape unit. Then there’s the tape reader driver, TRX. It checks for tape not ready and end of tape. If neither

condition is present we do the read. We don’t do it directly but call T21, which is one of the routines

that’s also used by an interrupt routine.

You see, life for the mag tape is a lot more complex than it is with other devices, because of the fact

that in the interrupt routine you may wish to re-initiate something. For instance, if the read takes place

and the interrupt routine sees than an error has occurred, what you want to do is to initiate a backspace

followed by an attempt to read again, all in the interrupt. This means the tape unit is run through lots of

tittle tiny subroutines, all of which call each other. These are explained by the comments. A noise record

is a record in which you read less than some fixed number of words. Such a record is ignored.

Then there’s a lot of machinery to enable you to backspace the tape correctly to try again on read er-

ror or write errors.

The write driver, TWX, is in the middle of page 8. It has special features which allow you to write a

three inch gap at the load point, because it turns out that if you try to write on the tape at the load point,

it gives unpredictable errors. Then there is another routine to write a three inch gap anywhere. It is used

to make the spaces between files. There is a routine to write file marks, and all kinds of machinery to

clean up after errors. That takes us down to the middle of page 9.

We write a lot of extra space after each file. This is to make our overwriting scheme work. The way

we have been handling our mag tape is that when you write a file on the tape you write a fixed number

of words, followed by a good deal of blank tape, followed by a file mark. When re-writing the file, you

write the same number of words, followed by a smaller amount of blank tape, and space forward to the

file mark. The logic to do this is in the exec, but it makes use of the control operations implemented

here. The function of MTFL is to prevent too many words from being written. When a tape file is closed,

the exec writes out enough zero words to bring MTFL to 0. You never overwrite the file mark; it stays

there forever. Using this device we have successfully been able to overwrite an IBM format mag tape.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 85

At the bottom of page 9 is the routine to change the mag tape unit number. It checks to see whether

the tape is busy and whether the user is executive. In either case, the request is illegal. Otherwise the

tape unit number is set as requested. Then there are the mag tape control routines on page 18. These are

responsible for taking care of forward spacing and back spacing. You see a lot of commands. about I31s

and I33s. I don’t think we’ll look at these too carefully; they’re complicated.

There’s also rewind and write end of record and erase and all kinds of things—all pretty straightfor-

ward. I should probably describe the operation of forward space and backspace file. The forward space

file routine scans forward until it sees the file mark and leaves the tape positioned immediately after the

file mark, before the first record of the file. Backspace file backspaces over one record, which it ig-

nores—it doesn’t matter whether it’s a file mark or not. After that, it backspaces until it sees a file mark,

and then forward spaces over it, positioning the tape immediately after the file mark. That exhausts the

W buffer routines.

Q What about the disc?

A I don’t know anything about this since I never programmed it and we don’t have one, but it seems to

me that the following considerations are relevant. The disc, first of all, is a device which will be run-

ning all by itself on its own channel. Secondly, it is always accessed through several levels of system

routines. And thirdly, it’s always accessed in the same way. In the case of our file system, you al-

ways read 256 word blocks; and for your fixed data you always read 64 word sectors. There’s noth-

ing funny going on at all. You don’t have requests raining in on you from all kinds of strange places.

Furthermore, the disc doesn’t provide you with a whole lot of unorthodox conditions like backspace

and rewinding and all these strange things that the mag tape requires you to do. Finally, it has seeks,

and it has these eight independent arms. It is highly likely that over a fairly short period of time, like

a second, you will get a lot of disc requests. It seems to be extremely desirable to optimize the disc,

because if you just sort of go seeking around at random, accepting and processing each request as it

is arrived, you will waste a lot of time. When you have to move the arm a long distance, you’d like

to be able to service more than one request, since you’re going to tie everything up for a pretty long

time.

Subroutine files

I think then that I will discuss some things that I haven’t yet mentioned about the user file interface.

After that we will look at the drum I/O if we have time.

