SECURITY-Special offer from CiKNit -see page 61

PLIECTRONICS

8-Bit, 8-Channel Information Collector

The Alchemist

Hi-Fi Preamp for vinyl connoisseurs

Guitar Amp A / B Swfichbox
 No more channel hopping blues

FIVE BAND GRAPHIC EQUALISER

Take your PC into a new dimension

...with an Ultra high quality digital sound sampler.
Just one of the excellent projects in NEXT MONTHS

ON SALE THURSDAY $21^{\text {st }}$ APRIL

ISSUE 7 VOLUME 1

EDITOR
Paul Freeman-Sear
NEWS EDITOR Geoff Martin

DESIGN and TECHNICAL ILLUSTRATION lain Houston

CONTRIBUTORS
Dr. Pei An Edward Barrow Douglas Clarkson Daniel Coggins John Linsley-Hood Mike Meechan John Mitchell Brian Padgett Mark Price Paul Stenning

ADVERTISING SALES
Gilly Martin
m0442 842069

PO BOX 600, BERKHAMSTED

TELEPHONE 0442842069 FAX 0442842279

What's going on in the technology world A news view from all points of the compass.

Research World

Technical advances from around the globe.

10

Mission Control
In his first project, Dr. Pei An shows us how to build an 8 Bit, 8 Channel Data Logger that utilises the Centronic port on your PC.

Intercommunications

An intercom is the answer if you're missing out on vital cups of tea or important calls whilst hiding in your workshop. By Mark Price.

22

5 Band Graphic Equaliser

Clean up the sound track of your latest movie with this audio project from Paul Stenning.

Signal to Noise

Another batch of correspondence from the post bag.

The Evolution of Audio
 Amplifier Design Part 3

More transistor designs from the $50 \mathrm{~s}, 60 \mathrm{~s}$ and the 1970 s by John Linsley Hood.

At the Waters Edge

This is no ordinary water level detector, for it senses water that has no ions. A piece of sensitive detection by Edward Barrow.

The Alchemist
The start of a moving coil preamplifier project from Mike Meechan.

The Eyes Have It

Douglas Clarkson takes a look at Ophthalmic Excimer Lasers.

52

At the Channel Hop
If you have those, can't get enough of those, amplifier channel switching blues, Daniel Coggins has the low noise medicine.

Ideas Forum

Where innovative ideas turn into inventions.

At Your Service

The one stop shop for PCBs past and present.

Technoshop

More offers and exchanges in our monthly team-up with The Technology Exchange.

Future View

Has the computer keyboard a future or will all operations be made by voice command? John Mitchell explains.

Operate - you stupid machine!

Ihe idea of using voice commands to operate machines or computers has been around for many years now, but it has only been within our grasp technically in the last decade. It has surely been a typists dream to speak a letter into the computer making verbal corrections on the way rather than to set fingers tapping on that awkward thing called a Qwerty keyboard. The new technology will clearly benefit those who cannot for a variety of reasons, operate a keyboard by hand.
However, a more seemingly bizarre outcome to this voice responsive technology has already been observed in trials and it is this. People have a tendency to shout abuse at machines if things don't go the way they should. A natural tendency you may think, but should it be? And further still, just as some UK residents think that by shouting at our European cousins in English will make them understand our language, a parallel has been observed with the voiceoperated machine. I suppose it's our way of establishing a dominance over a dumb machine. Would we even want the machine to utter a clever reply even it could? There may be a market for voice actuated machines but I don't somehow feel we are quite ready for the machine that can pull a fast one over its operator.

Paul Freeman-Sear

[^0] Philip St., Bedminster, Bristol BS3 4DS. Tel: 0272760076

A new method of display

CRL (Central Research Laboratories Ltd.), a subsidiary of THORN EMI, located in Hayes, has launched the highest resolution Ferroelectric Liquid Crystal Spatial Light Modulator (SLM) yet available. This is a 320×320 resolution device.

Even Lojyシr Cost Colous Printer

Manipulating optical information in real time is now a viable, low cost alternative to electronic processing for a variety of operations. Examples are comparing and recognising images, beam steering in communications systems, and programmable masking. These are all made possible using high resolution spatial light modulators.

SLMs are devices which act like high speed electronic transparencies taking images from computer memory to modulate light beams. This enables information to be manipulated optically in two dimensions.

In one major application, known as correlation, a stored image is compared optically with a real scene. The system indicates if the stored image

is present in the scene, and if so where it is. CRL is working in collaboration with a group including a car manufacturer to apply this comparing technique in road vehicles, principally to enhance road safety.

In this case, road signs will be recognised by comparing those seen through the windscreen with a library of stored images of signs. The driver can then be given a warning as appropriate; for instance, if the vehicle is approaching a bend too quickly. The new CRL SLM offers the ability to perform these comparisons optically at much higher speeds and lower costs than can be achieved electronically. This technique can already be used in quality inspection on production lines.

A second application is for product marking. Laser marking systems (used for example, for writing "Best Before" dates onto food products and batch codes onto pharmaceutical products) work either by mechanically scanning a
eliminate the need for mechanical scanning of the laser beam in the first type of system. This will have an impact on the maintenance costs of systems by removing complex moving parts. The fixed or mechanically changed metal masks of the second type can also be replaced by an SLM. In this case the SLM acts as an electronically 'programmable mask', allowing fast and frequent changing of the marking code to be made.

The CRL SLMs can also be used to manipulate the phase of the light beam passing through them. This means that the SLM can produce 'real-time' holograms. These holograms can be used to steer beams of light between optical fibres, correct telescopic images, or replicate images accurately, all under direct software control. The fact that these holograms are programmable clearly gives advantages over fixed holographic elements made by traditional chemical methods of production.

The 2DX320 SLM is supplied as a development unit with a compact optical head, and a control unit which can rapidly scan through images stored in the device memory. The control unit interfaces to a PC compatible host computer via a custom 8-bit expansion card, and is supplied with Microsoft Windows 3.1 compatible software. The control unit contains an embedded
laser beam to form the required pattern, or by passing a larger diameter laser beam through a metal stencil to define the marking pattern. The use of an SLM within a laser marking system can

80386 processor, so the system can also operate in a stand alone mode. The SLM may be configured to match a customer's specific requirement.

Mitsubishi has announced the introduction of its new, cost effective thermal transfer PostScript comparable colour printer for Windows applications. The G370-S high performance, high resolution A4 printer comes complete with a SuperPrint software Windows driver, free consumables starter pack and twelve months on-site warranty for $£ 1395$.
The new 300dpi resolution printer package represents a major cost reduction compared to other printers on the market. It makes colour thermal transfer printing more affordable and
provides a high quality, low cost total printing solution for the Windows environment at a cost of a low priced ink jet printer. Cost/copy is around 50 pence for colour A4 paper prints and around $£ 1.20$ for overhead transparencies.

Notably the new package provides the added advantage of higher throughput, much faster output and superior quality print, with better saturated colours, at a far lower cost/ copy compared
to ink jet printers, especially when producing OHP transparencies with
colour backgrounds.
Features include one colour plane memory for maximum performance. The G370-S produces high quality, A4 colour prints in 60 s and is capable of up to 256,000 colours. Outputs can be on paper or transparency from an automatic, 100 sheet cassette and using special size A4 media, the printer provides full A 4 imaging.

The rugged printer is quality designed and built for quality performance. Features include a rugged cast alloy chassis compared to alternatives on the market which use fragile plastic designs.

The SuperPrint Windows driver software provides high quality PostScript comparable printing and comes with 34 fonts plus the capability of speed printing on host PC fonts including Adobe, BitStream, Compugraphic and TrueType. The intelligent software even allows typefaces from different companies to be mixed and matched.

The package provides true WYSIWYG screen fonts and outputs, via a software RIP imaging technology, complex graphics and bitmaps as well as virtually any font on the PC system. Dithering and fine tuning facilities are also provided to improve graphics imaging and to increase colour capabilities.

Hall Stre Contactless IC Cards

 the SmartCard 94 exhibition and was designed specifically to be fast and convenient to the user It would provide reliable access control to mass user systems ranging from ticketing to automatic warehousing and production control, providing authorisation and even proof of payment. At half the size and double the thickness of Mitsubishi's existing credit card sized version, the new contact less MelCard provides a handy alternative and gives the user a choice of styles. It measures $43 \times 54 \mathrm{~mm}$ and at 5 mm thick provides a robustness and durability to withstand daily wear and tear It is easily converted, for example into a key fob and thus kept Mitsubishi's contactess IC cards operate using a read/write device linked 10 a computer network for data $1 / O$, read and write operations. When the card is presented near to the reader/writer head it automatically transmits data at up to $\% 455 \mathrm{kHz}$. Exact frequencies can be customised to specific applications, allowing the
Hand-held digital IC tester

Polar Instruments has introduced a portable IC tester capable of functionally testing the vast majority of logic devices in general purpose use, as well as numerous common memory devices. Designated the Polar D320, the tester costs $£ 180$ and comes in a hand-held package weighing 285 g , powered by a 9 V PP3 cell.

A comprehensive built-in library of over 350 popular standard devices allows test engineers to test suspect digital ICs.

D320 tests digital components with up to 20 pins, and has a built-in library of truth table tests for 74/74LS/ 74 HC TTL and 4000 series CMOS logic, plus checks for 41/44- series dynamic RAMs. If the component being tested does not have markings, or has a manufacturer's coding, the D320 can be switched to search and compare its logic function against the library to identify the generic type.

ICs are tested out of circuit, by placing them in a ZIF (zero insertion force) socket. Using the tester's six control keys and oneline LCD, the user can select a standard test by scrolling through the library, or switch the instrument into search mode. Although the primary application of D320 is in equipment service, in the field or at repair depots, most electronics companies will find the instrument a useful aid in both manufacturing test and goods-in inspection environments.

RemoteControl Car Alarm

A simple, portable car alarm, suitable for any car or van is now available from Maplin. The unit takes power from the cigarette lighter socket via a coiled lead. It also contains its own back-up battery which will keep sounding the built-in alarm siren if it is disconnected. A green LED indicates battery state, while a red LED shows that the main supply is present and doubles as an armed state indicator.

The unit is armed and disarmed by a remote keyring transmitter, using a UHF radio link instead of the infrared method. The transmitted code is unique, and a processor in the main unit interprets the code upon arming, and then expects to receive the same code for disarming, so another keyring transmitter, even of the same type, cannot disarm it. The price is $£ 39.95$ (to incl. vat)

Remote control on information superhighway

Echelon Corporation and Oracle
Corporation demonstrated how their technologies will use the information superhighway to support the home automation and energy management market.

By connecting millions of homes and businesses to the superhighway, utility companies like gas and electricity, can reduce the need for new power plants by offering their customers simple and unintrusive ways to reduce their energy bills.

In the demonstration, Oracle's Media Server software sent billing, energy usage, peak load and pricing data from the local utility to homes and businesses. Echelon's Lonworks control network technology acted upon the information to control thermostats, water heaters, dryers, dishwashers and other energy consuming appliances. The two-way communication link between utilities and their customers demonstrated today is expected to accelerate the implementation of DSM programs by the utility companies worldwide.

With high capacity data networks now beginning to reach residential neighbourhoods, Oracle's Media Server could provide homeowners with countless services," said Larry Ellison, President and CEO of Oracle Corp., the world's largest information management software company.
"The Media Server isn't Jules Verne science fiction. Oracle's technical expertise and creative implementation have produced a product that can be a catalyst in implementing the data superhighway. When combined with LONWORKS technology, Oracle's Media Server gives utilities what they need to provide energy efficiency and savings to millions of homes and offices around the world," said M. Kenneth Oshman, President and CEO of Echelon. The delivery of voice, data and video services will have a major impact on the home automation market as well. As utilities provide real-time pricing data over the highway and begin billing customers based on time-of-use, customers and industry will seek ways to reduce their energy bills.

Supersensitive nose on a chip

IBM scientists have developed the world s most sensitive heat measuring instrument. Called a calormeter, it is a thousand times more sensitive than any similar instrument available today it can measure the heat generated in chemical reactions with a sensitivity to
temperature changes as small as a hundred thousandth of a degree. The calorimeter was microfabricated with integrated-circuiit technology and is: relatively inexpensive. It should prove useful in a large vatiely of chemical observation, detection, measurement, and analysis applications such as drug design forensics and catalysis. When specially configured the calorimeter can function as a supersensilive nose on a "Chip. "capable of 'smelling' extremely minute quantities of a wide range of substances.
Developed at the 1BM Research
Division's Zurich Research Laboratory, the technique employs a
micromechanical silicon lever that is coated with aluminium. When heated, the lever bends because the two materials expand by different amounts. The amount of bending directly indicates how much heat has been absorbed by the lever. The effect is similar to what happens in an ordinary thermometer. When it absorbs heat, the liquid mercury expands. Whereas markings on the thermometer show how much the mercury expands, the IBM researchers use a laser to measure how much the lever bends; and they can measure bends as small as one hundredth of the diameter of an atom.
In a particular demonstration, a thin layer of platinum was applied to the aluminium-coated silicon lever In the presence of a mixture of oxygen and hydrogen, the platinum functioned as a catalyst that promoted the combining of oxygen and hydrogen to form ordinary water. In the process, the platinum layer generated heat that was then absorbed by

Utilities, in turn, will provide new tools and services for customers by installing energy management systems.
Consumers, for example, will set energy rates and program energy consuming devices, such as water heaters, clothes dryers, dishwashers to operate when rates are low. Then consumers will add control of lighting, security, sprinklers and other components to make a complete home automation system.

LONWORKS technology was
the lever, causing it to bend: By Carefully monitoring and measuring that: bend the researchers were able to show that the hydrogen and oxygen do not combine at a uniform rate. The rate actually oscillates with time, a phenomenon previously known to occur but never before sensed with a calorimeter
The lever in this new calorimeter has a thickness only abouta fiffieth of the diameler of a human hair -actually 1.5 microns - and alengtho 400 microns. (A micron is one milionth of a metre). An array of huindreds or even thousands of such levers could be integrated on a chip. If each lever were coated and thereby sensitised for the detection of a specific chemical, the resulting combination would function as a supernose Even coatings such as reaction-specific enzymes and bacteria could be used, and because the calorimeter is so sensitive, chemical reactions zinvolving only a few molecules could be detected.
A typical person can discern several hundred odours, and a trained expert might be able to identify several thousand While computers have been given the ability to see hear and touch. they are as yet unable to emulate the olfactory organ - they can't smell. This may soon change. The IBM scientists believe that the apparatus for this tecmique could be incorporated into a portable package, with the nose on a chip' and a laptop computer, to provide an instrument capable of detecting gases and pollutants such as ozone and carbon monoxide and even odours such as that of fish
The researchers believe that through the use of micromechanics and
nanotechnology, their calorimeter. already the most sensitive in the world. can be made many thousands of times even more sensitive. They are already working on that!
introduced by Echelon in December 1990. Today, Echelon Corporation provides over 700 customers with a full range of hardware and software products to support development, installation, and management of control networks. It is a privately-held company headquartered in Palo Alto, California with subsidiaries in London, Paris, Munich and Tokyo.

Research World

Technical Advances from around the Globe

Magneto optical recording material

Nippon Steel Corp. has developed, with the support of Science \& Technical Research Laboratories, a magneto-optical recording material capable of raising current memory capacity by about ten times. The material is a garnet-based one that can be formed as a film on a substrate. It responds to a green light source with a shorter wavelength and is thus suitable for larger-capacity recording and reproduction.

The technical breakthrough has been achieved by controlling the noise resulting from the large diameter of component particles of recording material.

For raising the recording capacity of M0 discs it is believed appropriate to utilize a light source with a shorter wavelength such as green for recording and playing back. The new material can respond specifically to a green semiconductor laser beam for reproduction.

The Japanese steel maker has succeeded in forming a uniform film of the new material on a 130 mm -disc substrate and recording the reproducing data in far larger amounts. Combined with the new material, the new recording method and the optical parts still to be improved, the 130 mm M0 disc will have a memory capacity of 3 gigabites - ten times that of conventional M0 discs.

Pulse-driven vibrator

Toshiba Corp. engineers have improved a conventional ultrasonic LCD cleaning unit by use of a pulsedwave power supply. The unit is a slitshower type cleaner that combines a flow of ultrapure water with ultrasonic vibration at 1.4 MHz .

It is expected that the cleaning unit will decrease the number of final defects by nearly 20%.

In such cleaning systems, sonic pressure - and therefore washing

New PC performance monitoring technique

AU.S. motherboard has developed a new PC-performance-monitoring technique, called Power-Shift, that puts hardware and software to work to improve desktop power management.

PowerShift is said to reduce PC power consumption below the EPA established Energy Star limit of 30W for systems based on Intel 486DX2/66 class:

Elitegroup Computer Systems of Fremont, California, has put the technology in a $2 \times 4 \mathrm{in}$ plug-in module with associated software that it will use in is own motherboards as well as sell to other OEMs. In the future, the module may be shrunk, in cooperation with a chip-set vendor, to a single ASIC.

The Power Shift scheme monitors temperature and various PC operations in real-time to reduce power consumption and limit CPU temperature to 70C. Using the same scheme, a user can monitor temperature increases to determine how much to increase PC performance for specific applications.

PowerShift hardwate initially will be built into IBM and IBM-compatible ISA. EISA, Micro Channel, VESA local bus and Peripheral Component Interconnect motherboards that ise Intel 486 and Pentium microprocessors. The company has also tested the tectnology with Alpha-based systems and will make a version for Alpha under an agteement with Digital Equipnent Corp.

The Power-Shift circuit board plugs into an 82 -pin connector built into each Elitegroup-manufactured motherboard. The module packs an 80C51SL microcontroller some ROMS with PowerShift's specialized power-saying and performance-boosting algorithms, and converter circuitry for translating temperature and performance measurements into digital form. Via the connector PowerShift can access sensors and yarious components throughout the motherboard to collect information.

A closed-loop circuitry scheme, linked to the controller on the module: monitors the motherboard, disk drives and power supply. When those components are not active, PowerShift slows them down without putting systems into the 'sleep' state used in other energy-conservation solutions.

Power-Shift can shut down inactive display monitors and printers if those devices are designed to respond to PowerShift software commands or if Elitegroup writes the appropriate commands Sensors incorporated into the architecture monitor PC-component temperature as well as environmental conditions: The technology can detect a problem, such as fan or heat-sink failure, in real-time or use a special soffware algorithm that can predict an increase in temperature and then cool down or turn off the PC before the CPU is damaged.

capability - increases as power increases. A conventional power supply produces a continuous wave that vibrators cannot stand up to very long at peak power. By using a pulsed-wave supply, peak power can be doubled without raising either power consumption or the load on the vibrators.

Substrates with 70 particles per square centimetre were cleaned with the new system, leaving an average of 0.7
particles $/ \mathrm{cm}^{2}$; the conventional unit left an average of seven.

Cleaning an LCD substrate measuring $400 \times 500 \mathrm{~mm}$ takes 45 seconds - about one-fifth the time required by previous cleaning methods. The same principles can be applied to semiconductor manufacturing, especially to replace the brushing and washing stage before photoresist coating.

n fact don't leave home to get it either... Just subscribe and wait for it to leap through your letterbox (post free*) once a month. 66 pages of top projects, indepth articles and all the latest news, views and happenings from the science technology and electronics world. To make sure you make the best use of your armchair (or your project building workshop) just fill in the coupon and send it to us with either £27 if you live in the UK or £42 if you live overseas.

ELIECTRONICS in A OHON

SUBSCRIPTIONS

Please start my 12 month subscription to Electronics in Action from the . issue
Please print your name and address in BLOCK CAPITALS
Name .
Address .

I enclose a cheque/postal order (payable to Electronics in Action) for $£$.
Please send this form to: Electronics in Action, PO Box 600,
Berkhamsted, Herts. HP4 1NL

Computerized data acquisition systems are widely used within industry and scientific research for the purpose of automatically monitoring physical quantities of a system． These quantities may be temperature， pressure，light intensity and sound level．

The present data acquisition system is an 8 －bit analogue to digital converter system with an 8－channel analogue multiplexer and a conversion time of $10 \mu \mathrm{~s}$（in other words， 100000 conversions per second）．The specification of the data logger is given in Table 1 and the block diagram of the complete system is shown in Figure 1.

An unique feature of this data logger is that it is directly connected to an IBM－ PC via the Centronic port．This has several obvious advantages．Firstly no extra input／output card is required． Secondly there is no need to open the computer case for installing I／O cards and thirdly the data logger enables laptop computers to be used for data acquisition applications．In addition，this device is easy to build and costs less than $£ 20$ which is much cheaper than the commercial data logging system available on the market．

Centronic Port

The Centronic port of an IBM－PC， which is also referred to as the printer port or parallel port，is an industrial standard input／output port provided by PCs and is dedicated to interface with printers．A PC at least has one such a port and it is normally labelled as LPT1． Two more printer ports namely LPT2 and LPT3 can be added to the computer by using extra I／O cards．Although the
ports were designed for interfacing with printers，they can also be used to interface with other devices，provided a special electronic circuit is incorporated．

Let us have a look of the Centronic port．One can quickly find that the Centronic port connectors on the computer and on the printer are different．The former is a 25 －pin female D－type connector（Figure 2（a））and the latter a 36－pin female Centronix－type

 Interface requirement Supply voltage [V] supply current [mA] On-board voltage reference [V] Number of input analogue channels Analogue input range [V]

Resolution [V] Input impedance [Mת]

Sample time [$\mu \mathrm{s}]$ Size (Length \times Width \times Height) [mm] Weight excluding DC power [Kg]

An 8 bit, 8 channel, IBM-PC Centronic data logger by Dr Pei An

Table 1 Specifications of the data acquisition system

(a) Pin-out of the Centronic connector on PC computers - 25 pin female D-type connector

$\begin{array}{lllllllllll}18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{lllllllllllll}36 & 35 & 34 & 33 & 32 & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24\end{array} 23 \quad 22 \quad 21 \quad 2019$
(b) Pin-out of the Centronic connector on printers - 36 pin female Centronix-type connector

Fig. 2 Pin-out of the Centronic port connectors on computers and printers

Connectors on		Direction	Name	Explanation
computer	printes			
1	1	C to P	STROBE	Strobe data
2	2	C to P	DB0	Data bit 0
3	3	C to P	DB1	Data bit 1
4	4	C to P	DB2	Data bit 2
5	5	C to P	DB3	Data bit 3
6	6	C to P	DB4	Data bit 4
7	7	C to P	DB5	Data blt 5
8	8	C to P	DB6	Data blt 6
9	9	C to P	DB7	Data blt 7
10	10	P to C	$\overline{\text { ACK }}$	Indicating data recelved
11	11	P to C	BUSY	Indicating printer busy
12	12	P to C	PE	Indicating paper empty
13	13	P to C	SLCT	Indicating printer on line
14	14	C to P	LF/CR	Auto linefeed after carriage return
15	32	P to C	$\overline{\text { ERROR }}$	Indicating printer error
16	31	C to P	INITIALIZE	Initialize printer
17	36	C to P	SLIN	Select/deselect printer
18-25	$\begin{aligned} & 19-30 \\ & \text { and } 33 \end{aligned}$		GND	Twisted-pair return Ground
	18,34		Unused	
	16		Logic GND	Logic ground
	17		Chasis GND	Chasis ground

'C' = Computer \quad ' $'=$ Printer
connector (Figure 2(b)). To link the computer and the printer, a specially designed cable, known as the printer lead, is used. Although the two connector are different in shape, their functions are exactly the same. The pinout of the two connectors and their pin functions are summarized in Figure 2. Basically the Centronic port consists of 3 input/output groups with each controlled by an $1 / O$ ports of the CPU of the computer. These 3 groups are named
the data group, control group and status latched outputlines (-STROBE, -LF/CR, group and the corresponding ports are -SLIN and -INITALIZE) which are the data port, control port and status port directed from the computer to the printer (see Figure 3). The functions of these and is controlled by an output port on three groups are explained below: the CPU. It transfers commands from the

Data group: It has 8 latched output lines ($\mathrm{DBO} 0-\mathrm{DB} 7$) which are directed from the computer to the printer and is controlled by an output port of the CPU. In operation, it sends data from the computer to the printer.

Control group: The group has 4 computer to the printer for controlling printer operations. It is noted that the STROBE, -LFICR and-SLIN lines are the inverted output of the CPU port. The INIIALIZE line is not inverted.

Status group: It has 5 input lines (-ERROR, SLCT, PE, -ACK and BUSY)
which are directed from the printer to the computer and is controlled by an input port of the CPU. It is used by the computer to obtain the current status of the printer. The BUSY line is inverted before entering the CPU. The rest 4 lines are not inverted.

Each I/O port of the CPU has an I/O address. For different Centronic ports such as LPT1 and LPT2, these addresses are different. The following table shows the I/O addresses for LPT1 and LPT2 of PC computers:

Inside the computer, data sent to or received from the I/O ports are 8 -bit. The bit functions of these ports are shown in table 3 .

There are two methods of controlling the Centronic port. The first one is to use the printer commands in computer languages, for example, 'PRINT' in BASIC and 'WRITELN(LST)' in Turbo Pascal. The other one is to use direct I/O port access commands to control the three ports individually. Let us take an example of controlling the LPT1 port.

