
ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Remote Automation Solutions

ControlWave™ Designer Programmer’s
Handbook

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

2 Contents

Application Safety Considerations
 Protecting Operating Processes

A failure of this application — for whatever reason — may leave an operating process without appropriate
protection and could result in possible damage to property or injury to persons. To protect against this, you
should review the need for additional backup equipment or provide alternate means of protection (such as alarm
devices, output limiting, fail-safe valves, relief valves, emergency shutoffs, emergency switches, etc.).

CAUTION

When implementing control using this product, observe best industry practices as suggested by applicable and
appropriate environmental, health, and safety organizations. While this product can be used as a safety component in
a system, it NOT intended or designed to be the ONLY safety mechanism in that system.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Contents iii

Contents

Introduction ... 1
ControlWave Product Line 1
Manuals You Should Read Before You Read This One 1
What is Covered in this Manual? 1
What Related Documentation is Available? 2

ACCOL III Function Block Library .. 5

Alarm Configuration ... 9
What are Alarms? 9
Where can I get detailed information about these function blocks? 11
Configuring an Analog Alarm 12
Using the ALARM_ANALOG function block 13
Configuring a Logical Alarm 17
Using the ALARM_LOGICAL_ON function block 17
Configuring a Change of State Alarm 19

Application Licensing .. 23
Granting a License for a Controller to Run a Standard Application 23
Removing an Application License from a Controller: 24
Viewing a History of Dongle Issue / Remove Operations: 25

Application Parameters ... 27

Archive Configuration ... 29
What Are Archive Files? 29
Archive configuration involves four basic steps: 30
What can be done with the data from the Archive File(s)? 31
Step 1. Define Archive Files(s) in the Flash Configuration Utility 31
Step 2. In Your ControlWave Designer Project, Identify the variables you want to archive in the

Archive List 36
Step 3. Create an Output List for Accessing the Most Recent Archive Record (OPTIONAL) 37
Step 4. Configure the ARCHIVE Function Block 38

Array Configuration ... 41

Audit Configuration .. 43
Step 1. Set parameters in the Flash Configuration Utility 43
Step 2. In ControlWave Designer, identify Variables for which you want to maintain Audit Logging 46
Step 3. Configure an AUDIT Function Block 47

BSAP Addressing and Networks ... 49
What is BSAP? 49
Adding A ControlWave to an OpenBSI BSAP Network in the RTU Wizard 51
Setting the BSAP Local Address and EBSAP Group 52
What is Client/Server Communication? 53
BSAP - Underlying Technical Details (For ADVANCED USERS) 53

BSAP Master Port .. 55
Configuring A BSAP Master Port 56

BSAP Slave Port ... 61
Configuring a BSAP Slave Port 61

Communication Ports ... 67

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

iv Contents

How do I configure the Ports on the ControlWave? 81
What are the factory default settings for communication ports? 81
How can the port configuration be changed? 92
Dialing - An Overview 92
Serial Port Sharing between the BSAP Slave and Custom Slave Protocols: 92

Compiling ... 95

Conditional Logic .. 97

DataView .. 101
Before you begin: 101
Calling up ControlWave Data in DataView 102

Debugging — An Overview ... 105
Starting Debug Mode 105
Using the Watch Window 105
Using the Cross-Reference Window 107
On-line Editing with Patch POU 108
Using the Force/Overwrite Options 109
Setting a Breakpoint 110
Exiting Debug Mode 112

Downloading .. 113
Two Methods Available for Downloading 113
Downloading from within ControlWave Designer 114
Downloading Your ControlWave Project from Within ControlWave Designer 117
Downloading using the OpenBSI ControlWave Downloader 119
Starting the ControlWave Downloader 121
Using the ControlWave Downloader 122
Creating Download Scripts for Batch Downloading of ControlWave Controllers 123

Expanded BSAP (EBSAP) Communications ... 127
Expanded BSAP — The Concept 128
General Requirements for Expanded BSAP (EBSAP): 129
Creating an EBSAP Master 130
OpenBSI Workstation is EBSAP Master 130
ControlWave-series Controller is the EBSAP Master 131
Configuring the Control and Status Arrays 132
Defining the Virtual Nodes 141
Defining the EBSAP Slave Nodes 142
Example 1 — OpenBSI Workstation is EBSAP Master to 1000 ControlWave controllers 143
Example 2 — ControlWave Controller is EBSAP Master to 300 ControlWave EBSAP Slaves 146

Flash Configuration Utility — An Overview .. 149
Starting the Flash Configuration Utility 149

Flash File Access .. 155
Viewing a List of Files in the Flash File Area: 156
Uploading a File from the ControlWave to Your OpenBSI Workstation: 156
Copying a File from the OpenBSI Workstation to Your ControlWave: 157
Deleting a File from the ControlWave User Flash Files Area: 157
Refreshing the List of Files: 158

Function Blocks — Creating .. 159

Function Block Parameter Name Prefixes ... 165

Historical Data .. 167

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Contents v

What is Historical Data Used For? 167
What types of Historical Data can be saved in the ControlWave Controller? 167
How is Audit Trail and Archive Data Retrieved from the ControlWave Controller? 168

I/O Configurator.. 169
Tables of Board Types 174
Analog Boards 179
Digital Boards 183
High Speed Counter (HSC) Boards 185
Remote I/O Status Board 186
System Controller Board 186
CWM_RTU Board 187
Notes About Ethernet I/O Boards 187
HART Interface Board (CWM_HIB) 193

I/O Mapping .. 197
Common Device Map 197
Local I/O - ControlWave 198
Ethernet I/O 206
ControlWave I/O Expansion Rack Boards 218
Local I/O — ControlWave MICRO-series 229
Local I/O — ControlWave GFC-CL and ControlWave XFC 242
Local I/O — ControlWave Express and ControlWave GFC 248
Local I/O — ControlWave CW10, CW30, CW35 256
I/O — ControlWave CW_31 261
ControlWave MICRO I/O Expansion Rack 269

I/O Simulator .. 283
What is the I/O Simulator? 283
Starting the I/O Simulator 283
Analog Boards 287
Digital Boards 288
Counter Boards 288
Viewing the Board Configuration Status 289
Configuring a Pin 289
Viewing Simulated Alarms 290
Shutting Down the I/O Simulator 290
Troubleshooting Tip 290

IP Addressing and Networks .. 293
What is the Format of IP Addresses? 293
Adding a ControlWave to an IP Network with the RTU Wizard 298
Setting up IP Ports in the Flash Configuration Utility 299
Recommended Ranges for IP Addresses 299

IP Parameters .. 301

IP Ports - Ethernet ... 307

IP Ports — PPP .. 309

IP Routes ... 311

Libraries .. 315

Memory Usage .. 319
Some Background - What is Memory? 319
What is Downloading? 319
Types of Memory in the ControlWave Process Automation Controller (CW PAC) 320

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

vi Contents

What happens in the event of a power failure or the power switch is turned off? 323
What happens in the event of a watchdog condition? 323
What happens on restart after a power failure or watchdog? 324
Variations when using ControlWave MICRO/EFM 327
Variations when using ControlWave GFC/GFC-CL, XFC, Corrector, Express or ExpressPAC 328
Variations when using ControlWave_10/ _30/ _35 (CW_10, CW_30, CW_35) 329
Memory Allocation Issues 330
Determining POU Size at Compilation Time 330
Resolving “Not Enough Memory” Messages 330

Modbus Configuration .. 335
Configuring Your ControlWave Controller as a Modbus Master Device 335
Configuring Your ControlWave Controller as a Modbus Slave or Enron Modbus Slave Device 339

Modbus Ports .. 341
Configuring Modbus Ports 341

Reset ControlWave Utility ... 343

Security .. 345
Other Security-Related Issues 351

Security Protocols (CHAP and PAP) .. 355
Security Protocols (CHAP and PAP) Used on PPP Links 355
Challenge Handshaking Authentication Protocol (CHAP) 355
Password Authentication Protocol (PAP) 358

System Tasks (Warm/Cold Starts) .. 361

System Variables ... 363
Using the System Variable Wizard 363
System Variable Mapping Charts 367
Static Memory Area: 392
Using the System Variable Viewer 395

Variable Extension Wizard ... 399
Before You Begin 399
Starting the Variable Extension Wizard 399
Using the Variable Extension Wizard 400
Marking a Variable for Report by Exception (RBE) Collection 403
Configuring a Variable as an Alarm 404
Creating / Editing a List 406
Setting initial values for Manual or Alarm Inhibit/Enable Flags 408
Assigning Units Text (Analog Variables ONLY) 409
Assigning ON/OFF Text (BOOL Variables ONLY) 410
Creating Descriptive Text for the Variable 411
Saving the Initialization Files and Exiting the Wizard 412
Format of Initialization Files 412
Troubleshooting Tips 417

Variables and Data Types .. 419
Global Variables Vs. Local Variables 419
Variable Addressing 420
System Variables 421
Data Types 421

Notes about STRING variables ... 422

Variable Naming Conventions ... 423

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Contents vii

Versions and Compatibility .. 425

Virtual Ports .. 441

VSAT Slave Port — Configuration .. 443
Configuring Flash Parameters 443
Configuring System Variables 444
VSAT Master Ports 446

Using Web Pages .. 447
Other Notes About Using Web Pages 448
Calling Up Web_BSI Pages 449
Creating Your Own Web Pages to Use with the ControlWave 451

Appendix A: Troubleshooting Tips ... 453
Using the Debug Information Tool 458
Other Debugging Tools (BTCP Spy, DLM Monitor) 462

Appendix B: ControlWave Designer Compatibility Issues .. 463
Bringing an Older ControlWave Project into a Newer Version of ControlWave Designer 463
Warning - I/O Configurator and Multiple Copies of ControlWave Designer 464

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Introduction 1

Introduction

ControlWave Product Line
Unless otherwise noted, the information in this manual applies to any controller in the
ControlWave product line, including:

 ControlWave Process Automation Controller

 ControlWave Low Power (LP) Controller

 ControlWave Redundant Controller

 ControlWave MICRO Controller

 ControlWave Electronic Flow Meter (EFM)

 ControlWave Gas Flow Computer (GFC)

 ControlWave Gas Flow Computer Plus (GFC Plus)

 ControlWave Explosion-Proof Gas Flow Computer (XFC)

 ControlWave Express / Express Process Automation Controller

 ControlWave Corrector

Manuals You Should Read Before You Read This One
Before you read this document, we strongly recommend you read, and try out, the
example presented in the Getting Started with ControlWave Designer Manual (part
number D301416X012). It is designed to explain various concepts to first-time
ControlWave users.

In addition, please review the quick setup guide for your particular controller (see next
page for the proper document) which contains notes about how to initially set up your
ControlWave Controller, and how to configure certain parameters for first-time use.

The ControlWave Designer Programmer’s Handbook (which you are reading right now)
builds on the information contained in these other documents, so it is essential that you
are familiar with the material included in them.

What is Covered in this Manual?
The ControlWave Designer Programmer’s Handbook is intended to provide you the
information you need to get the most out of your ControlWave Designer software. It
includes:

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

2 Introduction

 Examples of how to configure various sub-systems of ControlWave software, which
are commonly required in process control applications, such as: alarming, and
historical data collection.

 Instructions for how to create your own function blocks, and how to create a library of
them, so they can be re-used in other projects.

 Notes about how to use OpenBSI, and BSAP, or IP, to include your ControlWave in a
network.

 Explanations about how ControlWave memory works, and how I/O points can be
configured.

 Discussions of communication options, as well as how to download your ControlWave
project into the ControlWave controller.

What Related Documentation is Available?
For information on this… Please consult this…

 ControlWave Designer Getting Started with ControlWave Designer
(part D301416X012)

 IEC 61131 terminology and languages
 Projects, Project Tree, POUs, Tasks,

Resources
 ACCOL3 library
 PROCONOS library

Online help in ControlWave Designer,
accessible through the question mark [?]
menu item.

 Flash Configuration Chapter 5 of the OpenBSI Utilities Manual
(part number D301414X012) contains full
details on flash configuration.

 Web Pages
 ActiveX controls used with ControlWave

Web_BSI Manual (part number
D301418X012).

 Converting ACCOL II source files (*.ACC)
into ControlWave Projects

ACCOL Translator User’s Guide (part number
D301417X012)

 ControlWave Process Automation
Controller

ControlWave Quick Setup Guide (part number
D301415X012)

 ControlWave Low Power (LP) Controller ControlWave LP Quick Setup Guide (part
number D301422X012)

 ControlWave I/O Expansion Rack ControlWave I/O Expansion Rack Quick Setup
Guide (part number D301423X012)

 ControlWave Redundant Controller ControlWave Redundancy Setup Guide (part
number D301424X012).

 ControlWave MICRO Controller ControlWave Micro Quick Setup Guide (part
number D301425X012)

 ControlWave Electronic Flow Meter (EFM) ControlWave Electronic Flow Meter (EFM)
Instruction Manual (part number
D301383X012)

 ControlWave Gas Flow Computer (GFC) ControlWave Gas Flow Computer (GFC)
Instruction Manual (part number
(D301387X1012)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Introduction 3

For information on this… Please consult this…
 ControlWave Explosion-Proof Gas Flow

Computer (XFC)
ControlWave Explosion-Proof Gas Flow
Computer (XFC) Instruction Manual (part
number D301396X012)

 ControlWave Express ControlWave Express RTU Instruction Manual
(part number D301386X012)

 ControlWave Express PAC ControlWave Express PAC Instruction Manual
(part number D301384X012)

 ControlWave Corrector ControlWave Corrector Instruction Manual
(part number D301382X012)

 ControlWave Gas Flow Computer Plus ControlWave Gas Flow Computer Plus
Instruction Manual (part number
D301389X012)

 ControlWave Ethernet I/O ControlWave Ethernet I/O Instruction Manual
(part number D301395X012)

 ControlWave Industrial Ethernet Real
Time Switches

ControlWave Industrial Ethernet Real-time
Switches Instruction Manual (part number
D301390X012)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

4 Introduction

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

ACCOL III Function Block Library 5

ACCOL III Function Block Library
The ACCOL III Function Block Library is a set of functions and function blocks created by
Emerson and included with ControlWave Designer. ACCOL III function blocks are designed
to provide ControlWave Designer with the capabilities of ACCOL II modules used in our
previous ACCOL II language. This library also includes several newer functions which were
not available in ACCOL II.

Note

Other function block libraries are available for liquids calculations, and NIST23 calculations.
Contact Emerson Remote Automation Solutions division for more information.

For instructions on how to use any of these function blocks, please consult the online help
in ControlWave Designer.

Function block or
Function

Minimum Firmware
Revision Required

Description

AGA3 2.00.00 Computes natural gas volume flow rate through an orifice
plate in thousands of cubic feet per hour (MSCFH) according
to American Gas Association (AGA) Report #3 1985 Edition.

AGA3DENS 4.10.00 Computes mass and volume flow rate for fluids (gases or
liquids) in lbs/hour and cubic ft per hour, for orifice plates,
with flange taps ONLY, according to the method explained
in the American Gas Association (AGA) Report #3 of August,
1992, 3rd Edition (Part 1 and Part 4).

AGA3I 1.00.00 Computes natural gas volume flow rate according to the
Factors Method in AGA Report #3.

AGA3SELECT 5.50.00 Combines the functions of the AGA3I and AGA3TERM
function blocks into a single function block.

AGA3TERM 2.00.00 Computes natural gas volume flow rate through an orifice
plate in thousands of cubic feet per hour (MSCFH) according
to AGA Report #3 1985 Edition. Allows factor substitution
and display.

AGA5 2.00.00 Performs AGA-5 calculations for conversion of computed
gas volume to energy equivalents.

AGA7 2.00.00 Performs AGA-7 calculations for base volume rate.

AGA8DETAIL 2.00.00 Computes Base compressibility, Flowing compressibility
and Supercompressibility for natural gas mixtures,
according to the Detail Characterization Method in AGA
Report 8.

AGA8GROS 1.00.00 Computations for natural gas mixtures according to the
Gross Characterization method in AGA Report 8.

AGA10 4.50.00 Computations for natural gas mixtures according to AGA
Report Number 10.

ALARM 4.70.00 Used to batch process alarms defined in the Variable
Extension Wizard.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

6 ACCOL III Function Block Library

Function block or
Function

Minimum Firmware
Revision Required

Description

ALARM_ANALOG 1.00.00 Monitors a process variable and sends a notification
message to a remote computer when the variable’s value
exceeds user defined limits.

ALARM_LOGICAL_ON 1.00.00 Monitors a Boolean process variable and sends a notification
message to a remote computer when the variable is TRUE.

ALARM_LOGICAL_OFF 1.00.00 Monitors a Boolean process variable and sends a notification
message to a remote computer when the variable is FALSE.

ALARM_STATE 1.00.00 Monitors a Boolean process variable and sends a notification
message to a remote computer when the variable changes
state.

ANOUT 1.00.00 Converts and scales signals for hardware analog output.

ARCHIVE 1.00.00 Provides historical storage of signal values.

ARRAY_ANA_GET 4.50.00 Function. Returns the REAL value of the specified array
element.

ARRAY_ANA_SET 4.50.00 Function. Writes a REAL value to the specified array
element.

ARRAY_LOG_GET 4.50.00 Function. Returns the BOOL value of the specified array
element.

ARRAY_LOG_SET 4.50.00 Function. Writes a BOOL value to the specified array
element.

AUDIT 1.00.00 Provides historical storage of alarms and events.

AUDIT_SELECTED 5.40.00 Allows you to log events for value changes of individual
variables or log customized events. The customized events
can include standard value change information, alternate
values, or NOTE events. You can use the AUDIT_SELECTED
FB independently of the AUDIT FB.

AUTOADJUST 2.00.00 Performs adjusted volume and self check calculations for an
Invensys Auto-adjust Turbine Meter.

AVERAGER 1.00.00 Computes the time-average and integral.

BTI 4.70.00 Allows CW_10, CW_30, and CW_35 controllers with the
BBTI board to collect data from the Bristol TeletransTM
Model 3508 Transmitter.

CALC_DENSITY June 22, 2009 library or
newer.

Calculates the mass density of a gas using the real gas
relative density (specific gravity)

CLIENT 2.00.00 Communicates with other ControlWave controllers that
have implemented the Server Function Block.

COMMAND 1.00.00 Pulse Delayed Output.

COMPARATOR 1.00.00 Analog signal comparison.

CRC 2.00.00 Calculates CRC of data stored in an array.

CUSTOM 1.00.00 Custom Communications Interface.

DACCUMULATOR 1.00.00 Performs Double Precision Arithmetic.

DB_LOAD 4.00.00 Loads variable information (LISTS) from a text file.

DEMUX 1.00.00 Copies a signal value into a list of signals.

DIAL_CTRL 4.00.00 Establishes a dial-up connection on a given port, or interface
to a modem.

DIFFERENTIATOR 1.00.00 Differentiates an analog signal.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

ACCOL III Function Block Library 7

Function block or
Function

Minimum Firmware
Revision Required

Description

DISPLAY 4.20.00 Provides support for the keypad display.

ENCODE 1.00.00 Set/Read System Time, Julian /Wall Time Conversions.

EVP 4.50.00 Calculates the equilibrium vapor pressure for a liquid.

FIELDBUS 5.10.00 Interfaces with Foundation Fieldbus devices via a bridge
server.

FILE_CLOSE 2.20.00 Function – End access to a flash file.

FILE_DELETE 2.20.00 Function – Remove a file from flash.

FILE_DIR 2.20.00 Function Block – Get a listing of files. Retrieve file attributes.

FILE_OPEN 2.20.00 Function – Start access to an existing flash file or create a
new one.

FILE_READ 2.20.00 Function – Read binary data from file.

FILE_READ_STR 2.20.00 Function – Read a line from a file and load into a string.

FILE_WRITE 2.20.00 Function – Send a buffer of binary data to a flash file.

FILE_WRITE_STR 2.20.00 Function – Send a formatted string to a flash file.

FPV 2.00.00 Computes Super Compressibility Factor (FPV) of a gas per
AGA Report NX-19.

FUNCTION 1.00.00 Table lookup and interpolation with arrays.

GENERIC_SERIAL 2.00.00 Generic Serial communications serves as a means to buffer
user defined data through a serial port.

GPA8173 4.50.00 Converts the mass of natural gas liquids to equivalent liquid
volumes at base conditions.

GSV 4.50.00 Converts the gross standard volume for a liquid.

HART 5.00.00 Interface to HART field devices via serial port or I/O board.

HILOLIMITER 1.00.00 Compares a signal against a high and low limit.

HILOSELECT 1.00.00 Finds highest and lowest REAL values in a signal list.

HSCOUNT 1.00.00 High Speed Counter.

HWSTI 4.80.00 Honeywell Smart Transmitter Interface

IEC62591 5.50.00 Allows a ControlWave Micro controller with an IEC62591
Interface module to communicate to IEC62591 wireless
devices.

INTEGRATOR 1.00.00 Computes an integral approximation.

ISO5167 2.00.00 Calculates flow rate for Orifice plates, Nozzles, Venturi
tubes, and Venturi-nozzle Primary Devices per ISO 5167-
1980 (E), 1980 edition

LEAD_LAG 1.00.00 Adds a controlled delay effect.

LICENSE 4.90 Determines application licenses for the RTU.

LIQUID_DENSITY 4.50.00 Calculates the density of liquid at flowing conditions.

LISTxxx 1.00.00 Define/Expand a list.

LIST_ELE_NAME 3.00.00 Returns the variable name for a given list element.

MUX 1.00.00 Extracts the value of a signal from a list of signals

PDO 1.00.00 Pulse Duration Output.

PID3TERM 1.00.00 3 Mode PID Control.

PORTATTRIB 4.40.00 Allows the user to set the port characteristics online (except
for the MODE).

PORT_CONTROL 4.20.00 Communications port manual control.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

8 ACCOL III Function Block Library

Function block or
Function

Minimum Firmware
Revision Required

Description

R_INT 1.00.00 Function to Truncate to Integer.

R_RND 1.00.00 Function to Round to nearest Integer.

RBE 4.40.00 Supports Report by Exception

RBE_DISABLE 5.60.00 Disables selected RBE variables to prevent RBE reporting
from them.

REDUN_SWITCH 2.00.00 Function to perform programmed fail-over to Redundant
Standby.

REG_ARRAY 1.00.00 Register Arrays – For HMI Access.

SCHEDULER 3.00.00 Equalizes the elapsed running time of a number of external
devices.

SEQUENCER 1.00.00 Provides sequential output control.

SERVER 2.00.00 Communicates with other ControlWave controllers that
have implemented the Client Function Block.

STEPPER 1.00.00 Sequence up to 255 Boolean Outputs.

STORAGE 04.40 Stores and retrieve historical data.

TCHECK 4.70.00 Provides status checking and data processing for a 3508
Teletrans Transmitter.

TOT_TRND 1.00.00 Computes totals from input and slope of input.

USERS_ACTIVE 5.20 Returns information on all currently signed-in users.

USERS_DEFINED 5.20 Allows encrypted access to the security configuration of the
ControlWave.

V_ATTRIB_GET 04.50 This function returns the value of the specified attribute of a
variable.

V_ATTRIB_SET 04.50 This function sets the value of the specified attribute of a
variable.

VAR_ATTRIB_GET 2.10.00 Retrieves the value of an attribute for a variable.

VAR_ATTRIB_SET 2.10.00 Sets the value of an attribute for a variable.

VAR_CI_PROC 2.10.00 Performs the CI (Control Inhibit) processing for the given
variable.

VAR_FETCH 3.00.00 This function block fetches complete information about a
variable given its name.

VAR_SEARCH 3.00.00 This function searches the PDD for variables, both with a
given index, and by name.

VIRT_PORT 2.20.00 This function block creates a virtual port by defining a
connection to a terminal server.

VLIMIT 1.00.00 Limit an input’s rate of change.

VMUX 3.00.00 Extracts the value of a signal from a list of signals and ramps
the output to match the input.

WATCHDOG 5.60 Activates a watchdog output based on user-defined criteria.

XMTR 4.70.00 Provides read/write access to the memory of a TeleTrans
Transmitter, or other compatible device.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Alarm Configuration 9

Alarm Configuration

What are Alarms?
Alarms are messages generated by the controller
when one or more process variables changes, and
that change violates some pre-defined limit or state.

There are three types of alarms:

Analog Alarms– These alarms are generated when
an analog variable (type REAL, INT, etc.) exceeds a
pre-defined alarm limit. A return-to-normal
message is generated when the variable returns to
within the pre-defined limit. Deadbands can be
established around the alarm limits so that variables
can fluctuate slightly near the alarm limit without
constantly going into and out of an alarm state, and
thereby flooding the system with repetitive alarms.
Analog alarms are configured using the
ALARM_ANALOG function block.

Logical Alarms – These alarms are generated when a
variable of type BOOL enters its 'in-alarm' state. A
return-to-normal message is generated when the
variable returns to its opposite (non-alarm) state The
user chooses which state is the 'in alarm' state by the
choice of alarm function block. If its 'in-alarm' state
occurs when the BOOL variable becomes TRUE, then
the ALARM_LOGICAL_ON function block should be
used. if the variable's 'in-alarm' state occurs when the
BOOL variable becomes FALSE, then the

ALARM_LOGICAL_OFF function block should be used.

Note: The ALARM_LOGICAL_ON and
ALARM_LOGICAL_OFF function blocks are identical
except that the ALARM_LOGICAL_ON function block
generates an alarm when the associated process
variable (iaAlarmVar) is TRUE, whereas the
ALARM_LOGICAL_OFF function block generates an
alarm when the associated process variable
(iaAlarmVar) is FALSE.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

10 Alarm Configuration

Change-of-State Alarms – These alarms are
generated whenever a variable of type BOOL
changes state. In this case, there is no such thing as
a return-to-normal condition. Change-of-State
alarms are configured using the ALARM_STATE
function block.

All three types of alarms have various inputs and
outputs associated with them. These inputs and
outputs are configured within the alarm function
block. The following information is common to all
three types of alarms:

Alarm Variable This is the actual process variable which is to be monitored by the alarm
function block. Analog (REAL, INT, etc.) can only be monitored via the
ALARM_ANALOG function block. Boolean variables can be monitored
by either the ALARM_LOGICAL_ON, ALARM_LOGICAL_OFF, or
ALARM_STATE function block(s).

Alarm Priority The alarm priority is basically a number which indicates the importance
of the alarm. There are four priorities supported in the system:

Priority Value Meaning
Event 0 Event alarms are used to indicate normal, everyday

occurrences.
Operator
Guide

1 Operator guide alarms are used to indicate everyday
occurrences which are slightly more important than
events.

Non-Critical 2 Non-critical alarms are used to indicate problems,
which, while not serious enough to cause damage to
a plant or process, require corrective action.

Critical 3 Critical alarms are used to indicate dangerous
problems that require immediate attention and/or
corrective action.

The choice of which alarm priorities are to be assigned to a particular
alarm variable is entirely at the discretion of the user.

Descriptive
Text

Up to 64 characters of descriptive text may be stored along with any
alarm message. This text may be changed dynamically by control logic.

Disable Alarm processing for a particular process variable can be turned OFF.
This prevents any alarm messages for that process variable from being
generated. This might be used in the case of system maintenance or
troubleshooting.

Status Every alarm function block maintains error and status information.
Improper configuration is indicated by negative status values, and will
prevent execution of the alarm function block. Positive values indicate
the variable is in an alarm state. A value of ‘0’ indicates there are no

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Alarm Configuration 11

configuration errors, and the variable is NOT in an alarm state. For a full
description of status values, see the on-line help files.

Alarm
Sequence #

An alarm sequence number is assigned to each alarm message to
uniquely identify it within the Alarm System. Alarm sequence numbers
range from 0 to 65,535 and are shared among all alarm function blocks
in the alarm system to maintain proper ordering of messages.

Global
Sequence #

A global sequence number is assigned to each audit record, archive
record, or alarm message to uniquely identify it within the ControlWave
controller. Global sequence numbers range from 0 to 65,535 and are
shared by all of these sub-systems to maintain proper ordering of
messages.

The remaining inputs/outputs configured within the Alarm function block vary depending
upon the type of alarm function block being used.

Note

Some parameters in the alarm function block may not be required, depending upon your
specific application. In addition, if you do NOT intend to change the value of a particular
input value, and its parameter only supports a single data type (i.e., its parameter name
does NOT have an “ia” or “iany” prefix), you can enter it as a constant, instead of assigning
a variable name.

Alternatively, the OpenBSI Alarm Router can be used to view alarms, and offers an
interface to custom alarm applications. See the Open BSI Utilities Manual (part number
D301414X012) for information on Alarm Router.

Where can I get detailed information about these function
blocks?

On-line help is provided within ControlWave Designer for every ACCOL3 function block. To
access this, you can right click on the ACCOL3 library icon, and choose “Help on ACCOL 3
Library…” from the pop-up menu.

Important

This section describes the standard method for alarm configuration. Beginning with
OpenBSI Version 5.4, an alternate way to create alarms is to use the Variable Extension
Wizard and the ALARM function block for batch processing. The Variable Extension Wizard
configures the alarms in the controller, but they do NOT appear within your project. For
information on this method, see the Variable Extension Wizard section, later in this
manual.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

12 Alarm Configuration

Configuring an Analog Alarm
For this example, let’s say we have a tank full of water which must be maintained at a
certain temperature range. A temperature transmitter is mounted on the tank to measure
the current temperature of the water, and it has been decided that the water temperature
should be kept between 40.00 C and 70.00 Celsius. Any temperature reading outside of
that range indicates an alarm condition.

The figure, below, shows a plot of the value of the variable measuring Celsius temperature
in the tank, as it fluctuates over time. Four alarm limits and two deadbands have been
defined. Starting from the left of the graph, the value of the variable increases until it
reaches 70.00 C, the high alarm limit (see Item 1). At this point a high alarm message is
generated, and the variable is considered to be in a ‘high alarm’ state.

The value of the variable continues to increase. When it passes the high-high alarm limit of
90.00 C a ‘high-high’ alarm message is generated (see Item 2). At this point, the variable is
considered to be in a high-high alarm state.

The value of the variable then starts to decrease. Although the value passes below 90.00C,
it is still considered to be in a ‘high-high’ alarm state because there is a 10.00 high
deadband in effect (deadbands are shown as shaded areas on the graph.) When the
variable value falls lower than 80.00 C point (90.00 C high alarm limit minus the high
deadband of 10.00 C) the variable is no longer in a ‘high-high’ alarm state (See Item 3). It is
still however in a ‘high’ alarm state.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Alarm Configuration 13

As the value of the variable decreases below 70.00 C, it remains in a ‘high’ alarm state until
its value falls below 60.00 C (70.00 C alarm limit, minus a 10.00 C high deadband). (See Item
4). At this point, the variable is in its normal range, and a ‘return-to-normal’ alarm message
is sent.

Then, however, the value of the variable continues to drop. When it reaches 40.00 C, a ‘Low
Alarm’ message is generated (See Item 5).

The variable remains in a ‘Low Alarm’ state until the variable value drops to 20.00 C. (See
Item 6). This causes a ‘Low Low Alarm’ message to be generated.

The variable remains in a ‘Low-Low Alarm’ state until the variable rises above 30.00 C,
(20.00 C low-low alarm limit plus low deadband of 10.00 C). (See Item 7). The variable is still
in a ‘Low Alarm’ state, however.

Once the variable rises above 50.00 C (40.00 C low alarm limit + low deadband of 10.00 C), it
has left the low-alarm state, and a ‘return to normal’ alarm message is sent (See Item 8).

As long as the variable remains in the normal range (between 40.0 and 70.00 C), no more
alarm messages will be generated.

Using the ALARM_ANALOG function block
Where you insert your ALARM_ANALOG function block depends upon the overall
construction of your project:

The ALARM_ANALOG function block can only detect an alarm condition when it is executed.
Therefore, when constructing your project, you should think about how and when you
want to execute the function block.

 You might choose to place the ALARM_ANALOG function block in the same POU which
holds primary control logic for the process variable. This is always required if the
variable being monitored is not global. Typically, the ALARM_ANALOG function block
would be placed at the end of the POU. If you require timestamps to reflect the exact
moment the alarm condition occurred, you could place the ALARM_ANALOG function
block immediately following the logic which manipulates the process variable.

 Alternatively, you could place the ALARM_ANALOG function block in a separate POU,
which could even be executed at a different task interval. This approach may be
convenient if you want to organize your project such that all alarm function blocks are
in the same place.

Step 1. Following the considerations discussed above, insert an ALARM_ANALOG function
block into your program. A separate ALARM_ANALOG function block is required
for every analog variable you want to configure as an alarm.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

14 Alarm Configuration

Step 2. Based on our example of monitoring water temperature in a tank, assign
meaningful variable names, and where applicable, initial values to each of the
parameters of the ALARM_ANALOG function block.

The actual process variable being monitored for alarm conditions must be assigned
to the iaAlarmVar parameter. In this case we will call it WATER_TEMP since that is
the process I/O variable from the temperature transmitter.

Now we need to assign alarm limits and deadbands based on our previous discussion of
the proper range for the water temperature.

Important

You must use the same variable type for alarm limits and alarm deadbands as you use for
your alarm variable. For example, if the alarm variable is defined as type REAL, then every
alarm limit and alarm deadband for that ALARM_ANALOG function block must also be
defined as type REAL. Type mismatches of any kind will prevent the ALARM_ANALOG
function block from working and will generate errors on the odiStatus parameter.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Alarm Configuration 15

Setting Alarm Limits (iaLoLimit, iaLoLoLimit, iaHiLimit, iaHiHiLimit)

We want to generate an alarm when the temperature goes out of the range 40.00 Celsius
to 70.00 Celsius, so 40.0 will be our low alarm limit (iaLoLimit parameter) and 70.0 will be
our high alarm limit (iaHiLimit parameter). We can also assign Low-Low and High-High
alarm limits to generate additional alarm messages if the variable goes much higher or
much lower than the Low and High limits. These are on the iaHiHiLimit and iaLoLoLimit
parameters, respectively. NOTE: You do not need to use all four limits. Only one alarm limit
is required to configure an analog alarm.

Setting Deadbands (iaHiDeadBand, iaLoDeadBand)

We strongly recommend that you define deadbands around your alarm limits. Two
deadbands are supported, iaHiDeadBand is applied to the high and high-high alarm limits,
and iaLoDeadBand is applied to the low and low-low alarm limits. Deadbands are ranges
above a low limit, or below a high limit, in which a return-to-normal message will NOT be
sent, even though a process variable has returned inside the range defined by the alarm
limits. This is to prevent the system from being flooded with alarm messages if a process
variable is fluctuating around the alarm limit. Without a deadband defined, every time the
process variable enters or leaves the normal range, a return-to-normal or alarm message
would be generated, thereby flooding the system with repetitive alarms, even though the
process variable has changed very little. For this example, we have chosen a deadband of
10.0 for both the low and high deadbands.

Setting Alarm Priorities (iiLoPriority, iiLoLoPriority, iiHiPriority, iiHiHiPriority)

Alarm priorities indicate the severity of the alarm condition triggered by passing one of the
pre-defined alarm limits. For this example, passing either the low or high alarm limits is
considered NON-CRITICAL, and passing either the low-low or high-high alarm limits is
considered CRITICAL. The alarm priority has no effect on the operation of the alarm
system, and is defined strictly at the user’s discretion. Priorities are displayed as part of the
alarm message.

Units Text, Descriptive Text (istrUnitsText, istrDescText)

These parameters are strictly for the convenience of the user. They specify engineering
units for the alarm variable, and descriptive text for the alarm condition.

The table, below, summarizes the values for the various parameters used in this example:

Parameter
Name

Suggested Variable Name Variable
Type

Value Notes

ibDisable WATER_TEMP_ALARM_DISABLE BOOL FALSE For disabling/ enabling
alarm processing.

iaAlarmVar WATER_TEMP REAL, SINT,
INT, DINT,
USINT, UINT, or
UDINT

None The actual process
variable measuring
temperature in the
tank.

iaHiHiLimit WATER_HH_LIMIT REAL, SINT,
USINT, INT,

90.0 High-high alarm limit

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

16 Alarm Configuration

Parameter
Name

Suggested Variable Name Variable
Type

Value Notes

UINT, DINT, or
UDINT

iaHiLimit WATER_H_LIMIT REAL, SINT,
USINT, INT,
UNIT, DINT or
UDINT

70.0 High alarm limit

iaLoLimit WATER_L_LIMIT REAL, SINT,
USINT, INT,
UINT, DINT or
UDINT

40.0 Low alarm limit

iaLoLoLimit WATER_LL_LIMIT REAL, SINT,
USINT, INT,
UINT, DINT or
UDINT

20.0 Low low alarm limit

iaHiDeadBand WATER_HDB REAL, SINT,
USINT, INT,
UINT, DINT or
UDINT

10.0 High alarm deadband

iaLoDeadBand WATER_LDB REAL, SINT,
USINT, INT,
UINT, DINT or
UDINT

10.0 Low alarm deadband

iiPriority CRITICAL_PRIORITY INT 3 High-High Priority

iiHiPriority NON_CRITICAL_PRIORITY INT 2 High Priority

iiLoPriority NON_CRITICAL_PRIORITY INT 2 Low Priority

iiLoLoPriority CRITICAL_PRIORITY INT 3 Low-Low Priority

istrUnitsText TEMP_UNITS STRING 'DEG_C' Engineering units (up
to 6 characters)

istrDescText WATER_TEMP_DESC_TEXT STRING 'WATER
TEMPERAT
URE'

Descriptive text (up to
64 characters)

odiStatus WATER_TEMP_ALARM_STATUS DINT None Status of the execution
of this function block.

ouiAlarmSeq WATER_TEMP_ALARM_SEQ_NUM UINT None Alarm sequence
number.

ouiGlobalSeq WATER_TEMP_GLOBAL_SEQ_NUM UINT None Global sequence
number.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Alarm Configuration 17

The configured alarm block appears, below:

Configuring a Logical Alarm
For this example, let’s say we have an electrical switch which turns ON in the event of a
compressor power failure. When the switch turns ON, we want to generate an alarm.
When the power is restored, the switch turns OFF and a return-to-normal message will be
generated.

Because the alarm condition occurs when the switch turns ON, we must use an
ALARM_LOGICAL_ON function block. (If we wanted to generate an alarm when the switch
turned OFF, we would have used an ALARM_LOGICAL_OFF function block.)

Using the ALARM_LOGICAL_ON function block
Where you insert your ALARM_LOGICAL_ON function block depends upon the overall
construction of your project:

 The ALARM_LOGICAL_ON function block can only detect an alarm condition when it is
executed. Therefore, when constructing your project, you should think about how and
when you want to execute the function block.

 You might choose to place the ALARM_LOGICAL_ON function block in the same POU
which holds primary control logic for the process variable. This is always required if the
variable being monitored is not global. Typically, the ALARM_LOGICAL_ON function
block would be placed at the end of the POU. If you require timestamps to reflect the

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

18 Alarm Configuration

exact moment the alarm condition occurred, you could place the
ALARM_LOGICAL_ON function block immediately following the logic which
manipulates the process variable.

 Alternatively, you could place the ALARM_LOGICAL_ON function block in a separate
POU, which could even be executed at a different task interval. This approach may be
convenient if you want to organize your project such that all alarm function blocks are
in the same place.

Step 1. Following the considerations discussed above,

insert an ALARM_LOGICAL_ON function block
into your program. A separate
ALARM_LOGICAL_ON (or ALARM_LOGICAL_OFF)
function block is required for every variable you
want to configure as a logical alarm.

Step 2. Based on our example of detecting a change of

state of a pump, assign meaningful variable
names, and where applicable, initial values to
each of the parameters of the
ALARM_LOGICAL_ON function block.

The actual process variable being monitored for alarm conditions must be assigned to the
iaAlarmVar parameter. In this case we will call it COMPRESSOR_POWER_FAILURE since
that is the process I/O variable from the switch.

The table, below, summarizes the values for the various parameters used in this example.

Parameter
Name

Suggested Variable Name Variable
Type

Value Notes

ibDisable POWERFAIL_ALARM_DISABLE BOOL FALSE For disabling/ enabling
alarm processing.

iaAlarmVar COMPRESSOR_POWER_FAILURE BOOL None The ON/OFF status of
the switch used to
indicate power failure
of the compressor.

NOTE: Alarms are only
generated when
iaAlarmVar is ON.

iiPriority CRITICAL_PRIORITY INT 3 Priority of this alarm
condition.

istrOnText POWER_FAIL_ONTEXT STRING 'FAILED' ON message text (up
to 6 characters)

istrOffText POWER_FAIL_OFFTEXT STRING 'NORMAL' OFF message text (up
to 6 characters)

istrDescText POWERFAIL_DESC_TEXT STRING 'WATER
TEMPERAT
URE'

Descriptive text (up to
64 characters)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Alarm Configuration 19

Parameter
Name

Suggested Variable Name Variable
Type

Value Notes

odiStatus POWERFAIL_ALARM_STATUS DINT None Status of the execution
of this function block.

ouiAlarmSeq POWERFAIL_ALARM_SEQ_NUM UINT None Alarm sequence
number

ouiGlobalSeq POWERFAIL_GLOBAL_SEQ_NUM UINT None Global sequence
number

The configured alarm block appears, below:

Configuring a Change of State Alarm
For this example, let’s say we have a pump which is critical to the operation of a water
plant. Whenever it starts or stops, we want to generate an alarm message. NOTE: In
change-of-state alarms, there is NO return-to-normal state; every change from ON-to-OFF
or OFF-to-ON generates an alarm message.

Using the ALARM_STATE function block

Where you insert your ALARM_STATE function block depends upon the overall
construction of your project:

 The ALARM_STATE function block can only detect an alarm condition when it is
executed. Therefore, when constructing your project, you should think about how and
when you want to execute the function block.

 You might choose to place the ALARM_STATE function block in the same POU which
holds primary control logic for the process variable. This is always required if the
variable being monitored is not global. Typically, the ALARM_STATE function block
would be placed at the end of the POU. If you require timestamps to reflect the exact
moment the alarm condition occurred, you could place the ALARM_STATE function
block immediately following the logic which manipulates the process variable.

 Alternatively, you could place the ALARM_STATE function block in a separate POU,
which could even be executed at a different task interval. This approach may be

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

20 Alarm Configuration

convenient if you want to organize your project such that all alarm function blocks are
in the same place.

Step 1. Following the considerations

discussed above, insert an
ALARM_STATE function block into
your program. A separate
ALARM_STATE function block is required
for every variable you want to configure
as a change-of-state alarm.

Step 2. Based on our example of detecting a change of state of a water pump, assign

meaningful variable names, and where applicable, initial values to each of the
parameters of the ALARM_STATE function block.

The actual process variable being monitored for alarm conditions must be assigned to the
iaAlarmVar parameter. In this case we will call it WATER_PUMP_STATUS.

The table, below, summarizes the values for the various parameters used in this example:

Parameter
Name

Suggested Variable Name Variable
Type

Value Notes

ibDisable DISABLE_WATERPMP_STATALRM BOOL FALSE For disabling/ enabling
alarm processing.

iaAlarmVar WATER_PUMP_STATUS BOOL None The ON/OFF status of
the water pump.

iiPriority CRITICAL_PRIORITY INT 3 Priority of this alarm
condition.

istrOnText WATER_PUMP_ONTEXT STRING 'ACTIVE' ON message text (up
to 6 characters)

istrOffText WATER_PUMP_OFFTEXT STRING 'IDLE' OFF message text (up
to 6 characters)

istrDescText WATER_PUMP_DESC_TEXT STRING 'WATER
PUMP
STATE
CHANGE'

Descriptive text (up to
64 characters)

odiStatus WATER_PUMP_ALARM_STATUS DINT None Status of the execution
of this function block.

ouiAlarmSeq WATER_PUMP_ALARM_SEQ_NUM UINT None Alarm sequence
number

ouiGlobalSeq WATER_PUMP_GLOBAL_SEQ_NUM UINT None Global sequence
number

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Alarm Configuration 21

The configured alarm block appears, below:

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

22 Alarm Configuration

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Application Licensing 23

Application Licensing
Certain standard applications sold by Emerson Remote Automation Solutions are licensed
to prevent unauthorized duplication. When you purchase the application(s), you will
receive a license key (also known as a USB dongle), that will allow you to manage which
controllers will be license recipients for the standard applications.

Note:

Only ControlWave-series controllers with firmware 04.90 or newer support application
licensing.

Granting a License for a Controller to Run a Standard
Application

1. Install the dongle in your PC’s USB port, and allow it to be recognized.

2. Start the Application Licensing Tool, using the following sequence:

 Start Programs OpenBSI Tools ControlWave Tools Application Licensing

3. The Application Licensing Tool will read the dongle, and display the following
information:

Application A list of all the standard application licenses originally issued via this
dongle.

RTU State The license status of a particular controller for a particular standard
application. If the controller has not been queried yet, this will
display ‘Unknown’.

Ordered The total number of licenses included on this dongle, for a given
application, when it left the factory.

Available The total number of licenses, for a given application, which have
not yet been issued to controller(s).

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

24 Introduction

4. Select the controller to which you want to issue the license, using the [Browse] button.
(If communication is via NetView, the controller must exist in the current NETDEF file;
otherwise select the locally connected ‘RTU’.)

5. Enter a valid username / password combination for that controller, and click on the
[Query RTU License State] button.

6. The application window will be updated to show which applications have been
licensed for this controller. Select the application you want to issue to the controller.
There must be at least 1 or more listed in the “Available” field.

7. Click on [Issue License]. The license will be granted to the controller, and the
“Available” count will be decremented by 1.

8. Repeat this process for any other controllers you want to issue licenses to. When
finished, click on [Exit].

Removing an Application License from a Controller:
You might want to remove a license from a controller, for example, if you have to take it
out of service, for repairs, and want to use its license in a replacement unit. Follow the
steps, below:

1. Install the dongle in your PC’s USB port, and allow it to be recognized.

2. Start the Application Licensing Tool, using the following sequence:

 Start Programs OpenBSI Tools ControlWave Tools Application Licensing

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Application Licensing 25

3. The Application Licensing Tool will read the dongle, and display the following
information:

Application A list of all the standard application licenses originally issued via this
dongle.

RTU State The license status of a particular controller for a particular standard
application. If the controller has not been queried yet, this will display ‘Unknown’.

Ordered The total number of licenses included on this dongle, for a given
application, when it left the factory.

Available The total number of licenses, for a given application, which have not yet
been issued to controller(s).

4. Select the controller for which you want to revoke the license, using the [Browse]
button. (If communication is via NetView, the controller must exist in the current
NETDEF file; otherwise select the locally connected ‘RTU’.)

5. Enter a valid username / password combination for that controller, and click on the
[Query RTU License State] button.

6. The application window will be updated to show which applications have been
licensed for this controller. Select the application you want to remove from the
controller.

7. Click on [Remove License]. The license will be removed from the controller, and
restored onto the dongle. The “Available” count will be incremented by 1.

Viewing a History of Dongle Issue / Remove Operations:
The Application Licensing Tool maintains, on the dongle, a list of the last 150 license
operations. To view this history, click on [View Event Log].

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

26 Introduction

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Application Parameters 27

Application Parameters
The Application Parameters page is accessible from the "Application Parameters" tab in the
Flash Configuration Utility. For instructions on calling up the Flash Configuration Utility,
see Flash Configuration – An Overview, later in this manual. These parameters apply only to
ControlWave-series units that are configured as IP nodes.

Note:

Unless you are using redundancy or have a specific need to edit these parameters (for
example, if you are running an application with special memory requirements, or if you are
encountering performance problems related to CPU activity), leave these parameters at
their defaults. Users should exercise particular caution when modifying the application
parameters for memory. Making a significant change to these parameters without
understanding how the parameters interact could actually reduce the amount of available
memory, even though you have increased the values of the parameters. When changing
these parameters, use only small incremental changes.

CPU:

Goal Idle This is a goal expressing the percentage of time the ControlWave CPU
should be idle. The default value is 30%. If this goal cannot be met, the
DEFAULT task period will automatically be adjusted to free up CPU time.

Idle Min Ticks This is the minimum number of 1 millisecond clock ticks to be left between
executions of the DEFAULT task. The default value is 2.

Minimum Idle If this percentage of free CPU time is not maintained within the
ControlWave CPU, an overload exception is reported. The default value is
5%.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

28 Application Parameters

Memory:

Prog RAM In kilobytes, this is the amount of memory reserved (at system start) for
storing the generated code for the ControlWave project. This value
should NOT be set significantly larger than the amount of memory
actually needed for the project, because any unused reserved memory
will be unavailable for data or other purposes. NOTE: If the system does
not have sufficient memory to hold the user requests, the requests will
be reduced proportionally. This defaults to 1024k in the ControlWave
and ControlWave MICRO, and 256k in the ControlWaveLP. This can range
from 10k to 1024k.

Data RAM This is the size of storage reserved for variables in kilobytes. This can
range from 10k to 1024k.This defaults to 256k in the ControlWave and
ControlWave MICRO, and 64k in the ControlWaveLP. NOTE: This amount
does not include historical data (audit/archive).

Retain RAM This is the size of storage space (in kilobytes) reserved at system start for
variables marked as ‘RETAIN’. The values of variables marked as ‘RETAIN’
are preserved in the event of a warm start download. This can range from
0k to 1024k, and defaults to 256k in the ControlWave and ControlWave
MICRO, and 64k in the ControlWaveLP.

Redundancy Transfer
Unit A Addr This must be an IP address corresponding to an Ethernet port on the A

controller in a redundant pair.

Unit B Addr This must be an IP address corresponding to an Ethernet port on the B
controller in a redundant pair.

Variations when using the ControlWave I/O Expansion Rack

For the ControlWave I/O Expansion Rack, the 'Memory' and 'CPU' sections of the Application
Parameters page are omitted, and a 'Timeouts' section is added.

The "Power Fail Timeout" determines how outputs of the I/O rack should be set when power is
restored following a power failure, or under certain circumstances, during a restart following a
CPU watchdog.

"Host Comm Loss Timeout" specifies how the outputs of the I/O Rack should be affected in the
event of a communication failure with the host ControlWave controller.

For a full description of these options, please see the ControlWave I/O Expansion Rack Quick
Setup Guide (part number D301423X012).

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Archive Configuration 29

Archive Configuration

What Are Archive Files?
Archive information is saved at the ControlWave-series controller in structures called
archive files. The archive files are essentially tables of data stored in rows and columns.
Each row has a timestamp, and sequence numbers, associated with it, and each column is
associated with a process variable. A row of process variable values, along with its
associated timestamp and sequence numbers is called a record.

A record constitutes a 'snapshot' of the values for those variables at that particular time.
Depending upon how you configure the archive file, the values saved may be just
instantaneous values, or they may be the result of calculations performed on data received
during the collection interval (integration, averaging, etc.)

Data is stored in the archive file either at a specified interval (periodic storage) or based on
settings in the ARCHIVE function block.

Some Background - Archive Calculations (Weight Factors, Intervals, and Samples)

Optionally, calculations can be performed on the data prior to its being saved in the
archive file. These calculations could be averaging, integration, etc.

The calculations performed using the Archive system are particularly useful in fluid flow
applications, for fluids in either the gas or liquid state. The calculations are intended to
assist in meeting the requirements of the American Petroleum Institute Manual of
Measurement Standards, Chapter 21, by supporting some of the averaging techniques
described in that document. If desired, these same calculations may be utilized for other
applications (besides the fluid flow applications for which they were originally intended).

In the following explanations some mathematical terminology is used that is directly
connected to the execution rate of the ARCHIVE function block. The Archive will have been
declared to have a periodic type and an Interval of 1 day or less. Within this Periodic
Interval the ARCHIVE function block will be executed at an execution interval established
by the task execution.

Some of the calculations make use of a “Weight factor”. The weight factors are set as input
parameters of the ARCHIVE function block, and can be any REAL number values. The
weight factors are used to control whether a sample is used in the calculation performed.
The weight factors are typically used to control the number of samples included in the
averaging calculations, so that, for example, Pressure or Temperature is only averaged
when the weight factors indicate that it is valid to use the samples.

The averaging methods also provide an automatic switch from one type of averaging to
another anytime after the start of a periodic interval. If a periodic interval begins with
Weight Factor2 in a non-zero state then throughout the interval Weight Factor2 controls
the averaging – samples are only used if Weight Factor2 is not zero. If the Interval begins
with Weight Factor2 already zero then each sample is weighted using Weight Factor1, but

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

30 Archive Configuration

if at any time during the interval Weight Factor2 becomes non-zero, all samples taken with
Weight Factor1 are discarded and a new average is started under control of Weight
Factor2. For the rest of the interval Weight Factor2 is in control and Weight Factor1 has no
more effect.

For example, if Weight Factor1 represents the delta time between ARCHIVE function block
executions, and Weight Factor2 represents the delta flow time between ARCHIVE function
block executions, then for those archive intervals where no flow time occurred, the result
is a straight time average. For those archive intervals where flow time has occurred, the
result is a flow time average.

Defining a Straight-time Average Archive

To set up a simple straight-time averaged archive, there are two methods available:

Method 1: Set Weight Factor1 to the delta time between ARCHIVE function block
executions each time the ARCHIVE function block is executed. (Note: The
delta time between each execution of the ARCHIVE function block must be
dynamically calculated by user-created logic in your program. Do NOT simply
enter a constant based on the rate of execution of the task, because that will
not account for any slippage in execution time.)

Method 2: Set Weight Factor1 to 1.0 each time the ARCHIVE function block is executed.
This provides an average based on the number of samples taken. (This is
equivalent to a time-based average.)

Archive configuration involves four basic steps:
1. Define the archive file(s) using the Flash Configuration Utility. This includes

specifying the number of rows (records) and columns, the types of calculations
performed, etc.

2. Identify in ControlWave Designer, every variable you want to have archived. This is
accomplished by including these variables in a LIST function block.

3. Create another LIST to hold the current archive record. (THIS IS OPTIONAL). This
allows the current archive record data to be used within your ControlWave project; if
you don’t want to do this, skip this step.

4. Configure an ARCHIVE function block in your ControlWave project. This function
must be executed frequently enough to collect an adequate number of samples.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Archive Configuration 31

What can be done with the data from the Archive File(s)?
Once archiving has been fully configured, and the ControlWave project has been
downloaded and has been running, archive data will be collected, and the Archive File(s)
will be populated with data. There are various methods for extracting this Archive data:

 The Archive Collection web page control may be used to display archive data. This web
page is included in the standard Web_BSI set, and allows you to display the archive
data in Microsoft® Internet Explorer.

 The OpenBSI DataView utility can display archive data on the screen of your OpenBSI
Workstation.

 The PocketBSI Data Viewer can display archive data on the PocketBSI AccessPack.

 The OpenBSI Harvester can collect the archive data, and store it in files on the OpenBSI
Workstation, which the OpenBSI Data File Conversion Utility can export to human
machine interface (HMI) packages such as OpenEnterprise.

Step 1. Define Archive Files(s) in the Flash Configuration
Utility

The individual columns of the archive file, and various parameters that define how
archiving is performed, are specified in the Archive page of the Flash Configuration Utility.
Changes made in the Archive page will NOT take effect until the unit has been powered off
and back on.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

32 Archive Configuration

To begin defining an Archive File, click on the [New] button, then complete the fields as
discussed, below:

File Definition

Number This is a unique ID number for this Archive File. It can range from 1 to 32767.

Name This is the archive file name. Up to 8 alphanumeric characters, beginning with
a letter, can be used.

Records This determines how many rows of 'snapshot' data will be retained in this
Archive File. For example, if you want to save 24 rows (records) enter 24 here.
The upper limit on the number of records is based on the size of each record.
The maximum size of an Archive File is fixed. This means that as the size of the
archive record increases (based on number of columns, types of data, etc.)
fewer records can be saved in the Archive File. NOTE: Each archive record
includes 14 bytes to store the timestamp and sequence numbers, in addition
to the bytes used to store the actual column data. Because the sizing of
Archive Files can change based on firmware revision, consult the online help
files for archives in ControlWave Designer. Also, there is a
Histsize_Calculator.xls file included with OpenBSI if you need more detailed
information on Archive File size.

Columns This is the number of columns in the Archive File. Each column corresponds to
data for a particular variable. The number of columns can range from 1 to 64.
Note: OpenBSI programs such as DataView and Harvester cannot collect
archive records larger than 220 bytes. For all floating point (REAL) data, this
means no more than 53 columns should be specified.

Location

Flash When selected, all Archive records will be stored in FLASH memory. FLASH
memory is preserved in the event the ControlWave unit loses power, or if the
unit's backup battery fails.

RAM When selected, all Archive records will be stored in static RAM. If the
ControlWave unit is reset, for any reason, Archive records will be preserved
only so long as the unit's backup battery continues to operate, or the user
does not perform a system cold start. See the Memory Usage section for a
discussion of system cold starts.

Interval

1 Min, 5 Min,
15 Min, 1 Hour,
1 Day

Only applies when the "Timestamp Mode" is "Periodic". This specifies how often
Archive records 'snapshots' should be stored.

Mode

At Store When "At Store" is chosen, the timestamp assigned to this archive record is

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Archive Configuration 33

the time at which the record is stored.

Start of
Period

When "Start of Period" is chosen, the timestamp assigned to this archive
record is the time at the beginning of the interval.

Type

Non-
periodic

When this is chosen, archive records are stored when the ARCHIVE function
block executes, if the criteria determined by the iiMode terminal is met.

Periodic When this is chosen, archive records are stored when the ARCHIVE function
block executes, and the chosen interval (either 1 minute, 5 minute, 15
minute, 1 hour, 1 day) has expired.

Column Definitions

To begin defining a column, click on the [Add] button. The Archive Column Definition
dialog box will appear. Descriptions of the various fields are included, below; click on [OK]
when finished defining the column, and you will return to the Archive page of the Flash
Configuration Utility.

If you need to change the definition of a column after you’ve clicked on [OK], click on the
column number, then click on the [Modify] button, and the Archive Column Definition
dialog box will be recalled.

If you need to delete a column you have defined, click on the number for the column, then
click on the [Remove] button.

Title Is a description for the column. It can range from 1 to 16 characters.

Characteristics Determines the type of calculation to be performed on the collected data for
this variable. Choose from the list box.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

34 Archive Configuration

In these formulas, the following notation is used:

is the time at which the ARCHIVE function block executes and reads or
'samples' the variable.

is the number of module executions or samples that can occur within the
defined Periodic Interval e.g., with a one second Task execution and a one
Hour Periodic Interval “I” will be 3600.

The term 'Wfactor' used in these formulas refers to the Weight Factor. Weight
Factors are specified in the ARCHIVE function block.

The choices are:

Avg for time when Wfactor2 !=0

This performs a simple sum and divide averaging calculation, but a weight
factor is applied to each sample as it is read. The weight factor is set by other
program logic, as required, to control the averaging done by the function
block; it would typically be used to ensure that the variable being read is only
averaged while another condition is valid. The equation is shown below:

Arith Mean Over Wfactor1

Perform a simple sum and divide average with each sample weighted by
WeightFactor1. See the equation below:

Avg of Sqrt(var) for time when Wfactor2 !=0

During the periodic interval, sample the variable, take the square root of the
sample, multiply it by WeightFactor2, and sum it. At the end of the interval,

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Archive Configuration 35

calculate the average square root and store the result in the Archive. See the
equation, below:

Sqr of (Avg of sqrt(var))

During the periodic interval, sample the variable, take the square root of the
sample, multiply it by WeightFactor2 and sum it. At the end of the interval,
calculate the average square root, then square it and store the result in the
archive. The equation is shown below:

Note: The result is zero if Weight Factor 2 is zero for the entire interval.

Instantaneous Place value in log

No calculation performed. At the end of the periodic interval, simply store the
current value of the variable in the archive.

Min observed value for period

At the end of the periodic interval, store the lowest value of the variable among all
values collected during this interval.

Max observed value from period

At the end of the periodic interval, store the highest value of the variable among
all values collected during this interval.

Place value in log, and 0 signal

At the end of the periodic interval, store the current value of the variable, and reset

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

36 Archive Configuration

the variable to zero.

Integration over Wfactor2

Sum the samples taken during the periodic interval after multiplying each
sample by WeightFactor 2. Perform the following calculation:

Data Type Choose any one of the data types. The default is Real. The other choices are:
Boolean, Short Int, Int, Double Int, Long Int, Bit String-Byte, Bit String-Word,
Bit-String-Dword.

Precision Specify the numerical precision in which values should be displayed.

Deleting An Existing Archive File Definition

To delete an existing archive file definition, which will also delete the columns and records
of the archive file, click on the file name in the list box in the left part of the page, then click
on the [Delete] button. NOTE: The actual file deletion does not take place until the
ControlWave-series unit is powered off, and then re-started.

Working with String-Based Archives

See the ControlWave Designer online help for instructions on configuring string-based
archives.

Step 2. In Your ControlWave Designer Project, Identify the
variables you want to archive in the Archive List

All variables for which you would like to archive data must be included in the Archive List.

Important

The variables in the Archive List must have a direct one-for-one correspondence with the
columns of the archive file, as defined in the Archive page of the Flash Configuration Utility
(Step 1). For example, the first variable in the archive list corresponds with column 1 of the
archive file, the second variable in the archive list corresponds with column 2 of the archive
file, etc.

Also note that the timestamp, global sequence number, and archive sequence number
which are included at the beginning of every archive record, do not count as columns
when specifying this correspondence.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Archive Configuration 37

To create the Archive List, insert one of the LIST function blocks (LIST010, LIST020,
LIST030, LIST050, or LIST100) in your ControlWave Designer program. The choice of which
LIST function block is determined by how many variables you want to include in the
Archive List; for example, if you want to include 37 variables in your Archive List, you
should choose LIST050, which can hold up to 50 variables; if you want to include 63
variables in your Archive List, you should choose LIST100, since it can hold up to 100
variables.

Note: Archive files cannot hold more than 64
columns of data, therefore, your archive list
should not include more than 64 variables.
The figure, at right, shows an Archive List with
5 variables.

You should insert the ARCHIVE function block
in one of your POUs. The POU you choose
must be part of a task which executes faster
than the rate at which you want your archive
calculations and storage to occur, since
archive calculations and storage only occur
when the ARCHIVE function block is executed.

Notes:

 Typically, you would want to define control logic to only execute the list once. For
information on how to do this, see the Conditional Logic section of this manual.

 All variables in your Archive List must be marked as ‘PDD’ in order to be collected by
external archive collection programs such as DataView, or the Harvester.

 The variables you want to include in the Archive List must reside in the same POU as
the LIST function block used for the Archive List, or they must be global variables.

Step 3. Create an Output List for Accessing the Most Recent
Archive Record (OPTIONAL)

Optionally, you can create a list
which will hold a specified Archive
record. This allows the specified
archive record data to be accessible
within your ControlWave program.

The figure at right shows the Output
list. The table, below, details the

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

38 Archive Configuration

data type requirements of the output list used in this example.

Parameter
Name

Suggested Variable
Name

Variable Type Value Notes

iiListNumber (no variable, entered as a
constant)

INT 8 The list number (must be
entered on the iiOutList
parameter of the ARCHIVE
function block)

odiStatus LIST8_STAT DINT None OPTIONAL – This reports status
values regarding the Output
List. Negative values indicate
errors.

ianyElement1 TIMESTAMP REAL None The timestamp associated with
the archive record.

ianyElement2 ARCHSEQNUM DINT None The local archive sequence
number associated with the
archive record.

ianyElement3 GLOBALSEQNUM DINT None The global sequence number
associated with the archive
record.

ianyElement4 to
ianyElement n

(desired variable names) Match the data
type to the
corres-ponding
variable in the
Archive List

None These elements of the list
contain the values of the
associated process variables for
the archive record.

Step 4. Configure the ARCHIVE Function Block
Insert an ARCHIVE function block in one of your POUs of your project. The POU you choose
must be part of a task which executes fast enough to produce valid archive calculations. If,
for example, you want to calculate average flows for the past hour, for all variables in the
Archive List, you must have executed the ARCHIVE function block enough times to obtain
a valid average, based on your requirements. This might be once a minute, once every 10
seconds, etc. So, even though the calculation is stored hourly, the ARCHIVE function block
must be executed faster.

When the ARCHIVE function block executes, it performs any intermediate calculations,
and then only stores the archive data if the specified interval has been reached, or if on-
demand archiving has been specified (MODE 2 or 3). Once the most recent archive data
has been stored, it will be accessible in the Output List (if the Output List was configured).

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Archive Configuration 39

The table, below, summarizes the configuration details for the parameters in the ARCHIVE
function block for this particular example. More detailed information on the ARCHIVE
function block is included in the on-line help.

Parameter Name Variable Name Variable Type Value Notes
iiArchiveNumber (in this case we entered no

variable, we used a constant
instead)

INT 1 This must match the archive
number defined for the
archive file on the Archive
page of the Flash
Configuration Utility.

iiArchiveList (no variable, entered as a
constant)

INT 7 This must match the
iiListNumber of the Archive
List defined in Step 2.

iiOutList (no variable, entered as a
constant)

INT 8 This must match the
iiListNumber of the Output
List defined in Step 3.

isiMode ARCH1_MODE SINT 1 In this particular mode (Mode
1), archiving occurs at the
interval specified for the
archive file on the Archive
page of the Flash
Configuration Utility. This is
the default mode; for
information about other
modes, see the on-line help.

isiContractHour CONTRACT_HOUR SINT 8 If interval configured on the
web page is daily, this is the
contract hour at which the
daily collection should occur.
This can range from 0 to 23.

irWFactor1 WF1 REAL None This weight factor is used in
certain averaging
calculations. This is discussed
earlier in this section.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

40 Archive Configuration

Parameter Name Variable Name Variable Type Value Notes
irWFactor2 WF2 REAL None This weight factor is used in

certain averaging
calculations. This is discussed
earlier in this section..

idiSequenceIndex SEQ_INDEX DINT None This is only used in Mode 5 or
6. The user can specify the
sequence number of a
particular record, and its data
will be reported in the output
list (Mode 5), or the user can
choose an indexed (fixed)
position in the Archive file
(Mode 6), and the data from
that record will be reported in
the output list. See the on-
line help for the ARCHIVE
function block for more info.

odiStatus ARCHIVE1_STAT DINT None OPTIONAL – This reports
status values regarding the
execution of the ARCHIVE
function block. Negative
values indicate errors.

ouiNumRecords ARCH_REC_TOTAL UINT None This is the total number of
archive records currently in
the archive file.

ouiOldestRecord OLDEST_ARCH_SEQNUM UINT None OPTIONAL – This reports the
Local (Archive) Sequence
number of the oldest record
in the archive file.

ouiNewestRecord NEWEST_ARCH_SEQNUM UINT None OPTIONAL – This reports the
Local (Audit) Sequence
number of the newest record
in the archive file.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Array Configuration 41

Array Configuration
Instead of storing data exclusively in individual variables, you may find it more convenient,
for some applications, to store some of the data in tabular form, such as in a data array. A
data array is really variables which are part of a more complex structure. The structure is
organized in rows and columns. It must be defined in the "Data Types" portion of the
project tree, because it is considered to be a user-defined data type.

Arrays are most easily manipulated in POUs defined in the Structured Text (ST) language.

Defining an Array Data Type

Let's say, for example, that we wanted to save 3 temperature values (of type REAL), every
hour, for an entire day. We need to define a data type for the columns of the array (which is
type TEMPS), and an array of rows (which is type TODAYS_TEMPS). The 3 column by 24
row array is defined by entering the following in the "Data Types" section of the project
tree:

TYPE

 TEMPS : ARRAY[1..3] OF REAL;

 TODAYS_TEMPS : ARRAY[1..24] OF TEMPS;

END_TYPE

Important

You should define this data type in your own data type worksheet. Do NOT use the
SYS_VAR_WZ_TYPES sheet, because if you subsequently change your system variables,
any data types you add to that sheet would be overwritten by the changes. To add your
own data type worksheet, right-click on the ‘Datatypes’ item in the project tree, then
choose “Insert Datatypes” from the pop-up menus, then supply a name for the
worksheet.

Creating an Array Using Your User-Defined Type

On one of your variable worksheets, create a variable using your newly defined data type.
The text, below, creates an array called WEDNESDAY, which uses the data type we just
defined.

VAR_EXTERNAL (*AUTOINSERT*)

 WEDNESDAY :TODAYS_TEMPS;

END_VAR

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

42 Array Configuration

Using the Array

In your structured text POU, you can assign values to elements of your array. Note that in
the text shown, T1_TEMP, T2_TEMP, and T3_TEMP MUST be variables of type REAL, since
each cell of the WEDNESDAY array holds a REAL value.

WEDNESDAY[1][1] :=T1_TEMP;

WEDNESDAY[1][2] :=T2_TEMP;

WEDNESDAY[1][3] :=T3_TEMP;

Making the Array Accessible to OpenBSI Collection Programs

In ControlWave Designer, data arrays are defined by a name. In the OpenBSI Utilities such
as DataView, the Data Collector, and the Scheduler, however, data arrays are referred to
by a number, since in Network 3000-series products, arrays only have numbers, not
names.

To collect arrays from a ControlWave controller, using OpenBSI, the named array must be
assigned a number using the REG_ARRAY function block. In addition, the array variable
must be marked "PDD".

For this example, the following table details the usage of each parameter in the
REG_ARRAY function block:

Parameter Name Variable Name Variable Type Value Notes
arrayDescriptor WEDNESDAY User-defined

array type, in
this case
TODAYS_TEMPS

None Indicates the name of your array,
which is of some data type you
defined.

iiArrayNumber 1 (just entered a constant
here)

INT 1 Indicates the array number you are
assigning to your array. When you
collect this array using OpenBSI,
this is the number which you use
to refer to it in the OpenBSI
utilities.

odiStatus ARRAY_1_STAT DINT None Reports status values regarding
the REG_ARRAY function block.
Negative values indicate errors.

ouiNumRows ARRAY_1_NUMROWS UINT None Indicates the number of rows in
this array to be reported.

ouiNumColumns ARRAY_1_NUMCOLS UINT None Indicates the number of columns
in this array to be reported.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Audit Configuration 43

Audit Configuration
Audit logging is one of the historical storage capabilities of the ControlWave-series
controllers. It allows a record to be kept of significant events such as alarms, operator
setpoint changes, operator logins, and system events.

There are three basic steps to configuration of Audit logging:

1. Define audit parameters on the ‘Audit’ page of the Flash Configuration Utility.

2. Define an Event list in your ControlWave project that lists non-alarm variables you
want to monitor for changes.

3. Configure the AUDIT function block and execute it at the desired frequency.

What can be done with the data from the AUDIT data once it has been logged?

Once audit logging has been fully configured, and the ControlWave project has been
downloaded and has been running, audit data will be collected, as events and alarms
occur. There are various methods for extracting the Audit data:

 The Audit Collection web page control may be used to display audit data. This web
page is included in the standard Web_BSI set, and allows you to display the audit data
in Microsoft® Internet Explorer.

 The OpenBSI DataView utility can display audit data on the screen of your OpenBSI
Workstation.

 The OpenBSI Harvester can collect the audit data, and store it in files on the OpenBSI
Workstation, which the OpenBSI Data File Conversion Utility can export to human
machine interface (HMI) packages such as OpenEnterprise.

Step 1. Set parameters in the Flash Configuration Utility
Configuration parameters for audit logging are set on the Audit page of the Flash
Configuration Utility.

