

BMP5
Direct SDK

Revision: 04/2020
Copyright © 2004 – 2020
Campbell Scientific, Inc.

Campbell Scientific, Inc.
BMP5 SDK End User License
Agreement (EULA)
NOTICE OF AGREEMENT: Please carefully read this EULA. By installing or using this software, you are
agreeing to comply with the terms and conditions herein. The term "developer" herein refers to anyone using this
BMP5 Direct SDK.

By accepting this agreement, you acknowledge and agree that Campbell Scientific may from time-to-time, and
without notice, make changes to one or more components of the SDK or make changes to one or more components
of other software on which the SDK relies. In no instance will Campbell Scientific be responsible for any costs or
liabilities incurred by you or other third parties as a result of these changes.

The core operational files included with this BMP5 Direct SDK (hereinafter referred to as “BMP5 Direct
Binaries”) include the files: SimplePB.DLL and coralib3d.dll. Developer may distribute or sell their software
including the BMP5 Direct Binaries subject to the terms hereafter set forth.

RELATIONSHIP

Campbell Scientific, Inc. hereby grants a license to use BMP5 Direct Binaries in accordance with the license
statement above. No ownership in Campbell Scientific, Inc. patents, copyrights, trade secrets, trademarks, or trade
names is transferred by this Agreement. Developer may use these BMP5 Direct Binaries to create as many
applications as desired and freely distribute them. Campbell Scientific, Inc. expects no royalties or any other
compensation. Developer is responsible for supporting applications created using the BMP5 Direct Binaries.

RESPONSIBILITIES OF DEVELOPER

The Developer agrees:

• To provide a competent programmer familiar with Campbell Scientific, Inc. data logger programming to write
the applications.

• Not to sell or distribute documentation on use of the BMP5 Direct Binaries.

• Not to sell or distribute the applications that are provided as examples in the BMP5 Direct SDK.

• To develop original works. Developers may copy and paste portions of the code into their own applications,
but their applications are expected to be unique creations.

• This Agreement does not give Developer the right to sell or distribute any other Campbell Scientific, Inc.
Software (e.g., PC200W, VisualWeather, LoggerNet or any of their components, files, documentation, etc.) as
part of Developer's application. Distribution of any other Campbell Scientific, Inc. software requires a
separate distribution agreement.

• Not to sell or distribute applications that compete directly with any application developed by Campbell
Scientific, Inc. or its affiliates.

• Not to use Campbell Scientific’s name, trademarks, or service marks in connection with any program you
develop with the SDK. You may not state or infer in any way that Campbell Scientific endorses any program
you develop, unless prior written approval is received from Campbell Scientific.

• To assure that each application developed with BMP5 Direct Binaries clearly states the name of the person or
entity that developed the application. This information should appear on the first window the user will see.

WARRANTY

There is no written or implied warranty provided with the BMP5 Direct SDK software other than as stated herein.
Developer agrees to bear all warranty responsibility of any derivative products distributed by Developer.

TERMINATION

Any license violation or breach of Agreement will result in immediate termination of the developer's rights herein
and the return of all BMP5 Direct SDK materials to Campbell Scientific, Inc.

MISCELLANEOUS

Notices required hereunder shall be in writing and shall be given by certified or registered mail, return receipt
requested. Such notice shall be deemed given in the case of certified or registered mail on the date of receipt. This
Agreement shall be governed and construed in accordance with the laws of the State of Utah, USA. Any dispute
resulting from this Agreement will be settled in arbitration.

This Agreement sets forth the entire understanding of the parties and supersedes all prior agreements,
arrangements and communications, whether oral or written pertaining to the subject matter hereof. This
Agreement shall not be modified or amended except by the mutual written agreement of the parties. The failure of
either party to enforce any of the provisions of this Agreement shall not be construed as a waiver of such
provisions or of the right of such party thereafter to enforce each and every provision contained herein. If any
term, clause, or provision contained in this Agreement is declared or held invalid by a court of competent
jurisdiction, such declaration or holding shall not affect the validity of any other term, clause, or provision herein
contained. Neither the rights nor the obligations arising under this Agreement are assignable or transferable.

If within 30 days of receiving the BMP5 Direct SDK product developer does not agree to the terms of license,
developer shall return all materials without retaining any copies of the product and shall remove any use of the
BMP5 Direct Binaries in any applications developed or distributed by Developer. In the absence of such return,
CSI shall consider Developer in agreement with the herein, stated license terms and conditions.

COPYRIGHT

This software is protected by United States copyright law and international copyright treaty provisions. This
software may not be altered in any way without prior written permission from Campbell Scientific. All copyright
notices and labeling must be left intact.

Limited Warranty
The following warranties are in effect for ninety (90) days from the date of shipment of the original purchase.
These warranties are not extended by the installation of upgrades or patches offered free of charge:

Campbell Scientific warrants that the installation media on which the software is recorded and the documentation
provided with it are free from physical defects in materials and workmanship under normal use. The warranty does
not cover any installation media that has been damaged, lost, or abused. You are urged to make a backup copy (as
set forth above) to protect your investment. Damaged or lost media is the sole responsibility of the licensee and
will not be replaced by Campbell Scientific.

Campbell Scientific warrants that the software itself will perform substantially in accordance with the
specifications set forth in the instruction manual when properly installed and used in a manner consistent with the
published recommendations, including recommended system requirements. Campbell Scientific does not warrant
that the software will meet licensee’s requirements for use, or that the software or documentation are error free, or
that the operation of the software will be uninterrupted.