Centronic port	Data port	Control port	Status port
PC/XT printer adaptor,	378 H 888D	37 AH 890D	379 H 889 D
PC/AT, LPT1	378 H 888 D	37 AH 890 D	379 H 889 D
PC/AT, LPT2	278 H 632 D	27 AH 634 D	279 H 633 D

Table 2 I/O Addresses of the Centronic port

Bit	Name	Functions
data port bit 0-7 control port bit 0	DBO-DB7	Functions data from bit 0 to bit 7
bit 1	-STROBE	LOW=normal; HIGH=Output of data
bit 2	-LF/CR	LOW=normal; HIGH=auto line feed after
bit 3	-INITIALIZE	LOW=initialize printer; HIGH=normal
bit 4	SLIN	LOW=deselect printer; HIGH=Select printer
bit 5-7		LOW=printer interrupt disabled; HIGH=enabled
Status port		Unused
bit 0-2		Functions
bit 3	UNUSED	Unused
bit 4	-ERROR	LOW=printer error; HIGH=no error
bit 5	SLCT	LOW=printer not on-line; HIGH=printer on-line
bit 6	PE	LOW=printer has paper; HIGH=out of paper
bit 7	-ACK	LOW=printer acknowledges data sent; HIGH=normal

Table 3 Bit functions of the input/output ports of the Centronic port

For this port, the address of the data, control and status ports are 888, 890 and 889 decimal, respectively. To send data to the data and control group lines, the following commands can be used:

OUT 888, X

OUT 890, X (in BASIC)
and

```
PORT[888]:= X
PORT[890] := X (in Turbo Pascal)
```

In which X is the decimal value of the binary bit pattern. To read data from the status group, the following commands can be used:

```
Y = INP[889] (in BASIC)
Y := PORT[889] (in Turbo Pascal)
```

The value Y is the decimal value of the input binary bit pattern present at the status group lines. It should be noted that when writing data to the control group, the 4 output lines corresponds to bits 0 to 3 of port 890 decimal and when reading data from the status group, the 5 input lines correspond to bits 3 to 7 of the port 889 decimal. Also some lines in the control and status groups are inverted. A bit modification has to be made for the data to be sent to the control group and that received from the status port.

So far we have discussed the fundamentals of the Centronic port. As a summary, the port consists of three input and output groups which are individually controlled by 3 separate CPU I/O ports, two of which are output and one of which input. The first port has 8 output lines, the second has 4 and the third port has 5 input lines.

The Works

As shown in Figure 4 the data acquisition system can be divided into four units, namely, the input analogue channel switching unit, A/D conversion unit, interfacing unit and power regulating unit. The complete circuit diagram of the system is shown in Figure 5.

The analogue switching unit incorporates a 4051 analogue switch (IC3) which is a low cost 8 -to-1 COMS analogue switch. 8 analogue input lines from channels 0 to 7 are connected to pins $13,14,15,12,1,5,2,4$ of the IC3. One of these inputs will be switched to the output (pin 3) by putting an address at pins 11 (bit 0), 10(bit 1) and 9(bit 2),

which is supplied by the data group lines of the Centronic port via buffers. The voltages to be measured are connected directly to the terminal blocks (J5) on the data logger (see Figure 5).

The A/D conversion unit uses a ZN448 A/D converter IC (IC1), manufactured by Ferranti, which is an 8bit successive approximation analogue to digital converter with a guaranteed accuracy of 0.5 LSB and minimum conversion time of $9 \mu \mathrm{~s}$. A clock generator and a bandgap voltage reference are included on the chip. The pin-out of the ZN448 is shown in Figure 6(a). When the -CONVERT input (pin 4) receives a low-going signal, the A / D converter is triggered to start A / D conversion and the BUSY output (pin 1) becomes low. The -BUSY output will go high at the end of the conversion
indicating that the conversion is completed. The -RD input (pin 2) is the data enable line which is taken low to enable the data on the output lines (pins 18 to 11) which otherwise are in impedance state. Refer to the circuit diagram (Figure 5), the -CONVERT output (pin 4) is connected to the control group lines of the Centronic port via a buffer. To start a conversion, the computer will send a high-to-low-thenhigh signal to the -CONVERT line, then it reads the -BUSY output line and check whether it goes to high. When high state is detected, the PC reads data from the A/D converter. A clock capacitor (C2) of a value of 100 p is connected across pin 3 and the ground (pin 10) which enables the on-board clock generator to operate at about 800 KHz . For other clock frequencies C2
has to be chosen according to the manufacture's data sheet. A negative power supply ranging from -3 V to -30 V should be supplied to pin $5(-\mathrm{V})$ via a tail resistor R3, the value of which has to be chosen according to the input voltages. Table 4 shows the required resistance value in relation for various

Voltage(V)	Tall resistor $(\mathbf{K} \Omega)$
-3	47
-5	82
-10	150
-12	220
-20	330

Table 4 Required resistance values of the tall resistor
voltages:
In the present circuit, the negative voltage is generated by a diode pump circuit driven from the -BUSY output. The principle is that whilst the -BUSY output is high capacitor C3 is charged to about 4-4.5 volts. During a conversion, the BUSY output goes low and the upper end of C3 is also pulled low. The low end of C3 therefore applies about -4 V to R3. The time constant of R3 and C3 is chosen according to the clock frequency so that the drop of capacitor voltage is not significant during a conversion. Pin 8 of the IC is the output of the 2.55 V on-board reference $\mathrm{V}_{\text {ref.,ut: }}$. To use this reference, a resistor R1 and a decoupling capacitor C 1 are required and $\mathrm{V}_{\text {ref,out }}(\operatorname{pin} 8)$ is connected to $\mathrm{V}_{\text {refin }}(\mathrm{pin} 7$). The input voltage to be measured,

Fig. 6 Pin out and pin function of ZN448 AD converter and 74LS241 buffer ICs

which should be between 0 to +2.55 V , is fed to $V_{i n}($ pin 6) via a resistor R 2 . A 2.55 V input voltage will produce a byte of 255 decimal (FF Hex) at the data lines of the A / D converter. The deeimal values for other input voltages are calculated using the following equation:

Decimal Value $=\begin{gathered}\text { Inputvoltage } \\ 2.55 \times 255\end{gathered}$

The interfacing unit consists of two chips, a 74LS365 IC (IC4) and 74LS241 IC (IC2), and a 36-pin female
Centronix-type connector. 74 LS 365 is a Hex buffer IC which is used to buffer the output lines from the Centronic port. Since the port only have 5 input lines and one of them has already been used for monitoring the -BUSY output of the ZN448, only 4 lines are left for reading the data. To read an 8-bit byte, the 74 LS 241 IC , the 3 state octal buffer, is used. The pin-out of the 74LS241 is showing in Figure 6(b). We can see that when pin 1 (the 1st enable input) is taken low, the 4 left hand side buffers works (i.e. the outputs will follow the status of the inputs). When pin 19 (the 2nd enable input) goes high the 4 right hand side buffers will work. If pin 1 and pin 19 are connected together to form a Data Selection Line (DSL), by putting
the line low and then high, we can read 4 bits connected to the left hand buffers and the other 4 bits connected to the right hand buffers in turns. Operating in such a manner, the 8 -bit data from the A / D converter can be read into the computer(see Figure 5)

The power regulating unit incorporates a 78055 V voltage regulator for supplying 5V DC to the circuit. A 912 V DC external power supply is required.

Programming

The control program of the data logging system is written in Turbo Pascal 6. The flow chart of the program is shown in Figure 7. The program is based on the LPT1 port. Firstly, an initialization procedure is performed which sets the CONVERT input high. Secondly, a 3-bit address is sent to the data logger to select an analogue channel. It is followed by sending a short high-to-low-then-high pulse to the -CONVERT input. After this the computer starts to read the -BUSY output line continuously until the line becomes high. Then the computer sets the Data Selection Line high and reads the 4 high bits from the converter. Next the Data bit

Fig. 7 Flow chart of the control software

Fig. 9 Copper foll pattern of the data logging system

Selection Line is taken low and the computer reads the 4 low bits. The two readings are then rearranged and combined to form a single 8 -bit byte which is the byte appeared on the data lines of the A / D converter.

The complete program list is shown on the right. Readers can either type the program into the computer or contact the author for the software written on floppy disks. It is noted that the messages in \{\} are the explanations and can be omitted when inputting them into the computer.

Construction

This data logger is constructed on a single-sided printed circuit board. The full size foil pattern and component layout are shown in Figure 8 and 9. The PCB is available from the EIA PCB service on page 57.

Components may be mounted on the board in the following order: links, resistors, diodes, DIL IC sockets, capacitors, electrolytic capacitors, PCB connectors, voltage regulators, Centronix female connector and finally the ICs. It is suggested that the DIL IC sockets are used for IC1 and IC3. IC2 and IC4 can be soldered on the board directly.

Testing

After soldering, check all the joints and connections to make sure there are no shorts due to excess solder.

Only when you make sure that the board is properly constructed, can you connect the power supply to the data logger! An oscilloscope can be used to check the waveform at pin 3 (CLOCK) of the ZN448. It should be a 800 KHz
square wave. A logic probe can also be used for doing this. To connect the data logger to the computer, first of all, switch off the computer and the data logger, then connect the data logger to the printer lead. Next switch on the data logger and the computer. If the computer does not boot up properly turn off the computer, unplug the device and check the board again. If every thing is okay, you can now run the driver program. If the whole system is working properly, the voltages at the analogue inputs should be printed on the computer screen. To test an input channel, connect an 1.5 V battery to one of the inputs (Be careful of the polarity!) and use a voltmeter to measure the voltage, that voltage value should appear on the corresponding channel on the screen. A variable voltage generator can also be used to check the system. A simple voltage generator using only two 1.5 V
batteries, a potentiometer and a voltmeter can be constructed easily. The circuit diagram is shown in Figure 5.

Application Note

There are various applications for this data acquisition system. With some simple transducers, it can be used to measure various quantities such as temperature and pressure, etc. There are many dedicated books and papers on the measurement techniques. Readers are encouraged to read some books and explore the possibilities of using the data logging system for various applications. The author would be delighted to hear any suggestions and ideas on this project.

A copy of the program for the data logger is available from the author at a cost of $£ 3-50$. including postage and packing. Please send cheques payable to Dr. P An and send them to the EIA office.

Program Centronic A_D Converter:
\{This program is written to drive the IBM-PC 8-1ine 8-bit data logger. The follow program is based on LPT1 Centronic port
\{This program is written in Turbo Pascal 6. The basic version of the program is available from the author\}
\{Author: P. An $1 / 1 / 94$ \}
uses
crt;
var
byte1,byte2,truebyte :byte;
bitweight,bit : array [1..8] of byte;
i,j.CN :integer:
lbytel $=4$ high bits \quad :real;
(bytel $=4$ high bits, byte2=4 low bits, \quad truebyte $=8$ bit byte from the A / D converter
\& $C N=$ channel number.
$V \quad=V o l t a g e$ in volts $\}$

Procedure initial_bit;
[Initialize binary bitweight and bit]
begin
for $i:=1$ to 8 do begin bitweight[i]:=1; bit[i]:=0; end;
for $j:=1$ to 8 do begin
for $i:=1$ to $j-1$ do bitweight $[j]:=$ bitweight $[j] * 2$
end; \{of initial_bit\}
Procedure initialization;
\{initialize the data logging system)
begin
port[888]:=0; \quad \{Address=0\};
port[890]:=0;
\{CONVERT=1, DSL=1 \}
end; $\{0$ f initialization\}
Function voltage (channel_number, average_number:integer): real;
\{Logging data from a specified channel and averaging the value channel_number: channels from 0 to 7
average_number: number to average the measured voltage)
var
um:real;
if:integer.
begin
port[888]:=channel_number; \quad \{output the selected channel address to port 888 \}
delay(10):
delay 10 mS
for $i i:=1$ to average_number do begin
initial bit:
port $[89 \overline{0}]:=1 ; \quad$ \{CONVERT $=0$, DSL $=1$ \}
port $[890]:=0 ; \quad\{C O N V E R T=1$, DSL=1
repeat
byte1:=port[889]; (read 1st byte, check BUSY line and wait it to become high] until bytel<128; \{note: BUSY 1 ine is inverted in the PC\} bytel:=port[889]; \{DSL=1, read the high 4 bits\}
port [890]: $=2 ; \quad\{D S L=0\}$
byte2:=port[889]; \quad read the 4 low bits
\{binary format of bytel and byte?
bytel: $x x x h h h h 0$ (high 4 bits)
byte2: xxx11710 (10w 4 bits)
note: $x=$ do not care, $h, 1=$ data
byte1:=bytel and 120; $\{00011110$ and $x \times x h h h h 0=000 h h h h 0\}$
bytel:=byte1 sh1 $1 ; \quad$ (shift 1 bit left, byte1 $=0000$ hhhh
byte2:=byte2 and 120; $\{00011110$ and $x \times x 11110=00011110\}$
byte2: $=$ byte2 shr 3: $\quad\{$ shift 3 bits right, byte $2=11110000$ \}
truebyte:=bytel or byte2; $\quad\{b y t e 1$ or byte2 $=11110000$ or $0000 h h h h=1111$ hhhh
sum: $=$ sum + truebyte $/ 255 * 2.55$; \{convert the binary value into a voltage, Reference voltage $=2.55 \mathrm{~V}$ \}
voltage:=sum/average_number
end; (of voltage function)
Procedure crtinitialization;
\{show initial data on the screen\}
begin
writeln:
writeln(• \qquad
writeln(.
IBM-PC 8 input 8 bit analogue to digital converter program ${ }^{*}$);
writeln('**t*t*t***')
writeln;
writeln:
for cn: $=0$ to 7 do
writeln(' Channel ', cn:3, Voltage $={ }^{\prime}$);
gotoxy(10,20); write('Press any key to stop scanning');
end; \{of crtinitialization $\}$
procedure display_results;
begin
gotoxy(40,7+cn); write(v:7:3); \{show results on crt\}
end; $\{0$ display_results $\}$


```
begin
repeat
    clrscr
    crtinitialization:
    initialization;
    for cn:=0 to 7 do begin
        V:=voltage(CN,2); {logging channel CN, average number=2}
        display_results;
                                end; (delay for 400 ms?
    delay(400): {delay for 400 mS }
until keypressed:
    gotoxy(10,19);write('Thank you for running this program');
    readln;
end. {of main program}
```


cations

Mark Price keeps in touch with a simple 2 wire intercom.

unlike some cheap commercial systems. However if the remote talk button is replaced with a normal switch, it can be left on so that the system may be used as a baby monitor.

I already had a twelve-core cable between the workshop and the living room, carrying audio from the hi-fi, serial computer data and a telephone extension. There were just two cores left, hence this design for a two-wire system. Any convenient two core cable can be used.

What - No Chips!

I built this unit using bits from the "Junk Box", and assumed others might like to do the same. If you don't have the right chips, there's no option but to buy them. If you don't have the right transistors, you can usually find something similar, and the same applies with most of the other components. Since the circuit doesn't have to do anything exacting, a simple transistor design is ideal.

There is sufficient gain in the system that a person can be heard clearly when talking at a normal volume, about two feet from the unit. Since the person speaking would be pressing the talk button, this is the maximum distance necessary.

Construction

The circuit is assembled on a single sided PCB, available from Electronics in Action (page 57). The component overlay and track layout is shown in Figure 3.

Assembly is straightforward and should present no difficulties. None of the component values are critical, there should be no problems using the value above or below if the correct part is not available. If you are using different transistors, ensure that TR7 and TR8 have a maximum collector current rating of at least 100 mA .

Ceramic disk capacitors can be microphonic and are not recommended for C2, C3 and C5. The oscillator phase shift capacitors, C6, C7 and C10, should have a good Q rating or the circuit may fail to oscillate. Disk and dipped polyester

The Works

Figure 1 is the main circuit diagram, and shows the components mounted on the PCB. Figure 2 is the interwiring diagram, which shows the switching arrangement and loudspeakers.

The requirement for a talk switch at each end on a two-wire system complicated the design slightly.
Capacitor C17 is connected in series with the remote speaker, and is shor-circuited when the talk switch is pressed (R22 limits the discharge current). The electronics at the local end detects the DC path when the switch is pressed.

Th3 and the associated components form the first audio amplifier stage. When a low resistance DC path is present between SK1 and SK2, TR1 will switch off, allowing TR3 to be biased by R6. The audio signal is coupled to the base of TR3 by C1 and C2.

R1 reduces the input impedance to reduce the chance of noise pickup along the long connecting lead. C3 and C5 remove ant RF interference that may be present and limit the top end of the frequency response to about 4 KHz . The low values of C2 and C8 limit the lower end of the frequency range to about 200 Hz . This frequency response is adequate for speech, and allows a high gain to be achieved with minimal problems
due to hum and noise.
Since TR3 is biased off when the unit is not in use, the gain is low and no hum or noise can be heard

TR5 to TR8 and surrounding components form a basic class B audio output stage, with a power output of about 200 mW RMS into 8 B . VR2 is adjusted lo give a quiescent current of 2 mA , to minimise crossover distortion. Preset VRI sets the audio gain In use this will probably be set to maximum, although it is usetul to be able to reduce this when testing to avoid feedback.

TR4 and surrounding components form a standard RC phase shift oscillator. The output of this is fed into the power amplifer via R16 and C9. TR2 has been added to short out the signal at one of the phase shift points, disabling the oscillator. This transistor is normally held on by R3, however when one of the talk buttons is pressed it is turned off for about hat a second. This time is set by the values of R3 and C4. Thus the oscillator produces a brief tone when a talk button is pressed.

The circuit is mains powered using a small six volt transtormer Since the current requirement when the unit is sllent is minimal, a 100 mA transformeris adequate. The supply to TR3 and TR4 is additionally decoupled by R4 and C13.
types are fine, but the small resistor sized tubular devices are not suitable.

The PCB should be mounted in a suitable enclosure, together with a loudspeaker. A similar box will be
needed for the remote unit. The prototype system was built into a pair of small stereo loudspeaker cases, containing 16R oval speakers. These are readily available at car boot sales for a
few pounds, complete with a matching defunct

Fig. 2 Component positioning and foil pattern stereo record player!

Suitable holes should be made on the top surfaces of both case, for the push button switches. The PCB and transformer can be mounted in any convenient position, in one unit. A suitable connector should be fitted on the rear of each unit for the interconnection cable. If the installation will be reasonably permanent, electrical chock-block connectors will suffice.

The units should then be wired up as shown in Figure 4. If the interconnection cable does not have polarity markings there is a 50% chance that C 17 will be the wrong way round! In this case fit two 220 uF capacitors in series but opposite ways round as shown.

Testing

Initially set VR1 to the centre position and VR2 fully anticlockwise. Connect the two units together and connect the master unit to the mains. Connect a voltmeter across R18 or R19 and adjust VR2 to obtain a reading of 20 mV . This gives a quiescent current of 2 mA , which is sufficient to eliminate crossover distortion with 16 R speakers. With 8 R speakers it may be necessary to increase this to 3 or 4 mA (30 or 40 mV), this should only be done if distortion is noticeable.

Both speakers should now be silent. Press the talk button on the remote unit. A brief tone should be heard from the local unit, and you should then be able to hear yourself speaking through the system. Check this the other way too. VR1 should be set so that speech is loud enough to be clear without being deafening. This setting can only be finalised once the units are installed, since feedback will be a problem with both units in the same room.

If the volume of the bleep is too loud (unlikely), it can be reduced by increasing the value of R16

In Use

Push the button to talk and release to listen If both buttons are pressed simultaneously, the master unit will dominate.

The units will pop as the buttons are pressed and released, this is due to the varying bias on TR3. It is useful to hear when the other party has released the button.

You can now keep in touch with your loved one, and enjoy your hobby. However, there is one problem with such a useful communication system installed - it is much easier for your partner to nag you about how much time you spend in the workshop! Make sure you have the master unit, then you can always "accidentally" unplug it!

THOUSANDS PURCHASED
BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS
FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)
ALL POWER RATINGS R.M.S. INTO 4 OHMS, BOTH CHANNELS DRIVEN
 Level conirois \star Muminaied onfort switch $\star \times$ LR connectors \star Standard $775 m$ minpuls \star Open and short circuit proof \star Latest Mos-Fets for stress free power delivery into virtually any load \star High slew rate \star Very low
distortion \star Aluminium cases \star MXF600 $\&$ MXF900 tan cooled with D.C. Ioudspeaker and thermal protection USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

SIZES:- MXF200 W19"xH31/2" (2U)×D11"

PRICES:-MXF200 £175.00 MXF400 £233.85 MXF600 £329.00 MXF900 £449.15 SPECIALIST CARRIER DEL. \&12.50 EACH

OMP XOB STEREO 3-WAY ACTIVE CROSS-OVER

Advanced 3-Way Stereo Active Cross-Over, housed in a $19^{n \prime} \times 10$ case. Each channel has three level controls: bass, mid \& top. The removable front fascia allows access to the programmable DIL switches to adjust the
cross-over frequency: Bass-Mid $250 / 500 / 800 \mathrm{~Hz}$, Mid-Top $1.8 / 3 / 5 \mathrm{KHz}$, all at 24 dB per octave. Bass invert swiches on each bass channel. Nominal 775 mV input/output. Fully compatible with OMP rack amplifier and modules.

Price £117.44 + £5.00 P\&P
STEREO DISCO MIXER SDJ3400SE \star ECHO \& SOUND EFFECTS \star STEREO DISCO MIXER with 2×7 band L \& R graphic equalisers with bar graph
LED Vu meters.
WANY OUTSTANDIMG LED Vu meters. MANY OUTSTANDING
FEATURES- including Echo with repeat \& speed control, DJ Mic with talkeover speedth, 6 Channels with individual faders plus cross fade, Cue Headphone Monitor. 8 Sound Effects. Useful combination of the following inputs:- 3 turntables (mag), 3 mics, 5 Line for CD, Tape, Video etc.
Price £144.99 + E5.00 P\&P

PIELO ELECTRIC TWEBTBRS - MOTOROLA

Join the Piezo revolution! The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watt
EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal for bookshelf and medium sized Hi -Fi apeakers. Price $\mathbf{£ 4 . 9 0}+50 \mathrm{p}$ P\&P. TYPE 'B' (KSN1005A) $31 / 2^{\prime \prime}$ super horn for general purpose speakers, disco and P.A. systems etc. Price $£ 5.99+50$ p P\&P. TYPE ' C^{\prime} (KSN1016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn for quality Hi-Fi sys tems and quality discos etc. Price $\mathbf{£ 6 . 9 9}+\mathbf{5 0 p}$ P\&P.
TYPE ' D ' (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable for high quality Hi -Fi systems and quality discos. Price $\mathbf{E 9 . 9 9 - 5 0 p ~ P \& P . ~}$
 Suitable for Hi-Fi monitor systems etc. Price $£ 5.99+50 \mathrm{p}$ P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathbf{£ 4 . 1 0}+\mathbf{5 0 p}$ P\&P.

TDI FLIGHT CASED LOUDSPEAKERS

A new range of quality loudspeakers. designed to lake advantage of the latest speaker technology and dnclosure designs. Both models utiize studio quality constant diriectivity horss, exxruded aluminium corneer protection and stee all corners, complimented with heavy duty black covering. The enclosures tor optional loudspeaker stands.

POWER RATINGS Quoted in WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$ ibl FC 12-100WATTS (100dB) PRICE £159.00 PER PAIR ib1 FC 12-200WATTS (100 dB) PRICE 8175.00 PER PAIR SPECIALIST CARRIER DEL. 12120 PER PAIR
OPTIONAL STANDS PRICE PER PAIR $\mathbf{8 4 9 . 0 0}$ Delivery $\mathbf{£ 6 . 0 0}$ per pair

[N-CAR STEREO BOOSTER AMPS

PRICES: 150W £49.99 250W £99.99 400 W £ 109.95 P\&P £2.00 EACH

THREE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS (75 Bridged Mono
250 WATTS 250 WATTS (125 125) Stereo, 250 W Bridged Mon (200 ALL POWERS INTO 4 OHM Features:
Stereo, bridgable mono \star Choice of
high $\&$ low level inputs high \& low level inputs \star L \& R level
controls \star Remote on-off \star Speaker $\&$
thermal orotection.

VISA

OMP WOS-FET POWER AMPLIFIER MODULES SUPPLIED READY BUILT AND TESTED. These modules now enjoy a world-wide reputation for quality, rellability and pertormance at a realistic price. Four etc. When comparing prices, NOTE that all modets include toroidal power supply, integrail h
drive circuits to power a compatble Vu meter. All models are open and shor circuit proof.

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate 45V/uS, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE £40.85 + £3.50 P\&P
OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$. PRICE £64.35 + £4.00 P\&P

OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE E81.75 + E5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. Second, Fan Cooled, D.C. Loudspeaker Prolection, PRICE \&132.85 + E5.00 P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate 75V/uS, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE £259.00 + E12.00 P\&P
NOTE: MOS-FET MODULES ARE AVAILABLE IN TWO VERSIONS: NOTE: MOS-FET MODULES ARE AVAILABLE IN TWO VER PEC (PROFESSIONAL EQUIPMENT COMPATIBLE) - INPUT SENS LOUDSPEAKERS LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60p STAMPED) FOR COMPLETE LIST.
McKenzie and Fane Loudspeakers are also available.