Note:

Changes made in the Audit page will NOT take effect until the unit has been powered off
and back on.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

44 Audit Configuration

Storage Location

Flash When selected, all Audit records will be stored in FLASH memory. FLASH
memory is preserved in the event the ControlWave-series unit loses power, or
if the unit's backup battery fails.

RAM When selected, all Audit records will be stored in static RAM. If the
ControlWave-series unit is reset, for any reason, Audit records will be
preserved only so long as the unit's backup battery continues to operate, or
the user does not perform a system cold start. See the ‘Memory Usage’ section
for a discussion of system cold starts.

Logging Type

Continuous When Logging Type is specified as ‘Continuous’, if the storage area for audit
records becomes full, the oldest records will be erased (overwritten) as new
records come in.

Stop on Full When Logging Type is specified as ‘Stop on Full’, if the storage area for audit
records becomes full, all logging will stop. NOTE: This does not have any
impact on the variables themselves; they will continue to change, only their
changes will not be logged to the Audit system.

Sizing

Number of
Events

Specifies the number of events to be logged. This value can range from 0
to 584. 0 is the default, which means that no events will be logged.

Number of
Alarms

Specifies the number of alarms to be logged. This value can range from
0 to 584. 0 is the default, which means that no alarms will be logged.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Audit Configuration 45

Number of
Records in the
Output Buffer
[% of
corresponding
log]

When "Flash" is chosen as the storage location for the Audit Trail records,
the Audit system cannot write data into the Alarm or Event logs when a
flash log becomes full. Should alarm(s) or event(s) be generated during
that time, it must be temporarily stored in the Output Buffer, until such
time as the new useful records can be written into an Alarm or Event log
in flash. The Output Buffer size specifies (as a percentage of the log file
size) how much temporary storage is available during such operations.
For example, if “Number of Alarms” is 300, and the “Number of Records
in the Output Buffer” is set to 20, it means that up to 20% of 300 alarms
(or 60 alarms) can be stored in the output buffer, before alarm data
could be lost. If the "Number of Alarms" is 300 and "Number of Records
in the Output Buffer" is set to 100, it means that 100% of the 300 alarms
(or 300 alarms) can be stored in the output buffer, before alarm data
could be lost. The default is 100.

Port

Logging
Master
Port

Defines the only port which is capable of deleting the audit records
from the audit logs. The Logging Master Port is only meaningful when
the recording mode is set to “Stop on Full”. The port number for the
logging master port can be one of the following values:

Value Port

0 Serial Port 1

1 Serial Port 2

2 Serial Port 3

3 Serial Port 4

4 Serial Port 5

5 Serial Port 6

6 Serial Port 7

7 Serial Port 8

8 Serial Port 9

9 Serial Port 10

10 Serial Port 11

11-14 currently unused

IP Port (any IP port on the unit)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

46 Audit Configuration

Step 2. In ControlWave Designer, identify Variables for
which you want to maintain Audit Logging

If there are several non-alarm variables for which you would like to maintain Audit logging,
they must be included in the Event List. This is a list of variables which is scanned for any
value changes, every time the AUDIT function block is executed.

Note

If you have a small number of event variables, instead of using the Event List, you can, if
you choose, configure a separate AUDIT function block for each of the variables, and then
assign each variable to the ianyEventVar parameter of its associated AUDIT function block.

Important

 We strongly recommend you do NOT include in the Event List any variables tied to
process I/O points or calculated variables which change frequently, because several
minor fluctuations of a process I/O variable or calculated variable would generate
multiple event records, thereby quickly filling up your event log. The Event List should
be reserved for operator setpoints, configuration parameters, and other variables
which change infrequently.

 Alarm variables are automatically included in the Audit alarm log.The Audit alarm log,
however, only includes the alarm messages generated when a variable enters its 'in-
alarm' state, and when it returns to normal. Intermediate value changes to the alarm
are NOT included in the alarm log. If you need to log this information, for example, for
an operator setpoint variable, which is also configured as an alarm, you must include
that variable in the event list. Again, however, this should only be done if the alarm
changes infrequently. If you do not need this intermediate information, we
recommend you do NOT include alarm variables in the Event List, since 'in alarm' and
'return to normal' messages are always stored in the Audit alarm log.

 When the Audit alarm log and event log become full, they can be configured either to
overwrite the oldest records when new data comes in, or to stop logging completely
until one or more audit records are deleted by the user. You should configure the
OpenBSI Harvester to periodically extract audit data and export it to your HMI
software; to help prevent your audit logs from filling up.

 DO NOT make on-line changes to the contents of the Event List as this will cause
discrepancies in detection of value changes. If you want to change the Event List,
make the changes off-line, then download the new project and execute a cold start of
the unit.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Audit Configuration 47

To create the Event List, insert one of the LIST function blocks (LIST010, LIST020, LIST030,
LIST050, or LIST100) in your ControlWave Designer program.

The choice of which LIST function block
is determined by how many variables
you want to include in the Event List;
for example, if you want to include 15
variables in your Event List, you should
choose LIST020, which can hold up to
20 variables; if you want to include 63
variables in your Event List, you should
choose LIST100, since it can hold up to
100 variables.

The figure, at right, shows an Event List
with 9 variables.

If larger lists are required, you can chain multiple LIST function blocks together by simply
specifying the same iiListNumber on each one.

Notes:

 All variables in your Event List must be marked as ‘PDD’ in order to be collected by
external audit collection programs such as DataView, or the Harvester.

 The variables you want to include in the Event List must reside in the same POU as the
LIST function block used for the Event List, or they must be global variables.

 Typically, you would want to define control logic to only execute the list once. See the
‘Conditional Logic’ section for more information on this subject.

Step 3. Configure an AUDIT Function Block
Insert an AUDIT function block into one of your POUs. The POU you choose must be part of
a task which executes fast enough to handle your Audit logging requirements, since the
Audit logging only occurs when the AUDIT function block is executed.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

48 Audit Configuration

The following table summarizes the configuration details for the parameters in the AUDIT
function block for this particular example. More detailed information on the AUDIT
function block is included in the online help.

Parameter Name Suggested Variable Name Variable Type Value Notes
ibDisable AUDIT_LOGGING_DISABLE BOOL FALSE For disabling/ enabling

audit logging.

iiAuditList here, we have entered a constant
of ‘5’ since the LIST function
block we configured in Step 2 is
numbered ‘5’

INT 5 Identifies the iiListNumber
of the LIST function block
we are using.

ianyEventVar left unused – only applies when
there is no Event List. Used only
when a single variable is to be
monitored in the event log.

REAL, SINT, INT, or
DINT

none This parameter is only used
if there is only one variable
for which you want to
maintain event logging.
That single variable is
identified by ianyEventVar.

odiStatus AUDIT_STATUS DINT none OPTIONAL – This reports
status values regarding the
execution of the AUDIT
function block. Negative
values indicate errors.

ouiNumEvents NUM_EVENTS UINT none OPTIONAL – This reports
the number of events in the
event log.

ouiOldestEvent OLDEST_EVENT_SEQ_NUM UINT none OPTIONAL - This reports the
Local (Audit) Sequence
number of the oldest event
in the event log.

ouiNewestEvent NEWEST_EVENT_SEQ_NUM UINT none OPTIONAL - This reports the
Local (Audit) Sequence
number of the newest
event in the event log.

ouiNumAlarms NUM_ALARMS UINT none OPTIONAL – This reports
the number of alarms in the
alarm log.

ouiOldestAlarm OLDEST_ALARM_SEQ_NUM UINT none OPTIONAL - This reports the
Local (Audit) Sequence
number of the oldest alarm
in the alarm log.

ouiNewestAlarm NEWEST_ALARM_SEQ_NUM UINT none OPTIONAL - This reports the
Local (Audit) Sequence
number of the newest
alarm in the alarm log.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

BSAP Addressing and Networks 49

BSAP Addressing and Networks

What is BSAP?
The Bristol Synchronous / Asynchronous Protocol (BSAP) is used for communication within
ControlWave and Network 3000 controller networks. BSAP has been used in a wide variety
of applications, and is particularly suited to networks where several controllers are
connected via a multi-drop cable. It has also been used successfully with several different
modes of data transmission including direct cable connections, dial-up modems, radios
and satellite links.

At the top of a BSAP network is a host computer, called the network master. The network
master is usually a PC workstation running human-machine interface (HMI) or supervisory
control and data acquisition (SCADA) software such as Emerson OpenEnterprise™
software, or a third-party HMI package such as Intellution® FIX® or Iconics Genesis™. The
HMI software communicates using the communications driver provided in the Open
Bristol System Interface (OpenBSI) software. The HMI/SCADA software at the Network
Master allows the operator to view what is going on in the network through graphical
displays, trends, or printed logs and reports.

Note

Pseudo master devices can be connected to lower levels of the network to view data.
These are similar to Network Masters, however, they are not considered to be “nodes” in
the network, and so do NOT appear in the NETDEF files.

Below the Network Master are the remote process controllers.

Network Master PC
running Open BSI
and HMI/SCADA
softwareLevel 0

Level 1

Level 2

Level 3

Radio connection
Cable or dial-up
connections

Network 3000 Flow
computers/correctors

Network 3000
 controller

Network 3000
 controller

Network 3000
 controller

Pseudo Master Device
running UOI or Open BSI

ControlWave
 controller

ControlWave
 controller

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

50 BSAP Addressing and Networks

The controllers in the network are organized into a hierarchical structure of one or more
levels. A BSAP network can support up to six levels (not including the Network Master
referred to as level 0.) The number of levels required varies depending upon the size and
scope of your project.

Each controller (node) serves as a master to the nodes connected to it on the level
immediately below, and as a slave to the node connected to it on the level immediately
above. A node can have many slaves but only one master. Each master polls its slaves for
data, which it retains in memory until it is polled by its master. In this way, data flows from
slave to master, slave to master, etc. until it reaches the Network Master, where it is made
accessible to the operator via HMI software.

Note

Initially, the ControlWave series could only serve as BSAP slave devices. Beginning with
ControlWave firmware release CWP02.0, ControlWave-series controllers may also serve as
BSAP master devices.

The user assigns each controller under a given master node a unique 7-bit local address
(from 1 to 127). OpenBSI will automatically assign the controller a unique 15-bit global
address (GLAD), based on its location in the network. Addresses and network structure are
specified in the Network Definition (NETDEF) files generated by the OpenBSI NetView
program. They must also be specified in the controller; either by switch settings (for
certain Network 3000 controllers) or by parameters stored in FLASH memory (for
ControlWave controllers, and certain Network 3000 controllers).

The network information stored internally by a node is called its Node Routing Table (NRT).
The NRT is updated whenever a valid time synchronization message (TS/NRT) message is
received from the master node. Typically, this occurs when the Master is downloaded, but
TS/NRT transmission can also be forced by the user via a menu selection in NetView.

The level of a given controller specifies how many intervening communication lines there
are between it, and the network master. The first level controllers are called top-level
nodes because data must travel over only 1 communication line to reach the Network
Master. A communication line can consist of a direct cable connection, a radio or satellite
link, or a dial-up modem connection. Each communication line is configured
independently with its own baud rate, poll period, timeout, etc.

From a given node, BSAP client/server communication (transferring array or list data) is
only possible to its Master node, any connected slave nodes, and any siblings (nodes on
the same level which share the same master). If communication is required to any node
not in these categories, it must be routed up using client / server function blocks
(Master/Slave modules in Network 3000) at each individual level of the network, until it
reaches either the Network Master, or a Master which is a sibling to another Master. The
message can then be routed down, again, in the same way, until it reaches the desired
node.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

BSAP Addressing and Networks 51

Within OpenBSI's NetView, the ControlWave can be added to an existing BSAP network in
the same way as you would add any other controller.

Adding A ControlWave to an OpenBSI BSAP Network in the
RTU Wizard

Simply choose the icon for the network to which you want to add the ControlWave, right-
click on the icon, and choose AddRTU to call up the RTU Wizard.

In the RTU Wizard, be sure you specify the appropriate node type (such as ControlWave,
CWave_LP or CWave_Micro), and also specify the full path of the ControlWave project.

In addition, you can optionally specify the startup web page for the controller. Because this
is a BSAP network, the startup web page must reside on the PC, and you must specify its
full path. Web pages residing within the ControlWave are not accessible within a BSAP
network so the Access startup page from RTU check box is NOT available.

You will also need to specify a local address for the ControlWave. The local address must
match whatever local address you defined for the ControlWave on the 'Soft Switches' page
of the Flash Configuration Utility. For information on configuring soft switches, see the
discussion of the Flash Configuration Utility in Chapter 5 of the OpenBSI Utilities Manual
(part D301414X012).

Full details on creating a BSAP network, and adding controllers to OpenBSI networks are
included in Chapter 6 of the OpenBSI Utilities Manual (part D301414X012).

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

52 BSAP Addressing and Networks

Tuning the BSAP Network

Instructions on tuning a BSAP network and troubleshooting communication problems are
included in Chapter 14 of the OpenBSI Utilities Manual (part D301414X012). Additional
information on BSAP networks is included in the Network 3000 Communications
Configuration Guide (part D301413X012). For developers requiring information on the
internal structure of BSAP networks, please the Network 3000 Communications Application
Programmer’s Reference, (part D301401X012).

Setting the BSAP Local Address and EBSAP Group
The BSAP local address, and the expanded BSAP (EBSAP) group number are set on the ‘Soft
Switches’ page of the Flash Configuration Utility.

BSAP Local Address

Every controller in a BSAP network has a “Local address” that ranges from 1 to 127, which
is entered on the ‘Soft Switches’ page of the Flash Configuration Utility. This address
identifies the controller’s location within its level in the network, and is used for network
routing. The local address entered here must match the local address specified for the RTU
(controller) in OpenBSI’s NetView program.

EBSAP Group Number

If your network uses expanded BSAP, in which more than 127 nodes exist on the same
BSAP network level, each controller is assigned to a particular expanded node addressing
group. The group is identified by an “EBSAP Group” number, which is entered on the ‘Soft
Switches’ page of the Flash Configuration Utility. For more information on EBSAP, please
refer to the Expanded BSAP (EBSAP) Communications section of this manual. If you are NOT
using Expanded node addressing (EBSAP) you MUST leave the “EBSAP Group” at 0.

For both the local address and EBSAP group number, changes will not take affect until after
you have clicked [Save to Rtu], and powered the controller off and then and back on.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

BSAP Addressing and Networks 53

What is Client/Server Communication?
If desired, you can configure CLIENT and SERVER function blocks to transfer data arrays or
lists from one controller to another.

A CLIENT function block requests array or list data from a SERVER function block in another
controller. The SERVER function block processes the request, and sends the array or list
data to the CLIENT.

Instructions for configuring the CLIENT / SERVER function blocks are included in the
ControlWave Designer online help.

BSAP - Underlying Technical Details (For ADVANCED USERS)
This sub-section summarizes various aspects of BSAP. For a full explanation of BSAP
messages, please see the Network 3000 Communications Application Programmer’s
Reference (part D301401X012).

Polling:

The polling function of the BSAP Master is cyclic. It is repeated at the rate specified by the
_P1_POLL_PER system variable, in seconds. During a polling cycle all slave nodes
belonging to the polling master are polled. If, for any reason, a complete pass cannot be
completed within this period the next polling cycle is started immediately after the end of
the current polling cycle. Only the nodes that are active, see _SLAVE_POLL_DIS, are
considered for polling.

Poll and Response Sequence:

The BSAP Master sends the poll message to its slaves. When a slave node receives a poll
message it takes one of the following actions:

1. It transmits an alarm message if one is waiting and the poll message has a flag that
indicates that the Master will accept the alarm messages (polling for alarm), or

2. It transmits a data response message if one is waiting, or

3. It transmits an Acknowledgement with No Data to send protocol message.

Data Message Routing:

Local Messages: The local messages are the ones generated by an application, such as a
BSAP Client/Server function block, in this node. Such messages arrive at the appropriate
BSAP Master after the application sends these messages and the message routing has
been completed. BSAP Master does not have to track such messages, as response
messages are destined for local applications. Applications are responsible for performing
the application response timeout.

Global Messages: The BSAP Slave may receive global messages that are addressed to the
slaves in the network below this node. The message recipient performs the routing on
these global messages and selects the appropriate Master for forwarding them to the

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

54 BSAP Addressing and Networks

target node. The BSAP Master transmits these messages to the target nodes. A tracking
structure is also created for each global message. If a response is not received to a tracked
global message within the passthrough timeout (_MSG_TIMEOUT) the tracking structure
is freed and any future response to that particular global message is discarded.

Response Messages:

The BSAP Master receives messages in response to the poll messages. It performs routing
on these messages and they are forwarded to the proper destinations, local applications,
BSAP Slave/Pseudo slaves, or Ethernet slaves.

Network Slave Port:

A ControlWave/ControlWaveLP port can have multiple slave ports which can be BSAP or IP.
Among all of these ports, however, only one can serve as the Network Slave Port.

The Network Slave Port is the default route for upward traffic to global address (GLAD) 0
(Network Master).

To specify which port will serve as the Network Slave Port, the user must set the
_SLAVE_PORT system variable to the port number.

TS/NRT Message:

Any Slave port can receive and process the Time Synchronization/Node Routing Table
(TS/NRT) message. Separate system variables are available per serial port (_Px_TS_DIS and
_Px_NRT_DIS) to allow each Slave to selectively determine whether it can or cannot
process the Time Synch and/or NRT portion of the TS/NRT message. A flag is also available
which causes the BSAP Slave to generate a request to its master for a TS/NRT message. All
TS/NRT messages are accepted that are different than the current TS/NRT in this node. As
the name implies the TS/NRT message is made up of two distinct entities:

1. TIME SYNCH: This part of the TS/NRT includes the complete system time and calendar
information. When the Time Synch is processed the system time/calendar information
is updated.

2. NRT: Node Routing Table - This part of the TS/NRT message is the heart of the BSAP
message routing mechanism.

The BSAP Master sends a TS/NRT to its slave nodes as a result of the following:

 A new valid NRT has been received at any of the slave ports

 A slave node explicitly requests a TS/NRT message.

 After completion of a global download of one of its slaves. (Sends only to the node
which received the download).

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

BSAP Master Port 55

BSAP Master Port
Starting with release CWP02.0, the ControlWave-series of controllers support the BSAP
Master mode of communication. The following functionality is possible:

 The ControlWave-series controller acts as the BSAP Master node to any ControlWave
or Network 3000 controller with a BSAP Slave Port or Pseudo Slave port. This makes it
possible for this node to be placed anywhere in the BSAP network, i.e. as a Network
master or at any other level in the BSAP network.

 Multiple master ports are possible in the same controller.

 Each Master port can be assigned any consecutive numbered slaves from 1 to 127; e.g.
slaves 1-10 to Master port 5, slaves 11-25 to Master port 2, and slaves 26-127 to
Master port 4. Note: This slightly differs from Network 3000 configuration rules.

 It is possible to have gaps in the assigned slave numbers, e.g. slaves 1-5 to Master port
4, slaves 14-17 to Master port 5, and slaves 50-55 to Master port 2.

 A particular slave number cannot be assigned to more than one Master port, e.g.
slaves 1-5 to Master port 2 and slaves 5-12 to Master port 4 would not work, because
slave 5 is assigned to two different ports.

 Local download to the ControlWave-series controller is NOT supported.

 Global download of any Network 3000 slave controllers at any layer below a Master
port is supported.

 BSAP Client/Server (similar to ACCOL II Peer-Peer) communication is supported.

 All BSAP global communication, including the pass through of report by exception
(RBE) messages from the network below is supported.

 Supports all BSAP Alarm message communication from the network below. Alarm
handling is as follows:

a. All global alarm report messages are logged with the local alarm system.

b. This ControlWave controller alarm system will forward these global alarm
messages, interspersed with the local alarm reports, to all active alarm
destinations.

c. If, at any time, the local alarm report pool becomes full the Master port will
stop polling for alarms from the slave nodes.

d. Alarm polling will be resumed as soon as space is freed up in the local alarm
report pool. Thus the loss of any alarm report from the slaves is
prevented.

e. The global alarm reports carry the global network address of the reporting
controller.

f. The ControlWave controller routes the global alarm acknowledgements,
like any other global message, to the designated RTU.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

56 BSAP Master Port

Configuring A BSAP Master Port
BSAP Master Port configuration is divided into two parts:

 Configuring Flash Parameters

 Configuring System Variables for the Port

Note:

This section assumes your controller is either already part of a BSAP network (if you are
using NetView), or that you established local communications using LocalView, and you
have configured a local address, etc.

Configuring Flash Parameters

Step 1. In the Flash Configuration Utility, click on the 'Ports' tab, and choose the
ControlWave port you want to configure (COM1, COM2, etc.) Then select 'BSAP
Master' as the "Mode".

Step 2. Enter the baud rate for the communication line in the "Baud Rate" field. 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200 are all valid. The default is
9600.

Step 3. Define the range of BSAP local addresses used by the slave nodes of this BSAP
master port. Enter the lower and upper ends of this range in the "Low Slave" and
"High Slave" fields. These numbers must be integers in the range 1 to 127.

Step 4. Click on the [Save to Rtu] button, and respond to any sign-on prompts.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

BSAP Master Port 57

Step 5. At this point, you can optionally make additional changes on other pages of the
Flash Configuration Utility. When you are finished, turn off the ControlWave,
then turn it back on, for the new port definition to come into effect.

Configuring System Variables

Within ControlWave Designer, start the System Variable Wizard by clicking on View
System Variable Wizard.

When the wizard has successfully established communications with ControlWave
Designer, and your project is open, do the following:

1. Choose the 'Port Detail' tab.

2. Select the "Enable" box for the port which will serve as the BSAP Master.

3. Click [Configuration].

4. In the Configuration page, select only the items shown in the following figure
and enter appropriate values. A discussion of the various items appears below:

First, check the box
of the port you want
to configure.

Next, click on the
“Configuration”
button for that port.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

58 BSAP Master Port

Poll Time
(_Px_POLL_PER)

 This is the frequency (in seconds) at which the Master
port will attempt to poll all of its slave nodes. For
example, if the poll time is set to 30 seconds, then
every 30 seconds, the Master port will attempt to poll
all of its slaves nodes for data. If the Master port cannot
complete a complete polling cycle within the specified
poll time, it will start the new polling cycle as soon as it
completes the current cycle.

Write Delay
(_Px_WRITE_DEL)

 This specifies a delay (in milliseconds) which must elapse
before this master port attempts to communicate with its

The items checked
are used with BSAP
Master ports.

Once you select an
item, you can
specify its value in
the corresponding
field.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

BSAP Master Port 59

slave. This is useful if the slave hardware has a slower CPU-type
(e.g. 186) and requires more turn-around time to respond to
messages from its master.

Write (CTS)
Timeout
(_Px_WRITE_T
MO)

 Since the Clear-To-Send (CTS) must be received in order to
transmit, this timeout (in milliseconds) is added to the
expected message transmission time at the effective Baud Rate
for this port. The message must be completely transmitted
before the resulting timeout. The default is dynamic and
calculated based on the current baud rate.

Retries
(_Px_RETRIES)

 This is the number of data link level retries if a transmission
fails. The default is 0, i.e. only 1 transmission attempt, and no
retries.

Data Link
Timeout
(_Px_TIMEOUT)

 This is the data link level response timeout. Message
transmission must start before expiration of this timeout.

Idle Polling
(_Px_IDLE_POLL
)

 RESERVED FOR FUTURE USE.

Click on [OK] when finished.

Optionally, you can then click on the [Information] button in the Port Detail page, to
specify variables used to store communication port statistics. (This page is not shown
here).

Once you have configured all Port Detail parameters, you need to set global port
parameters. Click on the 'Port - Globals' tab. Select only the items shown on the next page,
and enter appropriate values. A discussion of the various items follows:

Passthru Timeout
(_MSG_TIMEOUT)

 All messages passing through the controller are tracked. This timeout
applies to each passthrough message. If the value is <=0, the default
timeout of 30000 milliseconds (30 seconds) is assumed.

Master - Dead Slaves
(_SLAVE_DEAD)

 This references an array of 127 BOOL variables. Array elements
correspond to slave nodes of this Master Port. If a slave node is not
responding to poll messages from the Master Port, its corresponding
array element is set by the system to TRUE, and the node is declared
'dead'. This array is to report status.

Don't Poll Array
(_SLAVE_POLL_DIS)

 This references an array of 127 BOOL variables. Array elements
correspond to slave nodes of this Master Port. Any element set to
TRUE indicates that the corresponding slave node should NOT be
polled by the Master Port. The default is FALSE. The user can turn off
polling for a particular node by setting its corresponding array
element to TRUE.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

60 BSAP Master Port

Select these items
when you configure
a BSAP Master Port.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

BSAP Slave Port 61

BSAP Slave Port

Configuring a BSAP Slave Port
BSAP Slave Port configuration is divided up into two parts:

 Configuring Flash Parameters

 Configuring System Variables for the Port

Configuring Flash Parameters

Step 1. In the Flash Configuration Utility, click on the 'Ports' tab, and choose the
ControlWave serial port you want to configure (COM1, COM2, etc.) Then select
'BSAP Slave' as the "Mode".

Enter the baud rate for the communication line in the "Baud Rate" field. 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200 are all valid. The default is
9600.

Step2. Click on the [Save to Rtu] button, and respond to the sign-on prompts.

Step 3. Turn off the ControlWave, then turn it back on for the new port definition to come
into effect.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

62 BSAP Slave Port

Configuring System Variables

Within ControlWave Designer, start the System Variable Wizard by clicking on View
System Variable Wizard.

When the wizard has successfully established communications with ControlWave
Designer, and your project is open, do the following:

1. Choose the Port Detail tab.

2. Select the "Enable" box for the port which will serve as the BSAP Slave.

3. Click [Configuration].

First, check the box
of the port you want
to configure.

Next, click on the
“Configuration”
button for that port.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

BSAP Slave Port 63

4. In the Configuration page, select only the items shown in the figure above and enter
appropriate values. A discussion of the various items appears, below:

Poll Time
(_Px_POLL_PER)

 This defines a period of time (in seconds) during which this Slave node
expects to receive a poll message from its Master. If a poll message

Check these
items for a BSAP
Slave Port.

Once you select an item, you can
specify its value in the corresponding
field.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

64 BSAP Slave Port

does not arrive within this period of time, the Master is assumed to
have failed, and all messages queued to go up to the Master are
discarded. If you are experiencing discards for transmission on this
slave port (as reported by a nonzero value on the _Px_DISC_TRANS
statistic system variable), it is recommended that you increase this
value until no further discards occur. The default value of 5 should
generally be increased to a larger number, e.g. 20, especially, if you
are experiencing this problem.

Write Delay
(_Px_WRITE_DEL)

 This specifies a delay (in milliseconds) which must elapse, before this
Slave port attempts to communicate with its Master. This is useful if
the Master hardware has a slower CPU-type (e.g. 186) and requires
more turn-around time to accept responses from the Slave.

Write (CTS)
Timeout
(_Px_WRITE_TMO)

 Since the Clear-To-Send (CTS) must be received in order to transmit,
this timeout (in milliseconds) is added to the expected message
transmission time at the effective Baud Rate for this port. The
message must be completely transmitted before the resulting
timeout. The default is dynamic and calculated based on the current
baud rate.

Time Sync Disable
(_Px_TS_DIS)

 When set to TRUE, any time synchronization (TimeSync) message
arriving at this slave port will be ignored. The default is FALSE which
means TimeSync messages received at this port will be accepted and
processed.

Time Sync Needed
(_Px_TS_FORCE)

 When set to TRUE, the Slave sends a request to the Master Port for a
TimeSync/Node Routing Table (TS/NRT) message. Once the TS/NRT is
received, this is cleared.

Node Routing
Table Disable
(_Px_NRT_DIS)

 When set to TRUE, any Node Routing Table (NRT) message arriving at
this slave port will be ignored. The default is FALSE which means NRT
messages received at this port will be accepted and processed.

Alarm Disable
(_Px_ALM_DIS)

 This allows you to disable alarm transmissions through this port.

Click [OK] when finished.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

BSAP Slave Port 65

Identifying the Network Slave Port:

Although you may define multiple Slave Ports in your controller, only one of these ports
can be the Network Slave Port. The Network Slave Port is the only port, among all the serial
Slave Ports and IP ports, that is defined as the upward route for message traffic to the
Network Master. To identify this Slave Port as the Network Slave Port, click on the 'Port -
Globals' tab. Select only the item shown in the figure, below, and enter the port number of
the Network Slave Port.

Valid entries for the Network Slave Port are:

 1 = COM1

 2 = COM2

 3 = COM3

 4 = COM4

 5 = COM5

 6 = COM6

 7 = COM7

 8 = COM8

 9 = COM9

 10 = COM10

 11 = COM11

 12 = currently unused

 13 = IP (covers Ethernet as well as PPP serial ports)

 14 = IP (covers Ethernet as well as PPP serial ports)

 15 = IP (covers Ethernet as well as PPP serial ports)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

66 BSAP Slave Port

There can only be one
Network Slave Port. Here
we are choosing COM2
as the Network Slave
Port.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 67

Communication Ports

Communication Ports
ControlWave Process Automation Controller, ControlWave Redundant Controller

Both the ControlWave Process Automation Controller, and the ControlWave Redundant
Controller have from 2 to 4 serial communication ports, and from 1 to 3 Ethernet
communication ports.(NOTE: The Redundant Version actually has twice the number of
physical ports, but the second set serve in standby mode, unless there is a failure of the
primary unit.) These ControlWave units have COM1 and COM2 (both serial). Depending
upon the options you purchase, you may have up to two additional serial ports (COM3 and
COM4) and from one to three Ethernet Ports (Ethernet Port 1, Ethernet Port 2 and Ethernet
Port 3).

ControlWave Process Automation Controller

 (ControlWave Redundant Controller Port locations are similar)

ControlWave MICRO Process Automation Controller

 The ControlWave MICRO Process Automation Controller CPU Module (CPU board) in
Chassis Slot 2 may be ordered with different combinations of communication ports.
One option allows for three serial ports on the CPU board where COM1 and COM2 are
RS-232 and COM3 is RS485. Another option allows for the same three serial ports, with
the addition of a single Ethernet port. A third available option for the CPU board is two
serial ports, where COM1 is RS-232 and COM3 is RS-485 and two Ethernet ports; with
this option, there is no COM2.

 If, instead of installing an I/O Module (board) in Chassis Slot 3, you install an Expansion
Communication Module (ECOM board) in Chassis Slot 3, 4 additional serial ports are
available. COM4 is RS-232, COM5 is RS-485, COM6 is for radio communication, and
COM7 is for a modem. (OPTIONAL)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

68 Communication Ports

 If, instead of installing an I/O Module (board) in Chassis Slot 4, you install an Expansion
Communication Module (ECOM board) in Chassis slot 4, another 4 additional serial
ports are available. COM8 is RS-232, COM9 is RS-485, COM10 is for radio
communication, and COM11 is for a modem. (OPTIONAL). NOTE: This board can only be
installed if there is already an Expansion Communication Module (ECOM board) in Chassis
Slot 3; it cannot be installed if there is an I/O module in Chassis Slot 3.

 ControlWave MICRO controller with 1 Ethernet port

Chassis Slot
 Numbers

Ethernet Port

Comm Port 1 (RS-232)
Comm Port 2 (RS-232)

Comm Port 3 (RS-485)

Comm Port 5 (RS-485)

Comm Port 4 (RS-232)

Comm Port 6 (Radio)

Comm Port 7 (Modem)

Comm Port 8 (RS-232)

Comm Port 9 (RS-485)

Comm Port 11 (Modem)
Comm Port 10 (Radio)

Power Switch

RUN/REMOTE/
LOCAL switch

Status LEDs

PSSM
Module

CPU
Module

I/O Modules
with Bezel

I/O Modules
with Bezel

I/O Modules
with Bezel

1 2 3 4 5 6 7 8

(OPTIONAL)
(OPTIONAL)

(OPTIONAL)

(OPTIONAL)
(OPTIONAL)

(OPTIONAL)

(OPTIONAL)

(OPTIONAL)

(OPTIONAL)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 69

Chassis Slot
 Numbers

Ethernet Port 1

Ethernet Port 2

Comm Port 1 (RS-232)

Comm Port 3 (RS-485)

Comm Port 5 (RS-485)

Comm Port 4 (RS-232)

Comm Port 6 (Radio)

Comm Port 7 (Modem)

Comm Port 8 (RS-232)

Comm Port 9 (RS-485)

Comm Port 11 (Modem)
Comm Port 10 (Radio)

Power Switch

RUN/REMOTE/
LOCAL switch

Status LEDs

1 2 3 4 5 6 7 8

(OPTIONAL)

(OPTIONAL)

(OPTIONAL)
(OPTIONAL)

(OPTIONAL)

(OPTIONAL)

(OPTIONAL)

(OPTIONAL)

 ControlWave MICRO controller with 2 Ethernet ports

ControlWave MICRO I/O Expansion Rack

The number and location of communication ports on the ControlWave MICRO I/O
Expansion Rack matches those of the ControlWave MICRO.

ControlWave Electronic Flow Meter (EFM)

 Communication port options for the EFM are identical to those of the ControlWave
MICRO described on the previous page. The main difference is that EFM units may
have fewer chassis slots.

ControlWave Gas Flow Computer Classic (GFC-CL)

 The ControlWave Gas Flow Computer Classic comes standard with three serial ports
on the CPU board. COM1 is RS-232. COM2 can be RS-232 or RS-485, and COM3 is
RS485. NOTE: COM1 has different connector types for you to choose from, depending
on usage.

 The GFC-CL does NOT have any Ethernet ports, but serial IP can be done via PPP.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

70 Communication Ports

W28

W9

W12
W10

W11

W8

W16

1

1

1

1
1

1

1 1

1

J1

P2

J15

J12

J11

J6

J10

J7J8

J19

COM1

COM1

COM3

W13
1

W15
1

W
4

W
5

W
3

W
7

1 11 1

J18

1 2
9 10

1
2

9
10

W
20

W
19

W
24

1 1 1

W22
1

W23
1

J161
1

W
21

1

S1 = 3V, 1200mA-hr Lithium Coin Cell Battery

W2

CR35

CR40
CR39
CR38
CR37

CR36

1A

F1

R164

LCD Contrast

1

J9
RJ-11

S1

1

TB1 TB3TB2

COM2
1

COM1

Power

Radio
Daughter Bd.

Modem
Connectors

(J7, J8, J10, J11)

Modem
Phone

Intf.

J15
PLD JTAG

Header
Emulator

Connector
Factory useFactory

Use

PLD JTAG
Header

J16 = MSP430
JTAG Header

P2 = LCD Display Intf. (On Reverse Side)

W
27

W
26

1 1
1 2 3 4

ON ON

1 2 3 4 5 6 7 8

SW1 SW2 W26/W27
Factory

Use
Recovery

DIP
Switch

General
Purpose

DIP
Switch

COM3
RS-485
Config.

 W2: Enable/Disable Pwr. On LED: (1 to 2 = Enable, 2 to 3 = Disable)
 W3: Pwr. Supply Shutdown Voltage: (1 to 2 = 12V, 2 to 3 = 6V)
 W4: Pwr. Supply Shutdown Voltage: (1 to 2 = 12V, 2 to 3 = 6V)
 W5: Pwr. Fail Trip Point Hysterisis: (1 to 2 = 12V, 2 to 3 = 6V)
 W7: Pwr. Fail Trip Point: (1 to 2 = 12V, 2 to 3 = 6V)
 W8: Radio/Modem Configure: (1 to 2 = Radio, 2 to 3 = Modem)
 W9: Mds/FreeWave Selection: (IN = MDS, OUT = FreeWave Radio, Modem or RS-232)
W10: Radio/Modem DTR Power Control: (OUT = Remove Pwr., IN = Power Always On)
W11: Radio/Modem Installed: (IN= Modem, OUT = Radio or RS-232)
W12: COM2 Config.: (IN = RS-485, OUT = RS-232, Radio or Modem)
W13: Keypad/2 Pushbutton: (1 to 2 = 5x5 Keypad, 2 to 3 = 2 Pushbutton)
W15: Enable/Disable SPI Receive Termination: (In = Enable, Out = Disable)
W16: Enable/Disable Status LEDs: (In = Enable, Out = Disable)

W19: COM2 Port Config.: (1 to 2 = Modem or RS-485, 2 to 3 = RS-232 or Radio)
W20: COM2 CTS Control: (1 to 2 = CTS Source from Device, 2 to 3 = RTS to CTS Loopback)
W21: COM2 Port Config.: (1 to 2 = RS-232 or Radio, 2 to 3 = RS-485)
W22 through W24: Same as W21
W25: Enable/Disable Comm. Status LEDs: (In = Enable, Out = Disable)
W28: Battery Back-up Enable/Disable: (In = Enable, Out = Disable)

CR35 - CR40: Status LEDs 1 through 6
CR22: DTR

Active

CR21:
DCD ON

CR
42

: I
dl

e
LE

D

CR
13

: P
ow

er
 G

oo
d

CR
41

: W
at

ch
do

g
LE

D

J5

I/O Bus Connector

O
N 1

2
3

4
5

6
7

8

J13

J21

SW3

Isolated
RS-485

Daughter Bd.

O
N 1

2
3

4
5

6
7

8

J2 J14

W25SW4

Keypad

COM2
RS-485
Config.

2-Key
Pushbutton

CR
43

: T
X

Co
m

m
. 3

C
R4

4:
 R

X
Co

m
m

. 3
CR

47
: T

X
Co

m
m

. 2

C
R4

5:
 T

X
C

om
m

. 1
C

R4
8:

 R
X

Co
m

m
. 2

CR
46

: R
X

C
om

m
. 1

COM1 has a choice of different connectors
(either of these, or the Local Port, below).

COM2

COM1 connector when using
LOCAL PORT. (Local port is
wired to TB1.) NOTE: Only one
of the COM1 connectors can be
used at any one time.)

COM3

ControlWave GFC-CL

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 71

COM1 connector when using
LOCAL PORT. (Local port is
wired to this connector.) NOTE:
Only one of the COM1 connectors
can be used at any one time.)

COM1

COM2

COM3

ControlWave Gas Flow Computer (GFC)

 The ControlWave Gas Flow Computer comes standard with three serial ports on the
CPU board. COM1 and COM2 support RS-232 and COM3 can support either RS-232 or
RS485. Note: COM1 has different connector types for you to choose from, depending
on usage.

 Some models of the ControlWave GFC support an Ethernet port; for those that do not,
serial IP can be done via PPP using the serial port(s).

ControlWave GFC

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

72 Communication Ports

ControlWave Express

 The ControlWave Express comes standard with three serial ports on the CPU board.
COM1 and COM2 support RS-232 and COM3 can support either RS-232 or RS485.

 Some models of the ControlWave Express support an Ethernet port; for those that do
not, serial IP can be done via PPP using the serial port(s).

COM1

COM2

COM3
Ethernet

ControlWave Express

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 73

ControlWave Express PAC

 The ControlWave Express PAC comes standard with three serial ports on the CPU
board. COM1 and COM2 support RS-232 and COM3 can support either RS-232 or
RS485.

 Some models of the ControlWave Express PAC support an Ethernet port; for those that
do not, serial IP can be done via PPP using the serial port(s).

COM1
COM2

COM3

Ethernet
 Port

ControlWave Express PAC

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

74 Communication Ports

ControlWave Explosion-Proof Flow Computer (XFC)

The ControlWave Explosion-Proof Flow Computer’s communication ports are wired inside
the cover with wires brought in through a conduit; there are no external connectors due to
the explosion-proof rating.

RTD Input
RTD+ (Excitation)
RTD+ (Sense)
RTD (Return)_

RTDD
I1

TR
-

TR
+

R
X

D

R
X

D
R

TS
C

TS
D

TR
D

C
D

TXD

TXD GG

D
I2

D
01P1P2 G

G

+V+V
AI2

AI3

AO +V+V GGG AI1
POWER

NETWORK LOCAL RS485

+

++

_

_

+V

GGG

External
Signal

Generator
400mA

Max. Load

D
02

D
03

D
04

+

AI#2
(Example)
Simplified
Internally
Powered

1-5V
Analog Input

Wiring Diagram

AI#1 (Example)
Externally
Powered

1-5V
Analog Input

Wiring Diagram

DI#1 (Example)
Dry Contact

Discrete Input
Wiring Diagram

DO#1 (Example)
Ext. Powered

Discrete Output
Wiring Diagram

HSC#1 (Example)
Internally Sourced

High Speed Counter
Wiring Diagram

AO (Examples)
4-20mA

Analog Output
Wiring Diagrams

Ext.
Powered

Internally
Powered

J3

J2

J4

J5

J6

or

RS-232
COM2

to/from
Model
3808

10 = RTS
11 = CTS
12 = DTR
13 = DCD

To V-

8

14

J2

RXD
RTS
CTS
DTR
DCD

TXD

G

N
ET

W
O

R
K

14 = GND

8 = TXD To R9 = RXD To T}

RS-485
COM3

to/from
Model
3808

}To +3 = TR+

To -2 = TR-TR-
TR+

G

R
S4

85

J2

1

COM2 COM1 COM3

Communication Ports

ControlWave XFC

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 75

COM6

(formerly BIP_1)

(formerly BIP2)

COM1 (formerly PORT_A)RS-232

COM2 (formerly PORT_B)RS-485/Modem

RS232 / RS485

COM3 (formerly PORT_C)RS232 / RS485

COM4 (formerly PORT_D)RS232 / RS485

COM5 RS232 / RS485

ControlWave CW_10

The ControlWave_10 (CW_10) is an RTU 3310 chassis and I/O upgraded with new
ControlWave CPU and multi-function interface boards (MFIB).

CW_10

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

76 Communication Ports

ControlWave CW_30

The ControlWave_30 (CW_30) is a DPC 3330 chassis and I/O upgraded with new
ControlWave CPU and communication boards.

CW_30

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 77

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

COM9 COM10
COM3 COM4
COM5 COM6

Ethernet
 Port 1

Ethernet
 Port 2

NOTE: There is
no COM1, COM2
or COM7, COM8.

ControlWave CW_35

The ControlWave_35 (CW_35) is a DPC 3335 chassis and I/O upgraded with new
ControlWave CPU and communication boards.

CW_35

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

78 Communication Ports

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

I/O MODULE

COM5 COM6

NOTE: There is
no COM1, COM2
COM3 or COM4.

Ethernet
 Port 1

ControlWave CW_31

The ControlWave_31 (CW_31) is an RIO 3331 Remote I/O Rack chassis and I/O upgraded
with new ControlWave communication boards.

CW_31

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 79

ControlWave I/O Expansion Rack

The ControlWave I/O Expansion Rack is a chassis containing additional I/O boards for a
ControlWave host. It is also used as the shared I/O in certain redundancy configurations.

 ControlWave I/O Expansion Rack

Methods for Communicating with ControlWave-series Controllers.

There are several ways to communicate with the ControlWave-series controllers including:

 Bristol Synchronous / Asynchronous Protocol (BSAP) - The ControlWave can be part of
an OpenBSI BSAP network, and beginning with firmware release CWP02, it can serve
as a BSAP Master node.

 Internet Protocol (IP) - The ControlWave can be connected to an IP network of
ControlWave or Network 3000 nodes. This can utilize Ethernet or serial Point-to-Point
Protocol (PPP). Other IP options are available as well, e.g. Open Modbus. NOTE: Not all
units include Ethernet ports.

 ControlWave Designer Protocol - The ControlWave has its own native protocol for
communication with ControlWave Designer software. ControlWave Designer protocol
can be transmitted via serial links, TCP/IP or OpenBSI.

COM2 (J2)
(RS-232)

COM3 (J1)
(RS485)

COM4 (J2)
(RS-485)

Ethernet
Port 1 (J3) COM6 (J4)

(RS-232)

COM5 (J3)
(RS-232)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

80 Communication Ports

 Serial Modbus - This industry standard protocol allows communication between a
ControlWave controller configured for MODBUS, and another MODBUS device.

The table, below, summarizes the major communication options. NOTE: Different units of
the ControlWave series support different numbers of ports.

Protocol Reasons to Use Which software is used?
Bristol
Synchronous /
Asynchronous
Protocol (BSAP)

Collect data from ControlWave using OpenBSI.
Download the ControlWave project.
View web pages.
Update FLASH parameters and soft switches

NOTE: Peer-to-peer communication with other
ControlWave or Network 3000 controllers requires Client
/ Server function blocks (firmware 02.00 or newer).
Client/Server function blocks are discussed in the
ControlWave Designer on-line help.

OpenBSI Utilities suite (NetView,
DataView, Downloader, etc.)

Internet Protocol
(IP)

Collect data from ControlWave using OpenBSI.
Download the ControlWave project.
View web pages.
IP MODBUS communication

NOTE: Peer-to-peer communication with other
ControlWave or Network 3000 controllers requires Client
/ Server function blocks (firmware 02.00 or newer).
Client/Server function blocks are discussed in the
ControlWave Designer on-line help.

OpenBSI Utilities suite (NetView,
DataView, Downloader, etc.)

ControlWave
Designer Protocol

(using either
OpenBSI DLL,
serial DLL or
TCP/IP DLL)

Run ControlWave Designer in on-line mode, which
includes:
Performing debugging operations.
Downloading ControlWave project.

ControlWave Designer

Very Small
Aperture Terminal
(VSAT)

Send data via satellite links. ControlWave Designer, OpenBSI
NetView

Allen-Bradley DF1
Master / Slave

Exchange data with other Allen-Bradley DF1 devices ControlWave Designer CUSTOM
function block. Port configured for
DF1 within the Ports page of the
Flash Configuration Utility.

DNP3 Industry-standard protocol for SCADA, etc.

ControlWave Designer CUSTOM
function block. Port configured for
DNP3 within the Ports page of the
Flash Configuration Utility.

This protocol requires 4.40 (or
newer) firmware. It is NOT
supported for ControlWave LP.

CIP Allen-Bradley protocol. ControlWave Designer CUSTOM

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 81

Protocol Reasons to Use Which software is used?
function block.

This protocol requires 4.40 (or
newer) firmware. It is NOT
supported for ControlWave LP.

Serial MODBUS Exchange data with other MODBUS devices (including
another ControlWave configured for MODBUS
communication.)

ControlWave Designer CUSTOM
function block. Port configured for
MODBUS within the Ports page of
the Flash Config. Utility.

HART Exchange data with HART devices through HART Interface
Board (HIB) or a serial port – ControlWave Micro / EFM
only.

ControlWave Designer HART
function block

This protocol requires 5.00 (or
newer) firmware.

Foundation
Fieldbus

Exchange data with FFbus devices through ControlWave
Foundation Fieldbus Interface

Fieldbus function block
Field Interface Configurator
software.
This protocol requires 5.10 (or
newer) firmware.
.It is NOT supported for
ControlWave LP.

How do I configure the Ports on the ControlWave?
The Flash Configuration Utility, available in LocalView and NetView, is used to configure
the ports on any ControlWave unit, as well as for setting other parameters such as the
BSAP local address. The Flash Configuration Utility is discussed in detail in Chapter 5 of the
OpenBSI Utilities Manual (document# D5081).

What are the factory default settings for communication
ports?

Factory Defaults for Ethernet Ports

Depending upon the type of ControlWave, there may be up to three Ethernet ports.
Ethernet ports are pre-configured at the factory with initial IP addresses and masks, as
follows:

ETH1 IP Address: 10.0.1.1 IP Mask: 255.255.255.0

ETH2 IP Address: 10.0.2.1 IP Mask: 255.255.255.0

ETH3 IP Address: 10.0.3.1 IP Mask: 255.255.255.0

Because each unit shipping from the factory will have these initially pre-programmed, you
should only use these addresses for ‘bench’ testing and configuration. These addresses

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

82 Communication Ports

must be changed before putting ControlWave units on an actual network, since an address
conflict would exist as soon as the second ControlWave unit was placed online.

Factory Defaults for Serial Ports

Default configuration for ControlWave Serial ports is included in the table, below. These
default settings are activated any time the default switch is in the OFF position:

 The default switch on the ControlWave Process Automation Controller, ControlWave
I/O Expansion Rack and ControlWave XFC is (SW1-3).

 The default switch on the ControlWave LP Controller is (SW4-3).

 The default switch on the ControlWave MICRO Controller, EFM, GFC, GFC-CL, Express,
Express PAC, ControlWave_10, ControlWave_30, ControlWave_35, and
ControlWave_31 is (SW2-3).

 The ControlWave, ControlWave MICRO, ControlWave Redundant Controller, and EFM
initially ship from the factory with serial COM port 1 set to BSAP at 115,200. Once the
default switch is OFF however, a factory default of PPP at 115,200 applies.

More details on the factory default settings of communication ports are included in the
hardware manual.

Factory Defaults for ControlWave, CW Redundant Controller Serial Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable Notes

Serial
Port
COM1

115200

8 1 NONE Serial IP (PPP) RS232 null modem
cable

Use IP address
1.1.1.1.

Serial
Port
COM2

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS232 null modem
cable

Serial
Port
COM3

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

Either RS232 null
modem cable OR
RS485 cable
depending upon
how ordered from
factory. Cable
connectors vary
depending upon
type ordered.

CHOICE OF
RS232/RS485
MADE WHEN
ORDERED FROM
FACTORY.
CANNOT BE
CHANGED IN THE
FIELD.

Serial
Port
COM4

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

Either RS232 null
modem cable OR
RS485 cable
depending upon
how ordered from
factory.

CHOICE OF
RS232/RS485
MADE WHEN
ORDERED FROM
FACTORY.
CANNOT BE
CHANGED IN
FIELD.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 83

Factory Defaults for ControlWave I/O Expansion Rack Serial Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable Notes

Serial
Port
COM1

9600

8 1 NONE Serial IP (PPP) RS232 null
modem cable

Use IP address
1.1.1.1.

Serial
Port
COM2

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS-232 cable

Serial
Port
COM3

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS485 cable

Serial
Port
COM4

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS485 cable

Serial
Port
COM5

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS232 cable

Serial
Port
COM6

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS232 cable

Factory Defaults for ControlWave MICRO, ControlWave EFM Serial Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial
Port
COM1

115200

8 1 NONE Serial IP (PPP) RS232 null
modem cable

Use IP address
1.1.1.1.
See Note below

Serial
Port
COM2

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable

Serial
Port
COM3

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS485 cable Configured via CPU
switch SW3.

Serial
Port
COM4

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS232 null
modem cable

OPTIONAL –
requires ECOM
Board in chassis slot
3.

Serial
Port
COM5

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS485 cable OPTIONAL –
requires ECOM
Board in chassis slot
3. Configured by

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

84 Communication Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

switch SW1 on
ECOM board.

Serial
Port
COM6

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

Requires
coaxial RF
cable to
connect MDS /
FreeWave®
spread
spectrum
modem
(radio).

OPTIONAL –
requires ECOM
Board in chassis slot
3.

See 2.3.3.5 in CI-
ControlWave
MICRO for radio
installation steps.

Serial
Port
COM7

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RJ11
connector for
connecting to
56K PSTN
modem

OPTIONAL –
requires ECOM
Board in chassis slot
3.

Serial
Port
COM8

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS232 null
modem cable

OPTIONAL –
requires ECOM
Board in chassis slot
4.

Serial
Port
COM9

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS485 cable OPTIONAL –
requires ECOM
Board in chassis slot
4. Configured by
switch SW1 on
ECOM board

Serial
Port
COM10

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

Requires
coaxial RF
cable to
connect MDS /
FreeWave®
spread
spectrum
modem
(radio).

OPTIONAL –
requires ECOM
Board in chassis slot
4.

See 2.3.3.5 in CI-
ControlWave
MICRO for radio
installation steps.

Serial
Port
COM11

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RJ11
connector for
connecting to
56K PSTN
modem

OPTIONAL –
requires ECOM
Board in chassis slot
4.

Factory Defaults for ControlWave MICRO I/O Expansion Rack Serial Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial 9600 8 1 NONE Gould MODBUS RS232 null

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 85

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Port
COM1

 Slave – RTU
mode.

modem cable

Serial
Port
COM2

115200

8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable

Serial
Port
COM3

115200

8 1 NONE BSAP Slave/
ControlWave
Designer

RS485 cable Configured via CPU
switch SW3.

Serial
Port
COM4

115200

8 1 NONE BSAP Slave/
ControlWave
Designer

RS232 null
modem cable

OPTIONAL –
requires ECOM
Board in chassis slot
3.

Serial
Port
COM5

115200

8 1 NONE BSAP Slave/
ControlWave
Designer

RS485 cable OPTIONAL –
requires ECOM
Board in chassis slot
3. Configured by
switch SW1 on
ECOM board.

Serial
Port
COM6

115200

8 1 NONE BSAP Slave/
ControlWave
Designer

Requires
coaxial RF
cable to
connect MDS /
FreeWave®
spread
spectrum
modem
(radio).

OPTIONAL –
requires ECOM
Board in chassis slot
3.

See 2.3.3.5 in CI-
ControlWave
MICRO for radio
installation steps.

Serial
Port
COM7

115200

8 1 NONE BSAP Slave/
ControlWave
Designer

RJ11
connector for
connecting to
56K PSTN
modem

OPTIONAL –
requires ECOM
Board in chassis slot
3.

Serial
Port
COM8

115200

8 1 NONE BSAP Slave/
ControlWave
Designer

RS232 null
modem cable

OPTIONAL –
requires ECOM
Board in chassis slot
4.

Serial
Port
COM9

115200

8 1 NONE BSAP Slave/
ControlWave
Designer

RS485 cable OPTIONAL –
requires ECOM
Board in chassis slot
4. Configured by
switch SW1 on
ECOM board

Serial
Port
COM10

115200

8 1 NONE BSAP Slave/
ControlWave
Designer

Requires
coaxial RF
cable to
connect MDS /
FreeWave®

OPTIONAL –
requires ECOM
Board in chassis slot
4.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

86 Communication Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

spread
spectrum
modem
(radio).

See 2.3.3.5 in CI-
ControlWave
MICRO for radio
installation steps.

Serial
Port
COM11

115200

8 1 NONE BSAP Slave/
ControlWave
Designer

RJ11
connector for
connecting to
56K PSTN
modem

OPTIONAL –
requires ECOM
Board in chassis slot
4.

Factory Defaults for ControlWave Gas Flow Computer Classic (GFC-CL) Serial Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial
Port
COM1

115200

8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable

Can also serve as
Local Port. Different
connectors are
available depending
on usage.

Serial
Port
COM2

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485 cable

Can serve as either
RS232 or RS485. If
using RS485, switch
SW4 used for
configuration. This
port supports radio
/ modem option.

Serial
Port
COM3

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS485 cable Configured via CPU
switch SW3.

Factory Defaults for ControlWave Gas Flow Computer (GFC) / ControlWave Express /
ControlWave Express PAC Serial Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial
Port
COM1

115200

8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable

Can also serve as
Local Port. Different
connectors are
available depending
on usage.

Serial
Port
COM2

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable

This port supports
radio / modem
option.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 87

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial
Port
COM3

9600 8 1 NONE BSAP Slave/
ControlWave
Designer

RS232 null
modem cable
or RS485 cable

Can serve as either
RS232 or RS485. If
using RS485,
configured via CPU
switch SW3.

Factory Defaults for ControlWave Gas Flow Computer (XFC) Serial Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial
Port
COM1

115200

8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable

Local Port

Serial
Port
COM2

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable

Network Port

Serial
Port
COM3

9600 8 1 NONE BSAP Master/
ControlWave
Designer

RS485 cable Configured as BSAP
Master for
communication
with 3808 MVT
Transmitter.

Factory Defaults for ControlWave_10 (CW_10) Serial Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial
Port
COM1

115200

8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable

Configured by
jumper W4 on
CMFIB. On original
RTU 3310 known as
Port A.

Serial
Port
COM2

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Configured by
jumpers W5 and W7
and switch SW2 on
CMFIB. On original
RTU 3310 known as
Port B.

Serial
Port
COM3

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Configured by
jumpers W8
through W14 and
switch SW3 on
CMFIB. On original
RTU 3310 known as
Port C.

Serial
Port

9600 8 1 NONE BSAP Slave /
ControlWave

RS232 null
modem cable

Configured by
jumpers W15

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

88 Communication Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

COM4 Designer or RS485 through W21 and
switch SW4 on
CMFIB. On original
RTU3310 known as
Port D.

Serial
Port
COM5

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Configured by
jumpers W9
through W15 and
switch SW3 on
CCPU board. On
original RTU 3310
known as BIP1.

Serial
Port
COM6

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Configured by
jumpers W16
through W22 and
switch SW4 on
CCPU board. On
original RTU 3310
known as BIP2.

Factory Defaults for ControlWave_30 (CW_30) Serial Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial
Port
COM1

115200

8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 1 on the first
CCB. Configured by
jumpers W2
through W8 and
switch SW1 on CCB.
On original DPC
3330 known as Port
A.

Serial
Port
COM2

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 2 on the first
CCB. Configured by
jumpers W9
through W16 and
switch SW3 on CCB.
On original DPC
3330 known as Port
B.

Serial
Port
COM3

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 3 on the second
CCB. Configured by
jumpers W2
through W8 and
switch SW1 on CCB.
On original DPC

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 89

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

3330 known as Port
C.

Serial
Port
COM4

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 4 on the second
CCB. Configured by
jumpers W9
through W16 and
switch SW3 on CCB.
On original DPC
3330 known as Port
D.

Serial
Port
COM5

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Configured by
jumpers W9
through W15 and
switch SW3 on
CCPU board. On
original DPC 3330
known as BIP1.

Serial
Port
COM6

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Configured by
jumpers W16
through W22 and
switch SW4 on
CCPU board. On
original DPC 3330
known as BIP2.

Serial
Port
COM7

9600

8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 7 on the first
CCB. Configured by
jumpers W17
through W23 and
switch SW2 on CCB.
On original DPC
3330 known as Port
G.

Serial
Port
COM8

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 8 on the first
CCB. Configured by
jumpers W24
through W30 and
switch SW4 on CCB.
On original DPC
3330 known as Port
H.

Serial
Port
COM9

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 9 on the second
CCB. Configured by
jumpers W17
through W23 and
switch SW2 on CCB.
On original DPC
3330 known as Port

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

90 Communication Ports

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

I.
Serial
Port
COM10

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 10 on the
second CCB.
Configured by
jumpers W24
through W30 and
switch SW4 on CCB.
On original DPC
3330 known as Port
J.

Factory Defaults for ControlWave_35 (CW_35) Serial Ports

Note: Because the CW_35 does NOT support a communications board in Slot 13, and for
firmware compatibility purposes, the following ports do NOT exist on these units: COM1,
COM2, COM7, and COM8.

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial
Port
COM3

9600

8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 3 on the CCB.
Configured by
jumpers W2
through W8 and
switch SW1 on CCB.
On original DPC
3335 known as Port
C.

Serial
Port
COM4

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 4 on the CCB.
Configured by
jumpers W9
through W15 and
switch SW3 on CCB.
On original DPC
3335 known as Port
D.

Serial
Port
COM5

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port on the CCPU.
Configured by
jumpers W10
through W16 and
switch SW3 on
CCPU. On original
DPC 3335 known as
Port BIP1.

Serial
Port
COM6

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port on the CCPU.
Configured by
jumpers W18

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 91

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

through W24 and
switch SW4 on
CCPU. On original
DPC 3330 known as
Port BIP2.

Serial
Port
COM9

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 9 on the CCB.
Configured by
jumpers W16
through W23 and
switch SW2 on CCB.
On original DPC
3335 known as Port
I.

Serial
Port
COM10

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port 10 on the CCB.
Configured by
jumpers W24
through W30 and
switch SW4 on CCB.
On original DPC
3335 known as Port
J.

Factory Defaults for ControlWave_31 (CW_31) Serial Ports

Note: Because the CW_31 does NOT support a communications board in Slot 13 or Slot
10, and for firmware compatibility purposes, the following ports do NOT exist on these
units: COM1, COM2, COM3, COM4, COM7, COM8, COM9, COM10.

Name Baud
Rate

Bits Per
Character

Stop
Bits

Parity Protocol Cable /
Interface

Notes

Serial
Port
COM5

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port on the CCPU.
Configured by
jumpers W10
through W16 and
switch SW3 on
CCPU. On original
RIO 3331 known as
Port BIP1.

Serial
Port
COM6

9600 8 1 NONE BSAP Slave /
ControlWave
Designer

RS232 null
modem cable
or RS485

Port on the CCPU.
Configured by
jumpers W18
through W24 and
switch SW4 on
CCPU. On original
RIO 3331 known as
Port BIP2.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

92 Communication Ports

How can the port configuration be changed?
If you want to use port settings other than the defaults, you must connect to the
ControlWave unit, and change the port configuration settings. The new settings are saved
in the 512K FLASH BIOS of the ControlWave unit. Port configurations may be changed via
the Flash Configuration Utility.

Important

When you make changes to port configurations, some of the changes will take effect
immediately after you exit the Flash Configuration Utility. Other changes will not take
effect until after you have reset the ControlWave unit (turned it off and then back on).

Dialing - An Overview
Beginning with ControlWave firmware version 04.00, dialing is supported via the
DIAL_CTRL function block. To configure dialing, you must:

 Configure the communication port from the 'Ports' page of the Flash Configuration
utility.

 Identify the communication port used for dialing via the _Px_DIAL_PORT system
variable, in your ControlWave project. Dialing will NOT function unless the port is
identified as a dial port. System variables are configured in the System Variable Wizard.

 Configure your ControlWave project to handle dialing. Use the DIAL_CTRL function
block to specify the various dialing parameters. See the on-line help in ControlWave
Designer for more information. Any RS-232 port can be a dial port, and you can have
multiple dial ports and multiple DIAL_CTRL function blocks in your project, but each
port must have a dedicated modem.

 Configure the external modem which will perform the dialing. Currently, we offer the
MultiTech® Systems Embedded Data FAX Modem. See the documentation
accompanying this modem for configuration details.

Serial Port Sharing between the BSAP Slave and Custom
Slave Protocols:

Normally, when you configure a serial port on a ControlWave-series controller, the port
only uses a single protocol, such as BSAP or Modbus and that protocol has full control over
that port. Under certain circumstances, though, you can configure serial port sharing
which allows a single port to serve as both a BSAP slave, and as a custom slave using a
custom protocol.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Communication Ports 93

To implement serial port sharing, you must follow these rules:

1. Define the serial port as the appropriate custom slave port, such as Modbus slave,
Allen-Bradley slave, etc.

2. Ensure that the port characteristics, e.g. baud rate, start/stop bits, and parity, used by
both the BSAP master, and the custom master match exactly.

3. When switching from one master to the other master, the first communication
protocol must relinquish control over the port and allow the second protocol to
establish successful communication with the new master using one of the following
methods:

a. The communication line must be quiet for approximately 1 minute or

b. The new master must make approximately five attempts to establish
communications with the slave, even if it receives no response.

c. You can set the _Pn_INH_BSAP_SLAVE system variable to TRUE (firmware 05.43 and
newer) to inhibit the serial port from accepting any BSAP slave communications.

Serial port sharing has been tested for switching between the BSAP and Modbus slaves as
well as between BSAP and Allen-Bradley DF1 slaves. For any other protocol combinations,
you must verify that serial port sharing works properly for your application.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

94 Communication Ports

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Compiling 95

Compiling
When you have finished editing your ControlWave Designer project, it must be compiled.
The compilation process takes your project (programs, function blocks, tasks, etc.) and
generates machine-readable code from it. After successful compilation, the machine
readable code for the project can be downloaded into the ControlWave-series controller or
the I/O Simulator.

Note: If a particular POU has NOT been compiled, its name will have an asterisk (*) next to
it in the project tree.

The compilation process checks for any syntactical errors in your project, and also issues
warnings about possible problems with the structure of the project. It does NOT check for
logic errors in your control strategy, however.

To compile the project, click on the icon shown at left, or go to the menu bar, and click as
follows: BuildMake

Various messages will appear on the screen.

If there are errors or warnings generated during the compilation, you can view them by
clicking on the ‘Errors’ or ‘Warnings’ tabs, respectively. Often, you can double-click on the
error listed in the error window, and its location in the project will be identified.

If there are errors or warnings, click on the “Errors” or
“Warnings” tab for more information.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

96 Compiling

For more information about what a particular error message means, right-click on the error
message, then choose “Help on Message” from the pop-up menu (if it is available.)

Right-click on the error message to jump
to the location in the file where the
compiler found this error.

Double-click on the error message and choose “Help
on Message” from the pop-up menu to get more
information on the error.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Conditional Logic 97

Conditional Logic
Certain function blocks (for example, LIST function blocks) should only be executed once
at application cold start and at application warm start.

Note

Lists can also be created using the DB_LOAD function block (without any LIST function
blocks). See the Variable Extension Wizard for more information.

If you attempt to execute these function blocks multiple times, the system tries to define
the list structures multiple times, which results in an error code, each time the LIST is
executed. While this does not prevent your ControlWave project from executing properly,
it can burden you with unnecessary error messages, which could prevent you from seeing
more useful error messages.

To avoid this, you can use conditional logic to execute the list only once.

Using Conditional Logic to Execute a Function Block Only Once

This is most easily accomplished when using a POU written in Structured Text (ST)
language.

In the example, below, a variable called INIT, of type BOOL has been created, which has an
initial state of TRUE. Note that for this type of operation, the variable should NOT be
marked as "RETAIN", because that would prevent the list from being defined following an
application warm start.

At application start up, the INIT variable is read as part of an IF - ENDIF block. Since it is
TRUE, the LIST function block will be executed, thereby defining the list. At the very end of

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

98 Conditional Logic

the IF-ENDIF block, the INIT variable is set to FALSE, to prevent that block of code from
executing again:

ST CODE EXCERPT:

IF (INIT) THEN

_LIST_10_1.iiListNumber := 1;

_LIST_10_1.ianyElement1 := LOAD_NAME;

_LIST_10_1.ianyElement2 := FUN1_TEST_CNT;

_LIST_10_1.ianyElement3 := FUN_TEST1_HLT;

_LIST_10_1.ianyElement4 := FUN_OUT_001;

_LIST_10_1.ianyElement5 := FUN_ERROR1_CNT;

_LIST_10_1.ianyElement6 := FUN2_TEST_CNT;

_LIST_10_1.ianyElement7 := FUN_TEST2_HLT;

_LIST_10_1();

INIT:= FALSE;

END_IF;

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Conditional Logic 99

Using LD:

To execute a block of code only once in Ladder Language (LD), you can use the '>>' jump
statement to effectively skip the code on subsequent executions. Execution proceeds left-
to-right and top-to-bottom.

In the first line, the jump
statement at the far left is
ignored, because 'C002' is
FALSE, and so execution
continues on the next line

The second line turns on
'C002'.

The third line (LIST function
block) is executed.

On subsequent executions,
the second and third lines will
be skipped, because 'C002' is
now TRUE - - program
execution will jump to the
'Sample' label, where
additional code could be executed.

This will continue on all subsequent executions (until the system is restarted), because the
jump condition is satisfied.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

100 Conditional Logic

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

DataView 101

DataView
You can use OpenBSI’s DataView to call up the value of variables in your ControlWave
project. For this work, OpenBSI communications (NetView or LocalView) must already be
communicating with the ControlWave.

Note:

For a full discussion of how to use DataView, please refer to Chapter 8 of the OpenBSI
Utilities Manual (part number D301414X012).

Before you begin:

Note:

Only global variables (typically I/O global variables), or variables which have been marked
as "PDD" in ControlWave Designer will be visible in DataView.

Click here to mark the variable as “PDD.”

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

102 DataView

In addition, you must have made the proper settings for PDD in the Resource Settings
dialog box (shown below):

Calling up ControlWave Data in DataView
Step 1. In NetView or LocalView, right-click on the icon of the ControlWave you want to

access, and choose RTU DataView from the pop-up menus.

Step 2. Sign on.

Step 3. Click on the Signal Search icon or click on File New, and then click on

"Signal Search" in the New list box. Either method will call up the Signal Search
Properties dialog box.

Check this to declare all global variables as
“PDD.”

Check this to declare all
local variables marked as
“PDD” as “PDD.”

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

DataView 103

Step 4. The Signal Search dialog box should appear, with the ControlWave's node name in
the "Node" field.

To see ALL variables which are global, or have been marked as PDD, just click on [OK].

To search for a specific variable, follow the instructions in Chapter 8 of the OpenBSI Utilities
Manual (part number D301414X012).

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

104 DataView

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Debugging – An Overview 105

Debugging – An Overview
Once you have corrected all syntactical errors and have successfully compiled your project,
you can download it into the ControlWave-series controller or the I/O Simulator (see
Downloading for information on how to do this).

ControlWave Designer supports several different debugging techniques to help isolate
logic problems you find in your running ControlWave project. The techniques supported
include:

 Using the Watch Window to display only a certain set of variables which you are
interested in.

 Using the Cross-Reference Window to display where all variables and function blocks
are used within a project.

 Using the Patch POU feature to perform edits to a running project, without stopping
execution.

 Using breakpoints to stop execution at particular points in a POU, allowing the user to
step through code, and view the results of execution at each step.

 Using the Force/Overwrite options to manually change values of variables in the
running project.

Important

We recommend that debugging be performed only in the I/O Simulator, or in a
ControlWave-series controller that is NOT currently connected to a running plant or
process. This is because debug operations such as setting breakpoints, or forcing variables
could cause an upset to a critical process.

These techniques are all performed in on-line Debug Mode, when you are communicating
on-line with the ControlWave-series controller, or the I/O Simulator, from within
ControlWave Designer.

Starting Debug Mode
With the project executing in the ControlWave, or the I/O Simulator, you can put
ControlWave Designer into on-line Debug Mode to view the current values of variables, or
perform debugging operations. To enter Debug Mode, click on the ‘Debug On/Off’ icon,
shown above, or click on OnlineDebug.

Using the Watch Window
The Watch Window allows you to view just the variables you are interested in. To open the
Watch Window, click on View Watch Window.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

106 Debugging – An Overview

Open up your main worksheet, and right-click on the name of a variable you want to
include in the watch window, then choose “Add to Watch Window” from the pop-up
menu.

The variable will be added to the currently open page of the Watch Window. Continue to
add variables to the watch window, as desired.

Right-click on
the variable’s
name, then
choose “Add
to Watch
Window.”

Watch Window.
Click on tabs to bring up different pages of the Watch Window.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Debugging – An Overview 107

Using the Cross-Reference Window
The Cross-Reference Window displays in detail, how and where any particular variable,
function block, etc. is used within the project.

To open the Cross-Reference Window, click on Build Build Cross References.

Right-click in the Cross-References Window, and choose “Build Cross References” from the
pop-up menu.

The Cross Reference tables will be generated and displayed in the window. You may want
to drag the window borders to display additional information.

Once the cross-reference information is displayed, you can double-click on any variable
name, and the worksheet containing that particular usage of the variable will be displayed.

Double-click on a
variable name in the
cross-reference
window, and the
worksheet containing
that usage of the
variable opens.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

108 Debugging – An Overview

On-line Editing with Patch POU
On-line editing allows you to make changes to the ControlWave project running in the
controller, or in the I/O Simulator, without pausing the execution of the project.

First, clear all breakpoints. (Clearing breakpoints is discussed later in this section.)

If you are already in on-line Debug Mode, you must click on the button to exit Debug

Mode, or click on “OnlineDebug”.

