ControlWave[™] Designer Programmer's Handbook

ControlWave Designer - my_simple - [Flow_C	Control_Program:Flow_Control_Program]		
🖶 Eile Edit View Project Build Objects Layout On	line E <u>x</u> tras <u>Wi</u> ndow <u>?</u> -	.8×	
🗋 🍋 🕞 🕲 🔌 😓 🖻 🧐 🖉 🔌 🔍	9, III 🛠 V 🖉 🗆 🛸 🖬 II 🕞 🖬	• 💿 🛔	
🍳 🕞 🖗 🌣 ∿ 🍙 🕸 🐉 🎦 😭	b HH H 휴 # HH WH HW 🔤 🔁 😰 😫	바	
: Project Tree Window 🛛 📮 🔻 🛛			
Project : C:\OpenBSI\projects\my_simple Libraries PROCONOS ACCOL3 Data Types MY_DATA_TYPES SYS_VAR_WZ_TYPES Control_Program Flow_Control_Program Flow_Control_Program Flow_Control_Program Physical Hardware ControlWave : IPC_40 Flow_Control_Program ControlWave : IPC_40 Tasks Tasks Task1 : CYCLIC Global_Variables IO_Configuration	LEAD_LAG_1 PID3TERM_1 1_INPUT irInput orOutput V002 irDerivative V006 irSetpoint orError V003 irIntegral V007 irDeadband V004 ibReset V008 irProportion V010 irIntegral V011 irReset V012 irDerivative V011 irReset V012 irDerivative	101_O UNTIP	
	ALARM_ANALOG_1 ALARM_ANALOG ibDisable odiStatus F101_OUTPUTiaAlarmVar ouiAlarmSeqV023	~	
(* B) (1) (1) (0)	Flow_Contr		
Build / Errors / Warnings / Infos / PLC Errors / Print /			
For Help, press F1	34,88 C:	>2GB .;;	

Application Safety Considerations

Protecting Operating Processes

A failure of this application – for whatever reason – may leave an operating process without appropriate protection and could result in possible damage to property or injury to persons. To protect against this, you should review the need for additional backup equipment or provide alternate means of protection (such as alarm devices, output limiting, fail-safe valves, relief valves, emergency shutoffs, emergency switches, etc.).

ACAUTION

When implementing control using this product, observe best industry practices as suggested by applicable and appropriate environmental, health, and safety organizations. While this product can be used as a safety component in a system, it **NOT** intended or designed to be the **ONLY** safety mechanism in that system.

Contents

Introduction ControlWave Product Line Manuals You Should Read <u>Before</u> You Read This One What is Covered in this Manual? What Related Documentation is Available?	1 1 1 2
ACCOL III Function Block Library	5
Alarm Configuration What are Alarms? Where can I get detailed information about these function blocks? Configuring an Analog Alarm Using the ALARM_ANALOG function block Configuring a Logical Alarm Using the ALARM_LOGICAL_ON function block Configuring a Change of State Alarm	9 9 11 12 13 17 17 17
Application Licensing Granting a License for a Controller to Run a Standard Application Removing an Application License from a Controller: Viewing a History of Dongle Issue / Remove Operations:	23 23 24 25
Application Parameters	27
 Archive Configuration What Are Archive Files? Archive configuration involves four basic steps: What can be done with the data from the Archive File(s)? Step 1. Define Archive Files(s) in the Flash Configuration Utility Step 2. In Your ControlWave Designer Project, Identify the variables you want to archive in th Archive List Step 3. Create an Output List for Accessing the Most Recent Archive Record (OPTIONAL) Step 4. Configure the ARCHIVE Function Block 	29 30 31 31 e 36 37 38
Array Configuration	41
Audit Configuration Step 1. Set parameters in the Flash Configuration Utility Step 2. In ControlWave Designer, identify Variables for which you want to maintain Audit Logging Step 3. Configure an AUDIT Function Block	43 43 46 47
BSAP Addressing and Networks What is BSAP? Adding A ControlWave to an OpenBSI BSAP Network in the RTU Wizard Setting the BSAP Local Address and EBSAP Group What is Client/Server Communication? BSAP - Underlying Technical Details (For ADVANCED USERS)	49 49 51 52 53 53
BSAP Master Port	55
Contiguring A BSAP Master Port	56
Configuring a BSAP Slave Port	ا م 61
Communication Ports	67

How do I configure the Ports on the ControlWave? What are the factory default settings for communication ports? How can the port configuration be changed? Dialing - An Overview	81 81 92 92
Serial Port Sharing between the BSAP Slave and Custom Slave Protocols:	92 95
Conditional Logic	97
	101
Before you begin: Calling up ControlWave Data in DataView	101 102
Debugging – An Overview. Starting Debug Mode Using the Watch Window Using the Cross-Reference Window On-line Editing with Patch POU Using the Force/Overwrite Options Setting a Breakpoint Exiting Debug Mode	105 105 105 107 108 109 110 112
Downloading Two Methods Available for Downloading Downloading from within ControlWave Designer Downloading Your ControlWave Project from Within ControlWave Designer Downloading using the OpenBSI ControlWave Downloader Starting the ControlWave Downloader Using the ControlWave Downloader Creating Download Scripts for Batch Downloading of ControlWave Controllers	113 113 114 117 119 121 122 123
Expanded BSAP (EBSAP) Communications Expanded BSAP – The Concept General Requirements for Expanded BSAP (EBSAP): Creating an EBSAP Master OpenBSI Workstation is EBSAP Master ControlWave-series Controller is the EBSAP Master Configuring the Control and Status Arrays Defining the Virtual Nodes Defining the EBSAP Slave Nodes Example 1 – OpenBSI Workstation is EBSAP Master to 1000 ControlWave controllers Example 2 – ControlWave Controller is EBSAP Master to 300 ControlWave EBSAP Slaves	128 129 130 130 131 132 141 142 143 146
Flash Configuration Utility – An Overview Starting the Flash Configuration Utility	. 149 149
Flash File Access Viewing a List of Files in the Flash File Area: Uploading a File from the ControlWave to Your OpenBSI Workstation: Copying a File from the OpenBSI Workstation to Your ControlWave: Deleting a File from the ControlWave User Flash Files Area: Refreshing the List of Files:	156 156 156 157 157 157
Function Blocks – Creating	159
Function Block Parameter Name Prefixes	165
Historical Data	167

	////
What is Historical Data Used For?	167
What types of Historical Data can be saved in the ControlWave Controller?	167
How is Audit Trail and Archive Data Retrieved from the ControlWave Controller?	168
I/O Configurator	
Tables of Board Types	174
Analog Boards	1/9
Digital Boards High Speed Counter (HSC) Boards	185
Remote I/O Status Board	186
System Controller Board	186
CWM_RTU Board	187
Notes About Ethernet I/O Boards	18/
	195
I/O Mapping	
Common Device Map	197
Ethernet I/O	206
ControlWave I/O Expansion Rack Boards	218
Local I/O – ControlWave MICRO-series	229
Local I/O – ControlWave GFC-CL and ControlWave XFC	242
Local I/O – ControlWave Express and ControlWave GFC Local I/O – ControlWave CW10, CW30, CW35	248
I/Q = ControlWave CW 31	250
ControlWave MICRO I/O Expansion Rack	269
I/O Simulator	
What is the I/O Simulator?	283
Starting the I/O Simulator	283
Analog Boards	287
Digital Boards Counter Boards	288
Viewing the Board Configuration Status	289
Configuring a Pin	289
Viewing Simulated Alarms	290
Shutting Down the I/O Simulator	290
I roubleshooting Tip	290
IP Addressing and Networks	293
What is the Format of IP Addresses?	293
Adding a Controlwave to an IP Network with the RTU Wizard Setting up IP Ports in the Flash Configuration Litility	298
Recommended Ranges for IP Addresses	299
IP Parameters	301
IP Ports - Ethernet	
IP Ports – PPP	
IP Routes	
Libraries	315
Memory Usage	310
Some Background - What is Memory?	319
What is Downloading?	319
Types of Memory in the ControlWave Process Automation Controller (CW PAC)	320

What happens in the event of a power failure or the power switch is turned off? What happens in the event of a watchdog condition? What happens on restart after a power failure or watchdog? Variations when using ControlWave MICRO/EFM Variations when using ControlWave GFC/GFC-CL, XFC, Corrector, Express or ExpressPAC Variations when using ControlWave_10/_30/_35 (CW_10, CW_30, CW_35) Memory Allocation Issues Determining POU Size at Compilation Time Resolving "Not Enough Memory" Messages	323 324 327 328 329 330 330 330
Modbus Configuration Configuring Your ControlWave Controller as a Modbus Master Device Configuring Your ControlWave Controller as a Modbus Slave or Enron Modbus Slave Device	335 335 339
Modbus Ports Configuring Modbus Ports	341 341
Reset ControlWave Utility	343
Security	345
Other Security-Related Issues	351
Security Protocols (CHAP and PAP)	355
Security Protocols (CHAP and PAP) Used on PPP Links	355
Challenge Handshaking Authentication Protocol (CHAP)	355
Password Authentication Protocol (PAP)	358
System Tasks (Warm/Cold Starts)	361
System Variables	363
Using the System Variable Wizard	363
System Variable Mapping Charts	367
Static Memory Area: Using the System Variable Viewer	392
	200
Variable Extension Wizard	
Starting the Variable Extension Wizard	399
Using the Variable Extension Wizard	400
Marking a Variable for Report by Exception (RBE) Collection	403
Configuring a Variable as an Alarm	404
Creating / Editing a List	406
Setting initial values for Manual or Alarm Inhibit/Enable Flags	408
Assigning ON/OFF Text (ROOL Variables ONLY)	409
Creating Descriptive Text for the Variable	411
Saving the Initialization Files and Exiting the Wizard	412
Format of Initialization Files	412
Troubleshooting Tips	417
Variables and Data Types	419
Global Variables Vs. Local Variables	419
Variable Addressing	420
System Variables	421 421
Notes about STRING variables	421
Variable Naming Conventions	423

Versions and Compatibility	425
Virtual Ports	441
VSAT Slave Port – Configuration	443
Configuring Flash Parameters	443
Configuring System Variables	444
VSAT Master Ports	446
Using Web Pages	447
Other Notes About Using Web Pages	448
Calling Up Web_BSI Pages	449
Creating Your Own Web Pages to Use with the ControlWave	451
Appendix A: Troubleshooting Tips	453
Using the Debug Information Tool	458
Other Debugging Tools (BTCP Spy, DLM Monitor)	462
Appendix B: ControlWave Designer Compatibility Issues	463
Bringing an Older ControlWave Project into a Newer Version of ControlWave Designer	463
Warning - I/O Configurator and Multiple Copies of ControlWave Designer	464

Introduction

ControlWave Product Line

Unless otherwise noted, the information in this manual applies to any controller in the ControlWave product line, including:

- ControlWave Process Automation Controller
- ControlWave Low Power (LP) Controller
- ControlWave Redundant Controller
- ControlWave MICRO Controller
- ControlWave Electronic Flow Meter (EFM)
- ControlWave Gas Flow Computer (GFC)
- ControlWave Gas Flow Computer Plus (GFC Plus)
- ControlWave Explosion-Proof Gas Flow Computer (XFC)
- ControlWave Express / Express Process Automation Controller
- ControlWave Corrector

Manuals You Should Read Before You Read This One

Before you read this document, we strongly recommend you read, and try out, the example presented in the Getting Started with ControlWave Designer Manual (part number D301416X012). It is designed to explain various concepts to first-time ControlWave users.

In addition, please review the quick setup guide for your particular controller (see next page for the proper document) which contains notes about how to initially set up your ControlWave Controller, and how to configure certain parameters for first-time use.

The ControlWave Designer Programmer's Handbook (which you are reading right now) builds on the information contained in these other documents, so it is essential that you are familiar with the material included in them.

What is Covered in this Manual?

The *ControlWave Designer Programmer's Handbook* is intended to provide you the information you need to get the most out of your ControlWave Designer software. It includes:

- Examples of how to configure various sub-systems of ControlWave software, which are commonly required in process control applications, such as: alarming, and historical data collection.
- Instructions for how to create your own function blocks, and how to create a library of them, so they can be re-used in other projects.
- Notes about how to use OpenBSI, and BSAP, or IP, to include your ControlWave in a network.
- Explanations about how ControlWave memory works, and how I/O points can be configured.
- Discussions of communication options, as well as how to download your ControlWave project into the ControlWave controller.

What Related Documentation is Available?

For information on this	Please consult this
ControlWave Designer	Getting Started with ControlWave Designer
	(part D301416X012)
 IEC 61131 terminology and languages 	Online help in ControlWave Designer,
 Projects, Project Tree, POUs, Tasks, 	accessible through the question mark [?]
Resources	menu item.
 ACCOL3 library 	
 PROCONOS library 	
 Flash Configuration 	Chapter 5 of the OpenBSI Utilities Manual
	(part number D301414X012) contains full
	details on flash configuration.
 Web Pages 	Web_BSI Manual (part number
 ActiveX controls used with ControlWave 	D301418X012).
 Converting ACCOL II source files (*.ACC) 	ACCOL Translator User's Guide (part number
into ControlWave Projects	D301417X012)
 ControlWave Process Automation 	ControlWave Quick Setup Guide (part number
Controller	D301415X012)
 ControlWave Low Power (LP) Controller 	ControlWave LP Quick Setup Guide (part
	number D301422X012)
 ControlWave I/O Expansion Rack 	ControlWave I/O Expansion Rack Quick Setup
	<i>Guide</i> (part number D301423X012)
 ControlWave Redundant Controller 	ControlWave Redundancy Setup Guide (part
	number D301424X012).
 ControlWave MICRO Controller 	ControlWave Micro Quick Setup Guide (part
	number D301425X012)
 ControlWave Electronic Flow Meter (EFM) 	ControlWave Electronic Flow Meter (EFM)
	Instruction Manual (part number
	D301383X012)
 ControlWave Gas Flow Computer (GFC) 	ControlWave Gas Flow Computer (GFC)
	Instruction Manual (part number
	(D301387X1012)

For information on this	Please consult this
 ControlWave Explosion-Proof Gas Flow 	ControlWave Explosion-Proof Gas Flow
Computer (XFC)	Computer (XFC) Instruction Manual (part
	number D301396X012)
ControlWave Express	ControlWave Express RTU Instruction Manual
	(part number D301386X012)
 ControlWave Express PAC 	ControlWave Express PAC Instruction Manual
	(part number D301384X012)
 ControlWave Corrector 	ControlWave Corrector Instruction Manual
	(part number D301382X012)
 ControlWave Gas Flow Computer Plus 	ControlWave Gas Flow Computer Plus
	Instruction Manual (part number
	D301389X012)
 ControlWave Ethernet I/O 	ControlWave Ethernet I/O Instruction Manual
	(part number D301395X012)
 ControlWave Industrial Ethernet Real 	ControlWave Industrial Ethernet Real-time
Time Switches	Switches Instruction Manual (part number
	D301390X012)

ACCOL III Function Block Library

The ACCOL III Function Block Library is a set of functions and function blocks created by Emerson and included with ControlWave Designer. ACCOL III function blocks are designed to provide ControlWave Designer with the capabilities of ACCOL II modules used in our previous ACCOL II language. This library also includes several newer functions which were not available in ACCOL II.

Note

Other function block libraries are available for liquids calculations, and NIST23 calculations. Contact Emerson Remote Automation Solutions division for more information.

Function block or	Minimum Firmware	Description
Function	Revision Required	
AGA3	2.00.00	Computes natural gas volume flow rate through an orifice
		plate in thousands of cubic feet per hour (MSCFH) according
		to American Gas Association (AGA) Report #3 1985 Edition.
AGA3DENS	4.10.00	Computes mass and volume flow rate for fluids (gases or
		liquids) in lbs/hour and cubic ft per hour, for orifice plates,
		with flange taps ONLY, according to the method explained
		in the American Gas Association (AGA) Report #3 of August,
		1992, 3rd Edition (Part 1 and Part 4).
AGA3I	1.00.00	Computes natural gas volume flow rate according to the
		Factors Method in AGA Report #3.
AGA3SELECT	5.50.00	Combines the functions of the AGA3I and AGA3TERM
		function blocks into a single function block.
AGA3TERM	2.00.00	Computes natural gas volume flow rate through an orifice
		plate in thousands of cubic feet per hour (MSCFH) according
		to AGA Report #3 1985 Edition. Allows factor substitution
		and display.
AGA5	2.00.00	Performs AGA-5 calculations for conversion of computed
		gas volume to energy equivalents.
AGA7	2.00.00	Performs AGA-7 calculations for base volume rate.
AGA8DETAIL	2.00.00	Computes Base compressibility, Flowing compressibility
		and Supercompressibility for natural gas mixtures,
		according to the Detail Characterization Method in AGA
		Report 8.
AGA8GROS	1.00.00	Computations for natural gas mixtures according to the
		Gross Characterization method in AGA Report 8.
AGA10	4.50.00	Computations for natural gas mixtures according to AGA
		Report Number 10.
ALARM	4.70.00	Used to batch process alarms defined in the Variable
		Extension Wizard.

For instructions on how to use any of these function blocks, please consult the online help in ControlWave Designer.

Function block or	Minimum Firmware	Description
Function	Revision Required	
ALARM ANALOG	1.00.00	Monitors a process variable and sends a notification
_		message to a remote computer when the variable's value
		exceeds user defined limits.
ALARM_LOGICAL_ON	1.00.00	Monitors a Boolean process variable and sends a notification
		message to a remote computer when the variable is TRUE.
ALARM_LOGICAL_OFF	1.00.00	Monitors a Boolean process variable and sends a notification
		message to a remote computer when the variable is FALSE.
ALARM STATE	1.00.00	Monitors a Boolean process variable and sends a notification
_		message to a remote computer when the variable changes
		state.
ANOUT	1.00.00	Converts and scales signals for hardware analog output.
ARCHIVE	1.00.00	Provides historical storage of signal values.
ARRAY_ANA_GET	4.50.00	Function. Returns the REAL value of the specified array
		element.
ARRAY_ANA_SET	4.50.00	Function. Writes a REAL value to the specified array
		element.
ARRAY_LOG_GET	4.50.00	Function. Returns the BOOL value of the specified array
		element.
ARRAY_LOG_SET	4.50.00	Function. Writes a BOOL value to the specified array
		element.
AUDIT	1.00.00	Provides historical storage of alarms and events.
AUDIT_SELECTED	5.40.00	Allows you to log events for value changes of individual
		variables or log customized events. The customized events
		can include standard value change information, alternate
		values, or NOTE events. You can use the AUDIT_SELECTED
		FB independently of the AUDIT FB.
AUTOADJUST	2.00.00	Performs adjusted volume and self check calculations for an
		Invensys Auto-adjust Turbine Meter.
AVERAGER	1.00.00	Computes the time-average and integral.
BTI	4.70.00	Allows CW_10, CW_30, and CW_35 controllers with the
		BBTI board to collect data from the Bristol Teletrans™
		Model 3508 Transmitter.
CALC_DENSITY	June 22, 2009 library or	Calculates the mass density of a gas using the real gas
	newer.	relative density (specific gravity)
CLIENT	2.00.00	Communicates with other ControlWave controllers that
		have implemented the Server Function Block.
COMMAND	1.00.00	Pulse Delayed Output.
COMPARATOR	1.00.00	Analog signal comparison.
CRC	2.00.00	Calculates CRC of data stored in an array.
CUSTOM	1.00.00	Custom Communications Interface.
DACCUMULATOR	1.00.00	Performs Double Precision Arithmetic.
DB_LOAD	4.00.00	Loads variable information (LISTS) from a text file.
DEMUX	1.00.00	Copies a signal value into a list of signals.
DIAL_CTRL	4.00.00	Establishes a dial-up connection on a given port, or interface
		to a modem.
DIFFERENTIATOR	1.00.00	Differentiates an analog signal.

Function block or	Minimum Firmware	Description
Function	Revision Required	
DISPLAY	4.20.00	Provides support for the keypad display.
ENCODE	1.00.00	Set/Read System Time, Julian /Wall Time Conversions.
EVP	4.50.00	Calculates the equilibrium vapor pressure for a liquid.
FIELDBUS	5.10.00	Interfaces with Foundation Fieldbus devices via a bridge
		server.
FILE_CLOSE	2.20.00	Function – End access to a flash file.
FILE_DELETE	2.20.00	Function – Remove a file from flash.
FILE_DIR	2.20.00	Function Block – Get a listing of files. Retrieve file attributes.
FILE_OPEN	2.20.00	Function – Start access to an existing flash file or create a
		new one.
FILE_READ	2.20.00	Function – Read binary data from file.
FILE_READ_STR	2.20.00	Function – Read a line from a file and load into a string.
FILE_WRITE	2.20.00	Function – Send a buffer of binary data to a flash file.
FILE_WRITE_STR	2.20.00	Function – Send a formatted string to a flash file.
FPV	2.00.00	Computes Super Compressibility Factor (FPV) of a gas per
		AGA Report NX-19.
FUNCTION	1.00.00	Table lookup and interpolation with arrays.
GENERIC_SERIAL	2.00.00	Generic Serial communications serves as a means to buffer
		user defined data through a serial port.
GPA8173	4.50.00	Converts the mass of natural gas liquids to equivalent liquid
		volumes at base conditions.
GSV	4.50.00	Converts the gross standard volume for a liquid.
HART	5.00.00	Interface to HART field devices via serial port or I/O board.
HILOLIMITER	1.00.00	Compares a signal against a high and low limit.
HILOSELECT	1.00.00	Finds highest and lowest REAL values in a signal list.
HSCOUNT	1.00.00	High Speed Counter.
HWSTI	4.80.00	Honeywell Smart Transmitter Interface
IEC62591	5.50.00	Allows a ControlWave Micro controller with an IEC62591
		Interface module to communicate to IEC62591 wireless
		devices.
INTEGRATOR	1.00.00	Computes an integral approximation.
ISO5167	2.00.00	Calculates flow rate for Orifice plates, Nozzles, Venturi
		tubes, and Venturi-nozzle Primary Devices per ISO 5167-
	1 00 00	1980 (E), 1980 edition
LEAD_LAG	1.00.00	Adds a controlled delay effect.
LICENSE	4.90	Determines application licenses for the RTU.
LIQUID_DENSITY	4.50.00	Calculates the density of liquid at flowing conditions.
LISTxxx	1.00.00	Define/Expand a list.
LIST_ELE_NAME	3.00.00	Returns the variable name for a given list element.
MUX	1.00.00	Extracts the value of a signal from a list of signals
PDO	1.00.00	Pulse Duration Output.
PID3TERM	1.00.00	3 Mode PID Control.
PORTATTRIB	4.40.00	Allows the user to set the port characteristics online (except
		for the MODE).
PORT_CONTROL	4.20.00	Communications port manual control.

Function block or	Minimum Firmware	Description
Function	Revision Required	
R_INT	1.00.00	Function to Truncate to Integer.
R_RND	1.00.00	Function to Round to nearest Integer.
RBE	4.40.00	Supports Report by Exception
RBE_DISABLE	5.60.00	Disables selected RBE variables to prevent RBE reporting
		from them.
REDUN_SWITCH	2.00.00	Function to perform programmed fail-over to Redundant
		Standby.
REG_ARRAY	1.00.00	Register Arrays – For HMI Access.
SCHEDULER	3.00.00	Equalizes the elapsed running time of a number of external
		devices.
SEQUENCER	1.00.00	Provides sequential output control.
SERVER	2.00.00	Communicates with other ControlWave controllers that
		have implemented the Client Function Block.
STEPPER	1.00.00	Sequence up to 255 Boolean Outputs.
STORAGE	04.40	Stores and retrieve historical data.
TCHECK	4.70.00	Provides status checking and data processing for a 3508
		Teletrans Transmitter.
TOT_TRND	1.00.00	Computes totals from input and slope of input.
USERS_ACTIVE	5.20	Returns information on all currently signed-in users.
USERS_DEFINED	5.20	Allows encrypted access to the security configuration of the ControlWave
V ATTRIR CET	04 50	This function returns the value of the specified attribute of a
V_ATTRIB_GET	04.50	variable.
V_ATTRIB_SET	04.50	This function sets the value of the specified attribute of a
		variable.
VAR_ATTRIB_GET	2.10.00	Retrieves the value of an attribute for a variable.
VAR_ATTRIB_SET	2.10.00	Sets the value of an attribute for a variable.
VAR_CI_PROC	2.10.00	Performs the CI (Control Inhibit) processing for the given
		variable.
VAR_FETCH	3.00.00	This function block fetches complete information about a
		variable given its name.
VAR_SEARCH	3.00.00	This function searches the PDD for variables, both with a
		given index, and by name.
VIRT_PORT	2.20.00	This function block creates a virtual port by defining a
		connection to a terminal server.
VLIMIT	1.00.00	Limit an input's rate of change.
VMUX	3.00.00	Extracts the value of a signal from a list of signals and ramps
		the output to match the input.
WATCHDOG	5.60	Activates a watchdog output based on user-defined criteria.
XMTR	4.70.00	Provides read/write access to the memory of a TeleTrans
		Transmitter, or other compatible device.

Alarm Configuration

What are Alarms?

Alarms are messages generated by the controller when one or more process variables changes, and that change violates some pre-defined limit or state.

There are three types of alarms:

Analog Alarms – These alarms are generated when an analog variable (type REAL, INT, etc.) exceeds a pre-defined alarm limit. A return-to-normal message is generated when the variable returns to within the pre-defined limit. **Deadbands** can be established around the alarm limits so that variables can fluctuate slightly near the alarm limit without constantly going into and out of an alarm state, and thereby flooding the system with repetitive alarms. Analog alarms are configured using the ALARM_ANALOG function block.

Logical Alarms – These alarms are generated when a variable of type BOOL enters its 'in-alarm' state. A return-to-normal message is generated when the variable returns to its opposite (non-alarm) state The user chooses which state is the 'in alarm' state by the choice of alarm function block. If its 'in-alarm' state occurs when the BOOL variable becomes TRUE, then the ALARM_LOGICAL_ON function block should be used. if the variable becomes FALSE, then the ALARM_LOGICAL_OFF function block should be used.

Note: The ALARM_LOGICAL_ON and ALARM_LOGICAL_OFF function blocks are identical *except* that the ALARM_LOGICAL_ON function block generates an alarm when the associated process variable (iaAlarmVar) is TRUE, whereas the ALARM_LOGICAL_OFF function block generates an alarm when the associated process variable (iaAlarmVar) is FALSE.

<u>Change-of-State Alarms</u> – These alarms are generated whenever a variable of type BOOL changes state. In this case, there is no such thing as a return-to-normal condition. Change-of-State alarms are configured using the ALARM_STATE function block.

All three types of alarms have various inputs and outputs associated with them. These inputs and outputs are configured within the alarm function block. The following information is common to all three types of alarms:

- Alarm Variable This is the actual process variable which is to be monitored by the alarm function block. Analog (REAL, INT, etc.) can only be monitored via the ALARM_ANALOG function block. Boolean variables can be monitored by either the ALARM_LOGICAL_ON, ALARM_LOGICAL_OFF, or ALARM_STATE function block(s).
- **Alarm Priority** The alarm priority is basically a number which indicates the importance of the alarm. There are four priorities supported in the system:

Priority	Value	Meaning
Event	0	Event alarms are used to indicate normal, everyday
		occurrences.
Operator	1	Operator guide alarms are used to indicate everyday
Guide		occurrences which are slightly more important than
		events.
Non-Critical	2	Non-critical alarms are used to indicate problems,
		which, while not serious enough to cause damage to
		a plant or process, require corrective action.
Critical	3	Critical alarms are used to indicate dangerous
		problems that require immediate attention and/or
		corrective action.

The choice of which alarm priorities are to be assigned to a particular alarm variable is entirely at the discretion of the user.

DescriptiveUp to 64 characters of descriptive text may be stored along with anyTextalarm message. This text may be changed dynamically by control logic.

- Disable Alarm processing for a particular process variable can be turned OFF. This prevents any alarm messages for that process variable from being generated. This might be used in the case of system maintenance or troubleshooting.
- StatusEvery alarm function block maintains error and status information.Improper configuration is indicated by negative status values, and will
prevent execution of the alarm function block. Positive values indicate
the variable is in an alarm state. A value of '0' indicates there are no

configuration errors, and the variable is NOT in an alarm state. For a full description of status values, see the on-line help files.

- AlarmAn alarm sequence number is assigned to each alarm message to
uniquely identify it within the Alarm System. Alarm sequence numbers
range from 0 to 65,535 and are shared among all alarm function blocks
in the alarm system to maintain proper ordering of messages.
- GlobalA global sequence number is assigned to each audit record, archiveSequence #record, or alarm message to uniquely identify it within the ControlWave
controller. Global sequence numbers range from 0 to 65,535 and are
shared by all of these sub-systems to maintain proper ordering of
messages.

The remaining inputs/outputs configured within the Alarm function block vary depending upon the type of alarm function block being used.

Note

Some parameters in the alarm function block may not be required, depending upon your specific application. In addition, if you do NOT intend to change the value of a particular input value, and its parameter only supports a single data type (i.e., its parameter name does NOT have an "ia" or "iany" prefix), you can enter it as a constant, instead of assigning a variable name.

Alternatively, the OpenBSI Alarm Router can be used to view alarms, and offers an interface to custom alarm applications. See the *Open BSI Utilities Manual* (part number D301414X012) for information on Alarm Router.

Where can I get detailed information about these function blocks?

On-line help is provided within ControlWave Designer for every ACCOL3 function block. To access this, you can right click on the ACCOL3 library icon, and choose **"Help on ACCOL3 Library..."** from the pop-up menu.

Important

This section describes the standard method for alarm configuration. Beginning with OpenBSI Version 5.4, an alternate way to create alarms is to use the Variable Extension Wizard and the ALARM function block for batch processing. The Variable Extension Wizard configures the alarms in the controller, but they do NOT appear within your project. For information on this method, see the Variable Extension Wizard section, later in this manual.

Configuring an Analog Alarm

For this example, let's say we have a tank full of water which must be maintained at a certain temperature range. A temperature transmitter is mounted on the tank to measure the current temperature of the water, and it has been decided that the water temperature should be kept between 40.0°C and 70.0° Celsius. Any temperature reading outside of that range indicates an alarm condition.

The figure, below, shows a plot of the value of the variable measuring Celsius temperature in the tank, as it fluctuates over time. Four alarm limits and two deadbands have been defined. Starting from the left of the graph, the value of the variable increases until it reaches 70.0° C, the high alarm limit (see Item 1). At this point a high alarm message is generated, and the variable is considered to be in a 'high alarm' state.

The value of the variable continues to increase. When it passes the high-high alarm limit of 90.0° C a 'high-high' alarm message is generated (see Item 2). At this point, the variable is considered to be in a high-high alarm state.

The value of the variable then starts to decrease. Although the value passes below 90.0° C, it is still considered to be in a 'high-high' alarm state because there is a 10.0° high deadband in effect (deadbands are shown as shaded areas on the graph.) When the variable value falls lower than 80.0° C point (90.0° C high alarm limit minus the high deadband of 10.0° C) the variable is no longer in a 'high-high' alarm state (See Item 3). It is still however in a 'high' alarm state.

As the value of the variable decreases below 70.0° C, it remains in a 'high' alarm state until its value falls below 60.0° C (70.0° C alarm limit, minus a 10.0° C high deadband). (See Item 4). At this point, the variable is in its normal range, and a 'return-to-normal' alarm message is sent.

Then, however, the value of the variable continues to drop. When it reaches 40.0° C, a 'Low Alarm' message is generated (See Item 5).

The variable remains in a 'Low Alarm' state until the variable value drops to 20.0^oC. (See Item 6). This causes a 'Low Low Alarm' message to be generated.

The variable remains in a 'Low-Low Alarm' state until the variable rises above 30.0° C, $(20.0^{\circ}$ C low-low alarm limit plus low deadband of 10.0° C). (See Item 7). The variable is still in a 'Low Alarm' state, however.

Once the variable rises above 50.0° C (40.0° C low alarm limit + low deadband of 10.0° C), it has left the low-alarm state, and a 'return to normal' alarm message is sent (See Item 8).

As long as the variable remains in the normal range (between 40.0 and 70.0^o C), no more alarm messages will be generated.

Using the ALARM_ANALOG function block

Where you insert your ALARM_ANALOG function block depends upon the overall construction of your project:

The ALARM_ANALOG function block can only detect an alarm condition *when it is executed*. Therefore, when constructing your project, you should think about how and when you want to execute the function block.

- You might choose to place the ALARM_ANALOG function block in the same POU which holds primary control logic for the process variable. This is always required if the variable being monitored is not global. Typically, the ALARM_ANALOG function block would be placed at the end of the POU. If you require timestamps to reflect the exact moment the alarm condition occurred, you could place the ALARM_ANALOG function block immediately following the logic which manipulates the process variable.
- Alternatively, you could place the ALARM_ANALOG function block in a separate POU, which could even be executed at a different task interval. This approach may be convenient if you want to organize your project such that all alarm function blocks are in the same place.
- Step 1. Following the considerations discussed above, insert an ALARM_ANALOG function block into your program. A separate ALARM_ANALOG function block is required for every analog variable you want to configure as an alarm.

Step 2. Based on our example of monitoring water temperature in a tank, assign meaningful variable names, and where applicable, initial values to each of the parameters of the ALARM_ANALOG function block.

The actual process variable being monitored for alarm conditions must be assigned to the iaAlarmVar parameter. In this case we will call it WATER_TEMP since that is the process I/O variable from the temperature transmitter.

Now we need to assign alarm limits and deadbands based on our previous discussion of the proper range for the water temperature.

Important

You must use the *same* variable type for alarm limits and alarm deadbands as you use for your alarm variable. For example, if the alarm variable is defined as type REAL, then every alarm limit and alarm deadband for that ALARM_ANALOG function block must also be defined as type REAL. Type mismatches of any kind will prevent the ALARM_ANALOG function block from working and will generate errors on the odiStatus parameter.

Setting Alarm Limits (iaLoLimit, iaLoLoLimit, iaHiLimit, iaHiHiLimit)

We want to generate an alarm when the temperature goes out of the range 40.0° Celsius to 70.0° Celsius, so 40.0 will be our low alarm limit (iaLoLimit parameter) and 70.0 will be our high alarm limit (iaHiLimit parameter). We can also assign Low-Low and High-High alarm limits to generate additional alarm messages if the variable goes much higher or much lower than the Low and High limits. These are on the iaHiHiLimit and iaLoLoLimit parameters, respectively. NOTE: You do not need to use all four limits. Only one alarm limit is required to configure an analog alarm.

Setting Deadbands (iaHiDeadBand, iaLoDeadBand)

We strongly recommend that you define deadbands around your alarm limits. Two deadbands are supported, iaHiDeadBand is applied to the high and high-high alarm limits, and iaLoDeadBand is applied to the low and low-low alarm limits. Deadbands are ranges above a low limit, or below a high limit, in which a return-to-normal message will NOT be sent, even though a process variable has returned inside the range defined by the alarm limits. This is to prevent the system from being flooded with alarm messages if a process variable is fluctuating around the alarm limit. Without a deadband defined, every time the process variable enters or leaves the normal range, a return-to-normal or alarm message would be generated, thereby flooding the system with repetitive alarms, even though the process variable has changed very little. For this example, we have chosen a deadband of 10.0 for both the low and high deadbands.

Setting Alarm Priorities (iiLoPriority, iiLoLoPriority, iiHiPriority, iiHiHiPriority)

Alarm priorities indicate the severity of the alarm condition triggered by passing one of the pre-defined alarm limits. For this example, passing either the low or high alarm limits is considered NON-CRITICAL, and passing either the low-low or high-high alarm limits is considered CRITICAL. The alarm priority has no effect on the operation of the alarm system, and is defined strictly at the user's discretion. Priorities are displayed as part of the alarm message.

Units Text, Descriptive Text (istrUnitsText, istrDescText)

These parameters are strictly for the convenience of the user. They specify engineering units for the alarm variable, and descriptive text for the alarm condition.

Parameter	Suggested Variable Name	Variable	Value	Notes
Name		Туре		
ibDisable	WATER_TEMP_ALARM_DISABLE	BOOL	FALSE	For disabling/ enabling
				alarm processing.
iaAlarmVar	WATER_TEMP	REAL, SINT,	None	The actual process
		INT, DINT,		variable measuring
		USINT, UINT, or		temperature in the
		UDINT		tank.
iaHiHiLimit	WATER_HH_LIMIT	REAL, SINT,	90.0	High-high alarm limit
		USINT, INT,		

The table, below, summarizes the values for the various parameters used in this example:

Parameter	Suggested Variable Name	Variable	Value	Notes
Name		Туре		
		UINT, DINT, or		
		UDINT		
iaHiLimit	WATER_H_LIMIT	REAL, SINT,	70.0	High alarm limit
		USINT, INT,		
		UNIT, DINT or		
		UDINT		
iaLoLimit	WATER_L_LIMIT	REAL, SINT,	40.0	Low alarm limit
		USINT, INT,		
		UINT, DINT or		
		UDINT		
iaLoLoLimit	WATER_LL_LIMIT	REAL, SINT,	20.0	Low low alarm limit
		USINT, INT,		
		UINT, DINT or		
		UDINT		
iaHiDeadBand	WATER_HDB	REAL, SINT,	10.0	High alarm deadband
		USINT, INT,		
		UINT, DINT or		
		UDINT		
iaLoDeadBand	WATER_LDB	REAL, SINT,	10.0	Low alarm deadband
		USINT, INT,		
		UINT, DINT or		
		UDINI		
iiPriority		INI	3	High-High Priority
IIHIPriority		INI	2	High Priority
liLoPriority	NON_CRITICAL_PRIORITY	INI	2	Low Priority
liLoLoPriority		INI	3	Low-Low Priority
istrUnitsText	TEMP_UNITS	STRING	'DEG_C'	Engineering units (up
				to 6 characters)
istrDescText	WATER_TEMP_DESC_TEXT	STRING		Descriptive text (up to
			LIRE'	64 characters)
odiStatus	WATER TEMP ALARM STATUS	DINT	None	Status of the execution
odistatas		Dirti	Hone	of this function block.
ouiAlarmSeg	WATER_TEMP_ALARM_SEQ_NUM	UINT	None	Alarm sequence
				number.
ouiGlobalSeq	WATER_TEMP_GLOBAL_SEQ_NUM	UINT	None	Global sequence
				number.

The configured alarm block appears, below:

Configuring a Logical Alarm

For this example, let's say we have an electrical switch which turns ON in the event of a compressor power failure. When the switch turns ON, we want to generate an alarm. When the power is restored, the switch turns OFF and a return-to-normal message will be generated.

Because the alarm condition occurs when the switch turns ON, we must use an ALARM_LOGICAL_ON function block. (If we wanted to generate an alarm when the switch turned OFF, we would have used an ALARM_LOGICAL_OFF function block.)

Using the ALARM_LOGICAL_ON function block

Where you insert your ALARM_LOGICAL_ON function block depends upon the overall construction of your project:

- The ALARM_LOGICAL_ON function block can only detect an alarm condition when it is executed. Therefore, when constructing your project, you should think about how and when you want to execute the function block.
- You might choose to place the ALARM_LOGICAL_ON function block in the same POU which holds primary control logic for the process variable. This is always required if the variable being monitored is not global. Typically, the ALARM_LOGICAL_ON function block would be placed at the end of the POU. If you require timestamps to reflect the

exact moment the alarm condition occurred, you could place the ALARM_LOGICAL_ON function block immediately following the logic which manipulates the process variable.

- Alternatively, you could place the ALARM_LOGICAL_ON function block in a separate POU, which could even be executed at a different task interval. This approach may be convenient if you want to organize your project such that all alarm function blocks are in the same place.
- Step 1. Following the considerations discussed above, insert an ALARM_LOGICAL_ON function block into your program. A separate ALARM_LOGICAL_ON (or ALARM_LOGICAL_OFF) function block is required for every variable you want to configure as a logical alarm.
- Step 2. Based on our example of detecting a change of state of a pump, assign meaningful variable names, and where applicable, initial values to each of the parameters of the ALARM_LOGICAL_ON function block.

The actual process variable being monitored for alarm conditions must be assigned to the iaAlarmVar parameter. In this case we will call it COMPRESSOR_POWER_FAILURE since that is the process I/O variable from the switch.

Parameter	Suggested Variable Name	Variable	Value	Notes
Name		Туре		
ibDisable	POWERFAIL_ALARM_DISABLE	BOOL	FALSE	For disabling/ enabling
				alarm processing.
iaAlarmVar	COMPRESSOR_POWER_FAILURE	BOOL	None	The ON/OFF status of
				the switch used to
				indicate power failure
				of the compressor.
				NOTE: Alarms are only
				generated when
				iaAlarmVar is ON.
iiPriority	CRITICAL_PRIORITY	INT	3	Priority of this alarm
				condition.
istrOnText	POWER_FAIL_ONTEXT	STRING	'FAILED'	ON message text (up
				to 6 characters)
istrOffText	POWER_FAIL_OFFTEXT	STRING	'NORMAL'	OFF message text (up
				to 6 characters)
istrDescText	POWERFAIL_DESC_TEXT	STRING	'WATER	Descriptive text (up to
			TEMPERAT	64 characters)
			URE'	

The table, below, summarizes the values for the various parameters used in this example.

Parameter	Suggested Variable Name	Variable	Value	Notes
Name		Туре		
odiStatus	POWERFAIL_ALARM_STATUS	DINT	None	Status of the execution
				of this function block.
ouiAlarmSeq	POWERFAIL_ALARM_SEQ_NUM	UINT	None	Alarm sequence
				number
ouiGlobalSeq	POWERFAIL_GLOBAL_SEQ_NUM	UINT	None	Global sequence
				number

The configured alarm block appears, below:

Configuring a Change of State Alarm

For this example, let's say we have a pump which is critical to the operation of a water plant. Whenever it starts *or* stops, we want to generate an alarm message. NOTE: In change-of-state alarms, there is NO return-to-normal state; every change from ON-to-OFF or OFF-to-ON generates an alarm message.

Using the ALARM_STATE function block

Where you insert your ALARM_STATE function block depends upon the overall construction of your project:

- The ALARM_STATE function block can only detect an alarm condition when it is executed. Therefore, when constructing your project, you should think about how and when you want to execute the function block.
- You might choose to place the ALARM_STATE function block in the same POU which holds primary control logic for the process variable. This is always required if the variable being monitored is not global. Typically, the ALARM_STATE function block would be placed at the end of the POU. If you require timestamps to reflect the exact moment the alarm condition occurred, you could place the ALARM_STATE function block immediately following the logic which manipulates the process variable.
- Alternatively, you could place the ALARM_STATE function block in a separate POU, which could even be executed at a different task interval. This approach may be

convenient if you want to organize your project such that all alarm function blocks are in the same place.

- ALARM_STATE_1 Step 1. Following the considerations ALARM STATE discussed above, insert an ibDisable. odiStatus ALARM_STATE function block into iaAlarmVar. ouiAlarmSeq your program. A separate iiPriority. ouiGlobalSeq ALARM_STATE function block is required for every variable you want to configure istrOnText. as a change-of-state alarm. istrOffText istrDescText
- Step 2. Based on our example of detecting a change of state of a water pump, assign meaningful variable names, and where applicable, initial values to each of the parameters of the ALARM_STATE function block.

The actual process variable being monitored for alarm conditions must be assigned to the iaAlarmVar parameter. In this case we will call it WATER_PUMP_STATUS.

Parameter	Suggested Variable Name	Variable	Value	Notes
Name		Туре		
ibDisable	DISABLE_WATERPMP_STATALRM	BOOL	FALSE	For disabling/ enabling
				alarm processing.
iaAlarmVar	WATER_PUMP_STATUS	BOOL	None	The ON/OFF status of
				the water pump.
iiPriority	CRITICAL_PRIORITY	INT	3	Priority of this alarm
				condition.
istrOnText	WATER_PUMP_ONTEXT	STRING	'ACTIVE'	ON message text (up
				to 6 characters)
istrOffText	WATER_PUMP_OFFTEXT	STRING	'IDLE'	OFF message text (up
				to 6 characters)
istrDescText	WATER_PUMP_DESC_TEXT	STRING	'WATER	Descriptive text (up to
			PUMP	64 characters)
			STATE	
he			CHANGE	
odiStatus	WATER_PUMP_ALARM_STATUS	DINI	None	Status of the execution
				of this function block.
ouiAlarmSeq	WATER_PUMP_ALARM_SEQ_NUM	UINT	None	Alarm sequence
				number
ouiGlobalSeq	WATER_PUMP_GLOBAL_SEQ_NUM	UINT	None	Global sequence
				number

The table, below, summarizes the values for the various parameters used in this example:

The configured alarm block appears, below:

ALARM_STATE_1						
	ALARM	_STATE				
DISABLE_WATERPMP_STATALRM	ibDisable	odiStatus	WATER_PUMP_ALARM_STATUS			
WATER_PUMP_STATUS	iaAlarmVar	ouiAlarmSeq				
CRITICAL_PRIORITY-	iiPriority	ouiGlobalSeq	WATER_PUMP_GLOBAL_SEQ_NUM			
WATER_PUMP_ONTEXT	istrOnText					
WATER_PUMP_OFFTEXT	istrOffText					
WATER_PUMP_DESC_TEXT	istrDescText					

Application Licensing

Certain standard applications sold by Emerson Remote Automation Solutions are licensed to prevent unauthorized duplication. When you purchase the application(s), you will receive a license key (also known as a USB dongle), that will allow you to manage which controllers will be license recipients for the standard applications.

Note:

Only ControlWave-series controllers with firmware 04.90 or newer support application licensing.

Granting a License for a Controller to Run a Standard Application

- 1. Install the dongle in your PC's USB port, and allow it to be recognized.
- 2. Start the Application Licensing Tool, using the following sequence:

Start \rightarrow Programs \rightarrow OpenBSI Tools \rightarrow ControlWave Tools \rightarrow Application Licensing

- 3. The Application Licensing Tool will read the dongle, and display the following information:
 - Application A list of all the standard application licenses originally issued via this dongle.
 - RTU State The license status of a particular controller for a particular standard application. If the controller has not been queried yet, this will display 'Unknown'.
 - Ordered The total number of licenses included on this dongle, for a given application, when it left the factory.
 - Available The total number of licenses, for a given application, which have not yet been issued to controller(s).

Application Licensing				Þ
Dongle				
Application	RTU State	Ordered	Available	Tecus Liconco
Four Run Measurement	Unknown	10	9	Issue License
Twelve Run Measurement	Unknown	30	31	Remove Licence
Plunger Lift	Unknown	5	5	Remove License
Console Interface	Unknown	1	1	Let a second laboration
Water Application	Unknown	1	1	Display Event Log
Status: License Dongle Read Complete	e			
PTII				
		_	1	
Name: CW6		Brov	vse	
[
Username: SYSTEM				
		_	Query	/ RTU License State
Password:				
ssue License: A License is removed from t	the dongle and	I sent to the	RTU. This wil	l License
the selected Application to r Remove License: A License is removed fror selected Application. The	un in the RTU n the RTU and Application w	I added bacł ill stop runni	to the dongle ng in the RTU	e for the Exit

- 4. Select the controller to which you want to issue the license, using the **[Browse]** button. (If communication is via NetView, the controller must exist in the current NETDEF file; otherwise select the locally connected 'RTU'.)
- 5. Enter a valid username / password combination for that controller, and click on the **[Query RTU License State]** button.
- 6. The application window will be updated to show which applications have been licensed for this controller. Select the application you want to issue to the controller. There must be at least 1 or more listed in the **"Available"** field.
- 7. Click on **[Issue License]**. The license will be granted to the controller, and the **"Available"** count will be decremented by 1.
- 8. Repeat this process for any other controllers you want to issue licenses to. When finished, click on **[Exit]**.

Removing an Application License from a Controller:

You might want to remove a license from a controller, for example, if you have to take it out of service, for repairs, and want to use its license in a replacement unit. Follow the steps, below:

- 1. Install the dongle in your PC's USB port, and allow it to be recognized.
- 2. Start the Application Licensing Tool, using the following sequence:

Start \rightarrow Programs \rightarrow OpenBSI Tools \rightarrow ControlWave Tools \rightarrow Application Licensing

- 3. The Application Licensing Tool will read the dongle, and display the following information:
 - Application A list of all the standard application licenses originally issued via this dongle.
 - RTU State The license status of a particular controller for a particular standard application. If the controller has not been queried yet, this will display 'Unknown'.
 - Ordered The total number of licenses included on this dongle, for a given application, when it left the factory.
 - Available The total number of licenses, for a given application, which have not yet been issued to controller(s).
- 4. Select the controller for which you want to revoke the license, using the **[Browse]** button. (If communication is via NetView, the controller must exist in the current NETDEF file; otherwise select the locally connected 'RTU'.)
- 5. Enter a valid username / password combination for that controller, and click on the [Query RTU License State] button.
- 6. The application window will be updated to show which applications have been licensed for this controller. Select the application you want to remove from the controller.
- 7. Click on **[Remove License]**. The license will be removed from the controller, and restored onto the dongle. The **"Available"** count will be incremented by 1.

Viewing a History of Dongle Issue / Remove Operations:

The Application Licensing Tool maintains, on the dongle, a list of the last 150 license operations. To view this history, click on **[View Event Log]**.

E	vent Log					×
	Time	Application	Operation	New Count	Username	
	02/07/08 13:54:25	Four Run Measurement	Issue	9	d	EXIT
	02/07/08 13:56:03	Console Interface	Issue	0	qwerty	
	02/07/08 13:56:15	Water Application	Issue	0	qwerty	
	02/07/08 13:58:34	Console Interface	Remove	1	qwerty	
	02/07/08 13:58:56	Water Application	Remove	1	qwerty	
	02/07/08 13:59:05	Twelve Run Measurement	Remove	31	qwerty	

Application Parameters

The Application Parameters page is accessible from the **"Application Parameters"** tab in the Flash Configuration Utility. For instructions on calling up the Flash Configuration Utility, see *Flash Configuration – An Overview*, later in this manual. These parameters apply only to ControlWave-series units that are configured as IP nodes.

Note:

Unless you are using redundancy or have a specific need to edit these parameters (for example, if you are running an application with special memory requirements, or if you are encountering performance problems related to CPU activity), leave these parameters at their defaults. Users should exercise particular caution when modifying the application parameters for memory. Making a significant change to these parameters without understanding how the parameters interact could actually reduce the amount of available memory, even though you have increased the values of the parameters. When changing these parameters, use **only** small incremental changes.

Soft Switches Ports IP Parameters Application Parameters Archive Audit IP Routes S
CPU Goal Idle: 🛐 % Idle Min Ticks: 5 Minimum Idle: 2 %
Memory Prog.RAM: 850 KB Data RAM: 10 KB Retain RAM: 30 KB
Redundancy Transfer Unit A Addr: 0 · · · · <tr< td=""></tr<>

CPU:

Goal Idle	This is a goal expressing the percentage of time the ControlWave CPU should be idle. The default value is 30%. If this goal cannot be met, the DEFAULT task period will automatically be adjusted to free up CPU time.
Idle Min Ticks	This is the minimum number of 1 millisecond clock ticks to be left between executions of the DEFAULT task. The default value is 2.
Minimum Idle	If this percentage of free CPU time is not maintained within the ControlWave CPU, an overload exception is reported. The default value is 5%.

Memory:

Prog RAM	In kilobytes, this is the amount of memory reserved (at system start) for storing the generated code for the ControlWave project. This value should NOT be set significantly larger than the amount of memory actually needed for the project, because any unused reserved memory will be unavailable for data or other purposes. NOTE: If the system does not have sufficient memory to hold the user requests, the requests will be reduced proportionally. This defaults to 1024k in the ControlWave and ControlWave MICRO, and 256k in the ControlWaveLP. This can range from 10k to 1024k.
Data RAM	This is the size of storage reserved for variables in kilobytes. This can range from 10k to 1024k. This defaults to 256k in the ControlWave and ControlWave MICRO, and 64k in the ControlWaveLP. NOTE: This amount does not include historical data (audit/archive).
Retain RAM	This is the size of storage space (in kilobytes) reserved at system start for variables marked as 'RETAIN'. The values of variables marked as 'RETAIN' are preserved in the event of a warm start download. This can range from 0k to 1024k, and defaults to 256k in the ControlWave and ControlWave MICRO, and 64k in the ControlWaveLP.
Redundancy Transfer	
Unit A Addr	This must be an IP address corresponding to an Ethernet port on the A controller in a redundant pair.
Unit B Addr	This must be an IP address corresponding to an Ethernet port on the B controller in a redundant pair.

Variations when using the ControlWave I/O Expansion Rack

For the ControlWave I/O Expansion Rack, the 'Memory' and 'CPU' sections of the Application Parameters page are omitted, and a 'Timeouts' section is added.

The **"Power Fail Timeout"** determines how outputs of the I/O rack should be set when power is restored following a power failure, or under certain circumstances, during a restart following a CPU watchdog.

"Host Comm Loss Timeout" specifies how the outputs of the I/O Rack should be affected in the event of a communication failure with the host ControlWave controller.

For a full description of these options, please see the *ControlWave I/O Expansion Rack Quick Setup Guide* (part number D301423X012).
Archive Configuration

What Are Archive Files?

Archive information is saved at the ControlWave-series controller in structures called **archive files**. The archive files are essentially tables of data stored in rows and columns. Each row has a timestamp, and sequence numbers, associated with it, and each column is associated with a process variable. A row of process variable values, along with its associated timestamp and sequence numbers is called a **record**.

A record constitutes a 'snapshot' of the values for those variables at that particular time. Depending upon how you configure the archive file, the values saved may be just instantaneous values, or they may be the result of calculations performed on data received during the collection interval (integration, averaging, etc.)

Data is stored in the archive file either at a specified interval (periodic storage) or based on settings in the ARCHIVE function block.

Some Background - Archive Calculations (Weight Factors, Intervals, and Samples)

Optionally, calculations can be performed on the data prior to its being saved in the archive file. These calculations could be averaging, integration, etc.

The calculations performed using the Archive system are particularly useful in fluid flow applications, for fluids in either the gas or liquid state. The calculations are intended to assist in meeting the requirements of the *American Petroleum Institute Manual of Measurement Standards, Chapter 21*, by supporting some of the averaging techniques described in that document. If desired, these same calculations may be utilized for other applications (besides the fluid flow applications for which they were originally intended).

In the following explanations some mathematical terminology is used that is directly connected to the execution rate of the ARCHIVE function block. The Archive will have been declared to have a periodic type and an Interval of 1 day or less. Within this Periodic Interval the ARCHIVE function block will be executed at an execution interval established by the task execution.

Some of the calculations make use of a "Weight factor". The weight factors are set as input parameters of the ARCHIVE function block, and can be any REAL number values. The weight factors are used to control whether a sample is used in the calculation performed. The weight factors are typically used to control the number of samples included in the averaging calculations, so that, for example, Pressure or Temperature is only averaged when the weight factors indicate that it is valid to use the samples.

The averaging methods also provide an automatic switch from one type of averaging to another anytime after the start of a periodic interval. If a periodic interval begins with Weight Factor2 in a non-zero state then throughout the interval Weight Factor2 controls the averaging – samples are only used if Weight Factor2 is not zero. If the Interval begins with Weight Factor2 already zero then each sample is weighted using Weight Factor1, but if at any time during the interval Weight Factor2 becomes non-zero, all samples taken with Weight Factor1 are discarded and a new average is started under control of Weight Factor2. For the rest of the interval Weight Factor2 is in control and Weight Factor1 has no more effect.

For example, if Weight Factor1 represents the delta time between ARCHIVE function block executions, and Weight Factor2 represents the delta flow time between ARCHIVE function block executions, then for those archive intervals where no flow time occurred, the result is a straight time average. For those archive intervals where flow time has occurred, the result is a flow time average.

Defining a Straight-time Average Archive

To set up a simple straight-time averaged archive, there are two methods available:

- Method 1: Set Weight Factor1 to the delta time between ARCHIVE function block executions each time the ARCHIVE function block is executed. (Note: The delta time between each execution of the ARCHIVE function block must be dynamically calculated by user-created logic in your program. Do NOT simply enter a constant based on the rate of execution of the task, because that will not account for any slippage in execution time.)
- Method 2: Set Weight Factor1 to 1.0 each time the ARCHIVE function block is executed. This provides an average based on the *number of samples* taken. (This is equivalent to a time-based average.)

Archive configuration involves four basic steps:

- 1. Define the archive file(s) using the Flash Configuration Utility. This includes specifying the number of rows (records) and columns, the types of calculations performed, etc.
- 2. Identify in ControlWave Designer, every variable you want to have archived. This is accomplished by including these variables in a LIST function block.
- 3. Create another LIST to hold the current archive record. (THIS IS OPTIONAL). This allows the current archive record data to be used within your ControlWave project; if you don't want to do this, skip this step.
- 4. Configure an ARCHIVE function block in your ControlWave project. This function must be executed frequently enough to collect an adequate number of samples.

What can be done with the data from the Archive File(s)?

Once archiving has been fully configured, and the ControlWave project has been downloaded and has been running, archive data will be collected, and the Archive File(s) will be populated with data. There are various methods for extracting this Archive data:

- The Archive Collection web page control may be used to display archive data. This web
 page is included in the standard Web_BSI set, and allows you to display the archive
 data in Microsoft® Internet Explorer.
- The OpenBSI DataView utility can display archive data on the screen of your OpenBSI Workstation.
- The PocketBSI Data Viewer can display archive data on the PocketBSI AccessPack.
- The OpenBSI Harvester can collect the archive data, and store it in files on the OpenBSI Workstation, which the OpenBSI Data File Conversion Utility can export to human machine interface (HMI) packages such as OpenEnterprise.

Step 1. Define Archive Files(s) in the Flash Configuration Utility

The individual columns of the archive file, and various parameters that define how archiving is performed, are specified in the Archive page of the Flash Configuration Utility. Changes made in the Archive page will NOT take effect until the unit has been powered off and back on.

Soft Switches Ports IP Pa	rameters Application Parameter	s Archive Audit IP Routes S. + +
Number Name	File Definition	
10 ARC10_DL	Number: 10 Nam	e: ARC10_DL
11 ARC11_5M 12 ARC12_1M 1 ARC1_NOP	Records: 30 Colur	mns: 8
2 ARC2_1M 3 ARC3_5M 4 ARC4_15M 5 ARC5_HLY 6 ARC6_DLY 7 ARC7_15M	C RAM C 15 Min C 1	Hour Day Hour C At Store Hour Periodic Periodic Periodic
8 ARC8_HLY 9 ARC9_1M 13 ARC13_1M 14 ARC14_1M 15 ARC15_HR	Column Name Type 1 COLUMN_1 Real 2 COLUMN_2 Real 3 COLUMN_3 Real 4 COLUMN_4 Real 5 COLUMN_5 Real	Characteristics Precision Avg for time wh Avg for time wh
New Delete		Add Remove Modify

To begin defining an Archive File, click on the **[New]** button, then complete the fields as discussed, below:

File Definition

	Number	This is a unique ID number for this Archive File. It can range from 1 to 32767.
	Name	This is the archive file name. Up to 8 alphanumeric characters, beginning with a letter, can be used.
	Records	This determines how many rows of 'snapshot' data will be retained in this Archive File. For example, if you want to save 24 rows (records) enter 24 here. The upper limit on the number of records is based on the size of each record. The maximum size of an Archive File is fixed. This means that as the size of the archive record increases (based on number of columns, types of data, etc.) fewer records can be saved in the Archive File. NOTE: Each archive record includes 14 bytes to store the timestamp and sequence numbers, in addition to the bytes used to store the actual column data. Because the sizing of Archive Files can change based on firmware revision, consult the online help files for archives in ControlWave Designer. Also, there is a Histsize_Calculator.xls file included with OpenBSI if you need more detailed information on Archive File size.
	Columns	This is the number of columns in the Archive File. Each column corresponds to data for a particular variable. The number of columns can range from 1 to 64. Note: OpenBSI programs such as DataView and Harvester cannot collect archive records larger than 220 bytes. For all floating point (REAL) data, this means no more than 53 columns should be specified.
Location		
	Flash	When selected, all Archive records will be stored in FLASH memory. FLASH memory is preserved in the event the ControlWave unit loses power, or if the unit's backup battery fails.
	RAM	When selected, all Archive records will be stored in static RAM. If the ControlWave unit is reset, for any reason, Archive records will be preserved only so long as the unit's backup battery continues to operate, or the user does not perform a system cold start. See the <i>Memory Usage</i> section for a discussion of system cold starts.
Interval		
	1 Min, 5 Min, 15 Min, 1 Hour, 1 Day	Only applies when the "Timestamp Mode" is "Periodic" . This specifies how often Archive records 'snapshots' should be stored.
Mode		
	At Store	When "At Store" is chosen, the timestamp assigned to this archive record is

the time at which the record is stored.

	Start of Period	When "Start of Period" is chosen, the timestamp assigned to this archive record is the time at the beginning of the interval.
Туре		
	Non- periodic	When this is chosen, archive records are stored when the ARCHIVE function block executes, <i>if</i> the criteria determined by the iiMode terminal is met.
	Periodic	When this is chosen, archive records are stored when the ARCHIVE function block executes, <i>and</i> the chosen interval (either 1 minute, 5 minute, 15 minute, 1 hour, 1 day) has expired.

Column Definitions

To begin defining a column, click on the **[Add]** button. The Archive Column Definition dialog box will appear. Descriptions of the various fields are included, below; click on **[OK]** when finished defining the column, and you will return to the Archive page of the Flash Configuration Utility.

If you need to change the definition of a column after you've clicked on **[OK]**, click on the column number, then click on the **[Modify]** button, and the Archive Column Definition dialog box will be recalled.

If you need to delete a column you have defined, click on the number for the column, then click on the **[Remove]** button.

Archive Column	Definition	\mathbf{X}
Column: 9	Title: COLUMN_9	
Data Type: Real	Characterisics: ✓ Avg for time when WFactor2 != 0	Precision:
	Cancel OK	

Title

Is a description for the column. It can range from 1 to 16 characters.

Characteristics Deter

Determines the type of calculation to be performed on the collected data for this variable. Choose from the list box.

Avg for time when WFactor2 != 0
Arithmetic Mean Over WFactor1
Avg of Sqrt(var) for time when WFacto
Square of (average of sqrt(var))
Instantaneous-Place value in Log
Min observed value for period
Max observed value for period
Place value in log, and 0 signal
Integration over WFactor2

In these formulas, the following notation is used:

is the time at which the ARCHIVE function block executes and reads or 'samples' the variable.

is the number of module executions or samples that can occur within the defined Periodic Interval e.g., with a one second Task execution and a one Hour Periodic Interval "I" will be 3600.

The term 'Wfactor' used in these formulas refers to the Weight Factor. Weight Factors are specified in the ARCHIVE function block.

The choices are:

Avg for time when Wfactor2 !=0

This performs a simple sum and divide averaging calculation, but a weight factor is applied to each sample as it is read. The weight factor is set by other program logic, as required, to control the averaging done by the function block; it would typically be used to ensure that the variable being read is only averaged while another condition is valid. The equation is shown below:

$$\sum_{i=1}^{n} \text{Variable}_\text{Value(i)} * \text{WeightFactor2(i)}$$
$$\sum_{i=1}^{n} \text{WeightFactor2(i)}$$

(NOTE: This equation is only used when WeightFactor2 is non-zero.)

Arith Mean Over Wfactor1

Perform a simple sum and divide average with each sample weighted by WeightFactor1. See the equation below:

Avg of Sqrt(var) for time when Wfactor2 !=0

During the periodic interval, sample the variable, take the square root of the sample, multiply it by WeightFactor2, and sum it. At the end of the interval,

calculate the average square root and store the result in the Archive. See the equation, below:

Sqr of (Avg of sqrt(var))

During the periodic interval, sample the variable, take the square root of the sample, multiply it by WeightFactor2 and sum it. At the end of the interval, calculate the average square root, then square it and store the result in the archive. The equation is shown below:

Note: The result is zero if Weight Factor 2 is zero for the entire interval.

Instantaneous Place value in log

No calculation performed. At the end of the periodic interval, simply store the current value of the variable in the archive.

Min observed value for period

At the end of the periodic interval, store the lowest value of the variable among all values collected during this interval.

Max observed value from period

At the end of the periodic interval, store the highest value of the variable among all values collected during this interval.

Place value in log, and 0 signal

At the end of the periodic interval, store the current value of the variable, and reset

the variable to zero.

Integration over Wfactor2

Sum the samples taken during the periodic interval after multiplying each sample by WeightFactor 2. Perform the following calculation:

$$\sum_{i=1}^{n} \text{Variable_Value}(i) * \text{WeightFactor2}(i)$$

- Data Type Choose any one of the data types. The default is Real. The other choices are: Boolean, Short Int, Int, Double Int, Long Int, Bit String-Byte, Bit String-Word, Bit-String-Dword.
- **Precision** Specify the numerical precision in which values should be displayed.

Deleting An Existing Archive File Definition

To delete an existing archive file definition, which will also delete the columns and records of the archive file, click on the file name in the list box in the left part of the page, then click on the **[Delete]** button. NOTE: The actual file deletion does not take place until the ControlWave-series unit is powered off, and then re-started.

Working with String-Based Archives

See the ControlWave Designer online help for instructions on configuring string-based archives.

Step 2. In Your ControlWave Designer Project, Identify the variables you want to archive in the Archive List

All variables for which you would like to archive data must be included in the Archive List.

Important

The variables in the Archive List must have a direct one-for-one correspondence with the columns of the archive file, as defined in the Archive page of the Flash Configuration Utility (Step 1). For example, the first variable in the archive list corresponds with column 1 of the archive file, the second variable in the archive list corresponds with column 2 of the archive file, etc.

Also note that the timestamp, global sequence number, and archive sequence number which are included at the beginning of every archive record, do not count as columns when specifying this correspondence.

To create the Archive List, insert one of the LIST function blocks (LIST010, LIST020, LIST030, LIST050, or LIST100) in your ControlWave Designer program. The choice of which LIST function block is determined by how many variables you want to include in the Archive List; for example, if you want to include 37 variables in your Archive List, you should choose LIST050, which can hold up to 50 variables; if you want to include 63 variables in your Archive List, you should choose LIST100, since it can hold up to 100 variables.

Note: Archive files cannot hold more than 64 columns of data, therefore, your archive list should not include more than 64 variables. The figure, at right, shows an Archive List with 5 variables.

You should insert the ARCHIVE function block in one of your POUs. The POU you choose must be part of a task which executes *faster* than the rate at which you want your archive calculations and storage to occur, since archive calculations and storage only occur when the ARCHIVE function block is executed.

Notes:

- Typically, you would want to define control logic to only execute the list once. For information on how to do this, see the *Conditional Logic* section of this manual.
- All variables in your Archive List must be marked as 'PDD' in order to be collected by external archive collection programs such as DataView, or the Harvester.
- The variables you want to include in the Archive List must reside in the same POU as the LIST function block used for the Archive List, or they must be global variables.

Step 3. Create an Output List for Accessing the Most Recent Archive Record (OPTIONAL)

Optionally, you can create a list which will hold a specified Archive record. This allows the specified archive record data to be accessible within your ControlWave program.

The figure at right shows the Output list. The table, below, details the

	LIST010_3					
		LISTO1	.0			
	8—	iiListNumber	odiStatus	LIST8_STAT		
	TIMESTAMP	ianyElement1				
	ARCHSEQNUM-	ianyElement2				
	GLOBALSEQNUM	ianyElement3				
	F101_FLOW_ARC	ianyElement4				
	F102_FLOW_ARC	ianyElement5				
	F103_FLOW_ARC	ianyElement6				
t	F104_FLOW_ARC	ianyElement7				
	F105_FLOW_ARC	ianyElement8				
	•	ianyElement9				
	•	ianyElement10				

Parameter	Suggested Variable	Variable Type	Value	Notes
Name	Name			
iiListNumber	(no variable, entered as a constant)	INT	8	The list number (must be entered on the iiOutList parameter of the ARCHIVE function block)
odiStatus	LIST8_STAT	DINT	None	OPTIONAL – This reports status values regarding the Output List. Negative values indicate errors.
ianyElement1	TIMESTAMP	REAL	None	The timestamp associated with the archive record.
ianyElement2	ARCHSEQNUM	DINT	None	The local archive sequence number associated with the archive record.
ianyElement3	GLOBALSEQNUM	DINT	None	The global sequence number associated with the archive record.
ianyElement4 to ianyElement <i>n</i>	(desired variable names)	Match the data type to the corres-ponding variable in the Archive List	None	These elements of the list contain the values of the associated process variables for the archive record.

data type requirements of the output list used in this example.

Step 4. Configure the ARCHIVE Function Block

Insert an ARCHIVE function block in one of your POUs of your project. The POU you choose must be part of a task which executes *fast enough to produce valid archive calculations*. If, for example, you want to calculate average flows for the past hour, for all variables in the Archive List, you must have executed the ARCHIVE function block enough times to obtain a valid average, based on your requirements. This might be once a minute, once every 10 seconds, etc. So, even though the calculation is *stored* hourly, the ARCHIVE function block must be executed faster.

When the ARCHIVE function block executes, it performs any intermediate calculations, and then only stores the archive data if the specified interval has been reached, or if ondemand archiving has been specified (MODE 2 or 3). Once the most recent archive data has been stored, it will be accessible in the Output List (if the Output List was configured).

The table, below, summarizes the configuration details for the parameters in the ARCHIVE function block for this particular example. More detailed information on the ARCHIVE function block is included in the on-line help.

Parameter Name	Variable Name	Variable Type	Value	Notes
iiArchiveNumber	(in this case we entered no variable, we used a constant instead)	INT	1	This must match the archive number defined for the archive file on the Archive page of the Flash Configuration Utility.
iiArchiveList	(no variable, entered as a constant)	INT	7	This must match the iiListNumber of the Archive List defined in Step 2.
iiOutList	(no variable, entered as a constant)	INT	8	This must match the iiListNumber of the Output List defined in Step 3.
isiMode	ARCH1_MODE	SINT	1	In this particular mode (Mode 1), archiving occurs at the interval specified for the archive file on the Archive page of the Flash Configuration Utility. This is the default mode; for information about other modes, see the on-line help.
isiContractHour	CONTRACT_HOUR	SINT	8	If interval configured on the web page is daily, this is the contract hour at which the daily collection should occur. This can range from 0 to 23.
irWFactor1	WF1	REAL	None	This weight factor is used in certain averaging calculations. This is discussed earlier in this section.

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Parameter Name	Variable Name	Variable Type	Value	Notes
irWFactor2	WF2	REAL	None	This weight factor is used in
				certain averaging
				calculations. This is discussed
				earlier in this section
idiSequenceIndex	SEQ_INDEX	DINT	None	This is only used in Mode 5 or
				6. The user can specify the
				sequence number of a
				particular record, and its data
				will be reported in the output
				list (Mode 5), or the user can
				choose an indexed (fixed)
				position in the Archive file
				(Mode 6), and the data from
				that record will be reported in
				the output list. See the on-
				line help for the ARCHIVE
				function block for more info.
odiStatus	ARCHIVE1_STAT	DINT	None	OPTIONAL – This reports
				status values regarding the
				execution of the ARCHIVE
				function block. Negative
				values indicate errors.
ouiNumRecords	ARCH_REC_TOTAL	UINT	None	This is the total number of
				archive records currently in
				the archive file.
ouiOldestRecord	OLDEST_ARCH_SEQNUM	UINT	None	OPTIONAL – This reports the
				Local (Archive) Sequence
				number of the oldest record
				in the archive file.
ouiNewestRecord	NEWEST_ARCH_SEQNUM	UINT	None	OPTIONAL – This reports the
				Local (Audit) Sequence
				number of the newest record
				in the archive file.

Array Configuration

Instead of storing data exclusively in individual variables, you may find it more convenient, for some applications, to store some of the data in tabular form, such as in a **data array**. A data array is really variables which are part of a more complex structure. The structure is organized in rows and columns. It must be defined in the **"Data Types"** portion of the project tree, because it is considered to be a user-defined data type.

Arrays are most easily manipulated in POUs defined in the Structured Text (ST) language.

Defining an Array Data Type

Let's say, for example, that we wanted to save 3 temperature values (of type REAL), every hour, for an entire day. We need to define a data type for the columns of the array (which is type TEMPS), and an array of rows (which is type TODAYS_TEMPS). The 3 column by 24 row array is defined by entering the following in the **"Data Types"** section of the project tree:

TYPE

TEMPS : ARRAY[1..3] OF REAL;

TODAYS_TEMPS : ARRAY[1..24] OF TEMPS;

END_TYPE

Important

You should define this data type in your own data type worksheet. Do NOT use the SYS_VAR_WZ_TYPES sheet, because if you subsequently change your system variables, any data types you add to that sheet would be overwritten by the changes. To add your own data type worksheet, right-click on the 'Datatypes' item in the project tree, then choose **"Insert → Datatypes"** from the pop-up menus, then supply a name for the worksheet.

Creating an Array Using Your User-Defined Type

On one of your variable worksheets, create a variable using your newly defined data type. The text, below, creates an array called WEDNESDAY, which uses the data type we just defined.

VAR_EXTERNAL (*AUTOINSERT*)

WEDNESDAY :TODAYS_TEMPS;

END_VAR

Using the Array

In your structured text POU, you can assign values to elements of your array. Note that in the text shown, T1_TEMP, T2_TEMP, and T3_TEMP MUST be variables of type REAL, since each cell of the WEDNESDAY array holds a REAL value.

WEDNESDAY[1][1] :=T1_TEMP;

WEDNESDAY[1][2] :=T2_TEMP;

WEDNESDAY[1][3] :=T3_TEMP;

Making the Array Accessible to OpenBSI Collection Programs

In ControlWave Designer, data arrays are defined by a name. In the OpenBSI Utilities such as DataView, the Data Collector, and the Scheduler, however, data arrays are referred to by a number, since in Network 3000-series products, arrays only have numbers, not names.

To collect arrays from a ControlWave controller, using OpenBSI, the named array must be assigned a number using the REG_ARRAY function block. In addition, the array variable must be marked **'PDD'**.

	l		
WEDNESDAY	arrayDescriptor	odiStatus	-ARRAY_1_STAT
1—	iiArrayNumber	ouiNumRows	-ARRAY_1_NUMROWS
		ouiNum⊂olumns	-ARRAY_1_NUMCOLS

For this example, the following table details the usage of each parameter in the REG_ARRAY function block:

Parameter Name	Variable Name	Variable Type	Value	Notes
arrayDescriptor	WEDNESDAY	User-defined array type, in this case TODAYS_TEMPS	None	Indicates the name of your array, which is of some data type you defined.
iiArrayNumber	1 (just entered a constant here)	INT	1	Indicates the array number you are assigning to your array. When you collect this array using OpenBSI, this is the number which you use to refer to it in the OpenBSI utilities.
odiStatus	ARRAY_1_STAT	DINT	None	Reports status values regarding the REG_ARRAY function block. Negative values indicate errors.
ouiNumRows	ARRAY_1_NUMROWS	UINT	None	Indicates the number of rows in this array to be reported.
ouiNumColumns	ARRAY_1_NUMCOLS	UINT	None	Indicates the number of columns in this array to be reported.

Audit Configuration

Audit logging is one of the historical storage capabilities of the ControlWave-series controllers. It allows a record to be kept of significant events such as alarms, operator setpoint changes, operator logins, and system events.

There are three basic steps to configuration of Audit logging:

- 1. Define audit parameters on the 'Audit' page of the Flash Configuration Utility.
- 2. Define an Event list in your ControlWave project that lists non-alarm variables you want to monitor for changes.
- 3. Configure the AUDIT function block and execute it at the desired frequency.

What can be done with the data from the AUDIT data once it has been logged?

Once audit logging has been fully configured, and the ControlWave project has been downloaded and has been running, audit data will be collected, as events and alarms occur. There are various methods for extracting the Audit data:

- The Audit Collection web page control may be used to display audit data. This web
 page is included in the standard Web_BSI set, and allows you to display the audit data
 in Microsoft® Internet Explorer.
- The OpenBSI DataView utility can display audit data on the screen of your OpenBSI Workstation.
- The OpenBSI Harvester can collect the audit data, and store it in files on the OpenBSI Workstation, which the OpenBSI Data File Conversion Utility can export to human machine interface (HMI) packages such as OpenEnterprise.

Step 1. Set parameters in the Flash Configuration Utility

Configuration parameters for audit logging are set on the Audit page of the Flash Configuration Utility.

Note:

Changes made in the Audit page will NOT take effect until the unit has been powered off and back on.

Soft Switches Ports IP Para	ameters Application Parameters Archive Audit IP Routes	S.↓ ▶
Storage Location Flash BAM	Continuous	
Sizing Number of Events:	500	
Number of Alarms: Number of Records in the	500	
Overflow Buffer: [% of Corresponding Log]	Ju	
Port Logging Master Port:	Ethernet 💌	

Storage Location

	Flash	When selected, all Audit records will be stored in FLASH memory. FLASH memory is preserved in the event the ControlWave-series unit loses power, or if the unit's backup battery fails.
	RAM	When selected, all Audit records will be stored in static RAM. If the ControlWave-series unit is reset, for any reason, Audit records will be preserved only so long as the unit's backup battery continues to operate, or the user does not perform a system cold start. See the <i>'Memory Usage'</i> section for a discussion of system cold starts.
Logging Type		
	Continuous	When Logging Type is specified as 'Continuous', if the storage area for audit records becomes full, the oldest records will be erased (overwritten) as new records come in.
	Stop on Full	When Logging Type is specified as 'Stop on Full', if the storage area for audit records becomes full, all logging will stop. NOTE: This does not have any impact on the variables themselves; they will continue to change, only their changes will not be logged to the Audit system.
Sizing		
	Number of Events	Specifies the number of events to be logged. This value can range from 0 to 584. 0 is the default, which means that no events will be logged.
	Number of Alarms	Specifies the number of alarms to be logged. This value can range from 0 to 584. 0 is the default, which means that no alarms will be logged.

Numbo Recorc Outpur [% of corres _] log]	er of Is in the t Buffer ponding	When "F the Audi flash log that time time as t in flash." size) how For exan in the Ou (or 60 al. could be in the Ou (or 300 a could be	lash" is chosen as the storage location for the Audit Trail records, t system cannot write data into the Alarm or Event logs when a becomes full. Should alarm(s) or event(s) be generated during e, it must be temporarily stored in the Output Buffer, until such the new useful records can be written into an Alarm or Event log The Output Buffer size specifies (as a percentage of the log file v much temporary storage is available during such operations. The i *Number of Alarms " is 300, and the *Number of Records utput Buffer " is set to 20, it means that up to 20% of 300 alarms arms) can be stored in the output buffer, before alarm data elost. If the *Number of Alarms " is 300 and *Number of Records utput Buffer " is set to 100, it means that 100% of the 300 alarms alarms) can be stored in the output buffer, before alarm data elost. The default is 100.
Loggin Master Port	g	Defines from th the reco logging	the only port which is capable of deleting the audit records e audit logs. The Logging Master Port is only meaningful when ording mode is set to "Stop on Full" . The port number for the master port can be one of the following values:
		<u>Value</u>	Port
		0	Serial Port 1
		1	Serial Port 2
		2	Serial Port 3
		3	Serial Port 4
		4	Serial Port 5
		5	Serial Port 6
		6	Serial Port 7
		7	Serial Port 8
		8	Serial Port 9
		9	Serial Port 10
		10	Serial Port 11
		11-14	currently unused
		IP Port (any IP port on the unit)

Step 2. In ControlWave Designer, identify Variables for which you want to maintain Audit Logging

If there are several non-alarm variables for which you would like to maintain Audit logging, they must be included in the **Event List.** This is a list of variables which is scanned for any value changes, every time the AUDIT function block is executed.

Note

If you have a small number of event variables, instead of using the Event List, you can, if you choose, configure a separate AUDIT function block for each of the variables, and then assign each variable to the ianyEventVar parameter of its associated AUDIT function block.

Important

- We strongly recommend you do NOT include in the Event List any variables tied to process I/O points or calculated variables which change frequently, because several minor fluctuations of a process I/O variable or calculated variable would generate multiple event records, thereby quickly filling up your event log. The Event List should be reserved for operator setpoints, configuration parameters, and other variables which change infrequently.
- Alarm variables are automatically included in the Audit alarm log. The Audit alarm log, however, only includes the alarm messages generated when a variable enters its 'in-alarm' state, and when it returns to normal. Intermediate value changes to the alarm are NOT included in the alarm log. If you need to log this information, for example, for an operator setpoint variable, which is also configured as an alarm, you must include that variable in the event list. Again, however, this should only be done if the alarm changes infrequently. If you do not need this intermediate information, we recommend you do NOT include alarm variables in the Event List, since 'in alarm' and 'return to normal' messages are always stored in the Audit alarm log.
- When the Audit alarm log and event log become full, they can be configured either to
 overwrite the oldest records when new data comes in, or to stop logging completely
 until one or more audit records are deleted by the user. You should configure the
 OpenBSI Harvester to periodically extract audit data and export it to your HMI
 software; to help prevent your audit logs from filling up.
- DO NOT make on-line changes to the contents of the Event List as this will cause discrepancies in detection of value changes. If you want to change the Event List, make the changes off-line, then download the new project and execute a cold start of the unit.

To create the Event List, insert one of the LIST function blocks (LIST010, LIST020, LIST030, LIST050, or LIST100) in your ControlWave Designer program.

The choice of which LIST function block is determined by how many variables you want to include in the Event List; for example, if you want to include 15 variables in your Event List, you should choose LIST020, which can hold up to 20 variables; if you want to include 63 variables in your Event List, you should choose LIST100, since it can hold up to 100 variables.

The figure, at right, shows an Event List with 9 variables.

If larger lists are required, you can chain multiple LIST function blocks together by simply specifying the *same* **iiListNumber** on each one.

Notes:

- All variables in your Event List must be marked as 'PDD' in order to be collected by external audit collection programs such as DataView, or the Harvester.
- The variables you want to include in the Event List must reside in the same POU as the LIST function block used for the Event List, or they must be global variables.
- Typically, you would want to define control logic to only execute the list once. See the 'Conditional Logic' section for more information on this subject.

Step 3. Configure an AUDIT Function Block

Insert an AUDIT function block into one of your POUs. The POU you choose must be part of a task which executes fast enough to handle your Audit logging requirements, since the Audit logging only occurs when the AUDIT function block is executed.

The following table summarizes the configuration details for the parameters in the AUDIT function block for this particular example. More detailed information on the AUDIT function block is included in the online help.

Parameter Name	Suggested Variable Name	Variable Type	Value	Notes
ibDisable	AUDIT_LOGGING_DISABLE	BOOL	FALSE	For disabling/ enabling
				audit logging.
iiAuditList	here, we have entered a constant	INT	5	Identifies the iiListNumber
	of '5' since the LIST function			of the LIST function block
	block we configured in Step 2 is			we are using.
	numbered '5'			
ianyEventVar	left unused – only applies when	REAL, SINT, INT, or	none	This parameter is only used
	there is no Event List. Used only	DINT		if there is only one variable
	when a single variable is to be			for which you want to
	monitored in the event log.			maintain event logging.
				That single variable is
				identified by ianyEventVar.
odiStatus	AUDIT_STATUS	DINT	none	OPTIONAL – This reports
				status values regarding the
				execution of the AUDIT
				function block. Negative
				values indicate errors.
ouiNumEvents	NUM_EVENTS	UINT	none	OPTIONAL – This reports
				the number of events in the
				event log.
ouiOldestEvent	OLDEST_EVENT_SEQ_NUM	UINT	none	OPTIONAL - This reports the
				Local (Audit) Sequence
				number of the oldest event
				in the event log.
ouiNewestEvent	NEWEST_EVENT_SEQ_NUM	UINT	none	OPTIONAL - This reports the
				Local (Audit) Sequence
				number of the newest
				event in the event log.
ouiNumAlarms	NUM_ALARMS	UINT	none	OPTIONAL – This reports
				the number of alarms in the
				alarm log.
ouiOldestAlarm	OLDEST_ALARM_SEQ_NUM	UNI	none	OPTIONAL - This reports the
				Local (Audit) Sequence
				number of the oldest alarm
				in the alarm log.
ouiNewestAlarm	NEWEST_ALARM_SEQ_NUM	UINT	none	OPTIONAL - This reports the
				Local (Audit) Sequence
				number of the newest
				alarm in the alarm log.

BSAP Addressing and Networks

What is BSAP?

The Bristol Synchronous / Asynchronous Protocol (BSAP) is used for communication within ControlWave and Network 3000 controller networks. BSAP has been used in a wide variety of applications, and is particularly suited to networks where several controllers are connected via a multi-drop cable. It has also been used successfully with several different modes of data transmission including direct cable connections, dial-up modems, radios and satellite links.

At the top of a BSAP network is a host computer, called the **network master**. The network master is usually a PC workstation running **human-machine interface (HMI)** or **supervisory control and data acquisition (SCADA)** software such as Emerson OpenEnterprise[™] software, or a third-party HMI package such as Intellution[®] FIX[®] or Iconics Genesis[™]. The HMI software communicates using the communications driver provided in the **Open Bristol System Interface (OpenBSI)** software. The HMI/SCADA software at the Network Master allows the operator to view what is going on in the network through graphical displays, trends, or printed logs and reports.

Note

Pseudo master devices can be connected to lower levels of the network to view data. These are similar to Network Masters, however, they are not considered to be "nodes" in the network, and so do NOT appear in the NETDEF files.

Below the Network Master are the remote process controllers.

The controllers in the network are organized into a hierarchical structure of one or more **levels**. A BSAP network can support up to six levels (not including the Network Master referred to as level 0.) The number of levels required varies depending upon the size and scope of your project.

Each controller (node) serves as a **master** to the nodes connected to it on the level immediately below, and as a **slave** to the node connected to it on the level immediately above. A node can have many slaves but only one master. Each master **polls** its slaves for data, which it retains in memory until it is polled by *its master*. In this way, data flows from slave to master, slave to master, etc. until it reaches the Network Master, where it is made accessible to the operator via HMI software.

Note

Initially, the ControlWave series could only serve as BSAP slave devices. Beginning with ControlWave firmware release CWP02.0, ControlWave-series controllers may also serve as BSAP master devices.

The user assigns each controller under a given master node a unique 7-bit **local address** (from 1 to 127). OpenBSI will automatically assign the controller a unique 15-bit global address (**GLAD**), based on its location in the network. Addresses and network structure are specified in the Network Definition (**NETDEF**) files generated by the OpenBSI **NetView** program. They must also be specified in the controller; either by switch settings (for certain Network 3000 controllers) or by parameters stored in FLASH memory (for ControlWave controllers, and certain Network 3000 controllers).

The network information stored internally by a node is called its **Node Routing Table (NRT).** The NRT is updated whenever a valid time synchronization message **(TS/NRT)** message is received from the master node. Typically, this occurs when the Master is downloaded, but TS/NRT transmission can also be forced by the user via a menu selection in NetView.

The level of a given controller specifies how many intervening **communication line**s there are between it, and the network master. The first level controllers are called **top-level nodes** because data must travel over only 1 communication line to reach the Network Master. A communication line can consist of a direct cable connection, a radio or satellite link, or a dial-up modem connection. Each communication line is configured independently with its own **baud rate**, **poll period**, **timeout**, etc.

From a given node, BSAP **client/server communication** (transferring array or list data) is only possible to its Master node, any connected slave nodes, and any siblings (nodes on the same level which share the same master). If communication is required to any node not in these categories, it must be routed up using client / server function blocks (Master/Slave modules in Network 3000) at each individual level of the network, until it reaches either the Network Master, or a Master which is a sibling to another Master. The message can then be routed down, again, in the same way, until it reaches the desired node. Within OpenBSI's NetView, the ControlWave can be added to an existing BSAP network in the same way as you would add any other controller.

Adding A ControlWave to an OpenBSI BSAP Network in the RTU Wizard

Simply choose the icon for the network to which you want to add the ControlWave, *right*-click on the icon, and choose Add→RTU to call up the RTU Wizard.

In the RTU Wizard, be sure you specify the appropriate node type (such as **ControlWave**, **CWave_LP** or **CWave_Micro**), and also specify the full path of the ControlWave project.

U Wizard : Step 2	of 3		
Web Access	Enter a string for the RTU name (Max 16 chars): Select the Node Type: Enter the filename of the RTU's must contain full path, ACCOL ACCOL load files directory.) [C: VProgramData\Bristol\Open Enter the strategy resource use not required if only one resource Enter a string that describes the IDCEAN AVENUE STATION	CW3 CWave_Micro 3530 VIRTUAL ControlWave CWave_LP CWave_RID CWave_BFN CWave_GFC CWave_SFC CWave_XFC CWave_30 3808	Browse
Startup c:\ProgramDal	a\Bristol\OpenBSI\WebPages\V	Veb_BSI.htm	Browse
C Access startup	page from RTU		

In addition, you can optionally specify the startup web page for the controller. Because this is a BSAP network, the startup web page must reside on the PC, and you must specify its full path. Web pages residing within the ControlWave are not accessible within a BSAP network so the **Access startup page from RTU** check box is NOT available.

You will also need to specify a local address for the ControlWave. The local address must match whatever local address you defined for the ControlWave on the 'Soft Switches' page of the Flash Configuration Utility. For information on configuring soft switches, see the discussion of the Flash Configuration Utility in Chapter 5 of the *OpenBSI Utilities Manual* (part D301414X012).

Full details on creating a BSAP network, and adding controllers to OpenBSI networks are included in Chapter 6 of the *OpenBSI Utilities Manual* (part D301414X012).

Tuning the BSAP Network

Instructions on tuning a BSAP network and troubleshooting communication problems are included in Chapter 14 of the *OpenBSI Utilities Manual* (part D301414X012). Additional information on BSAP networks is included in the *Network 3000 Communications Configuration Guide* (part D301413X012). For developers requiring information on the internal structure of BSAP networks, please the *Network 3000 Communications Application Programmer's Reference*, (part D301401X012).

Setting the BSAP Local Address and EBSAP Group

The BSAP local address, and the expanded BSAP (EBSAP) group number are set on the 'Soft Switches' page of the Flash Configuration Utility.

BSAP Local Address

Every controller in a BSAP network has a "**Local address**" that ranges from 1 to 127, which is entered on the 'Soft Switches' page of the Flash Configuration Utility. This address identifies the controller's location within its level in the network, and is used for network routing. The local address entered here must match the local address specified for the RTU (controller) in OpenBSI's NetView program.

