

Handling multiple submit buttons in

NET+OS development environment

web-based applications

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 2/14
 V1.3 application_with_multiple_submits.doc

1 Document History
Date Version Change Description Initials

1/31/2014 V1.0 Initial Entry JZW

2/4/2014 V1.1 More initial entry JZW

2/10/2014 V1.3 First round updates JZW

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 3/14
 V1.3 application_with_multiple_submits.doc

2 Table of Contents
1 Document History ... 2

2 Table of Contents .. 3
3 Introduction ... 4

3.1 Problem Solved .. 4
3.2 Audience... 4
3.3 Scope .. 4

3.4 Theory of Operation ... 5
4 Why more than one submit button? .. 5
5 Accessing the identity of the submit button clicked ... 5

5.1 The web page we are using .. 6

6 The post-processing function .. 9
7 Delaying the write (set) function .. 11
8 When are my “get” functions called? ... 13

9 Conclusion .. 13
10 Appendix ... 13

10.1 Glossary of terms .. 13

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 4/14
 V1.3 application_with_multiple_submits.doc

3 Introduction
A simple web application page might contain one submit button. Maybe one submit

button and a reset button. The question this paper answers is, can NET+OS’s advanced

web server (AWS) component handle multiple submit buttons? The answer is yes.

3.1 Problem Solved

A simple web page would allow a user to fill in some fields and hit a single submit button.

The submit button would signal the browser to send the data to the web server. The web

page might also contain a reset button that signals the browser to clear the fields in the

web page without sending any messages to the web server.

Suppose, though, you have developed a more sophisticated web page. This web page

might allow multiple actions by virtue of having multiple submit buttons, in addition to

the reset button. This paper explains a method for allowing the AWS engine to sense

which of the multiple submit buttons was clicked and have the AWS engine process the

form differently based on which submit button was clicked.

3.2 Audience

This white paper is geared for developers with experience in developing web pages, web

applications and applications within the NET+OS development environment. This white

paper should not be considered a beginners guide.

3.3 Scope

This paper assumes the reader has knowledge of and experience in developing web pages

using HTML, web applications and general applications within the Digi’s NET+OS

development environment. In addition it assumes knowledge of the pbuilder utility which

is a software tool of the AWS component of the NET+OS development environment.

There have been other papers published that give more of a beginners view of developing

applications in this environment. Further, this paper discusses creating a web page

containing more than one submit button. This is the focus of this paper.

This paper makes no attempt to explain any of the following:

 General development of applications using Digi’s NET+Os development

environment

 General development of web applications

 C code development

 HTML

 Javascript

 TCP/IP

 Socket coding

 Any other subject not described above

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 5/14
 V1.3 application_with_multiple_submits.doc

3.4 Theory of Operation

The project included with this paper demonstrates a simple web page using HTML tags

and pbuilder comment tags. Further, the web page associated with the application

contains multiple submit buttons. The application uses the pbuilder API

RpGetSubmitButtonValue() for requesting the value associated with a particular submit

button. After obtaining this submit button value we will look at dispatching to different

activities based on the submit button pressed.

4 Why more than one submit button?
Up until recently my understanding was that a web page needed one and only one submit

button. It might also employ a reset button, but the reset button interacts with the browser

and thus does not interact with the web server. The web page allowed the user to fill in

the fields of a web page and then the submit button sent, via a web browser, the data

contained in the web page fields on to the web server. The web server would update some

fields on the web server, might update fields held by the web server (device data) and

return updated fields to the browser.

Recently a customer requested a web page with the ability to perform an update (the

more conventional application as described above) but to also be able to read data from

the device without performing any updates. Thus a read button and a write button would

be required.

Based on the requirement above, we have two main issues to solve. First, since when a

user clicks on any submit button, the action taken by the web server is to call all “set”

stub functions associated with that web page. So in the case of a “read” submit button,

how do we keep the “set” stub function from updating device data? Second, the way the

web engine works, all of the “set” stub functions are executed before the post page

function is called (the post page function is a function associated with the clicking of a

submit button). This is where we can identify which submit button was clicked. The

problem is that it is too late to keep the “set” functions from executing in the case where

we want to perform a read function only.