Now make the edits you want to make in your POU. For example, the COMMAND function
block shown on the left, below, has no variable for the ibOFF_Lim_Sw parameter defined.
On the right we have added it. Because we have made an off-line edit, the ‘Patch POU’ icon
now becomes available.

Click on the ‘Patch POU’ icon and the edits you have made to your POU will be

compiled, and downloaded into the running project, without stopping execution.

On-line Debug Mode will automatically be started so you can observe the behavior of the
newly modified POU in your running project.

Once you make your edit, in this case,
adding a variable name, the Patch
POU icon becomes available.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Debugging – An Overview 109

Using the Force/Overwrite Options

Force and Overwrite are ways to manually change the values of variables in the running
ControlWave project.

Forcing an I/O Variable’s Value

Force should only be used with I/O variables. To force an I/O variable changes its value at
the point it is sent to the I/O board. Other logic within POUs can alter the I/O variable’s
value within the project, but at the point it reaches the I/O, the force action will be applied.
That I/O point will stay at its forced value, until changed by the user, or until the force is
removed.

 In Debug Mode, go into the worksheet for one of your POUs, for example, one of the
graphical worksheets, and find the I/O variable you want to force.

 Double-click on the I/O variable that you want to force. The Debug: RTU Resource
dialog box will appear.

 Select the new value for the forced variable. (For REAL variables, enter a value in the
“Value” field; for BOOL variables, select either “TRUE” or “FALSE”. After specifying the
value, click on the [Force] button, and the force will be applied at the I/O point.

 To stop applying the forced value, double-click on the I/O variable, and click on the
[Reset force] button in the Debug: RTU Resource dialog box.

Enter the value you want to force the value to,
then click Force.

To remove the
force, click
Reset force.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

110 Debugging – An Overview

Note:

The force operation is only applied at the I/O point, as the value is sent to the physical I/O
board. If you examine the value of the variable at other points in the POU execution, you
may see a different value for the variable, because the force has not yet been applied at
that point. Also, if you are seeing unexpected values for the variable, you may want to use
the I/O Configurator to associate the I/O board containing points you are going to force
with a particular task (see “Related Task” field in the I/O Configuration Wizard); this will
ensure that execution of the task is coordinated with data updates to the I/O point.

Temporarily Overwriting a Variable’s Value

To overwrite a variable, means that the user changes the variable’s value, however, there is
nothing to prevent logic in the control strategy from subsequently changing it.

 In Debug Mode, go into the worksheet for one of your POUs, for example, one of the
graphical worksheets, and find the variable you want to overwrite.

 Double-click on the variable that you want to overwrite. The Debug: RTU Resource
dialog box will appear. (See page 110).

 Specify the new value you want to send to the variable. (For REAL variables, enter a
value in the “Value” field; for BOOL variables, select either “TRUE” or “FALSE”. After
specifying the value, click on the [Overwrite] button, and the new value will overwrite
the current value of the variable.

Note:

This only temporarily changes the variable’s value. Logic in your ControlWave project can
change it to a value different from the value you specified.

Setting a Breakpoint
A breakpoint is used to temporarily halt execution of the ControlWave at a particular spot
in the executing project. Once a breakpoint is activated, the user can manually ‘step
through’ the code, to observe the values of variables at each step of the program
execution.

 In Debug Mode, go into the worksheet for one of your POUs, for example, one of the
graphical worksheets, and double-click on a particular point in the code, where you
want to set a breakpoint, for example, on a variable as it enters a function block. The
Debug: RTU Resource dialog box will appear (see page 110).

 In the ‘Breakpoint’ section of the dialog box, click on the [Set BP] button to set the
breakpoint. Execution of the project will halt at that point, and that area of the code
will be highlighted in orange. If not already visible, call up the RTU_RESOURCE dialog

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Debugging – An Overview 111

box by clicking on “Online Project Control” or by clicking on the Project Control
icon.

 In the RTU_RESOURCE dialog box, you now can choose how you want to resume
execution. There are three different choices:

Choice 1: Click on [Go] and the project will execute until it
encounters another breakpoint, and then it will halt.

Choice 2: Click on [Step] and the project will execute the
next item of code and halt, again, until you click on [Step]
again. This allows the programmer to move through the
execution step-by-step, and examine how variables are
affected at each step of execution. The current location
where execution has halted is highlighted in orange.

Choice 3: Click on [Trace] this is similar to [Step] except it
shows even more detail by executing step-by-step
through individual function blocks.

Clearing the Breakpoint(s)

When you are finished performing debugging operations, you must remove the
breakpoints from your project, or it will be unable to execute properly.

In the Debug: RTU Resource dialog box, click on [Reset BP] to reset the current breakpoint
(the one where execution is currently halted. To clear all breakpoints, click on [Reset all
BP].

Verifying that Breakpoints and Forces Have Been Cleared

Before exiting Debug Mode, you should check to see that you have cleared all breakpoints,
and force operations. Otherwise, these will remain active in your project, even after you
exit Debug Mode.

To verify that these have been cleared, click on the [Info] button in the RTU_RESOURCE
dialog box, and look at the ‘Breakpoints’ and ‘Force’ sections at the bottom of the
Resource page. If it says ‘No breakpoints active’ and ‘No variables forced’ it is safe to exit
Debug Mode.

If, however, you see ‘Breakpoints active’ or ‘Variables forced’, you must select the “Reset
breakpoints” and “Reset forcelist” check boxes, and click on [OK], prior to exiting Debug
Mode, or the breakpoints and forces will remain set.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

112 Debugging – An Overview

Exiting Debug Mode
You must exit Debug Mode in order to make edits to your project. To exit on-line Debug
Mode, click on the ‘Debug On/Off’ icon, shown above, or click on OnlineDebug.

If you see
“Breakpoints
active” or
“Variables
forced” you
should check
the reset
boxes and
click “OK”.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Downloading 113

Downloading
Downloading is the process of transferring the compiled control strategy from your PC
workstation, into the memory of the ControlWave controller.

Note:

Besides the control strategy, the compressed project source code (*.ZWT) can also be
downloaded.

In ControlWave Designer, a user creates a control strategy to perform whatever system-
specific job they want to use the controller for, and saves it as a ControlWave project. The
project is compiled and the resulting computer code is then downloaded from the PC into
the ControlWave's memory using either ControlWave Designer, or the OpenBSI
Downloader.

When downloading the project directly from within ControlWave Designer, the user has a
choice of downloading the project directly into dynamic memory for execution (SDRAM or
SRAM depending on the platform), or downloading into the FLASH memory area (this is
called downloading the boot project). When downloading from the OpenBSI 1131
Downloader, only the boot project may be downloaded.

A project can only execute from the dynamic memory area, but is lost in the event of a
power failure or a program watchdog condition.

Because dynamic memory is not saved in these situations, a copy of the project is typically
stored in the boot project area of FLASH memory. The boot project cannot execute from
inside the FLASH memory area, but is automatically copied into the dynamic memory area
during system re-boot (power restoration after power failure, restart following program
watchdog condition.)

Typically, users download their project into the dynamic memory area only during system
development and debugging. Once a control strategy is finalized, and has been tested
fully, it should be downloaded as the boot project into FLASH memory.

Two Methods Available for Downloading
There are two ways to download your ControlWave project into the ControlWave series
controller:

 Download the project from within the ControlWave Designer program.

 Download the project with the OpenBSI IEC61131 Downloader.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

114 Downloading

Downloading from within ControlWave Designer

Using the Resource Settings Dialog Box to Set up ControlWave Designer Communications

Step 1. Connect a cable between the PC workstation running ControlWave Designer, and
the ControlWave. The type of cable used will vary depending upon which ports on
the PC and on the ControlWave you have chosen. NOTE: For ControlWave Designer
TCP/IP or OpenBSI connections, the cable might not go directly to the ControlWave, it
may go to a network, of which the ControlWave is part.

Step 2. Open your ControlWave Designer project. For help on creating a project in
ControlWave Designer, see Getting Started in ControlWave Designer (part number
D301416X012).

Step 3. Call up the Resource Settings dialog box by right-clicking on RTU_RESOURCE:
ControlWave in the project tree, and choosing "Settings" in the pop-up menu.
NOTE: This dialog box is NOT accessible when on-line communication is already in
progress.

Simulations are only
used when you
download to the I/O
Simulator.

Ignore the COM1
through COM4
selections. They are
not used.

Choose this to specify
the method of
communication with
the ControlWave.

Choices are “Serial,”
“TCP/IP” or “Open
BSI.”

If you choose “Serial,” for the DLL, specify the PC
comm. port, baud rate, and timeout in milliseconds. If
you choose “TCP/IP” specify the IP address of the
ControlWave, and the timeout in milliseconds. If you
choose “Open BSI” just specify the node name of the
ControlWave.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Downloading 115

Step 4. In the 'Port' box, choose "DLL" and the "DLL" list box and "Parameter" field will be
activated. NOTE: "DLL" will be grayed out and unavailable if you do NOT have a
software copy protection key (dongle) plugged into the parallel port of your PC.

Step 5. In the "DLL" list box, choose one of the three available DLLs ('Serial', 'TCP/IP', or
'OpenBSI'), and enter the "Parameters" appropriate to that DLL.

 'Serial'

If you choose 'Serial', this means you will use the ControlWave Designer Protocol
(Serial DLL) to communicate with the ControlWave.

In order to use this DLL, the ControlWave key switch must be in the 'LOCAL' position.

The cable connection must be to one of the ControlWave's serial COM ports.

In the "Parameter" field (shown below) specify the PC COM port (not the
ControlWave COM port), the baud rate at which communications will occur
(which must match the baud rate configured at the ControlWave) and a timeout
for the port in milliseconds.

'TCP/IP'

If you choose 'TCP/IP', this means you will use the ControlWave Designer Protocol
(TCP/IP DLL) to communicate with the ControlWave.

In order to use this DLL, the ControlWave key switch must be in either the 'LOCAL'
or 'REMOTE' position.

The ControlWave must be reachable via TCP/IP, from this PC.

In the "Parameter" field (shown below) specify the IP address of the ControlWave
port to which the connection has been made, and a timeout for the port in
milliseconds.

ControlWave Designer
Serial DLL

PC COM port Timeout
(in milliseconds)

PC port Baud rate
(must match baud rate
at controller’s port.)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

116 Downloading

'OpenBSI'

If you choose 'OpenBSI', this means OpenBSI will handle all communications
between ControlWave Designer, and the ControlWave. For this to work, you must
have already configured OpenBSI, and included the ControlWave controller in an
OpenBSI network.

The ControlWave key switch must be in either the 'LOCAL' or 'REMOTE' position.

In the "Parameter" field (shown below) replace the '<node>' with the RTU node name
(as defined in the OpenBSI network) for the ControlWave.

Step 6. Click on [Ok] to exit the Resource Settings dialog box. You can now proceed to
download your ControlWave project, or you can enter debug mode.

ControlWave Designer TCP/IP DLL

IP address of the controller’s port Timeout (in milliseconds)

ControlWave Designer
communications handled entirely by
OpenBSI

In place of <node> enter the RTU node
name of the controller, as defined in
NetView. (Be sure you erase the “<>”.)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Downloading 117

Downloading Your ControlWave Project from Within
ControlWave Designer

Before downloading a project into the ControlWave, you must have compiled all of your
edits and specified the communications method using the Resource Settings dialog box
(see above).

If the ControlWave is connected to an actual running process, we recommend you
download and test the project in the I/O Simulator first.

 DANGER

Users should never attempt to download an untested program into a controller if the controller is
currently connected to a running plant or industrial process. Safeguards must be taken prior to
downloading to ensure that the controller is isolated from the process and I/O is disconnected.
Failure to take such precautions could result in injury to persons or damage to property.

Step 1. Click on Online Project Control

Step 2. The RTU_RESOURCE dialog box will appear. If there is already a project running in
the ControlWave, you can optionally stop it first, before proceeding with the
download, by clicking on the [Stop] button. Provide your username and password,
if prompted. Now click on the [Download] button to call up the Download dialog
box.

Step 3. Click on the [Download] button on the left side 'Project' portion of the dialog box,
and the compiled project code will be downloaded in the SDRAM memory (or
SRAM) of the ControlWave. (There are several other options for downloading; see
the figure on the next page).

Note

For many ControlWave platforms (GFC, XFC, Express) there is no SDRAM. The control
strategy file executes in Static RAM (SRAM).

If you already have a project running
in the controller, click here to stop
it, first.

Click here to call up the
Download dialog box.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

118 Downloading

Step 4. In the RTU_RESOURCE dialog box, start the project execution by clicking on either
the [Warm] or [Cold] buttons.

The [Warm] button performs an application warm start. The [Cold] button
performs an application cold start. An application warm start means that the
project in SDRAM is started from the beginning of its cycle, using saved values for
variables marked "RETAIN" from the Static RAM (SRAM). Application warm starts
are performed whenever there is no version mismatch between the project, and
the retain values, and there was no system cold start. If a system cold start
occurred, however (i.e. loss of battery power to the SRAM, or static memory SRAM
Control Switch set OFF) all data in static RAM is gone, so an application cold start

You should check
“Include OPC data”
if you want to use
ObjectServer or
you want to use
Signal Extractor to
create a database.

Click here to download your
compiled project. This is the actual
executable code which runs in the
ControlWave. The project code
executes in either SDRAM or SRAM.

Click here to download
just the compiled project
code into the bootproject
area of FLASH memory.
This is preserved in the
event of a power failure.

“Activate” copies
the bootproject
into SDRAM or
SRAM (depending
on the platform).
This happens
automatically on
power-up.

This deletes the
bootproject.

This can be used to
download other files
(e.g. web pages) to
the FLASH area of
the ControlWave.

User libraries are user-
created collections of
functions and function
blocks.

Pagelayouts are the
graphical elements of
your project e.g. the
project tree.

Click here to delete any
existing *.ZWT file
already in the
ControlWave.

Click here to download just the zipped
ControlWave source file (*.zwt). This is
the file and libraries you actually edit with
ControlWave Designer, NOT the compiled
code which executes in the ControlWave.

To download the zipped
ControlWave source file
(*.zwt) at the same time
as you download the
ControlWave project,
select this.

To download the
bootproject (*.pro) at
the same time as you
download the
ControlWave project,
select this.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Downloading 119

must be performed. In this case, the project in SDRAM is started from the
beginning, and all variables are set to their initial values. Application warm starts
and cold starts can also be performed by the user after downloading a project
from within ControlWave Designer by choosing the [Cold] or [Warm] buttons in
the RTU Resource dialog box. For more information on this subject, see ‘Memory
Usage’ later in this manual.

Downloading using the OpenBSI ControlWave Downloader

Before You Begin

There are certain things you must do before you can download to a ControlWave-series
controller.

 You must save your project as a ControlWave project *.MWT file.

 You must generate a boot project file during compilation in ControlWave Designer. To
do this, you must check the Generate bootproject during compile box for your
resource.

 You must generate a zipped project file (*.ZWT) in ControlWave Designer. One way
you can do this is to manually save your ControlWave project as a zip file:

Make sure this box is checked in
ControlWave Designer when you
compile/build your project.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

120 Downloading

You must transfer the bootfile and zip file for this project to a sub-directory of whichever
directory you want to use for downloads. You can accomplish this if you click Build
Transfer Download Files in ControlWave Designer. In this utility, you must specify the
download directory in the Download dir field.

First click the “Save Project As/Zip
Project As” option in ControlWave
Designer.

Next, make sure you choose “Zipped
Project Files (*.zwt) in the Save as
type list box, or else the project won’t
be zipped.

Use the “…” button to specify the directory which will hold
your download files. When you initiate a transfer, the utility
creates a sub-directory of the download directory to hold
the boot and zip files for this particular project.

Click here to start the transfer.

If you didn’t
generate a ZWT file
yet, check this box
and the utility does
it for you.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Downloading 121

If you check Zip Project and Transfer Zip File (default), the system zips the current project
automatically, in preparation for the transfer. If you select the Compress user libraries into
download project option, the system zips the user libraries and includes them in the zip
project.

Note:

Zip Project and Transfer Zip overwrites any pre-existing zip file for this project. To prevent
this, you can disable the option, however, if you do, you must have a previously created zip
available for transfer.

When you finish making selections, click Transfer and the file transfer begins.

If your ControlWave-series node includes a key operated RUN / REMOTE/ LOCAL switch,
you must turn the switch to either the REMOTE or LOCAL position, depending upon how
the PC connects to the ControlWave. Downloading CANNOT occur with the switch in the
RUN position.

Starting the ControlWave Downloader
There are two methods for starting the ControlWave Downloader:

Method 1:

Click Start Programs
OpenBSI Tools
ControlWave Tools
ControlWave Downloader.
The Select New Node dialog
box opens. Use the list box to
select the node which you
want to download to; then

click OK, and the Downloader
opens.

Method 2:

The second method is to right-
click on the icon for the
controller you want to
download, in the NetView tree,
and choose RTUDownload
from the pop-up menu.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

122 Downloading

Using the ControlWave Downloader
When the ControlWave Downloader dialog box opens, complete the fields as described,
below:

When the fields are completed, click Begin to start the download. The fields/buttons in this
dialog box are:

Field Description
Node This displays the node name (as it appears in the NetView tree) for this ControlWave-series

controller.

Username, Password Enter a valid username/password combination for this ControlWave-series controller.

Project Path Enter the path of the project that the Downloader will download to this controller, or use
the Browse Bootfile button to locate it. (The path must be a sub-directory of whichever
directory you specified for downloads (Download Dir) in the Transfer Download Files dialog
box) The project files consist of the .PRO boot file, generated when you compile your
ControlWave project, and the zip file (*.zwt) containing the project source. Note: If your

Click here to start the download.

Enter the proper username and
password for this controller.

When downloading a project, click “Warm Boot” to perform a
warm download (project is started from the beginning using
values saved as RETAIN – if project hasn’t changed to a degree
that those values don’t apply). If you de-select “Warm Boot” a
cold download occurs (project is started from the beginning

Shows the
progress of the
download.

Check this to allow
the ZWT file to
download.

Check this box to download
user files (.HTML, etc.) which
the ControlView utility can
retrieve later.

Use this browse
button to choose
the sub-directory
containing your
bootfile.pro and

RTU node name
(as it appears in
the NetView tree)

Use this browse button to
choose the sub-directory
containing user files. You
can use the ControlView
utility to retrieve these.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Downloading 123

Field Description
project includes multiple resources, each one has a different path, and you must choose
the appropriate one.

User Files Path Enter the path of the folder containing files you want to download to the user files area of
the ControlWave, or use the Browse Path button to locate it. (See Download User Files,
below).

Begin Click here to start the download.

Cancel Click here to exit down the 1131 Downloader.

Warm Boot When you don’t select this check box, all variables initialize as part of the download, and
the project restarts. When you choose Warm Boot, any variables configured as RETAIN do
not re-initialize as part of the download, however, all other variables initialize, and the
project restarts from the beginning of its cycle.

ZipFile When you select this option, the download operation includes the zipped project file
(*.ZWT).

Download
User Files

The ControlWave can store user files (*.ZIP, *.HTML, etc.) in flash memory, for later
retrieval using the ControlView utility. You must place the user files you want to download
to the ControlWave in the folder identified by the User Files Path field. Note: This feature
was added in OpenBSI 5.3 Service Pack 2.

Creating Download Scripts for Batch Downloading of
ControlWave Controllers

Optionally, you can create download scripts which allow you to download files to
ControlWave controllers using a single command.

You create download scripts as ASCII text files, with the file extension of *.RDL, and store
them in the Downloads sub-directory of your OpenBSI directory.

Each line of the download script, defines the downloading parameters for a single
ControlWave controller. The syntax of a line of the download script is:

nodename,filetype,startup,includezip,source_path

where:

nodename is the name of the ControlWave controller you want to download. This name
must match the name you define in NetView. (This is the only required field.)

filetype specifies the kind of file you want to download. filetype must be either:

 P Download a ControlWave project (default)
 F Download a user file (used with ControlView)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

124 Downloading

startup specifies whether the system should perform a warm boot upon completion of

the download. startup must be either:

 Y Perform a warm boot (default)
 N Do not perform a warm boot

includezip specifies whether or not the Downloader should also download the zipped
ControlWave project (*.ZWT). includezip must be either:

 Y Include *.ZWT with the download
 N Do not include *.ZWT with the download (default).

path specifies the source folder containing the file you want to download. If you
download a project, this must be the directory containing bootfile.pro. If you
download user files for use with ControlView, this must be the folder containing
those files. If the folder name contains spaces, you must surround it with
quotation marks “ “. If you enter nothing here, the Downloader uses OpenBSI
Application Parameter defaults.

Example RDL File:

RPC1,P,Y,Y,C:\ProgramData\Bristol\OpenBSI\”My downloads”

RPC2,P,Y,Y,C:\ProgramData\Bristol\OpenBSI\”My downloads”

RPC3,P,Y,Y,C:\ProgramData\Bristol\OpenBSI\”My downloads”

RPC4,P,Y,Y,C:\ProgramData\Bristol\OpenBSI\”My downloads”

Starting the Download Script

To start the download script you create, click on File Open Script within the ControlWave
Downloader, then choose the RDL file that contains the download script.

You can also run download scripts from the command line prompt according to the
following syntax:

 dl1131 script_name username password

where:

 script_name is the name of the RDL file (omitting the RDL extension)

username password is a valid username/password combination for the first RTU in the
script. The named user must have privileges sufficient to download.

For example, to run the download script myloads.RDL where the first
RTU in the RDL file has a username/password combination of
THOMAS BOB276, type the following:

 dl1131 myloads THOMAS BOB276

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Downloading 125

Running the ControlWave Downloader from the Command Line:

Optionally, you can start ControlWave Downloader from the DOS command prompt.
Follow the syntax rules below; optional switches appear in brackets “[].” The command for
this is:

 dl1131 node [file] username password

where:

node is the RTU node name as defined in the NETDEF files. If no file is specified, the
Downloader uses the file specified in the RTU Properties in NetView.

File is the basename of the ControlWave project. You can omit the .PRO or .MWT
extension. When you specify a file, you override any filename specified in the RTU
Properties in NetView. If the filename includes spaces, you must surround it with
quotation marks “ “.

username
password

is a valid username/password combination for this RTU. The user you specify
must have sufficient privileges to perform the download.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

126 Downloading

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 127

Expanded BSAP (EBSAP) Communications
A Bristol Synchronous / Asynchronous Protocol (BSAP) network enforces an absolute limit
on the number of nodes (remote process controllers) which may be addressed on the level
below a given node or OpenBSI Workstation. That limit, from all master ports combined, is
127 nodes. Certain applications (particularly those involving large numbers of radio
remotes operating on the same frequency) may require larger numbers of nodes to be
addressed through the same port. To address more than 127 nodes through a given
master yet still not violate the BSAP limit, you must use a technique called expanded BSAP
(or EBSAP).

Expanded BSAP allows the creation of virtual nodes below an EBSAP Master Port, and each
of these virtual nodes can address up to 127 actual nodes. The virtual node, itself, exists
only as a software structure in the EBSAP Master node above it; there is no additional
physical remote process controller involved. The presence of the virtual node, however,
introduces an intermediate level into the network which allows up to 127 actual physical
nodes to be addressed below it, while only one node, the virtual one, is counted on the
intermediate level. Since a real, physical remote process controller on level n of the
network can address 127 nodes below it (all on level n+1), if each of these nodes were
virtual nodes, and each virtual node had 127 real, physical nodes below it (on level n+2)
expanded addressing would theoretically allow 127 groups of slave nodes, with each
group containing up to 127 nodes, all addressed by a single master node. In fact, they
could all be on the same master port. That’s 127 X 127 or a total of 16,129 nodes!

Important

Although the expanded addressing scheme theoretically allows 16,129 nodes, other
practical limitations (such as running out of memory in the master node, the ability of
OpenBSI to support only up to 4,999 nodes, limitations on the number of data collection
templates in the HMI, and the unacceptable length of time required to poll so many nodes)
would rule out such a large number of nodes.

On some systems with radio remotes, where very long polling rates (several minutes, at
least) are acceptable, it may be practical to use expanded BSAP. In other time-critical
applications, even fifty nodes (far fewer than 127, and thereby not requiring expanded
BSAP) may be too many to support fast data updates. It all depends on the capabilities of
your network.

CAUTION

The size and composition of a network and the decision to use expanded BSAP must be made only
after you have carefully examined of your system requirements and have fully considered how
expanded BSAP may impact network performance.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

128 Expanded BSAP (EBSAP) Communications

Expanded BSAP — The Concept
The following figure shows a portion of a BSAP network which does not use EBSAP. It has a
single master node (on level n) with 50 slave nodes below it (on level n+1). These slave
nodes use local addresses 1 through 50 (though there isn’t room to show all of them in this
picture.)

Because of new system requirements, it is decided that 90 additional slave nodes must be
addressed through this master node, for a total of 140 slave nodes. This presents a
problem because with fifty slave nodes already present, only 77 additional nodes could
normally be added (50 + 77 = 127).

To get around this limitation, expanded BSAP will be used (see the figure below). An EBSAP
Master Port will be added that will allow communication with virtual nodes. A virtual node,
with a local address of 51, will be added to the network (on level n+1). The virtual node can
address the 90 new real, physical nodes on the level below it (level n+2). These are called
Expanded Addressing Slave (EASlave) nodes (or just EBSAP slave nodes).

Level n

Level n+1

Level n+2

Master Port

Slave Port Slave Port Slave Port

Local Address: 1

Local Address: 1

Local Address: 2

Local Address: 2 Local Address: 90

Local Address: 50 Local Address: 51

Dial-up or radio link

(Local addresses 3
 to 49 not shown)

(Local addresses 3
 to 89 not shown)

VIRTUAL
NODE

EBAP
Slave
Nodes

EBSAP Master Port

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 129

Since the virtual node is really a phantom controller, existing only in software, the EBSAP
scheme has allowed a single EBSAP Master node at level n, to address 140 nodes; 13 more
than would normally be allowed.

General Requirements for Expanded BSAP (EBSAP):
Every EBSAP network must have:

 An EBSAP Master node.

An EBSAP Master node can be any of the following:

1. An OpenBSI Workstation that has been configured with an EBSAP communication
line. Virtual nodes must be on level 1 of the network, and EBSAP slaves must be on
level 2 of the network.

2. Any ControlWave-series controller with version 04.50 or newer firmware that has
been configured with an EBSAP Master Port. Control and status arrays must also
be defined to handle polling for EBSAP slaves.

3. Certain Network 3000-series controllers (DPC 3330, DPC 3335, RTU 3310, or RTU
3305 with AG, RMS00, PLS00, LS500 or newer firmware). NOTE: This manual does
NOT cover how Network 3000-series controllers are used in EBSAP. For
information on this subject, please refer to the Expanded Node Addressing section
of the ACCOL II Reference Manual (document# D4044).

 One or more virtual nodes

All the nodes immediately below an EBSAP Master port or on an EBSAP communication
line must be virtual nodes. Virtual nodes are just software structures that reside in the
EBSAP Master. They are defined in NetView, similar to any other RTU, but they are not
actual hardware.

 From 1 to 127 EBSAP slave nodes underneath each virtual node

An EBSAP slave node can be any ControlWave-series controller or any ACCOL II-based
Network 3000-series controller.

The EBSAP slave node must be assigned to the proper EBSAP group. EBSAP slave nodes
underneath the first virtual node on an EBSAP Master port must be assigned to Group
0; EBSAP slave nodes underneath the second virtual node on an EBSAP Master port
must be assigned to Group 1; and so on.

The following rules must be adhered to when using EBSAP:

 All nodes, whether master, slave, or virtual, must be defined in the current NETDEF
file.

 All slaves on an EBSAP Master Port, which are on the level immediately below the
node containing the port, must be virtual nodes.

 All slaves of the virtual nodes must be real remote process controllers; i.e. a virtual
node cannot have a virtual slave.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

130 Expanded BSAP (EBSAP) Communications

 Just like local address assignments, the choice of group numbers is important, and
should NOT be done randomly. The EBSAP Group number identifies which virtual
node on a given EBSAP communication line is above a particular RTU. See Specifying
the Group Number for an RTU later in this section, for details.

 Peer-to-peer communication of signal lists and data arrays is only supported between
nodes within the same group, and immediately below the same virtual node.

 Poll periods and timeouts must be set carefully based on the size of your EBSAP
network.

Creating an EBSAP Master
As noted earlier, an OpenBSI Workstation or a ControlWave controller can serve as an
EBSAP Master. Certain Network 3000 controllers can also serve as EBSAP Masters; they
are not discussed in this manual.

Note:

For information on using Network 3000 controllers in an EBSAP network, refer to
Expanded Node Addressing section of the ACCOL II Reference Manual (document# D4044).

OpenBSI Workstation is EBSAP Master
To make an OpenBSI Workstation the EBSAP Master, you must define an EBSAP
communication line that covers the address range of the virtual nodes.

Defining an EBSAP communication line:

There are two methods for defining an EBSAP communication line:

Method 1:

In NetView, drag
an EBSAP line icon
from the Toolbox
into your network
hierarchy. This
will activate the
Comm Line
Wizard, from
which you can
proceed to define
the EBSAP line as
you would a
regular BSAP line.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 131

Method 2:

If you’re already
in the Comm Line
Wizard, choose
‘EBSAP Line’ as
the node type
and then
continue to
define it as you
would a regular
BSAP line.

ControlWave-series Controller is the EBSAP Master

Any ControlWave-series controller with 04.50 or newer firmware can serve as an EBSAP
Master. To be an EBSAP Master, the ControlWave-series controller must be configured
with an EBSAP Master Port, as well as control and (optionally) status arrays.

Defining an EBSAP Master Port

An EBSAP Master Port is configured from within the Flash Configuration Utility.

 Choose ‘EBSAP Master’ as the “Protocol Mode”.

 Specify the baud rate for the port in the “Baud Rate” field.

 Using the “Low Virtual Slave” and “High Virtual Slave” fields, specify the range of local
addresses used by the virtual nodes. For example, if the virtual slaves use local
addresses 5 through 9 on this EBSAP Master Port, then enter ‘5’ for the “Low Virtual
Slave” and ‘9’ for the “High Virtual Slave”.

 Set “Max Slaves” to the maximum number of real slave nodes that will be on the level
immediately below any one of the virtual nodes on this port. For example, if you have
3 virtual nodes on this port, and one will have 20 nodes underneath it, another will
have 15 nodes underneath it, and the third will have 27 nodes underneath it, then
“Max Slaves” would be set to 27, since that is the maximum under any one virtual
node. NOTE: The value of “Max Slaves” must be consistent with the maximum size of
your network, as defined in NetView; i.e. if you mustn’t specify more slaves than are
supported by the network levels you defined previously. In addition, the "Max Slaves"
value must be used later when you define the size of the control and status arrays for
your port.

 When finished, save the port definition to the RTU by clicking on [Save to Rtu] and
reset the controller for the change to take effect.

Select EBSAP Line

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

132 Expanded BSAP (EBSAP) Communications

Configuring the Control and Status Arrays
There are four different arrays that are useful in EBSAP. Basically, they are used to turn
ON/OFF polling for nodes, and to report whether communications are working for
particular nodes.

Note:

ll these arrays must be registered using REG_ARRAY function blocks, and must be marked
as PDD variables so they can be accessed by external programs (e.g. DataView).

_SLAVE_DEAD array and _SLAVE_POLL_DIS array

The _SLAVE_DEAD array provides an indication whether any responses have been received
for slaves of the EBSAP Master. Because all the slaves immediately below the EBSAP Master
are virtual nodes, the indication of responses received will actually deal with the EBSAP
slaves under each virtual node. If there are any EBSAP slaves responding through a

Defines the local address range of
the virtual nodes on this port.

Choose “EBSAP Master” Maximum number of real nodes
allowed underneath one of these
virtual nodes.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 133

particular virtual node, the virtual node is considered ‘alive’; otherwise, it is considered
‘dead’.

The _SLAVE_POLL_DIS array allows the programmer to selectively turn ON/OFF polling for
the slaves of the EBSAP Master. Because all the slaves immediately below the EBSAP
Master are virtual nodes, turning OFF polling for a particular virtual node will actually turn
OFF polling for all the EBSAP slaves under that virtual node..

Because both the _SLAVE_DEAD array and _SLAVE_POLL_DIS array are also used in
standard BSAP systems, they are automatically present in your project. You need to
generate the system variables for them, however, in order to make reference to them.

To configure the _SLAVE_DEAD and _SLAVE_POLL_DIS arrays do the following:

1. On the ‘Port Globals’ page of
the System Variable Wizard,
check the “Master -
Dead_Slaves”
(_SLAVE_DEAD) and “Don’t
Poll Array” (_SLAVE_POLL_DIS
) boxes. The arrays should also
be marked as “PDD” to allow
for collection by OpenBSI.

Check the boxes for “_SLAVE_DEAD” and
“_SLAVE_POLL_DIS”

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

134 Expanded BSAP (EBSAP) Communications

_SLAVE_DEAD and _SLAVE_POLL_DIS
use the data type 'B_127'

2. This will cause a new
worksheet to be created
called SYS_VAR_WZ_TYPES.
This worksheet contains the
data types used by the
_SLAVE_DEAD and
_SLAVE_POLL_DIS arrays. In
order to ensure that the new
data type is fully accessible,
please re-build your project
using the command Build
Rebuild Project.

3. For each of these two arrays
(_SLAVE_DEAD and
_SLAVE_POLL_DIS) you will
want to register the arrays,
so they can be made
accessible to OpenBSI
programs such as DataView
or Harvester. To do this, use
the Edit Wizard in
ControlWave Designer to
insert a REG_ARRAY
function block (1 for each
array).

a. The arrayDescriptor
parameter should be
set to the name of
the array (either
_SLAVE_DEAD or
_SLAVE_POLL_DIS in
this case.)

b. The iiArrayNumber
parameter assigns an
array number to the
array, so it may be
requested by external
programs such as
OpenBSI’s DataView
or Harvester.

c. The remaining

Choose either “_SLAVE_DEAD” or
“_SLAVE_POLL_DIS” depending upon
which one you are registering.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 135

parameters,
odiStatus,
ouiNumRows,
ouiNumColumns
need only be
assigned variable
names; since they are
output parameters.

When you have completed this configuration for both arrays, and compiled and
downloaded the project, the _SLAVE_DEAD and _SLAVE_POLL_DIS arrays will be
operational.

Note:

The interpretation of the BOOL array elements in all the control and status arrays can be
toggled based on the value of the _BSAP_FLAG_SENSE system variable. By default,
_BSAP_FLAG_SENSE is FALSE. By default then, in the _SLAVE_DEAD array, a TRUE BOOL
value means that the associated virtual node is dead; i.e. there are no ‘live’ EBSAP slave
nodes for that virtual node. Also, by default, a TRUE BOOL value in _SLAVE_POLL_DIS turns
polling OFF for a slave node.

If, however, the user changes the value of _BSAP_FLAG_SENSE to TRUE, the logic for
interpreting the values of the array elements is reversed; a TRUE BOOL value in the
_SLAVE_DEAD array would mean that there is at least one 'live' EBSAP slave node for this
virtual node; similarly a TRUE BOOL value in _SLAVE_POLL_DIS would turn polling ON for a
slave node.

_Px_DEAD_ARRAY and _Px_DISABLE_ARRAY

The _Px_DEAD_ARRAY and _Px_DISABLE_ARRAY system variables define the registered
number of user defined arrays that handle reporting on whether polling is successful to
EBSAP slaves on this port, and whether polling for the EBSAP slaves on this port should be
enabled or disabled.

The user-defined array referenced by _Px_DEAD_ARRAY performs a similar function to the
_SLAVE_DEAD array, except that instead of reporting on the virtual nodes, it reports on
whether responses have been received from any EBSAP slave on this particular EBSAP
Master Port. Users must define the data type for this array, based on the maximum
number of EBSAP slave nodes for any virtual node on this port, and by the local address
range of the virtual nodes used on this port.

Let’s look at the network, below. It has one EBSAP Master port (Port 2) with 2 virtual nodes,
and another EBSAP Master port (Port 3) with 1 virtual node. For Port 2, one virtual node has
90 EBSAP slave nodes; and the other has 72 EBSAP slave nodes. The maximum number of
EBSAP slave nodes under any virtual node on Port 2 is therefore 90 so “Max Slaves” for Port
2 is set to 90. The single virtual node under Port 3 has just 2 EBSAP slave nodes, so the

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

136 Expanded BSAP (EBSAP) Communications

maximum number of EBSAP slave nodes for Port 3 is 2, and “Max Slaves” for Port 3 is set to
2.

Important:

Because these arrays use dimensions of ‘Max Slaves’ as defined in the Flash Configuration
Utility; the appropriate dimension of the array must match that value exactly. Sizing the
array larger or smaller, will prevent EBSAP from working.

Master Port

Slave Port Slave Port
Slave Port

Local Address: 1

Local Address: 1
Local Address: 1Local Address: 1

Local Address: 2
Local
Address: 3

Local
Address: 4

Local Address: 2
Local Address: 2Local Address: 2Local Address: 90 Local Address: 72

Local Address: 6Local
Address: 5

Dial-up or radio links

(Local addresses 3
 to 89 not shown)

(Local addresses 3
 to 71 not shown)

VIRTUAL
NODE

VIRTUAL
NODE

EBSAP Master Port

EBSAP Master Port

Master Port

VIRTUAL
NODE

GROUP 0 EBSAP SLAVE NODES
GROUP 0 EBSAP SLAVE NODES

(Note: These two nodes are in Group 0
because Group numbering starts at
0 for the first virtual node on any EBSAP
Master Port. These nodes are on a
different EBSAP Master Port than the
other nodes shown.)

GROUP 1 EBSAP SLAVE NODES

We’re going to describe how to
create the arrays for Port 2 only.
Port 3 would be similar.

1. To configure the data
types for these arrays,
first right-click on the
‘Data Types’ item in the
project tree in
ControlWave Designer,
and choose Insert Data
Types from the pop-up
menu.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 137

2. Enter a name for your
Data Types worksheet,
and click on [OK].

3. Now we need to define the data types used for the arrays. The array size is
determined based on the maximum number of EBSAP slave nodes under a given
virtual node on a port, and the number of virtual nodes on the port. Since, in this
example, the largest number of EBSAP slave nodes is 90 we want to create an array
type called ‘MaxSlaves’ that consists of 90 BOOL values. Since we happen to have
up to two virtual nodes on a port, we want to make another array type called
‘NumVirtNodes’ that consists of a column of size ‘MaxSlaves’ for each virtual node
under the port.

Note:

Although we made NumVirtNodes dimensions to be [1..2], we could have it [3..4] based on
the local address, since it just needed a dimension of 2.

Enter a name for the worksheet, then click
“OK”.

Here we define the data types used for the
arrays.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

138 Expanded BSAP (EBSAP) Communications

4. Now that the array data types have been defined, we can define the actual array
variables that will be used to report on polling success or turn ON/OFF polling for
EBSAP slaves on this port. We will call them PORT2_ESLAVE_DEAD, and
PORT2_ESLAVE_DISABLE. They must be defined in the Global Variables worksheet
(so they are accessible throughout the project) and they will both be of the array
type ‘NumVirtNodes’.

5. Configure two REG_ARRAY function
blocks, one for each of these arrays:

 The arrayDescriptor parameter
should be set to the name of the
array (either
PORT2_ESLAVE_DISABLE or
PORT2_ESLAVE_DEAD in this
case.)

 The iiArrayNumber parameter assigns an array number to the array, so it may
be requested by external programs such as OpenBSI’s DataView or Harvester.

 The remaining parameters, odiStatus, ouiNumRows, ouiNumColumns need
only be assigned variable names; since they are output parameters.

Insert new variables in the Global
Variables worksheet. You must
specify them to be of the array
data type you defined previously.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 139

6. On the ‘Port Detail’ page of the System Variable Wizard for Port 2, you must
identify the array number for each of these arrays, so that they can be properly
associated with the port. You must check the box next to _Px_DEAD_ARRAY and
_Px_DISABLE_ARRAY; this will create system variables called _P2_DEAD_ARRAY
and _P2_DISABLE_ARRAY (since this is for port 2). The values of these system
variables are then set to the same number you assigned to the iiArrayNumber
parameter in the REG_ARRAY function block. In this case, we have specified array
numbers 10 and 11.

7. Once your project has been compiled and downloaded, these arrays can be used to
enable/disable polling for EBSAP slave nodes on Port 2, and to report whether
responses are being received from EBSAP slave nodes on that port.

8. Now, let’s consider how to use these arrays that we’ve created. It may help your
understanding if you refer to the figure on page 136 of this section that shows the
network.

These numbers identify the registered array
numbers (done through REG_ARRAY).

Check these boxes to create the
EBSAP system variables for this

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

140 Expanded BSAP (EBSAP) Communications

Individual array elements of a single-dimension array (_SLAVE_DEAD or
_SLAVE_POLL_DIS) are referenced by their row number, for example
_SLAVE_DEAD[row_number]. So if you reference _SLAVE_DEAD[5] you are
referencing the BOOL value in row 5 of array _SLAVE_DEAD.

Individual array elements from a two-dimensional array (such as
P2_ESLAVE_DISABLE) are referenced by row and column number, for example
P2_ESLAVE_DISABLE[row][column]. So if you reference P2_ESLAVE_DISABLE[3][17]
references the BOOL value in the row 3 (a virtual node) and column 17 (the 17th
EBSAP slave node under that virtual node.)

_SLAVE_DEAD

To see whether responses are being received for poll messages from any EBSAP slave nodes
under the first virtual node on Port 2 (which has a local address of 3), we would look at the
BOOL value of _SLAVE_DEAD[3], where 3 is the row number of the array.

To see whether responses are being received for poll messages from any EBSAP slave nodes
under the second virtual node on Port 2 (which has a local address of 4), we would look at
the BOOL value of _SLAVE_DEAD[4].

Note:

By default, A TRUE BOOL value indicates the virtual node is DEAD, i.e. there are no ‘live’
EBSAP slaves for this virtual node.

_SLAVE_POLL_DIS

This is very similar to the _SLAVE_DEAD array, except it actually turns polling ON or OFF.

To turn ON/OFF polling for any EBSAP slave nodes under the first virtual node on Port 2
(which has a local address of 3), we would manipulate the BOOL value of
_SLAVE_POLL_DIS[3].

Note:

Interpretation of the meaning of the BOOL value is determined by the system variable
_BSAP_FLAG_SENSE.

PORT2_ESLAVE_DEAD

We had said, as part of this example, that PORT2, an EBSAP Master Port, had two virtual
nodes underneath it. The first virtual node on PORT2 has 90 EBSAP slave nodes; the second
virtual node on PORT2 has 72 EBSAP slave nodes.

To find out whether responses have been received from any particular node from among
the 90 EBSAP slaves underneath the first virtual node, we would examine the BOOL values
of PORT2_ESLAVE_DEAD[1][1] to PORT2_ESLAVE_DEAD[1][90].

To find out whether responses have been received from any particular node from among

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 141

the 72 EBSAP slaves underneath the second virtual node, we would examine the BOOL
values of PORT2_ESLAVE_DEAD[2][1] to PORT2_ESLAVE_DEAD[2][72].

Note:

By default, a TRUE BOOL value in this array indicates that the associated EBSAP slave node is
dead. This interpretation can be reversed by _BSAP_FLAG_SENSE.

PORT2_ESLAVE_DISABLE

Again, PORT2 is an EBSAP Master Port that has two virtual nodes underneath it. The first
virtual node on PORT2 has 90 EBSAP slave nodes; the second virtual node on PORT2 has 72
EBSAP slave nodes.

To enable/disable polling for any particular node from among the 90 EBSAP slaves
underneath the first virtual node, we would manipulate the BOOL values of
PORT2_ESLAVE_DISABLE[1][1] to PORT2_ESLAVE_DISABLE[1][90].

To enable/disable polling for any particular node from among the 72 EBSAP slaves
underneath the second virtual node, we would examine the BOOL values of
PORT2_ESLAVE_DISABLE[2][1] to PORT2_ESLAVE_DISABLE[2][72].

Note:

Interpretation of the meaning of the BOOL value is determined by the system variable
_BSAP_FLAG_SENSE.

Defining the Virtual Nodes
On the network level immediately below the EBSAP Master are one or more virtual nodes.
Although, virtual nodes are really just software structures residing in the EBSAP Master,
virtual nodes are created in NetView’s RTU Wizard, just like any other RTU in your network.
The only difference is that you have to specify that it is a virtual node, instead of a real
piece of RTU hardware.

There are two ways to define a virtual node:

Method 1:

In NetView, drag a Virtual node icon
from the Toolbox into your network
hierarchy. This will activate the RTU
Wizard, from which you can proceed to
define the node as you would any other
RTU.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

142 Expanded BSAP (EBSAP) Communications

Method 2:

If you’re already in the RTU Wizard,
choose ‘VIRTUAL’ as the node type and
then continue to define it as you would
any other RTU.

Defining the EBSAP Slave Nodes
An EBSAP Slave node can either be a ControlWave-series controller or a Network 3000-
series controller. This section will only discuss configuring ControlWave-series controllers
as EBSAP slave nodes; for information on using Network 3000-series controllers as EBSAP
slave nodes, please consult the Expanded Node Addressing section of the ACCOL II Reference
Manual (document# D4044).

Defining the EBSAP Slave Port

Each EBSAP slave node must have an EBSAP Slave Port configured via the Flash
Configuration Utility. (NOTE: A Slave Port could be used, instead, however, we
recommend EBSAP Slave Ports to ensure proper communication statistics are collected.)

Specifying the EBSAP Group Number for a Slave Node

All RTU’s immediately below the first virtual node on a given EBSAP communication line
belong to group 0; all RTU’s immediately below the second virtual node on a given EBSAP
communication line belong to group 1, and so on.

Because of this, if you
have multiple EBSAP
communication lines from
a particular EBSAP Master
node, each EBSAP line will
have a group 0 for its first
virtual node, a group 1 for
its second virtual node,
etc., depending upon how
many virtual nodes are on
that line.

For the current generation of ControlWave RTU’s, the group number of a particular RTU is
assigned in the “EBSAP Group” field of the ‘Soft Switches’ page of the Flash Configuration
Utility.

Choose “VIRTUAL”

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 143

Note:

See Expanded Node Addressing in the ACCOL II Reference Manual (document# D4044) if you
have an older Network 3000 RTU which cannot store a group number in FLASH memory.

If you are NOT using EBSAP in your network, this must be left at the default of ‘0’.

Use the [Save to Rtu] button to save the entries to the controller.

Note:

Changes to soft switches do not take effect until the RTU has been reset.

 Example 1 — OpenBSI Workstation is EBSAP Master to 1000
ControlWave controllers

Suppose there is an OpenBSI Workstation, and 3 ports which will be defined as EBSAP
Master lines. Two of the EBSAP lines need to communicate with 400 ControlWave
controllers, and a third EBSAP line needs to communicate with 200 ControlWave
controllers, for a total of 1000 ControlWave controllers in the network. Here's how to
approach this.

1. In NetView, define 3 separate EBSAP lines (COM1, COM2, COM3). COM1 and COM2
will each communicate with 400 RTUs, and COM3 will communicate with 200 RTUs.

2. On level 1 of the network, define virtual nodes and on level 2 of the network define the
real 1000 RTUs.

For COM1, 4 virtual nodes must be defined in order to address 400 real RTUs.

VN1, VN2, VN3, and VN4 are added in NetView on Level 1, by selecting 'VIRTUAL' as
the node type. (By the way you don't have to name the virtual node ‘VN’, we’re just
doing that for ease of explanation.)

 VN1 will have a local address of 1, and it is responsible for RTU1 to RTU127. RTU1
to RTU127 are in Group 0 because VN1 is the first virtual node on COM1. The local
addresses for these RTUs will be 1 to 127. NOTE: In this example we are assigning
real nodes to local address 127, however, certain older RTU types reserve address 127
for special purposes (e.g. redundant DPC 3330s with RASCL) and don’t assign an RTU
to it. Keep this in mind if you are working with older RTUs.

 VN2 will have a local address of 2, and it is responsible for RTU128 to RTU254.
RTU128 to RTU254 are in Group 1 because VN2 is the second virtual node on
COM1. The local addresses for these RTUs will be 1 to 127.

 VN3 will have a local address of 3, and it is responsible for RTU255 to RTU381.
RTU255 to RTU381 are in Group 2 because VN3 is the third virtual node on COM1.
The local addresses for these RTUs will be 1 to 127.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

144 Expanded BSAP (EBSAP) Communications

 VN4 will have a local address of 4, and it is responsible for RTU382 to RTU400.
RTU382 to RTU400 are in GROUP 3 because VN4 is the fourth virtual node on
COM1. The local addresses for these RTUs will be 1 to 19.

 RTUs 1 to 400 must all be on Level 2 of the Network.

For COM2 we again need to define at least 4 virtual nodes (VN) in order to address
another 400 real RTUs. VN5, VN6, VN7, and VN8 are added in NetView, again, by
selecting 'VIRTUAL' as the node type.

 VN5 will have a local address of 5, and it is responsible for RTU401 to RTU527.
RTU401 to RTU527 are in Group 0 because VN5 isthe first virtual node on COM2.
The local addresses for these RTUs will be 1 to 127.

 VN6 will have a local address of 6, and it is responsible for RTU528 to RTU654.
RTU528 to RTU654 are in Group 1 because VN6 is the second virtual node on
COM2. The local addresses for these RTUs will be 1 to 127.

 VN7 will have a local address of 7, and it is responsible for RTU655 to RTU781.
RTU655 to RTU781 are in Group 2 because VN7 is the third virtual node on COM2.
The local addresses for these RTUs will be 1 to 127.

 VN8 will have a local address of 8, and it is responsible for RTU782 to RTU800.
RTU782 to RTU800 are in Group 3 because VN8 is the fourth virtual node on COM2.
The local addresses for these RTUs will be 1 to 19.

 RTUs 401 to 800 must all be on Level 2 of the Network.

 For COM3 I again need to define at least 2 virtual nodes (VN) in order to address the
remaining 200 real RTUs. VN9 and VN10 are added in NetView, on Level 1 again, by
selecting 'VIRTUAL' as the node type.

 VN9 will have a local address of 9, and it is responsible for RTU801 to RTU927.
RTU801 to RTU927 are in Group 0 because VN9 is the first virtual node on COM3.
The local addresses for these RTUs will be 1 to 127.

 VN10 will have a local address of 10, and it is responsible for RTU928 to RTU1000.
RTU928 to RTU1000 are in Group 1 because VN10 is the second virtual node on
COM3. The local addresses for these RTUs will be 1 to 73.

 RTUs 801 to 1000 must all be on Level 2 of the Network.

The figure on the next page shows the completed network, though there is only space to
show the first and last RTU of each group.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 145

COM3:

 OPEN BSI
WORKSTATION

VN1 VN2 VN3 VN4Local Addr: 1 Local Addr: 2 Local Addr: 3 Local Addr: 4

RTU1 RTU127
Local Addr 1-127 Local Addr 1-127 Local Addr 1-127
Group Num: 0

RTU128 RTU254

Group Num: 1

RTU255 RTU381

Group Num: 2

RTU382 RTU400
Local Addr 1-19
Group Num: 3

COM1:
COM2:

VN5 VN6 VN7 VN8
Local Addr: 5 Local Addr: 6 Local Addr: 7 Local Addr: 8

RTU401 RTU527 RTU528 RTU654 RTU655 RTU781 RTU782 RTU800
Local Addr 1-127 Local Addr 1-127 Local Addr 1-127
Group Num: 0 Group Num: 1 Group Num: 2

Local Addr 1-19
Group Num: 3

VN9 VN10
Local Addr: 9 Local Addr: 10

RTU801 RTU927 RTU928 RTU1000
Local Addr 1-127 Local Addr 1-73
Group Num: 0 Group Num: 1

LEVEL1

LEVEL1

LEVEL1

LEVEL2

LEVEL2

LEVEL2

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

146 Expanded BSAP (EBSAP) Communications

Example 2 — ControlWave Controller is EBSAP Master to 300
ControlWave EBSAP Slaves

There are many possible ways to do this with regard to number of ports and virtual nodes.
At least three virtual nodes would be required beneath the EBSAP Master controller, since
no one node can support more than 127 nodes. That could mean, for example, 127 nodes
underneath the first virtual node, 127 nodes underneath the second virtual node, and 46
nodes underneath the third virtual node, for a total of 300 EBSAP slaves. Or, we could have
100 nodes underneath each of the three virtual nodes. We could have all three virtual
nodes on a single EBSAP Master port, or use more than one EBSAP Master Port. We could
even have more than 3 virtual nodes to have a smaller number of EBSAP slaves through
each virtual node, but provide more room for expansion. It’s up to you how you want to do
it.

For this example let’s have 3 virtual nodes, each with 100 EBSAP Slave nodes, and we’ll put
them all on the same port (Port 2). The virtual nodes use local addresses 3 for and 5.

Here’s how we configure this.

1. Using the OpenBSI Flash Configuration Utility, configure an EBSAP Master Port for the
ControlWave controller which will serve as the EBSAP Master. The “Low Virtual Slave”
must be set to 3 and the “High Virtual Slave” must be set to 5. Since we will have no
more than 100 EBSAP slaves under each one, make the “Max Slaves” 100.

2. Configure the Control and Status Arrays.

 Because they are present in all projects by default, you can configure the
_SLAVE_DEAD and _SLAVE_POLL_DIS arrays by just checking the “Master —
Dead_Slaves” and “Don’t Poll Array” boxes on the ‘Port Globals’ page of the System
Variable Wizard. Then use two REG_ARRAY function blocks (one for each array) to
register the arrays.

Note:

The next arrays are optional, but we strongly recommend you create them:

 Under the ‘Data Types’ item in the ControlWave Designer project tree, add a
worksheet to define new data types. You will need to create something like this:

TYPE

 MaxSlaves: ARRAY [1..100] OF BOOL;

 NumVirtNodes: ARRAY [3..5] OF MaxSlaves;

END_TYPE

Note: The numbers used to dimension the NumVirtNodes data type can be different, so
long as the size is correct. For example, [1..3] could be used since there are three virtual

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Expanded BSAP (EBSAP) Communications 147

nodes; [3..5] could be used since their local addresses are 3,4 and 5, or you could use
[0..2] since that would represent the EBSAP group numbers (0, 1, and 2) of their
respective EBSAP Slaves. It doesn’t matter so long as the size of 3 is correct. Note also that
the names ‘MaxSlaves’ and ‘NumVirtNodes’ can be changed; those are just the names we
chose.

 In the Global Variables worksheet, define two arrays of type ‘NumVirtNodes’ (or
whatever you called that type). One should be used for handling reporting of
polling success for Port 2 EBSAP slaves; the other should be used for
enabling/disabling polling of individual EBSAP slaves on Port 2. Assign numbers
to these arrays using REG_ARRAY function blocks.

 In the System Variable Wizard, go to the ‘Port Detail’ page for Port 2. You must
check the box next to _Px_DEAD_ARRAY and _Px_DISABLE_ARRAY; this will
create system variables called _P2_DEAD_ARRAY and _P2_DISABLE_ARRAY
(since this is for port 2). The values of these system variables are then set to the
same numbers you assigned to the iiArrayNumber parameters in the
REG_ARRAY function blocks.

3. Define three virtual nodes in NetView’s RTU Wizard. They would have local
addresses 3, 4, and 5, and would be defined like any other node, except the type is
‘VIRTUAL’.

4. Configure the EBSAP Slave nodes in NetView As we’ve said, there are to be 300 of
them; 100 under each virtual node. In the OpenBSI Flash Configuration Utility,
assign the proper group number for each EBSAP Slave. The nodes underneath the
first virtual node must be assigned to Group 0; the nodes underneath the second
virtual node must be assigned to Group 1, and the nodes underneath the third
virtual node must be assigned to Group 2. Each EBSAP Slave node must also be
configured with an EBSAP Slave Port.

Master Port

Slave Port Slave Port

Local Address: 1

Local Address: 1 Local Address: 1 Local Address: 1

Local Address: 2
Local
Address: 3

Local
Address: 4

Local Address: 2
Local Address: 2Local Address: 2Local Address: 100

Local Address: 100
Local Address: 100

Local
Address: 5

(Local addresses 3
 to 99 not shown)

(Local addresses 3
 to 99 not shown)

(Local addresses 3
 to 99 not shown)

VIRTUAL
NODE

VIRTUAL
NODE

EBSAP Master Port

VIRTUAL
NODE

GROUP 0 EBSAP SLAVES GROUP 1 EBSAP SLAVES GROUP 2 EBSAP SLAVES

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

148 Expanded BSAP (EBSAP) Communications

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Flash Configuration Utility – An Overview 149

Flash Configuration Utility – An Overview
Use the Flash Configuration Utility to set various configuration parameters in the
ControlWave-series controller. Some changes to flash parameters only take effect after
the unit has been powered down and then back on. In addition, changes you make to
some flash parameters are not activated unless the controller’s default switch is in the ON
position. For a ControlWave, the default switch is SW1-3; for ControlWave LP, the default
switch is SW4-3; and for the ControlWave MICRO, the default switch is SW2-3.

Starting the Flash Configuration Utility
The Flash Configuration Utility is initially activated via 'Configure' mode in LocalView. Once
LocalView has been used to set these parameters, and other system configuration has
been completed, the parameters may be subsequently modified by calling up the same
utility from within NetView (or LocalView) by clicking on the icon for the RTU, and then
pressing the right mouse button and choosing RTU RTU Configuration Parameters.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

150 Flash Configuration Utility – An Overview

The various configuration settings are separated into different pages of the utility. You can
access them by clicking on the tab for a particular page.

The various pages of the utility are discussed, briefly, below:

Soft Switches
This page allows you to set the BSAP local address of the controller, and, if using expanded
node addressing, the EBSAP group number.

Ports
This page allows configuration of all communication ports on the controller: serial BSAP
ports, serial IP ports (PPP), and Ethernet IP ports.

IP Parameters
This page allows you to set certain parameters for IP communications such as the IP
address of the Network Host PC (NHP), UDP socket numbers, and the address of the
default gateway.

Click on any of these tabs to bring up
other pages of the Flash Configuration
utility.

This is only useful when
using NetView. It allows you
to close the session with the
current controller, while still
leaving the current values on
the various pages of the
utility. This allows you to
configure a different
controller, without having to
re-enter values in all the
fields.

You must click here to
sign-on with a
username and
password in order to
access any flash
parameters.

This button reads the
current configuration from
the NETDEF files into the
utility.

This button saves ALL
changes to the NETDEF
files.

This button reads the
current configuration from
the controller into the
utility.

 This button saves
ALL changes to the
controller.

This button reads the current
configuration from the Flash
Configuration (FCP) file.

This button saves ALL
changes to the FCP file.

This button shuts down the Flash
Configuration utility.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Flash Configuration Utility – An Overview 151

Application Parameters
This page allows you to set 'tuning' parameters which govern how the ControlWave
executes its application (project).

Archive
Archive data is one portion of the historical capabilities of the ControlWave-series
controller. It allows 'snapshots' of many variables to be saved at the same instant, to
provide a detailed historical record of process variables at a particular moment in time. The
archive data is saved at the controller, in structures called archive files and is configured, in
part, using the ARCHIVE function block in your ControlWave project. Archive files may be
collected by OpenBSI Utilities such as DataView, or the Harvester.

Audit
Audit Trail is one portion of the historical capabilities of the ControlWave controller. It
allows records to be kept of when certain variables change value, as well as recording all
alarms in the system. The Audit page specifies various parameters used to set up the Audit
Trail system. Configuration is also performed, in part, using the AUDIT function block in
your ControlWave project.

IP Routes
Dynamic IP routes allow messages which cannot successfully reach a particular destination
address, to be re-routed through a different path in the IP network.

Security
This page allows configuration of user accounts and privileges.

Push Buttons:

[Apply New Node] This button is
only useful when the Flash
Configuration utility is started
from within NetView (since no
other nodes are accessible in the
Select New Node dialog box
within LocalView).

It allows the session with the current controller to be closed, and then allows the user to
select a different controller for configuration, without reinitializing the values in the pages
of the utility.

The new controller must have been defined within the NETDEF files.

One application of this is to open a session with a new node, and then load configuration
information from the NETDEF file(s) that was for a different node (via [Read From NDF]).
This can be useful if multiple nodes have similar configurations; the common configuration
can be brought into the utility, and then the unique portions only need to be modified for
each individual controller.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

152 Flash Configuration Utility – An Overview

[Sign On] - This button must be used to sign-on to the controller with a username and
password prior to reading or writing Flash parameters.

Note:

If you do NOT sign on, the first time you attempt a read/write operation with the
controller, you will be prevented from doing so, and will be prompted to sign on then.

[Read From NDF] - This button reads the current configuration of this controller as
specified in NetView's NETDEF files, and copies it into the pages of the Flash Configuration
Utility. This can be particularly useful in a situation where the CPU board of a controller has
failed, and the replacement board must be configured; this allows the configuration to be
called up from the NETDEF, and subsequently copied into the controller using the [Write
To RTU] button. NOTE: This operation can only be performed from within NetView, or
when you start LocalView in Configure Mode.

Note

The reason other LocalView modes (such as Local or Flash) cannot perform these
operations is that only the Configure mode allows you to specify a particular NETDEF file
for modification (by checking the “Use an Existing Configuration (.ndf) File” and then by
identifying the path and name of the NETDEF). The other modes use a temporary NETDEF
which disappears on program exit.

Write To NDF] This button causes all entries made in the Flash Configuration Utility for the
current controller to be copied into the current NETDEF file. This avoids the need to re-
enter the same configuration information in NetView. This operation will only work when
the Flash Configuration Utility is invoked from within NetView or when LocalView is in
Configure Mode; otherwise a permanent NETDEF file is not available to write to (see note
above).

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Flash Configuration Utility – An Overview 153

[Read From RTU] - This button reads the
current configuration characteristics
directly from the controller, and copies
them into the pages of the Flash
Configuration Utility. These can
subsequently be stored in the NETDEF
using the [Write To NDF] button (see
above), to avoid the need to re-enter the
same configuration details inside the
NetView program. Note: If you haven't
signed on prior to clicking on this
button, you will be prompted to do so.

[Write To RTU] - This button saves ALL
entries in the pages of the Flash
Configuration Utility to the ControlWave-
series controller. NOTE: If you haven't
signed on prior to clicking on this button,
you will be prompted to do so.

After the write operation completes, the
Flash Configuration Utility prompts you to
reset the RTU, if a reset is needed.

[Read FCP] - This button reads the current configuration of this controller, as specified in a
Flash Configuration Profile file (*.FCP), and copies it into the pages of the Flash
Configuration Utility. The flash configuration can subsequently be copied into the
controller using the [Write To RTU] button.

Note:

We recommend that you never edit the file FCP manually because no validation is
performed on the file when the utility opens it. Improper edits could corrupt the file.

[Write FCP] - This button causes all entries made in the Flash Configuration Utility for the
current controller to be copied into the Flash Configuration Profile file (*.FCP).

[Close] This button shuts down the Flash Configuration Utility.

For details on the individual pages of the Flash Configuration Utility, see Chapter 5 of the
OpenBSI Utilities Manual (part number D301414X012).

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

154 Flash Configuration Utility – An Overview

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Flash File Access 155

Flash File Access
The Flash File Access utility lets you view a list of user files residing in the ControlWave’s
flash area. You can optionally delete files from the flash area, upload files from the
ControlWave flash to the OpenBSI workstation, or send files from the OpenBSI workstation
to the flash area.

Important

This utility reads/writes files to and from the ControlWave’s flash file memory area, but it
cannot be used to download ControlWave system firmware or to send/retrieve historical
files (audit/archive). Although those items may reside in flash, the Flash File Access utility
does not access those portions of flash. Flash file access is only appropriate for
downloading, uploading, or deleting user files such as ControlWave zipped source files
(*.zwt), web pages, etc. For example, a typical usage would be to delete excess files to free
up flash space.

With communications active in LocalView or NetView, click StartProgramsOpenBSI
ToolsDebugging Tools Flash File Access (FileDirect)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

156 Flash File Access

Viewing a List of Files in the Flash File Area:

1. Either click File New RTU or click the New RTU icon .

2. In the Select New Node dialog box, select the RTU with which you want to
communicate and click OK.

3. The utility generates a list of files in the user flash file area. It may take some time
for it to collect all the file details.

Uploading a File from the ControlWave to Your OpenBSI
Workstation:

With the list of files in the user flash files area visible, do the following:

1. Click on the file you want to upload to the PC, so it is highlighted.

2. Either click Operations Upload File or click the Upload File icon . The Choose File

dialog box opens.

3. In the PC File field of the Choose File dialog box, you can optionally specify a new
name for the file on the PC, and select a destination folder on the PC for the file,
using the Browse button.

4. If you want the utility to compress the file during transfer, select Use Compression.
(Note: Do not use compression for JPG or ZWT files which are already compressed.)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Flash File Access 157

5. If your communication with the ControlWave is via IP, select IP Based Link. This
allows for faster file transfers on IP links.

6. Click OK to initiate the upload, and the utility uploads the file to the specified folder
on your PC.

Copying a File from the OpenBSI Workstation to Your
ControlWave:

1. Either click Operations Copy to RTU.. or click the Copy File icon . The Choose

File dialog box opens.

2. Use the Browse button to specify the path and filename of the PC you want to copy
to the ControlWave user flash files area.

3. In the RTU File field, you can optionally specify a new name for the file at the
ControlWave.

4. If you want the utility to compress the file during transfer, select Use Compression.
(Note: Do not use compression for JPG or ZWT files which are already compressed.)

5. If your communication with the ControlWave is via IP, select IP Based Link. This
allows for faster file transfers on IP links.

6. Click OK to initiate the copy, and the utility copies the file from the OpenBSI
workstation to the ControlWave.

Deleting a File from the ControlWave User Flash Files Area:
With the list of files in the user flash files area visible, do the following:

1. Click on the file you want to delete, so it is highlighted.

2. Be certain this is the file you want to delete, because there is no undo-delete or prompting
to confirm the deletion.

3. Click Operations Delete or click on the Delete icon.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

158 Flash File Access

4. The utility erases the specified file.

Refreshing the List of Files:
Either click Operations Refresh or click on the Refresh icon.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Creating Function Blocks 159

Function Blocks – Creating
Suppose we have created a program in ControlWave Designer that we want to re-use. For
example, let’s say we created a program that controls the flow of liquid in a pipeline. (To
see a simple example of such a program, refer to the Getting Started with ControlWave
Designer Manual, part number D301416X012.)

Now, however, we need to perform the same exact flow control operation on eight
different pipelines using a single ControlWave controller. Let’s also assume that the initial
values for all of the different parameters for the re-used program (with the exceptions of
the input, output, and setpoint) will be the same for each of the eight pipelines. There are
several different ways we could do that. We could create seven additional program POUs
for the project, and repeat the exact same steps we did to create the first program, except
we would create multiple program instances of that same program. That would be
somewhat tedious.

Another approach would be to go back to our original flow control program, and use the
EditCopy and EditPaste commands to copy multiple sets of the function blocks
around in the same worksheet, and then change the variables for each one. That would be
a little quicker, but still tedious.

A third solution, which we will discuss here, is to create a user defined function block from
our original program. You probably noticed when creating your first program in
ControlWave Designer that you had the option of defining a variable as either local or
global. Local variables are only accessible within the current POU (that is, a function,
function block, or program). If you define a variable as a local variable, and you create
another POU, the local variables in the first POU are completely unknown to the second
POU.

This can be an advantage because the first POU can then be treated as a re-usable little
sub-routine which performs some sort of calculation or function. The values of variables
are passed into the sub-routine as parameters. The sub-routine uses the values, and
performs its calculations locally, inside the sub-routine, and then it passes out an answer.

A user defined function block is such a sub-routine. It is made up of other functions and
function blocks. To the user, the whole user-defined function block is like a black box. You
send inputs into it, any local calculations are performed inside, out of view, and you get
outputs from it.

Let’s look at the case of the flow control program we discussed previously. Typically, once
such a program has been tested, and proper initial values defined, many of the parameters
probably won’t be changed. The input and output process variables, though, will have to
be replaced with other inputs and outputs, based on whichever pipeline you are
controlling, and the setup parameter would change, because the setpoint is determined
outside of the program, perhaps by an operator. Once you get the other parameters
configured the way you want them, though, you might not ever want to change them
again. If that is the case, we can create a user-defined function block which can be re-used
as many times as you want, and all you need to do is specify the parameters which will

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

160 Creating Function Blocks

change (for example, an input, an output, and a setpoint for each instance of the user
defined function block).

To illustrate this technique, open the project containing the program we want to re-use.

Drag a box around the items in the worksheet that you want to re-use, and when you
release the mouse, they will be selected. Click on the ‘Copy’ icon, or choose EditCopy
from the menu bar.

Now, we need to create an empty function block to paste our program into, thereby
creating a new user-defined function block. To do this, right-click on the Logical POUs
section of the project tree and choose “InsertFunction Block” from the pop-up menu.

First, drag a box around the
program you want to re-use, then
release the mouse to select the
items.

Next, click the “Copy” icon, or click
Edit Copy from the menu bar.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Creating Function Blocks 161

In the Insert dialog box, choose “Function Block” for the “Type” and enter a name for the
user defined function block. (Here we entered ‘My_new_Function_Block’, but you’ll
probably want to choose something shorter, and more descriptive.) Specify the PLC type
and Processor type as shown, above, and click on [OK]. Icons for
‘My_new_Function_Block’ will be added to a new branch in the project tree.

In the new branch of the project tree, double-click on the third icon,
‘My_new_Function_Block*’ and an empty worksheet will appear. Click on the ‘Paste’ icon,
or click on EditPaste and an outline image of the copied program will appear; position
the image where you want it in the worksheet and click; the program will be copied into
the worksheet.

Choose “Function Block” Enter a name for the function block here

Choose “<independent>” Choose “<independent>”

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

162 Creating Function Blocks

Now, copy the variables from the program into your new function block and re-define the
variables as necessary.

First, click on the “Paste” icon or
click Edit Paste.

Then position the image where you
want it, and click.

First, double-click on the
variables section of the
program from which you want
to copy.

Second, highlight the entire
contents of the variables
section. (You can do this by
choosing Edit Select All, or
by dragging the mouse over
all of the rows

Finally, right click and choose
“Copy” from the pop-up menu.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Creating Function Blocks 163

Now modify the variables section of the new function block.

Any variable which you want to be changeable in the new function block should be made
either a VAR_INPUT (if it is an input) or a VAR_OUTPUT (if it is an output). Click in the
‘Usage’ column to change this.

You will also want to change the names to make them more generic: instead of F101_INPUT
and F101_OUTPUT (as in the original program), name them just INPUT and OUTPUT,
respectively. The variable used for the setpoint, would be named SETPOINT, with a usage
type of VAR_INPUT. You can change these names by clicking in the ‘Name’ column and
typing in the changes.

Now, double-click on the variable section
of the new function block you are
creating.

When the empty variable window opens,
you must click on this box in the upper
left part of the window (on the same line
as the “Default”).

Finally, you can right-click, and choose
“Paste” from the pop-up menu.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

164 Creating Function Blocks

When you have finished making these modifications, save your project, and execute a
build.

Now, when you are in the Edit Wizard, if you call up a list of all functions and function
blocks via the ‘<all Fus and FBs>’ group, you will see the name of the function block you
created.