There are two kinds of files that I haven’t described. There are things called subroutine files, which

are a special kind of sequential file, and there are also random drum files, which are not like sequential

files at all. Subroutine files and described in section 12 of the working document. The idea is pretty sim-

ple. It is possible to open a file explicitly with BRS 1 and specify that the file, instead of being associat-

ed with a physical device or with some index block on the drum, it is to be associated with a subroutine

which you yourself provide. You must specify whether this subroutine is an input file or an output file,

and you must also specify whether it is a character oriented or word oriented subroutine. There after,

whenever input/output is done to this file, it will result in a call on the subroutine. If, for instance, it’s a

character oriented subroutine, and I do a CIO to it, the subroutine will be called with the contents of A, B

and X exactly as they were when t did the CIO. It will be expected to return whatever it likes, and in par-

ticular, it’s suppose to return the character I asked for in the A register. If it’s a character oriented opera-

tion to a character oriented subroutine, there will be no transformation done on the A, B and X registers.

That character will be just shipped right back to the tty. If, on the other hand, the subroutine was word

oriented and the call was CIO, the first CIO would cause the subroutine to be called, and the word the

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 86

subroutine returned in the A register would be unpacked into three characters, which would be delivered

to three successive CIOs.

There are two points to be aware of. The first one is that the map is not changed between the execu-

tion of the CIO and the calling, of the subroutine. This makes the whole feature not quite as nice as one

would like. What we would really like to be able to say is, “Look, I’m making this fancy program that’s

doing I/O and I want it to be completely separate of whatever calls on it.” Unfortunately the overhead of

changing the map is too great. But aside from that restriction, the subroutine is really independent of the

things that call it, and it can do any amount of computation it wants including calling other subroutine

files or doing any other. I/O that it wants, before returning. The significance of this is that you can write

a program that accepts as one of its parameters the file that it works with. You may originally have in

mind that those files were to be the teletype, for input end output, but later on you may decide that you’d

like to drive it with another program. Well, rather than go through the program and find all the I/O in-

structions, you can simply change the file to a subroutine file, so that in effect, whenever this program

wants I/O it will call a driving program.

The effect of a subroutine file is to make a CIO equivalent to an SBRM except for the packing and

unpacking operations involved.

Random drum files

There is another kind of drum file called a random drum file. It is to be regarded as an extension of

core. Its structure is quite different from that of a sequential file. For referencing random drum files,

there are four SYSPOPs called drum word input (DWI), drum word output (DWO), drum block input (DBI)

and drum block output (DBO). All of this is discussed in detail in section 10 of the working document. A

random drum file I/O operation requires a file number, which you provide by addressing it with the

SYSPOP as usual. It also needs the address in the file of the word that you want to read or write, and pos-

sibly a core address. Drum word input and drum word output do not require a core address, they go

through the A register. In other words, if you put into the B register an address in the drum file and do a

DWI, this causes that word of the drum file to be brought into the A register. If you do drum word output,

the contents of the A register is stored in the file at the address specified by the B register. It is also pos-

sible to do block transfers on a random file, and you do that with the drum block input and drum block

output operations, which take the file address in B, the initial core address in X and the number of words

in A.

Q That is the address?

A A drum file is to be thought of as a very large core memory, the addresses starting at zero and ex-

tending as far as you want, so you can, for instance, address word 10, you can address word 6420,

or you can address word 4296504. The storage allocation scheme for drum files is the same as it is

for core memory, namely a particular 256 word block in the file is not assigned to you unless you

address that part of the file, so that for instance, if you have addressed word 10, word 1000 and

word 10000, exactly three blocks will be assigned, namely the block containing word 10, the block

containing word 1000 and the block containing the word 10000. All the intervening space will have

words allocated for it in the index block, but the index block words will be zero, indicating that no

physical drum block is assigned.

So the index block is used to keep track of things. In order to get at word 10000, the system divides

10000 by 256. This tells it what block to use, and it goes and picks up that word of the index block.

If that word is non-zero, then it knows where on the drum to find that block and it brings it in and

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 87

uses the remainder of the division by 256 to select the word within that block you addressed. If, on

the other hand, the index block entry is zero, then it must create a new block, which is zeroed out, of

course, before it can do the operation. The significance of this is clearly that you can have a random

file in which you have built tables in several different places, which relieves you of storage alloca-

tion problems, without your having to worry about wasting a lot of space in between, because these

spaces are not actually assigned. The only space that’s wasted is the space in the index block, which

is 1/256 of the total amount of space and therefore pretty negligible.