EMINENCE:- INSTRUMENTS, P.A., DISCO, ETC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE

100 WATT R.M.S. ME8-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO RES. FREQ. 72 Hz , FREQ. RESP. TO 4 KHz , SENS 97 dB . $10^{\circ} 100$ WATT R.M.S. ME10-100 GUITAR, VOCAL, KEYBOARD, DISCO, EXCELLENT MID. RES. FREQ. 71 Hz , FREQ. RESP. TO 7 KHz , SENS97dB. PRICE $£ 33.74+\varepsilon 2.50$ P\& 10 " 200 WATT R.M.S. MEEO-200 GUITAR, KEYB'D, DISCO, VOCAL, EXCELLENT HIGH POWER MID. AES. FREQ. 65 Hz , FREQ. RESP. TO 3.5 KHz , SENS 99 dB . PRICE £43.47 + £2.50 P\& 12100 WATT R.M.S. ME12-100LE GEN. PURPOSE, LEAD GUITAR, DISCO, STAGE MONITOR. RES.FREQ. 49 Hz , FREQ. RESP. TO 6 KHz , SENS 100 dB . 12100 WATT R.M.S. ME12-100LT (TWIN CONE) WIDE RESPONSE, P.A. VOCAL, STAGE MONITOR. RES. FREQ 42Hz, FREQ. RESP. TO 10KHz, SENS 98 dB PRICE $£ 36.67+£ 3.50$ P\&P 12 200 WATT R.M.S. ME12-200 GEN. PURPOSE, GUITAR, DISCO, VOCAL, EXCELLENT MID PRICE £46.71 + £3.50 P8 12 " 300 WATT R.M.S ME12-300GP HIGH POWER BASS, LEAD GUITAR, $15^{\prime \prime} 200$. 247 Hz , FREQ. RESP. TO 5 KHz , SENS 103 dB . RES. FREQ. 46 Hz , FREQ. RESP. TO 5 KHz , SENS 99 dB 15" 300 WATT R.M.S. ME15-300 HIGH POWER BAS RES. FREQ. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB . KEYBOARD DISCO ETC PRICE £70.19 + £3.50 P\& ASS GUITAR. PRICE £50.72 $+\mathbf{8 4 . 0 0}$ P\&P PRICE $873.34+\mathbf{8 4 . 0 0}$ P\&

EARBENDERS:- HI-FI, STUDIO, IN-CAR, ETC

ALL EARBENDER UNITS 8 OHMS (Except EB8-50 \& EB10-50 which are dua BASS, SINQLE CONE, HIGH COMPLIANCE, ROLLED SURROUND RES. FREQ. 40 Hz , FREQ. RESP. TO 7 KHz SENS 97 dB . M BASS, HI-FI, IN-CAR.
RES. FREQ. 40 Hz , FREQ. RESP. TO TKI
$10^{\prime \prime}$ SOWATT EB10-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR $8.90+\mathbf{~} 2.00$ P\&P 10 SOWATT EB10-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR 10" 100WATT EB10-100 BASS, HI-FI, STUDIO. RES. FREQ. 35 Hz , FREQ. RESP. TO 3 KHz , SENS 96 dB $12^{\prime \prime}$ 100WATT EB12-100 BASS, STUDIO, HI-FI, EXCELLENT DISCO. RES. FREQ. 26 Hz , FREQ. RESP. TO 3 KHz , SENS 93 dB .
FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND
$5^{1 / 4} / 40 W A T T ~ E B 5-60 T C ~(T W I N ~ C O N E) ~ H I-F I, ~ M U L T I-A ~$
RES. FREQ. 63 Hz, FREQ. RESP. TO 20KHz, SENS 92dB. PRICE $89.99+1.00 \mathrm{PeP}$ RES. FREQ. 38 Hz , FREQ. RESP. TO 20 KHz , SENS 94 dB . PRICE $510.90+1.50$ PRP RES. FREQ. 38Hz, FREQ. RESP. TO 20KHz, SENS 94dB.
$8^{\prime \prime}$ 6OWATT EB8-60TC (TWIN CONE) HI-FI, MILTI-ARR RES. FREQ. 40 Hz , FREQ. RESP. TO 18 KHz , SENS 89 dB . RES. FREQ. 35 Hz , FREQ. RESP. TO 12 KHz , SENS 98 dB . PRICE $10.90+1.50$ PR

URANSMITTER HOESY KITS

PROVEN TRANSMITTER DESIONS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS
3W TRANSMITTER $80-108 M H Z$, VARICAP CONTROLLED PROFESSIONAL PERFORMANCE, RANGE UP TO 3 MILES, SIZE $38 \times 123 \mathrm{~mm}$, SUPPLY 12 V @ $0.5 A M P$ PRICE E14.85 + ©1.00 P\& P
FM MICRO TRANSMITTER $100-108 M H z$, VARICAP TUNED, COMPLETE WITH VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$, SIZE $56 \times 48 \mathrm{~mm}$, SUPPLY 9 V BATTERY.

PHOTO: 3 W FM TRANSMITTER
E.K. ELECTRONICS

UNITS 1 \& 5 COMET WAY, GOUTHEND-ON-SEA,
Tel.: 070e-527572. Fax. 0702-420e43

Regular readers of this magazine will be aware of my interest in video editing．A Video Effects Unit has already been published，and other video processing projects are planned．

A problem I frequently encounter when copying video tapes is the deterioration in the sound quality．The five band graphic equaliser described here was designed to connect between two video recorders，so that the frequency response can be corrected somewhat．Its use is by no means limited to video recording however，it is a general purpose design that will prove useful for many audio applications．

The five controls each have a range of $+/-10 \mathrm{~dB}$ at centre frequencies of $100 \mathrm{~Hz}, 300 \mathrm{~Hz}, 1 \mathrm{KHz}, 3 \mathrm{KHz}$ and 10 KHz ．The 3 dB points on each band are at half and twice the centre frequencies．Thus，the 3 dB points on the 100 Hz control are at 50 Hz and 200 Hz ． With all controls at maximum the unit has a total gain of 15 dB ．The unit will
accept an input of up to about 1 V RMS （ 3 V pk－pk）before distortion occurs with all controls at maximum．

I do not possess suitable test equipment to measure noise and distortion，although none was apparent on the oscilloscope trace．I would describe the unit as suitable for good quality stereo equipment，but perhaps

The Works

The complete circuit diagram is shown in Figure 1．This basic circuit principle has been used in several graphic equaliser designs，so 1 am making no great claims about its originality！

The input is buffered by the first section of IC1，which has unity gain and a consistent output impedance．If any overall gain or attenuation is required，It may be achieved by altering the values of R1 to R4．

To make the explanation of the second stage clearer，assume that all five trequency selective sections have disappeared，as well as four of the control pots．The wiper of the
remaining pot is connected to ground via a 1 KO resistor．

If the pot is in the upper position （fully clockwise），the 1 KO resistor appears between the inverting input of the op－amp and ground，giving the stage a gain of ten．If the pot track resistance is 10 K （five 50 K pots in parallel），the signal at the non－ inverting input is halved，giving a total gain of five：

With the pot in the lower position （anticlockwise），the input to the non－ inverting input is reduced to a tenth． and the gain of the op－amp circuit is two，giving a total gain of a fitth：

With the pot in the centre the gain
of the whole stage is unity，since the attenuation of the input signal is canceiled by the gain of the op－amp．If our imaginary 1 KO resistor is replaced with a tuned circuit，the effects described above will only occur around its centre frequency：In this clicuit we have five tuned circuits giving the five bands．

Traditionally the tuned circuits would consist of a capacitor and inductor in series．Due to the lack of availability of suitable inductors， modern designs use a gyrator circuit to simulate an inductor．This uses an op－amp to reverse the phase relationship of a capacitor，to make it

Fig. 1 Complete circuit of Graphic equallser

appear like an inductor:
Taking the first stage, C4 is the real capacitor and the op-amp and remaining components form the gyrator. The R7 controls the reactance of our "inductor"; and therefore the 0 of the tuned circuit. In this case we do not want a particularly sharp response so the O is failly low. R7, R8 and C3
all affect the "inductance; and I have yet to find the correct formula for calculating this!

The final output of the circuit is buffered by a unity gain op-amp stage SW1 selects whether the equaliser is in the audio path.

The circuit requires a supply of +1 . 121015 V , at less than 10 mA . This
does not need to be regulated but must be smooth and have minimal ripple. The output of a 9-0.9 transformer is full wave rectified and smoothed giving approximately $+/ 13 \mathrm{~V}$ across the $220 \mu \mathrm{~F}$ capacitors. About a volt is dropped by the 100R decoupling resistors, leaving around 12 V to power the circuit.
not true hi-fi.
Although the design is mono, a stereo version could be built using two PCBs and stereo pots. More details on this are given later.

Construction

All the components, except the transformer and pots, are mounted on a single sided PCB. This is $113 \mathrm{~mm} * 51 \mathrm{~mm}$, and is available from the EIA PCB service. The component overlay is shown in Figure 2.

There are two wire links that should be fitted first, along with the resistors and diodes. The remaining components may then be fitted. Sockets may be used for the ICs, but this is not really necessary providing they are fitted last and soldered carefully.

The non-polarised capacitors should be reasonable quality types, dipped polyester or mylar types are suitable. Try to avoid the cheap ceramic disk types, for this project. The PCB holes for these components are on a $0.4^{\prime \prime}$ pitch, which is suitable for the suggested types.

layout, with slider controls and an instrument or desk case.

Whatever case is used, the PCB's should be mounted as close as possible to the control pots. Use short lengths of wire to connect the pot tags directly to the PCB pads. On the PCB, the left pad for each pot is the minimum or anticlockwise end of the track, the centre pad is the wiper, and the right pad is the maximum or clockwise end.

Connect the input socket to the SK1 pads, and the output socket to SK2. In

Fig. 2 Component positioning and foll pattern

Two PCBs are required for a stereo unit. Do not fit D1-D4, C12 and C13, on one PCB.

The prototype had rotary pots, and was constructed in a plastic case that matched my other projects. Many constructors may prefer a more orthodox
both cases the centre core of the screened cable goes to the left pin. The IN/OUT switch connects to the SW1 pads, with the wiper to the centre pad.

The transformer may now be connected to the X1 pads on the PCB, with the centre tap to the middle pad. For
a stereo unit, connect the transformer to the PCB with the diodes fitted, and link the SK3 pads on the two boards together. The mains input flex may be joined to the transformer primary wires with a chocblock connector or similar.

Testing and Operation

There is nothing to set up on this unit, it will either work or fail depending on how well it was put together! These few checks with a test meter will confirm that everything is reasonably OK , before connecting the unit to your audio equipment.

First set the test meter to the 20 V range, and check the supplies on one of the ICs. There should be about +12 V on pin 4 and -12 V on pin 13. Now connect the meter to the output (pin 1 of IC1), the voltage should be 0 V or thereabouts. Turn each of the five pots to both ends, and check the output remains at almost 0 V . If the output is not at $0 \mathrm{~V}(+/-0.1 \mathrm{~V})$ something is wrong, which should be investigated. Now connect the unit to your audio equipment, cross your fingers, and try it.

If the output of this unit is connected to a video recorder or some other piece of equipment with an automatic level control, you may find that the sound level drops if the 100 Hz or 300 Hz controls are turned up too far. Most automatic level circuits respond more to the bass frequencies.

Bearing this in mind, faint and grotty recordings can sometimes be avoided by turning the 100 Hz and 300 Hz bands down a bit to reduce the effect of the level control. Turn the 1 KHz and 3 KHz up a bit to improve the clarity, and turn the 10 KHz down to get rid of any hiss. The result may sound a bit thin, but it is better than a quiet muffled sound with tape hiss.

There's not much else I can say about using this unit. Most people know what a graphic equaliser does, and a little trial and error will show the effect of each frequency band.

Fig. 3 Front panel design (shown full size)

THE TRANSMITTER PEOPLE

4 WATT PPO FM BROADCAST (Built)

TRANSMITTER: with Low Pass Filter
Modulation \qquad 75 KHz Wide Band
Range up to 4.2 miles
Supply. 10-16 Volts AC/DC
Current
..... 100 mV (ADJ)
Audio Input \qquad
Frequency range 88-108MHz FM
Stability $\pm 20 \mathrm{KHz}$
Size
\qquad W. 70 mm , H. 50 mm .
MANY USER CONTROLS Price: £23.50
7 WATT PPO FM BROADCAST
(Built) TRANSMITTER: Higher Watt
Version of above Transmitter
(Range 7 miles)
Price: $£ 52.50$

KIT: 3 WATT TRANSMITTER 80-108MHz Coil Tank Controlled up to 3 miles range.
 Supply 12 V dc at 0.5 amps Price: £12.50

ALL PRICES INCLUDE VAT
PLEASE ADD \&1 P\&P PAYMENT WITH ORDERS TO:
DELCIA ELECTRONICS,
14 ST. MERYL PARK, GLEN ROAD. BELFAST, BT11 8FY. Tel: (0232) 611995
Please send Two 1st class stamps for our catalogue.

D

 VISA Cooke International SUPPLIER OF QUALITY USED TEST INSTRUMENTS

ANALYSERS, BRIDGES, CALIBRATORS, VOLTMETERS,GENERATORS,OSCILLOSCOPES, POWER METERS, ETC. ALWAYS AVAILABLE

ORIGINAL SERVICE MANUALS FOR SALE COPY SERVICE ALSO AVAILABLE

EXPORT,TRADE AND UK ENQUIRIES WELCOME SEND SAE FOR LISTS OF EQUIPMENT AND MANUALS

REPAIRS \& CALIBRATION UNDERTAKEN ENQUIRE FOR DETAILS

ALL PRICES EXCLUDE VAT AND CARRIAGE
DISCOUNT FOR BULK ORDERS. SHIPPING ARRANGED
OPEN MONDAY TO FRIDAY 9AM-5PM
COOKE INTERNATIONAL
ELECTRONIC TEST \& MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Rd, Barnham,
Bognor Regis, West Sussex PO22 0EB
Tel:(+44) $0243545111 / 2$ Fax:(+44)0243 542457

- HIGH END TEST \& COMMUNICATIONS EQUIPMENT PURCHASED \bullet

The Editor Electronics in Action PO Box 600, Berkhamsted Herts. HP4 1NL Pro-quality components problem

Firstly congratulations on the continuing high quality of the publication - apart from minor errors it is really very good. Like your correspondent J R Evans (Feb 94) my own sphere of interest is studio quality analogue audio - preferably balanced - and I hope that you will continue to feature circuits of this nature.

Again like Mr Evans I also favour practical designers like Mike Meechan and Ben Duncan who do not pay lip service to much of the hi-fi hype but whose designs deliver the goods both technically and sonically.

For my own part, I suppose I do not undertake a great deal of actual construction mainly for reasons of financial constraints) but when I do the biggest problem that I encounter is actually sourcing pro quality components in small quantities, especially precision capacitors and resistors.

Most component manufacturers are happy to supply literature - although some never bother to reply but I suppose this is indicative of the state of British enterprise.

However, for components a little out of the ordinary I have found that distributors are only interested in orders of 100 s . This has recently happened to me in respect of really good quality PSU reservoir capacitors for my present brainchild, an audio power amp, where I wanted audio quality elcos that would fit vertically within a 2 U case easy to find, difficult to buy! (And I'm still looking).

The main reason for the above story is to ask if anyone is aware of any distributors who handle pro components and who would be prepared to deal in small quantities - it would be worth paying a slight premium to ensure component quality.

Finally I look forward to Mike's audio projects in the near future.

A G Crane King Lynn Norfolk

I am writing to you to say thanks for the Photo CD player that I won in your December competition.. I have only recently been able to set it up and I have found the quality amazing.

Once again many thanks as this is the first time I have won a competition. Having enjoyed reading Electronics in Action and am looking forward to each issue in the future.

F R Stephens

Owing to a shortage of space last month we were unable to print the component positioning diagram of The Switcher relay board. We reproduce it here.

October 93 -Fractal Imaging o The Telescope Pt1 \& Anti-Howler

- Audiophlle Pre-amp eSine wave generator

December 93 Photo CD 4D
Recording eVIdeo editing unit estereo tremolo unit © The Switcher Pt2

March 94 - Colour test card generator - Cordless guitar project eplug-in mains wiring tester olntelligent Communication Networks ©The Switcher Pt5

November 93 - Blometrlc Technology - The Switcher Ptf e Selsmometer Project The Telescope Pt2

January 94 - Class A power amp - The Harmoniser \& Remote control extender © The Switcher Pt3

HAVE YOU MISSED A FEWO

Fear not, our Back Numbers Dept. should be able to furnish you with almost any issue (our January issue was simply too popular). Just fill in the coupon below and post it to us with a cheque or postal order for the correct amount.

February 94 OVIrtual Reallty © Class A amp P12 Hatchery Controller ©The Switcher Pt4

BACKNUMBERS

Print your name in BLOCK CAPITALS
Name

Address

Postcode
Please send me issue(s) of the October '93 edition
Please send meissue(s) of the November ' 93 edition
Please send meissue(s) of the December '93 edition
Please send meissue(s) of the February ' 94 edition
Please send meissue(s) of the March ' 94 edition
Each copy (including postage \& packing) costs £2.50
I enclose a cheque/postal order for
Please send to: Electronics in Action, PO Box 600
Berkhamsted, Herts. HP4 1NL

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART KITS give you the opportunity to build the very best engineered hifi equipment there is, designed by the leaders in their field, using the best components that are available
Every HART KIT is not just a new equipment acquisition but a valuable investment in knowledge giving you guided hands-on experience of modern electronic techniques.
In short HART is your 'friend in the trade' giving you, as a knowledgeable constructor, access to better equipment at lower prices than the man in the street.
You can buy the reprints and construction manual for any kit to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase. Our list will give you fuller details of all our Audio Kits, components and special offers

AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get £K performance for a few tenths of the cost!. Featured on the front cover of 'Electronics Today International' this complete stereo power amplifier offers World Class performance allied to the famous HART quality and ease of construction. John Linsley Hood's comments on seeing a complete unit were enthusiastic:- "The external view is that of a thoroughly professional piece of audio gear, neat elegant and functional. This impression is greatly reinforced by the internal appearance, which is redolent of quality both in components and in layout." Options include a stereo LED power meter and a versatile passive front end giving switched inputs using ALPS precision, low-noise volume and balance controls. A new relay switched front end option also gives a tape input and output facility so that for use with tuners, tape and CD players, or indeed any other 'flat' inputs the power amplifier may be used on its own, without the need for any external signal handling stages. 'Slave' and 'monobloc' versions without the passive input stage and power meter are also available. All versions fit within our standard $420 \times 260 \times 75 \mathrm{~mm}$ case to match our 400 Series Tuner range. ALL six power supply rails are fully stabilised, and the complete power supply, using a toroidal transformer, is contained within a heavy gauge aluminium chassis/heatsink fitted with IEC mains input and output sockets. All the circuitry is on professional grade printed circuit boards with roller tinned finish and green solder resist on the component ident side, the power amplifiers feature an advanced double sided layout for maximum performance. All wiring in this kit is preterminated, ready for instant use RLH11 Reprints of latest articles.
K1100CM HART Construction Manual.
$£ 1.80$
$£ 5.50$

LINSLEY HOOD 1400 SERIES

 ULTRA HIGH-QUALITY PREAMP

 ULTRA HIGH-QUALITY PREAMP}Joining our magnificent 80 Watt power amplifier now is the most advanced preamplifier ever offered on the kit, or indeed made-up marketplace. Facilities include separate tape signal selection to enable you to listen to one programme while recording another, up to 7 inputs, cross recording facilities, class A headphone amplifier, cancellable 3-level tone controls and many other useFor full details see our list.

LINSLEY HOOD 'SHUNT FEEDBACK' R.I.A.A. MOVING COIL \& MOVING MAGNET PICKUP PREAMPLIFIERS

Modern, ultimate sound systems are evolving towards built-in preamplifiers within or near the turntable unit. This keeps noise pickup and treble loss to a minimum. We now offer two units, both having the sonically preferred shunt feedback configuration to give an accurate and musical configuration to give an accurate and musical sound, and both having the ability to use
moving magnet and moving coil cartridges.
Kit K1500 uses modern integrated circuits to achieve outstanding sound quality at minimal cost. The very low power requirements enable this unit to be operated from dry batteries and the kit comes with very detailed instructions making it ideal for the beginner. K1500 Complete kit with all components, printed circuit board, full instructions and fully finished case..
$£ 67.99$ Instructions only.
.. 22.80
Kit K1450 is a fully discrete component implementation of the shunt feedback concept and used with the right cartridge offers the discerning user the ultimate in sound quality from vinyl disks. Can be fitted inside our 1400 Preamp, used externally or as a standalone unit. It has a higher power requirement and needs to be powered from our 1400 Series preamplifier or its own dedicated power supply. K1450 Complete Discrete Component RIAA Phono Preamp....
$£ 109.58$
$£ 159.58$ Factory Assembled and Tested......................£159.58 K1565 Matching Audio Grade Power Supply with potted toroidal transformer and limited shit earthing system.
. 119.42
$\mathbf{~} 118.42$ Factory Assembled and Tested...............................£7. 29

SPECIAL OFFER

PRECISION Triple Purpose

TEST CASSETTE TC1DD.

Are you sure your tape recorder is set up to give its best? Our latest triple purpose test cassette checks the three most important tape parameters without test equipment. Ideal when fitting new heads.
A professional quality, digitally mastered test tape at a price anyone can afford.

Test Cassette TC1DD........................Our price only $£ 10.99$.

DISK-COUNT Classical CDs.

Top Quality, Full Digital (DDD) Compact Disks of the great classical favourites.
Like everyone else we didn't like the idea of paying silly prices for CDs. After a long search we have now located a source of top quality classical recordings at prices that make you suspect the quality - until you try them! Send for our list of titles.

CDROMs

Like music CDs these have overpriced for some time but with low prices of CD ROM drives the multimedia revolution is with us now. Send for our list of titlos. Most popular up to now have been "Too Many Typefonts" with 514 TrueType fonts along with 393 ATM and lots of others
"Shareware Overload" with over 6100 programs extending to 550MB and "Kodak Photo CD Access". The first two are only $£ 12.95$, the Kodak only $£ 24$.

Send or 'phone for your copy of our List (50p) of these and many other Kits \& Components. Enquiries from Overseas customers are equally welcome, but PLEASE send 2 IRCs if you want a list sent surface post, or 5 for Airmail.
1 Ordering is easy. Just write or telephone your requirements to sample the friendly and efficient HART
service. Payment by cheque, cash or credit card. A telephoned order with your credit card number will get your order on its way to you THAT DAY.
Please add part cost of carriage and insurance as follows:-INLAND Orders up to £20-£1.50, Orders over $£ 20-£ 3.50$. Express Courier, next working day $£ 10$.
OVERSEAS - Please see the ordering information with our ilsts.

> In this part, John Linsley Hood introduces transistor 'Hi-Fi' and the great quasi-complementary swindle.

In the last part of this article I looked at the designs used in early attempts to design audio amplifiers based on transistors. The need at that time was to use inter-stage coupling transformers but this made it difficult to apply enough overall negative feedback to increase the bandwidth and reduce the harmonic distortion to levels which would be acceptable in a hi-fi system.

A solution to this difficulty was proposed in 1956 by H. C. Lin, an ingenious electronics engineer from the USA. His answer was to use a high gain, small signal amplifier stage to provide the necessary voltage gain, and then to reduce its output impedance to a low enough level to drive a loudspeaker load by the use of a push-pull pair of output emitter followers, as I have shown in Figure 1.

At the time of the Lin circuit, the only transistors available in any quantity, at sensible prices, were Germanium diffused junction types, made on what was virtually a one-off basis, and their use led to a lot of snags. To start with, since the transistors were made by a one at a time process, they would probably vary considerably from one to another, and any circuit using them would need individual setting up on test, a procedure which might need to be repeated from time to time during use.

Also, the amount of power which could be dissipated in the output transistors was pretty limited, and some form of temperature compensation, usually a thermistor, would need to be included in the circuit to avoid the possibility of 'thermal run-away' in the output transistors at high room temperatures, or if the amplifier got a bit over warm in use.

Clearly, this did not yet amount to a system which could be sold as a reliable design to the hi-fi buying public, although Lin had proposed an output emitter-follower circuit arrangement, based on the use of one PNP/PNP and one NPN/PNP output emitter follower layout, which would get around the difficulty that fully symmetrical (PNP/ NPN) power transistor types were not yet commercially available. (This layout is shown, in its + ve rail version, in

Figure 2, and became known as the 'quasi-complementary' configuration.)

When, in the early to mid 1960s, good quality silicon power transistors became available, made by versions of the 'planar' process, audio design engineers began to put together power amplifiers, using high gain silicon planar transistors, with typical designs of the kind shown in Figure 3, based on the use of Lin-type 'quasi-complementary' output pairs, which appeared to meet the technical requirements for a marketable piece of audio hardware.