Campbell Scientific will either replace or correct any software that does not perform substantially according to the
specifications set forth in the instruction manual with a corrected copy of the software or corrective code. In the
case of significant error in the installation media or documentation, Campbell Scientific will correct errors without
charge by providing new media, addenda, or substitute pages. If Campbell Scientific is unable to replace defective
media or documentation, or if it is unable to provide corrected software or corrected documentation within a
reasonable time, it will either replace the software with a functionally similar program or refund the purchase price
paid for the software.

All warranties of merchantability and fitness for a particular purpose are disclaimed and excluded. Campbell
Scientific shall not in any case be liable for special, incidental, consequential, indirect, or other similar damages
even if Campbell Scientific has been advised of the possibility of such damages. Campbell Scientific is not
responsible for any costs incurred as a result of lost profits or revenue, loss of use of the software, loss of data, cost
of re-creating lost data, the cost of any substitute program, telecommunication access costs, claims by any party
other than licensee, or for other similar costs.

This warranty does not cover any software that has been altered or changed in any way by anyone other than
Campbell Scientific. Campbell Scientific is not responsible for problems caused by computer hardware, computer
operating systems, or the use of Campbell Scientific’s software with non-Campbell Scientific software.

Licensee’s sole and exclusive remedy is set forth in this limited warranty. Campbell Scientific’s aggregate liability
arising from or relating to this agreement or the software or documentation (regardless of the form of action; e.g.,
contract, tort, computer malpractice, fraud and/or otherwise) is limited to the purchase price paid by the licensee.

i

Table of Contents
PDF viewers: These page numbers refer to the printed version of this document. Use the
PDF reader bookmarks tab for links to specific sections.

1. BMP5 Direct SDK Overview 1

1.1 General Notes on BMP5 Direct SDK Usage ..1
1.2 Data Logger Program Table Structure ...2
1.3 Developing Applications Using the .NET Framework2

2. SimplePB.dll Reference .. 2

2.1 OpenPort() ..2
2.2 ClosePort() ...3
2.3 OpenIPPort() ..3
2.4 CloseIPPort() ..3
2.5 GetClock() ..4
2.6 SetClock() ..4
2.7 GetValue() ..5
2.8 SetValue() ..6
2.9 GetData() ..7
2.10 GetDataHeader() ..9
2.11 GetCommaData() ... 10
2.12 File_Send() ... 11
2.13 GetAddress() .. 12
2.14 GetStatus() ... 13
2.15 GetTableNames() ... 14
2.16 GetDLLVersion() ... 15
2.17 GetLastResults() ... 15
2.18 FileControl() ... 15
2.19 SetSecurity() ... 16
2.20 GetTableRecordsCount() ... 17

Appendix

A. Sample Program Table Structure A-1

A.1 CR1000X Data Logger Program Tables ... A-2
A.1.1 CR1000X Data Logger Program .. A-7

CRBasic Example
A-1. CR1000X Data Logger Program ... A-7

1

BMP5 Direct SDK
1. BMP5 Direct SDK Overview

The BMP5 Direct Software Development Kit (SDK) comprises a simple call-
level API (SimplePB.dll) wrapper for the included coralib3d.dll
communications server. Client applications developed using the SDK will
execute calls to the C-type functions exposed by the SimplePB.dll to effect
data logger communications via the coralib3d.dll.

The SDK components and example applications are installed by default in
C:\Campbellsci\BMP5DirectSDK. The SDK does not require registration on
the host computer. However, the SimplePB.dll wrapper and the coralib3d.dll
communications server must be installed into the same folder as the client
application’s executable.

If you have been using version 4.3 or earlier of the BMP5Direct SDK
on your machine, you may wish to uninstall, remove, or relocate the
files located in the C:\Campbellsci\BMP5DirectSDK\Examples
folder before installing this version. This will help avoid confusion
about code locations after installation.

This version uses a folder structure in this form:
\Examples\C#
\Examples\MFC-VS2015
\Examples\VB.NET

Older versions use a folder structure like this:
\Examples\C#\SmplPB_CS
\Examples\MFC
\Examples\VBNET

1.1 General Notes on BMP5 Direct SDK Usage
The SDK supports only PakBus® data logger communication via a serial port
(COM) link or a TCP/IP socket connection. PakBus packet routing is not
supported. Only a single, directly connected (leaf node) PakBus data logger is
accessible at any one time.

The “dialing” of communication devices such as a dial-up phone modem or an
RF500M modem is not supported. However, a connection via a transparent
bridging device such as an RF450 or an RF401 radio is possible.

A successful call to the OpenPort() or OpenIPPort() function will start the
CORALIB3D communications server (hereafter, referred to as “the Server”).
The application should stop the Server by calling either the CloseIPPort() or
ClosePort() function before exiting.

Both the Server and the SimplePB.dll wrapper write log files to
C:\Campbellsci\SimplePB\Ver#\logs; where “Ver#” is the version number of
the SimplePB.dll. These files can provide useful information about the Server’s
behavior when troubleshooting connection issues. Refer to Appendix D of the
LoggerNet Instruction Manual for information regarding log files.

NOTE

https://s.campbellsci.com/documents/us/manuals/loggernet.pdf

BMP5 Direct SDK

2

Once a connection is established, additional functions can be called to
accomplish the desired task. For example: send and manage data logger
programs, check or set the data logger clock, query the data logger for data
table information, get/set table values, and collect table records.