Q How efficient is this?

A How long does it take to write or read one word? I don’t know—about 100 microseconds, something

like that. The block operations are very efficient, especially the large ones because they go directly

through core the way BIO does.

There’s an additional frill: namely, it is possible for you to specify that one random file is to be your

secondary memory. What this means is that you have available two more operations: load A from

secondary memory (LAS) and store A in secondary memory (SAS) which are described on page 10-3.

These operations are essentially equivalent to LDA* and STA* except, of course, that they refer to the

drum file. You can use indexing, if you want, and indirect addressing. Needless to say, these opera-

tions are slower than LDA and STA. I think that they take something on the order of 100 microsec-

onds whereas the DWI and DWO take about 150. Of course if you bounce around in the secondary

memory, it will be a lot slower than that because you will have to keep swapping blocks in and out

of the one buffer that’s available.

Q What about interference between users.

A Everything is going on within one particular drum file. When you declare a file to be secondary

memory, then you are addressing words within that file, which is disjoint not only from everybody

else’s files but from all of your other drum files.

It’s also worth pointing out (see the bottom of page 10-3) that it’s possible to release space in a ran-

dom drum file. If you release whole blocks they are explicitly thrown away. This operation is essentially

equivalent to BRS 4 logically. Naturally they are handled quite differently.

Drum I/O code

We will now pass on, I think, to look at DRM, rather casually. All the drum EOMs are to be found in

MDBG, by the way. The repeats after DBUF are being used to set up words which contain the addresses of

the various drum buffers and index blocks in the user’s TS block. The repeats are controlled by how

many drum buffers and index blocks there are supposed to be. There is a thing called DRQ, which is a

queue for drum I/O requests.

On page 2 DRMSET initializes the drum I/O by clearing everything out. DRMOPN and DRMCLS are rou-

tines called by BRS 1 and BRS 2 when drum files are being opened or closed. DRMOPN is essentially

responsible for finding a free buffer somewhere and initializing it and reading in the initial index block.

On page 3 we have LAS and SAS, which are the code to implement those two SYSPOPs. Then comes

IDM, which is the drum interrupt routine. The drum is set up with a list of drum commands, and there are

two words at the top of page 4 which essentially specify the list. Then there is a whole lot of rigmarole

to deal with drum errors, setting the next command and one thing and another. DPU on page 5 is where

the drum I/O goes when it has to dismiss itself onto the phantom user queue. This happens mostly in

cases having to do with multiple index blocks. The guy asks for an I/O operation and you need several

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 88

drum references before you can carry out what he wants. For instance, suppose that he asks to read in a

logical record. If the logical record you have in there now has been changed (this would be for random

files) you have to write it out, and you may have to get a new index block to find the next thing, and

then you have to read in the data for the next thing. In the course of doing all these gyrations you may

have to dismiss the guy several times. The way you do this is by going on the phantom user when you

have to wait.

DRMSI and DRMSO on page 5 are the sequential I/O drivers. They are called from GPW when GPW is

ready to transmit a word to or from the drum. Starting on page 6 there is a whole slew of drum routines

which do what it says in the comments. These routines are called on by the other parts of the drum I/O.

On page 9 we see DTA, which is responsible for acquiring a new drum block. The logic for acquiring an

optimal block is the same as that we described for getting an optimal block for swapping. We have this

bit table which keeps track of which blocks on the drum are assigned and which are not assigned. The

table is larger than the swapper table, of course.

On page 12 we see the random drum file routines which are responsible for taking care of DWI and

DWO, and on page 13 is the code for fast block I/O to the drum, both BIO and DBI-DBO. It is quite messy

because it has to allow for the possibility that the block transfer is not even. If the block transfer is an

even number of 256 word blocks, then there’s no difficulty; you just start the drum up in the user’s core,

reading or writing 256 words blocks. The only tricky thing is you have to compute the absolute core ad-

dress corresponding to the relabeled address. The drum does not go through the relabeling. Unfortunate-

ly, there are several complications. It is possible that the I/O can start and end not on an even 256 word

block, in which case you have to go through one of the drum buffers to take care of the starting and end-

ing sections, since the drum always works in 256 word blocks.

