
Freescale Semiconductor

Document Number: CODETESTTECHWP
Rev. 0
11/2005

Techniques and Tools
for Software Analysis

Understanding how software development can be optimized through the use of software analysis tools and techniques
beyond standard debuggers—including advanced debug techniques, performance tools and code coverage
functionality—can ensure higher system quality.

Software analysis tools and techniques can help tackle the costly, hard-to-find errors that frustrate and delay
development, testing and deployment. They help to identify issues before they cause problems downstream or for the
customer. This is important because the later in the development process an error is found, the more it costs to fix.
Finding a bug after a product is deployed to the field can be costly in revenue, and can damage customer goodwill as
well as corporate reputation in the industry.

This paper examines how software analysis tools may affect each stage of the development cycle so that developers have
the information they need to evaluate their analysis options.

1. What Are Software Analysis Tools?.......3

2. The Benefits of Using Software
Analysis Tools ..3

2.1 Accelerate the Development Process 3

2.2 Tune for Maximum Performance3

2.3 Improve Software Quality3

2.4 Standards Compliance and
Certification ...4

3. Software Analysis Throughout the
Development Cycle4

3.1 Development ...4

3.2 Tuning Phase ..4

3.2.1 Instrumentation4

3.2.2 Sampling Method4

3.3 Check-In/Hand-Off to QA5

3.4 Validation/Certification5

4. Types of Software Analysis5

4.1 Instrumentation ...5

4.2 Code Sampling ..5

4.3 Built-In SoC Capabilities5

5. Summary ...6

CONTENTS

Freescale Semiconductor Techniques and Tools for Software Analysis, Rev. 0 3

1. What Are Software Analysis Tools?

Just as there are software tools available to assist in the basic building of software code, there are tools that monitor how
software is behaving as it runs. These software analysis tools offer visibility into the execution history of an application.
There are four basic types of software analysis tools:

> Code Coverage—Measures the amount of the software that has been executed

> Instruction Trace—Creates a record of exactly what happens as the code is executed

> Memory Analysis—Tracks the code's memory usage and identifies possible errors

> Performance Analysis—Identifies performance bottlenecks and other issues allowing fine-tuning of the application for
higher performance

The primary difference between software analysis tools and traditional debugging is that software analysis tools do not
require you to stop the application to test it. Debugging involves starting and stopping the software repeatedly to examine
the code that was executed in order to understand the control flow inside the application.

The debugging method is problematic in an embedded environment, where systems cannot always be stopped, or where
stopping the system inhibits or skews the analysis. Consider the powertrain software that controls an automobile's
transmission system. With a real-time system such as this one, it is important to use tools that can gather information and
monitor the control flows as the application runs, so the developer can be assured that performance and other
operational design specifications are met. This technique helps ensure that the system will not fail once deployed.

Traditional debugging also comes up short in environments that have multiple processors within the same system.
Increasingly common in today's systems, multiple threads have multiple tasks running at any given time. It is important to
monitor what is happening in each thread—and how the threads are interacting—without disturbing the other threads by
stopping the application. The ideal software analysis tool attaches to a running system with as little intrusion as possible.

2. The Benefits of Using Software Analysis Tools

2.1 Accelerate the Development Process

The primary benefits of using software analysis tools are a deeper understanding of how an application is really
performing and the identification of errors earlier in the development process. It is crucial to fix errors before they
can cause problems in downstream development. These tools find problems that cannot be detected with stop-
mode debug operations.

To truly understand the interactions between multiple threads performing simultaneous tasks, one must be able
to examine how the application interacts with the RTOSes being used. Monitoring the real-time data flows also
aids in the detection of memory issues, making troubleshooting easier. The end result is an accelerated
development process, as potential problems are found and dealt with in a timelier manner. In particular, Memory
Analysis and Instruction Trace are the two tools that have the greatest direct impact on the speed of
development.