1.2 Data Logger Program Table Structure
The application developer must understand the table structure of the program
running in the data logger because table and field names and numbers are used
as arguments for many of the functions exposed by the SimplePB.dll. The
GetTableNames() function can be used to obtain a list of tables and their
associated numbers. Refer to Appendix A, Sample Program Table Structure (p.
A-1), for information regarding the table structure of PakBus data loggers.

1.3 Developing Applications Using the .NET Framework
From the perspective of the .NET Framework, the SimplePB.dll is unmanaged
code; not unlike the native functions of the Windows® API. Therefore, the
platform invoke (P/Invoke) services provided by the common language run-
time (CLR) can be used to directly access the SimplePB.dll functions.

Fundamentally, the implementation involves attaching a “DllImport” attribute
(requires the System.Runtime.InteropServices namespace) to a static or shared
declaration of the external function. The DllImport attribute notifies the CLR
of the name of the DLL to load and the exposed function to call. An example
of using the OpenPort() function is shown in the following C# code snippet:

[DllImportAttribute("SimplePB.dll", EntryPoint = "OpenPort", CallingConvention =
CallingConvention.StdCall)]
public static extern int OpenPort(int comPortNumber, int baudRate);

Attention should be paid to the marshalling of parameter data types.
Particularly, the “Strings” in the managed code and the “char” arrays in the
unmanaged functions. The SimplePB.dll functions expect the “char” arrays to
be null-terminated and UTF8 encoded.

The recommended method for accommodating the C-type pointers used by
many of the SimplePB.dll functions is to marshal the parameter as a
System.IntPtr type. In the case of pointer to a pointer types (char**), pass the
IntPtr by reference (ref or ByRef). Optionally, the “unsafe” keyword in C#
allows for the direct use of pointer types.

Best practice is to encapsulate or “wrap” the SimplePB.dll function calls into a
shared class and expose them to application code via public functions. This
approach is implemented in both the C# and VB.NET example applications
provided with the SDK.

2. SimplePB.dll Reference
The following C-style functions are exposed by the SimplePB.dll.

2.1 OpenPort()
Opens a COM port (serial port) on the host computer using the specified COM
port and baud rate.

BMP5 Direct SDK

3

Syntax
int _stdcall OpenPort (int com_port_no, int baud)

Parameters
com_port_no: COM port to open.

baud: Baud rate to be used by the COM port.

Return Codes
 0 = Successful.
 –1 = Port failed to open or is already open.

2.2 ClosePort()
Closes the currently open COM port or IP port connection.

Syntax
int _stdcall ClosePort()

Return Codes
 0 = Successful.
 –1 = Port failed to close or was not open.

2.3 OpenIPPort()
Opens a TCP socket connection with a network device using the specified IP
address and port number. An appropriate device would be a cell modem, serial
server, or data logger. IPv4 and IPv6 addresses or fully qualified domain names
are supported.

Syntax
int _stdcall OpenIPPort (char const *ip_address, int tcp_port)

Parameters
ip_address: Pointer to the memory location of a char array defining the IP
address to be used. Must be a null-terminated array of UTF8 encoded bytes.

tcp_port: Port number that will be used when communicating with the data
logger.

Return Codes
 0 = Successful.
 –1 = IP port failed to open or is already open.

2.4 CloseIPPort()
Closes the currently open IP port (synonymous with ClosePort()).

BMP5 Direct SDK

4

Syntax
int _stdcall CloseIPPort()

Return Codes
 0 = Successful.
 –1 = IP port failed to close or was not open.

2.5 GetClock()
Queries the data logger for its current date and time.

Syntax
int _stdcall GetClock (int pakbus_address, int device_type, char **return_data,
int *return_data_len)

Parameters
pakbus_address: PakBus® address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the data logger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Successful.
 –1 = Communication timed out.
 –2 = Port is not open.

Example of data returned by function call
14:12:35 04/16/2004

2.6 SetClock()
Sets the date and time of the data logger to match the host computer clock.

BMP5 Direct SDK

5

Syntax
int _stdcall SetClock (int pakbus_address, int device_type, char **return_data,
int *return_data_len)

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the data logger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Successful.
 –1 = Communication timed out.
 –2 = Port is not open.

Example of data returned by function call
14:22:51 04/16/2004 (Old Time Old Date)
14:22:27 04/16/2004 (New Time New Date)

2.7 GetValue()
Queries the data logger for a value or an array of values from the specified
table and field.

Syntax
int _stdcall GetValue (int pakbus_address, int device_type, int swath, char
const *table_name, char const *field_name, char **return_data, int
*return_data_len)

BMP5 Direct SDK

6

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

swath: The number of values to collect starting at the location specified in the
field_name parameter. The requested swath must be within the bounds of an
indexed array or an error will occur.

table_name: Pointer to the memory location of a char array defining the name
of the table in which the value(s) exist. Must be a null-terminated array of
UTF8 encoded bytes.

field_name: Pointer to the memory location of a char array defining the field in
which the value(s) exist. Field_name may specify an array element (example:
“Temp(3)”). Must be a null-terminated array of UTF8 encoded bytes.

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the data logger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Successful.
 –1 = Communication timed out.
 –2 = Port is not open.

Example of data returned by function call
12.753,111.9,1.239 (Swath of 3 values from fields)

2.8 SetValue()
Set the value of the specified field in the specified data logger table.

Syntax
int _stdcall SetValue (int pakbus_address, int device_type, char const
*table_name, char const *field_name, char const *value)

BMP5 Direct SDK

7

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

table_name: Pointer to the memory location of a char array defining the name
of the table in which the field will be set. Must be a null-terminated array of
UTF8 encoded bytes.

field_name: Pointer to the memory location of a char array defining the field
that will be set with the new value. Must be a null-terminated array of UTF8
encoded bytes.

value: Pointer to the memory location of a char array defining the value used to
set the field. Must be a null-terminated array of UTF8 encoded bytes.