Another possible complication is one we discussed in connection with hardware, namely that a 256

word block may overlap page boundaries and possibly may not be contiguous in absolute memory. If

that happens, you have to invoke the drum channel map, and the code at the top of page 14 is doing that.

It’s got an IF in it which decides whether it uses the map or forces the I/O to go through the buffer.

On page 15 we have an important routine which is essentially responsible for getting a data block in-

to core. DTG is called whenever any part of the drum I/O wants to get a new data block. It’s responsible

for cleaning up the old state of the buffer, whatever it is—this may involve writing out an old data block

if it has been changed—for getting a new index block if necessary, and for getting the new data block in.

It may call on the routine to create new data blocks if it needs to get a new one. Then on page 16 there’s

some miscellaneous junk—routines for declaring random files to be secondary memory, changing the

mode of sequential files.

On page 17 are the routines to for handling index blocks. Then you have on page 18 a routine to de-

lete the contents of a drum file and one which counts the length of a drum file.

On page 19 CBRF deletes information from a random file; that’s the operation equivalent to BRS 4.

On page 20 there are operations for inserting and deleting logical records from sequential files. These

routines call on the bunch of routines that we passed over earlier to do the actual work of moving the

pointers around, as do the routines to implement the control operations for sequential files. All the things

on page 20 are called on by the various drum controls, and to see exactly how that is done you should go

back and look in SIO.

SPS

SPS comes in the following pieces. There are some basic things that can be used by themselves, the

stuff for hash tables, and the stuff for input/output. We’ll start with the basic things and go systematical-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 89

ly. We already discussed what a string pointer is—it’s a two word object, the first word containing the

character address of the character before the first character of the string, and the last word containing the

character address of the last character of the string. A character address is the word address multiplied

by three plus zero, one or two. Characters are 8 bits long and are stored three per word.

The following wonderful operations are available. LDP and STP, which are double word load and

store, are of course used whenever you have double words, not just for string pointers. They take much

longer than LDA; LDB, about six times as long. Then there are operations for reading and writing

strings. There’s GCI—get character and increment—this is sort of basic. If there are any characters in

the string, i.e. if the second character address is greater than the first character address, it reads out the

first character of the string and puts it in the A register, increments the first character address by one, and

skips. In other words, it reads out the first character and takes it out of the string. If the string pointer is

null, that means if the second character address is equal to or less than the first character address, GCI

returns without skipping. It preserves the X register and clobbers the B register, and takes 84 microsec-

onds.

Then there is WCI, which is sort of complimentary to GCI. It writes the character on the end of the

string which is pointed to by the pointer addressed by the WCI. It doesn’t look at the first word of the

string pointer at all, but simply writes at the character address specified by the second word and incre-

ments the second word by one. Now there’s a little goody called GCD, which is exactly like GCI except

that it reads from the end of the string rather than beginning. This means that a WCI followed by a GCD

leaves you right back where you were.

Then there are the string comparison operations—skip on string equal and skip on string greater.

They shouldn’t cause any great problem. And that’s all of the basic things.

Next, there are the string input/output instructions. For output you have BRS 34, which has an elabo-

rate convention which is described in the manual and which I won’t describe in detail; and you have BRS

35, which outputs strings. For input there is BRS 37; you give it a string pointer and a terminating char-

acter and it reads characters until it comes to the terminating character and appends them to the string

that you gave it.

Finally there is the stuff that has to do with hash tables. A hash table is a table of three word entries;

the first two words are the string pointer and the third word is a so-called value word and is at the dis-

posal of the programmer. A hash table is used for putting strings away in such a manner that we can

look them up afterwards. The exact mechanism which is involved is this: you can look a string up in a

hash table by using BRS 5 in a manner which I will describe in a minute. You give BRS 5 a string, and

from this string it computes a more or less random number. The algorithm actually used is that it takes

the first four characters, adds them to the last four characters, folds the result into a 12 bit number by

adding the two halves of it together and multiplies by the length. The precise algorithm is not critical—it