The overriding question posed by the two dilemma described above is how do I

successfully dispatch on the submit button clicked, if I will not have access to the identity

of the submit button clicked until after all of my “set” functions have executed? In the

sections below we will look at my proposed solution to this issue.

The example application can be found at this link.

5 Accessing the identity of the submit button clicked
If your application contains multiple submit buttons on a page, then your application

needs a way to determine which submit button was pressed. The advanced web server’s

toolkit includes an API entitled RpGetSubmitButtonValue for this purpose. This call

returns a char * and is passed the void * representing the web server’s data structure. API

ftp://ftp1.digi.com/support/Documentation/demonstrate_multiple_submit.zip

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 6/14
 V1.3 application_with_multiple_submits.doc

RpGetSubmitButtonValue is described in the Advanced WebServer Toolkit document.

To access the web server’s internal data structure, use API RpHSGetServerData. This

requires no input and returns a pointer to void. If the returned value is NULL, then the

web server is not running. Additionally from experimentation it appears that the only

place that you will receive a valid return value from RpGetSubmitValue is within a post

processing function. We will discuss this later.

5.1 The web page we are using

The following graphic displays the application’s web page.

Notice that I have created a web page containing four submit buttons and a reset button.

As described earlier, the reset button activates activity in the browser only and does not

send data to the web server. The submit buttons are entitled update, clearName,

clearStreetAddress and clearZipCode. The reset button is entitled reset form.

The next graphic contains the HTML and pbuilder comment tag code used to create this

page.

Four submit buttons One reset button

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 7/14
 V1.3 application_with_multiple_submits.doc

<!-- RpPageHeader RpFunctionPtr="prePageProcessing" -->

<html>

<head>

<title>Demonstrates using multiple submit buttons</title>

</head>

<body>

<!-- RpDZT -->

This page demonstrates using multiple submit buttons on one form

<p>

<!-- RpEnd -->

<!-- RpFormHeader method="post" RpFunctionPtr="postProcessTheForm" -->

<form method="post">

<!-- RpDZT -->

Enter your name:

<!-- RpEnd -->

<!-- RpFormInput type="text" name="theName" Size="64" MaxLength="128"

 RpGetType=Function RpGetPtr="getTheName" RpSetType=function

RpSetPtr="setTheName" -->

<input type="text" size="64" maxlength="128" name="theName" >

<!-- RpEnd -->

<!-- RpDZT -->

<p>

Enter your street address:

<!-- RpEnd -->

<!-- RpFormInput type="text" name="theStreetAddress" Size="64"

MaxLength="128"

 RpGetType=Function RpGetPtr="getTheStreetAddress"

RpSetType=function RpSetPtr="setTheStreetAddress" -->

<input type="text" size="64" maxlength="128" name="streetAddress">

<!-- RpEnd -->

<!-- RpDZT -->

<p>

Enter your city:

<!-- RpEnd -->

<!-- RpFormInput type="text" name="theCity" Size="64" MaxLength="128"

 RpGetType=Function RpGetPtr="getTheCity" RpSetType=function

RpSetPtr="setTheCity" -->

<input type="text" size="64" maxlength="128" name="theCity">

<!-- RpEnd -->

<!-- RpDZT -->

<p>

Enter your state:

<!-- RpEnd -->

<!-- RpFormInput type="text" name="theState" Size="64" MaxLength="128"

 RpGetType=Function RpGetPtr="getTheState" RpSetType=function

RpSetPtr="setTheState" -->

<input type="text" size="64" maxlength="128" name="theState">

<!-- RpEnd -->

<!-- RpDZT -->

<p>

Enter your zip code:

<!-- RpEnd -->

<!-- RpFormInput type="text" name="theZipeCode" Size="64"