If you insert the ‘My_new_Function_block’ function block
into one of the programs of your project, it will only show
those variables declared as VAR_INPUT and VAR_OUTPUT;
the others are hidden. You can then proceed to configure it
like any other function block.

Once you have saved your project with your new user-defined function block, you can use
it in other projects by importing the first project as a user library. See Libraries later in this
manual.

To change a variable’s name, click on the
variable in the “Name” column and make
the change.

To change a variable’s usage, click in the
“Usage” column for the variable, then
select the new usage, e.g. VAR_INPUT.

In the Edit Wizard, when you review the
list of all function blocks, you can see the
function block you just created in the list.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Function Block Parameter Name Prefixes 165

Function Block - Parameter Name Prefixes

Function Block Parameter Name Prefixes
The following table summarizes the meaning of the letters in the parameter name prefix of
function blocks in the ACCOL3 library.

Parameter Name Prefix Input or Output Valid Data Types:
ia, iany INPUT REAL, SINT, INT, DINT

NOTE: You CANNOT use constants on parameters with the 'ia' or 'iany'
prefix; only variables may be used.

iab INPUT BOOL variable - NO constants allowed.
iais INPUT STRING or INT variable. No constants.
iar INPUT REAL variable - NO constants allowed.
iarb INPUT REAL or BOOL variable. NO constants allowed.

iaus INPUT USINT variable or array of USINT. No constants.
ib INPUT BOOL variable or constant
idi INPUT DINT variable or constant
ii INPUT INT variable or constant

ioab INPUT & OUTPUT BOOL variable - NO constants allowed.
ioar INPUT & OUTPUT REAL variable - NO constants allowed.
ir INPUT REAL variable or constant
is, isi INPUT SINT variable or constant

is, istr INPUT STRING (must be surrounded by single quotes)
iudi INPUT UDINT variable or constant
iui INPUT UINT variable or constant
ius INPUT USINT variable or constant

ob OUTPUT BOOL variable or constant
odi OUTPUT DINT variable or constant
oi OUTPUT INT variable or constant
or OUTPUT REAL variable or constant
oud OUTPUT UDINT variable or constant

oui OUTPUT UINT variable or constant
Ous OUTPUT USINT variable or constant

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

166 Function Block Parameter Name Prefixes

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Historical Data – An Overview 167

Historical Data
The data in your ControlWave controller is constantly being updated, with the latest
available data values collected from field instrumentation (pressure transmitters,
temperature transmitters, electrical contacts, switches, etc.) Data from a particular instant
in time, however, is only maintained for a short period (usually, no longer than a few
seconds, depending upon how fast data is collected in your system) because when a new
value is collected, it automatically overwrites the previous value.

Although this is ideal for reporting the current state of process variables in your system,
most users need to retain certain data for a longer period of time (hours, weeks, etc.). This
data is referred to as historical data.

Depending upon your system requirements, historical data might be saved by whatever
(graphical user interface (GUI) software is running at your central computer (such as
Emerson’s OpenEnterprise™, Iconics Genesis®, Intellution® FIX®, or Wonderware®).

Some categories of historical data can also be saved within the controller itself. That is the
subject we will address in this section.

What is Historical Data Used For?
Historical data is typically used in printed reports or spreadsheets. Often, records of certain
variables such as flow, temperature, etc. must be maintained for months or even years to
fulfill particular plant management or regulatory requirements.

Historical data is also frequently incorporated into trending packages to allow a graphical
representation of data from a given period of time.

What types of Historical Data can be saved in the
ControlWave Controller?

There are two types of historical data which can be saved within the ControlWave
controller: Archives and Audit Trail Logs.

 Archives are snapshots of selected variables at a given moment in time. Archives are
typically used for saving data which is destined for printed reports, such as flow
variables, temperature variables, etc. Each archive record consists of a timestamp plus
several columns of data values reflecting the state of process variables at the time of
the timestamp, or in some cases, calculated values based on the state of process
variables. Additonal data for proper sequencing of the archive records is also stored.
Typically, archives are generated at a pre-defined interval, however, on-demand
archiving can also be configured. Archives are configured using both the Archive
Configuration web page and the ARCHIVE function block.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

168 Historical Data – An Overview

 Audit Trail Logs are records of significant events occurring in the controller. There are
two types of Audit Trail logs - - the alarm log and the event log. The alarm log
maintains a record of any alarms generated in the ControlWave controller. The event
log keeps a record of any changes to variables which have been designated for event
monitoring. Other events which are logged include a System Date/Time change,
recovery from a power failure, and 'note' events received from the human machine
interface (HMI) software. Variables are designated for event monitoring by including
them in an event list. Audit Trail logs are configured using both the Audit
Configuration web page, and one or more AUDIT function block(s).

How is Audit Trail and Archive Data Retrieved from the
ControlWave Controller?

OpenBSI Utilities, such as DataView, can collect Audit Trail and Archive data from the
ControlWave unit and display it on the screen.

Alternatively, tools such as the OpenBSI Scheduler or OpenBSI Data Collector can retrieve
the data and store it in historical data files, on a scheduled or demand basis. These files can
then be automatically exported, using the OpenBSI Data File Conversion Utility, to CSV or
ODBC-compatible file formats for use in OpenEnterprise, or in third-party software
packages such as Microsoft® Excel® and Access® databases.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 169

I/O Configurator
In order to reference I/O points on the process I/O boards of your controller, you need to
configure them within your project.

Although it is possible to manually edit the “IO_Configuration” section of the project tree,
we strongly recommend you use the I/O Configuration Wizard, as it will perform syntax
checking, and is easier for most users.

The I/O Configuration Wizard is accessible from within ControlWave Designer by clicking:
ViewIO Configurator

When started, any existing I/O configuration data will be read and displayed in the I/O
Configuration Wizard. The Configuration Wizard is a multi-page tool; [>>Next>>] and
[<<Back<<] buttons are provided to allow you to move between the pages. A [Settings]
push button allows the user to rename default variable names, if necessary. (See Changing
Default Variable Names, later in this section.) NOTE: Page 1 allows the user to define
multiple resources. Typically, only a single resource is used, so by default, page 2 will
appear first since most users do not need to use Page 1.

Important

The IO Configuration Wizard will add a variable group to the Global_Variables worksheet
called IO_GLOBAL_VARIABLES. Both the IO_GLOBAL_VARIABLES group in the
Global_Variables worksheet and the IO_Configuration worksheet should never be
manually edited by the user; these should only be modified through the IO Configuration
Wizard.

 CAUTION

If you intend to run multiple copies of ControlWave Designer simultaneously, do not
attempt to run multiple copies of the I/O Configurator. If you do, you risk corrupting your
I/O definitions.

Number of I/O Boards That May be Defined

Prior to OpenBSI 5.5 Service Pack 2, the number of I/O boards that could be defined within
the I/O Configurator was 51. In OpenBSI 5.5 Service Pack 2 and newer, that limit has been
increased to whatever number of boards can be defined in the 64K I/O memory space. In
either case this limit includes both boards defined as local I/O as well as boards defined in a
ControlWave I/O Expansion Rack or ControlWave Ethernet I/O unit.

The larger of the input or output I/O map size of the board defines the overall board size.
See the I/O Mapping section for details.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

170 I/O Configurator

Effect of Number of Boards on the I/O Simulator

The I/O Simulator has a limit on the number of boards that may be accessible within a
given simulation. This limit is dictated by an internal limit of 500 characters for the list used
to describe the boards available during a given session within the I/O Simulator.

A default set of boards are normally included in the list available for simulation. If, after
you’ve added boards in the I/O Configurator, you receive a warning message (see figure
below) indicating that one or more of the boards you have selected is not supported within
the I/O Simulator, you must de-select one or more of the default groups of boards that you
are not using, to make additional room in the simulation list. Then select the group of
boards that you want to use in the simulator. If groups for all the boards you need have
now been selected, and you have de-selected enough of the unused board groups so that
the total number of characters has fallen below 500, click [Ok] and you can proceed.

By default, these
boards are included
in the list of boards
for the simulation.

The maximum number of characters
currently used. If this exceeds 500, you
must un-check some boards to make
room in the I/O Simulator list.

Note:

If you’re not planning on using the I/O Simulator, you can click on [Ignore Simulation
Warnings] and the I/O Configurator will allow you to proceed through this session, without
checking for unsupported boards. If later, you decide you do want to use the I/O Simulator,
and some boards do not appear, you must re-run the I/O Configurator, and de-select a
sufficient number of board groups, and select the board groups you need, as described
above.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 171

I/O Configuration Wizard (Step 1 of 3): (Most users can skip to Step 2)

The first page of the I/O Configuration Wizard allows the user to select from the available
I/O configurations and I/O resources. NOTE: Because most projects use a single configuration
and resource, this page is skipped when first starting the I/O Configuration Wizard. It is
accessible, however, by clicking the [<<Back<<] button from the second page of the Wizard.

Available
Configurations

This lists all configurations in the current project. Select the I/O
Configuration Section for which you are defining the I/O.
NOTE: Typically, projects use a single I/O configuration section.

Available
Resources

This lists all resources for the selected I/O configuration.
Choose the resource for which I/O is to be defined. Note:
Typically, projects use a single resource.

Click [Next>] to proceed to the next step.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

172 I/O Configurator

I/O Configuration Wizard (Step 2 of 3):

The second page of the I/O Configuration Wizard allows the user to identify which process
I/O boards are actually installed in the ControlWave-series controller, as well as boards
which are installed in separate devices such as I/O Expansion Racks, or Remote Ethernet
I/O units.

Boards should be selected from the selection boxes in the ascending order of their slot
number.

First, use the “Unit Type” list box to identify which type of ControlWave controller you are
configuring, then select the desired boards, and click on [ADD].

If this controller has associated I/O racks, or Remote Ethernet I/O units, choose those
boards in the “Remote IO” selection box and click on [ADD].

For more information on the various fields, see below:

Unit Type This field allows you to identify the type of ControlWave-series
controller you are configuring, so that the proper board types can be

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 173

displayed for it. The types of controllers include:

CW_ ControlWave Process Automation Controller
CWM_ ControlWave MICRO Process Controller series
LP_ ControlWave Low Power (LP) Process Controller
CXX_ ControlWave CW_30 or CW_10 Controller
ERM_ Expansion Rack for ControlWave MICRO
RXX_ CW_35 Controller or CW_31 Remote I/O Rack

Once you select the type of controller, the boards which can be
installed in that unit will be displayed as possible choices.

For ease of configuration, select the boards from the list in ascending
order of their slot number in the ControlWave unit. Clicking once on
the board abbreviation will cause a description of the board to be
displayed at the bottom of the Wizard page. Double-clicking on the
board abbreviation (or clicking once on the board and then clicking
[ADD]) will add the board to the “Selected Boards List”. The table, on
the next page, lists the various types of boards.

Remote IO This lists boards used in ControlWave Remote Ethenet I/O units or
ControlWave I/O Expansion racks.

Double-clicking on the board abbreviation (or clicking once on the
board and then clicking [ADD]) will add the board to the “Selected
Boards List”

Selected Boards
List

This list allows the user to declare which boards reside in the
ControlWave controller or its configured ControlWave Remote
Ethernet I/O unit(s), or ControlWave I/O Expansion Racks. To remove a
board from the “Selected Boards List” double-click on it, or click on it
once, and then click [REMOVE]. To remove all boards click [REMOVE
ALL].

Click on [Next] to verify configuration information, adjust slot numbering, define zeros and
spans for analog inputs, etc.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

174 I/O Configurator

Tables of Board Types

ControlWave Process Automation Controller (CW)

Board Code Board Description
CW_AI16 8 or 16 Input Pin Analog Board

CW_AO8 4 or 8 Output Pin Analog Board

CW_DO32 16 or 32 Output Pin Digital Board

CW_DI32 16 or 32 Input Pin Digital Board

CW_HSC12 6 or 12 Channel High Speed Counter/Universal Disc. Input Board

CW_RTD8 8 RTD Input Board

CW_TC12 12 Thermocouple Input Board

ControlWave MICRO Process Controller (CWM) – series

Board Code Board Description
CWM_AI6 6 Input Pin Analog Board

CWM_AI8 8 Analog Input Board

CWM_AO4 4 Analog Output Board

CWM_BAT Battery (Voltage) Monitor

CWM_DI16 16 Input Pin Digital Board

CWM_DO16 16 Output Pin Digital Board

CWM_ECPU System Controller Board

CWM_EIO Mixed I/O Board (various configuration options)

CWM_HIB HART Interface Board (HIB)

CWM_HSC4 4 Channel High Speed Counter

CWM_MA Mixed Analog Board (6 analog inputs, 2 analog outputs)

CWM_MD Mixed Digital Board (12 digital inputs, 4 digital outputs)

CWM_MIX Mixed I/O Board

CWM_RTD4 4 Resistance Temperature Device (RTD) Input Board

CWM_RTU Mixed I/O & System Controller Board

CWM_SCB System Controller Board

CWM_TC6 6 Thermocouple Input Board

Some ControlWave MICRO boards are used in multiple platforms. See the table, below for
details:

 CW
MICRO

CW
EFM

CW XFC CW
GFC
CL

CW
GFC
Plus

CW
GFC

CW
Corrector

CW
Express

CW
EPAC

CW GFC-IS

CWM_AI6 ■ ■

CWM_AI8 ■ ■
CWM_AO4 ■ ■
CWM_BAT* ■ ■
CWM_DI16 ■ ■

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 175

 CW
MICRO

CW
EFM

CW XFC CW
GFC
CL

CW
GFC
Plus

CW
GFC

CW
Corrector

CW
Express

CW
EPAC

CW GFC-IS

CWM_DO16 ■ ■
CWM_ECPU ■ ■ ■ ■ ■
CWM_EIO ■ ■ ■ ■ ■

CWM_HIB ■ ■
CWM_HSC4 ■ ■
CWM_MA ■ ■
CWM_MD ■ ■

CWM_MIX ■ ■
CWM_RTD4 ■ ■
CWM_RTU ■ ■ ■
CWM_SCB ** ■ ■

CWM_TC6 ■ ■

* Does not support wet end.

** Supports wet end.

ControlWave 10/30 Controllers (CW_10, CW_30)

Board Code Board Description
CXX_AI8 4 or 8 Analog Input Board

CXX_AO4 2 or 4 Analog Output Board

CXX_DI16 8 or 16 Digital Input Board

CXX_DO16 8 or 16 Digital Output Board

CXX_HSC8 4 or 8 Channel High Speed Counter Board

CXX_LL4 4 Low Level Analog Input Board

ControlWave 35/31 Controller and I/O Rack (CW_35, CW_31)

Board Code Board Description
RXX_AI8 4 or 8 Analog Input Board

RXX_AO4 2 or 4 Analog Output Board

RXX_DI16 8 or 16 Digital Input Board

RXX_DO16 8 or 16 Digital Output Board

RXX_HSC8 4 or 8 Channel High Speed Counter Board

RXX_LL4 4 Low Level Analog Input Board

RXX_STAT External Rack Status Board

ControlWave Low-Power Controller (LP)

Board Code Board Description
LP_AI8 8 Input Pin Analog Board (Slot 0 – fixed)

LP_AO4 4 Output Pin Analog Board

LP_BAT Battery (Voltage) Monitor (Slot 0 – fixed)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

176 I/O Configurator

Board Code Board Description
LP_DI16 16 Input Pin Digital Board (Slot 0 – fixed)

LP_DO8 8 Output Pin Digital Board (Slot 0 – fixed)

LP_HSC4 4 Channel High Speed Counter (Slot 0 – fixed)

ControlWave I/O Expansion Rack (ER)

Board Code Board Description
ER_AI16 16 Analog Input Board

ER_AO8 8 Analog Output Board

ER_DI32 32 Digital Input Board

ER_DO32 32 Digital Output Board

ER_HSC12 12 Channel High Speed Counter Board

ER_RTD8 8 Resistance Temperature Device (RTD) Input Board

ER_STAT I/O Expansion Rack Statistics Board (Virtual board)
NOT A PHYSICAL HARDWARE BOARD

ER_TC12 12 Thermocouple Input Board

Expansion Rack ControlWave MICRO
Board Code Board Description
ERM_AI6 6 Analog Input Board

ERM_AI8 8 Analog Input Board

ERM_AO4 4 Analog Output Board

ERM_DI16 16 Digital Input Board

ERM_DO16 16 Digital Output Board

ERM_HSC4 4 High Speed Counter Board

ERM_MA 6 Analog Input and 2 Analog Output Board

ERM_MD 12 Digital Input and 4 Digital Output Board

ERM_MIX Mixed I/O Board

ERM_RTD4 4 Resistance Temperature Device (RTD) Input Board

ERM_STAT External Rack Status Board

ERM_TC6 6 Thermocouple Input Board

ControlWave Ethernet Remote I/O (BB)

Board Code Board Description
BB_16AI RIO– 16AI2 (16 Remote Analog Input)

BB_8AI4AO RIO– 8AI2, 4AO2 (8 Remote Analog Input and 4 Remote Analog Output)

BB_8DI8AI RIO– 8DI2 – 8AI2 (8 Remote Digital Input and 8 Remote Analog Input)

BB_8DI8DO RIO- 8DI2 – 8DO2 (8 Remote Digital Input and 8 Remote Digital Output)

BB_16DI RIO– 16DI2 (16 Remote Digital Input)

BB_16DO RIO– 16DO2 (16 Remote Digital Output)

BB_8INS RIO– 8INS (Instrumentation Board)

BB_8HSC RIO - 8HSC (8 channel high speed counter)

BB_4RTDI RIO 4RTD - 4 Digital Input Board

IPMB_INP RIO Open Modbus Input

IPMB_OUT RIO Open Modbus Output

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 177

I/O Configuration Wizard (Step 3 of 3):

The third page of the I/O Configuration Wizard displays configuration details for each
board. To see the details, click on the board abbreviation, and the configuration details will
be displayed on the right hand side of the page.

Selected
Boards List

Displays all boards selected on the previous page. Click on a particular
board abbreviation to display configuration details for the board.

Board Name A name for the board can be specified here. This name will be used
when configuring pins for the board.

Map Type (Information only field) Depending upon the type of board, separate
memory areas (called maps) are reserved for either inputs or outputs.
Some boards have both an input map and an output map. For example,
a digital output board has outputs (DOs) in its output map, but it may
also have inputs which indicate board status conditions and errors.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

178 I/O Configurator

Note: If you have an older ControlWave project in which you changed the
map type from the default choice, this may cause errors to be generated
when the project is rebuilt. If this occurs, you should delete the board
definition and re-define the board.

For more detailed information on the input and output maps for various
boards, see the ‘I/O Mapping’ section of this manual.

Start… End
Address

Displays the range of memory addresses used by the board.

Slot Number Displays either the physical I/O slot in the ControlWave controller which
holds the board, or if this is a Mixed I/O Board (MIOB) it displays a board
selection number. For ControlWave and ControlWave Micro, I/O slot
numbers are positive integers, e.g. 1, 2, 3, etc. For the ControlWaveLP,
the slot number is 0 for all boards except for the AO; for the AO the slot
can be 8 to 13. NOTE: I/O Slot number is NOT the same as the chassis slot
number. Chassis slots which hold the power supply and CPU boards are not
considered to be I/O slots, so the first I/O slot is typically the third chassis
slot.

IP Address ControlWave Remote Ethernet I/O boards are identified by their
Internet Protocol (IP) address, instead of the I/O slot number. The same
is true for boards residing in a ControlWave I/O Expansion Rack.

Related Task

Shows the name of the task which uses this board. In some cases, for
example, when using Ethernet I/O, or analog boards in an RTU 3340, it is
important to associate a board with the task which uses the board.
When a board is associated with a task, that board will be read / written
to, at the rate cycle associated with the task, thereby ensuring up-to-
date information for calculations performed in the task. When no task is
associated with the board, board execution is associated with the
default task, which runs at a lower priority, and therefore may not
provide sufficient up-to-date I/O information when it is required by a
task.

Mark Variables
as PDD OPC

This determines how values of the I/O variables associated with this
board will be made available to other software programs. Checking
“PDD” allows the controller to reference variables by name, which is
necessary if you intend to access a variable by external software which
requires ‘read-by-name’ access, such as DataView, or one of the other
OpenBSI Utilities. Checking “OPC” adds this variable to a collection list
used by the OPC Server or by the OpenBSI Signal Extractor. This is
necessary when data is to be extracted, and sent to a database.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 179

When edits have been made to this page, click on the [Show xxx Information] button. The
name on this button, and the pin configuration details, vary depending on the type of
board being configured. See the pages that follow for the standard board types.

Analog Boards

Analog Input Board Page (CWM_AI8 board)

(some of these fields do NOT appear for other models)

Analog Output Board Page (CW_AO8 board)
(some of these fields do NOT appear for certain models)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

180 I/O Configurator

List of Available Pins

Low Level Analog Input Board

Displays a list of the individual pins (I/O points) on this process I/O
board. If the pin is displayed in RED, that pin is active. If the pin is
left grayed out, that pin is considered unused.

Pin Name Defines a name identifying this pin. IMPORTANT: This name is
used as a variable name to reference the I/O pin in your POU.

Value Defines the initial value for this I/O pin, in floating point format.
NOTE: This is not available for analog input pins.

Zero Defines the lowest value of the range for this I/O pin. Used to
scale the input/output value.

Span Span is added to the ZERO value to define the highest value of the
range for this I/O pin. Used to scale the input/output value.

Add Over Range
Status

When selected, will cause a variable to be created to store the
value of the overrange status bit. Over range conditions occur
when an attempt is made to drive the variable associated with this
pin outside the range defined by the zero and span. When this
occurs, the over range status bit will be set to TRUE.

Range Type Some boards allow you to specify whether the board input is in
current or voltage. Choose ‘VOLTS’ or ‘AMPS’. NOTE: For
example, if 4 to 20 milliamps of current drive the board, you
would choose ‘AMPS’, then enter 0.004 for the “Bottom Range”
value, and 0.020 for the “Top Range” value.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 181

Bottom Range The lowest usable value for VOLTS or AMPS for this board input.
For example, if the board input can range from 1 to 5 VOLTS, the
“Bottom Range” would be set to 1.0. If this board input can range
from 4 to 20 milliamps, “Bottom Range” would be set to 0.004.
Other ranges are possible as well.

Top Range The highest usable value for VOLTS or AMPS for this board input.
For example, if the board input can range from 1 to 5 VOLTS, the
“Top Range” would be set to 5.0. If this board input can range
from 4 to 20 milliamps, “Top Range” would be set to 0.020. Other
ranges are possible as well.

Set Actual Output
Value

When selected, this will cause a variable to be created which
displays the actual value which was written to the output pin.

Add Board Status When selected, will cause a variable to be created to store board
status information.

Add Last Operation
Status

When selected, will cause a variable to be created to store the
status of the last conversion operation information.

Calibration Error This is only present for certain ControlWave MICRO boards. When
checked, will cause a variable to be created to store error
information. This variable will be set to TRUE whenever there is
bad calibration data in the EEPROM.

Board Time Out This is only present for certain ControlWave MICRO boards. When
checked, will cause a variable to be created to store information
about board time out errors. Board time outs occur if there is a
problem with conversion operations.

Mark All Pins Used When checked, will activate all pins on this I/O board. They will all
appear in RED.

Configure Hold
Values

When checked, enables other fields on the page for configuring a
hold value for this pin. A hold value is the value used by the I/O
card if it detects a watchdog of the ControlWave CPU. The I/O
board maintains this value at the pin until the unit is restarted.

Update Default
Value

When checked, allows the "User Configured Output" hold value to
be changed on-line; otherwise the hold value can only be set in
the I/O Configurator.

Hold Last Output

When checked, specifies that during a watchdog failure, the hold
value for this pin will be whatever value was on the pin when the
failure occurred. NOTE: "Hold Last Output" and "User Configured
Output" are mutually exclusive. Either one may be configured for
a particular pin, but NOT both.

User Configured
Output

When checked, allows the user to enter a value for this pin which
will be used as the hold value in the event there is a watchdog

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

182 I/O Configurator

failure of the ControlWave. NOTE: "Hold Last Output" and "User
Configured Output" are mutually exclusive. Either one may be
configured for a particular pin, but NOT both.

Point Type Specifies the type of low-level analog input/thermocouple. See
the table, below, for a list of supported temperature/voltage
ranges for inputs to the board.

 Point Type Range
 Thermocouple Type B 100o C to 1820o C
 Thermocouple Type E -270o C to 1000o C
 Thermocouple Type J -210o C to 1200o C
 Thermocouple Type K -270o C to 1370o C
 Thermocouple Type R -50o C to 1720o C
 Thermocouple Type S -50o C to 1760o C
 Thermocouple Type T -270o C to 400o C
 Resistance Temperature Device

(RTD)
-220o C to 850o C

 Voltage -10 mV to 10 mV

When all pins have been configured, click on [Done]. You can then proceed to select and
configure pins for another board.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 183

Digital Boards

Digital Input Board Page
(Not all fields are present for all board types)

Digital Output Board Page

List of
Available
Pins

Displays a list of the individual pins (I/O points) on this process I/O board. If
the pin is displayed in RED, that pin is active. If the pin is left grayed out,
that pin is considered unused.

Pin Name Is a name identifying this pin. This name is used as a variable name to
reference the I/O pin in your POU.

Set Pin
Status

Sets the initial value for this digital output (DO). NOTE: This option is not
available for digital inputs.

Enable
Counter
Processing

Turns on or off the counters associated with the digital input (DI) process
I/O board. Counters are used in certain applications. For example, if a mixed
I/O board is used with a ControlWaveLP, a digital input (DI) can be used as a
low speed counter (30 millisecond filter). Enabling counter processing in
such a case will allow interrupt processing to occur for that DI.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

184 I/O Configurator

Add Board
Status

When selected, will cause a variable to be created to store board status
information.

Mark All
Pins Used

When checked, will activate all pins on this I/O board. They will all appear in
RED.

Turn off
Leds

This option is only available on certain ControlWave MICRO boards. When
checked, it will create a variable which allows you to turn OFF the I/O
board’s diagnostic LEDs to save on power. LEDs are turned OFF when the
variable is set ON. NOTE: For this to work, the LED enable jumper on the board
must be in position 2-3; otherwise, the software cannot disable the LEDs, only a
hardware jumper can. See manual CI-ControlWaveMICRO for details.

Reset
Point
Count

When set to ON, allows the number of counts to be reset. This occurs
automatically whenever the board is restarted.

Set No Init
Counter
Flag

When checked, counters on the board will NOT be initialized to zero on a
warm start of the unit.

Add Time
Stamp of
Last
Sample

When selected, will cause a variable to be created to store the timestamp
of the last sample collected by this I/O board.

When all pins have been configured, click on [Done]. You can then proceed to select and
configure pins for another board.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 185

High Speed Counter (HSC) Boards

High Speed Counter Page
(Not all fields are present for all board types / platforms)

List of
Available
Channels

Displays a list of the individual channels (counter I/O points) on this process
I/O board. If the channel is displayed in RED, that channel is active. If the
channel is left grayed out, that channel is considered unused.

Channel
Name

Is a name identifying this channel. This name is used as a variable name to
reference the channel in your POU.

Add Input
Channel
State

Reset
Point
Count

When selected, displays the TRUE/FALSE value of the channel.

When selected allows the number of counts to be reset. Choose either ON
or OFF for the initial value on startup. A reset occurs when you choose ON;
software then turns this OFF. NOTE: Reset occurs automatically whenever
the board is restarted.

Select
Filter

Specifies how the board will operate for this channel:

'None' Defaults to 30 millisecond filtering.

'30 ms' Turns on 30 millisecond filter. Typically used for push-
button debouncing.

'1 ms' Turns on 1 millisecond filter. Used for low speed counter
applications.

'HSC Channel' High Speed Counter. 10 KHz filter. (Default for CWM_RTU
board). Requires 04.90 or newer firmware.

Add Board
Status

When selected, will cause a variable to be created to store board status
information.

Add Time
Stamp of
Last

When selected, will cause a variable to be created to store the timestamp
of the last sample collected by this I/O board.

IOCONFIG-HSC4.CDR

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

186 I/O Configurator

Sample

Mark All
Pins Used

When checked, will activate all channels on this I/O board. They will all
appear in RED.

Set No Init
Counter
Flag

When checked, counters on the board will NOT be initialized to zero on a
warm start of the unit. Requires 04.41 or newer firmware.

Turn off
Leds

(Not Shown) This option is only available on certain ControlWave MICRO
boards. When checked, it will create a variable which allows you to turn OFF
the I/O board’s diagnostic LEDs to save on power. LEDs are turned OFF
when the variable is set ON. NOTE: For this to work, the LED enable jumper on
the board must be in position 2-3; otherwise, the software cannot disable the
LEDs, only a hardware jumper can. See manual CI-ControlWaveMICRO for
details.

Remote I/O Status Board
The Remote I/O Status Board is a
'virtual' board, i.e. there is no actual
physical board. By including it within
your ControlWave project, global
variables will be created to store
communication statistics information,
and board ID strings for the
ControlWave I/O Expansion Rack, or
other remote I/O devices.

Note:

The size of RIO STAT boards has increased. This can cause an overlap with the memory
maps of other I/O boards. If you have an RIO STAT board in your project, please remove it,
and then add it back into the project, to allow memory maps to be adjusted properly.

For more information about these RIO status variables, and the software configuration for
the ControlWave I/O Expansion Rack, please see the ControlWave I/O Expansion Rack Quick
Setup Guide (document# D5122).

System Controller Board
The System Controller Board is used with
ControlWave MICRO units equipped with a
transmitter, such as the Electonic Flow Meter (EFM)
version of the ControlWave MICRO.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 187

IP Address is
specified here

Live Data
Signals

When selected, creates variables for storing live data, e.g. pressure readings,
from the transmitter.

Configuration
Signals

When selected, creates variables for storing configuration information.

Calibration
Signals

When selected, creates variables for storing calibration information.

CWM_RTU Board
In addition to analog and digital pins,
certain RTUs with the CWM_RTU board
(GFC, XFC) may include a built-in
internal transmitter with sensor (wet
end). Some special versions of the XFC
can include two wet ends.

The Transmitter Interface dialog box
for the CWM_RTU allows variables to
be mapped for both of the wet ends.

These choices are similar to the System
Controller Board.

Notes About Ethernet I/O Boards
Unlike process I/O boards which are physically
installed in the ControlWave controller,
ControlWave Remote Ethernet I/O boards are in a
separate location, and communicate to the
ControlWave unit using TCP/IP. (The IP address for
the Ethernet I/O board is configured from the third
page of the I/O Configuration Wizard.)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

188 I/O Configurator

Certain parameters must be specified for the
Ethernet I/O units which hold the boards. Once this
is done, however, the configuration of the individual
board pins is identical to that described earlier.

Note: The dialog box shown at right includes all
possible fields for the ControlWave Remote Ethernet
I/O, however, not all of these fields are visible in all
cases.

Unit Number Specifies the Modbus unit address number associated with this
ControlWave Remote Ethernet I/O unit.

Add Driver
Status

When selected, will cause a variable to be created to store I/O driver
status information.

Activate
Counters

Creates / disables a variable which allows the user to control the
starting / stopping of the counters in the ControlWave Remote
Ethernet I/O board. These counters are used with digital inputs (DI).

Add Freshness
Counter

When selected, will cause a variable to be created to store a ‘freshness’
counter value. The freshness counter represents the number of
program executions since new data has been collected through this
Ethernet I/O board. A value of 0, indicates the data is as new (fresh) as
possible.

Clear Counters Sets all counter values associated with this board to 0.

Convert RTD
value to tenths

(For RIO 4RTD - 4 Digital Input Board ONLY) - When checked, causes
values from the Resistance Temperature Device board to be divided by
10, thereby providing greater precision.

[Show Pins],
[Analog Pins],
[Digital Pins]

When clicked on, calls up a dialog box for configuring the individual
pins for the board.

[Done] Click here when configuration for this board is complete.

Additional Configuration For ControlWave Remote Ethernet I/O

Besides the I/O configuration within ControlWave Designer, additional configuration for
Ethernet I/O hardware must be performed using the Remote I/O Toolkit software (not to be

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 189

confused with what used to be known as the OpenBSI Technician Toolkit). Documentation on
the Remote I/O Toolkit software is provided in the form of on-line help screens.

The Remote I/O Toolkit software is included as an installation option on the OpenBSI CD
ROM.

 To use counters (DI) you must enable counters in the Remote I/O Toolkit software.

 The IP address entered for a ControlWave Remote Ethernet I/O board in the
ControlWave Designer I/O Configuration Wizard must MATCH the IP address entered
in the Remote I/O Toolkit.

 If you are using high speed counters, 32 bit counters must be enabled within Remote
I/O Toolkit.

 For analog inputs/outputs (AI, AO) you must NOT change the default scaling within
Remote I/O Toolkit. Changes should only be made within the ControlWave Designer
I/O Configuration Wizard.

 Be aware that if you are using counters (Digital Input or High Speed Counter),
restarting of the ControlWave Remote Ethernet I/O will cause a large jump in counts.

 If you intend to use TPO (Time Proportioned Outputs) for any point, you must enable
TPO for those points.

 If you check the ‘Turn OFF outputs on communications loss’ option’ in the Remote I/O
Toolkit, outputs will be set to 0 if the ‘Com Timeout’ value expires without any
communication from the ControlWave. The default value for ‘Com Timeout’ in the
Remote I/O Toolkit is 5 seconds. The rate at which the ControlWave communicates
with the Ethernet I/O is determined by the ControlWave task associated with the
board. If this is an ‘output-only’ board, however, and the output(s) coming from the
ControlWave have not changed, the ControlWave will not attempt to communicate
with the Ethernet I/O more frequently than once every 15 seconds. (Prior to
ControlWave firmware 04.60, if outputs had not changed, the ControlWave would not
attempt to communicate with the Ethernet I/O more frequently than once every 60
seconds.) To prevent outputs from being zeroed out due to a delay in communication
from the ControlWave because outputs have not changed, you must increase the
‘Com Timeout’ value to greater than 15 seconds. The ‘Com Timeout’ value has a
maximum of 25 seconds.

RIO Open Modbus Boards

These RIO Open Modbus board types are provided to allow the ControlWave to
communicate with various third-party Modbus devices.

Before using these board types, you must be familiar with certain characteristics of the
third-party device. In particular, you will need to know the following:

 The IP address of the third-party Modbus device. This is entered in the I/O Configurator
as shown in the figure, below.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

190 I/O Configurator

Enter the IP address of the
third-party Modbus device here

It is recommended that you associate
the board with some executing task.
Data collection from the Modbus device
will occur at the rate specified for the task.

The unit number programmed
in the third-party Modbus device

The Modbus function code

These numbers define which
registers will be 'read-from /
written to' in the Modbus device.
Here, we are requesting data
from 10 registers (numbered 0
through 9).

This is the number of bytes
which will be reserved in the
ControlWave project for this
data

 The Modbus Unit Number as programmed in the third-party Modbus device.

 The register numbers in the third-party Modbus device which you will be 'reading from
/ writing to'.

 The Modbus function code(s) you will be using to 'read from / write to' registers in the
third-party Modbus device. This also affects your choices of data types for the variables
in ControlWave Designer which will be used to hold the Modbus register data.

These parameters are entered in the Configure Remote Board Pins dialog box, which is
accessible from the [Show Detail Pins' Information] button.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 191

Unit Number Specifies the Modbus unit number as programmed in the third-party
Modbus device. NOTE: If you will be requesting data from non-
contiguous regions of memory in the same Modbus device, and you
need to use the same function code to collect the data, you will need to
define multiple Open Modbus boards, and give them different unit
numbers, even though they all refer to the same Modbus device. The
first board definition should use the actual Modbus unit number in the
device; the unit numbers for all subsequent boards must be chosen by
adding a multiple of 256 to the actual unit number. If, say, the Modbus
unit number programmed in the Modbus device is 13, and you need to
define three different boards to get data from three different memory
regions in the device, you should use Modbus unit numbers of 7, 269,
and 525. All refer to the same device.

Add Driver
Status

When selected, will cause a variable to be created to store I/O driver
status information.

Add Freshness
Counter

When selected, will cause a variable to be created to store a ‘freshness’
counter value. The freshness counter represents the number of program
executions since new data has been collected through this Open
Modbus board. A value of 0, indicates the data is as new (fresh) as
possible.

Total Memory
Size

This is the total number of bytes which will be reserved inside the
ControlWave project for data 'read from / written to' the third-party
Modbus device. The default is the maximum memory available for the
longest possible request.

Starting
Register

The first register in the third-party Modbus device which you will be
'reading from / writing to'. IMPORTANT NOTE: Both the Open Modbus
Input Board and Open Modbus Output Board send requests for the exact
register number you specify. Some third-party Modbus devices,
however, number their registers differently, for example, starting
register numbers at the number 1, instead of the number 0. As a
consequence, you may need to request one less than the register
number you want to get the correct register. Consult the literature
accompanying the device to verify the register numbering.

Number of
Registers

The total number of registers to be read/written.

Function
Code

The Modbus function code. Only the Modbus function codes listed,
below, can be used through these boards:

 1 Read Multiple Coil Outputs

 2 Read Multiple Coil Inputs

 3 Read Multiple Analog Outputs

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

192 I/O Configurator

 4 Read Multiple Analog Inputs

 15 (Fhex) Write Multiple Coil Outputs

 16 (10hex) Write Multiple Analog Outputs

[Done] Click here when configuration for this board is complete.

Besides configuring the board, itself, you must explicitly declare located variables in one of
your ControlWave worksheets that will hold the data 'read from / written to' the Modbus
device.

Located variables would typically be entered either in your 'RTU_RESOURCEV' worksheet,
or in some other worksheet you create, and would take the format shown below:

variable_name Datatype usage description %location_prefixsize_prefixaddress

variable_name is the variable name.

datatype is one of the IEC 61131-3 data types, e.g. BOOL, INT, etc.

usage

 specifies the scope of how the variable is used, e.g. VAR,
VAR_GLOBAL, etc.

description is an optional description.

location_prefix

 describes where this data will be located. It is one of the following
letters:

I for physical inputs (input map)

Q for physical outputs (output map)

size_prefix specifies the amount of space needed for the variable. It is one of
the following letters. (NOTE: If no size_prefix is included, single bit
size is assumed.)

X single bit size (BOOL only)

B byte size (8 bits)

W word size (16 bits)

D double word size (32 bits)

address

 is the memory address reserved this variable plus the appropriate
offset. Inputs and outputs start at an offset of 4 in the memory
map of the board. See ‘I/O Mapping’ for more details on offsets into
the I/O map for the Open Modbus boards.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 193

As an example, suppose we have defined both an Open Modbus Input board that will be
reading a register in the Modbus device to obtain a flow temperature. This temperature is

stored in the Modbus device as a 16 bit (word), and will be stored in an integer variable in
the ControlWave, named FLOW_TEMP. The variable must be declared as follows:

The choice of 4 for the address was determined by examining the I/O global variables
worksheet to determine the address of the IPMB_INP (Open Modbus Input board). In this
case, the address was 0, and then putting in the correct offset, based on the I/O Mapping
information in the ‘I/O Mapping’ section. In this case the offset was 4.

HART Interface Board (CWM_HIB)
The CWM_HIB board allows your ControlWave MICRO to communicate with HART®
devices using the Highway Addressable Remote Transducer (HART) protocol, or with
Bristol 3508/3808 transmitters using the BSAP protocol.

If using a HART device, you must configure a HART function block. See the ControlWave
Designer online help for details.

If using a Bristol 3508 or 3808 transmitter, you must configure an XMTR or LBTI function
block. See the ControlWave Designer online help for details.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

194 I/O Configurator

You must associate the HIB board with a task,
using the Related Task field, in order to have
control of its rate of execution.

It must be executed fast enough to accommodate your data update requirements,
depending upon whether or not you are accessing the current loop directly. For example, if
you want to access the primary variable at a faster rate (100 msec) through the 4 to 20 mA
current loop, you must associate the HIB board with a task that executes at least once
every 100 msec.

Although the dialog box in the I/O Configurator shows 16 pins, only the first 8 are used; the
remaining ones are reserved for future expansion. Pin types are:

Pin Type Valid for this
channel

Notes

Not Configured Any The channel is not configured.

Analog Input Any Valid only for a single 4-20 mA device on this channel (point-to-
point). You must specify a zero and span for the input. Not
used with multi-dropped HART devices. If using on Channel 1,
set switch SW3 to “IN”. If using on Channel 2, set switch SW4
to “IN”.

Analog Output 1 or 2 Valid only for a single 4-20 mA HART device on this channel,
that is NOT a transmitter. You must specify a zero and span for
the output. Not used with multi-dropped HART devices. If
using on Channel 1, set switch SW3 to “OUT”. If using on
Channel 2, set switch SW4 to “OUT”.

HART Multi-
drop

Any Up to five multi-dropped HART devices allowed per channel
(total of 40 allowed for the entire board – main and daughter).
If used on channels 1 or 2, switches SW3 and/or SW4 must be
set to “IN”.

BTI Any Valid for either a Bristol 3508 or Bristol 3808 transmitter. If
used on channels 1 or 2, switches SW3 and/or SW4 must be set
to “IN”.

Changing Default Variable Names (All board types)

As you proceed to define your I/O, the I/O Configuration Wizard will automatically create
variable names associated with the I/O board to store status information, zeros and spans,
etc.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Configurator 195

These variable names are based on the pin name you define with an appropriate suffix
added. To see the default suffix, click on the [Variable Names] button (previously called
[Settings]) visible on certain pages of the I/O Configuration Wizard. While NOT
recommended, the variable suffixes can be altered by the user, if desired. The different
pages of the Global Output Variables Names dialog box are accessible by clicking on the
tabs. Make changes on the various pages, then click [OK] to save all the changes.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

196 I/O Configurator

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 197

I/O Mapping

Important

Most users do not need to be concerned with the details described in this section. The
typical user configures I/O using the I/O Configuration Wizard. Only certain users with
special I/O requirements or customized software need to be familiar with this information.

In IEC 61131, I/O is addressed by mapping the physical I/O into one of two I/O memory
regions. Addresses for these regions are either %Qtxx (Output) or %Itxx (Input), where t is
the data type and xx is the offset (for example: %QD100, %QW50, or %QX0.1).

Typically, the inputs are scanned at the start of a task’s cycle, and outputs are written at
the end. (Note: the user has the choice about which task will process each I/O definition).
The user can also force I/O processing to occur by using a standard function block

Common Device Map
The status area is defined for all I/O boards at offset 0 of the input map. This region is 4
bytes long; the first byte is reserved for board errors (see bit definitions in each I/O board
section) and the other three are divided as needed by the individual board drivers.

DI
The status of DI points is always mapped from bytes 4-19 of the input map. Any other
features (such as counters) will be mapped starting at address offset 20.

DO
The values to be output to a DO are always mapped at bytes 0-15 of the output map. Any
other features will be mapped starting at address offset 16.

AI
The AI map is organized into two sections: The input values are mapped as REAL values,
starting at offset 8 (there is an exception here when a combo board is used). The output
map consists of pairs of REAL values (ZERO, SPAN) by which each input is scaled. The
outputs are typically mapped starting at offset 0. If a zero / span pair is not initialized, the
scale defaults to ZERO = 0.0 and SPAN = 100.0.

Note:

The Input or Output map may be shortened to reduce the number of points processed.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

198 I/O Mapping

AO
To output an AO, a set of three REAL values is used: ZERO, SPAN, VALUE. These are
mapped starting at offset 0. If a zero / span pair is not initialized, the scale defaults to ZERO
= 0.0 and SPAN = 100.0.

Note:

The Input or Output map may be shortened to reduce the number of points processed.

Local I/O - ControlWave
The following sections describe the local I/O boards supported, and their memory maps.

CW_DO32 ControlWave 32 Output Pin Digital Board

DRIVER_NAME: ‘CW_DO32’

DATA_TYPE: BYTE

DRIVER_PAR1: Slot number.

DRIVER_PAR2: Bit mask of outputs to be processed by 61131 program. If specified
as 0, all points will be allowed.

DRIVER_PAR3: Bit mask for outputs to be processed by 61131 (bits 16-31). If
specified as 0, all points will be allowed.

Input Map: Max Size: 8 bytes (6 bytes for 16 point)

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 DO32_x_BOARDSTATUS Board status. Only bit 0 is currently defined. If set,
board is not present.

4-7 DO32_x_y_I DO status as seen by card. 1 bit per value.

Output Map: Size: 4 bytes (2 bytes on 16 pt)

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 DO32_x_y Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 7.

1-3 DO32_x_y Repeat for DO9-32. Offset 1 is DO9-16, 2 is DO17-24,
etc.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 199

CW_DI32 ControlWave 32 Input Pin Digital Board

DRIVER_NAME: ‘CW_DI32’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: Slot number.

DRIVER_PAR2: Unused

Input Map: Max Size: 8 bytes (6 bytes for 16 pt)

Offset Default Variable Name where x is
the board slot and y is the pin
number.

Description

0 DI32_x_BOARDSTATUS Board status. Only bit 0 is currently defined. If set, board
is not present.

4 DI32_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5 DI32_x_y Current status of DI9 (in bit 0) to DI16 (in bit 7).

6 DI32_x_y Current status of DI17 (in bit 0) to DI24 (in bit 7).

7 DI32_x_y Current status of DI25 (in bit 0) to DI32 (in bit 7).

CW_AI16 ControlWave 16 Input Pin Analog Board

DRIVER_NAME: ‘CW_AI16’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: Slot number.

Input Map: Max Size: 72 bytes (40 for 8 point)

Due to the amount of time required to process the AI points, it is highly recommended
that the input region for this board be sized only as large as needed for the points used by
the application.

Also, the I/O fetches should be programmed to only occur as fast as needed (via task
association).

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (Bit 0) AI16_x_BOARDSTATUS Board status. Bit 0 is set if board is not present;

0 (Bit 1) AI16_x_LASTOPERATION Bit 1 is set if the last conversion operation failed.

4-5 AI16_x_y_OUTRANGE 1 bit per AI, AI1 is bit 0, offset 1, AI8 is bit 7, offset 1,
AI9 is bit 0, offset 2. If set, input is Out-of-range.

8 AI16_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, a variable needs to be
defined ‘%IDxx’. Direct access to %IDxx is not
possible.

12, 16, … AI16_x_y Value for AI2, AI3, …

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

200 I/O Mapping

Output Map: Max Size: 128 bytes (64 bytes for 8 point)

To provide consistent scaling values across Application Warm Starts, this I/O region should
be marked as ‘RETAIN’.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 AI16_x_y_ZERO Zero for AI1 (4-byte float – REAL). To access the
value, define the variable %QDxx. This variable can
be initialized at declaration.

4 AI16_x_y_SPAN Span for AI1 (4-byte float - REAL). If zero, the AI will
be scaled from 0 to 100.0.

8, 16, 24, … AI16_x_y_ZERO Zeros for AI2, AI3, …

12, 20, 28,
…

AI16_x_y_SPAN Spans for AI2, AI3, …

CW_AO8 ControlWave 8 Output Pin Analog Board

DRIVER_NAME: ‘CW_AO8’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: Slot number.

Input Map: Max Size: 72 bytes (Extra space reserved for future expansion up to
AO16)

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (Bit 0) AO8_x_BOARDSTATUS Board status. Bit 0 is set if board is not present;

0 (Bit 1) AO8_x_LASTOPERATION Bit 1 is set if the last conversion operation failed.

4 AO8_x_y_OUTRANGE 1 bit per AO, AO0 is bit 0, AO8 is bit 7. If set, output
is Out-of-range.

8, 12, …,
36

AO8_x_y_ACTUAL Actual output value for points 1 to 8. If output is Out-
of-range low the output will be constrained to the
points Zero value. If output is O-o-r high it will be set
to the points Zero+Span value.

40, 44,
…, 68

AO8_x_y_ACTUAL Output values for points 9 to 16 (To allow for future
expansion)

Output Map: Max Size: 268 bytes (Extra space reserved for future expansion up to AO16)

Due to the amount of time required to process the AO points, it is highly recommended
that the output region for this board be sized only as large as needed for the points used by
the application.

Also, the I/O sets should be programmed to only occur as fast as needed (via task
association).

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 201

To provide consistent scaling values across Application Warm Starts, this I/O region should
be marked as ‘RETAIN’.

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 AO8_x_y_ZERO Zero for AO1 (4-byte float - REAL). To access the
value, define the variable %QDxx. This variable can
be initialized at declaration.

4 AO8_x_y_SPAN Span for AO1 (4-byte float). If zero, the AO will be
scaled from 0 to 100.0.

8 AO8_x_y Value for AO1 (4-byte float).

12, 24, 36, … AO8_x_y_ZERO Zeros for AO2, AO3, AO4, etc.

16, 28, 40, … AO8_x_y_SPAN Spans for AO2, AO3, AO4, etc.

20, 32, 44, … AO8_x_y Values for AO2, AO3, AO4, etc.

192 AO8_x_y_DEF_VAL Update Default Values for AO1 - AO16 (4-byte
integer - DWORD). To access this value, define the
variable %QX192.0. This variable can be initialized at
declaration. Setting this bit to TRUE will write the
default values for AO1 - AO16 to the AO hardware.
After the default values are written to the board this
variable will then be set back to FALSE.

196 AO8_x_y_HOLD_LO Hold Last Output (HLO) Control for AO1 - AO16 (4-
byte integer - DWORD). To access the values, define
variables %QXxxx.x. This variable can be initialized at
declaration. (192.0 for AO1, 192.1 for AO2, … 193.7
for AO16)

200 AO8_x_y_UCO_FLG User Configured Output (UCO) Control for AO1 -
AO16 (4-byte integer - DWORD). To access the
value, define variables %QXxxx.x. This variable can
be initialized at declaration. (196.0 for AO1, 196.1
for AO2, … 197.7 for AO16)

204, 208, 212,
…

AO8_x_y_UCD_VAL User Configured Default (UCD) Value for AO1, AO2,
AO3, etc. (4-byte float - REAL). To access the value,
define the variable %QDxxx. These variables can be
initialized at declaration.

If neither Hold Last State or User Configured Output are enabled, for a point, the output
will go to -5% if the unit watchdogs.

If Hold Last State and User Configured Output are both enabled at the same time, for the
same point, neither will be the winner. If the unit watchdogs the output will fall back to -
5%.

CW_HSC12 ControlWave 12 Channel High Speed Counter / Universal Discrete Input
Board

DRIVER_NAME: ‘CW_HSC12’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: Slot number.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

202 I/O Mapping

DRIVER_PAR2: UNUSED

Input Map: Max Size: 68 bytes (44 bytes for 6 point)

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 HSC12_x_BOARDSTATUS Board status. Only bit 0 is currently defined. If
set, board is not present.

1 HSC12_x_y_STATE Input channel state. BOOL Offset 1 Bit 0 is for
channel 1, Bit 1 is channel 2, etc. Each bit will
reflect the state, either on or off, of the signal on
its respective channel.

4 HSC12_x_TIMESTAMP Timestamp of last sample from HSC. This is the
number of milliseconds since boot.

8 HSC12_x_y_COUNTER Number of counts since boot (Channel 1)

12,16,20, …, 52 HSC12_x_y_COUNTER Counts for Channel 2, 3, 4, …, 12

Ouput Map: Max Size: 12 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 HSC12_x_y_RESET_COUNT Reset point counts. BOOL Offset 0, Bit 0 is point 1 …
Offset 1, bit 3 is point 12. Setting a bit to TRUE (1)
will reset the count for the point selected. The driver
will reset the bit after the count has been reset.

2 (Bit 1) HSC12_x_NOINIT Bit 1 – If set to TRUE, maintain counts across warm
start.

4 HSC12_x_y_FILTER 30ms/1ms filter select. Offset 4, Bit 0 represent
Channel 1 to select 30ms (FALSE) and 1ms (TRUE)
respectively. Offset 4, Bit 1 is Channel 2, Offset 5, Bit
3 is Channel 12.

8 HSC12_x_y_HSC_SEL High Speed Counter select. Offset 8, Bit 0 represent
Channel 1 to select High Speed Counter (TRUE).
Offset 8, Bit 1 is Channel 2, Offset 9, Bit 3 is Channel
12. Setting an HSC select bit to TRUE will override the
30ms/1ms selection for the same channel.

CW_TC12 – ControlWave 12 Point Thermocouple Board

DRIVER_NAME ‘CW_TC12’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 56 bytes

Due to the amount of time required to process the thermocouple points, it is highly
recommended that this I/O driver be assigned to a task (instead of “No Task”). Care
should also be taken in using the I/O board in a task of less than 40ms.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 203

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (Bit 0) TC12_x_BOARDSTATUS If set, the board is not present.

0 (Bit 2) TC12_x_CALIBRATE If set indicates invalid calibration data written to the
board.

0 (Bit 3) TC12_x_TIMEOUT If set, indicates that had an error reading or writing
to the board.

4 TC12_x_y_OUTRANGE 1 bit per TC, TC1 is bit 0, TC8 is bit 7. If set, input is
Out-of-range.

5 TC12_x_y_OUTRANGE 1 bit per TC, TC9 is bit 0, TC12 is bit 3. If set, input is
Out-of-range.

8 TC12_x_y Value for TC1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, 20,
24, … 52

TC12_x_y Value for TC2, TC3, TC4, TC5, TC6... TC12

Output Map: Max Size: 112 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 TC12_x_y_ZERO Zero for TC1 (4-byte float - REAL). To access the
value, define the variable AT %QDxx. This variable
can be initialized at declaration.

4 TC12_x_y_SPAN Span for TC1 (4-byte float). If zero, the TC will be
scaled as in the chart below. If specified, the new
value will be ORG_VALUE * Span + Zero.

8, 16, 24,
32, … 88

TC12_x_y_ZERO Zeros for TC2, TC3, TC4, to TC12 – Example: for C
to F, use 32.0

12, 20, 28,
36, … 92

TC12_x_y_SPAN Spans for TC2, TC3, TC4, to TC12 – Example for C to
F, use 1.8

100 TC12_x_y_MODE Point type for TC1; see Thermocouple type codes
section for details.

101, 102,
103, 104, …
111

TC12_x_y_MODE Point types for TC2, TC3, TC4, to TC12.

Type codes for Thermocouple Points.

Type Code Code Range

0 B Thermocouple: 100C – +1820C
1 E Thermocouple: -270C – +1000C
2 J Thermocouple: -210C – +1200C

3 K Thermocouple: -270C – +1370C
4 R Thermocouple: -50C – +1720C
5 S Thermocouple: -50C – +1760C

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

204 I/O Mapping

Type Code Code Range
6 T Thermocouple: -270C – +400C
7 Unused Unused

8 10MV Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)
9 C Thermocouple: 0C – +2315C
10 N Thermocouple: -270C – +1300C

CW_RTD8 - ControlWave 8 Point Resistance Temperature Device (RTD) Board

DRIVER_NAME ‘CW_RTD8’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 40 bytes

Due to the amount of time required to process the RTD points, it is highly recommended
that this I/O driver be assigned to a task (instead of “No Task”). Care should also be taken
in using the I/O board in a task of less than 40ms.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (Bit 0) RTD8_x_BOARDSTATUS If set, the board is not present.

0 (Bit 2) RTD8_x_CALIBRATE If set indicates invalid calibration data written to the
board.

0 (Bit 3) RTD8_x_TIMEOUT If set, indicates that had an error reading or writing
to the board.

1 (Bit 0) RTD8_x_LASTCALBOP Set if last calibration or reset operation failed.

1 (Bit 7) RTD8_x_CALBCMD Calibration Commands Allowed. Until this bit is set,
all calibration commands are ignored.

4 RTD8_x_y_READERR RTD Reading Error. Bit 0 is RTD1, Bit 7 is RTD8

8 RTD8_x_y RTD1 reading – REAL – In units of Degrees
Centigrade (unless scaled by values in the output
map).

12, 16, …36 RTD8_x_y Readings for RTD2 … RTD8.

Output Map: Max Size: 280 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 RTD8_x_y_ZERO Zero for RTD 1(4-byte float - REAL). Example: for
C to F, use 32.0. Defaults to 0.0

4 RTD8_x_y_SPAN Span for RTD 1(4-byte float – REAL). If zero, RTD
will not be scaled. If specified, the scaled value
will be ORG_VALUE * Span + Zero. Example for
C to F, use 1.8.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 205

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

8,16,24,32
40,48,56

RTD8_x_y_ZERO Zero for RTDs 2-8

12,20,28,
36,44,52,
60

RTD8_x_y_SPAN Span for RTDs 2-8

120 (Bit 0) * RTD8_x_y_RESTORE If set, restore RTD 1 calibration to Factory
Defaults. Will be reset when operation
completes.

121 * RTD8_x_y_OPERATION Calibration Operation for RTD 1 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300
Ohms)

124 ** RTD8_x_y_COEFF_A Coefficient A (RTD 1)

128 ** RTD8_x_y_COEFF_B Coefficient B (RTD 1)

132 ** RTD8_x_y_COEFF_R0 Coefficient R0 (RTD 1)

136 ** RTD8_x_y_APPLIED The applied temperature when calibration
operation 8 was performed. (RTD 1)

140 (Bit 0) * RTD8_x_y_RESTORE If set, restore RTD 2 calibration to Factory
Defaults. Will be reset when operation
completes.

141 * RTD8_x_y_OPERATION Calibration Operation for RTD 2 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300
Ohms)

144 ** RTD8_x_y_COEFF_A Coefficient A (RTD 2)

148 ** RTD8_x_y_COEFF_B Coefficient B (RTD 2)

152 ** RTD8_x_y_COEFF_R0 Coefficient R0 (RTD 2)

156 ** RTD8_x_y_APPLIED The applied temperature when calibration
operation 8 was performed. (RTD 2)

…. …..

260 (Bit 0) * RTD8_x_y_RESTORE If set, restore RTD 8 calibration to Factory
Defaults. Will be reset when operation
completes.

261 * RTD8_x_y_OPERATION Calibration Operation for RTD 8 – SINT
5 RTD Zero (100 Ohms)
6 RTD Span (300 Ohms)
7 RTD Coefficients (A, B, R0)
8 RTD Span (not using 300 Ohms)

264* RTD8_x_y_COEFF_A Coefficient A (RTD 8)

268** RTD8_x_y_COEFF_B Coefficient B (RTD 8)

272** RTD8_x_y_COEFF_R0 Coefficient R0 (RTD 8)

276** RTD8_x_y_APPLIED The applied temperature when calibration

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

206 I/O Mapping

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

operation 8 was performed. (RTD 8)

* Value written to perform operation. The value will be reset by driver when the
operation completes.

** Value is read from the board by the driver. In order to perform calibration operations 7
and 8, the user can overwrite the values; then, issue the calibration command.

Ethernet I/O
Data from Ethernet I/O units will be transferred to the process automation controller using
a TCP/IP data link. The data link may be a dedicated Ethernet line or may have other IP
traffic. Performance-critical applications should not be run in over a shared link.

A series of special I/O configuration modules, boards, will be defined to support Ethernet
I/O. These modules are to be included by the application developer and a firmware driver
will support each module. The drivers will be linked as a part of the system firmware for the
controller. These drivers will provide a front-end to a common driver that hands TCP/IP
communication, Modbus mapping and timing responsibilities. This driver will be
responsible for exchanging data between the I/O configuration memory and the actual
Ethernet I/O hardware units.

A special software program for Ethernet I/O configuration, called the Remote I/O Toolkit, is
included as an installation option on the OpenBSI CD ROM.

A copy of the I/O image memory that supports the Ethernet I/O data will be held in a buffer
controlled by the common driver. This driver will copy the data into the I/O image memory
whenever a call is made to the driver’s read member function. A read call will also initiate a
communication request to refresh the image data from the remote hardware. Similarly,
the I/O image memory will be copied into the driver’s image buffer when the write
member function of the driver is called.

Sending the data request message will be delayed, such that the response data will arrive
just before the next scheduled driver read call. The driver will collect statistics, possibly a
rolling average, in order to calculate the optimal amount of time to delay. Problems could
occur in this optimal time calculation if either the request for data is not regular or the data
link is not very consistent in response time.

To provide some indication of the freshness of the Ethernet I/O data, a read request counter
is included in each input I/O configuration block. This counter will be incremented during
the Read input portion of application task’s execution. The increment will occur just after
the image data is copied. The driver will clear this count while updating its internal image
from a data response message. This way if a fresh block of data is received the counter will
be zero, but if the data is the same as the last read request, the counter will be greater than
zero.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 207

The Open Modbus standard is supported using TCP/IP. The units contain an ID string,
which will be used to verify that the proper unit type is mapped to an IP address. No other
verification of the Ethernet I/O configuration will be performed. It is assumed that this
function will be done using the Remote I/O Toolkit.

Also implemented are two general-purpose Open Modbus I/O boards to allow
communication with other compliant hardware without requiring new firmware. One
board will support input and the other output.

Driver status for all board types is defined as follows:

Bit Bit Value Meaning
0 1 Cannot communicate properly with Ethernet I/O module.
1 2 Communications can be established with the Ethernet I/O device, but,

the data response cannot be properly parsed. This is most likely due to an
invalid device type being configured.

3 8 Configuration Error. For units which support a device ID request, if this is
set, the unit responded with an unexpected unit identifier.

The memory map of each module is described below.

BB_8DI8DO (8 Remote Digital Input and 8 Remote Digital Output Pin Ethernet I/O Board)

DRIVER_NAME: ‘BB_8DI8DO’

DATA_TYPE: BYTE

DRIVER_PAR1: always 0

DRIVER_PAR2 : IP address - first and second quads.

DRIVER_PAR3: IP address - third and fourth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 52 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RDIDO_x_DRIVERSTATUS Driver status - see table above.

1 RDIDO_x_FRESHNESSCOUNT Freshness counter.

4 RDIDO_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5-19 spare

20/23 RDIDO_x_y_COUNTER If counter processing is enabled, the number of
counts for DI1. A count is registered when the DI
transitions from low to high. Note: Only a 16 bit
counter is held, but a 32 bit value will be reported
here. Roll over in the 16 bit counter will be carried
into the 32-bit counts.

24/27, …,
48/51

RDIDO_x_y_COUNTER Counts for DI2, …, DI8.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

208 I/O Mapping

Output Map: Size: 48 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RDIDO_x_y_O Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 7.

1-15 Spare

16 RDIDO_x_ACTIVATECOUNTER Activate counters. 1 bit per point.

17 RDIDO_x_CLEARCOUNTER Clear counters. Sets values back to 0. 1 bit per point.

18/19 RDIDO_x_y_O_TPOVALUE TPO value for DO point 1. 1 word / DO point for the
Pulse count in the range 0 to 32767. See 'Tpo' and
the 'Time Proportioned Output' topic in the Remote
I/O Tool Kit on-line help for more information.

20/21, …,
46/47

RDIDO_x_y_O_TPOVALUE TPO value for DO points 2 … 8.

Modbus Function Codes: 02 to read DI values @ 1 … 8

 04 to read Counter values @ 1 … 8

 0Fh to set DO values @ 1 … 8

 10h to set TPO values @ 1 … 8

BB_16DI-(16 Remote Digital Input Pin Ethernet I/O Board)

DRIVER_NAME: ‘BB_16DI’

DRIVER_PAR1: always 0

DRIVER_PAR2: IP address - first and second quads.

DRIVER_PAR3: IP address - third and fourth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 84 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RDI_x_DRIVERSTATUS Driver status - see table above.

1 RDI_x_FRESHNESSCOUNT Freshness counter.

4 RDI_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5 RDI_x_y Current status of DI9 (in bit 0) to DI16 (in bit 7).

6-19 Spare

20/23 RDI_x_y_COUNTER If counter processing is enabled, the number of
counts for DI1. A count is registered when the DI
transitions from low to high. Note: Only a 16-bit
counter is held, but a 32-bit value will be reported
here. Roll over in the 16-bit counter will be carried

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 209

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

into the 32-bit counts.

24/27, …,
80/83

RDI_x_y_COUNTER Counts for DI2, …, DI16.

Output Map: Size: 4 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0/1 RDI_x_ACTIVATECOUNTER Activate counters. 1 bit per point. Counters 1-8 in first
byte, 9-16 in second.

2/3 RDI_x_CLEARCOUNTER Clear counters. Sets values back to 0. 1 bit per point.

Modbus Function Codes: 02 to read DI values @ 1 … 16

 04 to read Counter values @ 1 … 16

BB_16DO (16 Remote Digital Output Pin Ethernet I/O Board)

DRIVER_NAME: ‘BB_16DO’

DATA_TYPE: BYTE

DRIVER_PAR1: always 0

DRIVER_PAR2: IP address - first and second quads.

DRIVER_PAR3: IP address - third and fourth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 2 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RDO_x_DRIVERSTATUS Driver status - see table above.

1 RDO_x_FRESHNESSCOUNT Freshness counter.

Output Map: Size: 48 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RDO_x_y Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 7.

1 RDO_x_y Outputs. 1 bit per value. DO9 is LSB; DO16 is MSB.

2-15 spare

16/17 RDO_x_y_TPOVALUE TPO value for DO point 1. 1 word / DO point for the
Pulse count in the range 0 to 32767. See 'Tpo' and the
'Time Proportioned Output' topic in the Remote I/O

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

210 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

Tool Kit on-line help for more information.

18/19,
…,
46/47

RDO_x_y_TPOVALUE TPO for DO points 2 to 16.

Modbus Function Codes: 0Fh to set DO values @ 1 … 16

 10h to set TPO values @ 1 … 16

BB_8DI8AI - (8 Remote Digital Input and 8 Remote Analog Input Pin Ethernet I/O Board)

Note:

For Proper functioning of the AIs, the Remote I/O Toolkit must be used to set the
“Features” for each channel to be “Positive Only” or “- Below 4mA”.

DRIVER_NAME: ‘BB_8DI8AI’

DATA_TYPE: BYTE

DRIVER_PAR1: always 0

DRIVER_PAR2: IP address - first and second quads.

DRIVER_PAR3: IP address - third and fourth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 84 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RDIAI_x_DRIVERSTATUS Driver status - see table above.

1 RDIAI_x_FRESHNESSCOUNT Freshness counter.

4 RDIAI_x_y_DI Current status of DI1 (in bit 0) to DI8 (in bit 7).

5-19 Spare

20/23 RDIAI_x_y_DI_COUNTER If counter processing is enabled, the number of
counts for DI1. A count is registered when the DI
transitions from low to high.

24/27, …,
48/51

RDIAI_x_y_DI_COUNTER Counts for DI2, …, DI8.

52/55 RDIAI_x_y_AI Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable %IDxx.
Direct access to %IDxx is not possible.

56/59, …,
80/83

RDIAI_x_y_AI Values for AI2 to AI8.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 211

Output Map: Size: 68 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RDIAI_x_ACTIVATECOUNTER Activate counters. 1 bit per point. Typically specified
as %QXy.z, where y is I/O space offset, and z is bit
number from 0 to 7.

1 RDIAI_x_CLEARCOUNTER Clear counters. Sets values back to 0. 1 bit per point.

4/7 RDIAI_x_y_AI_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable %QDxx. This variable can be
initialized at declaration.

8/11 RDIAI_x_y_AI_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

12/15 RDIAI_x_y_AI_ZERO Zero for AI2.

16/19 RDIAI_x_y_AI_SPAN Span for AI2.

20/23, …,
64/67

 Zeros and Spans for AI3 … AI8.

Modbus Function Codes: 02 to read DI values @ 1 … 8

 04 to read Counter and AI values @ 1 … 8

 0Fh to set /clear counters @ 1 … 8

BB_16AI (16 Remote Analog Input Pin Ethernet I/O Board)

Note:

For Proper functioning of the AIs, the Remote I/O Toolkit must be used to set the
“Features” for each channel to be “Positive Only” or “- Below 4mA”.

DRIVER_NAME: ‘BB_16AI’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: always 0

DRIVER_PAR2: IP address - first and second quads.

DRIVER_PAR3: IP address - third and fourth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 68 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RAI_x_DRIVERSTATUS Driver status - see table above.

1 RAI_x_FRESHNESSCOUNT Freshness counter.

2/3 Spare

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

212 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

4/7 RAI_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable %IDxx.
Direct access to %IDxx is not possible.

8/11 RAI_x_y Value for AI2

12/15, …,
64/67

RAI_x_y Values for AI3 to AI16.

Output Map: Max Size: 128 bytes per slot

To provide consistent scaling values across Application Warm Starts, this I/O region should
be marked as RETAIN.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0/3 RAI_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable %QDxx. This variable can
be initialized at declaration.

4/7 RAI_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

8/11 RAI_x_y_ZERO Zero for AI2.

12/15 RAI_x_y_SPAN Span for AI2.

16/19 …
124/127

 Zeros and Spans for AI3 … AI16.

Modbus Function Codes: 04 to read AI values @ 1 … 16

BB_8AI4AO - (8 Remote Analog Input and 4 Remote Analog Output Pin Ethernet I/O Board)

Note:

Note: For Proper functioning of the AIs, the Remote I/O Toolkit must be used to set the
“Features” for each channel to be “Positive Only” or “- Below 4mA”.

DRIVER_NAME: ‘BB_8AI4AO’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: always 0

DRIVER_PAR2: IP address - first and second quads.

DRIVER_PAR3: IP address - third and fourth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 36 bytes

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 213

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RAIAO_x_DRIVERSTATUS Driver status - see table above.

1 RAIAO_x_FRESHNESSCOUNT Freshness counter.

2/3 spare

4/7 RAIAO_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable %IDxx.
Direct access to %IDxx is not possible.

8/11, …,
32/35

RAIAO_x_y Values for AI2 to AI8.

Output Map: Max Size: 112 bytes

To provide consistent scaling values across Application Warm Starts, this I/O region should
be marked as RETAIN.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0/3 RAIAO_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable %QDxx. This variable can be
initialized at declaration.

4/7 RAIAO_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

8/11, … ,
28/31

 Zeros and Spans for AI2 … AI8.

64/67 RAIAO_x_y_O_ZERO Zero for AO1 (4-byte float - REAL). To access the
value, define the variable %QDxx. This variable can be
initialized at declaration.

68/71 RAIAO_x_y_O_SPAN Span for AO1 (4-byte float). If zero, the AO will be
scaled from 0 to 100.0.

72/75 RAIAO_x_y_O Value for AO1 (4-byte float).

76/79, ,
108/111

 Zeros, Spans and Values for AO2 to AO4.

Modbus Function Codes: 04 to read AI values @ 1 … 8

 10h to set AO value @ 1 … 4

BB_8INS (Instrumentation Ethernet I/O Board)

DRIVER_NAME: ‘BB_8INS’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: always 0

DRIVER_PAR2: IP address - first and second quads.

DRIVER_PAR3: IP address - third and fourth quads

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

214 I/O Mapping

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 36 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RIN_x_DRIVERSTATUS Driver status - see table above.

1 RIN_x_FRESHNESSCOUNT Freshness counter.

2/3 Spare

4/7 RIN_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable %IDxx.
Direct access to %IDxx is not possible.

8/11, …,
32/35

RIN_x_y Values for AI2 to AI8.

Output Map: Max Size: 32 bytes

To provide consistent scaling values across Application Warm Starts, this I/O region should
be marked as RETAIN.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0/3 RIN_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable %QDxx. This variable can be
initialized at declaration.

4/7 RIN_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

8/11, … ,
28/31

 Zeros and Spans for AI2 … AI8.