EBSAP Group Number

If your network uses expanded BSAP, in which more than 127 nodes exist on the same BSAP network level, each controller is assigned to a particular expanded node addressing group. The group is identified by an **"EBSAP Group**" number, which is entered on the 'Soft Switches' page of the Flash Configuration Utility. For more information on EBSAP, please refer to the *Expanded BSAP (EBSAP) Communications* section of this manual. If you are NOT using Expanded node addressing (EBSAP) you MUST leave the **"EBSAP Group"** at 0.

For both the local address and EBSAP group number, changes will not take affect until after you have clicked **[Save to Rtu]**, and powered the controller off and then and back on.

What is Client/Server Communication?

If desired, you can configure CLIENT and SERVER function blocks to transfer data arrays or lists from one controller to another.

A CLIENT function block requests array or list data from a SERVER function block in *another* controller. The SERVER function block processes the request, and sends the array or list data to the CLIENT.

Instructions for configuring the CLIENT / SERVER function blocks are included in the ControlWave Designer online help.

BSAP - Underlying Technical Details (For ADVANCED USERS)

This sub-section summarizes various aspects of BSAP. For a full explanation of BSAP messages, please see the *Network 3000 Communications Application Programmer's Reference* (part D301401X012).

Polling:

The polling function of the BSAP Master is cyclic. It is repeated at the rate specified by the _P1_POLL_PER system variable, in seconds. During a polling cycle all slave nodes belonging to the polling master are polled. If, for any reason, a complete pass cannot be completed within this period the next polling cycle is started immediately after the end of the current polling cycle. Only the nodes that are active, see _*SLAVE_*POLL_DIS, are considered for polling.

Poll and Response Sequence:

The BSAP Master sends the poll message to its slaves. When a slave node receives a poll message it takes one of the following actions:

- 1. It transmits an alarm message if one is waiting and the poll message has a flag that indicates that the Master will accept the alarm messages (polling for alarm), *or*
- 2. It transmits a data response message if one is waiting, or
- 3. It transmits an Acknowledgement with No Data to send protocol message.

Data Message Routing:

Local Messages: The local messages are the ones generated by an application, such as a BSAP Client/Server function block, in this node. Such messages arrive at the appropriate BSAP Master after the application sends these messages and the message routing has been completed. BSAP Master does not have to track such messages, as response messages are destined for local applications. Applications are responsible for performing the application response timeout.

Global Messages: The BSAP Slave may receive global messages that are addressed to the slaves in the network below this node. The message recipient performs the routing on these global messages and selects the appropriate Master for forwarding them to the

target node. The BSAP Master transmits these messages to the target nodes. A tracking structure is also created for each global message. If a response is not received to a tracked global message within the passthrough timeout (_MSG_TIMEOUT) the tracking structure is freed and any future response to that particular global message is discarded.

Response Messages:

The BSAP Master receives messages in response to the poll messages. It performs routing on these messages and they are forwarded to the proper destinations, local applications, BSAP Slave/Pseudo slaves, or Ethernet slaves.

Network Slave Port:

A ControlWave/ControlWaveLP port can have multiple slave ports which can be BSAP or IP. Among all of these ports, however, only one can serve as the **Network Slave Port**.

The Network Slave Port is the default route for upward traffic to global address (GLAD) 0 (Network Master).

To specify which port will serve as the Network Slave Port, the user must set the _SLAVE_PORT system variable to the port number.

TS/NRT Message:

Any Slave port can receive and process the Time Synchronization/Node Routing Table (TS/NRT) message. Separate system variables are available per serial port (_Px_TS_DIS and _Px_NRT_DIS) to allow each Slave to selectively determine whether it can or cannot process the Time Synch and/or NRT portion of the TS/NRT message. A flag is also available which causes the BSAP Slave to generate a request to its master for a TS/NRT message. All TS/NRT messages are accepted that are different than the current TS/NRT in this node. As the name implies the TS/NRT message is made up of two distinct entities:

- 1. TIME SYNCH: This part of the TS/NRT includes the complete system time and calendar information. When the Time Synch is processed the system time/calendar information is updated.
- 2. NRT: Node Routing Table This part of the TS/NRT message is the heart of the BSAP message routing mechanism.

The BSAP Master sends a TS/NRT to its slave nodes as a result of the following:

- A new valid NRT has been received at any of the slave ports
- A slave node explicitly requests a TS/NRT message.
- After completion of a global download of one of its slaves. (Sends only to the node which received the download).

BSAP Master Port

Starting with release CWP02.0, the ControlWave-series of controllers support the BSAP Master mode of communication. The following functionality is possible:

- The ControlWave-series controller acts as the BSAP Master node to any ControlWave
 or Network 3000 controller with a BSAP Slave Port or Pseudo Slave port. This makes it
 possible for this node to be placed anywhere in the BSAP network, i.e. as a Network
 master or at any other level in the BSAP network.
- Multiple master ports are possible in the same controller.
- Each Master port can be assigned any consecutive numbered slaves from 1 to 127; e.g. slaves 1-10 to Master port 5, slaves 11-25 to Master port 2, and slaves 26-127 to Master port 4. Note: This slightly differs from Network 3000 configuration rules.
- It is possible to have gaps in the assigned slave numbers, e.g. slaves 1-5 to Master port 4, slaves 14-17 to Master port 5, and slaves 50-55 to Master port 2.
- A particular slave number cannot be assigned to more than one Master port, e.g. slaves 1-5 to Master port 2 and slaves 5-12 to Master port 4 would not work, because slave 5 is assigned to two different ports.
- Local download to the ControlWave-series controller is NOT supported.
- Global download of any Network 3000 slave controllers at any layer below a Master port is supported.
- BSAP Client/Server (similar to ACCOL II Peer-Peer) communication is supported.
- All BSAP global communication, including the *pass through* of report by exception (RBE) messages from the network below is supported.
- Supports all BSAP Alarm message communication from the network below. Alarm handling is as follows:
 - a. All global alarm report messages are logged with the local alarm system.
 - b. This ControlWave controller alarm system will forward these global alarm messages, interspersed with the local alarm reports, to all active alarm destinations.
 - c. If, at any time, the local alarm report pool becomes full the Master port will stop polling for alarms from the slave nodes.
 - d. Alarm polling will be resumed as soon as space is freed up in the local alarm report pool. Thus the loss of any alarm report from the slaves is prevented.
 - e. The global alarm reports carry the global network address of the reporting controller.
 - f. The ControlWave controller routes the global alarm acknowledgements, like any other global message, to the designated RTU.

Configuring A BSAP Master Port

BSAP Master Port configuration is divided into two parts:

- Configuring Flash Parameters
- Configuring System Variables for the Port

Note:

This section assumes your controller is either already part of a BSAP network (if you are using NetView), or that you established local communications using LocalView, and you have configured a local address, etc.

Configuring Flash Parameters

Step 1. In the Flash Configuration Utility, click on the 'Ports' tab, and choose the ControlWave port you want to configure (COM1, COM2, etc.) Then select 'BSAP Master' as the **"Mode"**.

Soft Switches F	Ports IP Param	neters Application Parameters Arch	nive Audit IP Routes S. 4 🕨
Port F COM1 B COM2 B COM3 U COM4 B COM4 COM4 B COM4 B COM4 COM4 B COM4 COM4 B COM4 COM4 COM4 COM4 COM4 COM4 COM4 COM4	Protocol BSAP Ma BSAP SIa JNUSED BSAP SIa P JNUSED JNUSED	Physical Line Information Baud Rate: 115200 Stop Bits : 1 Protocol Mode : BSAP Master Master Addressing Low Slave: 0 High Slave: 20	Bits Per Char: 8

- Step 2. Enter the baud rate for the communication line in the **"Baud Rate"** field. 1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200 are all valid. The default is 9600.
- Step 3. Define the range of BSAP local addresses used by the slave nodes of this BSAP master port. Enter the lower and upper ends of this range in the "Low Slave" and "High Slave" fields. These numbers must be integers in the range 1 to 127.
- Step 4. Click on the **[Save to Rtu]** button, and respond to any sign-on prompts.

Step 5. At this point, you can optionally make additional changes on other pages of the Flash Configuration Utility. When you are finished, turn off the ControlWave, then turn it back on, for the new port definition to come into effect.

Configuring System Variables

Within ControlWave Designer, start the System Variable Wizard by clicking on View → System Variable Wizard.

When the wizard has successfully established communications with ControlWave Designer, and your project is open, do the following:

- 1. Choose the 'Port Detail' tab.
- 2. Select the "Enable" box for the port which will serve as the BSAP Master.
- 3. Click [Configuration].

	IP RBE Configuration	Data Line Monitor	Redundancy	Load Validation
	System Configuration S	System Information Sys	stem Statistics 🔰 Alarms	: System Flags
First, check the box	ID Strings System I	Date/Time 📔 Task In	fo Port - Globals	Port Detail
of the port you want	Port One Enable Configuration	Information RBE	ort Seven Enable Configuration	Information RBE
	Port Two Enable Configuration	Information RBE	ort Eight Enable Configuration	Information RBE
	Bort Three Configuration	Information RBE	Thine Configuration	Information RBE
	Port Four Enable Configuration	Information RBE	Ten Configuration	Information RBE
Next, click on the ' "Configuration"	Port Five	Information RBE	Tenable Configuration	Information RBE
button for that port.	Port Six Enable Configuration	Information RBE		

4. In the Configuration page, select only the items shown in the following figure and enter appropriate values. A discussion of the various items appears below:

ControlWave Designer Programmer's Handbook D301426X012 August 2020

	Port 1 Configuration		
Once you select an			
item, you can	Poll Time	_Px_POLL_PER > 5	;
specify its value in	🖉 🔽 Write Delay	_Px_WRITE_DEL	,
the corresponding	🔔 🔽 Write (CTS) Timeout	_Px_WRITE_TMO	:500
field.	🗖 🗖 Ignore Echo Data	_Px_IGNORE_ECH0	ALSE 💌
	Port Supports Dial	_Px_DIAL_PORT	ALSE 💌
	Port performs Auto DTR shutdown	_Px_AUTO_DTR	ALSE 💌
	BSAP Pad Front	_Px_PAD_FRONT	
	🔲 BSAP Pad Back	_Px_PAD_BACK	
	Slave		
The items checked			
	Node Bouting Table Disable	PV NBT DIS	
are used with BSAP		Px ALM DIS	ALSE
Master ports.	Immediate Response Disable	_Px_IMM_DIS	ALSE 🔽
	Fast Radio Interval		
	🔲 Fast Radio On Time	_Px_CYCLE_TIME0	
	Local Port	_Px_LOCAL_PORT	ALSE 💌
	🔲 VSAT - Minimum Response Time	_Px_VSAT_MIN_RESP	
	🔲 VSAT - Maximum Response Time	_Px_VSAT_MAX_RESP	
	Master		
\sim	Retries	_Px_RETRIES	
	🔪 🔽 Data Link Timeout	_Px_TIMEOUT 5	00
	🛰 🔽 Idle Polling	_Px_IDLE_POLL	ALSE 💌
	🔲 VSAT - Up Ack Wait	_Px_VSAT_UP_ACK_WAIT	
	EBSAP Master		
	Max Slaves Under Virtual Nodes	_Px_MAX_SLAVES	
	Top Level Nodes	_Px_TOP_LEVEL_NODES	
	Total Slaves On Port	_Px_TOTAL_NODES	
	Array Number of Dead Array	_Px_DEAD_ARRAY	
	Array Number of Disable Array	_Px_DISABLE_ARRAY	
	x = Port Number	UK	Lancel
	Poll Time This is the fro	equency (in seconds) at whic	ch the Master
	(_Px_POLL_PER) port will atte	empt to poll all of its slave no	des. For
	evample ift	he poll time is set to 30 seco	nds then

port will attempt to poll all of its slave nodes. For example, if the poll time is set to 30 seconds, then every 30 seconds, the Master port will attempt to poll all of its slaves nodes for data. If the Master port cannot complete a complete polling cycle within the specified poll time, it will start the new polling cycle as soon as it completes the current cycle.

Write DelayThis specifies a delay (in milliseconds) which must elapse(_Px_WRITE_DEL)before this master port attempts to communicate with its

	slave. This is useful if the slave hardware has a slower CPU-type (e.g. 186) and requires more turn-around time to respond to messages from its master.
Write (CTS) Timeout (_Px_WRITE_T MO)	Since the Clear-To-Send (CTS) must be received in order to transmit, this timeout (in milliseconds) is added to the expected message transmission time at the effective Baud Rate for this port. The message must be completely transmitted before the resulting timeout. The default is dynamic and calculated based on the current baud rate.
Retries (_Px_RETRIES)	This is the number of data link level retries if a transmission fails. The default is 0, i.e. only 1 transmission attempt, and no retries.
Data Link Timeout (_Px_TIMEOUT)	This is the data link level response timeout. Message transmission must <i>start</i> before expiration of this timeout.
Idle Polling (_Px_IDLE_POLL)	RESERVED FOR FUTURE USE.

Click on [OK] when finished.

Optionally, you can then click on the **[Information]** button in the Port Detail page, to specify variables used to store communication port statistics. (This page is not shown here).

Once you have configured all Port Detail parameters, you need to set global port parameters. Click on the 'Port - Globals' tab. Select only the items shown on the next page, and enter appropriate values. A discussion of the various items follows:

Passthru Timeout (_MSG_TIMEOUT)	All messages passing through the controller are tracked. This timeout applies to each passthrough message. If the value is <=0, the default timeout of 30000 milliseconds (30 seconds) is assumed.
Master - Dead Slaves (_SLAVE_DEAD)	This references an array of 127 BOOL variables. Array elements correspond to slave nodes of this Master Port. If a slave node is not responding to poll messages from the Master Port, its corresponding array element is set by the system to TRUE, and the node is declared 'dead'. This array is to report status.
Don't Poll Array (_SLAVE_POLL_DIS)	This references an array of 127 BOOL variables. Array elements correspond to slave nodes of this Master Port. Any element set to TRUE indicates that the corresponding slave node should NOT be polled by the Master Port. The default is FALSE. The user can turn off polling for a particular node by setting its corresponding array element to TRUE.

	IP RBE Configuration Dat	a Line Monitor Redundancy	Load Validation
	System Configuration System In ID Strings System Date/Tin	formation System Statistics Ala ne Task Info Port - Globa	rms System Flags Ils Port Detail
	Alarm IP Alarm Retry Count IP Alarm Retry Time - Active IP Alarm Retry Time - Dead	_ALM_RETRIES _ALM_RET_ACT _ALM_RET_DEAD	3 60 120
	Ethernet Activity Timeout Port 1 Activity Flag Port 2 Activity Flag Port 3 Activity Flag	_ETH_POLL_PER _ETH1_ACT _ETH2_ACT _ETH3_ACT	0
	IBP Processing Ignore NRT from NHP Ignore Time Synch from NHP Specify more than two NHPS Time Synch Delta Accuracy	_NHP_IGNORE_NRT _NHP_IGNORE_TS _NHP_ADDITIONAL_MASK _TS_DELTA_ACCURACY	FALSE FALSE
Select these items	Message Tracking Passthru Timeout	_MSG_TIMEOUT	30000
when you configure a BSAP Master Port.	BSAP Slave Port number Master - Dead Slaves	_SLAVE_PORT _SLAVE_DEAD	0
	#NDARRY and #LINE sense	sflag _BSAP_FLAG_SENSE	FALSE 👻

BSAP Slave Port

Configuring a BSAP Slave Port

BSAP Slave Port configuration is divided up into two parts:

- Configuring Flash Parameters
- Configuring System Variables for the Port

Configuring Flash Parameters

Step 1. In the Flash Configuration Utility, click on the 'Ports' tab, and choose the ControlWave serial port you want to configure (COM1, COM2, etc.) Then select 'BSAP Slave' as the **'Mode'**.

Enter the baud rate for the communication line in the **"Baud Rate"** field. 1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200 are all valid. The default is 9600.

Soft Switches Ports IP Para	ameters Application Parameters Archive Audit IP Routes S 💶 🕨
PortProtocolCOM1BSAP MaCOM2BSAP SlaCOM3UNUSEDCOM4BSAP SlaCOM4BSAP SlaCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSED	Physical Line Information Baud Rate: 9600 Stop Bits : 1 Protocol Mode : BSAP Slave User Mode : 1

Step2. Click on the [Save to Rtu] button, and respond to the sign-on prompts.

Step 3. Turn off the ControlWave, then turn it back on for the new port definition to come into effect.

Configuring System Variables

Within ControlWave Designer, start the System Variable Wizard by clicking on View → System Variable Wizard.

When the wizard has successfully established communications with ControlWave Designer, and your project is open, do the following:

- 1. Choose the **Port Detail** tab.
- 2. Select the **"Enable"** box for the port which will serve as the BSAP Slave.
- 3. Click [Configuration].

	IP RBE Configuration Data Line Monitor Redundancy Load Validation
First, check the box	ID Strings System Date/Time Task Info Port - Globals Port Detail
of the port you want to configure.	Port One Enable Configuration Information RBE Fort Seven Enable Configuration Information RBE
	Port Two Port Eight Image: Figuration Enable Image: Figuration Enable Image: Figuration Enable Image: Figuration Enable
	Port Three Port Nine Faable Configuration Information RBE
Next, click on the "Configuration"	Port Four Enable Configuration Information RBE Fort Ten Enable Configuration Information RBE
button for that port.	Port Five Finable Configuration Information RBE
	Port Six Enable Configuration Information RBE

4. In the Configuration page, select only the items shown in the figure above and enter appropriate values. A discussion of the various items appears, below:

Poll Time (_Px_POLL_PER) This defines a period of time (in seconds) during which this Slave node expects to receive a poll message from its Master. If a poll message

	does not arrive within this period of time, the Master is assumed to have failed, and all messages queued to go up to the Master are discarded. If you are experiencing discards for transmission on this slave port (as reported by a nonzero value on the _Px_DISC_TRANS statistic system variable), it is recommended that you increase this value until no further discards occur. The default value of 5 should generally be increased to a larger number, e.g. 20, especially, if you are experiencing this problem.
Write Delay (_Px_WRITE_DEL)	This specifies a delay (in milliseconds) which must elapse, before this Slave port attempts to communicate with its Master. This is useful if the Master hardware has a slower CPU-type (e.g. 186) and requires more turn-around time to accept responses from the Slave.
Write (CTS) Timeout (_Px_WRITE_TMO)	Since the Clear-To-Send (CTS) must be received in order to transmit, this timeout (in milliseconds) is added to the expected message transmission time at the effective Baud Rate for this port. The message must be completely transmitted before the resulting timeout. The default is dynamic and calculated based on the current baud rate.
Time Sync Disable (_Px_TS_DIS)	When set to TRUE, any time synchronization (TimeSync) message arriving at this slave port will be ignored. The default is FALSE which means TimeSync messages received at this port will be accepted and processed.
Time Sync Needed (_Px_TS_FORCE)	When set to TRUE, the Slave sends a request to the Master Port for a TimeSync/Node Routing Table (TS/NRT) message. Once the TS/NRT is received, this is cleared.
Node Routing Table Disable (_Px_NRT_DIS)	When set to TRUE, any Node Routing Table (NRT) message arriving at this slave port will be ignored. The default is FALSE which means NRT messages received at this port will be accepted and processed.
Alarm Disable (_Px_ALM_DIS)	This allows you to disable alarm transmissions through this port.

Click [OK] when finished.
Identifying the Network Slave Port:

Although you may define multiple Slave Ports in your controller, only one of these ports can be the **Network Slave Port**. The Network Slave Port is the only port, among all the serial Slave Ports and IP ports, that is defined as the upward route for message traffic to the Network Master. To identify this Slave Port as the Network Slave Port, click on the 'Port - Globals' tab. Select only the item shown in the figure, below, and enter the port number of the Network Slave Port.

Valid entries for the Network Slave Port are:

1	=	COM1
2	=	COM2
3	=	COM3
4	=	COM4
5	=	COM5
6	=	COM6
7	=	COM7
8	=	COM8
9	=	COM9
10) =	COM10
11	=	COM11
12	2 =	currently unused
13	3 =	IP (covers Ethernet as well as PPP serial ports)
14	ļ =	IP (covers Ethernet as well as PPP serial ports)
	-	

15 = IP (covers Ethernet as well as PPP serial ports)

IP RBE Configuration Data Line M System Configuration System Informatic ID Strings System Date/Time	4onitor │ Redundancy n │ System Statistics │ Al- Task Info │ Port - Glob	Load Validation arms System Flags als Port Detail	
Alarm IP Alarm Retry Count IP Alarm Retry Time - Active IP Alarm Retry Time - Dead Ethernet	_ALM_RETRIES _ALM_RET_ACT _ALM_RET_DEAD	3 60 120	
Activity Timeout Port 1 Activity Flag Port 2 Activity Flag Port 3 Activity Flag Port 3 Activity Flag	_ETH_POLL_PER _ETH1_ACT _ETH2_ACT _ETH3_ACT		There can only be one Network Slave Port. Here
IBP Processing Ignore NRT from NHP Ignore Time Synch from NHP Specify more than two NHPS Time Synch Delta Accuracy	_NHP_IGNORE_NRT _NHP_IGNORE_IS _NHP_ADDITIONAL_MASK _TS_DELTA_ACCURACY	FALSE FALSE O00000000 0	we are choosing COM2 as the Network Slave Port.
Message Tracking Passthru Timeout	_MSG_TIMEOUT	30007	
BSAP ▼ Slave Port number Master - Dead Slaves □ Don't Poll Array	_SLAVE_PORT _SLAVE_DEAD SLAVE_POLL_DIS	2	
#NDARRY and #LINE sense flag	_BSAP_FLAG_SENSE	FALSE	

Communication Ports

ControlWave Process Automation Controller, ControlWave Redundant Controller

Both the ControlWave Process Automation Controller, and the ControlWave Redundant Controller have from 2 to 4 serial communication ports, and from 1 to 3 Ethernet communication ports.(NOTE: The Redundant Version actually has twice the number of physical ports, but the second set serve in standby mode, unless there is a failure of the primary unit.) These ControlWave units have COM1 and COM2 (both serial). Depending upon the options you purchase, you may have up to two additional serial ports (COM3 and COM4) and from one to three Ethernet Ports (Ethernet Port 1, Ethernet Port 2 and Ethernet Port 3).

ControlWave MICRO Process Automation Controller

- The ControlWave MICRO Process Automation Controller CPU Module (CPU board) in Chassis Slot 2 may be ordered with different combinations of communication ports. One option allows for three serial ports on the CPU board where COM1 and COM2 are RS-232 and COM3 is RS485. Another option allows for the same three serial ports, with the addition of a single Ethernet port. A third available option for the CPU board is two serial ports, where COM1 is RS-232 and COM3 is RS-485 and two Ethernet ports; with this option, there is no COM2.
- If, instead of installing an I/O Module (board) in Chassis Slot 3, you install an Expansion Communication Module (ECOM board) in Chassis Slot 3, 4 additional serial ports are available. COM4 is RS-232, COM5 is RS-485, COM6 is for radio communication, and COM7 is for a modem. (OPTIONAL)

If, instead of installing an I/O Module (board) in Chassis Slot 4, you install an Expansion Communication Module (ECOM board) in Chassis slot 4, another 4 additional serial ports are available. COM8 is RS-232, COM9 is RS-485, COM10 is for radio communication, and COM11 is for a modem. (OPTIONAL). NOTE: This board can only be installed if there is already an Expansion Communication Module (ECOM board) in Chassis Slot 3; it cannot be installed if there is an I/O module in Chassis Slot 3.

ControlWave MICRO controller with 1 Ethernet port

ControlWave MICRO controller with 2 Ethernet ports

ControlWave MICRO I/O Expansion Rack

The number and location of communication ports on the ControlWave MICRO I/O Expansion Rack matches those of the ControlWave MICRO.

ControlWave Electronic Flow Meter (EFM)

 Communication port options for the EFM are identical to those of the ControlWave MICRO described on the previous page. The main difference is that EFM units may have fewer chassis slots.

ControlWave Gas Flow Computer Classic (GFC-CL)

- The ControlWave Gas Flow Computer Classic comes standard with three serial ports on the CPU board. COM1 is RS-232. COM2 can be RS-232 or RS-485, and COM3 is RS485. NOTE: COM1 has different connector types for you to choose from, depending on usage.
- The GFC-CL does NOT have any Ethernet ports, but serial IP can be done via PPP.

COM1 has a choice of different connectors (either of these, or the Local Port, below).

ControlWave GFC-CL

ControlWave Gas Flow Computer (GFC)

- The ControlWave Gas Flow Computer comes standard with three serial ports on the CPU board. COM1 and COM2 support RS-232 and COM3 can support either RS-232 or RS485. Note: COM1 has different connector types for you to choose from, depending on usage.
- Some models of the ControlWave GFC support an Ethernet port; for those that do not, serial IP can be done via PPP using the serial port(s).

ControlWave GFC

ControlWave Express

- The ControlWave Express comes standard with three serial ports on the CPU board. COM1 and COM2 support RS-232 and COM3 can support either RS-232 or RS485.
- Some models of the ControlWave Express support an Ethernet port; for those that do not, serial IP can be done via PPP using the serial port(s).

ControlWave Express

ControlWave Express PAC

- The ControlWave Express PAC comes standard with three serial ports on the CPU board. COM1 and COM2 support RS-232 and COM3 can support either RS-232 or RS485.
- Some models of the ControlWave Express PAC support an Ethernet port; for those that do not, serial IP can be done via PPP using the serial port(s).

ControlWave Express PAC

ControlWave Explosion-Proof Flow Computer (XFC)

The ControlWave Explosion-Proof Flow Computer's communication ports are wired inside the cover with wires brought in through a conduit; there are no external connectors due to the explosion-proof rating.

ControlWave XFC

The ControlWave_10 (CW_10) is an RTU 3310 chassis and I/O upgraded with new

CW_10

The ControlWave_30 (CW_30) is a DPC 3330 chassis and I/O upgraded with new ControlWave CPU and communication boards.

CW_30

The ControlWave_35 (CW_35) is a DPC 3335 chassis and I/O upgraded with new ControlWave CPU and communication boards.

CW_35

The ControlWave_31 (CW_31) is an RIO 3331 Remote I/O Rack chassis and I/O upgraded with new ControlWave communication boards.

ControlWave I/O Expansion Rack

The ControlWave I/O Expansion Rack is a chassis containing additional I/O boards for a ControlWave host. It is also used as the shared I/O in certain redundancy configurations.

ControlWave I/O Expansion Rack

Methods for Communicating with ControlWave-series Controllers.

There are several ways to communicate with the ControlWave-series controllers including:

- Bristol Synchronous / Asynchronous Protocol (BSAP) The ControlWave can be part of an OpenBSI BSAP network, and beginning with firmware release CWP02, it can serve as a BSAP Master node.
- Internet Protocol (IP) The ControlWave can be connected to an IP network of ControlWave or Network 3000 nodes. This can utilize Ethernet or serial Point-to-Point Protocol (PPP). Other IP options are available as well, e.g. Open Modbus. NOTE: Not all units include Ethernet ports.
- ControlWave Designer Protocol The ControlWave has its own native protocol for communication with ControlWave Designer software. ControlWave Designer protocol can be transmitted via serial links, TCP/IP or OpenBSI.

• Serial Modbus - This industry standard protocol allows communication between a ControlWave controller configured for MODBUS, and another MODBUS device.

The table, below, summarizes the major communication options. NOTE: Different units of the ControlWave series support different numbers of ports.

Bristol Collect data from ControlWave using OpenBSI. OpenBSI Utilities suite (NetView	w,
Synchronous /Download the ControlWave project.DataView, Downloader, etc.)	
Asynchronous View web pages.	
Protocol (BSAP) Update FLASH parameters and soft switches	
NOTE: Peer-to-peer communication with other	
ControlWave or Network 3000 controllers requires Client	
/ Server function blocks (firmware 02.00 or <i>newer</i>).	
Client/Server function blocks are discussed in the	
ControlWave Designer on-line help.	
Internet Protocol Collect data from ControlWave using OpenBSI. OpenBSI Utilities suite (NetView	W,
(IP)Download the ControlWave project.DataView, Downloader, etc.)	
View web pages.	
IP MODBUS communication	
NOTE: Peer-to-peer communication with other	
ControlWave or Network 3000 controllers requires Client	
/ Server function blocks (firmware 02.00 or <i>newer</i>).	
Client/Server function blocks are discussed in the	
ControlWave Designer on-line help.	
ControlWave Run ControlWave Designer in on-line mode, which ControlWave Designer	
Designer Protocol includes:	
Performing debugging operations.	
(using either Downloading ControlWave project.	
OpenBSI DLL,	
Very Small Send data via satellite links. ControlWave Designer, OpenB	351
Aperture Terminal NetView	
Allen-Bradley DFT Exchange data with other Allen-Bradley DFT devices ControlWave Designer CUSTO	IVI LE
Master / Slave Tunction Diock. Port configured	
DFT Within the Ports page of th	ie
Flash Configuration Utility.	N 4
DNP3 Industry-standard protocol for SCADA, etc. Control wave Designer CUSIO	IVI IVI
Tunction Diock. Port configured	
DNP3 within the Ports page of	the
Flash Configuration Utility.	
This protocol requires 4.40 /or	
This protocol requires 4.40 (or	
supported for ControlWave LD	
CIP Allen-Bradley protocol ControlWaye Designer CUSTO	M

Protocol	Reasons to Use	Which software is used?
		function block.
		This protocol requires 4.40 (or
		newer) firmware. It is NOT
		supported for ControlWave LP.
Serial MODBUS	Exchange data with other MODBUS devices (including	ControlWave Designer CUSTOM
	another ControlWave configured for MODBUS	function block. Port configured for
	communication.)	MODBUS within the Ports page of
		the Flash Config. Utility.
HART	Exchange data with HART devices through HART Interface	ControlWave Designer HART
	Board (HIB) or a serial port – ControlWave Micro / EFM	function block
	only.	
		This protocol requires 5.00 (or
		newer) firmware.
Foundation	Exchange data with FFbus devices through ControlWave	Fieldbus function block
Fieldbus	Foundation Fieldbus Interface	Field Interface Configurator
		software.
		This protocol requires 5.10 (or
		newer) firmware.
		.It is NOT supported for
		ControlWave LP.

How do I configure the Ports on the ControlWave?

The Flash Configuration Utility, available in LocalView and NetView, is used to configure the ports on any ControlWave unit, as well as for setting other parameters such as the BSAP local address. The Flash Configuration Utility is discussed in detail in Chapter 5 of the *OpenBSI Utilities Manual* (document# D5081).

What are the factory default settings for communication ports?

Factory Defaults for Ethernet Ports

Depending upon the type of ControlWave, there may be up to three Ethernet ports. Ethernet ports are pre-configured at the factory with initial IP addresses and masks, as follows:

ETH1 IP Address: 10.0.1.1IP Mask: 255.255.255.0ETH2 IP Address: 10.0.2.1IP Mask: 255.255.255.0ETH3 IP Address: 10.0.3.1IP Mask: 255.255.255.0

Because each unit shipping from the factory will have these initially pre-programmed, you should only use these addresses for 'bench' testing and configuration. These addresses

must be changed before putting ControlWave units on an actual network, since an address conflict would exist as soon as the second ControlWave unit was placed online.

Factory Defaults for Serial Ports

Default configuration for ControlWave Serial ports is included in the table, below. These default settings are activated any time the default switch is in the OFF position:

- The default switch on the ControlWave Process Automation Controller, ControlWave I/O Expansion Rack and ControlWave XFC is (SW1-3).
- The default switch on the ControlWave LP Controller is (SW4-3).
- The default switch on the ControlWave MICRO Controller, EFM, GFC, GFC-CL, Express, Express PAC, ControlWave_10, ControlWave_30, ControlWave_35, and ControlWave_31 is (SW2-3).
- The ControlWave, ControlWave MICRO, ControlWave Redundant Controller, and EFM initially ship from the factory with serial COM port 1 set to BSAP at 115,200. Once the default switch is OFF however, a factory default of PPP at 115,200 applies.

More details on the factory default settings of communication ports are included in the hardware manual.

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable	Notes
	Rate	Character	Bits				
Serial	115200	8	1	NONE	Serial IP (PPP)	RS232 null modem	Use IP address
Port						cable	1.1.1.1.
COM1							
Serial	9600	8	1	NONE	BSAP Slave/	RS232 null modem	
Port					ControlWave	cable	
COM2					Designer		
Serial	9600	8	1	NONE	BSAP Slave/	Either RS232 null	CHOICE OF
Port					ControlWave	modem cable OR	RS232/RS485
СОМЗ					Designer	RS485 cable	MADE WHEN
						depending upon	ORDERED FROM
						how ordered from	FACTORY.
						factory. Cable	CANNOT BE
						connectors vary	CHANGED IN THE
						depending upon	FIELD.
						type ordered.	
Serial	9600	8	1	NONE	BSAP Slave/	Either RS232 null	CHOICE OF
Port					ControlWave	modem cable OR	RS232/RS485
COM4					Designer	RS485 cable	MADE WHEN
						depending upon	ORDERED FROM
						how ordered from	FACTORY.
						factory.	CANNOT BE
							CHANGED IN
							FIELD.

Factory Defaults for ControlWave, CW Redundant Controller Serial Ports

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable	Notes
	Rate	Character	Bits				
Serial	9600	8	1	NONE	Serial IP (PPP)	RS232 null	Use IP address
Port						modem cable	1.1.1.1.
COM1							
Serial	9600	8	1	NONE	BSAP Slave/	RS-232 cable	
Port					ControlWave		
COM2					Designer		
Serial	9600	8	1	NONE	BSAP Slave/	RS485 cable	
Port					ControlWave		
COM3					Designer		
Serial	9600	8	1	NONE	BSAP Slave/	RS485 cable	
Port					ControlWave		
COM4					Designer		
Serial	9600	8	1	NONE	BSAP Slave/	RS232 cable	
Port					ControlWave		
COM5					Designer		
Serial	9600	8	1	NONE	BSAP Slave/	RS232 cable	
Port					ControlWave		
COM6					Designer		

Factory Defaults for ControlWave I/O Expansion Rack Serial Ports

Factory Defaults for ControlWave MICRO, ControlWave EFM Serial Ports

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Serial	115200	8	1	NONE	Serial IP (PPP)	RS232 null	Use IP address
Port						modem cable	1.1.1.1.
COM1							See Note below
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	
Port					ControlWave	modem cable	
COM2					Designer		
Serial	9600	8	1	NONE	BSAP Slave/	RS485 cable	Configured via CPU
Port					ControlWave		switch SW3.
COM3					Designer		
Serial	9600	8	1	NONE	BSAP Slave/	RS232 null	OPTIONAL -
Port					ControlWave	modem cable	requires ECOM
COM4					Designer		Board in chassis slot
							3.
Serial	9600	8	1	NONE	BSAP Slave/	RS485 cable	OPTIONAL -
Port					ControlWave		requires ECOM
COM5					Designer		Board in chassis slot
							3. Configured by

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
							switch SW1 on
							ECOM board.
Serial	9600	8	1	NONE	BSAP Slave/	Requires	OPTIONAL -
Port					ControlWave	coaxial RF	requires ECOM
COM6					Designer	cable to	Board in chassis slot
						connect MDS /	3.
						FreeWave®	
						spread	See 2.3.3.5 in Cl-
						spectrum	ControlWave
						modem	MICRO for radio
						(radio).	installation steps.
Serial	9600	8	1	NONE	BSAP Slave/	RJ11	OPTIONAL -
Port					ControlWave	connector for	requires ECOM
COM7					Designer	connecting to	Board in chassis slot
						56K PSTN	3.
						modem	
Serial	9600	8	1	NONE	BSAP Slave/	RS232 null	OPTIONAL -
Port					ControlWave	modem cable	requires ECOM
COM8					Designer		Board in chassis slot
							4.
Serial	9600	8	1	NONE	BSAP Slave/	RS485 cable	OPTIONAL –
Port					ControlWave		requires ECOM
COM9					Designer		Board in chassis slot
							4. Configured by
							switch SW1 on
			-				ECOM board
Serial	9600	8	1	NONE	BSAP Slave/	Requires	OPTIONAL -
Port					ControlWave		requires ECOM
COMIO					Designer	cable to	Board in chassis slot
						connect MDS /	4.
						FreeWave®	
						spread	See 2.3.3.5 In CI-
						spectrum	
						(radio)	
Corici	0600	0	1		DCAD Claure /		ODTIONAL
Serial	9600	ð		NONE	BSAP SIave/	KJII	
					Controivvave	connector for	Tequires ECOM Deard in characterist
CONTT					Designer		
						modom	4.
						modem	

Factory Defaults for ControlWave MICRO I/O Expansion Rack Serial Ports

Name	Baud Rate	Bits Per Character	Stop Bits	Parity	Protocol	Cable Interface	Notes
Serial	9600	8	1	NONE	Gould MODBUS	RS232 null	

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Port					Slave – RTU	modem cable	
COM1					mode.		
Serial	115200	8	1	NONE	BSAP Slave /	RS232 null	
Port					ControlWave	modem cable	
COM2	115300			NONE	Designer		
Serial	115200	8		NONE	BSAP Slave/	RS485 cable	Configured via CPU
POIT					Controlwave		SWITCH SVV3.
COIVIS	115200	0	1	NONE		البيم دددعو	ΟΡΤΙΟΝΙΑΙ
Port	115200	0	1	NONL	ControlWave	modem cable	
COM4					Designer	modern cable	Board in chassis slot
COMIT					Designer		3.
Serial	115200	8	1	NONE	BSAP Slave/	RS485 cable	OPTIONAL -
Port					ControlWave		requires ECOM
COM5					Designer		Board in chassis slot
							3. Configured by
							switch SW1 on
							ECOM board.
Serial	115200	8	1	NONE	BSAP Slave/	Requires	OPTIONAL –
Port					ControlWave	coaxial RF	requires ECOM
COM6					Designer	cable to	Board in chassis slot
						connect MDS /	3.
						FreeWave®	
						spread	See 2.3.3.5 In CI-
						modem	
						(radio)	installation steps
Serial	115200	8	1	NONE	BSAP Slave/	R[11	OPTIONAL –
Port					ControlWave	connector for	requires ECOM
COM7					Designer	connecting to	Board in chassis slot
						56K PSTN	3.
						modem	
Serial	115200	8	1	NONE	BSAP Slave/	RS232 null	OPTIONAL –
Port					ControlWave	modem cable	requires ECOM
COM8					Designer		Board in chassis slot
<u> </u>	115200		1	NONE			4.
Serial	115200	8		NONE	BSAP Slave/	RS485 cable	OPTIONAL –
POIT					Controlwave		requires ECOM
CONIS					Designer		A Configured by
							4. Configured by
							FCOM board
Serial	115200	8	1	NONF	BSAP Slave/	Requires	OPTIONAL -
Port			.		ControlWave	coaxial RF	requires ECOM
COM10					Designer	cable to	Board in chassis slot
-						connect MDS /	4.
						, FreeWave®	

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
						spread	See 2.3.3.5 in CI-
						spectrum	ControlWave
						modem	MICRO for radio
						(radio).	installation steps.
Serial	115200	8	1	NONE	BSAP Slave/	RJ11	OPTIONAL -
Port					ControlWave	connector for	requires ECOM
COM11					Designer	connecting to	Board in chassis slot
						56K PSTN	4.
						modem	

Factory Defaults for ControlWave Gas Flow Computer Classic (GFC-CL) Serial Ports

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Serial	115200	8	1	NONE	BSAP Slave /	RS232 null	Can also serve as
Port					ControlWave	modem cable	Local Port. Different
COM1					Designer		connectors are
							available depending
							on usage.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Can serve as either
Port					ControlWave	modem cable	RS232 or RS485. If
COM2					Designer	or RS485 cable	using RS485, switch
							SW4 used for
							configuration. This
							port supports radio
							/ modem option.
Serial	9600	8	1	NONE	BSAP Slave/	RS485 cable	Configured via CPU
Port					ControlWave		switch SW3.
COM3					Designer		

Factory Defaults for ControlWave Gas Flow Computer (GFC) / ControlWave Express / ControlWave Express PAC Serial Ports

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Serial	115200	8	1	NONE	BSAP Slave /	RS232 null	Can also serve as
Port					ControlWave	modem cable	Local Port. Different
COM1					Designer		connectors are
							available depending
							on usage.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	This port supports
Port					ControlWave	modem cable	radio / modem
COM2					Designer		option.

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Serial	9600	8	1	NONE	BSAP Slave/	RS232 null	Can serve as either
Port					ControlWave	modem cable	RS232 or RS485. If
COM3					Designer	or RS485 cable	using RS485,
							configured via CPU
							switch SW3.

Factory Defaults for ControlWave Gas Flow Computer (XFC) Serial Ports

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Serial	115200	8	1	NONE	BSAP Slave /	RS232 null	Local Port
Port					ControlWave	modem cable	
COM1					Designer		
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Network Port
Port					ControlWave	modem cable	
COM2					Designer		
Serial	9600	8	1	NONE	BSAP Master/	RS485 cable	Configured as BSAP
Port					ControlWave		Master for
COM3					Designer		communication
							with 3808 MVT
							Transmitter.

Factory Defaults for ControlWave_10 (CW_10) Serial Ports

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Serial	115200	8	1	NONE	BSAP Slave /	RS232 null	Configured by
Port					ControlWave	modem cable	jumper W4 on
COM1					Designer		CMFIB. On original
							RTU 3310 known as
							Port A.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Configured by
Port					ControlWave	modem cable	jumpers W5 and W7
COM2					Designer	or RS485	and switch SW2 on
							CMFIB. On original
							RTU 3310 known as
							Port B.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Configured by
Port					ControlWave	modem cable	jumpers W8
COM3					Designer	or RS485	through W14 and
							switch SW3 on
							CMFIB. On original
							RTU 3310 known as
							Port C.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Configured by
Port					ControlWave	modem cable	jumpers W15

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
COM4					Designer	or RS485	through W21 and
							switch SW4 on
							CMFIB. On original
							RTU3310 known as
							Port D.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Configured by
Port					ControlWave	modem cable	jumpers W9
COM5					Designer	or RS485	through W15 and
							switch SW3 on
							CCPU board. On
							original RTU 3310
							known as BIP1.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Configured by
Port					ControlWave	modem cable	jumpers W16
COM6					Designer	or RS485	through W22 and
							switch SW4 on
							CCPU board. On
							original RTU 3310
							known as BIP2.

Factory Defaults for ControlWave_30 (CW_30) Serial Ports

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Serial	115200	8	1	NONE	BSAP Slave /	RS232 null	Port 1 on the first
Port					ControlWave	modem cable	CCB. Configured by
COM1					Designer	or RS485	jumpers W2
							through W8 and
							switch SW1 on CCB.
							On original DPC
							3330 known as Port
							Α.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Port 2 on the first
Port					ControlWave	modem cable	CCB. Configured by
COM2					Designer	or RS485	jumpers W9
							through W16 and
							switch SW3 on CCB.
							On original DPC
							3330 known as Port
							В.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Port 3 on the second
Port					ControlWave	modem cable	CCB. Configured by
COM3					Designer	or RS485	jumpers W2
							through W8 and
							switch SW1 on CCB.
							On original DPC

Name	Baud Rate	Bits Per Character	Stop Bits	Parity	Protocol	Cable / Interface	Notes
							3330 known as Port
Serial Port COM4	9600	8	1	NONE	BSAP Slave / ControlWave Designer	RS232 null modem cable or RS485	Port 4 on the second CCB. Configured by jumpers W9 through W16 and switch SW3 on CCB. On original DPC 3330 known as Port D.
Serial Port COM5	9600	8	1	NONE	BSAP Slave / ControlWave Designer	RS232 null modem cable or RS485	Configured by jumpers W9 through W15 and switch SW3 on CCPU board. On original DPC 3330 known as BIP1.
Serial Port COM6	9600	8	1	NONE	BSAP Slave / ControlWave Designer	RS232 null modem cable or RS485	Configured by jumpers W16 through W22 and switch SW4 on CCPU board. On original DPC 3330 known as BIP2.
Serial Port COM7	9600	8	1	NONE	BSAP Slave / ControlWave Designer	RS232 null modem cable or RS485	Port 7 on the first CCB. Configured by jumpers W17 through W23 and switch SW2 on CCB. On original DPC 3330 known as Port G.
Serial Port COM8	9600	8	1	NONE	BSAP Slave / ControlWave Designer	RS232 null modem cable or RS485	Port 8 on the first CCB. Configured by jumpers W24 through W30 and switch SW4 on CCB. On original DPC 3330 known as Port H.
Serial Port COM9	9600	8	1	NONE	BSAP Slave / ControlWave Designer	RS232 null modem cable or RS485	Port 9 on the second CCB. Configured by jumpers W17 through W23 and switch SW2 on CCB. On original DPC 3330 known as Port

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
							l.
Serial Port COM10	9600	8	1	NONE	BSAP Slave / ControlWave Designer	RS232 null modem cable or RS485	Port 10 on the second CCB. Configured by jumpers W24 through W30 and
							switch SW4 on CCB. On original DPC 3330 known as Port J.

Factory Defaults for ControlWave_35 (CW_35) Serial Ports

Note: Because the CW_35 does NOT support a communications board in Slot 13, and for firmware compatibility purposes, the following ports do NOT exist on these units: COM1, COM2, COM7, and COM8.

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Port 3 on the CCB.
Port					ControlWave	modem cable	Configured by
COM3					Designer	or RS485	jumpers W2
							through W8 and
							switch SW1 on CCB.
							On original DPC
							3335 known as Port
		-	-				(.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Port 4 on the CCB.
Port					ControlWave	modem cable	Configured by
COM4					Designer	or RS485	jumpers W9
							through W15 and
							switch SW3 on CCB.
							On original DPC
							3335 Known as Port
Corial	0600	0	1		DCAD Clave /	البيم ددعم	D. Dart on the CCDU
Dort	9600	0	1	NONE	BSAP Slave /	KSZ3Z IIUII	Configured by
					Designer		iumpors W/10
COND					Designer	01 K3465	through W16 and
							switch SW/3 on
							CCPLL On original
							DPC 3335 known as
							Port BIP1.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Port on the CCPU.
Port					ControlWave	modem cable	Configured by
COM6					Designer	or RS485	jumpers W18

Name	Baud Rate	Bits Per Character	Stop Bits	Parity	Protocol	Cable / Interface	Notes
Serial Port COM9	9600	8	1	NONE	BSAP Slave / ControlWave Designer	RS232 null modem cable or RS485	through W24 and switch SW4 on CCPU. On original DPC 3330 known as Port BIP2. Port 9 on the CCB. Configured by jumpers W16 through W23 and switch SW2 on CCB. On original DPC 3335 known as Port I.
Serial Port COM10	9600	8	1	NONE	BSAP Slave / ControlWave Designer	RS232 null modem cable or RS485	Port 10 on the CCB. Configured by jumpers W24 through W30 and switch SW4 on CCB. On original DPC 3335 known as Port J.

Factory Defaults for ControlWave_31 (CW_31) Serial Ports

Note: Because the CW_31 does NOT support a communications board in Slot 13 or Slot 10, and for firmware compatibility purposes, the following ports do NOT exist on these units: COM1, COM2, COM3, COM4, COM7, COM8, COM9, COM10.

Name	Baud	Bits Per	Stop	Parity	Protocol	Cable /	Notes
	Rate	Character	Bits			Interface	
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Port on the CCPU.
Port					ControlWave	modem cable	Configured by
COM5					Designer	or RS485	jumpers W10
							through W16 and
							switch SW3 on
							CCPU. On original
							RIO 3331 known as
							Port BIP1.
Serial	9600	8	1	NONE	BSAP Slave /	RS232 null	Port on the CCPU.
Port					ControlWave	modem cable	Configured by
COM6					Designer	or RS485	jumpers W18
							through W24 and
							switch SW4 on
							CCPU. On original
							RIO 3331 known as
							Port BIP2.

How can the port configuration be changed?

If you want to use port settings other than the defaults, you must connect to the ControlWave unit, and change the port configuration settings. The new settings are saved in the 512K FLASH BIOS of the ControlWave unit. Port configurations may be changed via the Flash Configuration Utility.

Important

When you make changes to port configurations, some of the changes will take effect immediately after you exit the Flash Configuration Utility. Other changes will not take effect until after you have reset the ControlWave unit (turned it off and then back on).

Dialing - An Overview

Beginning with ControlWave firmware version 04.00, dialing is supported via the DIAL_CTRL function block. To configure dialing, you must:

- Configure the communication port from the 'Ports' page of the Flash Configuration utility.
- Identify the communication port used for dialing via the _Px_DIAL_PORT system
 variable, in your ControlWave project. *Dialing will NOT function unless the port is
 identified as a dial port.* System variables are configured in the System Variable Wizard.
- Configure your ControlWave project to handle dialing. Use the DIAL_CTRL function block to specify the various dialing parameters. See the on-line help in ControlWave Designer for more information. Any RS-232 port can be a dial port, and you can have multiple dial ports and multiple DIAL_CTRL function blocks in your project, but each port must have a dedicated modem.
- Configure the external modem which will perform the dialing. Currently, we offer the MultiTech® Systems Embedded Data FAX Modem. See the documentation accompanying this modem for configuration details.

Serial Port Sharing between the BSAP Slave and Custom Slave Protocols:

Normally, when you configure a serial port on a ControlWave-series controller, the port only uses a single protocol, such as BSAP or Modbus and that protocol has full control over that port. Under certain circumstances, though, you can configure serial port sharing which allows a single port to serve as both a BSAP slave, and as a custom slave using a custom protocol. To implement serial port sharing, you must follow these rules:

- 1. Define the serial port as the appropriate custom slave port, such as Modbus slave, Allen-Bradley slave, etc.
- 2. Ensure that the port characteristics, e.g. baud rate, start/stop bits, and parity, used by both the BSAP master, and the custom master match exactly.
- 3. When switching from one master to the other master, the first communication protocol must relinquish control over the port and allow the second protocol to establish successful communication with the new master using one of the following methods:
 - a. The communication line must be quiet for approximately 1 minute or
 - b. The new master must make approximately five attempts to establish communications with the slave, even if it receives no response.
 - c. You can set the _Pn_INH_BSAP_SLAVE system variable to TRUE (firmware 05.43 and newer) to inhibit the serial port from accepting any BSAP slave communications.

Serial port sharing has been tested for switching between the BSAP and Modbus slaves as well as between BSAP and Allen-Bradley DF1 slaves. For any other protocol combinations, you must verify that serial port sharing works properly for your application.

Compiling

When you have finished editing your ControlWave Designer project, it must be compiled. The compilation process takes your project (programs, function blocks, tasks, etc.) and generates machine-readable code from it. After successful compilation, the machine readable code for the project can be **downloaded** into the ControlWave-series controller or the I/O Simulator.

Note: If a particular POU has NOT been compiled, its name will have an asterisk (*) next to it in the project tree.

The compilation process checks for any syntactical errors in your project, and also issues warnings about possible problems with the structure of the project. It does NOT check for logic errors in your control strategy, however.

To compile the project, click on the icon shown at left, or go to the menu bar, and click as follows: Build \rightarrow Make

Various messages will appear on the screen.

If there are errors or warnings, click on the "Errors" or "Warnings" tab for more information.

If there are errors or warnings generated during the compilation, you can view them by clicking on the 'Errors' or 'Warnings' tabs, respectively. Often, you can double-click on the error listed in the error window, and its location in the project will be identified.

For more information about what a particular error message means, *right*-click on the error message, then choose **"Help on Message"** from the pop-up menu (if it is available.)

Double-click on the error message and choose "Help on Message" from the pop-up menu to get more information on the error.

Conditional Logic

Certain function blocks (for example, LIST function blocks) should only be executed once at application cold start *and* at application warm start.

Note

Lists can also be created using the DB_LOAD function block (without any LIST function blocks). See the Variable Extension Wizard for more information.

If you attempt to execute these function blocks multiple times, the system tries to define the list structures multiple times, which results in an error code, each time the LIST is executed. While this does **not** prevent your ControlWave project from executing properly, it can burden you with unnecessary error messages, which could prevent you from seeing more useful error messages.

To avoid this, you can use conditional logic to execute the list only once.

Using Conditional Logic to Execute a Function Block Only Once

This is most easily accomplished when using a POU written in Structured Text (ST) language.

In the example, below, a variable called INIT, of type BOOL has been created, which has an initial state of TRUE. Note that for this type of operation, the variable should NOT be marked as **"RETAIN"**, because that would prevent the list from being defined following an application warm start.

Variable Properties		X
Name: INIT Data Type: BOOL Usage: VAR RETAIN Initial value: TRUE I/O address: Description:	Definition scope Local Global Local Variable Groups: Default Global Variable Groups: Physical Hardware CW Physical Hardware CW System_Variables	OK Cancel Help
PDD OPC Hidden Initvalue as default	Show all variables of worksheets	

At application start up, the INIT variable is read as part of an IF - ENDIF block. Since it is TRUE, the LIST function block will be executed, thereby defining the list. At the very end of

the IF-ENDIF block, the INIT variable is set to FALSE, to prevent that block of code from executing again:

ST CODE EXCERPT:

IF (INIT) THEN

_LIST_10_1.iiListNumber := 1;

_LIST_10_1.ianyElement1 := LOAD_NAME;

_LIST_10_1.ianyElement2 := FUN1_TEST_CNT;

_LIST_10_1.ianyElement3 := FUN_TEST1_HLT;

_LIST_10_1.ianyElement4 := FUN_OUT_001;

_LIST_10_1.ianyElement5 := FUN_ERROR1_CNT;

_LIST_10_1.ianyElement6 := FUN2_TEST_CNT;

_LIST_10_1.ianyElement7 := FUN_TEST2_HLT;

_LIST_10_1();

INIT:= FALSE;

END_IF;

≫Sample

Using LD:

To execute a block of code only once in Ladder Language (LD), you can use the '>>' jump statement to effectively skip the code on subsequent executions. Execution proceeds left-to-right and top-to-bottom.

C002

001

In the first line, the jump statement at the far left is ignored, because 'C002' is FALSE, and so execution continues on the next line

The second line turns on 'C002'.

The third line (LIST function block) is executed.

On subsequent executions, the second and third lines will be skipped, because 'C002' is now TRUE - - program execution will jump to the 'Sample' label, where additional code could be executed.

002 LIST 1 LISTOIO odiStatus Signal_1**iiListNumber** -Module_Status Signal_2 ianyElement1 Signal_3 ianyElement2 Signal_X ianyElement3 V011ianyElement4 ianyElement5 V012ianyElement6 V013— ¥014ianyElement7 V015ianyElement8 V016ianyElement9 V017ianyElement10

<u>Semple:</u> (*Additional code could follow the 'Sample' label.*)

This will continue on all subsequent executions (until the system is restarted), because the jump condition is satisfied.
DataView

You can use OpenBSI's DataView to call up the value of variables in your ControlWave project. For this work, OpenBSI communications (NetView or LocalView) must already be communicating with the ControlWave.

Note:

For a full discussion of how to use DataView, please refer to *Chapter 8* of the *OpenBSI Utilities Manual* (part number D301414X012).

Before you begin:

Note:

Only global variables (typically I/O global variables), or variables which have been marked as **"PDD"** in ControlWave Designer will be visible in DataView.

Click her	e to mark the variable as "PDD."	
/		
Variable Properties		
Name: RUNTIME Data Type: REAL Usage: VAR Initial value: I/O address: Description: COMPRESSOR RUNTIME	Definition scope Local Variable Groups: Default Global Variable Groups: Physical Hardware CW CW System_Variables	OK Cancel Help
PDD OPC Hidden	Show all variables of worksheets	

In addition, you must have made the proper settings for PDD in the Resource Settings dialog box (shown below):

this to declare all g."	lobal variables	as /	Check this to decla local variables mar "PDD" as "PDD."
esource settings for	IPC_40		×
Port: COM1 COM2 COM3 COM4 Simulation 1 Simulation 2	Baud: Stopbits: Databits: Parity: Timeout Stack check Stack check Array bounda	1 200 1 8 None 2000 n on PLC rry check on PLC 8 for boolean varial	Ok Cancel Data area Help
	P	otproject during co	mpile
Parameter: -ip10.2	211.74.224 -TO2000	-usystem -p66666	6
All global variables Marked variables		OPC All global Marked v	variables ariables
Use reserve	🔿 Marked	POUs	◯ No reserve

Calling up ControlWave Data in DataView

Step 1. In NetView or LocalView, *right*-click on the icon of the ControlWave you want to access, and choose $RTU \rightarrow DataView$ from the pop-up menus.

Step 2. Sign on.

Step 3. Click on the Signal Search icon [H] or click on File \rightarrow New, and then click on "Signal Search" in the New list box. Either method will call up the Signal Search Properties dialog box.

Step 4. The Signal Search dialog box should appear, with the ControlWave's node name in the **"Node"** field.

To see ALL variables which are global, or have been marked as PDD, just click on **[OK]**.

To search for a specific variable, follow the instructions in *Chapter 8* of the *OpenBSI Utilities Manual* (part number D301414X012).

Debugging – An Overview

Once you have corrected all syntactical errors and have successfully compiled your project, you can download it into the ControlWave-series controller or the I/O Simulator (see *Downloading* for information on how to do this).

ControlWave Designer supports several different debugging techniques to help isolate logic problems you find in your running ControlWave project. The techniques supported include:

- Using the Watch Window to display only a certain set of variables which you are interested in.
- Using the Cross-Reference Window to display where all variables and function blocks are used within a project.
- Using the Patch POU feature to perform edits to a running project, without stopping execution.
- Using breakpoints to stop execution at particular points in a POU, allowing the user to step through code, and view the results of execution at each step.
- Using the Force/Overwrite options to manually change values of variables in the running project.

Important

We recommend that debugging be performed only in the I/O Simulator, or in a ControlWave-series controller that is NOT currently connected to a running plant or process. This is because debug operations such as setting breakpoints, or forcing variables could cause an upset to a critical process.

These techniques are all performed in on-line Debug Mode, when you are communicating on-line with the ControlWave-series controller, or the I/O Simulator, from within ControlWave Designer.

Starting Debug Mode 🌌

With the project executing in the ControlWave, or the I/O Simulator, you can put ControlWave Designer into on-line Debug Mode to view the current values of variables, or perform debugging operations. To enter Debug Mode, click on the 'Debug On/Off' icon, shown above, or click on **Online→Debug**.

Using the Watch Window

The Watch Window allows you to view just the variables you are interested in. To open the Watch Window, click on **View**-> Watch Window.

Open up your main worksheet, and *right*-click on the name of a variable you want to include in the watch window, then choose **"Add to Watch Window"** from the pop-up menu.

Click on tabs to bring up different pages of the Watch Window.

The variable will be added to the currently open page of the Watch Window. Continue to add variables to the watch window, as desired.

Variable	Value	Default value	Туре	Instance
done	???			BBI_3340.ProConOS.TMAIN.PMAIN.RAM_PER13.done
archNumRec	???			BBI_3340.ProConOS.TMAIN.PMAIN.RAM_PER14.archNumRec
done	???			BBI_3340.ProConOS.TMAIN.PMAIN.RAM_PER14.done
InitDone	TRUE		BOOL	CW.IPC40.TMAIN.PMAIN.RAM_CAL9.InitDone
Watch 1	Watch 2 λ Watch 3 λ Watch 4	1		

Using the Cross-Reference Window

The Cross-Reference Window displays in detail, how and where any particular variable, function block, etc. is used within the project.

To open the Cross-Reference Window, click on **Build** \rightarrow **Build Cross References**.

Right-click in the Cross-References Window, and choose **"Build Cross References"** from the pop-up menu.

The Cross Reference tables will be generated and displayed in the window. You may want to drag the window borders to display additional information.

Once the cross-reference information is displayed, you can double-click on any variable name, and the worksheet containing that particular usage of the variable will be displayed.

On-line Editing with Patch POU

On-line editing allows you to make changes to the ControlWave project running in the controller, or in the I/O Simulator, without pausing the execution of the project.

First, clear all breakpoints. (Clearing breakpoints is discussed later in this section.)

If you are already in on-line Debug Mode, you must click on the 🛛 🏭 button to exit Debug

Mode, *or* click on **"Online→Debug"**.

Now make the edits you want to make in your POU. For example, the COMMAND function block shown on the left, below, has no variable for the ibOFF_Lim_Sw parameter defined. On the right we have added it. Because we have made an off-line edit, the 'Patch POU' icon now becomes available.

Click on the 'Patch POU' icon 🕍 and the edits you have made to your POU will be compiled, and downloaded into the running project, without stopping execution.

On-line Debug Mode will automatically be started so you can observe the behavior of the newly modified POU in your running project.

Using the Force/Overwrite Options

Force and Overwrite are ways to manually change the values of variables in the running ControlWave project.

Forcing an I/O Variable's Value

Force should only be used with I/O variables. To **force** an I/O variable changes its value at the point it is sent to the I/O board. Other logic within POUs can alter the I/O variable's value within the project, but at the point it reaches the I/O, the force action will be applied. That I/O point will stay at its forced value, until changed by the user, or until the force is removed.

- In Debug Mode, go into the worksheet for one of your POUs, for example, one of the graphical worksheets, and find the I/O variable you want to force.
- Double-click on the I/O variable that you want to force. The Debug: RTU Resource dialog box will appear.
- Select the new value for the forced variable. (For REAL variables, enter a value in the "Value" field; for BOOL variables, select either "TRUE" or "FALSE". After specifying the value, click on the [Force] button, and the force will be applied at the I/O point.
- To stop applying the forced value, double-click on the I/O variable, and click on the **[Reset force]** button in the Debug: RTU Resource dialog box.

Enter the value you w then click Force .	vant to force the value to	,
Debug: RTU_RESOURCE Force/Overwrite Flot_INPUT Value 23.0 Force Reset force Overwrite Reset force list	Breakpoint Set BP Reset BP Reset all BP Valuedisplay Standard Decimal Hexadecimal Binary REAL values Width: Precision: 15 .7 IEEE format	To remove the force, click Reset force.

Note:

The force operation is only applied at the I/O point, as the value is sent to the physical I/O board. If you examine the value of the variable at other points in the POU execution, you may see a different value for the variable, because the force has not yet been applied at that point. Also, if you are seeing unexpected values for the variable, you may want to use the I/O Configurator to associate the I/O board containing points you are going to force with a particular task (see **"Related Task"** field in the I/O Configuration Wizard); this will ensure that execution of the task is coordinated with data updates to the I/O point.

Temporarily Overwriting a Variable's Value

To **overwrite** a variable, means that the user changes the variable's value, however, there is nothing to prevent logic in the control strategy from subsequently changing it.

- In Debug Mode, go into the worksheet for one of your POUs, for example, one of the graphical worksheets, and find the variable you want to overwrite.
- Double-click on the variable that you want to overwrite. The Debug: RTU Resource dialog box will appear. (See page 110).
- Specify the new value you want to send to the variable. (For REAL variables, enter a value in the "Value" field; for BOOL variables, select either "TRUE" or "FALSE". After specifying the value, click on the [Overwrite] button, and the new value will overwrite the current value of the variable.

Note:

This only temporarily changes the variable's value. Logic in your ControlWave project can change it to a value different from the value you specified.

Setting a Breakpoint

A **breakpoint** is used to temporarily halt execution of the ControlWave at a particular spot in the executing project. Once a breakpoint is activated, the user can manually 'step through' the code, to observe the values of variables at each step of the program execution.

 In Debug Mode, go into the worksheet for one of your POUs, for example, one of the graphical worksheets, and double-click on a particular point in the code, where you want to set a breakpoint, for example, on a variable as it enters a function block. The Debug: RTU Resource dialog box will appear (see page 110).

In the 'Breakpoint' section of the dialog box, click on the **[Set BP]** button to set the breakpoint. Execution of the project will halt at that point, and that area of the code will be highlighted in orange. If not already visible, call up the RTU_RESOURCE dialog

box by clicking on **"Online→ Project Control"** or by clicking on the Project Control icon.

 In the RTU_RESOURCE dialog box, you now can choose how you want to resume execution. There are three different choices:

Choice 1: Click on **[Go]** and the project will execute until it encounters another breakpoint, and then it will halt.

Choice 2: Click on **[Step]** and the project will execute the next item of code and halt, again, until you click on **[Step]** again. This allows the programmer to move through the execution step-by-step, and examine how variables are affected at each step of execution. The current location where execution has halted is highlighted in orange.

Choice 3: Click on **[Trace]** this is similar to **[Step]** except it shows even more detail by executing step-by-step through individual function blocks.

Clearing the Breakpoint(s)

When you are finished performing debugging operations, you must remove the breakpoints from your project, or it will be unable to execute properly.

In the Debug: RTU Resource dialog box, click on **[Reset BP]** to reset the current breakpoint (the one where execution is currently halted. To clear all breakpoints, click on **[Reset all BP]**.

Verifying that Breakpoints and Forces Have Been Cleared

Before exiting Debug Mode, you should check to see that you have cleared all breakpoints, and force operations. Otherwise, these will remain active in your project, even after you exit Debug Mode.

To verify that these have been cleared, click on the **[Info]** button in the RTU_RESOURCE dialog box, and look at the 'Breakpoints' and 'Force' sections at the bottom of the Resource page. If it says 'No breakpoints active' and 'No variables forced' it is safe to exit Debug Mode.

Breakpoints	Force
No breakpoints active	No variables forced

If, however, you see 'Breakpoints active' or 'Variables forced', you must select the **"Reset breakpoints"** and **"Reset forcelist"** check boxes, and click on **[OK]**, prior to exiting Debug Mode, or the breakpoints and forces will remain set.

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Resource: RTU_RESOURCE	
Hesource PODs Force	
Version PLC state	
PLC Plc Halt Halt	If you see
Firmware	"Breakpoints
ProConOS Simulation None	active" or
Access rights	"Variables
UNTITLED Global	forced" you
CPU load Default-Task System tick Powerflow	Should check
0% 0 ms Cyc. time 10 ms None	the reset
Retain data Prog. mem. System data Bootproject	olick "OK"
127 kB free 1066 kB free 1028 kB free None	CIICK OR .
Breakpoints Force	
Breakpoints active Variables forced	
Logic Analyzer	
Time between transmissions : 10 ms	

You must exit Debug Mode in order to make edits to your project. To exit on-line Debug Mode, click on the 'Debug On/Off' icon, shown above, or click on **Online→Debug**.

Downloading

Downloading is the process of transferring the compiled control strategy from your PC workstation, into the memory of the ControlWave controller.

Note:

Besides the control strategy, the compressed project source code (*.ZWT) can also be downloaded.

In ControlWave Designer, a user creates a control strategy to perform whatever systemspecific job they want to use the controller for, and saves it as a ControlWave **project**. The project is compiled and the resulting computer code is then **downloaded** from the PC into the ControlWave's memory using either ControlWave Designer, or the OpenBSI Downloader.

When downloading the project directly from within ControlWave Designer, the user has a choice of downloading the project directly into dynamic memory for execution (SDRAM or SRAM depending on the platform), or downloading into the FLASH memory area (this is called downloading the **boot project)**. When downloading from the OpenBSI 1131 Downloader, only the boot project may be downloaded.

A project can only *execute* from the dynamic memory area, but is lost in the event of a power failure or a program watchdog condition.

Because dynamic memory is not saved in these situations, a copy of the project is typically stored in the boot project area of FLASH memory. The boot project cannot execute from inside the FLASH memory area, but is automatically copied into the dynamic memory area during system re-boot (power restoration after power failure, restart following program watchdog condition.)

Typically, users download their project into the dynamic memory area only during system development and debugging. Once a control strategy is finalized, and has been tested fully, it should be downloaded as the boot project into FLASH memory.

Two Methods Available for Downloading

There are two ways to download your ControlWave project into the ControlWave series controller:

- Download the project from within the ControlWave Designer program.
- Download the project with the OpenBSI IEC61131 Downloader.

Downloading from within ControlWave Designer

Using the Resource Settings Dialog Box to Set up ControlWave Designer Communications

Step 1. Connect a cable between the PC workstation running ControlWave Designer, and the ControlWave. The type of cable used will vary depending upon which ports on the PC and on the ControlWave you have chosen. *NOTE: For ControlWave Designer TCP/IP or OpenBSI connections, the cable might not go directly to the ControlWave, it may go to a network, of which the ControlWave is part.*

Resource setting	s for IPC_40			X	Ignore the COM1
Port:	Baud:	19200	~~~	Ok	through COM4
О СОМ1	Stepbits:	1	~	Cancel	selections. They are
О СОМ2 🔶	Databits:	8	~	Data area	not used.
O COM4	Parity:	None	~		 — Simulations are only
🔘 Simulation 1 🗲	Timeout:	2000	ms	Help	used when you
Simulation 2					download to the I/O
	Stack chec	k on PLC			Simulator.
	Array bound	lary check on l	PLC		
	Force BOOL	.8 for boolean	variables		Choose this to specify
L	🔽 🗹 Generate bo	ootproject durir	ng compile		the method of
DLL: TCP/IP Communica					communication with
Parameter:	Parameter: -ip 127.0.0.1 -T02000 the ControlWave.				
PDD	PDD OPC				
All global variables					Choices are "Serial," "TCP/IP" or "Open
Marked variables					BSI."
Use reserve					
All POUs O Marked POUs No reserve					

If you choose "Serial," for the DLL, specify the PC comm. port, baud rate, and timeout in milliseconds. If you choose "TCP/IP" specify the IP address of the ControlWave, and the timeout in milliseconds. If you choose "Open BSI" just specify the node name of the ControlWave.

- Step 2. Open your ControlWave Designer project. For help on creating a project in ControlWave Designer, see *Getting Started in ControlWave Designer* (part number D301416X012).
- Step 3. Call up the Resource Settings dialog box by right-clicking on RTU_RESOURCE: ControlWave in the project tree, and choosing "Settings" in the pop-up menu. NOTE: This dialog box is NOT accessible when on-line communication is already in progress.

- Step 4. In the 'Port' box, choose **"DLL"** and the **"DLL"** list box and **"Parameter"** field will be activated. NOTE: **"DLL"** will be grayed out and unavailable if you do NOT have a software copy protection key (dongle) plugged into the parallel port of your PC.
- Step 5. In the **'DLL'** list box, choose one of the three available DLLs ('Serial', 'TCP/IP', or 'OpenBSI'), and enter the **'Parameters'** appropriate to that DLL.

'Serial'

If you choose 'Serial', this means you will use the ControlWave Designer Protocol (Serial DLL) to communicate with the ControlWave.

In order to use this DLL, the ControlWave key switch must be in the 'LOCAL' position.

The cable connection must be to one of the ControlWave's serial COM ports.

In the **"Parameter"** field (shown below) specify the PC COM port (not the ControlWave COM port), the baud rate at which communications will occur (which must match the baud rate configured at the ControlWave) and a timeout for the port in milliseconds.

'TCP/IP'

If you choose 'TCP/IP', this means you will use the ControlWave Designer Protocol (TCP/IP DLL) to communicate with the ControlWave.

In order to use this DLL, the ControlWave key switch must be in either the 'LOCAL' or 'REMOTE' position.

The ControlWave must be reachable via TCP/IP, from this PC.

In the "Parameter" field (shown below) specify the IP address of the ControlWave port to which the connection has been made, and a timeout for the port in milliseconds.

'OpenBSI'

If you choose 'OpenBSI', this means OpenBSI will handle all communications between ControlWave Designer, and the ControlWave. For this to work, you must have already configured OpenBSI, and included the ControlWave controller in an OpenBSI network.

The ControlWave key switch must be in either the 'LOCAL' or 'REMOTE' position.

In the "Parameter" field (shown below) replace the '<node>' with the RTU node name (as defined in the OpenBSI network) for the ControlWave.

Step 6. Click on **[Ok]** to exit the Resource Settings dialog box. You can now proceed to download your ControlWave project, or you can enter debug mode.

Downloading Your ControlWave Project from Within ControlWave Designer

Before downloading a project into the ControlWave, you must have compiled all of your edits and specified the communications method using the Resource Settings dialog box (see above).

If the ControlWave is connected to an actual running process, we recommend you download and test the project in the I/O Simulator *first*.

A DANGER

Users should never attempt to download an *untested* program into a controller if the controller is currently connected to a running plant or industrial process. Safeguards must be taken prior to downloading to ensure that the controller is isolated from the process and I/O is disconnected. Failure to take such precautions could result in injury to persons or damage to property.

Step 1. Click on **Online**→ **Project Control**

Step 2. The RTU_RESOURCE dialog box will appear. If there is already a project running in the ControlWave, you can optionally stop it first, before proceeding with the download, by clicking on the [Stop] button. Provide your username and password, if prompted. Now click on the [Download] button to call up the Download dialog box.

If you already have a project running in the controller, click here to stop it, *first*.

Click here to call up the Download dialog box.

Step 3. Click on the [Download] button on the left side 'Project' portion of the dialog box, and the compiled project code will be downloaded in the SDRAM memory (or SRAM) of the ControlWave. (There are several other options for downloading; see the figure on the next page).

Note

For many ControlWave platforms (GFC, XFC, Express) there is no SDRAM. The control strategy file executes in Static RAM (SRAM).

Step 4. In the RTU_RESOURCE dialog box, start the project execution by clicking on either the **[Warm]** or **[Cold]** buttons.

The **[Warm]** button performs an application warm start. The **[Cold]** button performs an application cold start. An **application warm start** means that the project in SDRAM is started from the beginning of its cycle, using saved values for variables marked "RETAIN" from the Static RAM (SRAM). Application warm starts are performed whenever there is no version mismatch between the project, and the retain values, and there was no *system* cold start. If a *system* cold start occurred, however (i.e. loss of battery power to the SRAM, or static memory SRAM Control Switch set OFF) all data in static RAM is gone, so an **application cold start** must be performed. In this case, the project in SDRAM is started from the beginning, and all variables are set to their initial values. Application warm starts and cold starts can also be performed by the user after downloading a project from within ControlWave Designer by choosing the **[Cold]** or **[Warm]** buttons in the RTU Resource dialog box. For more information on this subject, see *'Memory Usage'* later in this manual.

Downloading using the OpenBSI ControlWave Downloader

Before You Begin

There are certain things you must do before you can download to a ControlWave-series controller.

- You must save your project as a ControlWave project *.MWT file.
- You must generate a boot project file during compilation in ControlWave Designer. To
 do this, you must check the Generate bootproject during compile box for your
 resource.
- You must generate a zipped project file (*.ZWT) in ControlWave Designer. One way you can do this is to manually save your ControlWave project as a zip file:

⊨ — — — — — — — — — — — — — — — — — — —						
🖮 🃾 RTU_RESOURCE : Controly	/×		Resource settings	for ARM_L_33		
😑 👘 Tasks	Ins	sert 🕨	Port			
	<u>D</u> el	lete Delete	T OIC	Baud:	19200	UK
	👆 <u>C</u> ut	t Ctrl+X		Stopbits:	1	Cancel
INITT : Applicati	📄 Cop	py Ctrl+C	О COM3	D atabits:	8 🖌	Data area
DATA : CYCLIC	Eas	ste Ctrl+V	O COM4	Parity:	None	
	E×p	pand All		Timeout:	2000 ms	Help
IO_Configuration*	Sav	ve As Network Template		_		
Burgiant B Polla Millibrarias B Ha	Def	fine Placebolders		Stack check or	n PLC	
				Array boundary	check on PLC	
	E <u>x</u> c	clude	⊙ DLL	Force BOOL8 fo	or boolean variables	
	Cre	eate <u>G</u> lobal Variables from Externals		Generate bootp	roject during compile	
	Upo	date External <u>V</u> ariables from Globals	DLL:	КРЛР		~
	📑 P <u>r</u> o	operties	Parameter:	ip10.211.74.126 -TO2000 -u	system -p666666	
	🔰 <u>S</u> et	ttings	PD		OPC	
L.	_		All global variable	es	🗹 All global variables	
Make sure this b ControlWave De compile/build ye	oox i esigr our p	is checked in ner when you project.	Marked variables Use reserve All PDUs	s O Marked Pl	Marked variables	serve

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Use the "..." button to specify the directory which will hold your download files. When you initiate a transfer, the utility creates a sub-directory of the download directory to hold the boot and zip files for this particular project.

	😣 Transfer Project Download Files	
If you didn't	ControlWave Project (Source) Settings All Resources will be transferred Zip Project and Transfer Zip File Destination Settings Download Dir c:\ProgramData\Bristol\Open Project Libraries Compress user libraries into download project.	<u>I</u> ransfer <u>E</u> xit
yet, check this box and the utility does		

Click here to start the transfer.

You must transfer the bootfile and zip file for this project to a *sub-directory* of whichever directory you want to use for downloads. You can accomplish this if you click **Build** \rightarrow Transfer Download Files in ControlWave Designer. In this utility, you must specify the download directory in the **Download dir** field.

If you check **Zip Project and Transfer Zip File** (default), the system zips the current project automatically, in preparation for the transfer. If you select the **Compress user libraries into download project** option, the system zips the user libraries and includes them in the zip project.

Note:

Zip Project and Transfer Zip overwrites any pre-existing zip file for this project. To prevent this, you can disable the option, however, if you do, you must have a previously created zip available for transfer.

When you finish making selections, click **Transfer** and the file transfer begins.

If your ControlWave-series node includes a key operated RUN / REMOTE/ LOCAL switch, you must turn the switch to either the REMOTE or LOCAL position, depending upon how the PC connects to the ControlWave. Downloading CANNOT occur with the switch in the RUN position.

Starting the ControlWave Downloader

There are two methods for starting the ControlWave Downloader:

Method 1:

Click Start → Programs → OpenBSI Tools → ControlWave Tools → ControlWave Downloader. The Select New Node dialog box opens. Use the list box to select the node which you want to download to; then click OK, and the Downloader opens.

Method 2:

The second method is to *right*click on the icon for the controller you want to download, in the NetView tree, and choose **RTU->Download** from the pop-up menu.

Using the ControlWave Downloader

When the ControlWave Downloader dialog box opens, complete the fields as described, below:

When the fields are completed, click **Begin** to start the download. The fields/buttons in this dialog box are:

Field	Description
Node	This displays the node name (as it appears in the NetView tree) for this ControlWave-series controller.
Username, Password	Enter a valid username/password combination for this ControlWave-series controller.
Project Path	Enter the path of the project that the Downloader will download to this controller, or use the Browse Bootfile button to locate it. (The path must be a sub-directory of whichever directory you specified for downloads (Download Dir) in the Transfer Download Files dialog box) The project files consist of the .PRO boot file, generated when you compile your ControlWave project, and the zip file (*.zwt) containing the project source. Note: If your

Field	Description
	project includes multiple resources, each one has a different path, and you must choose
	the appropriate one.
User Files Path	Enter the path of the folder containing files you want to download to the user files area of
	the ControlWave, or use the Browse Path button to locate it. (See Download User Files,
	below).
Begin	Click here to start the download.
Cancel	Click here to exit down the 1131 Downloader.
Warm Boot	When you don't select this check box, all variables initialize as part of the download, and
	the project restarts. When you choose Warm Boot, any variables configured as RETAIN do
	not re-initialize as part of the download, however, all other variables initialize, and the
	project restarts from the beginning of its cycle.
ZipFile	When you select this option, the download operation includes the zipped project file (*.ZWT).
Download	The ControlWave can store user files (*.ZIP, *.HTML, etc.) in flash memory, for later
User Files	retrieval using the ControlView utility. You must place the user files you want to download
	to the ControlWave in the folder identified by the User Files Path field. Note: This feature
	was added in OpenBSI 5.3 Service Pack 2.

Creating Download Scripts for Batch Downloading of ControlWave Controllers

Optionally, you can create download scripts which allow you to download files to ControlWave controllers using a single command.

You create download scripts as ASCII text files, with the file extension of *.RDL, and store them in the **Downloads** sub-directory of your OpenBSI directory.

Each line of the download script, defines the downloading parameters for a single ControlWave controller. The syntax of a line of the download script is:

nodename, filetype, startup, includezip, source_path

where:

nodename	is the name of the must match the r	e ControlWave controller you want to download. This name name you define in NetView. (This is the only required field.)
filetype	specifies the kind	of file you want to download. filetype must be either:
	P F	Download a ControlWave project (default) Download a user file (used with ControlView)

startup	specifies whether the system should perform a warm boot upon completion of the download. startup must be either:		
	Y Perform a warm boot (default)		
	N Do not perform a warm boot		
includezip	specifies whether or not the Downloader should also download the zipped ControlWave project (*.ZWT). includezip must be either:		
	Y Include *.ZWT with the download		
	N Do not include *.ZWT with the download (default).		
path	specifies the source folder containing the file you want to download. If you download a project, this must be the directory containing bootfile.pro. If you download user files for use with ControlView, this must be the folder containing those files. If the folder name contains spaces, you must surround it with quotation marks " ". If you enter nothing here, the Downloader uses OpenBSI Application Parameter defaults.		

Example RDL File:

RPC1,P,Y,Y,C:\ProgramData\Bristol\OpenBSI\"My downloads"

RPC2,P,Y,Y,C:\ProgramData\Bristol\OpenBSI\"My downloads"

RPC3,P,Y,Y,C:\ProgramData\Bristol\OpenBSI\"My downloads"

RPC4, P, Y, Y, C:\ProgramData\Bristol\OpenBSI\"My downloads"

Starting the Download Script

To start the download script you create, click on File \Box Open Script within the ControlWave Downloader, then choose the RDL file that contains the download script.

You can also run download scripts from the command line prompt according to the following syntax:

dl1131 script_name username password

where:

script_name	is the name of the RDL file (omitting the RDL extension)		
username password	is a valid username/password combination for the first RTU in the script. The named user must have privileges sufficient to download.		
	For example, to run the download script myloads.RDL where the first RTU in the RDL file has a username/password combination of THOMAS BOB276, type the following:		
	dl1131 myloads THOMAS BOB276		

Running the ControlWave Downloader from the Command Line:

Optionally, you can start ControlWave Downloader from the DOS command prompt. Follow the syntax rules below; optional switches appear in brackets "[]." The command for this is:

dl1131 node [file] username password

where:

node	is the RTU node name as defined in the NETDEF files. If no file is specified, the Downloader uses the file specified in the RTU Properties in NetView.
File	is the basename of the ControlWave project. You can omit the .PRO or .MWT extension. When you specify a file, you override any filename specified in the RTU Properties in NetView. If the filename includes spaces, you must surround it with quotation marks " ".
username password	is a valid username/password combination for this RTU. The user you specify must have sufficient privileges to perform the download.

Expanded BSAP (EBSAP) Communications

A Bristol Synchronous / Asynchronous Protocol (BSAP) network enforces an absolute limit on the number of nodes (remote process controllers) which may be addressed on the level below a given node or OpenBSI Workstation. That limit, from all master ports combined, is **127** nodes. Certain applications (particularly those involving large numbers of radio remotes operating on the same frequency) may require larger numbers of nodes to be addressed through the same port. To address more than 127 nodes through a given master yet still not violate the BSAP limit, you must use a technique called *expanded BSAP* (or EBSAP).

Expanded BSAP allows the creation of **virtual nodes** below an **EBSAP Master Port**, and each of these virtual nodes can address up to 127 actual nodes. The virtual node, itself, exists only as a software structure in the **EBSAP Master** node above it; there is no additional physical remote process controller involved. The presence of the virtual node, however, introduces an intermediate level into the network which allows up to 127 actual physical nodes to be addressed below it, while only one node, the virtual one, is counted on the intermediate level. Since a real, physical remote process controller on level *n* of the network can address 127 nodes below it (all on level *n*+1), if each of these nodes were virtual nodes, and each virtual node had 127 real, physical nodes below it (on level *n*+2) expanded addressing would theoretically allow 127 groups of slave nodes, with each group containing up to 127 nodes, all addressed by a single master node. In fact, they could all be on the same master port. That's 127 X 127 or a total of 16,129 nodes!

Important

Although the expanded addressing scheme *theoretically* allows 16,129 nodes, other *practical* limitations (such as running out of memory in the master node, the ability of OpenBSI to support only up to 4,999 nodes, limitations on the number of data collection templates in the HMI, and the unacceptable length of time required to poll so many nodes) would rule out such a large number of nodes.

On some systems with radio remotes, where very long polling rates (several minutes, at least) are acceptable, it may be practical to use expanded BSAP. In other time-critical applications, even fifty nodes (far fewer than 127, and thereby not requiring expanded BSAP) may be too many to support fast data updates. It all depends on the capabilities of your network.

ACAUTION

The size and composition of a network and the decision to use expanded BSAP must be made **only** after you have carefully examined of your system requirements and have **fully considered** how expanded BSAP may impact network performance.

Expanded BSAP – The Concept

The following figure shows a portion of a BSAP network which does **not** use EBSAP. It has a single master node (on level n) with 50 slave nodes below it (on level n+1). These slave nodes use local addresses 1 through 50 (though there isn't room to show all of them in this picture.)

Because of new system requirements, it is decided that 90 additional slave nodes must be addressed through this master node, for a total of 140 slave nodes. This presents a problem because with fifty slave nodes already present, only 77 additional nodes could normally be added (50 + 77 = 127).

To get around this limitation, expanded BSAP will be used (see the figure below). An **EBSAP Master Port** will be added that will allow communication with virtual nodes. A **virtual node**, with a local address of 51, will be added to the network (on level n+1). The virtual node can address the 90 new real, physical nodes on the level below it (level n+2). These are called Expanded Addressing Slave (EASlave) nodes (or just **EBSAP slave nodes**).

Since the virtual node is really a phantom controller, existing only in software, the EBSAP scheme has allowed a single EBSAP Master node at level *n*, to address 140 nodes; 13 more than would normally be allowed.

General Requirements for Expanded BSAP (EBSAP):

Every EBSAP network must have:

An EBSAP Master node.

An EBSAP Master node can be any of the following:

- 1. An OpenBSI Workstation that has been configured with an **EBSAP communication line.** Virtual nodes must be on level 1 of the network, and EBSAP slaves must be on level 2 of the network.
- 2. Any ControlWave-series controller with version 04.50 or newer firmware that has been configured with an **EBSAP Master Port**. Control and status arrays must also be defined to handle polling for EBSAP slaves.
- 3. Certain Network 3000-series controllers (DPC 3330, DPC 3335, RTU 3310, or RTU 3305 with AG, RMS00, PLS00, LS500 or newer firmware). NOTE: This manual does NOT cover how Network 3000-series controllers are used in EBSAP. For information on this subject, please refer to the *Expanded Node Addressing* section of the *ACCOL II Reference Manual* (document# D4044).
- One or more virtual nodes

All the nodes *immediately below* an EBSAP Master port or on an EBSAP communication line must be virtual nodes. Virtual nodes are just software structures that reside in the EBSAP Master. They are defined in NetView, similar to any other RTU, but they are not actual hardware.

From 1 to 127 EBSAP slave nodes underneath each virtual node

An EBSAP slave node can be any ControlWave-series controller or any ACCOL II-based Network 3000-series controller.

The EBSAP slave node must be assigned to the proper EBSAP group. EBSAP slave nodes underneath the *first* virtual node on an EBSAP Master port must be assigned to Group 0; EBSAP slave nodes underneath the *second* virtual node on an EBSAP Master port must be assigned to Group 1; and so on.

The following rules must be adhered to when using EBSAP:

- All nodes, whether master, slave, or virtual, must be defined in the current NETDEF file.
- All slaves on an EBSAP Master Port, which are on the level immediately below the node containing the port, must be virtual nodes.
- All slaves of the virtual nodes must be real remote process controllers; i.e. a virtual node cannot have a virtual slave.

- Just like local address assignments, the choice of group numbers is important, and should NOT be done randomly. The EBSAP Group number identifies which virtual node on a given EBSAP communication line is above a particular RTU. See Specifying the Group Number for an RTU later in this section, for details.
- Peer-to-peer communication of signal lists and data arrays is only supported between nodes within the same group, and immediately below the same virtual node.
- Poll periods and timeouts must be set carefully based on the size of your EBSAP network.

Creating an EBSAP Master

As noted earlier, an OpenBSI Workstation or a ControlWave controller *can* serve as an EBSAP Master. Certain Network 3000 controllers can also serve as EBSAP Masters; they are not discussed in this manual.

Note:

For information on using Network 3000 controllers in an EBSAP network, refer to *Expanded Node Addressing* section of the *ACCOL II Reference Manual* (document# D4044).

OpenBSI Workstation is EBSAP Master

To make an OpenBSI Workstation the EBSAP Master, you must define an EBSAP communication line that covers the address range of the virtual nodes.

Defining an EBSAP communication line:

There are two methods for defining an EBSAP communication line:

Method 1:

In NetView, drag an EBSAP line icon from the Toolbox into your network hierarchy. This will activate the Comm Line Wizard, from which you can proceed to define the EBSAP line as you would a regular BSAP line.

Method 2:

If you're already in the Comm Line Wizard, choose 'EBSAP Line' as the node type and then continue to define it as you would a regular BSAP line.

/	Comm. Line wizard : Step 1
	< Back Next > Cancel Help

Select EBSAP Line

ControlWave-series Controller is the EBSAP Master

Any ControlWave-series controller with 04.50 or *newer* firmware can serve as an EBSAP Master. To be an EBSAP Master, the ControlWave-series controller must be configured with an EBSAP Master Port, as well as control and (optionally) status arrays.

Defining an EBSAP Master Port

An EBSAP Master Port is configured from within the Flash Configuration Utility.

- Choose 'EBSAP Master' as the "Protocol Mode".
- Specify the baud rate for the port in the **"Baud Rate"** field.
- Using the "Low Virtual Slave" and "High Virtual Slave" fields, specify the range of local addresses used by the virtual nodes. For example, if the virtual slaves use local addresses 5 through 9 on this EBSAP Master Port, then enter '5' for the "Low Virtual Slave" and '9' for the "High Virtual Slave".
- Set "Max Slaves" to the maximum number of *real* slave nodes that will be on the level immediately below any one of the virtual nodes on this port. For example, if you have 3 virtual nodes on this port, and one will have 20 nodes underneath it, another will have 15 nodes underneath it, and the third will have 27 nodes underneath it, then "Max Slaves" would be set to 27, since that is the maximum under any one virtual node. NOTE: The value of "Max Slaves" must be consistent with the maximum size of your network, as defined in NetView; i.e. if you mustn't specify more slaves than are supported by the network levels you defined previously. In addition, the "Max Slaves" value must be used later when you define the size of the control and status arrays for your port.
- When finished, save the port definition to the RTU by clicking on **[Save to Rtu]** and reset the controller for the change to take effect.