Return Codes
 0 = Successful.
 –1 = Communication timed out.
 –2 = Port is not open.

2.9 GetData()
Queries the data logger for records and returns each record formatted as a list
of fieldname:value pairs. A return code of ‘1’ indicates that additional records
remain to be transferred. The function call should be iterated until the return
code is ‘0’.

Syntax
int _stdcall GetData (int pakbus_address, int device_type, int table_no, int
record_no, char **return_data, int *return_data_len)

BMP5 Direct SDK

8

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

table_no: The number for the table from which to collect data.

record_no: The record number where data collection will start. All records
following this record number will be included in the collection. Therefore, if
the record number is set to 0, all records in the table will be collected. In
addition, if the record number specified does not exist in the data logger, all
existing records from the oldest to the newest will be returned. However, if the
record number is set to a negative number, only the most recent record in the
table will be collected. There is not a way to specify and collect a single record
from a table using this command unless that record is the most recent record in
the table.

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the data logger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Complete.
 1 = Successful but more data to collect.
 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Invalid table number.

BMP5 Direct SDK

9

Example of data returned by function call
"2004-04-16 14:18:03",1 (Time stamp, Record number)
1,OSversion,v03A (Field number, Field name, Field value)
2,OSDate,06-Jan-04
3,ProgName,BATT.CR2
4,ProgSig,54451
5,CalOffset,2.625
6,PakBusAddress,1
7,RfInstalled,424
8,RfNetAddr,0
9,RfAddress,0
10,RfHopSeq,0
11,RfPwrMode,RF1_Sec
12,Rf_ForceOn,0
13,RfSignalLevel,0
14,RfRxPakBusCnt,0
15,VarOutOfBounds,0
16,SkipScan,0
17,TrapCode,0
18,WatchDogCnt,0
19,ResetTables,0
20,BattVoltage,12.3943

2.10 GetDataHeader()
Returns the TOA5 file header for the specified table.

Syntax
int _stdcall GetDataHeader (int pakbus_address, int device_type, int table_no,
char **return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

table_no: The number of the table for which the header will be generated.

return_data: Pointer to a pointer to the memory location of a char array
containing the header returned by the DLL.

BMP5 Direct SDK

10

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Successful.
 1 = Successful but more data to collect.
 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Invalid table number.

Example of data returned by function call
"TIMESTAMP","RECORD", OSVersion, OSDate, OSSignature

2.11 GetCommaData()
Queries the data logger for records and returns each record in a TOA5 comma-
separated format. A return code of ‘1’ indicates that additional records remain
to be transferred. The function call should be iterated until the return code is
‘0’.

Syntax
int _stdcall GetData (int pakbus_address, int device_type, int table_no, int
record_no, char **return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

table_no: The number for the table from which to collect data.

record_no: The record number where data collection will start. All records
following this record number will be included in the collection. Therefore, if
the record number is set to 0, all records in the table will be collected. In
addition, if the record number specified does not exist in the data logger, all
existing records from the oldest to the newest will be returned. However, if the
record number is set to a negative number, only the most recent record in the
table will be collected. There is not a way to specify and collect a single record
from a table using this command unless that record is the most recent record in
the table.

BMP5 Direct SDK

11

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the data logger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Complete.
 1 = Successful but more data to collect.
 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Invalid table number.

Example of data returned by function call
"2005-09-08 14:13:47",1,"CR1000.Std.05","050624",47178

2.12 File_Send()
Sends the specified program to the data logger. A return code of ‘1’ indicates
that a fragment of the file has been successfully transferred, but additional
fragments remain. The array pointed to by ‘return_data’ will contain a string
indicating the current progress of the file transfer. The function call should be
iterated until the return code is ‘0’. Once the operation is complete,
‘return_data’ will point to an array containing the compile results.

Sending a .CR2 file to a CR200 will cause the Server to attempt to invoke the
CR200 compiler located at C:\Campbellsci\Lib\CR200Compilers. If the
compiler is not installed, an error will be returned.

Syntax
int _stdcall File_Send (int pakbus_address, int device_type, char const
*file_name, char **return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

file_name: Pointer to the memory location of a char array defining the path and
file name of the program file to be sent to the data logger. Must be a null-
terminated array of UTF8 encoded bytes.

BMP5 Direct SDK

12

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the DLL.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Complete.
 1 = Successful but more data to transfer.
 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Cannot open source file.
 –4 = File name is too long.
 –5 = Data logger timed out.
 –6 = File offset does not match.
 –7 = Data logger reported an error.
 –8 = File control error.
 –9 = Cannot get program status.

Example of data returned from a CR1000
OS Version: CR1000.Std.05
OS Signature: 19128
Serial Number: 1031
PowerUp Progr: CPU:Program.cr1
Compile Status: Data Logger Program Running
Program Name: CPU:Program.cr1
Program Sig.: 32083
Compile Result: Compiled in SequentialMode.

2.13 GetAddress()
Queries the open port for a connected PakBus device; if found, the PakBus
address is returned. If multiple PakBus devices are connected, only the first to
respond is reported.