is only necessary that it produce more or less uniformly distributed numbers. Then you take this number,

modulo the length of the hash table, you make sure that it’s an even multiple of three and start at that

point in the hash table looking for the string. If you find the string before you find an empty entry in the

hash table, then it is in the table. If you find the empty entry first it’s not in the hash table, because when

a string is inserted in the hash table, it is always inserted in the empty entry which you find when you

discovered it wasn’t there, using BRS 5. When you insert a string in the table, you insert it with BRS 6,

which puts it exactly in the empty entry found by BRS 5. To make it convenient, BRS 5 skips if it finds

the string. It doesn’t skip if it doesn’t find it and you can put the BRS 6 right after the BRS 5 if you

want to insert it. This means it will automatically execute the BRS 6 immediately if it doesn’t find the

string. If you don’t want to automatically insert it, of course you don’t have to.

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 90

There is one thing to bear in mind: you can’t delete entries arbitrarily from the hash table. If, say A, B

and C have been inserted and have wound up in sequential locations, and you delete B, then when it

searches for C it will find the empty entry you left by deleting B first, and will assume that C is not in.

An empty entry is indicated by zero in the first word. What you do instead in order to delete an entry is

to put -1 in the first word. Then it will skip over it during the scan, but if you insert something, it will

put it in a -1 entry if possible.

After a successful BRS 5 or a BRS 6, you get back two useful pieces of information: the third word

of the three word entry, which is the value; and the address of the first word, so you know where the en-

try is. To call BRS 5 or 6 you put into X the address of a three word table and into AB the pointer to the

string you want to look up. The three word table contains the address of the beginning of the hash table

in the first word, the address of the word after the end of the hash table in the second word, and anything

you want in the third word, which is used for temporary storage.

Now, in addition to BRS 5 and BRS 6, there is BRS 37, which is a little bit different and is used for

command recognition. I’m not going to describe it in detail because it explains in the manual exactly

how it works. BRS 37 takes the address of a control table identical to the one used in BRS 5 and BRS

6. It should be pointed out, however, that if you are going to use BRS 5, you can only look up what was

entered by BRS 5 and 6. Otherwise the hash table algorithm obviously isn’t going to work. BRS 37,

however, will work on any table. Because it has to scan a table linearly, it doesn’t use the hash coding

algorithms. Therefore, you may construct the table to be used by BRS 37 explicitly in the assembler by

simply setting up the string pointers properly. You cannot construct the table to be looked up with BRS

5 that way.

OK, that covers SPS with one exception, which is WCH, which addresses a little table which essential-

ly defines the boundaries of the string storage. It works like WCI except for what it does when there isn’t

any more room in the string storage. See the manual for details.

 Summary

The monitor features we have discussed fall into the following categories. There are things having to

do with the scheduler, things having to do with fork structure, things having to do with memory, things

having to do with teletypes, and things having to do with input-output generally.

Scheduler

The significant characteristics of the scheduler are its three queues; one for teletypes, one for I/O,

and one for compute limited processes. The entries on these queues are slots in the program active or

PAC table. Each entry has associated with it all the information necessary to define a process, i.e. the

contents of the central registers and the map, together with a lot of other information, such as the user

number and the fork structure and the interrupt mask and other things that you will find in the picture on

page 3A. Also a word called the activation word, which tells under what circumstances the process

should be activated, and a word which contains information as to how long it should be allowed to run.

An activation word consists of an opcode field which specifies which activation condition is involved,

and an address field which tells where you go to actually find the thing to be tested. Activation condi-

tions are usually pretty simple-minded, They allow you to test for things like negative words, positive

words, words bigger than the value of the clock and simple things like that.

When the scheduler is entered, it starts at the top of the teletype queue and runs through all three

queues in order looking for a process which can be activated. You will notice that a process on the bot-

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 91

tom queue can always be activated, since the only reason it was dismissed was because somebody else

wanted to run. The processes on the teletype and I/O queues cannot necessarily be reactivated; they can

only run when whatever input-output operation it was dismissed for is complete.