Modbus Function Codes: 04 to read AI values @ 1 … 8

BB_8HSC-(8 Channel High Speed Counter Channel Ethernet I/O Board)

Note:

For proper functioning of the counters, the Remote I/O Toolkit must be used to set up for
32-bit counters. Also, the counts reported are the RAW counts from the module. No
adjustment is performed to convert to counts since boot.

DRIVER_NAME: ‘BB_8HSC’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: always 0

DRIVER_PAR2: IP address - first and second quads.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 215

DRIVER_PAR3: IP address - third and fourth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 40 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RHSC_x_DRIVERSTATUS Driver status - see table above.

1 RHSC_x_FRESHNESSCOUNT Freshness counter.

2/3 Spare

4 RHSC_x_TIMESTAMP Timestamp of last sample from HSC. This is the
number of milliseconds since boot.

8 RHSC_x_y_COUNTER Number of counts since boot (Channel 1)

12, 16,
…, 36

RHSC_x_y_COUNTER Counts for Channel 2, 3, …, 8

Modbus Function Codes: 04 to read HSC value @ 1 … 8 (must read 2 16-bit register
pairs per counter)

IPMB_INP (Open Modbus – Input Ethernet I/O Board)

DRIVER_NAME: ‘IPMB_INP’

DATA_TYPE: BYTE

DRIVER_PAR1: Low Byte – Function Code (see below) - High byte undefined

DRIVER_PAR2: IP address - first and second quads.

DRIVER_PAR3: IP address - third and fourth quads

DRIVER_PAR4: Modbus unit number.

Function Code: Function Description: Number of Bytes in Response:
(N=requested elements)

01 Read Coil Status N / 8
02 Read Input Status N / 8

03 Read Holding Registers 2 * N
04 Read Input Registers 2 * N

Input Map: Max Size: (2 + requested size) bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RIN_x_DRIVERSTATUS Driver status - see table above.

1 RIN_x_FRESHNESSCOUNT Freshness counter.

4, … See function codes for size of responses in bytes -
above.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

216 I/O Mapping

Output Map: Max Size: 6

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0,1 RIN_x_STARTREGISTER Modbus Register/Coil start address

2,3 RIN_x_NUMREGISTERS Number of Registers or Coils.

Note:

The fields in the output map are only settable one time. Once a non-zero number is written
to Offset 2,3, the request is defined and will start collecting.

IPMB_OUT (Open Modbus – Output - Ethernet I/O Board)

DRIVER_NAME: ‘IPMB_OUT’

DATA_TYPE: BYTE

DRIVER_PAR1: Low Byte – Function Code (see below) - High byte undefined

DRIVER_PAR2: IP address - first and second quads.

DRIVER_PAR3 : IP address - third and fourth quads

DRIVER_PAR4: Modbus unit number.

Function Code: Function Description: Number of Bytes in Response:
(N=requested elements)

0F Force Multiple Coils N / 8
10 Set Multiple Registers 2 * N

Input Map: Max Size: 2 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ROUT_x_DRIVERSTATUS Driver status - see table above.

1 ROUT_x_FRESHNESSCOUNT Freshness counter.

Output Map: Max Size: 6 + data size - see above.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0,1 ROUT_x_STARTREGISTER Modbus Register/Coil start address

2,3 ROUT_x_NUMREGISTERS Number of Registers or Coils.

4, … Data bytes to be output.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 217

BB_4RTDI (RTD - Resistance Temperature Device Ethernet I/O Board)

Note:

For proper functioning of the RTDs, the Remote I/O Toolkit must be used to set the proper
scaling range.

DRIVER_NAME: ‘BB_4RTDI’

DATA_TYPE: BYTE

DRIVER_PAR1: always 0

DRIVER_PAR2: IP address - first and second quads.

DRIVER_PAR3: IP address - third and fourth quads

DRIVER_PAR4: Open Modbus Unit number - used for gateway chaining.

Input Map: Max Size: 52 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RTDDI_x_DRIVERSTATUS Driver status - see table above.

1 RTDDI_x_FRESHNESSCOUNT Freshness counter.

2-3 Spare

4 RTDDI_x_y_DI Current status of DI1 (in bit 0) to DI4 (in bit 4).

5-19 Spare (for driver consistency)

20-23 RTDDI_x_y_DI_COUNTER If counter processing is enabled, the number of
counts for DI1. A count is registered when the DI
transitions from low to high.

24-27 RTDDI_x_y_DI_COUNTER Counts for DI2

28-31 RTDDI_x_y_DI_COUNTER Counts for DI3

32-35 RTDDI_x_y_DI_COUNTER Counts for DI4

36-39 RTDDI_x_y_AI Value for RTD1 in engineering units (4-byte float -
REAL). To access the value, define the variable %Idxx.
Direct access to %Idxx is not possible.

40-43 RTDDI_x_y_AI Value for RTD2

44-47 RTDDI_x_y_AI Value for RTD3

48-51 RTDDI_x_y_AI Value for RTD4

Output Map: Size: 3 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RTDDI_x_ACTIVATECOUNTER Activate counters. 1 bit per point. Typically specified
as %Qby.z, where y is I/O space offset, and z is bit
number from 0 to 3.

1 RTDDI_x_CLEARCOUNTER Clear counters. Set values back to 0. 1 bit per point.

2.0 RTDDI_x_DISPLAYTENTHS Convert RTD values to tenths precision. Unit level
control. True = tenths (BOOL).

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

218 I/O Mapping

Modbus Function Codes: 02 to read DI values @ 1 … 4

 04 to read Counter and AI values @ 1 … 4

 0Fh to set / clear counters @ 1 … 4

ControlWave I/O Expansion Rack Boards

Common Status Information

The first two bytes of the input map contain status information, which is common to all
Expansion Rack boards.

Byte Bit Description
0 0 (0x1, 1) No board is present in the destination rack.
0 3 (0x8, 8) Board type does not match the board installed in the rack.
0 4 (0x10, 16) Communications lost with the expansion rack.
0 7 (0x80, 128) Initial opening of channel to the expansion rack has not been completed.

Driver status for each I/O Expansion Rack board type is stored as an USINT.

ER_DO32 32 Digital Output Pin ControlWave I/O Expansion Rack Board

DRIVER_NAME: ‘ER_DO32’

DATA_TYPE: BYTE

DRIVER_PAR1: Slot number

DRIVER_PAR2: IP address - first half

DRIVER_PAR3: IP address - second half

DRIVER_PAR4: Specifies redundant board (0 = False, 1 = True)

Input Map: Max Size: 8 bytes (6 bytes for 16 point)

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERDO_x_DRIVERSTATUS Board Status (see Common Status Information
section)

4-7 ERDO_x_y_I DO status as seen by card. 1 bit per value.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 219

Output Map: Size: 4 bytes (2 bytes on 16 pt)

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERDO_x_y Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 7.

1-3 ERDO_x_y Repeat for DO9-32. Offset 1 is DO9-16, 2 is DO17-
24, etc.

ER_DI32 32 Digital Input Pin ControlWave I/O Expansion Rack Board

DRIVER_NAME: ‘ER_DI32’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: Slot number

DRIVER_PAR2: IP address - first half

DRIVER_PAR3: IP address - second half

DRIVER_PAR4: Specifies redundant board (0 = False, 1 = True)

Input Map: Max Size: 8 bytes (6 bytes for 16 pt)

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERDI_x_DRIVERSTATUS Board status. (See Common Status Information
section)

4 ERDI_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5 ERDI_x_y Current status of DI9 (in bit 0) to DI16 (in bit 7).

6 ERDI_x_y Current status of DI17 (in bit 0) to DI24 (in bit 7).

7 ERDI_x_y Current status of DI25 (in bit 0) to DI32 (in bit 7).

ER_AI16 16 Analog Input Pin ControlWave I/O Expansion Rack Board

DRIVER_NAME: ‘ER_AI16’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: Slot number

DRIVER_PAR2: IP address - first half

DRIVER_PAR3: IP address - second half

DRIVER_PAR4: Specifies redundant board (0 = False, 1 = True)

Input Map: Max Size: 72 bytes (40 for 8 point)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

220 I/O Mapping

Due to the amount of time required to process the AI points, it is highly recommended
that the input region for this board be sized only as large as needed for the points used by
the application.

Also, the I/O fetches should be programmed to only occur as fast as needed (via task
association).

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERAI_x_DRIVERSTATUS Board status. (see Common Status Information
section)

2 (bit 1) ERAI_x_LASTOPERATION Bit 1 is set if the last conversion operation failed.

4-5 ERAI_x_y_OUTRANGE 1 bit per AI, AI1 is bit 0, offset 1, AI8 is bit 7, offset
1, AI9 is bit 0, offset 2. If set, input is Out-of-
range.

8 ERAI_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable
%IDxx. Direct access to %IDxx is not possible.

12, 16, … ERAI_x_y Value for AI2, AI3, …

Output Map: Max Size: 128 bytes (64 bytes for 8 point)

To provide consistent scaling values across Application Warm Starts, this I/O region should
be marked as ‘RETAIN’.

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERAI_x_y_ZERO Zero for AI1 (4-byte float – REAL). To access the
value, define the variable %QDxx. This variable
can be initialized at declaration.

4 ERAI_x_y_SPAN Span for AI1 (4-byte float - REAL). If zero, the AI
will be scaled from 0 to 100.0.

8, 16, 24, … ERAI_x_y_ZERO Zeros for AI2, AI3, …

12, 20, 28, … ERAI_x_y_SPAN Spans for AI2, AI3, …

ER_AO8 8 Analog Output Pin ControlWave I/O Expansion Rack Board

DRIVER_NAME: ‘ER_AO8’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: Slot number

DRIVER_PAR2: IP address - first half

DRIVER_PAR3: IP address - second half

DRIVER_PAR4: Specifies redundant board (0 = False, 1 = True)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 221

Input Map: Max Size: 72 bytes (Extra space reserved for future expansion up to
AO16)

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERAO_x_DRIVERSTATUS Board status. (See Common Status Information
section)

2 (bit 1) ERAO_x_LASTOPERATION Bit 1 is set if the last conversion operation failed.

4 ERAO_x_y_OUTRANGE 1 bit per AO, AO0 is bit 0, AO8 is bit 7. If set,
output is Out-of-range.

8, 12, …, 36 ERAO_x_y_ACTUAL Actual output value for points 1 to 8. If output is
out-of-range low the output will be constrained to
the points Zero value. If output is 0-or high it will
be set to the points Zero+Span value.

40, 44, …, 68 ERAO_x_y_ACTUAL Output values for points 9 to 16 (To allow for
future expansion)

Output Map: Max Size: 268 bytes (Extra space reserved for future expansion up to AO16)

Due to the amount of time required to process the AO points, it is highly recommended
that the output region for this board be sized only as large as needed for the points used by
the application.

Also, the I/O sets should be programmed to only occur as fast as needed (via task
association).

To provide consistent scaling values across Application Warm Starts, this I/O region should
be marked as ‘RETAIN’.

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERAO_x_y_ZERO Zero for AO1 (4-byte float - REAL). To access the
value, define the variable %QDxx. This variable can
be initialized at declaration.

4 ERAO_x_y_SPAN Span for AO1 (4-byte float). If zero, the AO will be
scaled from 0 to 100.0.

8 ERAO_x_y Value for AO1 (4-byte float).

12, 24, 36, … ERAO_x_y_ZERO Zeros for AO2, AO3, AO4, etc.

16, 28, 40, … ERAO_x_y_SPAN Spans for AO2, AO3, AO4, etc.

20, 32, 44, … ERAO_x_y Values for AO2, AO3, AO4, etc.

192 ERAO_x_y_DEF_VAL Update Default Values for AO1 - AO16 (4-byte
integer - DWORD). To access this value, define
the variable %QX192.0. This variable can be
initialized at declaration. Setting this bit to TRUE
will write the default values for AO1 - AO16 to the
AO hardware. After the default values are written
to the board this variable will then be set back to
FALSE.

196 ERAO_x_y_HOLD_LO Hold Last Output (HLO) Control for AO1 - AO16

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

222 I/O Mapping

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

(4-byte integer - DWORD). To access the values,
define variables %QXxxx.x. This variable can be
initialized at declaration. (192.0 for AO1, 192.1
for AO2, … 193.7 for AO16)

200 ERAO_x_y_UCO_FLG User Configured Output (UCO) Control for AO1 -
AO16 (4-byte integer - DWORD). To access the
value, define variables %QXxxx.x. This variable can
be initialized at declaration. (196.0 for AO1, 196.1
for AO2, … 197.7 for AO16)

204, 208, 212,
…

ERAO_x_y_UCD_VAL User Configured Default (UCD) Value for AO1,
AO2, AO3, etc. (4-byte float - REAL). To access
the value, define the variable %QDxxx. These
variables can be initialized at declaration.

If neither Hold Last State or User Configured Output are enabled, for a point, the output
will go to -5% if the unit watchdogs.

If Hold Last State and User Configured Output are both enabled at the same time, for the
same point, neither will be the winner. If the unit watchdogs the output will fall back to -
5%.

ER_HSC12 12 Channel High Speed Counter ControlWave I/O Expansion Rack Board

DRIVER_NAME: ‘ER_HSC12’

DATA_TYPE: DWORD (32 bits)

DRIVER_PAR1: Slot number

DRIVER_PAR2: IP address - first half

DRIVER_PAR3: IP address - second half

DRIVER_PAR4: Specifies redundant board (0 = False, 1 = True)

Input Map: Max Size: 68 bytes (44 bytes for 6 point)

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERHSC_x_DRIVERSTATUS Board status (see Common Status Information
section)

1 ERHSC_x_y_STATE Input channel state. BOOL Offset 1 Bit 0 is for
channel 1, Bit 1 is channel 2, etc. Each bit will
reflect the state, either on or off, of the signal on
its respective channel.

4 ERHSC_x_TIMESTAMP Timestamp of last sample from HSC. This is the
number of milliseconds since boot.

8 ERHSC_x_y_COUNTER Number of counts since boot (Channel 1)

12,16,20, …, 52 ERHSC_x_y_COUNTER Counts for Channel 2, 3, 4, …, 12

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 223

Ouput Map: Max Size: 12 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERHSC_x_y_RESET_COUNT Reset point counts. BOOL Offset 0, Bit 0 is point 1
… Offset 1, bit 3 is point 12. Setting a bit to TRUE
(1) will reset the count for the point selected. The
driver will reset the bit after the count has been
reset.

4 ERHSC_x_y_FILTER 30ms/1ms filter select. Offset 4, Bit 0 represent
Channel 1 to select 30ms (FALSE) and 1ms (TRUE)
respectively. Offset 4, Bit 1 is Channel 2, Offset 5,
Bit 3 is Channel 12.

8 ERHSC_x_y_HSC_SEL High Speed Counter select. Offset 8, Bit 0
represent Channel 1 to select High Speed Counter
(TRUE). Offset 8, Bit 1 is Channel 2, Offset 9, Bit 3
is Channel 12. Setting an HSC select bit to TRUE
will override the 30ms/1ms selection for the same
channel.

ER_STAT ControlWave I/O Expansion Rack Statistics Board

Note:

This is a virtual board; not a physical board in the controller.

DRIVER_NAME: ER_STAT

DATA_TYPE: BYTE

DRIVER_PAR1: N/A

DRIVER_PAR2: IP address - first half

DRIVER_PAR3: IP address - second half

DRIVER_PAR4: Specifies redundant board (0 = False, 1 = True)

Input Map: 728 bytes (from RIO)

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0-1 ERSTAT_x_BOARDSTATUS Board status. Bit 0 - board is not present, Bit 1 -
Message parse error, Bit 2 – Memory allocation error,
Bit 3 - Board configuration error, Bit 4 –
Communications error, Bit 7 - IP channel open in
progress.

2-3 Spare

4 (bit 0) ERSTAT_x_BATSTAT Expanded IO Status. Battery OK

4 (bit 1) ERSTAT_x_HOTCARDSTAT Expanded IO Status. Hot card in progress,

4 (bit 2) ERSTAT_x_MASTER_IS_B Expanded IO Status- Is RIO B master?

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

224 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

4 (bit 3) ERSTAT_x_STBYVALID Expanded IO Status- Is the Standby RIO valid?

4 (bit 4) ERSTAT_x_FAILOVERERR Expanded IO Status- Fail-over error

5 Spare

6 (bit 0) ERSTAT_x_RDN_IO_1_ERR Failure, readback error, or mismatch with I/O board in
redundant standby unit.

6 (bit 1) ERSTAT_x_RDN_IO_2_ERR Failure, readback error, or mismatch with I/O board in
redundant standby unit.

6 (bit 2) ERSTAT_x_RDN_IO_3_ERR Failure, readback error, or mismatch with I/O board in
redundant standby unit.

6 (bit 3) ERSTAT_x_RDN_IO_4_ERR Failure, readback error, or mismatch with I/O board in
redundant standby unit.

6 (bit 4) ERSTAT_x_RDN_IO_5_ERR Failure, readback error, or mismatch with I/O board in
redundant standby unit.

6 (bit 5) ERSTAT_x_RDN_IO_6_ERR Failure, readback error, or mismatch with I/O board in
redundant standby unit.

6 (bit 6) ERSTAT_x_RDN_IO_7_ERR Failure, readback error, or mismatch with I/O board in
redundant standby unit.

6 (bit 7) ERSTAT_x_RDN_IO_8_ERR Failure, readback error, or mismatch with I/O board in
redundant standby unit.

8-11 ERSTAT_x_HOTCARDCT Hot card count

12-15 ERSTAT_x_DOWNTIMEUSER 32-Bit Count – Number of seconds (as configured by
the user) that the I/O Expansion Rack can be powered
off before the outputs are reset to defaults when the
unit is powered back up.

16-19 ERSTAT_x_DOWNTIMEACT 32-Bit Count – Number of seconds that the I/O
Expansion Rack was powered off on the last power
fail.

20-23 ERSTAT_x_WRITECT Number of messages written to Expanded IO.

24-27 ERSTAT_x_READCT Number of update message sent to host.

28-31 ERSTAT_x_CONNECTS Number of times the Expanded IO has connected to a
host (open + close).

32-35 ERSTAT_x_HEARTBEAT Number of heartbeat messages sent to a host.

36-41 Spare

42-126 ERSTAT_x_BDSTR1 Expanded IO local board string information for slot
#1.

127-211 ERSTAT_x_BDSTR2 Expanded IO local board string information for slot
#2.

212-296 ERSTAT_x_BDSTR3 Expanded IO local board string information for slot
#3.

297-381 ERSTAT_x_BDSTR4 Expanded IO local board string information for slot
#4.

382-466 ERSTAT_x_BDSTR5 Expanded IO local board string information for slot
#5.

467-551 ERSTAT_x_BDSTR6 Expanded IO local board string information for slot
#6.

552-636 ERSTAT_x_BDSTR7 Expanded IO local board string information for slot

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 225

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

#7.

637-722 ERSTAT_x_BDSTR8 Expanded IO local board string information for slot
#8.

724-727 ERSTAT_x_REDUNSTAT Redundancy status

728-812 ERSTAT_x_BDSTR9 Reserved for possible future use.

813-897 ERSTAT_x_BDSTR10 Reserved for possible future use.

898-982 ERSTAT_x_BDSTR11 Reserved for possible future use.

983-1067 ERSTAT_x_BDSTR12 Reserved for possible future use.

1068-
1152

ERSTAT_x_BDSTR13 Reserved for possible future use.

1153-
1237

ERSTAT_x_BDSTR14 Reserved for possible future use.

1240 ERSTAT_x_INPUTVOLTS Float – Reading (in volts) of power-supply input
voltage.

Output Map: 4 bytes (to RIO)

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERSTAT_x_FAILOVER_O Bit 0 - Force redundant Expanded IO to become
standby unit.

1 ERSTAT_RDN_IOERR_WARN When set TRUE, I/O errors are treated only as
warnings. When FALSE, I/O errors disable
redundancy.

2-3 Spare

ER_TC12 ControlWave I/O Expansion Rack– 12 Point Thermocouple Board

DRIVER_NAME ‘ER_TC12’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

DRIVER_PAR4 If Bit 0 is 1, this is a redundant Expansion Rack

Input Map: Max Size: 56 bytes

Due to the amount of time required to process the thermocouple points, it is highly
recommended that this I/O driver be assigned to a task (instead of “No Task”). Care
should also be taken in using the I/O board in a task of less than 40ms.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

226 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERTC_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (Bit 2) ERTC_x_CALIBRATE If set indicates invalid calibration data written to the
board.

2 (Bit 3) ERTC_x_TIMEOUT If set, indicates that had an error reading or writing
to the board.

4 ERTC_x_y_OUTRANGE 1 bit per TC, TC1 is bit 0, TC8 is bit 7. If set, input is
Out-of-range.

5 ERTC_x_y_OUTRANGE 1 bit per TC, TC9 is bit 0, TC12 is bit 3. If set, input is
Out-of-range.

8 ERTC_x_y Value for TC1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, 20,
24, … 52

ERTC_x_y Value for TC2, TC3, TC4, TC5, TC6... TC12

Output Map: Max Size: 112 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERTC_x_y_ZERO Zero for TC1 (4-byte float - REAL). To access the
value, define the variable AT %QDxx. This variable
can be initialized at declaration.

4 ERTC_x_y_SPAN Span for TC1 (4-byte float). If zero, the TC will be
scaled as in the chart below. If specified, the new
value will be ORG_VALUE * Span + Zero.

8, 16, 24,
32, … 88

ERTC_x_y_ZERO Zeros for TC2, TC3, TC4, to TC12 – Example: for C
to F, use 32.0

12, 20, 28,
36, … 92

ERTC_x_y_ZERO Spans for TC2, TC3, TC4, to TC12 – Example for C to
F, use 1.8

100 ERTC_x_y_MODE Point type for TC1; see Thermocouple type codes
section for details.

101, 102,
103, 104, …
111

ERTC_x_y_MODE Point types for TC2, TC3, TC4, to TC12.

Type codes for Thermocouple Points.

Type Code Code Range
0 B Thermocouple: 100C – +1820C

1 E Thermocouple: -270C – +1000C
2 J Thermocouple: -210C – +1200C
3 K Thermocouple: -270C – +1370C
4 R Thermocouple: -50C – +1720C

5 S Thermocouple: -50C – +1760C

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 227

Type Code Code Range
6 T Thermocouple: -270C – +400C
7 Unused Unused

8 10MV Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)
9 C Thermocouple: 0C – +2315C
10 N Thermocouple: -270C – +1300C

ER_RTD8 - ControlWave I/O Expansion Rack – 8 Point Resistance Temperature Device
(RTD) Board

DRIVER_NAME ‘ER_RTD8’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

DRIVER_PAR4 If Bit 0 is 1, this is a redundant Expansion Rack

Input Map: Max Size: 40 bytes

Due to the amount of time required to process the RTD points, it is highly recommended
that this I/O driver be assigned to a task (instead of “No Task”). Care should also be taken
in using the I/O board in a task of less than 40ms.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERRTD_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (Bit 2) ERRTD_x_CALIBRATE If set indicates invalid calibration data written to the
board.

2 (Bit 3) ERRTD_x_TIMEOUT If set, indicates that had an error reading or writing
to the board.

3 (Bit 0) ERRTD_x_LASTCALBOP Set if last calibration or reset operation failed.

3 (Bit 7) ERRTD_x_CALBCMD Calibration Commands Allowed. Until this bit is set,
all calibration commands are ignored.

4 ERRTD_x_y_READERR RTD Reading Error. Bit 0 is RTD1, Bit 7 is RTD8

8 ERRTD_x_y RTD1 reading – REAL – In units of Degrees
Centigrade (unless scaled by values in the output
map).

12, 16, …36 ERRTD_x_y Readings for RTD2 … RTD8.

Output Map: Max Size: 280 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERRTD_x_y_ZERO Zero for RTD 1(4-byte float - REAL). Example: for

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

228 I/O Mapping

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

C to F, use 32.0. Defaults to 0.0

4 ERRTD_x_y_SPAN Span for RTD 1(4-byte float – REAL). If zero, RTD
will not be scaled. If specified, the scaled value
will be ORG_VALUE * Span + Zero. Example for
C to F, use 1.8.

8,16,24,32
40,48,56

ERRTD_x_y_ZERO Zero for RTDs 2-8

12,20,28,
36,44,52,
60

ERRTD_x_y_SPAN Span for RTDs 2-8

64 NOT USED; RESERVED FOR FUTURE USE

65,66,67,
68,69

 NOT USED; RESERVED FOR FUTURE USE

100 ERRTD_x_y_MODE RTD 1 Type

101,102
103,104
105,106,
107

ERRTD_x_y_MODE RTDs 2-8 Type

120 (Bit 0) * ERRTD_x_y_RESTORE If set, restore RTD 1 calibration to Factory
Defaults. Will be reset when operation
completes.

121 * ERRTD_x_y_OPERATION Calibration Operation for RTD 1 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

124 ** ERRTD_x_y_COEFF_A Coefficient A (RTD 1)

128 ** ERRTD_x_y_COEFF_B Coefficient B (RTD 1)

132 ** ERRTD_x_y_COEFF_R0 Coefficient R0 (RTD 1)

136 ** ERRTD_x_y_APPLIED The applied temperature when calibration
operation 8 was performed. (RTD 1)

140 (Bit 0) * ERRTD_x_y_RESTORE If set, restore RTD 2 calibration to Factory
Defaults. Will be reset when operation
completes.

141 * ERRTD_x_y_OPERATION Calibration Operation for RTD 2 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

144* ERRTD_x_y_COEFF_A Coefficient A (RTD 2)

148** ERRTD_x_y_COEFF_B Coefficient B (RTD 2)

152* ERRTD_x_y_COEFF_R0 Coefficient R0 (RTD 2)

156** ERRTD_x_y_APPLIED The applied temperature when calibration
operation 8 was performed. (RTD 2)

…. …..

260 (Bit 0) * ERRTD_x_y_RESTORE If set, restore RTD 8 calibration to Factory

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 229

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

Defaults. Will be reset when operation
completes.

261 * ERRTD_x_y_OPERATION Calibration Operation for RTD 8 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

264** ERRTD_x_y_COEFF_A Coefficient A (RTD 8)

268** ERRTD_x_y_COEFF_B Coefficient B (RTD 8)

272** ERRTD_x_y_COEFF_R0 Coefficient R0 (RTD 8)

276** ERRTD_x_y_APPLIED The applied temperature when calibration
operation 8 was performed. (RTD 8)

* Value written to perform operation. The value will be reset by driver when the
operation completes.

** Value is read from the board by the driver. In order to perform calibration operations 7
and 8, the user can overwrite the values; then, issue the calibration command.

Local I/O – ControlWave MICRO-series
The following sections describe the local I/O boards supported, and their memory maps.

Offset 0 of the input map defines the board status. All boards support bit 0, which is set if
the board is not present.

CWM_DO16 – ControlWave MICRO 16 pin Digital Output Board

DRIVER_NAME ‘CWM_DO16’

DATA_TYPE BYTE

DRIVER_PAR1 slot number.

Input Map: Max Size: 6 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 DO16_x_BOARDSTATUS Board status.

4,5 DO16_x_y_I DO status as seen by card. 1 bit per value.

Output Map: Size: 5 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 DO16_x_y Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

230 I/O Mapping

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

Typically specified as %QXy.z, where y is I/O space offset,
and z is bit number from 0 to 7.

1 DO16_x_y Outputs 9 to 16.

4 DO16_x_LEDSTATUS Single bit. If bit is set, the diagnostic LEDS for the points
are turned off to save power.

CWM_DI16 – ControlWave MICRO 16 pin Digital Input Board

DRIVER_NAME ‘CWM_DI16’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 s lot number.

Input Map: Max Size: 8 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number

Description

0 DI16_x_BOARDSTATUS Board status.

4 DI16_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5 DI16_x_y Current status of DI9 (in bit 0) to DI16 (in bit 7).

Output Map: Size: 5 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number

Description

4 DI16_x_LEDSTATUS Single bit. If bit is set, the diagnostic LEDS for the
points are turned off to save power.

CWM_MD – ControlWave MICRO - Mixed Digital Board 12 Digital Input Pins / 4 Digital
Output Pins

DRIVER_NAME ‘CWM_MD’

DATA_TYPE BYTE

DRIVER_PAR1 slot number.

Input Map: Max Size: 9 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number

Description

0 DIDO_x_BOARDSTATUS Board status.

4 DIDO_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5 DIDO_x_y Current status of DI9 (in bit 0) to DI12 (in bit 3).

8 DIDO_x_y_O_I DO status as seen by card. 1 bit per value.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 231

Output Map: Size: 5 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number

Description

0 DIDO_x_y_O Outputs. 1 bit per value. DO1 is LSB; DO4 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 3.

4 DIDO_x_LEDSTATUS Single bit. If bit is set, the diagnostic LEDS for the
points are turned off to save power.

CWM_AI8 – ControlWave MICRO 8 Analog Input Pin Board

DRIVER_NAME ‘CWM_AI8’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 40 bytes

Due to the amount of time required to process the AI points, it is highly recommended
that the input region for this board be sized only as large as needed for the points used by
the application.

Also, the I/O fetches should be programmed to only occur as fast as needed.

Offset Default Variable Name where
x is the board slot and y is the
pin number.

Description

0 (bit 0) AI8_x_y_BOARDSTATUS Board status. Bit 0 is set if board is not present.

0 (bit 2) AI8_x_CALIBRATE Calibration error. Bit set on error. Indicates a serious hardware failure
on the board.

0 (bit 3) AI8_x_TIMEOUT Timeout – If board timeout occurs, bit set. Indicates a serious
hardware failure on the board.

4 AI8_x_y_OUTRANGE 1 bit per AI, AI1 is bit 0, AI8 is bit 7. If set, input is Out-of-range.

8 AI8_x_y Value for AI1 in engineering units (4-byte float – REAL). To access the
value, define the variable AT %IDxx. Direct access to %IDxx is not
possible.

12, 16, … AI8_x_y Value for AI2, AI3, …

Output Map: Max Size: 64 bytes

Offset Default Variable Name where
x is the board slot and y is the
pin number.

Description

0 AI8_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the value, define
the variable AT %QDxx. This variable can be initialized at
declaration.

4 AI8_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be scaled from
0 to 100.0.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

232 I/O Mapping

Offset Default Variable Name where
x is the board slot and y is the
pin number.

Description

8, 16, 24, … AI8_x_y_ZERO Zeros for AI2, AI3, …

12, 20, 28, … AI8_x_y_SPAN Spans for AI2, AI3, …

64, 72, 80, … AI8_x_y_BOTTOMRANGE Bottom end of usable current / voltage range for this input.
Specified as a REAL. For example, for a 1-5V input, this value
is 1.0.

68, 76, 84, … AI8_x_y_TOPRANGE Top end of usable current / voltage range for this input.
Specified as a REAL. For example, for a 1-5V input, this value
is 5.0.

128 AI8_x_y_MODE Mode - 1 bit per AI; set TRUE if the point is voltage; FALSE if
current.

CWM_AO4 – ControlWave MICRO 4 Analog Output Pin Board

DRIVER_NAME ‘CWM_AO4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 24 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 (bit 0) AO4_x_BOARDSTATUS Board status. Bit 0 is set if board is not present; Bit 1 is set
if the last conversion operation failed.

0 (bit 2) AO4_x_CALIBRATE Calibration error. Bit set on error. Indicates a serious
hardware failure on the board.

0 (bit 3) AO4_x_TIMEOUT Timeout – If board timeout occurs, bit set. Indicates a
serious hardware failure on the board.

6 AO4_x_y_OUTRANGE 1 bit per AO, AO0 is bit 0, AO4 is bit 3. If set, output is
Out-of-range.

8,12,16,20 AO4_x_y_ACTUAL Real value of value actually output. Clamped to 0-100% of
scale.

Output Map: Max Size: 48 bytes

Due to the amount of time required to process the AO points, it is highly recommended
that the output region for this board be sized only as large as needed for the points used by
the application.

Also, the I/O sets could be programmed to only occur as fast as needed.

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 AO4_x_y_ZERO Zero for AO1 (4-byte float - REAL). To access the value,

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 233

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

define the variable AT %QDxx. This variable can be
initialized at declaration.

4 AO4_x_y_SPAN Span for AO1 (4-byte float). If zero, the AO will be scaled
from 0 to 100.0.

8 AO4_x_y Value for AO1 (4-byte float).

12, 24,
36

AO4_x_y_ZERO Zeros for AO2, AO3, AO4

16, 28,
40

AO4_x_y_SPAN Spans for AO2, AO3, AO4

20, 32,
44

AO4_x_y Values for AO2, AO3, AO4

CWM_MA – ControlWave MICRO - Mixed Analog Board - 6 Analog Input Pin / 2 Analog
Output Pin Board

DRIVER_NAME ‘CWM_MA’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 40 bytes

Due to the amount of time required to process the AI points, it is highly recommended
that the input region for this board be sized only as large as needed for the points used by
the application.

Also, the I/O fetches should be programmed to only occur as fast as needed.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (bit 0) AIAO_x_BOARDSTATUS Board status. Bit 0 is set if board is not present (or if
either Bit 2 or Bit 3 is set).

0 (bit 2) AIAO_x_CALIBRATE Calibration error. Bit set on error. Indicates a serious
hardware failure on the board.

0 (bit 3) AIAO_x_TIMEOUT Bit 3 is set to indicate that a board data read has
timed out. Indicates a serious hardware failure on the
board.

4 AIAO_x_y_OUTRANGE 1 bit per AI, AI1 is bit 0, AI6 is bit 5. If set, input is
Out-of-range.

6 AIAO_x_y_O_OUTRANGE 1 bit per AO, AO0 is bit 0, AO2 is bit 1. If set, output
is Out-of-range.

8 AIAO_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, … AIAO_x_y Value for AI2, AI3, …

32,36 AIAO_x_y_O_ACTUAL Value actually written to AO – clamped to 0-100%.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

234 I/O Mapping

Output Map: Max Size: 72 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 AIAO_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the value,
define the variable AT %QDxx. This variable can be
initialized at declaration.

4 AIAO_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be scaled
from 0 to 100.0.

8, 16, 24,
…

AIAO_x_y_ZERO Zeros for AI2, AI3, …

12, 20,
28, …

AIAO_x_y_SPAN Spans for AI2, AI3, …

48, 60 AIAO_x_y_O_ZERO Zeros for AO1, AO2

52, 64 AIAO_x_y_O_SPAN Spans for AO1, AO2

56, 68 AIAO_x_y_O Values for AO1, AO2

CWM_AI6 – ControlWave MICRO - 6 Analog Input Pin Board

DRIVER_NAME ‘CWM_AI6’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 40 bytes

Due to the amount of time required to process the AI points, it is highly recommended
that the input region for this board be sized only as large as needed for the points used by
the application.

Also, the I/O fetches should be programmed to only occur as fast as needed.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (bit 0) AI6_x_BOARDSTATUS Board status. Bit 0 is set if board is not present (or if
either Bit 2 or Bit 3 is set);

0 (bit 2) AI6_x_CALIBRATE Calibration error. Bit set on error. Indicates a serious
hardware failure on the board.

0 (bit 3) AI6_x_TIMEOUT Bit 3 is set to indicate that a board data read has
timed out. Indicates a serious hardware failure on the
board.

4 AI6_x_y_OUTRANGE 1 bit per AI, AI1 is bit 0, AI6 is bit 5. If set, input is
Out-of-range.

6 Unused

8 AI6_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, … AI6_x_y Value for AI2, AI3, …

32 to 36 Unused

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 235

Output Map: Max Size: 72 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 AI6_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 AI6_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

8, 16, 24,
…

AI6_x_y_ZERO Zeros for AI2, AI3, …

12, 20,
28, …

AI6_x_y_SPAN Spans for AI2, AI3, …

48 to 68 Unused

CWM_HSC4 – ControlWave MICRO - 4 channel High Speed Counter Board

DRIVER_NAME ‘CWM_HSC4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 24 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 HSC4_x_BOARDSTATUS Board status. Only bit 0 is currently defined. If
set, board is not present.

4 HSC4_x_TIMESTAMP Timestamp of last sample from HSC. This is the
number of milliseconds since boot.

8 HSC4_x_y _COUNTER Number of counts since boot (Channel 1)

12, 16,
20

HSC4_x_y _COUNTER Counts for Channel 2, 3, 4

Output Map: Size: 8 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 HSC4_x_y _RESET_COUNT Counter reset flags, HSC1 (in bit 0) to HSC4 (in bit 3)

2 HSC4_x_NOINIT Bit 1 – If set to TRUE, maintain counts across warm
start.

4 HSC4_x_LEDSTATUS Single bit. If bit is set, the diagnostic LEDS for the

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

236 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

points are turned off to save power.

CWM_BAT – ControlWave MICRO Battery (Voltage) Monitor

DRIVER_NAME ‘CWM_BAT’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number should be specified as 0.

Input Map: Max Size: 8 bytes

Due to the expense of performing the A-to-D conversion for this value, this input should be
fetched only when needed.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 BAT_x_STATUS Board status. Board is always present, therefore is
always 0.

4 BAT_x_READING Value for Input Voltage in engineering units (4-byte
float – REAL – 0 to 32V range). To access the value,
define the variable AT %IDxx. Direct access to %IDxx is
not possible.

CWM_MIX – ControlWave MICRO - 6 DI/O, 4AI, 1AO (optional), 2 HSC - Mixed I/O Board

This card contains the following I/O: DIO 6, AI4, AO1 (optional), and HSC2

DRIVER_NAME ‘CWM_MIX’

DATA_TYPE DWORD

DRIVER_PAR1 slot number.

Input Map: Max Size: 68 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (bit 0) MIX_x_BOARDSTATUS Board status.

0 (bit 2) MIX_x_CALIBRATE Calibration error. Bit set on error. Indicates a serious
hardware failure on the board.

0 (bit 3) MIX_x_TIMEOUT Timeout – If board timeout occurs, bit set. Indicates
a serious hardware failure on the board.

4 MIX_x_y_AI_OUTRANGE AI under / over range. One bit per point: AI1 in bit 0,
AI4 in bit 3.

6 MIX_x_y_AO_OUTRANGE AO under / over range. AO1 is in bit 0.

8 MIX_x_y_DI Current status of DI1 (in bit 0) to DI6 (in bit 5).

10 MIX_x_y_DO_I Read-back of current value for DO1 (in bit 0) to DO6

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 237

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

(in bit 5).

12 MIX_x_TIMESTAMP Timestamp of last sample from HSC. This is the
number of milliseconds since boot.

16 MIX_x_y_COUNTER Number of counts since boot (Channel 1)

20 MIX_x_y_COUNTER Counts for Channel 2

32 MIX_x_y_AI Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

36, 40, … MIX_x_y_AI Value for AI2, AI3, …

64 MIX_x_y_AO_ACTUAL Value actually written to AO – clamped to 0-100%.

Output Map: Size: 84 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 MIX_x_y_DO Outputs. 1 bit per value. DO1 is LSB; DO6 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 5.

2 MIX_x_y _RESET_COUNT Counter reset flags, HSC1 (in bit 0) to HSC2 (in bit 1)

4 (Bit 0) MIX_x_LEDSTATUS Bit 0 - If bit is set, the diagnostic LEDS for the points
are turned off to save power.

4 (Bit 1) MIX_x_NOINIT Bit 1 – If set to TRUE, maintain counts across warm
start.

8 MIX_x_y_AI_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

12 MIX_x_y_AI_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

16, 24,
32

MIX_x_y_AI_ZERO Zeros for AI2, AI3, AI4

20, 28,
36

MIX_x_y_AI_SPAN Spans for AI2, AI3, AI4

72 MIX_x_y_AO_ZERO Zero for AO1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

76 MIX_x_y_AO_SPAN Span for AO1 (4-byte float). If zero, the AO will be
scaled from 0 to 100.0.

80 MIX_x_y_AO Value for AO1 (4-byte float).

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

238 I/O Mapping

CWM_SCB – ControlWave EFM System Controller Board

Firmware release 04.20 supports the battery (incoming) voltage reading only. Unless
otherwise noted, firmware release 04.30 and newer supports all of the items shown,
below.

DRIVER_NAME ‘CWM_SCB’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number should be specified as 0.

Input Map: Max Size: 40 bytes

Offset Default Variable Name
where x = board slot number

Description

0 (Bit 0) SCB_x_BOARDSTATUS Board status. If SCB is present, will be FALSE; if Micro Power
Supply is present, it will be TRUE.

0 (Bit 1) SCB_x_PSRDERR Pressure Reading Error. If set, pressure reading is not valid.

0 (Bit 2) SCB_x_PSRDINITERR Pressure Reading – Initialization failure – no retry performed on
this error.

0 (Bit 3) SCB_x_PSRDCOMMERR Pressure Reading – Communications failure – will be retried.

0 (Bit 4) SCB_x_PSRDNORESET Pressure Reading – Wet End has been changed without power
reset.

0 (Bit 5) SCB_x_RTDRDERR RTD Reading Error.

0 (Bit 6) SCB_x_BATRDERR Battery Voltage Reading Error.

0 (Bit 7) SCB_x_ALLOWCALIB Calibration Commands Allowed. Until this bit is set, all calibration
commands are ignored.

1 (Bit 0) SCB_x_LASTCALBOP Set if last calibration or reset operation failed.

3 SCB_x_BOARDPRESENT I/O board present. See Board Type Table code numbers, later in
this section.

4 SCB_x_INVOLT Value for Input Voltage in engineering units (4-byte float – REAL –
0 to 32V range).

8 SCB_x_DP Differential Pressure – REAL – In units of Inches of Water (inH20)
or PSI. The units used depend on the range type of the connected
transmitter (see chart below).

12 SCB_x_SP Static Pressure – REAL – In units of Pounds per Square Inch (PSI).

16 SCB_x_RTD RTD reading – REAL – In units of Degrees Centigrade.

20 SCB_x_TEMP Estimated Sensor Temperature – REAL – In units of Degrees
Centigrade.

24 SCB_x_SENSORID Sensor ID (Block Number) –INT

26 SCB_x_SENORSERIES Sensor Series - SINT

28 SCB_x_SENSORTYPE Sensor Type – SINT

29 SCB_x_DPRANGE DP Range Code – SINT

30 SCB_x_SPRANGE SP Range Code – SINT

31 (Bit 0) SCB_x_DPENABLE Differential Pressure Processing is enabled.

32 (Bit 0) SCB_x_SPENABLE Static Pressure Processing is enabled.

33 (Bit 0) SCB_x_RTDENABLE RTD Processing is enabled.

36 SCB_x_LASTOPERR

DWORD – Specific Error for last operation – See codes below.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 239

Offset Default Variable Name
where x = board slot number

Description

40 SCB_x_MSPTEMP Not applicable; not used for this platform.

Transmitter types:

Sensor Type DP Range Code Range / Units
32 (Differential Pressure) 12 150 InH20

32 (Differential Pressure) 13 100 InH20
32 (Differential Pressure) 14 300 InH20
32 (Differential Pressure) 20 25 psi
12 (Gauge Pressure) 14 300 InH20

12 (Gauge Pressure) 20 25 psi
12 (Gauge Pressure) 22 100 psi
12 (Gauge Pressure) 23 300 psi
12 (Gauge Pressure) 25 1000 psi

12 (Gauge Pressure) 26 3000 psi
12 (Gauge Pressure) 28 2000 psi
12 (Gauge Pressure) 29 4000 psi

Note: If DP Range Code is < 20, units are InH20, if >= 20, units are psi.

Sensor Type SP Range Code Range / Units
32 (Differential Pressure) 1 1000 psi
32 (Differential Pressure) 2 2000 psi

32 (Differential Pressure) 3 500 psi
32 (Differential Pressure) 4 4000 psi

Specific Error Codes (this is an addition of the following bit values:

0x00000001 Could not erase MSP Info memory

0x00000002 Could not write MSP Info memory

0x00000004 Checksum failure in Serial EEP.

0x00000008 Flash checksum failure in Sensor.

0x00000010 Flash checksum failure in MSP Info.

0x00000100 DP - Could not initialize the SA.

0x00000200 DP - SA flash checksum error.

0x00000400 DP - Data error after Init done.

0x00000800 DP - Data error during scan.

0x00001000 DP - Data scan error.

0x00010000 SP - Could not initialize the SA.

0x00020000 SP - SA flash checksum error.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

240 I/O Mapping

0x00040000 SP - Data error after Init done.

0x00080000 SP - Data error during scan.

0x00100000 SP - Data scan error.

0x01000000 Could not initialize the ADS.

0x02000000 Data scan error.

0x04000000 RTD out of range.

0x08000000 Temperature calculation error.

Output Map: Max Size: 28 bytes

Offset Default Variable Name

where x = board slot
number

Description

0 (Bit 0)* SCB_x_RESTOREDP Restore Factory Calibration Values for Differential Pressure.

1 (Bit 0)* SCB_x_RESTORESP Restore Factory Calibration Values for Static Pressure.

2 (Bit 0)* SCB_x_RESTORERTD Restore Factory Values for RTD.

3 ** SCB_x_CALIBOP Perform Calibration Operation – SINT
 1 DP Zero
 2 DP Span
 3 SP Zero
 4 SP Span
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

8 ** SCB_x_DPSPAN DP Applied at DP Span Calibration – REAL – Units of Inches of Water..

12 ** SCB_x_SPSPAN SP Applied at SP Span Calibration – REAL – Units of Pounds per Square Inch.

16 *** SCB_x_RTDA RTD Coeff – A

20 *** SCB_x_RTDB RTD Coeff – B

24 *** SCB_x_RTDR0 RTD Coeff – R0

28 SCB_x_RTDSPAN The applied temperature when calibration operation 8 was performed (RTD 8).

* Value is cleared by the driver when the operation completes.

** Value is read from the hardware at startup and after any calibration operation. User
changes to this value only can be made when Bit 7 of Offset 0 in the input map is set.

*** Same as **; but, reserved for future expansion.

Note:

For any REAL variables, a variable needs to be defined at the proper address; direct access
to the memory location via %IDxx is not possible.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 241

CWM_HIB – ControlWave MICRO – HART Interface Board

DRIVER_NAME ‘CWM_HIB’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 Slot number

Input Map: Max Size: 164 bytes

Offset Default Variable Name where x is
the board slot and y is the pin
number.

Description

0 (Bit 0) HIB_x_BOARDSTATUS Board status. Bit 0 is set if board is not present.

0 (Bit 2) HIB_x_CALIBRATE Calibration Error. AI and/or AO calibration data is invalid.

0 (Bit 3) HIB_x_TIMEOUT Timeout – If board timeout occurs, bit set. Indicates a serious
hardware failure on the board.

4, 5 HIB_x_y_OUTRANGE 1 bit per Point. If set, input or output is Out-of-range.

8 HIB_x_y_I Value for AI1 in engineering units (4-byte float - REAL).

12, 16, …68 HIB_x_y_I Value for points 2 to 16

72..87 HIB_x_y_STATUS USINT per point:
00 = no error
01 = switch set incorrectly for I/O configuration.

Switch errors result from any of the following three error cases:

HART channel configured
in software (I/O
Configurator) as:

Switch SW3 (channel 1) or
Switch SW4 (channel 2)
incorrectly set to:

Analog Input Output
Analog Output Input
HART Multidrop Channel(s) set to Output

Note: For multi-drop, both SW3 and SW4 must be set as inputs.
Neither can be outputs.

88-99 Padding – Align AO actual at offset = 100

100 HIB_x_y_ACTUAL AO - Actual value written to board. (4-byte float - REAL).

104, 108, ..
160

HIB_x_y_ACTUAL AO - Actual value for points 2 to 16

Output Map: Size:208 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 HIB_x_y_ZERO Zero for Point 1 (4-byte float – REAL).

4 HIB_x_y_SPAN Span for Point 1 (4-byte float – REAL)

8..120 HIB_x_y_ZERO Zeroes for Points 2 – 16

12..124 HIB_x_y_SPAN Spans for Points 2 – 16

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

242 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

128 HIB_x_y_O AO value to be written for point 1. Ignored for non-
AO point types.

132..188 HIB_x_y_O AO value for points 2 – 16

192..207 HIB_x_y_TYPE USINT per point. Indicates how the point is to be
configured:
 0 = Unconfigured
 1 = AI
 2 = AO
 3 = HART Multidrop
 4 = BBTI.
NOTE:
AI and AO modes allow HART point to point
communications. Setting the configuration to a
valid non-zero value will lock the channel to that
configuration.

Local I/O – ControlWave GFC-CL and ControlWave XFC
The following sections describe the local I/O boards supported, and their memory maps.

Offset 0 of the input map defines the board status. All boards support bit 0, which is set if
the board is not present.

CWM_RTU - Mixed I/O board

This card contains the following I/O: DIO 6 (previously 4), AI3, AO1, HSC2, Battery
Voltage, RTD, and Wet-End interface.

Notes:

 Due to the design of the SPI interface connecting the CPU to the I/O board, the I/O can
only be read / written at one second intervals.

 The GFC and XFC share this I/O map. Points for which there is no physical hardware will
not function (and a status is provided to indicate which I/O sub-system is present).

 Two versions of this board have been produced. The main difference between them is
that the original board (P/N 400-075-00) supported 4 DIO, whereas the newer board
(P/N 400-132-00) supports 6 DIO.

DRIVER_NAME ‘CWM_RTU’

DATA_TYPE DWORD

DRIVER_PAR1 slot number – specify as 0.

Input Map: Max Size: 136 bytes

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 243

Offset Default Variable Name
where x = board slot number

Description

0 (Bit 0) MIX_x_BOARDSTATUS Board status. If this SCB is present, status is FALSE; TRUE indicates
that the board is not plugged in.

0 (Bit 2) MIX_x_CALIBRATE Calibration Error. AI and/or AO calibration data is invalid.

0 (Bit 3) MIX_x_TIMEOUT Timeout occurred communicating with I/O board.

1 (Bit 1) MIX_x_PSRDERR Pressure Reading Error. If set, pressure reading is not valid.

1 (Bit 2) MIX_x_PSRDINITERR Pressure Reading – Initialization failure – no retry performed on
this error.

1 (Bit 3) MIX_x_PSRDCOMMERR Pressure Reading – Communications failure – will be retried.

1 (Bit 4) MIX_x_PSRDNORESET Pressure Reading – Wet End has been changed without power
reset.

1 (Bit 5) MIX_x_RTDRDERR RTD Reading Error.

1 (Bit 6) MIX_x_BATRDERR Battery Voltage Reading Error.

1 (Bit 7) MIX_x_ALLOWCALIB Calibration Commands Allowed. Until this bit is set, all calibration
commands are ignored.

2 (Bit 0) MIX_x_LASTCALBOP Set if last calibration or reset operation failed.

3 MIX_x_BOARDPRESENT I/O board present. See Board Type Table code numbers, later in
this section.

4 MIX_x_AI_OUTRANGE AI under / over range. One bit per point: AI1 in bit 0, AI3 in bit 2.

6 MIX_x_y_AO_OUTRANGE AO under / over range. AO1 is in bit 0.

8 MIX_x_1_DI, MIX_x_2_DI Current status of DI1 (in bit 0) to DI6 (in bit 5)
NOTE: Older boards only had DI1 and DI2 (bits 0 and 1).

10 MIX_x_1_DO_I MIX_x_2_DO_I Read-back of current value for DO1 (in bit 0) to DO4 (in bit 3).
NOTE: Older boards only had DO1 and DO2 (bits 0 and 1).

12 MIX_x_TIMESTAMP Timestamp of last sample from HSC. This is the number of
Milliseconds since boot.

16 MIX_x_1_COUNTER Number of counts since boot (Channel 1)

20 MIX_x_2_COUNTER Counts for Channel 2

32 MIX_x_1_AI Value for AI1 in engineering units (4-byte float - REAL). To access
the value, define the variable
AT %IDxx. Direct access to %IDxx is not possible.

36, 40 MIX_x_2_AI, MIX_x_3_AI Value for AI2, AI3

64 MIX_x_y_AO_ACTUAL Value actually written to AO – clamped to 0-100%.

80 MIX_x_1_STATE, MIX_x_2_STATE Current status of HSC1 (in bit 0) to HSC2 (in bit 1).

100 MIX_x_INVOLT Value for Input Voltage in engineering units (4-byte float – REAL –
0 to 32V range).

104 MIX_x_DP Differential Pressure – REAL – In units of Inches of Water (inH20)
or PSI. The units used depend on the range type of the connected
transmitter (see chart below).

108 MIX_x_SP Static Pressure – REAL – In units of Pounds per Square Inch.

112 MIX_x_RTD RTD reading – REAL – In units of Degrees Centigrade.

116 MIX_x_TEMP Estimated Sensor Temperature – REAL – In units of Degrees
Centigrade.

120 MIX_x_SENSORID Sensor ID (Block Number) –INT

122 MIX_x_SENORSERIES Sensor Series – SINT

124 MIX_x_SENSORTYPE Sensor Type – SINT

125 MIX_x_DPRANGE DP Range Code – SINT

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

244 I/O Mapping

Offset Default Variable Name
where x = board slot number

Description

126 MIX_x_SPRANGE SP Range Code – SINT

127 (Bit 0) MIX_x_DPENABLE Differential Pressure Processing is enabled.

128 (Bit 0) MIX_x_SPENABLE Static Pressure Processing is enabled.

129 (Bit 0) MIX_x_RTDENABLE RTD Processing is enabled.

132 MIX_x_LASTOPERR DWORD – Specific Error for last operation – See codes below.

136 MIX_x_ALTERVOLT This is the alternate input voltage. (For platforms that support
alternate voltage input.)

140 MIX_x_MSPTEMPT REAL – Estimated Temperature of the MSP on the CPU board –
this is used (by the MSP) to control the battery charging circuit.

Board Type Code:

Board Type Device ID Description
1 4 (GFC) 2DI, 2DO, 2HSC, 6 volt

2 4 2DI, 2DO, 2HSC, 3AI, 6 volt
3 4 2DI, 2DO, 2HSC, 3AI, 1AO, 12 volt
4 4 2DI, 2DO, 2HSC, 12 volt
1 7 (3820 XFC) 2DI, 2DO, 2HSC

3 7 2DI, 2DO, 2HSC, 3AI, 1AO
4 7 None
5 7 2DI, 4DO, 2HSC
6 7 2DI, 4DO, 2HSC, 3AI, 1AO
7 9 (Express – CPU) 2HSC, Wet End, RTD, Battery

8 9 2HSC, Battery
9 A (Express – I/O) 2DIO, 4DI, 2DO, 2HSC
A A 2DIO, 4DI, 2DO, 2HSC, 3AI
B A 2DIO, 4DI, 2DO, 2HSC, 3AI, 1AO

C 7 (3820 XFC) 2DI, 4DIO, 2HSC
D 7 2DI, 4DIO, 2HSC, 3AI, 1AO

Transmitter types:

Sensor Type DP Range Code Range / Units
32 (Differential Pressure) 12 150 InH20
32 (Differential Pressure) 13 100 InH20
32 (Differential Pressure) 14 300 InH20
32 (Differential Pressure) 20 25 psi

12 (Gauge Pressure) 14 300 InH20
12 (Gauge Pressure) 20 25 psi
12 (Gauge Pressure) 22 100 psi
12 (Gauge Pressure) 23 300 psi
12 (Gauge Pressure) 25 1000 psi

12 (Gauge Pressure) 26 3000 psi
12 (Gauge Pressure) 28 2000 psi
12 (Gauge Pressure) 29 4000 psi

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 245

Note: If DP Range Code is < 20, units are InH20, if >= 20, units are psi.

Sensor Type SP Range Code Range / Units
32 (Differential Pressure) 1 1000 psi
32 (Differential Pressure) 2 2000 psi
32 (Differential Pressure) 3 500 psi
32 (Differential Pressure) 4 4000 psi

Specific Error Codes (this is an addition of the following bit values:

0x00000001 Could not erase MSP Info memory

0x00000002 Could not write MSP Info memory

0x00000004 Checksum failure in Serial EEP.

0x00000008 Flash checksum failure in Sensor.

0x00000010 Flash checksum failure in MSP Info.

0x00000100 DP - Could not initialize the SA.

0x00000200 DP - SA flash checksum error.

0x00000400 DP - Data error after Init done.

0x00000800 DP - Data error during scan.

0x00001000 DP - Data scan error.

0x00010000 SP - Could not initialize the SA.

0x00020000 SP - SA flash checksum error.

0x00040000 SP - Data error after Init done.

0x00080000 SP - Data error during scan.

0x00100000 SP - Data scan error.

0x01000000 Could not initialize the ADS.

0x02000000 Data scan error.

0x04000000 RTD out of range.

0x08000000 Temperature calculation error.

Output Map: Size: 152 bytes

Offset Default Variable Name
where x = board slot number
y=point number

Description

0 MIX_x_1_DO, MIX_x_2_DO,
MIX_x_3_DO, MIX_x_4_DO,
MIX_x_5_DO, MIX_x_6_DO

Outputs. 1 bit per value. DO1 is LSB; DO6 is MSB. Typically
specified as %QXy.z, where y is I/O space offset, and z is bit
number from 0 to 5.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

246 I/O Mapping

Offset Default Variable Name
where x = board slot number
y=point number

Description

2 MIX_x_y_RESET COUNT HSC 1 = Bit 0, HSC2 = Bit 1
TRUE = Reset counts to 0 after a warm start; FALSE= do NOT reset
counts (default).

4 MIX_x_NOINIT Bit 1. When set TRUE, board is not re-initialized.

6 MIX_x_y_HSC_SEL 1 ms filter select: HSC 1 = Bit 0, HSC2 = Bit 1. Bit set TRUE = 1 ms
filter, FALSE=10K Hz counter, default = FALSE.

8 MIX_x_1_AI_ZERO Zero for AI1 (4-byte float - REAL). To access the value, define the
variable AT %QDxx. This variable can be initialized at declaration.

12 MIX_x_1_AI_SPAN Span for AI1 (4-byte float). If zero, the AI will be scaled from 0 to
100.0.

16, 24 MIX_x_2_AI_ZERO, MIX_x_3_AI_ZERO Zeros for AI2, AI3

20, 28 MIX_x_2_AI_SPAN, MIX_x_3_AI_SPAN Spans for AI2, AI3

72 MIX_x_1_AO_ZERO Zero for AO1 (4-byte float - REAL). To access the value, define the
variable AT %QDxx. This variable can be initialized at declaration.

76 MIX_x_1_AO_SPAN Span for AO1 (4-byte float). If zero, the AO will be scaled from 0 to
100.0.

80 MIX_x_1_AO Value for AO1 (4-byte float).

120 (Bit
0)*

MIX_x_RESTOREDP Restore Factory Calibration Values for Differential Pressure.

121 (Bit
0)*

MIX_x_RESTORESP Restore Factory Calibration Values for Static Pressure.

122 (Bit
0)*

MIX_x_RESTORERTD Restore Factory Values for RTD.

123 ** MIX_x_CALIBOP Perform Calibration Operation – SINT
 1 DP Zero
 2 DP Span
 3 SP Zero
 4 SP Span
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

128 ** MIX_x_DPSPAN DP Applied at DP Span Calibration – REAL – Units of Inches of
Water..

132 ** MIX_x_SPSPAN SP Applied at SP Span Calibration – REAL – Units of Pounds per
Square Inch.

136 *** MIX_x_RTDA RTD Coeff – A

140 *** MIX_x_RTDB RTD Coeff – B

144 *** MIX_x_RTDR0 RTD Coeff – R0

148 MIX_x_RTDSPAN The applied temperature when calibration operation 8 was
performed. (RTD 8)

* Value is cleared by the driver when the operation completes.

** Value is read from the hardware at startup and after any calibration operation. User
changes to this value only can be made when Bit 7 of Offset 0 in the input map is set.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 247

*** Same as **; but, reserved for future expansion.

Note:

For any REAL variables, a variable needs to be defined at the proper address; direct access
to the memory location via %IDxx is not possible.

Notes for Configuring DI/DO Points on the CWM_RTU board

For This I./O Point: Configure this Digital
Pin in I/O
Configurator:

Default Variable
Name:

Notes:

DI1 PIN 1: MIX_1_1_DI Fixed input – always present
DI2 PIN 2 MIX_1_2_DI Fixed input – always present
DI3/DO1 is used as a
DI

PIN 3 MIX_1_3_DI When used, do NOT use PIN13.

DI3/DO1 is used as a
DO

PIN 13 MIX_1_1_DO When used, do NOT use PIN3.*

DI4/DO2 is used as a
DI

PIN 4 MIX_1_4_DI When used, do NOT use PIN14.

DI4/DO2 is used as a
DO

PIN 14 MIX_1_2_DO When used, do NOT use PIN4.*

DI5/DO3 is used as a
DI

PIN 5 MIX_1_5_DI When used, do NOT use PIN15.

DI5/DO3 is used as a
DO

PIN 15 MIX_1_3_DO When used, do NOT use PIN5.*

DI6/DO4 is used as a
DI

PIN 6 MIX_1_6_DI When used, do NOT use PIN16.

DI6/DO4 is used as a
DO

PIN 16 MIX_1_4_DO When used, do NOT use PIN6.*

Note: Pins 7 through 12 are unused on this platform.

.* Advanced users may optionally read the DI pin, which will be ‘TRUE’ when the DO is ON;
and ‘FALSE’ when the DI is OFF. Users should never physically wire a point as a DI and then
attempt to drive the DO pin, however, as this will override the incoming DI value.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

248 I/O Mapping

Local I/O – ControlWave Express and ControlWave GFC

CWM_ECPU High Speed Counter/ RTD/ Wet End Interface Board

This card contains the following I/O: HSC2, Battery Voltage, RTD, and Wet-End
interface.

Note:

Due to the design of the SPI interface connecting the CPU to the I/O board, the I/O can
only be read / written at one second intervals.

DRIVER_NAME ‘CWM_ECPU’

DATA_TYPE DWORD

DRIVER_PAR1 slot number – not used, specify as 0.

Input Map: Max Size: 144 bytes

Offset Default Variable Name
where x = board slot number

Description

0 (Bit 0) ECPU_ x _BOARDSTATUS Board status. If this “board” is present, will be FALSE; TRUE
indicates that the MSP on the CPU board is not functioning.

1 (Bit 1) ECPU_ x_PSRDERR Pressure Reading Error. If set, pressure reading is not valid.

1 (Bit 2) ECPU_x_PSRDINITERR Pressure Reading – Initialization failure – no retry performed on
this error.

1 (Bit 3) ECPU_x_PSRDCOMMERR Pressure Reading – Communications failure – will be retried.

1 (Bit 4) ECPU_x_PSRDNORESET Pressure Reading – Wet End has been changed without power
reset.

1 (Bit 5) ECPU_x_RTDRDERR RTD Reading Error.

1 (Bit 6) ECPU_x_BATRDERR Battery Voltage Reading Error.

1 (Bit 7) ECPU_x_ALLOWCALIB Calibration Commands Allowed. Until this bit is set, all
calibration commands are ignored.

2 (Bit 0) ECPU_x_LASTCALBOP Set if last calibration or reset operation failed.

3 ECPU_x_BOARDPRESENT I/O board present.
 7 – 2HSC, Wet End, RTD, Battery
 8 – 2HSC, Battery.

12 ECPU_x_TIMESTAMP Timestamp of last sample from HSC. This is the number of
Milliseconds since boot.

16 ECPU_x_1_COUNTER Number of counts since COLD start or clear (Channel 1)

20 ECPU_x_2_COUNTER Counts for Channel 2

80 ECPU_x_1_STATE Current status of HSC1 (in bit 0) to HSC2 (in bit 1).

100 ECPU_x_INVOLT Value for Input Voltage in engineering units (4-byte float – REAL
– 0 to 32V range).

104 ECPU_x_DP

Differential Pressure – REAL – In units of Inches of Water (inH20)
or PSI. The units used depend on the range type of the
connected transmitter (see chart below).

108 ECPU_x_SP Static Pressure – REAL – In units of Pounds per Square Inch.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 249

Offset Default Variable Name
where x = board slot number

Description

112 ECPU_x_RTD RTD reading – REAL – In units of Degrees Centigrade.

116 ECPU_x_TEMP Estimated Sensor Temperature – REAL – In units of Degrees
Centigrade.

120 ECPU_x_SENSORID

Sensor ID (Block Number) –UINT

122 ECPU_x_SENORSERIES

Sensor Series – SINT

124 ECPU_x_SENSORTYPE Sensor Type – SINT

125 ECPU_x_DPRANGE DP Range Code – SINT

126 ECPU_x_SPRANGE SP Range Code – SINT

127 (Bit 0) ECPU_x_DPENABLE

Differential Pressure Processing is enabled.

128 (Bit 0) ECPU_x_SPENABLE

Static Pressure Processing is enabled.

129 (Bit 0) ECPU_x_RTDENABLE RTD Processing is enabled.

132 ECPU_x_LASTOPERR DWORD – Specific Error for last operation – See codes below.

136 ECPU_x_ALTERVOLT REAL – Voltage at secondary battery input. Not supported, will
always be 0.

140 ECPU_x_MSPTEMP REAL – Estimated Temperature of the MSP on the CPU board –
the MSP uses this to control the battery charging circuit.

Transmitter types:

Sensor Type DP Range Code Range / Units
32 (Differential Pressure) 12 150 InH20

32 (Differential Pressure) 13 100 InH20
32 (Differential Pressure) 14 300 InH20
32 (Differential Pressure) 20 25 PSI
12 (Gauge Pressure) 14 300 InH20

12 (Gauge Pressure) 20 25 PSI
12 (Gauge Pressure) 22 100 PSI
12 (Gauge Pressure) 23 300 PSI
12 (Gauge Pressure) 25 1000 PSI

12 (Gauge Pressure) 28 2000 PSI

Note: If DP Range Code is < 20, units are InH20, if >= 20, units are PSI.

Specific Error Codes (this is an addition of the following bit values:

0x00000001 Could not erase MSP Info memory

0x00000002 Could not write MSP Info memory

0x00000004 Checksum failure in Serial EEP.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

250 I/O Mapping

0x00000008 Flash checksum failure in Sensor.

0x00000010 Flash checksum failure in MSP Info.

0x00000100 DP - Could not initialize the SA.

0x00000200 DP – SA flash checksum error.

0x00000400 DP - Data error after Init done.

0x00000800 DP - Data error during scan.

0x00001000 DP - Data scan error.

0x00010000 SP - Could not initialize the SA.

0x00020000 SP - SA flash checksum error.

0x00040000 SP - Data error after Init done.

0x00080000 SP - Data error during scan.

0x00100000 SP - Data scan error.

0x01000000 Could not initialize the ADS.

0x02000000 Data scan error.

0x04000000 RTD out of range.

0x08000000 Temperature calculation error.

Output Map: Size: 148 bytes

Offset Default Variable Name
where x = board slot number

Description

2 ECPU_x_1_RESET_COUNT HSC reset flags: 1 bit per point. HSC1 is LSB (bit 0) , HSC2 is MSB
(bit1)

4.1 ECPU_x_NOINIT Retain HSC values on Warm Start. If variable is set, the HSC
counts will be maintained across an application WARM start. If
clear, HSC counts will be cleared on both Cold and Warm starts.

120 (Bit
0)*

ECPU_x_RESTOREDP

Restore Factory Calibration Values for Differential Pressure.

121 (Bit
0)*

ECPU_x_RESTORESP

Restore Factory Calibration Values for Static Pressure.

122 (Bit
0)*

ECPU_x_RESTORERTD Restore Factory Values for RTD.

123 ** ECPU_x_CALIBOP Perform Calibration Operation – SINT
 1 DP Zero
 2 DP Span
 3 SP Zero
 4 SP Span
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 251

Offset Default Variable Name
where x = board slot number

Description

 7 RTD Coefficients – Update
 8 RTD Span (not using 300 Ohms)

128 ** ECPU_x_DPSPAN

DP Applied at DP Span Calibration – REAL – Units of Inches of
Water.

132 ** ECPU_x_SPSPAN

SP Applied at SP Span Calibration – REAL – Units of Pounds per
Square Inch.

136 *** ECPU_x_RTDA

RTD Coeff – A

140 *** ECPU_x_RTDB

RTD Coeff – B

144 *** ECPU_x_RTDR0 RTD Coeff – R0

148 ECPU_x_RTDSPAN The applied temperature when calibration operation 8 was
performed. (RTD 8)

* The driver clears value when the operation completes.

** Value is read from the hardware at startup and after any calibration operation. User
changes to this value only can be made when Bit 7 of Offset 0 in the input map is set.

*** Same as **; but, reserved for future expansion.

Note:

For any REAL variables, a variable needs to be defined at the proper address; direct access
to the memory location via %IDxx is not possible.

CWM_EIO – Mixed I/O Board

This card contains the following I/O: DIO2, DI4, DO2, HSC2, AI3 (Opt), AO1 (Opt).

Note:

The I/O on this board may be read / written at rates up to 20 times per second (50
Millisecond intervals).

DRIVER_NAME ‘CWM_EIO’

DATA_TYPE DWORD

DRIVER_PAR1 slot number – not used – specify as 0.

Input Map: Max Size: 120 bytes

Offset Default Variable Name
where x = board slot number

Description

0 (Bit 0) EIO_x_BOARDSTATUS Board status. If this I/O board is present, will be FALSE; TRUE
indicates that the board is not plugged in.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

252 I/O Mapping

Offset Default Variable Name
where x = board slot number

Description

0 (Bit 2) EIO_x_CALIBRATE Calibration Error. AI and/or AO calibration data is invalid.

0 (Bit 3) EIO_x_TIMEOUT Timeout occurred communicating with I/O board.

3 EIO_x_BOARDPRESENT I/O board present. 9 – 2DIO, 4DI, 2DO, 2HSC
 10 – 2DIO, 4DI, 2DO, 2HSC, 3AI.
 11 – 2DIO, 4DI, 2DO, 2HSC, 3AI, 1AO

4 EIO_x_1_AI_OUTRANGE AI under / over range. One bit per point: AI1 in bit 0, AI3 in bit 2.

6 EIO_x_1_AO_OUTRANGE AO under / over range. AO1 is in bit 0.

8 EIO_x_1_DI
EIO_x_2_DI
EIO_x_3_DI
EIO_x_4_DI

Current status of DI1 (in bit 0) to DI4 (in bit 3). DIO1 as DI (in bit 4),
DIO2 as DI (in bit5)

10 EIO_x_1_DO_I
EIO_x_2_DO_I

Read-back of current value for DO1 (in bit 0) to DO2 (in bit 1). DIO1
as DO (in bit 2), DIO2 as DO (in bit 3).

12 EIO_x_TIMESTAMP Timestamp of last sample from HSC. This is the number of
milliseconds since boot.

16 EIO_x_1_COUNTER Number of counts since COLD start or clear (Channel 1)

20 EIO_x_2_COUNTER Counts for Channel 2

32 EIO_x_1_AI Value for AI1 in engineering units (4-byte float - REAL). To access the
value, define the variable
AT %IDxx. Direct access to %IDxx is not possible.

36, 40 EIO_x_2_AI
EIO_x_3_AI

Value for AI2, AI3

64 EIO_x_1_AO_ACTUAL Value actually written to AO1– clamped to 0-100%.

80 EIO_x_1_STATE Current status of HSC1 (in bit 0) to HSC2 (in bit 1).

Output Map: Size: 84 bytes

Offset Default Variable Name
where x = board slot number

Description

0 EIO_x_1_DO
EIO_x_2_DO

Outputs. 1 bit per value. DO1 is bit 0; DO2 is bit 1, DIO1 as DO is bit2,
DIO2 as DO is bit3. Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 3.