Syntax
int _stdcall GetAddress (int device_type, char **return_data, int
*return_data_len)

Parameters
device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

BMP5 Direct SDK

13

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the DLL.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Successful.
 –1 = Communication timed out.
 –2 = Port is not open.

Example of data returned by function call
PakBusAddress=1;

2.14 GetStatus()
Queries the data logger for a summary of its current status.

Syntax
int _stdcall GetStatus (int pakbus_address, int device_type, char
**return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the data logger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Successful.
 –1 = Communication timed out.
 –2 = Port is not open.

BMP5 Direct SDK

14

Example of data returned from a CR200
OS Version: v03A
OS Signature: 43529
Serial Number:
PowerUp Progr:
Compile Status: Data Logger Program Running
Program Name: BATT.CR2
Program Sig.: 54451
Compile Result: Program Running
Batt=12.38V

2.15 GetTableNames()
Query the data logger for its table names and numbers.

Syntax
int _stdcall GetTableNames (int pakbus_address, int device_type, char
**return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the data logger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
 0 = Successful.
 –1 = Communication timed out.
 –2 = Cannot read table definitions from the data logger.

Example of data returned by function call
1 Status
2 DataTable1
3 DataTable2
4 Public

BMP5 Direct SDK

15

2.16 GetDLLVersion()
Gets the version of the SimplePB.dll being used.

Syntax
int _stdcall GetDLLVersion (char **return_data, int *return_data_len)

Parameters
return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the data logger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
0 = Successful.

Example of data returned by function call
SimplePB.dll Version 2.0 / 2,2,3,0I

2.17 GetLastResults()
Retrieves the return_data results from memory for the previous function as a
String. This function is useful for developers that don’t want to manage
memory pointers. A new BSTR is allocated each time this function is called.

Syntax
BSTR _stdcall GetLastResults ()

2.18 FileControl()
Used to control compilation and execution of the data logger program and do
file management.

Syntax
int _stdcall FileControl (int pakbus_address, int device_type, char const
*file_name, int command)

BMP5 Direct SDK

16

Parameters
pakbus_address: PakBus address of the data logger.

device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

file_name: Pointer to the memory location of a char array defining the path and
file name of the device or file subject to the specified command.

command: Specifies the action to be executed upon the specified device or file:
 1 = Compile and run; marks the program as “run on power up”
 2 = Run on power up
 3 = Make hidden
 4 = Delete file
 5 = Format device
 6 = Compile and run (preserve data if no table changed)
 7 = Stop running program
 8 = Stop running program and delete associated files
 9 = Make the specified file the operating system
 10 = Compile and run but do not change the "run on power up" program
 11 = Pause execution of the running program
 12 = Resume execution of the running program
 13 = Stop the running program, delete associated files, and mark as run now

and on power up
 14 = Stop the running program, delete associated files, and mark as run now

but not on power up

Return Codes
 0 = Successful.
 –1 = Communication timed out.
 –2 = Port is not open.

2.19 SetSecurity()
Sets the security code that will be used to communicate with the data logger.

Syntax
int _stdcall SetSecurity (int security_code)

Parameter
Security_code: Security code to use.

BMP5 Direct SDK

17

Return Codes
 0 = Success.
 –1 = Failure.

2.20 GetTableRecordsCount()
Queries the data logger to determine the number of records that are available
for collection from the specified table.

Syntax
int _stdcall GetTableRecordsCount (int pakbus_address, int device_type, int
table_no, unsigned long *records_count)

Parameters
pakbus_address: The PakBus address of the data logger.

Device_type: Type of data logger:
 1 = CR200
 2 = CR10XPB, CR23XPB, CR510PB
 3 = CR1000
 4 = CR3000
 5 = CR800 Series
 9 = CR6 Series
 13 = CR300 Series
 14 = CR1000X Series
 15 = GRANITE 9
 16 = GRANITE 10
 17 = GRANITE 6

table_no: Number of the table from which to get the records count.

records_count: Pointer to the memory location where the records count value
will be written.

Return Codes
 0 = Successful.
 1 = Successful but more data to collect.
 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Invalid table number.

A-1

Appendix A. Sample Program Table
Structure

The table structure of a PakBus® data logger is given in the following
example. This example shows a data logger with two user defined tables plus
the Status table, DataTableInfo table, and Public or Inlocs table. The second
table in the following example contains three records and the third table
contains four records. The Status table, DataTableInfo table, and Public or
Inlocs table will always return the most recent records and will not contain any
historical data records.

The first table is the Status table, which shows the status of the data logger.
The DataTableInfo table shows information such as name, skipped records,
size, and time to fill for all user-defined tables. The Public or Inlocs table
contains all public variables or input locations. All other tables found in the
data logger are created and defined by the user in the data logger program. The
tables in a PakBus data logger will always contain a record number and
timestamp followed by the data fields.

The DataTableInfo table is only present in newer data loggers
and/or with newer operating systems.