Defines the local addr the virtual nodes on t	ress range of his port.
Soft Switches Ports IP Param	eters Application Parameters Archive Audit IP Routes S. Physical Line Information Baud Rate: 9600 ▼ Bits Per Char: 8 Stop Bits : 1 ▼ Parity: NONE Protocol Mode: EBSAP Master ↓ User Mode: 4098 Master Addressing Low Virtual Slave: 2 High Virtual Slave: 4 Max Slaves: 5
Choose "EBSAP Master'	" Maximum number of real nodes allowed underneath one of these virtual nodes.

Configuring the Control and Status Arrays

There are four different arrays that are useful in EBSAP. Basically, they are used to turn ON/OFF polling for nodes, and to report whether communications are working for particular nodes.

Note:

Il these arrays must be registered using REG_ARRAY function blocks, and must be marked as PDD variables so they can be accessed by external programs (e.g. DataView).

_SLAVE_DEAD array and _SLAVE_POLL_DIS array

The _SLAVE_DEAD array provides an indication whether any responses have been received for slaves of the EBSAP Master. Because all the slaves immediately below the EBSAP Master are virtual nodes, the indication of responses received will actually deal with the EBSAP slaves under each virtual node. If there are any EBSAP slaves responding through a

particular virtual node, the virtual node is considered 'alive'; otherwise, it is considered 'dead'.

The _SLAVE_POLL_DIS array allows the programmer to selectively turn ON/OFF polling for the slaves of the EBSAP Master. Because all the slaves immediately below the EBSAP Master are virtual nodes, turning OFF polling for a particular virtual node will actually turn OFF polling for all the EBSAP slaves under that virtual node..

Because both the _SLAVE_DEAD array and _SLAVE_POLL_DIS array are also used in standard BSAP systems, they are automatically present in your project. You need to generate the system variables for them, however, in order to make reference to them.

To configure the _SLAVE_DEAD and _SLAVE_POLL_DIS arrays do the following:

	Gibbar Output Variables	
	IP RBE Configuration Data Line M System Configuration System Information ID Strings System Date/Time	onitor Redundan Ucad Validation n System Statistics Alarms System Flags Task Info Port-Globals Port Detail
1.On the 'Port Globals' page of the System Variable Wizard, check the "Master - Dead_Slaves" (_SLAVE_DEAD) and "Don't Poll Array" (_SLAVE_POLL_DIS	Alam IP Alarm Retry Count IP Alarm Retry Time - Active IP Alarm Retry Time - Dead Ethemet Activity Timeout Pott 1 Activity Flag Pott 2 Activity Flag IBP Processing Ignore NRT from NHP Jonore Time Synch from NHP	_ALM_RETRIES 3 _ALM_RET_ACT 50 _ALM_RET_DEAD 120 _ETH_POLL_PER 0 _ETH1_ACT _ETH2_ACT _ETH3_ACT _NHP_IGNORE_NRT FALSE _ _NHP_IGNORE_NST FALSE _
) boxes. The arrays should also	Specify more than two NHPS Time Synch Delta Accuracy	_NHP_ADDITIUNAL_MASK 00000000 TS DELTA ACCURACY 0
be marked as "PDD" to allow for collection by OpenBSI	Message Tracking Passthru Timeout	_MSG_TIMEOUT 30000
for concetion by openbol.	BSAP ☐ Slave Port number ☑ Master - Dead Slaves ☑ Don't Poll Array ☐ #NDARRY and #LINE sense flag	_SLAVE_PORT 0 _SLAVE_DEAD _SLAVE_POLL_DIS _BSAP_FLAG_SENSE FALSE
	PDD I OPC I Write All	OK Cancel

Check the boxes for "_SLAVE_DEAD" and "_SLAVE_POLL_DIS"

- This will cause a new worksheet to be created called SYS_VAR_WZ_TYPES. This worksheet contains the data types used by the _SLAVE_DEAD and _SLAVE_POLL_DIS arrays. In order to ensure that the new data type is fully accessible, please re-build your project using the command Build → Rebuild Project.
- 3. For each of these two arrays (_SLAVE_DEAD and _SLAVE_POLL_DIS) you will want to register the arrays, so they can be made accessible to OpenBSI programs such as DataView or Harvester. To do this, use the Edit Wizard in ControlWave Designer to insert a REG_ARRAY function block (1 for each array).
 - a. The **arrayDescriptor** parameter should be set to the name of the array (either _SLAVE_DEAD or _SLAVE_POLL_DIS in this case.)
 - b. The **iiArrayNumber** parameter assigns an array number to the array, so it may be requested by external programs such as OpenBSI's DataView or Harvester.
 - c. The remaining

_SLAVE_DEAD and _SLAVE_POLL_DIS use the data type 'B_127'

Choose either "_SLAVE_DEAD" or "_SLAVE_POLL_DIS" depending upon which one you are registering. parameters, odiStatus, ouiNumRows, ouiNumColumns need only be assigned variable names; since they are output parameters.

When you have completed this configuration for both arrays, and compiled and downloaded the project, the _SLAVE_DEAD and _SLAVE_POLL_DIS arrays will be operational.

Note:

The interpretation of the BOOL array elements in all the control and status arrays can be toggled based on the value of the _BSAP_FLAG_SENSE system variable. By default, _BSAP_FLAG_SENSE is FALSE. By default then, in the _SLAVE_DEAD array, a TRUE BOOL value means that the associated virtual node is dead; i.e. there are no 'live' EBSAP slave nodes for that virtual node. Also, by default, a TRUE BOOL value in _SLAVE_POLL_DIS turns polling OFF for a slave node.

If, however, the user changes the value of _BSAP_FLAG_SENSE to TRUE, the logic for interpreting the values of the array elements is reversed; a TRUE BOOL value in the _SLAVE_DEAD array would mean that there is at least one 'live' EBSAP slave node for this virtual node; similarly a TRUE BOOL value in _SLAVE_POLL_DIS would turn polling ON for a slave node.

_Px_DEAD_ARRAY and _Px_DISABLE_ARRAY

The _Px_DEAD_ARRAY and _Px_DISABLE_ARRAY system variables define the registered number of user defined arrays that handle reporting on whether polling is successful to EBSAP slaves on this port, and whether polling for the EBSAP slaves on this port should be enabled or disabled.

The user-defined array referenced by _Px_DEAD_ARRAY performs a similar function to the _SLAVE_DEAD array, except that instead of reporting on the virtual nodes, it reports on whether responses have been received from any EBSAP slave on this particular EBSAP Master Port. Users must define the data type for this array, based on the maximum number of EBSAP slave nodes for any virtual node on this port, and by the local address range of the virtual nodes used on this port.

Let's look at the network, below. It has one EBSAP Master port (Port 2) with 2 virtual nodes, and another EBSAP Master port (Port 3) with 1 virtual node. For Port 2, one virtual node has 90 EBSAP slave nodes; and the other has 72 EBSAP slave nodes. The maximum number of EBSAP slave nodes under any virtual node on Port 2 is therefore 90 so "Max Slaves" for Port 2 is set to 90. The single virtual node under Port 3 has just 2 EBSAP slave nodes, so the

maximum number of EBSAP slave nodes for Port 3 is 2, and "Max Slaves" for Port 3 is set to 2.

Important:

Because these arrays use dimensions of 'Max Slaves' as defined in the Flash Configuration Utility; the appropriate dimension of the array must match that value exactly. Sizing the array larger or smaller, will prevent EBSAP from working.

We're going to describe how to create the arrays for Port 2 only. Port 3 would be similar.

> To configure the data types for these arrays, first *right*-click on the 'Data Types' item in the project tree in ControlWave Designer, and choose Insert → Data Types from the pop-up menu.

Enter a name for the worksheet, then click

2. Enter a name for your Data Types worksheet, and click on **[OK].**

3. Now we need to define the data types used for the arrays. The array size is determined based on the maximum number of EBSAP slave nodes under a given virtual node on a port, and the number of virtual nodes on the port. Since, in this example, the largest number of EBSAP slave nodes is 90 we want to create an array type called 'MaxSlaves' that consists of 90 BOOL values. Since we happen to have up to two virtual nodes on a port, we want to make another array type called 'NumVirtNodes' that consists of a column of size 'MaxSlaves' for each virtual node under the port.

Here we define the data types used for the arrays.

Note:

Although we made NumVirtNodes dimensions to be [1..2], we could have it [3..4] based on the local address, since it just needed a dimension of 2.

4. Now that the array data types have been defined, we can define the actual array variables that will be used to report on polling success or turn ON/OFF polling for EBSAP slaves on this port. We will call them PORT2_ESLAVE_DEAD, and PORT2_ESLAVE_DISABLE. They must be defined in the Global Variables worksheet (so they are accessible throughout the project) and they will both be of the array type 'NumVirtNodes'.

Name	Туре	Usage		
🖂 Default				Insert new variables in the Global
PORT2_ESLAVE_DEAD	NumVirtNodes 🛛 🔽	HAR_GLOBAL]	Variables worksheet. You must
PORT2_ESLAVE_DISABLE	NumVirtNodes	VAR_GLOBAL	1	specify them to be of the array
 -				data type you defined previously.

- 5. Configure two REG_ARRAY function blocks, one for each of these arrays:
 - The arrayDescriptor parameter should be set to the name of the array (either PORT2_ESLAVE_DISABLE or PORT2_ESLAVE_DEAD in this case.)

- The **iiArrayNumber** parameter assigns an array number to the array, so it may be requested by external programs such as OpenBSI's DataView or Harvester.
- The remaining parameters, **odiStatus**, **ouiNumRows**, **ouiNumColumns** need only be assigned variable names; since they are output parameters.

6. On the 'Port Detail' page of the System Variable Wizard for Port 2, you must identify the array number for each of these arrays, so that they can be properly associated with the port. You must check the box next to _Px_DEAD_ARRAY and _Px_DISABLE_ARRAY; this will create system variables called _P2_DEAD_ARRAY and _P2_DISABLE_ARRAY (since this is for port 2). The values of these system variables are then set to the same number you assigned to the **iiArrayNumber** parameter in the REG_ARRAY function block. In this case, we have specified array numbers 10 and 11.

Common		L=
Poll Time	_Px_POLL_PER	5
Write Delay	_Px_WRITE_DEL	0
Write (CTS) Timeout	_Px_WRITE_TM0	2500
🔲 Ignore Echo Data	_Px_IGNORE_ECHO	FALSE
Port Supports Dial	_Px_DIAL_PORT	FALSE
Port performs Auto DTR shutdown	_Px_AUTO_DTR	FALSE
BSAP Pad Front	_Px_PAD_FRONT	0
🔲 BSAP Pad Back	_Px_PAD_BACK	0
Slave		
Time Sync Disable	_Px_TS_DIS	FALSE
Time Sync Needed	_Px_TS_FORCE	NO VAL
Node Routing Table Disable	_Px_NRT_DIS	FALSE
	_PX_ALM_DIS	FALSE
Immediate Response Disable		FALSE
Fast Radio On Time		0
	PVINCAL PORT	EALCE
VSAT - Minimum Besponse Time	PV VSAT MIN BESP	FALSE
	D. VEAT MAY DEED	
	_1X_V381_M84_11231	Ju
Master Retries	_Px_RETRIES	3
Data Link Timeout	Px TIMEOUT	500
Idle Polling	Px IDLE POLL	FALSE
VSAT - Up Ack Wait	_Px_VSAT_UP_ACK_WAIT	0
EBSAP Master		
Max Slaves Under Virtual Nodes	_Px_MAX_SLAVES	
Top Level Nodes	_Px_TOP_LEVEL_NODES	
Total Slaves On Port	_Px_TOTAL_NODES	
Array Number of Dead Array	_Px_DEAD_ARRAY	10
Array Number of Disable Array	_Px_DISABLE_ARRAY	11
x = Port Number	Jøk	Cancel

Check these boxes to create the EBSAP system variables for this

These numbers identify the registered array numbers (done through REG_ARRAY).

- 7. Once your project has been compiled and downloaded, these arrays can be used to enable/disable polling for EBSAP slave nodes on Port 2, and to report whether responses are being received from EBSAP slave nodes on that port.
- 8. Now, let's consider how to use these arrays that we've created. *It may help your understanding if you refer to the figure on page 136 of this section that shows the network.*

Individual array elements of a single-dimension array (_SLAVE_DEAD or _SLAVE_POLL_DIS) are referenced by their row number, for example _SLAVE_DEAD[*row_number*]. So if you reference _SLAVE_DEAD[5] you are referencing the BOOL value in row 5 of array _SLAVE_DEAD.

Individual array elements from a two-dimensional array (such as P2_ESLAVE_DISABLE) are referenced by row and column number, for example P2_ESLAVE_DISABLE[*row*][*column*]. So if you reference P2_ESLAVE_DISABLE[3][17] references the BOOL value in the row 3 (a virtual node) and column 17 (the 17th EBSAP slave node under that virtual node.)

_SLAVE_DEAD

To see whether responses are being received for poll messages from *any* EBSAP slave nodes under the first virtual node on Port 2 (which has a local address of 3), we would look at the BOOL value of _SLAVE_DEAD[3], where 3 is the row number of the array.

To see whether responses are being received for poll messages from *any* EBSAP slave nodes under the second virtual node on Port 2 (which has a local address of 4), we would look at the BOOL value of _SLAVE_DEAD[4].

Note:

By default, A TRUE BOOL value indicates the virtual node is DEAD, i.e. there are no 'live' EBSAP slaves for this virtual node.

_SLAVE_POLL_DIS

This is very similar to the _SLAVE_DEAD array, except it actually turns polling ON or OFF.

To turn ON/OFF polling for *any* EBSAP slave nodes under the first virtual node on Port 2 (which has a local address of 3), we would manipulate the BOOL value of __SLAVE_POLL_DIS[3].

Note:

Interpretation of the meaning of the BOOL value is determined by the system variable _BSAP_FLAG_SENSE.

PORT2_ESLAVE_DEAD

We had said, as part of this example, that PORT2, an EBSAP Master Port, had two virtual nodes underneath it. The first virtual node on PORT2 has 90 EBSAP slave nodes; the second virtual node on PORT2 has 72 EBSAP slave nodes.

To find out whether responses have been received from any particular node from among the 90 EBSAP slaves underneath the first virtual node, we would examine the BOOL values of PORT2_ESLAVE_DEAD[1][1] to PORT2_ESLAVE_DEAD[1][90].

To find out whether responses have been received from any particular node from among

the 72 EBSAP slaves underneath the second virtual node, we would examine the BOOL values of PORT2_ESLAVE_DEAD[2][1] to PORT2_ESLAVE_DEAD[2][72].

Note:

By default, a TRUE BOOL value in this array indicates that the associated EBSAP slave node is dead. This interpretation can be reversed by _BSAP_FLAG_SENSE.

PORT2_ESLAVE_DISABLE

Again, PORT2 is an EBSAP Master Port that has two virtual nodes underneath it. The first virtual node on PORT2 has 90 EBSAP slave nodes; the second virtual node on PORT2 has 72 EBSAP slave nodes.

To enable/disable polling for any particular node from among the 90 EBSAP slaves underneath the first virtual node, we would manipulate the BOOL values of PORT2_ESLAVE_DISABLE[1][1] to PORT2_ESLAVE_DISABLE[1][90].

To enable/disable polling for any particular node from among the 72 EBSAP slaves underneath the second virtual node, we would examine the BOOL values of PORT2_ESLAVE_DISABLE[2][1] to PORT2_ESLAVE_DISABLE[2][72].

Note:

Interpretation of the meaning of the BOOL value is determined by the system variable _BSAP_FLAG_SENSE.

Defining the Virtual Nodes

On the network level immediately below the EBSAP Master are one or more virtual nodes. Although, virtual nodes are really just software structures residing in the EBSAP Master, virtual nodes are created in NetView's RTU Wizard, just like any other RTU in your network. The only difference is that you have to specify that it is a virtual node, instead of a real piece of RTU hardware.

There are two ways to define a virtual node:

Method 1:

In NetView, drag a Virtual node icon from the Toolbox into your network hierarchy. This will activate the RTU Wizard, from which you can proceed to define the node as you would any other RTU.

Method 2:

If you're already in the RTU Wizard, choose 'VIRTUAL' as the node type and then continue to define it as you would any other RTU.

RTU Wizard : Step 2	of 3 Enter a string for the RTU name (Max 16 chars): Select the Node Type: Enter the filename of the RTU: must contain full path, ACCO ACCOL load files directory.	VN1 CWave_Micro VIRTUAL COntrolWave CWave_LP CWave_RID CWave_RID	-
	VN1	CWave_Micro CWave_EFM	

Choose "VIRTUAL"

Defining the EBSAP Slave Nodes

An EBSAP Slave node can either be a ControlWave-series controller or a Network 3000series controller. This section will only discuss configuring ControlWave-series controllers as EBSAP slave nodes; for information on using Network 3000-series controllers as EBSAP slave nodes, please consult the *Expanded Node Addressing* section of the *ACCOL II Reference Manual* (document# D4044).

Defining the EBSAP Slave Port

Each EBSAP slave node must have an EBSAP Slave Port configured via the Flash Configuration Utility. (NOTE: A Slave Port could be used, instead, however, we recommend EBSAP Slave Ports to ensure proper communication statistics are collected.)

Specifying the EBSAP Group Number for a Slave Node

All RTU's immediately below the *first* virtual node on a given EBSAP communication line belong to group 0; all RTU's immediately below the *second* virtual node on a given EBSAP communication line belong to group 1, *and so on*.

For the current generation of ControlWave RTU's, the group number of a particular RTU is assigned in the **"EBSAP Group"** field of the 'Soft Switches' page of the Flash Configuration Utility.

Note:

See *Expanded Node Addressing* in the *ACCOL II Reference Manual* (document# D4044) if you have an older Network 3000 RTU which cannot store a group number in FLASH memory.

If you are NOT using EBSAP in your network, this must be left at the default of '0'.

Use the [Save to Rtu] button to save the entries to the controller.

Note:

Changes to soft switches do not take effect until the RTU has been reset.

Example 1 – OpenBSI Workstation is EBSAP Master to 1000 ControlWave controllers

Suppose there is an OpenBSI Workstation, and 3 ports which will be defined as EBSAP Master lines. Two of the EBSAP lines need to communicate with 400 ControlWave controllers, and a third EBSAP line needs to communicate with 200 ControlWave controllers, for a total of 1000 ControlWave controllers in the network. Here's how to approach this.

- 1. In NetView, define 3 separate EBSAP lines (COM1, COM2, COM3). COM1 and COM2 will each communicate with 400 RTUs, and COM3 will communicate with 200 RTUs.
- 2. On level 1 of the network, define virtual nodes and on level 2 of the network define the real 1000 RTUs.

For COM1, 4 virtual nodes must be defined in order to address 400 real RTUs.

VN1, VN2, VN3, and VN4 are added in NetView on Level 1, by selecting 'VIRTUAL' as the node type. (By the way you don't have to name the virtual node 'VN', we're just doing that for ease of explanation.)

- VN1 will have a local address of 1, and it is responsible for RTU1 to RTU127. RTU1 to RTU127 are in Group 0 because VN1 is the first virtual node on COM1. The local addresses for these RTUs will be 1 to 127. NOTE: In this example we are assigning real nodes to local address 127, however, certain older RTU types reserve address 127 for special purposes (e.g. redundant DPC 3330s with RASCL) and don't assign an RTU to it. Keep this in mind if you are working with older RTUs.
- VN2 will have a local address of 2, and it is responsible for RTU128 to RTU254.
 RTU128 to RTU254 are in Group 1 because VN2 is the second virtual node on COM1. The local addresses for these RTUs will be 1 to 127.
- VN3 will have a local address of 3, and it is responsible for RTU255 to RTU381.
 RTU255 to RTU381 are in Group 2 because VN3 is the third virtual node on COM1.
 The local addresses for these RTUs will be 1 to 127.

- VN4 will have a local address of 4, and it is responsible for RTU382 to RTU400.
 RTU382 to RTU400 are in GROUP 3 because VN4 is the fourth virtual node on COM1. The local addresses for these RTUs will be 1 to 19.
- RTUs 1 to 400 must all be on Level 2 of the Network.

For COM2 we again need to define at least 4 virtual nodes (VN) in order to address another 400 real RTUs. VN5, VN6, VN7, and VN8 are added in NetView, again, by selecting 'VIRTUAL' as the node type.

- VN5 will have a local address of 5, and it is responsible for RTU401 to RTU527.
 RTU401 to RTU527 are in Group 0 because VN5 is the first virtual node on COM2.
 The local addresses for these RTUs will be 1 to 127.
- VN6 will have a local address of 6, and it is responsible for RTU528 to RTU654. RTU528 to RTU654 are in Group 1 because VN6 is the second virtual node on COM2. The local addresses for these RTUs will be 1 to 127.
- VN7 will have a local address of 7, and it is responsible for RTU655 to RTU781.
 RTU655 to RTU781 are in Group 2 because VN7 is the third virtual node on COM2.
 The local addresses for these RTUs will be 1 to 127.
- VN8 will have a local address of 8, and it is responsible for RTU782 to RTU800.
 RTU782 to RTU800 are in Group 3 because VN8 is the fourth virtual node on COM2.
 The local addresses for these RTUs will be 1 to 19.
- RTUs 401 to 800 must all be on Level 2 of the Network.

For COM3 I again need to define at least 2 virtual nodes (VN) in order to address the remaining 200 real RTUs. VN9 and VN10 are added in NetView, on Level 1 again, by selecting 'VIRTUAL' as the node type.

- VN9 will have a local address of 9, and it is responsible for RTU801 to RTU927. RTU801 to RTU927 are in Group 0 because VN9 is the first virtual node on COM3. The local addresses for these RTUs will be 1 to 127.
- VN10 will have a local address of 10, and it is responsible for RTU928 to RTU1000.
 RTU928 to RTU1000 are in Group 1 because VN10 is the second virtual node on COM3. The local addresses for these RTUs will be 1 to 73.
- RTUs 801 to 1000 must all be on Level 2 of the Network.

The figure on the next page shows the completed network, though there is only space to show the first and last RTU of each group.

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Example 2 – ControlWave Controller is EBSAP Master to 300 ControlWave EBSAP Slaves

There are many possible ways to do this with regard to number of ports and virtual nodes. At *least* three virtual nodes would be required beneath the EBSAP Master controller, since no one node can support more than 127 nodes. That could mean, for example, 127 nodes underneath the first virtual node, 127 nodes underneath the second virtual node, and 46 nodes underneath the third virtual node, for a total of 300 EBSAP slaves. Or, we could have 100 nodes underneath each of the three virtual nodes. We could have all three virtual nodes on a single EBSAP Master port, or use more than one EBSAP Master Port. We could even have more than 3 virtual nodes to have a smaller number of EBSAP slaves through each virtual node, but provide more room for expansion. It's up to you how you want to do it.

For this example let's have 3 virtual nodes, each with 100 EBSAP Slave nodes, and we'll put them all on the same port (Port 2). The virtual nodes use local addresses 3 for and 5.

Here's how we configure this.

- Using the OpenBSI Flash Configuration Utility, configure an EBSAP Master Port for the ControlWave controller which will serve as the EBSAP Master. The "Low Virtual Slave" must be set to 3 and the "High Virtual Slave" must be set to 5. Since we will have no more than 100 EBSAP slaves under each one, make the "Max Slaves" 100.
- 2. Configure the Control and Status Arrays.
 - Because they are present in all projects by default, you can configure the _SLAVE_DEAD and _SLAVE_POLL_DIS arrays by just checking the "Master – Dead_Slaves" and "Don't Poll Array" boxes on the 'Port Globals' page of the System Variable Wizard. Then use two REG_ARRAY function blocks (one for each array) to register the arrays.

Note:

The next arrays are optional, but we strongly recommend you create them:

 Under the 'Data Types' item in the ControlWave Designer project tree, add a worksheet to define new data types. You will need to create something like this:

```
TYPE
```

MaxSlaves: Al

ARRAY [1..100] OF BOOL;

NumVirtNodes: ARRAY [3..5] OF MaxSlaves;

END_TYPE

Note: The numbers used to dimension the NumVirtNodes data type can be different, so long as the size is correct. For example, [1..3] could be used since there are three virtual

nodes; [3..5] could be used since their local addresses are 3,4 and 5, or you could use [0..2] since that would represent the EBSAP group numbers (0, 1, and 2) of their respective EBSAP Slaves. It doesn't matter so long as the size of 3 is correct. Note also that the names 'MaxSlaves' and 'NumVirtNodes' can be changed; those are just the names we chose.

- In the Global Variables worksheet, define two arrays of type 'NumVirtNodes' (or whatever you called that type). One should be used for handling reporting of polling success for Port 2 EBSAP slaves; the other should be used for enabling/disabling polling of individual EBSAP slaves on Port 2. Assign numbers to these arrays using REG_ARRAY function blocks.
- In the System Variable Wizard, go to the 'Port Detail' page for Port 2. You must check the box next to _Px_DEAD_ARRAY and _Px_DISABLE_ARRAY; this will create system variables called _P2_DEAD_ARRAY and _P2_DISABLE_ARRAY (since this is for port 2). The values of these system variables are then set to the same numbers you assigned to the **iiArrayNumber** parameters in the REG_ARRAY function blocks.
- 3. Define three virtual nodes in NetView's RTU Wizard. They would have local addresses 3, 4, and 5, and would be defined like any other node, except the type is 'VIRTUAL'.
- 4. Configure the EBSAP Slave nodes in NetView As we've said, there are to be 300 of them; 100 under each virtual node. In the OpenBSI Flash Configuration Utility, assign the proper group number for each EBSAP Slave. The nodes underneath the *first* virtual node must be assigned to Group 0; the nodes underneath the *second* virtual node must be assigned to Group 1, and the nodes underneath the *third* virtual node must be assigned to Group 2. Each EBSAP Slave node must also be configured with an EBSAP Slave Port.

Flash Configuration Utility – An Overview

Use the Flash Configuration Utility to set various configuration parameters in the ControlWave-series controller. Some changes to flash parameters only take effect after the unit has been powered down and then back on. In addition, changes you make to some flash parameters are **not** activated unless the controller's default switch is in the ON position. For a ControlWave, the default switch is SW1-3; for ControlWave LP, the default switch is SW4-3; and for the ControlWave MICRO, the default switch is SW2-3.

Starting the Flash Configuration Utility

The Flash Configuration Utility is initially activated via 'Configure' mode in LocalView. Once LocalView has been used to set these parameters, and other system configuration has been completed, the parameters may be subsequently modified by calling up the same utility from within NetView (or LocalView) by clicking on the icon for the RTU, and then pressing the right mouse button and choosing **RTU** \rightarrow **RTU Configuration Parameters**.

ControlWave Designer Programmer's Handbook D301426X012 August 2020

The various configuration settings are separated into different pages of the utility. You can access them by clicking on the tab for a particular page.

The various pages of the utility are discussed, briefly, below:

Soft Switches

This page allows you to set the BSAP local address of the controller, and, if using expanded node addressing, the EBSAP group number.

Ports

This page allows configuration of all communication ports on the controller: serial BSAP ports, serial IP ports (PPP), and Ethernet IP ports.

IP Parameters

This page allows you to set certain parameters for IP communications such as the IP address of the Network Host PC (NHP), UDP socket numbers, and the address of the default gateway.

Application Parameters

This page allows you to set 'tuning' parameters which govern how the ControlWave executes its application (project).

Archive

Archive data is one portion of the historical capabilities of the ControlWave-series controller. It allows 'snapshots' of many variables to be saved at the same instant, to provide a detailed historical record of process variables at a particular moment in time. The archive data is saved at the controller, in structures called **archive files** and is configured, in part, using the ARCHIVE function block in your ControlWave project. Archive files may be collected by OpenBSI Utilities such as DataView, or the Harvester.

Audit

Audit Trail is one portion of the historical capabilities of the ControlWave controller. It allows records to be kept of when certain variables change value, as well as recording all alarms in the system. The Audit page specifies various parameters used to set up the Audit Trail system. Configuration is also performed, in part, using the AUDIT function block in your ControlWave project.

IP Routes

Dynamic IP routes allow messages which cannot successfully reach a particular destination address, to be re-routed through a different path in the IP network.

Security

This page allows configuration of user accounts and privileges.

Push Buttons:

[Apply New Node] This button is only useful when the Flash Configuration utility is started from within NetView (since no other nodes are accessible in the Select New Node dialog box within LocalView).

Select New Node				
CW1	•	ОК		
		Cancel		
Descriptor:	PARKVIEW AVENUE COMP	RESSOR STAT		

It allows the session with the current controller to be closed, and then allows the user to select a *different* controller for configuration, without reinitializing the values in the pages of the utility.

The new controller must have been defined within the NETDEF files.

One application of this is to open a session with a new node, and then load configuration information from the NETDEF file(s) that was for a *different* node (via **[Read From NDF]**). This can be useful if multiple nodes have similar configurations; the common configuration can be brought into the utility, and then the unique portions only need to be modified for each individual controller.

[Sign On] - This button must be used to sign-on to the controller with a username and password prior to reading or writing Flash parameters.

CW1 - Sign on to the RTU					
SYSTEM					

OK Cancel					

Note:

If you do NOT sign on, the first time you attempt a read/write operation with the controller, you will be prevented from doing so, and will be prompted to sign on then.

[Read From NDF] - This button reads the current configuration of this controller as specified in NetView's NETDEF files, and copies it into the pages of the Flash Configuration Utility. This can be particularly useful in a situation where the CPU board of a controller has failed, and the replacement board must be configured; this allows the configuration to be called up from the NETDEF, and subsequently copied into the controller using the **[Write To RTU]** button. NOTE: This operation can only be performed from within NetView, or when you start LocalView in Configure Mode.

Note

The reason other LocalView modes (such as Local or Flash) cannot perform these operations is that **only** the Configure mode allows you to specify a particular NETDEF file for modification (by checking the "Use an Existing Configuration (.ndf) File" and then by identifying the path and name of the NETDEF). The other modes use a *temporary* NETDEF which disappears on program exit.

Write To NDF] This button causes all entries made in the Flash Configuration Utility for the current controller to be copied into the current NETDEF file. This avoids the need to reenter the same configuration information in NetView. This operation will only work when the Flash Configuration Utility is invoked from within NetView or when LocalView is in Configure Mode; otherwise a permanent NETDEF file is not available to write to (see note above).

ControlWave Designer Programmer's Handbook D301426X012 August 2020

[Read From RTU] - This button reads the current configuration characteristics directly from the controller, and copies them into the pages of the Flash Configuration Utility. These can subsequently be stored in the NETDEF using the [Write To NDF] button (see above), to avoid the need to re-enter the same configuration details inside the NetView program. Note: If you haven't signed on prior to clicking on this button, you will be prompted to do so.

[Write To RTU] - This button saves ALL entries in the pages of the Flash Configuration Utility to the ControlWaveseries controller. NOTE: If you haven't signed on prior to clicking on this button, you will be prompted to do so.

After the write operation completes, the Flash Configuration Utility prompts you to reset the RTU, if a reset is needed.

R	etrieving Parameters from	n RTU				
	List Operation	Retries	Status			
	126 Encryption Key 1 Soft Switches 2 IP Parameters		Success Success Reading			
	Close dialog after a successful transfer					
		Cance	1			

Sendi	ng Parameters to SLV1		
List 126 4 5 6 7	Dperation Encryption Key Serial Port 1 Serial Port 2 Serial Port 3 Serial Port 4	Retries	Status Success Success Success Success Writing
	ose dialog after a successful tra	insfer Cance	

[Read FCP] - This button reads the current configuration of this controller, as specified in a Flash Configuration Profile file (*.FCP), and copies it into the pages of the Flash Configuration Utility. The flash configuration can subsequently be copied into the controller using the **[Write To RTU]** button.

Note:

We recommend that you never edit the file FCP manually because no validation is performed on the file when the utility opens it. Improper edits could corrupt the file.

[Write FCP] - This button causes all entries made in the Flash Configuration Utility for the current controller to be copied into the Flash Configuration Profile file (*.FCP).

[Close] This button shuts down the Flash Configuration Utility.

For details on the individual pages of the Flash Configuration Utility, see *Chapter 5* of the *OpenBSI Utilities Manual* (part number D301414X012).

Flash File Access

The Flash File Access utility lets you view a list of user files residing in the ControlWave's flash area. You can optionally delete files from the flash area, upload files from the ControlWave flash to the OpenBSI workstation, or send files from the OpenBSI workstation to the flash area.

Important

This utility reads/writes files to and from the ControlWave's flash file memory area, but it cannot be used to download ControlWave system firmware or to send/retrieve historical files (audit/archive). Although those items may reside in flash, the Flash File Access utility does not access those portions of flash. Flash file access is only appropriate for downloading, uploading, or deleting user files such as ControlWave zipped source files (*.zwt), web pages, etc. For example, a typical usage would be to delete excess files to free up flash space.

With communications active in LocalView or NetView, click Start→Programs→OpenBSI Tools→Debugging Tools→ Flash File Access (FileDirect)

🖙 Flash File Access - CWM1			
File Operations View Window Help			
6 6 6 6 6 7			
🔁 СWM1			
Name	Length	Created	
cam_1\01292010-143008\pic_2.jpg	14615	14:30:08 29-JAN-2010	
cam_1\01292010-143008\pic_3.jpg	14553	14:30:08 29-JAN-2010	
ARRAYS.INI	117	13:49:04 22-JAN-2010	
cam_1\01222010-113000\pic_1.jpg	14698	11:30:00 22-JAN-2010	
cam_1\01222010-123000\pic_1.jpg	14640	12:30:00 22-JAN-2010	
cam_1\01222010-123000\pic_2.jpg	14656	12:30:00 22-JAN-2010	
cam_1\01222010-133000\pic_5.jpg	14637	13:30:08 22-JAN-2010	
cam_1\01222010-133000\pic_6.jpg	14620	13:30:08 22-JAN-2010	
cam_1\01222010-130000\pic_5.jpg	14680	13:00:12 22-JAN-2010	
cam_1\01222010-130000\pic_6.jpg	14618	13:00:12 22-JAN-2010	
cam_1\02012010-104000\pic_1.jpg	14653	10:40:00 01-FEB-2010	
cam_1\02012010-104000\pic_2.jpg	14615	10:40:00 01-FEB-2010	
Ready	Operation Completed.		

Viewing a List of Files in the Flash File Area:

Either click File → New RTU or click the New RTU icon 2.

2. In the Select New Node dialog box, select the RTU with which you want to communicate and click OK.

Select New Node				
CWM1	•	ОК		
		Cancel		
Descriptor:	ELM STREET COMPRESSO	R STATION		

3. The utility generates a list of files in the user flash file area. It may take some time for it to collect all the file details.

Uploading a File from the ControlWave to Your OpenBSI Workstation:

With the list of files in the user flash files area visible, do the following:

- 1. Click on the file you want to upload to the PC, so it is highlighted.
- Either click **Operations** → **Upload File** or click the Upload File icon 5. The Choose File 2. dialog box opens.

Choose File					
PC File: pic_2.jpg	Browse	OK Cancel			
RTU File: cam_1\02012010-104000\pic_2.jpg					
Use Compression IP Based Link					

- In the PC File field of the Choose File dialog box, you can optionally specify a new 3. name for the file on the PC, and select a destination folder on the PC for the file, using the Browse button.
- If you want the utility to compress the file during transfer, select Use Compression. 4. (Note: Do not use compression for JPG or ZWT files which are already compressed.)

- 5. If your communication with the ControlWave is via IP, select **IP Based Link**. This allows for faster file transfers on IP links.
- 6. Click **OK** to initiate the upload, and the utility uploads the file to the specified folder on your PC.

Copying a File from the OpenBSI Workstation to Your ControlWave:

- Either click Operations → Copy to RTU.. or click the Copy File icon File dialog box opens.
- 2. Use the **Browse** button to specify the path and filename of the PC you want to copy to the ControlWave user flash files area.

Choose File					
PC File: C:\ProgramData\Bristol\OpenBSI\Projects\SIMPLE.zwt	Browse.	OK Cancel			
RTU File:					
Use Compression					

- 3. In the **RTU File** field, you can optionally specify a new name for the file at the ControlWave.
- 4. If you want the utility to compress the file during transfer, select **Use Compression**. (Note: Do not use compression for JPG or ZWT files which are already compressed.)
- 5. If your communication with the ControlWave is via IP, select **IP Based Link**. This allows for faster file transfers on IP links.
- 6. Click **OK** to initiate the copy, and the utility copies the file from the OpenBSI workstation to the ControlWave.

Deleting a File from the ControlWave User Flash Files Area:

With the list of files in the user flash files area visible, do the following:

- 1. Click on the file you want to delete, so it is highlighted.
- 2. Be certain this is the file you want to delete, because there is no undo-delete or prompting to confirm the deletion.
- 3. Click **Operations** \rightarrow **Delete** or click on the Delete icon.

4. The utility erases the specified file.

Refreshing the List of Files:

Either click **Operations** \rightarrow **Refresh** or click on the Refresh icon.

Function Blocks – Creating

Suppose we have created a program in ControlWave Designer that we want to re-use. For example, let's say we created a program that controls the flow of liquid in a pipeline. (To see a simple example of such a program, refer to the *Getting Started with ControlWave Designer Manual*, part number D301416X012.)

Now, however, we need to perform the same exact flow control operation on eight different pipelines using a single ControlWave controller. Let's also assume that the initial values for all of the different parameters for the re-used program (with the exceptions of the input, output, and setpoint) will be the same for each of the eight pipelines. There are several different ways we could do that. We *could* create seven additional program POUs for the project, and repeat the exact same steps we did to create the first program, except we would create multiple program instances of that same program. That would be somewhat tedious.

Another approach would be to go back to our original flow control program, and use the **Edit→Copy** and **Edit→Paste** commands to copy multiple sets of the function blocks around in the same worksheet, and then change the variables for each one. That would be a little quicker, but still tedious.

A third solution, which we will discuss here, is to create a user defined function block from our original program. You probably noticed when creating your first program in ControlWave Designer that you had the option of defining a variable as either *local* or *global*. Local variables are only accessible within the current POU (that is, a function, function block, or program). If you define a variable as a *local* variable, and you create *another* POU, the local variables in the first POU are completely unknown to the second POU.

This can be an advantage because the first POU can then be treated as a re-usable little sub-routine which performs some sort of calculation or function. The values of variables are passed into the sub-routine as parameters. The sub-routine uses the values, and performs its calculations locally, inside the sub-routine, and then it passes out an answer.

A user defined function block is such a sub-routine. It is made up of other functions and function blocks. To the user, the whole user-defined function block is like a *black box*. You send inputs into it, any local calculations are performed inside, out of view, and you get outputs from it.

Let's look at the case of the flow control program we discussed previously. Typically, once such a program has been tested, and proper initial values defined, many of the parameters probably won't be changed. The input and output process variables, though, will have to be replaced with other inputs and outputs, based on whichever pipeline you are controlling, and the setup parameter would change, because the setpoint is determined outside of the program, perhaps by an operator. Once you get the other parameters configured the way you want them, though, you might not ever want to change them again. If that is the case, we can create a user-defined function block which can be re-used as many times as you want, and all you need to do is specify the parameters which will change (for example, an input, an output, and a setpoint for each instance of the user defined function block).

To illustrate this technique, open the project containing the program we want to re-use.

Drag a box around the items in the worksheet that you want to re-use, and when you release the mouse, they will be selected. Click on the 'Copy' icon, *or* choose **Edit** \rightarrow **Copy** from the menu bar.

First, drag a box around the program you want to re-use, then release the mouse to select the items.

Next, click the "Copy" icon, or click Edit \rightarrow Copy from the menu bar.

Now, we need to create an empty function block to paste our program into, thereby creating a new user-defined function block. To do this, right-click on the Logical POUs section of the project tree and choose **"Insert→Function Block"** from the pop-up menu.

oose "Function Block"	Enter a	a name for the function block I
Insert		$\overline{\mathbf{X}}$
Name: My_new_function_block	Language	OK Cancel
Program Function Function Block Action Transition	ST SFC FBD LD FFLD	Help
O Transition Step Worksheet	 VAR Data Types Description 	Mode Insert Append
Datatype of return value:		
PLC type:	Processor I	type:
<independent></independent>		dent>
Choose "zindependents"	Choos	e "zindenendent>"

In the Insert dialog box, choose **"Function Block"** for the **"Type"** and enter a name for the user defined function block. (Here we entered 'My_new_Function_Block', but you'll probably want to choose something shorter, and more descriptive.) Specify the PLC type and Processor type as shown, above, and click on **[OK]**. Icons for 'My_new_Function_Block' will be added to a new branch in the project tree.

In the new branch of the project tree, double-click on the third icon, 'My_new_Function_Block*' and an empty worksheet will appear. Click on the 'Paste' icon, or click on **Edit->Paste** and an outline image of the copied program will appear; position the image where you want it in the worksheet and click; the program will be copied into the worksheet.

Now, copy the variables from the program into your new function block and re-define the variables as necessary.

Finally, right click and choose / "Copy" from the pop-up menu.

Now, double-click on the variable section of the new function block you are creating. γ

When the empty variable window opens, you must click on this box in the upper left part of the window (on the same line as the "Default").

Finally, you can right-click, and choose "Paste" from the pop-up menu.

Now modify the variables section of the new function block.

Any variable which you want to be changeable in the new function block should be made either a VAR_INPUT (if it is an input) or a VAR_OUTPUT (if it is an output). Click in the 'Usage' column to change this.

You will also want to change the names to make them more *generic*: instead of *F101_INPUT* and *F101_OUTPUT* (as in the original program), name them just INPUT and OUTPUT, respectively. The variable used for the setpoint, would be named SETPOINT, with a usage type of VAR_INPUT. You can change these names by clicking in the 'Name' column and typing in the changes.

Name	Usage	Description	Ad
🖃 Default			
LEAD_LAG_1	VAR	Lead Lag smooths out fluctuations in the input value	
INPUT	VAR_INPUT		
V002	VAR		
V003	VAR		
∨004	VAR		
PID3TERM_1	VAR		
SETPOINT	VAR_INPUT 🛛 🗹		
V0 0 7	🗋 VAR	<u>~</u>	
\/0 0 8	CAR_EXTERN	AL	
V011	Tern 🚰	AL_FB 🗧	
V ¢ 09	Tern 🚰	AL_PG	
V þ 10	VAR_IN_OUT		
V012	VAR_INPUT	✓	
V 013	VAR 🥆		
фитрит	VAR_OUTPUT		
🖃 Default			
 1			

To change a variable's name, click on the variable in the "Name" column and make the change.

To change a variable's usage, click in the "Usage" column for the variable, then select the new usage, e.g. VAR_INPUT.

When you have finished making these modifications, save your project, and execute a build.

Now, when you are in the Edit Wizard, if you call up a list of all functions and function blocks via the '<all Fus and FBs>' group, you will see the name of the function block you created.

If you insert the 'My_new_Function_block' function block into one of the programs of your project, it will only show those variables declared as VAR_INPUT and VAR_OUTPUT; the others are hidden. You can then proceed to configure it like any other function block.

Once you have saved your project with your new user-defined function block, you can use it in other projects by importing the first project as a user library. See Libraries later in this manual.

Function Block Parameter Name Prefixes

The following table summarizes the meaning of the letters in the parameter name prefix of function blocks in the ACCOL3 library.

Parameter Name Prefix	Input or Output	Valid Data Types:	
ia, iany	INPUT	REAL, SINT, INT, DINT	
		NOTE: You CANNOT use constants on parameters with the 'ia' or 'iany'	
		prefix; only variables may be used.	
iab	INPUT	BOOL variable - NO constants allowed.	
iais	INPUT	STRING or INT variable. No constants.	
iar	INPUT	REAL variable - NO constants allowed.	
iarb	INPUT	REAL or BOOL variable. NO constants allowed.	
iaus	INPUT	USINT variable or array of USINT. No constants.	
ib	INPUT	BOOL variable or constant	
idi	INPUT	DINT variable or constant	
ii	INPUT	INT variable or constant	
ioab	INPUT & OUTPUT	BOOL variable - NO constants allowed.	
ioar	INPUT & OUTPUT	REAL variable - NO constants allowed.	
ir	INPUT	REAL variable or constant	
is, isi	INPUT	SINT variable or constant	
is, istr	INPUT	STRING (must be surrounded by single quotes)	
iudi	INPUT	UDINT variable or constant	
iui	INPUT	UINT variable or constant	
ius	INPUT	USINT variable or constant	
ob	OUTPUT	BOOL variable or constant	
odi	OUTPUT	DINT variable or constant	
oi	OUTPUT	INT variable or constant	
or	OUTPUT	REAL variable or constant	
oud	OUTPUT	UDINT variable or constant	
oui	OUTPUT	UINT variable or constant	
Ous	OUTPUT	USINT variable or constant	

Historical Data

The data in your ControlWave controller is constantly being updated, with the latest available data values collected from field instrumentation (pressure transmitters, temperature transmitters, electrical contacts, switches, etc.) Data from a particular instant in time, however, is only maintained for a short period (usually, no longer than a few seconds, depending upon how fast data is collected in your system) because when a new value is collected, it automatically overwrites the previous value.

Although this is ideal for reporting the current state of process variables in your system, most users need to retain certain data for a longer period of time (hours, weeks, etc.). This data is referred to as **historical data**.

Depending upon your system requirements, historical data might be saved by whatever (graphical user interface (GUI) software is running at your central computer (such as Emerson's OpenEnterprise[™], Iconics Genesis[®], Intellution[®] FIX[®], or Wonderware[®]).

Some categories of historical data can also be saved within the controller itself. That is the subject we will address in this section.

What is Historical Data Used For?

Historical data is typically used in printed reports or spreadsheets. Often, records of certain variables such as flow, temperature, etc. must be maintained for months or even years to fulfill particular plant management or regulatory requirements.

Historical data is also frequently incorporated into trending packages to allow a graphical representation of data from a given period of time.

What types of Historical Data can be saved in the ControlWave Controller?

There are two types of historical data which can be saved within the ControlWave controller: **Archives** and **Audit Trail Logs**.

Archives are snapshots of selected variables at a given moment in time. Archives are typically used for saving data which is destined for printed reports, such as flow variables, temperature variables, etc. Each archive record consists of a timestamp plus several columns of data values reflecting the state of process variables at the time of the timestamp, or in some cases, calculated values based on the state of process variables. Additonal data for proper sequencing of the archive records is also stored. Typically, archives are generated at a pre-defined interval, however, on-demand archiving can also be configured. Archives are configured using both the Archive Configuration web page and the ARCHIVE function block.

Audit Trail Logs are records of significant events occurring in the controller. There are two types of Audit Trail logs - - the alarm log and the event log. The alarm log maintains a record of any alarms generated in the ControlWave controller. The event log keeps a record of any changes to variables which have been designated for event monitoring. Other events which are logged include a System Date/Time change, recovery from a power failure, and 'note' events received from the human machine interface (HMI) software. Variables are designated for event monitoring by including them in an event list. Audit Trail logs are configured using both the Audit Configuration web page, and one or more AUDIT function block(s).

How is Audit Trail and Archive Data Retrieved from the ControlWave Controller?

OpenBSI Utilities, such as DataView, can collect Audit Trail and Archive data from the ControlWave unit and display it on the screen.

Alternatively, tools such as the OpenBSI Scheduler or OpenBSI Data Collector can retrieve the data and store it in historical data files, on a scheduled or demand basis. These files can then be automatically exported, using the OpenBSI Data File Conversion Utility, to CSV or ODBC-compatible file formats for use in OpenEnterprise, or in third-party software packages such as Microsoft[®] Excel[®] and Access[®] databases.

I/O Configurator

In order to reference **I/O points** on the process I/O boards of your controller, you need to configure them within your project.

Although it is *possible* to manually edit the **"IO_Configuration"** section of the project tree, we strongly recommend you use the I/O Configuration Wizard, as it will perform syntax checking, and is easier for most users.

The I/O Configuration Wizard is accessible from within ControlWave Designer by clicking: View->IO Configurator

When started, any existing I/O configuration data will be read and displayed in the I/O Configuration Wizard. The Configuration Wizard is a multi-page tool; [>>Next>>] and [<<Back<<] buttons are provided to allow you to move between the pages. A [Settings] push button allows the user to rename default variable names, if necessary. (See *Changing Default Variable Names*, later in this section.) NOTE: Page 1 allows the user to define multiple resources. Typically, only a single resource is used, so by default, page 2 will appear first since most users do not need to use Page 1.

Important

The IO Configuration Wizard will add a variable group to the Global_Variables worksheet called *IO_GLOBAL_VARIABLES*. Both the IO_GLOBAL_VARIABLES group in the Global_Variables worksheet and the IO_Configuration worksheet should never be manually edited by the user; these should only be modified through the IO Configuration Wizard.

ACAUTION

If you intend to run multiple copies of ControlWave Designer simultaneously, **do not** attempt to run multiple copies of the I/O Configurator. If you do, you risk corrupting your I/O definitions.

Number of I/O Boards That May be Defined

Prior to OpenBSI 5.5 Service Pack 2, the number of I/O boards that could be defined within the I/O Configurator was 51. In OpenBSI 5.5 Service Pack 2 and newer, that limit has been increased to whatever number of boards can be defined in the 64K I/O memory space. In either case this limit includes both boards defined as local I/O as well as boards defined in a ControlWave I/O Expansion Rack or ControlWave Ethernet I/O unit.

The larger of the input or output I/O map size of the board defines the overall board size. See the *I/O Mapping* section for details.

Effect of Number of Boards on the I/O Simulator

The I/O Simulator has a limit on the number of boards that may be accessible within a given simulation. This limit is dictated by an internal limit of 500 characters for the list used to describe the boards available during a given session within the I/O Simulator.

A default set of boards are normally included in the list available for simulation. If, after you've added boards in the I/O Configurator, you receive a warning message (see figure below) indicating that one or more of the boards you have selected is not supported within the I/O Simulator, you must de-select one or more of the default groups of boards that you are *not* using, to make additional room in the simulation list. Then select the group of boards that you *want* to use in the simulator. If groups for all the boards you need have now been selected, and you have de-selected enough of the unused board groups so that the total number of characters has fallen below 500, click **[Ok]** and you can proceed.

Note:

If you're not planning on using the I/O Simulator, you can click on **[Ignore Simulation Warnings]** and the I/O Configurator will allow you to proceed through this session, without checking for unsupported boards. If later, you decide you do want to use the I/O Simulator, and some boards do not appear, you must re-run the I/O Configurator, and de-select a sufficient number of board groups, and select the board groups you need, as described above.

I/O Configuration Wizard (Step 1 of 3) - Select I/O Section and Re 💷 🗖 🗙						
I/O Configuration Wizard Wizard Select Config & Resource	d (Step 1 of 3) - Select I/ Available Configurations ControlWave	O Section and Availab	Re			
<< Back << >> Nex	t >> Finish	Cancel	Variable Names			

I/O Configuration Wizard (Step 1 of 3): (Most users can skip to Step 2)

The first page of the I/O Configuration Wizard allows the user to select from the available I/O configurations and I/O resources. NOTE: Because most projects use a single configuration and resource, this page is skipped when first starting the I/O Configuration Wizard. It is accessible, however, by clicking the **[<Back<]** button from the second page of the Wizard.

Available Configurations	This lists all configurations in the current project. Select the I/O Configuration Section for which you are defining the I/O. NOTE: Typically, projects use a single I/O configuration section.		
Available Resources	This lists all resources for the selected I/O configuration. Choose the resource for which I/O is to be defined. Note : <i>Typically, projects use a single resource.</i>		

Click [Next>] to proceed to the next step.

I/O Configuration Wizard (Step 2 of 3):

The second page of the I/O Configuration Wizard allows the user to identify which process I/O boards are actually installed in the ControlWave-series controller, as well as boards which are installed in separate devices such as I/O Expansion Racks, or Remote Ethernet I/O units.

🙀 I/O Configura	ation Wizard (St	tep 2 of 3) -	Select List of	Boards	
NO Configura O Configura Wizard	Ation Wizard (Si Unit Type: CWM_DDIS CWM_DDIS CWM_DDI CWM_DAI CWM_AI6 CWM_AI6 CWM_AI6 CWM_AI8 CWM_AI8 CWM_AI8 CWM_AI8 CWM_AI8 CWM_AI8 CWM_AI8 CWM_AI8 CWM_AI8 CWM_AI8 CWM_AI8 CWM_BAT CWM_SCB CWM_RTU CWM_EI0 CWM_TC6 CWM_RTD CWM_HIB Remote I0: ER_DI32 ER_DI32 ER_DI32 ER_AI16 ER_AI3 ER_HSC12 ER_STAT ER_TC12 ER_STAT ER_TC12 ER_RTD8	tep 2 of 3) - CWM_ ▼ 6 4 4 ER_ ▼	ADD REMOVE REMOVE ALL	Boards Selected I ER_STAT	Boards List
Select Boards					
A Back <<	>> Next >>	Finish	Canc	el Va	riable Names

Boards should be selected from the selection boxes in the ascending order of their slot number.

First, use the **"Unit Type"** list box to identify which type of ControlWave controller you are configuring, then select the desired boards, and click on **[ADD]**.

If this controller has associated I/O racks, or Remote Ethernet I/O units, choose those boards in the **"Remote IO"** selection box and click on **[ADD]**.

For more information on the various fields, see below:

Unit TypeThis field allows you to identify the type of ControlWave-series
controller you are configuring, so that the proper board types can be
	CW_ CWM_ LP_ CXX_ ERM_ RXX_	ControlWave Process Automation Controller ControlWave MICRO Process Controller series ControlWave Low Power (LP) Process Controller ControlWave CW_30 or CW_10 Controller Expansion Rack for ControlWave MICRO CW_35 Controller or CW_31 Remote I/O Rack
	Once you select installed in that u	the type of controller, the boards which can be unit will be displayed as possible choices.
	For ease of confi order of their slo the board abbred displayed at the board abbreviati [ADD]) will add t the next page, list	guration, select the boards from the list in ascending it number in the ControlWave unit. Clicking once on viation will cause a description of the board to be bottom of the Wizard page. Double-clicking on the ion (or clicking <i>once</i> on the board and then clicking the board to the "Selected Boards List". The table, on sts the various types of boards.
Remote IO	This lists boards ControlWave I/C	used in ControlWave Remote Ethenet I/O units or) Expansion racks.
	Double-clicking board and then o Boards List"	on the board abbreviation (or clicking <i>once</i> on the clicking [ADD]) will add the board to the "Selected
Selected Boards List	This list allows th ControlWave co Ethernet I/O unit board from the " once, and then c ALL].	ne user to declare which boards reside in the ntroller or its configured ControlWave Remote t(s), or ControlWave I/O Expansion Racks. To remove a 'Selected Boards List" double-click on it, or click on it click [REMOVE] . To remove all boards click [REMOVE

displayed for it. The types of controllers include:

Click on **[Next]** to verify configuration information, adjust slot numbering, define zeros and spans for analog inputs, etc.

Tables of Board Types

ControlWave Process Automation Controller (CW)

Board Code	Board Description
CW_AI16	8 or 16 Input Pin Analog Board
CW_AO8	4 or 8 Output Pin Analog Board
CW_DO32	16 or 32 Output Pin Digital Board
CW_DI32	16 or 32 Input Pin Digital Board
CW_HSC12	6 or 12 Channel High Speed Counter/Universal Disc. Input Board
CW_RTD8	8 RTD Input Board
CW_TC12	12 Thermocouple Input Board

ControlWave MICRO Process Controller (CWM) - series

Board Code	Board Description
CWM_AI6	6 Input Pin Analog Board
CWM_AI8	8 Analog Input Board
CWM_AO4	4 Analog Output Board
CWM_BAT	Battery (Voltage) Monitor
CWM_DI16	16 Input Pin Digital Board
CWM_DO16	16 Output Pin Digital Board
CWM_ECPU	System Controller Board
CWM_EIO	Mixed I/O Board (various configuration options)
CWM_HIB	HART Interface Board (HIB)
CWM_HSC4	4 Channel High Speed Counter
CWM_MA	Mixed Analog Board (6 analog inputs, 2 analog outputs)
CWM_MD	Mixed Digital Board (12 digital inputs, 4 digital outputs)
CWM_MIX	Mixed I/O Board
CWM_RTD4	4 Resistance Temperature Device (RTD) Input Board
CWM_RTU	Mixed I/O & System Controller Board
CWM_SCB	System Controller Board
CWM_TC6	6 Thermocouple Input Board

Some ControlWave MICRO boards are used in multiple platforms. See the table, below for details:

	CW	CW	CW XFC	CW	CW	CW	CW	CW	CW	CW GFC-IS
	MICRO	EFM		GFC	GFC	GFC	Corrector	Express	EPAC	
				CL	Plus					
CWM_AI6	•									
CWM_AI8	•									
CWM_AO4	•									
CWM_BAT*										
CWM_DI16										

ControlWave Designer Programmer's Handbook D301426X012 August 2020

	CW	CW	CW XFC	CW	CW	CW	CW	CW	CW	CW GFC-IS
	MICRO	EFM		GFC	GFC	GFC	Corrector	Express	EPAC	
				CL	Plus					
CWM_DO16										
CWM_ECPU							•			•
CWM_EIO							•			•
CWM_HIB										
CWM_HSC4										
CWM_MA										
CWM_MD										
CWM_MIX										
CWM_RTD4										
CWM_RTU										
CWM_SCB **										
CWM_TC6										

* Does not support wet end.

** Supports wet end.

ControlWave 10/30 Controllers (CW_10, CW_30)

Board Code	Board Description
CXX_AI8	4 or 8 Analog Input Board
CXX_AO4	2 or 4 Analog Output Board
CXX_DI16	8 or 16 Digital Input Board
CXX_DO16	8 or 16 Digital Output Board
CXX_HSC8	4 or 8 Channel High Speed Counter Board
CXX_LL4	4 Low Level Analog Input Board

ControlWave 35/31 Controller and I/O Rack (CW_35, CW_31)

Board Code	Board Description
RXX_AI8	4 or 8 Analog Input Board
RXX_AO4	2 or 4 Analog Output Board
RXX_DI16	8 or 16 Digital Input Board
RXX_DO16	8 or 16 Digital Output Board
RXX_HSC8	4 or 8 Channel High Speed Counter Board
RXX_LL4	4 Low Level Analog Input Board
RXX_STAT	External Rack Status Board

ControlWave Low-Power Controller (LP)

Board Code	Board Description
LP_AI8	8 Input Pin Analog Board (Slot 0 – fixed)
LP_AO4	4 Output Pin Analog Board
LP_BAT	Battery (Voltage) Monitor (Slot 0 – fixed)

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Board Code	Board Description
LP_DI16	16 Input Pin Digital Board (Slot 0 – fixed)
LP_DO8	8 Output Pin Digital Board (Slot 0 – fixed)
LP_HSC4	4 Channel High Speed Counter (Slot 0 – fixed)

ControlWave I/O Expansion Rack (ER)

Board Code	Board Description
ER_AI16	16 Analog Input Board
ER_AO8	8 Analog Output Board
ER_DI32	32 Digital Input Board
ER_DO32	32 Digital Output Board
ER_HSC12	12 Channel High Speed Counter Board
ER_RTD8	8 Resistance Temperature Device (RTD) Input Board
ER_STAT	I/O Expansion Rack Statistics Board (Virtual board)
	NOT A PHYSICAL HARDWARE BOARD
ER_TC12	12 Thermocouple Input Board

Expansion Rack ControlWave MICRO

Board Code	Board Description
ERM_AI6	6 Analog Input Board
ERM_AI8	8 Analog Input Board
ERM_AO4	4 Analog Output Board
ERM_DI16	16 Digital Input Board
ERM_DO16	16 Digital Output Board
ERM_HSC4	4 High Speed Counter Board
ERM_MA	6 Analog Input and 2 Analog Output Board
ERM_MD	12 Digital Input and 4 Digital Output Board
ERM_MIX	Mixed I/O Board
ERM_RTD4	4 Resistance Temperature Device (RTD) Input Board
ERM_STAT	External Rack Status Board
ERM_TC6	6 Thermocouple Input Board

ControlWave Ethernet Remote I/O (BB)

Board Code	Board Description
BB_16AI	RIO– 16AI2 (16 Remote Analog Input)
BB_8AI4AO	RIO– 8AI2, 4AO2 (8 Remote Analog Input <i>and</i> 4 Remote Analog Output)
BB_8DI8AI	RIO– 8DI2 – 8AI2 (8 Remote Digital Input <i>and</i> 8 Remote Analog Input)
BB_8DI8DO	RIO- 8DI2 – 8DO2 (8 Remote Digital Input and 8 Remote Digital Output)
BB_16DI	RIO– 16DI2 (16 Remote Digital Input)
BB_16DO	RIO– 16DO2 (16 Remote Digital Output)
BB_8INS	RIO– 8INS (Instrumentation Board)
BB_8HSC	RIO - 8HSC (8 channel high speed counter)
BB_4RTDI	RIO 4RTD - 4 Digital Input Board
IPMB_INP	RIO Open Modbus Input
IPMB_OUT	RIO Open Modbus Output

I/O Configuration Wizard (Step 3 of 3):

The third page of the I/O Configuration Wizard displays configuration details for each board. To see the details, click on the board abbreviation, and the configuration details will be displayed on the right hand side of the page.

I/O Configuration Wizard (Step 3 of 3) - Co	nfigure Selected 5 I/O 🔳 🗖 🔀
O Confiduration Selected Boards List	Selected Board's Parameters
Wizard CW_DI32 CW_D032 CW_A08	Board Name DI32_2
CW_AI16 CW_HSC12	Map Type
	Start Address 1250
	End Address 1257
	Slot Number 1
	Related Task IGNORE TASK 💌
	Mark Variables as 🔲 PDD 🔲 OPC
Ĩ.	
Comigure	Show Digital Pins Information
Boalos	
<pre><< Back << >>> Next >>< Finish</pre>	Cancel Variable Names

Selected Boards List	Displays all boards selected on the previous page. Click on a particular board abbreviation to display configuration details for the board.
Board Name	A name for the board can be specified here. This name will be used when configuring pins for the board.
Мар Туре	(Information only field) Depending upon the type of board, separate memory areas (called maps) are reserved for either inputs or outputs. Some boards have both an input map <i>and</i> an output map. For example, a digital output board has outputs (DOs) in its output map, but it may also have inputs which indicate board status conditions and errors.

	Note : If you have an older ControlWave project in which you changed the map type from the default choice, this may cause errors to be generated when the project is rebuilt. If this occurs, you should delete the board definition and re-define the board.
	For more detailed information on the input and output maps for various boards, see the <i>'I/O Mapping'</i> section of this manual.
Start End Address	Displays the range of memory addresses used by the board.
Slot Number	Displays either the physical I/O slot in the ControlWave controller which holds the board, or if this is a Mixed I/O Board (MIOB) it displays a board selection number. For ControlWave and ControlWave Micro, I/O slot numbers are positive integers, e.g. 1, 2, 3, etc. For the ControlWaveLP, the slot number is 0 for all boards except for the AO; for the AO the slot can be 8 to 13. NOTE: I/O Slot number is NOT the same as the chassis slot number. Chassis slots which hold the power supply and CPU boards are not considered to be I/O slots, so the first I/O slot is typically the third chassis slot.
IP Address	ControlWave Remote Ethernet I/O boards are identified by their Internet Protocol (IP) address, instead of the I/O slot number. The same is true for boards residing in a ControlWave I/O Expansion Rack.
Related Task	Shows the name of the task which uses this board. In some cases, for example, when using Ethernet I/O, or analog boards in an RTU 3340, it is important to associate a board with the task which uses the board. When a board is associated with a task, that board will be read / written to, at the rate cycle associated with the task, thereby ensuring up-to- date information for calculations performed in the task. When no task is associated with the board, board execution is associated with the default task, which runs at a lower priority, and therefore may not provide sufficient up-to-date I/O information when it is required by a task.
Mark Variables as PDD OPC	This determines how values of the I/O variables associated with this board will be made available to other software programs. Checking "PDD" allows the controller to reference variables by name, which is necessary if you intend to access a variable by external software which requires 'read-by-name' access, such as DataView, or one of the other OpenBSI Utilities. Checking "OPC" adds this variable to a collection list used by the OPC Server or by the OpenBSI Signal Extractor. This is necessary when data is to be extracted, and sent to a database.

When edits have been made to this page, click on the **[Show xxxInformation]** button. The name on this button, and the pin configuration details, vary depending on the type of board being configured. See the pages that follow for the standard board types.

Analog Boards

Configure List of Available Analog Pins			
List of Available Pins Pin Name			
PIN: 1 AI8_5_1 PIN: 2 Pin Properties PIN: 3 Pin Properties PIN: 5 Zero PIN: 6 Pin: 7 PIN: 8 Add Overrange Range Type: V Bottom Range: 1 Pin Used Top Range: 5	Done Done Add Board Status Calibration Calibration Board Time Out Mark All Pins .000000 .000000		

Analog Input Board Page (CWM_AI8 board)

Configure List of	Available Analog Pins	
List of Available Pir	ns Pin Name	
PIN : 1 PIN : 2 PIN : 3 PIN : 4 PIN : 5 PIN : 6 PIN : 7 PIN : 8	A08_1_1 Pin Properties Value 0.000000 Zero 0.000000 Span 100.000000 Add Overrange Status Set Actual Output Value	Done Add Board Status Add Last Operation Status Mark All Pins Used
Pin Used	 ✓ Configure Hold Values ☐ Update Default Value ☐ User Configured Output 	Hold Last Output

(some of these fields do NOT appear for other models)

Analog Output Board Page (CW_AO8 board) (some of these fields do NOT appear for certain models)

Configure List of Available Analog Pins			
List of Available Pin	s Pin Name		
PIN : 1	LL4_4_1	<u>D</u> one	
PIN : 2 PIN : 3 PIN : 4	Pin Properties	Add <u>B</u> oard Status	
	Zero 0.000000	Add <u>L</u> ast	
	Span 1.000000	Operation Status	
	Add Overrange Status	Made All Dire	
	Point Type:	Used Used	
	TC 100 C to 1820 C (B) 💌		
Pin Used			

Low Level Analog Input Board

List of Available Pins	Displays a list of the individual pins (I/O points) on this process I/O board. If the pin is displayed in RED, that pin is active. If the pin is left grayed out, that pin is considered unused.	
Pin Name	Defines a name identifying this pin. IMPORTANT: This name is used as a variable name to reference the I/O pin in your POU.	
Value	Defines the initial value for this I/O pin, in floating point format. NOTE: This is not available for analog input pins.	
Zero	Defines the lowest value of the range for this I/O pin. Used to scale the input/output value.	
Span	Span is added to the ZERO value to define the highest value of the range for this I/O pin. Used to scale the input/output value.	
Add Over Range Status	When selected, will cause a variable to be created to store the value of the overrange status bit. Over range conditions occur when an attempt is made to drive the variable associated with this pin outside the range defined by the zero and span. When this occurs, the over range status bit will be set to TRUE.	
Range Type	Some boards allow you to specify whether the board input is in current or voltage. Choose 'VOLTS' or 'AMPS'. NOTE: For example, if 4 to 20 milliamps of current drive the board, you would choose 'AMPS', then enter 0.004 for the "Bottom Range" value, and 0.020 for the "Top Range" value.	

Bottom Range	The lowest usable value for VOLTS or AMPS for this board input. For example, if the board input can range from 1 to 5 VOLTS, the "Bottom Range" would be set to 1.0. If this board input can range from 4 to 20 milliamps, "Bottom Range" would be set to 0.004. Other ranges are possible as well.
Top Range	The highest usable value for VOLTS or AMPS for this board input. For example, if the board input can range from 1 to 5 VOLTS, the "Top Range" would be set to 5.0. If this board input can range from 4 to 20 milliamps, "Top Range" would be set to 0.020. Other ranges are possible as well.
Set Actual Output Value	When selected, this will cause a variable to be created which <i>displays</i> the actual value which was written to the output pin.
Add Board Status	When selected, will cause a variable to be created to store board status information.
Add Last Operation Status	When selected, will cause a variable to be created to store the status of the last conversion operation information.
Calibration Error	This is only present for certain ControlWave MICRO boards. When checked, will cause a variable to be created to store error information. This variable will be set to TRUE whenever there is bad calibration data in the EEPROM.
Board Time Out	This is only present for certain ControlWave MICRO boards. When checked, will cause a variable to be created to store information about board time out errors. Board time outs occur if there is a problem with conversion operations.
Mark All Pins Used	When checked, will activate all pins on this I/O board. They will all appear in RED.
Configure Hold Values	When checked, enables other fields on the page for configuring a hold value for this pin. A hold value is the value used by the I/O card if it detects a watchdog of the ControlWave CPU. The I/O board maintains this value at the pin until the unit is restarted.
Update Default Value	When checked, allows the "User Configured Output" hold value to be changed on-line; otherwise the hold value can only be set in the I/O Configurator.
Hold Last Output	When checked, specifies that during a watchdog failure, the hold value for this pin will be whatever value was on the pin when the failure occurred. NOTE: "Hold Last Output" and "User Configured Output" are mutually exclusive. Either one may be configured for a particular pin, but NOT both.
User Configured Output	When checked, allows the user to enter a value for this pin which will be used as the hold value in the event there is a watchdog

failure of the ControlWave. NOTE: "Hold Last Output" and "User
Configured Output" are mutually exclusive. Either one may be
configured for a particular pin, but NOT both.

Point TypeSpecifies the type of low-level analog input/thermocouple. See
the table, below, for a list of supported temperature/voltage
ranges for inputs to the board.

Point Type	Range
Thermocouple Type B	100°C to 1820°C
Thermocouple Type E	-270°C to 1000°C
Thermocouple Type J	-210°C to 1200°C
Thermocouple Type K	-270°C to 1370°C
Thermocouple Type R	-50° C to 1720° C
Thermocouple Type S	-50° C to 1760° C
Thermocouple Type T	-270°C to 400°C
Resistance Temperature Device (RTD)	-220°C to 850°C
Voltage	-10 mV to 10 mV

When all pins have been configured, click on **[Done]**. You can then proceed to select and configure pins for *another* board.

Digital Boards

Configure List of Available Digital Pins		
List of Available Pins	Pin Name	
PIN : 1	DI16_1_1	<u>D</u> one
PIN:2 PIN:3 PIN:4	Pin Properties	Add Board Status
PIN : 5	Enable <u>C</u> ounter Processing	Used Used
PIN:6 PIN:7	🔲 <u>R</u> eset Point Count OFF 💌	
Pin Used		Counter Flag
		Add <u>T</u> ime Stamp of Last Sample

Digital Input Board Page

(Not all fields are present for all board types)

Configure List of A	vailable Digital Pins	
List of Available Pins	Pin Name	
PIN:1	D032_0_1	<u>D</u> one
PIN:2	Pin Properties	
PIN:4	🔲 Set <u>P</u> in Status	Status
PIN:5		Mark All Disa
PIN:6		
Pin Used		1

Digital Output Board Page

List of Available Pins	Displays a list of the individual pins (I/O points) on this process I/O board. If the pin is displayed in RED, that pin is active. If the pin is left grayed out, that pin is considered unused.
Pin Name	Is a name identifying this pin. This name is used as a variable name to reference the I/O pin in your POU.
Set Pin Status	Sets the initial value for this digital output (DO). NOTE: This option is not available for digital inputs.
Enable Counter Processing	Turns on or off the counters associated with the digital input (DI) process I/O board. Counters are used in certain applications. For example, if a mixed I/O board is used with a ControlWaveLP, a digital input (DI) can be used as a low speed counter (30 millisecond filter). Enabling counter processing in such a case will allow interrupt processing to occur for that DI.

Add Board Status	When selected, will cause a variable to be created to store board status information.	
Mark All Pins Used	When checked, will activate all pins on this I/O board. They will all appear in RED.	
Turn off Leds	This option is only available on certain ControlWave MICRO boards. When checked, it will create a variable which allows you to turn OFF the I/O board's diagnostic LEDs to save on power. LEDs are turned OFF when the variable is set ON. <i>NOTE: For this to work, the LED enable jumper on the board must be in position 2-3; otherwise, the software cannot disable the LEDs, only a hardware jumper can. See manual CI-ControlWaveMICRO for details.</i>	
Reset Point Count	When set to ON, allows the number of counts to be reset. This occurs automatically whenever the board is restarted.	
Set No Init Counter Flag	When checked, counters on the board will NOT be initialized to zero on a warm start of the unit.	
Add Time Stamp of Last Sample	When selected, will cause a variable to be created to store the timestamp of the last sample collected by this I/O board.	
۱۸/۱ ۱۱ :		

When all pins have been configured, click on **[Done]**. You can then proceed to select and configure pins for *another* board.

High Speed Counter (HSC) Boards

Configure List of Available High Speed Counter Channels			
List of Available Channels Channel Name Done			
CHANNEL 1	ERHSC_3_1	<u></u>	
CHANNEL 2 CHANNEL 3	- Channel Properties	□ Add <u>B</u> oard Status	
CHANNEL 4 CHANNEL 5	🗖 Add Input Channel State	Add <u>⊺</u> ime	
CHANNEL 5 CHANNEL 7 CHANNEL 8	☐ <u>R</u> eset Point Count OFF	□ Mark All Pins Used	
Pin Used	Select Filter 30 MS	Counter Flag	

High Speed Counter Page (Not all fields are present for all board types / platforms)

List of Available Channels	Displays a list of the individual channels (counter I/O points) on this process I/O board. If the channel is displayed in RED, that channel is active. If the channel is left grayed out, that channel is considered unused.		
Channel Name	Is a name identifying this channel. This name is used as a variable name to reference the channel in your POU.		
Add Input Channel State	When selected, displays the TRUE/FALSE value of the channel.		
Reset Point Count	When selected allows the number of counts to be reset. Choose either ON or OFF for the initial value on startup. A reset occurs when you choose ON; software then turns this OFF. NOTE: Reset occurs automatically whenever the board is restarted.		
Select	Specifies how the board will operate for this channel:		
Filter	'None'	Defaults to 30 millisecond filtering.	
	'30 ms' button debound	Turns on 30 millisecond filter. Typically used for push- cing.	
	'1 ms' applications.	Turns on 1 millisecond filter. Used for low speed counter	
	'HSC Channel' board). Require	High Speed Counter. 10 KHz filter. (Default for CWM_RTU s 04.90 or newer firmware.	
Add Board Status	When selected, will cause a variable to be created to store board status information.		
Add Time Stamp of Last	When selected, will cause a variable to be created to store the timestamp of the last sample collected by this I/O board.		

Sample	
Mark All Pins Used	When checked, will activate all channels on this I/O board. They will all appear in RED.
Set No Init Counter Flag	When checked, counters on the board will NOT be initialized to zero on a warm start of the unit. Requires 04.41 or newer firmware.
Turn off Leds	(Not Shown) This option is only available on certain ControlWave MICRO boards. When checked, it will create a variable which allows you to turn OFF the I/O board's diagnostic LEDs to save on power. LEDs are turned OFF when the variable is set ON. <i>NOTE: For this to work, the LED enable jumper on the board must be in position 2-3; otherwise, the software cannot disable the LEDs, only a hardware jumper can. See manual CI-ControlWaveMICRO for details.</i>

Remote I/O Status Board

The Remote I/O Status Board is a 'virtual' board, i.e. there is no actual physical board. By including it within your ControlWave project, global variables will be created to store communication statistics information, and board ID strings for the ControlWave I/O Expansion Rack, or other remote I/O devices.

Remote I/O Status Board	×
	Done
Board Statistics	
E Board ID Strings	

Note:

The size of RIO STAT boards has increased. This can cause an overlap with the memory maps of other I/O boards. If you have an RIO STAT board in your project, please remove it, and then add it back into the project, to allow memory maps to be adjusted properly.

For more information about these RIO status variables, and the software configuration for the ControlWave I/O Expansion Rack, please see the *ControlWave I/O Expansion Rack Quick Setup Guide* (document# D5122).

System Controller Board

The System Controller Board is used with ControlWave MICRO units equipped with a transmitter, such as the Electonic Flow Meter (EFM) version of the ControlWave MICRO.

×
Done

Live DataWhen selected, creates variables for storing live data, e.g. pressure readings,Signalsfrom the transmitter.

Configuration When selected, creates variables for storing configuration information. **Signals**

CalibrationWhen selected, creates variables for storing calibration information.Signals

CWM_RTU Board

In addition to analog and digital pins, certain RTUs with the CWM_RTU board (GFC, XFC) may include a built-in internal transmitter with sensor (wet end). Some special versions of the XFC can include two wet ends.

The Transmitter Interface dialog box for the CWM_RTU allows variables to be mapped for both of the wet ends.

These choices are similar to the System Controller Board.

Transmitter Interface	
Wet End #1 Live Data Signals	Done
Calibration Signals	
 Live Data Signals Configuration Signals Softwarian Signals 	
Configuration Signals	

Notes About Ethernet I/O Boards

Unlike process I/O boards which are physically installed in the ControlWave controller, ControlWave Remote Ethernet I/O boards are in a separate location, and communicate to the ControlWave unit using TCP/IP. (The IP address for the Ethernet I/O board is configured from the third page of the I/O Configuration Wizard.)

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Certain parameters must be specified for the Ethernet I/O units which hold the boards. Once this is done, however, the configuration of the individual board pins is identical to that described earlier.

Note: The dialog box shown at right includes all possible fields for the ControlWave Remote Ethernet I/O, however, not all of these fields are visible in all cases.

Configure Remote Board Pins		
Unit Number	Done	
Add Driver Status	Add Ereshness Counter	
🗖 Activate Counters	🔲 <u>C</u> lear Counters	
	Convert RTD value to tenths	
<u>D</u> igital Pins	<u>Analog</u> Pins	

Unit Number	Specifies the Modbus unit address number associated with this ControlWave Remote Ethernet I/O unit.
Add Driver Status	When selected, will cause a variable to be created to store I/O driver status information.
Activate Counters	Creates / disables a variable which allows the user to control the starting / stopping of the counters in the ControlWave Remote Ethernet I/O board. These counters are used with digital inputs (DI).
Add Freshness Counter	When selected, will cause a variable to be created to store a 'freshness' counter value. The freshness counter represents the number of program executions since new data has been collected through this Ethernet I/O board. A value of 0, indicates the data is as new (fresh) as possible.
Clear Counters	Sets all counter values associated with this board to 0.
Convert RTD value to tenths	(For RIO 4RTD - 4 Digital Input Board ONLY) - When checked, causes values from the Resistance Temperature Device board to be divided by 10, thereby providing greater precision.
[Show Pins], [Analog Pins], [Digital Pins]	When clicked on, calls up a dialog box for configuring the individual pins for the board.
[Done]	Click here when configuration for this board is complete.

Additional Configuration For ControlWave Remote Ethernet I/O

Besides the I/O configuration within ControlWave Designer, additional configuration for Ethernet I/O hardware must be performed using the Remote I/O Toolkit software (*not to be*

confused with what used to be known as the OpenBSI Technician Toolkit). Documentation on the Remote I/O Toolkit software is provided in the form of on-line help screens.

The Remote I/O Toolkit software is included as an installation option on the OpenBSI CD ROM.

- To use counters (DI) you must enable counters in the Remote I/O Toolkit software.
- The IP address entered for a ControlWave Remote Ethernet I/O board in the ControlWave Designer I/O Configuration Wizard must MATCH the IP address entered in the Remote I/O Toolkit.
- If you are using high speed counters, 32 bit counters must be enabled within Remote I/O Toolkit.
- For analog inputs/outputs (AI, AO) you must NOT change the default scaling within Remote I/O Toolkit. Changes should only be made within the ControlWave Designer I/O Configuration Wizard.
- Be aware that if you are using counters (Digital Input or High Speed Counter), restarting of the ControlWave Remote Ethernet I/O will cause a large jump in counts.
- If you intend to use TPO (Time Proportioned Outputs) for any point, you must enable TPO for those points.
- If you check the 'Turn OFF outputs on communications loss' option' in the Remote I/O Toolkit, outputs will be set to 0 if the 'Com Timeout' value expires without any communication from the ControlWave. The default value for 'Com Timeout' in the Remote I/O Toolkit is 5 seconds. The rate at which the ControlWave communicates with the Ethernet I/O is determined by the ControlWave task associated with the board. If this is an 'output-only' board, however, and the output(s) coming from the ControlWave *have not changed*, the ControlWave will not attempt to communicate with the Ethernet I/O more frequently than once every 15 seconds. (Prior to ControlWave firmware 04.60, if outputs had not changed, the ControlWave would not attempt to communicate with the Ethernet I/O more frequently than once every 60 seconds.) To prevent outputs from being zeroed out due to a delay in communication from the ControlWave because outputs have not changed, you must increase the 'Com Timeout' value to *greater than* 15 seconds. The 'Com Timeout' value has a maximum of 25 seconds.

RIO Open Modbus Boards

These RIO Open Modbus board types are provided to allow the ControlWave to communicate with various third-party Modbus devices.

Before using these board types, you must be familiar with certain characteristics of the third-party device. In particular, you will need to know the following:

• The IP address of the third-party Modbus device. This is entered in the I/O Configurator as shown in the figure, below.

Enter the IP address of the third-party Modbus device here —

Selected Boards List	Selected	Board's Parameters
IPMB_INP IPMB_OUT	Board Name	RIN_0
	Мар Туре	вотн
	Start Address	0
	End Address	262
	IP Address	10 0 0 1
	Related Task	
	🗖 <u>D</u> o not Gene	rate Global Memory Area
	Show Det	ail Pins' Information

It is recommended that you associate the board with some executing task. Data collection from the Modbus device will occur at the rate specified for the task.

- The Modbus Unit Number as programmed in the third-party Modbus device.
- The register numbers in the third-party Modbus device which you will be 'reading from / writing to'.
- The Modbus function code(s) you will be using to 'read from / write to' registers in the third-party Modbus device. This also affects your choices of data types for the variables in ControlWave Designer which will be used to hold the Modbus register data.

These parameters are entered in the Configure Remote Board Pins dialog box, which is accessible from the **[Show Detail Pins' Information]** button.

The unit number programmed in the third-party Modbus device	This is the number of bytes
Configure Remote Board Pins	/ which will be reserved in the
Unit Number 1 Done	ControlWave project for this data
Add Driver Status 🔽 Add Ereshness Counter	
Starting Register: 🗾 🚺 Total Memory Size: 262	
Number of Registers: TI Function Code: 3	
	The Modbus function code

These numbers define which registers will be 'read-from / written to' in the Modbus device. Here, we are requesting data from 10 registers (numbered 0 through 9).

Unit Number	Specifies the Modbus up Modbus device. NOTE: I contiguous regions of m need to use the same fu define multiple Open M numbers, even though first board definition she device; the unit number adding a multiple of 250 unit number programm define three different bo regions in the device, you and 525. All refer to the	becifies the Modbus unit number as programmed in the third-party odbus device. NOTE: If you will be requesting data from non- ontiguous regions of memory in the same Modbus device, and you eed to use the same function code to collect the data, you will need to afine multiple Open Modbus boards, and give them different unit umbers, even though they all refer to the same Modbus device. The rst board definition should use the actual Modbus unit number in the evice; the unit numbers for all subsequent boards must be chosen by dding a multiple of 256 to the actual unit number. If, say, the Modbus nit number programmed in the Modbus device is 13, and you need to efine three different boards to get data from three different memory egions in the device, you should use Modbus unit numbers of 7, 269, nd 525. All refer to the same device.	
Add Driver Status	When selected, will cau status information.	se a variable to be created to store I/O driver	
Add Freshness Counter	When selected, will cause a variable to be created to store a 'freshnes counter value. The freshness counter represents the number of progr executions since new data has been collected through this Open Modbus board. A value of 0, indicates the data is as new (fresh) as possible.		
Total Memory Size	This is the total number of bytes which will be reserved inside the ControlWave project for data 'read from / written to' the third-party Modbus device. The default is the maximum memory available for the longest possible request.		
Starting Register	The first register in the first register in the first register in the first reading from / writing to input Board and Open M register number you spectrum their register numbers at the consequence, you may number you want to ge accompanying the devi	The first register in the third-party Modbus device which you will be reading from / writing to'. IMPORTANT NOTE: Both the Open Modbus input Board and Open Modbus Output Board send requests for the exact register number you specify. Some third-party Modbus devices, however, number their registers differently, for example, starting register numbers at the number 1, instead of the number 0. As a consequence, you may need to request one less than the register number you want to get the correct register. Consult the literature	
Number of Registers	The total number of reg	jisters to be read/written.	
Function Code	The Modbus function co below, can be used thro	ode. Only the Modbus function codes listed, ough these boards:	
	1	Read Multiple Coil Outputs	
	2	Read Multiple Coil Inputs	
	3	Read Multiple Analog Outputs	

4	Read Multiple Analog Inputs
15 (Fhex)	Write Multiple Coil Outputs
16 (10hex)	Write Multiple Analog Outputs

[Done] Click here when configuration for this board is complete.

Besides configuring the board, itself, you must explicitly declare located variables in one of your ControlWave worksheets that will hold the data 'read from / written to' the Modbus device.

Located variables would typically be entered either in your 'RTU_RESOURCEV' worksheet, or in some other worksheet you create, and would take the format shown below:

variable_name	Datatype	usage	description	%location_prefix <i>size_prefix</i> address
---------------	----------	-------	-------------	---

variable_name	is the variable name.		
datatype	is one of the IEC 61131-3 data types, e.g. BOOL, INT, etc.		
usage	specifies the scope of how the variable is used, e.g. VAR, VAR_GLOBAL, etc.		
description	is an optional description.		
location_prefix	describes where this data will be located. It is one of the follo letters:		
	I	for physical inputs (input map)	
	Q	for physical outputs (output map)	
size_prefix	specifies the amount of space needed for the variable. the following letters. (NOTE: If no <i>size_prefix</i> is include size is assumed.)		
	Х	single bit size (BOOL only)	
	В	byte size (8 bits)	
	W	word size (16 bits)	
	D	double word size (32 bits)	
address	is the n offset. map of the I/O	nemory address reserved this variable plus the appropriate Inputs and outputs start at an offset of 4 in the memory the board. See 'I/O Mapping' for more details on offsets into map for the Open Modbus boards.	

As an example, suppose we have defined both an Open Modbus Input board that will be reading a register in the Modbus device to obtain a flow temperature. This temperature is

Name	Туре	Usage	Description	Address	
🖃 NewGroup					
FLOW_TEMP	INT	VAR_GLOBAL		%NV4	

stored in the Modbus device as a 16 bit (word), and will be stored in an integer variable in the ControlWave, named FLOW_TEMP. The variable must be declared as follows:

The choice of 4 for the address was determined by examining the I/O global variables worksheet to determine the address of the IPMB_INP (Open Modbus Input board). In this case, the address was 0, and then putting in the correct offset, based on the I/O Mapping information in the *'I/O Mapping'* section. In this case the offset was 4.

HART Interface Board (CWM_HIB)

The CWM_HIB board allows your ControlWave MICRO to communicate with HART® devices using the Highway Addressable Remote Transducer (HART) protocol, or with Bristol 3508/3808 transmitters using the BSAP protocol.

If using a HART device, you must configure a HART function block. See the ControlWave Designer online help for details.

If using a Bristol 3508 or 3808 transmitter, you must configure an XMTR or LBTI function block. See the ControlWave Designer online help for details.

С	onfigure List o	f Available Analog Pins	
Ľ	onfigure List o ist of Available Pin PIN : 1 PIN : 2 PIN : 3 PIN : 4 PIN : 5 PIN : 5 PIN : 6 PIN : 7 PIN : 8 PIN : 9	f Available Analog Pins Pin Name HIB_1_1 Pin Type: Not Configured Pin Prope Not Configured Analog Input Analog Output Hart Multidrop BT1	Done Add Board Status Calibration Error Board
	PIN : 10 PIN : 11 PIN : 12 PIN : 13 PIN : 14 PIN : 15 PIN : 16 Pin Used		Time Out

You must associate the HIB board with a task, using the **Related Task** field, in order to have control of its rate of execution.

Related Task Tsk1

It must be executed fast enough to accommodate your data update requirements, depending upon whether or not you are accessing the current loop directly. For example, if you want to access the primary variable at a faster rate (100 msec) through the 4 to 20 mA current loop, you must associate the HIB board with a task that executes at least once every 100 msec.

Although the dialog box in the I/O Configurator shows 16 pins, only the first 8 are used; the remaining ones are reserved for future expansion. Pin types are:

Pin Type	Valid for this channel	Notes
Not Configured	Any	The channel is not configured.
Analog Input	Any	Valid only for a single 4-20 mA device on this channel (point-to- point). You must specify a zero and span for the input. Not used with multi-dropped HART devices. If using on Channel 1, set switch SW3 to "IN". If using on Channel 2, set switch SW4
		to "IN".
Analog Output	1 or 2	Valid only for a single 4-20 mA HART device on this channel, that is NOT a transmitter. You must specify a zero and span for the output. Not used with multi-dropped HART devices. If using on Channel 1, set switch SW3 to "OUT". If using on Channel 2, set switch SW4 to "OUT".
HART Multi- drop	Any	Up to five multi-dropped HART devices allowed per channel (total of 40 allowed for the entire board – main and daughter). If used on channels 1 or 2, switches SW3 and/or SW4 must be set to "IN".
BTI	Any	Valid for either a Bristol 3508 or Bristol 3808 transmitter. If used on channels 1 or 2, switches SW3 and/or SW4 must be set to "IN".

Changing Default Variable Names (All board types)

As you proceed to define your I/O, the I/O Configuration Wizard will automatically create variable names associated with the I/O board to store status information, zeros and spans, etc.

These variable names are based on the pin name you define with an appropriate suffix added. To see the default suffix, click on the **[Variable Names]** button (previously called **[Settings]**) visible on certain pages of the I/O Configuration Wizard. While NOT recommended, the variable suffixes can be altered by the user, if desired. The different pages of the Global Output Variables Names dialog box are accessible by clicking on the tabs. Make changes on the various pages, then click **[OK]** to save all the changes.

Global Output Variable	es Names	×
I/O Pin Mapping Analog Output	Remote / Local Boards Ana Digital 1/0 High Speed C	log Input Counters
Update Default Value	_DEF_VAL	
Hold Last Output	_HOLD_LO	
UCO	_UCO_FLG	
UCD	_UCD_VAL	
Actual Output Value	_ACTUAL	
	ОК	Cancel

I/O Mapping

Important

Most users **do not** need to be concerned with the details described in this section. The typical user configures I/O using the I/O Configuration Wizard. Only certain users with special I/O requirements or customized software need to be familiar with this information.

In IEC 61131, I/O is addressed by mapping the physical I/O into one of two I/O memory regions. Addresses for these regions are either %Qtxx (Output) or %Itxx (Input), where t is the data type and xx is the offset (for example: %QD100, %QW50, or %QX0.1).