With designs of this type, 30 watt power amplifiers, with output harmonic
distortion levels of less than 0.1% at full power, and bandwidths of 10 Hz 100 KHz or greater, were easily obtainable, and their triumphant designers - and their employers advertising agencies - proudly, but prematurely, proclaimed the arrival of true transistor operated hi-fi.

The truth was, sadly, that these amplifiers really sounded quite nasty, in spite of their superb claimed specifications. This led to a regrettable loss of confidence, by a sizeable proportion of the buying market, in the engineers and all their doings.

＇Listener fatigue＇and ＇transistor sound＇

Criticism of the sound quality of transistor amplifier designs started to appear，diffidently at first，but then more vociferously，and terms like＇transistor sound＇and＇listener fatigue＇，were coined to describe the users objections． There were，in reality，quite a lot of problems with these new amplifier designs，and the process of remedying them took at least a decade，and some
might say that the process is not yet finished．I have listed the more conspicuous of these｀nasties＇，below， under their various headings．

1 ＇Crossover distortion＇

In any push－pull output system，of the kind shown in Figure 1，there is always the possibility of distortion in the region of the input／output transfer characteristic， where one half of the output push－pull pair hands over to the other．The only
certain way of avoiding this is to ensure that both halves of the output pair are working in a straight line part of their characteristics，at a current level which is adequate for them to handle the demands of the signal voltage swing．

This situation would always be the case for the push－pull output stages of valve amplifiers，but would never（or almost never）be true for transistor output systems．In fact，in many cases， the designers deliberately sought to avoid the problems of keeping the bias of the output transistors at the correct level，by setting it to zero，and then relying on the use of massive amounts of negative feedback（NFB）to try to straighten out the residual kinks in the curve．．．an attempt which was doomed to failure．

This difficulty in push－pull output stages is made much worse by the nature of the＇quasi－complementary symmetry＇ type of layout shown in Figure 3，in that the transfer slopes of the two halves－the NPN／NPN half and the PNP／NPN half－ are very different，as shown in Figure 4a， so even if the output devices are biased so that the two curves join，there will always be a conspicuous kink in overall output curve，as shown in Figure 4b．

This results in the amplifier distortion getting worse as the output power is reduced，so even if the total harmonic distortion（THD）is as low as， say， 0.05% at full output，it may well be $5-10 \%$ or more at typical quiet listening

Flg. 4 Quasi complementary pair characteristics

levels and what is worse, this distortion would be of the sonically unpleasant high-order odd-harmonic type. I have shown this effect in Figure 5, where I have contrasted the output power vs.

THD of a typical 1960s transistor audio amplifier with that of a typical 1950 s valve amplifier. No wonder the valve amplifier sounded better, but that wasn't the only reason.

2 'Transient intermodulation distortion'

In order to improve the performance of these new 'transformerless' transistor amplifiers, the designers used lots of overall NFB. Much more in fact, than would have been possible with their valve based predecessors, and this had the predictable effect that, left to itself, the whole circuit would oscillate at some high frequency, and measures were therefore needed to prevent this.

The almost invariable method for stabilising such a feedback amplifier, used at that time and since (!), is what is known as 'dominant lag' stabilisation, in which a capacitor, (C3), is typically connected between the collector and the base of the second stage amplifier transistor, (Tr3), as shown in Figure 3. If a sudden voltage transient appears at the input of the amplifier, as part of the input signal, the effect of the negative feedback loop applied to $\operatorname{Tr} 2$ base will be to cause Tr 1 to be driven into cut-off until C3 is able to charge or discharge to its proper equilibrium level.

The transient paralysis of amplifiers using this type of feedback loop stabilisation was first publicised by Professor Otala, who called it 'Transient Intermodulation Distortion', or 'TID'. It can be avoided by the use of a different type of loop stabilisation, and minimised by an input C-R HF roll-off circuit in those instances where the designers either know or care enough to try to do something about it.

3 Poor stabillty margins
A further problem with the use of a lot of overall NFB is that it reduces what is known as the amplifier's 'stability margin', and this can cause the amplifier to suffer sudden bursts of oscillation - usually in the MHz region - at parts of the signal output voltage swing, particularly when the loudspeaker has an awkward load characteristic. Usually, amplifiers with good stability margins sound more 'restful' to listen to than those where NFB has been used to excess, and the resulting loop stability margin is inadequate.

It is usually possible to do a quick check on freedom from this type of fault, if one has access to a signal generator and an oscilloscope, by driving the amplifier into clipping, while it is operating into various
types of dummy load. Usually a resistor of the $4-8$ ohm range in parallel with a range of capacitors in the range $0.01 \mu \mathrm{~F}$ $2 \mu \mathrm{~F}$, will serve as a load. While one is doing this, one can also check for 'hangup' following clipping - which usually indicates transient output transistor malfunction. All of these faults spoil the sound quality of the system, without necessarily being shown up in the THD figures.

Class ' A ' operation.

Until the mid-1960s my domestic audio system consisted of a 'Williamson' power amplifier, driven by various transistor operated pre amplifier stages; the result of a recent JLH 'anti-hum' modernisation programme. This part of my system updating had been trouble free to put together, since it is easy to design small-signal amplifier stages without running into the raft of problems which beset the design of solid state power amps. However, this was still a 'mono' setup, and I wanted to take advantage of the new 'stereo' LP records which were replacing the older 'mono' discs. I also wanted, if possible, to avoid the need to build another large and expensive 'Williamson' power amp.

Since I had at home an adequately equipped electronics workshop, which I had set up in an upstairs box room, I put together four or five transistor operated

audio power amplifiers; built to various published circuits, for which high performance was claimed; and I sat down to do a thorough listening trial comparing the performance of these with the Williamson. Well, that was my original intention. In reality, it took only a few seconds listening to each to conclude that none of these designs was in the same league in terms of sound quality, as my old valve amplifier. Since I had spent some time in constructing

these comparative transistor operated designs I felt exceedingly let-down by this whole exercise, and was at a loss to know what next to try.

However, some months previously, I had built a transistor operated class ' A ' power amplifier, mainly as a technical exercise to see how simple such a circuit could be. This was very much a pinboard hook-up, but it worked and would deliver some 10 watts into a 15 ohm load. So, having been disappointed with the performance of the other transistor power amplifiers I had tried, I went to my junk box, retrieved my hook-up class ' A ' circuit, and tried this out as well.

To my astonishment and pleasure, this sounded as good as the Williamson - perhaps, I thought, it was even just a little bit more transparent - and provided a simple answer to my wish to go stereo, since the circuit, which I have shown in Figure 6, was a very easy one to make. I therefore spent the next month or so in constructing a complete stereo system, with a tidy two-channel class ' A ' power amplifier to fit in place of the 'Williamson'.

The 10W class ' A ' amp.

The basic advantage of this circuit design was that it was not a push-pull system, in the normal sense of the term. It could be thought of either as Tr 3 acting as an output emitter follower, with Tr4 acting as an 'active' emitter load, or with Tr4 acting as an amplifier, using $\operatorname{Tr} 3$ as an 'active' collector load. Since it wasn't a push-pull system it couldn't suffer from crossover distortion, and since both output transistors (which were, conveniently, identical NPN types) were operating in a linear part of their characteristics, it didn't need much overall NFB to reduce the distortion to my target value of 0.05%, so it didn't need any TID introducing stabilisation networks. I was lucky to have avoided by
accident, the various problems that I didn't even know existed at that time, and after a couple of years of use, offered the circuit design to one of our more prestigious technical journals, where it was published. As a design, it worked well, and didn't need adjustments after initial setting up, but I was a bit unhappy about the need to preset the operating currents of the output transistors, and, since it wasn't a pushpull system, it was wasteful of current, and ran fairly hot.

One of my fellow designers, at the time, reproached me, in print, for 'sweeping the design problems of class 'B' (low quiescent current) amplifiers under the carpet, rather than attempting to solve them'. This was perfectly true, but the required solutions for push-pull operation were quite some time in coming, and even then were not complete.

Improved low quiescent current push-pull amplifier designs.

It is taken for granted these days, unless you happen to be a 'hot glass' buff, that the domestic hi-fi set up will run cool,

so that it can sit unobtrusively, in a shelf on ones equipment rack. The basis for this expectation was the increasing availability during the 1970s, of better power transistors, and the use of improved output transistor circuit layouts, using either PNP-PNP/NPNNPN complementary arrangements, as shown in Figure 7a and 7b, or improved 'quasi-complementary' circuits of the kind shown in Figure 7c, which I used in a popular DIY 75 watt amplifier. A version of this output layout was also used commercially, at a later date, in a

very successful 'audiophile' power amplifier design.
'Quad' used an alternative three transistor output stage layout in their 'Quad 303' power amplifier, shown in Figure 7d, a power amplifier which has proved very successful in commercial practice, though modern practice mostly favours one or other of the fully complementary circuit layouts shown in Figure 7a or 7b.

In general, the majority of the better commercial solid-state hi-fi systems now are quite satisfactory in terms of listening quality, but there were still a few snags which needed ironing out, and, since 'specmanship' is now the name of the hi-fi advertisers game, much design effort has been expended on getting more ' 0 's behind the decimal point in the THD specification. 트지

NEXT MONTH

John Linsley-Hood probes into: The so-called 'better' specifications

WE HAVE THE wIDEST CHOICE OF USED OSCILLOSCOPES IN THE COUNTRY	DATRON 1061A-6 12. dgit tue FNS ACCMITrent DATRON 1065 Nultheeter 512 digt ACDC.OHms IEEE \qquad 9600 900 PHILPS PM2534 Mutifuncion DMM6 12: digh GPB IEEE 845
TEKTRONIX 7000 SERIES OSCILLOSCOPES AVAILABLE FROM $£ 200$ PLUG-NS SOLD SEPARATELY	
	MAACOND Did Firequeng
	MAACONU Unvesal Counter Tme 2437 DC-2003
TEKTRONIX 4658 Dual trace 100MH2 Delay Sweep 5500	BLCCK STAP JJpino 500 Sinas SqTi 0.142 - 500 WHz
TEKTTONIX 465 Dual tree 100MMz Dolay Sme	FEEDBACC FGGEOS SineSqTin. 1 Hz - 100 K
	MuLTMEETERS Hera-Hed We3s5 32 armes AC .
TEKTRONIX 455 Dual Trace 50MHz Delay Sweep TEKTRONIX 455 Dual race 50 MHz Delay Sweep HITACHI V650F Dual Trace 60MHz Delay Sweep HAMEG 605 Dual Trace 60 MHz Deday Swoep...	Transisor Teser frecourter.
PHLLIPS PMS217 Dual Trece somltz Selay Sweep...... 4400	
GOULD OSS30 Dual Trace 20MHz	RACA
	RACHLDANA 9341 Dad
	WA
HP 1741A Dual Trace 100MHZ Delay Sweep Analog storage. .450 THIS IS JUST A SAMPLE, MANY OTHERS AVAILABLE	
	${ }_{\text {FAANAL }}$ FANEL
PHIPS PM 5139 Proparammable synthesizan'Function Geneerator	2003
	AVO Crasactaisis Meler VCMMEs
	FAR
RACAL 9009 Auk Mod. Meter 109/Hz-1.5GHz Wide devialion.......2550 LYONS PG73N Pulse Gen. PRF $1 \mathrm{~Hz}-20 \mathrm{MHz}$....................... 150	FARNELL Isolating Transformers
GOULD Bicmation K50000 Logic Analyser £500 FARNELL PSGS20H Synthesised Sig Gan AMFM $100 \mathrm{KHz}-520 \mathrm{MHz}$. E 600	
	,
SPECTRUM ANALYSERS	
	Anv
	E Phose
Used Equipment - GUARANTEED. Manuals supplied if possible This is a VERY SMALL SAMPLE OF STOCK. SAE or telephone for lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to total of Goods and Cariage	
STEMART of READINE	
	ADING, BERKS RG6 1PL

	Valve Company for de Audio Valves
Major Brands e.g Mullard, Brimar, Philips, GE (UK), GE(USA), etc.	
A 2900	GZ34 Mullard......................... $£ 10.00$
E80F Philips........................ 10.00	GZ37 Mullard........................... $£ 7.00$
ECC81/CV4024 Mullard......... $£ 6.00$	6CA7/EL 34 GE.......................99.50
ECC82/CV4003 Mullard.......... 66.00	6L6GA Syvania....................... $£ 7.00$
ECC88 Mullard...................... 56.00	6SN7GT Brimar...................... 54.50
E88CC Mullard.....................£8.50	6V6GT Brimar....................... $£ 4.00$
EF86/CV4085 Mullard/GEC..... 88.50	12AT7WC Sylvania.................66.00
EL84 Mullard.........................6.00	6146B GE............................. $£ 15.00$
EL84 GE (USA)......................f5.00	6550A GE............................ $£ 17.50$
GZ32 Mullard..........................88.00	7581 GE...............................f12.00
GZ33 Mullard......................... $£ 8.00$	
CVCPREMIUM: Our own BRAND from selected worldwide sources, processed in our special facility to provide low noise/hum/microphony Pre-Amp valves and Power Valves burnt-in for improved stability and reliability.	
PRE-AMP VALVES	POWER VALVES - contd.
ECC81/12AT7........................55.00	E84L/7189A.......................... 115.00
ECC82/12AU7...................... $£ 4.00$	KT66...................................99.20
ECC83/12AX7....................... 55.00	KT88.................................. $£ 12.50$
ECC85................................. $£ 4.00$	KT88 (GOLD Q).................... $£ 18.50$
ECC88.................................... 5.00	6L6GC................................ $£ 6.50$
EF86...................................£4.00	6L6WGC/5881....................... 88.00
E81CC (GOLD PIN)............... $£ 6.00$	6V6GT................................... 5.00
E82CC (GOLD PIN)............... $£ 6.00$	6146B.................................f10.20
E83CC (GOLD PIN)............... .16 .00	6336A................................. 440.0
E88CC (GOLD PIN)...............£7.00	6550A................................f11.00
E80F.................................. $£ 9.00$	RECTIFIERS
E83F...................................f5.50	GZ33................................... 54.50
6SL7GT................................ 4.00	GZ34/5AR4............................. $£ 5.00$
6SN7GT.............................. 44.20	5U4G..................................£5.00
POWER VALVES	5Y3GT................................... $£ 3.20$
2A3 (OCTAL) or (4pin) $£ 14.00$	5Z4GT....................................3.50
211..................................£22.00	SOCKETS
300 B 59.50	B9A (PCB) 1.60
811A....................................9.50	B9A (CHASSIS)...................... $£ 1.60$
845................................... $£ 29.90$	OCTAL (CHASSIS).................. $£ 1.75$
EL34/6CA7............................ $£ 7.50$	4PIN (UX4) $£ 3.00$
EL84/6BQ5............................ $£ 4.00$	4PIN (for 211\& 845)............... $£ 11.00$

Add $£ 1.00$ per valve for matching if required.
Plus Post \& Packing $£ 3.00+$ VAT at 17.5% for UK/Europe. Send Fax order with cheque or credit card details to:
Chelmer Valve Co., 130 New London Rd. Chelmsford, Essex CM2 0RG Tel: (0245) 265865 Fax: (0245) 490064

HIGH QUALITY PRINTED CIRCUIT BOARDS BY MAIL ORDER!

Our unique Mail Order system allows us to provide you with High Quality Circuit Boards made to BS Spec. at a fraction of the cost avilable commercially. Simply send your order stating the type and quantity required, along with either Artwork or Gerber Cad Data.

Spec: 1.6 mm fibreglass, 1 oz Copper, Non plated holes, Roller-Tinned finish.

REMEMBER TO ADD:

PHOTOPLOTTING	$£ 10.00$
POST \& PACKING	$£ 5.00$

Send a Cheque or Postal Order along with your order to :

MAIL ORDER CIRCUITS,

Meridian Centre, King Street, Oldham, OL8 1EZ

QUANTITY $\mathbf{1 - 8}$		
Sq In	2 Sides	Side
$0-20$	$£ 8.00$ ea	$£ 5.00$ ea
$21-40$	$£ 10.00$ ea	$£ 7.00$ ea
$40-90$	$£ 15.00$ ea	$£ 11.00$ ea

QUANTITY $9-20$		
Sq In	2 Sides	Side
$0-20$	$£ 5.00$ ea	$£ 3.00$ ea
$21-40$	$£ 7.00$ ea	$£ 4.00$ ea
$40-90$	$£ 9.00$ ea	$£ 6.00$ ea

Please allow 21 days for delivery.

Due to the nature of our system, only Prototyping work can be carried out. For information on other commercial orders, please phone AO Electronics on 0203612341

VIEWDATA RETURNS 6 madeby tandata, indudes 1200.75 modem, K/bd. RGB and comp op, printer port: No PSU.£6 MAG6P7 IBM PC CASE AND PSU Ideal base for building your own PC. Ex equipment but OK. $£ 14.00$ each REF: MAG14P2
SOLAR POWER LAB SPECIAL You get TWO $6^{\circ} \times 6^{\circ}$ ov 130 mA solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Superb value kit just $£ 5.99$ REF: MAG6P8
SOLID STATE RELAYS Will switch 25A mains. Input 3.5-26 DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 3.99$ REF MAG4P 10 300DPI A4 DTP MONTTOR Brand new, TTLECL inputs, 15° landscape, 1200x1664 pixel complete with dircuit diag to help you landscape, $1200 x 1664$ pixe complete with arcuit diag io h he
interface with your projects. JUST $£ 24.99$. REF MAG25P1 ULTRAMINI BUG MIC $6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ made by AKG, $5-12 \mathrm{~V}$ electretcondenser. Cost 512 ea, Our? fourfor $E 9.99$ REF MAG10P2 RGB/CGA/EGATTL COLOUR MONTORS 12^{2} in good condition. Back anodised metal case. £99 each REF MAG99P1 GX4000 GAMES MACHINES returns so ok for spares or repair $£ 9$ each (no games). REF MAG9P1
C64 COMPUTERS Retums, sookfor spares etcE9 ref MAG9P2 FUSELAGE LIGHTS 3 foot by 4^{\prime} panel $1 / 8^{\prime \prime}$ thick with 3 panels that glow green when a voltage is applied. Good for nightlights, front panels, signs, disco etc. $50-100$ v per stríp. $£ 25$ ref MAG25P2
ANSWER PHONES Returns with 2 fauts, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's $£ 18$ ea REF MAG18P1, BT Response 400's $£ 25$ ea REF MAG25P3 Suitable power supply £5 REF MAGSP 12
SWITCHED MODE PSU ex equip. $60 w+5 \mathrm{~V}$ @5A, -5V@. 5 A .
 socket E6.99 REF MAG7P1
PLUG IN PSU 9V 200mA DC $£ 2.99$ each REF MAG3P9 PLUG IN ACORN PSU 19v AC 14 w , £2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and op leads 17v DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9
ACORN ARCH MEDES PSU +5 v © 4.4A. on/off sw uncased, selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2 GEIGER COUNTER KIT Low cost professional twin tube, complete with PCB and components. £29 REF MAG29P1
SINCLAIR C6 13^{*} wheels complete with tube, tyre and cycle style bearing $£ 6$ ea REF MAG6P 10
AA NICAD PACK encapsulated pack of 8 AA nicad batteries (tagged) ex equip, $55 \times 32 \times 32 \mathrm{~mm}$. $£ 3$ a pack. REF MAG3P11
13.8 V 1.9 A psu cased with leads. Just $£ 9.99$ REF MAG10P3

360 K 5.25 brand new half height floppy drives IBMcompatible industry standard. Just $£ 6.99$ REF MAG7P3
PPCMODEM CARDS. These are high spec plugin cards made for the Amstrad laptop computers. 2400 baud dial up unit complete with leads. Clearance price is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Onginally made for hi spec satelifte equipment but perfect for all sorts of remote control projects. Our clearance price is just $£ 2$ REF: MAG2
TOWERS INTERNATIONAL TRANSISTOR GUIDE. A very useful book for finding equivalent transistors, leadouts, specs etc. $£ 20$ REF: MAG20P1
SINCLAIR C5 MOTORS We have a few left without gearboxes. These are $12 \mathrm{VDC} 3,300 \mathrm{rpm} 6^{*} \times 4^{*}, 1 / 4^{\circ}$ OP shat $£ 25$ REF: MAG25 UNNERSAL SPEED CONTROLLER KTT Designed by us for the above motor but suitable for any $12 v$ motor up to 30 A . Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17
VIDEO SENDER UNTT. Transmits both audio and video signals from either a video camera, video recorder, TV or Computer etc to any standard TV setina 100^{\prime} range! (tune TV toa spare channel) 12 V DCop. Price is $£ 15$ REF:MAG15 $12 v$ Psuis $£ 5$ extra REF: MAG5P2 "FM CORDLESS MICROPHONE Small hand held Unit with a 500^{\prime} rangel 2 transmit power levels. Reqs PP39vbattery. Tuneable to any FM receiver. Price is $\Sigma 15$ REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200 '. Ideal for garden use or as an educational toy. Price is $£ 8$ a pair REF: MAG $8 P 12 \times$ PP3 req'd
*MINATURE RADIO TRANSCENERS A pair of walkie talkies with a range of up to 2 kilometres in open country. Units measure $22 \times 52 \times 1555 \mathrm{~mm}$. Complete with cases and earpieces. 2xPP3 req'd. $£ 30.00$ pair REF: MAG30
COMPOSTTE VIDEO KIT. Converts composite video into separate H sync, V sync, and video. 12vDC. $£ 8.00$ REF: MAG8P2. LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical printer assemblies including printhead, stepper motors etc etc in facteverything barthe case and electronics, agood stripper! £5 REF: MAG5P3 or 2 for $£ 8$ REF: MAGBP3
SPEAKERWIRE Brown 2core 100 foot hank $£ 2$ REF: MAG2P1 LED PACK of 100 standard red 5 m leds $£ 5$ REF MAGSP4
JUG KETTLE ELEMENT good general purpose heating element (about 2 kw) ideal for heating projects. 2 for $£ 3$ REF: MAG3 UNNERSAL PC POWER SUPPLY complete with fyleads, switch, fan etc. Two types available 150 wa $£ 15$ REF:MAG15P2 $(23 \times 23 \times 23 \mathrm{~mm})$ and 200 w at $£ 20$ REF: MAG20P3 ($23 \times 23 \times 23 \mathrm{~mm}$) *FM TRANSMITTER housed in a standard working 13A adapter II the bug runs directly off the mains solasts foreveri why pay $£ 700$ or price is $£ 26$ REF: MAG26 Transmits to any FM radio.
*FM BUG KT New design with PCB embedded coil for extra stability. Works to any FM radio. $9 v$ battery req'd. $£ 5$ REF:MAG5P5 *FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencles. 9 v battery req'd. $£ 14$ REF: MAG14 TALKING COINBOX STRIPPER originally made to retail at $£ 79$ each, these Units are designed to convert and ordinary phone into a payphone. The units have the locks missing and sometimes broken hinges. However they can be adapted for their original use or used for something else?? Price is just $£ 3$ REF: MAG3P1 100 WATTMOSFET PAIR Same specas 2SK343 and 2 SJ 413 ($8 \mathrm{AA}, 140 \mathrm{~V}, 100 \mathrm{w}$) 1 N channel, 1 P channel, £3 a pair REF: MAG3P2 VELCRO 1 metre length of each side 20 mm wide (quick way of flxing for temporary jobs etc) £2 REF: MAG2P3
MAGNETIC AGTATORS Consisting of a cased mains motor with lead. The motor has twomagnets fixed to a rotor that spin round inside. There are also 2 plastic covered magnets supplied. Madefor remotely stiring liquids! youmay have a use? $£ 3$ eachREF:MAG3P3

BULC'S
 BULCETOK BOARD
 100MHZ DUAL TRACE OSCILLOSCOPES JUST £259 RING FOR DETAILS

MASSIVE

WAREHOUSE CLEARANCE FANTASTIC $£ 20.00$ REDUCTION

REFURBISHED PC BASE UNITS COMPLETE WITH KEYBOARD
from ontr $£ 29.00$
AMSTRAD 1512 BASE UNITS guaranteed PERFECT WORKING ORDER.
A LOW COST INTRODUCTION TO THE HOME COMPUTER MARKET.

AMSTRAD 1512SD

1512 BASE UNIT, 5.25" FLOPPY DRIVE AND KEYBOARD. ALL YOU NEED IS A MONITOR AND POWER SUPPLY. WAS $£ 49.00$

NOW ONLY £29.00
REF: MAG29

AMSTRAD 1512DD

1512 BASE UNIT AND KEYBOARD AND TWO $5.25^{\prime \prime} 360 \mathrm{~K}$ DRIVES. ALL YOU NEED IS A MONTOR AND POWER SUPPLY WAS $£ 59.00$

NOW ONLY £39.00
REE: MAG39

SOLAR POWER PANELS

3FT X 1FT 10WATT GLASS PANELS $14.5 \mathrm{v} / 700 \mathrm{~mA}$
NOW AVAILABLE BY MAIL ORDER $£ 33.95$

(PLUS $\$ 200$ SPECIAL PACKAGING CHARGE)
TOP QUALITY AMORPHOUS SLLICON CELLS HAVE ALMOST A TIMELESS LIFESPAN WITH AN INFINITE NUMBER OF POSSIBLE APPLICATIONS, SOME OF WHICH MAY BE CAR BATTERY WHERE A PORTABLE 12 V SUPPLY IS REQUIRED. REF: MAG 34

FREE SOFTWARE!