When the scheduler reactivates the process, what it does is to simply start it executing at the location

specified by the program counter word in the PAC table entry. This means in the case of input-output

operations, that the instruction which caused the program to be dismissed would be re-executed when

the program is reactivated. This means that this instruction must be organized in such a way that it

doesn’t mind being re-executed. To give a specific example from the things we have been discussing the

last couple of days, with reference to the new disc interface, the only instruction which could cause dis-

missal is the one which says, “Wait until all my disc references are finished.” So what this instruction

will do is very simple. It will look at the disc reference counter and if it is bigger than zero, it will mere-

ly dismiss the guy waiting for the counter to become less than zero. Where it is reactivated, it will test

the counter again. This time it is bound to be less than zero.

These are the characteristics of the scheduler. We have these three queues which allow you to de-

termine the priority of a process by the queue you put it on. Apart from that it works essentially on a

round robin basis. It is worth noting that there can be processes which are not on any scheduler queue, in

particular the running process. Processes which are dismissed waiting for subsidiary forks to terminate

are not on any scheduler queue either. They do not need to be. They are pointed directly by the PFORK

pointers of the subsidiary fork.

The scheduler has timing mechanisms built into it. A program has a short quantum and a long quan-

tum, each of which is variable. It is always allowed to run for the full length of the short quantum unless

it dismisses itself, and whenever it is reactivated it is given a new short quantum. The process is allowed

to continue to run for its long quantum if no process waiting for input-output is ready to run. If any such

process is ready to run, then the process running in its long quantum is dismissed. In this case it will be

given a new long quantum when it is restored. If the process running in long quantum is dismissed be-

cause it does I/O, it will continue with the same long quantum that it had before when it is restarted.

Fork structure

Then there is fork structure. The user is able to create essentially an unlimited number of processes,

each one being more or less independent of the others, with its own central registers and its own map. A

process can create subsidiary processes by executing the appropriate system call BRS 9 and specifying

the location of a table which contains initial settings of the central registers and the map. The subsidiary

process commences to execute and proceeds more or less independently of the main (creating, control-

ling) process. The controlling process can specify the way in which memory is allocated to the subsidi-

ary process. A controlling process may read the status of the subsidiary process, which includes the con-

tents of the central registers, the map and a status word indicating that the subsidiary process is doing. It

may dismiss itself waiting for the subsidiary process to terminate and it may kill the subsidiary process.

The subsidiary process runs, except for these operations, independently of the controlling process. It

can terminate if it executes an illegal instructions, causes a memory violation or executes a BRS 10, the

third being considered a normal means of termination. It can also be terminated if its controlling process

is terminated. Finally, it can be terminated by rubout.

The rubout button on each controlling teletype (that is, each teletype on which a user is entered as

opposed to teletypes which are attached), is connected to one of the user’s forks. When a rubout occurs,

it causes this fork to be either interrupted or terminated. The fork will be interrupted if interrupt 1 is

armed; otherwise it will be terminated. The termination looks exactly like the termination produced by

•

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 92

BRS 10, except of course that the BRS 10 instruction is not actually executed. In the absence of specific

action by the user, the highest user fork will be the rubout target, because when the executive fires up

the highest level user fork it will propagate the rubout to it. There is an option bit in the word which

specifies the initial state of a fork which allows you to propagate the rubout button, if you had it before.

The other important thing about the fork structure is the interrupt mechanism. Every process has as-

sociated with it 20 interrupts, 4 reserved by the system and 16 available to the user. It may arm or disarm

any or all of these interrupts. A fork may also generate an interrupt by putting the interrupt number in

the A register and executing an appropriate system call. The interrupt signal is propagated to all the par-

allel forks and then up to all of the creating forks or ancestors of the fork causing the interrupt. If in the

course of its wandering, the interrupt signal encounters a fork which has the appropriate arming bit on, it

will interrupt that fork and die. If it doesn’t encounter any such fork, it will just die without doing any-

thing. The fork causing the interrupt will proceed undisturbed. In the interrupted fork an SBRM indirect

through location 200 + interrupt number is simulated by the system. This is essentially equivalent to

what happens in a hardware interrupt.