Typically, the inputs are scanned at the start of a task's cycle, and outputs are written at the end. (Note: the user has the choice about which task will process each I/O definition). The user can also force I/O processing to occur by using a standard function block

Common Device Map

The status area is defined for all I/O boards at offset 0 of the input map. This region is 4 bytes long; the first byte is reserved for board errors (see bit definitions in each I/O board section) and the other three are divided as needed by the individual board drivers.

DI

The status of DI points is always mapped from bytes 4-19 of the input map. Any other features (such as counters) will be mapped starting at address offset 20.

DO

The values to be output to a DO are always mapped at bytes 0-15 of the output map. Any other features will be mapped starting at address offset 16.

<u>Al</u>

The AI map is organized into two sections: The input values are mapped as REAL values, starting at offset 8 (there is an exception here when a combo board is used). The output map consists of pairs of REAL values (ZERO, SPAN) by which each input is scaled. The outputs are typically mapped starting at offset 0. If a zero / span pair is not initialized, the scale defaults to ZERO = 0.0 and SPAN = 100.0.

Note:

The Input or Output map may be shortened to reduce the number of points processed.

<u>A0</u>

To output an AO, a set of three REAL values is used: ZERO, SPAN, VALUE. These are mapped starting at offset 0. If a zero / span pair is not initialized, the scale defaults to ZERO = 0.0 and SPAN = 100.0.

Note:

The Input or Output map may be shortened to reduce the number of points processed.

Local I/O - ControlWave

The following sections describe the local I/O boards supported, and their memory maps.

CW_DO32 ControlWave 32 Output Pin Digital Board

DRIVER_NAME:	'CW_D032'
DATA_TYPE:	BYTE
DRIVER_PAR1:	Slot number.
DRIVER_PAR2:	Bit mask of outputs to be processed by 61131 program. If specified as 0, all points will be allowed.
DRIVER_PAR3:	Bit mask for outputs to be processed by 61131 (bits 16-31). If specified as 0, all points will be allowed.
Input Map:	Max Size: 8 bytes (6 bytes for 16 point)

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	DO32_x_BOARDSTATUS	Board status. Only bit 0 is currently defined. If set,
		board is not present.
4-7	DO32_x_y_I	DO status as seen by card. 1 bit per value.

Output Map: Size: 4 bytes (2 bytes on 16 pt)

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	DO32_x_y	Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB. Typically specified as %OXy.z. where y is I/O space
		offset, and z is bit number from 0 to 7.
1-3	D032_x_y	Repeat for DO9-32. Offset 1 is DO9-16, 2 is DO17-24,
		etc.

CW_DI32 ControlWave 32 Input Pin Digital Board

DRIVER_NAME:	'CW_DI32'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	Slot number.
DRIVER_PAR2:	Unused
Input Map:	Max Size: 8 bytes (6 bytes for 16 pt)

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	DI32_x_BOARDSTATUS	Board status. Only bit 0 is currently defined. If set, board
		is not present.
4	DI32_x_y	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5	DI32_x_y	Current status of DI9 (in bit 0) to DI16 (in bit 7).
6	DI32_x_y	Current status of DI17 (in bit 0) to DI24 (in bit 7).
7	DI32_x_y	Current status of DI25 (in bit 0) to DI32 (in bit 7).

CW_AI16 ControlWave 16 Input Pin Analog Board

DRIVER_NAME:	'CW_AI16'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	Slot number.
Input Map:	Max Size: 72 bytes (40 for 8 point)

Due to the amount of time required to process the AI points, it is highly recommended that the input region for this board be sized only as large as needed for the points used by the application.

Also, the I/O fetches should be programmed to only occur as fast as needed (via task association).

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0 (Bit 0)	AI16_x_BOARDSTATUS	Board status. Bit 0 is set if board is not present;
0 (Bit 1)	AI16_x_LASTOPERATION	Bit 1 is set if the last conversion operation failed.
4-5	AI16_x_y_OUTRANGE	1 bit per AI, AI1 is bit 0, offset 1, AI8 is bit 7, offset 1,
		AI9 is bit 0, offset 2. If set, input is Out-of-range.
8	AI16_x_y	Value for AI1 in engineering units (4-byte float -
		REAL). To access the value, a variable needs to be
		defined '%IDxx'. Direct access to %IDxx is not
		possible.
12, 16,	AI16_x_y	Value for AI2, AI3,

Output Map: Max Size: 128 bytes (64 bytes for 8 point)

To provide consistent scaling values across Application Warm Starts, this I/O region should be marked as 'RETAIN'.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	AI16_x_y_ZERO	Zero for AI1 (4-byte float – REAL). To access the
		value, define the variable %QDxx. This variable can
		be initialized at declaration.
4	AI16_x_y_SPAN	Span for AI1 (4-byte float - REAL). If zero, the AI will
		be scaled from 0 to 100.0.
8, 16, 24,	AI16_x_y_ZERO	Zeros for AI2, AI3,
12, 20, 28,	AI16_x_y_SPAN	Spans for AI2, AI3,

CW_AO8 ControlWave 8 Output Pin Analog Board

DRIVER_NAME:	'CW_A08'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	Slot number.
Input Map:	Max Size: 72 bytes (Extra space reserved for future expansion up to AO16)

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0 (Bit 0)	AO8_x_BOARDSTATUS	Board status. Bit 0 is set if board is not present;
0 (Bit 1)	AO8_x_LASTOPERATION	Bit 1 is set if the last conversion operation failed.
4	AO8_x_y_OUTRANGE	1 bit per AO, AO0 is bit 0, AO8 is bit 7. If set, output
		is Out-of-range.
8, 12,,	AO8_x_y_ACTUAL	Actual output value for points 1 to 8. If output is Out-
36		of-range low the output will be constrained to the
		points Zero value. If output is O-o-r high it will be set
		to the points Zero+Span value.
40, 44,	AO8_x_y_ACTUAL	Output values for points 9 to 16 (To allow for future
, 68		expansion)

Output Map: Max Size: 268 bytes (Extra space reserved for future expansion up to AO16)

Due to the amount of time required to process the AO points, it is highly recommended that the output region for this board be sized only as large as needed for the points used by the application.

Also, the I/O sets should be programmed to only occur as fast as needed (via task association).

Offset	Default Variable Name where v is the	Description
Olisee	board slot and vis the pin number	
0		Zero for AO1 (4 byte flept, PEAL). To accord the
0	AU6_X_Y_ZERO	value define the variable "ODwy". This variable cap
		be initialized at declaration
1	AOR Y Y SPAN	Span for $AO1 (4$ byte fleat). If zero, the AO will be
4	AOO_X_Y_SFAN	scaled from 0 to 100 0
Q	A08 x y	Value for AO1 (1-byte float)
0		$\frac{1}{2}$
12, 24, 30,		Spansfor A02, A03, A04, etc.
10, 20, 40,		Values for AO2, AO3, AO4, etc.
20, 32, 44,		Values IOFAO2, AO3, AO4, etc.
192	AU8_X_Y_DEF_VAL	Update Default Values for AUT - AUT6 (4-byte
		Integer - DWORD). To access this value, define the
		Variable %QX192.0. This variable can be initialized at
		declaration. Setting this bit to TRUE will write the
		default values for AOT - AOT6 to the AO hardware.
		After the default values are written to the board this
100		Variable will then be set back to FALSE.
196	AO8_x_y_HOLD_LO	Hold Last Output (HLO) Control for AOT - AOT6 (4-
		byte integer - DWORD). To access the values, define
		variables %QXxxx.x. This variable can be initialized at
		declaration. (192.0 for AO1, 192.1 for AO2, 193.7
200	AO8_x_y_UCO_FLG	User Configured Output (UCO) Control for AO1 -
		AO16 (4-byte integer - DWORD). To access the
		value, define variables %QXxxx.x. This variable can
		be initialized at declaration. (196.0 for AO1, 196.1
		tor AU2, 197./ tor AU16)
204, 208, 212,	AO8_x_y_UCD_VAL	User Configured Default (UCD) Value for AO1, AO2,
		AO3, etc. (4-byte float - REAL). To access the value,
		define the variable %QDxxx. These variables can be
		initialized at declaration.

To provide consistent scaling values across Application Warm Starts, this I/O region should be marked as 'RETAIN'.

If neither Hold Last State or User Configured Output are enabled, for a point, the output will go to -5% if the unit watchdogs.

If Hold Last State and User Configured Output are both enabled at the same time, for the same point, neither will be the winner. If the unit watchdogs the output will fall back to - 5%.

CW_HSC12 ControlWave 12 Channel High Speed Counter / Universal Discrete Input Board

DRIVER_NAME:	'CW_HSC12'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	Slot number.

DRIVER_PAR2:

UNUSED

Input Map:

Max Size: 68 bytes (44 bytes for 6 point)

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	HSC12_x_BOARDSTATUS	Board status. Only bit 0 is currently defined. If set, board is not present.
1	HSC12_x_y_STATE	Input channel state. BOOL Offset 1 Bit 0 is for channel 1, Bit 1 is channel 2, etc. Each bit will reflect the state, either on or off, of the signal on its respective channel.
4	HSC12_x_TIMESTAMP	Timestamp of last sample from HSC. This is the number of milliseconds since boot.
8	HSC12_x_y_COUNTER	Number of counts since boot (Channel 1)
12,16,20,, 52	HSC12_x_y_COUNTER	Counts for Channel 2, 3, 4,, 12

Max Size: 12 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	HSC12_x_y_RESET_COUNT	Reset point counts. BOOL Offset 0, Bit 0 is point 1
		Offset 1, bit 3 is point 12. Setting a bit to TRUE (1)
		will reset the count for the point selected. The driver
		will reset the bit after the count has been reset.
2 (Bit 1)	HSC12_x_NOINIT	Bit 1 – If set to TRUE, maintain counts across warm
		start.
4	HSC12_x_y_FILTER	30ms/1ms filter select. Offset 4, Bit 0 represent
		Channel 1 to select 30ms (FALSE) and 1ms (TRUE)
		respectively. Offset 4, Bit 1 is Channel 2, Offset 5, Bit
		3 is Channel 12.
8	HSC12_x_y_HSC_SEL	High Speed Counter select. Offset 8, Bit 0 represent
		Channel 1 to select High Speed Counter (TRUE).
		Offset 8, Bit 1 is Channel 2, Offset 9, Bit 3 is Channel
		12. Setting an HSC select bit to TRUE will override the
		30ms/1ms selection for the same channel.

CW_TC12 – ControlWave 12 Point Thermocouple Board

DRIVER_NAME	'CW_TC12'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 56 bytes	

Due to the amount of time required to process the thermocouple points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 40ms.

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Offset	Default Variable Name where x is the board	Description
	slot and y is the pin number.	
0 (Bit 0)	TC12_x_BOARDSTATUS	If set, the board is not present.
0 (Bit 2)	TC12_x_CALIBRATE	If set indicates invalid calibration data written to the
		board.
0 (Bit 3)	TC12_x_TIMEOUT	If set, indicates that had an error reading or writing
		to the board.
4	TC12_x_y_OUTRANGE	1 bit per TC, TC1 is bit 0, TC8 is bit 7. If set, input is
		Out-of-range.
5	TC12_x_y_OUTRANGE	1 bit per TC, TC9 is bit 0, TC12 is bit 3. If set, input is
		Out-of-range.
8	TC12_x_y	Value for TC1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		<i>%IDxx</i> . Direct access to %IDxx is not possible.
12, 16, 20,	TC12_x_y	Value for TC2, TC3, TC4, TC5, TC6 TC12
24, 52		

Output Map: Max Size: 112 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	TC12_x_y_ZERO	Zero for TC1 (4-byte float - REAL). To access the
		value, define the variable AT %QDxx. This variable
		can be initialized at declaration.
4	TC12_x_y_SPAN	Span for TC1 (4-byte float). If zero, the TC will be
		scaled as in the chart below. If specified, the new
		value will be ORG_VALUE * Span + Zero.
8, 16, 24,	TC12_x_y_ZERO	Zeros for TC2, TC3, TC4, to TC12 – Example: for C
32, 88		to F, use 32.0
12, 20, 28,	TC12_x_y_SPAN	Spans for TC2, TC3, TC4, to TC12 – Example for C to
36, 92		F, use 1.8
100	TC12_x_y_MODE	Point type for TC1; see Thermocouple type codes
		section for details.
101, 102,	TC12_x_y_MODE	Point types for TC2, TC3, TC4, to TC12.
103, 104,		
111		

Type codes for Thermocouple Points.

Type Code	Code	Range
0	В	Thermocouple: 100C – +1820C
1	E	Thermocouple: -270C – +1000C
2	J	Thermocouple: -210C – +1200C
3	К	Thermocouple: -270C – +1370C
4	R	Thermocouple: -50C – +1720C
5	S	Thermocouple: -50C – +1760C

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Type Code	Code	Range
6	Т	Thermocouple: -270C – +400C
7	Unused	Unused
8	10MV	Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)
9	С	Thermocouple: 0C – +2315C
10	Ν	Thermocouple: -270C – +1300C

CW_RTD8 - ControlWave 8 Point Resistance Temperature Device (RTD) Board

DRIVER_NAME	'CW_RTD8'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 40 by	tes

Due to the amount of time required to process the RTD points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 40ms.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0 (Bit 0)	RTD8_x_BOARDSTATUS	If set, the board is not present.
0 (Bit 2)	RTD8_x_CALIBRATE	If set indicates invalid calibration data written to the
		board.
0 (Bit 3)	RTD8_x_TIMEOUT	If set, indicates that had an error reading or writing
		to the board.
1 (Bit 0)	RTD8_x_LASTCALBOP	Set if last calibration or reset operation failed.
1 (Bit 7)	RTD8_x_CALBCMD	Calibration Commands Allowed. Until this bit is set,
		all calibration commands are ignored.
4	RTD8_x_y_READERR	RTD Reading Error. Bit 0 is RTD1, Bit 7 is RTD8
8	RTD8_x_y	RTD1 reading – REAL – In units of Degrees
		Centigrade (unless scaled by values in the output
		map).
12, 16,36	RTD8_x_y	Readings for RTD2 RTD8.

Output Map: Max Size: 280 bytes

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
0	RTD8_x_y_ZERO	Zero for RTD 1(4-byte float - REAL). Example: for
		C to F, use 32.0. Defaults to 0.0
4	RTD8_ <i>x_y</i> _SPAN	Span for RTD 1(4-byte float – REAL). If zero, RTD will not be scaled. If specified, the scaled value will be ORG_VALUE * Span + Zero. Example for C to F, use 1.8.

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
8,16,24,32	RTD8 x y ZERO	Zero for RTDs 2-8
40,48,56		
12,20,28,	RTD8 x y SPAN	Span for RTDs 2-8
36,44,52,		1 -
60		
120 (Bit 0) *	RTD8 x v RESTORE	If set, restore RTD 1 calibration to Factory
· · ·		Defaults. Will be reset when operation
		completes.
121 *	RTD8 x v OPERATION	Calibration Operation for RTD 1 – SINT
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A. B. R0)
		8 RTD Span (not using 300
		Ohms)
124 * *	RTD8 x v COEFF A	Coefficient A (RTD 1)
128 **	RTD8 x v COEFF B	Coefficient B (RTD 1)
132 * *	RTD8 x v COEFF R0	Coefficient R0 (RTD 1)
136 **	RTD8 x v APPLIED	The applied temperature when calibration
150		operation 8 was performed. (RTD 1)
140 (Bit 0) *	RTD8 x v RESTORE	If set restore RTD 2 calibration to Factory
110 (Bit 0)	KIDO_X_Y_KESTORE	Defaults Will be reset when operation
		completes.
141 *	RTD8 x v OPERATION	Calibration Operation for RTD 2 – SINT
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A. B. RO)
		8 RTD Span (not using 300
		Ohms)
144 **	RTD8 x y COEFF A	Coefficient A (RTD 2)
148 * *	RTD8 x v COEFF B	Coefficient B (RTD 2)
152 * *	RTD8 x v COEFF R0	Coefficient R0 (RTD 2)
156 * *	RTD8 x v APPLIED	The applied temperature when calibration
		operation 8 was performed. (RTD 2)
		·····
260 (Bit 0) *	RTD8 x v RESTORE	If set, restore RTD 8 calibration to Factory
		Defaults. Will be reset when operation
		completes.
261 *	RTD8 x v OPERATION	Calibration Operation for RTD 8 – SINT
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A. B. R0)
		8 RTD Span (not using 300 Ohms)
264*	RTD8 x v COEFF A	Coefficient A (RTD 8)
268**	RTD8 x v COEFF B	Coefficient B (RTD 8)
272**	RTD8 x v COEFF R0	Coefficient R0 (RTD 8)
276**	RTD8 x v APPLIED	The applied temperature when calibration

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
		operation 8 was performed. (RTD 8)

- * Value written to perform operation. The value will be reset by driver when the operation completes.
- ** Value is read from the board by the driver. In order to perform calibration operations 7 and 8, the user can overwrite the values; then, issue the calibration command.

Ethernet I/O

Data from Ethernet I/O units will be transferred to the process automation controller using a TCP/IP data link. The data link may be a dedicated Ethernet line or may have other IP traffic. Performance-critical applications should not be run in over a shared link.

A series of special I/O configuration modules, *boards*, will be defined to support Ethernet I/O. These modules are to be included by the application developer and a firmware driver will support each module. The drivers will be linked as a part of the system firmware for the controller. These drivers will provide a *front-end* to a common driver that hands TCP/IP communication, Modbus mapping and timing responsibilities. This driver will be responsible for exchanging data between the I/O configuration memory and the actual Ethernet I/O hardware units.

A special software program for Ethernet I/O configuration, called the **Remote I/O Toolkit**, is included as an installation option on the OpenBSI CD ROM.

A copy of the I/O image memory that supports the Ethernet I/O data will be held in a buffer controlled by the common driver. This driver will copy the data into the I/O image memory whenever a call is made to the driver's **read** member function. A read call will also initiate a communication request to refresh the image data from the remote hardware. Similarly, the I/O image memory will be copied into the driver's image buffer when the **write** member function of the driver is called.

Sending the data request message will be delayed, such that the response data will arrive just before the next scheduled driver read call. The driver will collect statistics, possibly a rolling average, in order to calculate the optimal amount of time to delay. Problems could occur in this optimal time calculation if either the request for data is not regular or the data link is not very consistent in response time.

To provide some indication of the freshness of the Ethernet I/O data, a *read request counter* is included in each input I/O configuration block. This counter will be incremented during the Read input portion of application task's execution. The increment will occur just after the image data is copied. The driver will clear this count while updating its internal image from a data response message. This way if a fresh block of data is received the counter will be zero, but if the data is the same as the last read request, the counter will be greater than zero.

The Open Modbus standard is supported using TCP/IP. The units contain an ID string, which will be used to verify that the proper unit type is mapped to an IP address. No other verification of the Ethernet I/O configuration will be performed. It is assumed that this function will be done using the Remote I/O Toolkit.

Also implemented are two general-purpose Open Modbus I/O boards to allow communication with other compliant hardware without requiring new firmware. One board will support input and the other output.

Bit	Bit Value	Meaning
0	1	Cannot communicate properly with Ethernet I/O module.
1	2	Communications can be established with the Ethernet I/O device, but, the data response cannot be properly parsed. This is most likely due to an invalid device type being configured.
3	8	Configuration Error. For units which support a device ID request, if this is set, the unit responded with an unexpected unit identifier.

Driver status for all board types is defined as follows:

The memory map of each module is described below.

BB_8DI8DO (8 Remote Digital Input and 8 Remote Digital Output Pin Ethernet I/O Board)

DRIVER_NAME:	'BB_8DI8DO'
DATA_TYPE:	ВУТЕ
DRIVER_PAR1:	always 0
DRIVER_PAR2 :	IP address - first and second quads.
DRIVER_PAR3:	IP address - third and fourth quads
DRIVER_PAR4:	Open Modbus Unit number - used for gateway chaining.
Input Map:	Max Size: 52 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RDIDO_x_DRIVERSTATUS	Driver status - see table above.
1	RDIDO_x_FRESHNESSCOUNT	Freshness counter.
4	RDIDO_x_y	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5-19		spare
20/23	RDIDO_x_y_COUNTER	If counter processing is enabled, the number of counts for DI1. A count is registered when the DI transitions from low to high. Note: Only a 16 bit counter is held, but a 32 bit value will be reported here. Roll over in the 16 bit counter will be carried into the 32-bit counts.
24/27,, 48/51	RDIDO_x_y_COUNTER	Counts for DI2,, DI8.

	Output Map:Size: 48 bytes	
Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RDIDO_x_y_O	Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.
		Typically specified as %QXy.z, where y is I/O space
		offset, and z is bit number from 0 to 7.
1-15		Spare
16	RDIDO_x_ACTIVATECOUNTER	Activate counters. 1 bit per point.
17	RDIDO_x_CLEARCOUNTER	Clear counters. Sets values back to 0. 1 bit per point.
18/19	RDIDO_ <i>x_y</i> _O_TPOVALUE	TPO value for DO point 1. 1 word / DO point for the
		Pulse count in the range 0 to 32767. See 'Tpo' and
		the 'Time Proportioned Output' topic in the Remote
		I/O Tool Kit on-line help for more information.
20/21,,	RDIDO_x_y_O_TPOVALUE	TPO value for DO points 2 8.
46/47		

Modbus Function Codes:	02 to read DI values @ 1 8
	04 to read Counter values @ 1 8
	$0F_h$ to set DO values @ 1 8

 10_h to set TPO values @ 1 ... 8

BB_16DI-(16 Remote Digital Input Pin Ethernet I/O Board)

DRIVER_NAME:	'BB_16DI'
DRIVER_PAR1:	always 0
DRIVER_PAR2:	IP address - first and second quads.
DRIVER_PAR3:	IP address - third and fourth quads
DRIVER_PAR4:	Open Modbus Unit number - used for gateway chaining.
Input Map:	Max Size: 84 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RDI_X_DRIVERSTATUS	Driver status - see table above.
1	RDI_x_FRESHNESSCOUNT	Freshness counter.
4	RDI_x_y	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5	RDI_x_y	Current status of DI9 (in bit 0) to DI16 (in bit 7).
6-19		Spare
20/23	RDI_x_y_COUNTER	If counter processing is enabled, the number of counts for DI1. A count is registered when the DI transitions from low to high. Note: Only a 16-bit counter is held, but a 32-bit value will be reported here. Roll over in the 16-bit counter will be carried
Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
------------------	--	-------------------------
		into the 32-bit counts.
24/27,, 80/83	RDI_x_y_COUNTER	Counts for DI2,, DI16.

Output Map:

Size: 4 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0/1	RDI_x_ACTIVATECOUNTER	Activate counters. 1 bit per point. Counters 1-8 in first
		byte, 9-16 in second.
2/3	RDI_x_CLEARCOUNTER	Clear counters. Sets values back to 0. 1 bit per point.

Modbus Function Codes:

02 to read DI values @ 1 ... 16

04 to read Counter values @ 1 ... 16

BB_16DO (16 Remote Digital Output Pin Ethernet I/O Board)

DRIVER_NAME:	'BB_16DO'
DATA_TYPE:	BYTE
DRIVER_PAR1:	always 0
DRIVER_PAR2:	IP address - first and second quads.
DRIVER_PAR3:	IP address - third and fourth quads
DRIVER_PAR4:	Open Modbus Unit number - used for gateway chaining.
Input Map:	Max Size: 2 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RDO_x_DRIVERSTATUS	Driver status - see table above.
1	RDO_x_FRESHNESSCOUNT	Freshness counter.

Output Map: Size: 48 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	siot and y is the pin number.	
0	RDO_ <i>x_y</i>	Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.
		Typically specified as %QXy.z, where y is I/O space
		offset, and z is bit number from 0 to 7.
1	RDO_x_y	Outputs. 1 bit per value. DO9 is LSB; DO16 is MSB.
2-15		spare
16/17	RDO_x_y_TPOVALUE	TPO value for DO point 1. 1 word / DO point for the
		Pulse count in the range 0 to 32767. See 'Tpo' and the
		'Time Proportioned Output' topic in the Remote I/O

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
		Tool Kit on-line help for more information.
18/19, ,	RDO_x_y_TPOVALUE	TPO for DO points 2 to 16.
46/47		

Modbus Function Codes: 0F_h to set DO values @ 1 ... 16

 $10_{\,h}$ to set TPO values @ 1 ... 16

BB_8DI8AI - (8 Remote Digital Input and 8 Remote Analog Input Pin Ethernet I/O Board)

Note:

For Proper functioning of the AIs, the Remote I/O Toolkit must be used to set the "Features" for each channel to be "Positive Only" or "- Below 4mA".

DRIVER_NAME:	'BB_8DI8AI'
DATA_TYPE:	ВҮТЕ
DRIVER_PAR1:	always 0
DRIVER_PAR2:	IP address - first and second quads.
DRIVER_PAR3:	IP address - third and fourth <i>quads</i>
DRIVER_PAR4:	Open Modbus Unit number - used for gateway chaining.
Input Map:	Max Size: 84 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RDIAI_x_DRIVERSTATUS	Driver status - see table above.
1	RDIAI_x_FRESHNESSCOUNT	Freshness counter.
4	RDIAI_x_y_DI	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5-19		Spare
20/23	RDIAI_x_y_DI_COUNTER	If counter processing is enabled, the number of counts for DI1. A count is registered when the DI transitions from low to high.
24/27,, 48/51	RDIAI_x_y_DI_COUNTER	Counts for DI2,, DI8.
52/55	RDIAI_x_y_AI	Value for Al1 in engineering units (4-byte float - REAL). To access the value, define the variable <i>%IDxx</i> . Direct access to %IDxx is not possible.
56/59,, 80/83	RDIAI_x_y_AI	Values for AI2 to AI8.

	Output Map: Size: 68 bytes	
Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RDIAI_x_ACTIVATECOUNTER	Activate counters. 1 bit per point. Typically specified as %QXy.z, where y is I/O space offset, and z is bit number from 0 to 7.
1	RDIAI_x_CLEARCOUNTER	Clear counters. Sets values back to 0. 1 bit per point.
4/7	RDIAI_x_y_AI_ZERO	Zero for AI1 (4-byte float - REAL). To access the value, define the variable % <i>QDxx</i> . This variable can be
		initialized at declaration.
8/11	RDIAI_x_y_AI_SPAN	Span for AI1 (4-byte float). If zero, the AI will be scaled from 0 to 100.0.
12/15	RDIAI_x_y_AI_ZERO	Zero for AI2.
16/19	RDIAI_x_y_AI_SPAN	Span for AI2.
20/23,, 64/67		Zeros and Spans for AI3 AI8.

Modbus Function Codes:

02 to read DI values @ 1 ... 8

04 to read Counter and AI values @ 1 ... 8

0F_h to set /clear counters @ 1 ... 8

BB_16AI (16 Remote Analog Input Pin Ethernet I/O Board)

Note:

For Proper functioning of the AIs, the Remote I/O Toolkit must be used to set the "Features" for each channel to be "Positive Only" or "- Below 4mA".

DRIVER_NAME:	'BB_16AI'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	always 0
DRIVER_PAR2:	IP address - first and second quads.
DRIVER_PAR3:	IP address - third and fourth quads
DRIVER_PAR4:	Open Modbus Unit number - used for gateway chaining.
Input Map:	Max Size: 68 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RAI_x_DRIVERSTATUS	Driver status - see table above.
1	RAI_x_FRESHNESSCOUNT	Freshness counter.
2/3		Spare

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
4/7	RAI_ <i>x_y</i>	Value for Al1 in engineering units (4-byte float - REAL). To access the value, define the variable <i>%IDxx</i> . Direct access to %IDxx is not possible.
8/11	RAI_x_y	Value for AI2
12/15,, 64/67	RAI_x_y	Values for AI3 to AI16.

Output Map: Max Size: 128 bytes per slot

To provide consistent scaling values across Application Warm Starts, this I/O region should be marked as **RETAIN**.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and <i>y</i> is the pin number.	
0/3	RAI_ <i>x_y</i> _ZERO	Zero for AI1 (4-byte float - REAL). To access the
		value, define the variable %QDxx. This variable can
		be initialized at declaration.
4/7	RAI_x_y_SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
8/11	RAI_x_y_ZERO	Zero for AI2.
12/15	RAI_x_y_SPAN	Span for AI2.
16/19		Zeros and Spans for AI3 AI16.
124/127		

Modbus Function Codes: 04 to read /

04 to read AI values @ 1 ... 16

BB_8AI4AO - (8 Remote Analog Input and 4 Remote Analog Output Pin Ethernet I/O Board)

Note:

Note: For Proper functioning of the Als, the Remote I/O Toolkit must be used to set the "Features" for each channel to be "Positive Only" or "- Below 4mA".

DRIVER_NAME:	'BB_8AI4AO'	
DATA_TYPE:	DWORD	(32 bits)
DRIVER_PAR1:	always 0	
DRIVER_PAR2:	IP address - first and sec	ond quads.
DRIVER_PAR3:	IP address - third and fourth quads	
DRIVER_PAR4:	Open Modbus Unit number - used for gateway chaining.	
Input Map:	Max Size: 36 bytes	

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RAIAO_x_DRIVERSTATUS	Driver status - see table above.
1	RAIAO_x_FRESHNESSCOUNT	Freshness counter.
2/3		spare
4/7	RAIAO_ <i>x_y</i>	Value for AI1 in engineering units (4-byte float -
		REAL). To access the value, define the variable <i>%IDxx</i> .
		Direct access to %IDxx is not possible.
8/11,,	RAIAO_x_y	Values for AI2 to AI8.
32/35		

Output Map: Max Size: 112 bytes

To provide consistent scaling values across Application Warm Starts, this I/O region should be marked as **RETAIN**.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0/3	RAIAO_x_y_ZERO	Zero for AI1 (4-byte float - REAL). To access the
		value, define the variable %QDxx. This variable can be
		initialized at declaration.
4/7	RAIAO_ <i>x_y_</i> SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
8/11, ,		Zeros and Spans for AI2 AI8.
28/31		
64/67	RAIAO_x_y_O_ZERO	Zero for AO1 (4-byte float - REAL). To access the
		value, define the variable %QDxx. This variable can be
		initialized at declaration.
68/71	RAIAO_x_y_O_SPAN	Span for AO1 (4-byte float). If zero, the AO will be
		scaled from 0 to 100.0.
72/75	RAIAO_x_y_O	Value for AO1 (4-byte float).
76/79,,		Zeros, Spans and Values for AO2 to AO4.
108/111		

Modbus Function Codes: 04 to read AI values @ 1 ... 8

 $10_{\,h}$ to set AO value @ 1 ... 4

BB_8INS (Instrumentation Ethernet I/O Board)

DRIVER_NAME:	'BB_8INS'	
DATA_TYPE:	DWORD	(32 bits)
DRIVER_PAR1:	always 0	
DRIVER_PAR2:	IP address - first and seco	ond quads.
DRIVER_PAR3:	IP address - third and fou	irth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map:

Max Size: 36 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RIN_x_DRIVERSTATUS	Driver status - see table above.
1	RIN_x_FRESHNESSCOUNT	Freshness counter.
2/3		Spare
4/7	RIN_ <i>x_y</i>	Value for Al1 in engineering units (4-byte float - REAL). To access the value, define the variable <i>%IDxx</i> . Direct access to %IDxx is not possible.
8/11,, 32/35	RIN_x_y	Values for AI2 to AI8.

Output Map: Max Size: 32 bytes

To provide consistent scaling values across Application Warm Starts, this I/O region should be marked as **RETAIN**.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0/3	RIN_ <i>x_y</i> _ZERO	Zero for AI1 (4-byte float - REAL). To access the
		value, define the variable %QDxx. This variable can be
		initialized at declaration.
4/7	RIN_x_y_SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
8/11, ,		Zeros and Spans for AI2 AI8.
28/31		

Modbus Function Codes: 04 to read Al values @ 1 ... 8

BB_8HSC-(8 Channel High Speed Counter Channel Ethernet I/O Board)

Note:

For proper functioning of the counters, the Remote I/O Toolkit must be used to set up for 32-bit counters. Also, the counts reported are the RAW counts from the module. No adjustment is performed to convert to counts since boot.

DRIVER_NAME:	'BB_8HSC'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	always 0
DRIVER_PAR2:	IP address - first and second quads.

DRIVER_PAR3:	IP address - third and fourth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 40 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RHSC_x_DRIVERSTATUS	Driver status - see table above.
1	RHSC_x_FRESHNESSCOUNT	Freshness counter.
2/3		Spare
4	RHSC_x_TIMESTAMP	Timestamp of last sample from HSC. This is the
		number of milliseconds since boot.
8	RHSC_x_y_COUNTER	Number of counts since boot (Channel 1)
12, 16,	RHSC_x_y_COUNTER	Counts for Channel 2, 3,, 8
, 36		

Modbus Function Codes: 04 to read HSC value @ 1 ... 8 (must read 2 16-bit register pairs per counter)

IPMB_INP (Open Modbus – Input Ethernet I/O Board)

DRIVER_NAME:	'IPMB_INP'
DATA_TYPE:	ВҮТЕ
DRIVER_PAR1:	Low Byte – Function Code (see below) - High byte undefined
DRIVER_PAR2:	IP address - first and second quads.
DRIVER_PAR3:	IP address - third and fourth quads
DRIVER_PAR4:	Modbus unit number.

Function Code:	Function Description:	Number of Bytes in Response: (N=requested elements)
01	Read Coil Status	N / 8
02	Read Input Status	N / 8
03	Read Holding Registers	2 * N
04	Read Input Registers	2 * N

Input Map: Max Size: (2 + requested size) bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RIN_x_DRIVERSTATUS	Driver status - see table above.
1	RIN_x_FRESHNESSCOUNT	Freshness counter.
4,		See function codes for size of responses in bytes -
		above.

Output Map: Max Size: 6

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0,1	RIN_x_STARTREGISTER	Modbus Register/Coil start address
2,3	RIN_X_NUMREGISTERS	Number of Registers or Coils.

Note:

The fields in the output map are only settable one time. Once a non-zero number is written to Offset 2,3, the request is defined and will start collecting.

IPMB_OUT (Open Modbus – Output - Ethernet I/O Board)

DRIVER_NAME:	'IPMB_OUT'
DATA_TYPE:	BYTE
DRIVER_PAR1:	Low Byte – Function Code (see below) - High byte undefined
DRIVER_PAR2:	IP address - first and second quads.
DRIVER_PAR3 :	IP address - third and fourth quads
DRIVER_PAR4:	Modbus unit number.

Function Code:	Function Description:	Number of Bytes in Response: (N=requested elements)
OF	Force Multiple Coils	N / 8
10	Set Multiple Registers	2 * N

Input Map:

Max Size: 2 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ROUT_X_DRIVERSTATUS	Driver status - see table above.
1	ROUT_x_FRESHNESSCOUNT	Freshness counter.

Output Map:

Max Size: 6 + data size - see above.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0,1	ROUT_ <i>x</i> _STARTREGISTER	Modbus Register/Coil start address
2,3	ROUT_x_NUMREGISTERS	Number of Registers or Coils.
4,		Data bytes to be output.

BB_4RTDI (RTD - Resistance Temperature Device Ethernet I/O Board)

Note:

For proper functioning of the RTDs, the Remote I/O Toolkit must be used to set the proper scaling range.

DRIVER_NAME:	'BB_4RTDI'
DATA_TYPE:	BYTE
DRIVER_PAR1:	always 0
DRIVER_PAR2:	IP address - first and second quads.
DRIVER_PAR3:	IP address - third and fourth quads
DRIVER_PAR4:	Open Modbus Unit number - used for gateway chaining.
Input Map:	Max Size: 52 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RTDDI_x_DRIVERSTATUS	Driver status - see table above.
1	RTDDI_x_FRESHNESSCOUNT	Freshness counter.
2-3		Spare
4	RTDDI_x_y_DI	Current status of DI1 (in bit 0) to DI4 (in bit 4).
5-19		Spare (for driver consistency)
20-23	RTDDI_x_y_DI_COUNTER	If counter processing is enabled, the number of
		counts for DI1. A count is registered when the DI
		transitions from low to high.
24-27	RTDDI_x_y_DI_COUNTER	Counts for DI2
28-31	RTDDI_x_y_DI_COUNTER	Counts for DI3
32-35	RTDDI_x_y_DI_COUNTER	Counts for DI4
36-39	RTDDI_x_y_AI	Value for RTD1 in engineering units (4-byte float -
		REAL). To access the value, define the variable <i>%Idxx</i> .
		Direct access to %Idxx is not possible.
40-43	RTDDI_ <i>x_y_</i> AI	Value for RTD2
44-47	RTDDI_x_y_AI	Value for RTD3
48-51	RTDDI_x_y_AI	Value for RTD4

Output Map: Size: 3 bytes

Offset	Default Variable Name where x is the board slot and y is the pin number.	Description
0	RTDDI_X_ACTIVATECOUNTER	Activate counters. 1 bit per point. Typically specified as %Qby.z, where y is I/O space offset, and z is bit number from 0 to 3.
1	RTDDI_x_CLEARCOUNTER	Clear counters. Set values back to 0. 1 bit per point.
2.0	RTDDI_X_DISPLAYTENTHS	Convert RTD values to tenths precision. Unit level control. True = tenths (BOOL).

Modbus Function Codes: 02 to read DI values @ 1 ... 4 04 to read Counter and AI values @ 1 ... 4 0Fh to set / clear counters @ 1 ... 4

ControlWave I/O Expansion Rack Boards

Common Status Information

The first two bytes of the input map contain status information, which is common to all Expansion Rack boards.

Byte	Bit	Description
0	0(0x1,1)	No board is present in the destination rack.
0	3 (0x8, 8)	Board type does not match the board installed in the rack.
0	4 (0x10, 16)	Communications lost with the expansion rack.
0	7 (0x80, 128)	Initial opening of channel to the expansion rack has not been completed.

Driver status for each I/O Expansion Rack board type is stored as an USINT.

ER_DO32 32 Digital Output Pin ControlWave I/O Expansion Rack Board

DRIVER_NAME:	'ER_DO32'
DATA_TYPE:	ВҮТЕ
DRIVER_PAR1:	Slot number
DRIVER_PAR2:	IP address - first half
DRIVER_PAR3:	IP address - second half
DRIVER_PAR4:	Specifies redundant board (0 = False, 1 = True)
Input Map:	Max Size: 8 bytes (6 bytes for 16 point)

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERDO_x_DRIVERSTATUS	Board Status (see Common Status Information
		section)
4-7	ERDO_x_y_I	DO status as seen by card. 1 bit per value.

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERDO_x_y	Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB. Typically specified as %QXy.z, where y is I/O space offset, and z is bit number from 0 to 7.
1-3	ERDO_x_y	Repeat for DO9-32. Offset 1 is DO9-16, 2 is DO17- 24, etc.

Output Map: Size: 4 bytes (2 bytes on 16 pt)

ER_DI32 32 Digital Input Pin ControlWave I/O Expansion Rack Board

DRIVER_NAME:	'ER_DI32'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	Slot number
DRIVER_PAR2:	IP address - first half
DRIVER_PAR3:	IP address - second half
DRIVER_PAR4:	Specifies redundant board (0 = False, 1 = True)
Input Map:	Max Size: 8 bytes (6 bytes for 16 pt)

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERDI_x_DRIVERSTATUS	Board status. (See Common Status Information
		section)
4	ERDI_x_y	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5	ERDI_x_y	Current status of DI9 (in bit 0) to DI16 (in bit 7).
6	ERDI_x_y	Current status of DI17 (in bit 0) to DI24 (in bit 7).
7	ERDI_ <i>x_y</i>	Current status of DI25 (in bit 0) to DI32 (in bit 7).

ER_AI16 16 Analog Input Pin ControlWave I/O Expansion Rack Board

DRIVER_NAME:	'ER_AI16'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	Slot number
DRIVER_PAR2:	IP address - first half
DRIVER_PAR3:	IP address - second half
DRIVER_PAR4:	Specifies redundant board (0 = False, 1 = True)
Input Map:	Max Size: 72 bytes (40 for 8 point)

Due to the amount of time required to process the AI points, it is highly recommended that the input region for this board be sized only as large as needed for the points used by the application.

Also, the I/O fetches should be programmed to only occur as fast as needed (via task association).

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERAI_X_DRIVERSTATUS	Board status. (see Common Status Information
		section)
2 (bit 1)	ERAI_X_LASTOPERATION	Bit 1 is set if the last conversion operation failed.
4-5	ERAI_ <i>x_y</i> _OUTRANGE	1 bit per AI, AI1 is bit 0, offset 1, AI8 is bit 7, offset
		1, AI9 is bit 0, offset 2. If set, input is Out-of-
		range.
8	ERAI_x_y	Value for Al1 in engineering units (4-byte float -
		REAL). To access the value, define the variable
		%IDxx. Direct access to %IDxx is not possible.
12, 16,	ERAI_x_y	Value for AI2, AI3,

Output Map: Max Size: 128 bytes (64 bytes for 8 point)

To provide consistent scaling values across Application Warm Starts, this I/O region should be marked as 'RETAIN'.

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERAI_ <i>x_y_</i> ZERO	Zero for Al1 (4-byte float – REAL). To access the value, define the variable <i>%QDxx</i> . This variable can be initialized at declaration.
4	ERAI_ <i>x_y</i> _SPAN	Span for AI1 (4-byte float - REAL). If zero, the AI will be scaled from 0 to 100.0.
8, 16, 24,	ERAI_ <i>x_y</i> _ZERO	Zeros for AI2, AI3,
12, 20, 28,	ERAI_x_y_SPAN	Spans for AI2, AI3,

ER_AO8 8 Analog Output Pin ControlWave I/O Expansion Rack Board

DRIVER_NAME:	'ER_AO8'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	Slot number
DRIVER_PAR2:	IP address - first half
DRIVER_PAR3:	IP address - second half
DRIVER_PAR4:	Specifies redundant board (0 = False, 1 = True)

Input Map:	Max Size: 72 bytes (Extra space reserved for future expansion up to
	AO16)

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERAO_x_DRIVERSTATUS	Board status. (See Common Status Information section)
2 (bit 1)	ERAO_X_LASTOPERATION	Bit 1 is set if the last conversion operation failed.
4	ERAO_ <i>x_y</i> _OUTRANGE	1 bit per AO, AO0 is bit 0, AO8 is bit 7. If set, output is Out-of-range.
8, 12,, 36	ERAO_x_y_ACTUAL	Actual output value for points 1 to 8. If output is out-of-range low the output will be constrained to the points Zero value. If output is 0-or high it will be set to the points Zero+Span value.
40, 44,, 68	ERAO_x_y_ACTUAL	Output values for points 9 to 16 (To allow for future expansion)

Output Map: Max Size: 268 bytes (Extra space reserved for future expansion up to AO16)

Due to the amount of time required to process the AO points, it is highly recommended that the output region for this board be sized only as large as needed for the points used by the application.

Also, the I/O sets should be programmed to only occur as fast as needed (via task association).

To provide consistent scaling values across Application Warm Starts, this I/O region should be marked as 'RETAIN'.

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and <i>y</i> is the pin number.	
0	ERAO_x_y_ZERO	Zero for AO1 (4-byte float - REAL). To access the
		value, define the variable %QDxx. This variable can
		be initialized at declaration.
4	ERAO_x_y_SPAN	Span for AO1 (4-byte float). If zero, the AO will be
		scaled from 0 to 100.0.
8	ERAO_x_y	Value for AO1 (4-byte float).
12, 24, 36,	ERAO_x_y_ZERO	Zeros for AO2, AO3, AO4, etc.
16, 28, 40,	ERAO_x_y_SPAN	Spans for AO2, AO3, AO4, etc.
20, 32, 44,	ERAO_x_y	Values for AO2, AO3, AO4, etc.
192	ERAO_x_y_DEF_VAL	Update Default Values for AO1 - AO16 (4-byte
		integer - DWORD). To access this value, define
		the variable %QX192.0. This variable can be
		initialized at declaration. Setting this bit to TRUE
		will write the default values for AO1 - AO16 to the
		AO hardware. After the default values are written
		to the board this variable will then be set back to
		FALSE.
196	ERAO_x_y_HOLD_LO	Hold Last Output (HLO) Control for AO1 - AO16

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
		(4-byte integer - DWORD). To access the values, define variables <i>%QXxxx.x</i> . This variable can be initialized at declaration. (192.0 for AO1, 192.1 for AO2, 193.7 for AO16)
200	ERAO_x_y_UCO_FLG	User Configured Output (UCO) Control for AO1 - AO16 (4-byte integer - DWORD). To access the value, define variables %QXxxx.x. This variable can be initialized at declaration. (196.0 for AO1, 196.1 for AO2, 197.7 for AO16)
204, 208, 212, 	ERAO_x_y_UCD_VAL	User Configured Default (UCD) Value for AO1, AO2, AO3, etc. (4-byte float - REAL). To access the value, define the variable <i>%QDxxx</i> . These variables can be initialized at declaration.

If neither Hold Last State or User Configured Output are enabled, for a point, the output will go to -5% if the unit watchdogs.

If Hold Last State and User Configured Output are both enabled at the same time, for the same point, neither will be the winner. If the unit watchdogs the output will fall back to - 5%.

ER_HSC12 12 Channel High Speed Counter ControlWave I/O Expansion Rack Board

DRIVER_NAME:	'ER_HSC12'
DATA_TYPE:	DWORD (32 bits)
DRIVER_PAR1:	Slot number
DRIVER_PAR2:	IP address - first half
DRIVER_PAR3:	IP address - second half
DRIVER_PAR4:	Specifies redundant board (0 = False, 1 = True)
Input Map:	Max Size: 68 bytes (44 bytes for 6 point)

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERHSC_x_DRIVERSTATUS	Board status (see Common Status Information
1	FRHSC X V STATE	Input channel state BOOL Offset 1 Bit 0 is for
		channel 1, Bit 1 is channel 2, etc. Each bit will
		reflect the state, either on or off, of the signal on
		its respective channel.
4	ERHSC_x_TIMESTAMP	Timestamp of last sample from HSC. This is the
		number of milliseconds since boot.
8	ERHSC_ <i>x_y</i> _COUNTER	Number of counts since boot (Channel 1)
12,16,20,, 52	ERHSC_ <i>x_y</i> _COUNTER	Counts for Channel 2, 3, 4,, 12

	Ouput Map: Max Size: 12 bytes	
Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
0	ERHSC_ <i>x_y</i> _RESET_COUNT	Reset point counts. BOOL Offset 0, Bit 0 is point 1
		Offset 1, bit 3 is point 12. Setting a bit to TRUE
		(1) will reset the count for the point selected. The
		driver will reset the bit after the count has been
		reset.
4	ERHSC_ <i>x_y_</i> FILTER	30ms/1ms filter select. Offset 4, Bit 0 represent
		Channel 1 to select 30ms (FALSE) and 1ms (TRUE)
		respectively. Offset 4, Bit 1 is Channel 2, Offset 5,
		Bit 3 is Channel 12.
8	ERHSC_x_y_HSC_SEL	High Speed Counter select. Offset 8, Bit 0
		represent Channel 1 to select High Speed Counter
		(TRUE). Offset 8, Bit 1 is Channel 2, Offset 9, Bit 3
		is Channel 12. Setting an HSC select bit to TRUE
		will override the 30ms/1ms selection for the same
		channel.

ER_STAT ControlWave I/O Expansion Rack Statistics Board

Note:

This is a virtual board; not a physical board in the controller.

DRIVER_NAME:	ER_STAT
DATA_TYPE:	ВҮТЕ
DRIVER_PAR1:	N/A
DRIVER_PAR2:	IP address - first half
DRIVER_PAR3:	IP address - second half
DRIVER_PAR4:	Specifies redundant board (0 = False, 1 = True)
Input Map:	728 bytes (from RIO)

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0-1	ERSTAT_X_BOARDSTATUS	Board status. Bit 0 - board is not present, Bit 1 -
		Message parse error, Bit 2 – Memory allocation error,
		Bit 3 - Board configuration error, Bit 4 –
		Communications error, Bit 7 - IP channel open in
		progress.
2-3		Spare
4 (bit 0)	ERSTAT_x_BATSTAT	Expanded IO Status. Battery OK
4 (bit 1)	ERSTAT_x_HOTCARDSTAT	Expanded IO Status. Hot card in progress,
4 (bit 2)	ERSTAT_x_MASTER_IS_B	Expanded IO Status- Is RIO B master?

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
4 (bit 3)	ERSTAT_X_STBYVALID	Expanded IO Status- Is the Standby RIO valid?
4 (bit 4)	ERSTAT_X_FAILOVERERR	Expanded IO Status- Fail-over error
5		Spare
6 (bit 0)	ERSTAT_X_RDN_IO_1_ERR	Failure, readback error, or mismatch with I/O board in
		redundant standby unit.
6 (bit 1)	ERSTAT_x_RDN_IO_2_ERR	Failure, readback error, or mismatch with I/O board in
		redundant standby unit.
6 (bit 2)	ERSTAT_X_RDN_IO_3_ERR	Failure, readback error, or mismatch with I/O board in
		redundant standby unit.
6 (bit 3)	ERSTAT_X_RDN_IO_4_ERR	Failure, readback error, or mismatch with I/O board in
a (1 + - c)		redundant standby unit.
6 (bit 4)	ERSTAT_X_RDN_IO_5_ERR	Failure, readback error, or mismatch with I/O board in
C (L:+ C)		Fedundant standby unit.
6 (DIT 5)	ERSTAT_X_RDN_IO_6_ERR	Failure, readback error, or mismatch with I/O board in
6 (bit 6)		Failure readback error, or mismatch with 1/O beard in
0 (DIL 0)		redundant standby unit
6 (bit 7)	FRSTAT X RDN IO 8 FRR	Failure readback error or mismatch with I/O board in
0(0107)		redundant standby unit
8-11	FRSTAT X HOTCARDCT	Hot card count
12-15	FRSTAT X DOWNTIMFUSER	32-Bit Count – Number of seconds (as configured by
		the user) that the I/O Expansion Rack can be powered
		off before the outputs are reset to defaults when the
		unit is powered back up.
16-19	ERSTAT_x_DOWNTIMEACT	32-Bit Count – Number of seconds that the I/O
		Expansion Rack was powered off on the last power
		fail.
20-23	ERSTAT_X_WRITECT	Number of messages written to Expanded IO.
24-27	ERSTAT_X_READCT	Number of update message sent to host.
28-31	ERSTAT_X_CONNECTS	Number of times the Expanded IO has connected to a
		host (open + close).
32-35	ERSTAT_X_HEARTBEAT	Number of heartbeat messages sent to a host.
36-41		Spare
42-126	ERSTAT_x_BDSTR1	Expanded IO local board string information for slot
127 211		
127-211	ERSTAT_X_BDSTR2	Expanded IO local board string information for slot
212 206		#2.
212-290		
207-281		T. Fynanded IO local board string information for slot
100-102		
382-466	FRSTAT x BDSTR5	Expanded IO local board string information for slot
502 700		#5.
467-551	ERSTAT x BDSTR6	Expanded IO local board string information for slot
		#6.
552-636	ERSTAT_x_BDSTR7	Expanded IO local board string information for slot

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
		#7.
637-722	ERSTAT_x_BDSTR8	Expanded IO local board string information for slot
724 727		#8.
/24-/2/	ERSTAT_X_REDUNSTAT	Redundancy status
728-812	ERSTAT_X_BDSTR9	Reserved for possible future use.
813-897	ERSTAT_x_BDSTR10	Reserved for possible future use.
898-982	ERSTAT_x_BDSTR11	Reserved for possible future use.
983-1067	ERSTAT_x_BDSTR12	Reserved for possible future use.
1068-	ERSTAT_x_BDSTR13	Reserved for possible future use.
1152		
1153-	ERSTAT_x_BDSTR14	Reserved for possible future use.
1237		
1240	ERSTAT_X_INPUTVOLTS	Float – Reading (in volts) of power-supply input voltage.

Output Map: 4 bytes (to RIO)

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERSTAT_X_FAILOVER_O	Bit 0 - Force redundant Expanded IO to become standby unit.
1	ERSTAT_RDN_IOERR_WARN	When set TRUE, I/O errors are treated only as warnings. When FALSE, I/O errors disable redundancy.
2-3		Spare

ER_TC12 ControlWave I/O Expansion Rack- 12 Point Thermocouple Board

DRIVER_NAME	'ER_TC12'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes o	of Primary IP address
DRIVER_PAR3	Lower two bytes	s of Primary IP address
DRIVER_PAR4	If Bit 0 is 1, this i	s a redundant Expansion Rack
Input Map:	Max Size: 56 byt	es

Due to the amount of time required to process the thermocouple points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 40ms.

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERTC_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
2 (Bit 2)	ERTC_x_CALIBRATE	If set indicates invalid calibration data written to the
		board.
2 (Bit 3)	ERTC_X_TIMEOUT	If set, indicates that had an error reading or writing
		to the board.
4	ERTC_ <i>x_y</i> _OUTRANGE	1 bit per TC, TC1 is bit 0, TC8 is bit 7. If set, input is
		Out-of-range.
5	ERTC_ <i>x_y_</i> OUTRANGE	1 bit per TC, TC9 is bit 0, TC12 is bit 3. If set, input is
		Out-of-range.
8	ERTC_ <i>x_y</i>	Value for TC1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		<i>%IDxx</i> . Direct access to <i>%IDxx</i> is not possible.
12, 16, 20,	ERTC_ <i>x_y</i>	Value for TC2, TC3, TC4, TC5, TC6 TC12
24, 52		

Output Map: Max Size: 112 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERTC_x_y_ZERO	Zero for TC1 (4-byte float - REAL). To access the
		value, define the variable <i>AT %QDxx</i> . This variable
		can be initialized at declaration.
4	ERTC_ <i>x_y_</i> SPAN	Span for TC1 (4-byte float). If zero, the TC will be
		scaled as in the chart below. If specified, the new
		value will be ORG_VALUE * Span + Zero.
8, 16, 24,	ERTC_x_y_ZERO	Zeros for TC2, TC3, TC4, to TC12 – Example: for C
32, 88		to F, use 32.0
12, 20, 28,	ERTC_x_y_ZERO	Spans for TC2, TC3, TC4, to TC12 – Example for C to
36, 92		F, use 1.8
100	ERTC_x_y_MODE	Point type for TC1; see Thermocouple type codes
		section for details.
101, 102,	ERTC_x_y_MODE	Point types for TC2, TC3, TC4, to TC12.
103, 104,		
111		

Type codes for Thermocouple Points.

Type Code	Code	Range
0	В	Thermocouple: 100C – +1820C
1	E	Thermocouple: -270C – +1000C
2	J	Thermocouple: -210C – +1200C
3	К	Thermocouple: -270C – +1370C
4	R	Thermocouple: -50C – +1720C
5	S	Thermocouple: -50C – +1760C

Type Code	Code	Range
6	Т	Thermocouple: -270C – +400C
7	Unused	Unused
8	10MV	Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)
9	С	Thermocouple: 0C – +2315C
10	N	Thermocouple: -270C – +1300C

ER_RTD8 - ControlWave I/O Expansion Rack – 8 Point Resistance Temperature Device (RTD) Board

DRIVER_NAME	'ER_RTD8'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes of Primar	y IP address
DRIVER_PAR3	Lower two bytes of Prima	ary IP address
DRIVER_PAR4	If Bit 0 is 1, this is a redur	idant Expansion Rack
Input Map:	Max Size: 40 bytes	

Due to the amount of time required to process the RTD points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 40ms.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERRTD_X_DRIVERSTATUS	Board Status. See Common Status Information
		section.
2 (Bit 2)	ERRTD_X_CALIBRATE	If set indicates invalid calibration data written to the
		board.
2 (Bit 3)	ERRTD_X_TIMEOUT	If set, indicates that had an error reading or writing
		to the board.
3 (Bit 0)	ERRTD_x_LASTCALBOP	Set if last calibration or reset operation failed.
3 (Bit 7)	ERRTD_X_CALBCMD	Calibration Commands Allowed. Until this bit is set,
		all calibration commands are ignored.
4	ERRTD_x_y_READERR	RTD Reading Error. Bit 0 is RTD1, Bit 7 is RTD8
8	ERRTD_ <i>x_y</i>	RTD1 reading – REAL – In units of Degrees
		Centigrade (unless scaled by values in the output
		map).
12, 16,36	ERRTD_x_y	Readings for RTD2 RTD8.

Output Map:	
-------------	--

Max Size: 280 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERRTD_x_y_ZERO	Zero for RTD 1(4-byte float - REAL). Example: for

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and v is the pin number.	
		C to F. use 32.0. Defaults to 0.0
4	ERRTD_x_y_SPAN	Span for RTD 1(4-byte float – REAL). If zero, RTD
		will not be scaled. If specified, the scaled value
		will be ORG_VALUE * Span + Zero. Example for
		C to F, use 1.8.
8,16,24,32	ERRTD_x_y_ZERO	Zero for RTDs 2-8
40,48,56		
12,20,28,	ERRTD_x_y_SPAN	Span for RTDs 2-8
36,44,52,		
60		
64		NOT USED; RESERVED FOR FUTURE USE
65,66,67,		NOT USED; RESERVED FOR FUTURE USE
68,69		
100	ERRTD_x_y_MODE	RTD 1 Type
101,102	ERRTD_x_y_MODE	RTDs 2-8 Type
103,104		
105,106,		
107		
120 (Bit 0) *	ERRTD_x_y_RESTORE	If set, restore RTD 1 calibration to Factory
		Defaults. Will be reset when operation
		completes.
121 *	ERRTD_x_y_OPERATION	Calibration Operation for RTD 1 – SINT
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A, B, R0)
		8 RTD Span (not using 300 Ohms)
124 * *	ERRTD_x_y_COEFF_A	Coefficient A (RTD 1)
128 * *	ERRTD_x_y_COEFF_B	Coefficient B (RTD 1)
132 * *	ERRTD_x_y_COEFF_R0	Coefficient R0 (RTD 1)
136 * *	ERRTD_x_y_APPLIED	The applied temperature when calibration
		operation 8 was performed. (RTD 1)
140 (Bit 0) *	ERRTD_x_y_RESTORE	If set, restore RTD 2 calibration to Factory
		Defaults. Will be reset when operation
		completes.
141 *	ERRTD_x_y_OPERATION	Calibration Operation for RTD 2 – SINT
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A, B, R0)
		8 RTD Span (not using 300 Ohms)
144*	ERRTD_x_y_COEFF_A	Coefficient A (RTD 2)
148**	ERRTD_x_y_COEFF_B	Coefficient B (RTD 2)
152*	ERRTD_x_y_COEFF_R0	Coefficient R0 (RTD 2)
156**	ERRTD_x_y_APPLIED	The applied temperature when calibration
		operation 8 was performed. (RTD 2)
		·····
260 (Bit 0) *	ERRTD_x_y_RESTORE	If set, restore RTD 8 calibration to Factory

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and <i>y</i> is the pin number.	
		Defaults. Will be reset when operation
		completes.
261 *	ERRTD_x_y_OPERATION	Calibration Operation for RTD 8 – SINT
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A, B, R0)
		8 RTD Span (not using 300 Ohms)
264**	ERRTD_x_y_COEFF_A	Coefficient A (RTD 8)
268**	ERRTD_ <i>x_y</i> _COEFF_B	Coefficient B (RTD 8)
272**	ERRTD_x_y_COEFF_R0	Coefficient R0 (RTD 8)
276**	ERRTD_x_y_APPLIED	The applied temperature when calibration
		operation 8 was performed. (RTD 8)

- * Value written to perform operation. The value will be reset by driver when the operation completes.
- ** Value is read from the board by the driver. In order to perform calibration operations 7 and 8, the user can overwrite the values; then, issue the calibration command.

Local I/O – ControlWave MICRO-series

The following sections describe the local I/O boards supported, and their memory maps.

Offset 0 of the input map defines the board status. All boards support bit 0, which is set if the board is not present.

CWM_DO16 - ControlWave MICRO 16 pin Digital Output Board

DRIVER_NAME	'CWM_DO16'
DATA_TYPE	BYTE
DRIVER_PAR1	slot number.
Input Map:	Max Size: 6 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	DO16_x_BOARDSTATUS	Board status.
4,5	DO16_x_y_I	DO status as seen by card. 1 bit per value.

Output Map: Size: 5 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	DO16_x_y	Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
		Typically specified as %QXy.z, where y is I/O space offset, and z is bit number from 0 to 7.
1	DO16_x_y	Outputs 9 to 16.
4	DO16_x_LEDSTATUS	Single bit. If bit is set, the diagnostic LEDS for the points are turned off to save power.

CWM_DI16 - ControlWave MICRO 16 pin Digital Input Board

DRIVER_NAME	'CWM_DI16'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1 s	lot number.	
Input Map:	Max Size: 8 byte	S

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number	
0	DI16_x_BOARDSTATUS	Board status.
4	DI16_x_y	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5	DI16_ <i>x_y</i>	Current status of DI9 (in bit 0) to DI16 (in bit 7).

	Output Map:	Size: 5 bytes	
Offset	Default Variable Name when slot and y is the pin number	e x is the board	Description
4	DI16_x_LEDSTATUS		Single bit. If bit is set, the diagnostic LEDS for the points are turned off to save power.

CWM_MD – ControlWave MICRO - Mixed Digital Board 12 Digital Input Pins / 4 Digital Output Pins

DRIVER_NAME	'CWM_MD'
DATA_TYPE	BYTE
DRIVER_PAR1	slot number.
Input Map:	Max Size: 9 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number	
0	DIDO_x_BOARDSTATUS	Board status.
4	DIDO_x_y	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5	DIDO_x_y	Current status of DI9 (in bit 0) to DI12 (in bit 3).
8	DIDO_x_y_O_I	DO status as seen by card. 1 bit per value.

	Output Map: Size: 5 bytes	
Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number	
0	DIDO_x_y_O	Outputs. 1 bit per value. DO1 is LSB; DO4 is MSB.
		Typically specified as %QXy.z, where y is I/O space
		offset, and z is bit number from 0 to 3.
4	DIDO_x_LEDSTATUS	Single bit. If bit is set, the diagnostic LEDS for the
		points are turned off to save power.

CWM_AI8 - ControlWave MICRO 8 Analog Input Pin Board

DRIVER_NAME	'CWM_AI8'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 40 bytes	

Due to the amount of time required to process the AI points, it is highly recommended that the input region for this board be sized only as large as needed for the points used by the application.

Also, the I/O fetches should be programmed to only occur as fast as needed.

Offset	Default Variable Name where	Description
	<i>x</i> is the board slot and <i>y</i> is the	
	pin number.	
0 (bit 0)	AI8_ <i>x_y_</i> BOARDSTATUS	Board status. Bit 0 is set if board is not present.
0 (bit 2)	AI8_x_CALIBRATE	Calibration error. Bit set on error. Indicates a serious hardware failure
		on the board.
0 (bit 3)	AI8_x_TIMEOUT	Timeout – If board timeout occurs, bit set. Indicates a serious
		hardware failure on the board.
4	AI8_ <i>x_y_</i> OUTRANGE	1 bit per AI, AI1 is bit 0, AI8 is bit 7. If set, input is Out-of-range.
8	AI8_ <i>x_y</i>	Value for AI1 in engineering units (4-byte float – REAL). To access the
		value, define the variable <i>AT %IDxx</i> . Direct access to %IDxx is not
		possible.
12, 16,	AI8_ <i>x_y</i>	Value for AI2, AI3,

Output Map:

Max Size: 64 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the	Description
	pin number.	
0	AI8_ <i>x_y</i> _ZERO	Zero for AI1 (4-byte float - REAL). To access the value, define
		the variable <i>AT %QDxx</i> . This variable can be initialized at
		declaration.
4	AI8_ <i>x_y_</i> SPAN	Span for AI1 (4-byte float). If zero, the AI will be scaled from
		0 to 100.0.

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
8, 16, 24,	AI8_x_y_ZERO	Zeros for AI2, AI3,
12, 20, 28,	AI8_ <i>x_y_</i> SPAN	Spans for AI2, AI3,
64, 72, 80,	AI8_x_y_BOTTOMRANGE	Bottom end of usable current / voltage range for this input. Specified as a REAL. For example, for a 1-5V input, this value is 1.0.
68, 76, 84,	AI8_x_y_TOPRANGE	Top end of usable current / voltage range for this input. Specified as a REAL. For example, for a 1-5V input, this value is 5.0.
128	AI8_x_y_MODE	Mode - 1 bit per AI; set TRUE if the point is voltage; FALSE if current.

CWM_AO4 – ControlWave MICRO 4 Analog Output Pin Board

DRIVER_NAME	'CWM_AO4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 24 bytes	

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0 (bit 0)	AO4_x_BOARDSTATUS	Board status. Bit 0 is set if board is not present; Bit 1 is set
		if the last conversion operation failed.
0 (bit 2)	AO4_x_CALIBRATE	Calibration error. Bit set on error. Indicates a serious
		hardware failure on the board.
0 (bit 3)	AO4_x_TIMEOUT	Timeout – If board timeout occurs, bit set. Indicates a
		serious hardware failure on the board.
6	AO4_ <i>x_y</i> _OUTRANGE	1 bit per AO, AO0 is bit 0, AO4 is bit 3. If set, output is
		Out-of-range.
8,12,16,20	AO4_x_y_ACTUAL	Real value of value actually output. Clamped to 0-100% of
		scale.

Output Map: Max Size: 48 bytes

Due to the amount of time required to process the AO points, it is highly recommended that the output region for this board be sized only as large as needed for the points used by the application.

Also, the I/O sets could be programmed to only occur as fast as needed.

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
0	AO4_x_y_ZERO	Zero for AO1 (4-byte float - REAL). To access the value,

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
		define the variable <i>AT %QDxx</i> . This variable can be
		initialized at declaration.
4	AO4_x_y_SPAN	Span for AO1 (4-byte float). If zero, the AO will be scaled
		from 0 to 100.0.
8	AO4_x_y	Value for AO1 (4-byte float).
12, 24,	AO4_x_y_ZERO	Zeros for AO2, AO3, AO4
36		
16, 28,	AO4_x_y_SPAN	Spans for AO2, AO3, AO4
40		
20, 32,	AO4_x_y	Values for AO2, AO3, AO4
44		

CWM_MA – ControlWave MICRO - Mixed Analog Board - 6 Analog Input Pin / 2 Analog Output Pin Board

DRIVER_NAME	'CWM_MA'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 40 bytes	

Due to the amount of time required to process the AI points, it is highly recommended that the input region for this board be sized only as large as needed for the points used by the application.

Also, the I/O fetches should be programmed to only occur as fast as needed.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0 (bit 0)	AIAO_x_BOARDSTATUS	Board status. Bit 0 is set if board is not present (or if
		either Bit 2 or Bit 3 is set).
0 (bit 2)	AIAO_x_CALIBRATE	Calibration error. Bit set on error. Indicates a serious
		hardware failure on the board.
0 (bit 3)	AIAO_X_TIMEOUT	Bit 3 is set to indicate that a board data read has
		timed out. Indicates a serious hardware failure on the
		board.
4	AIAO_ <i>x_y</i> _OUTRANGE	1 bit per AI, AI1 is bit 0, AI6 is bit 5. If set, input is
		Out-of-range.
6	AIAO_ <i>x_y</i> _O_OUTRANGE	1 bit per AO, AO0 is bit 0, AO2 is bit 1. If set, output
		is Out-of-range.
8	AIAO_x_y	Value for AI1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		%IDxx. Direct access to %IDxx is not possible.
12, 16,	AIAO_ <i>x_y</i>	Value for AI2, AI3,
32,36	AIAO_x_y_O_ACTUAL	Value actually written to AO – clamped to 0-100%.

Output Map:	Max Size: 72 bytes

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and <i>y</i> is the pin number.	
0	AIAO_x_y_ZERO	Zero for AI1 (4-byte float - REAL). To access the value,
		define the variable AT %QDxx. This variable can be
		initialized at declaration.
4	AIAO_x_y_SPAN	Span for AI1 (4-byte float). If zero, the AI will be scaled
		from 0 to 100.0.
8, 16, 24,	AIAO_ <i>x_y</i> _ZERO	Zeros for AI2, AI3,
12, 20,	AIAO_ <i>x_y</i> _SPAN	Spans for AI2, AI3,
28,		
48,60	AIAO_x_y_O_ZERO	Zeros for AO1, AO2
52,64	AIAO_x_y_O_SPAN	Spans for AO1, AO2
56, 68	AIAO_x_y_O	Values for AO1, AO2

CWM_AI6 - ControlWave MICRO - 6 Analog Input Pin Board

DRIVER_NAME	'CWM_AI6'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 40 byt	es

Due to the amount of time required to process the AI points, it is highly recommended that the input region for this board be sized only as large as needed for the points used by the application.

Also, the I/O fetches should be programmed to only occur as fast as needed.

Offset	Default Variable Name where <i>x</i> is the board	Description	
	slot and y is the pin number.		
0 (bit 0)	AI6_x_BOARDSTATUS	Board status. Bit 0 is set if board is not present (or if	
		either Bit 2 or Bit 3 is set);	
0 (bit 2)	AI6_x_CALIBRATE	Calibration error. Bit set on error. Indicates a serious	
		hardware failure on the board.	
0 (bit 3)	AI6_x_TIMEOUT	Bit 3 is set to indicate that a board data read has	
		timed out. Indicates a serious hardware failure on the	
		board.	
4	AI6_ <i>x_y</i> _OUTRANGE	1 bit per AI, AI1 is bit 0, AI6 is bit 5. If set, input is	
		Out-of-range.	
6		Unused	
8	AI6_ <i>x</i> _ <i>y</i>	Value for AI1 in engineering units (4-byte float -	
		REAL). To access the value, define the variable AT	
		<i>%IDxx</i> . Direct access to <i>%IDxx</i> is not possible.	
12, 16,	AI6_x_y	Value for AI2, AI3,	
32 to 36		Unused	

	Output Map: Max Size: 72 by	/tes
Offset	Default Variable Name where x is the board	Description
	slot and y is the pin number.	
0	AI6_x_y_ZERO	Zero for AI1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
4	AI6_ <i>x_y_</i> SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
8, 16, 24,	AI6_x_y_ZERO	Zeros for AI2, AI3,
12, 20,	AI6_ <i>x_y_</i> SPAN	Spans for AI2, AI3,
28,		
48 to 68		Unused

CWM_HSC4 – ControlWave MICRO - 4 channel High Speed Counter Board

DRIVER_NAME	'CWM_HSC4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 24 bytes	

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	HSC4_x_BOARDSTATUS	Board status. Only bit 0 is currently defined. If
		set, board is not present.
4	HSC4_x_TIMESTAMP	Timestamp of last sample from HSC. This is the number of milliseconds since boot.
8	HSC4_x_y_COUNTER	Number of counts since boot (Channel 1)
12, 16, 20	HSC4_x_y_COUNTER	Counts for Channel 2, 3, 4

Output Map:

Size: 8 bytes

Offset	Default Variable Name where x is the board	Description
	slot and y is the pin number.	
0	HSC4_x_y_RESET_COUNT	Counter reset flags, HSC1 (in bit 0) to HSC4 (in bit 3)
2	HSC4_x_NOINIT	Bit 1 – If set to TRUE, maintain counts across warm
		start.
4	HSC4_x_LEDSTATUS	Single bit. If bit is set, the diagnostic LEDS for the

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
		points are turned off to save power.

CWM_BAT – ControlWave MICRO Battery (Voltage) Monitor

DRIVER_NAME	'CWM_BAT'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number should	be specified as 0.
Input Map:	Max Size: 8 bytes	

Due to the expense of performing the A-to-D conversion for this value, this input should be fetched only when needed.

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	BAT_x_STATUS	Board status. Board is always present, therefore is always 0.
4	BAT_x_READING	Value for Input Voltage in engineering units (4-byte float – REAL – 0 to 32V range). To access the value, define the variable <i>AT %IDxx</i> . Direct access to %IDxx is not possible.

CWM_MIX - ControlWave MICRO - 6 DI/O, 4AI, 1AO (optional), 2 HSC - Mixed I/O Board

This card contains the following I/O: DIO 6, AI4, AO1 (optional), and HSC2

DRIVER_NAME	'CWM_MIX'
DATA_TYPE	DWORD
DRIVER_PAR1	slot number.
Input Map:	Max Size: 68 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0 (bit 0)	MIX_x_BOARDSTATUS	Board status.
0 (bit 2)	MIX_x_CALIBRATE	Calibration error. Bit set on error. Indicates a serious
		hardware failure on the board.
0 (bit 3)	MIX_x_TIMEOUT	Timeout – If board timeout occurs, bit set. Indicates
		a serious hardware failure on the board.
4	MIX_x_y_AI_OUTRANGE	Al under / over range. One bit per point: Al1 in bit 0,
		Al4 in bit 3.
6	MIX_x_y_AO_OUTRANGE	AO under / over range. AO1 is in bit 0.
8	MIX_x_y_DI	Current status of DI1 (in bit 0) to DI6 (in bit 5).
10	MIX_x_y_DO_I	Read-back of current value for DO1 (in bit 0) to DO6

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
		(in bit 5).
12	MIX_x_TIMESTAMP	Timestamp of last sample from HSC. This is the
		number of milliseconds since boot.
16	MIX_x_y_COUNTER	Number of counts since boot (Channel 1)
20	MIX_x_y_COUNTER	Counts for Channel 2
32	MIX_x_y_AI	Value for AI1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		%IDxx. Direct access to %IDxx is not possible.
36, 40,	MIX_x_y_AI	Value for AI2, AI3,
64	MIX_x_y_AO_ACTUAL	Value actually written to AO – clamped to 0-100%.

Output Map:

Size: 84 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	MIX_x_y_DO	Outputs. 1 bit per value. DO1 is LSB; DO6 is MSB.
		Typically specified as %QXy.z, where y is I/O space
		offset, and z is bit number from 0 to 5.
2	MIX_x_y_RESET_COUNT	Counter reset flags, HSC1 (in bit 0) to HSC2 (in bit 1)
4 (Bit 0)	MIX_x_LEDSTATUS	Bit 0 - If bit is set, the diagnostic LEDS for the points
		are turned off to save power.
4 (Bit 1)	MIX_x_NOINIT	Bit 1 – If set to TRUE, maintain counts across warm
		start.
8	MIX_x_y_AI_ZERO	Zero for AI1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
12	MIX_x_y_AI_SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
16, 24,	MIX_x_y_AI_ZERO	Zeros for AI2, AI3, AI4
32		
20, 28,	MIX_x_y_AI_SPAN	Spans for AI2, AI3, AI4
36		
72	MIX_x_y_AO_ZERO	Zero for AO1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
76	MIX_x_y_AO_SPAN	Span for AO1 (4-byte float). If zero, the AO will be
		scaled from 0 to 100.0.
80	MIX_x_y_AO	Value for AO1 (4-byte float).

CWM_SCB – ControlWave EFM System Controller Board

Firmware release 04.20 supports the battery (incoming) voltage reading only. Unless otherwise noted, firmware release 04.30 and newer supports all of the items shown, below.

DRIVER_NAME	'CWM_SCB'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number should be s	pecified as 0.
Input Map:	Max Size: 40 bytes	

Offset	Default Variable Name	Description	
	where <i>x</i> = board slot number		
0 (Bit 0)	SCB_x_BOARDSTATUS	Board status. If SCB is present, will be FALSE; if Micro Power	
		Supply is present, it will be TRUE.	
0 (Bit 1)	SCB_x_PSRDERR	Pressure Reading Error. If set, pressure reading is not valid.	
0 (Bit 2)	SCB_x_PSRDINITERR	Pressure Reading – Initialization failure – no retry performed on	
		this error.	
0 (Bit 3)	SCB_x_PSRDCOMMERR	Pressure Reading – Communications failure – will be retried.	
0 (Bit 4)	SCB_x_PSRDNORESET	Pressure Reading – Wet End has been changed without power	
		reset.	
0 (Bit 5)	SCB_X_RTDRDERR	RTD Reading Error.	
0 (Bit 6)	SCB_x_BATRDERR	Battery Voltage Reading Error.	
0 (Bit 7)	SCB_x_ALLOWCALIB	Calibration Commands Allowed. Until this bit is set, all calibration	
		commands are ignored.	
1 (Bit 0)	SCB_x_LASTCALBOP	Set if last calibration or reset operation failed.	
3	SCB_x_BOARDPRESENT	I/O board present. See Board Type Table code numbers, later in	
		this section.	
4	SCB_x_INVOLT	Value for Input Voltage in engineering units (4-byte float – REAL –	
		0 to 32V range).	
8	SCB_x_DP	Differential Pressure – REAL – In units of Inches of Water (inH20)	
		or PSI. The units used depend on the range type of the connected	
		transmitter (see chart below).	
12	SCB_x_SP	Static Pressure – REAL – In units of Pounds per Square Inch (PSI).	
16	SCB_X_RTD	RTD reading – REAL – In units of Degrees Centigrade.	
20	SCB_x_TEMP	Estimated Sensor Temperature – REAL – In units of Degrees	
		Centigrade.	
24	SCB_x_SENSORID	Sensor ID (Block Number) –INT	
26	SCB_x_SENORSERIES	Sensor Series - SINT	
28	SCB_x_SENSORTYPE	Sensor Type – SINT	
29	SCB_x_DPRANGE	DP Range Code – SINT	
30	SCB_x_SPRANGE	SP Range Code – SINT	
31 (Bit 0)	SCB_x_DPENABLE	Differential Pressure Processing is enabled.	
32 (Bit 0)	SCB_x_SPENABLE	Static Pressure Processing is enabled.	
33 (Bit 0)	SCB_x_RTDENABLE	RTD Processing is enabled.	
36	SCB_x_LASTOPERR	DWORD – Specific Error for last operation – See codes below.	

Offset	Default Variable Name where <i>x</i> = board slot number	Description
40	SCB_x_MSPTEMP	Not applicable; not used for this platform.

Transmitter types:

Sensor Type	DP Range Code	Range / Units
32 (Differential Pressure)	12	150 InH20
32 (Differential Pressure)	13	100 InH20
32 (Differential Pressure)	14	300 InH20
32 (Differential Pressure)	20	25 psi
12 (Gauge Pressure)	14	300 InH20
12 (Gauge Pressure)	20	25 psi
12 (Gauge Pressure)	22	100 psi
12 (Gauge Pressure)	23	300 psi
12 (Gauge Pressure)	25	1000 psi
12 (Gauge Pressure)	26	3000 psi
12 (Gauge Pressure)	28	2000 psi
12 (Gauge Pressure)	29	4000 psi

Note: If DP Range Code is < 20, units are InH20, if >= 20, units are psi.

Sensor Type	SP Range Code	Range / Units
32 (Differential Pressure)	1	1000 psi
32 (Differential Pressure)	2	2000 psi
32 (Differential Pressure)	3	500 psi
32 (Differential Pressure)	4	4000 psi

Specific Error Codes (this is an addition of the following bit values:

- 0x00000001 Could not erase MSP Info memory
- 0x0000002 Could not write MSP Info memory
- 0x00000004 Checksum failure in Serial EEP.
- 0x0000008 Flash checksum failure in Sensor.
- 0x00000010 Flash checksum failure in MSP Info.
- 0x00000100 DP Could not initialize the SA.
- 0x00000200 DP SA flash checksum error.
- 0x00000400 DP Data error after Init done.
- 0x00000800 DP Data error during scan.
- 0x00001000 DP Data scan error.
- 0x00010000 SP Could not initialize the SA.
- 0x00020000 SP SA flash checksum error.

0x00040000	SP - Data error after Init done.
0x00080000	SP - Data error during scan.
0x00100000	SP - Data scan error.
0x01000000	Could not initialize the ADS.
0x02000000	Data scan error.
0x04000000	RTD out of range.
0x08000000	Temperature calculation error.
Output Map:	Max Size: 28 bytes

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
0 (Bit 0)*	SCB_x_RESTOREDP	Restore Factory Calibration Values for Differential Pressure.
1 (Bit 0)*	SCB_x_RESTORESP	Restore Factory Calibration Values for Static Pressure.
2 (Bit 0)*	SCB_x_RESTORERTD	Restore Factory Values for RTD.
3 * *	SCB_x_CALIBOP	Perform Calibration Operation – SINT
		1 DP Zero
		2 DP Span
		3 SP Zero
		4 SP Span
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A, B, R0)
		8 RTD Span (not using 300 Ohms)
8 * *	SCB_x_DPSPAN	DP Applied at DP Span Calibration – REAL – Units of Inches of Water
12 **	SCB_x_SPSPAN	SP Applied at SP Span Calibration – REAL – Units of Pounds per Square Inch.
16 * * *	SCB_x_RTDA	RTD Coeff – A
20 * * *	SCB_x_RTDB	RTD Coeff – B
24 ***	SCB_x_RTDR0	RTD Coeff – R0
28	SCB_x_RTDSPAN	The applied temperature when calibration operation 8 was performed (RTD 8).

Value is cleared by the driver when the operation completes.

- ** Value is read from the hardware at startup and after any calibration operation. User changes to this value only can be made when Bit 7 of Offset 0 in the input map is set.
- *** Same as **; but, reserved for future expansion.

Note:

*

For any REAL variables, a variable needs to be defined at the proper address; direct access to the memory location via %IDxx is not possible.

CWM_HIB – ControlWave MICRO – HART Interface Board

DRIVER_NAME	'CWM_HIB'
DATA_TYPE	DWORD (32 bits)
DRIVER_PAR1	Slot number
Input Map:	Max Size: 164 bytes

Offset	Default Variable Name where <i>x</i> is	Description	
	the board slot and y is the pin		
	number.		
0 (Bit 0)	HIB_X_BOARDSTATUS	Board status. Bit 0 is set if boa	ard is not present.
0 (Bit 2)	HIB_X_CALIBRATE	Calibration Error. Al and/or A	O calibration data is invalid.
0 (Bit 3)	HIB_X_TIMEOUT	Timeout – If board timeout oc	ccurs, bit set. Indicates a serious
		hardware failure on the board	
4, 5	HIB_ <i>x_y</i> _OUTRANGE	1 bit per Point. If set, input or	output is Out-of-range.
8	HIB_x_y_I	Value for Al1 in engineering u	nits (4-byte float - REAL).
12, 16,68	HIB_x_y_I	Value for points 2 to 16	
7287	HIB_ <i>x_y_</i> STATUS	USINT per point:	
		00 = no error	
		01 = switch set incorrectly for	I/O configuration.
		Switch errors result from any o	of the following three error cases:
		HART channel configured	Switch SW3 (channel 1) or
		in software (I/O	Switch SW4 (channel 2)
		Configurator) as:	incorrectly set to:
		Analog Input	Output
		Analog Output	Input
		HART Multidrop	Channel(s) set to Output
		Note: For multi-drop, both SW	/3 and SW4 must be set as inputs.
		Neither can be outputs.	
88-99		Padding – Align AO actual at offset = 100	
100	HIB_x_y_ACTUAL	AO - Actual value written to board. (4-byte float - REAL).	
104, 108,	HIB_x_y_ACTUAL	AO - Actual value for points 2 to 16	
160			

Output Map:

Size:208 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	HIB_ <i>x_y_</i> ZERO	Zero for Point 1 (4-byte float – REAL).
4	HIB_ <i>x_y_</i> SPAN	Span for Point 1 (4-byte float – REAL)
8120	HIB_ <i>x_y_</i> ZERO	Zeroes for Points 2 – 16
12124	HIB_ <i>x_y_</i> SPAN	Spans for Points 2 – 16

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
128	HIB_x_y_O	AO value to be written for point 1. Ignored for non-
		AO point types.
132188	HIB_x_y_O	AO value for points 2 – 16
192207	HIB_x_y_TYPE	USINT per point. Indicates how the point is to be
		configured:
		0 = Unconfigured
		1 = AI
		2 = AO
		3 = HART Multidrop
		4 = BBTI.
		NOTE:
		AI and AO modes allow HART point to point
		communications. Setting the configuration to a
		valid non-zero value will lock the channel to that
		configuration.

Local I/O – ControlWave GFC-CL and ControlWave XFC

The following sections describe the local I/O boards supported, and their memory maps.

Offset 0 of the input map defines the board status. All boards support bit 0, which is set if the board is not present.

CWM_RTU - Mixed I/O board

This card contains the following I/O:

DIO 6 (previously 4), AI3, AO1, HSC2, Battery Voltage, RTD, and Wet-End interface.

Notes:

- Due to the design of the SPI interface connecting the CPU to the I/O board, the I/O can only be read / written at one second intervals.
- The GFC and XFC share this I/O map. Points for which there is no physical hardware will not function (and a status is provided to indicate which I/O sub-system is present).
- Two versions of this board have been produced. The main difference between them is that the original board (P/N 400-075-00) supported 4 DIO, whereas the newer board (P/N 400-132-00) supports 6 DIO.

DRIVER_NAME	'CWM_RTU'
DATA_TYPE	DWORD
DRIVER_PAR1	slot number – specify as 0.
Input Map:	Max Size: 136 bytes

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
0 (Bit 0)	MIX_x_BOARDSTATUS	Board status. If this SCB is present, status is FALSE; TRUE indicates
		that the board is not plugged in.
0 (Bit 2)	MIX_x_CALIBRATE	Calibration Error. AI and/or AO calibration data is invalid.
0 (Bit 3)	MIX_x_TIMEOUT	Timeout occurred communicating with I/O board.
1 (Bit 1)	MIX_x_PSRDERR	Pressure Reading Error. If set, pressure reading is not valid.
1 (Bit 2)	MIX_x_PSRDINITERR	Pressure Reading – Initialization failure – no retry performed on
		this error.
1 (Bit 3)	MIX_x_PSRDCOMMERR	Pressure Reading – Communications failure – will be retried.
1 (Bit 4)	MIX_x_PSRDNORESET	Pressure Reading – Wet End has been changed without power
		reset.
1 (Bit 5)	MIX_X_RTDRDERR	RTD Reading Error.
1 (Bit 6)	MIX_X_BATRDERR	Battery Voltage Reading Error.
1 (Bit 7)	MIX_x_ALLOWCALIB	Calibration Commands Allowed. Until this bit is set, all calibration
		commands are ignored.
2 (Bit 0)	MIX_x_LASTCALBOP	Set if last calibration or reset operation failed.
3	MIX_x_BOARDPRESENT	I/O board present. See Board Type Table code numbers, later in
		this section.
4	MIX_x_AI_OUTRANGE	Al under / over range. One bit per point: Al1 in bit 0, Al3 in bit 2.
6	MIX_x_y_AO_OUTRANGE	AO under / over range. AO1 is in bit 0.
8	MIX_x_1_DI, MIX_x_2_DI	Current status of DI1 (in bit 0) to DI6 (in bit 5)
		NOTE: Older boards only had DI1 and DI2 (bits 0 and 1).
10	MIX_x_1_DO_I MIX_x_2_DO_I	Read-back of current value for DO1 (in bit 0) to DO4 (in bit 3).
		NOTE: Older boards only had DO1 and DO2 (bits 0 and 1).
12	MIX_X_TIMESTAMP	Timestamp of last sample from HSC. This is the number of
		Milliseconds since boot.
16	MIX_x_1_COUNTER	Number of counts since boot (Channel 1)
20	MIX_x_2_COUNTER	Counts for Channel 2
32	MIX_x_1_AI	Value for Al1 in engineering units (4-byte float - REAL). To access
		the value, define the variable
26.40		AT %IDXX. Direct access to %IDXX is not possible.
36,40		Value for Al2, Al3
64	MIX_X_Y_AO_ACTUAL	Value actually written to AO – clamped to 0-100%.
80	MIX_X_1_STATE, MIX_X_2_STATE	Current status of HSC1 (in bit 0) to HSC2 (in bit 1).
100	MIX_X_INVOL1	Value for Input Voltage in engineering units (4-byte float – REAL –
104		U to 32V range).
104	MIX_X_DP	Differential Pressure – REAL – In units of inches of Water (INH2U)
		transmitter (see chart below)
109		Static Proscure PEAL In units of Pounds per Square Inch
100		PTD roading PEAL in units of Pograes Contigrade
112		Estimated Soncer Temperature PEAL In units of Degrees
		Centionade
120		Sensor ID (Block Number) –INT
120		
124		
124		
125		Drivange Code – Silvi

Offset	Default Variable Name where <i>x</i> = board slot number	Description
126	MIX_x_SPRANGE	SP Range Code – SINT
127 (Bit 0)	MIX_x_DPENABLE	Differential Pressure Processing is enabled.
128 (Bit 0)	MIX_x_SPENABLE	Static Pressure Processing is enabled.
129 (Bit 0)	MIX_x_RTDENABLE	RTD Processing is enabled.
132	MIX_x_LASTOPERR	DWORD – Specific Error for last operation – See codes below.
136	MIX_x_ALTERVOLT	This is the alternate input voltage. (For platforms that support
		alternate voltage input.)
140	MIX_x_MSPTEMPT	REAL – Estimated Temperature of the MSP on the CPU board –
		this is used (by the MSP) to control the battery charging circuit.

Board Type Code:

Board Type	Device ID	Description
1	4 (GFC)	2DI, 2DO, 2HSC, 6 volt
2	4	2DI, 2DO, 2HSC, 3AI, 6 volt
3	4	2DI, 2DO, 2HSC, 3AI, 1AO, 12 volt
4	4	2DI, 2DO, 2HSC, 12 volt
1	7 (3820 XFC)	2DI, 2DO, 2HSC
3	7	2DI, 2DO, 2HSC, 3AI, 1AO
4	7	None
5	7	2DI, 4DO, 2HSC
6	7	2DI, 4DO, 2HSC, 3AI, 1AO
7	9 (Express – CPU)	2HSC, Wet End, RTD, Battery
8	9	2HSC, Battery
9	A (Express – I/O)	2DIO, 4DI, 2DO, 2HSC
A	A	2DIO, 4DI, 2DO, 2HSC, 3AI
В	A	2DIO, 4DI, 2DO, 2HSC, 3AI, 1AO
С	7 (3820 XFC)	2DI, 4DIO, 2HSC
D	7	2DI, 4DIO, 2HSC, 3AI, 1AO

Transmitter types:

Sensor Type	DP Range Code	Range / Units
32 (Differential Pressure)	12	150 InH20
32 (Differential Pressure)	13	100 InH20
32 (Differential Pressure)	14	300 InH20
32 (Differential Pressure)	20	25 psi
12 (Gauge Pressure)	14	300 InH20
12 (Gauge Pressure)	20	25 psi
12 (Gauge Pressure)	22	100 psi
12 (Gauge Pressure)	23	300 psi
12 (Gauge Pressure)	25	1000 psi
12 (Gauge Pressure)	26	3000 psi
12 (Gauge Pressure)	28	2000 psi
12 (Gauge Pressure)	29	4000 psi
Note: If DP Range Code is < 20, units are InH20, if >= 20, units are psi.