2 EIO_x_1_RESET_COUNT HSC reset flags: 1 bit per point. HSC1 is LSB (bit 0) , HSC2 is MSB (bit
1)

4.1 EIO_x_NOINIT Retain HSC values on Warm Start. If variable is set, the HSC counts
will be maintained across an application WARM start. If clear, HSC
counts will be cleared on both Cold and Warm starts.

8 EIO_x_1_AI_ZERO

Zero for AI1 (4-byte float - REAL). To access the value, define the
variable AT %QDxx. This variable can be initialized at declaration.

12 EIO_x_1_AI_SPAN Span for AI1 (4-byte float). If zero, the AI will be scaled from 0 to
100.0.

16, 24 EIO_x_2_AI_ZERO
EIO_x_3_AI_ZERO

Zeros for AI2, AI3

20, 28 EIO_x_2_AI_SPAN
EIO_x_3_AI_SPAN

Spans for AI2, AI3

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 253

Offset Default Variable Name
where x = board slot number

Description

72 EIO_x_1_AO_ZERO

Zero for AO1 (4-byte float - REAL). To access the value, define the
variable AT %QDxx. This variable can be initialized at declaration.

76 EIO_x_1_AI_SPAN

Span for AO1 (4-byte float). If zero, the AO will be scaled from 0 to
100.0.

80 EIO_x_1_AO Value for AO1 (4-byte float).

CWM_TC6 – ControlWave Micro – 6-point Thermocouple board

DRIVER_NAME ‘CWM_TC6’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 32 bytes

Due to the amount of time required to process the thermocouple points, it is highly
recommended that this I/O driver be assigned to a task (instead of “No Task”). Care
should also be taken in using the I/O board in a task of less than 40ms.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (Bit 0) TC6_x_DRIVERSTATUS If set, the board is not present.

0 (Bit 2) TC6_x_CALIBRATE If set indicates invalid calibration data written to the
board.

0 (Bit 3) TC6_x_TIMEOUT If set, indicates that had an error reading or writing
to the board.

4 TC6_x_y_OUTRANGE 1 bit per TC, TC1 is bit 0, TC6 is bit 5. If set, input is
out-of-range.

8 TC6_x_y Value for TC1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, 20,
24, 28

TC6_x_y Value for TC2, TC3, TC4, TC5, TC6

Output Map: Max Size: 70 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 TC6_x_y_ZERO Zero for TC1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 TC6_x_y_SPAN Span for TC1 (4-byte float). If zero, the TC will be
scaled as in the chart below. If specified, the new
value will be ORG_VALUE * Span + Zero.

8, 16, 24, TC6_x_y_ZERO Zeros for TC2, TC3, TC4, to TC6 – Example: for C to

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

254 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

32, 40 F, use 32.0

12, 20, 28,
36, 44

TC6_x_y_SPAN Spans for TC2, TC3, TC4, to TC6 – Example for C to
F, use 1.8

64 TC6_x_y_MODE Point type for TC1; see Thermocouple type codes
section for details.

65, 66, 67,
68, 69

TC6_x_y_MODE Point types for TC2, TC3, TC4, TC5, and TC6.

Type codes for Thermocouple Points.

Type Code Code Range
0 B Thermocouple: 100C – +1820C
1 E Thermocouple: -270C – +1000C
2 J Thermocouple: -210C – +1200C

3 K Thermocouple: -270C – +1370C
4 R Thermocouple: -50C – +1720C
5 S Thermocouple: -50C – +1760C
6 T Thermocouple: -270C – +400C

7 Unused Unused
8 10MV Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to

1.0)
9 C Thermocouple: 0C – +2315C
10 N Thermocouple: -270C – +1300C

CWM_RTD4 – ControlWave Micro – 4 Point Resistance Temperature Device (RTD) Board

DRIVER_NAME ‘CWM_RTD4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 24 bytes

Due to the amount of time required to process the RTD points, it is highly recommended
that this I/O driver be assigned to a task (instead of “No Task”). Care should also be taken
in using the I/O board in a task of less than 40ms.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (Bit 0) RTD4_x_BOARDSTATUS If set, the board is not present.

0 (Bit 2) RTD4_x_CALIBRATE If set indicates invalid calibration data written to the
board.

0 (Bit 3) RTD4_x_TIMEOUT If set, indicates that had an error reading or writing

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 255

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

to the board.

1 (Bit 0) RTD4_x_LASTCALBOP Set if last calibration or reset operation failed.

1 (Bit 7) RTD4_x_CALBCMD Calibration Commands Allowed. Until this bit is set,
all calibration commands are ignored.

4 RTD4_x_y_READERR RTD Reading Error. Bit 0 is RTD1, Bit 3 is RTD4

8 RTD4_x_y RTD1 reading – REAL – In units of Degrees
Centigrade (unless scaled by values in the output
map).

12, 16, …20 RTD4_x_y Readings for RTD2 … RTD4.

Output Map: Max Size: 200 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 RTD4_x_y_ZERO Zero for RTD 1(4-byte float - REAL). Example: for
C to F, use 32.0. Defaults to 0.0

4 RTD4_x_y_SPAN Span for RTD 1(4-byte float – REAL). If zero, RTD
will not be scaled. If specified, the scaled value
will be ORG_VALUE * Span + Zero. Example for
C to F, use 1.8.

8,16,24,32
40,48,56

RTD4_x_y_ZERO Zero for RTDs 2-8

12,20,28,
36,44,52,
60

RTD4_x_y_SPAN Span for RTDs 2-8

64 RTD4_x_y_MODE NOT USED – FOR EXPANSION

65,66,67,
68,69

RTD4_x_y_MODE NOT USED – FOR FUTURE EXPANSION

100 NOT USED – FOR FUTURE EXPANSION

120 (Bit 0) * RTD4_x_y_RESTORE If set, restore RTD 1 calibration to Factory
Defaults. Will be reset when operation
completes.

121 * RTD4_x_y_OPERATION Calibration Operation for RTD 1 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

124** RTD4_x_y_COEFF_A Coefficient A (RTD 1)

128** RTD4_x_y_COEFF_B Coefficient B (RTD 1)

132** RTD4_x_y_COEFF_R0 Coefficient R0 (RTD 1)

136** RTD4_x_y_APPLIED The applied temperature when calibration
operation 8 was performed. (RTD 1)

140 (Bit 0) * RTD4_x_y_RESTORE If set, restore RTD 2 calibration to Factory
Defaults. Will be reset when operation
completes.

141 * RTD4_x_y_OPERATION Calibration Operation for RTD 2 – SINT

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

256 I/O Mapping

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

144 ** RTD4_x_y_COEFF_A??? Coefficient A (RTD 2)

148 ** RTD4_x_y_COEFF_B??? Coefficient B (RTD 2)

152 ** RTD4_x_y_COEFF_R0??? Coefficient R0 (RTD 2)

156 ** RTD4_x_y_APPLIED???? The applied temperature when calibration
operation 8 was performed. (RTD 2)

…. …..

180 (Bit 0) * RTD4_x_y_RESTORE If set, restore RTD 4 calibration to Factory
Defaults. Will be reset when operation
completes.

181 * RTD4_x_y_OPERATION Calibration Operation for RTD 4 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

184 ** RTD4_x_y_COEFF_A??? Coefficient A (RTD 4)

188 ** RTD4_x_y_COEFF_B??? Coefficient B (RTD 4)

192 ** RTD4_x_y_COEFF_R0??? Coefficient R0 (RTD 4)

196 ** RTD4_x_y_APPLIED???? The applied temperature when calibration
operation 8 was performed. (RTD 4)

* Value written to perform operation. The value will be reset by driver when the
operation completes.

** Value is read from the board by the driver. In order to perform calibration operations 7
and 8, the user can overwrite the values; then, issue the calibration command.

Local I/O – ControlWave CW10, CW30, CW35

Note:

I/O boards of type CXX (CW10 and CW30) cannot be mixed within the same ControlWave
Designer resource with I/O boards for any other ControlWave Platform. This can, however,
be done with two resources within the same ControlWave Designer project.

CXX_AI8 – ControlWave CW_10/CW_30/CW_35 4- or 8-Analog Input Pin Board

DRIVER_NAME ‘CXX_AI8’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 257

Input Map: Max Size: 40 bytes

Due to the amount of time required to process the AI points, it is highly recommended
that this I/O driver be assigned to a task (instead of “No Task”). Care should also be taken
in using the I/O board in a task of less than 25ms.

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 (Bit 0) AI8_x_BOARDSTATUS Board status. Bit 0 is set if board is not present.

0 (Bit 1) AI8_x_LASTOPERATION Board status. Bit 1 is set if the last conversion
operation failed.

4 AI8_x_y_OUTRANGE 1 bit per AI, AI1 is bit 0, AI8 is bit 7. If set, input is
Out-of-range.

8 AI8_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, … AI8_x_y Value for AI2, AI3, …

Output Map: Max Size: 64 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 AI8_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 AI8_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

8, 16, 24,
…

AI8_x_y_ZERO Zeros for AI2, AI3, …

12, 20,
28, …

AI8_x_y_SPAN Spans for AI2, AI3, …

CXX_AO4 – ControlWave CW_10/CW_30/CW_35 2 or 4 Analog Output Pin Board

DRIVER_NAME ‘CXX_AO4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 24 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (bit 0) AO4_x_BOARDSTATUS Board status. Bit 0 is set if board is not present.

0 (bit 1) AO4_x_LASTOPERATION Bit 1 is set if the last conversion operation failed.

4 AO4_x_y_OUTRANGE 1 bit per AO, AO1 is bit 0, AO4 is bit 3. If set,
output is Out-of-range.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

258 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

8,12,16,20 AO4_x_y_ACTUAL Real value of value actually output. Clamped to 0-
100% of scale.

Output Map: Max Size: 48 bytes

Due to the amount of time required to process the AO points, it is highly recommended
that this I/O driver be assigned to a task (instead of “No Task”). Care should also be taken
in using the I/O board in a task of less than 25ms.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 AO4_x_y_ZERO Zero for AO1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 AO4_x_y_SPAN Span for AO1 (4-byte float). If zero, the AO will be
scaled from 0 to 100.0.

8 AO4_x_y Value for AO1 (4-byte float).

12, 24,
36

AO4_x_y_ZERO Zeros for AO2, AO3, AO4

16, 28,
40

AO4_x_y_SPAN Spans for AO2, AO3, AO4

20, 32,
44

AO4_x_y Values for AO2, AO3, AO4

CXX_DI16 – ControlWave CW_10/CW_30/CW_35 4 or 8 or 16 Digital Input Pin Board

DRIVER_NAME ‘CXX_DI16’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 Mask of points enabled as low-speed counters

Input Map: Max Size: 84 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 DI16_x_BOARDSTATUS Board status.

4 DI16_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5 DI16_x_y Current status of DI9 (in bit 0) to DI16 (in bit 7).

16 DI16_x_y_TIMESTAMP Timestamp of last sample from HSC. This is the
number of milliseconds since boot.

20 DI16_x_y_COUNTER 32-bit counter for DI1

24, … DI16_x_y_COUNTER 32-bit counters for DI2 – DI16

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 259

Output Map: Size: 4 bytes

Offset Default Variable Name where x is the board slot and y
is the pin number.

Description

0 DI16_x_y_RESET_COUNT Counter reset flags, DI1 (in bit 0) to DI8 (in bit 7)

1 DI16_x_y_RESET_COUNT Counter reset flags, 9 to 16.

2.1 DI16_x_y_NOINIT Maintain Counts across Warm Start (TRUE =
maintain)

CXX_DO16 – ControlWave CW_10/CW_30/CW_35 4- or 8- or 16-Digital Output Pin Board

DRIVER_NAME ‘CXX_DO16’

DATA_TYPE BYTE

DRIVER_PAR1 slot number.

Input Map: Max Size: 6 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 DO16_x_BOARDSTATUS Board status.

4 DO16_x_y_I Read-back of output: 1 bit per value. DO1 is LSB,
DO8 is MSB.

5 DO16_x_y_I Read-back for outputs 9 to 16.

Output Map: Size: 2 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 DO16_x_y Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 7.

1 DO16_x_y Outputs 9 to 16.

CXX_HSC8 – ControlWave CW_10/CW_30/CW_35 4 or 8 Channel High Speed Counter
Board

DRIVER_NAME ‘CXX_HSC8’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 40 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 HSC8_x_BOARDSTATUS Board status. Only bit 0 is currently defined. If set,
board is not present.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

260 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

4 HSC8_x_TIMESTAMP Timestamp of last sample from HSC. This is the
number of milliseconds since boot.

8 HSC8_x_y_COUNTER Number of counts since boot (Channel 1)

12, 16, .. HSC8_x_y_COUNTER Counts for Channel 2, 3, etc.

Output Map: Size: 4 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 HSC8_x_y_RESET_COUNT Counter reset flags, HSC1 (in bit 0) to HSC8 (in bit 7)

2.1 HSC8_x_NOINIT Maintain Counts across Warm Start (TRUE =
maintain)

CXX_LL4 – ControlWave CW_10/CW_30/CW_35 4 Low-Level Analog Input Pin Board

DRIVER_NAME ‘CXX_LL4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

Input Map: Max Size: 24 bytes

Due to the amount of time required to process the Low-level points, it is highly
recommended that this I/O driver be assigned to a task (instead of “No Task”). Care
should also be taken in using the I/O board in a task of less than 25ms.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 (bit 0) LL4_x_BOARDSTATUS Board status. Bit 0 is set if board is not present.

0 (bit 1) LL4_x_LASTOPERATION Board status. Bit 1 is set if the board is either in
calibration mode or being reset.

4 LL4_x_y_OUTRANGE 1 bit per LL, LL1 is bit 0, LL4 is bit 3. If set, input is
Out-of-range.

6 BYTE value – Board error code – see table below. *
Note: a variable is not automatically created by the
System Variable Wizard for this field.

8 LL4_x_y Value for LL1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, 20 LL4_x_y Value for LL2, LL3, LL4

LLAI Board Error Codes (values are in Hex 16#):

0n Channel errors – Bit 0 = point 1, Bit 1 = point 2, etc.

10 Board is in process of being reset.

An Board is in Calibration mode.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 261

Output Map: Max Size: 68 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 LL4_x_y_ZERO Zero for LL1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 LL4_x_y_SPAN Span for LL1 (4-byte float). If zero, the LL will be
scaled as in the chart below. If specified, the new
value will be ORG_VALUE * Span + Zero.

8, 16, 24 LL4_x_y_ZERO Zeros for LL2, LL3, LL4 – Example: for C to F, use 32.0

12, 20,
28

LL4_x_y_SPAN Spans for LL2, LL3, LL4 – Example for C to F, use 1.8

64 LL4_x_y_MODE Point type for LL1, see table below for type codes.

65, 66,
67

LL4_x_y_MODE Point types for LL2, LL3, and LL4.

Type codes for Low-Level Points

Type Code Code Range

0 B Thermocouple: 100C – +1820C
1 E Thermocouple: -270C – +1000C
2 J Thermocouple: -210C – +1200C
3 K Thermocouple: -270C – +1370C

4 R Thermocouple: -50C – +1720C
5 S Thermocouple: -50C – +1760C
6 T Thermocouple: -270C – +400C
7 RTD RTD: -220C to +850C

8 10MV Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)

I/O – ControlWave CW_31

Common Status Information

The first two bytes of the input map contain status information, which is common to all
Expansion Rack boards.

Byte Bit Description
0 0 (0x1, 1) No Board is present in the destination Rack.
0 3 (0x8, 8) Board type does not match the board installed in the Rack.
0 4 (0x10, 16) Communications lost with the Expansion Rack.
0 7 (0x80, 128) Initial opening of channel to the Expansion Rack has not been completed.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

262 I/O Mapping

RXX_AI8 – CW_31 4 or 8 Pin Analog Input Board

DRIVER_NAME ‘RXX_AI8’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 40 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXAI_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (bit 1) RXAI_x_LASTOPERATION Bit 1 – Last conversion operation failed.

4 RXAI_x_y_OUTRANGE 1 bit per AI, AI1 is bit 0, AI8 is bit 7. If set, input is
Out-of-range.

8 RXAI_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, … RXAI_x_y Value for AI2, AI3, …

Output Map: Max Size: 64 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXAI_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 RXAI_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

8, 16, 24,
…

RXAI_x_y_ZERO Zeros for AI2, AI3, …

12, 20,
28, …

RXAI_x_y_SPAN Spans for AI2, AI3, …

RXX_AO4 – CW_31 2 or 4 Analog Output Pin Board

DRIVER_NAME ‘RXX_AO4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 263

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 24 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXAO_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (bit 1) RXAO_x_LASTOPERATION Bit 1 – Last conversion operation failed.

4 RXAO_x_y_OUTRANGE 1 bit per AO, AO0 is bit 0, AO4 is bit 3. If set, output
is Out-of-range.

8,12,16,20 RXAO_x_y_ACTUAL Real value of value actually output. Clamped to 0-
100% of scale.

Output Map: Max Size: 48 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXAO_x_y_ZERO Zero for AO1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 RXAO_x_y_SPAN Span for AO1 (4-byte float). If zero, the AO will be
scaled from 0 to 100.0.

8 RXAO_x_y Value for AO1 (4-byte float).

12, 24,
36

RXAO_x_y_ZERO Zeros for AO2, AO3, AO4

16, 28,
40

RXAO_x_y_SPAN Spans for AO2, AO3, AO4

20, 32,
44

RXAO_x_y Values for AO2, AO3, AO4

RXX_DI16 CW_31 8 or 16 Digital Input Pin Board

DRIVER_NAME ‘RXX_DI16’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Note:

Low speed counter processing is automatically enabled for all points.

Input Map: Max Size: 84 bytes

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

264 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXDI_x_DRIVERSTATUS Board Status. See Common Status Information
section.

4 RXDI_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5 RXDI_x_y Current status of DI9 (in bit 0) to DI16 (in bit 7).

16 RXDI_x_TIMESTAMP Timestamp of last sample. This is the number of
milliseconds since boot.

20 RXDI_x_y_COUNTER 32-bit counter for DI1

24, … RXDI_x_y_COUNTER 32-bit counters for DI2 – DI16

Output Map: Size: 4 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXDI_x_y_RESET_COUNT Counter reset flags, DI1 (in bit 0) to DI8 (in bit 7)

1 RXDI_x_y_RESET_COUNT Counter reset flags, 9 to 16.

2 (bit 1) RXDI_x_NOINIT Maintain Counts across Warm Start (TRUE =
maintain)

RXX_DO16 CW_31 4, 8 or 16 Digital Output Pin Board

DRIVER_NAME ‘RXX_DO16’

DATA_TYPE BYTE

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 6 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXDO_x_DRIVERSTATUS Board Status. See Common Status Information
section.

4 RXDO_x_y_I Read-back of output: 1 bit per value. DO1 is LSB,
DO8 is MSB.

5 RXDO_x_y_I Read-back for outputs 9 to 16.

Output Map: Size: 2 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXDO_x_y Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.
Typically specified as %QXy.z, where y is I/O space

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 265

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

offset, and z is bit number from 0 to 7.

1 RXDO_x_y Outputs 9 to 16.

RXX_HSC8 CW_31 4 or 8 Channel High Speed Counter Board

DRIVER_NAME ‘RXX_HSC8’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 40 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXHSC_x_DRIVERSTATUS Board Status. See Common Status Information
section.

4 RXHSC_x_TIMESTAMP Timestamp of last sample from HSC. This is the
number of milliseconds since boot.

8 RXHSC_x_y_COUNTER Number of counts since boot (Channel 1)

12, 16, .. RXHSC_x_y_COUNTER Counts for Channel 2, 3, etc.

Output Map: Size: 4 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXHSC_x_y_RESET_COUNT Counter reset flags, HSC1 (in bit 0) to HSC8 (in bit 7)

2 (bit 1) RXHSC_x_NOINIT Maintain Counts across Warm Start (TRUE =
maintain)

RXX_LL4 CW_31 4 Low Level Analog Input Pin Board

DRIVER_NAME ‘RXX_LL4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 24 bytes

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

266 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXLL_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 RXLL_x_LASTOPERATION Bit 1 - Calibration Mode or hardware is being reset

4 RXLL_x_y_OUTRANGE 1 bit per LL, LL1 is bit 0, LL4 is bit 3. If set, input is
Out-of-range.

6 BYTE value – Board error code – see table below. *
Note: a variable is not automatically created by the
IO Configuration Wizard for this field.

8 RXLL_x_y Value for LL1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16,
20

RXLL_x_y Value for LL2, LL3, LL4

LLAI Board Error Codes (values are in Hex 16#):

0n Channel errors – Bit 0 = point 1, Bit 1 = point 2, etc.

10 Board is in process of being reset.

An Board is in Calibration mode.

Output Map: Max Size: 68 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 RXLL_x_y_ZERO Zero for LL1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 RXLL_x_y_SPAN Span for LL1 (4-byte float). If zero, the LL will be
scaled as in the chart below. If specified, the new
value will be ORG_VALUE * Span + Zero.

8, 16, 24 RXLL_x_y_ZERO Zeros for LL2, LL3, LL4 – Example: for C to F, use 32.0

12, 20,
28

RXLL_x_y_SPAN Spans for LL2, LL3, LL4 – Example for C to F, use 1.8

64 RXLL_x_y_MODE Point type for LL1, see table below for type codes.

65, 66,
67

RXLL_x_y_MODE Point types for LL2, LL3, and LL4.

Type codes for Low-Level Points

Type
Code

ACCOL Code Range

0 B Thermocouple: 100C – +1820C
1 E Thermocouple: -270C – +1000C

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 267

Type
Code

ACCOL Code Range

2 J Thermocouple: -210C – +1200C

3 K Thermocouple: -270C – +1370C
4 R Thermocouple: -50C – +1720C
5 S Thermocouple: -50C – +1760C
6 T Thermocouple: -270C – +400C
7 RTD RTD: -220C to +850C

8 10MV Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)

RXX_STAT CW_31 Status Board

In addition, an Expansion Rack Status board (RXX_STAT) is defined. This board has a
similar I/O map as the status board for the ControlWave Expansion Rack (ER_STAT).

DRIVER_NAME ‘RXX_STAT’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number (ignored – specify as zero).

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 1068 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 RXSTAT_x_BOARDSTATUS Board Status. See Common Status Information
section.

4 (bit 0) RXSTAT_x_BATSTAT Memory battery status at Expansion Rack. TRUE
indicates good battery.

4 (bit 1) RXSTAT_x_HOTCARDSTAT TRUE indicates that a HOT Card replacement is in
progress at the Expansion Rack. Will always be FALSE
on platforms which do not support on-line HOT Card
replacement.

8 RXSTAT_x_HOTCARDCT 32-Bit Count of Hot Card replacement events which
have occurred.

12 RXSTAT_x_DOWNTIMEUSER 32-Bit Count – Number of seconds (as configured by
the user) that the Expansion Rack can be powered off
before the outputs are reset to defaults when the
unit is powered back up.

16 RXSTAT_x_DOWNTIMEACT 32-Bit Count – Number of seconds that the
Expansion Rack was powered off on the last power
fail.

20 RXSTAT_x_WRITECT 32-Bit Count – Number of I/O updates sent to the
Expansion Rack

24 RXSTAT_x_READCT 32-Bit Count – Number of I/O updates sent from the

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

268 I/O Mapping

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

Expansion Rack

28 RXSTAT_x_CONNECTS 32-Bit Count – Number of Connects and Disconnects
made to the Expansion Rack.

32 RXSTAT_x_HEARTBEAT 32-Bit Count – Number of IDLE time Heartbeats sent
from the Expansion Rack to the host.

42 RXSTAT_x_BDSTR1 String – I/O board string for slot #1

127 RXSTAT_x_BDSTR2 String – I/O board string for slot #2

212 RXSTAT_x_BDSTR3 String – I/O board string for slot #3

297 RXSTAT_x_BDSTR4 String – I/O board string for slot #4

382 RXSTAT_x_BDSTR5 String – I/O board string for slot #5

467 RXSTAT_x_BDSTR6 String – I/O board string for slot #6

552 RXSTAT_x_BDSTR7 String – I/O board string for slot #7

637 RXSTAT_x_BDSTR8 String – I/O board string for slot #8

724 DINT – Current redundancy status of the Expansion
Rack – will always be zero on this platform

728 RXSTAT_x_BDSTR9 String – I/O board string for slot #9

813 RXSTAT_x_BDSTR10 String – I/O board string for slot #10

898 RXSTAT_x_BDSTR11 String – I/O board string for slot #11

983 RXSTAT_x_BDSTR12 String – I/O board string for slot #12

1068 RXSTAT_x_BDSTR13 String – I/O board string for slot #13

1153 RXSTAT_x_BDSTR14 String – I/O board string for slot #14 (Note slot #13
and #14 will be populated with zeroes (NULL string)

1240 RXSTAT_x_INPUTVOLTS Float – Reading (in volts) of power-supply input
voltage.

Output Map: Max Size: 4 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0.0 If this is a Redundant Expansion Rack, and the
Standby is valid, then writing a TRUE to this location
will cause the rack to fail-over. Not used on this
platform.

1.0 RXSTAT_x_RDN_IOERR_WARN

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 269

ControlWave MICRO I/O Expansion Rack

Common Status Information

The first two bytes of the input map contain status information, which is common to all
Expansion Rack boards.

Byte Bit Description
0 0 (0x1, 1) No board is present in the destination rack.

0 3 (0x8, 8) Board type does not match the board installed in the rack.
0 4 (0x10, 16) Communications lost with the expansion rack.
0 7 (0x80, 128) Initial opening of channel to the expansion rack has not been completed.

ERM_DO16 – ControlWave MICRO I/O Expansion Rack 16 Digital Output Pin Board

DRIVER_NAME ‘ERM_DO16’

DATA_TYPE BYTE

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 6 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERDO_x_DRIVERSTATUS Board Status. See Common Status Information
section.

4,5 ERDO_x_y_I DO status as seen by card. bit per value.

Output Map: Size: 5 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERDO_x_y Outputs. 1 bit per value. DO1 is LSB; DO8 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 7.

1 ERDO_x_y Outputs 9 to 16.

4 ERDO_x_LEDSTATUS Single bit. If bit is set, the diagnostic LEDS for the
points are turned off to save power.

ERM_DI16 – ControlWave MICRO I/O Expansion Rack 16 Digital Input Pin Board

DRIVER_NAME ‘ERM_DI16’

DATA_TYPE DWORD (32 bits)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

270 I/O Mapping

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 8 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERDI_x_DRIVERSTATUS Board Status. See Common Status Information
section.

4 ERDI_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5 ERDI_x_ y Current status of DI9 (in bit 0) to DI16 (in bit 7).

Output Map: Size: 5 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

4 ERDI_x_LEDSTATUS Single bit. If bit is set, the diagnostic LEDS for the
points are turned off to save power.

ERM_MD ControlWave MICRO I/O Expansion Rack Mixed Digital (12 DI / 4 DO) Board

DRIVER_NAME ‘ERM_MD’

DATA_TYPE BYTE

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 9 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERDIDO_x_DRIVERSTATUS Board Status. See Common Status Information
section.

4 ERDIDO_x_y Current status of DI1 (in bit 0) to DI8 (in bit 7).

5 ERDIDO_x_y Current status of DI9 (in bit 0) to DI12 (in bit 3).

8 ERDIDO_x_y_O_I DO status as seen by card. 1 bit per value.

Output Map: Size: 5 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERDIDO_x_y_O Outputs. 1 bit per value. DO1 is LSB; DO4 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 3.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 271

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

4 ERDIDO_x_LEDSTATUS Single bit. If bit is set, the diagnostic LEDS for the
points are turned off to save power.

ERM_AI8 – ControlWave MICRO I/O Expansion Rack – 8 Analog Input Pin Board

DRIVER_NAME ‘ERM_AI8’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 40 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERAI_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (bit 2) ERAI_x_CALIBRATE Bit 2 is set if the calibration data is invalid.

2 (bit 3) ERAI_x_TIMEOUT Bit 3 is set to indicate that a board data read has
timed out.

4 ERAI_x_y_OUTRANGE 1 bit per AI, AI1 is bit 0, AI8 is bit 7. If set, input is
Out-of-range.

8 ERAI_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, … ERAI_x_y Value for AI2, AI3, …

Output Map: Max Size: 132 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERAI_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 ERAI_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

8, 16, 24,
…

ERAI_x_y_ZERO Zeros for AI2, AI3, …

12, 20,
28, …

ERAI_x_y_SPAN Spans for AI2, AI3, …

64, 72,
80, …

ERAI_x_y_BOTTOMRANGE Bottom end of usable current / voltage range for this
input. Specified as a REAL. For example, for a 1-5V
input, this value is 1.0.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

272 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

68, 76,
84, …

ERAI_x_y_TOPRANGE Top end of usable current / voltage range for this
input. Specified as a REAL. For example, for a 1-5V
input, this value is 5.0.

128 ERAI_x_y_MODE 1 bit per AI; set TRUE if the point is voltage; FALSE if
current.

ERM_AO4 – ControlWave MICRO I/O Expansion Rack - 4 Analog Output Pin Board

DRIVER_NAME ‘ERM_AO4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 24 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERAO_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (bit 2) ERAO_x_CALIBRATE Bit 2 is set if the calibration data is invalid

2 (bit 3) ERAO_x_TIMEOUT Bit 3 is set to indicate that a board data read has
timed out.

6 ERAO_x_y_OUTRANGE 1 bit per AO, AO1 is bit 0, AO4 is bit 3. If set,
output is Out-of-range.

8,12,16,20 ERAO_x_y_ACTUAL Real value of value actually output. Clamped to 0-
100% of scale.

Output Map: Max Size: 48 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERAO_x_y_ZERO Zero for AO1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 ERAO_x_y_SPAN Span for AO1 (4-byte float). If zero, the AO will be
scaled from 0 to 100.0.

8 ERAO_x_y Value for AO1 (4-byte float).

12, 24, 36 ERAO_x_y_ZERO Zeros for AO2, AO3, AO4

16, 28, 40 ERAO_x_y_SPAN Spans for AO2, AO3, AO4

20, 32, 44 ERAO_x_y Values for AO2, AO3, AO4

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 273

ERM_AI6 – ControlWave MICRO I/O Expansion Rack 6 Analog Input Pin Board

DRIVER_NAME ‘ERM_AI6’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 32 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERAI_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (bit 2) ERAI_x_CALIBRATE Bit 2 is set if the calibration data is invalid.

2 (bit 3) ERAI_x_TIMEOUT Bit 3 is set to indicate that a board data read has
timed out.

4 ERAI_x_y_OUTRANGE 1 bit per AI, AI1 is bit 0, AI6 is bit 5. If set, input is
Out-of-range.

8 ERAI_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, … ERAI_x_y Value for AI2, AI3, …

Output Map: Max Size: 48 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERAI_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 ERAI_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

8, 16, 24,
…

ERAI_x_y_ZERO Zeros for AI2, AI3, …

12, 20,
28, …

ERAI_x_y_SPAN Spans for AI2, AI3, …

ERM_MA – ControlWave MICRO I/O Expansion Rack - Mixed Analog (6 AI / 2 AO) Board

DRIVER_NAME ‘ERM_MA’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

274 I/O Mapping

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 40 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERAIAO_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (bit 2) ERAIAO_x_CALIBRATE Bit 2 is set if the calibration data is invalid.

2 (bit 3) ERAIAO_x_TIMEOUT Bit 3 is set to indicate that a board data read has
timed out.

4 ERAIAO_x_y_OUTRANGE 1 bit per AI, AI0 is bit 0, AI2 is bit 1. If set, output is
Out-of-range.

6 ERAIAO_x_y_O_OUTRANGE 1 bit per AO AO1 is bit 0, AO2 is bit 1. If set, output is
Out-of-range.

8 ERAIAO_x_y Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, … ERAIAO_x_y Value for AI2, AI3, …

32,36 ERAIAO_x_y_O_ACTUAL Value actually written to AO – clamped to 0-100%.

Output Map: Max Size: 72 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERAIAO_x_y_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 ERAIAO_x_y_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

8, 16, 24,
…

ERAIAO_x_y_ZERO Zeros for AI2, AI3, …

12, 20,
28, …

ERAIAO_x_y_SPAN Spans for AI2, AI3, …

48, 60 ERAIAO_x_y_O_ZERO Zeros for AO1, AO2

52, 64 ERAIAO_x_y_O_SPAN Spans for AO1, AO2

56, 68 ERAIAO_x_y_O Values for AO1, AO2

ERM_MIX – ControlWave MICRO I/O Expansion Rack - Mixed I/O board

This card contains the following I/O: DIO 6, AI4, AO1, and HSC2

DRIVER_NAME ‘ERM_MIX’

DATA_TYPE DWORD

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 275

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 68 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERMIX_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (bit 2) ERMIX_x_CALIBRATE Bit 2 is set if the calibration data is invalid

2 (bit 3) ERMIX_x_TIMEOUT Bit 3 is set to indicate that a board data read has
timed out.

4 ERMIX_x_y_AI_OUTRANGE AI under / over range. One bit per point: AI1 in bit 0,
AI4 in bit 3.

6 ERMIX_x_y_AO_OUTRANGE AO under / over range. AO1 is in bit 0.

8 ERMIX_x_y_DI Current status of DI1 (in bit 0) to DI6 (in bit 5).

10 ERMIX_x_y_DO_I Read-back of current value for DO1 (in bit 0) to DO6
(in bit 5).

12 ERMIX_x_TIMESTAMP Timestamp of last sample from HSC. This is the
number of Milliseconds since boot.

16 ERMIX_x_y_COUNTER Number of counts since boot (Channel 1)

20 ERMIX_x_y_COUNTER Counts for Channel 2

32 ERMIX_x_y_AI Value for AI1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

36, 40, … ERMIX_x_y_AI Value for AI2, AI3, …

64 ERMIX_x_y_AO_ACTUAL Value actually written to AO – clamped to 0-100%.

Output Map: Size: 84 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERMIX_x_y_DO Outputs. 1 bit per value. DO1 is LSB; DO6 is MSB.
Typically specified as %QXy.z, where y is I/O space
offset, and z is bit number from 0 to 5.

2 ERMIX_x_y_RESET_COUNT Counter reset flags, HSC1 (in Bit 0) to HSC2 (in bit 1)

4 ERMIX_x_LEDSTATUS Bit 0 - If set, the diagnostic LEDS for the points are
turned off to save power. Bit 1 – If set, maintains
counts across Warm Start

8 ERMIX_x_y_AI_ZERO Zero for AI1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

12 ERMIX_x_y_AI_SPAN Span for AI1 (4-byte float). If zero, the AI will be
scaled from 0 to 100.0.

16, 24,
32

ERMIX_x_y_AI_ZERO Zeros for AI2, AI3, AI4

20, 28,
36

ERMIX_x_y_AI_SPAN Spans for AI2, AI3, AI4

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

276 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

72 ERMIX_x_y_AO_ZERO Zero for AO1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

76 ERMIX_x_y_AO_SPAN Span for AO1 (4-byte float). If zero, the AO will be
scaled from 0 to 100.0.

80 ERMIX_x_y_AO Value for AO1 (4-byte float).

ERM_HSC4 – ControlWave MICRO I/O Expansion Rack - 4 Channel High Speed Counter
Board

DRIVER_NAME ‘ERM_HSC4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 24 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERHSC_x_DRIVERSTATUS Board Status. See Common Status Information
section.

4 ERHSC_x_TIMESTAMP Timestamp of last sample from HSC. This is the
number of milliseconds since boot.

8 ERHSC_x_y_COUNTER Number of counts since boot (Channel 1)

12, 16,
20

ERHSC_x_y_COUNTER Counts for Channel 2, 3, 4

Output Map: Size: 8 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERHSC_x_y_RESET_COUNT Counter reset flags, HSC1 (in bit 0) to HSC4 (in bit 3)

2 (bit 1) ERHSC_x_NOINIT Maintain Counts across Warm Start (TRUE =
maintain)

4 ERHSC_x_LEDSTATUS Single bit. If bit is set, the diagnostic LEDS for the
points are turned off to save power.

ERM_STAT – ControlWave MICRO I/O Expansion Rack Status Board

In addition, an Expansion Rack Status board (ERM_STAT) is defined. This board has a
similar I/O map as the status board for the ControlWave Expansion Rack (ER_STAT).

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 277

DRIVER_NAME ‘ERM_STAT’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number (ignored – specify as zero).

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 1242 bytes

Note: Data starting at offset 12 will only be refreshed as fast as a 1 second interval.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERSTAT_x_BOARDSTATUS Board Status. See Common Status Information
section.

4 (bit 0) ERSTAT_x_BATSTAT Memory battery status at Expansion Rack. TRUE
indicates good battery.

4 (bit 1) ERSTAT_x_HOTCARDSTAT TRUE indicates that a HOT Card replacement is in
progress at the Expansion Rack. Will always be FALSE
on platforms which do not support on-line HOT Card
replacement.

8 ERSTAT_x_HOTCARDCT 32-Bit Count of Hot Card replacement events which
have occurred.

12 ERSTAT_x_DOWNTIMEUSER 32 Bit Count – Number of seconds (as configured by
the user) that the Expansion Rack can be powered off
before the outputs are reset to defaults when the
unit is powered back up.

16 ERSTAT_x_DOWNTIMEACT 32-Bit Count – Number of seconds that the
Expansion Rack was powered off on the last power
fail.

20 ERSTAT_x_WRITECT 32-Bit Count – Number of I/O updates sent to the
Expansion Rack

24 ERSTAT_x_READCT 32-Bit Count – Number of I/O updates sent from the
Expansion Rack

28 ERSTAT_x_CONNECTS 32-Bit Count – Number of Connects and Disconnects
made to the Expansion Rack.

32 ERSTAT_x_HEARTBEAT 32-Bit Count – Number of IDLE time Heartbeats sent
from the Expansion Rack to the host.

42 ERSTAT_x_BDSTR1 String – I/O board string for slot #1

127 ERSTAT_x_BDSTR2 String – I/O board string for slot #2

212 ERSTAT_x_BDSTR3 String – I/O board string for slot #3

297 ERSTAT_x_BDSTR4 String – I/O board string for slot #4

382 ERSTAT_x_BDSTR5 String – I/O board string for slot #5

467 ERSTAT_x_BDSTR6 String – I/O board string for slot #6

552 ERSTAT_x_BDSTR7 String – I/O board string for slot #7

637 ERSTAT_x_BDSTR8 String – I/O board string for slot #8

724 DINT – Current redundancy status of the Expansion
Rack – will always be zero on this platform

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

278 I/O Mapping

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

728 ERSTAT_x_BDSTR9 String – I/O board string for slot #9

813 ERSTAT_x_BDSTR10 String – I/O board string for slot #10

898 ERSTAT_x_BDSTR11 String – I/O board string for slot #11

983 ERSTAT_x_BDSTR12 String – I/O board string for slot #12

1068 ERSTAT_x_BDSTR13 String – I/O board string for slot #13

1153 ERSTAT_x_BDSTR14 String – I/O board string for slot #14

1240 ERSTAT_x_INPUTVOLTS Float – Reading (in volts) of power-supply input
voltage.

Output Map: Max Size: 4 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0.0 If this is a Redundant Expansion Rack, and the
Standby is valid, then writing a TRUE to this location
will cause the rack to fail-over. Not used on this
platform.

ERM_TC6 – ControlWave MICRO I/O Expansion Rack 6 Point Thermocouple Board

DRIVER_NAME ‘ERM_TC6’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 32 bytes

Due to the amount of time required to process the thermocouple points, it is highly
recommended that this I/O driver be assigned to a task (instead of “No Task”). Care should
also be taken in using the I/O board in a task of less than 40ms.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 TC6_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (Bit 2) TC6_x_CALIBRATE If set indicates invalid calibration data written to
the board.

2 (Bit 3) TC6_x_TIMEOUT If set, indicates that had an error reading or writing
to the board.

4 TC6_x_y_OUTRANGE 1 bit per TC, TC1 is bit 0, TC6 is bit 5. If set, input is
Out-of-range.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 279

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

8 TC6_x_y Value for TC1 in engineering units (4-byte float -
REAL). To access the value, define the variable AT
%IDxx. Direct access to %IDxx is not possible.

12, 16, 20,
24, 28

TC6_x_y Value for TC2, TC3, TC4, TC5, TC6

Output Map: Max Size: 70 bytes

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 TC6_x_y_ZERO Zero for TC1 (4-byte float - REAL). To access the
value, define the variable
AT %QDxx. This variable can be initialized at
declaration.

4 TC6_x_y_SPAN Span for TC1 (4-byte float). If zero, the TC will be
scaled as in the chart below. If specified, the new
value will be ORG_VALUE * Span + Zero.

8, 16, 24, 32,
40

TC6_x_y_ZERO Zeros for TC2, TC3, TC4, to TC6 – Example: for C to
F, use 32.0

12, 20, 28,
36, 44

TC6_x_y_SPAN Spans for TC2, TC3, TC4, to TC6 – Example for C to
F, use 1.8

64 TC6_x_y_MODE Point type for TC1; see Thermocouple type codes
section for details.

65, 66, 67,
68, 69

TC6_x_y_MODE Point types for TC2, TC3, TC4, TC5, and TC6.

Type codes for Thermocouple Points.

Type Code Code Range
0 B Thermocouple: 100C – +1820C
1 E Thermocouple: -270C – +1000C

2 J Thermocouple: -210C – +1200C
3 K Thermocouple: -270C – +1370C
4 R Thermocouple: -50C – +1720C
5 S Thermocouple: -50C – +1760C
6 T Thermocouple: -270C – +400C

7 Unused Unused
8 10MV Voltage Inputs: -10 mV to +10 mV (Outputs as 0.0 to 1.0)
9 C Thermocouple: 0C – +2315C
10 N Thermocouple: -270C – +1300C

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

280 I/O Mapping

ERM_RTD4 – ControlWave Micro I/O Expansion Rack – 4 Point Resistance Temperature
Device (RTD) Board

DRIVER_NAME ‘ERM_RTD4’

DATA_TYPE DWORD (32 bits)

DRIVER_PAR1 slot number.

DRIVER_PAR2 First two bytes of Primary IP address

DRIVER_PAR3 Lower two bytes of Primary IP address

Input Map: Max Size: 24 bytes

Due to the amount of time required to process the RTD points, it is highly recommended
that this I/O driver be assigned to a task (instead of “No Task”). Care should also be taken
in using the I/O board in a task of less than 40ms.

Offset Default Variable Name where x is the board
slot and y is the pin number.

Description

0 ERRTD_x_DRIVERSTATUS Board Status. See Common Status Information
section.

2 (Bit 2) ERRTD_x_CALIBRATE If set indicates invalid calibration data written to
the board.

2 (Bit 3) ERRTD_x_TIMEOUT If set, indicates that had an error reading or writing
to the board.

3 (Bit 0) ERRTD_x_LASTCALBOP Set if last calibration or reset operation failed.

3 (Bit 7) ERRTD_x_CALBCMD Calibration Commands Allowed. Until this bit is
set, all calibration commands are ignored.

4 ERRTD_x_y_READERR RTD Reading Error. Bit 0 is RTD1, Bit 3 is RTD4

8 ERRTD_x_y RTD1 reading – REAL – In units of Degrees
Centigrade (unless scaled by values in the output
map).

12, 16, …20 ERRTD_x_y Readings for RTD2 … RTD4.

Output Map: Max Size: 200 bytes

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

0 ERRTD_x_y_ZERO Zero for RTD 1(4-byte float - REAL). Example: for
C to F, use 32.0. Defaults to 0.0

4 ERRTD_x_y_SPAN Span for RTD 1(4-byte float – REAL). If zero, RTD
will not be scaled. If specified, the scaled value
will be ORG_VALUE * Span + Zero. Example for
C to F, use 1.8.

8,16,24,32
40,48,56

ERRTD_x_y_ZERO Zero for RTDs 2-8

12,20,28,
36,44,52,
60

ERRTD_x_y_SPAN Span for RTDs 2-8

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Mapping 281

Offset Default Variable Name where x is the
board slot and y is the pin number.

Description

64 ERRTD_x_y_MODE

65,66,67,
68,69

ERRTD_x_y_MODE

100 NOT USED; RESERVED FOR FUTURE USE

120 (Bit 0) * ERRTD_x_y_RESTORE If set, restore RTD 1 calibration to Factory
Defaults. Will be reset when operation
completes.

121 * ERRTD_x_y_OPERATION Calibration Operation for RTD 1 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

124** ERRTD_x_y_COEFF_A Coefficient A (RTD 1)

128** ERRTD_x_y_COEFF_B Coefficient B (RTD 1)

132** ERRTD_x_y_COEFF_R0 Coefficient R0 (RTD 1)

136** ERRTD_x_y_APPLIED The applied temperature when calibration
operation 8 was performed. (RTD 1)

140 (Bit 0) * ERRTD_x_y_RESTORE If set, restore RTD 2 calibration to Factory
Defaults. Will be reset when operation
completes.

141 * ERRTD_x_y_OPERATION Calibration Operation for RTD 2 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

144** ERRTD_x_y_COEFF_A Coefficient A (RTD 2)

148** ERRTD_x_y_COEFF_B Coefficient B (RTD 2)

152* ERRTD_x_y_COEFF_R0 Coefficient R0 (RTD 2)

156* ERRTD_x_y_APPLIED The applied temperature when calibration
operation 8 was performed. (RTD 2)

…. …..

180 (Bit 0) * ERRTD_x_y_RESTORE If set, restore RTD 4 calibration to Factory
Defaults. Will be reset when operation
completes.

181 * ERRTD_x_y_OPERATION Calibration Operation for RTD 4 – SINT
 5 RTD Zero (100 Ohms)
 6 RTD Span (300 Ohms)
 7 RTD Coefficients (A, B, R0)
 8 RTD Span (not using 300 Ohms)

184 ** ERRTD_x_y_COEFF_A Coefficient A (RTD 4)

188 ** ERRTD_x_y_COEFF_B Coefficient B (RTD 4)

192 ** ERRTD_x_y_COEFF_R0 Coefficient R0 (RTD4)

196 ** ERRTD_x_y_APPLIED The applied temperature when calibration
operation 8 was performed. (RTD 4)

* Value written to perform operation. The value will be reset by driver when the
operation completes.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

282 I/O Mapping

** Value is read from the board by the driver. In order to perform calibration operations 7
and 8, the user can overwrite the values; then, issue the calibration command.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Simulator 283

I/O Simulator

What is the I/O Simulator?
The control programs generated through ControlWave Designer are executed by the
ControlWave controller using the IEC 61131 real time system, working in conjunction with
ControlWave firmware.

The PC-based I/O Simulator operates using copies of the IEC 61131 real time system and
ControlWave firmware which are identical to those running in the controller. This allows
any control strategy generated for ControlWave Designer to be tested on a PC, with
simulated analog and digital inputs and outputs. Initial I/O testing and debugging may be
performed in a safe, isolated environment, without the need for a running ControlWave
controller and process I/O boards.

Important

The I/O Simulator is designed to work with IPCxx RTU resources. It does NOT work with
ARM-based RTU resources. Therefore, projects created to run in the ControlWave MICRO-
series of controllers will not execute in the I/O Simulator.

Number of Boards Available within the I/O Simulator

The I/O Simulator has a limit on the number of boards that may be accessible within the
simulation. This limit is dictated by an internal limit of 500 characters for the list used to
describe the boards used in the I/O Simulator. If, while using the I/O Simulator, some
boards do not appear, you must re-run the I/O Configurator, and select for I/O simulation
the group of boards that are missing and de-select unused boards, as needed, so the limit
is not exceeded.

Starting the I/O Simulator
Before you can start the I/O
Simulator, you must identify it
as the download destination for
your control program. This is
done in the Resource Settings
dialog box.

To choose the resource, right
click on the resource and choose
“Settings” from the pop-up
menu.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

284 I/O Simulator

Choose “Simulation 1” in the Resource Settings dialog box, and click on [OK].

Next, click as follows: OnlineProject Control

The I/O Simulator will appear, however, no I/O boards will be displayed, yet.

Choose “Simulation 1”

Open alarm window
View board status Bring board list

window to front

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Simulator 285

Minimize the I/O Simulator in order to uncover the RTU
Resource dialog box.

Click on the [Download] button in the RTU Resource
dialog box.

The Download dialog box will appear. Click the [Download] button in the Project section of
the Download dialog box.

The RTU_Resource dialog box will re-appear. Click
either the [Warm] or [Cold] buttons. The [Warm]
button only re-initializes non-retentive variables, i.e.
variables which are NOT marked as ‘RETAIN’. The
[Cold] button re-initializes all variables.

If desired, execution can be stopped by clicking the
[Stop] button. Then, execution can be re-started using
either the [Warm] or [Cold] buttons.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

286 I/O Simulator

In the I/O Simulator, icons will now appear for all configured process I/O boards. In this
example, we have two process I/O boards – one analog input board, and one analog
output board. In the figure, below, they are shown as Slot 1 and Slot 2, respectively.

Click on either of the board icons, or press the [Enter] key while one of the boards is
highlighted, and a graphical representation of the board, showing simulated values for all
pins on the board will appear. Analog values are shown as bar graphs; digital values are
shown as buttons.

Slot the board
occupies

Type of board

Board status indicator. Shows red
when board simulation is
disabled; green when board
simulation is active. Click on it to
change the board status.

Graphical representation of the value of each
pin on the board.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Simulator 287

Enabling / Disabling the Board Simulation

For all board types, the board simulation can be enabled/disabled by clicking on the board
status indicator in the upper right hand corner of the board graphic. This indicator will
appear in green when the simulation is active, or red when the board simulation is turned
off or the board has not been configured.

Analog Boards

Analog Input Boards

In analog input boards, the value of a particular pin may be altered by dragging the slider
bar associated with the graphic for each pin. Alternatively, right click on the pin and
choose “Configure Pin” from the pop-up menu. Enter a value in the “Current Value” field.

Analog Output Boards

Within the I/O Simulator Analog output boards are depicted similarly to analog input
boards, however, you are NOT allowed to alter the value of individual pins.

Drag slider bar to
change value of
this input pin

Current value displayed here

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

288 I/O Simulator

Digital Boards

Digital Input Boards

For digital input boards, the value of a particular pin may be altered by clicking on the
button which corresponds to that pin. A pin is ON when its button is displayed in green; a
pin is OFF when its button is displayed in red.

Digital Output Boards

Within the I/O Simulator, digital output boards are depicted similarly to digital input
boards, however, you are NOT allowed to alter the status of individual pins.

Counter Boards
High Speed Counter input values can be displayed within the I/O Simulator. You can also
enter new values for the counter inputs.

Pin status is displayed based on
color; green is ON and red is
OFF.

The pin’s ON/OFF status can be
toggled by clicking on it.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Simulator 289

Viewing the Board Configuration Status
To view the status of a board in the I/O simulation, click on OptionsConfigure Current
Board or right-click in certain portions of the graphical representation of the board and
choose “Configure Board” from the pop-up menu.

Board Configuration Page

The contents of the Board
Configuration page vary,
depending upon what type
of board you are configuring.

In all cases, you can disable
the simulation for the board,
by de-selecting the “Board
Status” check box; this
causes the text ‘NOT
PRESENT’ to appear. This is
equivalent to setting the
board status indicator to
OFF.

Configuring a Pin
For boards which simulate input
values, you can change the value /
status of a particular pin, by right-
clicking on the graphical
representation for that I/O point,
and chooisng Configure Pin from
the pop-up menu. You can then
enter a new value (for analog
boards) or toggle the status (for
digital boards). Output board
types only allow you to view
information about the pin, not to
change it.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

290 I/O Simulator

Viewing Simulated Alarms
As you proceed to manipulate process variables in the I/O simulator, you can generate
alarm messages, if those process variables are connected to alarm function blocks. The
alarm messages can then be viewed in the Alarm Window. To view alarm messages in the
I/O Simulator's Alarm Window, click on the 'Alarm Window' icon, or click on
OptionsDisplay Alarm Window.

Shutting Down the I/O Simulator
The I/O Simulator cannot be shutdown from a board window; it will re-appear if you
attempt this. The only way to shut it down is by choosing the [Close] button from the
RTU_Resource dialog box.

Note:

If the RTU_Resource dialog box is not visible, minimize other windows of the I/O Simulator
to uncover it.

Troubleshooting Tip
For some Windows operating systems, if Physical Address Extension capability is turned
ON, it may prevent the I/O Simulator from running and generate an error. If you are having
trouble running the simulator you should check to see your operating system supports this
capability, and if it does, try turning it OFF and see if this remedies the situation.

To see if Physical Address Extension is supported:

Double-click on System in the Windows Control Panel. If you see Physical Address
Extension displayed on the “General” tab, it means your operating system supports this.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

I/O Simulator 291

To Turn Off Physical Address Extension:

There are two methods available for turning OFF physical address extension capability.

Method 1:

1. In the System Properties dialog
box, click the Advanced tab.

2. Click Settings in the
Performance section.

3. In the Performance Options dialog box, click the Data Execution Prevention tab.

If you see “Physical Address
Extension” displayed here, it
means your operating system
supports it.

Click “Settings”.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

292 I/O Simulator

4. On the Data Execution Prevention tab, check the button for Turn on DEP for

essential Windows programs and services only.

5. Click OK and reboot your PC for the change in settings to take effect.

Method 2:

If you are familiar with
configuring system BIOS,
you can turn physical
address extension OFF in
the BIOS by disabling NX
technology.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Addressing and Networks 293

IP Addressing and Networks
Internet Protocol (IP) is one method in which the ControlWave controller can
communicate on a network. IP is supported through the ControlWave’s Ethernet port(s),
and serial IP (PPP) is supported through its serial ports.

What is the Format of IP Addresses?
Each network connection from an IP node has an IP address which is unique within the
network. It is important to note that the IP address is associated with the network
connection (IP Port) on the node, NOT the node itself. This allows a single IP node to have
more than one IP port, and consequently, more than one IP address.

IP addresses consist of 32 bits (1's and 0's) which are divided up into 4 groups of 8 bits
each. A period is used to separate each group. Each group of 8 bits is then converted from
binary to a decimal number from 0 to 255. The resulting IP address is said to be in dotted
decimal notation.

Each of the numbers in the address generally has a specific meaning. The IP address is
generally divided up into a network portion which must be common to each node in the
network, and a local portion of which some part must be unique to a particular node.

How is the Specific Meaning of Each Part of the Address Defined?

Addresses must be assigned to be consistent with whatever conventions have been
established for your system. For example, if this network has connections outside the plant
(such as connection to the real world-wide Internet), then the choice of this network
number is assigned by an Internet governing body called the Network Information Center
(NIC) or whatever Internet service provider you are using. In addition, there are certain
rules to defining addresses, which will be discussed later.

The specific meaning of each part of the address is defined in something called the IP mask
or sub-net mask. The sub-net mask is simply another set of 32 bits (which must also be
converted to dotted decimal notation). Each bit in the sub-net mask corresponds to a bit in
the IP address. If a bit in the sub-net mask is set to 1 (ON), then the corresponding bit in the
IP address is considered to be part of the network portion of the IP address. The network
portion can be ignored (or 'masked') when performing communications to nodes within the
same network, because by definition, all nodes in the same network have identical network

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

294 IP Addressing and Networks

portions. Any bit in the sub-net mask which is 0 (OFF) is considered to be part of the local
addressing scheme.

The figure, below, shows the IP address and corresponding sub-net mask for an IP address
of 120.0.210.1 and a sub-net mask of 255.0.0.0.

As we said before, a '1' in the sub-net mask indicates that the corresponding IP address bit
is part of the network portion of the address. Because the first part of the IP address
'01111000.' has a corresponding sub-net mask of '11111111' we know that '01111000'
(120 in decimal) is the network portion of the address.

The remaining parts of the IP address '00000000.11010010.00000001' have a
corresponding sub-net mask of '00000000.00000000.00000000'. These bits are used as
part of the local communications addressing scheme.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Addressing and Networks 295

Sub-net Masks Determine Which Nodes are Reachable From this Node

So far, we have been talking about the mechanics of creating IP addresses and sub-net
masks. The aspect we have not discussed is why IP addresses and subnet masks are so
important.

Rules for Creating a Local Addressing Scheme

When you are creating your IP address, the network portion of the address must appear first. For
example, if the network portion is 200, you CANNOT define an IP address as 0.200.14.1. The
network portion must appear first. This means that when creating the sub-net mask, the masked
portion (i.e. all 1's) must appear first.

The organization of the remaining bits can follow any local communications scheme you choose
to devise, except that each group of bits that represents something must be contiguous.

For example, let's say the first 16 bits have been 'masked out' to define the network address, i.e.
there is a sub-net mask of:

 11111111 . 11111111 . 00000000 . 00000000

 which in dotted decimal format is:

 255 . 255 . 0 . 0

That leaves 16 bits (indicated by the 0's) for devising a local communications scheme.

You might want to use the first 8 bits to indicate a section or area number for a section of your
network. 8 bits will allow up to 256 sections to be defined. Another 8 bits (remaining out of the
16 available) can be used to indicate a node number, allowing up to 256 IP controllers (RTUs) and
OpenBSI workstations, in a given section.

If you have a device (controller, or workstation) which will have multiple IP ports, we recommend
you exercise special care when specifying the IP address and mask for each IP port to ensure that
IP communication functions according to your plan. For example, you typically would want each IP
port to sit on a unique IP network. This is because having two or more IP ports of the same device
on the same network is not particularly useful, since only one of the ports will be allowed to send
messages out to the network; the other ports will only be able to receive messages.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

296 IP Addressing and Networks

A node's IP address, and its sub-net mask, define the range of acceptable addresses with
which the node can communicate. For example, if one node has an IP address of 4.3.2.1
and another node has an IP address of 100.100.0.1, there is no common network portion
between the two addresses. For that reason, there is NO way these two nodes can
communicate with each other directly - - they are each part of different networks. Any
messages between these nodes would have to pass through one or more router
computers.

For two nodes to communicate directly, the network portion of their addresses (as specified by
the sub-net mask) must match exactly.

To illustrate this concept, look at the figure, below. The network shown has one Network
Host PC (NHP) called NHP1, and 3 controllers (RTUs) named OAK_STREET, ELM_STREET,
AND WALNUT_AVE.

However, the table below reveals a problem with the configured sub-net masks.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Addressing and Networks 297

Node Name IP Address, Subnet Mask: Mask Says This Node Can Send Messages to
All Nodes with Addresses:

NHP1 IP ADR: 100.22.49.1
MASK: 255.255.255.0

100.22.49.yyy
where yyy is an integer from 0 to 255.

WALNUT_AVE IP ADR: 100.22.49.178
MASK: 255.255.0.0

100.22.yyy.zzz
where yyy and zzz are integers from 0 to
255.

OAK_STREET IP ADR: 100.22.50.33
MASK: 255.255.0.0

100.22.yyy.zzz
where yyy and zzz are integers from 0 to
255.

ELM_STREET IP ADR: 100.22.51.14
MASK: 255.255.0.0

100.22.yyy.zzz
where yyy and zzz are integers from 0 to
255.

Based on their specified IP addresses and sub-net masks, OAK_STREET, ELM_STREET, and
WALNUT_AVE can all communicate with each other. They can also send messages to
NHP1.

There is a problem, however. NHP1
has a sub-net mask which specifies
that it can only send messages to
nodes with addresses 100.22.49.nnn
where nnn is an integer from 0 to
255. The only node which it can
send messages to, therefore, is
WALNUT_AVE.

To remedy this situation, NHP1's
sub-net mask should be changed to
255.255.0.0 so that it can also send
messages to OAK_STREET and
ELM_STREET. The corrected sub-net
mask is reflected in the figure at
right.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

298 IP Addressing and Networks

Adding a ControlWave to an IP Network with the RTU Wizard
Within OpenBSI's NetView program, the ControlWave can be added to an existing IP
network in the same way as you would add any other controller.

Within the NetView tree, simply choose the icon for the network to which you want to add
the ControlWave, right-click on the icon, and choose AddRTU to call up the RTU Wizard.

In the RTU Wizard, be sure you specify its node type, for example, 'ControlWave'
'CWave_MICRO', etc. and that you also specify the full path of the ControlWave project
.MWT file.

In addition, you should specify the startup web page for the controller. If the startup web
page is on the PC, specify its full path. If it resides within the ControlWave, just specify the
name and select the "Access startup page from RTU" check box.

You will also need to specify a local address for the ControlWave, and, as well as an IP
address and IP mask for the ControlWave. The local address must match whatever local
address has been defined for the ControlWave in the Port Configuration web page or Flash
Configuration Utility 'Ports' page. The default is 1. This subject is discussed, in more detail,
later.

Specify the full path of the
ControlWave project (*.MWT
file)

Choose the correct node
type for your ControlWave
unit

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Addressing and Networks 299

Note:

To view web pages in OpenBSI, the path of Microsoft® Internet Explorer (IEXPLORE.EXE)
must be entered in the “Web Browser” field of the OpenBSI Application Parameters dialog
box in NetView. To access the OpenBSI Application Parameters dialog box, sign on to
NetView with the system password, and then click on the Application Parameters icon. For
more information on the OpenBSI Application Parameters dialog box, and the NetView
program, see the OpenBSI Utilities Manual (part number D301414X012).

Full details on adding controllers to OpenBSI networks are included in Chapter 6 of the
OpenBSI Utilities Manual (part number D301414X012).

Setting up IP Ports in the Flash Configuration Utility
The ‘Ports’ page in the Flash Configuration Utility allows you to configure the
characteristics of the ControlWave-series controller’s serial and Ethernet ports. See the ‘IP
Ports – Ethernet’ and ‘IP Ports – PPP’ sections in this manual for more information.

Recommended Ranges for IP Addresses
If you are intending to connect your OpenBSI network directly to the global world-wide
Internet, you must obtain a range of IP addresses from your Internet service provider (ISP)
or from an Internet governing body such as the Internet Assigned Numbers Authority
(IANA).

If you have no plans to connect your network to the global Internet, there is no restriction
on your choice of IP addresses, however, the Internet Engineering Task Force recommends
(in accordance with RFC 1918, or Rekhter, et al, Best Current Practice memo - Address
Allocation for Private Internets, Internet Engineering Task Force, February, 1996; see
http://www.ietf.org for the complete text of this memo) that IP addresses for private
networks should be assigned from the following ranges:

10.0.0.0 to 10.255.255.255

172.16.0.0 to 172.31.255.255

192.168.0.0 to 192.168.255.255

These particular ranges of Internet addresses have been set aside for private networks. Any
messages coming from these addresses can be recognized by most Internet Service
Providers (ISP) as coming from private networks, and so can be filtered out. This helps
avoid addressing conflicts should an accidental connection occur between a private
network, and the global Internet.

Devices (e.g. controllers, workstations) in networks created with OpenBSI must always use
fixed IP addresses. This causes certain complexities if you choose to use Dynamic Host

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

300 IP Addressing and Networks

Configuration Protocol (DHCP) in your network to provide addresses to other non-
ControlWave or Network 3000 devices. Because DHCP assigns IP addresses dynamically, as
they are needed, you must examine your DHCP server to determine the addresses which
have been assigned for each ControlWave or Network 3000 controller or OpenBSI
workstation and then manually enter those addresses in NetView. You should then specify
the longest possible lease time for the addresses, to help prevent the loss of a given
address through a device failure.

It is also strongly recommended that the DHCP server is configured such that the
addresses reserved for the controllers are permanently reserved (by tying them to the RTU
MAC addresses within the DHCP configuration or by having them in a totally different
address range). The same should be done when configuring RAS servers or other machines
capable of providing dynamic addressing information. Otherwise, you can easily have
duplicate IP addresses on your network.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Parameters 301

IP Parameters
The IP Parameters page is accessible from the "IP Parameters" tab in the Flash
Configuration Utility. This page is used to specify the IP addresses (in dotted decimal
format) of this controller’s Network Host PC (NHP), as well as UDP port/socket
information. Additional parameters are available related to IP routing, and
communications security.

NHPs:

IP ADDR A: This is the primary IP address for this controller’s Network Host PC (NHP). It
must be entered in dotted decimal format.

IP ADDR B: This is a secondary IP address for the same NHP referenced by "IP ADDR A" or
the IP address of a redundant backup NHP. It must be entered in dotted
decimal format. If neither of these situations apply, leave IP ADDR B blank.

UDP Ports:

IBP: This is the UDP port number (socket number) used by the IP driver. It is used
to split message traffic along different streams. All PCs or RTUs which are to
communicate with each other must have the same "IBP" number. In a sense, this
value is like a common password which must be known by each node in the
network. If no value is entered, a default value from the NETDEF files is used.
(NOTE: Although the term UDP Port is used, it has no actual relationship with
the physical communication ports.)

Time Synch: This is the UDP port number (socket number) used for time synchronization of
the RTUs. All PCs or RTUs must have this value defined, or else they will be
unable to receive time synchronization messages. In a sense, this value is like

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

302 IP Parameters

a common password which must be known by each node in the network. If no
value is entered, a default value from the NETDEF files is used. (NOTE:
Although the term UDP Port is used, it has no actual relationship with the
physical communication ports.)

SNMP: (Requires CWP/LPS/CWR 03.00 or newer firmware)

Disable SNMP Processing: SNMP allows certain IP parameters to be monitored and
adjusted remotely. For security purposes, you may want to
check this box to disable this capability.

Other notes about SNMP:

If you choose to leave SNMP processing enabled, you should be aware of the following
things:

ControlWave supports RFC1213 (MIB II).

For the community string, any string is accepted to read data. For writes (updates) the
community string must be specified as a valid <username>/<password> combination.

The system contact, description, and location strings are taken from the
_CW_CONTACT_STR, _CW_DESCRIPTION_STR, and _CW_LOCATION_STR system
variables. See the System Variables section of this manual for more information on these
strings.

Gateway:

Default G/W: This is an IP address of a default gateway. The default gateway is an
address to which the system sends any messages with destinations that
are not directly reachable (that is, not in the address range specified via the
IP mask for this node). This address must be entered in dotted decimal
format. For more information on using gateways in your network, see
Chapter 1 of the OpenBSI Utilities Manual (part number D301414X012).

RIP Protocol:

This section allows configuration of parameters for the Routing Internet Protocol (RIP)
(refer to Douglas Comer and David Stevens, Internetworking with TCP/IP - Volumes 1 & 2
(Englewood Cliffs, NJ: Prentice Hall, 1991); Frank Derfler and Steve Rigney, TCP/IP A Survival
Guide for Users (New York: MIS Press, 1998). RIP is used to support dynamic IP routing
(described below) and is implemented beginning in ControlWave firmware CWP02.0. A
router which supports RIP essentially maintains a set of tables of IP address ranges which it
can reach, either directly, or through another router. Users can specify include address
ranges and exclude address ranges for use in these tables, to avoid sending out routes to
known areas in the same network.

Each router sends a broadcast message (at periodic intervals) which includes these tables.
Other routers receive the broadcast message, and determine from them, whether there is
a better route to a particular IP destination, than the route stored in their own tables. If
there is, they update their own tables. In this way, devices throughout the network(s) can

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Parameters 303

determine the best possible route for sending a message from one node to another.
Various safeguards are built into the protocol to prevent looping situations where two
routers each think the other router has the best route to a particular destination.

Inclusion Addr: This is an IP address, which will be used with the Inclusion Mask (below)
to define a range of IP addresses which this controller will 'advertise'
that it can reach, and so will be included in RIP broadcasts throughout
the network. Note that this range may be further restricted based on
the optional definition of an Exclusion Addr and Exclusion Mask.

Inclusion Mask: A non-zero value in any of the Inclusion Mask fields indicates that the
corresponding Inclusion Addr field is specifying a portion of the IP
address which must be identically matched with every IP address on
routes which this controller is 'advertising' in its RIP broadcasts. A zero
value in any of the Inclusion Mask fields means that any integer from (0
to 255) is considered valid for that corresponding portion of the Inclusion
address.

Exclusion Addr: This is an IP address, which will be used with the Exclusion Mask (below)
to define a range of IP addresses on routes which this controller will not
advertise in its RIP broadcasts, because they are already known to be
reachable (that is, they are in the same network). Note that this range
can be further modified based on the optional definitions of an
Inclusion Addr and Inclusion Mask discussed above.

Exclusion Mask: A non-zero value in any of the Exclusion Mask fields indicates that the
corresponding Exclusion Addr field is specifying a portion of the IP
address which must be identically matched with every IP address which
this controller is specifically excluding from its advertised routes. A zero
value in any of the Exclusion Mask fields means any integer from (0 to
255) is considered valid for that corresponding portion of the destination
Exclusion address.

Important:

If you do not make any entries in either the Inclusion Addr/Mask or Exclusion Addr/Mask,
RIP will NOT function.

Also, only devices which have been configured for RIP will be able to make use of the
routing tables provided in the RIP broadcast messages.

Some examples for setting the inclusion and or exclusion address/mask pairs are shown
below:

In Example #1, on the next page, Network A, as well as Gateway 1 and Gateway 2 are all
configured with RIP. Network B is not configured with RIP but has Gateway 1 as its default
Gateway. Because of RIP, Network A will know about Gateway 2 as an alternate route to
Network B, if Gateway 1 should fail.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

304 IP Parameters

In Example #2, Networks A and B, as well as the Gateways are all configured to support RIP.
Here we specified just an Exclusion Address and Mask for an address which isn't even on
any of the two networks. In this case we chose 1.1.1.1. With this minimal exclusion range
defined, RIP broadcasts will include routes to ALL known addresses outside a particular
Network, i.e. Network A will receive information about routes to Network B, and Network
B will receive information about routes to Network A.

GATEWAY 1 10.0.0.200

10.0.1.200

172.16.0.1

172.16.0.2

172.16.0.200

172.16.1.200

ControlWaveControlWave

ControlWaveControlWave

10.0.0.1

10.0.0.2

Network A Network B

Example #1 In this arrangement, Network A knows that
 both GATEWAY 1 and GATEWAY 2 provide
 a route to Network B. Should either GATEWAY
 fail, traffic to Network B can be routed via the
 other GATEWAY.

Network A and Gateways 1&2 support RIP.
Inclusion address/masks are set as follows:

Inclusion Addr: 172.16.0.0
Inclusion Mask: 255.255.0.0

GATEWAY 2

Default Gateway:
 172.16.0.200

Network B does NOT
support RIP, but has
GATEWAY 1 as its
default gateway.

GATEWAY 2

GATEWAY 110.0.0.200

10.0.1.200

172.16.0.1

172.16.0.2

172.16.0.200

172.16.1.200

ControlWaveControlWave

ControlWaveControlWave

10.0.0.1

10.0.0.2

Network A Network B

Example #2 - Network A, Network B, and all the gateways
 are configured for RIP, so that all routes
 between the networks are known.

Configure Exclusion Addr/Mask as follows:

Exclusion Addr: 1.1.1.1
Exclusion Mask: 255.255.255.255

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Parameters 305

Dynamic IP Routing Ping:

Dynamic IP routing is discussed in the description of the IP Routes page.