Table 1 – Status

Record No Time Stamp Data Field 1 Data Field 2 Data Field 3-72 Data Field 73

Table 2 – User Defined

RN 0 Time Stamp Data Field 1 Data Field 2

RN 1 Time Stamp Data Field 1 Data Field 2

RN 2 Time Stamp Data Field 1 Data Field 2

Table 3 – User Defined

RN 0 Time Stamp Data Field 1 Data Field 2 Data Field 3 Data Field 4 Data Field 5

RN 1 Time Stamp Data Field 1 Data Field 2 Data Field 3 Data Field 4 Data Field 5

RN 2 Time Stamp Data Field 1 Data Field 2 Data Field 3 Data Field 4 Data Field 5

RN 3 Time Stamp Data Field 1 Data Field 2 Data Field 3 Data Field 4 Data Field 5

Table 4 – DataTableInfo

Record No Time Stamp Data Field 1 Data Field 2 Data Field 3-17 Data Field 18

NOTE

Appendix A. Sample Program Table Structure

A-2

Table 5 – Public or Inlocs

Record No Time Stamp Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

A.1 CR1000X Data Logger Program Tables
The following tables show the table structure from a program installed in a
CR1000X data logger. This program measures and stores the minimum battery
voltage and the minimum and maximum temperature over a 60-minute
interval. When communicating with a data logger using the BMP5 Direct SDK,
knowing the table structure of the running program is necessary for some
commands.

Although each record of a table has an associated timestamp and
record number, they are not relevant when determining which
field number to use, and therefore not shown.

Table Number 1 – Status

Field
Number Field Name Units Notes

Field 1 OSVersion Version of the operating system. Updated at OS startup.

Field 2 OSDate Build date of the operating system in the format mmddyyyy.
Updated at startup.

Field 3 OSSignature Signature of the operating system.

Field 4 SerialNumber Serial number assigned by the factory when the data logger was
calibrated. Stored in flash memory. Updated at startup.

Field 5 RevBoard Electronics board revision in the form xxx.yyy, where xxx =
hardware revision number; yyy = clock chip software revision.
Stored in flash memory. Updated at startup.

Field 6 StationName Station name stored in flash memory. This is not the same name
as that is entered into your data logger support software. This
station name can be sampled into a data table, but it is not the
name that appears in data file headers. Updated at startup or
when the name is changed.

Field 7 ProgName Name of current (running) program; updates at startup.

Field 8 StartTime Time (date and time) the CRBasic program started. Updates at
beginning of program compile.

Field 9 RunSignature Signature of the running binary (compiled) program. Value is
independent of comments or non-functional changes. Often
changes with operating-system changes. Updates after
compiling and before running the program.

Field 10 ProgSignature Signature of the running CRBasic program including comments.
Does not change with operating-system changes. Updates after
compiling the program.

NOTE

Appendix A. Sample Program Table Structure

A-3

Field 11 WatchdogErrors Number of watchdog errors that have occurred while running
this program. Resets automatically when a new program is
compiled. Enter 0 to reset. Updated at startup and at occurrence.

Field 12 PanelTemp Deg C Current temperature of the data logger’s main processing board.

Field13 Battery Volts Voltage (Vdc) of the battery powering the system. Updates
when viewing the Status table or via program code.

Field 14 LithiumBattery Volts Voltage of the internal lithium battery.

Field 15 Low12VCount Counts the number of times the primary CR1000X supply
voltage drops below ≈9.0 VDC.

Field 16 CompileResults Contains error messages generated at compilation or during
runtime. Updated after compile. Also appended to at run time
for run time errors such as variable out of bounds.

Field 17 StartUpCode Indicates how the running program was compiled. Updated at
startup. 0 = Normal shutdown -1 = Restart due to a power loss.
-2 = Restart due to watchdog reset

Field 18 ProgErrors Number of compile or runtime errors for the running program.
Updated after compile.

Field 19 VarOutOfBound Number of attempts to write to an array outside of the declared
size. The write does not occur. Indicates a CRBasic program
error. If an array is used in a loop or expression, the pre-
compiler and compiler do not check to see if an array is
accessed out-of-bounds (i.e., accessing an array with a variable
index such as arr(index) = arr(index–1), where index is a
variable). Updated at run time when the error occurs.

Field 20 SkippedScan Number of skipped program scans that have occurred while
running the CRBasic program. Does not include scans
intentionally skipped as may occur with the use of ExitScan and
Do / Loop instructions. Updated when they occur.

Field 21 SkippedSystemScan Number of scans skipped in the background calibration.

Field 22 ErrorCalib Number of erroneous calibration values measured. Erroneous
values are discarded.

Field 23 MemorySize Bytes Total final storage memory size. Updated at startup.

Field 24 MemoryFree Bytes Unallocated final storage memory on the CPU. All free memory
may not be available for data tables. As memory is allocated and
freed, holes of unallocated memory, which are unusable for
final-storage memory, may be created. Updated after compile
completes.

Field 25 CommsMemFree Memory allocations for communications. Numbers outside of
parentheses reflect current memory allocation. Numbers inside
parentheses reflect the lowest memory size reached.

Field 26 FullMemReset Enter 98765 to start a full-memory reset.

Field 27 CardStatus Contains a string with the most recent status information for the
removable memory card.

Appendix A. Sample Program Table Structure

A-4

Field 28 MeasureOps Reports the number of task-sequencer opcodes required to do all
measurements. Calculated at compile time. Includes operation
codes for calibration (compile time), auto (background)
calibration (system), and Slow Sequences. Assumes all
measurement instructions run each scan. Updated after compile
and before running.

Field 29 MeasureTime μs Reports the time needed to make measurements in the current
scan. Calculated at compile time. Includes integration and
settling time. Assumes all measurement instructions will run
each scan. Updated when a main scan begins.

Field 30 ProcessTime μs Processing time of the last scan. Time is measured from the end
of the EndScan instruction (after the measurement event is set)
to the beginning of the EndScan (before the wait for the
measurement event begins) for the subsequent scan. Calculated
on-the-fly. Updated at the conclusion of scan processing, prior
to waiting for the next scan.