Sensor Type	SP Range Code	Range / Units
32 (Differential Pressure)	1	1000 psi
32 (Differential Pressure)	2	2000 psi
32 (Differential Pressure)	3	500 psi
32 (Differential Pressure)	4	4000 psi

Specific Error Codes (this is an addition of the following bit values:

0x0000001	Could not erase MSP Info memory
0x0000002	Could not write MSP Info memory
0x0000004	Checksum failure in Serial EEP.
0x0000008	Flash checksum failure in Sensor.
0x0000010	Flash checksum failure in MSP Info.
0x00000100	DP - Could not initialize the SA.
0x00000200	DP - SA flash checksum error.
0x00000400	DP - Data error after Init done.
0x0000800	DP - Data error during scan.
0x00001000	DP - Data scan error.
0x00010000	SP - Could not initialize the SA.
0x00020000	SP - SA flash checksum error.
0x00040000	SP - Data error after Init done.
0x00080000	SP - Data error during scan.
0x00100000	SP - Data scan error.
0x01000000	Could not initialize the ADS.
0x02000000	Data scan error.
0x04000000	RTD out of range.
0x08000000	Temperature calculation error.

Output Map: Size: 152 bytes

Offset	Default Variable Name where <i>x</i> = board slot number <i>y</i> =point number	Description
0	MIX_x_1_DO, MIX_x_2_DO,	Outputs. 1 bit per value. DO1 is LSB; DO6 is MSB. Typically
	MIX_x_3_DO, MIX_x_4_DO,	specified as %QXy.z, where y is I/O space offset, and z is bit
	MIX_ <i>x</i> _5_DO, MIX_ <i>x</i> _6_DO	number from 0 to 5.

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
	<i>y</i> =point number	
2	MIX_x_y_RESET COUNT	HSC 1 = Bit 0, HSC2 = Bit 1
		TRUE = Reset counts to 0 after a warm start; FALSE= do NOT reset
		counts (default).
4	MIX_x_NOINIT	Bit 1. When set TRUE, board is not re-initialized.
6	MIX_x_y_HSC_SEL	1 ms filter select: HSC 1 = Bit 0, HSC2 = Bit 1. Bit set TRUE = 1 ms
		filter, FALSE=10K Hz counter, default = FALSE.
8	MIX_x_1_AI_ZERO	Zero for AI1 (4-byte float - REAL). To access the value, define the
		variable AT %QDxx. This variable can be initialized at declaration.
12	MIX_x_1_AI_SPAN	Span for AI1 (4-byte float). If zero, the AI will be scaled from 0 to 100.0.
16, 24	MIX_x_2_AI_ZERO, MIX_x_3_AI_ZERO	Zeros for AI2, AI3
20, 28	MIX_x_2_AI_SPAN, MIX_x_3_AI_SPAN	Spans for AI2, AI3
72	MIX_x_1_AO_ZERO	Zero for AO1 (4-byte float - REAL). To access the value, define the
		variable <i>AT %QDxx</i> . This variable can be initialized at declaration.
76	MIX_x_1_AO_SPAN	Span for AO1 (4-byte float). If zero, the AO will be scaled from 0 to
		100.0.
80	MIX_x_1_AO	Value for AO1 (4-byte float).
120 (Bit	MIX_x_RESTOREDP	Restore Factory Calibration Values for Differential Pressure.
0)*		
121 (Bit	MIX_x_RESTORESP	Restore Factory Calibration Values for Static Pressure.
0)*		
122 (Bit 0)*	MIX_X_RESTORERTD	Restore Factory Values for RTD.
123 **	MIX_x_CALIBOP	Perform Calibration Operation – SINT
		1 DP Zero
		2 DP Span
		3 SP Zero
		4 SP Span
		5 KTD Zero (100 Ohms)
		6 KTD Span (300 Onms)
		7 RTD Coefficients (A, B, RO) 8 RTD Span (not using 300 Obms)
178 **		DP Applied at DP Span Calibration – REAL – Units of Inches of
120		Water
132 **	ΜΙΧ χ SPSPAN	SP Applied at SP Span Calibration – REAL – Units of Pounds per
1.52		Square Inch.
136 * * *	MIX x RTDA	RTD Coeff – A
140 ***	MIX x RTDB	RTD Coeff – B
144 ***	MIX x RTDR0	RTD Coeff - RO
148	MIX x RTDSPAN	The applied temperature when calibration operation 8 was
		performed. (RTD 8)
<u> </u>	* Value is cleared by the	driver when the exercise completer

Value is cleared by the driver when the operation completes.

* * Value is read from the hardware at startup and after any calibration operation. User changes to this value only can be made when Bit 7 of Offset 0 in the input map is set. *** Same as **; but, reserved for future expansion.

Note:

For any REAL variables, a variable needs to be defined at the proper address; direct access to the memory location via %IDxx is not possible.

Notes for Configuring DI/DO Points on the CWM_RTU board

For This I./O Point:	Configure this Digital	Default Variable	Notes:
	Pin in I/O	Name:	
	Configurator:		
DI1	PIN 1:	MIX_1_1_DI	Fixed input – always present
DI2	PIN 2	MIX_1_2_DI	Fixed input – always present
DI3/DO1 is used as a	PIN 3	MIX_1_3_DI	When used, do NOT use PIN13.
DI			
DI3/DO1 is used as a	PIN 13	MIX_1_1_DO	When used, do NOT use PIN3.*
DO			
DI4/DO2 is used as a	PIN 4	MIX_1_4_DI	When used, do NOT use PIN14.
DI			
DI4/DO2 is used as a	PIN 14	MIX_1_2_DO	When used, do NOT use PIN4.*
DO			
DI5/DO3 is used as a	PIN 5	MIX_1_5_DI	When used, do NOT use PIN15.
DI			
DI5/DO3 is used as a	PIN 15	MIX_1_3_DO	When used, do NOT use PIN5.*
DO			
DI6/DO4 is used as a	PIN 6	MIX_1_6_DI	When used, do NOT use PIN16.
DI			
DI6/DO4 is used as a	PIN 16	MIX_1_4_DO	When used, do NOT use PIN6.*
DO			

Note: Pins 7 through 12 are unused on this platform.

.* Advanced users may optionally read the DI pin, which will be 'TRUE' when the DO is ON; and 'FALSE' when the DI is OFF. Users should never physically wire a point as a DI and then attempt to drive the DO pin, however, as this will override the incoming DI value.

Local I/O – ControlWave Express and ControlWave GFC

CWM_ECPU High Speed Counter/ RTD/ Wet End Interface Board

This card contains the following I/O:

HSC2, Battery Voltage, RTD, and Wet-End interface.

Note:

Due to the design of the SPI interface connecting the CPU to the I/O board, the I/O can only be read / written at one second intervals.

DRIVER_NAME	'CWM_ECPU'
DATA_TYPE	DWORD
DRIVER_PAR1	slot number – not used, specify as 0.
Input Map:	Max Size: 144 bytes

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
0 (Bit 0)	ECPU_x_BOARDSTATUS	Board status. If this "board" is present, will be FALSE; TRUE
		indicates that the MSP on the CPU board is not functioning.
1 (Bit 1)	ECPU_ <i>x</i> _PSRDERR	Pressure Reading Error. If set, pressure reading is not valid.
1 (Bit 2)	ECPU_x_PSRDINITERR	Pressure Reading – Initialization failure – no retry performed on
		this error.
1 (Bit 3)	ECPU_x_PSRDCOMMERR	Pressure Reading – Communications failure – will be retried.
1 (Bit 4)	ECPU_x_PSRDNORESET	Pressure Reading – Wet End has been changed without power
		reset.
1 (Bit 5)	ECPU_x_RTDRDERR	RTD Reading Error.
1 (Bit 6)	ECPU_x_BATRDERR	Battery Voltage Reading Error.
1 (Bit 7)	ECPU_x_ALLOWCALIB	Calibration Commands Allowed. Until this bit is set, all
		calibration commands are ignored.
2 (Bit 0)	ECPU_x_LASTCALBOP	Set if last calibration or reset operation failed.
3	ECPU_x_BOARDPRESENT	I/O board present.
		7 – 2HSC, Wet End, RTD, Battery
		8 – 2HSC, Battery.
12	ECPU_x_TIMESTAMP	Timestamp of last sample from HSC. This is the number of
		Milliseconds since boot.
16	ECPU_x_1_COUNTER	Number of counts since COLD start or clear (Channel 1)
20	ECPU_x_2_COUNTER	Counts for Channel 2
80	ECPU_x_1_STATE	Current status of HSC1 (in bit 0) to HSC2 (in bit 1).
100	ECPU_x_INVOLT	Value for Input Voltage in engineering units (4-byte float – REAL
		– 0 to 32V range).
104	ECPU_x_DP	Differential Pressure – REAL – In units of Inches of Water (inH20)
		or PSI. The units used depend on the range type of the
		connected transmitter (see chart below).
108	ECPU_x_SP	Static Pressure – REAL – In units of Pounds per Square Inch.

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
112	ECPU_x_RTD	RTD reading – REAL – In units of Degrees Centigrade.
116	ECPU_x_TEMP	Estimated Sensor Temperature – REAL – In units of Degrees
		Centigrade.
120	ECPU_x_SENSORID	Sensor ID (Block Number) –UINT
122	ECPU_x_SENORSERIES	Sensor Series – SINT
124	ECPU_x_SENSORTYPE	Sensor Type – SINT
125	ECPU_x_DPRANGE	DP Range Code – SINT
126	ECPU_x_SPRANGE	SP Range Code – SINT
127 (Bit 0)	ECPU_x_DPENABLE	Differential Pressure Processing is enabled.
128 (Bit 0)	ECPU_x_SPENABLE	Static Pressure Processing is enabled.
129 (Bit 0)	ECPU_X_RTDENABLE	RTD Processing is enabled.
132	ECPU_x_LASTOPERR	DWORD – Specific Error for last operation – See codes below.
136	ECPU_x_ALTERVOLT	REAL – Voltage at secondary battery input. Not supported, will
		always be 0.
140	ECPU_x_MSPTEMP	REAL – Estimated Temperature of the MSP on the CPU board –
		the MSP uses this to control the battery charging circuit.

Transmitter types:

Sensor Type	DP Range Code	Range / Units
32 (Differential Pressure)	12	150 InH20
32 (Differential Pressure)	13	100 InH20
32 (Differential Pressure)	14	300 InH20
32 (Differential Pressure)	20	25 PSI
12 (Gauge Pressure)	14	300 InH20
12 (Gauge Pressure)	20	25 PSI
12 (Gauge Pressure)	22	100 PSI
12 (Gauge Pressure)	23	300 PSI
12 (Gauge Pressure)	25	1000 PSI
12 (Gauge Pressure)	28	2000 PSI

Note: If DP Range Code is < 20, units are InH20, if >= 20, units are PSI.

Specific Error Codes (this is an addition of the following bit values:

0x0000001	Could not erase MSP Info memory
0x0000002	Could not write MSP Info memory
0x00000004	Checksum failure in Serial EEP.

0x0000008	Flash checksum failure in Sensor.
0x00000010	Flash checksum failure in MSP Info.
0x0000100	DP - Could not initialize the SA.
0x0000200	DP – SA flash checksum error.
0x00000400	DP - Data error after Init done.
0x0000800	DP - Data error during scan.
0x00001000	DP - Data scan error.
0x00010000	SP - Could not initialize the SA.
0x00020000	SP - SA flash checksum error.
0x00040000	SP - Data error after Init done.
0x00080000	SP - Data error during scan.
0x00100000	SP - Data scan error.
0x01000000	Could not initialize the ADS.
0x02000000	Data scan error.
0x04000000	RTD out of range.
0x08000000	Temperature calculation error.

Output Map:

Size: 148 bytes

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
2	ECPU_x_1_RESET_COUNT	HSC reset flags: 1 bit per point. HSC1 is LSB (bit 0) , HSC2 is MSB (bit1)
4.1	ECPU_x_NOINIT	Retain HSC values on Warm Start. If variable is set, the HSC counts will be maintained across an application WARM start. If clear, HSC counts will be cleared on both Cold and Warm starts.
120 (Bit 0)*	ECPU_x_RESTOREDP	Restore Factory Calibration Values for Differential Pressure.
121 (Bit 0)*	ECPU_x_RESTORESP	Restore Factory Calibration Values for Static Pressure.
122 (Bit 0)*	ECPU_x_RESTORERTD	Restore Factory Values for RTD.
123 **	ECPU_x_CALIBOP	Perform Calibration Operation – SINT
		1 DP Zero
		2 DP Span
		3 SP Zero
		4 SP Span
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
		7 RTD Coefficients – Update
		8 RTD Span (not using 300 Ohms)
128 * *	ECPU_x_DPSPAN	DP Applied at DP Span Calibration – REAL – Units of Inches of
		Water.
132 * *	ECPU_x_SPSPAN	SP Applied at SP Span Calibration – REAL – Units of Pounds per
		Square Inch.
136 * * *	ECPU_x_RTDA	RTD Coeff – A
140 * * *	ECPU_x_RTDB	RTD Coeff – B
144 * * *	ECPU_x_RTDR0	RTD Coeff – R0
148	ECPU_x_RTDSPAN	The applied temperature when calibration operation 8 was
		performed. (RTD 8)
	* The driver clears value wh	an the operation completes

The driver clears value when the operation completes.

- * * Value is read from the hardware at startup and after any calibration operation. User changes to this value only can be made when Bit 7 of Offset 0 in the input map is set.
- Same as **; but, reserved for future expansion. * * *

Note:

For any REAL variables, a variable needs to be defined at the proper address; direct access to the memory location via %IDxx is not possible.

CWM_EIO - Mixed I/O Board

This card contains the following I/O: DIO2, DI4, DO2, HSC2, AI3 (Opt), AO1 (Opt).

Note:

The I/O on this board may be read / written at rates up to 20 times per second (50 Millisecond intervals).

DRIVER_NAME	'CWM_EIO'
DATA_TYPE	DWORD
DRIVER_PAR1	slot number – not used – specify as 0.
Input Map:	Max Size: 120 bytes

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
0 (Bit 0)	EIO_x_BOARDSTATUS	Board status. If this I/O board is present, will be FALSE; TRUE indicates that the board is not plugged in.

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
0 (Bit 2)	EIO_X_CALIBRATE	Calibration Error. AI and/or AO calibration data is invalid.
0 (Bit 3)	EIO_X_TIMEOUT	Timeout occurred communicating with I/O board.
3	EIO_x_BOARDPRESENT	I/O board present. 9 – 2DIO, 4DI, 2DO, 2HSC
		10 – 2DIO, 4DI, 2DO, 2HSC, 3AI.
		11 – 2DIO, 4DI, 2DO, 2HSC, 3AI, 1AO
4	EIO_x_1_AI_OUTRANGE	Al under / over range. One bit per point: Al1 in bit 0, Al3 in bit 2.
6	EIO_x_1_AO_OUTRANGE	AO under / over range. AO1 is in bit 0.
8	EIO_x_1_DI	Current status of DI1 (in bit 0) to DI4 (in bit 3). DIO1 as DI (in bit 4),
	EIO_x_2_DI	DIO2 as DI (in bit5)
	EIO_x_3_DI	
	EIO_x_4_DI	
10	EIO_x_1_DO_I	Read-back of current value for DO1 (in bit 0) to DO2 (in bit 1). DIO1
	EIO_x_2_DO_I	as DO (in bit 2), DIO2 as DO (in bit 3).
12	EIO_x_TIMESTAMP	Timestamp of last sample from HSC. This is the number of
		milliseconds since boot.
16	EIO_x_1_COUNTER	Number of counts since COLD start or clear (Channel 1)
20	EIO_x_2_COUNTER	Counts for Channel 2
32	EIO_x_1_AI	Value for Al1 in engineering units (4-byte float - REAL). To access the
		value, define the variable
		AT %IDxx. Direct access to %IDxx is not possible.
36,40	EIO_x_2_AI	Value for AI2, AI3
	EIO_x_3_AI	
64	EIO_x_1_AO_ACTUAL	Value actually written to AO1– clamped to 0-100%.
80	EIO_x_1_STATE	Current status of HSC1 (in bit 0) to HSC2 (in bit 1).

Output Map:

Size: 84 bytes

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
0	EIO_x_1_DO	Outputs. 1 bit per value. DO1 is bit 0; DO2 is bit 1, DIO1 as DO is bit2,
	EIO_x_2_DO	DIO2 as DO is bit3. Typically specified as %QXy.z, where y is I/O space
		offset, and z is bit number from 0 to 3.
2	EIO_X_1_RESET_COUNT	HSC reset flags: 1 bit per point. HSC1 is LSB (bit 0) , HSC2 is MSB (bit
		1)
4.1	EIO_X_NOINIT	Retain HSC values on Warm Start. If variable is set, the HSC counts
		will be maintained across an application WARM start. If clear, HSC
		counts will be cleared on both Cold and Warm starts.
8	EIO_x_1_AI_ZERO	Zero for AI1 (4-byte float - REAL). To access the value, define the
		variable AT %QDxx. This variable can be initialized at declaration.
12	EIO_x_1_AI_SPAN	Span for AI1 (4-byte float). If zero, the AI will be scaled from 0 to
		100.0.
16, 24	EIO_x_2_AI_ZERO	Zeros for Al2, Al3
	EIO_X_3_AI_ZERO	
20, 28	EIO_x_2_AI_SPAN	Spans for AI2, AI3
	EIO_X_3_AI_SPAN	

Offset	Default Variable Name	Description
	where <i>x</i> = board slot number	
72	EIO_x_1_AO_ZERO	Zero for AO1 (4-byte float - REAL). To access the value, define the
		variable <i>AT %QDxx</i> . This variable can be initialized at declaration.
76	EIO_x_1_AI_SPAN	Span for AO1 (4-byte float). If zero, the AO will be scaled from 0 to
		100.0.
80	EIO_x_1_AO	Value for AO1 (4-byte float).

CWM_TC6 - ControlWave Micro - 6-point Thermocouple board

DRIVER_NAME	'CWM_TC6'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 32 bytes	

Due to the amount of time required to process the thermocouple points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 40ms.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0 (Bit 0)	TC6_x_DRIVERSTATUS	If set, the board is not present.
0 (Bit 2)	TC6_x_CALIBRATE	If set indicates invalid calibration data written to the
		board.
0 (Bit 3)	TC6_X_TIMEOUT	If set, indicates that had an error reading or writing
		to the board.
4	TC6_ <i>x_y</i> _OUTRANGE	1 bit per TC, TC1 is bit 0, TC6 is bit 5. If set, input is
		out-of-range.
8	TC6_x_y	Value for TC1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		%IDxx. Direct access to %IDxx is not possible.
12, 16, 20,	TC6_ <i>x_y</i>	Value for TC2, TC3, TC4, TC5, TC6
24, 28		

Output Map:

Max Size: 70 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	TC6_x_y_ZERO	Zero for TC1 (4-byte float - REAL). To access the value, define the variable <i>AT %QDxx</i> . This variable can be initialized at declaration.
4	TC6_x_y_SPAN	Span for TC1 (4-byte float). If zero, the TC will be scaled as in the chart below. If specified, the new value will be ORG_VALUE * Span + Zero.
8, 16, 24,	TC6_ <i>x_y_</i> ZERO	Zeros for TC2, TC3, TC4, to TC6 – Example: for C to

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
32,40		F, use 32.0
12, 20, 28,	TC6_ <i>x_y_</i> SPAN	Spans for TC2, TC3, TC4, to TC6 – Example for C to
36, 44		F, use 1.8
64	TC6_x_y_MODE	Point type for TC1; see Thermocouple type codes
		section for details.
65, 66, 67,	TC6_x_y_MODE	Point types for TC2, TC3, TC4, TC5, and TC6.
68,69		

Type codes for Thermocouple Points.

Type Code	Code	Range
0	В	Thermocouple: 100C – +1820C
1	E	Thermocouple: -270C – +1000C
2	J	Thermocouple: -210C – +1200C
3	К	Thermocouple: -270C – +1370C
4	R	Thermocouple: -50C – +1720C
5	S	Thermocouple: -50C – +1760C
6	Т	Thermocouple: -270C – +400C
7	Unused	Unused
8	10MV	Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to
		1.0)
9	С	Thermocouple: 0C – +2315C
10	N	Thermocouple: -270C – +1300C

CWM_RTD4 - ControlWave Micro - 4 Point Resistance Temperature Device (RTD) Board

DRIVER_NAME	'CWM_RTD4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 24 bytes	

Due to the amount of time required to process the RTD points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 40ms.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0 (Bit 0)	RTD4_x_BOARDSTATUS	If set, the board is not present.
0 (Bit 2)	RTD4_x_CALIBRATE	If set indicates invalid calibration data written to the
		board.
0 (Bit 3)	RTD4_x_TIMEOUT	If set, indicates that had an error reading or writing

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
		to the board.
1 (Bit 0)	RTD4_x_LASTCALBOP	Set if last calibration or reset operation failed.
1 (Bit 7)	RTD4_x_CALBCMD	Calibration Commands Allowed. Until this bit is set,
		all calibration commands are ignored.
4	RTD4_ <i>x_y</i> _READERR	RTD Reading Error. Bit 0 is RTD1, Bit 3 is RTD4
8	RTD4_x_y	RTD1 reading – REAL – In units of Degrees
		Centigrade (unless scaled by values in the output
		map).
12, 16,20	RTD4_x_y	Readings for RTD2 RTD4.

Output Map:

Max Size: 200 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	RTD4_x_y_ZERO	Zero for RTD 1(4-byte float - REAL). Example: for C to F, use 32.0. Defaults to 0.0
4	RTD4_ <i>x_y_</i> SPAN	Span for RTD 1(4-byte float – REAL). If zero, RTD will not be scaled. If specified, the scaled value will be ORG_VALUE * Span + Zero. Example for C to F, use 1.8.
8,16,24,32 40,48,56	RTD4_x_y_ZERO	Zero for RTDs 2-8
12,20,28, 36,44,52, 60	RTD4_x_y_SPAN	Span for RTDs 2-8
64	RTD4_x_y_MODE	NOT USED – FOR EXPANSION
65,66,67, 68,69	RTD4_x_y_MODE	NOT USED – FOR FUTURE EXPANSION
100		NOT USED – FOR FUTURE EXPANSION
120 (Bit 0) *	RTD4_x_y_RESTORE	If set, restore RTD 1 calibration to Factory Defaults. Will be reset when operation completes.
121 *	RTD4_x_y_OPERATION	Calibration Operation for RTD 1 – SINT 5 RTD Zero (100 Ohms) 6 RTD Span (300 Ohms) 7 RTD Coefficients (A, B, R0) 8 RTD Span (not using 300 Ohms)
124**	RTD4_x_y_COEFF_A	Coefficient A (RTD 1)
128**	RTD4_x_y_COEFF_B	Coefficient B (RTD 1)
132**	RTD4_x_y_COEFF_R0	Coefficient R0 (RTD 1)
136**	RTD4_x_y_APPLIED	The applied temperature when calibration operation 8 was performed. (RTD 1)
140 (Bit 0) *	RTD4_x_y_RESTORE	If set, restore RTD 2 calibration to Factory Defaults. Will be reset when operation completes.
141 *	RTD4_x_y_OPERATION	Calibration Operation for RTD 2 – SINT

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A, B, R0)
		8 RTD Span (not using 300 Ohms)
144 * *	RTD4_x_y_COEFF_A???	Coefficient A (RTD 2)
148 * *	RTD4_x_y_COEFF_B???	Coefficient B (RTD 2)
152 * *	RTD4_x_y_COEFF_R0???	Coefficient R0 (RTD 2)
156 * *	RTD4_x_y_APPLIED????	The applied temperature when calibration
		operation 8 was performed. (RTD 2)
180 (Bit 0) *	RTD4_x_y_RESTORE	If set, restore RTD 4 calibration to Factory
		Defaults. Will be reset when operation
		completes.
181 *	RTD4_x_y_OPERATION	Calibration Operation for RTD 4 – SINT
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A, B, R0)
		8 RTD Span (not using 300 Ohms)
184 * *	RTD4_x_y_COEFF_A???	Coefficient A (RTD 4)
188 * *	RTD4_x_y_COEFF_B???	Coefficient B (RTD 4)
192 * *	RTD4_x_y_COEFF_R0???	Coefficient R0 (RTD 4)
196 * *	RTD4_x_y_APPLIED????	The applied temperature when calibration
		operation 8 was performed. (RTD 4)

Value written to perform operation. The value will be reset by driver when the operation completes.

** Value is read from the board by the driver. In order to perform calibration operations 7 and 8, the user can overwrite the values; then, issue the calibration command.

Local I/O – ControlWave CW10, CW30, CW35

Note:

I/O boards of type CXX (CW10 and CW30) cannot be mixed within the same ControlWave Designer resource with I/O boards for any other ControlWave Platform. This can, however, be done with two resources within the same ControlWave Designer project.

CXX_AI8 – ControlWave CW_10/CW_30/CW_35 4- or 8-Analog Input Pin Board

DRIVER_NAME	'CXX_AI8'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	

Input Map: Max Size: 40 bytes

Due to the amount of time required to process the AI points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 25ms.

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0 (Bit 0)	AI8_x_BOARDSTATUS	Board status. Bit 0 is set if board is not present.
0 (Bit 1)	AI8_x_LASTOPERATION	Board status. Bit 1 is set if the last conversion operation failed.
4	AI8_ <i>x_y</i> _OUTRANGE	1 bit per AI, AI1 is bit 0, AI8 is bit 7. If set, input is Out-of-range.
8	AI8_ <i>x_y</i>	Value for Al1 in engineering units (4-byte float - REAL). To access the value, define the variable <i>AT</i> <i>%IDxx</i> . Direct access to <i>%</i> IDxx is not possible.
12, 16,	AI8_x_y	Value for AI2, AI3,

Output Map:

Max Size: 64 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	AI8_x_y_ZERO	Zero for AI1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
4	AI8_x_y_SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
8, 16, 24,	AI8_x_y_ZERO	Zeros for AI2, AI3,
12, 20,	AI8_x_y_SPAN	Spans for AI2, AI3,
28,		

CXX_AO4 – ControlWave CW_10/CW_30/CW_35 2 or 4 Analog Output Pin Board

DRIVER_NAME	'CXX_AO4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 24 byt	es

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0 (bit 0)	AO4_x_BOARDSTATUS	Board status. Bit 0 is set if board is not present.
0 (bit 1)	AO4_x_LASTOPERATION	Bit 1 is set if the last conversion operation failed.
4	AO4_x_y_OUTRANGE	1 bit per AO, AO1 is bit 0, AO4 is bit 3. If set,
		output is Out-of-range.

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
8,12,16,20	AO4_x_y_ACTUAL	Real value of value actually output. Clamped to 0- 100% of scale.

Output Map: Max Size: 48 bytes

Due to the amount of time required to process the AO points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 25ms.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	AO4_ <i>x_y</i> _ZERO	Zero for AO1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
4	AO4_x_y_SPAN	Span for AO1 (4-byte float). If zero, the AO will be
		scaled from 0 to 100.0.
8	AO4_x_y	Value for AO1 (4-byte float).
12, 24,	AO4_x_y_ZERO	Zeros for AO2, AO3, AO4
36		
16, 28,	AO4_x_y_SPAN	Spans for AO2, AO3, AO4
40		
20, 32,	AO4_ <i>x_y</i>	Values for AO2, AO3, AO4
44		

CXX_DI16 – ControlWave CW_10/CW_30/CW_354 or 8 or 16 Digital Input Pin Board

DRIVER_NAME	'CXX_DI16'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	Mask of points e	enabled as low-speed counters
Input Map:	Max Size: 84 byt	tes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	DI16_x_BOARDSTATUS	Board status.
4	DI16_x_y	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5	DI16_x_y	Current status of DI9 (in bit 0) to DI16 (in bit 7).
16	DI16_x_y_TIMESTAMP	Timestamp of last sample from HSC. This is the
		number of milliseconds since boot.
20	DI16_x_y_COUNTER	32-bit counter for DI1
24,	DI16_x_y_COUNTER	32-bit counters for DI2 – DI16

Output Map: Size: 4 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	DI16_x_y_RESET_COUNT	Counter reset flags, DI1 (in bit 0) to DI8 (in bit 7)
1	DI16_x_y_RESET_COUNT	Counter reset flags, 9 to 16.
2.1	DI16_x_y_NOINIT	Maintain Counts across Warm Start (TRUE =
		maintain)

CXX_DO16 – ControlWave CW_10/CW_30/CW_35 4- or 8- or 16-Digital Output Pin Board

DRIVER_NAME	'CXX_DO16'
DATA_TYPE	BYTE
DRIVER_PAR1	slot number.
Input Map:	Max Size: 6 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	DO16_x_BOARDSTATUS	Board status.
4	DO16_x_y_I	Read-back of output: 1 bit per value. DO1 is LSB,
		DO8 is MSB.
5	DO16_x_y_I	Read-back for outputs 9 to 16.

Output Map:

Size: 2 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	DO16_x_y	Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB. Typically specified as %QXy.z, where y is I/O space offset, and z is bit number from 0 to 7.
1	DO16_x_y	Outputs 9 to 16.

CXX_HSC8 – ControlWave CW_10/CW_30/CW_35 4 or 8 Channel High Speed Counter Board

DRIVER_NAME	'CXX_HSC8'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 40 bytes	

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	HSC8_x_BOARDSTATUS	Board status. Only bit 0 is currently defined. If set, board is not present.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
4	HSC8_x_TIMESTAMP	Timestamp of last sample from HSC. This is the number of milliseconds since boot.
8	HSC8_ <i>x_y</i> _COUNTER	Number of counts since boot (Channel 1)
12, 16,	HSC8_x_y_COUNTER	Counts for Channel 2, 3, etc.

Output Map:

Size: 4 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	HSC8_x_y_RESET_COUNT	Counter reset flags, HSC1 (in bit 0) to HSC8 (in bit 7)
2.1	HSC8_x_NOINIT	Maintain Counts across Warm Start (TRUE =
		maintain)

CXX_LL4 – ControlWave CW_10/CW_30/CW_35 4 Low-Level Analog Input Pin Board

DRIVER_NAME	'CXX_LL4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
Input Map:	Max Size: 24 byt	es

Due to the amount of time required to process the Low-level points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 25ms.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0 (bit 0)	LL4_x_BOARDSTATUS	Board status. Bit 0 is set if board is not present.
0 (bit 1)	LL4_x_LASTOPERATION	Board status. Bit 1 is set if the board is either in
		calibration mode or being reset.
4	LL4_x_y_OUTRANGE	1 bit per LL, LL1 is bit 0, LL4 is bit 3. If set, input is
		Out-of-range.
6		BYTE value – Board error code – see table below. *
		Note: a variable is not automatically created by the
		System Variable Wizard for this field.
8	LL4_x_y	Value for LL1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		<i>%IDxx</i> . Direct access to %IDxx is not possible.
12, 16, 20	LL4_x_y	Value for LL2, LL3, LL4

LLAI Board Error Codes (values are in Hex 16#):

- 0n Channel errors Bit 0 = point 1, Bit 1 = point 2, etc.
- 10 Board is in process of being reset.
- An Board is in Calibration mode.

	Output Map: Max Size: 68 byte	S
Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and <i>y</i> is the pin number.	
0	LL4_ <i>x_y</i> _ZERO	Zero for LL1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
4	LL4_x_y_SPAN	Span for LL1 (4-byte float). If zero, the LL will be
		scaled as in the chart below. If specified, the new
		value will be ORG_VALUE * Span + Zero.
8, 16, 24	LL4_x_y_ZERO	Zeros for LL2, LL3, LL4 – Example: for C to F, use 32.0
12, 20,	LL4_x_y_SPAN	Spans for LL2, LL3, LL4 – Example for C to F, use 1.8
28		
64	LL4_x_y_MODE	Point type for LL1, see table below for type codes.
65, 66,	LL4_x_y_MODE	Point types for LL2, LL3, and LL4.
67		

Type codes for Low-Level Points

Type Code	Code	Range
0	В	Thermocouple: 100C – +1820C
1	E	Thermocouple: -270C – +1000C
2]	Thermocouple: -210C – +1200C
3	К	Thermocouple: -270C – +1370C
4	R	Thermocouple: -50C – +1720C
5	S	Thermocouple: -50C – +1760C
6	Т	Thermocouple: -270C – +400C
7	RTD	RTD: -220C to +850C
8	10MV	Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)

I/O – ControlWave CW_31

Common Status Information

The first two bytes of the input map contain status information, which is common to all Expansion Rack boards.

Byte	Bit	Description
0	0 (0x1, 1)	No Board is present in the destination Rack.
0	3 (0x8, 8)	Board type does not match the board installed in the Rack.
0	4 (0x10, 16)	Communications lost with the Expansion Rack.
0	7 (0x80, 128)	Initial opening of channel to the Expansion Rack has not been completed.

RXX_AI8 – CW_31 4 or 8 Pin Analog Input Board

DRIVER_NAME	'RXX_AI8'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes o	of Primary IP address
DRIVER_PAR3	Lower two bytes	s of Primary IP address
Input Map:	Max Size: 40 byt	ies

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	RXAI_x_DRIVERSTATUS	Board Status. See Common Status Information
2 (bit 1)		Rit 1 – Last conversion operation failed
2 (01: 1)		1 hit per Al Al1 is hit 0. Al8 is hit 7. If set input is
4	KAAI_X_Y_OUTRANGE	Out-of-range.
8	RXAI_x_y	Value for Al1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		<i>%IDxx</i> . Direct access to %IDxx is not possible.
12, 16,	RXAI_x_y	Value for AI2, AI3,

Output Map:

Max Size: 64 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RXAI_ <i>x_y</i> _ZERO	Zero for AI1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
4	RXAI_x_y_SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
8, 16, 24,	RXAI_x_y_ZERO	Zeros for AI2, AI3,
12, 20,	RXAI_x_y_SPAN	Spans for AI2, AI3,
28,		

RXX_AO4 – CW_31 2 or 4 Analog Output Pin Board

DRIVER_NAME	'RXX_AO4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 24 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RXAO_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
2 (bit 1)	RXAO_x_LASTOPERATION	Bit 1 – Last conversion operation failed.
4	RXAO_x_y_OUTRANGE	1 bit per AO, AO0 is bit 0, AO4 is bit 3. If set, output
		is Out-of-range.
8,12,16,20	RXAO_x_y_ACTUAL	Real value of value actually output. Clamped to 0-
		100% of scale.

Output Map:

Max Size: 48 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RXAO_x_y_ZERO	Zero for AO1 (4-byte float - REAL). To access the value, define the variable <i>AT %QDxx</i> . This variable can be initialized at declaration.
4	RXAO_x_y_SPAN	Span for AO1 (4-byte float). If zero, the AO will be scaled from 0 to 100.0.
8	RXAO_ <i>x_y</i>	Value for AO1 (4-byte float).
12, 24, 36	RXAO_ <i>x_y</i> _ZERO	Zeros for AO2, AO3, AO4
16, 28, 40	RXAO_x_y_SPAN	Spans for AO2, AO3, AO4
20, 32, 44	RXAO_ <i>x_y</i>	Values for AO2, AO3, AO4

RXX_DI16 CW_31 8 or 16 Digital Input Pin Board

DRIVER_NAME	'RXX_DI16'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes o	of Primary IP address
DRIVER_PAR3	Lower two bytes	s of Primary IP address

Note:

Low speed counter processing is automatically enabled for all points.

Input Map:

Max Size: 84 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	RXDI_x_DRIVERSTATUS	Board Status. See Common Status Information section.
4	RXDI_x_y	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5	RXDI_x_y	Current status of DI9 (in bit 0) to DI16 (in bit 7).
16	RXDI_x_TIMESTAMP	Timestamp of last sample. This is the number of milliseconds since boot.
20	RXDI_x_y_COUNTER	32-bit counter for DI1
24,	RXDI_ <i>x_y</i> _COUNTER	32-bit counters for DI2 – DI16

Output Map:

Size: 4 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RXDI_x_y_RESET_COUNT	Counter reset flags, DI1 (in bit 0) to DI8 (in bit 7)
1	RXDI_x_y_RESET_COUNT	Counter reset flags, 9 to 16.
2 (bit 1)	RXDI_X_NOINIT	Maintain Counts across Warm Start (TRUE =
		maintain)

RXX_DO16 CW_31 4, 8 or 16 Digital Output Pin Board

DRIVER_NAME	'RXX_DO16'
DATA_TYPE	ВҮТЕ
DRIVER_PAR1	slot number.
DRIVER_PAR2	First two bytes of Primary IP address
DRIVER_PAR3	Lower two bytes of Primary IP address
Input Map:	Max Size: 6 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RXDO_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
4	RXDO_x_y_I	Read-back of output: 1 bit per value. DO1 is LSB,
		DO8 is MSB.
5	RXDO_x_y_I	Read-back for outputs 9 to 16.

Output Map:

Size: 2 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	RXDO_ <i>x_y</i>	Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB. Typically specified as %QXy.z, where y is I/O space

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
		offset, and z is bit number from 0 to 7.
1	RXDO_ <i>x_y</i>	Outputs 9 to 16.

RXX_HSC8 CW_31 4 or 8 Channel High Speed Counter Board

DRIVER_NAME	'RXX_HSC8'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes of Primar	y IP address
DRIVER_PAR3	Lower two bytes of Prima	ary IP address
Input Map:	Max Size: 40 bytes	

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RXHSC_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
4	RXHSC_x_TIMESTAMP	Timestamp of last sample from HSC. This is the
		number of milliseconds since boot.
8	RXHSC_x_y_COUNTER	Number of counts since boot (Channel 1)
12, 16,	RXHSC_x_y_COUNTER	Counts for Channel 2, 3, etc.

Output Map:

Size: 4 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	RXHSC_x_y_RESET_COUNT	Counter reset flags, HSC1 (in bit 0) to HSC8 (in bit 7)
2 (bit 1)	RXHSC_x_NOINIT	Maintain Counts across Warm Start (TRUE =
		maintain)

RXX_LL4 CW_31 4 Low Level Analog Input Pin Board

DRIVER_NAME	'RXX_LL4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes o	of Primary IP address
DRIVER_PAR3	Lower two bytes	s of Primary IP address
Input Map:	Max Size: 24 byt	es

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RXLL_X_DRIVERSTATUS	Board Status. See Common Status Information
		section.
2	RXLL_X_LASTOPERATION	Bit 1 - Calibration Mode or hardware is being reset
4	RXLL_x_y_OUTRANGE	1 bit per LL, LL1 is bit 0, LL4 is bit 3. If set, input is
		Out-of-range.
6		BYTE value – Board error code – see table below. *
		Note: a variable is not automatically created by the
		IO Configuration Wizard for this field.
8	RXLL_x_y	Value for LL1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		<i>%IDxx</i> . Direct access to %IDxx is not possible.
12, 16,	RXLL_x_y	Value for LL2, LL3, LL4
20		

LLAI Board Error Codes (values are in Hex 16#):

- 0n Channel errors Bit 0 = point 1, Bit 1 = point 2, etc.
- 10 Board is in process of being reset.
- An Board is in Calibration mode.

Output Map:

Max Size: 68 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	RXLL_x_y_ZERO	Zero for LL1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
4	RXLL_x_y_SPAN	Span for LL1 (4-byte float). If zero, the LL will be
		scaled as in the chart below. If specified, the new
		value will be ORG_VALUE * Span + Zero.
8, 16, 24	RXLL_x_y_ZERO	Zeros for LL2, LL3, LL4 – Example: for C to F, use 32.0
12, 20,	RXLL_x_y_SPAN	Spans for LL2, LL3, LL4 – Example for C to F, use 1.8
28		
64	RXLL_ <i>x_y</i> _MODE	Point type for LL1, see table below for type codes.
65,66,	RXLL_x_y_MODE	Point types for LL2, LL3, and LL4.
67		

Type codes for Low-Level Points

Type Code	ACCOL Code	Range
0	В	Thermocouple: 100C – +1820C
1	E	Thermocouple: -270C – +1000C

Туре	ACCOL Code	Range
Code		
2	J	Thermocouple: -210C – +1200C
3	К	Thermocouple: -270C – +1370C
4	R	Thermocouple: -50C – +1720C
5	S	Thermocouple: -50C – +1760C
6	Т	Thermocouple: -270C – +400C
7	RTD	RTD: -220C to +850C
8	10MV	Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)

RXX_STAT CW_31 Status Board

In addition, an Expansion Rack Status board (RXX_STAT) is defined. This board has a similar I/O map as the status board for the ControlWave Expansion Rack (ER_STAT).

DRIVER_NAME	'RXX_STAT'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number (ignored – s	pecify as zero).
DRIVER_PAR2	First two bytes of Primary	y IP address
DRIVER_PAR3	Lower two bytes of Prima	ary IP address
Input Map:	Max Size: 1068 bytes	

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
0	RXSTAT_X_BOARDSTATUS	Board Status. See Common Status Information
		section.
4 (bit 0)	RXSTAT_x_BATSTAT	Memory battery status at Expansion Rack. TRUE
		indicates good battery.
4 (bit 1)	RXSTAT_X_HOTCARDSTAT	TRUE indicates that a HOT Card replacement is in
		progress at the Expansion Rack. Will always be FALSE
		on platforms which do not support on-line HOT Card
		replacement.
8	RXSTAT_x_HOTCARDCT	32-Bit Count of Hot Card replacement events which
		have occurred.
12	RXSTAT_x_DOWNTIMEUSER	32-Bit Count – Number of seconds (as configured by
		the user) that the Expansion Rack can be powered off
		before the outputs are reset to defaults when the
		unit is powered back up.
16	RXSTAT_x_DOWNTIMEACT	32-Bit Count – Number of seconds that the
		Expansion Rack was powered off on the last power
		fail.
20	RXSTAT_x_WRITECT	32-Bit Count – Number of I/O updates sent to the
		Expansion Rack
24	RXSTAT_x_READCT	32-Bit Count – Number of I/O updates sent from the

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and <i>y</i> is the pin number.	
		Expansion Rack
28	RXSTAT_X_CONNECTS	32-Bit Count – Number of Connects and Disconnects
		made to the Expansion Rack.
32	RXSTAT_x_HEARTBEAT	32-Bit Count – Number of IDLE time Heartbeats sent
		from the Expansion Rack to the host.
42	RXSTAT_x_BDSTR1	String – I/O board string for slot #1
127	RXSTAT_x_BDSTR2	String – I/O board string for slot #2
212	RXSTAT_x_BDSTR3	String – I/O board string for slot #3
297	RXSTAT_x_BDSTR4	String – I/O board string for slot #4
382	RXSTAT_x_BDSTR5	String – I/O board string for slot #5
467	RXSTAT_x_BDSTR6	String – I/O board string for slot #6
552	RXSTAT_x_BDSTR7	String – I/O board string for slot #7
637	RXSTAT_x_BDSTR8	String – I/O board string for slot #8
724		DINT – Current redundancy status of the Expansion
		Rack – will always be zero on this platform
728	RXSTAT_x_BDSTR9	String – I/O board string for slot #9
813	RXSTAT_x_BDSTR10	String – I/O board string for slot #10
898	RXSTAT_x_BDSTR11	String – I/O board string for slot #11
983	RXSTAT_x_BDSTR12	String – I/O board string for slot #12
1068	RXSTAT_x_BDSTR13	String – I/O board string for slot #13
1153	RXSTAT_x_BDSTR14	String – I/O board string for slot #14 (Note slot #13
		and #14 will be populated with zeroes (NULL string)
1240	RXSTAT_x_INPUTVOLTS	Float – Reading (in volts) of power-supply input
		voltage.

Output Map:

Max Size: 4 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0.0		If this is a Redundant Expansion Rack, and the Standby is valid, then writing a TRUE to this location will cause the rack to fail-over. Not used on this platform.
1.0	RXSTAT_x_RDN_IOERR_WARN	

ControlWave MICRO I/O Expansion Rack

Common Status Information

The first two bytes of the input map contain status information, which is common to all Expansion Rack boards.

Byte	Bit	Description
0	0 (0x1, 1)	No board is present in the destination rack.
0	3 (0x8, 8)	Board type does not match the board installed in the rack.
0	4 (0x10, 16)	Communications lost with the expansion rack.
0	7 (0x80, 128)	Initial opening of channel to the expansion rack has not been completed.

ERM_DO16 - ControlWave MICRO I/O Expansion Rack 16 Digital Output Pin Board

DRIVER_NAME	'ERM_DO16'
DATA_TYPE	BYTE
DRIVER_PAR1	slot number.
DRIVER_PAR2	First two bytes of Primary IP address
DRIVER_PAR3	Lower two bytes of Primary IP address
Input Map:	Max Size: 6 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERDO_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
4,5	ERDO_x_y_I	DO status as seen by card. bit per value.

Output Map:

Size: 5 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERDO_ <i>x_y</i>	Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB. Typically specified as %QXy.z, where y is I/O space offset, and z is bit number from 0 to 7.
1	ERDO_x_y	Outputs 9 to 16.
4	ERDO_X_LEDSTATUS	Single bit. If bit is set, the diagnostic LEDS for the points are turned off to save power.

ERM_DI16 - ControlWave MICRO I/O Expansion Rack 16 Digital Input Pin Board

DRIVER_NAME	'ERM_DI16'	
DATA_TYPE	DWORD	(32 bits)

DRIVER_PAR1	slot number.
DRIVER_PAR2	First two bytes of Primary IP address
DRIVER_PAR3	Lower two bytes of Primary IP address
Input Map:	Max Size: 8 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERDI_x_DRIVERSTATUS	Board Status. See Common Status Information section.
4	ERDI_x_y	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5	ERDI_x_y	Current status of DI9 (in bit 0) to DI16 (in bit 7).

Output Map: Size: 5 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
4	ERDI_x_LEDSTATUS	Single bit. If bit is set, the diagnostic LEDS for the
		points are turned off to save power.

ERM_MD ControlWave MICRO I/O Expansion Rack Mixed Digital (12 DI / 4 DO) Board

DRIVER_NAME	'ERM_MD'
DATA_TYPE	BYTE
DRIVER_PAR1	slot number.
DRIVER_PAR2	First two bytes of Primary IP address
DRIVER_PAR3	Lower two bytes of Primary IP address
Input Map:	Max Size: 9 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERDIDO_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
4	ERDIDO_ <i>x_y</i>	Current status of DI1 (in bit 0) to DI8 (in bit 7).
5	ERDIDO_ <i>x_y</i>	Current status of DI9 (in bit 0) to DI12 (in bit 3).
8	ERDIDO_x_y_O_I	DO status as seen by card. 1 bit per value.

Output Map:

Size: 5 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERDIDO_x_y_O	Outputs. 1 bit per value. DO1 is LSB; DO4 is MSB. Typically specified as %QXy.z, where y is I/O space offset, and z is bit number from 0 to 3.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
4	ERDIDO_X_LEDSTATUS	Single bit. If bit is set, the diagnostic LEDS for the
		points are turned off to save power.

ERM_AI8 – ControlWave MICRO I/O Expansion Rack – 8 Analog Input Pin Board

DRIVER_NAME 'ERM_AI8'

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 40 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERAI_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
2 (bit 2)	ERAI_x_CALIBRATE	Bit 2 is set if the calibration data is invalid.
2 (bit 3)	ERAI_X_TIMEOUT	Bit 3 is set to indicate that a board data read has
		timed out.
4	ERAI_x_y_OUTRANGE	1 bit per AI, AI1 is bit 0, AI8 is bit 7. If set, input is
		Out-of-range.
8	ERAI_x_y	Value for AI1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		%IDxx. Direct access to %IDxx is not possible.
12, 16,	ERAI_x_y	Value for AI2, AI3,

Output Map:

Max Size: 132 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERAI_x_y_ZERO	Zero for AI1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
4	ERAI_x_y_SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
8, 16, 24,	ERAI_x_y_ZERO	Zeros for AI2, AI3,
12, 20,	ERAI_x_y_SPAN	Spans for AI2, AI3,
28,		
64, 72,	ERAI_x_y_BOTTOMRANGE	Bottom end of usable current / voltage range for this
80,		input. Specified as a REAL. For example, for a 1-5V
		input, this value is 1.0.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
68, 76,	ERAI_x_y_TOPRANGE	Top end of usable current / voltage range for this
84,		input. Specified as a REAL. For example, for a 1-5V
		input, this value is 5.0.
128	ERAI_x_y_MODE	1 bit per AI; set TRUE if the point is voltage; FALSE if
		current.

ERM_AO4 – ControlWave MICRO I/O Expansion Rack - 4 Analog Output Pin Board

DRIVER_NAME	'ERM_AO4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes o	of Primary IP address
DRIVER_PAR3	Lower two bytes of Primary IP address	
Input Map:	Max Size: 24 bytes	

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERAO_ <i>x</i> _DRIVERSTATUS	Board Status. See Common Status Information
		section.
2 (bit 2)	ERAO_x_CALIBRATE	Bit 2 is set if the calibration data is invalid
2 (bit 3)	ERAO_x_TIMEOUT	Bit 3 is set to indicate that a board data read has
		timed out.
6	ERAO_x_y_OUTRANGE	1 bit per AO, AO1 is bit 0, AO4 is bit 3. If set,
		output is Out-of-range.
8,12,16,20	ERAO_ <i>x_y</i> _ACTUAL	Real value of value actually output. Clamped to 0-
		100% of scale.

Output Map:

Max Size: 48 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERAO_ <i>x_y_</i> ZERO	Zero for AO1 (4-byte float - REAL). To access the value, define the variable <i>AT %QDxx</i> . This variable can be initialized at declaration.
4	ERAO_x_y_SPAN	Span for AO1 (4-byte float). If zero, the AO will be scaled from 0 to 100.0.
8	ERAO_ <i>x_y</i>	Value for AO1 (4-byte float).
12, 24, 36	ERAO_x_y_ZERO	Zeros for AO2, AO3, AO4
16, 28, 40	ERAO_x_y_SPAN	Spans for AO2, AO3, AO4
20, 32, 44	ERAO_x_y	Values for AO2, AO3, AO4

ERM_AI6 – ControlWave MICRO I/O Expansion Rack 6 Analog Input Pin Board

DRIVER_NAME	'ERM_AI6'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes o	of Primary IP address
DRIVER_PAR3	Lower two bytes of Primary IP address	
Input Map:	Max Size: 32 bytes	

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
0	ERAI_X_DRIVERSTATUS	Board Status. See Common Status Information
		section.
2 (bit 2)	ERAI_X_CALIBRATE	Bit 2 is set if the calibration data is invalid.
2 (bit 3)	ERAI_X_TIMEOUT	Bit 3 is set to indicate that a board data read has
		timed out.
4	ERAI_ <i>x_y</i> _OUTRANGE	1 bit per AI, AI1 is bit 0, AI6 is bit 5. If set, input is
		Out-of-range.
8	ERAI_ <i>x_y</i>	Value for AI1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		%IDxx. Direct access to %IDxx is not possible.
12, 16,	ERAI_x_y	Value for AI2, AI3,

Output Map:

Max Size: 48 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERAI_x_y_ZERO	Zero for Al1 (4-byte float - REAL). To access the value, define the variable <i>AT %QDxx</i> . This variable can be initialized at declaration.
4	ERAI_x_y_SPAN	Span for AI1 (4-byte float). If zero, the AI will be scaled from 0 to 100.0.
8, 16, 24, 	ERAI_x_y_ZERO	Zeros for AI2, AI3,
12, 20, 28,	ERAI_x_y_SPAN	Spans for AI2, AI3,

ERM_MA – ControlWave MICRO I/O Expansion Rack - Mixed Analog (6 AI / 2 AO) Board

DRIVER_NAME	'ERM_MA'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes	of Primary IP address

DRIVER_PAR3 Lo

Lower two bytes of Primary IP address

Input Map:

Max Size: 40 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERAIAO_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
2 (bit 2)	ERAIAO_X_CALIBRATE	Bit 2 is set if the calibration data is invalid.
2 (bit 3)	ERAIAO_X_TIMEOUT	Bit 3 is set to indicate that a board data read has
		timed out.
4	ERAIAO_x_y_OUTRANGE	1 bit per AI, AI0 is bit 0, AI2 is bit 1. If set, output is
		Out-of-range.
6	ERAIAO_x_y_O_OUTRANGE	1 bit per AO AO1 is bit 0, AO2 is bit 1. If set, output is
		Out-of-range.
8	ERAIAO_x_y	Value for AI1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		%IDxx. Direct access to %IDxx is not possible.
12, 16,	ERAIAO_x_y	Value for AI2, AI3,
32,36	ERAIAO_x_y_O_ACTUAL	Value actually written to AO – clamped to 0-100%.

Output Map:

Max Size: 72 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERAIAO_x_y_ZERO	Zero for AI1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
4	ERAIAO_x_y_SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
8, 16, 24,	ERAIAO_x_y_ZERO	Zeros for AI2, AI3,
12, 20,	ERAIAO_x_y_SPAN	Spans for AI2, AI3,
28,		
48,60	ERAIAO_x_y_O_ZERO	Zeros for AO1, AO2
52,64	ERAIAO_x_y_O_SPAN	Spans for AO1, AO2
56,68	ERAIAO_x_y_O	Values for AO1, AO2

ERM_MIX – ControlWave MICRO I/O Expansion Rack - Mixed I/O board

This card contains the following I/O: DIO 6, AI4, AO1, and HSC2

DRIVER_NAME	'ERM_MIX'
DATA_TYPE	DWORD
DRIVER_PAR1	slot number.
DRIVER_PAR2	First two bytes of Primary IP address

DRIVER_PAR3

Lower two bytes of Primary IP address

Input Map:

Max Size: 68 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERMIX_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
2 (bit 2)	ERMIX_x_CALIBRATE	Bit 2 is set if the calibration data is invalid
2 (bit 3)	ERMIX_x_TIMEOUT	Bit 3 is set to indicate that a board data read has
		timed out.
4	ERMIX_x_y_AI_OUTRANGE	Al under / over range. One bit per point: Al1 in bit 0,
		Al4 in bit 3.
6	ERMIX_x_y_AO_OUTRANGE	AO under / over range. AO1 is in bit 0.
8	ERMIX_x_y_DI	Current status of DI1 (in bit 0) to DI6 (in bit 5).
10	ERMIX_x_y_DO_I	Read-back of current value for DO1 (in bit 0) to DO6
		(in bit 5).
12	ERMIX_x_TIMESTAMP	Timestamp of last sample from HSC. This is the
		number of Milliseconds since boot.
16	ERMIX_x_y_COUNTER	Number of counts since boot (Channel 1)
20	ERMIX_x_y_COUNTER	Counts for Channel 2
32	ERMIX_x_y_AI	Value for AI1 in engineering units (4-byte float -
		REAL). To access the value, define the variable AT
		<i>%IDxx</i> . Direct access to %IDxx is not possible.
36, 40,	ERMIX_x_y_AI	Value for AI2, AI3,
64	ERMIX_x_y_AO_ACTUAL	Value actually written to AO – clamped to 0-100%.

Output Map:

Size: 84 bytes

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERMIX_x_y_DO	Outputs. 1 bit per value. DO1 is LSB; DO6 is MSB.
		Typically specified as %QXy.z, where y is I/O space
		offset, and z is bit number from 0 to 5.
2	ERMIX_x_y_RESET_COUNT	Counter reset flags, HSC1 (in Bit 0) to HSC2 (in bit 1)
4	ERMIX_x_LEDSTATUS	Bit 0 - If set, the diagnostic LEDS for the points are
		turned off to save power. Bit 1 – If set, maintains
		counts across Warm Start
8	ERMIX_x_y_AI_ZERO	Zero for Al1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
12	ERMIX_ <i>x_y</i> _AI_SPAN	Span for AI1 (4-byte float). If zero, the AI will be
		scaled from 0 to 100.0.
16, 24,	ERMIX_x_y_AI_ZERO	Zeros for AI2, AI3, AI4
32		
20, 28,	ERMIX_x_y_AI_SPAN	Spans for AI2, AI3, AI4
36		

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
72	ERMIX_ <i>x_y</i> _AO_ZERO	Zero for AO1 (4-byte float - REAL). To access the value, define the variable <i>AT %QDxx</i> . This variable can be initialized at declaration.
76	ERMIX_x_y_AO_SPAN	Span for AO1 (4-byte float). If zero, the AO will be scaled from 0 to 100.0.
80	ERMIX_ <i>x_y_</i> AO	Value for AO1 (4-byte float).

ERM_HSC4 – ControlWave MICRO I/O Expansion Rack - 4 Channel High Speed Counter Board

DRIVER_NAME	'ERM_HSC4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes of Primary	y IP address
DRIVER_PAR3	Lower two bytes of Prima	ary IP address
Input Map:	Max Size: 24 bytes	

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0	ERHSC_x_DRIVERSTATUS	Board Status. See Common Status Information
		section.
4	ERHSC_X_TIMESTAMP	Timestamp of last sample from HSC. This is the
		number of milliseconds since boot.
8	ERHSC_x_y_COUNTER	Number of counts since boot (Channel 1)
12, 16,	ERHSC_x_y_COUNTER	Counts for Channel 2, 3, 4
20		

Offset	Default Variable Name where <i>x</i> is the board slot and <i>v</i> is the pin number.	Description
0	ERHSC_x_y_RESET_COUNT	Counter reset flags, HSC1 (in bit 0) to HSC4 (in bit 3)
2 (bit 1)	ERHSC_X_NOINIT	Maintain Counts across Warm Start (TRUE = maintain)
4	ERHSC_x_LEDSTATUS	Single bit. If bit is set, the diagnostic LEDS for the points are turned off to save power.

ERM_STAT - ControlWave MICRO I/O Expansion Rack Status Board

In addition, an Expansion Rack Status board (ERM_STAT) is defined. This board has a similar I/O map as the status board for the ControlWave Expansion Rack (ER_STAT).

DRIVER_NAME	'ERM_STAT'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number (ignored – s	pecify as zero).
DRIVER_PAR2	First two bytes of Primar	y IP address
DRIVER_PAR3	Lower two bytes of Prima	ary IP address
Input Map:	Max Size: 1242 bytes	

Note: Data starting at offset 12 will only be refreshed as fast as a 1 second interval.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERSTAT_x_BOARDSTATUS	Board Status. See Common Status Information
		section.
4 (bit 0)	ERSTAT_X_BATSTAT	Memory battery status at Expansion Rack. TRUE
		indicates good battery.
4 (bit 1)	ERSTAT_X_HOTCARDSTAT	TRUE indicates that a HOT Card replacement is in
		progress at the Expansion Rack. Will always be FALSE
		on platforms which do not support on-line HOT Card
		replacement.
8	ERSTAT_X_HOTCARDCT	32-Bit Count of Hot Card replacement events which
12		have occurred.
12	ERSTAT_X_DOWNTIMEUSER	32 Bit Count – Number of seconds (as configured by
		the user) that the Expansion Rack can be powered off
		unit is newered back up
16		22 Bit Count Number of seconds that the
10		SZ-BIL Could – Number of seconds that the
		fail.
20	ERSTAT_X_WRITECT	32-Bit Count – Number of I/O updates sent to the
		Expansion Rack
24	ERSTAT_x_READCT	32-Bit Count – Number of I/O updates sent from the
		Expansion Rack
28	ERSTAT_X_CONNECTS	32-Bit Count – Number of Connects and Disconnects
		made to the Expansion Rack.
32	ERSTAT_X_HEARTBEAT	32-Bit Count – Number of IDLE time Heartbeats sent
		from the Expansion Rack to the host.
42	ERSTAT_X_BDSTR1	String – I/O board string for slot #1
127	ERSTAT_X_BDSTR2	String – I/O board string for slot #2
212	ERSTAT_X_BDSTR3	String – I/O board string for slot #3
297	ERSTAT_x_BDSTR4	String – I/O board string for slot #4
382	ERSTAT_X_BDSTR5	String – I/O board string for slot #5
467	ERSTAT_X_BDSTR6	String – I/O board string for slot #6
552	ERSTAT_X_BDSTR7	String – I/O board string for slot #7
637	ERSTAT_X_BDSTR8	String – I/O board string for slot #8
724		DINT – Current redundancy status of the Expansion
		Rack – will always be zero on this platform

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
728	ERSTAT_x_BDSTR9	String – I/O board string for slot #9
813	ERSTAT_x_BDSTR10	String – I/O board string for slot #10
898	ERSTAT_x_BDSTR11	String – I/O board string for slot #11
983	ERSTAT_x_BDSTR12	String – I/O board string for slot #12
1068	ERSTAT_x_BDSTR13	String – I/O board string for slot #13
1153	ERSTAT_x_BDSTR14	String – I/O board string for slot #14
1240	ERSTAT_x_INPUTVOLTS	Float – Reading (in volts) of power-supply input
		voltage.

Output Map: Max Size: 4 bytes

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
0.0		If this is a Redundant Expansion Rack, and the Standby is valid, then writing a TRUE to this location will cause the rack to fail-over. Not used on this platform.

ERM_TC6 – ControlWave MICRO I/O Expansion Rack 6 Point Thermocouple Board

DRIVER_NAME	'ERM_TC6'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes of Primar	y IP address
DRIVER_PAR3	Lower two bytes of Prima	ary IP address
Input Map:	Max Size: 32 bytes	

Due to the amount of time required to process the thermocouple points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 40ms.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	TC6_x_DRIVERSTATUS	Board Status. See Common Status Information section.
2 (Bit 2)	TC6_x_CALIBRATE	If set indicates invalid calibration data written to the board.
2 (Bit 3)	TC6_x_TIMEOUT	If set, indicates that had an error reading or writing to the board.
4	TC6_x_y_OUTRANGE	1 bit per TC, TC1 is bit 0, TC6 is bit 5. If set, input is Out-of-range.

Offset	Default Variable Name where <i>x</i> is the board slot and <i>y</i> is the pin number.	Description
8	TC6_ <i>x_y</i>	Value for TC1 in engineering units (4-byte float - REAL). To access the value, define the variable <i>AT</i> <i>%IDxx</i> . Direct access to %IDxx is not possible.
12, 16, 20, 24, 28	TC6_ <i>x_y</i>	Value for TC2, TC3, TC4, TC5, TC6

	Output Map: Max Size: 70 bytes	
Offset	Default Variable Name where <i>x</i> is the board	Description
	siot and y is the pin number.	
0	TC6_ <i>x_y</i> _ZERO	Zero for TC1 (4-byte float - REAL). To access the
		value, define the variable
		AT %QDxx. This variable can be initialized at
		declaration.
4	TC6_ <i>x_y_</i> SPAN	Span for TC1 (4-byte float). If zero, the TC will be
		scaled as in the chart below. If specified, the new
		value will be ORG_VALUE * Span + Zero.
8, 16, 24, 32,	TC6_x_y_ZERO	Zeros for TC2, TC3, TC4, to TC6 – Example: for C to
40		F, use 32.0
12, 20, 28,	TC6_ <i>x_y_</i> SPAN	Spans for TC2, TC3, TC4, to TC6 – Example for C to
36, 44		F, use 1.8
64	TC6_x_y_MODE	Point type for TC1; see Thermocouple type codes
		section for details.
65, 66, 67,	TC6_x_y_MODE	Point types for TC2, TC3, TC4, TC5, and TC6.
68,69		

Type codes for Thermocouple Points.

Type Code	Code	Range
0	В	Thermocouple: 100C – +1820C
1	E	Thermocouple: -270C – +1000C
2	J	Thermocouple: -210C – +1200C
3	К	Thermocouple: -270C – +1370C
4	R	Thermocouple: -50C – +1720C
5	S	Thermocouple: -50C – +1760C
6	Т	Thermocouple: -270C – +400C
7	Unused	Unused
8	10MV	Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)
9	С	Thermocouple: 0C – +2315C
10	N	Thermocouple: -270C – +1300C

ERM_RTD4 – ControlWave Micro I/O Expansion Rack – 4 Point Resistance Temperature Device (RTD) Board

DRIVER_NAME	'ERM_RTD4'	
DATA_TYPE	DWORD	(32 bits)
DRIVER_PAR1	slot number.	
DRIVER_PAR2	First two bytes of Prima	y IP address
DRIVER_PAR3	Lower two bytes of Prim	ary IP address
Input Map:	Max Size: 24 bytes	

Due to the amount of time required to process the RTD points, it is highly recommended that this I/O driver be assigned to a task (instead of "No Task"). Care should also be taken in using the I/O board in a task of less than 40ms.

Offset	Default Variable Name where <i>x</i> is the board	Description
	slot and y is the pin number.	
0	ERRTD_X_DRIVERSTATUS	Board Status. See Common Status Information
		section.
2 (Bit 2)	ERRTD_X_CALIBRATE	If set indicates invalid calibration data written to
		the board.
2 (Bit 3)	ERRTD_X_TIMEOUT	If set, indicates that had an error reading or writing
		to the board.
3 (Bit 0)	ERRTD_x_LASTCALBOP	Set if last calibration or reset operation failed.
3 (Bit 7)	ERRTD_X_CALBCMD	Calibration Commands Allowed. Until this bit is
		set, all calibration commands are ignored.
4	ERRTD_x_y_READERR	RTD Reading Error. Bit 0 is RTD1, Bit 3 is RTD4
8	ERRTD_x_y	RTD1 reading – REAL – In units of Degrees
		Centigrade (unless scaled by values in the output
		map).
12, 16,20	ERRTD_x_y	Readings for RTD2 RTD4.

Output Map:

Max Size: 200 bytes

Offset	Default Variable Name where <i>x</i> is the	Description
	board slot and y is the pin number.	
0	ERRTD_x_y_ZERO	Zero for RTD 1(4-byte float - REAL). Example: for
		C to F, use 32.0. Defaults to 0.0
4	ERRTD_x_y_SPAN	Span for RTD 1(4-byte float – REAL). If zero, RTD
		will not be scaled. If specified, the scaled value
		will be ORG_VALUE * Span + Zero. Example for
		C to F, use 1.8.
8,16,24,32	ERRTD_x_y_ZERO	Zero for RTDs 2-8
40,48,56		
12,20,28,	ERRTD_x_y_SPAN	Span for RTDs 2-8
36,44,52,		
60		
		Description
-------------------	-----------------------------------	--
ьо	ard slot and y is the pin number.	
64 ERF	RTD_x_y_MODE	
65,66,67, ERF	RTD_ <i>x_y_</i> MODE	
68,69		
100		NOT USED; RESERVED FOR FUTURE USE
120 (Bit 0) * ERF	RTD_ <i>x_y</i> _RESTORE	If set, restore RTD 1 calibration to Factory
		Defaults. Will be reset when operation
		completes.
121 * ERF	RTD_ <i>x_y_</i> OPERATION	Calibration Operation for RTD 1 – SINT
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A, B, RO)
		8 RTD Span (not using 300 Ohms)
124** ERF	RTD_x_y_COEFF_A	
128** ERF	RTD_x_y_COEFF_B	
132** ERF		Coefficient R0 (RTD T)
136** ERI	RTD_X_Y_APPLIED	The applied temperature when calibration
		operation 8 was performed. (RTDT)
140 (BICO)	RTD_X_Y_RESTORE	If set, restore RTD 2 calibration to Factory
		completes
		Collibration Operation for PTD 2 SINT
	RTD_x_y_OPERATION	5 RTD Zero (100 Obms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A, B, R0)
		8 RTD Span (not using 300 Ohms)
144** ERF	RTD x y COEFF A	Coefficient A (RTD 2)
148** ERF	 RTD_ <i>x_y_</i> COEFF_B	Coefficient B (RTD 2)
152* ERF	RTD_x_y_COEFF_R0	Coefficient R0 (RTD 2)
156* ERF	RTD_x_y_APPLIED	The applied temperature when calibration
		operation 8 was performed. (RTD 2)
180 (Bit 0) * ERF	RTD_ <i>x_y_</i> RESTORE	If set, restore RTD 4 calibration to Factory
		Defaults. Will be reset when operation
		completes.
181 * ERF	RTD_ <i>x_y_</i> OPERATION	Calibration Operation for RTD 4 – SINT
		5 RTD Zero (100 Ohms)
		6 RTD Span (300 Ohms)
		7 RTD Coefficients (A, B, R0)
		8 RTD Span (not using 300 Ohms)
184 * * ERF	RTD_ <i>x_y</i> _COEFF_A	Coefficient A (RTD 4)
188 * * ERF	RTD_ <i>x_y</i> _COEFF_B	Coefficient B (RTD 4)
192 * * ERF	RTD_ <i>x_y</i> _COEFF_R0	Coefficient R0 (RTD4)
196 * * ERF	RTD_ <i>x_y_</i> APPLIED	The applied temperature when calibration
		operation 8 was performed. (RTD 4)

Value written to perform operation. The value will be reset by driver when the operation completes.

** Value is read from the board by the driver. In order to perform calibration operations 7 and 8, the user can overwrite the values; then, issue the calibration command.

I/O Simulator

What is the I/O Simulator?

The control programs generated through ControlWave Designer are executed by the ControlWave controller using the IEC 61131 real time system, working in conjunction with ControlWave firmware.

The PC-based **I/O Simulator** operates using copies of the IEC 61131 real time system and ControlWave firmware which are identical to those running in the controller. This allows any control strategy generated for ControlWave Designer to be tested on a PC, with simulated analog and digital inputs and outputs. Initial I/O testing and debugging may be performed in a safe, isolated environment, without the need for a running ControlWave controller and process I/O boards.

Important

The I/O Simulator is designed to work with IPCxx RTU resources. It does NOT work with ARM-based RTU resources. Therefore, projects created to run in the ControlWave MICRO-series of controllers **will not** execute in the I/O Simulator.

Number of Boards Available within the I/O Simulator

The I/O Simulator has a limit on the number of boards that may be accessible within the simulation. This limit is dictated by an internal limit of 500 characters for the list used to describe the boards used in the I/O Simulator. If, while using the I/O Simulator, some boards do not appear, you must re-run the I/O Configurator, and select for I/O simulation the group of boards that are missing and de-select unused boards, as needed, so the limit is not exceeded.

Starting the I/O Simulator

Before you can start the I/O Simulator, you must identify it as the download destination for your control program. This is done in the Resource Settings dialog box.

To choose the resource, *right* click on the resource and choose **"Settings"** from the pop-up menu.

Resource settin	ngs for IPC_40		X	
Port	Baud:	19200 💌	Ok	Choose "Simulation 1"
O COM1	Stopbits:	1	Cancel	
O COM2	Databits:	8	Data area	
O COM4	Parity:	None 💌		
 Simulation 1 	Timeout:	2000 ms	Help	
Simulation 2				
ODLL	 Stack cher ✓ Array boun ✓ Force BOD ✓ Generate b 	ck on PLC dary check on PLC IL8 for boolean variables pootproject during compile		
DLL:	TCP/IP		~	
Parameter:	-ip 127.0.0.1 -TO2000			
PDD		OPC		
📃 All global var	iables	All global variable	es	
Marked varia	ables	Marked variables	;	
Use reserve	🔿 Mark	ed POUs ON	o reserve	

Choose "Simulation 1" in the Resource Settings dialog box, and click on [OK].

Next, click as follows: **Online→Project Control**

The I/O Simulator will appear, however, no I/O boards will be displayed, yet.

Minimize the I/O Simulator in order to uncover the RTU Resource dialog box.

RTU_RESOU.	🔳 🗖 📈
State: On	
Stop	Cold
Reset	Warm
	Hot
Download	Upload
Error	Info
Close	Help

Click on the **[Download]** button in the RTU Resource dialog box.

Download	×
Project	Bootproject
Download	Download
Download Changes	Activate
Ensure real-time for Download Changes Include Bootproject Include Sources Include OPC data	Delete on Target
Download Source	
 Include User-Libraries Include Pagelayouts Include Backend-Code 	
Delete Source on Target	Download File
Close	Help

The Download dialog box will appear. Click the **[Download]** button in the Project section of the Download dialog box.

The RTU_Resource dialog box will re-appear. Click either the **[Warm]** or **[Cold]** buttons. The **[Warm]** button only re-initializes non-retentive variables, i.e. variables which are NOT marked as 'RETAIN'. The **[Cold]** button re-initializes all variables.

If desired, execution can be stopped by clicking the **[Stop]** button. Then, execution can be re-started using either the **[Warm]** or **[Cold]** buttons.

RTU_RESOU	. 🗖 🗖 🗙
State: Stop	
Stop	Cold
Reset	Warm
	Hot
Download	Upload
Error	Info
Close	Help

In the I/O Simulator, icons will now appear for all configured process I/O boards. In this example, we have two process I/O boards – one analog input board, and one analog output board. In the figure, below, they are shown as Slot 1 and Slot 2, respectively.

IO SIMULATOR - Slots\Boards	
Board Options Window Help	
🗱 🛲 🔺	
Slots\Boards	
Slot 3	
Not 2	
ATTE Slot 1	
For Help, press F1	11.

Click on either of the board icons, or press the **[Enter]** key while one of the boards is highlighted, and a graphical representation of the board, showing simulated values for all pins on the board will appear. Analog values are shown as bar graphs; digital values are shown as buttons.

pin on the board.

Enabling / Disabling the Board Simulation

For all board types, the board simulation can be enabled/disabled by clicking on the board status indicator in the upper right hand corner of the board graphic. This indicator will appear in green when the simulation is active, or red when the board simulation is turned off or the board has not been configured.

Analog Boards

Analog Input Boards

In analog input boards, the value of a particular pin may be altered by dragging the slider bar associated with the graphic for each pin. Alternatively, right click on the pin and choose **"Configure Pin"** from the pop-up menu. Enter a value in the **"Current Value"** field.

Current value displayed here

Analog Output Boards

Within the I/O Simulator Analog output boards are depicted similarly to analog input boards, however, you are NOT allowed to alter the value of individual pins.

Digital Boards

Digital Input Boards

For digital input boards, the value of a particular pin may be altered by clicking on the button which corresponds to that pin. A pin is ON when its button is displayed in green; a pin is OFF when its button is displayed in red.

Digital Output Boards

Within the I/O Simulator, digital output boards are depicted similarly to digital input boards, however, you are NOT allowed to alter the status of individual pins.

Counter Boards

High Speed Counter input values can be displayed within the I/O Simulator. You can also enter new values for the counter inputs.

🖬 [SLOT 3] 6 or 12 Chan High Speed Counter Board						
z l ol	^ • <u>•</u>					
er 2 Counter 3	Counter 4					
0						
er 6 Counter 7	Counter 8					
er IU Counter II	Counter 12					
	7 0 ter 2 Counter 3 0 ter 6 Counter 7 0 cer 10 Counter 11					

Viewing the Board Configuration Status

To view the status of a board in the I/O simulation, click on **Options**→**Configure Current Board** or *right*-click in certain portions of the graphical representation of the board and choose **"Configure Board"** from the pop-up menu.

Board Configuration Page

The contents of the Board Configuration page vary, depending upon what type of board you are configuring.

In all cases, you can disable the simulation for the board, by de-selecting the **"Board Status"** check box; this causes the text 'NOT PRESENT' to appear. This is equivalent to setting the board status indicator to OFF.

[SLOT 1] 8 or 16 Analog Input Board	\mathbf{X}					
Board Configuration						
🔽 Board Status						
Last Operation: SUCCESS						
OK Cancel Help						

Configuring a Pin

For boards which simulate input values, you can change the value / status of a particular pin, by rightclicking on the graphical representation for that I/O point, and chooisng **Configure Pin** from the pop-up menu. You can then enter a new value (for analog boards) or toggle the status (for digital boards). Output board types only allow you to view information about the pin, not to change it.

Analog Input Pin Configuration						
Pin 13						
Zero Value	Current Value	Span Value				
Under Valu	ue Over V	/alue				
	OK Ca	ncel Help				

Viewing Simulated Alarms

As you proceed to manipulate process variables in the I/O simulator, you can generate alarm messages, if those process variables are connected to alarm function blocks. The alarm messages can then be viewed in the Alarm Window. To view alarm messages in the I/O Simulator's Alarm Window, click on the 'Alarm Window' icon, or click on **Options→Display Alarm Window**.

Ala	m Win	dow							
We	d Se	p 13	15:47:58	2000->	MYPROG1.F105 LEVEL	HiHi	Sinqle		87
We	d Se	p 13	15:46:38	2000->	MYPROG1.F105_LEVEL	HiHi	Single	Critical	98
We	d Se	p 13	15:45:32	2000->	MYPROG1.F105_LEVEL	LoLo	Single		75
We	d Se	p 13	15:45:17	2000->	MYPROG1.F105_LEVEL	LoLo	Single	Event	0
					_		-		

Shutting Down the I/O Simulator

The I/O Simulator cannot be shutdown from a board window; it will re-appear if you attempt this. The only way to shut it down is by choosing the **[Close]** button from the RTU_Resource dialog box.

Note:

If the RTU_Resource dialog box is not visible, minimize other windows of the I/O Simulator to uncover it.

Troubleshooting Tip

For some Windows operating systems, if **Physical Address Extension** capability is turned ON, it *may* prevent the I/O Simulator from running and generate an error. If you are having trouble running the simulator you should check to see your operating system supports this capability, and if it does, try turning it OFF and see if this remedies the situation.

To see if Physical Address Extension is supported:

Double-click on **System** in the Windows Control Panel. If you see **Physical Address Extension** displayed on the **"General"** tab, it means your operating system supports this.

To Turn Off Physical Address Extension:

There are two methods available for turning OFF physical address extension capability.

Method 1:

1.	 In the System Properties dialog box, click the Advanced tab. Click Settings in the Performance section. 		ystem Proper	ties			? 🛛
	box click the Advanced tab	1	System Restore		Automatic Updates		Remote
	box, click the Advanced tab.		General	Compu	iter Name	Hardware	Advanced
2.	Click Settings in the Performance section.	You must be logged on as an Administrator to make most of these change Performance Visual effects, processor scheduling, memory usage, and virtual memory Settings					these changes. virtual memory Settings
Click "Settings" .			Desktop setti	ings related	to your logon	(Settings
			Startup and F	Recovery-			
			System startu	ip, system fa	ailure, and debu	igging information	
				En	vironment Varia	bles Error	Settings Reporting
		L			OK	Cancel	Apply

3. In the Performance Options dialog box, click the **Data Execution Prevention** tab.

4. On the Data Execution Prevention tab, check the button for **Turn on DEP for** essential Windows programs and services only.

Performan	ce Options				?×
Visual Effec	ts Advanced	Data Execut	ion Prevention		
 Turn o only Turn o select: 	Data Executio against damag threats. <u>How</u> n DEP for essen n DEP for all pro	n Prevention (le from viruse: does it work? tial Windows p ograms and se	DEP) helps pro s and other se programs and rvices except	otect curity services those I	
		bA	d	Remove	2
		ок	Cancel	Ap	ply

5. Click **OK** and reboot your PC for the change in settings to take effect.

Method 2:

If you are familiar with configuring system BIOS, you can turn physical address extension OFF in the BIOS by disabling NX technology.

IP Addressing and Networks

Internet Protocol (IP) is one method in which the ControlWave controller can communicate on a network. IP is supported through the ControlWave's Ethernet port(s), and serial IP (PPP) is supported through its serial ports.

What is the Format of IP Addresses?

Each network connection from an IP node has an **IP address** which is unique within the network. It is important to note that the IP address is associated with the *network connection* (IP Port) on the node, NOT the node itself. This allows a single IP node to have *more than one* IP port, and consequently, more than one IP address.

IP addresses consist of 32 **bits** (1's and 0's) which are divided up into 4 groups of 8 bits each. A period is used to separate each group. Each group of 8 bits is then converted from binary to a decimal number from 0 to 255. The resulting IP address is said to be in **dotted decimal** notation.

Each group of 8 bits is converted to a decimal number

01111000.0000000.11010010.00000001

120.0.210.1

Each of the numbers in the address generally has a specific meaning. The IP address is generally divided up into a **network portion** which must be common to each node in the network, and a **local portion** of which some part *must be unique* to a particular node.

How is the Specific Meaning of Each Part of the Address Defined?

Addresses must be assigned to be consistent with whatever conventions have been established for your system. For example, if this network has connections outside the plant (such as connection to the real world-wide Internet), then the choice of this network number is assigned by an Internet governing body called the Network Information Center (NIC) or whatever Internet service provider you are using. In addition, there are certain rules to defining addresses, which will be discussed later.

The specific meaning of each part of the address is defined in something called the IP mask or **sub-net mask**. The sub-net mask is simply another set of 32 bits (which must also be converted to dotted decimal notation). Each bit in the sub-net mask corresponds to a bit in the IP address. If a bit in the sub-net mask is set to 1 (ON), then the corresponding bit *in the IP address* is considered to be part of the **network portion** of the IP address. The network portion can be ignored (or '*masked*') when performing communications to *nodes within the same network*, because by definition, all nodes in the same network have identical network portions. Any bit in the sub-net mask which is 0 (OFF) is considered to be part of the local addressing scheme.

The figure, below, shows the IP address and corresponding sub-net mask for an IP address of 120.0.210.1 and a sub-net mask of 255.0.0.0.

As we said before, a '1' in the sub-net mask indicates that the corresponding IP address bit is part of the network portion of the address. Because the first part of the IP address '01111000.' has a corresponding sub-net mask of '11111111' we know that '01111000' (120 in decimal) is the network portion of the address.

The remaining parts of the IP address '00000000.11010010.00000001' have a corresponding sub-net mask of '00000000.00000000.00000000'. These bits are used as part of the local communications addressing scheme.

Rules for Creating a Local Addressing Scheme

When you are creating your IP address, the network portion of the address must appear *first*. For example, if the network portion is 200, you CANNOT define an IP address as 0.200.14.1. The network portion must appear first. This means that when creating the sub-net mask, the masked portion (i.e. all 1's) must appear first.

The organization of the remaining bits can follow any local communications scheme you choose to devise, except that each group of bits that represents something *must be contiguous*.

For example, let's say the first 16 bits have been 'masked out' to define the network address, i.e. there is a sub-net mask of:

11111111.1111111.00000000.0000000

which in dotted decimal format is:

255.255.0.0

That leaves 16 bits (indicated by the 0's) for devising a local communications scheme.

You might want to use the first 8 bits to indicate a section or area number for a section of your network. 8 bits will allow up to 256 sections to be defined. Another 8 bits (remaining out of the 16 available) can be used to indicate a node number, allowing up to 256 IP controllers (RTUs) and OpenBSI workstations, in a given section.

Network identification section# Node#

้ xxxxxxxxx.xxxxxx.รู้ธรรรรรร.ที่ทุกทุกทุกท

If you have a device (controller, or workstation) which will have *multiple* IP ports, we recommend you exercise special care when specifying the IP address and mask for each IP port to ensure that IP communication functions according to your plan. *For example, you typically would want each IP port to sit on a unique IP network*. This is because having two or more IP ports of the same device on the same network is not particularly useful, since only *one* of the ports will be allowed to send messages out to the network; the other ports will only be able to receive messages.

Sub-net Masks Determine Which Nodes are Reachable From this Node

So far, we have been talking about the mechanics of creating IP addresses and sub-net masks. The aspect we have not discussed is why IP addresses and subnet masks are so important.

A node's IP address, and its sub-net mask, define the range of acceptable addresses with which the node can communicate. For example, if one node has an IP address of 4.3.2.1 and another node has an IP address of 100.100.0.1, there is no common network portion between the two addresses. For that reason, there is NO way these two nodes can communicate with each other directly - - they are each part of *different* networks. Any messages between these nodes would have to pass through one or more **router** computers.

For two nodes to communicate directly, the network portion of their addresses (as specified by the sub-net mask) must match exactly.

To illustrate this concept, look at the figure, below. The network shown has one Network Host PC (NHP) called NHP1, and 3 controllers (RTUs) named OAK_STREET, ELM_STREET, AND WALNUT_AVE.

However, the table below reveals a problem with the configured sub-net masks.

Node Name	IP Address, Subnet Mask:	Mask Says This Node Can Send Messages to	
		All Nodes with Addresses:	
NHP1	IP ADR: 100.22.49.1	100.22.49.ууу	
	MASK: 255.255.255.0	where yyy is an integer from 0 to 255.	
WALNUT_AVE	IP ADR: 100.22.49.178	100.22.yyy.zzz	
	MASK: 255.255.0.0	where yyy and zzz are integers from 0 to	
		255.	
OAK_STREET	IP ADR: 100.22.50.33	100.22.yyy.zzz	
	MASK: 255.255.0.0	where yyy and zzz are integers from 0 to	
		255.	
ELM_STREET	IP ADR: 100.22.51.14	100.22.yyy.zzz	
	MASK: 255.255.0.0	where yyy and zzz are integers from 0 to	
		255.	

Based on their specified IP addresses and sub-net masks, OAK_STREET, ELM_STREET, and WALNUT_AVE can all communicate with each other. They can also send messages to NHP1.

There is a problem, however. NHP1 has a sub-net mask which specifies that it can only send messages to nodes with addresses 100.22.49.*nnn* where *nnn* is an integer from 0 to 255. The only node which it can send messages to, therefore, is WALNUT_AVE.

To remedy this situation, NHP1's sub-net mask *should be changed to* 255.255.0.0 so that it can also send messages to OAK_STREET and ELM_STREET. The corrected sub-net mask is reflected in the figure at right.

Network Host PC NHP1 ^ IP address: 100.22.49.1 Subnet Mask: 20-Corrected Subnet Mask: 255.255.0.0 OAK STREET IP address: 100.22.50.33 Subnet Mask: 255.255.0.0 Ethernet Cable WALNUT AVE IP address: 100.22.49.178 Subnet Mask: 255.255.0.0 ELM STREET

IP address: 100.22.51.14 Subnet Mask: 255.255.0.0

Adding a ControlWave to an IP Network with the RTU Wizard

Within OpenBSI's NetView program, the ControlWave can be added to an existing IP network in the same way as you would add any other controller.

Within the NetView tree, simply choose the icon for the network to which you want to add the ControlWave, *right*-click on the icon, and choose $Add \rightarrow RTU$ to call up the RTU Wizard.

In the RTU Wizard, be sure you specify its node type, for example, 'ControlWave' 'CWave_MICRO', etc. and that you also specify the full path of the ControlWave project .MWT file.

Specify the fu	ull path of the		Choo	se the correct node
ControlWave	project (*.MWT		type	for your ControlWave
file)			unit	
			/	
RTU Wixard: Step 2	of 4			
	Enter a string for the RTU name (Max 16 chars): Select the Node Type: Enter the filename of the RTU's VIRT must contain full path, ACCOLL CCUL load files directory.) CCN ProgramData\Bristol\Opent Enter the strategy resource use not required if only one resource to transition the strategy resource use CVA Enter a string that describes the 3808 OCEAN AVENUE STATION	3 ave_Micro TUAL TUAL TOWave ave_LP ave_EP ave_ETM ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC ave_GFCC	Browse	
Startup c:\ProgramDa	ta\Bristol\OpenBSI\WebPages\Web_B	3SI.htm	Browse	
Access startup	page from RTU			
	Advanced RTU Parameters			
	<	Back Next > Car	icel Help	

In addition, you should specify the startup web page for the controller. If the startup web page is on the PC, specify its full path. If it resides within the ControlWave, just specify the name and select the **"Access startup page from RTU"** check box.

You will also need to specify a local address for the ControlWave, and, as well as an IP address and IP mask for the ControlWave. The local address must match whatever local address has been defined for the ControlWave in the Port Configuration web page or Flash Configuration Utility 'Ports' page. The default is 1. This subject is discussed, in more detail, later.

Note:

To view web pages in OpenBSI, the path of Microsoft[®] Internet Explorer (IEXPLORE.EXE) must be entered in the **"Web Browser"** field of the OpenBSI Application Parameters dialog box in NetView. To access the OpenBSI Application Parameters dialog box, sign on to NetView with the system password, and then click on the Application Parameters icon. For more information on the OpenBSI Application Parameters dialog box, and the NetView program, see the *OpenBSI Utilities Manual* (part number D301414X012).

Full details on adding controllers to OpenBSI networks are included in Chapter 6 of the *OpenBSI Utilities Manual* (part number D301414X012).

Setting up IP Ports in the Flash Configuration Utility

The 'Ports' page in the Flash Configuration Utility allows you to configure the characteristics of the ControlWave-series controller's serial and Ethernet ports. See the '*IP Ports – Ethernet*' and '*IP Ports – PPP*' sections in this manual for more information.

Recommended Ranges for IP Addresses

If you are intending to connect your OpenBSI network directly to the global world-wide Internet, you must obtain a range of IP addresses from your Internet service provider (ISP) or from an Internet governing body such as the Internet Assigned Numbers Authority (IANA).

If you have no plans to connect your network to the global Internet, there is no restriction on your choice of IP addresses, however, the Internet Engineering Task Force recommends (in accordance with *RFC 1918*, or *Rekhter*, *et al*, *Best Current Practice memo - Address Allocation for Private Internets, Internet Engineering Task Force, February, 1996;* see *http://www.ietf.org* for the complete text of this memo) that IP addresses for private networks should be assigned from the following ranges:

10.0.0.0 to 10.255.255.255

172.16.0.0 to 172.31.255.255

192.168.0.0 to 192.168.255.255

These particular ranges of Internet addresses have been set aside for private networks. Any messages coming from these addresses can be recognized by most Internet Service Providers (ISP) as coming from private networks, and so can be filtered out. This helps avoid addressing conflicts should an accidental connection occur between a private network, and the global Internet.

Devices (e.g. controllers, workstations) in networks created with OpenBSI must always use fixed IP addresses. This causes certain complexities if you choose to use Dynamic Host

Configuration Protocol (DHCP) in your network to provide addresses to other non-ControlWave or Network 3000 devices. Because DHCP assigns IP addresses dynamically, as they are needed, you must examine your DHCP server to determine the addresses which have been assigned for each ControlWave or Network 3000 controller or OpenBSI workstation and then *manually* enter those addresses in NetView. You should then specify the longest possible lease time for the addresses, to help prevent the loss of a given address through a device failure.

It is also strongly recommended that the DHCP server is configured such that the addresses reserved for the controllers are permanently reserved (by tying them to the RTU MAC addresses within the DHCP configuration or by having them in a totally different address range). The same should be done when configuring RAS servers or other machines capable of providing dynamic addressing information. Otherwise, you can easily have duplicate IP addresses on your network.

IP Parameters

The IP Parameters page is accessible from the **'IP Parameters'** tab in the Flash Configuration Utility. This page is used to specify the IP addresses (in dotted decimal format) of this controller's Network Host PC (NHP), as well as UDP port/socket information. Additional parameters are available related to IP routing, and communications security.