Rate: This is the frequency (in milliseconds) at which an IP route will be tested (via a
ping message) to verify that the connection still functions. If the test is
unsuccessful (no return from the ping within the specified timeout) the test is
said to have failed. If Retries is a non-zero value, that number of additional
attempts will be made to perform the ping test. If the test is still unsuccessful, IP
traffic will be re-routed according to the information defined on the IP Routes
page.

Timeout: This is period of time (in milliseconds) after which a ping test of a given IP route
is said to have failed.

Retries: This is the number of additional attempts to perform a ping test will be
performed after the first failure. If the total number of retries has been
exhausted, re-routing of IP traffic will begin.

Challenge Protocol:

Two standard protocols have been implemented for security on PPP links in networks of
ControlWave controllers: Challenge Handshaking Authentication Protocol (CHAP) and
Password Authentication Protocol (PAP). These protocols operate in a client/server
arrangement. Typically, CHAP should be used since it is more secure.

The CHAP (or PAP) server would be a ControlWave-series controller. The CHAP (or PAP)
client could be either a ControlWave-series controller or an OpenBSI workstation.

The client must always supply a valid username/password combination in order to gain
access to the server. If a ControlWave controller is the client, the username and password
combination must have been pre-configured in the unit as a parameter stored in FLASH.
This username / password text string will automatically be transmitted in response to a
login prompt from the server.

Default Username: This is the username which will be transmitted if this ControlWave is
serving as a PAP/CHAP client, and receives a challenge message from
the PAP/CHAP server. This username must be one of the user
accounts defined for the ControlWave, and will be sent along with
the password defined for the specified user account.

Click [Write to RTU] to save changes to the IP parameters. NOTE: Changes will NOT take
effect until after the controller has been powered off and then back on.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

306 IP Parameters

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Ports - Ethernet 307

IP Ports - Ethernet
A ControlWave-series controller’s IP addresses are tied to its communication ports. There
are two types of IP ports supported in ControlWave – Ethernet, and Point-to-Point Protocol
(PPP). This section covers the Ethernet type:

Setting Up an Ethernet Port

Any of the Ethernet ports may be configured for IP communication. This configuration is
performed from the ‘Ports’ page of the Flash Configuration Utility.

1. Choose the Ethernet port you want to configure.

Note:

If you will be defining more than one IP port (whether PPP or Ethernet) for this controller, it
is strongly recommended that each IP port reside on a separate IP network. If you define
more than one IP port on the same network, only one of the ports will be able to send
messages; the other port(s) will only be able to receive messages.

2. Specify an IP address in the IP ADDR A field and enter an IP MASK for this port. IP
addresses must be unique within your network. Conversely, IP masks are typically the
same for all devices in the same portion of a network. Together, the IP address and IP
mask define a range of addresses to which this port can send messages. (See
Recommended Ranges for IP Addresses in the IP Networks and Addressing section.)

Specify an
IP address
and an IP
mask.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

308 IP Ports - Ethernet

Note:

The IP ADDR B field only applies when configuring a redundant controller.

Basically, a non-zero value in any of the "IP MASK" fields indicates that the corresponding
"IP ADDR A" field is specifying a portion of the IP address which must be identically
matched with every destination IP address to which this port will send messages. A zero
value in any of the "IP MASK" fields means that this communication port can send
messages to addresses in which any integer from (0 to 255) is considered valid for that
corresponding portion of the destination IP address.

Important

In newer ControlWave units, all Ethernet ports are pre-programmed at the factory with
initial IP addresses and masks, as follows:

ETH1 IP Address: 10.0.1.1 IP Mask: 255.255.255.0

ETH2 IP Address: 10.0.2.1 IP Mask: 255.255.255.0

ETH3 IP Address: 10.0.3.1 IP Mask: 255.255.255.0

Because each unit shipping from the factory will have these initially pre-programmed, you
should only use these addresses for ‘bench’ testing and configuration. These addresses
must be changed before putting ControlWave units on an actual network, since an address
conflict would exist as soon as the second ControlWave unit was placed online.

In the figure on the previous page, the "IP ADDR A" for the port is 10.211.74.222 and the "IP
MASK" is 255.255.0.0. This means that this port can send to any address in the format
10.211.x.y where x and y are any integer from 0 to 255. So, 10.211.1.7 and 10.211.35.93
would be valid destinations, but 10.45.1.1, and 10.83.27.1 would NOT be because the
255.255 in the "IP MASK" indicates that the corresponding portion of the destination’s IP
address MUST be 10.211.

Important

If you accidentally specify overlapping address ranges for two or more Ethernet ports,
ONLY the last Ethernet port created will function.

3. Click [Write to RTU].

4. You must reset the controller to activate the new port configuration.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Ports - PPP 309

IP Ports – PPP
A ControlWave-series controller’s IP addresses are tied to its communication ports. There
are two types of IP ports supported in ControlWave: Ethernet and Point-to-Point Protocol
(PPP). This section covers the PPP type.

Setting Up A Serial IP Port (PPP)

When the default switch is OFF, serial port COM1 on the ControlWave has an IP address of
1.1.1.1, and is configured for the serial point-to-point protocol (PPP). In any other
configuration, PPP must be configured by the user.

Any of the serial COM ports can be configured as Serial IP (PPP) ports.

This configuration is performed from the Ports page of the Flash Configuration Utility.

1. Choose the ControlWave port you want to configure.

Specify the baud rate for the port; this
must match whatever baud rate you
specify for the PC port.

Choose “PPP”

Specify an IP mask
for this port

Specify an IP
address for this
port

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

310 IP Ports - PPP

Note

If you will be defining more than one IP port (whether PPP or Ethernet) for this controller, it
is strongly recommended that each IP port reside on a separate IP network. If you define
more than one IP port on the same network, only one of the ports will be able to send
messages; the other port(s) will only be able to receive messages.

2. Choose 'PPP' from the "Mode" list box.

3. Choose the desired baud rate from the Baud Rate field. This must match the baud
rate configured for whatever software you are using at the PC.

4. Either PAP or CHAP security can be configured on PPP lines. See the Security
section in this manual for more information.

5. Specify an IP address in the IP ADDR field, and specify an IP MASK for this port. IP
addresses must be unique within your network. Conversely, IP masks are typically
the same for all devices in the same portion of a network. Together, the IP Address
and IP Mask define a range of addresses to which this port can send messages.
(See Recommended Ranges for IP Addresses in this manual for more information.)

Basically, a non-zero value in any of the IP MASK fields indicates that the
corresponding IP ADDR field is specifying a portion of the IP address which must
be identically matched with every destination IP address to which this port will
send messages. A zero value in any of the IP MASK fields means that this
communication port can send messages to addresses in which any integer from (0
to 255) is considered valid for that corresponding portion of the destination IP
address.

In the figure on the previous page, the IP ADDR for the port is 10.1.1.1 and the IP
MASK is 255.0.0.0. This means that this port can send to any address in the format
10.x.y.z where x, y, and z, are any integer from 0 to 255. So, 10.43.127.76 and
10.84.35.93 would be valid destinations, but 5.1.1.1 would not because the 255
in the IP MASK indicates that the corresponding portion of the IP ADDR MUST be
10.

6. If this PPP port uses PAP or CHAP protocol, choose whether the port is a PAP/CHAP
server or a PAP/CHAP client, and select the appropriate protocol. See Security
Protocols for an explanation of PAP and CHAP.. If the PC workstation is a server,
you must configure the port as a client.

7. Click [Write to RTU].

8. Reset the controller to activate the new port configuration.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Routes 311

IP Routes
The IP Routes page is accessible from the "IP Routes" tab in the Flash Configuration Utility.

Beginning with ControlWave firmware CWP02.0, multiple gateways (routers) can
optionally be configured for a particular network to support dynamic IP routing.

A dynamic IP route is considered to be a range of destinations (IP addresses) and the
gateways used to reach them.

Gateways are essentially routers (devices which have IP connections on two or more
separate networks). As such, they provide a means for sending messages from one
network to another. You might want to think of gateways as entrance ramps to a highway.

Up to 4 gateways can be configured to reach a particular destination address range, and
each controller can have up to 16 destination address ranges specified.

Since messages can be sent to a particular route by a choice of more than one gateway,
the system can attempt transmission through one gateway, and if it fails, traffic will be
sent through one of the other gateways. This provides a degree of fault-tolerance in the
system (see the following figure).

GATEWAY

GATEWAY

GATEWAY

GATEWAY

10.0.0.202

10.0.0.201

10.0.0.203

10.0.0.200

172.16.0.1

172.16.0.2

172.16.0.3

172.16.0.4

172.16.0.5

172.16.0.6

172.16.0.200

172.16.0.201

172.16.0.202

172.16.0.203

USING MULTIPLE GATEWAYS FOR FAULT TOLERANCE

ControlWaveControlWave

ControlWaveControlWave

ControlWaveControlWave

ControlWaveControlWave

ControlWaveControlWave

ControlWaveControlWave

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.6

Network A Network B

If one gateway fails, message traffic between
networks 'A' and 'B' can be re-routed through
one of the other three gateways.

Hardware
failure

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

312 IP Routes

The system can test a particular path by using a specified ping address. The ping address
could be the gateway itself, or it could be the destination controller.

The actual re-routing occurs only after a specified timeout has expired. (See the IP
Parameters section in this manual for details.)

The 'IP Routes' page displayed, below, shows a typical configuration for the network
depicted on the previous page. (This configuration would be for a controller belonging to
network "A" as shown on the previous page.)

After you have completely defined a particular route, you can click on the next route
number in the box in the upper left corner, and the various fields will be cleared to allow
you to enter information on the next route. A total of 16 separate routes can be defined.

Route x Destination

IP Address: This IP Address together with its IP Mask define a range of destination IP
addresses on this particular route.

IP Mask: Any non-zero value in the IP Mask specifies a portion of the IP address
which must be identically matched with every IP address on the
destination route.

Check Primary: In the event re-routing has occurred due to a failure, checking this
selection will force a re-test of the first gateway (or ping address) to see if
the failure has been corrected, thereby allowing traffic to return to its
normal path via the first gateway. This might be particularly important if
the secondary route is slower than the primary. If this is NOT checked,
traffic will continue to use the secondary route, unless it too fails.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

IP Routes 313

Route x Gateways:

IP Address 1 to IP Address 4: These must be IP addresses for gateways which are in the
same network as the current controller. During normal
operation, the gateway 1 address would be used, but if there
is a failure along the path defined for that gateway, an
attempt will be made to re-route traffic to the next gateway
(IP address 2). If that second gateway cannot be used, then
the next would be used, and so on, up to the fourth gateway.
If the last configured gateway fails, an attempt will be made
to use the first gateway, and so on.

Route x Pings:

IP Address 1 to IP Address 4: For each of the four possible paths of a given route, the user
can optionally define a ping address for testing the route.
Typically, the ping address would be the IP address used by
the gateway connection in the other network. Alternatively,
the ping address could be one of the destination controllers
in the other network; this might be done to check for failure
of one of the controllers in a redundant pair.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

314 IP Routes

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Libraries 315

Libraries
A library is a collection of functions and function blocks,which can be used in a
ControlWave Designer project. There are two types of libraries: firmware libraries and
user-created libraries.

Firmware libraries include functions and function blocks which are defined in the internal
system firmware of the ControlWave controller. They have the file extension, *.FWL, and
are loaded automatically when you create a project using the ControlWave template. Two
examples of firmware libraries are the ACCOL3 library, which includes all of the ACCOL3
functions and function blocks, and the PROCONOS library, which includes various KW
standard function blocks, and IEC 61131 standard function blocks. NOTE: For information
on the various functions and function blocks in the ACCOL3 and PROCONOS libraries,
please consult the online help in ControlWave Designer.

User libraries include functions and function blocks, which you have created yourself, for
some application-specific purpose. User created function blocks are made by combining,
in some logical way, functions and function blocks that already exist, typically from the
ACCOL3 or PROCONOS firmware libraries. User libraries have a file extension of *.MWT,
and can be re-used in any ControlWave project, by inserting the library in that project.

Creating a Library of User-defined Function Blocks

Note

For information on creating user-defined function blocks (which you must do before you
can create a user library) see Function Blocks - Creating in this manual.

1. Choose an existing project (*.MWT file) which includes the user-defined function
blocks you want as part of your user library. If desired, rename that project to reflect
the name you want for your library. In this case, we have named our library
‘My_own_library’.

2. Open whichever project you want to include the library in. Right click on the
“Libraries” icon and choose “InsertUser Library” from the pop-up menus.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

316 Libraries

3. Select the MWT file from step 1. This is called announcing the library.

4. The next time you call up the Edit Wizard, the library should appear as a group,
from which you can select your user-defined function blocks.

Manually Including the ACCOL3 Firmware Library in Your Project

Note

If you are unsure whether the ACCOL3 Firmware Library is part of your project, look in the
“Libraries” folder in your project tree. If you see ‘Accol3’ in the tree, you already have the
ACCOL3 Firmware Library included. You can then skip this section.

Note

If, when you first opened your new project, you chose the ControlWave template, the
ACCOL3 firmware library (which includes the ACCOL3 function blocks) was automatically
included in your project. You can then skip this section.

If you did not choose the ‘ControlWave’ template when you
opened your new project, and you want to use ACCOL3
function blocks as part of your project, you must include
the ACCOL3 Firmware Library.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Libraries 317

Note

All parameters for the function blocks in the ACCOL3 Firmware Library are forced by the
system to be RETAIN variables.

To do this, right click on
“Libraries” in the project tree,
and choose “Insert” from the
pop-up menu. The Include
Library dialog box will appear.

Change the “Files of type” list
box to show ‘Firmware Library
(*.fwl)’.

Go to the folder, ‘\OpenBSI\Mwt\Plc\FW_lib\Accol3\’ and click on ‘Accol3.fwl’ in the list
box, then click on the [Include] button.

The ACCOL3 Firmware library will now appear in the project tree, under “Libraries”.

The ACCOL3 library
now appears in the
project tree

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

318 Libraries

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Memory Usage 319

Memory Usage
This section explains the terminology used in the discussion of ControlWave memory, and
explains the differences between the different kinds of memory used in the ControlWave
series of controllers.

Note

This section describes the memory for a standard ControlWave first. The internal memory
arrangement and usage for other ControlWave products (Micro, XFC, EFM, GFC, Express,
CW_10, CW_30, CW_35) are different. Variations between the different products are
discussed near the end of this section.

Some Background - What is Memory?
As a ControlWave controller runs its program(s), the controller’s central processing unit
(CPU) executes each instruction in the program. These instructions, and the data
associated with them, are read from, and/or written to, physical locations within computer
chips in the controller. These physical locations are referred to as memory. They are similar
to memory you might have in your personal computer at home. Each memory location
also has a numerical identifier called an address. The address is used internally to locate
data stored in memory.

The amount of memory in your controller varies depending upon the purchased memory
options.

Information in memory is stored as a series of 0s and 1s; each '0' or '1' is referred to as a bit.
These bits are grouped together into chunks of 8 which are called bytes. (Two bytes
together are called a word.) Each byte can hold a character of data. A group of 1024 bytes
is referred to as 1K. 1024K is referred to as a Megabyte or 1MB.

What is Downloading?
Downloading is the process of transferring the compiled control strategy from your PC
workstation, into the memory of the ControlWave controller. Additionally, you can also
download the compressed project source code (*.ZWT).

In ControlWave Designer, you create a control strategy that directs the controller to
perform a system-specific job and save that strategy as a ControlWave project. The project
is compiled and the resulting computer code is then downloaded from the PC into the
ControlWave's memory using either ControlWave Designer or the OpenBSI Downloader.

When downloading the project directly from within ControlWave Designer, you have a
choice of downloading the project directly into the dynamic memory, or downloading into
the flash memory area (this is called downloading the bootproject). When downloading
from the OpenBSI 1131 Downloader, only the bootproject may be downloaded.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

320 Memory Usage

A project can only execute from the dynamic memory area, but is lost in the event of a
power failure or a program watchdog condition.

Because dynamic memory is not saved in these situations, a copy of the project is typically
stored in the bootproject area of flash memory. The bootproject cannot execute from
inside the flash memory area, but is automatically copied into the dynamic memory area
during system re-boot (either from a power restoration after power failure or a restart
following program watchdog condition).

Typically, you download a project into the dynamic memory area only during system
development and debugging. Once a control strategy is finalized, and has been tested
fully, it should be downloaded as the bootproject into flash memory.

Instructions for downloading from within ControlWave Designer are included in the
section Downloading with ControlWave Designer in this manual. Instructions for
downloading using the OpenBSI Downloader are included in Chapter 7 of the OpenBSI
Utilities Manual (part number D301414X012).

Types of Memory in the ControlWave Process Automation
Controller (CW PAC)

 The system supports four types of memory which are of interest to the user:

 Boot flash

 Synchronous Dynamic Random-Access Memory (SDRAM)

 Static Random-Access Memory (SRAM)

 Flash

Note

In addition to the memory types listed here, the CPU contains its own CMOS RAM for the
real-time clock and configuration data. None of this memory can be directly used by your
ControlWave program(s).

The following table details the types of information stored in these types of memory.

Type of Memory Amount Currently
Supported

Usage

Boot Flash 512K Soft switch values.
 User account and port configuration parameters.
 Archive File Definitions
 Audit Trail Configuration Parameters

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Memory Usage 321

Type of Memory Amount Currently
Supported

Usage

SDRAM 64 MB The running control strategy (ControlWave project) and the
current values of any variables NOT marked as RETAIN, or
stored in the Static Memory area.

 A copy of the system firmware (loaded from FLASH into
SDRAM to allow for faster system execution).

Notes:
 The project and system firmware can ONLY execute in

SDRAM.
 Anything stored only in SDRAM is lost in the event of a

watchdog failure or power failure.

SRAM 2 MB Current status of output variables in RETAIN.
 Historical data (Audit Trail / Archive) (Optional - most users

choose to store this information in FLASH instead)
 Current values for any variables marked as 'RETAIN'

including the variables associated with ACCOLIII function
blocks.

 Values for variables manually assigned to the Static Memory
Area (beginning with addresses %3.100000). The static
memory area is only initialized at a system cold start
(discussed later).

 Pending alarm messages (alarms which have not yet been
reported to the user)

Notes:
 So long as switch SW1-5 is set ON, and the backup battery

continues to operate, data stored in SRAM is retained in the
event of a system warm start. This memory is initialized,
however, if switch SW1-5 is set OFF, or if the backup battery
fails.

Flash Memory 32 MB

The ControlWave system firmware (firmware uses up to 4MB). The
remaining memory can hold the following:

 The ControlWave bootproject
 The compressed ControlWave source code file including

graphical elements of the project (*.ZWT)
 Historical data (Audit Trail / Archive)

Notes:
 The flash memory area is unaffected by a power failure or

watchdog condition.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

322 Memory Usage

System Firmware

Executing PROJECT
 incl. all variables
not stored in SRAM BOOT PROJECT

FLASH Memory - 32 MB

Zipped copy
of project incl.
graphics, etc.
(*.Zwt)

Historical Data
(Audit / Archive)

Historical Data
(Audit / Archive)

Static RAM - 2 MB

Static Memory
Area - Starts
at address
%3.100000

Unreported
(Pending) Alarm
Messages

RETAIN Area - All
variables marked as
"RETAIN" in project

BOOT FLASH
512 K

Audit/Archive Def

Soft Switches
User Accounts

Port Config.

Copied on
re-start

Loaded
at the
factory

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Memory Usage 323

What happens in the event of a power failure or the power
switch is turned off?

If the ControlWave loses power, or the power switch is turned off:

 The synchronous dynamic RAM (SDRAM) area is cleared. The executing control
strategy, and its running data are lost.

 If the SRAM Control Switch (SW1-5) is set to ON and the backup battery for the SRAM
remains good, data is preserved. If you have made edits to your project that directly
affect variables marked 'RETAIN', the RETAIN area may be erased when the system
restarts, because the structure of the RETAIN area has been modified. Other areas of
SRAM (such as the Static Memory Area or historical data) are not erased.

 Flash and BOOT FLASH memory will be preserved.

The controller will attempt to restart immediately whenever power is restored. (See What
happens on restart after a power failure or watchdog?).

What happens in the event of a watchdog condition?
If the ControlWave suffers an internal program error (but power remains good) which
causes the executing control strategy to halt (called a watchdog condition):

 The synchronous dynamic RAM (SDRAM) area is cleared. The executing control
strategy, and its running data are lost.

 Any analog I/O boards which are configured with hold values will hold their last value
at the output pins, provided that the I/O board still has power. NOTE: Only certain
analog I/O boards support this feature.

 If the SRAM Control Switch (SW1-5) is set to ON, and the backup battery for the Static
RAM (SRAM) remains good, data is preserved. If you have made edits to your project
that directly affect variables marked 'RETAIN', the RETAIN area may be erased when
the system restarts, because the structure of the RETAIN area has been modified.
Other areas of SRAM, i.e. the Static Memory Area, historical data, etc. will not be
erased.

 Flash and Boot flash memory is preserved.

 The Watchdog hardware relay/switch circuitry will be activated (this can be wired to
an external device (klaxon, alarm bell, etc.) to indicate that the controller has entered
a watchdog condition.

The controller will attempt to restart immediately after entering the watchdog state. (See
What happens on restart after a power failure or watchdog?).

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

324 Memory Usage

What happens on restart after a power failure or watchdog?
When a ControlWave controller first starts up, it first performs various diagnostic checks
("is the power stable?" etc.). The results of these checks are displayed on the power-on self
test (POST) display. Internal system devices are then initialized.

Under normal operation (no system firmware upgrade needed) the system then decides
whether it can perform a system warm start or a system cold start.

Note:

System firmware is loaded into the ControlWave before it leaves the factory. If you need to
perform a field upgrade of system firmware (new version released with new features, or
update needed to correct some problem), set switch SW3-3 on before powering on the
ControlWave. The ControlWave then enters recovery mode and shows “86” on the display.
You can then load system firmware (for directions, refer to the ControlWave Process
Automation Controller Instruction Manual, part number D301381X012).

System warm start or system cold start

A system cold start occurs when the SRAM control switch (SW1-5) is set to OFF or the
backup battery for the SRAM has failed. In either of these cases, the entire static RAM
(SRAM) area is erased. Any other situation is referred to as a system warm start.

Load System Firmware, Start Communications

Once the system warm start or system cold start completes, the system firmware is copied
from flash memory into SDRAM, because firmware can only execute from SDRAM.

Next, the communication system starts. Soft switches are read, and the communication
ports are activated.

Next, the ControlWave checks to see if there is a project in the bootproject area of flash
memory. If no project is present, the ControlWave shows "00" on its display and waits for
you to download a project. If a project is present, the bootproject will be copied into
dynamic memory SDRAM to allow it to be executed. The system then determines whether
to perform an application warm start or an application cold start.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Memory Usage 325

Application Warm Start or Application Cold Start

An application warm start means that the project in
SDRAM starts from the beginning of its cycle, using saved
values for variables marked "RETAIN" from the static RAM
(SRAM). Application warms starts are performed whenever
there is no version mismatch between the project, and the
retain values, and there was no system cold start.

If a system cold start occurred (because of loss of battery
power to the SRAM or the switch SW1-5 was set to off), all
data in static RAM is gone, so an application cold start must
be performed.

In this case, the project in SDRAM is started from the beginning, and all variables are set to
their initial values.

You can also perform application warm starts and cold starts on demand after
downloading a project from within ControlWave Designer by clicking the [Cold] or [Warm]
buttons in the RTU Resource dialog box.

The figure on the next page shows the start-up sequence of the ControlWave controller
following a watchdog or restoration of power.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

326 Memory Usage

NO

NO

System performs BIOS
Power On Self Test (POST)
(Indication to user: POST codes
appear briefly on display).

Load system fiirmware as
described in Chapter 2 of
hardware manual (CI-ControlWave)

Enter Recovery Mode and
wait for system firmware to
be loaded via Hyperterminal
(Indication: An "86" appears
 on the display)

System checks if power is
stable? (indication to user:
 PWRGOOD
LED on Power Supply
Sequencer Module turns
GREEN)

Is there a valid PROJECT
in the BOOT PROJECT
area of FLASH?

Is the SRAM Control switch (SW1-5)
set to OFF?

Has the battery power for the SRAM
failed?

Is the unit set for recovery mode?
(Switch SW3-3 in ON position.
Should only be used when user
wants to perform a field upgrade
 of system firmware)

System checks if Master Clear
(MC) is ON, i.e. are voltage levels
 within acceptable limits?
(indication to user: MC LED on Power
Supply Sequencer Module is briefly
RED as voltage levels go from
 outside limits into acceptable range.)

YES

Power switch
turned from "O"
to "1" by the user

Controller watchdog failure
and restart is attempted
(Switch SW1-1 must be set
to ON - Watchdog enable)

System power is
restored after a
power failure

OR OR

YES

Initialize internal system devices
(Real Time Clock, Math co-processor, etc.)

NO

YES

SYSTEM
COLD START

Initialize entire Static RAM area
(ALL data in SRAM is erased!)

NO

SYSTEM
WARM START

Copy System Firmware From FLASH
into SDRAM (Allows for fast execution)

Start Communications System
o Read Soft switches
o Activate Serial Port(s)
o Activate Ethernet Port(s)

Wait for user to download
a PROJECT.

(Indication: "00" appears
 on display)

NO

System copies BOOT
PROJECT from FLASH
into SDRAM

YES

Can an application
warm start be performed?

(i.e. NO SYSTEM COLD
START, there is saved data
in SRAM, and there is no
version mismatch between
the data in SRAM and BOOT
PROJECT)

See Figure 1-7
in CI-ControlWave
for location of Status LEDs
on Power Supply
Sequencer Module

See Table 3-3 of
CI-ControlWave
for POST status
codes

See Table 2-2 of
CI-ControlWave
for info. on this switch

See Table 1-2 in
CI-ControlWave
for info. on switch
SW1-5

See Chapter 7 in D5081
or Chapter 11 in D5088
for information on downloading

The PROJECT is
started from the beginning,
using any values marked
as "RETAIN" that were
stored in SRAM

APPLICATION WARM START

All variables in the RETAIN
area of SRAM are set to their
initial values, and the
PROJECT is started from
the beginning.

APPLICATION COLD START

YES

NO

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Memory Usage 327

Variations when using ControlWave MICRO/EFM
The main difference between the memory configuration in the ControlWave and the
ControlWave MICRO and EFM is that the flash memory in the MICRO is faster, so system
firmware that would have been executed in SDRAM executes in flash memory instead.

 Executing system firmware resides in flash memory; it is NOT copied into SDRAM. (The
control strategy itself does execute in SDRAM.)

 The SRAM Control Switch is SW2-5.

 The Recovery Mode Switch is SW1-3.

 The Watchdog Circuit Enable Switch is SW2-1.

 The ControlWave Micro and ControlWave EFM have 16MB flash instead of 32MB in the
ControlWave PAC.

System Firmware

Executing PROJECT
 incl. all variables
not stored in SRAM BOOT PROJECT

FLASH Memory - 16MB

Zipped copy
of project incl.
graphics, etc.
(*.Zwt)

Historical Data
(Audit / Archive)

Historical Data
(Audit / Archive)

Static RAM - 1 or 2 MB

Static Memory
Area - Starts
at address
%3.100000

Unreported
(Pending) Alarm
Messages

RETAIN Area - All
variables marked as
"RETAIN" in project

BOOT FLASH
512 K

Audit/Archive Def

Soft Switches
User Accounts

Port Config.

Copied on
re-start

Loaded
at the
factory

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

328 Memory Usage

Variations when using ControlWave GFC/GFC-CL, XFC,
Corrector, Express or ExpressPAC

The main difference between the memory configuration in the ControlWave and these
units is that the flash memory in these units is faster, so system firmware executes in flash
memory. Also, the project executes in SRAM, because there is NO SDRAM in these units.

 Executing system firmware resides in FLASH memory.

 The Control strategy itself executes in Static RAM (SRAM). On restart, the control
strategy would be lost.

 The SRAM Control Switch for these units is SW2-5, except for the XFC which uses SW1-
5.

 The Recovery Mode Switch is SW1-3 for these units except for the XFC which uses;
SW1-9 and 10.

 The Watchdog Circuit Enable Switch for these units is SW2-1, except for the XFC which
uses SW1-1.

System Firmware

BOOT PROJECT

FLASH Memory - 8MB

Zipped copy
of project incl.
graphics, etc.
(*.Zwt)

Historical Data
(Audit / Archive)

Historical Data
(Audit / Archive)

Static RAM - 2 MB

Static Memory
Area - Starts
at address
%3.100000

Unreported
(Pending) Alarm
Messages

Executing PROJECT

RETAIN Area - All
variables marked as
"RETAIN" in project

BOOT FLASH
512 K

Audit/Archive Def

Soft Switches
User Accounts

Port Config.

Copied on
re-start

Loaded
at the
factory

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Memory Usage 329

Variations when using ControlWave_10/ _30/ _35 (CW_10,
CW_30, CW_35)

Memory in the CW_10, CW_30, and CW_35 is very similar to the ControlWave Process
Automation Controller. There are some differences, however:

 There is less static RAM (1 MB of SRAM instead of 2MB in the ControlWave).

 There is less flash memory (16 MB instead of a maximum of 32MB in the
ControlWave).

 The SRAM Control Switch is SW2-5.

 The Recovery Mode Switch is SW1-3.

 The Watchdog Circuit Enable Switch is SW2-1.

Synchronous Dynamic RAM
(SDRAM) - 4 MB

System Firmware

Executing PROJECT
 incl. all variables
not stored in SRAM

Executing System
Firmware - up to 2MB
(copied on startup
 from FLASH)

BOOT PROJECT

FLASH Memory - 16MB

Zipped copy
of project incl.
graphics, etc.
(*.Zwt)

Historical Data
(Audit / Archive)

Historical Data
(Audit / Archive)

Static RAM - 1 MB

Static Memory
Area - Starts
at address
%3.100000

Unreported
(Pending) Alarm
Messages

RETAIN Area - All
variables marked as
"RETAIN" in project

BOOT FLASH
512 K

Audit/Archive Def

Soft Switches
User Accounts

Port Config.

Copied on
re-start

Copied on
re-start

Loaded
at the
factory

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

330 Memory Usage

Memory Allocation Issues
The ControlWave Process Automation Controller contains 64 MB of SDRAM. Of this 64 MB,
approximately 700 KB is required to hold the system firmware (the internal code which
tells the CPU how to run programs), and another 300 KB is required for system overhead.

When all other things are taken into account, approximately 62.7 MB of SDRAM are
available for your ControlWave project, and its data. The only fixed restrictions on how you
use the remaining 62.7 MB are:

 No program organization unit (POU) can exceed 640 KB. (Prior to OpenBSI 5.7 Service
Pack 2, this limit was 64K.)

 There can be no more than 512 POUs in the project.

 A small amount of free-space (between 64 KB and 128 KB must be maintained).

Determining POU Size at Compilation Time
As previously noted, any POU exceeding 640 K bytes will not work. When you compile your
project using the Make command, you can determine the approximate size of individual
POUs by calling up the "Infos" tab in the Message Window and multiplying the number of
bytes shown for a POU by a platform-dependent factor. For standard ControlWave units
(using the IPC processor) use a factor of 1.3. For other units (using the ARM processor) use
a factor of 1.5. Note that this is just an approximation, the actual size may vary. Any POU
exceeding the 640 Kb size limit will either need to be removed or re-written so that it does
not exceed the 640 Kb limit.

Resolving “Not Enough Memory” Messages
If you encounter error messages related to not having enough memory after downloading
the project into the ControlWave controller (or into the I/O Simulator), your project is too
big as currently configured. There are a few things you can do to reduce the size of the
project, so that it may fit into the available SDRAM space:

Find out how much SDRAM your project is using, so you know how much you need to get
back

When you download a project into the ControlWave, or
into the I/O Simulator, statistics are maintained as to
how much memory is free, after the download. To view
this information, click [Info] in the RTU_RESOURCE
dialog box.

Click here to obtain statistics on
memory usage.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Memory Usage 331

The ‘Resources’ tab displays the amount of memory available:

This number indicates the amount of
SDRAM (or SRAM if the unit does not
support SDRAM) available to run
program POUs.

This is the amount of RETAIN memory
available in SRAM (static RAM).

This is the amount of SDRAM (or SRAM
if the unit does not support SDRAM)
available for anything other than your
program POUs such as communication
buffers, PDD, system firmware.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

332 Memory Usage

The POUs tab displays the amount of memory used, including the total program size, and
the amount of data used for both RETAIN and non-RETAIN variables.

Note:

Certain function blocks are always included in memory, even if you don’t use them in your
project. These include counter function blocks (CTD, CTU, CTUD) and timer function
blocks (TOF, TON, TP).

Number of bytes used by code for
particular functions, function blocks

Total program size (in bytes). NOTE:
May not be equal to the sum of
individual lines due to system
overhead.

Number of bytes of data (both RETAIN
and non-RETAIN) used by the
variables for these functions/function
blocks.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Memory Usage 333

If possible, reduce the number of variables marked “PDD”

Checking the “PDD” box for a particular variable stores the variable’s name in memory,
which allows allow external programs (such as OpenBSI’s DataView) to collect that
variable.

If you check “PDD” for every variable (just in case you might want to collect it at some later
time), this forces all of those variable names to be stored in memory. If you have thousands
of variables marked for PDD, this can result in a shortage of available memory.

Examine the variables that you have marked for “PDD” collection
and see if there are some you could de-select.

Initialize LIST function blocks via DB_LOAD, if possible

If you have a large number of LIST function blocks, containing thousands of list elements,
which you initialize within the project, you should consider performing the initialization
using the DB_LOAD function block. DB_LOAD allows much of this information to be stored
in a text file, external to the project, thus reducing the amount of memory used. For more
information on DB_LOAD, see the ACCOL3 help files in ControlWave Designer.

Adjust Application Parameters for Memory

Application parameters for memory are changed from the ‘Application Parameters’ page
in the Flash Configuration Utility.

Important

Users should exercise caution when modifying the application parameters for memory.
Making a significant change to these parameters without understanding how the
parameters interact could actually reduce the amount of available memory, even though
you have increased the values of the parameters. For more detailed information about the
individual application parameters, see the Application Parameters section earlier in this
manual.

Before changing any of the application parameters for memory, you should first check
how much memory you have free (from the ‘Info’ option of the RTU_RESOURCE dialog
box.)

If you have little or no “Prog. Mem” free, you should increase slightly the “Prog RAM” value
in the Application Parameters page of the Flash Configuration utility. Changes should be
incremental; don’t set “Prog RAM” too high - its value is fixed on startup. If you set it
significantly larger than it needs to be, all the extra space will be wasted because it will be
reserved for the program, even if the program isn’t large enough to make use of the space.
That unused space will be missing from the available memory pool for the data, which
could result in memory errors. If, however, you set the value for “Data RAM” to be too
large, the system will reduce it, proportionally, as needed.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

334 Memory Usage

Notes about Flash Files and Folders

Flash memory in the ControlWave uses a linear file structure. Because of this,
the folders are used internally just as path names for files. If you were to use a
File Transfer Program (FTP) to examine the contents of the ControlWave’s flash
memory, you would see what appear to be multiple folders sharing the same
name. Don’t be concerned by this; they are not duplicate folders, just multiple
references to the same folder. The picture, below. shows this duplication.
Several folders share the same name; in reality these are simply unique
references to the same folder for each file in the folder.

If you set this value to a number that
is significantly larger than you need,
you will waste the excess amount.

If you set this value too large, the
system reduces it proportionally, as
needed.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Modbus Configuration 335

Modbus Configuration

Configuring Your ControlWave Controller as a Modbus
Master Device

Important

This example assumes you are familiar with Modbus concepts.

Modbus is an industry-standard communications protocol used by a wide variety of
controller and PLC manufacturers. By configuring your ControlWave unit as a Modbus
Master device, you can read/write coil status, 16-bit register, or 32-bit register information
from a PLC serving as a Modbus Slave, and store that data in variables or structures in your
control strategy program.

Important

Modbus communication requires that you include the CUSTOM function block in an
executing task. Modbus communication requests/responses and processing only occur
when the CUSTOM function block executes. Also, you must have a port configured for
Modbus communication, before you begin.

Note

Both serial Modbus communication and Open Modbus (IP) communication is supported.
Serial Modbus communication utilizes the serial ports, Open Modbus (IP) communication
utilizes the IP ports. For help on configuring a communication port for Modbus, see the
Modbus Ports section.

Step 1. Insert the CUSTOM function block in your program.

The program you choose must have been assigned to an executable task. The system will
attempt to perform Modbus communications at the rate specified for the task containing
the CUSTOM function block.

Step 2. Configure the CUSTOM function block for Modbus
Master communications.

The following table describes the various parameters of
the CUSTOM function block, as it is used in this
particular example:

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

336 Modbus Configuration

Parameter Name Type of Variable Description
ioabInit BOOL

input/output
variable (NO constants
allowed)

Init - This parameter should be set to TRUE any time a configuration
change has been made to any of the input parameters (except for
changes in the IOList discussed later). This re-initializes the function
block with the new configuration data. Once the re-initialization is
complete, this parameter will automatically be set to FALSE. NOTE:
The very first time the function block is executed, this parameter is
automatically set to TRUE in order for initial configuration parameters to
be set.

idiRepeat DINT
input

Repeat - This optional parameter specifies, in milliseconds, the time
which must expire before another attempt will be made to
send/receive a Modbus message. So, for example, if 0 is entered as
the repeat value, an attempt will be made to send/receive a Modbus
message every time the CUSTOM function block executes (provided
that the previous message has completed). If 10000 is entered as a
repeat value, the executing CUSTOM function block will attempt to
send/receive a MODBUS message only if 10 seconds have elapsed
since the last Modbus message request.

iiMode INT
input

Mode – Specifies the mode in which the Custom Block operates. Valid
values are:
 4 (Modbus Master – serial) or
 52 (Open Modbus Master (IP)).

iiCustomlist INT
input

Custom List – Specifies the number of a LIST function block which will
hold additional configuration parameters. See Step 3. Set Up the
Custom List later in this example.

iiComPort INT
input

Communication Port – For serial Modbus only: Identifies the port to
be used for communication with Modbus slaves:
1 = COM1:, 2 = COM2:, etc.

iiSlaveAddress INT
input

For Serial Modbus: Slave Address: This parameter specifies the
address of the Modbus slave. Slave addresses may range from 1 to
247. A slave address of 0 is used to generate a broadcast message.
Read functions (Function Type 1 through 5) are not valid for a
broadcast message.
For Open Modbus (TCP/IP) Unit Number – A value which specifies the
unit number of the slave device to match the transactions against.
This unit number is included in the Modbus / TCP message prefix.

idiTimeout DINT
input

Timeout - This parameter specifies, in milliseconds, the amount of
time the system waits for a response message from the Modbus
slave. If you enter 0, a default value equivalent to 3000 milliseconds
will be used. Otherwise, the value can range up to 65535
milliseconds.

isIPAddress STRING
input

IP Address of MODBUS Slave - For Open Modbus only: Specifies the
Open Modbus slave device's IP address, such as 120.0.0.13.

odiStatus DINT
output

Status - This output parameter reports a status / error code which
indicates the status of the CUSTOM function block execution. This
parameter is only updated at the completion of the CUSTOM function
block execution. For a complete description of error and status codes
for all ACCOLIII function blocks, see the on-line help.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Modbus Configuration 337

Parameter Name Type of Variable Description
oudDoneCount UDINT

output
Done Count – This is incremented by 1 whenever a Modbus
communication message has been read/written and processed. This
parameter is only updated at the completion of the CUSTOM function
block execution. To determine whether or not the communication
transaction was successful, check the Status.

obDoneFlag BOOL
output

Done Flag – This is set to TRUE whenever a Modbus communication
message has been read/written and processed. This parameter is only
updated at the completion of the CUSTOM function block execution.
To determine whether or not the communication transaction was
successful, check the Status.

Step 3. Set up the Custom List

The custom list defines various additional parameters which govern Modbus Master
operation. Insert a LIST20 function block, and configure its entries as follows:

Note

Variables in the list are automatically interpreted as type INT. This allows other types
(REAL, DINT, SINT) to be used without the user needing to perform type conversions.

Parameter Variable type
(recommended)

Description

iiListnumber INT List Number – This entry must match the iiCustomlist parameter value
on the CUSTOM function block.

ianyElement1
(Required)

INT Function Code - This entry specifies the MODBUS Function Code. In
some cases the Function code requires an offset of 1000 to make the
transmitted address correct –see Coil/Register Address. The entries
below show the numbers to enter for a particular function:

Value Function
1 Read Coil Status

2 Read Input Status
3 Read Holding Registers
4 Read Input Registers
5 Force Single Coil

6 Preset Single Register
7 Read Exception Status
8 Force Multiple Coils
9 Preset Multiple Registers

ianyElement2
(Required)

INT Coil / Register Address – This entry specifies the starting address for
coil, input, or register operations. The address transmitted to the Slave
will be one less than the value specified here unless the Function code
has an offset of 1000. For example, the address 7031 will be sent as
7030 for Function code 3, and 7031 for Function code 1003.

ianyElement3 INT Data Count – A value specifying the number of coils, inputs, or

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

338 Modbus Configuration

Parameter Variable type
(recommended)

Description

(Required) registers to be read. The value can range from 1 to 2000 for coils and
inputs, 1 to 125 for 16-bit registers and 1 to 62 for 32-bit registers.

ianyElement4
(Required)

INT I/O List Number – A value specifying the list which will hold the coil or
register data to be sent or received.

ianyElement5
(Required)

INT I/O Array – RESERVED FOR FUTURE USE. Even though it is not used, it
must be configured with a variable, which is set to 0.

ianyElement6
(Required)

INT Data Size – This value specifies the data size to be used when accessing
Holding Registers via function codes 3, 6, and 9. This option does not
affect the operation of any other function codes. If signal 6 is unwired a
default value is 3 is used. Valid values are:
1 = use single bit register data
2 = use 8-bit register data
3 = use 16-bit integer register data (default)
4 = use 32-bit integer register data with each double integer value

taking up one register address.
5 = use 32-bit floating point data with each floating point value taking

up one register address. In this mode, the selection is also used on
Preset Single Register and Preset Multiple Register commands.

6 = Use 32-bit integer register data with each double integer value
taking up two register addresses.

7 = Use 32-bit floating point data, with each floating point value taking
up 2 register addresses. In this mode, the selection is also used on
Preset Single Register and Preset Multiple Register commands.

ianyElement7
(Optional)

INT Bit Order - Determines the ordering of bits in a byte. Note: Unless
users have some special application requiring a different bit order, this
value should always be left at the default of 0.
If set to 0 (default), bit order within a byte is as follows:
 bit0 = lowest order coil
 : :
 bit7 = highest order coil.

If set to 1, bit order within a byte is as follows:
 bit0 = highest order coil
 : :
 bit7 = lowest order coil.

ianyElement8
(Optional)

INT Byte Order - Determines the order in which bytes are transmitted.
Note: Unless users have some special application requiring a different
byte order, this value should always be left at the default of 1.

If set to 1 (default) the high order byte is transmitted first.

If set to 0, the low order byte is transmitted first.

ianyElement9
(Optional)

INT Word Order - Determines the order in which words are transmitted.
Note: Unless users have some special application requiring a different
word order, this value should always be left at the default of 1.

If set to 1 (default) the high order word is transmitted first.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Modbus Configuration 339

Parameter Variable type
(recommended)

Description

If set to 0, the low order word is transmitted first.

ianyElement10
(Optional)

INT RTS/CTS Delay Time – This is an optional element used only in serial
MODBUS applications. It specifies a time delay. The time delay can
either be used to monitor for CTS being raised, or to delay transmitting
a message; the choice of how it is used is specified by the RTS/CTS
Delay Mode. The delay value can range from 0 milliseconds to 65,535
milliseconds.

ianyElement11
(Optional)

INT RTS/CTS Delay Mode- This is an optional value which specifies how the
RTS/CTS Delay Time is used. There are two choices for the mode.

0 = Message Transmit Delay Mode: After RTS is raised, a delay timer will

be started. (The length of the delay is determined by the value of
RTS/CTS Delay Time). No message will be sent until after this delay
has expired. The value of CTS does not affect the operation of this
mode. NOTE: In order for this mode to work, RTS-CTS must be
jumpered or the CTS must be received before the specified delay expires.

1 = Monitor For CTS Mode: After RTS is raised, the time delay will be

used as the maximum time to wait within which CTS must be
received. If CTS is received at any time before this delay expires, the
message transmission begins. If CTS is NOT received prior to the
expiration of the delay, no response will be sent, and an error will be
reported.

odiStatus DINT Status Codes – Status or error codes for this list. See on-line help for
details.

Step 4. Set up the I/O List

At this point, all that remains is to set up the I/O List which will hold the coil/register values
sent to and received from the MODBUS slave device.

The list identification number must match the I/O List Number entry in the Custom List,
and the length of the list must be greater than or equal to the number of variables needed
to hold the coil/register data.

Type conversions will automatically be performed on the coil/register data to ensure that
there is no conflict with the defined variables in the I/O List.

Configuring Your ControlWave Controller as a Modbus Slave
or Enron Modbus Slave Device

Your ControlWave controller can be configured to serve as a Modbus Slave or Enron
Modbus Slave device. The process is similar to that described in this previous example, i.e.
configuring a CUSTOM function block, defining a CUSTOM list, etc. Full instructions about
how to perform this configuration for Modbus Slave applications is included in the online
help of ControlWave Designer.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

340 Modbus Configuration

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Modbus Ports 341

Modbus Ports

Configuring Modbus Ports
To use Modbus protocol to communicate you must configure a Modbus port. Any
ControlWave-series controller’s serial port can be configured for Modbus
communications.

With communications active in LocalView or NetView, right-click on the ControlWave icon,
and choose RTURTU Configuration Parameters from the pop-up menus.

The Flash Configuration Utility opens. Click on the ‘Ports’ tab.

Mode Sets the operational mode for this ControlWave-series controller in
the Modbus network. Valid values are Modbus Master, ENRON
Slave, or GOULD Modbus Slave, depending upon the controller’s
role. Alternatively, you can select USER_MODE for certain user-
defined Modbus protocols.

Baud Rate Indicates the baud rate used by this Modbus protocol. The default
value for baud rate is 9600.

Bits Per Char Indicates the number of bits used in a character. If the "Message
Type" is 'ASCII', the number of bits is 7 or 8. The default is 8. If the
"Message Type" is 'RTU (binary)' this parameter is fixed at 8 bits.

Stop Bits Indicates the number of stop bits per character. The default is 1.

Parity Specifies either ODD, EVEN, or NONE for the parity. The default is

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

342 Modbus Ports

NONE.

Message Type Specifies the type of data to be transmitted. Valid values are RTU
(binary) or ASCII.

Modbus Store &
Forward

Activate Store &
Forward

Activates the Modbus Store and Forward feature (only for Modbus
slaves). Modbus store and forward accepts a message with a given
slave address, replaces that address with a different address, and
then retransmits the message. See the ControlWave Designer
online help for more information on configuring the Modbus store
and forward feature

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Reset ControlWave Utility 343

Reset ControlWave Utility
The Reset ControlWave Utility allows you to power cycle the ControlWave (turn it off and
then back on). This operation stops the project currently running in the ControlWave, re-
boots the ControlWave, clears its dynamic memory, and runs internal startup checks.

You can also restart the ControlWave project in “cold”, “warm,” or “hot” mode.

To reset a ControlWave:

1. Start the utility by clicking Start Programs OpenBSI Tools Debugging
Tools Reset ControlWave.

2. Click [Select] to choose the node name of the controller you want to reset.

3. Sign on to the unit by entering a valid “User Name” and “Password” combination,
then click [Reset Unit].

4. If signed on successfully, a prompt appears asking you to confirm that you want to
proceed with the reset. Click [OK] to proceed or [Cancel] to abort the operation.

5. Wait for the “Status” field to report completion of the reboot operation.

6. Click [Close] to exit the utility.

To re-start a ControlWave project:

1. Start the utility by clicking Start Programs OpenBSI Tools Debugging
Tools Reset ControlWave.

2. Click the [Select] button to choose the node name of the controller running the
project.

3. Sign on to the ControlWave by entering a valid “User Name” and “Password”
combination.

4. Choose one of the following options:

[Cold Start] Click to re-start the ControlWave project from the beginning,
using default values for all variables.

[Warm Start] Click to re-start the project from the beginning of the task cycle,
with saved values used for all RETAIN variables. (Only possible if Static RAM
preserved; i.e. not cleared by battery failure or switch setting.)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

344 Reset ControlWave Utility

[Hot Start] Click to stop the project, and then re-start the project from the
beginning of the task cycle.

5. Wait for the “Status” field to report “Restart Complete.”

6. Click [Close] to exit the utility.

Running RESETCW From the Command Line

You can also run the RESETCW program from the command line. The syntax for this is as
follows: RESETCW node_name command username password

where: node_name is the name of the ControlWave unit to be reset

 command is either ‘RESET’ to reset the unit, or a startup mode, as
described, above, which could be either ‘COLD’, ‘WARM’,
or ‘HOT’.

 username password is a valid username password combination for this node.

Example: RESETCW CW3 COLD ROB 123ABCDE

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Security 345

Security
There are two methods available for configuring ControlWave security:

 Configure security one RTU at a time using the Security page of the Flash
Configuration utility. See Chapter 5 of the OpenBSI Utilities Manual (part number
D301414X012) for information on doing this.

 Use the Security Management Tool (available in OpenBSI 5.8 and newer). The Security
Management Tool is very similar to the first method, except it allows you to send the
same user security configuration information to all active RTUs in the network,
thereby reducing the amount of work to configure your security system.

Note

To use the Security Management Tool, NetView must be running, and you must be logged
on in NetView as the system administrator. This requires you to log on as the SYSTEM user
with the appropriate password. Also, a SYSTEM user with matching password must exist at
each RTU.

Starting the Security Management Tool

Click as follows:

Start Programs OpenBSI Tools ControlWave Tools User Management Tool

Defining Usernames and Passwords, and Specifying Privileges

The Security Management Tool allows you to create usernames and passwords for
ControlWave users, and to define user privileges. In this way, you can create restrictions on
who has access to various features and functions of the controller.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

346 Security

Adding A New User

A ControlWave-series controller supports up to 240 different users (previous to OpenBSI
5.8, 32 users was the maximum allowed). To add a new user, first enter the user’s name
(up to 16 characters long) in the Username field, and enter a password (up to 16
characters long) for that user in both the Password and Verify fields. (The password does
not appear as you type it.)

Important

 Prior to OpenBSI 5.8 Service Pack 1, some OpenBSI programs which communicated with
the controller (such as DataView) only supported shorter usernames and passwords (10
characters or less for the username, 6 characters or less for the password) and UPPERCASE
only for the password. If you have any OpenBSI workstations you haven’t upgraded yet,
you may want to limit ControlWave usernames/passwords to conform to this. Newer
OpenBSI software conforms to the 16 character ControlWave limits.

Note

ControlWave firmware versions prior to version 5.20 only support the previous limit of 32
users. In those cases, the Security Management Tool only stores the first 32 users in your
user list at the RTU. If RDB_MAX and/or the currently logged on user are not among the
first 32 users in you user list, the Security Management Tool accommodates this by
replacing the 32nd and, if necessary the 31st users in the list with RDB_MAX and/or the
currently logged on user.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Security 347

To select the privileges for this user, click Custom and then select the individual privileges
in the Privileges list box, to highlight them. Alternatively, you can choose Operator,
Engineer, or Administrator for a particular user, which automatically highlights privileges
associated with those user categories. The tables, on the next page, show the privileges
associated with these user categories, and list what the various privileges mean.

When all desired privileges have been selected, click Add to add the user to the system.

Note

Every ControlWave-series controller has a special user called RDB_Max. This user account
defines the maximum privileges allowed for RDB protocol messages coming into the
ControlWave. (Programs such as DataView, the Harvester, etc. use RDB to request data
from the ControlWave.) You can neither delete nor rename the RDB_Max user, but you can
change its privileges.

The table below shows the privileges associated with the Operator, Engineer, and
Administrator categories:

Privilege Operator Engineer Administrator
Read Data Value

Update Data Value

Update Signal Attributes

Read Flash Files via FTP

Change / Del Flash Files via FTP

Read Historical Data

Change Last Read Pointers in Audit Info

Change / Delete Historical Definitions

Add / Change / Del User Security Info

Modify Soft Switches

Run Diag to read Memory

Run Diag to write Memory

Read Stat / Diag Info

Reset Stat / Crash Blocks

Read Application Values

Write Application Values

Full Application Access

The table, below, describes the meaning of each privilege:

Privilege Description
Read Data Value Allows this user to read data values from this controller.
Update Data Value Allows this user to change data values in this controller.
Update Signal Attributes Allows this user to modify the status of inhibit / enable flags

in the controller.
Read Flash Files via FTP Allows this user read access (via File Transfer Protocol) to

files stored in this ControlWave's Flash memory. This could
include the ControlWave boot project, source files

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

348 Security

Privilege Description
(*.ZWT), etc.

Change / Del Flash Files via FTP Allows this user (via File Transfer Protocol) to add, change
or delete files stored in the ControlWave's Flash memory.
This could include the ControlWave boot project, source
files (*.ZWT), etc.

Read Historical Data Allows this user to view historical data (Audit / Archive
information) from the controller, either via web pages, or
OpenBSI DataView.

Change Last Read Pointers in Audit
Info

Allows the user to delete Audit Trail data from the
controller.

Change / Delete Historical
Definitions

Allows this user to add, change or delete historical
definitions via the Flash Configuration Utility.

Add / Change / Del User Security Info Allows this user to add, change, or delete security
configuration information via the Flash Configuration
Utility.

Modify Soft Switches Allows this user to change Soft Switch values on the soft
switches page of the Flash Configuration Utility.

Run Diag to read Memory Allows this user to run diagnostics to read memory at the
controller.

Run Diag to write Memory Allows this user to run diagnostics to write to memory at
the controller.

Read Stat / Diag Info Allows this user to view communication statistics and other
information on the Statistics web pages.

Reset Stat / Crash Blocks Allows this user to reset statistics and crash block areas on
the Statistics web pages.

Read Application Values Allows this user to read values using the ControlWave
Designer OPC Server.

Write Application Values Allows this user to modify values using the ControlWave
Designer OPC Server.

Full Application Access Allows this user full privileges to perform debugging
operations in ControlWave Designer.

Loading the Security Definition for a Particular RTU into the tool

To load the security configuration information from a particular RTU into the tool, click
Load from RTU and select the RTU from the Select New Node dialog box. Depending on
the number of users defined, it may take some time for the load to complete.

Modifying the Privileges of an Existing User

To change the privileges of an existing user, select the user’s name from the list of
Usernames and select / de-select privileges for that user in the Privileges list box. When
you finish making selections, click Modify to store the modified privileges for that user.

You can only modify privileges for users defined as Custom. The privileges for operators,
engineers, administrators, etc. are fixed.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Security 349

Cloning an Existing User

If you want to create several users with identical privileges, click on the name of the user
that has the desired privileges, and then click Clone.

Type the number of users you want to create in the Number of Cloned Users box, then
press the [Enter] key. Users named CLONE will appear. You can then modify those users
with new usernames and passwords. (OpenBSI 5.8 and newer.)

Deleting an Existing User

To delete a user from the system, select the user's name from the Usernames list and click
Delete.

Note

You cannot delete the RDB_Max user and you cannot delete the current user or any user
who is currently signed on to this ControlWave.

Saving / Retrieving the Master Security Configuration File

You can export the security configuration information for the users on this ControlWave to
an encrypted binary file called the master file.

To export a master security configuration file, click Save to Master File.

To import a master security configuration file, click Load from Master File.

The import/export feature requires OpenBSI 5.8 and newer.

Sending the Security Configuration to One or More RTUs

Once you define all the privileges for the users, you can transfer them to the controller. If
you want to define the same users for multiple controllers, you can specify to which
controllers you want to send the configuration.

Click the Transfer to RTUs button to open the Transfer to RTUs dialog box.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

350 Security

When the dialog box opens, all RTUs appear in the Selected RTUs list box.

If you don’t want to send the security configuration to all RTUs, hold down the [Ctrl] key
and then click on any RTUs you want to exclude, then click the [>>] button.

To select a whole block of RTUs in the list press [Ctrl] to select the first RTU, then press the
[Shift] key with the cursor on the last RTU in the block.

You can click the [<<] button to move RTUs back from the Excluded RTUs list.

When the Selected RTUs list box shows only the RTUs you want to transfer security
information to, click the Transfer button. The tool sequentially sends the security
configuration to each RTU in the Selected RTUs list.

Removing the Lockout That Prevents Other Tools From Modifying Security Configurations

If you want to allow other tools such as the Flash Configuration Utility to modify the
security configuration of one or more RTUs, select the RTUs for which you want to allow
this so they show in the Selected RTUs list box, then click Allow Security Changes from

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Security 351

other Tools and then click Transfer. The tool sequentially removes the lockout from each
RTU in the Selected RTUs list.

Exporting Security Data for Modbus Devices

To export security data for use in MODBUS registers, click Export to MODBUS and specify
the location for the file.

Default Switch Settings at the Controller

The default switch on each RTU (also called the Use/Ignore Soft Switches) should be
turned ON (Use Soft Switches), when you are finished, otherwise the special default
security account (SYSTEM) remains active and the security configuration you store via the
Security Management Tool is ignored.

 The default switch on the ControlWave Process Automation Controller is SW1-3.

 The default switch on the ControlWave Low Power (LP) Controller is SW4-3.

 The default switch on the ControlWave MICRO Process Automation Controller is SW2-
3.

 The default switch on the ControlWave Gas Flow Computer (GFC) is SW2-3.

 The default switch on the ControlWave Electronic Flow Meter (EFM) is SW2-3.

 This default switch on the ControlWave Explosive-Proof Flow Computer (XFC) is SW1-
3.

 The default switch on the CW_10 and CW_30 is SW2-3.

Other Security-Related Issues
In addition to defining usernames and passwords, there are certain other issues to
consider when setting up security for your network. Some of these issues are not strictly
related to ControlWave, but to the entire process control network.

The most secure process control network would be self-contained (that is, it would no
connections to the outside Internet). In addition, it would be isolated from other network
activities in your organization. For example, the process control network would not be on
the same network as the billing department. If, however, your organization chooses to
share networks, or include connections to the outside world, security should be a
paramount concern.

Security Protocols for PPP Communication (PAP, CHAP)

If you are using the Point-to-Point (PPP) Internet Protocol, via the ControlWave-series
controller’s serial ports, you should consider using either the PAP or CHAP security
protocols. CHAP is considered more secure than PAP, because it uses encryption. For
information on these protocols, see the Security Protocols section in this manual.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

352 Security

OpenBSI Security

Since ControlWave-series controllers are designed to be used in OpenBSI networks,
OpenBSI security should also be configured. For information on configuring security for
your OpenBSI network, please see Chapter 6 of the OpenBSI Utilities Manual (part number
D301414X012). This chapter also includes information on granting proxy access to the
network, from remote OpenBSI Workstations, which can have security implications.

Network Infrastructure (UDP and TCP Sockets)

While this is generally more concerned with network traffic issues, UDP and TCP sockets
throughout an IP network must match for each controller and PC Workstation. It is
recommended that these numbers be changed from their default values, for greater
security. For information on setting these at the OpenBSI level, see the OpenBSI Utilities
Manual (part number D301414X012). For information on setting these in your
ControlWave controller, please see the IP Parameters section of this manual.

Security Configuration for your Human Machine Interface (HMI) Software

Most supervisory control and data acquisition (SCADA) systems incorporate various levels
of security. If you are using OpenEnterprise, security can be set up for both the
OpenEnterprise Server database, individual database objects, and the OpenEnterprise
Workstation(s). See the OpenEnterprise online help for details.

Virus Protection for Your Workstations

Each workstation should be equipped with virus protection software and you should
subscribe to a regular update service for this software, so the virus protection remains
current as new viruses become a threat. Virus protection is particularly important if the
workstation has any connection to outside networks.

Firewall Software for Your Networks

If your process control network is connected to the Internet, you are strongly urged to
purchase and configure commercially available firewall software, to provide some level of
protection against external intrusion from hackers.

Physical Security

Consider issues related to the physical security of your workstations, and the nature of
your operation. Are the workstations in a high traffic area? Are they in a room which can be
locked up to prevent unauthorized access? Are the environmental conditions (excessive
dust, high/low humidity) in the room poor?

For ControlWave-series controller, have you removed the RUN/REMOTE/LOCAL keys from
the controllers and put them in a safe place? Otherwise, someone could accidentally or
deliberately change the controller’s operating mode.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Security 353

Networked Surveillance of Remote Sites using ControlWave

If surveillance cameras are part of your physical security scheme, you should be aware that
ControlWave-series controllers have successfully been used as part of surveillance
schemes. Using third-party security cameras and software, captured images can be
uploaded to the controller, and stored in flash memory. Customers can download the
images via File Transfer Protocol (FTP). See the ControlWave Security Vision Application
User’s Guide (part number D301427X012) for more information.

Maintain Current Backups

This is valuable not only for security issues, but for any type of disaster recovery. System
administrators should back up all necessary files on a regular basis, and store the backup
media (tapes, CDs, DVDs, USB drives) in a safe, secure location, preferably off-site.

Human Factors

This may seem basic, but the downfall of security is often the human factor. No matter
how well you configure your security system, if you post your passwords right next to the
workstation or write them down where unauthorized persons can read them, or if you
neglect to change default passwords or choose passwords that are simple for an intruder
to figure out (like your name or the name of the company) then the protection provided by
your security system can be severely diminished.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

354 Security

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Security Protocols (CHAP and PAP) 355

Security Protocols (CHAP and PAP)

Security Protocols (CHAP and PAP) Used on PPP Links
While it is not required to implement security on PPP links, users should be aware of the
possibility of unauthorized access to their networks by an intruder (hacker), and strongly
consider using one of the two supported security protocols.

Two standard protocols have been implemented for security on PPP links in networks of
ControlWave RTUs: Challenge Handshaking Authentication Protocol (CHAP) and Password
Authentication Protocol (PAP). These protocols operate in a client/server arrangement.
Typically, CHAP should be used since it is more secure.

The CHAP (or PAP) server would be a ControlWave-series controller; the CHAP (or PAP)
client could be either a ControlWave-series controller, or an OpenBSI workstation.

Whether a workstation or controller is the client, the client must always supply a valid
username/password combination in order to gain access to the server.

If the OpenBSI workstation were the client, the username and password would be entered
directly by the user in response to a login prompt. These must match one of the username
/ password combinations stored in the ControlWave.

If a ControlWave controller is the client, one of its valid usernames must be entered in the
"Challenge Protocol Default Username" field in the Ports tab of the Flash Configuration
Utility. This username / password text string for that username will automatically be
transmitted in response to a login prompt from the server.

At the user-level, both of these security methods are similar. The difference occurs in the
underlying operation of the protocols.

Challenge Handshaking Authentication Protocol (CHAP)
The CHAP server (ControlWave) issues an encrypted challenge message (which appears as
a normal login prompt) to any CHAP client (workstation or ControlWave controller)
requesting access. The supplied username and password will be encrypted according to a
pre-defined secret encryption key; the result is called the response message.

Even though the username / password combination for a particular user does NOT change
on each login attempt, the encrypted challenge and response messages is different on
each attempt. This helps prevent an intruder from replicating the proper response
message for a given challenge message, either through trial and error or through brute
force searches of all possible challenge messages. Another characteristic of CHAP is that
even after the client has logged in, subsequent challenge / response transactions will occur
to verify that the connection is still with a valid user.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

356 Security Protocols (CHAP and PAP)

CHAP Example 1: In the first example of using CHAP, the CHAP client is a PC workstation,
and the CHAP server is a ControlWave controller:

1

3

 CHALLENGE HANDSHAKING
AUTHENTICATION PROTOCOL (CHAP)

p5092kjfdkdhgfls83l72kdflsa

2

4

Username / Password combination
is encrypted using secret key and sent
out (Response Message). NOTE: This
may involve a 2 message interchange
between the client and server.

Each login attempt from a particular
node results in a different encrypted
response message, therefore, anyone
intercepting the message after encryption
would not be able to re-use it to gain
access.

Server checks its password
database to verify that the
received username/password
combination is valid.

Login prompt (Challenge) message arrives
at CHAP client workstation, and is decrypted
using a secret key. To the user, it appears
as a normal login prompt. User enters username
and password combination.

CHAP Server controller decrypts the
response message using the secret
key. The result is a username /
password combination.

Username: JOHN
Password: smartguy

CHAP client

EXAMPLE 1 - WORKSTATION TO CONTROLLER

CHAP server
Is ''JOHN' and 'smartguy' a
valid username and password
combination? If YES, grant
access, otherwise deny access.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Security Protocols (CHAP and PAP) 357

CHAP Example 2: The second example using CHAP is very similar, except in this case, the
CHAP client is another ControlWave controller. For this reason, the username/password
combination (default IP user) must be stored as parameters in flash memory and
referenced by the Challenge Protocol Default Username.

1

3

 CHALLENGE HANDSHAKING
AUTHENTICATION PROTOCOL (CHAP)

0qiuh4w
tpojf;rlt rt[qertjq

2

4

5

Username / Password combination
(default IP user string) is encrypted
using secret key and sent out
(Response Message). NOTE: This
may involve a 2 message interchange
between the client and server.

Each login attempt from a particular
node results in a different encrypted
response message, therefore, anyone
intercepting the message after encryption
would not be able to re-use it to gain
access.

Server checks its password
database to verify that the
received username/password
combination is valid. If it is,
grant access, otherwise, deny
access.

CHAP Server controller decrypts the
response message using the secret
key. The result is a username /
password combination.

EXAMPLE 2 - CONTROLLER TO CONTROLLER
Username / password combinations are stored in the
ControlWave as FLASH parameters. The choice of
which user is the Default IP User is specified through
the entered
on the IP Parameters page.

"Challenge Protocol Default Username"

Login prompt (Challenge) message arrives
at CHAP client, and is decrypted using a
secret key.

CHAP Server

CHAP Client

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

358 Security Protocols (CHAP and PAP)

Password Authentication Protocol (PAP)
PAP requires a client requesting access to provide a username and password, similar to
CHAP. PAP is a simpler method of protection, however, that has certain characteristics
which make it less secure than CHAP.

PAP allows passwords to be sent as clear plain text unencrypted strings of characters.
There is a possibility, therefore, that an unauthorized person could intercept a password
message, and then subsequently use the password to gain access.

PAP also has no safeguards against repeated attempts to log in. For example, someone
using trial and error to guess a password, or someone using software which performs a
brute force search of all possible passwords could gain access.

PAP Example 1: In the first example of using PAP, the PAP client is a PC workstation, and
the PAP server is a ControlWave controller.

Username: JOHN
Password: smartguy

Is 'JOHN' and 'smartguy'
a valid username password
combination? If YES, grant
access, otherwise deny
access.

User logs in at a client workstation1

3

PASSWORD AUTHENTICATION PROTOCOL (PAP)

JO
H

N
 sm

artguy

2 Username / Password
combination transmitted
'in the clear' to PAP server.
The message is vulnerable
to interception by an outside
party during transmission.

Server checks its password
database to verify that the
received username/password
combination is valid.

PAP Server

PAP client

EXAMPLE 1 - WORKSTATION TO CONTROLLER

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Security Protocols (CHAP and PAP) 359

PAP Example 2: The second example using PAP is very similar, except in this case, the PAP
client is another ControlWave controller. For this reason, the username/password
combination must be stored as a parameter in flash memory and designated using the
Challenge Protocol Default Username.

Is 'JOHN' and 'smartguy'
a valid username password
combination? If YES, grant
access, otherwise deny
access.

1

3

PASSWORD AUTHENTICATION PROTOCOL (PAP)

JO
H

N
 sm

artguy

2 In response to a login prompt,
Username / Password
combination for default IP user
is transmitted 'in the clear'
to PAP server. The message
is vulnerable to interception
by an outside party during
transmission.

Server checks its password
database to verify that the
received username/password
combination is valid.

PAP Server

PAP client

EXAMPLE 2 - CONTROLLER TO CONTROLLER
Username / password combinations are stored in the
ControlWave as FLASH parameters. The choice of
which user is the Default IP User is specified through
the entered
on the IP Parameters page.

"Challenge Protocol Default Username"

References:

Lloyd, Brian , and Simpson, William, "PPP Authentication Protocols", Daydreamer Computer
Systems Consulting Services, RFC 1334, October, 1992. (available at www.ietf.org)

Rivest, Ronald, "The MD5 Message-Digest Algorithm", MIT Laboratory for Computer Science,
and RSA Data Security Inc., RFC 1321, April, 1992. (available at www.ietf.org)

http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

360 Security Protocols (CHAP and PAP)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Tasks (Warm/Cold Starts) 361

System Tasks (Warm/Cold Starts)
A system task is a grouping of one or more programs which execute only under certain
pre-defined conditions.

Creating a Warm start or Cold start System Task

Note

Refer to the section Memory Usage in this manual for an explanation of “warm start” and
“cold start.”

When you define a warm start or a cold start system task, the programs in that task are
only executed once at the application warm start or application cold start, respectively.

To create a warm start or cold start system task, create a task as you normally would, but
be sure you choose 'SYSTEM' as the "Task type".

After you click OK, you must choose either 'Warm Start (SPG 0)' or 'Cold Start (SPG 1)' as
the condition which will cause this system task to be executed.

Enter a name for
the system task

Be sure you
choose SYSTEM
as the task type.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

362 System Tasks (Warm/Cold Starts)

Click OK to finish.

Once your completed project has been downloaded into the ControlWave, it executes
only when triggered by the specified condition.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 363

System Variables

Important

With the exception of port configuration parameters, most users do not need to be
concerned with these system variables. Advanced users, however, may find the system
variables useful for many purposes, including:

 Monitoring the efficiency of task execution

 Accessing the system date and time

 Viewing diagnostic information about the communication ports

Various system variables are maintained by the ControlWave series controller. They are
mapped to standard memory locations, and are accessible only when the user creates
variables to specifically access those locations.

These variables are stored in static RAM and so are capable of surviving all application
reloads and cold, warm, or hot application restarts or the CPU power off/on. They are
set/modified by applications and remain that way until modified again. The only way these
system variables lose their settings is when the SRAM Control switch setting forces a
memory clear on a power on, the SRAM back-up battery is low, or if the system detects an
SRAM corruption and reinitializes them. All input/output parameters are defined with their
default settings when applicable. Other input parameters must be given some specific
value by an application.

There are two ways to access the System Variables:

 Use the System Variable Wizard to create the variables, and for certain variables, enter
values (this is the preferred method)

 Manually create variables according to the information contained in the System
Variable Mapping Charts. You must use the name, data type and address shown in the
charts.

Using the System Variable Wizard
1. Start ControlWave Designer.

2. Open your ControlWave project.

3. Start the System Variable Wizard by clicking ViewSystem Variable Wizard.

4. The System Variable Wizard will appear.

 You can access the various pages of the wizard by clicking on the different tabs.

 Information on the use of individual variables is included in the System Variable
charts (later in this section).

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

364 System Variables

 In instances where there are too many variables to appear on a single page, a push
button is included to call up a different page containing more variables. Simply
click on the push button to access the new page.

 To create a variable, just check the appropriate box. The variable name shown is
the name you must use in your ControlWave project to access the variable. That
same name also should be used to look up a description of what the variable is
used for in the System Variable Mapping Charts.