Field 31 MaxProcTime μs Maximum time required to run through processing for the
current scan. Value is reset when the scan exits. Enter 0 to reset.
Updated at the conclusion of scan processing, prior to waiting
for the next scan.

Field 32 BuffDepth Shows the current pipeline mode processing buffer depth, which
indicates how far the processing task is currently behind the
measurement task. Updated at the conclusion of scan
processing, prior to waiting for the next scan.

Field 33 MaxBuffDepth Maximum number of buffers the CR1000X will use to process
lagged measurements.

Field 34 LastSystemScan Reports the time of the of the last auto (background) calibration,
which runs in a hidden slow-sequence type scan.

Field 35 SystemProcTime μs Time required to process auto (background) calibration.

Field 36 MaxSystemProcTime μs Maximum time required to process the auto (background)
calibration, which runs in a hidden slow-sequence type scan.
Displays 0 until a background calibration runs.

Field 37 PortStatus(1) States of C terminals configured for control. On/high (True) or
off/low (False). Array elements in numeric order of C terminals.
Default = False. Updates when state changes. Field 38 PortStatus(2)

Field 39 PortStatus(3)

Field 40 PortStatus(4)

Field 41 PortStatus(5)

Field 42 PortStatus(6)

Field 43 PortStatus(7)

Field 44 PortStatus(8)

Appendix A. Sample Program Table Structure

A-5

Field 45 PortConfig(1) Sets up C terminals in numeric order of terminals. Set up for
input, output, SDI-12, COM port. Default = Input. Updates
when the port configuration changes. Field 46 PortConfig(2)

Field 47 PortConfig(3)

Field 48 PortConfig(4)

Field 49 PortConfig(5)

Field 50 PortConfig(6)

Field 51 PortConfig(7)

Field 52 PortConfig(8)

Field 53 SW12Volts(1) Status of switched, 12 Vdc terminal. True = on. Updates when
the state changes. Field 54 SW12Volts(2)

Field 55 PakBusRoutes Lists routes or router neighbors known to the data logger at the
time the setting was read. Each route is represented by four
components separated by commas and enclosed in parentheses:
(port, via neighbor address, pakbus address, response time in
ms). Default = (1, 4089, 4089, 1000). Updates when routes are
added or deleted.

Field 56 Messages Contains a string of manually entered messages.

Field 57 CalVolts(1) Array of floating-point values reporting a factory calibrated
correction factor for the different voltage ranges. Field 58 CalVolts(2)

Field 59 CalVolts(3)

Field 60 CalRefSlope(1) Displays voltage reference temperature compensation slope.

Field 61 CalRefSlope(2)

Field 62 CalRefSlope(3)

Field 63 CalRefOffset(1) Displays voltage reference temperature compensation offset.

Field 64 CalRefOffset(2)

Field 65 CalRefOffset(3)

Field 66 CalGain(1) Array of floating-point values reporting calibration gain (mV)
for each integration / range combination. Field 67 CalGain(2)

Field 68 CalGain(3)

Field 69 CalOffset(1) Displays the offset calibration factor for the different voltage
ranges. Field 70 CalOffset(2)

Field 71 CalOffset(3)

Field 72 CalCurrent(1) Shows the offset calibration factor for the resistor used in 0-20
and 4-20 mA measurements on RG terminals. Measured once
during production calibration. Field 73 CalCurrent(2)

Appendix A. Sample Program Table Structure

A-6

Table Number 2 – Hourly: The Hourly table contains the minimum battery voltage and the minimum and
maximum temperature over a 60-minute interval.

Field Number Field Name Units Notes

Field 1 Battery_Min Volts

Field 2 Battery_Time Time

Field 2 Temp_Min Deg C

Field 3 Temp_Max Deg C

Table Number 3 – DataTableInfo

Field
Number Field Name Units Notes

Field 1 DataTableName(1) Reports the name of the data table. Each table has its own
entry in an array. Array elements are in the order the data
tables are declared in the CRBasic program.

Field 2 SkippedRecord Reports how many times records have been skipped in a data
table. For multiple tables, each table has its own entry in an
array.

Field 3 DataRecordSize(1,1) Records Reports the number of records allocated to a data table. Each
table has its own entry in a two-dimensional array. First
dimension is for on-board memory. Second dimension is for
card memory.

Field 4 DataRecordSize(1,2) Records

Field 5 SecsPerRecord Seconds Reports the data output interval for a data table. For multiple
tables, each table has its own entry in an array.

Field 6 DataFillDays(1,1) Days Reports the time required to fill a data table. Each table has
its own entry in a two-dimensional array. First dimension is
for on-board memory. Second dimension is for card memory. Field 7 DataFillDays(1,2) Days

Field 8 DataFilled(1,1) Percentage Reports the current field level of the table as a percentage of
total. Each table has its own entry in a two-dimensional
array. First dimension is for on-board memory. Second
dimension is for card memory.

Field 9 DataFilled(1,2) Percentage

With multiple tables, these field numbers will change as additional
array elements are added for each table.

Table Number 4 – Public: The Public table contains only the most recent “real-time” record for the variable
described in the data logger program.