MaxLength="128"

 RpGetType=Function RpGetPtr="getTheZipCode" RpSetType=function

RpSetPtr="setTheZipCode" -->

<input type="text" size="10" maxlength="10" name="theZipCode">

Post processing function

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 8/14
 V1.3 application_with_multiple_submits.doc

<!-- RpEnd -->

<!-- RpDZT -->

<p>

<!-- RpEnd -->

<!-- RpFormInput type="submit" name="update" value="update" -->

<input type="submit" name="update" value="update">

<!-- RpEnd -->

<!-- RpFormInput type="submit" name="clearName" value="clearName" -->

<input type="submit" name="clearName" value="clearName">

<!-- RpEnd -->

<!-- RpFormInput type="submit" name="clearStreetAddress"

value="clearStreetAddress" -->

<input type="submit" name="clearStreetAddress"

value="clearStreetAddress">

<!-- RpEnd -->

<!-- RpFormInput type="submit" name="clearZipCode" value="clearZipCode"

-->

<input type="submit" name="clearZipCode" value="clearZipCode">

<!-- RpEnd -->

<!-- RpFormInput type="RESET" name="reset form" value="reset form" -->

<input type="reset" name="reset" value="reset form">

<!-- RpEnd -->

<!-- RpEndForm -->

</form>

<!-- RpEnd -->

</body>

</html>

Multiple submit buttons

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 9/14
 V1.3 application_with_multiple_submits.doc

I have encircled two key areas of the HTML and comment tag code. The first is entitled

“Post processing function” The function is entitled “postProcessTheForm” and is

associated with the form. This is the function that will be called as a result of clicking any

of the submit buttons and after all form fields have been processed. So it is in this

function that we will test for which submit button was pressed. The second is entitled

“Multiple submit buttons” and shows both the HTML and the pbuilder comment tags for

describing the submit buttons.

6 The post-processing function
As described in the last chapter, we want a post-processing function, associated with the

form, in which we can discern which submit button was pressed. To get there I will

digress a bit.

You use the pbuilder utility to convert your HTML (and jpeg, img, JavaScript….etc) files

into C code. The Pbuilder utility creates four files, of which two are most important for

this discussion. The html page associated with the project that is included with this paper

is called web_page_multiple_submits.htm. The pbuilder utility creates two C code files

as a result of running against this htm file. One is called web_page_multiple_submits.c.

This contains function prototypes and page object definitions. I call this boilerplate.

Generally speaking, you will never edit this file and it will be recreated every time you

run the pbuilder utility. The other file is called web_page_multiple_submits_v.c. This file

contains functional declarations and you will (generally) edit this file by filling in the stub

functions with code to access your device data. So what we want to concentrate on is the

code within web_page_multiple_submits_v.c that differentiates among the submit button

clicks.

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 10/14
 V1.3 application_with_multiple_submits.doc

The following code is from the _v.c file that comes with this paper:

// This API is called on the clicking of one of the submit buttons

extern void postProcessTheForm(void *theTaskDataPtr, Signed16Ptr

theIndexValuesPtr);

void postProcessTheForm(void *theTaskDataPtr, Signed16Ptr theIndexValuesPtr) {

 printf("In postProcessTheForm\n");

 // which button was pressed?

 // get the value on the submit button presses

 if(theTaskDataPtr != NULL)

 {

 whichSubmitButton = RpGetSubmitButtonValue(theTaskDataPtr);

 }

 else

 {

 // it is unlikely this will ever be called. It is for defensive

programming only

 printf("danger, AWS not running!\n");

 return;

 }

 printf("The %s submit button was pressed\n", whichSubmitButton);

 // move temp values to perm values as needed

 if(strcmp("update",whichSubmitButton) == 0)

 {

 copyTempToPerm(theTempDataCache, thePermDataCache);

 }

 // clear out the name value in perm structure so the get returns blank

 if(strcmp("clearName", whichSubmitButton) == 0)