Soft Switches Ports IP Parameters Application Parameters Archive Audit IP Routes S					
NHPs IP ADDR A : 10 211 75 154 IP ADDR B : 0 0 0 0 0					
UDP Ports Gateway					
IBP: 1234 Time Synch: 1235 Default G/W: 0 </td					
RIP Protocol Inclusion Addr: 0 0 0 Exclusion Addr: 0 0 0 0 Inclusion Mask: 0 0 0 0 Exclusion Mask: 0 0 0 0					
Dynamic IP Routing Ping Challenge Protocol Rate: Timeout: Retries: 30000 ms 1					

NHPs:

- **IP ADDR A:** This is the *primary* IP address for this controller's Network Host PC (NHP). It must be entered in dotted decimal format.
- **IP ADDR B:** This is a *secondary* IP address for the same NHP referenced by **"IP ADDR A"** or the IP address of a redundant backup NHP. It must be entered in dotted decimal format. If neither of these situations apply, leave **IP ADDR B** blank.

UDP Ports:

- IBP: This is the UDP port number (socket number) used by the IP driver. It is used to split message traffic along different streams. All PCs or RTUs which are to communicate with each other must have the same "IBP" number. In a sense, this value is like a common password which must be known by each node in the network. If no value is entered, a default value from the NETDEF files is used. (NOTE: Although the term UDP Port is used, it has no actual relationship with the physical communication ports.)
- **Time Synch:** This is the UDP port number (socket number) used for time synchronization of the RTUs. All PCs or RTUs must have this value defined, or else they will be unable to receive time synchronization messages. In a sense, this value is like

a common password which must be known by each node in the network. If no value is entered, a default value from the NETDEF files is used. (NOTE: Although the term *UDP Port* is used, it has no actual relationship with the physical communication ports.)

SNMP: (Requires CWP/LPS/CWR 03.00 or newer firmware)

Disable SNMP Processing: SNMP allows certain IP parameters to be monitored and adjusted remotely. For security purposes, you may want to check this box to disable this capability.

Other notes about SNMP:

If you choose to leave SNMP processing enabled, you should be aware of the following things:

ControlWave supports RFC1213 (MIB II).

For the community string, any string is accepted to read data. For writes (updates) the community string must be specified as a valid <username>/<password> combination.

The system contact, description, and location strings are taken from the _CW_CONTACT_STR, _CW_DESCRIPTION_STR, and _CW_LOCATION_STR system variables. See the *System Variables* section of this manual for more information on these strings.

Gateway:

Default G/W: This is an IP address of a default gateway. The default gateway is an address to which the system sends any messages with destinations that are not directly reachable (that is, not in the address range specified via the IP mask for this node). This address must be entered in dotted decimal format. For more information on using gateways in your network, see Chapter 1 of the *OpenBSI Utilities Manual* (part number D301414X012).

RIP Protocol:

This section allows configuration of parameters for the **Routing Internet Protocol (RIP)** (refer to *Douglas Comer and David Stevens, Internetworking with TCP/IP - Volumes 1 & 2* (*Englewood Cliffs, NJ: Prentice Hall, 1991*); *Frank Derfler and Steve Rigney, TCP/IP A Survival Guide for Users (New York: MIS Press, 1998).* **RIP** is used to support **dynamic IP routing** (described below) and is implemented beginning in ControlWave firmware CWP02.0. A router which supports RIP essentially maintains a set of tables of IP address ranges which it can reach, either directly, or through another router. Users can specify *include address ranges* and *exclude address ranges* for use in these tables, to avoid sending out routes to known areas in the same network.

Each router sends a broadcast message (at periodic intervals) which includes these tables. Other routers receive the broadcast message, and determine from them, whether there is a better route to a particular IP destination, than the route stored in their *own* tables. If there is, they update their own tables. In this way, devices throughout the network(s) can determine the best possible route for sending a message from one node to another. Various safeguards are built into the protocol to prevent looping situations where two routers each think the *other* router has the best route to a particular destination.

- Inclusion Addr: This is an IP address, which will be used with the Inclusion Mask (below) to define a range of IP addresses which this controller will 'advertise' that it can reach, and so will be included in RIP broadcasts throughout the network. Note that this range may be further restricted based on the optional definition of an Exclusion Addr and Exclusion Mask.
- Inclusion Mask: A non-zero value in any of the Inclusion Mask fields indicates that the corresponding Inclusion Addr field is specifying a portion of the IP address which must be identically matched with every IP address on routes which this controller is 'advertising' in its RIP broadcasts. A zero value in any of the Inclusion Mask fields means that any integer from (0 to 255) is considered valid *for that corresponding portion* of the Inclusion address.
- Exclusion Addr:This is an IP address, which will be used with the Exclusion Mask (below)
to define a range of IP addresses on routes which this controller will not
advertise in its RIP broadcasts, because they are already known to be
reachable (that is, they are in the same network). Note that this range
can be further modified based on the optional definitions of an
Inclusion Addr and Inclusion Mask discussed above.
- Exclusion Mask: A non-zero value in any of the Exclusion Mask fields indicates that the corresponding Exclusion Addr field is specifying a portion of the IP address which must be identically matched with every IP address which this controller is specifically excluding from its advertised routes. A zero value in any of the Exclusion Mask fields means any integer from (0 to 255) is considered valid *for that corresponding portion* of the destination Exclusion address.

Important:

If you do not make any entries in either the Inclusion Addr/Mask or Exclusion Addr/Mask, RIP will NOT function.

Also, only devices which have been configured for RIP will be able to make use of the routing tables provided in the RIP broadcast messages.

Some examples for setting the inclusion and or exclusion address/mask pairs are shown below:

In Example #1, on the next page, Network A, as well as Gateway 1 and Gateway 2 are all configured with RIP. Network B is not configured with RIP but has Gateway 1 as its default Gateway. Because of RIP, Network A will know about Gateway 2 as an alternate route to Network B, if Gateway 1 should fail.

 Example #1 In this arrangement, Network A knows that both GATEWAY 1 and GATEWAY 2 provide a route to Network B. Should either GATEWAY fail, traffic to Network B can be routed via the other GATEWAY. Network A and Gateways 1&2 support RIP. Inclusion address/masks are set as follows: 			Network B does NO ⁻ support RIP, but has GATEWAY 1 as its default gateway. Default Gateway:	
Network A	Inclusion A Inclusion M 10.0.0.1	Addr: 172.16.0.0 Mask: 255.255.0.0	Network B	
ControlWave	10.0.0.2	10.0.0.200 GATEWAY 1 172.16.0.200 10.0.1.200 GATEWAY 2 172.16.1.200	172.16.0.2 ControlWave	

In Example #2, Networks A and B, as well as the Gateways are all configured to support RIP. Here we specified just an Exclusion Address and Mask for an address which isn't even on any of the two networks. In this case we chose 1.1.1.1. With this minimal exclusion range defined, RIP broadcasts will include routes to ALL known addresses outside a particular Network, i.e. Network A will receive information about routes to Network B, and Network B will receive information about routes to Network A.

Example #2 - Network A, Network B, and all the gateways
are configured for RIP, so that all routes
between the networks are known.
Configure Exclusion Addr/Mask as follows:

Exclusion Addr: 1.1.1.1

Exclusion Mask: 255.255.255.255						
ControlWave	10.0.0.1	ł			172.16.0.1	ControlWave
ControlWave	10.0.0.2	10.0.0.200	GATEWAY 1	172.16.0.200	172.16.0.2	ControlWave
		10.0.1.200	GATEWAY 2	172.16.1.200		

Network B

Network A

Dynamic IP Routing Ping:

Dynamic IP routing is discussed in the description of the IP Routes page.

- Rate: This is the frequency (in milliseconds) at which an IP route will be tested (via a ping message) to verify that the connection still functions. If the test is unsuccessful (no return from the ping within the specified timeout) the test is said to have failed. If **Retries** is a non-zero value, that number of additional attempts will be made to perform the ping test. If the test is still unsuccessful, IP traffic will be re-routed according to the information defined on the **IP Routes** page.
- **Timeout:** This is period of time (in milliseconds) after which a ping test of a given IP route is said to have failed.
- **Retries:** This is the number of additional attempts to perform a ping test will be performed after the first failure. If the total number of retries has been exhausted, re-routing of IP traffic will begin.

Challenge Protocol:

Two standard protocols have been implemented for security on PPP links in networks of ControlWave controllers: Challenge Handshaking Authentication Protocol (CHAP) and Password Authentication Protocol (PAP). These protocols operate in a client/server arrangement. Typically, CHAP should be used since it is more secure.

The CHAP (or PAP) server would be a ControlWave-series controller. The CHAP (or PAP) client could be either a ControlWave-series controller or an OpenBSI workstation.

The client must always supply a valid username/password combination in order to gain access to the server. If a ControlWave controller is the client, the username and password combination must have been pre-configured in the unit as a parameter stored in FLASH. This username / password text string will automatically be transmitted in response to a login prompt from the server.

Default Username: This is the username which will be transmitted if this ControlWave is serving as a PAP/CHAP client, and receives a challenge message from the PAP/CHAP server. This username must be one of the user accounts defined for the ControlWave, and will be sent along with the password defined for the specified user account.

Click **[Write to RTU]** to save changes to the IP parameters. NOTE: Changes will NOT take effect until *after* the controller has been powered off and then back on.

IP Ports - Ethernet

A ControlWave-series controller's IP addresses are tied to its communication ports. There are two types of IP ports supported in ControlWave – Ethernet, and Point-to-Point Protocol (PPP). This section covers the Ethernet type:

Setting Up an Ethernet Port

Any of the Ethernet ports may be configured for IP communication. This configuration is performed from the 'Ports' page of the Flash Configuration Utility.

1. Choose the Ethernet port you want to configure.

Note:

If you will be defining more than one IP port (whether PPP or Ethernet) for this controller, it is strongly recommended that each IP port reside on a *separate* IP network. If you define more than one IP port on the *same* network, only one of the ports will be able to **send** messages; the other port(s) will only be able to **receive** messages.

2. Specify an IP address in the **IP ADDR A** field and enter an **IP MASK** for this port. IP addresses must be *unique* within your network. Conversely, IP masks are typically the same for all devices in the same portion of a network. Together, the IP address and IP mask define a range of addresses to which this port can send messages. (See *Recommended Ranges for IP Addresses* in the *IP Networks and Addressing* section.)

Note:

The **IP ADDR B** field only applies when configuring a redundant controller.

Basically, a non-zero value in any of the **"IP MASK"** fields indicates that the corresponding **"IP ADDR A"** field is specifying a portion of the IP address which must be identically matched with every destination IP address to which this port will send messages. A zero value in any of the **"IP MASK"** fields means that this communication port can send messages to addresses in which any integer from (0 to 255) is considered valid *for that corresponding portion* of the destination IP address.

Important

In newer ControlWave units, all Ethernet ports are pre-programmed at the factory with initial IP addresses and masks, as follows:

ETH1 IP Address: 10.0.1.1	IP Mask: 255.255.255.0
ETH2 IP Address: 10.0.2.1	IP Mask: 255.255.255.0
ETH3 IP Address: 10.0.3.1	IP Mask: 255.255.255.0

Because each unit shipping from the factory will have these initially pre-programmed, you should only use these addresses for 'bench' testing and configuration. These addresses must be changed before putting ControlWave units on an actual network, since an address conflict would exist as soon as the second ControlWave unit was placed online.

In the figure on the previous page, the **'IP ADDR A'** for the port is 10.211.74.222 and the **'IP MASK'** is 255.255.0.0. This means that this port can send to any address in the format 10.211.*x.y* where *x* and *y* are any integer from 0 to 255. So, 10.211.1.7 and 10.211.35.93 would be valid destinations, but 10.45.1.1, and 10.83.27.1 would NOT be because the 255.255 in the **'IP MASK'** indicates that the corresponding portion of the destination's IP address MUST be 10.211.

Important

If you accidentally specify overlapping address ranges for two or more Ethernet ports, ONLY the last Ethernet port created will function.

- 3. Click [Write to RTU].
- 4. You must reset the controller to activate the new port configuration.

Choose "PPP"

IP Ports – PPP

A ControlWave-series controller's IP addresses are tied to its communication ports. There are two types of IP ports supported in ControlWave: Ethernet and Point-to-Point Protocol (PPP). This section covers the PPP type.

Setting Up A Serial IP Port (PPP)

When the default switch is OFF, serial port COM1 on the ControlWave has an IP address of 1.1.1.1, and is configured for the serial point-to-point protocol (PPP). In any other configuration, PPP must be configured by the user.

Any of the serial COM ports can be configured as Serial IP (PPP) ports.

This configuration is performed from the **Ports** page of the Flash Configuration Utility.

Specify the baud rate for the port; this must match whatever baud rate you specify for the PC port.

Soft Switches Ports IP Pa	rameters Application Parameters Archive Audit IP Routes S
PortProtocolCOM1PPPCOM2UNUSEDCOM3UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSEDCOM4UNUSED	Physical ine Information Baud Rate: 115200 Bits Per Char: 8 Stop Bits: 1 Protocol NONE Mode: PPP IP ADDB: 10 1 1 IP MASK: 255 0 0 0 Server Security Client Security Client Text (PAP) Client Text (PAP) © Plain Text (PAP) © Rorrypted (CHAP) © None
Specify an II address for port	Specify an IP mask this for this port

1. Choose the ControlWave port you want to configure.

Note

If you will be defining more than one IP port (whether PPP or Ethernet) for this controller, it is strongly recommended that each IP port reside on a *separate* IP network. If you define more than one IP port on the *same* network, only one of the ports will be able to **send** messages; the other port(s) will only be able to **receive** messages.

- 2. Choose 'PPP' from the **"Mode"** list box.
- 3. Choose the desired baud rate from the **Baud Rate** field. This must match the baud rate configured for whatever software you are using at the PC.
- 4. Either PAP or CHAP security can be configured on PPP lines. See the *Security* section in this manual for more information.
- 5. Specify an IP address in the **IP ADDR** field, and specify an **IP MASK** for this port. IP addresses must be *unique* within your network. Conversely, IP masks are typically the same for all devices in the same portion of a network. Together, the IP Address and IP Mask define a range of addresses to which this port can send messages. (See *Recommended Ranges for IP Addresses* in this manual for more information.)

Basically, a *non-zero* value in any of the **IP MASK** fields indicates that the corresponding **IP ADDR** field is specifying a portion of the IP address which must be identically matched with every destination IP address to which this port will send messages. A *zero* value in any of the **IP MASK** fields means that this communication port can send messages to addresses in which any integer from (0 to 255) is considered valid *for that corresponding portion* of the destination IP address.

In the figure on the previous page, the **IP ADDR** for the port is 10.1.1.1 and the **IP MASK** is 255.0.0.0. This means that this port can send to any address in the format 10.*x.y.z* where *x*, *y*, and *z*, are any integer from 0 to 255. So, 10.43.127.76 and 10.84.35.93 would be valid destinations, but 5.1.1.1 would not because the 255 in the **IP MASK** indicates that the corresponding portion of the **IP ADDR** MUST be 10.

- 6. If this PPP port uses PAP or CHAP protocol, choose whether the port is a PAP/CHAP server or a PAP/CHAP client, and select the appropriate protocol. See *Security Protocols* for an explanation of PAP and CHAP.. If the PC workstation is a server, you must configure the port as a client.
- 7. Click [Write to RTU].
- 8. Reset the controller to activate the new port configuration.

IP Routes

The IP Routes page is accessible from the **"IP Routes"** tab in the Flash Configuration Utility.

Beginning with ControlWave firmware CWP02.0, multiple gateways (routers) can optionally be configured for a particular network to support dynamic IP routing.

A **dynamic IP route** is considered to be a range of destinations (IP addresses) and the gateways used to reach them.

Gateways are essentially routers (devices which have IP connections on two or more separate networks). As such, they provide a means for sending messages from one network to another. You might want to think of gateways as entrance ramps to a highway.

Up to 4 gateways can be configured to reach a particular destination address range, and each controller can have up to 16 destination address ranges specified.

Since messages can be sent to a particular route by a choice of more than one gateway, the system can attempt transmission through one gateway, and if it fails, traffic will be sent through one of the *other* gateways. This provides a degree of fault-tolerance in the system (see the following figure).

If one gateway fails, message traffic between networks 'A' and 'B' can be re-routed through one of the other three gateways. The system can test a particular path by using a specified ping address. The ping address could be the gateway itself, or it could be the destination controller.

The actual re-routing occurs only after a specified timeout has expired. (See the *IP Parameters* section in this manual for details.)

The 'IP Routes' page displayed, below, shows a typical configuration for the network depicted on the previous page. (This configuration would be for a controller belonging to network "A" as shown on the previous page.)

Soft Switches Ports IP Pa	rameters Application Parameters A	rchive Audit IP Routes S •
Route Destination 1 172.16.0.1 2 3 4	Route 1 Destination IP Address: 172 16 0 IP Mask: 255 255 0	· 1 · 0 ✓ Check Primary
5 6 7 8 9 10 11 12 13 14 15 16	Route 1 Gateways IP Address 1: 0 0 200 IP Address 2: 0 0 201 IP Address 3: 0 201 10 IP Address 3: 0 0 202 IP Address 4: 0 0 203	Route 1 Pings IP Address 1: 172 16 0 200 IP Address 2: 172 16 0 201 IP Address 3: 172 16 0 202 IP Address 4: 0 203

After you have completely defined a particular route, you can click on the next route number in the box in the upper left corner, and the various fields will be cleared to allow you to enter information on the next route. A total of 16 separate routes can be defined.

Route *x*Destination

IP Address:	This IP Address together with its IP Mask define a range of destination IP addresses on this particular route.
IP Mask:	Any non-zero value in the IP Mask specifies a portion of the IP address which must be identically matched with every IP address on the destination route.
Check Primary:	In the event re-routing has occurred due to a failure, checking this selection will force a re-test of the first gateway (or ping address) to see if the failure has been corrected, thereby allowing traffic to return to its normal path via the first gateway. This might be particularly important if the secondary route is <i>slower</i> than the primary. If this is NOT checked, traffic will continue to use the secondary route, unless it too fails.

the gateway connection in the *other network*. Alternatively, the ping address could be one of the destination controllers in the other network; this might be done to check for failure

of one of the controllers in a redundant pair.

Route <i>x</i> Gatewa	ays:	
	IP Address 1 to IP Address 4:	These must be IP addresses for gateways which are in the same network as the current controller. During normal operation, the gateway 1 address would be used, but if there is a failure along the path defined for that gateway, an attempt will be made to re-route traffic to the <i>next</i> gateway (IP address 2). If that second gateway cannot be used, then the next would be used, and so on, up to the fourth gateway. If the last configured gateway fails, an attempt will be made to use the first gateway, and so on.
Route <i>x</i> Pings:		
	IP Address 1 to IP Address 4:	For each of the four possible paths of a given route, the user can optionally define a ping address for testing the route. Typically, the ping address would be the IP address used by

Libraries

A **library** is a collection of functions and function blocks, which can be used in a ControlWave Designer project. There are two types of libraries: firmware libraries and user-created libraries.

Firmware libraries include functions and function blocks which are defined in the internal system firmware of the ControlWave controller. They have the file extension, *.FWL, and are loaded automatically when you create a project using the ControlWave template. Two examples of firmware libraries are the **ACCOL3** library, which includes all of the ACCOL3 functions and function blocks, and the PROCONOS library, which includes various KW standard function blocks, and IEC 61131 standard function blocks. NOTE: For information on the various functions and function blocks in the ACCOL3 and PROCONOS libraries, please consult the online help in ControlWave Designer.

User libraries include functions and function blocks, which you have created yourself, for some application-specific purpose. User created function blocks are made by combining, in some logical way, functions and function blocks that already exist, typically from the ACCOL3 or PROCONOS firmware libraries. User libraries have a file extension of *.MWT, and can be re-used in any ControlWave project, by inserting the library in that project.

Creating a Library of User-defined Function Blocks

Note

For information on creating user-defined function blocks (which you must do **before** you can create a user library) see *Function Blocks - Creating* in this manual.

 Choose an existing project (*.MWT file) which includes the user-defined function blocks you want as part of your user library. If desired, rename that project to reflect the name you want for your library. In this case, we have named our library 'My_own_library'.

∃ ·· 🔄 Project : C:\Open	BSI\projects\my_simple			
E Libraries	Insert	÷	8	User Library
	<u>P</u> aste	Ctrl+V		<u>F</u> irmware Library

2. Open whichever project you want to include the library in. Right click on the **"Libraries"** icon and choose **"Insert→User Library"** from the pop-up menus.

3. Select the MWT file from step 1. This is called *announcing the library*.

4. The next time you call up the Edit Wizard, the library should appear as a group, from which you can select your user-defined function blocks.

Edit Wizard	÷ 🔻 🖾
Group:	
<my_own_user_library></my_own_user_library>	*
Name	Description
My_new_function_block	

Manually Including the ACCOL3 Firmware Library in Your Project

Note

If you are unsure whether the ACCOL3 Firmware Library is part of your project, look in the "Libraries" folder in your project tree. If you see 'Accol3' in the tree, you already have the ACCOL3 Firmware Library included. You can then skip this section.

Note

If, when you first opened your new project, you chose the ControlWave template, the ACCOL3 firmware library (which includes the ACCOL3 function blocks) was automatically included in your project. You can then skip this section.

If you did *not* choose the 'ControlWave' template when you opened your new project, and you want to use ACCOL3 function blocks as part of your project, you **must** include the ACCOL3 Firmware Library.

Note

All parameters for the function blocks in the ACCOL3 Firmware Library are forced by the system to be RETAIN variables.

To do this, *right* click on **"Libraries"** in the project tree, and choose **"Insert"** from the pop-up menu. The Include Library dialog box will appear.

Change the **"Files of type"** list box to show 'Firmware Library (*.fwl)'.

Include libra	ıry 🤶 🔀
Look in: 🙆	Fw_LIB 🔽 🕑 🍺 📂 🖽•
ACCOL3	PROCONOS
File name:	
Files of type:	Firmware Library (*.fwl)

Go to the folder, **'\OpenBSI\Mwt\Plc\FW_lib\Accol3\'** and click on 'Accol3.fwl' in the list box, then click on the **[Include]** button.

Include library					
Look in: ն	ACCOL3 🔽 🕑 🍺 📂 🖽•				
ACCOL3.F	WL				
File name:	ACCOL3.FWL Include				
Files of type:	Firmware Library (*.fwl)				

The ACCOL3 Firmware library will now appear in the project tree, under "Libraries".

Memory Usage

This section explains the terminology used in the discussion of ControlWave memory, and explains the differences between the different kinds of memory used in the ControlWave series of controllers.

Note

This section describes the memory for a standard ControlWave first. The internal memory arrangement and usage for other ControlWave products (Micro, XFC, EFM, GFC, Express, CW_10, CW_30, CW_35) are *different*. Variations between the different products are discussed near the end of this section.

Some Background - What is Memory?

As a ControlWave controller runs its program(s), the controller's central processing unit (CPU) executes each instruction in the program. These instructions, and the data associated with them, are read from, and/or written to, physical locations within computer chips in the controller. These physical locations are referred to as **memory**. They are similar to memory you might have in your personal computer at home. Each memory location also has a numerical identifier called an **address**. The address is used internally to locate data stored in memory.

The amount of memory in your controller varies depending upon the purchased memory options.

Information in memory is stored as a series of 0s and 1s; each '0' or '1' is referred to as a **bit**. These bits are grouped together into chunks of 8 which are called **bytes**. (Two bytes together are called a *word*.) Each byte can hold a character of data. A group of 1024 bytes is referred to as 1K. 1024K is referred to as a Megabyte or 1MB.

What is Downloading?

Downloading is the process of transferring the compiled control strategy from your PC workstation, into the memory of the ControlWave controller. Additionally, you can also download the compressed project source code (*.ZWT).

In ControlWave Designer, you create a control strategy that directs the controller to perform a system-specific job and save that strategy as a ControlWave **project**. The project is compiled and the resulting computer code is then **downloaded** from the PC into the ControlWave's memory using either ControlWave Designer or the OpenBSI Downloader.

When downloading the project directly from within ControlWave Designer, you have a choice of downloading the project directly into the dynamic memory, or downloading into the *flash* memory area (this is called downloading the **bootproject**). When downloading from the OpenBSI 1131 Downloader, only the bootproject may be downloaded.

A project can only *execute* from the dynamic memory area, but is lost in the event of a power failure or a program watchdog condition.

Because dynamic memory is not saved in these situations, a copy of the project is typically stored in the bootproject area of flash memory. The bootproject cannot execute from inside the flash memory area, but is automatically copied into the dynamic memory area during system re-boot (either from a power restoration after power failure or a restart following program watchdog condition).

Typically, you download a project into the dynamic memory area only during system development and debugging. Once a control strategy is finalized, and has been tested fully, it should be downloaded as the bootproject into flash memory.

Instructions for downloading from within ControlWave Designer are included in the section *Downloading with ControlWave Designer* in this manual. Instructions for downloading using the OpenBSI Downloader are included in Chapter 7 of the *OpenBSI Utilities Manual* (part number D301414X012).

Types of Memory in the ControlWave Process Automation Controller (CW PAC)

- The system supports four types of memory which are of interest to the user:
- Boot flash
- Synchronous Dynamic Random-Access Memory (SDRAM)
- Static Random-Access Memory (SRAM)
- Flash

Note

In addition to the memory types listed here, the CPU contains its own CMOS RAM for the real-time clock and configuration data. None of this memory can be directly used by your ControlWave program(s).

The following table details the types of information stored in these types of memory.

Type of Memory	Amount Currently	Usage
	Supported	
Boot Flash	512K	 Soft switch values.
		 User account and port configuration parameters.
		 Archive File Definitions
		 Audit Trail Configuration Parameters

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Type of Memory	Amount Currently	Usage
	Supported	
SDRAM	64 MB	 The running control strategy (ControlWave project) and the current values of any variables NOT marked as RETAIN, or stored in the Static Memory area. A copy of the system firmware (loaded from FLASH into SDRAM to allow for faster system execution). Notes: The project and system firmware can ONLY execute in SDRAM. Anything stored <i>only</i> in SDRAM is lost in the event of a watchdog failure or power failure.
SRAM	2 MB	 Current status of output variables in RETAIN. Historical data (Audit Trail / Archive) (Optional - most users choose to store this information in FLASH instead) Current values for any variables marked as 'RETAIN' including the variables associated with ACCOLIII function blocks. Values for variables manually assigned to the Static Memory Area (beginning with addresses %3.100000). The static memory area is only initialized at a system cold start (discussed later). Pending alarm messages (alarms which have not yet been reported to the user) Notes: So long as switch SW1-5 is set ON, and the backup battery continues to operate, data stored in SRAM is retained in the event of a system warm start. This memory is initialized, however, if switch SW1-5 is set OFF, or if the backup battery fails.
Flash Memory	32 MB	 The ControlWave system firmware (firmware uses up to 4MB). The remaining memory can hold the following: The ControlWave bootproject The compressed ControlWave source code file including graphical elements of the project (*.ZWT) Historical data (Audit Trail / Archive) Notes: The flash memory area is unaffected by a power failure or watchdog condition.

ControlWave Designer Programmer's Handbook D301426X012 August 2020

What happens in the event of a power failure or the power switch is turned off?

If the ControlWave loses power, or the power switch is turned off:

- The synchronous dynamic RAM (SDRAM) area is cleared. The executing control strategy, and its running data are lost.
- If the SRAM Control Switch (SW1-5) is set to ON and the backup battery for the SRAM remains good, data is preserved. If you have made edits to your project that directly affect variables marked 'RETAIN', the RETAIN area may be erased when the system restarts, because the structure of the RETAIN area has been modified. Other areas of SRAM (such as the Static Memory Area or historical data) are not erased.
- Flash and BOOT FLASH memory will be preserved.

The controller will attempt to restart immediately whenever power is restored. (See What happens on restart after a power failure or watchdog?).

What happens in the event of a watchdog condition?

If the ControlWave suffers an internal program error (but power remains good) which causes the executing control strategy to halt (called a *watchdog condition*):

- The synchronous dynamic RAM (SDRAM) area is cleared. The executing control strategy, and its running data are lost.
- Any analog I/O boards which are configured with hold values will hold their last value at the output pins, provided that the I/O board still has power. NOTE: Only certain analog I/O boards support this feature.
- If the SRAM Control Switch (SW1-5) is set to ON, and the backup battery for the Static RAM (SRAM) remains good, data is preserved. If you have made edits to your project that directly affect variables marked 'RETAIN', the RETAIN area may be erased when the system restarts, because the structure of the RETAIN area has been modified. Other areas of SRAM, i.e. the Static Memory Area, historical data, etc. will not be erased.
- Flash and Boot flash memory is preserved.
- The Watchdog hardware relay/switch circuitry will be activated (this can be wired to an external device (klaxon, alarm bell, etc.) to indicate that the controller has entered a watchdog condition.

The controller will attempt to restart immediately after entering the watchdog state. (See What happens on restart after a power failure or watchdog?).

What happens on restart after a power failure or watchdog?

When a ControlWave controller first starts up, it first performs various diagnostic checks ("is the power stable?" etc.). The results of these checks are displayed on the power-on self test (POST) display. Internal system devices are then initialized.

Under normal operation (no system firmware upgrade needed) the system then decides whether it can perform a system warm start or a system cold start.

Note:

System firmware is loaded into the ControlWave before it leaves the factory. If you need to perform a field upgrade of system firmware (new version released with new features, or update needed to correct some problem), set switch SW3-3 **on before** powering on the ControlWave. The ControlWave then enters recovery mode and shows "86" on the display. You can then load system firmware (for directions, refer to the *ControlWave Process Automation Controller Instruction Manual*, part number D301381X012).

System warm start or system cold start

A **system cold start** occurs when the SRAM control switch (SW1-5) is set to OFF or the backup battery for the SRAM has failed. In either of these cases, the entire static RAM (SRAM) area is erased. Any other situation is referred to as a **system warm start**.

Load System Firmware, Start Communications

Once the system warm start or system cold start completes, the system firmware is copied from flash memory into SDRAM, because firmware can only execute from SDRAM.

Next, the communication system starts. Soft switches are read, and the communication ports are activated.

Next, the ControlWave checks to see if there is a project in the bootproject area of flash memory. If no project is present, the ControlWave shows "00" on its display and waits for you to download a project. If a project is present, the bootproject will be copied into dynamic memory SDRAM to allow it to be executed. The system then determines whether to perform an application warm start or an application cold start.

Application Warm Start or Application Cold Start

An **application warm start** means that the project in SDRAM starts from the beginning of its cycle, using saved values for variables marked "RETAIN" from the static RAM (SRAM). Application warms starts are performed whenever there is no version mismatch between the project, and the retain values, and there was no **system cold** start.

If a *system* cold start occurred (because of loss of battery power to the SRAM or the switch SW1-5 was set to off), all data in static RAM is gone, so an *application* cold start must be performed.

RTU_RESOU	. 🗖 🗆 🗙
State: Stop	
Stop	Cold
Reset	Warm
	Hot
Download	Upload
Error	Info
Close	Help

In this case, the project in SDRAM is started from the beginning, and all variables are set to their initial values.

You can also perform application warm starts and cold starts on demand after downloading a project from within ControlWave Designer by clicking the **[Cold]** or **[Warm]** buttons in the RTU Resource dialog box.

The figure on the next page shows the start-up sequence of the ControlWave controller following a watchdog or restoration of power.

Variations when using ControlWave MICRO/EFM

The main difference between the memory configuration in the ControlWave and the ControlWave MICRO and EFM is that the flash memory in the MICRO is faster, so system firmware that would have been executed in SDRAM executes in flash memory instead.

- Executing system firmware resides in flash memory; it is NOT copied into SDRAM. (The control strategy itself *does* execute in SDRAM.)
- The SRAM Control Switch is SW2-5.
- The Recovery Mode Switch is SW1-3.
- The Watchdog Circuit Enable Switch is SW2-1.
- The ControlWave Micro and ControlWave EFM have 16MB flash instead of 32MB in the ControlWave PAC.

Variations when using ControlWave GFC/GFC-CL, XFC, Corrector, Express or ExpressPAC

The main difference between the memory configuration in the ControlWave and these units is that the flash memory in these units is faster, so system firmware executes in flash memory. Also, the project executes in SRAM, because *there is NO SDRAM in these units.*

- Executing system firmware resides in FLASH memory.
- The Control strategy itself executes in Static RAM (SRAM). On restart, the control strategy would be lost.
- The SRAM Control Switch for these units is SW2-5, except for the XFC which uses SW1-5.
- The Recovery Mode Switch is SW1-3 for these units except for the XFC which uses; SW1-9 and 10.
- The Watchdog Circuit Enable Switch for these units is SW2-1, except for the XFC which uses SW1-1.

Variations when using ControlWave_10/ _30/ _35 (CW_10, CW_30, CW_35)

Memory in the CW_10, CW_30, and CW_35 is very similar to the ControlWave Process Automation Controller. There are some differences, however:

- There is less static RAM (1 MB of SRAM instead of 2MB in the ControlWave).
- There is less flash memory (16 MB instead of a maximum of 32MB in the ControlWave).
- The SRAM Control Switch is SW2-5.
- The Recovery Mode Switch is SW1-3.
- The Watchdog Circuit Enable Switch is SW2-1.

Memory Allocation Issues

The ControlWave Process Automation Controller contains 64 MB of SDRAM. Of this 64 MB, approximately 700 KB is required to hold the system firmware (the internal code which tells the CPU how to run programs), and another 300 KB is required for system overhead.

When all other things are taken into account, approximately 62.7 MB of SDRAM are available for your ControlWave project, and its data. The only *fixed* restrictions on how you use the remaining 62.7 MB are:

- No program organization unit (POU) can exceed 640 KB. (Prior to OpenBSI 5.7 Service Pack 2, this limit was 64K.)
- There can be no more than 512 POUs in the project.
- A small amount of free-space (between 64 KB and 128 KB must be maintained).

Determining POU Size at Compilation Time

As previously noted, any POU exceeding 640 K bytes **will not** work. When you compile your project using the **Make** command, you can determine the *approximate* size of individual POUs by calling up the **"Infos"** tab in the Message Window and multiplying the number of bytes shown for a POU by a platform-dependent factor. For standard ControlWave units (using the IPC processor) use a factor of **1.3**. For other units (using the ARM processor) use a factor of **1.5**. Note that this is just an approximation, the actual size may vary. Any POU exceeding the 640 Kb size limit will either need to be removed or re-written so that it does not exceed the 640 Kb limit.

Resolving "Not Enough Memory" Messages

If you encounter error messages related to not having enough memory after downloading the project into the ControlWave controller (or into the I/O Simulator), your project is too big as currently configured. There are a few things you can do to reduce the size of the project, so that it may fit into the available SDRAM space:

Find out how much SDRAM your project is using, so you know how much you need to get back

When you download a project into the ControlWave, or into the I/O Simulator, statistics are maintained as to how much memory is free, after the download. To view this information, click **[Info]** in the RTU_RESOURCE dialog box.

Click here to obtain statistics on memory usage.

The 'Resources' tab displays the amount of memory available:

This is the amount of SDRAM (or SRAM if the unit does not support SDRAM) available for anything other than your program POUs such as communication buffers, PDD, system firmware. The **POUs** tab displays the amount of memory used, including the total program size, and the amount of data used for both RETAIN and non-RETAIN variables.

Number of bytes used by code for particular functions, function blocks

Total program size (in bytes). NOTE: May not be equal to the sum of individual lines due to system overhead. Number of bytes of data (both RETAIN and non-RETAIN) used by the variables for these functions/function blocks.

Note:

Certain function blocks are always included in memory, even if you don't use them in your project. These include counter function blocks (CTD, CTU, CTUD) and timer function blocks (TOF, TON, TP).

If possible, reduce the number of variables marked "PDD"

Checking the **"PDD"** box for a particular variable stores the variable's name in memory, which allows allow external programs (such as OpenBSI's DataView) to collect that variable.

If you check **"PDD"** for every variable (just in case you might want to collect it at some later time), this forces all of those variable names to be stored in memory. If you have *thousands* of variables marked for PDD, this can result in a shortage of available memory.

Examine the variables that you have marked for **"PDD"** collection and see if there are some you could *de-select*.

Initialize LIST function blocks via DB_LOAD, if possible

If you have a large number of LIST function blocks, containing *thousands* of list elements, which you initialize within the project, you should consider performing the initialization using the DB_LOAD function block. DB_LOAD allows much of this information to be stored in a text file, external to the project, thus reducing the amount of memory used. For more information on DB_LOAD, see the ACCOL3 help files in ControlWave Designer.

Adjust Application Parameters for Memory

Application parameters for memory are changed from the 'Application Parameters' page in the Flash Configuration Utility.

Important

Users should exercise caution when modifying the application parameters for memory. Making a significant change to these parameters without understanding how the parameters interact could actually reduce the amount of available memory, even though you have increased the values of the parameters. For more detailed information about the individual application parameters, see the *Application Parameters* section earlier in this manual.

Before changing any of the application parameters for memory, you should first check how much memory you have free (from the 'Info' option of the RTU_RESOURCE dialog box.)

If you have little or no **"Prog. Mem"** free, you should increase slightly the **"Prog RAM"** value in the Application Parameters page of the Flash Configuration utility. Changes should be incremental; don't set **"Prog RAM"** too high - its value is fixed on startup. If you set it significantly larger than it needs to be, all the extra space will be wasted because it will be reserved for the program, even if the program isn't large enough to make use of the space. That unused space will be missing from the available memory pool for the data, which could result in memory errors. If, however, you set the value for **"Data RAM"** to be too large, the system will reduce it, proportionally, as needed.

lf yo is sig you y	u set this value to a number that gnificantly larger than you need, will waste the excess amount.
	Soil Switches Ports IP Parameters Application Parameters Archive Audit IP Routes S CPU Goal Nile: State % Idle Min Ticks: 5 Minimum Idle: 2 % Memory Prog.RAM: 850 KB Data RAM: 10 KB Retain RAM: 30 KB
	Redundancy Transfer Unit A Addr: 0 0 0 0 0 0

Notes about Flash Files and Folders

Flash memory in the ControlWave uses a linear file structure. Because of this, the folders are used internally just as path names for files. If you were to use a File Transfer Program (FTP) to examine the contents of the ControlWave's flash memory, you would see what appear to be multiple folders sharing the same name. Don't be concerned by this; they are not duplicate folders, just multiple references to the same folder. The picture, below. shows this duplication. Several folders share the same name; in reality these are simply unique references to the same folder *for each file* in the folder.

ftpc//10.16.0.101/cam_1/ - Mi	crosoft Internet Explore	•				-181×
ie Edit View Favorites Ico	is Help					-
stees alter 1/10 16 0 101 /cam 1	Popers [].					610
	Name =	5.4	Turne	Modfied	1	
earch companion - H	Clevent 1		File Folder	6/22/2006 4:37 PM		1
	Convert 1		File Folder	6/22/2006 4:37 PM		
What are you looking	Devett 1		File Folder	6/22/2006 4:37 PM		
for?	Owner 1		File Folder	6/22/2006 4:37 PM		
Type your guestion below.	Convert 1		File Folder	6/22/2006 4:37 PM		
contribute sectorces.	Devert 1		File Folder	6/22/2006 4:37 814		
Please hore your grany	Oevert 1		File Folder	6/22/2006 4:37 #11		
here, then press <enter>.</enter>	Devert 1		File Folder	6/22/2006 4:37 PM		
10.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	Ownet 2		File Folder	6/23/2006 10:00 AM		
Sample guestion:	Devert 2		File Folder	6/23/2006 10:00 AM		
Buy a book online	Cevert 2		File Folder	6/23/2006 10:00 AM		
You may also want to	Coverk 2		File Folder	6/23/2006 10:00 AM		
non only app mark com	Devert 2		File Folder	6/23/2006 10:00 AM		
Search this computer for	Devect 2		File Folder	6/23/2006 10:00 AM		
raes	Covert 2		File Folder	6/23/2006 10:00 AM		
B Change preferences	Cevert 2		File Folder	6/23/2006 10:00 AM		
	Cevent 3		File Folder	6/23/2006 10:14 AM		
Search	Covert_3		File Folder	6/23/2006 10:14 AM		
and an	Ceverk 3		File Folder	6/23/2006 10:14 AM		
	Cavert 3		File Folder	6723/2006 10:14 AM		
	Convert 3		File Folder	6/23/2006 10:14 AM		
	Cevent 3		File Folder	6/23/2006 10:14 AM		
	Oeverk_3		File Folder	6/23/2006 10:14 AM		
	Covert_3		File Folder	6/23/2006 10:14 AM		
	Convert_4		File Folder	6/23/2006 10:17 AM		
	Cevert 4		File Folder	6/23/2006 10:17 AM		
	Cevent_4		File Folder	6/23/2006 10:17 AM		
	Oevent_4		File Folder	6/23/2006 10:17 AM		
	Covert_4		File Folder	6/23/2006 10:17 AM		
	Ceverit_1		File Folder	6/23/2006 10:17 AM		
	Cever2 4		File Folder	6/23/2006 10:17 AM		
	Qevert_4		File Folder	6/23/2006 10:17 AM		
	2 pk:00001	8.12 KB	File	6/23/2006 10:23 AM		
	2 px:00002	7.97 KB	File	6/23/2006 10:23 AM		
	pic00003	7.92 KB	File	6/23/2006 10:23 AM		
	pic00004	8.07 KB	File	6/23/2006 10:24 AM		- 2

Modbus Configuration

Configuring Your ControlWave Controller as a Modbus Master Device

Important

This example assumes you are familiar with Modbus concepts.

Modbus is an industry-standard communications protocol used by a wide variety of controller and PLC manufacturers. By configuring your ControlWave unit as a Modbus Master device, you can read/write coil status, 16-bit register, or 32-bit register information from a PLC serving as a Modbus Slave, and store that data in variables or structures in your control strategy program.

Important

Modbus communication requires that you include the CUSTOM function block in an **executing** task. Modbus communication requests/responses and processing only occur when the CUSTOM function block executes. Also, you must have a port configured for Modbus communication, before you begin.

Note

Both serial Modbus communication and Open Modbus (IP) communication is supported. Serial Modbus communication utilizes the serial ports, Open Modbus (IP) communication utilizes the IP ports. For help on configuring a communication port for Modbus, see the *Modbus Ports* section.

Step 1.Insert the CUSTOM function block in your program.

The program you choose must have been assigned to an executable task. The system will attempt to perform Modbus communications at the rate specified for the task containing the CUSTOM function block.

Step 2.Configure the CUSTOM function block for Modbus Master communications.

The following table describes the various parameters of the CUSTOM function block, as it is used in this particular example:

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Parameter Name	Type of Variable	Description
ioablnit	BOOL	Init - This parameter should be set to TRUE any time a configuration
	input/output	change has been made to any of the input parameters (except for
	variable (NO constants	changes in the IOList discussed later). This re-initializes the function
	allowed)	block with the new configuration data. Once the re-initialization is
		complete, this parameter will automatically be set to FALSE. NOTE:
		The very first time the function block is executed, this parameter is
		automatically set to TRUE in order for initial configuration parameters to
		be set.
idiRepeat	DINT	Repeat - This optional parameter specifies, in milliseconds, the time
	input	which must expire before another attempt will be made to
		send/receive a Modbus message. So, for example, if 0 is entered as
		the repeat value, an attempt will be made to send/receive a Modbus
		message every time the CUSTOM function block executes (provided
		that the previous message has completed). If 10000 is entered as a
		repeat value, the executing CUSTOM function block will attempt to
		send/receive a MODBUS message only if 10 seconds have elapsed
-		since the last Modbus message request.
iiMode	INT	Mode – Specifies the mode in which the Custom Block operates. Valid
	input	values are:
		4 (Modbus Master – serial) or
		52 (Open Modbus Master (IP)).
iiCustomlist	INT	Custom List – Specifies the number of a LIST function block which will
	input	hold additional configuration parameters. See Step 3. Set Up the
		Custom List later in this example.
liComPort		Communication Port – For serial Modbus only: Identifies the port to
	input	be used for communication with Modbus slaves:
"Classe A. J. June 1	INIT	I = COMI:, $2 = COMZ:$, etc.
lisiaveAddress	IN I	For Serial Moddus: Slave Address : This parameter specifies the
	input	address of the Modbus slave. Slave addresses may range from 1 to
		247. A slave address of 0 is used to generate a broadcast message.
		head functions (runction Type T through 5) are not valid for a
		For Open Modbus (TCP/IP) Unit Number – A value which specifies the
		unit number of the slave device to match the transactions against
		This unit number is included in the Modbus / TCP message prefix
		This differentiation is included in the model of the message prenx.
idiTimeout	DINT	Timeout - This parameter specifies in milliseconds the amount of
lannicouc	input	time the system waits for a response message from the Modbus
		slave. If you enter 0, a default value equivalent to 3000 milliseconds
		will be used. Otherwise, the value can range up to 65535
		milliseconds.
isIPAddress	STRING	IP Address of MODBUS Slave - For Open Modbus only: Specifies the
	input	Open Modbus slave device's IP address, such as 120.0.0.13.
odiStatus	DINT	Status - This output parameter reports a status / error code which
	output	indicates the status of the CUSTOM function block execution. This
		parameter is only updated at the completion of the CUSTOM function
		block execution. For a complete description of error and status codes
		for all ACCOLIII function blocks, see the on-line help.

Parameter Name	Type of Variable	Description
oudDoneCount	UDINT	Done Count – This is incremented by 1 whenever a Modbus
	output	communication message has been read/written and processed. This
		parameter is only updated at the completion of the CUSTOM function
		block execution. To determine whether or not the communication
		transaction was successful, check the Status.
obDoneFlag	BOOL	Done Flag – This is set to TRUE whenever a Modbus communication
	output	message has been read/written and processed. This parameter is only
		updated at the completion of the CUSTOM function block execution.
		To determine whether or not the communication transaction was
		successful, check the Status.

Step 3.Set up the Custom List

The custom list defines various additional parameters which govern Modbus Master operation. Insert a LIST20 function block, and configure its entries as follows:

Note

Variables in the list are automatically interpreted as type INT. This allows other types (REAL, DINT, SINT) to be used without the user needing to perform type conversions.

Parameter	Variable type	Descript	ion	
	(recommended)			
iiListnumber	INT	List Numb	er – This entry must match the iiCust	tomlist parameter value
		on the CU	STOM function block.	
ianyElement1	INT	Function (Code - This entry specifies the MODB	US Function Code. In
(Required)		some case	es the Function code requires an offse	et of 1000 to make the
		transmitte	ed address correct –see Coil/Register	Address. The entries
		below sho	ow the numbers to enter for a particu	lar function:
		Value	Function	
		1	Read Coil Status	
		2	Read Input Status	
		3	Read Holding Registers	
		4	Read Input Registers	
		5	Force Single Coil	
		6	Preset Single Register	
		7	Read Exception Status	
		8	Force Multiple Coils	
		9	Preset Multiple Registers	
			•	-
ianyElement2	INT	Coil / Regi	ister Address – This entry specifies th	e starting address for
(Required)		coil, input	, or register operations. The address	transmitted to the Slave
		will be one	e less than the value specified here ur	nless the Function code
		has an off	set of 1000. For example, the address	s 7031 will be sent as
		7030 for Function code 3, and 7031 for Function code 1003.		
ianyElement3	INT	Data Count – A value specifying the number of coils, inputs, or		

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Parameter	Variable type	Description
	(recommended)	·
(Required)	()	registers to be read. The value can range from 1 to 2000 for coils and
(nequired)		inputs 1 to 125 for 16-bit registers and 1 to 62 for 32-bit registers
ianvFlement4	INIT	1/0 List Number – A value specifying the list which will hold the coil or
(Required)		register data to be sent or received
(Required)		I/O Array
(Required)		must be configured with a variable, which is got to 0
(Required)	INIT	Thus be configured with a variable, which is set to 0.
		Data Size – This value specifies the data size to be used when accessing
(Required)		Holding Registers via function codes 3, 6, and 9. This option does not
		affect the operation of any other function codes. If signal 6 is unwired a
		default value is 3 is used. Valid values are:
		I = use single bit register data
		2 = use 8-bit register data
		3 = use 16-bit integer register data (default)
		4 = use 32-bit integer register data with each double integer value
		taking up one register address.
		5 = use 32-bit floating point data with each floating point value taking
		up one register address. In this mode, the selection is also used on
		Preset Single Register and Preset Multiple Register commands.
		6 = Use 32-bit integer register data with each double integer value
		taking up two register addresses.
		7 = Use 32-bit floating point data, with each floating point value taking
		up 2 register addresses. In this mode, the selection is also used on
		Preset Single Register and Preset Multiple Register commands.
ianyElement7	INT	Bit Order - Determines the ordering of bits in a byte. Note: Unless
(Optional)		users have some special application requiring a different bit order, this
		value should always be left at the default of 0.
		If set to 0 (default), bit order within a byte is as follows:
		bit0 = lowest order coil
		: :
		bit7 = highest order coil.
		If set to 1, bit order within a byte is as follows:
		bit0 = highest order coil
		: :
		bit7 = lowest order coil.
ianyElement8	INT	Byte Orde r - Determines the order in which bytes are transmitted.
(Optional)		Note: Unless users have some special application requiring a different
		byte order, this value should always be left at the default of 1.
		If set to 1 (default) the high order byte is transmitted first.
		If set to 0, the low order byte is transmitted first.
ianyElement9	INT	Word Order - Determines the order in which words are transmitted.
(Optional)		Note : Unless users have some special application requiring a different
()		word order, this value should always be left at the default of 1
		If set to 1 (default) the high order word is transmitted first.

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Parameter	Variable type	Description
	(recommended)	
		If set to 0, the low order word is transmitted first.
ianyElement10 (Optional)	INT	RTS/CTS Delay Time – This is an optional element used only in serial MODBUS applications. It specifies a time delay. The time delay can either be used to monitor for CTS being raised, or to delay transmitting a message; the choice of how it is used is specified by the RTS/CTS Delay Mode. The delay value can range from 0 milliseconds to 65,535 milliseconds.
ianyElement11	INT	RTS/CTS Delay Mode- This is an optional value which specifies how the
(Optional)		 RTS/CTS Delay Time is used. There are two choices for the mode. 0 = Message Transmit Delay Mode: After RTS is raised, a delay timer will be started. (The length of the delay is determined by the value of RTS/CTS Delay Time). No message will be sent until after this delay has expired. The value of CTS does not affect the operation of this mode. NOTE: In order for this mode to work, RTS-CTS must be jumpered or the CTS must be received before the specified delay expires.
		1 = Monitor For CTS Mode: After RTS is raised, the time delay will be used as the maximum time to wait within which CTS must be received. If CTS is received at any time before this delay expires, the message transmission begins. If CTS is NOT received prior to the expiration of the delay, no response will be sent, and an error will be reported.
odiStatus	DINT	Status Codes – Status or error codes for this list. See on-line help for
		details.

Step 4.Set up the I/O List

At this point, all that remains is to set up the I/O List which will hold the coil/register values sent to and received from the MODBUS slave device.

The list identification number must match the **I/O List Number** entry in the Custom List, and the length of the list must be greater than or equal to the number of variables needed to hold the coil/register data.

Type conversions will automatically be performed on the coil/register data to ensure that there is no conflict with the defined variables in the I/O List.

Configuring Your ControlWave Controller as a Modbus Slave or Enron Modbus Slave Device

Your ControlWave controller can be configured to serve as a Modbus Slave or Enron Modbus Slave device. The process is similar to that described in this previous example, i.e. configuring a CUSTOM function block, defining a CUSTOM list, etc. Full instructions about how to perform this configuration for Modbus Slave applications is included in the online help of ControlWave Designer.

Modbus Ports

Configuring Modbus Ports

To use Modbus protocol to communicate you must configure a Modbus port. Any ControlWave-series controller's serial port can be configured for Modbus communications.

With communications active in LocalView or NetView, *right*-click on the ControlWave icon, and choose **RTU→RTU Configuration Parameters** from the pop-up menus.

The Flash Configuration Utility opens. Click on the 'Ports' tab.

Soft Switches	Ports IP Parar	neters Application Parameters Archive Audit IP Routes S 🔸 🕨
Port COM1 COM2 COM3 COM4 COM4 COM4 COM4 COM4 COM4 COM4 COM4	Protocol GOULD BSAP SIa UNUSED BSAP SIa IP UNUSED UNUSED	Physical Line Information Baud Rate: 115200 Bits Per Char: 8 Stop Bits : 1 Parity: NONE Protocol Mode : GOULD MODBUS Slave User Mode : 7 Message Type ASCII C RTU (Binary) Modbus Store & Forward Activate Store & Forward
Mode	Sets th the Mo	e operational mode for this ControlWave-series controller in odbus network. Valid values are Modbus Master, ENRON

Mode	the Modbus network. Valid values are Modbus Master, ENRON Slave, or GOULD Modbus Slave, depending upon the controller's role. Alternatively, you can select USER_MODE for certain user- defined Modbus protocols.
Baud Rate	Indicates the baud rate used by this Modbus protocol. The default value for baud rate is 9600.
Bits Per Char	Indicates the number of bits used in a character. If the "Message Type" is 'ASCII', the number of bits is 7 or 8. The default is 8. If the "Message Type" is 'RTU (binary)' this parameter is fixed at 8 bits.
Stop Bits	Indicates the number of stop bits per character. The default is 1.
Parity	Specifies either ODD, EVEN, or NONE for the parity. The default is

	NONE.
Message Type	Specifies the type of data to be transmitted. Valid values are RTU (binary) or ASCII.
Modbus Store & Forward	Activates the Modbus Store and Forward feature (only for Modbus slaves). Modbus store and forward accepts a message with a given slave address, replaces that address with a <i>different</i> address, and then retransmits the message. See the ControlWave Designer
Activate Store & Forward	online help for more information on configuring the Modbus store and forward feature

Reset ControlWave Utility

The Reset ControlWave Utility allows you to power cycle the ControlWave (turn it off and then back on). This operation stops the project currently running in the ControlWave, reboots the ControlWave, clears its dynamic memory, and runs internal startup checks.

You can also restart the ControlWave project in "cold", "warm," or "hot" mode.

Reset Con	trolWave Unit		X
Node Name:		Select	Reset Unit
User Name:			Warm Start
Password:			Hot Start
			Close
Status:			

To reset a ControlWave:

- Start the utility by clicking Start → Programs → OpenBSI Tools → Debugging Tools → Reset ControlWave.
- 2. Click [Select] to choose the node name of the controller you want to reset.
- 3. Sign on to the unit by entering a valid **"User Name"** and **"Password"** combination, then click **[Reset Unit]**.
- 4. If signed on successfully, a prompt appears asking you to confirm that you want to proceed with the reset. Click **[OK]** to proceed or **[Cancel]** to abort the operation.
- 5. Wait for the "Status" field to report completion of the reboot operation.
- 6. Click **[Close]** to exit the utility.

To re-start a ControlWave project:

- Start the utility by clicking Start → Programs → OpenBSI Tools → Debugging Tools → Reset ControlWave.
- 2. Click the **[Select]** button to choose the node name of the controller running the project.
- 3. Sign on to the ControlWave by entering a valid "**User Name**" and "**Password**" combination.
- 4. Choose one of the following options:

[Cold Start] Click to re-start the ControlWave project from the beginning, using default values for all variables.

[Warm Start] Click to re-start the project from the beginning of the task cycle, with saved values used for all RETAIN variables. (Only possible if Static RAM preserved; i.e. not cleared by battery failure or switch setting.)

[Hot Start] Click to stop the project, and then re-start the project from the beginning of the task cycle.

- 5. Wait for the **"Status"** field to report "Restart Complete."
- 6. Click **[Close]** to exit the utility.

Running RESETCW From the Command Line

You can also run the RESETCW program from the command line. The syntax for this is as follows: RESETCW node_name command username password

where:	node_name	is the name of the ControlWave unit to be reset
	command	is either 'RESET' to reset the unit, or a startup mode, as described, above, which could be either 'COLD', 'WARM', or 'HOT'.
	username password	is a valid username password combination for this node.

Example: RESETCW CW3 COLD ROB 123ABCDE

Security

There are two methods available for configuring ControlWave security:

- Configure security one RTU at a time using the Security page of the Flash Configuration utility. See *Chapter 5* of the *OpenBSI Utilities Manual* (part number D301414X012) for information on doing this.
- Use the Security Management Tool (available in OpenBSI 5.8 and newer). The Security Management Tool is very similar to the first method, except it allows you to send the same user security configuration information to all active RTUs in the network, thereby reducing the amount of work to configure your security system.

Note

To use the Security Management Tool, NetView must be running, and you must be logged on in NetView as the system administrator. This requires you to log on as the SYSTEM user with the appropriate password. Also, a SYSTEM user with matching password must exist at each RTU.

Starting the Security Management Tool

Click as follows:

Start → Programs → OpenBSI Tools → ControlWave Tools → User Management Tool

Defining Usernames and Passwords, and Specifying Privileges

The Security Management Tool allows you to create usernames and passwords for ControlWave users, and to define user privileges. In this way, you can create restrictions on who has access to various features and functions of the controller.

User	Access Level	User	
FRED OSCAR RDB_Max RON SUSAN	Engineer Engineer Engineer Operator Engineer	Username: SUSAN Password: ***** Verify: ***** Clone	Load from Master File
		Privileges Read Data Value Update Data Value Update Signal Attributes Read Flash Files via FTP Change / Del Flash Files via FTP Read Historical Data Change / Delet Historical Definitions Add / Change / Del User Security Info Modify Soft Switches Run Diag to read Memory Run Diag to write Memory Read Stat / Diag Info Reset Stat / Crash Blocks Read Application Values Write Application Values Write Application Access	Load from RTU Transfer to RTUs Export to MODBUS Exit

Adding A New User

A ControlWave-series controller supports up to 240 different users (previous to OpenBSI 5.8, 32 users was the maximum allowed). To add a new user, first enter the user's name (up to 16 characters long) in the **Username** field, and enter a password (up to 16 characters long) for that user in both the **Password** and **Verify** fields. (The password does not appear as you type it.)

Important

Prior to OpenBSI 5.8 Service Pack 1, some OpenBSI programs which communicated with the controller (such as DataView) only supported shorter usernames and passwords (10 characters or less for the username, 6 characters or less for the password) and UPPERCASE only for the password. If you have any OpenBSI workstations you haven't upgraded yet, you may want to limit ControlWave usernames/passwords to conform to this. Newer OpenBSI software conforms to the 16 character ControlWave limits.

Note

ControlWave firmware versions prior to version 5.20 only support the previous limit of 32 users. In those cases, the Security Management Tool only stores the first 32 users in your user list at the RTU. If RDB_MAX and/or the currently logged on user are not among the first 32 users in you user list, the Security Management Tool accommodates this by replacing the 32nd and, if necessary the 31st users in the list with RDB_MAX and/or the currently logged on user.

To select the privileges for this user, click **Custom** and then select the individual privileges in the **Privileges** list box, to highlight them. Alternatively, you can choose **Operator**, **Engineer**, or **Administrator** for a particular user, which automatically highlights privileges associated with those user categories. The tables, on the next page, show the privileges associated with these user categories, and list what the various privileges mean.

When all desired privileges have been selected, click Add to add the user to the system.

Note

Every ControlWave-series controller has a special user called **RDB_Max**. This user account defines the *maximum* privileges allowed for RDB protocol messages coming into the ControlWave. (Programs such as DataView, the Harvester, etc. use RDB to request data from the ControlWave.) You can neither delete nor rename the RDB_Max user, but you *can* change its privileges.

The table below shows the privileges associated with the Operator, Engineer, and Administrator categories:

Privilege	Operator	Engineer	Administrator
Read Data Value	\checkmark	\checkmark	\checkmark
Update Data Value	\checkmark	\checkmark	\checkmark
Update Signal Attributes		\checkmark	\checkmark
Read Flash Files via FTP		\checkmark	\checkmark
Change / Del Flash Files via FTP		\checkmark	\checkmark
Read Historical Data	\checkmark	\checkmark	\checkmark
Change Last Read Pointers in Audit Info		\checkmark	\checkmark
Change / Delete Historical Definitions		\checkmark	\checkmark
Add / Change / Del User Security Info			\checkmark
Modify Soft Switches		\checkmark	\checkmark
Run Diag to read Memory			\checkmark
Run Diag to write Memory			\checkmark
Read Stat / Diag Info	\checkmark	\checkmark	\checkmark
Reset Stat / Crash Blocks	\checkmark	\checkmark	\checkmark
Read Application Values		\checkmark	\checkmark
Write Application Values		\checkmark	\checkmark
Full Application Access		\checkmark	\checkmark

The table, below, describes the meaning of each privilege:

Privilege	Description
Read Data Value	Allows this user to read data values from this controller.
Update Data Value	Allows this user to change data values in this controller.
Update Signal Attributes	Allows this user to modify the status of inhibit / enable flags
	in the controller.
Read Flash Files via FTP	Allows this user read access (via File Transfer Protocol) to
	files stored in this ControlWave's Flash memory. This could
	include the ControlWave boot project, source files

Privilege	Description
	(*.ZWT), etc.
Change / Del Flash Files via FTP	Allows this user (via File Transfer Protocol) to add, change or delete files stored in the ControlWave's Flash memory. This could include the ControlWave boot project, source files (*.ZWT), etc.
Read Historical Data	Allows this user to view historical data (Audit / Archive information) from the controller, either via web pages, or OpenBSI DataView.
Change Last Read Pointers in Audit	Allows the user to delete Audit Trail data from the
Info	controller.
Change / Delete Historical	Allows this user to add, change or delete historical
Definitions	definitions via the Flash Configuration Utility.
Add / Change / Del User Security Info	Allows this user to add, change, or delete security
	configuration information via the Flash Configuration
	Utility.
Modify Soft Switches	Allows this user to change Soft Switch values on the soft
	switches page of the Flash Configuration Utility.
Run Diag to read Memory	Allows this user to run diagnostics to read memory at the controller
Rup Diag to write Memory	Allows this user to run diagnostics to write to memory at
Run Diag to write Memory	the controller.
Read Stat / Diag Info	Allows this user to view communication statistics and other
	information on the Statistics web pages.
Reset Stat / Crash Blocks	Allows this user to reset statistics and crash block areas on
	the Statistics web pages.
Read Application Values	Allows this user to read values using the ControlWave
	Designer OPC Server.
Write Application Values	Allows this user to modify values using the ControlWave
	Designer OPC Server.
Full Application Access	Allows this user full privileges to perform debugging
	operations in ControlWave Designer.

Loading the Security Definition for a Particular RTU into the tool

To load the security configuration information from a particular RTU into the tool, click Load from RTU and select the RTU from the Select New Node dialog box. Depending on the number of users defined, it may take some time for the load to complete.

Modifying the Privileges of an Existing User

To change the privileges of an existing user, select the user's name from the list of **Usernames** and select / de-select privileges for that user in the **Privileges** list box. When you finish making selections, click **Modify** to store the modified privileges for that user.

You can only modify privileges for users defined as **Custom**. The privileges for operators, engineers, administrators, etc. are fixed.

Cloning an Existing User

If you want to create several users with identical privileges, click on the name of the user that has the desired privileges, and then click **Clone**.

Number of Cloned Users:	1

Type the number of users you want to create in the **Number of Cloned Users** box, then press the **[Enter]** key. Users named CLONE will appear. You can then modify those users with new usernames and passwords. (OpenBSI 5.8 and newer.)

Deleting an Existing User

To delete a user from the system, select the user's name from the **Usernames** list and click **Delete**.

Note

You **cannot** delete the RDB_Max user and you **cannot** delete the current user or any user who is **currently signed on** to this ControlWave.

Saving / Retrieving the Master Security Configuration File

You can export the security configuration information for the users on this ControlWave to an encrypted binary file called the **master file**.

To export a master security configuration file, click **Save to Master File**.

To import a master security configuration file, click Load from Master File.

The import/export feature requires OpenBSI 5.8 and newer.

Sending the Security Configuration to One or More RTUs

Once you define all the privileges for the users, you can transfer them to the controller. If you want to define the same users for multiple controllers, you can specify to which controllers you want to send the configuration.

Click the Transfer to RTUs button to open the Transfer to RTUs dialog box.

ControlWave Designer Programmer's Handbook D301426X012 August 2020

× Transfer to RTUs Transfer Selected RTUs Excluded RTUs Cancel Adams VNode 1 Adams_IP VNode_2 VNode 3 Harrison Harrison IP Washington >> Washington_IP Jefferson_IP Jefferson_Redir Washington_Redir Kennedy KENNEDY IP Lincoln Lincoln_IP Lincoln Redir Roosevelt Allow Security Roosevelt IP Changes from other Tools Delay between RTUs in seconds: 5 Status:

When the dialog box opens, all RTUs appear in the **Selected RTUs** list box.

If you don't want to send the security configuration to all RTUs, hold down the **[Ctrl]** key and then click on any RTUs you want to exclude, then click the **[>>]** button.

To select a whole block of RTUs in the list press **[Ctrl]** to select the first RTU, then press the **[Shift]** key with the cursor on the last RTU in the block.

You can click the [<<] button to move RTUs back from the Excluded RTUs list.

When the **Selected RTUs** list box shows only the RTUs you want to transfer security information to, click the **Transfer** button. The tool sequentially sends the security configuration to each RTU in the **Selected RTUs** list.

Removing the Lockout That Prevents Other Tools From Modifying Security Configurations

If you want to allow other tools such as the Flash Configuration Utility to modify the security configuration of one or more RTUs, select the RTUs for which you want to allow this so they show in the **Selected RTUs** list box, then click **Allow Security Changes from**

other Tools and then click **Transfer**. The tool sequentially removes the lockout from each RTU in the **Selected RTUs** list.

Exporting Security Data for Modbus Devices

To export security data for use in MODBUS registers, click **Export to MODBUS** and specify the location for the file.

Default Switch Settings at the Controller

The default switch on each RTU (also called the Use/Ignore Soft Switches) should be turned ON (Use Soft Switches), when you are finished, otherwise the special default security account (SYSTEM) remains active and the security configuration you store via the Security Management Tool is ignored.

- The default switch on the ControlWave Process Automation Controller is SW1-3.
- The default switch on the ControlWave Low Power (LP) Controller is SW4-3.
- The default switch on the ControlWave MICRO Process Automation Controller is SW2-3.
- The default switch on the ControlWave Gas Flow Computer (GFC) is SW2-3.
- The default switch on the ControlWave Electronic Flow Meter (EFM) is SW2-3.
- This default switch on the ControlWave Explosive-Proof Flow Computer (XFC) is SW1-3.
- The default switch on the CW_10 and CW_30 is SW2-3.

Other Security-Related Issues

In addition to defining usernames and passwords, there are certain other issues to consider when setting up security for your network. Some of these issues are not strictly related to ControlWave, but to the entire process control network.

The most secure process control network would be *self-contained* (that is, it would no connections to the outside Internet). In addition, it would be *isolated* from other network activities in your organization. For example, the process control network would not be on the same network as the billing department. If, however, your organization chooses to share networks, or include connections to the outside world, security should be a paramount concern.

Security Protocols for PPP Communication (PAP, CHAP)

If you are using the Point-to-Point (PPP) Internet Protocol, via the ControlWave-series controller's serial ports, you should consider using either the PAP or CHAP security protocols. CHAP is considered more secure than PAP, because it uses encryption. For information on these protocols, see the *Security Protocols* section in this manual.

OpenBSI Security

Since ControlWave-series controllers are designed to be used in OpenBSI networks, OpenBSI security should also be configured. For information on configuring security for your OpenBSI network, please see Chapter 6 of the *OpenBSI Utilities Manual* (part number D301414X012). This chapter also includes information on granting proxy access to the network, from remote OpenBSI Workstations, which can have security implications.

Network Infrastructure (UDP and TCP Sockets)

While this is generally more concerned with network traffic issues, UDP and TCP sockets throughout an IP network must match for each controller and PC Workstation. It is recommended that these numbers be changed from their default values, for greater security. For information on setting these at the OpenBSI level, see the *OpenBSI Utilities Manual* (part number D301414X012). For information on setting these in your ControlWave controller, please see the *IP Parameters* section of this manual.

Security Configuration for your Human Machine Interface (HMI) Software

Most supervisory control and data acquisition (SCADA) systems incorporate various levels of security. If you are using OpenEnterprise, security can be set up for both the OpenEnterprise Server database, individual database objects, and the OpenEnterprise Workstation(s). See the OpenEnterprise online help for details.

Virus Protection for Your Workstations

Each workstation should be equipped with virus protection software and you should subscribe to a regular update service for this software, so the virus protection remains current as new viruses become a threat. Virus protection is particularly important if the workstation has *any* connection to outside networks.

Firewall Software for Your Networks

If your process control network is connected to the Internet, you are *strongly* urged to purchase and configure commercially available firewall software, to provide some level of protection against external intrusion from hackers.

Physical Security

Consider issues related to the physical security of your workstations, and the nature of your operation. Are the workstations in a *high traffic* area? Are they in a room which can be locked up to prevent unauthorized access? Are the environmental conditions (excessive dust, high/low humidity) in the room poor?

For ControlWave-series controller, have you removed the RUN/REMOTE/LOCAL keys from the controllers and put them in a safe place? Otherwise, someone could accidentally or deliberately change the controller's operating mode.
Networked Surveillance of Remote Sites using ControlWave

If surveillance cameras are part of your physical security scheme, you should be aware that ControlWave-series controllers have successfully been used as part of surveillance schemes. Using third-party security cameras and software, captured images can be uploaded to the controller, and stored in flash memory. Customers can download the images via File Transfer Protocol (FTP). See the *ControlWave Security Vision Application User's Guide* (part number D301427X012) for more information.

Maintain Current Backups

This is valuable not only for security issues, but for any type of disaster recovery. System administrators should back up all necessary files on a regular basis, and store the backup media (tapes, CDs, DVDs, USB drives) in a safe, secure location, preferably off-site.

Human Factors

This may seem basic, but the downfall of security is often the human factor. No matter how well you configure your security system, if you post your passwords right next to the workstation or write them down where unauthorized persons can read them, or if you neglect to change default passwords or choose passwords that are simple for an intruder to figure out (like your name or the name of the company) then the protection provided by your security system can be severely diminished.

Security Protocols (CHAP and PAP)

Security Protocols (CHAP and PAP) Used on PPP Links

While it is not required to implement security on PPP links, users should be aware of the possibility of unauthorized access to their networks by an intruder (hacker), and strongly consider using one of the two supported security protocols.

Two standard protocols have been implemented for security on PPP links in networks of ControlWave RTUs: Challenge Handshaking Authentication Protocol (**CHAP**) and Password Authentication Protocol (**PAP**). These protocols operate in a client/server arrangement. Typically, CHAP should be used since it is more secure.

The CHAP (or PAP) *server* would be a ControlWave-series controller; the CHAP (or PAP) *client* could be either a ControlWave-series controller, or an OpenBSI workstation.

Whether a workstation or controller is the client, the client must always supply a valid username/password combination in order to gain access to the server.

If the OpenBSI workstation were the client, the username and password would be entered directly by the user in response to a login prompt. These must match one of the username / password combinations stored in the ControlWave.

If a ControlWave controller is the client, one of its valid usernames must be entered in the **'Challenge Protocol Default Username'** field in the **Ports** tab of the Flash Configuration Utility. This username / password text string for that username will automatically be transmitted in response to a login prompt from the server.

At the user-level, both of these security methods are similar. The difference occurs in the underlying *operation* of the protocols.

Challenge Handshaking Authentication Protocol (CHAP)

The CHAP server (ControlWave) issues an encrypted **challenge message** (which appears as a normal login prompt) to any CHAP client (workstation or ControlWave controller) requesting access. The supplied username and password will be encrypted according to a pre-defined secret encryption key; the result is called the **response message**.

Even though the username / password combination for a particular user does NOT change on each login attempt, the encrypted challenge and response messages is *different* on each attempt. This helps prevent an intruder from replicating the proper response message for a given challenge message, either through trial and error or through *brute force* searches of all possible challenge messages. Another characteristic of CHAP is that even after the client has logged in, subsequent challenge / response transactions will occur to verify that the connection is still with a valid user. **CHAP Example 1**: In the first example of using CHAP, the CHAP client is a PC workstation, and the CHAP server is a ControlWave controller:

CHAP Example 2: The second example using CHAP is very similar, except in this case, the CHAP client is *another* ControlWave controller. For this reason, the username/password combination (default IP user) must be stored as parameters in flash memory and referenced by the Challenge Protocol Default Username.

CHALLENGE HANDSHAKING AUTHENTICATION PROTOCOL (CHAP)

EXAMPLE 2 - CONTROLLER TO CONTROLLER

- Username / password combinations are stored in the ControlWave as FLASH parameters. The choice of which user is the Default IP User is specified through the "Challenge Protocol Default Username" entered on the IP Parameters page.
- 2 Login prompt (Challenge) message arrives at CHAP client, and is decrypted using a secret key.

3 Username / Password combination (default IP user string) is encrypted using secret key and sent out (Response Message). NOTE: This may involve a 2 message interchange between the client and server.

Each login attempt from a particular node results in a different encrypted response message, therefore, anyone intercepting the message after encryption would not be able to re-use it to gain access.

CHAP Server controller decrypts the response message using the secret key. The result is a username / password combination.

Server checks its password database to verify that the received username/password combination is valid. If it is, grant access, otherwise, deny access.

Password Authentication Protocol (PAP)

PAP requires a client requesting access to provide a username and password, similar to CHAP. PAP is a simpler method of protection, however, that has certain characteristics which make it *less secure* than CHAP.

PAP allows passwords to be sent as clear plain text unencrypted strings of characters. There is a possibility, therefore, that an unauthorized person could intercept a password message, and then subsequently use the password to gain access.

PAP also has no safeguards against repeated attempts to log in. For example, someone using trial and error to guess a password, or someone using software which performs a brute force search of all possible passwords could gain access.

PAP Example 1: In the first example of using PAP, the PAP client is a PC workstation, and the PAP server is a ControlWave controller.

PASSWORD AUTHENTICATION PROTOCOL (PAP) EXAMPLE 1 - WORKSTATION TO CONTROLLER

1 User logs in at a client workstation

Username: JOHN Password: smartguy JOHN smartguy Username / Password combination transmitted 'in the clear' to PAP server. The message is vulnerable to interception by an outside party during transmission. **PAP Server** 3 Server checks its password database to verify that the received username/password combination is valid. Is 'JOHN' and 'smartguy' a valid username password combination? If YES, grant access, otherwise deny

access.

PAP client

PAP Example 2: The second example using PAP is very similar, except in this case, the PAP client is *another* ControlWave controller. For this reason, the username/password combination must be stored as a parameter in flash memory and designated using the Challenge Protocol Default Username.

PASSWORD AUTHENTICATION PROTOCOL (PAP) EXAMPLE 2 - CONTROLLER TO CONTROLLER

Username / password combinations are stored in the ControlWave as FLASH parameters. The choice of which user is the Default IP User is specified through the "Challenge Protocol Default Username" entered on the IP Parameters page.

JOHN smartguy

3

In response to a login prompt, Username / Password combination for default IP user is transmitted 'in the clear' to PAP server. The message is vulnerable to interception by an outside party during transmission.

Server checks its password database to verify that the received username/password combination is valid.

Is 'JOHN' and 'smartguy' a valid username password combination? If YES, grant access, otherwise deny access.

References:

PAP Server

PAP client

Lloyd, Brian , and Simpson, William, *"PPP Authentication Protocols"*, Daydreamer Computer Systems Consulting Services, RFC 1334, October, 1992. (available at *www.ietf.org*)

Rivest, Ronald, *"The MD5 Message-Digest Algorithm"*, MIT Laboratory for Computer Science, and RSA Data Security Inc., RFC 1321, April, 1992. (available at *www.ietf.org*)

System Tasks (Warm/Cold Starts)

A **system task** is a grouping of one or more programs which execute only under certain pre-defined conditions.

Creating a Warm start or Cold start System Task

Note

Refer to the section *Memory Usage* in this manual for an explanation of "warm start" and "cold start."

When you define a warm start or a cold start system task, the programs in that task are only executed once at the application warm start or application cold start, respectively.

To create a warm start or cold start system task, create a task as you normally would, but be sure you choose 'SYSTEM' as the **"Task type"**.

Insert			 Enter a name for
Name: Systask Program type: Task type: SYSTEM	Type Configuration Resource Task Program instance Description Variables FB instance	OK Cancel Hetp	the system task Be sure you choose SYSTEM as the task type.
Exclude from compilation	Mode: O Insert O Append		

After you click **OK**, you must choose either 'Warm Start (SPG 0)' or 'Cold Start (SPG 1)' as the condition which will cause this system task to be executed.

SPG No.: Warm Start (SPG 0) ✓ OK Priority: Cold Start (SPG 0) Cancel Program execution stopped (SPG 2) Watchdog Time: Watchdog error (SPG 10)
Stack: Unknown firmware POU (SPG 12) Stack overflow (SPG 12) Unknown firmware POU (SPG 13) I/O driver error (SPG 14) floating point error (SPG 16) CPU overload (SPG 17) I/O driver initialization error (SPG 18) Large Boundaries / Index exceeded (SPG 19) Internal error (SPG 20) String operation error (SPG 21) Blue Screen Exception (SPG 24)

Click **OK** to finish.

Once your completed project has been downloaded into the ControlWave, it executes **only** when triggered by the specified condition.

System Variables

Important

With the exception of port configuration parameters, most users **do not** need to be concerned with these system variables. *Advanced* users, however, may find the system variables useful for many purposes, including:

- Monitoring the efficiency of task execution
- Accessing the system date and time
- Viewing diagnostic information about the communication ports

Various system variables are maintained by the ControlWave series controller. They are mapped to standard memory locations, and are accessible only when the user creates variables to specifically access those locations.

These variables are stored in static RAM and so are capable of surviving all application reloads and cold, warm, or hot application restarts or the CPU power off/on. They are set/modified by applications and remain that way until modified again. The only way these system variables lose their settings is when the SRAM Control switch setting forces a memory clear on a power on, the SRAM back-up battery is low, or if the system detects an SRAM corruption and reinitializes them. All input/output parameters are defined with their default settings when applicable. Other input parameters must be given some specific value by an application.

There are two ways to access the System Variables:

- Use the System Variable Wizard to create the variables, and for certain variables, enter values (this is the preferred method)
- Manually create variables according to the information contained in the System Variable Mapping Charts. You must use the name, data type and address shown in the charts.

Using the System Variable Wizard

- 1. Start ControlWave Designer.
- 2. Open your ControlWave project.
- 3. Start the System Variable Wizard by clicking View→System Variable Wizard.
- 4. The System Variable Wizard will appear.
 - You can access the various pages of the wizard by clicking on the different tabs.
 - Information on the use of individual variables is included in the System Variable charts (later in this section).

- In instances where there are too many variables to appear on a single page, a push button is included to call up a *different* page containing more variables. Simply click on the push button to access the new page.
- To create a variable, just check the appropriate box. The variable name shown is the name you must use in your ControlWave project to access the variable. That same name also should be used to look up a description of what the variable is used for in the System Variable Mapping Charts.
- Sometimes several variables will be grayed out until *a different* variable is created; this is because they are all related in some way.
- If the user may set a variable, an entry box or selection box will appear, with a
 default entry or selection enter a new value in the entry box, if desired, or select
 from among the options presented.
- At the bottom of each page are check boxes which allow you to mark variables for "PDD" or "OPC" collection. NOTE: These boxes apply to ALL system variables; i.e. if you check PDD on one page, it applies to every system variable on every page. In addition, if you call up a system variable in the standard variable dialog box, and select one of these options, it will also apply to ALL system variables the next time you open the System Variable Wizard. You cannot pick and choose individual variables with this option.
- If you choose the **"Write All"** option (added in OpenBSI 5.4) ALL system variables will be created from every page of the wizard.
- Click **[OK]** to exit the System Variable Wizard, and save the changes you have made; otherwise, click **[Cancel]**.

Select "Write All" only if you want to generate all the system variables on ALL the pages of the System Variable Wizard.

🔲 Last Start Delay

🦳 Minimum Start Delay

In this case, sele configure, then o another page co	ect the port you want to choose the push button to access ntaining the actual variables			
System Configuration ID Strings Sy	System Information Stem Date/Time Ta:			
Port One Enable Configura	ation RBE			
Port Two Enable Configura	ation Information RBE			
Select the number of tasks in your project; separate sets of the variables shown on this page are created for <i>each</i> task.				
IP RBE Configuration Data Line M	onitor Redundancy Load Validation			
System Configuration System Information	System Statistics Alarms System Flags			
ID Strings System Date/Time	Task Info Rort - Globals Port Detail			
Task Count ✓ Insert Task variables for the following	number of tasks			
General				
Cuelo Timo (Default)				
	Th BATE OVER Values			
	In TASK WD0G			
Last Duration	Tn CUR DUR			
Minimum Duration	 _Tn_MIN_DUR			
Maximum Duration	_Tn_MAX_DUR			
Average Duration	_Tn_AVG_DUR			

_Tn_CUR_DELAY _Tn_MIN_DELAY

System Variable Mapping Charts

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_PLCMODE_ON	%MX 1.0.0 : BOOL	1.0	Status of the unit.
			TRUE = unit is powered on but an
			application is not loaded. (State
			field in the ControlWave
			Designer Project Control dialog
			box will also show ON.)
			FALSE = unit is power on and application
			is loaded.
			Only one of the variables _PLCMODE_ON,
			_PLCMODE_RUN, _PLCMODE_STOP, and
			_PLCMODE_HALT is set to TRUE at any
			given time.
_PLCMODE_RUN	%MX 1.0.1 : BOOL	1.0	Status of the ControlWave Designer
			application.
			TRUE = ControlWave project is running
			(State field in the ControlWave
			Designer Project Control dialog
			box will also show RUNNING.)
			FALSE = project is not running.
			Only one of the variables _PLCMODE_ON,
			_PLCMODE_RUN, _PLCMODE_STOP, and
			_PLCMODE_HALT is set to TRUE at any
			given time.
_PLCMODE_STOP	%MX 1.0.2 : BOOL	1.0	Status of the ControlWave Designer
			application execution.
			TRUE = ControlWave project is stopped.
			(State field in the ControlWave
			Designer Project Control dialog
			box will also show "Stop.")
			FALSE = ControlWave project is
			executing.
			Only one of the variables _PLCMODE_ON,
			_PLCMODE_RUN, _PLCMODE_STOP, and
			_PLCMODE_HALT is set to TRUE at any
			given time.
_PLCMODE_HALT	%MX 1.0.3 : BOOL	1.0	Debug status of the ControlWave
			Designer application.
			TRUE = ControlWave project is halted at a

System Variable Name	Address Data Type	Minimum	Description
		Firmware	-
		Needed	
			breakpoint in debug mode (State
			field in the ControlWave
			Designer Project Control dialog
			box will also show "Halt
			(Debug)).
			FALSE = project is not halted at a
			breakpoint.
_PLCDEBUG_BPSET	%MX 1.1.4 : BOOL	1.0	TRUE=one or more breakpoints are set for
			debugging purposes
_PLCDEBUG_FORCE	%MX 1.2.0 : BOOL	1.0	TRUE=one or more I/O variables are forced for
			debugging purposes
_PLCDEBUG_POWERFLOW	%MX 1.2.3 : BOOL	1.0	TRUE=power flow is active for Debugging
			purposes
_PLC_TICK_PER_SEC	%MW 1.44 : INT	1.0	Number of ticks per second (will be 250)
_PLC_SYS_TICK_CNT	%MD 1.52 : DINT	1.0	The number of ticks since the application was
			started.
_LOAD_BOOT_PRESENT	%MX 1.332.0 : BOOL	04.80	The boot project is present in FLASH memory.
_LOAD_SRC_PRESENT	%MX 1.333.0 : BOOL	04.80	The project source file (*.ZWT) is present in
			the FLASH memory.
_LOAD_MEM_PRESENT	%MX 1.334.0 : BOOL	04.80	There is a project loaded into memory
			(SDRAM) or SRAM, depending upon type of
			unit.
_LOAD_BOOT_CRC	%MD 1.336	04.80	Cyclic redundancy (CRC) check number for
	DWORD		boot project.
_LOAD_SRC_CRC	%MD 1.340	04.80	Cyclic redundancy check (CRC) number for
	DWORD		project source (*.ZWT).
_LOAD_MEM_CRC	%MD 1.344	04.80	Cyclic redundancy check (CRC) number for
	DWORD		project in memory.
_MAX_TASK	%MW 1.1000 :INT	1.0	The maximum number of user tasks
			supported.
_CUR_TASK	%MW 1.1002 :INT	1.0	The current number of user tasks.

Note

System variables which are specific to a particular task are preceded by a prefix. The first task system variable name begins with a '_T1' prefix, the second task system variable name begins with a '_T2' prefix, etc.

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_T1_TASK_NAME	%MB 1.1004 : SI_10	1.0	Array of 10 characters which defines the
			task's name.

The next several system variables are created for the \underline{first} Task in the system

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_T1_TASK_PRIO	%MW 1.1014 :INT	1.0	The configured priority of this task.
_T1_TASK_PERIOD	%MW 1.1018 :INT	1.0	If the task is a cyclic task, this is the
			number of milliseconds between
			scheduled start times.
_T1_TASK_WDOG	%MW 1.1024 :INT	1.0	Configured time (in milliseconds) before
			which the task must complete (or an
			error will be generated)
_T1_CUR_DUR	%MW 1.1032 :INT	1.0	Number of ticks, which the task took to
			execute (from scheduled time to task
			completion)
_T1_MIN_DUR	%MW 1.1034 :INT	1.0	Minimum execution time for the task.
_T1_MAX_DUR	%MW 1.1036 :INT	1.0	Maximum execution time for the task.
T1_AVG_DUR	%MW 1.1038 :INT		Average execution time for the task.
_T1_CUR_DELAY	%MW 1.1040 :INT	1.0	Number of ticks after the scheduled time,
			which the current task has taken to start
			execution.
_T1_MIN_DELAY	%MW 1.1042 :INT	1.0	Minimum of CUR_DELAY since the
			system was started.
_T1_MAX_DELAY	%MW 1.1044 :INT	1.0	Maximum of delay since the system was
			started.
_T1_AVG_DELAY	%MW 1.1046 :INT	1.0	Average of delay since the system was
			started.

The next several system variables are created for the **second** Task in the system:

System Variable Name	Address Data Type	Minimum Firmware Needed	Description
_T2_TASK_NAME	%M 1.1068 : SI_10	1.0	See above description for corresponding T1 variable
_T2_TASK_PRIO	%MW 1.1078 :INT	1.0	See above description for corresponding T1 variable
_T2_TASK_PERIOD	%MW 1.1082 : INT	1.0	See above description for corresponding T1 variable
_T2_TASK_WDOG	%MW 1.1088 : INT	1.0	See above description for corresponding T1 variable
_T2_CUR_DUR	%MW 1.1096 :INT	1.0	See above description for corresponding T1 variable
_T2_MIN_DUR	%MW 1.1098 :INT	1.0	See above description for corresponding T1 variable
_T2_MAX_DUR	%MW 1.1100 : INT	1.0	See above description for corresponding T1 variable
_T2_AVG_DUR	%MW 1.1102 :INT	1.0	See above description for corresponding T1 variable
_T2_CUR_DELAY	%MW 1.1104 :INT	1.0	See above description for corresponding

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
			T1 variable
_T2_MIN_DELAY	%MW 1.1106 :INT	1.0	See above description for corresponding
			T1 variable
_T2_MAX_DELAY	%MW 1.1108 :INT	1.0	See above description for corresponding
			T1 variable
_T2_AVG_DELAY	%MW 1.1110 : INT	1.0	See above description for corresponding
			T1 variable
System variables for tasks would	3 rd task begins at		
continue from this point on,	%M1.1132		
following the same pattern as	4 th task begins at		
shown for the first and second	%M1.1196		
tasks, above:	5 th task begins at		
	%M1.1260		
	etc.		