Brand new, UNUSED top qualliy famous brand licensed software discs. Available in 5.25° DSDD or $5.25^{\prime \prime}$ HD only. You buy the disk and it comes with free BRAND NEW UNUSED SOFTWARE. We are actually selling you the floppy disc for your own "MEGA CHEAP" storage facilliles, if you happento get software that you want/need/like as well....... you get a "MEGA BARGAIN" tool DSDD PKT10 $\mathbf{\Sigma 2 . 9 9}$ REF: MAG3P7 PKTIDO $\mathbf{5 1 6 . 0 0}$ REF: MAG16
£££££££WE BUY SURPLUS STOCK££££££
TURN YOUR SURPLUS STOCK INTO CASH.
IMMEDIATE SETTLEMENT. WE WILL ALSO QUOTE FOR
COMPLETE FACTORY CLEARANCE.

1994 CATALOGUE

PLEASE SEND 4SP, A4 SIZED SAE FOR YOUR FREE COPY. MIIMMOM GOODS ORDER ESCO TRADE ORDERE FROM GOVERNMENT, SCHOOLS,
NIVERSTIES, \&LOCAL AUTHORTIES WECOME ALDOOODS SUFPIED SUEECTTO

 TIES HOHER THAN THOSE STATED.

SOME OF OUR PRODUCTS MAY BE UNLICENSABLE IN THE UK

BULL ELECTRICAL
 250 PORTLAND ROAD HOVE SUSSEX BN3 5QT

MAIL. ORDER TERMS: CASH PO OR CHEQUE WITH ORDER PLUS £ 3.00 POST PLUS VAT.

PLEASEALLOW 7 , 10 DAYS FOR DELIVERY
TELEPHONE ORDERS WBLCOME
TEL: 0273203500
FAX: 0273323077

TOP QUALTTY SPEAKERS Made for HI FI televisions these are 10 watt $4 R$ Jap made 4 - round with large s2 each REF: MAG2P4 or 4 for $£ 6$ REF: MAGBP2 TWEETERS 22 diameter good quality tweeter 14 TWEETERS 2 . diameter good quality tweeter 140R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apricot these quality keyboards need justa small modification to run on any AT, they work perfecty butyou will have to put up with 1 or 2 foreign keycaps! Price $£ 6$ REF: AG6P3
XT KEYBOARDS Mixed types, some returns, some good, some foreign etc but all good for spares! Price is $£ 2$ each REF:MAG2P6 or 4 for $£ 6$ REF: MAGBP4
PC CASES Again mixed types so you take a chance next one off the pile $£ 12$ REF:MAG 12 or two the same for $£ 20$ REF: MAG20P4 COMMODORE MICRODRNE SYSTEM minl storage device for C64's 4 times faster than disc drives, 10 times faster than tapes. Complete unit just $£ 12$ REF:MAG12P1
SCHOOL STRIPPERS We have quite a few of the above units which are 'returns' as they are quite comprehensive units they could be used for other projects etc. Let us know how many you need at just 50 p a unit (minimum 10).
HEADPHON ES 15P These are ex Virgin Altantic. You can have 8 pairs for $£ 2$ REF: MAG2P8
PROXMITY SENSORS These are small PCB's with what look like a source and sensor LED on one end and lots of components on the rest of the PCB. Complete with fyleads. Pack of $5 £ 3$ REF: MAG: ${ }_{3}$ 3P5 or 20 for $£ 8$ REF: MAGPP4
SNOOPERS EAR? Original made to dip over the eappiece of telephone to amplify the sound-lt also works quite well on the cable running along the wall Price is $£ 5$ REF: MAG5P7
DOS PACKS Microsoft version 3.3 or higher complete with all manuals or price just £5 REF: MAGSP8 Worth it just for the very comprehensive manual! 5.25° only
DOS PACK Microsoft version 5 Oinginal software but no manuals hence only $£ 3$ REF: MAG3P6 5.25° only.
FOREIGN DOS 3.3-Geman,French, italian etc $£ 2$ a pack with manual. 5.25° only REF:MAG2P9
CTM644 COLOURMONTTOR. Made toworkwith the CPC464 home computer. Standard RGB input so will work with other machines. Refurbished $£ 59.00$ REF:MAG59
PIR DETECTOR Made by famous UK alam manufacturer these are hi spec, long range internal units. 12 v operation. Sllight marks on case and unboxed (although brand new) $£ 8$ REF: MAGBP5 WINDUP SOLAR POWERED RADIO AMFM radio complete with hand charger and solar panell $£ 14$ REF: MAG14P1
COMMODORE 64 TAPE DRIVES Customer returns at $£ 4$ REF:MAGAP9 Fully tested and working units are $£ 12$ REF: MAG12P5 COMPUTER TERMINALS complete with screen, keyboard and RS232 input/output. Ex equipment. Price is $£ 27$ REF: MAG27 MAINS CABLES These are 2 core standard black 2 metre mains cables fitted with a 13 A plug on one end, cable the other. Ideal for projects, low cost manufacturing etc. Pack of 10 for $£ 3$ REF: MAG3P8 Pack of $100 £ 20$ REF: MAG2DP5
SURFACEMOUNT STRIPPER Originally made as some form of high frequency amplifier (main chip is a TSA5511T 1.3 GHz synthasiser) but good stripper value, an excellent way to play with sulface mount components $£ 1.00$ REF: MAG1P1.
MICROWAVE TIMER Electronic timer with relay output suitable to make enlarger timer etc $£ 4$ REF: MAG4P4
MOBILE CAR PHONE £5.99 Well almost! complete in car phone excluding the box of electronics nomally hidden under seat. Can be made to illuminate with $12 v$ also has built in light sensor so displayonly illuminates whendark. Totally convincing! REF:MAG6P6 ALARM BEACONSZenon strobe made to mount on an external bell box but could be used for caravans etc. 12v operation. Just connect up and it flashes regulary) $£ 5$ REF: MAG5P 11
FIRE ALARM CONTROL PANEL High quality metal cased alarm pane $350 \times 165 \times 80 \mathrm{~mm}$. With key. Comes with electronics but no information. sale price 7.99 REF: MAG8P6
SUPER SZE HEATSINK Supert quality aluminium heatsink. $365 \times 183 \times 61 \mathrm{~mm}$, 15 fins enable high heat disslpation. No holes! sale price £5.99 REF: MAG6P11
REMOTE CONTROL PCB These are receiver boards for garage door opening systems. You may have another use? $£ 4$ ea REF: MAGAP
6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price just $£ 5.99$ ea REF MAG6P 12 .
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAG5P13 ideal for experimentersl 30 m for $£ 12.99$ ref MAG 13 P1 LOPTX Line output transtomers believed to be for hi res colour monitors but useful for getting high voltages from low ones1 $£ 2$ each REF: MAG2P 12 bumper pack of 10 for $£ 12$ REF: MAG12P3.

SHOP OPEN 9-5.30 SIX DAYS A WEEK

PORTABLE RADIATION DETECTOR $£ 49.99$

A Hand held personal Gamma and XRay detec tor. This unit contains two Geiger Tubes, has a digit LCD display with a Piezo speaker, giving a audio visual indication. The unit detects high energy electromagnetic quanta with an energy from 30 K eV to over 1.2 M eV and a measuring range of 5-9999 UR/h or $10-99990 \mathrm{Nr} / \mathrm{h}$. Supplied complete with handbook.

REF: MAG50

This project started its life over dinner with my potential father-in-law who is a chemist. Being an absent minded chemist in the classical vane he was having problems when his 'water de-ioniser' overflowed due to lack of attention. So he asked me if I could

come up with a potential solution to his problem, modern form of 'dowry' I suppose. This I felt obligated to do not for the sake of his daughter's hand but rather because he was footing the bill!

To understand the working of this circuit it is best to glance at the block diagram in Figure 1. As this project was designed for use with de-ionised water certain problems had to be overcome, the main one being its high resistance. This arises because the process of deionising by its nature involves the removal of the very charged particles which are responsible for its conducting properties. A second problem is that the currents passing through the solution must not create new ions and thus re-ionise the water.

This latter problem can be remedied by using an AC current to sense as it produces no resulting current. The high resistance of the water is countered by using a high input impedance buffer on the returning signal. This minimises the current drawn by the sensor through the liquid. On the other hand however using AC as your medium does mean that the resulting detector is prone to mains 50 Hz pick-up. This problem is made worse by the high impedance used
in sensing. So some pull down impedance is needed. Another unexpected problem can be caused by pick up from across the two wires that are used to connect the circuit to the sensors. This I found out when I used screened wire for connecting the sensor to the board. Unfortunately this has a capacitance of about 320 pF per meter and so relays the signal from output to input even when there is no liquid to act as a conductor. This is especially true for the edges of a nice clean square wave, as it contains higher harmonics. It does not need a fertile imagination to see that this will play havoc with any AC detection system further on. To counter these tendencies the sharp edges (the higher harmonics) are firstly removed by lowpass filtering. Also to calm down the input impedance with respect to AC some capacitance has been included, this helps mitigate the effects of stray capacitance and mains pick-up.

Detection of the AC signal is done by means of an active peak detection system. This is basically built around a diode which feeds a capacitor (memory). Here the diode only conducts when the input signal is higher than the previous one, so

The oscillators used to generate all signals in this circuit are of a simple relaxation type built around a Schmitt trigger inverter. Wired up in a feedback loop which is delayed by a simple RC network, an inverter becomes an oscillator. For example, say its output is high, after a fixed time, set by the RC time constant, the input goes high thus forcing the output low, the process is repeated on and on.. Some hysteresis is needed, i.e. there must be some differential between the switching levels to allow a delay to be manufactured.

In this circuit output frequency is given by:

The first of these oscillators generates the reference signal of 60 Hz This is AC coupled and filtered at 60 Hz by a simple RC filter to remove

One of the TL082's op-amps are used to bulld a high input impedance active peak rectifier (its input resistance being 1 trillion ohmsi). A gain of about 10 is given to restore what can be a weak signal. The "memory capacitor" is set with a time constant of about 5 s, which means while it is set quickly, it only resets slowly, thus making its output appear as a clean DC source. The comparator has been wired up with some positive feedback to ensure clean switching about the

Switching the oscillators on and off is done by using diodes to gate the inputs. So when the comparator is in the off state (i.e: no alarm needed), the diode D2 is forward biased thus forcing the input of the inverter IC1d low. Now this means its output is now high, similarly the diode D3 is forward biased and so holds the input of inverter IC1e high,

However when the comparator is triggered by some form of conduction, i.e: some alarm is needed, the diode D2 is now reverse blased and so does not conduct. Thus the oscillator (C1d) is free to do what it does best and oscillate. This output alternately turns the diode D3 on and off and the oscillator (ICle). Thus the audible tone turns on and off. The frequency of the tone is set in the 3800 Hz range and can be adjusted by VR2. Note that piezo sounders do have an optimum frequency as they are really low frequency crystal oscillators. So VR2 allows either the loudest or the most annoying tone, or both, to be set.

Fig. 3 Main circult
ground line roughly at the midpoint. A negative regulator was used as it sinks current better than a positive one which is an important criterion for insuring stability. A piece of veroboard was used to make the sensor (see Figure.2). I removed the central track to make it more immune to dirt forming a bridge and the problem of surface tension causing a film of water to stick over the tracks even after the level of the water has receded. Some silicone repellent can also be smeared between the tracks as an added protection against this.

Separate the copper tracks where required firstly. Then solder in the link wires, diodes and resistors. After this the IC sockets, capacitors, presets and the regulator. Make sure the capacitor polarities are the right way round. Also be sure to tie the unused CMOS inputs to ground to prevent problems. ICs can then be plugged in and the circuit tested.

Testing and Setting up

The oscillators can be tested easily with a 'scope and the 2 Hz one with a meter. To test the peak detector short out the sensor and observe its output which should go from low to high. By the way the alarm should also sound at the same time. If not check the polarity of the diodes are correct.

Only two presets need to be adjusted. The first VR1 adjusts the triggering level of the alarm so it is quite easy to set. Place the sensor in the liquid in question and set it so the alarm just sounds, then turn it a little further to be sure of consistent operation. Remove the sensor, dry if necessary, and the alarm should go off. The second preset has been explained before and adjusts the alarm frequency.

$\begin{array}{rl} & \\ \text { R1 } & 2 \mathrm{M7} \\ \text { R2,6 } & 220 \mathrm{~K} \\ \text { R3 } & 680 \mathrm{~K} \\ \text { R4 } & 2 \mathrm{M} 2 \\ \text { R5 } & 22 \mathrm{~K} \\ \text { R7, } 11 & 47 \mathrm{~K} \\ \text { R8 } & 10 \mathrm{~K} \\ \text { R9 } & 1 \mathrm{M} \\ \text { R10 } & 470 \mathrm{~K} \\ \text { VR1,2 } & 100 \mathrm{~K}\end{array}$

C1 15 nF
C2 100 nF poly
C3 4n7F poly
C4.7 InF poly
C5 10uF tant 16 V
C6 2 22 F tant 16 V
Parts
C8,9 22 $\mu \mathrm{F}$ tant 16 V

> IC1 40106 hex Schmitt trigger inverter
> IC2 TL082 dual FET input op-amp
> D1-3 1N914
> REG1 79 L05

PZ1 Piezo sounder
PCB (see page 57) 9 V battery
case

[130 Wilit

Digital Echo
Keep on repeating yourself with Paul Stenning's Digital Echo Unit. Another superb project from Electronics in Action

HARD DISC DRIVE PARAMETERS

This new volume covers a vast range of Hard Disc Drives, mainly IDE typs, thus enabling you to easily set up the BIOS on your machine when you install a replacement drive. Listed by Make and Model, it gives the parameters for the Type, Capacity, Cylinders, Heads, Sectors per Track etc. If you need to know the parameters of a drive then this book is for you.

Just £5.95 inclusive. Order Code MP-247.
The above is just one of hundreds of Technical and Repair books we publish. From Valve Data to Video Recorders with everything else in between. We also have what is probably the largest range of Service Manuals available anywhere, for practically any Make, Model, Type or Age of equipment.

MAURITRON TECHNICAL SERVICES (EA247),

> 47A High Street, Chinnor, Oxon, OX9 4DJ.
> Tel:- O844-351694. Fax:- O844 352554.
> Please forward your latest catalogue for which I enclose 2×1 st Class Stamps.

NAME
ADDRESS

At last, a fully functional upgraceable pCB CAB system to suit any budget. Substantial trade-in discounts are available against other "professional" PCB design packages ...

... call now for details.

Board Capture

Schematic. Capture Designt Toof

- Diract neflist link lo Boarchtiaker2.

2f Fomserd amotation with part: valoes
2: Full undolfocio ficully (50) omprations)

- Sincie-stieet, multi-paged and himarehlical designs
- Smooth screlling

- Dymarnic connscturly intermation

4 Automatic on-line annetation:
a. tintagrated oifthe-lly liblayy = ditor
: Context sensitue editing

- Extensive componentobased power cartral
- Back annoxation fiem Bearchuaker2

Board Maker

Boardmakerl = Entry level
: PGB and schematic dratting

- Easy and inturtive to use
- Surdace miount and metric support
-90. 45 and culved rack comers
-Ground plarie fill
- Capper higitifigh and clearance checking

BoardMaker2 - Advanced level

- All the fealifes of Boardmakerl.
- Full nellist support - BoardCapture,

Orcad. Schoma, Tango, Caustar: and others

- Full bersign pale Cheching both mechanical and electrical
- Fop down modification from the schematic
*Componemt femumber with back annotation:
- Report generator - Database ASCII. BOM

NEW : Thermal power prane support with full DRC

Board Router

Gridless re-entrant attlorouter

- Simultaneous multi-layer ronting
- SMID and anatogue support
= Fill internuat, resume, pan and zoom whlte rowifng

Outpul drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix. HPLasetiet and PostScript
- Penplotters - HP Graphtec \& Houston
- Photoploters: All Gerber 3x00 and 4×00
- Excellon NC Drill and Amotaled drill drawings (BM2)

Call, write or fax for more information or a full evaluation kit Tsien (UIK) Limited Aylesby House Wenny Road, Chatterls

Cambridge
PE16 GUT
Tel (0354) 695959
Fax (0354) 695957

tsien

EUROPEAN COMPUTER MARKETING (U.K.) ROWAN HOUSE, WOODLANDS ROAD, RILLINGTON, MALTON, YO17 8LD, N YORKSHIRE
 Subject to availability despatch is normally effected within 2 days from receipt of cleared payment. Please allow 7 working days for cheque clearance. All orders will be fulfiled within 28 days unless otherwise notified.
 SALES AND INFORMATION HOTLINE

 \section*{0944-758989

 \section*{0944-758989

 FAX: 0944-758989}

 FAX: 0944-758989}
 All prices are exclusive of V.A.T @ 17.5\% and UK mainland delivery Export orders are welcome. Please call for carriage to country of destination. Payment by cheque, bankers draft, cash or postal orders.

E \& O.E All prices subject to change without notice. Please call before ordering. Goods are not supplied on a trial basis.

STANDARD FEATURES INCLUDE: MINI TOWER OR DESK TOP CASE WITH DIGITAL SPEED DISPLAY, 3.5° FLOPPY DRIVE ($1,44 \mathrm{MB}$), 5.25^{*} (1.2 MB) FLOPPY DISK DRIVE, 2 SERIAL? 1 PARALLEL/1GAMES PORT, 102 KEY UK KEYBOARD, MICROSOFT COMP MOUSE, * 3 YEAR WARRANTY, M5 DOS 5 , MS WINDOWS

MOTHERBOARDS

ECM100 3865X-40MHZ
ECM101 3860X40MHZ 128 K CACHE
ECM 102 2865X25MHZ VLB 256K CACHE
ECM 103 486SX33MHZ VLB 256 K CACHE
ECM 104 4860X33MHZ VLB 256K CACHE
ECM106 4865 X50MHZ VLB 256K CACHE ECM107 486DLC40MHZ VLB \& CO-PRO

HARD DISK DRIVES

ECM 108 120MB IDE CONNER ECM 109 170MB IDE CONNER ECM110 210MB IDE CONNER ECM 112 33OMB IDE CONNER
ECM113 1GB FAST SCSI-2 FWITSU $£ 153.00$
$£ 169.00$ 173.00 $£ 173.00$
$£ 178.00$ $£ 178.00$
$£ 210.00$ $£ 210.00$
$\$ 640.00$

MEMORY

ECM114 256K SIMMS MODULE ¢CALL ECM115 1MB SIMMS MODULE TONS CCALL ECALL

LATEST DESIGN CASES

ECM117 DELUXE DESKTOP
ECM118 DELUXE SUMLINE CASE
ECM119 DELUXE MINITOWER
ECM 120 DELUXE FULLTOWER
ECM121 DELUXE MULTIMEDIA

KEYBOARDS

ECM122 102 KEY UK KEYBOARD
ECM 123 HIGH QUAUTY (CORPORATE) KEYBOARD ECM 124 CHERRY KEYBOARD

ADD-ON CARDS

ECM131 I/O CARD 2S/1P/1G
ECM 132 IDE CARD 2HD/2FD WITH CABLES ECM133 IDE \& VO CARD 2HD/2FD/2S/1P/1G WTH CABLES ECM 134 IDE CACHE CONTROLLER 2HD/2FD ECM135 ADEPTIC 1542C SCSI HIGH PERFORMANCE KTT

COMMS PRODUCTS

ECM136 FAXMODEM 9600/4800 WITH BITFAX FOR DOS $£ 49.00$ ECM137 FAXMODEM $9600 / 2400$ WITH BITFAX FOR DOSWINOOWS $\$ 57.00$ ECM138 POCKET FAX/MODEM 9600/2400
$\mathbf{\Sigma 5 7 . 0 0}$

MONITORS

ECM154 MONO VGA 14° MONITOR
ECM155 COLOUR SVGA 14^{\prime} MONITOR
ECM156 COLOUR SVGA 14° NON INTERLACED ECM 157 COLOUR SVGA 15° NON INTERLACED ECM158 COLOUR SVGA IT NON INTERLACED
3.1. ALL SYSTEMS ARE SOAK TESTED FOR 48 HRS.

SOFTWARE

ECM163 MS DOS V5.0
 ECM 164 MS DOS V6.0

ECM 165 MS WINDOWS V3. 1

ECM 176 MS
ECM 177 MS DOS V 3.3 (FOREIGN) FRENCH 5.25° ONLY £22.00

ECM 150 WORLD ATLAS CD

ECM 151 GUINESS DISC OF RECORDS 1993 CD ECM 152 WORLD VIEW WITH VIDEO FOR WINDOWS ECM 153 KODAK PHOTO CD ACCESS SOFTWARE ECM 166 AA HOTELS \& RESTAURANTS
ECM 167 SHAREWARE OVERLOAD
ECM 168 PUBLISHERS DREAMS
ECM 169 WIN PLATINUM
ECM170 WORLD FACT BOOK ' 93 ECM 171 WINDOWS MASTER ECM 172 BUSINESS MASTER 2ND EDITION ECM 173 VIDEO MOVIE GUIDE '93 ECM 174 TOOLWORKS REFERENCE LIBRARY

DISPLAY CARDS

ECM139 MONO CARD WITH PRINTER PORT ECM140 VGA CARD 256 K
ECM141 16 BIT SVGA CARD 512K
ECM 142 TRIDENT 8900CL 16 BIT SVGA 1MB ECM143 TSENG LAB ET4000 1MB 16.7MB COLOURS
$£ 25.00$
$£ 25.00$
$£ 25.00$
$£ 20.00$
$£ 20.00$
$£ 20.00$
$£ 20.00$
$\$ 15.00$
$\$ 15.00$
$\$ 35.00$
$\$ 35.00$
$\$ 25.00$
$£ 25.00$
$£ 25.00$
£25.00
$\$ 22.00$
£22.00
§35.00
§25.00
$£ 16.00$
$£ 36.00$
$£ 39.00$
$£ 39.00$
$£ 52.00$
£64.00

PRINTERS

ECM125 HP DESKJET 510
 ECM126 HP DESKJET 550

ECM127 PANASONIC KXP
ECM128 PANASONIC KXP1123 24 PIN DOT MATRIX
ECM130 PARALLEL PRINTER CABIE
5239.00
$\$ 419.00$
£492.00
$\begin{array}{r} \\ \$ 139.00 \\ \hline 184.00\end{array}$
E184.00
$\mathbf{~} 2.90$

MULTI MEDIA

ECM 144 MITSUMI CD ROM \& INTERFACE CARD $\$ 125.00$ ECM145 PANASONIC S62 DUAL SPEEDCDROM COMPLETE KTT $\begin{aligned} & £ 159.00 \\ & £ 159.00\end{aligned}$ ECM146 SOUNDBLASTER V2 COMPATIBLE WITH SPEAKERS $£ 45.00$ ECM 147 SOUNDBLASTER PRO WITH CD INTERFACE \quad E82.00 ECM148 AMPLIFIED POWER SPEAKERS
$£ 24.00$ ECM149 VIDEO CAPTURE CARD AND VIDEO FOR WINDOWS $£ 215.00$ ECM 178 MICROSOFT COMPATIBLE MOUSE ECM179 ANALOG JOYSTICK (REQUIRES GAMES PORT) $£ 22.00$

FLOPPY DRIVES

ECM160 3.5. 1.44MB FLOPPY DISK DRIVE
ECM 1615.25° 1.2MB FLOPPY DISK DRIVE
ECM 162 FLOPPY DRIVE MOUNTING KIT

TELECOM PRODUCTS

UNFORTUNATELY WE ARE UNABLE TO LIST OUR FULL LINE OF TELECOM PRODUCTS AS IT IS SO LARGE. BELOW IS A LISTING OF CATEGORIES, FULL LISTS ARE AVAILABLE BY
TELEPHONE/FAX.
STANDARD AND FEATURE PHONES
SPECIAL APPLICATION PHONES
OPERATOR HEADSETS
SPECIAL ENVIRONMENT TELEPHONES NOVELTY \& CLOCK RADIO TELEPHONES
DECORATIVE TELEPHONES
ANSWERING MACHINES
ANSWERING MACHINE TAPES \& ACCESSORIES
CORDLESS TELEPHONES
CORDLESS ACCESSORIES BATTERIES \& AERIALS
CT2 DIGITAL CORDLESS TELEPHONES
FULL RANGE OF CELLULAR TELEPHONES
RADIO PAGING SYSTEMS (WIDE AREA)
RADIO PAGING SYSTEMS (LOCAL AREA)
PAYPHONES
PAYPHONE ACCESSORIES
FACSIMILE MACHINES
FAX SWITCHES \& MODEMS
BUSINESS TELEPHONE SYSTEMS
CALL BARRING DEVICES
AUDIO \& VISUAL INDICATORS
VOICE MAIL SYSTEMS
FAX-ON-DEMAND SYSTEMS
FULL LINE OF OFFICE PRODUCTS (COPIERS ETC)
SECURITY PRODUCTS
COMING SOON:
VIDEOCONFERENCING SYSTEM
CALL METERING DEVICE (TELAMETA)
CALLER IDENTIFICATION (SUBJECT TO APPROVAL)