Field Number Field Name Units Notes:

Field 1 Batt_Volt Volts

Field 2 Temp Deg C

NOTE

Appendix A. Sample Program Table Structure

A-7

A.1.1 CR1000X Data Logger Program

CRBasic Example A-1. CR1000X Data Logger Program

'CR1000X Series Data Logger

'Declare Variables and Units
Public Batt_Volt, Temp
Units Batt_Volt=Volts
Units Temp=Deg C

'Define Data Tables
DataTable(Hourly,True,-1)
 DataInterval(0,60,Min,10)
 Minimum(1,Batt_Volt,FP2,False,True)
 FieldNames("Battery_Min,Battery_Time")
 Minimum(1,Temp,FP2,False,False)
 Maximum(1,Temp,FP2,False,False)
EndTable

'Main Program
BeginProg
 Scan(10,Sec,3,0)
 'Default Data Logger Battery Voltage measurement Batt_Volt:
 Battery(Batt_Volt)
 '109 Temperature Probe measurement Temp:
 Therm109(Temp,1,1,Vx1,0,60,1.0,0)
 'Call Data Tables and Store Data
 CallTable(Hourly)
 NextScan
EndProg

Australia
Location:
Phone:
Email:
Website:

Garbutt, QLD Australia
61.7.4401.7700
info@campbellsci.com.au
www.campbellsci.com.au

Brazil
Location:
Phone:
Email:
Website:

São Paulo, SP Brazil
11.3732.3399
vendas@campbellsci.com.br
www.campbellsci.com.br

Canada
Location:
Phone:
Email:
Website:

Edmonton, AB Canada
780.454.2505
dataloggers@campbellsci.ca
www.campbellsci.ca

China
Location:
Phone:
Email:
Website:

Beijing, P. R. China
86.10.6561.0080
info@campbellsci.com.cn
www.campbellsci.com.cn

Costa Rica
Location:
Phone:
Email:
Website:

San Pedro, Costa Rica
506.2280.1564
info@campbellsci.cc
www.campbellsci.cc

France
Location:
Phone:
Email:
Website:

Vincennes, France
0033.0.1.56.45.15.20
info@campbellsci.fr
www.campbellsci.fr

Germany
Location:
Phone:
Email:
Website:

Bremen, Germany
49.0.421.460974.0
info@campbellsci.de
www.campbellsci.de

India
Location:
Phone:
Email:
Website:

New Delhi, DL India
91.11.46500481.482
info@campbellsci.in
www.campbellsci.in

South Africa
Location:
Phone:
Email:
Website:

Stellenbosch, South Africa
27.21.8809960
sales@campbellsci.co.za
www.campbellsci.co.za

Spain
Location:
Phone:
Email:
Website:

Barcelona, Spain
34.93.2323938
info@campbellsci.es
www.campbellsci.es

Thailand
Location:
Phone:
Email:
Website:

Bangkok, Thailand
66.2.719.3399
info@campbellsci.asia
www.campbellsci.asia

UK
Location:
Phone:
Email:
Website:

Shepshed, Loughborough, UK
44.0.1509.601141
sales@campbellsci.co.uk
www.campbellsci.co.uk

USA
Location:
Phone:
Email:
Website:

Logan, UT USA
435.227.9120
info@campbellsci.com
www.campbellsci.com

Campbell Scientific regional offices

mailto:info@campbellsci.com.au
http://www.campbellsci.com.au/
mailto:vendas@campbellsci.com.br
http://www.campbellsci.com.br/
mailto:dataloggers@campbellsci.ca
http://www.campbellsci.ca/
mailto:info@campbellsci.com.cn
http://www.campbellsci.com.cn/
mailto:info@campbellsci.cc
http://www.campbellsci.cc/
mailto:info@campbellsci.fr
http://www.campbellsci.fr/
mailto:info@campbellsci.de
http://www.campbellsci.de/
mailto:info@campbellsci.in
http://www.campbellsci.in/
mailto:sales@campbellsci.co.za
http://www.campbellsci.co.za/
mailto:info@campbellsci.es
http://www.campbellsci.es/
mailto:info@campbellsci.asia
http://www.campbellsci.asia/
mailto:sales@campbellsci.co.uk
http://www.campbellsci.co.uk/
mailto:info@campbellsci.com
http://www.campbellsci.com/

	Revision and Copyright Information
	EULA
	Limited Warranty
	Table of Contents
	1. BMP5 Direct SDK Overview
	1.1 General Notes on BMP5 Direct SDK Usage
	1.2 Data Logger Program Table Structure
	1.3 Developing Applications Using the .NET Framework

	2. SimplePB.dll Reference
	2.1 OpenPort()
	Syntax
	Parameters
	Return Codes

	2.2 ClosePort()
	Syntax
	Return Codes

	2.3 OpenIPPort()
	Syntax
	Parameters
	Return Codes

	2.4 CloseIPPort()
	Syntax
	Return Codes

	2.5 GetClock()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.6 SetClock()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.7 GetValue()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.8 SetValue()
	Syntax
	Parameters
	Return Codes

	2.9 GetData()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.10 GetDataHeader()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.11 GetCommaData()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.12 File_Send()
	Syntax
	Parameters
	Return Codes
	Example of data returned from a CR1000

	2.13 GetAddress()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.14 GetStatus()
	Syntax
	Parameters
	Return Codes
	Example of data returned from a CR200

	2.15 GetTableNames()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.16 GetDLLVersion()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.17 GetLastResults()
	Syntax

	2.18 FileControl()
	Syntax
	Parameters
	Return Codes

	2.19 SetSecurity()
	Syntax
	Parameter
	Return Codes

	2.20 GetTableRecordsCount()
	Syntax
	Parameters
	Return Codes

	Appendix A. Sample Program Table Structure
	A.1 CR1000X Data Logger Program Tables
	A.1.1 CR1000X Data Logger Program

	Campbell Scientific Regional Offices