Interrupts 1 through 4 are reserved by the system. Interrupt 1 is generated by the rubout button, 2 by

memory violation, 3 by termination of any subsidiary fork and 4 by any unusual I/O condition. The idea

behind the interrupts is that they allow programs to execute without having to test for any unusual condi-

tions. If any unusual conditions occur the program will be sent automatically to the appropriate routines.

The idea behind fork structure is that you can make yourself independent processes. You can use

them in any way to expand the amount of memory that is available to you at one time; to buffer I/O; to

perform parallel computations; to receive interrupts from unusual conditions or whatever. There are

many possibilities. You can do whatever you want with them. Because of the flexibility of this facility,

many other features in the system are not quite as general as we would otherwise wish them to be. One

can usually get the effect desired by using one of the general system facilities in a fork, which is inde-

pendent of the rest of the computation.

For example, normally when you do an I/O operation in the system, you are dismissed until the op-

eration is complete. You many not want to be dismissed, you may want to continue computing, if you do

not need the result of the operation for some time. You can get this effect by doing the operation in a

fork. The fork will get dismissed, but the main program can keep running. Then when the fork is reac-

tivated it can set a flag or interrupt the main program or whatever it wants to signal the fact that the op-

eration has been completed. It is because this facility is available that we do not think it necessary to

have explicit mechanisms by which a program can declare that it wants I/O buffered. By using the fork

structure you may set up your own buffering scheme and you can make it just as simple or just as com-

plicated as you choose.

Memory

Then there is memory. I think I will pass over the hardware relabeling. Each fork has associated with

it mapping or pseudo-relabeling registers which define the relationship between the 8 virtual pages of

the process and the actual pages of memory which the user may possess. A page of memory is defined

by an entry in a table called PMT, which gives essentially the location of the memory, either in core or on

the drum. The relabeling registers consist entirely of pointers to PMT, or possibly to a table called SMT,

which consists of memory which is shared between the users. The user may acquire memory by address-

ing a block of virtual memory which corresponds to a zero in his pseudo-relabeling. When it does this,

new memory will be assigned to it according to one of three algorithms; which algorithm is applied will

be determined by the creating fork: a) the subsidiary fork is not allowed to acquire new memory. It must

make do with the memory it was given when it was started; b) the subsidiary fork will acquire a brand

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 93

new memory block cleared to zero whenever it addresses a block which was formerly unassigned; c) the

subsidiary fork will acquire memory which is propagated from corresponding blocks in the creating

forks. In addition to this automatic mechanism for changing (adding to) the relabeling, a fork can also

change the relabeling explicitly, reading it with BRS 43, and setting it with BRS 44.

Basically, between the memory allocation algorithm and BRS 43 and 44 the user is given the ability

to select at any given time any combination of 8 or fewer blocks of memory out of the larger number of

blocks of memory assigned to him. This is obviously an extremely important facility, for any large scale

subsystem consists of many pieces which do not all reside in core at the same time. It should be pointed

out that this mechanism is not a panacea for all ills, because the time required to change the pseudo-

relabeling is not negligible.

I/O

Then there is the I/O system, which essentially comes in two major sections, one dealing specifically

with teletypes and one dealing with I/O in general. The most important I/O interface is the sequential file

interface. Such a file can properly be described as a string of bits. The user may read from this string of

bits or add to it in units of either 8 bits (1 character) 24 bits (1 word) or some multiple of 24 hits (a block

of words). The operations involved are CIO, character input-output; WIO, word input-output; and BIO,

block input-output. The first two of these go through the A register, the third goes directly to or from the

user’s memory. The system is responsible for taking care of all packing and unpacking which may be

required to make the input-output operation compatible with the nature of the device on which the I/O is

taking place. Naturally, for some devices it is more likely you would want to read character by charac-

ter: for instance, the teletype. Other devices you are more likely to read by blocks. However, you can use

any operation with any device. Files are identified by things called file numbers.

A considerable number of teletype files are built in, particular files. 0 and 1 always refer to the user’s

controlling teletype for input and output respectively. File 2 is an output file which simply forgets about

the data. All other files must be explicitly opened by the user. This can be done by execution of BRS 1,

which is given information specifying the file. That is, a device number telling what device is involved,

and possibly an address within the device, for instance the address of an index block on the drum. BRS

1 is normally restricted to executive type programs, and users are required to go through the executive

naming machinery, which we have not discussed. Once the file is open, the file number is used to identi-

fy it during input and output operations, and also when it is closed by BRS 2.