EUROPEAN COMPUTER MARKETING OFFERS

 YOUR ULTIMATE LINE OF SUPPLY!!! THE ULTIMATE SERVICE!!! VERY COMPETITIVE PRICES!!!AND THE HIGHEST QUALITY PRODUCTS !!!
SALES \& INFORMATION HOTLINE 24 Hrs ALSO PRODUCT DETAILS \& LATEST PRICES AVAILABLE BY FAX-ON-DEMAND CALL FROM A FAX MACHINE AND PRESS START WHEN REQUESTED 0944-758989

The Alchemist Moving Coil Head Amp

Fig．IStylus mounting with damping control

Readers au fait with the Audiophile RIAA project of the first issue of EIA（October 1993）are probably wondering why I omitted a moving coil stage from said preamp．There are two reasons．Firstly， I＇m a firm believer in the minimalist approach to engineering．Being a Scot， money－and the saving thereof－is a subject very dear to my heart．It follows that any project that I＇m involved in is engineered with cost uppermost in mind －this isn＇t to say that I abandon all performance considerations because they depend，ultimately，on cost．Rather，I＇ll look for ways to achieve a certain level of performance in a given field，whilst keeping the bank manager happy about my approach to the more fiscal aspects of everyday life．It could be summed up in one rather naff，advertising copywriters phrase－performance for peanuts．．．Furthermore，I chose not to include a front end stage suitable for moving coil cartridge preamplification because it would have cost more and would－I then thought－have minimal appeal．Readers of magazines such as this are susceptible to the same pressures and temptations as everybody else．To use the vernacular，＂Where am I coming from？＂Read on．

We＇ve already mentioned the major technological upheaval that the sound recording industry has undergone in the few years since the birth of digital optical storage and retrieval systems for audio．Despite all of the excellent attributes of CD，and there are indeed many，analogue recordings using vinyl
discs and mechanical recording／ retrieving systems have been around for over one hundred years，and much of the music of famous composers，orchestras， bands，and the sounds of historical events have only been captured in the intricate excursions of the analogue record groove．The format persists in the countless millions of discs hoarded in

Mike Meechan gets to grips with another pre－amp design for the hi－fi enthusiast．

The cartridge． audiophile archives，music libraries and radio stations，as well as in the homes of personal devotees．

The contents of such discs can never totally be re－recorded using modern－day digital techniques，so it remains of vital importance that the art of preserving， restoring and reproducing such material remains both in the present，and in years to come．Aficionados of the format must remain optimistic that the apparatus necessary to continue doing so remains for the foreseeable future，and beyond．

One of the unassailable attractions of the CD format must be that it is great for the AVERAGE listener．It＇s robust，the discs themselves will tolerate SOME abuse，there are no pops or clicks，and cuing up and playing a disc requires absolutely no manual dexterity whatsoever．So damaged tonearms and styli become a thing of the past．．．

But vinyl，too，has its strengths． Some audiophiles claim that they

Fig． 2 Method of measuring dynamic mass of Tonearm Tonearm（or cartridge vertical）resonant frequency is found by playing a special test record，with signals at specific frequencies， and recording the frequency at which the cartridge output is highest．Dynamic mass of the tonearm is calculated by suspending the complete arm／cartridge assembly from a spring（connected just above the stylus pivot），and connecting this spring to a loudspeaker－type driving force．The spring is then excited vertically at various frequencies，and the resonant frequency of the assembly noted．Next，the tonearm is freed from the spring，and precisely－ valued weights attached in its place．Dynamic mass of the tonearm equates to the mass of attached weights at which the resonant frequency is the same．Once both mass and frequency are known， compliance can be readily calculated．
prefer vinyl discs to $C D$ for one reason and one reason only - they can hear the difference. It's a very controversial subject - scientists versus subjectivists and blind A / B listening tests have been used in an effort to prove or disprove the claim. Whatever your beliefs on the subject, it is regarded as fact that the harmonics of certain instruments - piano and violin, for instance - extend into frequencies above the accepted ceiling of the human beings ears - ie 20 kHz . Proponents of analogue claim, therefore, that it is something of a backward step to stop frequencies above a certain threshold when it's taken over a hundred years for analogue technology to advance sufficiently to be able to reproduce them. It is for this reason, that the low sampling frequency of the format means that the reproduction of CD can be perceived as unnatural because all sounds above a 20 kHz maximum are filtered out.

Rebellion of the Record Lover

Because of these problems, inherent at present to some compact disc reproduction systems, there are a certain number of Luddite listeners, for want of a better phrase, who still happen to like and believe in vinyl. Put another way, these miscreants think it better that CD coexist happily with the old and quaint format known as vinyl. Not for us (yes, I count myself among them) the vast vinyl sell-off (or SELL-OUT). We believe, that it is much better to improve the component parts of the analogue system, and continue using it as a viable high fidelity alternative (or complement) to CD .

Articles in the main are either provinyl and anti-CD, or unequivocally vice-versa. It is the purpose of this article to extol the virtues of vinyl and perhaps broaden the minds of some of our readers who are, perhaps, $C D$ junkies through and through. A new generation of engineers and technologists appears every ten years or so. Perhaps some of you out there belong to this youthful fraternity and it hasn't occurred to you to give vinyl a fair crack of the whip. I hope that I can,
change your minds, but if this isn't the case, at least raise some awareness of what is presently a very topical subject.

Unfortunately the tide has now turned sufficiently that I face a somewhat uphill struggle.

It remains a sad fact of life that Compact Disc has all but displaced vinyl from the shelves of the retail outlets, and sales of CD and cassette, despite the
bizarre pricing anomaly, far outstrip those of the vinyl format. The classical labels - Nimbus initially, followed closely by Deutsche Grammophon were the first to announce that future recordings would be available only on CD or cassette, and back catalogue on vinyl
 would be available only until stocks were exhausted. More recently, this is happening with all new releases, and the only way to track down prized and treasured old vinyl is via the second-hand shop or the collectors fayres.

It is to these misguided, wellmeaning miscreants of the audiophile world that this project is dedicated - if you look very closely, you'll see that my tongue is very firmly in my
cheek...However, before presenting the project, it is worthwhile to look at the labour of love that is the low-noise designer's realisation of a high performance, moving-coil preamp. As a slight, but pertinent aside, the project was named The Alchemist because there seems to have been so much myth and folklore associated with the magic that is low noise design, a discipline that seems, for many audio engineering students, to a have its roots more. in black art than science. It is the purpose therefore, of the preliminary part of this paper to dispel some of these myths before presenting the reality in the form of a tangible audio project.

Firstly, we must look at what is involved in getting audio information, in a mechanical form, onto and ultimately from the disc in question.

A Short History

Around the 1870's, Thomas Edison used a cylindrical phonograph and aluminium foil to reproduce sound. The "flat disc
recording", as it was called, didn't appear until 1887, and it is Emil Berliner who is accredited as being the inventor of a format which has persisted until the present day. Even the most fervent proponents would be hard-pushed not to admit that the reproduction of sound from a vinyl pressing approaches perfection. Nevertheless, where these limitations are appreciated, the attraction of the vinyl disc format, and the scope for improvement, can be seen (or heard).

From Needle to Loudspeaker

The creation of the recording itself, the design of the apparatus required to extract this information (the cartridge), and finally, getting the information off the disc are the cause of many problems which must be surmounted if the system is to be successful and the resulting sound acceptable.

As far as electromagnetic transducers, the one found at the end of a tonearm has a much harder life than most of its family. In addition to converting the groove modulations of the record into an electrical signal, it must also support the tonearm.

The transducer can be called any one of a number of names - phono pickup, phono cartridge, or needle. The method by which the cartridge converts energy determines the classification under which it falls. Under the piezoelectric classification comes the inexpensive, low-fi and utterly avoidable crystal and ceramic types. Moving magnet (MM), moving coil (MC), and induced magnet (moving iron), on the other hand, are known as electrodynamic-type cartridges. These types use the principle that when a magnetic field intersects a wound coil, an electric current will be generated. While moving magnet cartridges have a magnet attached to the stylus tube or cantilever, and the coils are stationary, moving coil types work on the opposite principle, with the magnet fixed and the coils moving. (The moving iron type uses a magnet and coil which are fixed, and a slug of soft magnetic iron which moves instead of the magnet, and is magnetised by it). Happily, technology has advanced sufficiently that the various materials which might one day have found their way into the stylus assembly - cactus needles, whale bones, all kinds of metals, gemstones, plastics and wood, to name but a few - have all been superseded!

Because of the interaction of magnet and coil in these types of cartridges, any
amplifier sees a decidedly non-linear source impedance at its input. With reference to Faraday's law of induction, induced voltage is proportional to the relative velocity of both the magnet and coil parts of the assembly.

The design of the cartridge must ensure that a linear relationship exists between the position of the stylus cantilever assembly and the magnetic flux (since the signal voltage generated at any instant in time is proportional to rate of change of flux with respect to time). Rate of change of stylus position with respect to time will thus be proportional to the signal voltage. However, the groove shape is proportional to the integral of the signal waveform, so the groove excursions - the waveform imprinted in the vinyl - are not directly proportional to the signal voltage.

This means that the signal voltage is proportional to the velocity of the stylus, and the signal SLOPE is proportional to the ACCELERATION of the stylus. Consequently, the cartridge cantilever assembly and associated suspension, and the magnet/coil system, must form a resonant massspring system if high signal slopes are to be reproduced with any degree of fidelity.

The Appliance of Science

"Springiness" and mass determine the amount of force required to move the stylus. Using the damped mass-spring model of a magnetic cartridge, we can predict that the resonant frequency will depend upon the "springiness" of the cantilever's suspension, and on the mass of the stylus cantilever assembly.
"Springiness" is given the symbol k , the spring constant, and is represented numerically. K is defined in terms of the force needed to bring about a certain compression or extension of the spring, so stiffer springs have a higher k value. Spring constants are almost unusably low numbers, so the reciprocal of the spring constant - $1 / k$ - is quoted in preference by cartridge manufacturers. This reciprocal is called compliance. Compliance of the cantilever or stylus is the ability of the assembly to react to groove modulation, and it is measured
(statically or dynamically) in $\mathrm{cm} / \mathrm{dyn}$ or $\mu \mathrm{m} / \mathrm{mN}$, with a lower compliance figure equating to a stiffer suspension system. Dynamic compliance gives us the means to calculate the resonant frequency of the tonearm/cartridge assembly, and so measure the effective mass of the tonearm. Compliance is calculated as follows;

Where:

c is the compliance in cm/dyne f is the frequency in Hertz \mathbf{M} is the tonearm mass in grams

At resonance, there is no longer a linear relationship between the
frequency by lowering the Q of the system. This is done by introducing mechanical or electrical losses into the system. The most widely-used method is to introduce friction into the cantilever suspension assembly using rubber mounting blocks. Desired mechanical damping is achieved, whilst the absorption of energy (into the load resistance of the cartridge preamplifier), lowers the electrical Q of the system. See Figure 1. It would be correct to say that the reproduction of sound from a vinyl disc owes as much to complex mechanics as it does to electronics.

Fig. 3 b Cross

impedance of the cartridge and the driving force on the stylus. This nonlinearity results in distortion of the waveform. However, shifting the resonant frequency to a point in the spectrum which is below the lower audible limit helps to overcome this. This can be achieved either by increasing the mass or the value of the compliance (since the cartridge resonant frequency is a function both of mass, and of the compliance of the cantilever and suspension system). Lowering of the mass is the more desirable method, since the stylus is then able to respond better (more quickly) to the changes in the record groove. Compliance is thus altered until a resonant frequency which is suitable - typically below 10 Hz - is then achieved. The most desirable range is between 8 and 12 Hz since resonance below 8 Hz will produce instability of the tonearm, and will result in poor tracking of any records with warps.

It is also possible to alter resonant

Moving Coil Cartridges

This type were among the first to be used and employ one heavy magnet, and the cantilever assembly, (which cannot be replaced by the user). The MC cartridge is insensitive both to input load impedance, (typically in the order of 5 to 100 ohms), and to capacitive loading, so that long cables can be driven without detriment to the frequency response. Regrettably, the low impedance which creates these benefits also means low output - typically some $20-30 \mathrm{~dB}$ below that of the moving magnet type, when referenced to an established sensitivity of $1 \mathrm{mV} / \mathrm{cm} / \mathrm{s}$). Very careful amplification of the cartridge output signal is thus required if noise performance isn't to be unduly compromised. A further downpoint of the MC type is that tracking forces are much heavier, although sound quality from the moving coil cartridge can be very good, with distortion figures typically lower than the moving magnet
type. The very fast response to transients in any musical passage (as a result of the very low impedance and inductance of the coils (much less than the $0.3-1 \mathrm{H}$ of the MM type), and a very rigid and strong cantilever (necessary to support a heavy magnet assembly) gives a flatter and more extended frequency response. Furthermore, better channel separation (some $30-40 \mathrm{~dB}$ compared to the $20-$ 30 dB of the fixed coil type) is achieved because the stylus assembly and the coil system are in much closer proximity.

All of the above means that construction of the coil assembly is particularly critical. Flaws in this area which can lead to problems include numbers of unsupported turns, which can set up vibrations in the assembly, and generate random output at HF, and improperly-secured lead-in and lead-out wires, which can vibrate in the magnetic field, and cause colouration of the output signal. In spite of this, the moving coil, because of the extended frequency response, and excellent transient characteristics, has traditionally been favoured over other types by the true audiophile fraternity. See Figure 3.

Moving Magnet Cartridges

This type of cartridge appeared much later than the MC, originating in Europe in the late fifties. Its durability and low relative cost when compared to the MC cartridge (no separate head amp required) have helped it to become the most popular example of the phono cartridge. It has high compliance, low dynamic tip mass, and the large number of turns in the coil assembly provide a reasonably high output voltage capability. Although the basic principle hasn't changed much since its first appearance, it has been refined to such an extent over the years that modern-day cartridges in the vanguard of the moving magnet type can produce outputs well above the audible frequency ceiling (typically 50 kHz in some examples). However, the rising inductive component of the cartridge impedance, which has a typical resistive component of 200R-1k, means that the output level MUST diminish (or disappear) at frequencies higher than this. The unique electromagnetic characteristics of the moving magnet cartridge mean that any input stage
ceramic) type. The latter type belong to group known as constant amplitude (or pressure sensitive) cartridges, since they give an output which is proportional to the force applied to the stylus, and so produce an output voltage which is independent of frequency (no equalisation is therefore required).

Electrical Loading

Electrical loading of the cartridge, at the amplifier input, is of paramount importance if overall frequency response isn't to be needlessly impaired. It's a

pointless exercise - and very wasteful of design time and resources - to have an amplifier fitted with an RIAA equalisation network which is accurate to 0.1 dB across the audio spectrum, but which is connected to a cartridge where has an incorrect value of shunt capacitance has been connected across it. Input capacitance, as specified by the cartridge manufacturer, is the TOTAL these are almost identical to those of the moving magnet cartridge. A small armature, in the shape of a cross, swings between four pole pins and coils, whilst a stylus bar, which has the stylus at one end, is secured to the armature at the other. 45° of motion to one side cause reverse voltage induction. This allows pushpull operation of the coils, and thus reduces harmonic distortion caused by nonlinearities in the magnetic field. The coils also provide hum bucking (rejection) with crosstalk components bucked out, so channel separation is good, regardless of frequency. See Figure 5.

Other Types

The other types of cartridges in existence (but which we won't discuss in detail) are the semiconductor cartridge and the piezoelectric (crystal or

PROTEUS

The Complete Electrontios Design System

Schematic Capture

- Easy to Use Graphical Interface.

O Netlist, Parts List \& ERC reports.

- Hierarchical Design.

O Extensive component/model libraries.

- Advanced Property Management.
- Seamless integration with simulation and PCB design.

stmultation

- Non-Linear \& Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

O Multi-Layer and SMT support.
- Unlimited Design Capacity.
- Full DRC and Connectivity Checking.
- Advanced Multi-Strategy Autorouting.
- Outpui to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps.
- Gerber View and Import capability.

Labcenter
 EIectronics

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 0274542868 . Fax: 0274481078. 14 Marriner's Drive, Bradford BD9 4JT.

EXPRESS COMPONENTS

MAINS IONIZER KIT. Very useful kit that increases the flow of negative ions, helps clear cigarette smoke, dust, pollen etc. Helps reduce stress and respiratory problems. $£ 15$. kit, $£ 20$ built.
COMBINATION LOCK. Electronic 9 key combination lock suitable for alarms, cars, houses etc, easily progranmable. Includes mains 2 Arelay o/p. 9 v operation. $£ 10$ kit, $£ 14$ built.
VARIABLE POWER SUPPLY. Stabiized, short circuit protected. Gives $3-30 \mathrm{v}$ DC at 2.5 A , ideal for workshop or laboratory $£ 14$ kit, $£ 18$ built. 24 VAC required.
LEAD ACIDCHARGER. Two automatic charging rates(fast and slow), visual indication of battery state. Ideal for alarm systems, emergency lighting, battery projects etc. $£ 12$ kit, $£ 16$ built. PIONE LINE RECORDER.Device that connects to the 'phone line and activates a cassette recorder when the handset is lifted. Ideal for recording 'phone conversations etc!. $£ 8$ kit, $£ 12$ built.
ROBOT VOICE. Turns your voice into a robot voice! answer the phone with a different voice!. $£ 9$ kit, $£ 13$ built.
PHONE BUG DETECTOR. This device will warn you if somebody is eavesdropping on your 'phone line. $£ 6$ kit $£ 9$ built.
PHONE BUG. Small bug powered by the telephone line. Only transmits when the phone is used. Popular surveillance product. f 8 kit , E 12 built.

STROBE LIGITT. Bright strobe light with an adjustable frequency of $1-60 \mathrm{hz}$. (a lot faster than conventional strobes!) $£ 16$ kit, $£ 20$ built.
4W FMTRANSMITTER 3RF stage, audio preamp. $12-18 \mathrm{vDC}$. Medium powered bug $£ 20$ kit, $£ 28$ built.
3 CHANNEL LIGHT CHASER. 3x 800 w output, speed and direction controls, can be used wilh 12 led's (supplied) or TRIACS for mains lights (also supplied), $9-15 \mathrm{vDC} . £ 17 \mathrm{kit}, £ 23$ buill. 25W FM TRANSMITTER. 4 stage, a preamp will be required. (Our preamp below is suitable) $£ 79$ built.(no kits). SOUND EFFECTS GENERATOR. Produces any thing from bird chips to sirens! add sounds to all sorts of things $£ 9$ kit $£ 13$ built.
FM/AM SCANNER. Well not quite, you have to turn the knob yourself but you will hear things on this radio (even TV) that you would not hear on an ordinary radiol A receiver that covers $50-160 \mathrm{MHZ}$ both AM and FM. Built in 5 w amplifier. $£ 15 \mathrm{kit}, £ 20$ built. CAR ALARM SYSTEM. Works on vibration and/or voltage drop from door etc being opened. Entry and exit delays plus adjustable alarm duration.Low cost protection! $£ 12$ kit, $£ 16$ built.
15W FM TRANSMITTER. 4 stage, high power bug. You will need a preamp for this (see our preamp below which is ok) $£ 69$ built. (no kits).
1W FM TRANSMITTER. 2 stage including preamp and mic. Good general purpose bug. 8-30VDC. $£ 12$ kit, $£ 16$ buill.
$50 \mathrm{I} / \mathrm{C}^{\prime} \mathrm{s}$ for E 1.50
Nice mix of chips at a bargain price!
CERAMIC CAPACITOR PACK
Good mixed pack of 100 capacitors for just $£ 1.00$

ELECTROLytic PACK 1 100 small mixed electrolytic capacitors just $£ 1.00$ ELECTROLYTIC PACK 2 50 larger electrolytic mixed capacitors

FUSE PACK NO 2
30 mixed 1.25 " fuses again ideal for spares etc. Just $£ 1.00$

WIRE PACK

25 Metres of insulated wire for just $£ 1.00$, good for projects etc.

SLEEVING PACK

100 assorted pieces of sleeving for connectors etc. Yours for just $£ 1.00$

DIODE PACK
100 assorted diodes for just $£ 1.00$
LED PACK
20 light emitting diodes for $£ 1.00$
TRANSISTOR PACK
50 mixed transistors, another bargain at $£ 1.00$

BUZZER PACK
10 things that make a noise for just £1.00!
Nice selection of 25 mixed preset pots for just another $f 1$!

RELAY PaCK NO 1
6 mixed relays for $£ 1$, thats just 17 p each.

CONNECTOR PACK
10 different connectors, again for fl

FUSE PACK NO 1

40 mixed 20 mm fuses, ideal for repairs etc, or just to stock up the spares box! Just $£ 1.00$

KITS 'N MODULES

PREAMP MIXER. 3 channel input, independent level and tone controls. Ideal for use with the hi power FM transmitters. $£ 15$ kit, $£ 19$ built.
TREMBLER ALARM. Designed for bikes etc, adjustable sensitivity, preset alarm time, auto reset. Could be adapted for all sorts of "borrowable" things $£ 12$ kit,£16 built.
ULTRASONIC RADAR. A project that can be used as a movement detector in an enclosed space. Range about 10 metres, 12 vDC . Good basis for car,shed,caravan alarm etc. $£ 14 \mathrm{kit}, £ 19$ built.
PHONE CALL RELAY. Very useful kit that incorporates a relay that operates when the phone rings. Can be used to operate more bells, signalling lights etc. Good for noisy enviroments or if you have your headphones on! $£ 10 \mathrm{kit}$, $£ 14$ built.
PORTABLE ALARM SYSTEM. Small 9v alarm system based on a mercury switch. The alarm contitues to sound until disabled by the owner. Buzzer included. $£ 11$ kit $£ 15$ built.
800W MUSIC TO LIGHT EFFECT. Add rhythm to your music with this simplesound to light kit. $18 \mathrm{kit}, \mathrm{E} 12$ built.
MOSQUITO REPELLER. Modern way to keep the midges away! Runs for
about a month on one
1.5 v battery. Frequency is set to drive away mosquitos etc. $£ 7 \mathrm{kit}$, £11 built.
3 CHANNEL SOUND TO LIGHT. Can be used any where as no connection is made to hi fi. Separate sensitivity controls for each channel, $1,200 \mathrm{~W}$ powerhandling. Microphone included. $£ 14$ kit, $£ 19$ built.
MINI METAL DETECTOR. Detects pipes, wires etc up to 20 cm deep. Useful before you drill those holes! $£ 8$ kit, £12 built.
0-5 MINUTE TIMER. Simple time switch adjustable from $0-5$ mins, will switch 2 A mains load. 12 v op. Ideal for laboratory, photographic projects etc. $£ 7$ kit, £11 built.
7 WATT HI FI AMPLIFIER. Useful, powerful amplifier $20 \mathrm{hz}-15 \mathrm{hz}$, 12 18 vdc . Good for intercoms, audio systems, car etc. $£ 7$ kit $£ 11$ built.
INCAR SOUND TO LIGIIT. Put some atmosphere in your car with this kit. Each channel has 6 led's that create a beautiful lighting effect! $£ 10$ kit, $£ 14$ built.
VOX SWITCH. This is a sound activated switch, ideal for use on transmitters, CB's, tape recorders etc. Adjustable sensitivity, built in delay. Mic input. $£ 7 \mathrm{kit}, £ 11$ built.

LIQUID LEVEL DETECTOR.
Useful item, can be used to detect fluid levels in watertanks, baths, ponds fishtanks etc. Could also be used as rain alarm with an easily constructed sensor. $£ 5 \mathrm{kit}, £ 9$ built.
FM TRANSMITTER. Mini FMtransmitter 2 transistor, comes with FET minature mic and is tuneable from 63 to $130 \mathrm{MHZ} . £ 7 \mathrm{kit}, £ 11$ built.
FUNCTION GENERATOR. Generates sinusoidal, saw tooth and square waveforms from 20 hz up to 20 klz . Separate level controls for each waveform. $24 \mathrm{vac} . £ 15 \mathrm{kit}, £ 20$ built.
5 WATT SIREN. Powerful siren kit with an impressive 5 watts output. Ideal for alarms etc. $£ 6$ kit $£ 10$ built.
TELEPIONE AMPIIFIER. Very sensitive amplifier which using a 'phone pickup coil (supplied) will let you fol-
low a telephone conversation without holding the handset to your ear! $£ 11$ kit $£ 15$ built.

SWITCH PACK

10 switches for just $£ 1.00$

12v FLOURESCENT. A useful kit that will enable you to light large flourescent tubes from your car battery etc. 9 v mains transformer required. $£ 8 \mathrm{kit}, £ 12$ built.