2.2 Tune for Maximum Performance

Software analysis tools can help verify the performance accuracy of an application. By eliminating unused code
and tightening processing loops, the code can be tuned for maximum performance, ensuring that the whole
performs better than the sum of the parts. Performance analysis can also be used to ensure that real-time
specifications are met. Instrumentation has a distinct advantage here, because it identifies every execution of a
particular function. Conversely, sampling tools may miss the single occurrence that happens to fall outside the
design tolerances.

2.3 Improve Software Quality

By eliminating potential errors and memory leaks, larger problems that may arise in real-world situations can be
prevented. Software analysis tools can track down hard-to-find problems ranging from memory leaks to strange
interactions that develop during execution. The ideal Memory Analysis tool can reset its data during an execution
without affecting the software, making it easier to identify where in the source code memory leaks are occurring.

A Code Coverage tool can provide metrics that are useful for improving the QA process, and thereby the quality
of current and future releases. Coverage analysis is a good way to measure the thoroughness of QA efforts.

While testing is a must, verifying the quality of the test itself can increase confidence in the application. It is
important to verify the performance of any test harnesses used, particularly for software used in mission-critical
systems.

4 Techniques and Tools for Software Analysis, Rev. 0 Freescale Semiconductor

2.4 Standards Compliance and Certification

In markets such as aviation and automotive safety, there are stringent certification guidelines for all involved
software. Software analysis tools can supply the depth of data needed to satisfy these requirements.

3. Software Analysis Throughout the Development Cycle

When selecting which software analysis tools to use, it is important to consider the entire software development process.
From emulation and simulation in the pre-hardware phase to remote diagnostics after the product has shipped, thorough
data streams are crucial.

Software analysis tools can provide this data at every stage of the cycle.

3.1 Development

Software analysis tools augment a debugger when stop mode is not an option. An Instruction Trace tool can
provide performance measurements while clarifying RTOS interactions, context switches and performance
bottlenecks. The most effective tools not only trace function pathways, but provide visibility inside the functions
as well.

Software Trace tools are critical in dealing with failures. Often, with hard-to-detect faults, it is difficult to
determine the string of events that led to the failure. After the fact, it is often impossible to reconstruct an
identical situation. A snapshot of the system at the time of failure is often insufficient; a more complete history is
needed.

Trace tools reveal all of the events that led to the failure. Hardware-based analysis tools can provide an
advantage in most cases, as they collect and store trace data off the system. Therefore, if the system crashes or
experiences an unexpected problem, there is significantly less risk of corruption or loss of trace data.

3.2 Tuning Phase

Just because the software is up and running, that does not mean it is ready to ship. It has to be tuned for
optimum performance. Software analysis tools are an invaluable aid during this phase, when the application's
performance is being measured and tweaked. There are two software analysis methods that are commonly
used:

3.2.1 Instrumentation

By applying tags to specific lines of code, the instrumentation method offers extremely accurate measurements of
application performance. However, the method does increase the size of the code. It is important to find tools that
permit a tight focus on specific problems. There are hardware solutions available that have minimal impact on the
final code.

3.2.2 Sampling Method

The sampling method is non-intrusive to code size, but it cannot offer the 100 percent accuracy of instrumentation.
Sampling also requires some form of monitor, which drains system resources and impacts its performance,
affecting the accuracy of the test.

Development DevelopmentTest

Software Visibility
and Analysis Tools

Pre-Hardware
Simulation

Post-Shipment
Remote Diagnostics

Freescale Semiconductor Techniques and Tools for Software Analysis, Rev. 0 5

3.3 Check-In/Hand-Off to QA

Software analysis tools streamline the transitions from design to development, from development to test and
from test to deployment by identifying resolved and unresolved issues as they occur in the development cycle.

Unit tests must be developed to cover all new code. It is also important to check the code that calls new code
to ensure it is functioning properly. There are many tools that can identify calls, but the challenge for any analysis
tool is providing visibility into what is happening inside the function.

The test harness being used must be evaluated as well. It is important to note the level of coverage expected
from the environment and ensure the test harness achieves that level of testing. In one instance, a company
believed its test harnesses provided complete testing, but software analysis tools were able to prove they were
in fact testing less than 30 percent of the code. Exception testing is essential to mission-critical code, and dead
code stripping is an important by-product of the process.