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_LOAD_BOOT_PRESENT	%MX 1.332.0 : BOOL	04.80	The boot project is present in FLASH
			memory.
_LOAD_SRC_PRESENT	%MX 1.333.0 : BOOL	04.80	The project source file (*.ZWT) is present
			in the FLASH memory.
_LOAD_MEM_PRESET	%MX 1.334.0 : BOOL	04.80	There is a project loaded into memory
			(SDRAM) or SRAM, depending upon type
			of unit.
_LOAD_BOOT_CRC	%MD 1.336 DWORD	04.80	Cyclic redundancy (CRC) check number for
			boot project.
_LOAD_SRC_CRC	%MD 1.340 DWORD	04.80	Cyclic redundancy check (CRC) number for
			project source (*.ZWT).
_LOAD_MEM_CRC	%MD 1.344 DWORD	04.80	Cyclic redundancy check (CRC) number for
			project in memory.
_POWER_UP	%MX 3.0.0 : BOOL	1.0	Set on system restart. Cleared by the user
			if detection of power-fail recovery is
		1.0	needed.
_QUEST_DATE	%MX 3.0.1 : BOOL	1.0	Should be FALSE during normal operation.
			Set I KUE If the real time clock value is
			invalid and the unit needs a time
			This accurs immediately after power up
			or after the project is downloaded: once
			the time synch message from the bost is
			processed this is set to FALSE
			OUEST DATE also becomes TRUE if the
			SRAM backup battery voltage falls below

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
			the level necessary to power the real time
			clock (battery failed and must be
			replaced).
TS REQ	%MX 3.0.2 : BOOL := FALSE	1.0	Set to force time synch from master. Will
			be cleared when time synch is received.
_TS_INHIB	%MX 3.0.3 : BOOL := FALSE	1.0	Set if user wishes to inhibit processing of
			time synch messages.
_OCTIME_ERROR	%MX 3.1.0 : BOOL	4.50	Reports if time was changed on last time
			synch.
_TIME_000	%MD 3.4 : DWORD	1.0	Combination Julian Date and seconds
			since midnight. Used to time-stamp
			historical information.
_TIME_008	%MW 3.4 : INT	1.0	Julian Date.
_JULIAN_TIME	%MD 3.4 REAL	Not tied to	Julian Date and Time in REAL format.
		firmware.	number of seconds since midnight. This is
		Requires	the floating point representation of the
		OpenBSI 5.7	_TIME_000
		Service Pack	value. The applications may use this value
		1 or newer.	directly as the Julian time. The hex
			representation of
			this Julian time is used as an input in
			producing the date and time.
			Example:
			The date/time 1/18/2008 09:20 will be
			reported as 3.5435290E-019.
			The Hex representation of this floating
			point value is 20D12C4C. The first 2-byte
			value is the number of 4 second intervals
			since midnight. It is used to calculate time
			in HH:MM;SS where the seconds
			resolution, is in multiples of 4 seconds.
			Therefore, 20D1 represents 09:20:04. The
			second two byte value is the number of
			days since midnight of 12/31/1976.
			Therefore, 2C4C represents the date of
			01/18/2008.
_TIME_4SEC	%MW 3.6 : INT	1.0	Number of 4-second intervals since
			midnight.
_TIME_001	%MD 3.8 : DINT	1.0	Number of seconds since midnight.
_TIME_002	%MW 3.12 :INT	1.0	Year (4 digit)
_TIME_003	%MB 3.14 : SINT	1.0	Month (1 to 12)
_DAY_OF_WEEK	%MB 3.15 : SINT	1.0	Day within the current week (1=Sunday to
			7=Saturday)
_TIME_004	%MB 3.16 : SINT	1.0	Date (1 to 31)
_TIME_005	%MB 3.17 : SINT	1.0	Hour (0 to 23)
_TIME_006	%MB 3.18 : SINT	1.0	Minute (0 to 59)

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_TIME_007	%MB 3.19 : SINT	1.0	Second (0 to 59)
_POWER_OFF	%MD 3.20 : DINT	1.0	Number of seconds the system was
			powered off (after a power-fail recovery)
_CPU_OVERLD	%MD 3.24 : DINT	1.0	Number of times that the System Idle time
			was detected to be too small
_RIO_REQ_SAFE	%MD 3.28 : DINT := 50	1.0	Number of milliseconds before calculated
			due time to start collection of I/O from
			remote devices
_RIO_REQ_PACK	%MD 3.32 : DINT := 10	1.0	In milliseconds. If two RIO requests are to
			be made to the same IP address within this
			time, they are packed into a single TCP
			packet.
_BAD_ANY_CONST	%MD 3.36 : DINT	1.0	Invalid constants loaded onto variable of
			type 'ia' or 'iany'.
_BAT_OK	%MX 3.40.0 : BOOL	1.0	Should be TRUE during normal operation.
			It is set TRUE if ControlWave's SRAM
			backup battery is OK. If the battery cannot
			provide the necessary voltage to backup
			the SRAM (battery voltage low, battery
			failed, or missing) this becomes FALSE,
			and the battery should be replaced. It also
			shows FALSE if the backup battery is
			disabled by the jumper. On power-up after
			battery failure, all retain values in SRAM
			are set to 0, or their initial values. NOTE:
			Does not work for RTU 3340 - always will
		1.0	snow a T
_HOT_CARD_IN_PROG	%MX 3.41.0 : BOOL	1.0	Set when ControlWave hot card
			replacement is in progress. When set, I/O
		4.00	Values for the board are held constant.
_USE_ACCOL_NAME	%MX 3.42.0 BOOL	4.00	Used in response to RDB messages from
			OpenBSI. When set to TRUE global variable
			translated to ACCOL signal name format
			before being cont back. If
			USE ACCOLLCL variables with instance
			translated to ACCOL II signal format
			Variable names must not exceed 20
			characters and must follow the 8
			character basename 6 character
			extension and 4 character attribute rules
			of ACCOLI
ALFOR NON ALMS	%MX 3 42 1 BOOI	4 10	Alarm variables are only those variables
			which have been configured as alarms
			using one of the Alarm function blocks. A

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
			non-alarm variable is any variable which
			hasn't been configured as an alarm using
			one of the Alarm function blocks.
			When _AI_FOR_NON_ALMS is set to
			FALSE, the Alarm Inhibit/Enable bit is
			permanently set to AI (alarm inhibit) for all
			non-alarm variables. (This is the default).
			When _AI_FOR_NON_ALMS is set to TRUE,
			the Alarm Inhibit/Enable bit for each
			individual non-alarm variable can be set by
			the user to either Alarm Inhibit (FALSE
			state), or Alarm Enable (TRUE state).
			Because these are NOT alarms, this has no
			practical effect, unless the AI / AE bit is
			used for some specific purpose, e.g. in the
			OpenEnterprise Database.
_INH_SYS_EVENTS	%MX 3.42.2 BOOL	4.20	Certain system events are logged by the
			AUDIT system (for example, the power on
			of the unit, etc.) To inhibit logging of these
			events, set this to TRUE.
_USE_ACCOL_LCL	%MX 3.42.4 BOOL	4.90	If set to TRUE, local signals with instance
			names other than '@GV' will be converted
			to ACCOL II style signal names in the Signal
			Extractor's SIG file, by changing
			underscores '_' to periods '.', and
			system signal underscores to pound '#'
			signs.
_SEC_SIGNIN_AUD_ENA	%MX 3.42.5 BOOL	5.20	When set TRUE, enables audit logging of
			user sign-on and sign-off activities at the
			RTU. This bit once turned on will not turn
			off except on an application COLD start. To
			keep this enabled a cold start task should
			turn this back on. Default: FALSE
_SEC_SIGNIN_AUD_FTP_E	%MX 3.42.6 BOOL	5.20	When set TRUE, enables audit logging of
NA			FTP sign-on and sign-off activities at the
			RTU. Users can sign-on via FTP to look at
			the contents of the RTU flash memory
			area. Default: FALSE. Note: The RTU
			ignores the value of this system variable if
			_SEC_SIGNIN_AUD_ENA is FALSE.
_INH_EXTERNAL_EVENTS	%MX 3.42.7 BOOL	5.11	When set TRUE, turns off logging of user
			events such as calibration events, notes
			events, and clear history events.
_ALARM_FORMAT	%MB 3.43 SINT	4.60	Alarm Report Format. Default = FALSE –

System Variable Name	Address Data Type	Minimum Firmware	Description
		Needed	
			Long Format. For short format, set to TRUE.
_FLASH_FREE	%MD 3.44 : DINT	1.0	Common free FLASH space in the FLASH
			memory area.
_FL_FILE_USAGE	%MD 3.48 : DINT	1.0	Total FLASH memory used for files.
FLFILEFREE	%MD 3.52 : DIN I	1.0	Free FLASH memory space available for files.
_FL_HIST_USAGE	%MD 3.56 : DINT	1.0	Total FLASH memory used for Historical data.
_FL_HIST_FREE	%MD 3.60 : DINT	1.0	Free FLASH memory space available for Historical data.
_HOT_CARD_COUNT	%MD 3.64 : DINT	1.0	Hot card insert/remove count. Incremented at start of lock.
_FP_ERR_SC	%MD 3.68 : DINT := 60000	1.0	Scan interval for floating point errors in tasks. All floating point errors occurring during the scan interval are counted as a single error in the ControlWave. In the RTU 3340, all floating point errors occurring during the scan interval are registered individually. Default scan interval is 60000 (1 minute).
_SUSP_PERCENT	%MW 3.72 : INT	2.0	A measurement of the percentage of time that application-level tasks are suspended.
_EXP_HEART_BEAT	%MD 3.76 DINT :=1000	3.10	This is the rate (in milliseconds) at which the ControlWave issues a heartbeat poll message to the I/O Expansion Rack(s). Default is 1000 (1 second).
_TOTAL_ALARMS	%MD 3.80 UDINT	4.00	This value maintains a count of alarms generated. It is incremented by 1 each time a new alarm comes in. Users can reset the count as desired.
_TOTAL_AUD_EVENTS	%MD 3.84 UDINT	4.00	This value maintains a count of events logged by the Audit system. It is incremented by 1 each time a new event occurs. Users can reset the count as desired.
_TOTAL_AUD_ALARMS	%MD 3.88 UDINT	4.00	This value maintains a count of alarms logged by the Audit system. It is incremented by 1 each time a new alarm comes in. Users can reset the count as desired.
_ALARMS_PRESENT	%MX 3.92.0 BOOL	4.00	This variable is set to TRUE, whenever a new alarm has been generated since the variable was last cleared (set to FALSE). If the user wants to use this as a notification that new alarms have arrived, the user

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
			must include logic to turn it OFF (set it to
			FALSE) after receiving each notification. so
			that it will be ready when the next alarm
			comes in.
AUD EVT PRESENT	%MX 3.93.0 BOOL	4.00	This variable is set to TRUE, whenever a
			new audit event has been generated since
			the variable was last cleared (set to FALSE).
			If the user wants to use this as a
			notification that a new audit event has
			arrived. the user must include logic to turn
			it OFF (set it to FALSE) after receiving each
			notification. so that it will be ready when
			the next audit event comes in.
AUD ALM PRESENT	%MX 3.94.0 BOOL	4.00	This variable is set to TRUE, whenever a
			new audit alarm has been generated since
			the variable was last cleared (set to FALSE).
			If the user wants to use this as a
			notification that new audit alarms have
			arrived, the user must include logic to turn
			it OFF (set it to FALSE) after receiving each
			notification, so that it will be ready when
			the next audit alarm comes in.
IDLE LED MODE	%MB 3.95 SINT	5.00	Specifies behavior of the IDLE LED on
		5100	ControlWave XFC platform only. Possible
			mode values are:
			0 = To conserve power. LED remains OFF
			for the first 58 seconds of every minute: in
			the final two seconds. acts as in Mode 2.
			1 = To conserve power. LED is unused and
			is alwavs OFF.
			2 = LED reflects busy/idle status of the
			CPU. When ON, the CPU has idle time.
			When OFF, CPU is busy.
			Non-XFC platforms: LED always reflects
			busy/idle status of the CPU. When ON, the
			CPU has idle time. When OFF, CPU is busy.
_ALARMS_IBP_DEST1	%MX 3.96.0 BOOL	4.20	Alarms are present, that are to be shipped
			to Alarm Destination 1.
_ALARMS_IBP_DEST2	%MX 3.96.1 BOOL	4.20	Alarms are present, that are to be shipped
			to Alarm Destination 2.
_ALARMS_IBP_DEST3	%MX 3.96.2 BOOL	4.20	Alarms are present, that are to be shipped
		-	to Alarm Destination 3.
_ALARMS_IBP_DEST4	%MX 3.96.3 BOOL	4.20	Alarms are present, that are to be shipped
		-	to Alarm Destination 4.

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_ALARMS_BSAP_PORT1	%MX 3.96.4 BOOL	4.20	Alarms are present, that are to be sent out
		-	BSAP port 1 to the host.
_ALARMS_BSAP_PORT2	%MX 3.96.5 BOOL	4.20	Alarms are present, that are to be sent out
			BSAP port 2 to the host.
_ALARMS_BSAP_PORT3	%MX 3.96.6 BOOL	4.20	Alarms are present, that are to be sent out
			BSAP port 3 to the host.
_ALARMS_BSAP_PORT4	%MX 3.96.7 BOOL	4.20	Alarms are present, that are to be sent out
			BSAP port 4 to the host.
_ALARMS_BSAP_PORT5	%MX 3.97.0 BOOL	4.20	Alarms are present, that are to be sent out
			BSAP port 5 to the host.
_ALARMS_BSAP_PORT6	%MX 3.97.1 BOOL	4.20	Alarms are present, that are to be sent out
			BSAP port 6 to the host.
_ALARMS_BSAP_PORT7	%MX 3.97.2 BOOL	4.20	Alarms are present, that are to be sent out
			BSAP port 7 to the host.
_ALARMS_BSAP_PORT8	%MX 3.97.3 BOOL	4.20	Alarms are present, that are to be sent out
			BSAP port 8 to the host.
_ALARMS_BSAP_PORT9	%MX 3.97.4 BOOL	4.20	Alarms are present, that are to be sent out
			BSAP port 9 to the host.
_ALARMS_BSAP_PORT10	%MX 3.97.5 BOOL	4.20	Alarms are present, that are to be sent out
			BSAP port 10 to the host.
_ALARMS_BSAP_PORTTT	%MX 3.97.6 BOOL	4.20	Alarms are present, that are to be sent out
		4.20	BSAP port 11 to the host.
_LUCAL_ADDRESS	%IVIVV 3.98 : INT	4.20	The BSAP local address programmed into
		4.20	The EPSAD Crown number programmed
_EDSAP_GROUP	/010100 5.99 . 1101	4.20	into the unit. A value of 0 indicates that
			standard BSAP is used (no FBSAP)
CPU BUSY P1	%MW/3.100 · INT	4.20	This measures (in units of 0.1%) how
	////// 5.100 . ////	4.20	occupied the CPLL is running application-
			level tasks, or active system tasks.
ARCH ACCESS TYPE	%MD 3.102 : SINT	4 4 1	When non-zero, reads archive files as if
			they were analog arrays.
APPLICATION LOCKED	%MX 3.103.0 : BOOL	4.50	When set TRUE, prevents external control
			changes to project via ControlWave
			Designer. Also prevents project
			downloads.
_NHP_ADDITIONAL_MASK	%MD 3.104 :DWORD	4.20	This defines an IP mask for additional NHP
			addresses.
_HEAP_CUR_FREE	%MD 3.108 : DINT	4.40	Displays the current amount of RAM that is
			free for system use.
_HEAP_BLK_FREE	%MD 3.112 :DINT	4.40	Displays the size of the largest block of
			free volatile memory. (Either SDRAM or
			SRAM, depending upon the ControlWave
			platform being used.)
_HEAP_START_FREE	%MD 3.116 :DINT	4.40	The value of HEAP_CUR_FREE when the
			application (project) was started.

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_HEAP_RBLK_FREE	%MD 3.120 : DINT	4.40	Displays the size of the maximum block of
			retain memory that is currently free.
_TS_DELTA_ACCURACY	%MD 3.124 :DINT	4.50	Turn-around time before accepting
			timestamp.
_SEC_SIGNIN_FAILURES	%MD 3.128 UDINT	5.20	Count of the number of failed sign-in
			attempts at the RTU.
_SEC_SIGNOFF_TMO	%MD 3.132 UDINT	5.20	Specifies a period of time (in seconds)
			after which the RTU automatically logs a
			user off for inactivity. Range: 0-86400

Per Task Parameters (generated according to the number of tasks specified to the SysVar wizard)

The next several system variables are generated for each individual task. The first task system variable name begins with a '_T1' prefix, the second task system variable name begins with a '_T2' prefix, etc.

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_T1_SLIP	%MD 3.1032 :DINT	1.0	Number of times that the watchdog timer
			expired for the current task.
_T1_FP_ERR	%MD 3.1036 :DINT	1.0	Number of floating point errors detected
			(underflow, overflow, etc.)
_T2_SLIP	%MD 3.1064 :DINT	1.0	See above description for corresponding T1
			variable
_T2_FP_ERR	%MD 3.1068 :DINT	1.0	See above description for corresponding T1
			variable
System variables for tasks	3 rd task 3.1096 to		
would continue from this	3.127		
point on, following the	4 th task 3.128 to 3.159		
same pattern as shown for	etc.		
the first and second tasks,	etc.		
above:			

Communication Statistics per port. A fixed 68-byte long statistics area is reserved per port. SysVar Wizard selects from the following parameters according to the port type.

System Variable Name	Address Data Type	Minimum Firmware Needed	Description
Port 1 offsets 3000-3067:			
_P1_TYPE	%MB 3.3000 : SINT	1.0	0 = UNUSED

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
			1 = BSAP Slave
			2 = BSAP Master
			15 = Custom Protocol
			28 = Serial IP (PPP)
_P1_MODE	%MB 3.3001 : SINT	1.0	protocol mode
_P1_RECEIVES	%MD 3.3004 :DINT :=	1.0	This is the total number of messages received
	0		through this port. (Does not include protocol
			messages.)
_P1_TRANSMIT	%MD 3.3008 : DINT :=	1.0	This is the total number of messages
	0		transmitted through this port. For the Master
			Port this includes poll messages as well.
_P1_POLLS	%MD 3.3012 : DINT :=	1.0 (Polls)	For the Slave: This is the number of poll
_P1_RESP_TMO	0	2.0 (Resp	messages received by the Slave Port (as
		timeout)	applicable). For the Master: Response Timeouts.
_P1_DISC_TRANS	%MD 3.3016 : DINT :=	2.0	For the Slave: Discards for transmission. If non-
_P1_CONS_TMO	0		zero, may indicate _Px_POLL_PER value for the
			Slave Port should be a larger number. For the
			Master: Consecutive timeouts.
_P1_NAKS	%MD 3.3020 : DINT :=	1.0	For the Slave: NAKs issued.
_P1_NAKS_RCV	0	2.0	For the Master: NAKs received.
_P1_CRC_ERR	%MD 3.3024 : DINT :=	1.0	For the Master: A message was received by the
_P1_DISC	0	2.0	Master port with correct framing; however it
			failed the CRC check and was discarded. Usually,
			this is due to noise on the line. The Master
			ignores this message.
			For the Slave: A message which is received by
			the Slave but whose ACK is not received by the
			Master is retransmitted by the Master. The Slave
			discards the duplicate message and advises the
			Master by issuing an 'ACK, Message Discarded'
			response. This is commonly caused by noise on
			the line.
_P1_DISC_RCV	%MD 3.3028 : DINT :=	2.0	Discarded ACKs received by the Master.
	0		
_P1_PROT_ERR	%MD 3.3032 : DINT :=	2.0	This is the number of protocol errors for the
	0		Master port.
_P1_TMO_SEND	%MD 3.3036 : DINT :=	2.0	This is the number of timeouts when sending
	0		messages.
Reserved	%Mx3.3040 - 3.3067		Reserved for future
:			

Port 2 offsets 3068-3135: Replication of port 1 offsets.
Port 3 offsets 3136-3203: Replication of port 1 offsets.
Port 4 offsets 3204-3271: Replication of port 1 offsets.
Port 5 offsets 3272-3339: Replication of port 1 offsets.
Port 6 offsets 3340-3407: Replication of port 1 offsets.

Port 7 offsets 3408-3475: Replication of port 1 offsets.
Port 8 offsets 3476-3543: Replication of port 1 offsets.
Port 9 offsets 3544-3611: Replication of port 1 offsets.
Port 10 offsets 3612-3679: Replication of port 1 offsets.
Port 11 offsets 3680-3747: Replication of port 1 offsets.
Port 12 offsets 3748-3815: Replication of port 1 offsets.

Communication System Configuration Parameters

System Variable Name	Address Data Type	Minimum Firmware	Description
		Needed	
_ALM_RETRIES	%MW 3.4000 : UINT := 3	1.0	Number of times to retry alarm reports
			before slowing retry interval.
_ALM_RET_ACT	%MW 3.4002 :UINT := 60	1.0	Amount of time (in seconds) to wait before
			an alarm retry in ACTIVE state.
_ALM_RET_DEAD	%MW 3.4004 : UINT := 120	1.0	Amount of time (in seconds) to wait before
			an alarm retry in DEAD state.
_ETH_POLL_PER	%MW 3.4006 : UINT := 0	1.0	Timeout for traffic on Ethernet lines.
			(Ethernet poll period)
_ETH1_ACT	%MX 3.4008.0 : BOOL	1.0	Ethernet port 1 Active.
_ETH2_ACT	%MX 3.4008.1 : BOOL	1.0	Ethernet port 2 Active.
_ETH3_ACT	%MX 3.4008.2 : BOOL	1.0	Ethernet port 3 Active.
_NHP_IGNORE_NRT	%MX 3.4009.0 : BOOL	4.00	When set TRUE, node routing tables
			received via IP from the Network Host PC
			will be ignored.
_NHP_IGNORE_TS	%MX 3.4009.1 : BOOL	4.00	When set TRUE, time synchronization
			messages received via IP from the Network
			Host PC will be ignored.

Communication System – Port specific configuration parameters.

Port 1 - offsets 4010-4019: SysVar Wizard selects from the following parameters according to the port type.

System Variable Name	Address Data Type	Minimum Firmware	Description
	%M/M/2 4010 · LUNT - 5	Needed	Polling cyclo time in seconds
	⁶ IVIVY 5.4010 . UIIVT 5	1.0	Applies to Master and Slave. Master: Begins a new polling cycle on every timeout. If actual polling of all slave lasts longer than this timeout then the next polling cycle is started as soon as the current cycle finishes. Slave: If the master does not poll within this time period all messages queued to go up to the master are discarded.

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_P1_WRITE_DEL	%MW 3.4012 : UINT := 0	1.0	Time in milliseconds. Applies to Master and
			Slave. Message reply delay. After CTS is
			received, wait this period before beginning the
			transmission.
_P1_RETRIES	%MW 3.4014 : UINT := 0	2.0	Number of link level retries. Applies to Master
			only. Default no retries, i.e. single transmission.
			For example, if set to 2, a total of 3
			transmissions may occur.
_P1_ACTIVE	%MX 3.4016.0 : BOOL	1.0	Output from comm. System. For BSAP Slave:
			One or more messages was received during the
			previous poll period. For BSAP Master: One or
			more slave nodes is still alive.
_P1_TS_FORCE	%MX 3.4016.1 : BOOL :=	1.0	Applies only to the Slave. Input/Output to/
	FALSE		from comm. system. When set to TRUE a
			request asking for the TS/NRT message is sent
			to the port master.
_P1_DTR_STATE	%MX 3.4017.0 BOOL	4.20	Reports the current state of the Data Terminal
			Ready (DTR) line for this port. TRUE means DTR
			active.
_P1_DCD_STATE	%MX 3.4017.1 BOOL	4.20	Reports the current state of the Data Carrier
			Detect (DCD) line for this port. TRUE means
			DCD active.
_P1_DIAL_ACTIVE	%MX 3.4017.2 BOOL	3.11	When TRUE, indicates that dialing is in progress
24 70 240			on this port.
_P1_IS_DIS	%MX 3.4018.0 : BOOL :=	1.0	Applies only to the Slave. Input to the comm.
	FALSE		System. When set to TRUE do not process the
			TimeSync information at this port. Set it to
			this port (Default)
	%MX 3 4018 1 · BOOL ·=	2.0	Applies only to the Slave Input to the comm
		2.0	System When set to TRUE do not process the
	TRESE		NRT information at this port. Set it to FALSE to
			accept and process the NRT at this port
			(Default)
	%MX 3 4018 2 · BOOL ·=	2.0	Applies only to the Master Input to the comm
	FALSE	2.0	system. When set to EAI SE the IDI E polling is
			Enabled (Default). Set this to TRUE to disable
			the IDLE polling.
P1 ALM DIS	%MX 3.4018.3 : BOOL :=	2.0	Input to the comm. System. When set to FALSE
	FALSE		the port can transmit alarm reports (Default).
			Set this to TRUE when alarm reports are not to
			be transmitted through this port.
_P1_IMM_DIS	%MX 3.4018.4 : BOOL	3.10	Input to the comm. System. When FALSE (the
	:=FALSE		default), this port can operate in immediate
			response mode. When set to TRUE, this port
			CANNOT operate in immediate response

System Variable Name	Address Data Type	Minimum Firmware	Description			
		Needed				
			mode.			
_P1_IGNORE_ECHO	%MX 3.4018.5 BOOL	3.10	On two-wire RS485 ports, anything sent is			
			echoed back. Set to TRUE, to ignore the data			
			echoed back.			
_P1_DIAL_PORT	%MX 3.4018.6 BOOL	4.00	Set to TRUE to allow dialing on this port.			
_P1_AUTO_DTR	%MX 3.4018.7 BOOL	4.20	The function of this variable varies depending			
			upon the type of port. For all port types, DTR is			
			disabled if DCD is inactive. In addition, the			
			following restrictions apply: For BSAP Master			
			Ports, DTR is only on while a communication			
			transaction is in progress; once the transaction			
			is over, DTR is dropped, until the completion of			
			the poll period. For Custom Master ports, DTR			
			is dropped after the transaction and no other			
			request is pending. For Generic Serial Ports, no			
			processing is done since DTR control is			
			expected to be in manual mode.			
_P1_LOCAL_PORT	%MX 3.4019.0 BOOL	4.20	Defines this port as a BSAP Local Port. It will			
			answer polls to any BSAP address, even if this			
			ControlWave has a different local address than			
			the incoming poll message.			
_P1_RESET_STATISTICS	%MX 3.4019.1 BOOL	5.30	Resets the statistics in the array for the I/O			
			expansion rack. Used with the RIO 485			
			interface. See the ControlWave Designer online			
			help for more information.			
_P1_INH_BSAP_SLAVE	%MX 3.4019.2 BOOL	5.43	When set TRUE prevents BSAP slave			
			communications on this port.			
Port 2 - offsets 4020-4029 (replication of port 1 offsets	as applicable).				
Port 3 - offsets 4030-4039 (replication of port 1 offsets	as applicable).				
Port 4 - offsets 4040-4049 (Port 4 - offsets 4040-4049 (replication of port 1 offsets as applicable).					
Port 5 - offsets 4050-4059 (replication of port 1 offsets as applicable)						
Port 6 - offsets 4060-4069 (replication of port 1 offsets as applicable)						
Port 7 - offsets 4070-4079 (replication of port 1 offsets as applicable)						
Port 8 - offsets 4080-4089 (replication of port 1 offsets as applicable)						
Port 9 - offsets 4090-4099 (replication of port 1 offsets as applicable)						
Port 10 - offsets 5000-5009 (replication of port 1 offsets as applicable)						

System Variable Name	Address Data Type	Minimum	Description			
		Firmware	-			
		Needed				
Port 11 - offsets 5010-5019	Port 11 - offsets 5010-5019 (replication of port 1 offsets as applicable)					
Port 12 - offsets 5020-5029	(replication of port 1 offsets a	as applicable)				
Other Communication para	meters – Data Line Monitorin	g				
_DLM_PORT	%MB 3.5000 : SINT :=	1.0	1-based port number to monitor.			
_DLM_R_PTR	%MD 3.5001 : USINT	1.0	Position in string to load next character.			
_DLM_READ	%MB 3.5003 : STRING	1.0	Storage for string which has been read.			
_DLM_WRITE	%MB 3.5088 : STRING	1.0	String which has been written.			
String Data:						
_CW_NAME_STR	%MB 3.5400 : STRING	2.0	Defines the name.			
_CW_DESCRIPTION_STR	%MB 3.5485 : STRING	2.0	Description: Automatically set by the system to			
			the firmware ID.			
_CW_CONTACT_STR	%MB 3.5570 : STRING	2.0	Defines the contact.			
_CW_LOCATION_STR	%MB 3.5655 : STRING	2.0	Defines the location.			
_CW_LOAD_STR	%MB 3.5740 : STRING	4.40	Defines the project version.			
_S1_IO_BOARD_ID_STR	%MB 3.6000 : STRING	2.0	ID string for 1 st I/O board.			
_S2_IO_BOARD_ID_STR	%MB 3.6085 : STRING	2.0	ID string for 2 nd I/O board.			
_S3_IO_BOARD_ID_STR	%MB 3.6170 : STRING	2.0	ID string for 3 rd I/O board.			
_S4_IO_BOARD_ID_STR	%MB 3.6255 : STRING	2.0	ID string for 4 th I/O board.			
_S5_IO_BOARD_ID_STR	%MB 3.6340 : STRING	2.0	ID string for 5 th I/O board.			
_S6_IO_BOARD_ID_STR	%MB 3.6425 :STRING	2.0	ID string for 6 th I/O board.			
_S7_IO_BOARD_ID_STR	%MB 3.6510 : STRING	2.0	ID string for 7 th I/O board.			
_S8_IO_BOARD_ID_STR	%MB 3.6595 : STRING	2.0	ID string for 8 th I/O board.			
Redundancy parameters: (9	See ControlWave Redundancy S	Setup Guide (D512	23) for details.)			
Additional Communication	System configuration parame	eters.				
SLAVE PORT	%MW 3.8000 : UINT := 1	2.0	Port number for the network slave port. Valid			
			values are:			
			1 - 11 (serial COM ports)			
			15 = IP (Ethernet or PPP)			
MSG TIMFOUT	%MD 3.8004 · DINT ·=	2.0	Timeout for all messages being tracked (all			
	30000	2.0	global messages passing through this node are			
			tracked). If this value is <= 0 then the default			
			time out of 30000 milliseconds (30 seconds) is			
			assumed.			
_NEW_NRT_RCVD	%MX 3.8008.0 : BOOL :=	2.0	Output from Comm. system. TRUE indicates a			

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
	FALSE		new NRT was received and has to be propagated to the slave RTUs. FALSE following the TRUE state indicates that BSAP Master has or is in process of sending the NRT to all slave RTUs. Can be set to TRUE by the user to force transmission of NRT to slave nodes
SLAVE_DEAD	%M 3.8010 Map this to a user defined data type of a BOOL array with 127 elements. B_127 : ARRAY [1127] OF BOOL; If this array is also to be manipulated using the Dataview or equivalent tool then the data type must be a two dimensional array with 127x1 or 1x127. B_1_1 : ARRAY [11] OF BOOL; B_127 : ARRAY [1127] OF B_1_1; In addition, it must be registered with REG_ARRAY.	2.0	Applicable to the Master only. Array elements 1-127 are used by the system to report the current status of the slaves 1-127. When a node is not responding to the POLLS it is declared as dead and the corresponding status is set to TRUE. (NOTE: This logic can be reversed via _BSAP_FLAG_SENSE.) This array is similar to the #NODE.xxx. signals used in ACCOL II for Network 3000-series controllers.
_SLAVE_POLL_DIS	%M 3.8138 Map this to a user defined data type of a BOOL array with 127 elements. B_127 : ARRAY [1127] OF BOOL; If this array is also to be manipulated using the Dataview or equivalent tool then the data type must be a two dimensional array with 127x1 or 1x127. B_1_1 : ARRAY [11] OF BOOL; B_127 : ARRAY [1127] OF B_1_1; In addition, it must be registered with REG_ARRAY.	2.0	Applicable to the Master only. Array elements 1-127 are used as input to the comm. system to indicate whether the slave(s) are to be polled or not. When an array element is set to TRUE the corresponding node is not polled. (NOTE: This logic can be reversed via _BSAP_FLAG_SENSE.) This array is similar to the #NDARRAY used in ACCOL II for Network 3000-series controllers, except by default, the logic is opposite.

System Variable Name	Address Data Type	Minimum Firmware Needed	Description
_BSAP_FLAG_SENSE	%MX 3.8265.0 BOOL :=FALSE	4.00	Default is FALSE. When set TRUE, reverses the interpretation of BOOL values in all four control and status arrays. See table, below:

Control or Status Array	BSAP_FLAG_SENSE=FALSE (Default)	BSAP_FLAG_SENSE=TRUE
_SLAVE_DEAD element	TRUE = Slave Node Dead; FALSE = Slave Node Alive	TRUE = Slave Node Alive; FALSE = Slave Node Dead
_SLAVE_POLL_DIS element	TRUE = Do NOT poll this node; FALSE = Poll this node	TRUE = Poll this node; FALSE = Do NOT Poll this node
_Px_DEAD_ARRAY element	TRUE = EBSAP Slave Node Dead; FALSE = EBSAP Slave Node Alive	TRUE = EBSAP Slave Node Alive; FALSE = EBSAP Slave Node Dead
_Px_DISABLE_ARRAY element	TRUE = Do NOT poll this EBSAP node; FALSE = Poll this EBSAP node	TRUE = Poll this EBSAP node; FALSE = Do NOT Poll this EBSAP node

Port 1 – offsets 8384-8428			
_P1_TIMEOUT	%MD 3.8384 : DINT := 500;	2.0	In milliseconds. Link level response timeout. This timeout value must be set approximately 50 ms higher than the facing slave's Message Write Delay.
_P1_CYCLE_INT	%MD 3.8388 :DINT	4.20	The interval (in milliseconds) at which DTR is enabled (Fast Duty Cycle).
_P1_CYCLE_TIMEO	%MD 3.8392 :DINT	4.20	Fast duty cycle timeout.
_P1_WRITE_TMO	%MD 3.8396 : DINT := 0	2.0	Common. In milliseconds. Since the CTS must be received in order to transmit, this time out is added to the expected message transmission time at the effective Baud Rate for this port. The response message must be completely transmitted before the resulting timeout. Default is dynamic and calculated based on the current baud rate.
_P1_LOW_SL	%MB 3.8400 : SINT := 0	2.0	Output parameter. Set to the value from the flash parameter. It is the lowest slave Address for this port.
_P1_HIGH_SL	%MB 3.8401 : SINT := 0	2.0	Output parameter. Set to the value from the flash parameter. It is the highest slave Address for this port.
_P1_VSAT_MIN_RESP	%MD 3.8402:INT	4.40	The minimum period of time that a VSAT Slave Port will wait before

Port 1 – offsets 8384-8428			
			responding to a message from the master. The main purpose of this delay is to allow a VSAT Master Port enough time to send messages to multiple slaves without getting a response from any of them until all of those messages have been sent out.
_P1_VSAT_MAX_RESP	3MD 3.8404 : INT	4.40	 Beginning with ControlWave firmware 04.80, this variable has two possible uses: 1. The maximum period of time (in milliseconds) that a VSAT Slave Port will wait before responding to a message from the master. This timer is meant to allow enough time for a data response to become available. One of the following can happen before this timer expires: a) An alarm message is sent. b) A data response message is sent. If the timer expires without either of these messages being sent, then a) A DOWN-ACK is sent (if received message was a data request) or b) An ACK/NO DATA message will be sent (if received message was a poll). 2. Beginning with ControlWave firmware 04.80, if the port is a BSAP Slave Port and immediate response is configured for this port, (i.ePn_IMM_DIS is set to FALSE), this variable specifies how long the BSAP Slave driver must wait for a data response. If the response is received before this time, the response will be sent immediately. However, if the the timer expires then the driver will send a DOWN-ACK protocol response to the Master. This timeout value may range
_P1_VSAT_UP_ACK_WAIT	%MD 3.8406:INT	4.40	from 50 to 32767 milliseconds. This is the period of time the VSAT
		1.10	Master will wait, after sending an UP- ACK-WITHOUT-POLL message (to terminate a poll transaction), to allow time for the VSAT Slave to get ready for the next request.
_P1_RBE_ERE_COUNT	%MD 3.8408 UDINT	4.40	Count of the number of Exception

Port 1 – offsets 8384-8428			
			Reports (ER) generated and posted to the Report Pool for port <i>n</i> . This count is incremented each time a new exception is reported. Application may reset this count.
_P1_RBE_RM_COUNT	%MD 3.8412 UDINT	4.40	Count of the number of Report Messages successfully transmitted for port n. Each RM can have more than 1 Exception Report in it. This count is not incremented when RM are retransmitted. Application may reset this count.
_P1_RBE_POOL_OVERFLOW	%MD 3.8416 UDINT	4.40	Count of the number of Exception Reports the RBE FB wanted to post in the Report Pool but could not because the Report Pool was full. These exceptions may essentially be lost for the RBE Client at this port. Application may reset this count.
_P1_RBE_POOL_SIZE	%MW 3.8420 UINT	4.40	The capacity of the Report Pool for port n. This size governs the maximum number of Exception Reports that can be outstanding at any given time without being successfully reported. This size is determined based on the expected rate of exception occurrence and the throughput at the port. This size can be changed on line. However, for the new size to be effective the RBE FB must be re-run with the ioabInit parameter in TRUE state. When this variable is set to 0 (default), the RBE is not active for the port. Adjust this parameter only if the Report Pool overflows or if the system wide RAM usage needs to be redistributed.
_P1_RBE_REXMIT_COUNT	%MD 3.8422 USINT	4.40	Indicates number of retransmissions of the last Report Message. This happens when an expected RBE_ACK is not received from the RBE Client. Following the RBE_ACK_TMO the last RM is retransmitted. On such retransmissions the RM_COUNT is not incremented. This count is automatically reset back to 0 whenever an ACK is received.
_P1_RBE_RM_SINCE_ACK	%MD 3.8423 USINT	4.40	Indicates number of Report Messages sent since last ACK was received. Count is adjusted whenever an ACK is received.

Port 1 – offsets 8384-8428			
			This count is continuously incremented for each Report Message sent when the
_P1_RBE_CLIENT_ID	%MD 3.8424 USINT	4.40	Identity of the RBE Client for port n. (0xA3 = default) Valid range available = 0x00-0xFF. Only time this will require a change is when the RBE Client in use has a different ID.
P1_RBE_ERE_FORMAT	%MD 3.8425 USINT	4.40	Exception Report format type for port n.
_P1_RBE_ACK_LIMIT	%MD 3.8426 USINT	4.40	Indicates if and when an ACK is expected from the RBE Client. 0 = Never wait for an ACK for Report Message (default) n = 1-127 = send up to n Report Messages (RM) then stop if an ACK is not received for any of the Report Messages. When the reporting has stopped while waiting for an ACK, a timeout will result in the retransmission of the last RM. The periodic retransmission will occur until an ACK is received.
_P1_RBE_STOP_RPT_MSG	%MX 3.8427.0 : BOOL	4.40	FALSE = Start/Restart Report Messagetransmission at port n.TRUE = Temporarily stop sending ReportMessage for port n. When restartingfrom the stopped state the RM willbegin with the next new ExceptionReport. This does not prevent newException Reports from being put intothe buffer pool. It is possible to overflowthe buffer pool while this variable is set.
_P1_RBE_PENDING	%MX 3.8427.1 :BOOL	4.40	This variable is set to TRUE when there is one or more Exception Reports pending for port n. It will automatically be changed to FALSE when the last Exception Report from the Report Pool has been successfully transmitted.
_P1_RBE_USE_ACCOL_NAME	%MX 3.8427.2 :BOOL	4.40	This variable determines the format of the variable name in the Exception Report. TRUE = the variable names are in ACCOLII format. FALSE= the variable names are in IEC61131 format.
_P1_RBE_GO_ACT_ON_START	%MX 3.8427.3 :BOOL	4.40	Variable determines the initial state for the RBE following an application COLD or WARM start. FALSE (default) = RBE is to send the

Port 1 – offsets 8384-8428			
			WAITING_INIT message to the RBE Client and wait for the INIT_REQ message. Periodically, ACK_TMO, repeat the wait message until the init message is received. TRUE = Following a successful initialization the RBE enters the active state where the database scan and exception reporting take place.
_P1_RBE_REPEAT_TIMEOUT	%MD 3.8428 DINT	4.40	Specifies the time to wait for an RBE ACK. If an ACK is not received within this period then retransmit the last Report Message. Periodically repeat this until an RBE ACK is received from the client. Ignore unrelated or out of sequence ACKs. A new Init or Demand Request will force an exit from this state. This timeout is also used during the initialization stage to determine when a WAITING INIT message will be re-sent if an INIT_REQ message has not been received. When this variable equals 0 no transmissions will occur.
_P1_RBE_STATE	%MB 3.8432 SINT	4.60	Indicates the current state of this RBE port. See the 'RBE' function block online help to learn the meaning of the number.
_P1_MAX_SLAVES	%MD 3.8440 USINT	4.50	Maximum number of slaves allowed below a virtual node.
_P1_TOP_LEVEL_NODES	%MD 3.8441 USINT	4.50	The number of slaves under a master (or virtual nodes under an Emaster.)
_P1_TOTAL_NODES	%MD 3.8442 : INT	4.50	Total number of slaves on this port.
_P1_DEAD_ARRAY	%MD 3.8444 : INT	4.50	This array is similar to the _SLAVE_DEAD array. It is applicable to the EBSAP Master onlyPn_DEAD_ARRAY is the number of a registered BOOL array that represents the number of slave nodes on Port <i>n</i> . The array must be dimensioned by the number of virtual nodes and max_slaves for row and column, respectively. The array elements are used by the system to report the current status of the slaves. By default, when a node is not responding to the POLLS it is declared as dead and the corresponding BOOL status is set to TRUE. NOTE: This default
ControlWave Designer Programmer's Handbook D301426X012 August 2020

Port 1 – offsets 8384-8428			
			logic for interpreting the BOOL can be
			reversed via _BSAP_FLAG_SENSE.
_P1_DISABLE_ARRAY	%MD 3.8446 :INT	4.50	This array is similar to the
			_SLAVE_POLL_DIS array. It is applicable
			to the EBSAP Master only.
			_Pn_DISABLE_ARRAY is the number of a
			registered BOOL array that represents
			the number of slave nodes on Port <i>n</i> .
			The array must be dimensioned by the
			number of virtual nodes and max_slaves
			for row and column, respectively. The
			array elements are used as an input to
			the communication system to indicate
			not By default when an array element
			is set to TRUE the corresponding node is
			not polled.
			NOTE: This default logic for interpreting
			the BOOL can be reversed via
			_BSAP_FLAG_SENSE.
_P1_PAD_FRONT	%MD 3.8448 USINT	4.60	Number of front pad characters for
			BSAP messages.
_P1_PAD_BACK	%MD 3.8449 USINT	4.60	Number of back pad characters for BSAP
			messages.
_P1_STATISTICS_ARRAY	%MD 3.8450 INT	5.30	This designates an array to maintain
			statistics for an I/O Expansion Rack using
			RS 485 communication. For details on
			the array structure and statistics, see the
			online help in ControlWave Designer.

Port 2 – offsets 8512-8556 (replication of port 1 offsets as applicable).

Port 3 – offsets 8640-8684 (replication of port 1 offsets as applicable).

Port 4 – offsets 8768-8812 (replication of port 1 offsets as applicable).

Port 5 – offsets 8896-8940 (replication of port 1 offsets as applicable).

Port 6 – offsets 9024-9068 (replication of port 1 offsets as applicable).

Port 7 – offsets 9152-9196 (replication of port 1 offsets as applicable).

Port 8 – offsets 9280-9324 (replication of port 1 offsets as applicable).

Port 9 – offsets 9408-9452 (replication of port 1 offsets as applicable).

Port 10 – offsets 9536-9580 (replication of port 1 offsets as applicable).

Port 1 – offsets 8384-8428

Port 11 – offsets 9664-9708 (replication of port 1 offsets as applicable).

Port 12 – offsets 9792-9836 (replication of port 1 offsets as applicable).

_S9_IO_BOARD_ID_STR	%MB 3.11000 : STRING	ID string for 9 th I/O board.
_S10_IO_BOARD_ID_STR	%MB 3.11085 : STRING	ID string for 10 th I/O board.
_S11_IO_BOARD_ID_STR	%MB 3.11170 : STRING	ID string for 11 th I/O board.
_S12_IO_BOARD_ID_STR	%MB 3.11255 : STRING	ID string for 12 th I/O board.
_S13_IO_BOARD_ID_STR	%MB 3.11340 : STRING	ID string for 13 th I/O board.
_S14_IO_BOARD_ID_STR	%MB 3.11425 : STRING	ID string for 14 th I/O board.

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
_IPn_RBE_ERE_COUNT	%MD 3.12000 UDINT	4.50	Count of the number of Exception Reports
			(ER) generated and posted to the Report Pool
			for Ethernet port <i>n</i> . This count is
			incremented each time a new exception is
			reported. Application may reset this count.
_IPn_RBE_RM_COUNT	%MD 3.12004 UDINT	4.50	Count of the number of Report Messages
			successfully transmitted for Ethernet port n.
			Each RM can have more than 1 Exception
			Report in it. This count is not incremented
			when RM are retransmitted. Application may
			reset this count.
_IPn_RBE_POOL_OVERFLOW	%MD 3.12008 UDINT	4.50	Count of the number of Exception Reports
			the RBE FB wanted to post in the Report Pool
			but could not because the Report Pool was
			full. These exceptions may essentially be lost
			for the RBE Client at this port. Application
			may reset this count.
_IPn_RBE_REXMIT_COUNT	%MD 3.12014 USINT	4.50	Indicates number of retransmissions of the
			last Report Message. This happens when an
			expected RBE_ACK is not received from the
			RBE Client. Following the RBE_ACK_TMO the
			last RM is retransmitted. On such
			retransmissions the RM_COUNT is not
			incremented. This count is automatically
			reset back to 0 whenever an ACK is received.
_IPn_RBE_PENDING	%MX 3.12019.1 : BOOL	4.50	This variable is set to TRUE when there is one
			or more Exception Reports pending for
			Ethernet port n. It will automatically be
			changed to FALSE when the last Exception
			Report from the Report Pool has been

ControlWave Designer Programmer's Handbook D301426X012 August 2020

System Variable Name	Address Data Type	Minimum	Description
		Firmware	
		Needed	
			successfully transmitted.
_IPn_RBE_RM_SINCE_ACK	%MD 3.12015 USINT	4.50	Indicates number of Report Messages sent
			since last ACK was received at Ethernet Port
			n. Count is adjusted whenever an ACK is
			received. This count is continuously
			incremented for each Report Message sent
			when the ACK Limit is set to 0.
_IPn_IP_RBE_ADDRESS	%MD 3.12128 UDINT	4.50	Displays the IP Address for Ethernet Port <i>n</i> .
_IPn_RBE_POOL_SIZE	%MW 3.12012 UINT	4.50	The capacity of the Report Pool for port
			Ethernet Port <i>n</i> . This size governs the
			maximum number of Exception Reports that
			can be outstanding at any given time without
			being successfully reported. This size is
			determined based on the expected rate of
			exception occurrence and the throughput at
			the port. This size can be changed on line.
			However, for the new size to be effective the
			RBE FB must be re-run with the ioabInit
			parameter in TRUE state. When this variable
			is set to 0 (default), the RBE is not active for
			the port. Adjust this parameter only if the
			Report Pool overflows or if the system wide
			RAM usage needs to be redistributed.
_IPn_RBE_ERE_FORMAT	%MD 3.12017 USINT	4.50	Exception Report format type for Ethernet
			port n.
_IPn_RBE_ACK_LIMIT	%MD 3.12018 USINT	4.50	RBE Acknowledge Limit for Ethernet Port <i>n</i> .
			Indicates if and when an ACK is expected
			from the RBE Client. 0 = Never wait for an
			ACK for Report Message (default)
			n = 1-127 = send up to n Report Messages
			(RM) then stop if an ACK is not received for
			any of the Report Messages. When the
			reporting has stopped while waiting for an
			ACK, a timeout will result in the
			retransmission of the last RM. The periodic
			retransmission will occur until an ACK is
			received.
_IPn_RBE_REPEAT_TIMEOUT	%MD 3.12020 DINT	4.50	Specifies the time to wait for an RBE ACK at
_			Ethernet Port <i>n</i> . If an ACK is not received
			within this period then retransmit the last
			Report Message. Periodically repeat this until
			an RBE ACK is received from the client. Ignore
			unrelated or out of sequence ACKs. A new
			Init or Demand Request will force an exit
			from this state. This timeout is also used
			during the initialization stage to determine

ControlWave Designer Programmer's Handbook D301426X012 August 2020

System Variable Name	Address Data Type	Minimum Firmware	Description
		Needed	
			when a WAITING INIT message will be re-sent if an INIT_REQ message has not been received. When this variable equals 0 no transmissions will occur.
_IPn_RBE_STOP_RPT_MSG	%MX 3.12019.0 : BOOL	4.50	Control report message transmissions for port <i>n</i> . FALSE = Start/Restart Report Message transmission at port n. TRUE = Temporarily stop sending Report Message for port n. When restarting from the stopped state the RM will begin with the next new Exception Report. This does not prevent new Exception Reports from being put into the buffer pool. It is possible to overflow the buffer pool while this variable is set.
_IPn_RBE_USE_ACCOL_NAME	%MX 3.12019.2 : BOOL	4.50	This variable determines the format of the variable name in the Exception Report. TRUE = the variable names are in ACCOLII format. FALSE= the variable names are in IEC1131 format.
_IPn_RBE_GO_ACT_ON_STA RT	%MX 3.12019.3 : BOOL	4.50	Variable determines the initial state for RBE at Ethernet Port <i>n</i> following an application COLD or WARM start. FALSE (default) = RBE is to send the WAITING_INIT message to the RBE Client and wait for the INIT_REQ message. Periodically, ACK_TMO, repeat the wait message until the init message is received. TRUE = Following a successful initialization the RBE enters the active state where the database scan and exception reporting take place.
_IPn_RBE_STATE	%MB 3.12024	4.60	The current state of RBE for the Ethernet port. See the 'RBE function block' online help to learn the meaning of the number.

Static Memory Area:

In addition to the system variables described, a static memory array exists beginning at offset 3.100000. The static memory area is useful for storing data you have accumulated, and don't want to lose if the controller is restarted, such as flow totals, equipment run times, etc. This memory is normally NOT written to by the system, and so can be used to save user information across restarts. This defaults to 16K but can be reduced if there is insufficient space in SRAM for variables marked 'RETAIN'. This memory will only be re-

initialized on a re-start if the SRAM control switch is set OFF, or if there is no battery backup.

It can also be initialized under program control by setting its value to **0**.

Example - Manually Defining a System Variable to Display the Task Priority

Let's say that within one of our programs we want to know the configured priority of the first task in the project:

To find out if this information is available, look through the System Variable Mapping Charts and you will find the entry:

_T1_TASK_PRIO	%MW 1.1014 : INT	The configured priority of this task.

Our _T1_TASK_PRIO variable would be defined in a variable worksheet. For this particular project, it's called **RTU_RESOURCEV** but depending upon which version of ControlWave Designer you are using, it could be named 'Global Variables' or something else.

- First, double-click on the 'Global Variables' icon in the project tree, to bring up the worksheet.
- Then right-click in the 'Global Variables' section, and choose "Insert variable" from the pop-up menu.

First, double-click on the Global Variables worksheet icon

Next, right-click within the worksheet, and choose "Insert variable" from the pop-up menu.

• A new variable called 'NewVar1' will appear in the worksheet. Double-click on the 'NewVar' name to edit it. Enter the name '_T1_TASK_PRIO' from the table.

Type.

 Now click on the 'Type' field, and a list box will appear. Choose 'INT' because that is the type specified in the table.

When you have finished editing the "Name" and "Type" they should look like this.

_				
	_TS_INHIB	BOOL	VAR_GLOBAL	
	_T1_TASK_PRIO	,NT	🗡 🗹 VAR_GLOBAL	
	_RIO_REQ_SAFE	DINT	VAR_GLOBAL	
	_RIO_REQ_PACK	DINT	VAR_GLOBAL	

- Drag the scroll bar to bring additional fields into view.
- Now, enter the address for the variable, as shown in the table '%MW 1.1014'. When this is done, and the worksheet is closed, you have successfully defined a global variable for the task priority.

Enter the address here

``	\	
_TS_INHIB	%MX 3.0.3	FALSE
_T1_TASK_PRIO	%MVV1.1014	
_RIO_REQ_SAFE	%MD 3.28	50

Using the System Variable Viewer

OpenBSI includes a debugging tool for viewing the current value of system variables in the ControlWave.

To start the System Variable Viewer, click Start→ Programs → OpenBSI Tools → Debugging Tools → System Variable Viewer.

😫 SYSVarView				
Data View Help				
2 7 4 4	8			
	Choose Communications			
	Connection Type C TCP/IP Open BSI C Serial	Argument String: CWM2	OK Cancel	
Ready				

In the System Variable Viewer, click **Data** \rightarrow **Communications** to call up the Choose Communications dialog box.

There are three possible connection types:

TCP/IP: Specify the IP address, and timeout (in milliseconds).

Syntax is: **-ip** ip_address timeout

Example Argument String: -ip 10.211.74.222 2000

Open BSI: Specify the node name of the ControlWave to which you want to communicate for the Argument String. Example: CWM2 Serial: Specify the PC communication port, baud rate, and timeout (in milliseconds).

Syntax is: comm._port baud_rate timeout

Example Argument String: COM1 9600 2000

Click **OK** when you complete the argument string. This calls up the Choose Display Type dialog box.

Choose Display Type	
Window Type System Time System Configuration System Flags System Statistics System Information Task Information Data Line Monitor Redundancy Port (Globals)	Port Configuration 1 Cancel Port Statistics 1 Cancel ID Strings ASP Processing Version Check (V04.80)
If you want to view variables for a task other than Task 1, choose it here.	/ If you want to view variables for a port other than Port 1, choose it here.

In the Choose Display Type dialog box. Specify the list of system variables you want to view. If you want to see Task Information or Port information, you'll need to choose the proper numbered task or port first. After you make your selection, click **OK** and the list opens.

Name	Value	Description	
_TIME_000	16#3d9f2f47	Combined Julian Date / Time	
TIME_008	12103	Julian Date	
_rJULIAN_TIME	0.0777269	Julian Date in Floating Point	
_TIME_4SEC	15775	4 Second intervals since Midnight	
_TIME_001	63101	Seconds since Midnight	
_TIME_002	2010	Year	
_TIME_003	2	Month (1 - 12)	
_DAY_OF_WEEK	6	Day of week (1 = Sunday to 7)	
TIME_004	19	Date (1 - 31)	
TIME_005	17	Hour (0 - 23)	
_TIME_006	31	Minutes in Hour	
TIME 007	41	Seconds in Minute	

Notes:

- The tool prompts you to log in to the RTU to view the system variables.
- If you click on a particular value, it appears in the **Expanded Value** field.
- Refreshing of the screen may be slow.
- To choose a different list to view, click **File** → **New List**.

Variable Extension Wizard

What is the Variable Extension Wizard?

The **Variable Extension Wizard** is run from within ControlWave Designer (this feature was added with OpenBSI Version 5.4/ControlWave Designer Version 4.0). It allows you to create initialization files (*.INI) which assist in batch configuration of variables within the ControlWave-series controller.

The information in these initialization files is incorporated into the ControlWave project when read using either the DB_LOAD or RBE function blocks. The initialization files may be used to:

- Configure lists (Requires ControlWave firmware 04.40 or newer)
- Identify variables which should be collected via Report by Exception (Requires ControlWave firmware 04.40 or newer)
- Configure alarms (Requires ControlWave firmware 04.90 or newer)
- Configure descriptive text, ON/OFF text, inhibit/enable flags, or units text (Requires ControlWave firmware 04.90 or newer)

Important

The configuration information entered via this method is **not** visible within ControlWave Designer. For example, you will **not** see LIST function blocks for lists created via this method, since it is performed via initialization files.

Before You Begin

- In order to view variables in the Variable Extension Wizard, you must have marked those variables for PDD collection within the project *before* you run the Variable Extension Wizard.
- Your ControlWave project must be in a state where it can be compiled successfully.

Starting the Variable Extension Wizard

The Variable Extension Wizard is run from within ControlWave Designer. To do this, click on:

View \rightarrow Variable Extension Wizard

Using the Variable Extension Wizard

If your project includes more than one resource, you will be prompted to choose which resource and I/O Configuration you want to work with. Choose the resource, then click **[Next>]**.

When the Variable Extension Wizard first starts it will compile your ControlWave project.

When the compilation has completed successfully, the Variable Search dialog box will appear.

Search only for global variables.

`		
۷	ariable Search	×
	Variables C All Globals C Instance C Sub String Instance Name:	Cancel
7		

Search for all global variables and all variables marked 'PDD'.

Search only for variables with a given instance name. (You must enter that in "Instance Name".)

In the Variable Search dialog box, choose the type of variables you want to search for.

All Variables	Selecting this will cause the Wizard to search for all variables marked PDD, as well as all global variables (those with an instance name of @GV).
All Globals	Selecting this will cause the Wizard to search for all global variables in the project (those with an instance name of @GV).
Instance	Selecting this will cause the Wizard to search only for variables from a particular program instance. You must enter the name of that program instance in the "Instance Name" field.
Sub String	Selecting this will cause the Wizard to search only for variables whose names include a particular string of text. You must enter that text string in the "Sub String Search" field.

When you've chosen which variables to search for, click **[OK]** and the variables display in a Search Grid.

Variable Extension Wizard										×	
File View All											
Variable	Alm	AI	CI	MI	Aud	Rbe	Rbe Deadband	Units Text	Descriptor	^	
@GV.D016_1_ALLOUT											
@GV.OUTPUT_1											
@GV.OUTPUT_1_I											
@GV.PRESSUR1_CURRENT											
@GV.PRESSUR2_CURRENT											_
@GV.PRESSUR3_CURRENT											R.
@GV.PRESSURE_HI_DB											
@GV.PRESSURE_HI_LIM										=	
@GV.PRESSURE_HIHI_LIM											Drag the scroll
@GV.PRESSURE_HIHIDB											2.0.9
@GV.PRESSURE_LO_DB											bar to bring
@GV.PRESSURE_LO_LIM											
@GV.PRESSURE_LOLO_LIM											more variables
p1.FLOW1_CURRENT											
p1.FLOW1_LO_DB										-	
p1.FLOW2_CURRENT											
p1.FLOW3_CURRENT											
p1.FLOW_HI_DB											
p1.FLOW_HI_LIM										~	
		_		-							
			IIII						2		

Once the variables are displayed in the Search Grid you can do any of the following:

- Mark the variable for Report By Exception (RBE) collection, and, if an analog variable, configure its deadband value.
- Configure the variable as an alarm.
- Create one or more lists containing variables.
- Assign units (for analogs) or ON/OFF text (for BOOLs) to the variable.
- Set initial values of manual or alarm inhibit/enable flags.
- Create descriptive text for the variable.

Marking a Variable for Report by Exception (RBE) Collection

RBE is a method of data collection where variables are collected **only** when they change.

For logical variables (BOOL), this means whenever the variable goes from TRUE to FALSE or FALSE to TRUE.

For analog variables (INT, REAL, etc.), this means whenever the analog variable changes more than a pre-configured deadband value. You MUST configure a deadband for an analog RBE variable, or else any change at all, even a minor fluctuation, would cause the variable to be collected.

To select a BOOL variable for RBE collection, just select its "**Rbe**" checkbox.

Variable Extension Wizard							\mathbf{Y}			X
File View All							/			
Variable	Alm	AI	CI	M	Aud	Rbe	Rbe Deadband	Units Text	Descriptor	^
@GV.D016_1_ALLOUT		Г					/			
@GV.OUTPUT_1										
@GV.OUTPUT_1_I										
@GV.PRESSUR1_CURRENT							45.0			
@GV.PRESSUR2_CURRENT		Γ				☑	48.0			
@GV.PRESSUR3_CURRENT							50.0		-	
@GV.PRESSURE_HI_DB							•			
@GV.PRESSURE_HI_LIM										=
@GV.PRESSURE_HIHI_LIM		Г		7						
@GV.PRESSURE_HIHIDB			_/				\			
@GV.PRESSURE_LO_DB							\			
@GV.PRESSURE_LO_LIM		∇	[\			
@GV.PRESSURE_LOLO_LIM							· · · · · · · · · · · · · · · · · · ·			
p1.FLOW1_CURRENT							· · · · · · · · · · · · · · · · · · ·			
p1.FLOW1_LO_DB	/						· · · · · · · · · · · · · · · · · · ·			
p1.FLOW2_CURRENT							· · · · · · · · · · · · · · · · · · ·			
p1.FLOW3_CURRENT							· · · · · · · · · · · · · · · · · · ·			
p1.FLOW_HI_DB										
p1.FLOW_HI_LIM										~
			ini i							

To mark an analog variable for RBE collection, first select its "**Rbe**" checkbox, then enter a deadband in the "**Rbe Deadband**" field, or use the list box for the field to select a variable which holds a value that will serve as the deadband.

NOTE: You must press the **[Enter]** key on the keyboard to complete the entry, or else you cannot exit the field.

Note:

Your project must include an RBE function block, and you must have configured it, in order for these variables to be collected via RBE.

For a logical RBE variable

To define a logical RBE variable, simply check the **"Rbe"** check box for that variable.

For an analog RBE variable

To define an analog RBE variable, check the **"Rbe"** check box for that variable, then enter a deadband value in the **"Rbe Deadband"** field, or use the list box for the field to select *another* variable whose value will be used as the RBE deadband. **Note:** You MUST press the **[Enter]** key on your keyboard to exit the **"Rbe Deadband"** field.

Marking / Unmarking all variables in the Search Window for RBE collection

To mark all variables in the Search Grid for RBE collection, click on All \rightarrow Mark All RBE. You will still have to define RBE deadbands for all analog RBE variables.

To un-mark all variables in the search grid, so that none of them will be collected by RBE, click on: All \rightarrow Clear All RBE

Configuring a Variable as an Alarm

The controller generates alarm messages in response to a significant change in a variable's value or status. Full details on how alarms work are explained in the *Alarm Configuration* section in this manual. Alarms are configured in one of two ways:

- 1. Using Alarm function blocks (See the *Alarm Configuration* section, earlier in this manual)
- 2. Using the Variable Extension Wizard

Configuring an Analog Alarm Variable

Click on the **"Alm"** check box for the variable. The Analog Alarms dialog box will appear.

Specify alarm limits for the variable. These limits determine at what point the variable enters an alarm condition. The alarm limit values may be entered directly as a constant, or you may specify separate analog variables to hold the value of each alarm limit.

Specify a high deadband value, and/or low deadband value for the variable. Deadbands are used to define a range around the alarm limits where a minor fluctuation of the variable should not change the 'in alarm' or 'normal state' condition of the variable. Again, it may be entered as a constant, or as a separate analog variable.

Choose priorities for each alarm limit. These are used to specify the severity of the alarm condition. The priorities from least important to most important are: Event 'Evt', Operator Guide 'OpG', Non-Critical 'NCrit', and Critical 'Crit'.

Configuring a Logical (BOOL) Alarm Variable

Click on the **"Alm"** check box for the variable. The Logical Alarms dialog box will appear.

Choose the **"Type"** of the alarm: 'Alarm on True State' means that an alarm is generated when the variable changes from FALSE to TRUE; 'Alarm on False State' means that an alarm is generated when the variable changes from TRUE to FALSE; 'Alarm on Change of State' means that an alarm is generated by any change.

Choose a priority for the alarm, to indicate its severity. The priorities from least important to most important are: Event 'Evt', Operator Guide 'OpG', Non-Critical 'NCrit', and Critical 'Crit'.

Click on [OK] when finished.

Creating / Editing a List

To create a list of variables, click on View \rightarrow Lists.

Enter Manul ist Mumbau 1	ОК
	Cancel

The Lists dialog box will appear. If you want to edit an existing list, select it from the **"List Number"** list box. To create an all new list, click **[New]** and enter a number for the list.

To add a variable to the current list, click on its name in the "Searched Variable Directory" then click on the [>>] button. To remove a variable from the current list, click on its name in the **"List Entries"** field then click on the [<<] button.

You can optionally enter a description for the list in the "List Descriptor" field.

If you want users to be able to edit the list, online, check the "Allow on-line edits" box. Note: Users can delete variables; but can only add variables that already exist in the project.

To delete an existing list, choose the list number, then click **[Delete]**. Note: There is no prompt to confirm the deletion – the entire list is deleted immediately from the wizard. (OpenBSI 5.7 Service Pack 2 and newer.)

Note:

Your ControlWave project must include a configured DB_LOAD function block to load these lists.

To remove a variable to the current list, click on the variable name in "List Entries," then click on the [<<] button.

or [Move Down] buttons to position it in the desired order.

Setting initial values for Manual or Alarm Inhibit/Enable Flags

To set the initial value of a Manual Inhibit/Enable flag or Alarm Inhibit/Enable flag to Inhibit, simply select the **"MI"** or **"AI"** checkboxes, respectively.

To set a variable's init Inhibit/Enable status to check the Al box.	ial A o 'Inł	larm nibiť,				л Г Ч	o set a variable's lanual Inhibit/Ena nhibit', check the	s initial able status to MI box.		
Variable Extension Wizard										\mathbf{X}
File View All										
Variable	Im	Al	CI	MI	Aud	Rbe	Rbe Deadband	Units Text	Descriptor	^
@GV.D016_1_ALLOUT	T	Γ			/					
@GV.OUTPUT_1	<u> </u>				/					
				/	/		45.0			
@GV PRESSUB2_CUBBENT	- 1			- 		, v	48.0			
@GV.PRESSUR3_CURRENT							50.0			
@GV.PRESSURE_HI_DB	Г	Г		Г						
@GV.PRESSURE_HI_LIM										
@GV.PRESSURE_HIHI_LIM	Γ	Г								
@GV.PRESSURE_HIHIDB										
@GV.PRESSURE_LO_DB										
@GV.PRESSURE_LU_LIM										
n1 FLOW1 CURRENT										
n1 FLOW1 LO DB										
p1.FLOW2 CURRENT		Ē		Ē						
p1.FLOW3_CURRENT										
p1.FLOW_HI_DB										
p1.FLOW_HI_LIM										-
			Ш							×

Assigning Units Text (Analog Variables ONLY)

To assign engineering units to a variable, click in the **"Units Text"** field, and enter up to six characters of units text, then press the **[Enter]** key on the keyboard, to exit the field.

Alternatively, you can specify a variable name in the field, which will hold the units text.

Variable Extension Wiza	ard									
File View All										
Variable	Alm	AI	CI	M	Aud	Rbe	Rbe Deadband	Units Text	Descriptor	^
@GV.D016_1_ALLOUT	Г									
@GV.OUTPUT_1						V				
@GV.OUTPUT_1_I										
@GV.PRESSUR1_CURRENT							45.0	PSI		-
@GV.PRESSUR2_CURRENT						V	48.0			
@GV.PRESSUR3_CURRENT				V		V	50.0			
@GV.PRESSURE_HI_DB										
@GV.PRESSURE_HI_LIM										
@GV.PRESSURE_HIHI_LIM										
@GV.PRESSURE_HIHIDB										
@GV.PRESSURE_LO_DB										
@GV.PRESSURE_LO_LIM										
@GV.PRESSURE_LOLO_LIM										
p1.FLOW1_CURRENT										
p1.FLOW1_LO_DB										
p1.FLOW2_CURRENT										
p1.FLOW3_CURRENT										
p1.FLOW_HI_DB										
p1.FLOW_HI_LIM										*
		_								
					1111					2 .::

Note: You *can* enter units text in brackets in the **Description** field of a variables worksheet in ControlWave Designer.

 Name
 Description

 System_Variables
 WATER_TEMP
 [DEGC]

The units text entered there, however, only appears within ControlWave Designer; it is not downloaded to the RTU. It cannot be viewed in DataView or other data collection programs.

You can view this text in the Variable Extension Wizard, however, it appears in green to indicate that it does not become part of the _VARDEFS.INI file and is not downloaded to the RTU.

If you want to convert this text so it *can* be downloaded to the RTU, position your cursor in the units text field of the Variable Extension Wizard, and press the **[Enter]** key.

The text now changes color from green to black, and can be downloaded as if it was entered directly in the Variable Extension Wizard.

	 	 _		
@GV.WATER_TEMP				DEGC

Assigning ON/OFF Text (BOOL Variables ONLY)

To assign ON/OFF text to a BOOL variable, click in the **"Units Text"** field, and enter up to six characters of ON text, followed by a slash "/", and then up to six characters of OFF text. Press the **[Enter]** key on the keyboard, to exit the field.

Alternatively, you can specify a variable name in the field, which will hold the ON/OFF text.

Variable Extension Wizard										
File View All										
Variable	Alm	Al	CI	MI	Aud	Rbe	Rbe Deadband	Units Text	Descriptor	1
@GV.D016_1_ALLOUT		Г		Г		Г				
@GV.OUTPUT_1	V					M		START/STOP		-
@GV.OUTPUT_1_I						Γ				
@GV.PRESSUR1_CURRENT						▼	45.0	PSI		
@GV.PRESSUR2_CURRENT						V	48.0			
@GV.PRESSUR3_CURRENT	V	V		V		V	50.0			
@GV.PRESSURE_HI_DB										
@GV.PRESSURE_HI_LIM										
@GV.PRESSURE_HIHI_LIM										
@GV.PRESSURE_HIHIDB										
@GV.PRESSURE_L0_DB										
@GV.PRESSURE_LO_LIM										
@GV.PRESSURE_LOLO_LIM										
p1.FLOW1_CURRENT										
p1.FLOW1_LO_DB										
p1.FLOW2_CURRENT										
p1.FLOW3_CURRENT										
p1.FLOW_HI_DB				Г						
p1.FLOW_HI_LIM										
		_								>

You *can* enter ON/OFF text in brackets in the Description field of a variables worksheet in ControlWave Designer.

Name	Туре	Usage	Description
🖂 System_Variables			
SECURITY_DOOR	BOOL	VAR_GLOBAL	[OPENED/CLOSED]

The ON/OFF text entered there, however, only appears within ControlWave Designer; it is not downloaded to the RTU. It cannot be viewed in DataView or other data collection programs.

You can view this text in the Variable Extension Wizard, however, it appears in green to indicate that it does not become part of the _VARDEFS.INI file and is not downloaded to the RTU.

If you want to convert this text so it *can* be downloaded to the RTU, position your cursor in the units text field of the Variable Extension Wizard, and press the **[Enter]** key on the keyboard.

Position the cursor in the

					Tiel	a.			7
Variable	Alm	AI	CI	MI	Aud	Rbe	Rbe Deadband	Units Text	Descriptor
@GV.RESET_VALUE									AUTOINSERT
@GV.SECURITY_DOOR								OPENED/CLOSED	-
COLLOTION TEOT									

The text now changes color from green to black, and can be downloaded as if it was entered directly in the Variable Extension Wizard.

OPENED/CLOSED

Creating Descriptive Text for the Variable

To create descriptive text for a variable, click in the **"Descriptor"** field, and enter up to 64 characters of descriptive text, then press the **[Enter]** key on the keyboard, to exit the field.

Alternatively, you can specify a variable name in the field, which will hold the descriptive text.

Variable Extension Wiz	zard									
File View All										
Variable	Alm	AI	CI	MI	Aud	Rbe	Rbe Deadband	Units Text	Descriptor	^
@GV.DO16_1_ALLOUT						Г				
@GV.OUTPUT_1								START/STOP		
@GV.OUTPUT_1_I										
@GV.PRESSUR1_CURRENT							45.0	PSI	CURRENT PRESSURE READING	-
@GV.PRESSUR2_CURRENT							48.0			
@GV.PRESSUR3_CURRENT	☑						50.0			
@GV.PRESSURE_HI_DB										
@GV.PRESSURE_HI_LIM										
@GV.PRESSURE_HIHI_LIM										
@GV.PRESSURE_HIHIDB										
@GV.PRESSURE_LO_DB										
@GV.PRESSURE_LO_LIM										
@GV.PRESSURE_LOLO_LIM										
p1.FLOW1_CURRENT										
p1.FLOW1_LO_DB										
p1.FLOW2_CURRENT										
DIFLOWS_CORRENT										
										~
<										>

You *can* enter descriptive text in the **Description** field of a variables worksheet in ControlWave Designer.

Name	Туре	Usage	Description
TEST_IN_PROGRESS	BOOL	VAR_GLOBAL	
START_TEST	BOOL	VAR_GLOBAL	PROCESS TEST HAS STARTED

The descriptive text entered there, however, only appears within ControlWave Designer; it is not downloaded to the RTU. It cannot be viewed in DataView or other data collection programs.

You can view this text in the Variable Extension Wizard, however, it appears in green to indicate that it does not become part of the _VARDEFS.INI file and is not downloaded to the RTU.

If you want to convert this text so it *can* be downloaded to the RTU, you have two options:

Option 1: Identify the text for each individual variable:

If you only want the descriptive text for certain variables to be downloaded to the RTU you must position your cursor in the descriptor field of the Variable Extension Wizard, and press the **[Enter]** key.

The text now changes color from green to black, and can be downloaded as if it was entered directly in the Variable Extension Wizard. Repeat this process for each variable you want to have descriptive text.

Variable	Alm	Al	CI	MI	Aud	Rbe	Rbe Deadband	Units Text	Descriptor
@GV.START_TEST									PROCESS TEST HAS STARTED

Option 2: Specify that you want descriptive text for ALL variables to be downloaded

If you want the descriptive text entered in variable worksheets for ALL variables to be downloaded to the RTU, click **All > Store All Descriptors. Note**: This method requires OpenBSI 5.9 or newer.

Saving the Initialization Files and Exiting the Wizard

To save the initialization files, click on File \rightarrow Save.

To exit the wizard, click on File \rightarrow Exit.

Note:

If you subsequently rename your ControlWave project, via a **File** \rightarrow **Save As** command, you must then re-start the Variable Extension Wizard, and save the initialization files to update the project name within the initialization files; otherwise the initialization files will still have the old project name.

Format of Initialization Files

We recommend you generate these initialization files only using the Variable Extension Wizard.

Advanced users may want to edit the initialization files manually, with an ASCII text editor. Exercise extreme care when doing this, because syntactical errors could result in problems in your ControlWave project. Do NOT leave spaces between lines of these files.

__LISTS.INI

```
*LIST listnumber
variable1
variable2
:
variablen
```

where listnumber

is the number used to identify this list.

variable1-n

are the variables in the list.

For example:

*LIST 1

@GVAI_FOR_NON_ALARMS
@GVALARMS_BSAP_PORT1
@GVALARMS_BSAP_PORT1
@GVALARMS_BSAP_PORT10
@GVALARMS_BSAP_PORT11
@GVALARMS_BSAP_PORT11
@GVT16_AVG_DUR

___RBE.INI

variable1 [deadband]
variable2 [deadband]
 :
variablen [deadband]

where:

variable1 – variablen	are the names of variables you want marked for RBE collection.
[deadband]	is an RBE deadband applied to analog variables. This does NOT apply for BOOL variables. The deadband can be entered as a constant value, or a variable name can be entered, in which case, the value of that variable will serve as the deadband.

Example:

@GV.TANK_LEVEL @GV.TANK_LVL_DB
@GV.PRESSURE_NOW 10

___VAR_DEFS.INI

This file is created by the Variable Extension Wizard; however, it may be edited manually using a text editor.

[VERSION] ProjName=project_name Build=number Date=mm/dd/yy hh:mm:ss NumAlms=number_of_alarms

```
[SIG n]
Name=variable_name
Alarm=variable_type
Units=text
Desc=description
LogPri=logical_alarm_priority
HiLimit=high_limit
HiPri=high_priority
HiHiLimit=high_high_limit
HiHiPri=high_high_priority
LoLimit=low_limit
LoPri=low_priority
LoLoLimit=low_low_limit
LoLoPri=low_low_priority
HiDB=high_deadband
LoDB=low_deadband
```

project_name	the name of the ControlWave Designer project.
number	the version number of the build for this project (incremented automatically by the Variable Extension Wizard).
mm/dd/yy hh:mm:ss	the date and time the project was built where mm/dd/yy refers to the 2 digit month, day, and year, respectively, and hh:mm:ss refers to the hour (0-23), minute, and seconds, respectively.
number_of_alarms	the number of alarms defined in the file
[Sig_n]	the number of the variable. A separate [Sign_n] section must be defined for each variable included in the file
variable_name	the variable name, including any instance name
variable_type	the type of the alarm variable. This can be any one of the following:

	Analog	Analog alarm variable	
	Log_True	Logical alarm variable. Alarm is generated when its value becomes TRUE.	
	Log_False	Logical alarm variable. Alarm is generated when its value becomes FALSE.	
	Log_State	Logical alarm variable. Alarm is generated when its value changes state from TRUE to FALSE or FALSE to TRUE.	
	None	Regular non-alarm variable.	
text	For analog variables this refers to the engineering units text, e.g. MSCFH, GPM, MGD, DEGC, DEGF, etc. Units text can be up to six (6) characters. The 6 characters of units text may alternatively be held in a STRING variable, in which case the string variable name should be specified here, preceded by a tilde '~' character.		
	For logical (BOC text of the varia followed by a sl text is supporte held in a STRING name should be character.	DL) variables, this refers to the ON / OFF able. Up to six characters of ON text ash '/' and then up to six characters of OFF ed. The ON/OFF text may alternatively be G variable, in which case the string variable e specified here, preceded by a tilde '~'	
description	Descriptive text Alternatively, th separate STRIN name should be character.	t for the variable, up to 64 characters. ne descriptive text may be stored in a G variable, in which case the string variable e specified here, preceded by a tilde '~'	
<pre>high_limit, high_high_limit, low_limit, low_low_limit</pre>	For Analog alar alarm limits, for variable's value or falls below th messages are g back within lim generated. The values, or they the variable nar	m variables ONLY. These limits specify r this analog alarm variable. When the exceeds the high_limit or high_high_limit, ne low_limit, or low_low_limit, alarm enerated. When the variable's value comes its, a return-to-normal message is se limits may be entered as constant may be stored in variables, in which case me would be entered here, preceded by a	

	tilde '~'. NOTE: Deadbands may be set up to reduce fluctuations into and out-of the alarm state.
low_deadband, high_deadband	In the case of a high, or high-high alarm, the alarm condition does not clear (i.e. generate a 'return to normal' alarm message) until the value of the variable goes below the alarm limit, minus the value of the high_deadband. In the case of a low, or low-low alarm, the alarm condition does not clear until the value of the variable rises above the alarm limit, plus the value of the low_deadband. These deadbands may be entered as constant values, or they may be stored in variables, in which case the variable name would be entered here, preceded by a tilde '~'.
<pre>logical_alarm_priority high_priority, high_high_priority, low_priority, low_low_priority</pre>	Alarm priorities designate the importance of the alarm. Logical (BOOL) variables have a single alarm priority; analog alarm variables can have up to four alarm priorities – one for each alarm limit. Alarm priorities from least important to most important are:
	Event (Evt) Operator Guide (OpG) Non Critical (NCrit) Critical (Crit)
Example:	
<pre>[Version] ProjName=bktest1 Build=7 Date=11:25:16 01-21-08 NumAlms=3 [SIG_5] Name=@GV.PRESSUR3_CURR AI=1 [SIG_1] Name=@GV.OUTPUT_1 Alarm=Log_True LogPri=0 Units=START/STOP [SIG_2] Name=@GV.PRESSUR1_CURR Desc=CURRENT PRESSURE</pre>	ENT READING
Units=PSI	

HiLimit=@GV.PRESSURE_HI_LIM

Variable Extension Wizard

```
HiHiPri=3
HiHiLimit=@GV.PRESSURE_HIHI_LIM
LoPri=1
LoLimit=@GV.PRESSURE_LO_LIM
LoLoPri=0
LoLoLimit=@GV.PRESSURE_LOLO_LIM
LoDB=@GV.PRESSURE_LO_DB
AI=1
MI=1
```

Troubleshooting Tips

I can't see function blocks for the alarms, audit, or lists I created when I open my project?

You won't. The Variable Extension Wizard is an alternate method for creating these data structures, so they won't appear as function blocks in your project – they are configured via the INI files only.

The wizard is hung up when I type in certain fields. I can't go to another field. What should I do?

The Wizard won't let you move to another field unless you first press the **[Enter]** key. Press **[Enter]** and you should be able to proceed. The **[Esc]** also allows you to exit the field.

I ran the Variable Extension Wizard to Create My Alarms, but they don't appear in my Project?

Did you rename the project? If so, you must re-start the Variable Extension wizard in the new project, and save the initialization files again. Otherwise, they will still hold the *old* project name, before you renamed it.

Variables and Data Types

Variables are structures that hold a single numerical, Boolean, or string value, that can typically be changed or updated either by user intervention, or by logic in your ControlWave project. Variables serve the same purpose as 'signals' used in the Network 3000 series product line.

Variables can be any of several different data types. For example, a numerical variable could be of data type REAL, or INT (integer).

Global Variables Vs. Local Variables

Variables fall into one of two categories – local and global. They are declared as either local or global when you create them in a particular program. Generally, unless you have a specific reason for defining a variable as global, for example, it is an I/O variable, or you know it has to be used in more than one of the POUs listed in the 'Logical POUs' branch of the project tree, you should define it as local.

Global variables:

- may be accessed and used in any or all of the POUs in your project
- must be declared as VAR_GLOBAL in the global variables declaration worksheet
- must be declared as VAR_EXTERNAL in each POU in which they are used

The Global Variables worksheet is shown, above. All variables are defined as 'VAR_GLOBAL' because they can be used in any logical POU of the project.

Local variables:

- are only used in a single POU of your project
- they are unknown to all other POUs in your project
- are declared in the worksheet of the POU in which they are used

The Local Variables Worksheet for a particular POU in the project tree is shown, above. Notice that the F101_INPUT variable is defined as 'VAR_EXTERNAL' and several fields are NOT available. This is because F101_INPUT is a global variable which happens to be used in this POU, but is defined in the Global Variables Worksheet (see previous page).

Variable Addressing

Variables **addresses** identify where a variable is located within the ControlWave project. In general, users do NOT need to be concerned with variable addresses, as they are assigned automatically by the I/O Configurator, or when the variable is created.

Variable addresses follow the format:

AT %location size. Address

Where: *location* is one of the following:

- I indicates that this is a physical input (input I/O variable)
- Q indicates that this is a physical output (output I/O variable)

	Μ	indicates that this is a variable in memory (non-I/O variable)				
size	is one of the following					
	Х	single bit size (only used with data type of BOOL) nothing if left blank, indicates single bit size				
	В	byte size (8 bits)				
	W	Word size (16 bits)				
	D	Double word size (32 bits)				
Address		is the actual address in memory				

An example variable address is shown below:

AT %MW 1.1018

System Variables

One special **category** of variables is **system variables**. System variables are created automatically by the system and are used for special 'housekeeping' purposes within the ControlWave system. See the *System Variables* section in this manual for more information.

Data Types

IEC 61131-3 supports three different categories of data types.

Elementary data types are used as building blocks of more complex data types. The elementary data types are shown in the table, below:

Data Type	Description	Size (in bits)	Valid Range
BOOL	Boolean	1	1 or 0 (TRUE or FALSE)
SINT	Short Integer	8	-127 127
INT	Integer	16	-32768 0 32767
DINT	Double integer	32	-2,147,483,648 up to 2,147,483,647 ?
USINT	Unsigned short integer	8	0 up to 255
UINT	Unsigned integer	16	0 up to 65535
UDINT	Unsigned double integer	32	0 up to 4,294,967,295
REAL	Real numbers	32	$\pm 1.18 \times 10^{38}$ up to $\pm 3.40 \times 10^{38}$
TIME	Time (duration)	32	+ #4,294,976,295 milliseconds up to + #
			4,294,976,295 seconds
BYTE	Bit string of length 8	8	0x000xFF
STRING	Sequence of characters	80	
WORD	Bit string of length 16	16	0x0000 0xFFFF
DWORD	Bit string of length 32	32	0x0000000 0xFFFFFFF

Generic Data Types are data types made up of elementary data types. For example, ANY_BIT, or ANY_INT.

User Defined Data Types are data types created by the user, such as ARRAYs.

Notes about STRING variables

The standard IEC62591 STRING data type allows up to 80 characters. You can also create string variables using user-defined STRING data types of varying lengths. Be aware that in either case, there are restrictions on displaying strings in programs outside of ControlWave Designer.

- ControlWave RTUs do not report strings that exceed 127 characters and behave as if the variable does not exist when data requests come in for that variable from software.
- OpenEnterprise SCADA software, OpenBSI tools such as DataView, Web_BSI web
 pages communicating over a serial connection, and any other program using the RDB
 interface to retrieve data can only display the first 64 characters of a ControlWave
 string variable.
- Web_BSI web pages communicating over IP can display up to 127 characters of a string variable's value.

Variable Naming Conventions

- Variable names consist of a combination of letters (A-Z, a-z), numbers (0-9) and the underscore character '_'.
- The first character of a variable name **cannot** be a number.
- Variables are not case sensitive, i.e. MY_VARIABLE, my_variable, and mY_vAriaBLe are all considered to be the same variable name.
- Although you won't always see it, in addition to the variable name you enter, the system automatically precedes every variable by one or more instance names, separated by periods, depending upon where the variable was defined ('@GV.' for global variables, task and function block instance names for local variables) e.g. @GV.F101_INPUT or Flow1.V003
- If you have OpenBSI Utilities Version 4.0 or earlier, we recommend your variable
 names be limited to 20 characters or less (including the instance name or '@GV.'
 described above). This is recommended because prior to OpenBSI Version 4.1, tools
 such as DataView only recognized the first 20 characters; and so, that is the only
 portion of the variable name those tools will display. Newer versions recognize up to
 64 characters.
- If you decide to use longer variable names (up to 128 characters are allowed), only the first 30 characters will be recognized within ControlWave Designer. If you have variables in your ControlWave POU worksheet with more than 30 characters, however, make sure there are no two variables in which the first 30 characters are the same, or else those two variables will be treated as the same variable.

For example, two variables named:

COMPRESSOR_STATION_FOUR_STATUS_ON

and

COMPRESSOR_STATION_FOUR_STATUS_OFF

should not be included in the same worksheet because the first 30 characters 'COMPRESSOR_STATION_FOUR_STATUS' are the same, and therefore the difference between the '_ON' and '_OFF' would not be recognized by the compiler.

Here are some legal variable names:

COMPRESSOR_4_STATUS

_PUMP_START

tank_level_hi_alarm

Here are some **illegal** variable names, and the reason they are illegal:

1_STATION4_MAINSWITCH	(*illegal because it starts with a number*)
PUMP#4_START	(*illegal because the '#' character is not allowed*)
Versions and Compatibility

To use ControlWave Designer with a particular ControlWave firmware revision, you must ensure that the compatible resource is loaded in ControlWave Designer. The following table lists each ControlWave hardware platform and the compatible resource required for each given firmware revision.

Controller Type	Compatible Resource	Firmware Required
ControlWave Process Automation Controller	IPC_30	Earlier than 03.10
Firmware Prefix: CWP	IPC_33	03.10 or newer
	IPC_40	04.40 or newer
ControlWave Low Power (LP) Controller	IPC_30	Earlier than 03.10
Firmware Prefix: LPS	IPC_33	03.10 or newer
	IPC_40	04.40 or newer
ControlWave Redundant Controller	IPC_30	Earlier than 03.10
Firmware Prefix: CWP	IPC_33	03.10 or newer
	IPC_40	04.40 or newer
ControlWave Micro Controller	ARM_L_33	4.00 or newer
Firmware Prefix: CWM	ARM_L_40	4.40 or newer
ControlWave Electronic Flow Meter (EFM)	ARM_L_33	4.32 or newer
Firmware Prefix: CWE	ARM_L_40	4.40 or newer
ControlWave Gas Flow Computer (GFC)	ARM_L_33	4.40 or newer
Firmware Prefix: CWI	ARM_L_40	4.40 or newer
ControlWave Express GFC/RTU/PAC:	ARM_L_40	4.60 or newer
14 Mhz CPU		
Firmware Prefix: E1S		
ControlWave Express GFC/RTU/PAC:	ARM_L_40	4.60 or newer
33 Mhz CPU		
Firmware Prefix: E3S		
ControlWave Explosion Proof GFC (XFC)	ARM_L_40	4.41 or newer
Firmware Prefix: CWX		
ControlWave_10, _30, _35	ARM_L_40	4.50 or newer (10/30)
Firmware Prefix: C_3		4.70 or newer (35)
ControlWave_31	ARM_L_40	4.70 or newer
Firmware Prefix: C_1		

Additionally, the ControlWave I/O Expansion Rack has a firmware prefix of **CWR** and the ControlWave Micro I/O Expansion Rack has a firmware prefix of **CMR** and the HART Interface Board (HIB) has a firmware prefix of **HBA**.

ControlWave Firmware Release Summary

Firmware Release	Resource File needed in ControlWave Designer and Designer Version	ControlWave Designer Version	OpenBSI Version	Major Features
CWP 01.00.00	IPC_30	3.0	4.0 or	Communications: This version supported BSAP slave messages only.
Released on			newei	No BSAF Master Fort Capability is provided.
April 20, 2001				This initial release incorporated the following functions and function blocks in the BBISFB Library:
				 AGA3I CUSTOM LIST030 AGA8GROS DACCUMULATOR LIST100 ALARM_ANALOG DEMUX LIST100 ALARM_LOGICAL_OFF DIFFERENTIATOR MUX ALARM_LOGICAL_ON ENCODE PDO ALARM_STATE FUNCTION PID3TERM ANOUT HILOLIMITER REG_ARRAY ARCHIVE HILOSELECT R_INT AUDIT HSCOUNT R_RND AUTOADJUST INTEGRATOR SEQUENCER AVERAGER LIST010 TOT_TRND COMPARATOR LIST020 VLIMIT
CWP 02.00.00	IPC_30	3.0	4.02	New features include BSAP Master support , IP and BSAP client-server ,
LPS 02.00.00 Released on November 20, 2001			or newer	generic serial protocol, and the following new function blocks:• AGA3• AGA8DETAIL• GENERIC_SERIAL• AGA3TERM• CLIENT• ISO5167• AGA5• CRC• AGA7• FPV• REDUN_SWITCH (currently unused)• SERVER
CWP 02.01.00 LPS 02.01.00 Released on December 18, 2001	IPC_30	3.0	4.02 or newer	Maintenance – No new features
CWP 02.10.00 LPS 02.10.00 Released on April 1, 2002	IPC_30	3.0	4.1 or newer	Maintenance – No new features
CWP 02.11.00 LPS 02.11.00 Released on May 28, 2002	IPC_30	3.0	4.2 or newer	Maintenance – No New Features

For full details, consult official release notes.