KNOB PACK

10 knobs for just $£ 1.00$

REMEMBER! YOUR FREE COPY OF OUR CUT PRICE COMPONENTS CATALOGUE SENT WITH EVERY ORDERI!

How to place your order.
By phone.......... 0273771156
By FAX........... 0273206875
By Post...PO box 517 Hove Sussex BN3 5QZ
Payment by ACCESS, VISA, CHEQUE OR POSTAL ORDER.
Cheques and postal orders should be payable to Express Components.
ALL PRICES ARE SUBJECT TO99p POST AND VAT. Some of our products may be unlicensable for use in the UK (particularly the FM transmitters.)

The Eyes Have Lit

Ophthalmic Excimer Lasers by Douglas Clarkson

From being a scientific curiosity, excimer lasers are now becoming increasingly utilised as a means of directly modifying the focusing characteristics of the human cornea in order to rectify basic vision defects such as short sightedness. A new range of 'third generation' machines are now providing higher levels of treatment accuracy and patient benefit.

All About the Eye

The focusing ability of the eye is described in diopters. This can be expressed in $1 / \mathrm{f}$ where f is the effective focal length of the eye. Often it is the excess or shortfall of the eye's focusing which is referenced e.g. a short-sighted eye will have around an excess of 5 Diopters and a far sighted eye a shortfall of 5 Diopters. There are several contributions to the overall focusing undertaken by the human eye. The front surface of the cornea has a significant focusing effect due to the change in refractive index (air-cornea surface). The

Fig. 2 Basic types of eye conditions which result in blurred vision
cell layers from the core of the cornea - between the outer and lower layer. Once this technique called photorefractive keratectomy had been demonstrated, the technology was developed for precise control sculpting of the cornea.
Photorefractive keratectomy (or PK) was fundamentally different from the previous surgical technique of radial keratotomy. While the surgical technique relied on wound healing to pull the cornea flatter, the laser method, by skimming off layers from the cornea does not weaken the structural integrity of the eye.

To date PK has been mainly used for the treatment of short sightedness and various types of astigmatism.

Basic Ophthalmic Use of Excimer Lasers

Excimer lasers used for this technique operate typically at a wavelength of 193 nm -

Surgical Alteration of the Cornea

During the 1980s various methods were investigated for direct surgical intervention in order to rectify some of these defects. In the radial keratotomy procedure, a series of between four and eight spoke-like incisions are made in the cornea in order to decrease its curvature and move the focal plane of images backwards. This procedure is primarily a treatment for myopia. In a trial of over 757 eyes treated in this way in the USA and completed in 1991 it was found that the procedure was more successful in older patients than younger ones and that the procedure could more readily rectify low to medium degrees of myopia - corresponding to corrections of between 1.5 to 5 diopters. The trial found that while the technique led to improvements in 'natural' focusing ability planned changes in focusing ability could not always be achieved.

Ophthalmic Use of Excimer Lasers

During the mid 1980s interest focused on the use of lasers for direct change of the optical properties of the cornea.
Excimer lasers can selectively remove
in the band of UVC radiation. Energy is delivered in a series of ultra short pulses of duration between 10 and 20
nanoseconds with maximum pulse energies typically of 0.5 J . The energy density required to ablate the corneal tissue is around 120 milli-joules $/ \mathrm{cm}^{2}$.

The laser energy removes a finite thin layer of cornea tissue and is typically about 0.25 micron per pulse. The interaction time is so short that there is insufficient time for heat energy to build up in the treated tissues. Prior to treatment, the thickness of the cornea is accurately measured in order to retain an adequate thickness.

While this gives a general outline, there is considerable sophistication in cornea sculpturing techniques. It is possible, to alter the size of the
treatment beam by an iris like device.
This method, allows a varying thickness to be removed from the cornea in order to achieve required cornea profiles. If this method was adopted then the cornea would present a staircase profile as shown in Figure 3. This is prevented by the use of an oscillating mirror to move specific pulses over a variable area so there are no abrupt gradations.

Small plumes of smoke produced by the laser energy are visible when the cornea is being sculpted. Typically the laser will have forced air ventilation to prevent smoke contamination of laser optic elements. It is of course vital that the eye does not move during the PK procedure. An assembly can be secured to the eye under suction in order on immobilise it. Systems are also in use which incorporate 'eye tracking' where any motion of the eye is compensated for automatically.

The use of such lasers requires high accuracy. The cutting effect of the laser is after all proportional to the total delivered energy at the treatment site. Excimer lasers, however, may vary their output powers significantly during a single day of operation. This is the result of interaction of complex variables within the excimer laser system. Most systems will be calibrated before a patient undergoes treatment to ensure removal of a predetermined layer of cornea tissue. For this test a specially

fabricated target consisting of metal foil bonded onto a plastic laminate is placed at the treatment zone of the excimer laser. A specific series of laser firings are undertaken with each one removing a very thin layer of metal film from the target surface. The system will measure the number of pulses required to remove the metal film and modify the energy of each pulse fired subsequently in order to meet calibration criteria.

In assessing of patients for excimer laser sculpting, it is essential to accurately determine the refractive properties of the eye prior to and after treatment. It is important to identify eye conditions for which PK would be

Fig. 5 Basic laser resonator. The fasing medium is contained between two mirror resonators so that photons released by stimulated emission can build up intensity as they are reflected from the end mirrors. One mirror is partially reflecting so a portion of the resonant energy can escape:

suitable. This can be rapidly undertaken using a corneal topography system. Figure 4 shows how a so called Placido image comprising 16 alternate black and white rings is projected onto the eye. Light which has passed through the eye's refractive path is then captured by
a Charge Coupled Device camera comprising 6000 pixels and the image is processed by a computer to determine the relative focusing ability of the eye. Figure 5 shows the history of how the refractive properties of an eye changed with conventional radial keratotomy where the cornea is incised with eight incisions. In this example the patient had 3D of myopia and was reduced to 0.25 D .

The process of erosion of cornea thickness can usually be configured as a process of a cylindrical contour to correct for astigmatism and a circular cut to correct for myopia. It is now possible for the automated vision profile of an eye being treated to be passed from such a vision analysis unit directly to the computer in the PK system so that correction is 'tailored' for the patient.

There are also free hand modes available where the operator can move
the excimer beam over areas where non standard modes of corneal tissue removal are indicated.

Part of the preoperative test is the measurement of the thickness of the cornea. This ensures an adequate thickness of corneal tissue. Without removal of this outer cell layer, the PK procedure cannot go ahead.

It is possible also to monitor the degree of regression of the PK treatment. While in most cases there will be a minor degree of regression where the eye will lose some of its short sighted correction, it is possible for more serious regression to occur.

Figure 8 shows a relatively stable excimer PK procedure where there has been only a slight degree of regression.

Main Features of Excimer Lasers

Excimer lasers belong to a family of lasers which use chemical reactions of stable noble gases such as Xenon and Argon with unstable Halogen atoms such as Chlorine and Fluorine.
Chemical reactions do not normally tend to take place in mixtures of such gases. It requires excitation
of a high voltage discharge across the tube or electron beam or microwave excitation for short lived chemical compounds to be generated. The short lived compounds exist for short times in raised energy levels. The unstable bound compound can break down into the free components and in so doing release energy. The excited molecules exist only for a short time - at most 20ns.

When molecule population in excited states has been established it is necessary to establish an optical resonator within which light can be released by stimulated emission of radiation. Such a resonator is shown in Figure 5. If a 'dimer' releases by spontaneous emission, a photon of light in the direction along the axis of the resonator, then this photon can induce other excited dimers to release light by stimulated emission. Photons are released with similar energy, direction and phase. A pulse of light will sweep along the resonator and be reflected from the faces of the resonator. While for many resonators it is necessary to have high values of reflectivity, low values of around 5\% can be adequate for excimer lasers. One face of the resonator

FIg. 6 Key elements of the Chiron Technolas excimer laser. Laser radiation is passed through a beam homogeniser and then through a variable aperture unit under computer control. The beam passes through various optics to reduce the beam size. A red He-Ne aiming beam provides location data along the axis of the treatment beam and a green He-Ne beam when co-incident with the red aiming beam gives accurate location in the vertical plane.

will transmit laser radiation out of the resonant cavity and into the delivery optics. Argon Fluorine gas mixtures are typically used for excimer lasers used in ophthalmology.

The gas becomes slightly depleted after each gas change. A gas cylinder will typically contain 100 gas fillings of the resonant chamber. Gas in the chamber will slowly degrade, so that if the system has not been operated for 48 hours it is advisable to renew the gas in the resonant chamber.

Key safety features can be built into the excimer gas handling procedures. A filter system can for example remove the reactive halogen (fluorine of chlorine) from the charge of used gas. The stable noble gas such as Argon or Xenon is released to air.

Figure 6 shows the key elements of a modern excimer laser such as the Chiron Technolas Keracor 116. Radiation emitted from the excimer laser is input into a homogeniser unit to produce a more even beam energy cross section. Radiation is then reflected into a variable aperture unit so that the cross section of the delivered beam can be controlled. The beam then passes into a series of focusing optics to reduce the treatment beam cross section. A scanning mirror in turn reflects the beam down onto the treatment site. This mirror can be rapidly moved in order to even out effects produced by different aperture widths and corresponding beam profiles.

A red $\mathrm{He}-\mathrm{Ne}$ aiming beam (633 nm wavelength) is established coaxial with

Fig. 7 Indication of how the refractive properties of an eye which underwent conventional radial keratotomy can be monitored prior to treatment and after treatment. In this case the patient had 3D of myopia which was reduced to 0.25 D .
energy and its delivery. Special precautions are required to prevent interference from the high voltage laser system affecting the PC.

Table 1 summarises the performance details of the Chiron Technolas Keracor 116 Excimer Laser. The energy density at the treatment site can vary between different manufacturers so that different thicknesses of cornea are removed with each treatment pulse.

Summary

Modern technology now makes possible the use of excimer lasers for the sculpting of the cornea to correct focusing defects which would normally be remedied with spectacles or contact lenses. There is no doubt that while the excimer technology may have advanced significantly in terms of levels of control of the corrective procedure, the technique will always require clinical skills of the highest level in order to ensure that only appropriate eyes are treated and that the treatment which is undertaken is expertly done.

Thus while contact lenses can be fitted in the high street by a qualified optician, at present the skill level required is that of a consultant ophthalmologist

Fig. 8 Example of excimer PK procedure with relatively little regression.
the treatment beam so that the target area of the treatment beam can be identified. In addition it is important to identify the absolute height at which the excimer energy is to be delivered. This is undertaken by the use of a separate green $\mathrm{He}-\mathrm{Ne}$ laser (543 nm wavelength) set at approximately 30 degrees to the vertical axis of the treatment beam.

A 'ruggedised' PC is used as a control system for generating the laser

Variable	Value
Maximum power at laser site	1 W
Maximum pulse energy	450 mJ
Wavelength	193 nm
Pulse length	18 ns
Repetition Rate (max)	30 Hz
Fluence test pulse count	$63+/-5$
Treatment energy density	120 milli Joules $/ \mathrm{cm}^{2}$
Ablation layer per pulse (cornea)	0.25 microns

Table 1: Typical output parameters of the Chiron Technolas Keracor 116 Excimer Laser. The conversion efficiency of the laser system is low - around 0.1\%.

with a commercially available A-B box. Why disappointment? Well, in order to explain, the circumstances need to be examined.

Electric guitars generally produce low output signals with a high impedance that have to travel through long cables to what is effectively quite a high gain amplifier, with a high input impedance. This is an inherently inefficient system, because cable
capacitance causes significant treble loss, and even microphony (if it's really cheap). Also, hum pickup and RF breakthrough can result. But the problem that really emanates from the speaker is one of switching the signal on and off. Just unplugging a lead from an amplified guitar can result in hideous loud crackles - and a simple changeover switch will probably sound just as bad, especially as it wears.

This is normally heard as a loud, unpleasant crackle or thump and it could damage speakers, or at best result in extreme noise if followed by effects.

The unit I purchased overcame this by 'silencing' the signal as the changeover was made. This effectively masks the noise of the switch contacts, whose air gaps and resistance are made evident as noise. This method is very annoying in practice because the sound disappears

The Works

The circuit is quite simple; on plugging in a lack to the input socket, the battery is connected to the rest of the circuit (so unplug this when not in use) and supplies the IC's and LED's. C2 decouples any glitches from the supply rall which might be heard at the outputs due to DC fluctuations:
R1 and F2 form a potential divider, to produce a half supply rail, necessary to accommodate IC1.

IC1 is a TLOT1 low noise JFET Op amp, ideal for this application where it is used to buffer the input signat. It is configured as a non-inverting voltage follower, and the half-supply rail decoupled by C3 is fed to it through R3. This sets the input impedance to 820 K , which will suit all guitar pickups and incur no loss of treble. C1 couples the guitar signal to IC1. C4 decouples The buffered signal, with a charging path provided by R4, to prevent any

thumps on switchover

IC2 and IC3 are CMOS analogue switches. Their off resistance is typically hundreds of megohms and with a 0.9 V supply the on 'resistance is about 120 ohms. In this design, I used the two 'spare' gates (IC2b and IC2C) to halve the 'on' resistance to 60 ohms fot lower loss. The switches are turned on by putting a high' level (ie. greater than halt-supply voltage) on the control pin and furned oft by connecting the control pin to a low level ($0 V$)

R5 and R6 are 'pult-up' resistors which hold all the control pins at a high'level, in turn switching on' al the switches. However the footswitch (SW1) grounds certain control pins to pass the signal to one of two outputs and to prevent the signal going to the other socket For instance, if we were to consider SW1 in the position illustrated in Figure 1

Switches 1 C 2 a and 1 C 2 b are both
off; so the signal cannot pass to output A: Also IC3a is off; so D1 will not light:1C3d is "off" so the signal passing from C4 via IC2c and IC2d (both on fed by A6) will reach output B This is indicated by D2, which is switched on by IC3c. Output ' A ' is muted by IC36. When SW1 is switched over the opposite conditions exist. and the signal will emerge from output 'A' Contused? Well, don't worry- it works, anyway.

R7's value was chosen to
compromise between sufficient LED brightness and acceptable current consumption - approx 3.7 mA . Which will give long life from a PP3 battery R8 and R9 are used to prevent any excessive static charges from damaging the 4066 s should one of the output feads come into contact with some psychedelic guitarist's synthetic shirt or a Heavy Metal bassplayers spandex trousers
completely for a second or so and sounds to all the world like a bad tape drop－out．

Also，the offending unit had terrible hiss levels which meant that placing devices such as distortion pedals or compressors after it was out of the question． Why did I buy it in the first place，you ask？Good question， but I＇m not naming the manufacturer！

Design Considerations

So I set about designing my own A－B box．The most important thing was for it to be musically transparent；in other words，low noise and with minimal impairment of the instruments＇ tone．Obviously a purely mechanical switch is simple but noisy and dodgy，even．The best method is to use a mechanical footswitch to control an electronic one．There are hi－fi grade electronic switch ICs around but they are not cheap， and are probably of too high a quality for this application．

I settled for an array of CMOS analogue bilateral switches which cost pence rather than pounds，and still give good performance．

Some careful thought went into wiring these up to minimise their minor drawback of producing a small audible ＇pop＇as they open and close．

One low－noise op－amp is used to buffer the signal，as this eradicates further significant signal degradation from further cabling，and from the switches themselves．CMOS switches give better audio performance at lower impedances．

All this is enclosed in a sturdy low－ profile die－cast box．

The Signal Path

A signal from a musical source is fed into a buffer amplifier and subsequently directed to one of two outputs．This is achieved by controlling a series of electronic switches with a DC voltage selected by a mechanical footswitch．In either condition，the selected channel signal switch closes，along with a similar switch to power an LED．
Simultaneously，an extra switch mutes the unselected output socket to prevent noise or crosstalk escaping through it． When the footswitch is pressed again， the other channel is selected in exactly the same way．

$A=3 \emptyset$
$B=9.5 \emptyset$
$C=12 \emptyset$
All dimensions in mm

Construction Details

Referring to Figure 2，start with the PCB and solder in the resistors first，followed by the capacitors，making sure that you＇ve put them in the correct way round．Take greater care with the ICs， especially the CMOS ones，that is to say， avoid charging yourself up before handling them，although＇B＇suffix devices are supposedly quite robust with regard to static．If you want to be sensible，use some IC sockets－ preferably the turned－pin variety，as they give a more reliable contact．Then if you are unlucky enough to destroy your chips（again，be sure to fit them correctly），it＇s a simple job to replace them．Be sure to fit the LED＇s with their correct polarity，for some reason I＇m hopeless at identifying them．

Refer to Figure 3 for drilling details， making sure that all the parts fit their respective holes．The case will look more impressive if it is sprayed with some coloured car paint．Rub－down letters can then be used to label the LED＇s and sockets，and the unit given a name．Ever imaginative，I called mine ＇A－B Switchbox＇．

Fix the lettering with many coats of
clear lacquer otherwise the finish will soon deteriorate，believe me．Fit the sockets and footswitch and solder some wires to them（colour coding is invaluable here），and loom them separately，so that the footswitch doesn＇t interfere by means of stray capacitance． Use screened cable between the input socket and the PCB to further counteract this．Join the screen only at one end to avoid earth loops．

The LEDs can be pushed into the 3 mm holes and then secured with a small blob of epoxy resin．Foam rubber is very good for supporting and insulating the PCB and preventing the battery from knocking around inside the case．I use this rather than bolts，purely for cosmetic reasons．

Testing and use

Assuming that you have double－checked all your wiring and component orientation，the A－B BOX is ready for testing．Connect an ammeter（on mA range）between the case and the battery negative terminal．The reading should be no more than 3.7 mA ．If it differs greatly from this，then there is something wrong，so check things over again．

Assuming that you are luckier, and all reads well, plug your guitar/bass or keyboard into the input and press the footswitch several times to ensure that the LEDs are lighting and changing state. Select channel 'A' and connect your amplifier to output socket ' A '. The sound should emerge untainted from your amp.
Compare the sound here with that of your instrument going straight into the amp with a single, shorter lead - there should be little audible difference. Now press the footswitch - silence should result. Turn up the volume of your amp, and play some sounds - there should be no trace of it from the amp. Now turn the amp down and repeat the process for channel ' B '. If all is well, you can start to experiment with some applications of this gadget.

In Use

Being a low noise device, the box shouldn't be too critical as to where it is placed in the signal path. But, the nearer it is to the guitar, the better the signal quality will be, because the cables, no matter how good they are, will have less loading effect on the signal, resulting in a clearer, stronger sound. However no audio processing unit is totally noise free, so try to avoid connecting it before a compressor as they tend to accentuate even the smallest amounts of noise. Why not experiment?

A great advantage of an A-B box is the fact that by splitting the signal to one of two paths you can have multiple effects pedals set differently in each path for rhythm/lead sounds. For example, channel ' A ' could be designated the rhythm channel, and have an overdrive pedal connected after it with a soft tone setting, to connect to one channel of your amp.

The lead channel ' B ' could have a different distortion pedal with a more
'biting' tone, followed by a digital delay line for echo. The obvious beauty of this is to reduce the complex 'tap-dancing' routine that most gadget-bound guitarists suffer from - and with an LED indicator to boot!

An obvious application would be to connect one channel to a high-powered amplifier for loud, clean sounds with the other channel connected to a lower powered valve amplifier turned up almost 'flat-out' for distorted sounds.

Another use would be to connect one output to your amp and the other to an electronic tuner, so that in performance situations the sound of a half-tuned guitar is not heard by the audience. One word of caution, though - the CMOS IC's employed in this design will start to distort (in a valve-like fashion) if the driving signal is too high. This is only likely to occur at line levels, and is one of the reasons that it is best suited to guitars, whose signal is around 30 dB below line level. It is up to you to decide how critical this would be for your application.

Food For Thought

As it stands this pedal is quite versatile, but with a little thought and application could be expanded or modified to perform many different applications, not necessarily involving guitars at all! Besides, this magazine is not a music magazine as such, but a vehicle for ideas, and I hope this article will not only be of use to the twangers, but of general technical interest.

Back to the possibilities - IC1 could introduce 6 dB of gain by disconnecting pin 2 from pin 6 and connecting a 100 K resistor in between, with another 100 K resistor connected between pin 2 and the half-supply rail (C3 positive). The A-B Box will then substantially boost the signal. If it is too much then R8 and R9
can be replaced with 100 K log pots, with the wipers connected to the output sockets, to adjust drive levels. A second op-amp, wired as a mixer/summing amplifier could combine both outputs as
 a single channel, resulting in a rather useful booster pedal.

Call us now! We have the widest range of components available - At competitive prices!

CABLES

April

TV Screen control
There are various ways to initiate commands using a TV screen，a mouse or roller ball are the standard ones．Not so standard，but also in use are cordless joystick controls using infrared beams and also Touch screens．This last one has excellent applications where the general public are involved and it is quick to operate but the smallest area in which to take action is typically thumbprint size． However there could be other fast response ways to initiate more accurate commands．

Solid state LASER pencil to point and activate areas on the screen：As the spot is easily seent： it would be ideal for speedy operations in computer games and CDi．As we all tend to use our fingers for pointing at things，the unit might be portable enough to be strapped onto the back of the finger．

A good sniff

With IBM developing the nose on a chip＇，（see news item）there must be many applications where minuscule changes in temperature could alert warnings ie：body surface temperature changes．On this basis，il could be an excellent detector for some Biofeedback techniques like controlling headaches．

Level Detection

Most level detectors monitor rises in liquid levels and usually rely on marked changes in resistance owing to ions present：Those who rely on oil（kerosene）for heating often run out of this organic liquid at the worst possible time without warning．There must be a simple solution to this problem．

Weather Sense

The air we breath contains positive and negative ions．The negative ones are said to make you feel good．It would be interesting to know the ion concentration and polarity at any time：

The page to get you thinking about what to develop next

Ideas never come easy do they？Some say that talking to a like minded person will bring out the best in you． The more you talk，the greater the chance that an idea will come out in conversation．Also to some it depends on what the weather is like or how much sleep you have had the previous night All great inventions start as little notions that get scribbled down and expanded upon，and that＇s what the Electronics in Action Ideas Forum is all
about．Now you are the inventors．
Whatever happened to the＇Beta lights＇commonly used in the 60 s ．on the end of flick switches．Those radioactive lights were not by any means new， having previously been used to illuminate dials in aircraft cockpits during the war．Could this natural energy be converted to light，heat or any other form to save on battery power in portable equipment．

If you have any suggestions or have developed any of the ideas that have been appearing in this column we would love to hear from you，feel free to drop us a line． Electronics in Action，PO Box 600， Berkhamsted Herts．HP4 1NL

At Your Service

so you don't fancy messing up your best measuring jug with Ferric Chloride, but you still want to make some of our projects properly - with a PCB? This is where we step in. At Electronics in Action we can offer, at very reasonable prices, PCBs for all of our featured projects.

Just select which PCBs you require, fill in the coupon and post it to us with a cheque or postal order (for the full amount) made payable to Electronics in Action.

The coupon lists all the projects featured in the last four issues and anything older than that is /isted below. We have left some blank spaces on the coupon should you wish to order an older PCB.