3.4 Validation/Certification

Software analysis tools can provide objective metrics into code quality, giving project managers, engineers and
marketing teams the data they need to feel confident in the quality of the system. The test harness can be
measured to ensure 100 percent coverage. A by-product of a thorough validation process is the wealth of data
needed for many certification programs. For example, aviation applications must receive Federal Aviation
Administration (DO-178B) certification, which requires tests that show coverage of the code and called
routines.

4. Types of Software Analysis

4.1 Instrumentation

This method of software analysis involves inserting markers within lines of code to measure the location and
timing of executions. The obvious drawback is that this method increases the size of the code. However, some
tools can be focused on a specific problem area, so you can start with low-level instrumentation and increase as
needed. With a hardware solution, the impact is even lower, as most processors can handle the tags with just a
one-cycle latency.

4.2 Code Sampling

Code sampling involves monitoring code as it runs and inspecting the PC at fixed intervals. It is not as accurate
a method as instrumentation, since 100 percent accuracy requires prohibitively long test times. Another
limitation is that code sampling does not catch instruction string or memory errors. In embedded systems, the
method is essentially a faster and simpler version of a stop-mode debugger. The process is inherently intrusive.

4.3 Built-In SoC Capabilities

System-on-chip (SoC) systems present unique challenges. When a complete networking system is
implemented within a single integrated circuit (IC), there are multiple modular components interconnected by a
common infrastructure. All the various subsystems and blocks must be designed, verified and completed
simultaneously, in parallel fashion. It is now possible to design SoCs with Instruction Trace capabilities, as well
as cache monitors and performance timing information.

6 Techniques and Tools for Software Analysis, Rev. 0 Freescale Semiconductor

5. Summary

The proper use of software analysis can enhance the entire product development cycle and ease the transition between
the phases. In industries where product performance and code quality are key, software analysis tools can make a
significant difference.

The key to integrating software analysis tools into your development and testing process is choosing tools that fit your
environment and the type of analysis you need to achieve. One industry-leading software analysis tool is Freescale's
CodeTEST® Software Analysis Tool, and this tool is capable of addressing many of your software analysis needs.
CodeTEST offers a flexible, scalable solution that provides consistency throughout your development process with a
choice of software and hardware data collection methods so you can select the option that best meets your needs.

Another unique aspect of the CodeTEST Software Analysis Tools is the capability to provide several types of analysis
with a single tool. CodeTEST offers software execution trace, memory analysis, performance profiling and code coverage
analysis all within a single environment using a single data collection probe. Additionally, CodeTEST supports a broad
array of hardware architectures, RTOSes and tool chains, so your analysis tools do not force you to change your
development environment. CodeTEST is also portable across projects, allowing you to leverage your investment across
numerous development efforts.

The key to integrating software analysis tools into your development and testing process is choosing tools that fit your
environment and the type of analysis you need to achieve. These factors should be considered at the beginning of every
project to ensure they are integral to the development process.

For more information about software analysis tools, read other Freescale white papers including:

> Beyond Profiling—Gaining Control of Software Performance

> Code Profilers: Choosing a Tool for Analyzing Performance

> CodeTEST Tool Qualification for DO-178B Qualification

> Using Performance Analysis Tools

Available online at http://www.freescale.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc., 2005.

Document Number: CODETESTTECHWP
Rev. 0
11/2005

How to Reach Us:

Home Page:
www.freescale.com

e-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370

1300 N. Alma School Road

Chandler, Arizona 85224

1-800-521-6274

480-768-2130

support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH

Technical Information Center

Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)

support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.

Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,

Tokyo 153-0064, Japan

0120 191014

+81 3 5437 9125

support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.

Technical Information Center

2 Dai King Street

Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447

303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor

@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor
products. There are no express or implied copyright license granted hereunder to design or fabricate any integrated circuits
or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for
each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its
patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or
for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if
such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