Unusual conditions which arise during I/O are signaled in several ways: they cause BIO not to skip

and they may cause interrupt 4 to be generated if it is armed. In some instances, such as the teletype, it is

impossible for any unusual condition to occur. The system of course makes whatever efforts it considers

reasonable to recover from an error before notifying the user that an error has occurred. Sequential files

are of the following kinds: There is the teletype; there are various minor devices: tape, cards and mag

tape; there is the drum; and there are subroutine files. A subroutine file is a device which allows the user

to turn an I/O instruction into a subroutine call, The user specifies the nature of the subroutine file,

whether it is input or output, word or character, and the system thereafter calls on the subroutine essen-

tially as through it were a device. The significance of this mechanism is that it allows you to take a rou-

tine which was written expecting to use a file of a certain kind, and give it a subroutine file which con-

vinces it that it really looking at that special kind of file, while actually it is looking at a quite different

file.

Sequential files on certain devices have control operations associated with them which allow you for

instance to write end of record, rewind, and back space or forward space records and files. The paper

tape punch has one: write end of record. Sequential drum files have a considerable number, since they

SDS-940 Lectures By Butler Lampson

OCRed 6/2004 and 12/2011; BWL edits 6/2/04 and 1/12/12

 94

have a logical record structure. Within these logical records I/O is sequential. However, one may space

past logical records and insert or delete logical records more or less freely.

The random file interface for drum files is quite a bit different. It essentially regards a file as a large

block of addressable memory. When you do I/O on a random file, you must specify not only the file

number but also the address of the word within the random file which you are reading or writing. You

can read or write a single word or a block. In the case of a block, you must specify an initial address on

the random drum file, initial address in core, and the number of words to be transmitted. There are four

operations here, drum word input, drum word output, drum block input and drum block output. It is

worth noticing that data blocks are assigned only for the memory which is actually referenced. If a 256

word block which is not referenced occurs among those which are, it will not have any space on the

drum. This is exactly analogous to the memory allocation mechanism for core. All blocks have space in

the index block, of course.

It is possible to declare a random file to be the secondary memory file, and the operations load A

from secondary memory and store A into secondary memory are available. These operations work in the

following way. The effective address of the POP is computed in the normal way. That word is then in-

terpreted as follows: The bottom 22 bits are taken as an address and the index bit is checked. If it is on,

the contents of the index register is added to this address. The resulting address is then taken as an ad-

dress in the drum file. Naturally, if you insist on using an address which has a one bit in the 22nd bit,

you will generate a lot of index blocks, and this should be discouraged.

Finally, we come to teletypes. There are two operations called TCI and TCO to read characters from

the teletype and print them on the teletype. They are essentially equivalent to CIO 0 and CIO 1, alt-

hough the conventions as to what goes into memory and what goes into the A register are a little bit dif-

ferent. The latter operations are normally preferable, since you can make them more general by chang-

ing the file number, which cannot be done with TCI and TCO. In addition there are the operations for

typing out characters on specified teletypes and reading characters from specified teletypes, and an elab-

orate linking mechanism for linking teletypes either for output or for input. There are protection bits to

prevent you from getting output on your teletype and to prevent other people from reading your teletype,

if you wish to prevent these things. There is an operation called simulate teletype input which allows a

program to generate a character as though it had been typed in an other program.

It is important to understand a little bit about how teletype I/O is actually handled through input and

output buffers. When you do output, characters are piled up in the output buffer and are fed out to the

teletype at the maximum rate in which it can accept them. When you do input, characters arrive from the

teletype and go into the input buffer, even if the program is not there. Echos are generated, the choice of

each echo depending on what echo table the program has specified. The alternatives are: echo every-

thing as it is, or don’t echo anything at all.

Whether a program which is waiting for teletype input will be reactivated when a particular charac-

ter comes in depends on whether or not the character is a break character. The break characters are also

determined by the choice of echo table, and there are three possibilities: everything; everything except

letters, digits and space; and nothing except control characters.