Please print your name and address in BLOCK CAPITALS
Name
Address
Postcode
Send the completed coupon (include 80p for postage and packing) to: At Your Service, Electronics in Action PO Box 600, Berkhamsted, Herts. HP4 1NL
Please enter amount required in appropriate box
QH0493-1 5-Band Graphic Equaliser....................... £5.00
QH0493-2 8-channel PC Data logger £7.50
QH0493-3 Guitar A/B switchbox £5.00
QH0493-4 Deionised water level detector £5.00
QH0493-5 Simple Intercom £5.00
March Issue

January Issue

QH0194-1 The Harmoniser (2 boards).................. $£ 10.00$

QH0194-2

Power Amplifier (double sided)
$£ 7.00$
QHO194-3
Remote Control Extender $£ 5.00$

Total remittance including P\&P
Allow 28 days for delivery

BK Electronics 21
Baylin Publications 58 J \& N Bull 35 Chelmer Valve Company 34Cirkit Distribution Ltd.
דט:OBC
Cooke International 25
Cricklewood Electronics Ltd. 55
Delcia 25
European Computer Marketing (UK) 41Express Components47
Halcyon Electronics 58
Hart Electronics 28
J.D. Photo-Tools 34
JPG Electronics 58
Labcenter Electronics 46
Mauritron Publications 39
MQP Electronics Ltd. 58
Roline Systems Ltd. 59
Stewart of Reading 34
Tsien (UK) Ltd 40

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM: Programs 24,28,32 pin EPROMs, EEPROMs, FLASH Memories and EPROM Emulators as standard, quickly, reliably and at low cost Expandable to cover virtually any programmable part including serial EEPROMs, PALs, GALs, EPLDs and microcontrollers, in many different packages.
DESIGN: Not a plug-in card but connecting to the PC serial or parallel port; it comes complete with powerful yet easy to use software, cable and manual.
SUPPORT: UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

MQP ELECTRONICS Ltd Park Road Centre
Malmesbury, Wiltshire SN16 OBX. UK Tel: 0666825146 Fax: 0666825141

ASK FOR FREE

 INFORMATION PACK GERMANY 089/4602071 NORWAY 0702-17890 SWEDEN 859075404 $\begin{array}{ll}\text { ITALY } \\ \text { FRANCE } & 0292103554 \\ 169301379\end{array}$ Also from VEROSPEED UK
THE DEFINITIVE ‘OFF-AIR’ FREQUENCY STANDARD

*Provides $10 \mathrm{MHz}, 5 \mathrm{MHz}$ \& 1 MHz
\star Use it for calibrating equipment that relies on quartz crystals, TCXOs
Vxcos, oven crystals

* Phase locks to DROITWICH (rubidium controlled and traceable to NPL) *For ADDED VALUE also phase locks to ALLOUIS (caesium controlled and traceable to OP - French equivalent to NPL)
\star British designed and British manufactured
\star Sine wave option of 10,5 and 1 MHz . Nominal 1V into 50 ohm

Output trequencies: $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ Short term stability: better Typical: $=4 \times 10^{-9}(1 \mathrm{sec})$ Long term: Tends to

IDEAL BEGINNERS SCOPE, SCOPEX 4S6/AQUILASCOPE 6MHz SINGLE TRACE, INT/EXT TRIG TRACE LOCATE, BRIGHT LINE AUTO, 10 mV SENSITIVITY, $1 \mu \mathrm{~S}-\mathrm{mS} / \mathrm{cm}$, etc. $£ 95$

LIST AVAILABLE BUT 1000'S OF UNLISTED BARGAINS FOR CALLERS. ALL PRICES EXC. OF P \& P AND VAT QUALTIY ELECTRONIC EQUIPMENT ALWAYS WANTED

2 HALCYON ELECTRONICS vsa
 423, KINGSTON ROAD, WIMBLDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 081-542 6383. FAX 081-542 0340

Baylin Publications

ALL ITEMS EX-STOCK. Ku Band Satellite TV, Theory, Installation \& Repair
4th Edition
Footprints, dish theory, cables, site survey, polar mount adjustment.
£25.
European Scrambling
Systems, Circuits, Tactics \& Techniques. By John McCormac, digital sound, smart cards, pirate decoders, for hackers. £32.
World Satellite TV \& Scrambling Methods. 2nd Edition, by Baylin, Madox \& McCormac for the service engineer.

24 River Gardens, Purley, Reading. RG8 8BX. England. Tel/Fax 0734-414468 Mobile 0836-582785
Pay by: UK£ cheque, Access, Mastercard,
 Forty minutes VHS Pal. See how 3 metre dishes are installed. $£ 27$. Satellite Installation Guide. 3rd Edition.
By John Breeds.
The Satellite Book. 2nd Edition. A complete guide to satellite TV. Theory and practice by John Breeds.
£31.
World Satellite Almanac. 3rd Edition by Mark Long. 300 Footprints Frequencies, Transponder Loading, Orbital Assignments.

PC Based Industrial and Lab, Data Acquisition, Control and Measurement, Instrument Cards

AD'DA Cards
Interface Converters
Plus Accessories \& Software Relay Output Cards C.P.U. Boards

RS 232 Cards
Device Programmers Digital I/O Cards I EEE 488 Cards Industrial Chassis Industrial Control Cards

Single, 2, 4, 8, 16 Port RS 422 Cards Single, 2, 4, 8, Port PC ROM Disk Cards Slot Extender Cards

Specialist PC \& Multimedia Add-on Cards PC - Telecommunication Cards Fax Modem Cards
 Voice Recognition Cards Voice Digitiser Cards

Video/TV - PC . Video/TV Cards
Sound Cards
Components

Cases
Floppy Disk Drives Hard Disk Drives From 40MB to 2.IGB
Keyboards
Monitors
Mother Boards Cache Controller Cards Network Cards Tape Back Up Units

For further information, Product/Price List Call Us On:
Tel: 090220267 Fax: 090228439
Roline Systems Ltd, Imex House, Imex Business Park, Upper Villiers Street, Wolverhampton, West Midlands. WV2 4NU

Electronics in Action in cooperation with The Technology Exchange Ltd., the international technology matchmaking service based in the UK, brings you each month a selection of technology partnership opportunities to which you are invited to respond.

The Technology Exchange, which was formed in 1985 as a not-for-profit technology sourcing service to industry, holds a biannual 'Technoshop' Technology Transfer Fair at Heathrow Airport and several 'Techmart' Fairs overseas for the United Nations (UNIDO).

For this issue of Electronics in Action, we are presenting a series of offers of licence, joint venture and patents rights for sale from organisations in 34 countries.

If you would like to have an introduction to any of the sources of the offers describes in these profiles, please write to The Technology Exchange quoting the reference number at the head of the entry and giving full contact details for the contact person in your own organisation and your requirements for a new product or process development.

The only cost associated with this process is a simple $£ 10$ plus VAT introduction fee for each entry to which you respond. For this we will send you full contact details for the source of the offer and invite them to send you more detailed information about their offer.

The code letters at the head of each offer indicate the stage of development, type of offer and the type of organisation making the offer as indicated in the table

Each entry is preceded by a reference number and letters indicating STATUS, OFFER and SOURCE.

Please respond directly to:
The Technology Exchange Ltd.
Wrest Park
Silsoe
Bedford
MK45 4HS
or Fax: $0525 \mathbf{8 6 0 6 6 4}$
Phone: 0525860333
The payment of $£ 10$ plus VAT ($£ 11.75$) per item should be sent with your requests.

210061 M L U

Metal Insulator Semiconductor - Field Effect Transistor using Germaniumnitride
the fabrication of self-aligned planar metal-insulator-semiconductor transistors on indium phosphide compound semiconductor. A new insulating material germanium nitride has been developed for use in the fabrication process of the transistor. Used for very high frequency (40-100 GHz), high power ($3-6 \mathrm{~W} / \mathrm{mm}$), and high gain ($5-15 \mathrm{~dB}$) and high efficiency ($40-50 \%$ microelectronics devices and circuits and very low noise/high power amplifiers for applications in photonics (optoelectronics).

708843 M S U

Parametric Oscillator formed with a multiple quantum well optical wave guide
Miniature semi-conductor device with power levels comparable to laser diodes, narrow linewidth, and wavelength electrically tunable from 0.9 to 10 microns. Compact: low cost: continuous output radiation: no cooling required.

409812 W L U

Manufacturing battery operated devices
need a variety of electronic components to function. Reducing the number of components occupying premium circuit board space is a key to manufacturing cost effective products. A device have been developed that reduces the number
of components required in battery operated products. The elimination of these components on the circuit board produces a major cost savings in the manufacturing process, while still maintaining the quality of the product.

508842 M S U
 New family Cuprate Superconductors with high TC

Critical current densities greater than 35 $x 10^{\wedge}+7 \mathrm{amp} / \mathrm{sq} \mathrm{cm}$ at 132 degrees K in a 4 KOe field.

208841 M S U

High resolution wideband guided wave optical analog-to-digital convertor
Based on a new algorithm. Enhanced frequency range.

608968 W L C

Halogen ceiling light 'SKY 10'
150 W ceiling light equipped with three low voltage 50W halogen light spots fitted with dichroic bulbs; 38 degrees adjustable spots. Ceiling light in steel aluminium, spots of plastic material. Safety transformer. Fused. Intensive lighting.

708969 W L C ION implantation

For production of electronic components, clean room ion implantation service. Energy from 5 KeV to 6 MeV . Dose: 1 E 11 to $1 \mathrm{E} 18 \mathrm{At} / \mathrm{sq} \mathrm{m}$ -

[^1]

To combat the worrying trend of increasing numbers of burglaries and thefts，Cirkit have introduced a simple to install but very effective intruder alarm．It is ideal for club houses，sheds，garages，shacks or single room installations as well as caravans，trailers or boats．
The alarm combines a PIR（Passive Infra Red）detector for general coverage with magnetic switches for additional door and window protection．It is easy to use with a single key for set or reset，has a mains power supply，optional battery back－up and operates with a $21 / 2$ minute exit time and 15 second entry delay．

The kit consists the combined PIR detector and alarm box，three magnetic reed switches， compact high power siren，mains power supply，and full comprehensive instruction manual．An optional PP3 battery can be added for power failure protection．

Specification

Power	12 V DC or AC adaptor
Plitcoverage	$100 \mathrm{~m}^{2}$
Exit delay	2.5 mins
Enty delay	15 secs
Alarm reset time	60 secs
8imensions	$140 \times 90 \times 56 \mathrm{~mm}$（PIR／alarm box）

Continued from page 60

types: $\mathrm{B}, \mathrm{As}, \mathrm{Ph}, \mathrm{H}, \mathrm{He}, \mathrm{Si}, \mathrm{Ge}, \mathrm{Be}$ etc. Advantages: avoids large investments. Cost reduction - immediate use. Applications: production of silicon and AsGa components; development of new processes.

309415 W LIJ C

Automatic vacuum cleaner

 moves under automatic control; all the sequences are piloted by a powerful electronic system. Self-monitoring to detect malfunctions by microprocessor. No programming. No understanding of electronics necessary for the user. This system improves control over worker time and guarantees thorough cleaning, including under furniture, beds etc.
909416 W S C

Smart cards

The card is realised by duplicate moulding in one operation including the printing of the two faces. The cost price is half of the present cost price. The investments are half of the investments at present. Phone cards, bank cards, medical cards, toll.

509216 W L U

Canal clathrate complex

as electronic and cationic conductor for use in solid electrolytic cells. The unique crystal structure of this novel canal clathrate complex of benzophenone and a polyiodide salt results in both electronic and cationic conductivity. This material is used either as the electrolyte or as an electrode in an electrolytic cell.

309476 F J C

Identification systems

A remote sensing identification system which uses low frequency electromagnetic communication units and passive mobile tags which can be read at a distance. The communication units may be stand alone units, with own power supply or interface with IBM-PC. The tags may be either fixed code or have a readable memory and come in various forms such as credit card format, thick industrial cards or buttons. Applicable for management of automated manufacturing, material handling systems, identification of luggage, containers, vehicles or animals etc.

909441 C M J Pattern identification computer technique

based on neural network artificial
intelligence. The proposed projects aim at the development of specific capabilities such as identification of cancer cells on prints produced by any medical imaging system; speaker recognition and signature verification; finger print identification; access control systems; the evaluation of polygraph tests; and the identification of explosives and other chemical substances.

109463 F J C
 Compact uninterruptable power supply

Very compact uninterruptable power supply systems based on the innovative technology of pulse width modulation protecting sensitive equipment (eg computers) against variant power supply by providing an output voltage that is stabilised and sinusoidal. Integral self charging batteries take over instantaneously when power is interrupted and operates at the high frequency of $20,000 \mathrm{~Hz}$ making this a quiet system. The compact size simplifies installation.

609508 C J C

 Electro-luminescant lamp manufactured in rolls An advanced generation electroluminescent (EL) lamp with high intensity is receptive to a fully continuous manufacturing process in rolls which can be cut to individual specifications. EL's are energy economical with long service life. They are suitable for various applications eg billboards, road signs, backlighting for computer screens etc.
409365 W L U

Current steering

CMOS logic family. Integrated digital logic circuitry that steers electrical currents and minimises switching current transients, thereby improving the operation of digital and analog circuitry on common substrates.

408725

Magnetic antenna system
with the characteristics of an active inphase de-attenuation in automatic operation, designed as a combined transmitting and receiving antenna. Remote control unit designed as a blind current transfer element for resonance point adjustment. Vertical radiation angle adjustable.

108745

Stereo sound ray loudspeaker
The nonophonically controlled system
acoustically generates the audiophase components within the total emission required for stereo.

708726

Magnetic antenna system

with in-phase, automatically controlled de-attenuation amplifier. Range 1.6-500 MHz . Iron ferrocarbonyl coupling for transmission and receiving operations, remote controllability, inside operation, power level on test unit 1000 Watt Hf (max). Receive/transmit switch-over not necessary.

908647

Hologram robotic lighting

The system consists of a centralised illumination fitted with high pressure lamps which deflect light through fibre optic light guides and balances it with the aid of optical elements. Application areas: architecture and automotive industry.

108645

Fully automatic insertion and completion machines

for passive electronic elements such as bases, pin and terminal strips, plugs, spring contact pins and other small parts. Precise joining processes with high place/hour capacity.

408648

Lighting fixture with intergrated air circulation

and cleaning device for use in rooms with poor ventilation. Space saving and inexpensive because the lighting fixture simultaneously houses the fan and filter etc.

808419

Low voltage halogen lamps

3 lamps (150 W) with low voltage (50 V), lamps can be swivelled, aluminium steel. Safety transformer, fuses. Decoration and illumination purposes.

408761 Nesting end stage for stepping motors

automatically calculates the path of motors (up to 600 W), dependent on inertia, friction and motor torque. Modest space requirement, low mass, self-learning function. Applications: robotics, machine tools.

308688

Inert gas testing

Electronic testing and measuring system with electronic gas sensors for testing and measuring inert gases.

808732

Intergrated switching circuits
Method to produce integrated switching circuits and Schottky diodes. Process to apply epitactical layers, to form oxidic insulation layers with ion implantation and precipitation of polycrystalline silicon and silicon nitride.

408749

Mobile reciever aerial

Extremely pliable rod aerial made of monocrystal alloyed material for mobile receivers, eg car radios, radiotelephonic devices. Maximum length 600 mm , diameter $1-5 \mathrm{~mm}$. Aerial tested under extreme conditions during a 2 year field trial.

808744

Electronic control unit for television cabinets
Remote controlled door activation.

508755

Acoustic call system
Mains-independent acoustic call system (especially for bedridden patients). Battery operated call system foregoes the standard of conventional mainsoperated devices for the sake of maximum reliability and availability.

808747

Telephone call charge meter
Telecommunication accessory: call charge meter for older telephones, for third party call charge calculation and control of own charges.

808756

Silent alarm

Alarm signal exclusively for one person. Of special importance in caring for the seriously ill, and also for shift workers.

208754

Electronic foot starter for household sewing machines
the foot starter contains an adjustable resistor which influences the control electronics to obtain speed control. The resistance characteristic of the slip ring can be adapted to the customer's requirements.

708738

Electronic drive technology precision drives for micrometre and submicrometre range. A position controlled linear drive on the basis of a screw thread reluctance motor was created which converts the rotational motion of the rotary field directly into
linear motion. Step resolution approx 15 micrometres. Shearing force up to 80 N .

708735

Chip resistor in thin film techology including manufacturing process. Roll by roll production under application of HT films and use of high vaccuum processes. No waste products. Application in all fields of electronic equipment technology.

8736

Chip capacitor including manufacturing process
Roll by roll production under application of HT films and use of high vaccuum processes. No waste products. Application in all fields of electronic equipment technology.

Please send me........copy of The Science of Virtual
Reality and Virtual Environments by Roy Kalawsky
(Each copy costs $£ 24.95$ plus $£ 3.00$ postage and packing) I enclose a cheque/postal order for
Please send this form to:
VR Book Offer, Electronics in Action PO Box 600, Berkhamsted, Herts. HP4 1NL

The realities of voice recognition and its future implications

> John Mitchell, Managing Director of Alltypes Business Computers discusses the rapidly advancing technology of voice recognition, its integration into the office environment and the possibilities for the future.

For many years, the concept of controlling a computer and or generating text by means of the spoken word has been confined to the realms of science fiction. However, since its commercial introduction in 1990 and the development of PC power, voice recognition for dictation and other large vocabulary applications is now a reality. This article discusses the implications of this radical technology, and Alltypes Business Computers are leading the way forward by integrating voice recognition for the majority of today's computer users i.e. non typists, into the office environment.

Introduction

Excepting the introduction of certain limited vocabulary systems in the 1980s, the launch of general purpose large vocabulary systems came in 1990 from the American company, Dragon Systems. The end product was a result of extensive research and development led by Jim and Janet Baker the company founders.

DragonDictate now leads the market alongside other speech recognition products offered by companies such as IBM. It is interesting to note that until now, the speech recognition products offered by IBM were derivatives of the DragonDictate system, produced under license. Since its introduction, DragonDictate have introduced second generation products into the marketplace in 1993. The first of these products, retained the original active vocabulary of 30,000 words; however, in response to a changing market and to provide speech
recognition to a wider range of users, Alltypes launched the Dragon 5,000 word Starter Edition at the end of 1993 for less than $£ 1000$.

> The DragonDictate system is a speaker dependent, large vocabulary dictation system

The potential of the DragonDictate products was realised during the early stages of launch by John Mitchel1, Managing Director of Alltypes Business Computers, who quickly sought to represent Dragon Systems in the UK through their trading division, AllVoice Computing. The end result, is a winning combination of the radical technological advancements provided by the Dragon speech recognition engine and Alltypes' many years expertise in word processing and office automation. Alltypes has integrated the Dragon system into a number of business applications providing voice based solutions to not just word processing but to document
management, and more specialist areas such as medical and legal.

Applications

The obvious application of large vocabulary speech recognition is in word processing. The concept of being able to produce and edit a document by means of the spoken word is by far the most exciting and obvious prospect. Performing repetitious tasks also lends itself to voice recognition and is achieved by the use of "voice macros" that command certain combinations of keystrokes. These keystrokes are usually associated with a relevant voice command or utterance such as "Print Document" to perform a printing function or "Standard Contract" to call up an entire contract document. Alltypes are the current market leaders in this area of voice recognition and provide a library of voice commands, regular phrases and even entire documents for word processing and associated applications. Leading on from this, is the integration of voice recognition with other business applications such as spreadsheets and databases.

The latter applications often go against the principles of large
vocabulary voice recognition，in that they usually only require a limited vocabulary for operation．In this situation，the＂active＂vocabulary is limited to accommodate this．This is an area of work that Alltypes also specialises in．

Speech recognition has already created opportunities for people with disabilities and is often solely responsible for employment rehabilitation，such as the recently publicised RSI case of Simon Crosby，a computer programmer，now working again as a result of a speech recognition system supplied by Alltypes．
potential of a computer system that you could talk to．Initial ideas were based around pattern matching，but it was quickly realized that in order for any computer type system to be able to deal with human speech，the requirement was not only that of an acoustic template，but an intelligent model that represented all the possible permutations and combinations presented by the spoken word．Combine this concept with the inconsistencies of human speech and you will be some way towards contemplating the problems facing the pioneers in this work．

The theory of this technology is far
on to work for Exxon and IBM，before forming Dragon Systems，during which time，they had rapidly built up a number of patents from their work．

It is worth mentioning one of the largest problems of speech recognition that has been overcome by various research teams all of whom profess to have arrived at the solution independently．The problem was the variation of the speed at which words are spoken．The technique that addresses this problem is called dynamic time warping．The result is an elastic word model that can be shrunk or stretched in order to accommodate a＂best－fit＂of the

The Technology

The DragonDictate system is a speaker dependent，large vocabulary dictation system．Following an initial 90 minute tutorial，the user builds up a set of exclusive＂voice－files＂which is constantly changing according to the use of English，the environment，and even the changes in the users＇voice due to a cold！In this situation，the system can be configured to revert to＂normal＂use following recovery or adapt back automatically as the voice changes！

In order to examine the nature of this technology，one has to consider the origins of speech recognition．In the early 1960 s，AI pioneers realised the
beyond the scope of this article，suffice to say that the responsibility lies with the Russian mathematician Andrei Markov who＇s work that commenced at the start of the century，concentrated on the probabilities of sequences of events． His statistical methods have since been applied in many fields that have required an element of modelling．None more so than in the field of voice recognition where，in the 1980s，two research teams －one under Fred Jelinek at IBM and Jim and Janet Baker，then students at Carnegie Mellon University，Pittsburgh hit upon the idea of using Markov Statistics in speech recognition at roughly the same time．The Bakers went
word being spoken．
Current，second and third generation Dragon products，based on the principles described above，still rely on discrete speech．That is to say，the user is required to pause briefly between each word that is spoken into the system．The pause is the cue that＂kickstarts＂the Dragon recognition engine into action． This is not as significant a disadvantage as it may first seem．Users soon get used to the system and are quickly exceeding dictation speeds of 50 words per minute． Although some might argue that a good typist can type in excess of 100 wpm this is not the critical measurement．This comes from the consideration of
throughput. The traditional cycle of dictation, typing, proof reading and correction dramatically reduces the figure quoted above whilst the throughput speed of the speech recognition system remains.

With all potential problems seemingly addressed, later research has resulted in advanced levels of Markov modelling that takes into account, the context of the speech. This is of particular importance when dealing with words such as to, too and two where there is no audible difference in what is being said. Third generations of Dragon products will take into account what has been said in choosing phrases such as "too many" instead of "two many."

Implementation

One might suggest that the upgrade to voice recognition is achieved by means of an installation of an expansion card and relevant software. Certainly to make a suitable PC, "voice-aware" this is the case, but this is just the beginning. We at Alltypes, are very conscientious of the importance of the implementation of voice recognition for a new installation. Current technology does not allow for a "plug-in and go" type of product. Although the strategy of newer generation computer products, is often to simply flood the market, Alltypes and Dragon recognises that this is currently not a practical or viable method.

The recommendations of Alltypes, for each and every customer investing in voice recognition technology, amount to a minimum of two days training for each new user. The resultant added-value from this training, can be equated to that of implementing voice recognition in the first place. Indeed the two are complementary.

The Psychology of Change

Whilst Alltypes are selling systems at a dramatically increasing rate, there is still an inevitable resistance to change with technology of this kind. The very nature of this technology would, to some, suggest a means of replacement for the traditional typist or secretary. Alltypes' experience, past and current, does not provide much evidence to support this claim. In areas such as legal practice, local government and medicine, secretarial staff are often shared and are consequently over
resourced. The implementation of the AllVoice DragonDictate system in these areas, has alleviated some of the workload and has resulted in improved efficiency of document production, a point of view that is often publicly endorsed by clients.

Resistance to change is sometimes demonstrated at the other end of the company infrastructure, as senior members of staff in legal and medical areas often refuse to have a computer at their desk, regarding it as a demotion, or

> Society as a whole could well see radical changes as voice recognition is implemented in public information systems
benefits for their organisation can be to protect their IT strategy which previously had not allowed for the possibilities of direct document production.

The Future

With advancements in this technology over the last five years, the next five should see voice recognition on all new computers destined for the office. The inevitable advent of continuous, large vocabulary, speaker independent systems will bring about a complete change of culture in all aspects of computing. The issues discussed above will change, as certain roles in business will require different skills.

Society as a whole could well see radical changes as voice recognition is implemented in public information systems, telephone booking systems, banks, etc. the possibilities are endless and are only limited by our imagination and the associated, and often dedicated, research and development that goes in to these systems.

a task that is below them. By providing voice, as the primary means of input, Alltypes are able to offer an alternative that provides a new status to the user, often resulting in fierce competition for the use of the first system!

The other main hurdle curiously is often the IT department, who are often unaware of this technology. Their reaction rather than to see and immediately implement the astounding

References

1 Computers That Listen. John McCrone, New Scientist 4/12/93
2 Using Speech Recognition for Dictation and Other Large Vocabulary Applications. Janet M. Baker, Dragon Systems. 3 AllVoice Computing - the way forward. Nicholas J. Daniel B.Eng(Hons), Voice Development, Alltypes Business Computers.

COMMITTEE ON THE PUBLIC UNDERSTANDING OF SCIENCE
ROYAL SOCIETY • ROYAL INSTITUTION • BRITISH ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

Media fellowships \star Science book prizes Michael Faraday Award
Lectures \star Speaker database Broadcasting
Grants \star Media training courses
Research Horizons Conferences
Museums \star Women's activities Parliament and Government \star Schools liaison

For further information about these and other activities contact:

COPUS, c/o THE ROYAL SOCIETY 6 CARLTON HOUSE TERRACE LONDON SW1Y 5AG
Telephone: 071-839 5561, ext. 266/219

CIRKIT ELECTRONIC CONSTRUCTORS CATALOGUE

*240 Pages 26 Sections Over 4000 lines
 Send for your copy today!

81.90

$+30 p p+p$

Park Lane • Broxbourne • Hertfordshire • EN10 7NQ • Tel: Sales (0992) 448899 • Fax (0992) 471314

[^0]: Every care is taken when compiling the magazine. However, the publishers cannot be held legally responsible for errors in the magazine or from loss arising from those errors. Any errors discovered will be published in the next available edition of the
 Electronics in Action is published on the third Thursday of the month preceding the cover date. The magazine contents remain the copyright of Quantum House Publications Ltd. Any reproduction requires written consent of Quantum House Publications Ltd. All prices contained in the magazine are correct at time of going to press. The publishers or the advertisers cannot be held responsible for any
 variations in price or availability after the magazine has gone to press.

 Published by Quantum House Publications Ltd., PO Box 600, Berkhamsted, Herts. HP4 INL. Newsstrade distribution by Seymour, Windsor House, 1270 London Rd., Norbury, London SW16 4DH Tel: 081679 1899. Reproduction by Island Graphics, Chesham, Bucks. Tel: 0494773082 . Printed by Wiltshire (Bristol) Led.

[^1]: Continued on page 62