 {

 memset(thePermDataCache->theName, '\0', MAX_STRING_LEN);

 thePermDataCache->theNameLen = 0;

 }

 // clear out the address value so the get returns blank

 if(strcmp("clearStreetAddress", whichSubmitButton) == 0)

 {

 memset(thePermDataCache->theStreetAddress, '\0', MAX_STRING_LEN);

 thePermDataCache->theAddressLen = 0;

 }

 // clear out the zip code value so the get returns blank

 if(strcmp("clearZipCode", whichSubmitButton) == 0)

 {

 memset(thePermDataCache->theZipCode, '\0', MAX_STRING_LEN);

 thePermDataCache->theZipCodeLen = 0;

 }

 return;

}

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 11/14
 V1.3 application_with_multiple_submits.doc

To start, variable whichSubmitButton is defined as char * whichSubmitButton; and is

defined globally. The function we are looking at is called postProcessTheForm. The

formal parameter entitled theTaskDataPtr is the void * pointer to the AWS internal data

structure. Because of this we do not have to call NAHSGetServerData as the server data

is supplied to us. Notice the call
whichSubmitButton = RpGetSubmitValue(theTaskDataPtr);

This requests the value from the submit button that was clicked. What is returned is a

pointer to char. You do not have to malloc space for this. Also do not free this as the

pointer is owned by the AWS engine. The strcmp calls then dispatches the activity based

on the string value that was returned by RpGetSubmitButtonValue. The last three are

straight forward as they clear out a value so that the value returned to the browser is

blank (empty string). The first one is more interesting and we will look into it in the next

chapter.

The remaining three clear out a field in our device data structure. Thus when the get

functions run, the browser page will show an empty field, which is what we asked for

with that particular submit button.

7 Delaying the write (set) function
As I stated earlier in this document, we have a problem that we must solve. That is the set

functions run before the post form processing function runs. So the problem is that I will

be updating my device data before I know whether or not I want to update my device data.

In our case, three of the submit buttons want to clear a particular field, one per submit

button. My problem is that by clicking a submit button I will be sending down data for all

fields on the form and thus all fields in my device data.

The solution I have chosen is to use a shadow or temporary device data structure. I have

defined one data type as follows:

typedef struct _theDataCache

{

 char * theName;

 int theNameLen;

 char * theStreetAddress;

 int theAddressLen;

 char * theCity;

 int theCityLen;

 char * theState;

 int theStateLen;

 char * theZipCode;

 int theZipCodeLen;

} theDataCache;

Further I have declared two variables of this type as follows:

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 12/14
 V1.3 application_with_multiple_submits.doc

// used before post form processing API is called

theDataCache * theTempDataCache;

// if warranted move data from temp to here

theDataCache * thePermDataCache;

The variable called theTempDataCache is updated whenever any submit button is clicked.

So when any submit button is clicked, the fields in the variable theTempDataCache are

updated. The fields in the variable called thePermDataCache are only updated fully, when

the “update” submit button is clicked. Further, for the three other submit buttons that

clear a singular field, their code sets that particular field in the variable

thePermDataCache to an empty string. Conversely, whenever the “get” functions are

executed, they read exclusively from the variable thePermDataCache.

So in the post form processing function entitled postProcessTheForm we find the

following code:

 // move temp values to perm values as needed

 if(strcmp("update",whichSubmitButton) == 0)

 {

 copyTempToPerm(theTempDataCache, thePermDataCache);

 }

And the function copyTempToPerm looks like this:

// call this API to copy all fields from temp storage to perm storage

// on click of an update submit button

int copyTempToPerm(theDataCache * localTempDataCache, theDataCache *

localPermDataCache)

{

 if((localTempDataCache == NULL) || localPermDataCache == NULL)

 {

 printf("NULL pointer violation - copyTempToPerm\n");

 return -1;