Firmware Release	Resource File needed in ControlWave Designer and Designer	ControlWave Designer Version	OpenBSI Version	Major Features
	Version			
CWP 02.20.00 LPS 02.20.00 Released on July 11, 2002	IPC_30	3.0	4.2 or newer	New function blocks for file management, as well as the VIRT_PORT function block for serial connections to a terminal server: • FILE_CLOSE • FILE_READ • VIRT_PORT • FILE_DELETE • FILE_READ_STR • FILE_DIR • FILE_WRITE • FILE_OPEN • FILE_WRITE_STR In addition, this version supported the I/O Expansion Rack interface.
CWP 03.00.00 LPS 03.00.00 CWR 03.00.00 Released on September 30, 2002	IPC_30	3.0	4.2 or newer	First release which supports Redundancy . (CWP only) New function blocks added: • LIST_ELEM_NAME • VAR_SEARCH • SCHEDULER • VMUX, • VAR_FETCH I/O Expansion Rack released (CWR 03.00.00) – Host must have CWP 03.00.00 or newer. I/O Expansion Rack not supported with ControlWave LP, or other platforms. Only for ControlWave Process Automation Controller.
CWP 03.10.00 LPS 03.10.00 CWR 03.10.00 Released on May 15, 2003	IPC_33	3.3	5.0 or newer	 New System Variables including: _pn_IMM_DIS. _USE_ACCOL_NAME Function Block Library now called 'ACCOL3'. Numerous enhancements and corrections.
CWP 03.11.00 LPS 03.11.00 CWR 03.11.00 Released on June 5, 2003	IPC_33	3.3	5.0 or newer	Only change from previous version is to support ControlWave FLASH upgrade. Previous 4MB of FLASH was available. Now 8MB is supported. (ControlWave only.) This change also required boot firmware to be upgraded CWB04.
CWP 04.00.00 LPS04.00.00 CWM04.00.00 CWR04.00.00 Released on September 5, 2003	IPC_33 for CWP, LPS, and CWR ARM_L_33 for CWM	3.3	5.1 or newer	First release of ControlWave Micro (CWM firmware). New function blocks added: DBLOAD DIAL_CTRL New system variables added: _ALARMS_PRESENT _Px_DIAL_ACTIVE _AUD_ALM_PRESENT _Px_DIAL_PORT _AUD_EVT_PRESENT _TOTAL_ALARMS _BSAP_FLAG_SENSE _TOTAL_AUD_ALARMS _NHP_IGNORE_NRT _TOTAL_AUD_EVENTS _NHP_IGNORE_TS _USE_ACCOL_NAMES
LPS04.01.00 CWM04.01.00	LPS, and CWR		newer	

Firmware Release	Resource File needed in	ControlWave Designer	OpenBSI Version	Major Features
	ControlWave	Version		
	Designer and			
	Version			
CWR04.01.00	ARM_L_33 for			
	CWM			
Released on				
September 10,				
2003	IDC 22 for CW/D	2.2	E J or	CVPOCON function block library added
LPS04.10.00	IPS_and CWR	5.5	D.2 OI	Crocon function block library added.
CWM04.10.00	2. 5, 2. 2			AGA3DENS function block added.
CWR04.10.00	ARM_L_33 for			
	CWM			New system variables:
Released on				•_AI_FOR_NON_ALMS
December 17,				• _ALARMS_BSAP_PORTx
2003				•_ALARMS_IBP_DESTx
CWP 04 20 00	IPC 33 for CWP	33	5 3 or	First release for ControlWaye FEM (CWF)
LPS04.20.00	LPS. and CWR	5.5	newer	Numerous enhancements, plus:
CWM04.20.00				······································
CWR04.20.00	ARM_L_33 for			New function blocks:
CWE04.20.00	CWM and CWE			DISPLAY PORTCONTROL
Released on				New system variables:
March 19, 2004				• $P_X CYCLE_INI$
				INH SYS EVENTS Px DCD STATE
				LOCAL_ADDRESS Px_DTR_STATE
				NHP_ADDITIONAL_MASK Px_LOCAL_PORT
				•_Px_AUTO_DTR
CWP 04.30.00	IPC_33 for CWP,	3.3	5.3 or	Larger historical archive files supported.
LPS04.30.00	LPS, and CWR		newer	
CWR04.30.00	ARM 1 33 for			
CWR04.30.00,	CWM and CWE			
Released on June				
10, 2004				
CWP 04.31.00	IPC_33 for CWP,	3.3	5.3 or	Maintenance release
LPS04.31.00	LPS, and CWR		newer	
CWI04.31.00	APM 1 22 for			
CWR04.31.00	CWM and CWF			
CWE 0 1.5 1.00	contraine core			
Released on				
August 19, 2004				
CWP 04.32.00	IPC_33 for CWP,	3.3	5.3 or	Maintenance – No new features
LPS04.32.00	LPS, and CWR		newer	
CWM04.32.00	ADM 1 22 for			
CVVKU4.32.00	CWM and CWF			
Released on				

Firmware	Resource File	ControlWave	OpenBSI	Major Features
Release	needed in	Designer	Version	
	ControlWave	Version		
	Designer and			
	Designer			
	Version			
October 8, 2004				
CWP 04.40.00	IPC_40 for CWP,	4.0	5.4 or	First release for the ControlWave Gas Flow Computer (CWI).
LPS04.40.00	LPS, and CWR		newer	
CWM04.40.00				First release to support Report By Exception (RBE). Also, VSAT Slave
CWR04.40.00	ARM_L_40 for			support added, and NIST23 calculations are supported via a new
CWE 04.40.00	CWM, CWE, and			library.
CWI 04.40.00	CVVI			
Poloscod on				Alaritis carritow be reported via BTCP to OpenBSI.
February 7 2005				EN/ENO JEC 61131 Janguage support for CW and CW J P
1201daly 7, 2005				
				Other protocols added include: CIP, and DNP.
				New function/function blocks:
				• RBE • PORT ATTRIB
				• STORAGE
				• Trigonometric functions (ARCSIN, ARCCOS, ARCTAN) added for CW
				and LP platforms.
				Modifications
				ARCHIVE function block: Mode 8 added.
				• Custom - Modbus Enron mode for date/time format added.
				New system variables:
				•_CW_LOAD_STR •_Px_RBE_REPEAT_TIMEOUT
				•_HEAP_BLK_FREE •_Px_RBE_REXMIT_COUNT
				•_HEAP_CUR_FREE •_Px_RBE_RM_COUNT
				•_HEAP_RBLK_FREE •_Px_RBE_RM_SINCE_ACK
				•_HEAP_START_FREE •_Px_RBE_STOP_RPT_MSG
				• _Px_RBE_ACK_LIMIT • _Px_RBE_USE_ACCOL_NAME
				• _Px_RBE_CLIENT_ID • _Px_VSAT_MAX_RESP
				• _Px_RBE_ERE_COUNT • _Px_VSAT_MIN_RESP
				• _Px_RBE_ERE_FORMAT • _Px_VSAT_UP_ACK_WAIT
				• _Px_RBE_GO_ACT_ON_START
CWP 04 41 00	IPC 40 for CWP	4.0	54	Price Provide the second
LPS04.41.00	LPS. and CWR		Service	Computer) CWX04.41.
CWM04.41.00			Pack 1	Firmware for other platforms released for consistency purposes.
CWR04.41.00	ARM L 40 for		and	Enhancements include:
CWE 04.41.00	CWM, CWE.		Newer	AlNet Slave Protocol
CWI 04.41.00	CWI, and CWX			Archive Access as Data Arrays
CWX 04.41.00	,			• New system variable: _ARCH_ACCESS_TYPE
Released on May				
12, 2005				
CWP 04.50.00	IPC_40 for CWP,	4.0	5.4	New functions:

Firmware Release	Resource File needed in ControlWave	ControlWave Designer Version	OpenBSI Version	Major Features
	Designer Designer Version			
LPS04.50.00	LPS. and CWR		Service	• ARRAY ANA GET • ARRAY ANA SET
CWM04.50.00			Pack 2	• ARRAY LOG GET • ARRAY LOG SET
CWR04.50.00	ARM_L_40 for		and	• V_ATTRIB_GET • V_ATTRIB_SET
CWE 04.50.00	CWM, C_3,		Newer	
CWI 04.50.00	CWE, CWI, CWX			Support for CW_10/CW_30 platform
CWX 04.50.00,				
C_304.50.00				New system variables:
				_OCTIME_ERROR _APPLICATION_LOCKED
Released on				_TS_DELTA_ACCURACY _Pn_MAX_SLAVES
November 15,				_Pn_TOP_LEVEL_NODES _Pn_DEAD_ARRAY
2005				_Pn_DISABLE_ARRAY! _Pn_TOTAL_NODES
CWP 04.60.00	IPC 40 for CWP.	4.5	5.5	Online editing of archive configuration and lists via TechView.
LPS04.60.00	LPS. and CWR		Service	
CWM04.60.00	,		Pack 1	First release for ControlWave Express product line.
CWR04.60.00	ARM_L_40 for			
CWE 04.60.00	CWM, CWE,			CWM and ARM-based support POU size greater than 64K.
CWI 04.60.00	CWI, CWX, C_3,			
CWX 04.60.00	E1S, and E3S.			New system variables:
C_304.60.00				•_ALARM_FORMAT •_Pn_RBE_STATE
E1S04.60.00				•_iPn_RBE_STATE •_Pn_PAD_FRONT
E3S04.60.00				•_Pn_PAD_BACK
Released on May 25, 2006				
CWP 04.62.00	IPC_40 for CWP,	4.5	5.5	Audit Trail record count added to Modbus Slave Enron Mode
LPS04.62.00	LPS, and CWR		Service	
CWM04.62.00			Pack 2	
CWR04.62.00	ARM_L_40 for			
CWE 04.62.00	$CVVIVI, C_3,$			
CWI 04.02.00	CWE, CWI,			
C 304 62 00	F3S			
E1S04.62.00	235.			
E3S04.62.00				
Released on				
October 12, 2006				
CWP 04.63.00	IPC_40 for CWP,	4.5	5.6	Maintenance release
LPS04.63.00	LPS, and CWR			
CWM04.63.00				
CWR04.63.00	ARM_L_40 for			
CWE 04.63.00	CWM, C_3,			
CWI 04.63.00	CWE, CWI,			
CWX 04.63.00	CWX, E1S, and			
C_304.63.00	E3S.			
E1504.63.00				
E3504.03.00 Poloscod op				
December 22				
2006				

Release Universion Resident Designer Version Resident Version Resident Support Version Version Version CWP 04.70.00 UVM04.70.00 VCW04.71.00 VCW04.71.00 VCW04.71.00 VCW04.71.00 VCW04.71.00 VCW04.71.00 VCW04.71.00 VCW04.71.00 VCW04.71.00 VCW04.71.00 VCW04.72.0	Firmware	Resource File	ControlWave	OpenBSI	Maior Features
Control Wave Designer and Designer and CVRVersionVersionCWP 04.70.00 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.00.0 CWM047.10.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM047.20.0 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 CWM0472.00 <br< th=""><th>Release</th><th>needed in</th><th>Designer</th><th>Version</th><th>,</th></br<>	Release	needed in	Designer	Version	,
Designer Version Interview Presion Interview Presion Interview Presion Interview Presion CWP 04.70.00 (WW04.70.00 CWP 04.70.00 CWP 04.70.00 CVP 04.70.00 CVP 04.70.00 CVP 04.70.00 CL 04.70.70 CL 04.70.00 CL 04.70.00 CL 04.70.70		ControlWave	Version		
Designer VersionDesigner VersionDesigner VersionDesigner VersionCWP 04.70.00 UPS.and CVRIPS.and CVR4.55.6New platforms: ControlWave_35 (C_3) ControlWave_35 (C_4) ControlWave_35 (C_4) ControlWave_35 (C_4)CWP 04.70.00 CWP 04.70.00 CWP 04.70.00 CUPS 04.70.00 CL 104.70.00 CL 104.70.00 CL 104.70.00 CL 104.70.00 CL 104.70.00 CL 104.70.00 EIS04.70.00 CVP 04.71.00 CVP 04.72.00 EIS04.71.00 CVP 04.72.00 EIS04.71.00 CVP 04.72.00 CVP 04.72.00 EIS04.71.00 EIS04.71.00 EIS04.71.00 EIS04.71.00 EIS04.71.00 CVP 04.72.00 EIS04.71.00 EIS04.71.00 EIS04.71.00 EIS04.71.00 EIS04.71.00 CVP 04.72.00 EIS04.71.00 EIS04.71.00 EIS04.71.00 EIS04.71.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.72.00 EIS04.		Designer and			
VeronVeronVeronVeronCWP 04.70.00IPC, 40 for CWP, 4.55.6New platforms: ControlWave_31 (C_1) ControlWave_31 (C_1)CWM04.70.00ARM40 forAll othersCWV04.70.00all othersNew function blocks: • STI • TCHECKCJ04.70.00CJ04.70.00CJ04.70.00All othersCJ04.70.00All othersCJ04.70.00IPC, 40 for CWP, IPS, 41.00Released January TJ.2007IPC, 40 for CWP, All othersCWP04.71.00IPC, 40 for CWP, All othersCWP04.71.00IPS, and CVR CWP04.71.00CWP04.71.00IPS, and CVR All othersCWP04.71.00IPC, 40 for CWP, All othersCWP04.71.00IPS, and CVR CWP04.71.00CWP04.71.00IPC, 40 for CWP, All othersCWP04.71.00IPC, 40 for CWP, All othersCWP04.72.00IPC, 40 for CWP, All othersReleased March 1.2007IPS.40.72.00IPC, 40 for CWP, All othersCWP04.72.00IPC, 40 for CWP, All othersCWP04.72.00IPC, 40 for CWP, All othersCWP04.72.00IPC, 40 for CWP, All othersCVP04.72.00IPC, 40 for CWP, All othersCVP04.72		Designer			
CWP 0470.00 IPC_40 for CWP, 4.5 5.6 New platmms: ControlWave_35 (C.3) ControlWave_31 (C.1) CWM047.00.0 RRM_L_40 for CWP 047.00.0 RRM_L_40 for CWP 047.00.0 RRM_L_40 for CWP 047.00.0 RRM_L_40 for CWP 047.00.0 CVM047.00.0 RRM_L_40 for CWP 047.00.0 RRM_L_40 for CWP 047.00.0 RRM_L_40 for CWP 047.00.0 RRM_L_40 for CWP 047.10.0 Released January 17.2007 IPC_40 for CWP, 4.5 5.6 Maintenance Release - No new features CVP 047.10.0 IPC_40 for CWP, 4.5 5.6 Maintenance Release - No new features CVP 047.10.0 IPC_40 for CWP, 4.5 5.6 Maintenance Release - No new features CVP 047.10.0 IPC_40 for CWP, 4.5 5.6 Maintenance Release - No new features CVM04.71.00 IPC_40 for CWP, 4.5 5.6 Primarily a maintenance release - No new features, however, DNP3 CVM04.71.00 IPS, and CVR 4.5 S.6 Primarily a maintenance release - No new features, however, DNP3 CVM04.71.00 IPS, and CVR 4.5 S.6 Primarily a maintenance release - No new features, however, DNP3 CVM04.71.00 IPS, and CVR 4.5 S.6 Primarily a maintenance release - No new features, h		Version			
IPS04.70.00 IPS, and CWR ControlWave_35 (C_3) CWN04.70.00 ARM_L_40 for ControlWave_31 (C_1) CWN04.70.00 All others ControlWave_31 (C_1) CWN04.70.00 all others ControlWave_31 (C_1) CWN04.70.00 all others Very function blocks: CWN04.70.00 ControlWave_31 (C_1) ControlWave_31 (C_1) CMB04.70.00 ControlWave_31 (C_1) ControlWave_31 (C_1) CM04.70.00 ISS04.70.00 ISS04.70.00 ISS04.70.00 ISS04.70.00 IPS, and CWR 4.5 5.6 Maintenance Release - No new features VEN04.71.00 IPS, and CWR ARM_L_40 for Service Primarily a maintenance release - No new features, however, DNP3 Released March I Service Primarily a maintenance release - No new features, however, DNP3 CW04.72.00 IPC_40 for CWP, ISS and CWR Service Primarily a maintenance release - No new features, however, DNP3 CW04.72.00 I	CWP 04.70.00	IPC 40 for CWP.	4.5	5.6	New platforms:
CWM04.70.00 ARM_L_40 for all others ControlWave_31 (C_1) CVW 04.70.00 ARM_L_40 for all others ControlWave_Micro (JO Expansion Rack (CMR) CVW 04.70.00 New function blocks: New function blocks: CVM04.70.00 New function blocks: New function blocks: CVM04.70.00 ControlWave_31 (C_1) New function blocks: C104.70.00 ControlWave_31 (C_1) New function blocks: CVM04.70.00 ControlWave_31 (C_1) New function blocks: Standard New function blocks: New function blocks: VM04.70.00 Standard New function blocks: Standard New function blocks: New function blocks: VM04.71.00 IPC_40 for CWP, 4.5 Standard Alarm system: When upgrading the firmware from 04.32 or earlier CW04.71.00 IPC_40 for CWP, 4.5 Standard Maintenance Release - No new features CW04.71.00 ARM_L_40 for Standard Standard C0000 ARM_L_40 for Standard Service Service Pack 1 Primarily a maintenance release - No new features, however, DNP3 CVM04.72.00 <td>LPS04.70.00</td> <td>LPS. and CWR</td> <td></td> <td></td> <td>ControlWave 35 (C 3)</td>	LPS04.70.00	LPS. and CWR			ControlWave 35 (C 3)
CWR04.70.00 CWR04.70.00 CWR04.70.00 CWR04.70.00 CWR04.70.00 CJ04.70.00 CJ04.70.00 CJ04.70.00 CJ04.70.00 CJ04.70.00 ESS04.70.00 ESS04.70.00 ESS04.70.00 ESS04.71.00 CWR04.72.00 CWR0	CWM04 70 00	Li o, and errit			ControlWave 31 (C 1)
CWE 047.0.00 all others Service CWE 047.0.00 All others New function blocks: CWX047.0.00 New function blocks: CWX047.0.00 New function blocks: CXX047.0.00 New function blocks: CXX047.0.00 New function blocks: CXX047.0.00 New function blocks: Released January New function blocks: Released January New function blocks: VXM047.000 IPC_40 for CWP, 4.5 LSS.0.100 IPC_40 for CWP, 4.5 UW047.1.00 IPC_40 for CWP, 4.5 LSS.0.11.00 Alarn System: When upgrading the firmware form 04.32 or earlier versions, collect all alarms form the running units prior to upgrading to the running units prior to upgrading the firmware performs a complete re-initialization of the alarm system. CWP 04.71.00 IPC_40 for CWP, 4.5 CW04.71.00 all others CWP 04.71.00 IPC_40 for CWP, 4.5 EISS04.71.00 S.6 Start 1.2,2007 IPC_40 for CWP, 4.5 CWP 04.72.00 IPS_40 for CWP, 4.5 IPS.04.200 IPC_40 for CWP, 4.5 CWM04.72.00 Alart 1.40 for all others CWP 04.72.00 Released June 28,	CWR04 70 00	ARM 1 40 for			ControlWave Micro I/O Expansion Rack (CMR)
CW 04.70.00 INVENTS New function blocks: CW 04.70.00 INVENTS BTI TCHECK CM 04.70.00 INVENTS BTI TCHECK C 104.70.00 INVENTS New function blocks: New function blocks: Status INVENTS New function blocks: New function blocks: C 104.70.00 INVENTS New function blocks: New function blocks: Status New function blocks: New function blocks: New function blocks: C 104.70.00 INVENTS New function blocks: New function blocks: New function blocks: Status INVENTS New function blocks: New function blocks: New function blocks: C 104.71.00 IPC_40 for CWP, 4.5 S.6 Maintenance Release - No new features New function blocks: C 104.71.00 IPC_40 for CWP, 4.5 S.6 Primarily a maintenance release - No new features, however, DNP3 IPS04.71.00 IPS_40 for CWP, 4.5 S.6 Service Primarily a maintenance release - No new features, however, DNP3 IPS04.72.00 IPS_40 for CWP, 4.5 Service Service	CWF 04 70 00	all others			control vare million for Expansion Rack (climy)
CWX04.70.00 CMR04.70.00 C.304.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 IFS04.70.00 IFS04.71.00 CWP 04.71.00 IPS_40 for CWP, 4.5 Sift Fill • BTI • TCHECK New I/O boards for expansion racks.	CWI 04 70 00	unothers			New function blocks:
CIMB047.000 C_104.70.00 C_104.70.00 C_104.70.00 C_304.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 IPC_40 for CWP, 4.5 DS04.71.00 LPS, and CWR CWP 04.71.00 LPS, and CWR CWR04.71.00 LPS, and CWR CWR04.71.00 Relased January CWR04.71.00 CWR CWR04.71.00 Relased March 14, 2007 all others CWR04.71.00 IPC_40 for CWP, 4.5 C3304.71.00 CGMR04.71.00 C3304.71.00 Released March 14, 2007 IPC_40 for CWP, 4.5 SESOURCE Service Pack 1 Service Performance was increased. CWR04.71.00 LPS, and CWR CWR04.71.00 LPS, and CWR CWR04.72.00 LPS, and CWR CWR04.72.00 LPS, and CWR CWR04.72.00 LPS, and CWR CWR04.72.00	CWX04 70 00				new function blocks.
Cmin-7-0500 C_104-7.000 SMIT • Chick C_304-70.00 SMIT • SMITR ESS04.70.00 SMIT • SMITR ESS04.70.00 SMIT • SMITR Released January - SMIT • SMITR 7.2007 - Cup Comparison Alarm System: When upgrading the firmware from 04.32 or earlier Versions, collect all alarms from the running units prior to upgrading to this release as the new firmware performs a complete re-initialization of the alarm system. Maintenance Release - No new features CWP 04.71.00 IPC_40 for CWP, 4.5 S.6 Maintenance Release - No new features CWN04.71.00 all others S.6 Maintenance Release - No new features, however, DNP3 CWP 04.71.00 all others S.6 Primarily a maintenance release - No new features, however, DNP3 PS04.71.00 IPC_40 for CWP, 4.5 S.6 Service Pack 1 Primarily a maintenance release - No new features, however, DNP3 PS04.72.00 IPC_40 for CWP, 4.5 Service Pack 1 Pack 1 Service Pack 1 Pack 1 Service CWR04.72.00 RML_40 for<	CMR04.70.00				
C_104.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 EIS04.70.00 IPS04.71.00 UPS, and CWR CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CJ04.71.00 CWR04.71.00 CJ04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 EIS04.71.00 EIS04.71.00 CWR04.72.00 CWR04.7	$C_{10470.00}$				• MIT
LS04.70.00 E3S04.70.00 E3S04.70.00 E3S04.70.00 PC_40 for CWP, 4.5 UPS04.71.00 CWP 04.71.00 UPS_40 for CWP, 4.5 UPS04.71.00 CWR 04.71.00 ESS04.71.00 CWR 04.71.00 ESS04.71.00 CWR 04.71.00 ESS04.71.00 CWR 04.71.00 ESS04.72.00 CWR 04.72.00 CWR 04.72.00 ESS04.72.	C_104.70.00				• AMIR
E ISQL 7:000 ESQL 7:000 ESQL 7:000 Released January T, 2007 Released January T, 2007 Released January T, 2007 Released January T, 2007 Released January T, 2007 Released January T, 2007 Released January IPC_40 for CWP, 4.5 S, 6 Maintenance Release - No new features No new features Name System: Waintenance Release - No new features No new features, however, DNP3 performance was increased. Primarily a maintenance release - No new features, however, DNP3 performance was increased. Pack 1 New Inction blocks: UTABS4E, LUQTABS4E, LUQTABS3E, LUQTABS3E, LUQTABS3E, LUQTABS3E, LUQTABS3E, LUQTABS4E, LUQTABS3E, LUQTABS4E, LUQ	C_304.70.00				
Released January 17, 2007IPC_40 for CWP, 4.54.55.6Maintenance Release - No new featuresDS04.71.00 UPS04.71.00 CWR04.71.00IPC_40 for CWP, 4.54.55.6Maintenance Release - No new featuresCW04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CWR04.71.00 CUR04.72.00 CUR04.72	E1S04.70.00 E3S04.70.00				New I/O boards for expansion racks.
Released January 17, 2007 IPC_40 for CWP, UPS, 40 CWR, VM04,71.00 IPC_40 for CWP, UPS, and CWR 4.5 5.6 Maintenance Release - No new features CWP 04,71.00 IPC_40 for CWP, UPS, and CWR 4.5 5.6 Maintenance Release - No new features CWR 04,71.00 ARM_L_40 for all others AII others ARM_L_40 for all others ARM_L_40 for all others CWR 04,71.00 CWR 04,71.00 ARM_L_40 for all others ARM_L_40 for all others File CMR 04 CWR 04,71.00 CMR 04,71.00 File CMR 05 File CMR 04 File CMR 04 14, 2007 File CMR 05 File CMR 05 File CMR 04 File CMR 04 14, 2007 IPC_40 for CWP, 14.5 S.6 File CMR 04 File CMR 04 14, 2007 IPC_40 for CWP, 14.5 S.6 File CMR 04 File CMR 04 14, 2007 IPC_40 for CWP, 14.5 S.6 File CMR 04 File CMR 04 14, 2007 IPC_40 for CWP, 14.5 S.6 File CMR 04 File CMR 04 14, 2007 IPC_40 for CWP, 14.5 S.6 File File CMR 04 File File File File File File File File					Alarm System: When upgrading the firmware from 04.32 or earlier
17, 2007this release as the new firmware performs a complete re-initialization of the alarm system.CWP 04,71.00LPS, and CWR4.55.6Maintenance Release – No new featuresCWR04,71.00LPS, and CWRARM_L_40 forARM_L_40 forMaintenance Release – No new featuresCWR04,71.00ARM_L_40 forall othersARM_L_40 forCWR04,71.00C_104,71.00C_104,71.00First or the systemC_104,71.00C_104,71.00First or the systemFirst or the systemC_104,71.00C_104,71.00First or the systemFirst or the systemCR004,71.00C_104,71.00First or the systemFirst or the systemCR004,71.00First or the systemFirst or the systemFirst or the systemCR004,71.00First or the systemFirst or the systemFirst or the systemCR004,71.00First or the systemFirst or the systemFirst or the systemCR004,72.00IPC_40 for CWP, 14.5S.6First or the systemCWR04,72.00LPS, and CWRFirst or the systemFirst or the systemCWR04,72.00ARM_L_40 for all othersFirst or the systemFirst or the systemCWR04,72.00First or the systemFirst or the systemFirst or the systemCWR04,72.00First or the systemFirst or the systemFirst or the systemCWR04,72.00First or the systemFirst or the systemFirst or the systemCWR04,72.00First or the systemFirst or the systemFirst or the systemCWR04,80.00IPC_40	Released January				versions, collect all alarms from the running units prior to upgrading to
CWP 04,71.00IPC_40 for CWP, LPS0, and CWR4.55.6Maintenance Release - No new featuresCWW 04,71.00LPS, and CWR CWM04,71.00ARM_L_40 for all othersARM_L_40 for all othersARM_L_40 for all othersCW0 04,71.00CW30,471.00CW30,471.00IothersARM_L_40 for all othersArmony of the alarm system, all othersCW0 04,71.00CW30,471.00CW30,471.00ARM_L_40 for to 2,304,71.00Armony of the alarm system, all othersArmony of the alarm system, all othersReleased March 14, 2007IPC_40 for CWP, all others4.55.6Primarily a maintenance release - No new features, however, DNP3 performance was increased.CWP 04,72.00IPC_40 for CWP, all others4.55.6Primarily a maintenance release - No new features, however, DNP3 performance was increased.CWR 04,72.00ARM_L_40 for all othersArmony of the alarm system, all othersService Pack 1CWR 04,72.00ARM_L_40 for all othersArmony of the alarm system, all othersService Pack 1CWR 04,72.00ARM_L_40 for all othersArmony of the alarm system, all othersService Pack 1CWP 04,80.00IPC_40 for CWP, LPS, and CWRArmony of the alarm system, all othersService Pack 1CWP 04,80.00IPC_40 for CWP, LPS, and CWRArmony of the alarm system, all othersService Pack 1CWP 04,80.00IPC_40 for CWP, LPS, and CWRArmony of the alarm system, all othersService Armony of the alarm system, all othersCWP	17,2007				this release as the new firmware performs a complete re-initialization
CWP 04.71.00 IPC_40 for CWP, IPS, and CWR 4.5 5.6 Maintenance Release - No new features CWM04.71.00 ARM_L_40 for all others ARM_L_40 for all others 5.6 Maintenance Release - No new features CWR04.71.00 ARM_L_40 for CWI 04.71.00 ARM_L_40 for all others Features Features CWR04.71.00 C_304.71.00 Features Features Features CWR04.71.00 C_104.71.00 Features Features Features CWR04.71.00 Features Features Features Features CWR04.72.00 IPC_40 for CWP, CWR04.72.00 IPS, and CWR Features Features CWR04.72.00 Rem_L_40 for CWR04.72.00 ARM_L_40 for all others Features Features CWR04.72.00 Remote Features Features Features Features <t< td=""><td></td><td></td><td></td><td></td><td>of the alarm system.</td></t<>					of the alarm system.
LPS04.71.00 LPS, and CWR LPS, and CWR LPS, and CWR CWR04.71.00 ARM_L_40 for all others all others CWR04.71.00 all others all others all others CWR04.71.00 all others all others all others CWR04.71.00 c_304.71.00 all others all others C104.71.00 c_104.71.00 all others all others E1S04.71.00 E3504.71.00 all others all others CWP 04.72.00 LPS, and CWR Service Primarily a maintenance release - No new features, however, DNP3 LPS04.72.00 LPS, and CWR Service Pack 1 CWR04.72.00 ARM_L_40 for Service Pack 1 CWR04.72.00 all others Service Service CWR04.72.00 all others Service Service CWR04.72.00	CWP 04.71.00	IPC 40 for CWP,	4.5	5.6	Maintenance Release – No new features
CWM04.71.00 ARM_L_40 for all others ARM_L_40 for all others ARM_L_40 for all others CW04.71.00 all others ARM_L_40 for all others ARM_L_40 for all others ARM_L_40 for all others CW04.71.00 C304.71.00 C304.71.00 ARM_L_40 for all others ARM_L Released March 14,2007 IPC_40 for CWP, IPS04.72.00 IPC_40 for CWP, CWM04.72.00 4.5 5.6 CWF04.72.00 IPC, and CWR ARM_L_40 for all others Service Pack 1 Primarily a maintenance release - No new features, however, DNP3 performance was increased. CWR04.72.00 ARM_L_40 for CWR04.72.00 IPC, and CWR ARM_L_40 for all others Service Pack 1 CWR04.72.00 IPS, and CWR ARM_L_40 for all others Service Pack 1 Primarily a maintenance release - No new features, however, DNP3 CWR04.72.00 CMR04.72.00 IPS, and CWR ARM_L_40 for ARM_L and for CMR04.72.00 Service Pack 1 CWR04.72.00 IPS and CWR A.7 S.7 New function blocks: HWSTI CWR04.80.00 IPS, and CWR A.7 S.7 New function blocks: HWSTI CWR04.80.00 IPS, and CWR A.7 S.7	LPS04.71.00	LPS, and CWR			
CWR04.71.00 CWE 04.71.00 CJ04.71.00 C_304.71.00 C_104.71.00 C_104.71.00 C_104.71.00 EIS04.71.00 EIS04.71.00 ARM_L_40 for WPC 472.00 UPC 40 for CWP, 14, 2007 ArS 5.6 Service Pack 1 Primarily a maintenance release – No new features, however, DNP3 Service Pack 1 Released March 14, 2007 IPC_40 for CWP, UPS, and CWR CWM04.72.00 CWR04.72.00 CWR04.72.00 CWR04.72.00 CWR04.72.00 CWA04.72.00 CWA04.72.00 CWA04.72.00 CWA04.72.00 CG add 72.00 CG add 70.00 CG add 70.00	CWM04.71.00				
CWE 04,71.00 all others all others CWE 04,71.00 CW 04,71.00 all others CWX 04,71.00 C all others CJ 04,71.00 C all others CMR 04,71.00 C all others CMR 04,71.00 E1S04.71.00 E1S04.71.00 E3S04.71.00 Sadar 71.00 Primarily a maintenance release – No new features, however, DNP3 LPS04.72.00 LPS, and CWR CWR 04,72.00 LPS, and CWR CWR 04,72.00 all others CWR 0	CWR04.71.00	ARM L 40 for			
CW 04.71.00 CW 04.71.00 CW 04.71.00 C.304.71.00 C.104.71.00 CM 04.71.00 E1S04.71.00 E3504.71.00 E3504.71.00 E3504.71.00 Released March 14.2007 14.2007 IPC_40 for CWP, 4.5 CWP 04.72.00 LPS_, and CWR CWM04.72.00 LPS, and CWR CWR04.72.00 LPS, and CWR CWR04.72.00 ARM_L_40 for CWX04.72.00 ARM_L_40 for CWX04.72.00 ARM_L_40 for CWX04.72.00 ARM_L_20 CMX04.72.00 Fibers CWX04.72.00 ARM_L_40 for CMX04.72.00 Fibers	CWE 04.71.00	all others			
CWX 04.71.00 C.304.71.00 C.304.71.00 File File <td< td=""><td>CWI 04.71.00</td><td></td><td></td><td></td><td></td></td<>	CWI 04.71.00				
C.304.71.00 C_304.71.00 C_104.71.00 CMR04.71.00 E1504.71.00 ESS04.71.00 Released March 14.2007 CWP04.72.00 LPS_and CWR CWN04.72.00 LPS, and CWR CWN04.72.00 LPS, and CWR CWN04.72.00 ARM_L_40 for CWN04.72.00 ARM_L_40 for CWN04.72.00 all others CWX04.72.00 ARM_L_20 CWX04.72.00 ARM_L_20 CWX04.72.00 Filson and CWR CW104.72.00 ARM_L_20 CWX04.72.00 ARM_L_20 CWX04.72.00 Filson and CWR CJ04.72.00 Filson and CWR CJ04.72.00 Filson and CWR CJ04.72.00 Filson and CWR CMV04.80.00 IPC_40 for CWP, 4.7 CWP04.80.00 IPC, and CWR CWP04.80.00 IPS, and CWR CWP04.80.00 IPS, and CWR CWM04.80.00 IPS, and CWR CWR04.80.00 IPS, and CWR CWR04.80.00 IPS, and CWR CWR04.80.00 IPS, and CWR CWR04.80.00	CWX 04.71.00				
C_104.71.00 CMR04.71.00 E3504.71.00 E3504.71.00 Released March 14, 2007 14, 2007 IPC_40 for CWP, CWP 04.72.00 LPS, and CWR CWR04.72.00 LPS, and CWR CWR04.72.00 LPS, and CWR CWR04.72.00 LPS, and CWR CWR04.72.00 ARM_L_40 for CWI 04.72.00 all others CWI 04.72.00 all others CWX04.72.00 Frimarily a maintenance release - No new features, however, DNP3 CWX04.72.00 ARM_L_40 for CMR04.72.00 ARM_L_40 for CMR04.72.00 Frimarily a maintenance release - No new features, however, DNP3 CMX04.72.00 Frimarily a maintenance release - No new features, however, DNP3 CMX04.72.00 Frimarily a maintenance release - No new features, however, DNP3 CMX04.72.00 Frimarily a maintenance release - No new features, however, DNP3 CMX04.72.00 Frimarily a maintenance release - No new features, however, DNP3 CMR04.72.00 Frimarily a maintenance was increased. CMR04.72.00 Frimarily a maintenance was increased. CMR04.80.00	C 304.71.00				
CUR04.71.00 E1504.71.00 E3504.71.00 E3504.71.00 Released March 14, 2007 14, 2007 IPC_40 for CWP, CWP 04.72.00 LPS, and CWR CWR04.72.00 LPS, and CWR CWR04.72.00 ARM_L_40 for CWV 04.72.00 ARM_L_40 for CWX04.72.00 ARM_L_40 for CWX04.72.00 CWR04.72.00 CWX04.72.00 ARM_L_40 for CWX04.72.00 ARM_L_40 for CMR04.72.00 ARM_L_40 for CMR04.72.00 ARM_L_40 for CMR04.72.00 ARM_L_40 for CMR04.72.00 ARM_L_40 for CJ04.72.00 ARM_L_40 for CMR04.72.00 For and CWR CMR04.72.00 For and CWR CJ04.72.00 For and CWR CMR04.72.00 For and CWR CWP 04.80.00 IPC_40 for CWP, IPS, and CWR CWP 04.80.00 IPS, and CWR CWR04.80.00 IPS, and CWR CWR04.80.00 IPS, and CWR CWR04.80.00 IPS, and CWR <t< td=""><td>C 104.71.00</td><td></td><td></td><td></td><td></td></t<>	C 104.71.00				
EISOL 71.00 EISOL 71.00 EISOL 71.00 EISOL 71.00 Beleased March 14.2007 CWP 04.72.00 IPC_40 for CWP, 4.5 5.6 Primarily a maintenance release – No new features, however, DNP3 performance was increased. PS04.72.00 LPS, and CWR Pack 1 CWR04.72.00 ARM_L_40 for Pack 1 CWL04.72.00 all others Pack 1 CWX04.72.00 CWX04.72.00 CWX04.72.00 C_304.72.00 C_304.72.00 Fiberary (Liptababababababababababababababababababab	CMR04.71.00				
Curron IntroE3S04.71.00Released March14, 2007CWP 04.72.00LPS, and CWRVS04.72.00LPS, and CWRCWR04.72.00CWR04.72.00CWR04.72.00CWR04.72.00CWI 04.72.00CWI 04.72.00CWI 04.72.00CUN 04.72.00CUN 04.72.00CUN 04.72.00CUN 04.72.00Currow 1.72.00Currow 1.72.00<	F1S04 71 00				
Released March 14, 2007IPC_40 for CWP, LPS04.72.00IPC_40 for CWP, LPS, and CWR4.5S.6 Service Pack 1Primarily a maintenance release – No new features, however, DNP3 performance was increased.CWP 04.72.00 CWR04.72.00IPS, and CWRPack 1Primarily a maintenance release – No new features, however, DNP3 performance was increased.CWR 04.72.00 CWR 04.72.00 CWI 04.72.00 C_304.72.00 C_104.72.00 C_104.72.00 C_104.72.00 C_104.72.00 CMR04.72.00 E1S04.72.00 Released June 28, 2007IPC_40 for CWP, 4.74.7CWP 04.80.00 LPS04.80.00 CWM04.80.00 CWM04.80.00 CWM04.80.00 CWM04.80.00 CWR	F3S04.71.00				
Released March 14, 2007IPC_40 for CWP, 4.54.55.6Primarily a maintenance release – No new features, however, DNP3CWP 04.72.00 LPS04.72.00LPS, and CWRPack 1Performance was increased.CWM04.72.00 CWR04.72.00 CW 04.72.00 C.304.72.00ARM_L_40 for all othersPack 1Performance was increased.CWX04.72.00 CWX04.72.00 C_304.72.00 C_104.72.00 C_104.72.00 C_104.72.00 C_104.72.00 C Saver CMR04.72.00 E1S04.72.00 Released June 28, 2007IPC_40 for CWP, 4.74.75.7CWP 04.80.00 LPS04.80.00 CWM04.80.00 CWM04.80.00 CWR04.80.00 CWR04.80.00IPC_40 for CWP, LPS and CWR4.75.7CWR 04.80.00 CWR04.80.00 CWR04.80.00 CWR04.80.00IPC_40 for CWP, LPS and CWR4.75.7CWR 04.80.00 CWR04.80.00 CWR04.80.00IPC_40 for LPS and CWRS.7CWR 04.80.00 CWR04.80.00 CWR04.80.00ARM_L_40 forS.7CWR 04.80.00 CWR04.80.00ARM_L_40 forS.7CWR 04.80.00 CWR04.80.00ARM_L_40 forS.7CWR 04.80.00 CWR 04.80.00ARM_L_40 forS.7CWR 04.80.00 CWR 04.80.00ARM_L_40 forS.7CWR 04.80.00 CWR 04.80.00ARM_L_40 forS.7CWR 04.80.00 CWR 04.80.00ARM_L_40 forS.7CWR 04.80.00 CWR 04.80.00ARM_L 40 forS.7CWR 04.80.00 CWR 04.80.00ARM_L 40 forS.7CWR 04.80.00 CWR 04.80.00ARM_L 40 forS.7CWR 04.80.00 CWR 04.80.00ARM_L 40 forS.7CW	2000				
14,2007 IPC_40 for CWP, 4.5 5.6 Primarily a maintenance release – No new features, however, DNP3 LPS04.72.00 LPS, and CWR Service Pack 1 Performance was increased. CWR04.72.00 ARM_L_40 for Pack 1 Performance was increased. CWR04.72.00 all others Pack 1 Performance was increased. CWI 04.72.00 ARM_L_40 for Pack 1 Performance was increased. CWI 04.72.00 all others Pack 1 Performance was increased. CWX04.72.00 CWX04.72.00 Pack 1 Performance was increased. CMX04.72.00 File File Pack 1 CMX04.72.00 File File File CMR04.72.00 File File File E1S04.72.00 File File File E3S04.72.00 File File File Released June 28, 2007 File File File CWP 04.80.00 LPS, and CWR File File CWR 04.80.00 LPS, and CWR File File	Released March				
CWP 04.72.00 IPC_40 for CWP, LPS, and CWR 4.5 5.6 Primarily a maintenance release – No new features, however, DNP3 LPS04.72.00 LPS, and CWR Service Pack 1 performance was increased. CWR04.72.00 ARM_L_40 for all others Pack 1 Pack 1 CW104.72.00 all others Pack 1 Pack 1 Performance was increased. CW104.72.00 CW104.72.00 all others Pack 1 Pack 1 CW204.72.00 C_304.72.00 ARM_L_200 Pack 1 Pack 1 CMR04.72.00 C_104.72.00 Pack 1 Pack 1 Pack 1 E1S04.72.00 Fisoury Fisoury Pack 1 Pack 1 CWP 04.80.00 IPC_40 for CWP, 1 Fisoury Fisoury Pack 1 CWP 04.80.00 LPS, and CWR Fisoury Fisoury Fisoury Fisoury CWP 04.80.00 LPS, and CWR Fisoury Fisoury Fisoury Fisoury CWM04.80.00 LPS, and CWR Fisoury Fisoury Fisoury Fisoury CWR04.80.00	14, 2007				
LPS04.72.00LPS, and CWRService Pack 1performance was increased.CWR04.72.00ARM_L_40 forPack 1CWR04.72.00all othersPack 1CW104.72.00all othersPack 1CWX04.72.00Sand CWRPack 1C_304.72.00Pack 1C_104.72.00Pack 1CMR04.72.00Pack 1C_104.72.00Pack 1CMR04.72.00Pack 1EIS04.72.00Pack 1EIS04.72.00Pack 1CWP 04.80.00IPC_40 for CWP, LPS04.80.00LPS04.80.00LPS, and CWRCWR04.80.00LPS, and CWRCWR04.80.00ARM_L_40 forCWR04.80.00Hu-140 for <td>CWP 04.72.00</td> <td>IPC_40 for CWP,</td> <td>4.5</td> <td>5.6</td> <td>Primarily a maintenance release – No new features, however, DNP3</td>	CWP 04.72.00	IPC_40 for CWP,	4.5	5.6	Primarily a maintenance release – No new features, however, DNP3
CWM04.72.00 ARM_L_40 for CWR04.72.00 all others CWI 04.72.00 all others CW104.72.00	LPS04.72.00	LPS, and CWR		Service	performance was increased.
CWR04.72.00 ARM_L_40 for CWE 04.72.00 all others CW104.72.00	CWM04.72.00			Pack 1	
CWE 04.72.00 all others all others CW1 04.72.00 all others and others C_304.72.00 and others and others C_104.72.00 and others and others C_104.72.00 and others and others CMR04.72.00 and others and others E1S04.72.00 and others and others E3S04.72.00 and others and others E3S04.72.00 and others and others Eased June 28, 2007 and others and others CWP 04.80.00 IPC_40 for CWP, 4.7 5.7 New function blocks: IPS04.80.00 LPS, and CWR and others and others CWM04.80.00 ARM_L_40 for and others and others CWR04.80.00 ARM_L_40 for and others and others CWR04.80.00 ARM_L_40 for and others and others CWR04.80.00 ARM_L_40 for and others and others	CWR04.72.00	ARM_L_40 for			
CWI 04.72.00	CWE 04.72.00	all others			
CWX04.72.00	CWI 04.72.00				
C_304.72.00	CWX04.72.00				
C_104.72.00 CMR04.72.00 E1S04.72.00 Fisole and the second sec	C 304.72.00				
CMR04.72.00 E1504.72.00 E1504.72.00 E3504.72.00 Released June 28, 2007 Figure 28, 2007 CWP 04.80.00 IPC_40 for CWP, 4.7 LPS04.80.00 LPS, and CWR CWR04.80.00 LPS, and CWR CWR04.80.00 ARM_L_40 for CWR04.80.00 ARM_L_40 for CWR04.80.00 ARM_L_40 for	C 104.72.00				
E1S04.72.00 E3S04.72.00 Released june 28, 2007	 CMR04.72.00				
E3S04.72.00 Released June 28, 2007E3S04.72.00 Released June 28, 2007IPC_40 for CWP, 4.7S.7New function blocks: • HWSTI • TP-27 liquid FB library (LIQTAB23E, LIQTAB24E, LIQTAB53E, LIQTAB54E, LIQTAB59E, LIQTAB60E)CWR04.80.00 CWR04.80.00ARM_L_40 for ImplementIPC-40 for CWP, ImplementIPC-40 for CWP, ImplementIPC-40 for CWP, Implement	E1S04.72.00				
Released June 28, 2007Released June 28, 2007Released June 28, 2007Released June 28, 2007Released June 28, 2007CWP 04.80.00 LPS04.80.00 CWM04.80.00IPC_40 for CWP, LPS, and CWR4.75.7New function blocks: • HWSTI • TP-27 liquid FB library (LIQTAB23E, LIQTAB24E, LIQTAB53E, LIQTAB54E, LIQTAB59E, LIQTAB60E)CWR 04.80.00 CWR 04.80.00ARM_L_40 for LIQTAB54E, LIQTAB59E, LIQTAB60E)IIIQTAB54E, LIQTAB59E, LIQTAB60E)	E3S04.72.00				
2007 2007 CWP 04.80.00 IPC_40 for CWP, 4.7 LPS04.80.00 LPS, and CWR CWM04.80.00	Released lune 28				
CWP 04.80.00 IPC_40 for CWP, 4.7 5.7 New function blocks: LPS04.80.00 LPS, and CWR • HWSTI • HWSTI CWM04.80.00 • TP-27 liquid FB library (LIQTAB23E, LIQTAB24E, LIQTAB53E, LIQTAB53E, LIQTAB54E, LIQTAB59E, LIQTAB60E)	2007				
LPS04.80.00 LPS, and CWR CWM04.80.00 +HWSTI CWR04.80.00 +RM_L_40 for CWR04.80.00 -HULL	CWP 04 80 00	IPC 40 for CWP	47	57	New function blocks:
CWM04.80.00 • TP-27 liquid FB library (LIQTAB23E, LIQTAB24E, LIQTAB53E, LIQTAB54E, LIQTAB54E, LIQTAB59E, LIQTAB60E)	1 PS04 80 00	IPS and CM/R	,	5.7	• HWSTI
CWR04.80.00 ARM_L_40 for LIQTAB54E, LIQTAB59E, LIQTAB60E)	CWM04 80 00				• TP-27 liquid EB library (LIOTAR23E LIOTAR24E LIOTAR52E
	CWR04 80 00	ARM 1 40 for			UINTARSAF UNTARSAF UNTARGAF)
UVVFU4.80.00 Lallothers	CWF04 80 00	all others			

Firmware Release	Resource File needed in ControlWave Designer and Designer Version	ControlWave Designer Version	OpenBSI Version	Major Features
CWI04.80.00 CWX04.80.00 C_304.80.00 C_104.80.00 E1504.80.00 E3504.80.00 Released September 27, 2007	IPC_40 for CWP,	4.7	5.7	Support for HEX Repeater protocol Support for ON/OFF and units text in DISPLAY function block Support for Audit / Archive clear function in RTU (Clear History function in OpenBSI) Support for configurable timeout in Immediate Response Mode. Support for variable buffer length in Generic Serial Port Support for collecting Archive Files as if they were Data Arrays New system variables for load validation: _LOAD_MEM_PRESENT _LOAD_SRC_PRESENT _LOAD_BOOT_PRESENT _LOAD_BOOT_CRC _LOAD_SRC_CRC Support for new platform: ELAN processor for ControlWave I/O
LPS04.90.00 CWM04.90.00 CWR04.90.00 CWE 04.90.00 CWI 04.90.00 CWX04.90.00 C_304.90.00 C_104.90.00 E1504.90.00 E3504.90.00 C5R04.90.00 Released May 8, 2008	LPS, and CWR ARM_L_40 for all others		Service Pack 1	Expansion Rack (C5R). Support for simplified alarm configuration using ALARM FB with the Variable Extension Wizard in ControlWave Designer. Standard application licensing. Support in RDB for program instance names in ACCOL format variables other than @GV. Support for RTU to RTU transfer of archive files. Support for Enron Modbus reading of archive files in wraparound mode to simulate the data arrays used as archive data storage by some vintage systems. Support for new I/O board in ControlWave XFC. New system variable: _JULIAN_TIME New Function Blocks: • ALARM
CWP 04.91.00 LPS04.91.00 CWM04.91.00 CWR04.91.00 CWE 04.91.00 CWI 04.91.00 CWX04.91.00 C_304.91.00 C_104.91.00 E1S04.91.00 E3S04.91.00 C5R04.91.00 Released June 13, 2008	IPC_40 for CWP, LPS, and CWR ARM_L_40 for all others	4.7	5.7 Service Pack 1	Maintenance Release – No new features

Firmware Release	Resource File needed in ControlWave	ControlWave Designer Version	OpenBSI Version	Major Features
	Designer and Designer Version			
CWP 04.92.00 LPS04.92.00 CWM04.92.00 CWE 04.92.00 CWE 04.92.00 CWI 04.92.00 CWX04.92.00 C_304.92.00 C_104.92.00 E1S04.92.00 E3S04.92.00 C5R04.92.00 Released June 27, 2008	IPC_40 for CWP, LPS, and CWR ARM_L_40 for all others	4.7	5.7 Service Pack 1	Maintenance Release – No new features
CWP 05.00.00 LPS05.00.00 CWM05.00.00 CWR05.00.00 CWI 05.00.00 CWI 05.00.00 CWX05.00.00 C_305.00.00 C_105.00.00 E1S05.00.00 E3S05.00.00 CSR05.00.00 Released April 17, 2009	IPC_40 for CWP, LPS, and CWR ARM_L_40 for all others	4.7	5.7 Service Pack 2	Support for ControlWave WXFC Support for Hart Interface Board (HIB) Support for redundant AO/DO with readback New function block: HART
CWP 05.10.00 LPS05.10.00 CWM05.10.00 CWR05.10.00 CWE 05.10.00 CWI 05.10.00 CWX05.10.00 C_305.10.00 C_105.10.00 E1S05.10.00 E3S05.10.00 CSR05.10.00 Released	IPC_40 for CWP, LPS, and CWR ARM_L_40 for all others	4.7	5.7 Service Pack 2	New function blocks: • FIELDBUS • LIQTAB59D (In liquids library) • LIQTAB60D (In liquids library) New library: FB_RETAIN Upgrades to new standards for AGA8Gros and ISO5167 Archive files now support ASCII data. Various minor enhancements.

Firmware Release	Resource File needed in ControlWave	ControlWave Designer Version	OpenBSI Version	Major Features
	Designer and Designer Version			
September 4, 2009				
CWP 05.11.00 LPS05.11.00 CWM05.11.00 CWR05.11.00 CWE 05.11.00 CWI 05.11.00 CWX05.11.00 C_305.11.00 C_105.11.00 E1S05.11.00 E3S05.11.00 CSR05.11.00 Released December 3,	IPC_40 for CWP, LPS, and CWR ARM_L_40 for all others	4.7	5.7 Service Pack 2	New function block: BASE_DENSITY (in Liquids library) New system variable: _INH_EXTERNAL_EVENTS
2009 CWP 05.12.00 LPS05.12.00 CWM05.12.00 CWR05.12.00 CWE 05.12.00 CWI 05.12.00 CWX05.12.00 C_305.12.00 C_105.12.00 E1S05.12.00 E3S05.12.00 C5R05.12.00 Released December 18, 2009 CWP 05.20.00	IPC_40 for CWP, LPS, and CWR ARM_L_40 for all others	4.7	5.7 Service Pack 2	Maintenance Release – No new features Maintenance Release – No new features AUDIT FB enhanced to log user sign-on and sign-offs, and log out due
LPS05.20.00 CWM05.20.00 CWR05.20.00 CWI 05.20.00 CWI 05.20.00 CWX05.20.00 C_305.20.00 C_105.20.00 CMR05.20.00 E1S05.20.00	LPS, and CWR ARM_L_40 for all others		5.8	to sign-off. ControlWave Micro now support full duplex comm. at 100MB FLASH storage area for configuration parameters increased from 64K to 128K. Enhancement to allow detection of I/O board failures. Number of ControlWave usernames increased from 32 to 240.

Firmware	Resource File	ControlWave	OpenBSI	Major Features
Release	needed in	Designer	Version	
	ControlWave	Version		
	Designer and			
	Designer			
	Version			
E3S05.20.00				New function blocks:
C5R05.20.00				
Poloscod April 0				
2010				
2010				New system variables:
				SEC SIGNIIN AUD ENA
				SEC_SIGIN_AUD_FTP_ENA
				_SEC_SIGIN_FAILURES
				_SEC_SIGNOFF_TMO
				Enhancements to DNP protocol to support secure authentication.
				Misc. enhancements to Enron Modbus protocol.
CWP 05.21.00	IPC_40 for CWP,	5.0	OpenBSI	New boot firmware to support additional memory:
CWIVI05.21.00	APM 1 40 for		5.8	CW/POS for ControlWaye BAC (CWP) and ControlWaye I/O Expansion
CFW05 21 00	all others			Rack (CWR) to support 32MB FLASH and 64MB SDRAM
CWX05.21.00	unothers			
C_305.21.00				CAB0521 for ControlWave Micro (CWM) and ControlWave Micro I/O
_ C_105.21.00				Expansion Rack (CMR) to support 16MB FLASH and 64MB SDRAM.
CMR05.21.00				
E1S05.21.00				CBE0521 for ControlWave EFM (CWE) to support 16MB FLASH and
E3S05.21.00				64MB SDRAM. NOTE: This is for the new EFM modules; earlier versions
C5R05.21.00				had no SDRAM.
Palaasad July 22				Support added for road, only Madhus clave
Released July 22,				Support added for read-only woodbus slave.
2010				
CWP 05.30.00	IPC_40 for CWP	5.0	OpenBSI	Support added for RS-485 serial communication to CW and CW Micro
CWM05.30.00	_		5.8	I/O expansion racks. Including system variables:
CWE 05.30.00	ARM_L_40 for			
CEW05.30.00	all others			_Pn_RESET_STATISTICS
CWX05.30.00				_Pn_STATISTICS_ARRAY
C_305.30.00				
C_105.30.00				Open Modbus Master / Slave custom modes now support an alternate
CNIKU5.30.00				TCP port.
E1303.30.00				DNP protocol updated to level 3 compliance
C5R05.30.00				bin protocol updated to rever 5 compliance.
251105150100				
Released				
September 9,				
2010				
<u> </u>				
CWP 05.40.00	IPC_40 for CWP	5.0	OpenBSI	Note: New 33MHz CPU board for CW Express with new boot flash.
CWM05.40.00			5.8 Cami	New for stice black
CVVE 05.40.00	AKIVI_L_40 for		Service Back 2	New TUTCTION DIOCK:
CWX05.40.00			I'dUN Z	
C_305.40.00				

Firmware Release	Resource File needed in ControlWave Designer and	ControlWave Designer Version	OpenBSI Version	Major Features
	Designer Version			
C_105.40.00 CMR05.40.00 E1S05.40.00 E3S05.40.00 C5R05.40.00 Released February 4, 2011				Enhancements to XMTR function block to allow calibration of 3508 and 3808 transmitters via the HART interface board and the BTI interface board.
CWP 05.43.00 CWM05.43.00 CWE 05.43.00 CEW05.43.00	IPC_40 for CWP ARM_L_40 for all others	5.0	OpenBSI 5.8 Service Pack 2	Updates to KW ProCOnOS 1131 operating system. Enhancements:
C_305.43.00 C_105.43.00 CMR05.43.00 E1S05.43.00				floating point value for runtime accumulations. AUTOADJ function block now supports a new on-demand check of the sensor rotor frequency.
E3S05.43.00 C5R05.43.00 Released March				New system variable for BSAP slave port and port sharing: - Pn_INH_BSAP_SLAVE
22,2012				An easier method is now supported for changing Modbus slave from RTU transmission mode to ASCII transmission mode.
				XM I R function block - enhancements for transmitter calibration.
				DNP3 – enhancements for specifying the host IP address.
CWP 05.50.00 CWM05.50.00	IPC_40 for CWP	5.0	OpenBSI 5.8	New function blocks:
CWE 05.50.00 CEW05.50.00 C_305.50.00 C_105.50.00 CMR05.50.00 E1S05.50.00 E3S05.50.00 C5R05.50.00	all others		Pack 2	AGA3SELECT
Released July 31, 2012				
CWP 05.60.00 CWM05.60.00 CWE 05.60.00 CEW05.60.00	IPC_40 for CWP ARM_L_40 for all others	5.35	5.9	New function blocks: RBE_DISABLE WATCHDOG

Firmware	Resource File	ControlWave	OpenBSI	Major Features
Kelease	ControlWave	Version	version	
	Designer and Designer			
	Version			
CWX05.60.00 C_305.60.00 C_105.60.00 CMR05.60.00 E1S05.60.00				New version of NIST23 library DNP3 enhancements
C5R05.60.00				
Released March 6, 2014				
CWM05.70.00	ARM_L_40	5.35	5.9	IEC62591 FB enhanced to support discrete control.
Released August 13, 2014				
CWP 05.71.00 CWM05.71.00 CWE 05.71.00 CEW05.71.00 CWX05.71.00 C_305.71.00 C_105.71.00 CMR05.71.00 E1S05.71.00 E3S05.71.00	IPC_40 for CWP ARM_L_40 for all others	5.35	5.9 Service Pack 1	Added support to allow Field Tools to collect HART device information from wired and wireless HART networks.
Released Decenber 4, 2014				
CWP 05.72.00 CWM05.72.00 CWE 05.72.00 CEW05.72.00 CWX05.72.00 C_305.72.00 C_105.72.00 CMR05.72.00 E1S05.72.00 E3S05.72.00 CSR05.72.00 Released April 1, 2015	IPC_40 for CWP ARM_L_40 for all others	5.35	5.9 Service Pack 1	Maintenance Release – No new features
2015				
CWP 05.73.00	IPC_40	5.35	5.9 Service	Maintenance Release – No new features
Released April 23, 2015			Pack 1	

Firmware Release	Resource File needed in	ControlWave Designer	OpenBSI Version	Major Features
	ControlWave Designer and Designer Version	Version		
			1	
CWM05.74.00	ARM_L_40	5.35	5.9 Service	Maintenance Release – No new features
Released July 1, 2015			Pack 1	
CWP 05.75.00 CWM05.75.00 CWE 05.75.00 CWX05.75.00 C_305.75.00 C_105.75.00 CMR05.75.00 E1S05.75.00 E3S05.75.00 CSR05.75.00 Released October 1, 2015	IPC_40 for CWP ARM_L_40 for all others	5.35	5.9 Service Pack 2	Maintenance Release – No new features
1,2015		5.25	5.0	
CWP 05.76.00 CWM05.76.00 CWE 05.76.00 CWX05.76.00 C_305.76.00 C_105.76.00 CMR05.76.00 E1S05.76.00 E3S05.76.00 C5R05.76.00 C5R05.76.00 Released June 17, 2016	ARM_L_40 for all others	5.25	S.9 Service Pack 3	Modification to APCHIVE function block to support additional mode
CWP 05.77.00 CWM05.77.00 CWE 05.77.00 CWX05.77.00 C_305.77.00 C_105.77.00 CMR05.77.00 E1S05.77.00 E3S05.77.00 C5R05.77.00 C5R05.77.00 Released April 28, 2017	ARM_L_40 for all others		Service Pack 3	values for timestamp.

Firmware Release	Resource File needed in ControlWave Designer and Designer Version	ControlWave Designer Version	OpenBSI Version	Major Features
CWP 05.78.00 CWM05.78.00 CWE 05.78.00 CEW05.78.00 CWX05.78.00 C_305.78.00 C_105.78.00 CMR05.78.00 E1S05.78.00 E3S05.78.00 CSR05.78.00 CSR05.78.00 Released September 22, 2017	IPC_40 for CWP ARM_L_40 for all others	5.35	5.9 Service Pack 3	Maintenance Release – No new features
CWP 05.79.00 CWM05.79.00 E1S05.79.00 E3S05.79.00 C5R05.79.00 C5R05.79.00 Released November 28, 2017	IPC_40 for CWP ARM_L_40 for all others	5.35	5.9 Service Pack 3	Maintenance Release – No new features
CWP 05.80.00 CWM05.80.00 E1S05.80.00 E3S05.80.00 C5R05.80.00 C5R05.80.00, HBA05.80.00 Released October 27, 2019	IPC_40 for CWP ARM_L_40 for all others	5.35	5.9 Service Pack 3	Updates to IEC62591 function block to support various Rosemount devices and several other enhancements. Note : IEC V1.20 is not backwards compatible with ControlWave firmware versions 5.79 or earlier.
CWP 05.91.00 CWM05.91.00 E1S05.91.00 CMR05.91.00 CMR05.91.00 C5R05.91.00, Released August 2020	IPC_40 for CWP ARM_L_40 for all others	5.35	5.9 Service Pack 3	Support added to allow binary inputs, counters, and analog inputs to be retained as events for DNP3 use. These events can be backed up redundantly over DNP3. Support added for DNP3 over UDP.

Virtual Ports

The VIRT_PORT function block offers a way to get around limits on the actual number of physical communication ports. This is similar to the functionality for the OpenBSI Redirector.

Using the VIRT_PORT function block, users can now attach to a terminal server and send serial data out. (The terminal server could be one bought off the shelf or it could be any ControlWave, including the I/O Expansion Rack.)

The terminal server then sends the data out as serial data. This could be a way to add a BSAP Master port, for example.

To configure the ControlWave as a terminal server, you must set the CUSTOM user mode to 31.

Up to 126 virtual ports can be defined.

For full details on this subject, please refer to the online help for the VIRT_PORT function block.

VSAT Slave Port – Configuration

Important

This activity requires ControlWave Designer 4.0 (or newer), OpenBSI 5.4 (or newer), and 04.40 ControlWave Firmware (or newer).

Very Small Aperture Terminal (VSAT) is a protocol used with satellite communications. The VSAT slave port allows a ControlWave-series controller to be part of a VSAT system.

VSAT Slave Port configuration has two components:

- Configuring flash parameters
- Configuring system variables for the rort

Configuring Flash Parameters

1. In the Flash Configuration Utility, click on the **Ports** tab and choose the ControlWave serial port you want to configure (COM1, COM2, etc.) Then select **VSAT Slave** as the **Mode**.

Enter the baud rate for the communication line in the **"Baud Rate"** field. The default is 9600. The maximum supported for VSAT Slave is 57600.

Soft 9	Switches	Ports IP Pa	rameters Application Parameters Archive Audit IP Routes S.
	COM1 COM2 COM3 COM4 ENET1 ENET2 ENET3	Protocol VSAT Sla UNUSED UNUSED IP UNUSED UNUSED	Physical Line Information Baud Rate: 9600 Image: Stop Bits : 1 Parity: NONE Protocol Mode : VSAT Slave Image: Start Slave User Mode : 3

- 2. Click on the [Save to Rtu] button, and respond to the sign-on prompts.
- 3. Turn off the ControlWave, then turn it back on for the new port definition to come into effect.

Configuring System Variables

Within ControlWave Designer, start the System Variable Wizard by clicking on View \rightarrow System Variable Wizard. IP RBE Configuration Data Line Monitor Redundancy Load Validation System Configuration System Information System Statistics Alarms System Flags Port Detail ID Strings System Date/Time Task Info Port - Globals First, check the box Port One Port Seven of the port you want Enable Configuration Information RBE Enable Configuration Information RBE to configure. -Port Two Port Eight Enable 🔲 Enable Fort Three Port Nine Configuration Enable Configuration Information Information Enable Port Four Port Ten-Information RBE Enable Configuration Information Enable Configuration Next, click on the Port Five Port Eleven Configuration Configuration Information RBE "Configuration" Enable Г Enable button for that port. Port Six Enable Configuration Information RBE

When the wizard has successfully established communications with ControlWave Designer, and your project is open, do the following:

- 1. Choose the 'Port Detail' tab.
- 2. Select the **"Enable"** box for the port which will serve as the BSAP Slave.
- 3. Click [Configuration].

1

4. In the Configuration page, select only the items shown in the figure, on the next page, and enter appropriate values. A discussion of the various items appears, below:

VSAT – Minimum	This defines the minimum period of time (in
Response Time	milliseconds) during which this VSAT Slave node will wait
(_Px_VSAT_MIN_RESP)	before responding to a message from its VSAT Master.

The purpose of this delay is to allow the VSAT Master enough time to send messages to multiple VSAT slaves before having to handle their response messages.

VSAT – Maximum Response Time (_Px_VSAT_MAX_ RESP) This defines the maximum period of time (in milliseconds) that this VSAT Slave node will wait before responding to a message from its VSAT Master. The purpose of this delay is to allow enough time for requested data to become available. If alarms become available, they will be sent immediately, regardless of this value. If no data becomes available by the conclusion of this period, an acknowledgment will be sent to the VSAT Master.

Click **[OK]** when finished.

Port 1 Configuration		\mathbf{X}
Common		
Poll Time	_Px_POLL_PER	5
🔲 Write Delay	_Px_WRITE_DEL	0
Write (CTS) Timeout	_Px_WRITE_TM0	2500
🔲 Ignore Echo Data	_Px_IGNORE_ECHO	FALSE 💌
Port Supports Dial	_Px_DIAL_PORT	FALSE 👻
Port performs Auto DTR shutdown	_Px_AUTO_DTR	Once you
🔲 BSAP Pad Front	_Px_PAD_FRONT	soloct an itom
🔲 BSAP Pad Back	_Px_PAD_BACK	Select all item
		you can
Slave		specify the
Time Sync Disable		value in the
Node Bouting Table Disable	_FX_TS_FUNCE PV NRT DIS	corresponding
Alarm Disable	Px ALM DIS	field
Immediate Response Disable	Px IMM DIS	
🔲 Fast Radio Interval	 _Px_CYCLE_INT	0
🔲 Fast Radio On Time	_Px_CYCLE_TIME0	0
Local Port	_Px_LOCAL_PORT	FALSE 🔽
VSAT - Minimum Response Time	_Px_VSAT_MIN_RESP	0
VS VS Maximum Response Time	_Px_VSAT_MAX_RESP	0
Master		
Retries	_Px_RETRIES	- Those fields
🥅 Data Link Timeout	_Px_TIMEOUT	
🔲 Idle Polling	_Px_IDLE_POLL	apply to VSAT
🔲 VSAT - Up Ack Wait	_Px_VSAT_UP_ACK_WAIT	Slave Ports.
EBSAP Master		
Max Slaves Under Virtual Nodes	_Px_MAX_SLAVES	
Top Level Nodes	_Px_TOP_LEVEL_NODES	
🔲 Total Slaves On Port	_Px_TOTAL_NODES	
Array Number of Dead Array	_Px_DEAD_ARRAY	0
Array Number of Disable Array	_Px_DISABLE_ARRAY	0
x = Port Number	OK	Cancel

VSAT Master Ports

OpenBSI Workstations with BSAP Master ports can serve as VSAT Masters because they understand VSAT messages. The only configuration required is to configure the UpAckDelay parameter in the BSBSAP.INI file. Similarly, ControlWave BSAP Master ports can serve as VSAT Masters. The only configuration involves setting the _VSAT_UP_ACK_WAIT system variable (shown under 'Master' in the figure above).

These parameters (UpAckDelay or _VSAT_UP_ACK_WAIT) define an interval of time (in milliseconds) during which the driver will wait after sending an ACK for a message sent by the slave. Since the VSAT slave will not be responding to the ACK, it allows the VSAT Slave time to get ready for the next request from the VSAT Master.

Web Pages – Notes About Using

The standard set of web pages, referred to as *Web_BSI*, is described in detail in the *Web_BSI Manual* (part number D301418X012). Various configuration details related to web page setup are repeated here.

Specifying the Location of Your Web Browser

If the path of your web browser is other than the default (\Program Files\Internet Explorer\) you need to use a text editor to edit the WEB_BROWSER_PATH parameter in your NDF file to reflect the web browser's location.

WEB_BROWSER_PATH=C:\Program Files\Internet Explorer

Specifying the Startup Web Page For A Controller

During OpenBSI system configuration, you must specify a startup HTML web page for each controller. This can be done in NetView's RTU Wizard when you initially add the controller or from the RTU's Properties dialog box, after the RTU is already in the network.

To access the RTU Properties dialog box, *right* click on the icon for the controller, and choose **"Properties"** from the pop-up menu.

- The startup web page resides on the PC workstation, so a full path and filename must be entered in the **"Startup"** field of the RTU Properties dialog box.
- If you would like access to the standard web page set, specify web_bsi.htm as the startup page. This web page is referred to as the Main Menu, and contains links to all of the standard web pages.

ControlWave Designer Programmer's Handbook D301426X012 August 2020

Rtu Properties	
Name IP Internal	
Name & Description RTU Name: CWM1	
Control Strategy File: CWM1	Browse
Strategy Resource: Field not required if only one resource exists	
Node Type: CWave_Micro	
Descriptor:	
Web Access Startup c:\ProgramData\Bristol\OpenBSI\WebPages\Web_BSI.htm Access startup page from RTU	Browse
Communications Message Timeout: 45 Dial String	
OK Cancel Apply	Help

Specify the complete path and filename on the PC, of the startup web page here. (Click Browse to locate the web page, if necessary.)

Other Notes About Using Web Pages

- For optimum results, set screen resolution to 1024 x 768 when using the Web_BSI web pages.
- You can have multiple web pages open simultaneously, for example, to look at different types of data from the same RTU. To do this, just open a new instance of Internet Explorer (or open a new window in IE using the File→New command). Note, however, that if you terminate one instance (or window) communicating with a particular RTU, you will terminate *all instances or windows* communicating with that same RTU.
- If your ControlWave controller is part of a BSAP network, it will be treated as a BSAP controller; and only those configuration facilities and features available for a BSAP controller will be available.
- The standard set of web pages (Web_BSI) are stored in the directory:

\ProgramData\Bristol\OpenBSI\WebPages

where *openbsi_installation_path* is whatever directory you chose for the installation of OpenBSI. The default is OpenBSI.

Calling Up Web_BSI Pages

There are two different methods for calling up the Web_BSI web pages:

Important

If this is the first time you are calling up the Web_BSI web pages, you will need to use the Node Locator page, to identify the nodes with which you want to communicate. After that, you should not need to use it again, unless you are communicating with different nodes, or if your network configuration has changed.

Method 1

With NetView or LocalView running, click as follows:

Start→Programs→OpenBSI Tools→Web Page Access→Standard Pages

Important

Depending upon what version of the Windows operating system you use, you may need to log in with Administrative privileges in order to use certain configuration web pages, in particular the Node Locator.

Method 2

In order to call up the web page(s) associated with a particular controller, right click on the icon for the controller in the OpenBSI NetView tree, and choose **RTU→WebPage Access** from the popup menu. Internet Explorer will be started, and whichever startup web page associated with the controller will be displayed.

Note:

If a web page is initially being stored within the controller, you must retrieve it for viewing using the ControlView utility (**RTU** -> **ControlView**). See the *BSI_Config User's Guide* (part number D301428X012) for information on ControlView.

Bristol WebBrowser - c:\Open	BSI\WebPages\Web_BSI.htm	
🛎 view Help		
WebBSI	Sign On/Off	
	RTU Name: CWM6 Sign On	
Node Name:	Username: SYSTEM Change Passwo	
CVVM6	Password ****** Cancel	
	Access Granted	
Sign Off Sign Off		
Change Password Change Nodes Locate Nodes		
Statistics		
Signal Data		
Historical Data		
Misc	-	

The Main Menu page in the standard set is shown above, although the startup page for *your* controller may be different. Typically, the Security Sign-On always appears on the Main Menu page.

The various web pages include category buttons along the left hand side, for calling up additional pages; when you click your cursor on a category button, a list of pages belonging in that category will appear below it. The category buttons are named Security, Configuration, Statistics, Signal Data, and Historical Data.

A **"Node Name"** field displays the name of the current controller from which data is being viewed on the web page.

Creating Your Own Web Pages to Use with the ControlWave

If desired, you can develop your own customized web pages to collect and display data from a ControlWave series controller. To do this, you must use ActiveX controls. See *Appendix A* of the *Web_BSI Manual* (part number D301418X012) for more information.

Appendix A: Troubleshooting Tips

I had a previous version of ControlWave Designer installed. Now, I just installed a new copy of ControlWave Designer 3.3 (or newer), but it will only operate in demo mode. How come?

Prior to ControlWave Designer Version 3.3, a software copy protection key (dongle) had to be plugged into the parallel port of the PC. Beginning with Version 3.3, you should NOT use the copy protected key. Unplug it, and try starting ControlWave Designer again, and all functions should be available.

When I try to download a project to the ControlWave, I get an 'Access locked by Switch' message in the Sign On dialog box. What does that mean?

This typically refers to the key switch which is just above COM port 1 on the ControlWave. In order to download a project, this switch must be either in the 'REMOTE' or 'LOCAL' position, depending upon whether you are communicating serially, or using TCP/IP. (Serial communications from ControlWave Designer require the switch be in the 'LOCAL' position; TCP/IP communications support either 'REMOTE' or 'LOCAL'.)

Sign In Required - COM1
User Name:
Password:
 Access Locked by Switch Ok Cancel
 veu ese this message sheets to see

If you see this message, check to see that the key switch on the ControlWave is in the 'RUN' position. If it is, you must turn it to either 'REMOTE' or 'LOCAL'.

OpenBSI downloads can occur with the switch in either the 'REMOTE' or 'LOCAL' position.

I am able to connect to the ControlWave, but Internet Explorer returns a '-404 File Not Found' error when I try to call up a web page.

If you are using web pages, make sure you have the correct path and filename.

In DataView, when I try to do a signal search, I can't see any of the variables in the ControlWave project. Why?

DataView can only collect variables which have been defined as "PDD".

Variables which are explicitly marked as "PDD" by the user (see picture at right) can be collected by DataView if the "Marked Variables" for PDD option is selected in the Resource Settings dialog box (see below)

A variable is marked as "PDD"

Variable Properties	×
Name: Scope RUNTIME	OK Cancel Help

In addition, you can also choose to automatically mark all global variables as "PDD" by choosing the "All global variables" option in the Resource Settings dialog box.

Most users choose NOT to do this, since it means that all global variables will be collected, many of which are likely to not be of interest to the average user.

When this is checked, all global variables will be declared as "PDD" .			Whe loca as " as "	n this is checked, I variables marked PDD" will be declared PDD".
	Resource settings for IF	PC_33		
	Port: C CDM <u>1</u> C CDM <u>2</u> C CDM <u>3</u> C CDM <u>4</u> C Simulation 1	Baud: 1920 Stoptite: 1 Detabits: 8 Party: None Jimeout: 2000	v v v ms	Dk Cancel Data arga Help
	C Simulation 2		/	
		Stack check on PLC		
	© <u>D</u> LL	Array boundary check Force BOOL8 for boef Generate bootproject	on FLL ean variables during compile	
	DLL: Open	Bsi		
	Parameter: <	=		
		OP <u>C</u>		
			All global variable	s
	All network variables		All network variat	les
	Marked variables	। प	Aarked variables	
	Use reser <u>v</u> e	C Marked POUs	O Ni	p reserve

In DataView, how come I can't always call up the signal lists I want to see?,

In Version 5.9 Service Pack 2 and earlier, DataView could only display signal lists numbered from 1 to 255; any higher number list could not be displayed. Edit the iiListNumber value for any LIST function blocks to be from 1 to 255.

I made changes to configuration parameters in the ControlWave (port type, user accounts, etc.) but the old settings are still in effect. How come?

This is one of the most common occurrences in ControlWave. For new settings to take effect, you must first reset the unit (turn the unit off, then turn it back on). The other reason this can occur is if you still have the default switch in the OFF position. Changes to soft switches are ignored when the default switch is OFF. On a standard ControlWave, the default switch is SW1-3, on the LP, it is SW4-3, and on the MICRO, it is SW2-3.

Communications with the ControlWave operate fine until I connect it to a Network 3000 controller, then communications are seriously degraded, or stop entirely. Why?

This has been known to happen if you are using the wrong cable type, or if the ControlWave or Network 3000 controllers are not properly grounded. See the hardware manual for details about cabling and grounding.

I tried to start ControlWave Designer to communicate with the ControlWave, but I got the message 'Could not attach to serial port'. What causes that?

This can occur if the serial port on the PC is already being used by some other program. For example, if you are running NetView to communicate with the ControlWave, you cannot use the same PC port simultaneously to communicate directly using ControlWave Designer. You can, however, start ControlWave Designer from within NetView.

When I try to use the OPC Server to get data out of the ControlWave, I can't find anything. How come? Check the "OPC" box —____

The OPC Server can only access variables which have been specified for OPC access.

Variables which are explicitly marked as **"OPC"** by the user (see picture at right) are available to the OPC Server if the **"Marked Variables"** for OPC option is selected in the Resource Settings dialog box (see next page).

In addition, you can choose to automatically mark all global variables to be marked for **"OPC"** access by choosing the **"All global variables"** OPC option in the Resource Settings dialog box.

/lake sure you have checked				
"Marked va	riables", or			
"All global "	variables", or both.			
Resource settings for	IPC_33			
Port:	Baud: 19200 V			
C COM1	Stopbits: 1 Cancel			
	Data arga			
	Perity: None 🔽			
Simulation 1 Simulation 2				
	Stac <u>k</u> check on PLC			
	Array boundary check on PLC /			
	✓ Eorce BOOL8 for boolean variables			
DLL: Op	n Bsi			
Pagameter: know	de>			
_ <u>P</u> DD				
All global variables	All global variables			
🗌 🗖 All network variable	s 🗖 All network variables			
Marked variables	Marked variables			
Use reserve				
All POUs	O Marked POUs O No reserve			

If you still cannot collect variables via OPC, you should check that your configuration settings for the OpenBSI Signal Extractor are correct. See Chapter 12 of the *OpenBSI Utilities Manual* for details.

In ControlWave Designer, I can't see the units text I entered for my variables. What's wrong?

If these are retain variables, you might not have enough retain memory allocated. See *Memory Usage*.

Windows isn't letting me run ControlWave Designer or the I/O Simulator. Why not?

Data Execution Settings (DEP) which exist in certain Windows versions can prevent ControlWave Designer and I/O Simulator from running. You must change the settings from Windows Control Panel. Call-up sequences vary slightly based on the operating system, but the basic sequence is:

- 1. Click Start → Settings → Control Panel → System
- 2. Click **Advanced**
- 3. Click **Performance** → **Settings**
- 4. Click Data Execution Prevention on Performance Options:
- 5. Do the following, based on the platform:

Windows 2003 Server or Windows	Windows XP or Windows 7
2008 Server	
Either:	Turn on DEP for essential programs and services
Turn on DEP for essential programs and	only
services only	
Or	
Turn on DEP for all programs and services	
except those I select:	
C:\windows\system32\rundll32.exe.	

Using the Debug Information Tool

(ADVANCED USERS ONLY 04.40 Firmware or NEWER)

It is possible to view internal details about a ControlWave unit's operation using the ControlWave Debug Information tool. This tool is intended solely for use by Emerson Development, Engineering, and Technical/Application Support personnel, or by customers being directly assisted by these personnel.

The ControlWave Debug Information tool retrieves information such as:

- Contents of internal memory
- Contents of user stack (memory)
- Contents of messages sent/received via a particular port (similar to a Data Line Monitor)
- RBE information

Starting the Debug Information Tool:

Note:

Communications via NetView, LocalView, or TechView must be active in order to use the Debug Information Tool.

To start the Debug Information Tool, click on as follows:

Start \rightarrow Programs \rightarrow OpenBSI Tools \rightarrow Utility Programs \rightarrow ControlWave Debug Info

The Trouble Shooting Information dialog box will appear:

First, choose the ControlWave controller from which you want to collect data. Enter the name of the ControlWave in the **"Node Name"** or choose the name from the list of nodes in your NETDEF file using the **[Select]** button. (If you've used the tool before, the last node you looked at will appear in the field, by default.)

Next, provide a name for the file that will hold the collected data in the **"Output File"** field, or use the **[Browse]** file to locate one. Output files must have the extension of *.LOG. (If you've used the tool before, the last log file you

Click on **[Levels]** to specify what level of detail of data you want to collect.

used will appear in the field, by default.)

Now, you need to specify what level of data you want to collect. To do this click on the **[Levels]** button.

Specifying the Logging Levels for the Debug Information Tool

In the Configure Logging Levels dialog box, choose the sub-system (port, memory, etc.) that you're interested in, and click on the corresponding level column number.

Sub-System Type 0 Memory 1 Port 1 2 Port 2 3 Port 3 4 Port 4 5 Port 5 6 Port 6 7 Port 7 8 Port 8 9 Port 9 10 Port 10 11 Port 11 12 Port 12 – UNUSED 13 Port 13 – UNUSED 14 Port 14 – UNUSED 15 Port 15 - UNUSED 16 Virtual Ports 17 Flash Access (covers read/write of files from FLASH memory) 18 Time Synch 19 Temporary Use 20 **Custom Protocol** 21 CIP Protocol 22 AMOCAMS AI Net Custom Protocol 40 **RBE** System 41 **Display System** 60 **Dynamic IP Routes**

The sub-systems are identified by a **"Type"** number. The type numbers are:

The Change Logging Level dialog box will appear. Logging levels range from 1 to 8. The higher the logging level, the more information will be collected, so generally, you should choose '8'. Click on **[OK]** to update the level. Repeat this process for each additional item you want to monitor. When you are finished, click on **[OK]** to exit the Configure Logging Levels dialog box.

Choose the sub-systems within the ControlWave that you want to monitor by clicking on the corresponding level.

•	0					
Configure Logging Le	evels					X
Sub System			Level			ок
Type 0: Memory			8 🖌			
Type 1: Port 1			8			Lancel
Type 2: Port 2			8			
Type 3: Port 3			8			
Type 4: Port 4	Change Loggi	ng Level			×	
Type 5: Port 5		-			_	
Type 6: Port 6	Uriginal:	U		OK		
Type 7: Port 7	New Value:	0	-	Cancel		
Type 8: Port 8		6				
Type 9: Port 9		7				
Type 10: Port 10		8				
Type 11: Port 11	1		0			
Type 12: Port 12 - Ur	nused		0			
Type 13: Port 13 - Ur	nused		0			
					<u> </u>	\mathbf{i}
Status:						\mathbf{X}
						\

Use the scroll bar to bring more items into view. Δ

The level settings are saved in the ControlWave, and will be used for all subsequent logging sessions, unless changed or erased by a system cold start.

Collecting the Debug Data

Once you've finished defining the logging level, click on the **[Refresh]** button. The **[Start/Stop]** button should now be labeled **[Start]**.

Click on **[Start]** and data on the items you selected will begin to be stored in unused areas of static memory. The debug data will not affect memory needed for system operation.

If you want the data to be preserved across warm starts of the ControlWave, click on **[Retain]**.

Note:

Once the tool is started, you do not need to leave it running; since collection occurs in the background.

Viewing the Debug Data

When you decide you want to retrieve the debug data into a log file, for viewing, click on the **[Retrieve]** button in the Debug Information Tool, and the data will be stored in the log file specified.

You can view the log file in any text editor. As the information in the log file is intended primarily for Emerson Development Engineering personnel, instructions for interpreting the contents of the log file is beyond the scope of this manual.

DEBUG_LOG_NULL;0;0;0;NULL Entry

DEBUG_LOG_MEM_SUM;0;0;1;MEM_SYS: Sum - Ret Pages:%04x, Page Pool: %08x, Total: %08x DEBUG_LOG_MEM_PFRET;0;1;0;MEM_SYS: Retain Page Free, %d Pages, Address: %08x DEBUG_LOG_MEM_PARET;0;1;1;MEM_SYS: Retain Page Alloc, %d Pages, Address: %08x DEBUG_LOG_MEM_PF;0;1;2;MEM_SYS: Page Free, %d Pages, Address: %08x DEBUG_LOG_MEM_PA;0;1;3;MEM_SYS: Page Alloc, %d Pages, Address: %08x DEBUG_LOG_MEM_PA;0;1;3;MEM_SYS: Page Alloc, %d Pages, Address: %08x DEBUG_LOG_MEM_GET;0;2;0;MEM_SYS: Get %5d, Address: %08x, Caller: %08x DEBUG_LOG_MEM_FREE;0;2;1;MEM_SYS: Free %5d, Address: %08x, Caller: %08x DEBUG_LOG_P1_MOD_CHANGE;1;0;0;P1: Modem Control Change: %d DEBUG_LOG_P1_DCD_CHANGE;1;0;1;P1: Carrier Changed to: %d

Erasing Debug Data

If you don't want the log entries retained between warm starts of the ControlWave, click **[Clear]**, and they will be erased at the next warm start. (An exception to this is if the unit crashes and restarts; the information will not be erased.)

If you want to clear the log entries from static memory, immediately, and not wait until a warm start, click **[Initialize]**.

Other Debugging Tools (BTCP Spy, DLM Monitor)

These tools are reserved for Emerson Remote Automation Solutions support and development personnel and are not intended for customer use.

Appendix B: ControlWave Designer Compatibility Issues

If you install ControlWave Designer on your PC Workstation, and you already have an *earlier* version of ControlWave Designer installed, the earlier version is automatically overwritten.

Important

ControlWave Designer is backward compatible such that *older* ControlWave projects can be opened in a new version of ControlWave Designer. Any ControlWave project created or modified with the newer version of ControlWave Designer, however, cannot subsequently be brought back into the older version of ControlWave Designer.

In other words, once you bring a project created with an older version of ControlWave Designer into a newer version if ControlWave Designer, you can't edit it with the older ControlWave Designer, because it would now be incompatible. Similarly, if you create an all-new project in the newer ControlWave Designer, it also cannot be used within the older ControlWave Designer.

For this reason, you should only open a project in the newer version of ControlWave Designer if you intend to edit it, from that time onwards, in the newer version.

Bringing an Older ControlWave Project into a Newer Version of ControlWave Designer

If you have an older ControlWave Designer project, that you want to open it in a newer version of ControlWave Designer, there are certain steps you must take.

- After you have brought the project in, you must delete the ACCOL3 firmware library, and any other (*.FWL) libraries.
- Now, insert the most recent *.FWL libraries (which come with the new version of ControlWave Designer, you are using). Firmware libraries are located in the path **\Openbsi\mwt\plc\fw_lib**

⊒ Giran Barray Strain Stra

3. Finally, re-build any user libraries (*.MWT) built based on the older libraries, by clicking on **Build → Make**.

Warning - I/O Configurator and Multiple Copies of ControlWave Designer

If you intend to run multiple copies of ControlWave Designer simultaneously, do NOT attempt to run multiple copies of the I/O Configurator. If you do, you risk corrupting your I/O definitions.

Index

_TIME system variables371
ACCOL names
Addressing
in an IP network293
in BSAP networks52
Alarms
_ALARM_FORMAT system variable
configuring9
marking alarm variables in Variable Extension
Wizard404
priority of10
Application
licensing of standard ControlWave applications
23
parameters27
Archive File
configuring29
Array
configuring an41
Audit
configuration43
breakpoint
clearing a111
setting a110
BSAP
local address52
Master Port55
Slave Port61
what is it?
Challenge Handshaking Authentication Protocol
(CHAP)
CHAP
setting the default username for
specifying for a PPP port
application
starting with a System task
system
Communication Ports
defaults for
setting up a BSAP Master Port55

setting up a BSAP Slave Port61
setting up a Modbus Port
setting up a PPPort
setting up a VSAT Slave Port
setting up an Ethernet Port
sharing
Compiling your project
Conditional logic
in your ControlWave project
Configuring
Modbus
Data Types
IEC 61131-3
DataView
using with ControlWave101
Debugging your project
Default settings
for communicaton ports81
Downloading your ControlWave project
EBSAP
group number52
Ethernet Port
Firmware libraries
Flash Configuration utility
starting149
Flash File access utility155
Forcing a variable's value109
Function block
creating159
executing once at startup97
list of function blocks in ACCOLIII library5
parameter name prefixes165
Global variables
Group number
in an EBSAP network52
Historical data167
I/O Configurator169
I/O Mapping197
I/O Simulator
Initialization Files
in Variable Extension Wizard

ControlWave Designer Programmer's Handbook D301426X012 August 2020

IP addressing293
IP Parameters
IP Ports
Ethernet
PPP 309
IP Routes 311
Libraries
firmware and user 215
Licensing
of standard Controlwave applications23
Lists
defining in Variable Extension Wizard406
Local address
in a BSAP network52
Local variables420
Master Port See BSAP Master Port
Memory
Flash File Access utility155
static memory area393
Modbus
configuring335
exporting security data to
Modus Port
Network Host PC (NHP)
Overwriting a variable's value
PAP
specifying for a PPP port
Passwords 345
CHAP usage 305
Patch POLI 108
Point-to-Point Protocol (PPP) Port 309
Ports 67
defaults for 81
cotting up a BCAD Mactor Dort
setting up a BSAP Mastel Port
setting up a Madbus Port
setting up a Moubus Port
setting up a PPP Port
setting up a VSAT Slave Port
setting up an Ethernet Port
sharing92
POU size
RBE collection
marking variables in Variable Extension Wizard

Reseting the ControlWave	43
Routing Internet Protocol (RIP))2
Security	45
setting the default username for CHAP protoc	ol
usage)5
Security Protocols	55
Serial port	
sharing	9 2
Sharing	
a serial port	92
Slave Port See BSAP Slave Po	ort
Specifying IP address for an NHP	01
String Variables	22
System task	51
System Variables	53
User Security Management Tool	45
User-created libraries	15
Variable Extension Wizard 30	39
Variables 4	19
addresses of 42	20
default variable names for I/O 19	-0 -7
forcing or overwriting a value	na
naming conventions for 4	רי דר
system 34	52
Versions	JJ
compatibility of different software and firmwa	re
	25
Virtual Ports 44	- J 41
VSAT Slave Port	•••
setting up a	12
Warm start	τJ
application	
starting with a System task 36	51
system 22°	יר אכ
Watch window 1(<u>יי</u> רבי
Watchdog	,,
what happons to momony 2°	าว
Web browser	20
specifying the location of	17
Web pages	+/
notes about using	17
Mizard	+/
Wizaru	20
variable Extension	99

For customer service and technical support, visit <u>www.Emerson.com/SupportNet</u>.

Global Headquarters,

North America, and Latin America: Emerson Automation Solutions Remote Automation Solutions 6005 Rogerdale Road Houston, TX 77072 U.S.A. T +1 281 879 2699 | F +1 281 988 4445 www.Emerson.com/RemoteAutomation

Europe:

Emerson Automation Solutions Remote Automation Solutions Unit 8, Waterfront Business Park Dudley Road, Brierley Hill Dudley UK DY5 1LX T +44 1384 487200 | F +44 1384 487258

Middle East/Africa:

Emerson Automation Solutions Remote Automation Solutions Emerson FZE P.O. Box 17033 Jebel Ali Free Zone – South 2 Dubai U.A.E. T +971 4 8118100 | F +971 4 8865465

Asia-Pacific:

Emerson Automation Solutions Remote Automation Solutions 1 Pandan Crescent Singapore 128461 T +65 6777 8211 | F +65 6777 0947 $\ensuremath{\mathbb{C}}$ 2003-2020 Remote Automation Solutions, a business unit of Emerson Automation Solutions. All rights reserved.

This publication is for informational purposes only. While every effort has been made to ensure accuracy, this publication shall not be read to include any warranty or guarantee, express or implied, including as regards the products or services described or their use or applicability. Remote Automation Solutions (RAS) reserves the right to modify or improve the designs or specifications of its products at any time without notice. All sales are governed by RAS terms and conditions which are available upon request. RAS accepts no responsibility for proper selection, use or maintenance of any product, which remains solely with the purchaser and/or end-user.