 }

 strcpy(localPermDataCache->theName, localTempDataCache->theName);

 localPermDataCache->theNameLen = localTempDataCache->theNameLen;

 strcpy(localPermDataCache->theStreetAddress, localTempDataCache-

>theStreetAddress);

 localPermDataCache->theAddressLen = localTempDataCache-

>theAddressLen;

 strcpy(localPermDataCache->theCity, localTempDataCache->theCity);

 localPermDataCache->theCityLen = localTempDataCache->theCityLen;

 strcpy(localPermDataCache->theState, localTempDataCache-

>theState);

 localPermDataCache->theStateLen = localTempDataCache-

>theStateLen;

 strcpy(localPermDataCache->theZipCode, localTempDataCache-

>theZipCode);

 localPermDataCache->theZipCodeLen = localTempDataCache-

>theZipCodeLen;

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 13/14
 V1.3 application_with_multiple_submits.doc

 return 0;

}

So, I delay the writing (setting / set functions) to permanent storage until the submit

button is processed and I have identified it as the update submit button. Otherwise I

discard the contents of the temporary storage. But the set functions have to set something.

So they set to temporary storage. To emphasize the point; the temporary storage gets

updated to permanent storage when the “update” submit button is clicked otherwise the

temporary storage is discarded.

8 When are my “get” functions called?

When processing completes in the post form processing function, execution is returned to

the web server engine. The web server engine next calls all of my “get” functions. Since

my “get” functions read from my permanent storage only, they pick up the updated fields

and return the updated data to the browser.

9 Conclusion
The average web-based application needs one submit button only. Occasionally, though,

a web-based application may need one or more web pages that contain more than one

submit button. In this paper we have demonstrated how to build a web page with multiple

submit buttons. Further we have demonstrated the comment tags required to support

multiple submit buttons. Lastly, we have demonstrated how to deal with the fact that set

stub functions are called before the form post processing function is called. By initially

setting “temporary” storage and only writing to “permanent” storage when I click the

“update” submit button, I can facilitate the processing of multiple submit buttons.

We hope you find this white paper helpful in your designs.

10 Appendix

10.1 Glossary of terms

 AWS (Advanced Web Server) – a component of the NET+OS development

environment that implements an embedded web server

 Browser – A software tool used to communicate with web servers. Examples are

MicroSoft Internet Explorer, Google Chrome, Mozilla Firefox, Apple Safari

 Comment Tags – HTML comment-like tags added to HTML files. Used to

instruct the pbuilder utility of variables or function calls to generate

 Get function – a function generated by the pbuilder utility. Called by the web

server engine for accessing device data to be returned to a web browser

 HTML – hypertext markup language. According to Wikipedia, “the main markup

language for creating web pages and other information that can be displayed in a

web browser.”

Handling multiple submit buttons in web applications

Copyright 2014 Digi International Page 14/14
 V1.3 application_with_multiple_submits.doc

 JavaScript – according to Wikipedia, “a dynamic computer language. It is most

commonly used as part of web browsers, whose implementations allow client-side

scripts to interact with the user, control the browser, communicate asynchronously,

and alter the document content that is displayed”.

 NET+OS – en embedded operating system and embedded development

environment developed and sold by Digi International

 Pbuilder – A utility shipped as part of the AWS component of the NET+OS

development environment. It is used to convert HTML files and other web-based

files into C code for use in C-based applications

 Set Function – a function generated by the pbuilder utility. Called by the web

server engine. It takes fields sent from a browser and uses that data to update

device data on the device.

 Stub function – a generic term relating to “get” and “set” functions generated by

the pbuilder utility. Called “stub” functions because when they are first generated

by the pbuilder utility they are stubs. That is, they do not do anything. It is up to

the developer to fill in the functionality of the function.

 TCP/IP – A suite of internet protocols used in computers for transferring data

form one machine to another. IP, TCP, UDP, FTP, TFTP, SNMP are all examples

of internet protocols. According to Wikipedia the set of TCP and IP “make up a

reliable, ordered, error-checked delivery of a stream of octets between programs

running on computers connected to a local area network”.