 Sometimes several variables will be grayed out until a different variable is created;
this is because they are all related in some way.

 If the user may set a variable, an entry box or selection box will appear, with a
default entry or selection - enter a new value in the entry box, if desired, or select
from among the options presented.

 At the bottom of each page are check boxes which allow you to mark variables for
“PDD” or “OPC” collection. NOTE: These boxes apply to ALL system variables; i.e. if
you check PDD on one page, it applies to every system variable on every page. In
addition, if you call up a system variable in the standard variable dialog box, and
select one of these options, it will also apply to ALL system variables the next time
you open the System Variable Wizard. You cannot pick and choose individual
variables with this option.

 If you choose the “Write All” option (added in OpenBSI 5.4) ALL system variables
will be created from every page of the wizard.

 Click [OK] to exit the System Variable Wizard, and save the changes you have
made; otherwise, click [Cancel].

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 365

You can access the various pages of the
System Variable Wizard by clicking on the
different tabs.

If the variable may be set
by the user (input
variable) choose from
the selection box or
enter a value in the entry
box, as appropriate.

To create a variable,
check the box
associated with it.

Only click on OK when
you want to save all
entries and exit the
System Variable
Wizard.

Select “Write All” only if you want to generate
all the system variables on ALL the pages of
the System Variable Wizard.

If you check “OPC” ALL
system variables in this
project will be marked
for OPC collection.

If you check “PDD” ALL
system variables in this
project will be marked
for PDD collection.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

366 System Variables

In this case, select the port you want to
configure, then choose the push button to access
another page containing the actual variables

Select the number of tasks in your project;
separate sets of the variables shown on this page
are created for each task.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 367

System Variable Mapping Charts
System Variable Name Address Data Type Minimum

Firmware
Needed

Description

_PLCMODE_ON %MX 1.0.0 : BOOL 1.0 Status of the unit.
TRUE = unit is powered on but an

application is not loaded. (State
field in the ControlWave
Designer Project Control dialog
box will also show ON.)

FALSE = unit is power on and application
is loaded.

Only one of the variables _PLCMODE_ON,
_PLCMODE_RUN, _PLCMODE_STOP, and
_PLCMODE_HALT is set to TRUE at any
given time.

_PLCMODE_RUN %MX 1.0.1 : BOOL 1.0 Status of the ControlWave Designer
application.
TRUE = ControlWave project is running

(State field in the ControlWave
Designer Project Control dialog
box will also show RUNNING.)

FALSE = project is not running.

Only one of the variables _PLCMODE_ON,
_PLCMODE_RUN, _PLCMODE_STOP, and
_PLCMODE_HALT is set to TRUE at any
given time.

_PLCMODE_STOP %MX 1.0.2 : BOOL 1.0 Status of the ControlWave Designer
application execution.
TRUE = ControlWave project is stopped.

(State field in the ControlWave
Designer Project Control dialog
box will also show “Stop.”)

FALSE = ControlWave project is
executing.

Only one of the variables _PLCMODE_ON,
_PLCMODE_RUN, _PLCMODE_STOP, and
_PLCMODE_HALT is set to TRUE at any
given time.

_PLCMODE_HALT %MX 1.0.3 : BOOL 1.0 Debug status of the ControlWave
Designer application.
TRUE = ControlWave project is halted at a

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

368 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

breakpoint in debug mode (State
field in the ControlWave
Designer Project Control dialog
box will also show “Halt
(Debug)).

FALSE = project is not halted at a
breakpoint.

_PLCDEBUG_BPSET %MX 1.1.4 : BOOL 1.0 TRUE=one or more breakpoints are set for
debugging purposes

_PLCDEBUG_FORCE %MX 1.2.0 : BOOL 1.0 TRUE=one or more I/O variables are forced for
debugging purposes

_PLCDEBUG_POWERFLOW %MX 1.2.3 : BOOL 1.0 TRUE=power flow is active for Debugging
purposes

_PLC_TICK_PER_SEC %MW 1.44 : INT 1.0 Number of ticks per second (will be 250)
_PLC_SYS_TICK_CNT %MD 1.52 : DINT 1.0 The number of ticks since the application was

started.
_LOAD_BOOT_PRESENT %MX 1.332.0 : BOOL 04.80 The boot project is present in FLASH memory.
_LOAD_SRC_PRESENT %MX 1.333.0 : BOOL 04.80 The project source file (*.ZWT) is present in

the FLASH memory.
_LOAD_MEM_PRESENT %MX 1.334.0 : BOOL 04.80 There is a project loaded into memory

(SDRAM) or SRAM, depending upon type of
unit.

_LOAD_BOOT_CRC %MD 1.336
 DWORD

04.80 Cyclic redundancy (CRC) check number for
boot project.

_LOAD_SRC_CRC %MD 1.340
 DWORD

04.80 Cyclic redundancy check (CRC) number for
project source (*.ZWT).

_LOAD_MEM_CRC %MD 1.344
 DWORD

04.80 Cyclic redundancy check (CRC) number for
project in memory.

_MAX_TASK %MW 1.1000 : INT 1.0 The maximum number of user tasks
supported.

_CUR_TASK %MW 1.1002 : INT 1.0 The current number of user tasks.

Note

System variables which are specific to a particular task are preceded by a prefix. The first
task system variable name begins with a ‘_T1’ prefix, the second task system variable
name begins with a ‘_T2’ prefix, etc.

The next several system variables are created for the first Task in the system

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_T1_TASK_NAME %MB 1.1004 : SI_10 1.0 Array of 10 characters which defines the
task's name.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 369

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_T1_TASK_PRIO %MW 1.1014 : INT 1.0 The configured priority of this task.
_T1_TASK_PERIOD %MW 1.1018 : INT 1.0 If the task is a cyclic task, this is the

number of milliseconds between
scheduled start times.

_T1_TASK_WDOG %MW 1.1024 : INT 1.0 Configured time (in milliseconds) before
which the task must complete (or an
error will be generated)

_T1_CUR_DUR %MW 1.1032 : INT 1.0 Number of ticks, which the task took to
execute (from scheduled time to task
completion)

_T1_MIN_DUR %MW 1.1034 : INT 1.0 Minimum execution time for the task.
_T1_MAX_DUR %MW 1.1036 : INT 1.0 Maximum execution time for the task.
T1_AVG_DUR %MW 1.1038 : INT Average execution time for the task.
_T1_CUR_DELAY %MW 1.1040 : INT 1.0 Number of ticks after the scheduled time,

which the current task has taken to start
execution.

_T1_MIN_DELAY %MW 1.1042 : INT 1.0 Minimum of CUR_DELAY since the
system was started.

_T1_MAX_DELAY %MW 1.1044 : INT 1.0 Maximum of delay since the system was
started.

_T1_AVG_DELAY %MW 1.1046 : INT 1.0 Average of delay since the system was
started.

The next several system variables are created for the second Task in the system:

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_T2_TASK_NAME %M 1.1068 : SI_10 1.0 See above description for corresponding
T1 variable

_T2_TASK_PRIO %MW 1.1078 : INT 1.0 See above description for corresponding
T1 variable

_T2_TASK_PERIOD %MW 1.1082 : INT 1.0 See above description for corresponding
T1 variable

_T2_TASK_WDOG %MW 1.1088 : INT 1.0 See above description for corresponding
T1 variable

_T2_CUR_DUR %MW 1.1096 : INT 1.0 See above description for corresponding
T1 variable

_T2_MIN_DUR %MW 1.1098 : INT 1.0 See above description for corresponding
T1 variable

_T2_MAX_DUR %MW 1.1100 : INT 1.0 See above description for corresponding
T1 variable

_T2_AVG_DUR %MW 1.1102 : INT 1.0 See above description for corresponding
T1 variable

_T2_CUR_DELAY %MW 1.1104 : INT 1.0 See above description for corresponding

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

370 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

T1 variable
_T2_MIN_DELAY %MW 1.1106 : INT 1.0 See above description for corresponding

T1 variable
_T2_MAX_DELAY %MW 1.1108 : INT 1.0 See above description for corresponding

T1 variable
_T2_AVG_DELAY %MW 1.1110 : INT 1.0 See above description for corresponding

T1 variable
System variables for tasks would
continue from this point on,
following the same pattern as
shown for the first and second
tasks, above:

3rd task begins at
%M1.1132
4th task begins at
%M1.1196
5th task begins at
%M1.1260
etc.

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_LOAD_BOOT_PRESENT %MX 1.332.0 : BOOL 04.80 The boot project is present in FLASH
memory.

_LOAD_SRC_PRESENT %MX 1.333.0 : BOOL 04.80 The project source file (*.ZWT) is present
in the FLASH memory.

_LOAD_MEM_PRESET %MX 1.334.0 : BOOL 04.80 There is a project loaded into memory
(SDRAM) or SRAM, depending upon type
of unit.

_LOAD_BOOT_CRC %MD 1.336 DWORD 04.80 Cyclic redundancy (CRC) check number for
boot project.

_LOAD_SRC_CRC %MD 1.340 DWORD 04.80 Cyclic redundancy check (CRC) number for
project source (*.ZWT).

_LOAD_MEM_CRC %MD 1.344 DWORD 04.80 Cyclic redundancy check (CRC) number for
project in memory.

_POWER_UP %MX 3.0.0 : BOOL 1.0 Set on system restart. Cleared by the user
if detection of power-fail recovery is
needed.

_QUEST_DATE %MX 3.0.1 : BOOL 1.0 Should be FALSE during normal operation.
Set TRUE if the real time clock value is
invalid and the unit needs a time
synchronization message from the host.
This occurs immediately after power-up,
or after the project is downloaded; once
the time synch message from the host is
processed, this is set to FALSE.
_QUEST_DATE also becomes TRUE if the
SRAM backup battery voltage falls below

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 371

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

the level necessary to power the real time
clock (battery failed and must be
replaced).

_TS_REQ %MX 3.0.2 : BOOL := FALSE 1.0 Set to force time synch from master. Will
be cleared when time synch is received.

_TS_INHIB %MX 3.0.3 : BOOL := FALSE 1.0 Set if user wishes to inhibit processing of
time synch messages.

_OCTIME_ERROR %MX 3.1.0 : BOOL 4.50 Reports if time was changed on last time
synch.

_TIME_000 %MD 3.4 : DWORD 1.0 Combination Julian Date and seconds
since midnight. Used to time-stamp
historical information.

_TIME_008 %MW 3.4 : INT 1.0 Julian Date.
_JULIAN_TIME %MD 3.4 REAL Not tied to

firmware.
Requires
OpenBSI 5.7
Service Pack
1 or newer.

Julian Date and Time in REAL format.
number of seconds since midnight. This is
the floating point representation of the
_TIME_000
value. The applications may use this value
directly as the Julian time. The hex
representation of
this Julian time is used as an input in
producing the date and time.
Example:
The date/time 1/18/2008 09:20 will be
reported as 3.5435290E-019.
The Hex representation of this floating
point value is 20D12C4C. The first 2-byte
value is the number of 4 second intervals
since midnight. It is used to calculate time
in HH:MM;SS where the seconds
resolution, is in multiples of 4 seconds.
Therefore, 20D1 represents 09:20:04. The
second two byte value is the number of
days since midnight of 12/31/1976.
Therefore, 2C4C represents the date of
01/18/2008 .

_TIME_4SEC %MW 3.6 : INT 1.0 Number of 4-second intervals since
midnight.

_TIME_001 %MD 3.8 : DINT 1.0 Number of seconds since midnight.
_TIME_002 %MW 3.12 : INT 1.0 Year (4 digit)

_TIME_003 %MB 3.14 : SINT 1.0 Month (1 to 12)
_DAY_OF_WEEK %MB 3.15 : SINT 1.0 Day within the current week (1=Sunday to

7=Saturday)
_TIME_004 %MB 3.16 : SINT 1.0 Date (1 to 31)
_TIME_005 %MB 3.17 : SINT 1.0 Hour (0 to 23)
_TIME_006 %MB 3.18 : SINT 1.0 Minute (0 to 59)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

372 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_TIME_007 %MB 3.19 : SINT 1.0 Second (0 to 59)
_POWER_OFF %MD 3.20 : DINT 1.0 Number of seconds the system was

powered off (after a power-fail recovery)
_CPU_OVERLD %MD 3.24 : DINT 1.0 Number of times that the System Idle time

was detected to be too small
_RIO_REQ_SAFE %MD 3.28 : DINT := 50 1.0 Number of milliseconds before calculated

due time to start collection of I/O from
remote devices

_RIO_REQ_PACK %MD 3.32 : DINT := 10 1.0 In milliseconds. If two RIO requests are to
be made to the same IP address within this
time, they are packed into a single TCP
packet.

_BAD_ANY_CONST %MD 3.36 : DINT 1.0 Invalid constants loaded onto variable of
type 'ia' or 'iany'.

_BAT_OK %MX 3.40.0 : BOOL 1.0 Should be TRUE during normal operation.
It is set TRUE if ControlWave's SRAM
backup battery is OK. If the battery cannot
provide the necessary voltage to backup
the SRAM (battery voltage low, battery
failed, or missing) this becomes FALSE,
and the battery should be replaced. It also
shows FALSE if the backup battery is
disabled by the jumper. On power-up after
battery failure, all retain values in SRAM
are set to 0, or their initial values. NOTE:
Does not work for RTU 3340 - always will
show a '1'

_HOT_CARD_IN_PROG %MX 3.41.0 : BOOL 1.0 Set when ControlWave 'hot' card
replacement is in progress. When set, I/O
values for the board are held constant.

_USE_ACCOL_NAME %MX 3.42.0 BOOL 4.00 Used in response to RDB messages from
OpenBSI. When set to TRUE global variable
names (those beginning with @GV) will be
translated to ACCOL signal name format
before being sent back. If
_USE_ACCOL_LCL, variables with instance
names other than ‘@GV’ will also be
translated to ACCOL II signal format.
Variable names must not exceed 20
characters, and must follow the 8
character basename, 6 character
extension, and 4 character attribute rules
of ACCOL II.

_AI_FOR_NON_ALMS %MX 3.42.1 BOOL 4.10 Alarm variables are only those variables
which have been configured as alarms
using one of the Alarm function blocks. A

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 373

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

non-alarm variable is any variable which
hasn’t been configured as an alarm using
one of the Alarm function blocks.

When _AI_FOR_NON_ALMS is set to
FALSE, the Alarm Inhibit/Enable bit is
permanently set to AI (alarm inhibit) for all
non-alarm variables. (This is the default).

When _AI_FOR_NON_ALMS is set to TRUE,
the Alarm Inhibit/Enable bit for each
individual non-alarm variable can be set by
the user to either Alarm Inhibit (FALSE
state), or Alarm Enable (TRUE state).
Because these are NOT alarms, this has no
practical effect, unless the AI / AE bit is
used for some specific purpose, e.g. in the
OpenEnterprise Database.

_INH_SYS_EVENTS %MX 3.42.2 BOOL 4.20 Certain system events are logged by the
AUDIT system (for example, the power on
of the unit, etc.) To inhibit logging of these
events, set this to TRUE.

_USE_ACCOL_LCL %MX 3.42.4 BOOL 4.90 If set to TRUE, local signals with instance
names other than ‘@GV’ will be converted
to ACCOL II style signal names in the Signal
Extractor’s SIG file, by changing
underscores ‘_’ to periods ‘.’, and
system signal underscores to pound ‘#’
signs.

_SEC_SIGNIN_AUD_ENA %MX 3.42.5 BOOL 5.20 When set TRUE, enables audit logging of
user sign-on and sign-off activities at the
RTU. This bit once turned on will not turn
off except on an application COLD start. To
keep this enabled a cold start task should
turn this back on. Default: FALSE

_SEC_SIGNIN_AUD_FTP_E
NA

%MX 3.42.6 BOOL 5.20 When set TRUE, enables audit logging of
FTP sign-on and sign-off activities at the
RTU. Users can sign-on via FTP to look at
the contents of the RTU flash memory
area. Default: FALSE. Note: The RTU
ignores the value of this system variable if
_SEC_SIGNIN_AUD_ENA is FALSE.

_INH_EXTERNAL_EVENTS %MX 3.42.7 BOOL 5.11 When set TRUE, turns off logging of user
events such as calibration events, notes
events, and clear history events.

_ALARM_FORMAT %MB 3.43 SINT 4.60 Alarm Report Format. Default = FALSE –

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

374 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

Long Format. For short format, set to
TRUE.

_FLASH_FREE %MD 3.44 : DINT 1.0 Common free FLASH space in the FLASH
memory area.

_FL_FILE_USAGE %MD 3.48 : DINT 1.0 Total FLASH memory used for files.
_FL_FILE_FREE %MD 3.52 : DINT 1.0 Free FLASH memory space available for

files.
_FL_HIST_USAGE %MD 3.56 : DINT 1.0 Total FLASH memory used for Historical

data.
_FL_HIST_FREE %MD 3.60 : DINT 1.0 Free FLASH memory space available for

Historical data.
_HOT_CARD_COUNT %MD 3.64 : DINT 1.0 Hot card insert/remove count.

Incremented at start of lock.
_FP_ERR_SC %MD 3.68 : DINT := 60000 1.0 Scan interval for floating point errors in

tasks. All floating point errors occurring
during the scan interval are counted as a
single error in the ControlWave. In the RTU
3340, all floating point errors occurring
during the scan interval are registered
individually. Default scan interval is 60000
(1 minute).

_SUSP_PERCENT %MW 3.72 : INT 2.0 A measurement of the percentage of time
that application-level tasks are suspended.

_EXP_HEART_BEAT %MD 3.76 DINT :=1000 3.10 This is the rate (in milliseconds) at which
the ControlWave issues a heartbeat poll
message to the I/O Expansion Rack(s).
Default is 1000 (1 second).

_TOTAL_ALARMS %MD 3.80 UDINT 4.00 This value maintains a count of alarms
generated. It is incremented by 1 each
time a new alarm comes in. Users can
reset the count as desired.

_TOTAL_AUD_EVENTS %MD 3.84 UDINT 4.00 This value maintains a count of events
logged by the Audit system. It is
incremented by 1 each time a new event
occurs. Users can reset the count as
desired.

_TOTAL_AUD_ALARMS %MD 3.88 UDINT 4.00 This value maintains a count of alarms
logged by the Audit system. It is
incremented by 1 each time a new alarm
comes in. Users can reset the count as
desired.

_ALARMS_PRESENT %MX 3.92.0 BOOL 4.00 This variable is set to TRUE, whenever a
new alarm has been generated since the
variable was last cleared (set to FALSE). If
the user wants to use this as a notification
that new alarms have arrived, the user

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 375

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

must include logic to turn it OFF (set it to
FALSE) after receiving each notification, so
that it will be ready when the next alarm
comes in.

_AUD_EVT_PRESENT %MX 3.93.0 BOOL 4.00 This variable is set to TRUE, whenever a
new audit event has been generated since
the variable was last cleared (set to FALSE).
If the user wants to use this as a
notification that a new audit event has
arrived, the user must include logic to turn
it OFF (set it to FALSE) after receiving each
notification, so that it will be ready when
the next audit event comes in.

_AUD_ALM_PRESENT %MX 3.94.0 BOOL 4.00 This variable is set to TRUE, whenever a
new audit alarm has been generated since
the variable was last cleared (set to FALSE).
If the user wants to use this as a
notification that new audit alarms have
arrived, the user must include logic to turn
it OFF (set it to FALSE) after receiving each
notification, so that it will be ready when
the next audit alarm comes in.

_IDLE_LED_MODE %MB 3.95 SINT 5.00 Specifies behavior of the IDLE LED on
ControlWave XFC platform only. Possible
mode values are:
0 = To conserve power, LED remains OFF
for the first 58 seconds of every minute; in
the final two seconds, acts as in Mode 2.
1 = To conserve power, LED is unused and
is always OFF.
2 = LED reflects busy/idle status of the
CPU. When ON, the CPU has idle time.
When OFF, CPU is busy.

Non-XFC platforms: LED always reflects
busy/idle status of the CPU. When ON, the
CPU has idle time. When OFF, CPU is busy.

_ALARMS_IBP_DEST1 %MX 3.96.0 BOOL 4.20 Alarms are present, that are to be shipped
to Alarm Destination 1.

_ALARMS_IBP_DEST2 %MX 3.96.1 BOOL 4.20 Alarms are present, that are to be shipped
to Alarm Destination 2.

_ALARMS_IBP_DEST3 %MX 3.96.2 BOOL 4.20 Alarms are present, that are to be shipped
to Alarm Destination 3.

_ALARMS_IBP_DEST4 %MX 3.96.3 BOOL 4.20 Alarms are present, that are to be shipped
to Alarm Destination 4.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

376 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_ALARMS_BSAP_PORT1 %MX 3.96.4 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 1 to the host.

_ALARMS_BSAP_PORT2 %MX 3.96.5 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 2 to the host.

_ALARMS_BSAP_PORT3 %MX 3.96.6 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 3 to the host.

_ALARMS_BSAP_PORT4 %MX 3.96.7 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 4 to the host.

_ALARMS_BSAP_PORT5 %MX 3.97.0 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 5 to the host.

_ALARMS_BSAP_PORT6 %MX 3.97.1 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 6 to the host.

_ALARMS_BSAP_PORT7 %MX 3.97.2 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 7 to the host.

_ALARMS_BSAP_PORT8 %MX 3.97.3 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 8 to the host.

_ALARMS_BSAP_PORT9 %MX 3.97.4 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 9 to the host.

_ALARMS_BSAP_PORT10 %MX 3.97.5 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 10 to the host.

_ALARMS_BSAP_PORT11 %MX 3.97.6 BOOL 4.20 Alarms are present, that are to be sent out
BSAP port 11 to the host.

_LOCAL_ADDRESS %MW 3.98 : INT 4.20 The BSAP local address programmed into
the unit.

_EBSAP_GROUP %MW 3.99 : INT 4.20 The EBSAP Group number programmed
into the unit. A value of 0 indicates that
standard BSAP is used (no EBSAP).

_CPU_BUSY_P1 %MW 3.100 : INT 4.20 This measures (in units of 0.1%) how
occupied the CPU is, running application-
level tasks, or active system tasks.

_ARCH_ACCESS_TYPE %MD 3.102 : SINT 4.41 When non-zero, reads archive files as if
they were analog arrays.

_APPLICATION_LOCKED %MX 3.103.0 : BOOL 4.50 When set TRUE, prevents external control
changes to project via ControlWave
Designer. Also prevents project
downloads.

_NHP_ADDITIONAL_MASK %MD 3.104 :DWORD 4.20 This defines an IP mask for additional NHP
addresses.

_HEAP_CUR_FREE %MD 3.108 : DINT 4.40 Displays the current amount of RAM that is
free for system use.

_HEAP_BLK_FREE %MD 3.112 : DINT 4.40 Displays the size of the largest block of
free volatile memory. (Either SDRAM or
SRAM, depending upon the ControlWave
platform being used.)

_HEAP_START_FREE %MD 3.116 : DINT 4.40 The value of HEAP_CUR_FREE when the
application (project) was started.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 377

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_HEAP_RBLK_FREE %MD 3.120 : DINT 4.40 Displays the size of the maximum block of
retain memory that is currently free.

_TS_DELTA_ACCURACY %MD 3.124 : DINT 4.50 Turn-around time before accepting
timestamp.

_SEC_SIGNIN_FAILURES %MD 3.128 UDINT 5.20 Count of the number of failed sign-in
attempts at the RTU.

_SEC_SIGNOFF_TMO %MD 3.132 UDINT 5.20 Specifies a period of time (in seconds)
after which the RTU automatically logs a
user off for inactivity. Range: 0-86400

Per Task Parameters (generated according to the number of tasks specified to the SysVar
wizard)

The next several system variables are generated for each individual task. The first task system
variable name begins with a ‘_T1’ prefix, the second task system variable name begins with a
‘_T2’ prefix, etc.

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_T1_SLIP %MD 3.1032 : DINT 1.0 Number of times that the watchdog timer
expired for the current task.

_T1_FP_ERR %MD 3.1036 : DINT 1.0 Number of floating point errors detected
(underflow, overflow, etc.)

_T2_SLIP %MD 3.1064 : DINT 1.0 See above description for corresponding T1
variable

_T2_FP_ERR %MD 3.1068 : DINT 1.0 See above description for corresponding T1
variable

System variables for tasks
would continue from this
point on, following the
same pattern as shown for
the first and second tasks,
above:

3rd task 3.1096 to
3.127
4th task 3.128 to 3.159
etc.
etc.

Communication Statistics per port. A fixed 68-byte long statistics area is reserved per port.
SysVar Wizard selects from the following parameters according to the port type.

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

Port 1 offsets 3000-3067:
_P1_TYPE %MB 3.3000 : SINT 1.0 0 = UNUSED

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

378 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

1 = BSAP Slave
2 = BSAP Master
15 = Custom Protocol
28 = Serial IP (PPP)

_P1_MODE %MB 3.3001 : SINT 1.0 protocol mode
_P1_RECEIVES %MD 3.3004 : DINT :=

0
1.0 This is the total number of messages received

through this port. (Does not include protocol
messages.)

_P1_TRANSMIT %MD 3.3008 : DINT :=
0

1.0 This is the total number of messages
transmitted through this port. For the Master
Port this includes poll messages as well.

_P1_POLLS
_P1_RESP_TMO

%MD 3.3012 : DINT :=
0

1.0 (Polls)
2.0 (Resp
timeout)

For the Slave: This is the number of poll
messages received by the Slave Port (as
applicable). For the Master: Response Timeouts.

_P1_DISC_TRANS
_P1_CONS_TMO

%MD 3.3016 : DINT :=
0

2.0 For the Slave: Discards for transmission. If non-
zero, may indicate _Px_POLL_PER value for the
Slave Port should be a larger number. For the
Master: Consecutive timeouts.

_P1_NAKS
_P1_NAKS_RCV

%MD 3.3020 : DINT :=
0

1.0
2.0

For the Slave: NAKs issued.
For the Master: NAKs received.

_P1_CRC_ERR
_P1_DISC

%MD 3.3024 : DINT :=
0

1.0
2.0

For the Master: A message was received by the
Master port with correct framing; however it
failed the CRC check and was discarded. Usually,
this is due to noise on the line. The Master
ignores this message.
For the Slave: A message which is received by
the Slave but whose ACK is not received by the
Master is retransmitted by the Master. The Slave
discards the duplicate message and advises the
Master by issuing an 'ACK, Message Discarded'
response. This is commonly caused by noise on
the line.

_P1_DISC_RCV %MD 3.3028 : DINT :=
0

2.0 Discarded ACKs received by the Master.

_P1_PROT_ERR %MD 3.3032 : DINT :=
0

2.0 This is the number of protocol errors for the
Master port.

_P1_TMO_SEND %MD 3.3036 : DINT :=
0

2.0 This is the number of timeouts when sending
messages.

Reserved %Mx3.3040 - 3.3067 Reserved for future

:

Port 2 offsets 3068-3135: Replication of port 1 offsets.
Port 3 offsets 3136-3203: Replication of port 1 offsets.
Port 4 offsets 3204-3271: Replication of port 1 offsets.

Port 5 offsets 3272-3339: Replication of port 1 offsets.
Port 6 offsets 3340-3407: Replication of port 1 offsets.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 379

Port 7 offsets 3408-3475: Replication of port 1 offsets.
Port 8 offsets 3476-3543: Replication of port 1 offsets.
Port 9 offsets 3544-3611: Replication of port 1 offsets.

Port 10 offsets 3612-3679: Replication of port 1 offsets.
Port 11 offsets 3680-3747: Replication of port 1 offsets.
Port 12 offsets 3748-3815: Replication of port 1 offsets.

Communication System Configuration Parameters

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_ALM_RETRIES %MW 3.4000 : UINT := 3 1.0 Number of times to retry alarm reports
before slowing retry interval.

_ALM_RET_ACT %MW 3.4002 : UINT := 60 1.0 Amount of time (in seconds) to wait before
an alarm retry in ACTIVE state.

_ALM_RET_DEAD %MW 3.4004 : UINT := 120 1.0 Amount of time (in seconds) to wait before
an alarm retry in DEAD state.

_ETH_POLL_PER %MW 3.4006 : UINT := 0 1.0 Timeout for traffic on Ethernet lines.
(Ethernet poll period)

_ETH1_ACT %MX 3.4008.0 : BOOL 1.0 Ethernet port 1 Active.
_ETH2_ACT %MX 3.4008.1 : BOOL 1.0 Ethernet port 2 Active.

_ETH3_ACT %MX 3.4008.2 : BOOL 1.0 Ethernet port 3 Active.
_NHP_IGNORE_NRT %MX 3.4009.0 : BOOL 4.00 When set TRUE, node routing tables

received via IP from the Network Host PC
will be ignored.

_NHP_IGNORE_TS %MX 3.4009.1 : BOOL 4.00 When set TRUE, time synchronization
messages received via IP from the Network
Host PC will be ignored.

Communication System – Port specific configuration parameters.

Port 1 - offsets 4010-4019: SysVar Wizard selects from the following parameters according
to the port type.

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_P1_POLL_PER %MW 3.4010 : UINT := 5 1.0 Polling cycle time in seconds.
Applies to Master and Slave. Master: Begins a
new polling cycle on every timeout. If actual
polling of all slave lasts longer than this timeout
then the next polling cycle is started as soon as
the current cycle finishes. Slave: If the master
does not poll within this time period all
messages queued to go up to the master are
discarded.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

380 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_P1_WRITE_DEL %MW 3.4012 : UINT := 0 1.0 Time in milliseconds. Applies to Master and
Slave. Message reply delay. After CTS is
received, wait this period before beginning the
transmission.

_P1_RETRIES %MW 3.4014 : UINT := 0 2.0 Number of link level retries. Applies to Master
only. Default no retries, i.e. single transmission.
For example, if set to 2, a total of 3
transmissions may occur.

_P1_ACTIVE %MX 3.4016.0 : BOOL 1.0 Output from comm. System. For BSAP Slave:
One or more messages was received during the
previous poll period. For BSAP Master: One or
more slave nodes is still alive.

_P1_TS_FORCE %MX 3.4016.1 : BOOL :=
FALSE

1.0 Applies only to the Slave. Input/Output to/
from comm. system. When set to TRUE a
request asking for the TS/NRT message is sent
to the port master.

_P1_DTR_STATE %MX 3.4017.0 BOOL 4.20 Reports the current state of the Data Terminal
Ready (DTR) line for this port. TRUE means DTR
active.

_P1_DCD_STATE %MX 3.4017.1 BOOL 4.20 Reports the current state of the Data Carrier
Detect (DCD) line for this port. TRUE means
DCD active.

_P1_DIAL_ACTIVE %MX 3.4017.2 BOOL 3.11 When TRUE, indicates that dialing is in progress
on this port.

_P1_TS_DIS %MX 3.4018.0 : BOOL :=
FALSE

1.0 Applies only to the Slave. Input to the comm.
System. When set to TRUE do not process the
TimeSync information at this port. Set it to
FALSE to accept and process the TimeSync at
this port (Default).

_P1_NRT_DIS %MX 3.4018.1 : BOOL :=
FALSE

2.0 Applies only to the Slave. Input to the comm.
System. When set to TRUE do not process the
NRT information at this port. Set it to FALSE to
accept and process the NRT at this port
(Default).

_P1_IDLE_POLL %MX 3.4018.2 : BOOL :=
FALSE

2.0 Applies only to the Master. Input to the comm.
system. When set to FALSE the IDLE polling is
Enabled (Default). Set this to TRUE to disable
the IDLE polling.

_P1_ALM_DIS %MX 3.4018.3 : BOOL :=
FALSE

2.0 Input to the comm. System. When set to FALSE
the port can transmit alarm reports (Default).
Set this to TRUE when alarm reports are not to
be transmitted through this port.

_P1_IMM_DIS %MX 3.4018.4 : BOOL
:=FALSE

3.10 Input to the comm. System. When FALSE (the
default), this port can operate in immediate
response mode. When set to TRUE, this port
CANNOT operate in immediate response

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 381

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

mode.
_P1_IGNORE_ECHO %MX 3.4018.5 BOOL 3.10 On two-wire RS485 ports, anything sent is

echoed back. Set to TRUE, to ignore the data
echoed back.

_P1_DIAL_PORT %MX 3.4018.6 BOOL 4.00 Set to TRUE to allow dialing on this port.
_P1_AUTO_DTR %MX 3.4018.7 BOOL 4.20 The function of this variable varies depending

upon the type of port. For all port types, DTR is
disabled if DCD is inactive. In addition, the
following restrictions apply: For BSAP Master
Ports, DTR is only on while a communication
transaction is in progress; once the transaction
is over, DTR is dropped, until the completion of
the poll period. For Custom Master ports, DTR
is dropped after the transaction and no other
request is pending. For Generic Serial Ports, no
processing is done since DTR control is
expected to be in manual mode.

_P1_LOCAL_PORT %MX 3.4019.0 BOOL 4.20 Defines this port as a BSAP Local Port. It will
answer polls to any BSAP address, even if this
ControlWave has a different local address than
the incoming poll message.

_P1_RESET_STATISTICS %MX 3.4019.1 BOOL 5.30 Resets the statistics in the array for the I/O
expansion rack. Used with the RIO 485
interface. See the ControlWave Designer online
help for more information.

_P1_INH_BSAP_SLAVE %MX 3.4019.2 BOOL 5.43 When set TRUE prevents BSAP slave
communications on this port.

Port 2 - offsets 4020-4029 (replication of port 1 offsets as applicable).

Port 3 - offsets 4030-4039 (replication of port 1 offsets as applicable).

Port 4 - offsets 4040-4049 (replication of port 1 offsets as applicable).

Port 5 - offsets 4050-4059 (replication of port 1 offsets as applicable)

Port 6 - offsets 4060-4069 (replication of port 1 offsets as applicable)

Port 7 - offsets 4070-4079 (replication of port 1 offsets as applicable)

Port 8 - offsets 4080-4089 (replication of port 1 offsets as applicable)

Port 9 - offsets 4090-4099 (replication of port 1 offsets as applicable)

Port 10 - offsets 5000-5009 (replication of port 1 offsets as applicable)

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

382 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

Port 11 - offsets 5010-5019 (replication of port 1 offsets as applicable)

Port 12 - offsets 5020-5029 (replication of port 1 offsets as applicable)

Other Communication parameters – Data Line Monitoring

_DLM_PORT %MB 3.5000 : SINT := 1.0 1-based port number to monitor.
_DLM_R_PTR %MD 3.5001 : USINT 1.0 Position in string to load next character.
_DLM_READ %MB 3.5003 : STRING 1.0 Storage for string which has been read.
_DLM_WRITE %MB 3.5088 : STRING 1.0 String which has been written.

String Data:

_CW_NAME_STR %MB 3.5400 : STRING 2.0 Defines the name.
_CW_DESCRIPTION_STR %MB 3.5485 : STRING 2.0 Description: Automatically set by the system to

the firmware ID.
_CW_CONTACT_STR %MB 3.5570 : STRING 2.0 Defines the contact.
_CW_LOCATION_STR %MB 3.5655 : STRING 2.0 Defines the location.
_CW_LOAD_STR %MB 3.5740 : STRING 4.40 Defines the project version.

_S1_IO_BOARD_ID_STR %MB 3.6000 : STRING 2.0 ID string for 1st I/O board.
_S2_IO_BOARD_ID_STR %MB 3.6085 : STRING 2.0 ID string for 2nd I/O board.
_S3_IO_BOARD_ID_STR %MB 3.6170 : STRING 2.0 ID string for 3rd I/O board.
_S4_IO_BOARD_ID_STR %MB 3.6255 : STRING 2.0 ID string for 4th I/O board.
_S5_IO_BOARD_ID_STR %MB 3.6340 : STRING 2.0 ID string for 5th I/O board.

_S6_IO_BOARD_ID_STR %MB 3.6425 : STRING 2.0 ID string for 6th I/O board.
_S7_IO_BOARD_ID_STR %MB 3.6510 : STRING 2.0 ID string for 7th I/O board.
_S8_IO_BOARD_ID_STR %MB 3.6595 : STRING 2.0 ID string for 8th I/O board.

Redundancy parameters: (See ControlWave Redundancy Setup Guide (D5123) for details.)

Additional Communication System configuration parameters.

_SLAVE_PORT %MW 3.8000 : UINT := 1 2.0 Port number for the network slave port. Valid
values are:

1 - 11 (serial COM ports)
15 = IP (Ethernet or PPP)

_MSG_TIMEOUT %MD 3.8004 : DINT :=
30000

2.0 Timeout for all messages being tracked (all
global messages passing through this node are
tracked). If this value is <= 0 then the default
time out of 30000 milliseconds (30 seconds) is
assumed.

_NEW_NRT_RCVD %MX 3.8008.0 : BOOL := 2.0 Output from Comm. system. TRUE indicates a

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 383

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

FALSE new NRT was received and has to be
propagated to the slave RTUs. FALSE following
the TRUE state indicates that BSAP Master has
or is in process of sending the NRT to all slave
RTUs. Can be set to TRUE by the user to force
transmission of NRT to slave nodes.

_SLAVE_DEAD %M 3.8010
Map this to a user defined
data type of a BOOL array
with 127 elements.
B_127 : ARRAY [1..127]
OF BOOL;
If this array is also to be
manipulated using the
Dataview or equivalent
tool then the data type
must be a two
dimensional array with
127x1 or 1x127.
B_1_1 : ARRAY [1..1] OF
BOOL;
B_127 : ARRAY [1..127]
OF B_1_1;
In addition, it must be
registered with
REG_ARRAY.

2.0 Applicable to the Master only. Array elements
1-127 are used by the system to report the
current status of the slaves 1-127. When a
node is not responding to the POLLS it is
declared as dead and the corresponding status
is set to TRUE. (NOTE: This logic can be
reversed via _BSAP_FLAG_SENSE.)

This array is similar to the #NODE.xxx. signals
used in ACCOL II for Network 3000-series
controllers.

_SLAVE_POLL_DIS %M 3.8138
Map this to a user defined
data type of a BOOL array
with 127 elements.
B_127 : ARRAY [1..127]
OF BOOL;
If this array is also to be
manipulated using the
Dataview or equivalent
tool then the data type
must be a two
dimensional array with
127x1 or 1x127.
B_1_1 : ARRAY [1..1] OF
BOOL;
B_127 : ARRAY [1..127]
OF B_1_1;
In addition, it must be
registered with
REG_ARRAY.

2.0 Applicable to the Master only.
Array elements 1-127 are used as input to the
comm. system to indicate whether the slave(s)
are to be polled or not. When an array element
is set to TRUE the corresponding node is not
polled. (NOTE: This logic can be reversed via
_BSAP_FLAG_SENSE.)

This array is similar to the #NDARRAY used in
ACCOL II for Network 3000-series controllers,
except by default, the logic is opposite.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

384 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_BSAP_FLAG_SENSE %MX 3.8265.0 BOOL
:=FALSE

4.00 Default is FALSE. When set TRUE, reverses the
interpretation of BOOL values in all four control
and status arrays. See table, below:

Control or Status Array BSAP_FLAG_SENSE=FALSE (Default) BSAP_FLAG_SENSE=TRUE

_SLAVE_DEAD element TRUE = Slave Node Dead;
FALSE = Slave Node Alive

TRUE = Slave Node Alive;
FALSE = Slave Node Dead

_SLAVE_POLL_DIS element TRUE = Do NOT poll this node;
FALSE = Poll this node

TRUE = Poll this node;
FALSE = Do NOT Poll this node

_Px_DEAD_ARRAY element TRUE = EBSAP Slave Node Dead;
FALSE = EBSAP Slave Node Alive

TRUE = EBSAP Slave Node Alive;
FALSE = EBSAP Slave Node Dead

_Px_DISABLE_ARRAY element TRUE = Do NOT poll this EBSAP node;
FALSE = Poll this EBSAP node

TRUE = Poll this EBSAP node;
FALSE = Do NOT Poll this EBSAP node

Port 1 – offsets 8384-8428

_P1_TIMEOUT %MD 3.8384 : DINT := 500; 2.0 In milliseconds. Link level response
timeout. This timeout value must be set
approximately 50 ms higher than the
facing slave's Message Write Delay.

_P1_CYCLE_INT %MD 3.8388 : DINT 4.20 The interval (in milliseconds) at which
DTR is enabled (Fast Duty Cycle).

_P1_CYCLE_TIMEO %MD 3.8392 : DINT 4.20 Fast duty cycle timeout.
_P1_WRITE_TMO %MD 3.8396 : DINT := 0 2.0 Common. In milliseconds. Since the CTS

must be received in order to transmit,
this time out is added to the expected
message transmission time at the
effective Baud Rate for this port. The
response message must be completely
transmitted before the resulting
timeout. Default is dynamic and
calculated based on the current baud
rate.

_P1_LOW_SL %MB 3.8400 : SINT := 0 2.0 Output parameter. Set to the value from
the flash parameter. It is the lowest
slave Address for this port.

_P1_HIGH_SL %MB 3.8401 : SINT := 0 2.0 Output parameter. Set to the value from
the flash parameter. It is the highest
slave Address for this port.

_P1_VSAT_MIN_RESP %MD 3.8402 : INT

4.40 The minimum period of time that a
VSAT Slave Port will wait before

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 385

Port 1 – offsets 8384-8428

responding to a message from the
master. The main purpose of this delay
is to allow a VSAT Master Port enough
time to send messages to multiple
slaves without getting a response from
any of them until all of those messages
have been sent out.

_P1_VSAT_MAX_RESP %MD 3.8404 : INT

4.40 Beginning with ControlWave firmware
04.80, this variable has two possible
uses:

1.The maximum period of time (in
milliseconds) that a VSAT Slave Port will
wait before responding to a message
from the master. This timer is meant to
allow enough time for a data response
to become available. One of the
following can happen before this timer
expires: a) An alarm message is sent. b)
A data response message is sent. If the
timer expires without either of these
messages being sent, then a) A DOWN-
ACK is sent (if received message was a
data request) or b) An ACK/NO DATA
message will be sent (if received
message was a poll).

2. Beginning with ControlWave
firmware 04.80, if the port is a BSAP
Slave Port and immediate response is
configured for this port, (i.e.
_Pn_IMM_DIS is set to FALSE), this
variable specifies how long the BSAP
Slave driver must wait for a data
response. If the response is received
before this time, the response will be
sent immediately. However, if the the
timer expires then the driver will send a
DOWN-ACK protocol response to the
Master. This timeout value may range
from 50 to 32767 milliseconds.

_P1_VSAT_UP_ACK_WAIT %MD 3.8406 : INT 4.40 This is the period of time the VSAT
Master will wait, after sending an UP-
ACK-WITHOUT-POLL message (to
terminate a poll transaction), to allow
time for the VSAT Slave to get ready for
the next request.

_P1_RBE_ERE_COUNT %MD 3.8408 UDINT 4.40 Count of the number of Exception

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

386 System Variables

Port 1 – offsets 8384-8428

Reports (ER) generated and posted to
the Report Pool for port n. This count is
incremented each time a new exception
is reported. Application may reset this
count.

_P1_RBE_RM_COUNT %MD 3.8412 UDINT 4.40 Count of the number of Report
Messages successfully transmitted for
port n. Each RM can have more than 1
Exception Report in it. This count is not
incremented when RM are
retransmitted. Application may reset
this count.

_P1_RBE_POOL_OVERFLOW %MD 3.8416 UDINT 4.40 Count of the number of Exception
Reports the RBE FB wanted to post in
the Report Pool but could not because
the Report Pool was full. These
exceptions may essentially be lost for
the RBE Client at this port. Application
may reset this count.

_P1_RBE_POOL_SIZE %MW 3.8420 UINT 4.40 The capacity of the Report Pool for port
n. This size governs the maximum
number of Exception Reports that can
be outstanding at any given time
without being successfully reported.
This size is determined based on the
expected rate of exception occurrence
and the throughput at the port. This size
can be changed on line. However, for
the new size to be effective the RBE FB
must be re-run with the ioabInit
parameter in TRUE state. When this
variable is set to 0 (default), the RBE is
not active for the port. Adjust this
parameter only if the Report Pool
overflows or if the system wide RAM
usage needs to be redistributed.

_P1_RBE_REXMIT_COUNT %MD 3.8422 USINT 4.40 Indicates number of retransmissions of
the last Report Message. This happens
when an expected RBE_ACK is not
received from the RBE Client. Following
the RBE_ACK_TMO the last RM is
retransmitted. On such retransmissions
the RM_COUNT is not incremented. This
count is automatically reset back to 0
whenever an ACK is received.

_P1_RBE_RM_SINCE_ACK %MD 3.8423 USINT 4.40 Indicates number of Report Messages
sent since last ACK was received. Count
is adjusted whenever an ACK is received.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 387

Port 1 – offsets 8384-8428

This count is continuously incremented
for each Report Message sent when the
ACK Limit is set to 0.

_P1_RBE_CLIENT_ID %MD 3.8424 USINT 4.40 Identity of the RBE Client for port n.
(0xA3 = default) Valid range available =
0x00-0xFF. Only time this will require a
change is when the RBE Client in use has
a different ID.

_P1_RBE_ERE_FORMAT %MD 3.8425 USINT 4.40 Exception Report format type for port n.
_P1_RBE_ACK_LIMIT %MD 3.8426 USINT 4.40 Indicates if and when an ACK is expected

from the RBE Client.
0 = Never wait for an ACK for Report
Message (default)
n = 1-127 = send up to n Report
Messages (RM) then stop if an ACK is not
received for any of the Report Messages.
When the reporting has stopped while
waiting for an ACK, a timeout will result
in the retransmission of the last RM. The
periodic retransmission will occur until
an ACK is received.

_P1_RBE_STOP_RPT_MSG %MX 3.8427.0 : BOOL 4.40 FALSE = Start/Restart Report Message
transmission at port n.
TRUE = Temporarily stop sending Report
Message for port n. When restarting
from the stopped state the RM will
begin with the next new Exception
Report. This does not prevent new
Exception Reports from being put into
the buffer pool. It is possible to overflow
the buffer pool while this variable is set.

_P1_RBE_PENDING %MX 3.8427.1 : BOOL 4.40 This variable is set to TRUE when there is
one or more Exception Reports pending
for port n. It will automatically be
changed to FALSE when the last
Exception Report from the Report Pool
has been successfully transmitted.

_P1_RBE_USE_ACCOL_NAME %MX 3.8427.2 : BOOL 4.40 This variable determines the format of
the variable name in the Exception
Report.
TRUE = the variable names are in
ACCOLII format.
FALSE= the variable names are in
IEC61131 format.

_P1_RBE_GO_ACT_ON_START %MX 3.8427.3 : BOOL 4.40 Variable determines the initial state for
the RBE following an application COLD
or WARM start.
FALSE (default) = RBE is to send the

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

388 System Variables

Port 1 – offsets 8384-8428

WAITING_INIT message to the RBE
Client and wait for the INIT_REQ
message. Periodically, ACK_TMO,
repeat the wait message until the init
message is received.
TRUE = Following a successful
initialization the RBE enters the active
state where the database scan and
exception reporting take place.

_P1_RBE_REPEAT_TIMEOUT %MD 3.8428 DINT 4.40 Specifies the time to wait for an RBE
ACK. If an ACK is not received within this
period then retransmit the last Report
Message. Periodically repeat this until
an RBE ACK is received from the client.
Ignore unrelated or out of sequence
ACKs. A new Init or Demand Request
will force an exit from this state. This
timeout is also used during the
initialization stage to determine when a
WAITING INIT message will be re-sent if
an INIT_REQ message has not been
received. When this variable equals 0 no
transmissions will occur.

_P1_RBE_STATE %MB 3.8432 SINT 4.60 Indicates the current state of this RBE
port. See the ‘RBE’ function block online
help to learn the meaning of the
number.

_P1_MAX_SLAVES %MD 3.8440 USINT 4.50 Maximum number of slaves allowed
below a virtual node.

_P1_TOP_LEVEL_NODES %MD 3.8441 USINT 4.50 The number of slaves under a master (or
virtual nodes under an Emaster.)

_P1_TOTAL_NODES %MD 3.8442 : INT 4.50 Total number of slaves on this port.
_P1_DEAD_ARRAY %MD 3.8444 : INT 4.50 This array is similar to the _SLAVE_DEAD

array. It is applicable to the EBSAP
Master only. _Pn_DEAD_ARRAY is the
number of a registered BOOL array that
represents the number of slave nodes
on Port n. The array must be
dimensioned by the number of virtual
nodes and max_slaves for row and
column, respectively. The array
elements are used by the system to
report the current status of the slaves.
By default, when a node is not
responding to the POLLS it is declared as
dead and the corresponding BOOL
status is set to TRUE. NOTE: This default

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 389

Port 1 – offsets 8384-8428

logic for interpreting the BOOL can be
reversed via _BSAP_FLAG_SENSE.

_P1_DISABLE_ARRAY %MD 3.8446 : INT 4.50 This array is similar to the
_SLAVE_POLL_DIS array. It is applicable
to the EBSAP Master only.
_Pn_DISABLE_ARRAY is the number of a
registered BOOL array that represents
the number of slave nodes on Port n.
The array must be dimensioned by the
number of virtual nodes and max_slaves
for row and column, respectively. The
array elements are used as an input to
the communication system to indicate
whether the slave(s) are to be polled or
not. By default, when an array element
is set to TRUE the corresponding node is
not polled.
NOTE: This default logic for interpreting
the BOOL can be reversed via
_BSAP_FLAG_SENSE.

_P1_PAD_FRONT %MD 3.8448 USINT 4.60 Number of front pad characters for
BSAP messages.

_P1_PAD_BACK %MD 3.8449 USINT 4.60 Number of back pad characters for BSAP
messages.

_P1_STATISTICS_ARRAY %MD 3.8450 INT 5.30 This designates an array to maintain
statistics for an I/O Expansion Rack using
RS 485 communication. For details on
the array structure and statistics, see the
online help in ControlWave Designer.

Port 2 – offsets 8512-8556 (replication of port 1 offsets as applicable).

Port 3 – offsets 8640-8684 (replication of port 1 offsets as applicable).

Port 4 – offsets 8768-8812 (replication of port 1 offsets as applicable).

Port 5 – offsets 8896-8940 (replication of port 1 offsets as applicable).

Port 6 – offsets 9024-9068 (replication of port 1 offsets as applicable).

Port 7 – offsets 9152-9196 (replication of port 1 offsets as applicable).

Port 8 – offsets 9280-9324 (replication of port 1 offsets as applicable).

Port 9 – offsets 9408-9452 (replication of port 1 offsets as applicable).

Port 10 – offsets 9536-9580 (replication of port 1 offsets as applicable).

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

390 System Variables

Port 1 – offsets 8384-8428

Port 11 – offsets 9664-9708 (replication of port 1 offsets as applicable).

Port 12 – offsets 9792-9836 (replication of port 1 offsets as applicable).

_S9_IO_BOARD_ID_STR %MB 3.11000 : STRING ID string for 9th I/O board.
_S10_IO_BOARD_ID_STR %MB 3.11085 : STRING ID string for 10th I/O board.
_S11_IO_BOARD_ID_STR %MB 3.11170 : STRING ID string for 11th I/O board.
_S12_IO_BOARD_ID_STR %MB 3.11255 : STRING ID string for 12th I/O board.
_S13_IO_BOARD_ID_STR %MB 3.11340 : STRING ID string for 13th I/O board.

_S14_IO_BOARD_ID_STR %MB 3.11425 : STRING ID string for 14th I/O board.

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

_IPn_RBE_ERE_COUNT %MD 3.12000 UDINT 4.50 Count of the number of Exception Reports
(ER) generated and posted to the Report Pool
for Ethernet port n. This count is
incremented each time a new exception is
reported. Application may reset this count.

_IPn_RBE_RM_COUNT %MD 3.12004 UDINT 4.50 Count of the number of Report Messages
successfully transmitted for Ethernet port n.
Each RM can have more than 1 Exception
Report in it. This count is not incremented
when RM are retransmitted. Application may
reset this count.

_IPn_RBE_POOL_OVERFLOW %MD 3.12008 UDINT 4.50 Count of the number of Exception Reports
the RBE FB wanted to post in the Report Pool
but could not because the Report Pool was
full. These exceptions may essentially be lost
for the RBE Client at this port. Application
may reset this count.

_IPn_RBE_REXMIT_COUNT %MD 3.12014 USINT 4.50 Indicates number of retransmissions of the
last Report Message. This happens when an
expected RBE_ACK is not received from the
RBE Client. Following the RBE_ACK_TMO the
last RM is retransmitted. On such
retransmissions the RM_COUNT is not
incremented. This count is automatically
reset back to 0 whenever an ACK is received.

_IPn_RBE_PENDING %MX 3.12019.1 : BOOL 4.50 This variable is set to TRUE when there is one
or more Exception Reports pending for
Ethernet port n. It will automatically be
changed to FALSE when the last Exception
Report from the Report Pool has been

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 391

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

successfully transmitted.
_IPn_RBE_RM_SINCE_ACK %MD 3.12015 USINT 4.50 Indicates number of Report Messages sent

since last ACK was received at Ethernet Port
n. Count is adjusted whenever an ACK is
received. This count is continuously
incremented for each Report Message sent
when the ACK Limit is set to 0.

_IPn_IP_RBE_ADDRESS %MD 3.12128 UDINT 4.50 Displays the IP Address for Ethernet Port n.
_IPn_RBE_POOL_SIZE %MW 3.12012 UINT 4.50 The capacity of the Report Pool for port

Ethernet Port n. This size governs the
maximum number of Exception Reports that
can be outstanding at any given time without
being successfully reported. This size is
determined based on the expected rate of
exception occurrence and the throughput at
the port. This size can be changed on line.
However, for the new size to be effective the
RBE FB must be re-run with the ioabInit
parameter in TRUE state. When this variable
is set to 0 (default), the RBE is not active for
the port. Adjust this parameter only if the
Report Pool overflows or if the system wide
RAM usage needs to be redistributed.

_IPn_RBE_ERE_FORMAT %MD 3.12017 USINT 4.50 Exception Report format type for Ethernet
port n.

_IPn_RBE_ACK_LIMIT %MD 3.12018 USINT 4.50 RBE Acknowledge Limit for Ethernet Port n.
Indicates if and when an ACK is expected
from the RBE Client. 0 = Never wait for an
ACK for Report Message (default)
n = 1-127 = send up to n Report Messages
(RM) then stop if an ACK is not received for
any of the Report Messages. When the
reporting has stopped while waiting for an
ACK, a timeout will result in the
retransmission of the last RM. The periodic
retransmission will occur until an ACK is
received.

_IPn_RBE_REPEAT_TIMEOUT %MD 3.12020 DINT 4.50 Specifies the time to wait for an RBE ACK at
Ethernet Port n. If an ACK is not received
within this period then retransmit the last
Report Message. Periodically repeat this until
an RBE ACK is received from the client. Ignore
unrelated or out of sequence ACKs. A new
Init or Demand Request will force an exit
from this state. This timeout is also used
during the initialization stage to determine

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

392 System Variables

System Variable Name Address Data Type Minimum
Firmware
Needed

Description

when a WAITING INIT message will be re-sent
if an INIT_REQ message has not been
received. When this variable equals 0 no
transmissions will occur.

_IPn_RBE_STOP_RPT_MSG %MX 3.12019.0 : BOOL 4.50 Control report message transmissions for
port n. FALSE = Start/Restart Report Message
transmission at port n. TRUE = Temporarily
stop sending Report Message for port n.
When restarting from the stopped state the
RM will begin with the next new Exception
Report. This does not prevent new Exception
Reports from being put into the buffer pool.
It is possible to overflow the buffer pool while
this variable is set.

_IPn_RBE_USE_ACCOL_NAME %MX 3.12019.2 : BOOL 4.50 This variable determines the format of the
variable name in the Exception Report.
TRUE = the variable names are in ACCOLII
format.
FALSE= the variable names are in IEC1131
format.

_IPn_RBE_GO_ACT_ON_STA
RT

%MX 3.12019.3 : BOOL 4.50 Variable determines the initial state for RBE
at Ethernet Port n following an application
COLD or WARM start.
FALSE (default) = RBE is to send the
WAITING_INIT message to the RBE Client and
wait for the INIT_REQ message. Periodically,
ACK_TMO, repeat the wait message until the
init message is received.
TRUE = Following a successful initialization
the RBE enters the active state where the
database scan and exception reporting take
place.

_IPn_RBE_STATE %MB 3.12024 4.60 The current state of RBE for the Ethernet
port. See the ‘RBE function block’ online help
to learn the meaning of the number.

Static Memory Area:
In addition to the system variables described, a static memory array exists beginning at
offset 3.100000. The static memory area is useful for storing data you have accumulated,
and don’t want to lose if the controller is restarted, such as flow totals, equipment run
times, etc. This memory is normally NOT written to by the system, and so can be used to
save user information across restarts. This defaults to 16K but can be reduced if there is
insufficient space in SRAM for variables marked 'RETAIN'. This memory will only be re-

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 393

initialized on a re-start if the SRAM control switch is set OFF, or if there is no battery
backup.

It can also be initialized under program control by setting its value to 0.

Example - Manually Defining a System Variable to Display the Task Priority

Let's say that within one of our programs we want to know the configured priority of the
first task in the project:

To find out if this information is available, look through the System Variable Mapping
Charts and you will find the entry:

_T1_TASK_PRIO %MW 1.1014 : INT The configured priority of this task.

Our _T1_TASK_PRIO variable would be defined in a variable worksheet. For this particular
project, it’s called RTU_RESOURCEV but depending upon which version of ControlWave
Designer you are using, it could be named ‘Global Variables’ or something else.

 First, double-click on the ‘Global Variables’ icon in the project tree, to bring up the
worksheet.

 Then right-click in the ‘Global Variables’ section, and choose “Insert variable” from the
pop-up menu.

 A new variable called ‘NewVar1’ will appear in the worksheet. Double-click on the
‘NewVar’ name to edit it. Enter the name ‘_T1_TASK_PRIO’ from the table.

First, double-click on the Global Variables worksheet icon

Next, right-click within the worksheet,
and choose “Insert variable” from the
pop-up menu.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

394 System Variables

 Now click on the ‘Type’ field, and a list box will appear. Choose ‘INT’ because that is
the type specified in the table.

 Drag the scroll bar to bring additional fields into view.

 Now, enter the address for the variable, as shown in the table ‘%MW 1.1014’. When
this is done, and the worksheet is closed, you have successfully defined a global
variable for the task priority.

Double-click on the “NewVar1” name to
edit it.

Click in the “Type” field to change the
Type.

When you have finished editing the
“Name” and “Type” they should look
like this.

Enter the address here

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 395

Using the System Variable Viewer
OpenBSI includes a debugging tool for viewing the current value of system variables in the
ControlWave.

To start the System Variable Viewer, click Start Programs OpenBSI Tools
Debugging Tools System Variable Viewer.

In the System Variable Viewer, click Data Communications to call up the Choose
Communications dialog box.

There are three possible connection types:

TCP/IP: Specify the IP address, and timeout (in milliseconds).

Syntax is: -ip ip_address timeout

Example Argument String: -ip 10.211.74.222 2000

Open BSI: Specify the node name of the ControlWave to which you want to
communicate for the Argument String.

 Example: CWM2

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

396 System Variables

Serial: Specify the PC communication port, baud rate, and timeout (in milliseconds).

Syntax is: comm._port baud_rate timeout

Example Argument String: COM1 9600 2000

Click OK when you complete the argument string. This calls up the Choose Display Type
dialog box.

In the Choose Display Type dialog box. Specify the list of system variables you want to
view. If you want to see Task Information or Port information, you’ll need to choose the
proper numbered task or port first. After you make your selection, click OK and the list
opens.

If you want to view variables for
a task other than Task 1, choose
it here.

If you want to view variables for
a port other than Port 1, choose
it here.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

System Variables 397

Notes:

 The tool prompts you to log in to the RTU to view the system variables.

 If you click on a particular value, it appears in the Expanded Value field.

 Refreshing of the screen may be slow.

 To choose a different list to view, click File New List.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

398 System Variables

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 399

Variable Extension Wizard
What is the Variable Extension Wizard?

The Variable Extension Wizard is run from within ControlWave Designer (this feature was
added with OpenBSI Version 5.4/ControlWave Designer Version 4.0). It allows you to
create initialization files (*.INI) which assist in batch configuration of variables within the
ControlWave-series controller.

The information in these initialization files is incorporated into the ControlWave project
when read using either the DB_LOAD or RBE function blocks. The initialization files may be
used to:

 Configure lists (Requires ControlWave firmware 04.40 or newer)

 Identify variables which should be collected via Report by Exception (Requires
ControlWave firmware 04.40 or newer)

 Configure alarms (Requires ControlWave firmware 04.90 or newer)

 Configure descriptive text, ON/OFF text, inhibit/enable flags, or units text (Requires
ControlWave firmware 04.90 or newer)

Important

The configuration information entered via this method is not visible within ControlWave
Designer. For example, you will not see LIST function blocks for lists created via this
method, since it is performed via initialization files.

Before You Begin
 In order to view variables in the Variable Extension Wizard, you must have marked

those variables for PDD collection within the project before you run the Variable
Extension Wizard.

 Your ControlWave project must be in a state where it can be compiled successfully.

Starting the Variable Extension Wizard
The Variable Extension Wizard is run from within ControlWave Designer. To do this, click
on:

View Variable Extension Wizard

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

400 Variable Extension Wizard

Using the Variable Extension Wizard
If your project includes more than one resource, you will be prompted to choose which
resource and I/O Configuration you want to work with. Choose the resource, then click
[Next>].

When the Variable Extension Wizard first starts it will compile your ControlWave project.

Choose the appropriate I/O configuration and
resource (if prompted to do so)

Click on [Next>]

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 401

Search for all global variables
and all variables marked ‘PDD’.

Search only for global variables.

Search only for variables with
a given instance name. (You
must enter that in

.)
“Instance

Name”

Search only for variables with
a given string in the variable
name. (You must enter that
string in the
field.)

“Sub String Search”

When the compilation has completed successfully, the Variable Search dialog box will
appear.

In the Variable Search dialog box, choose the type of variables you want to search for.

All Variables Selecting this will cause the Wizard to search for all variables
marked PDD, as well as all global variables (those with an
instance name of @GV).

All Globals Selecting this will cause the Wizard to search for all global
variables in the project (those with an instance name of @GV).

Instance Selecting this will cause the Wizard to search only for variables
from a particular program instance. You must enter the name
of that program instance in the “Instance Name” field.

Sub String Selecting this will cause the Wizard to search only for variables
whose names include a particular string of text. You must enter
that text string in the “Sub String Search” field.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

402 Variable Extension Wizard

When you’ve chosen which variables to search for, click [OK] and the variables display in a
Search Grid.

Once the variables are displayed in the Search Grid you can do any of the following:

 Mark the variable for Report By Exception (RBE) collection, and, if an analog variable,
configure its deadband value.

 Configure the variable as an alarm.

 Create one or more lists containing variables.

 Assign units (for analogs) or ON/OFF text (for BOOLs) to the variable.

 Set initial values of manual or alarm inhibit/enable flags.

 Create descriptive text for the variable.

Drag the scroll
bar to bring
more variables

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 403

Marking a Variable for Report by Exception (RBE) Collection
RBE is a method of data collection where variables are collected only when they change.

For logical variables (BOOL), this means whenever the variable goes from TRUE to FALSE or
FALSE to TRUE.

For analog variables (INT, REAL, etc.), this means whenever the analog variable changes
more than a pre-configured deadband value. You MUST configure a deadband for an
analog RBE variable, or else any change at all, even a minor fluctuation, would cause the
variable to be collected.

To select a BOOL variable for RBE collection, just
select its “Rbe” checkbox.

To mark an analog variable for RBE collection,
first select its “Rbe” checkbox, then enter a
deadband in the “Rbe Deadband” field, or use
the list box for the field to select a variable which
holds a value that will serve as the deadband.

NOTE: You must press the [Enter] key on the
keyboard to complete the entry, or else you
cannot exit the field.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

404 Variable Extension Wizard

Note:

Your project must include an RBE function block, and you must have configured it, in order
for these variables to be collected via RBE.

For a logical RBE variable

To define a logical RBE variable, simply check the “Rbe” check box for that variable.

For an analog RBE variable

To define an analog RBE variable, check the “Rbe” check box for that variable, then enter a
deadband value in the “Rbe Deadband” field, or use the list box for the field to select
another variable whose value will be used as the RBE deadband. Note: You MUST press the
[Enter] key on your keyboard to exit the “Rbe Deadband” field.

Marking / Unmarking all variables in the Search Window for RBE collection

To mark all variables in the Search Grid for RBE collection, click on All Mark All RBE. You
will still have to define RBE deadbands for all analog RBE variables.

To un-mark all variables in the search grid, so that none of them will be collected by RBE,
click on: All Clear All RBE

Configuring a Variable as an Alarm
The controller generates alarm messages in response to a significant change in a variable’s
value or status. Full details on how alarms work are explained in the Alarm Configuration
section in this manual. Alarms are configured in one of two ways:

1. Using Alarm function blocks (See the Alarm Configuration section, earlier in this
manual)

2. Using the Variable Extension Wizard

Configuring an Analog Alarm Variable

Click on the “Alm” check box for the variable. The Analog Alarms dialog box will appear.

Specify alarm limits for the variable. These limits determine at what point the variable
enters an alarm condition. The alarm limit values may be entered directly as a constant, or
you may specify separate analog variables to hold the value of each alarm limit.

Specify a high deadband value, and/or low deadband value for the variable. Deadbands are
used to define a range around the alarm limits where a minor fluctuation of the variable
should not change the ‘in alarm’ or ‘normal state’ condition of the variable. Again, it may
be entered as a constant, or as a separate analog variable.

Choose priorities for each alarm limit. These are used to specify the severity of the alarm
condition. The priorities from least important to most important are: Event ‘Evt’, Operator
Guide ‘OpG’, Non-Critical ‘NCrit’, and Critical ‘Crit’.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 405

Click [OK] when finished.

Then specify alarm limits, priorities,
and deadbands. When you’re done
click on [OK].

First, select the “Alm” box for the
variable.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

406 Variable Extension Wizard

Configuring a Logical (BOOL) Alarm Variable

Click on the “Alm” check box for the variable. The Logical Alarms dialog box will appear.

Choose the “Type” of the alarm: ‘Alarm on True State’ means that an alarm is generated
when the variable changes from FALSE to TRUE; ‘Alarm on False State’ means that an alarm
is generated when the variable changes from TRUE to FALSE; ‘Alarm on Change of State’
means that an alarm is generated by any change.

Choose a priority for the alarm, to indicate its severity. The priorities from least important
to most important are: Event ‘Evt’, Operator Guide ‘OpG’, Non-Critical ‘NCrit’, and Critical
‘Crit’.

Click on [OK] when finished.

Creating / Editing a List
To create a list of variables, click on
View Lists.

The Lists dialog box will appear. If you want to edit an existing list, select it from the “List
Number” list box. To create an all new list, click [New] and enter a number for the list.

Next, choose the type of alarm,
and the priority, then click on
[OK].

First, select the “Alm” box for the
variable.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 407

To add a variable to the current list, click on its name in the “Searched Variable Directory”
then click on the [>>] button. To remove a variable from the current list, click on its name
in the “List Entries” field then click on the [<<] button.

You can optionally enter a description for the list in the “List Descriptor” field.

If you want users to be able to edit the list, online, check the “Allow on-line edits” box.
Note: Users can delete variables; but can only add variables that already exist in the
project.

To delete an existing list, choose the list number, then click [Delete]. Note: There is no
prompt to confirm the deletion – the entire list is deleted immediately from the wizard.
(OpenBSI 5.7 Service Pack 2 and newer.)

Note:

Your ControlWave project must include a configured DB_LOAD function block to load
these lists.

If you want users to be able
to make online edits to
signal lists, check this box.

Optionally, you can
enter a description
for the list here.

To edit a pre-existing list,
select it from the list box.

Click on “New” to
create a new empty
list.

Variables are stored
and referenced in the
list in the order in they
appear under “List
Entries.” To change
the position of a
variable, click on it in
“List Entries” and then
click on the [Move Up]
or [Move Down]
buttons to position it in
the desired order.

To add a variable to
the current list, click
on the variable name,
then click on the [>>]
button to add it to
the “List Entries.”

To remove a variable to the current list,
click on the variable name in “List
Entries,” then click on the [<<] button.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

408 Variable Extension Wizard

Setting initial values for Manual or Alarm Inhibit/Enable Flags
To set the initial value of a Manual Inhibit/Enable flag or Alarm Inhibit/Enable flag to
Inhibit, simply select the “MI” or “AI” checkboxes, respectively.

To set a variable’s initial Alarm
Inhibit/Enable status to ‘Inhibit’,
check the AI box.

To set a variable’s initial
Manual Inhibit/Enable status to
‘Inhibit’, check the MI box.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 409

Assigning Units Text (Analog Variables ONLY)
To assign engineering units to a variable, click in the “Units Text” field, and enter up to six
characters of units text, then press the [Enter] key on the keyboard, to exit the field.

Alternatively, you can specify a variable name in the field, which will hold the units text.

Note: You can enter units text in brackets in the
Description field of a variables worksheet in
ControlWave Designer.

The units text entered there, however, only appears within ControlWave Designer; it is not
downloaded to the RTU. It cannot be viewed in DataView or other data collection
programs.

You can view this text in the Variable Extension Wizard, however, it appears in green to
indicate that it does not become part of the _VARDEFS.INI file and is not downloaded to
the RTU.

If you want to convert this text so it can be downloaded to the RTU, position your cursor in
the units text field of the Variable Extension Wizard, and press the [Enter] key.

The text now changes color from green to black, and can be downloaded as if it was
entered directly in the Variable Extension Wizard.

Position the cursor in the
field.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

410 Variable Extension Wizard

Assigning ON/OFF Text (BOOL Variables ONLY)
To assign ON/OFF text to a BOOL variable, click in the “Units Text” field, and enter up to six
characters of ON text, followed by a slash “/”, and then up to six characters of OFF text.
Press the [Enter] key on the keyboard, to exit the field.

Alternatively, you can specify a variable name in the field, which will hold the ON/OFF text.

You can enter ON/OFF text in brackets in the Description field of a variables worksheet in
ControlWave Designer.

The ON/OFF text entered there, however, only appears within ControlWave Designer; it is
not downloaded to the RTU. It cannot be viewed in DataView or other data collection
programs.

You can view this text in the Variable Extension Wizard, however, it appears in green to
indicate that it does not become part of the _VARDEFS.INI file and is not downloaded to
the RTU.

If you want to convert this text so it can be downloaded to the RTU, position your cursor in
the units text field of the Variable Extension Wizard, and press the [Enter] key on the
keyboard.

The text now changes color from green to black, and can be downloaded as if it was entered directly in the
Variable Extension Wizard.

Position the cursor in the
field.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 411

Creating Descriptive Text for the Variable
To create descriptive text for a variable, click in the “Descriptor” field, and enter up to 64
characters of descriptive text, then press the [Enter] key on the keyboard, to exit the field.

Alternatively, you can specify a variable name in the field, which will hold the descriptive
text.

You can enter descriptive text in the Description field of a variables worksheet in
ControlWave Designer.

The descriptive text entered there, however, only appears within ControlWave Designer; it
is not downloaded to the RTU. It cannot be viewed in DataView or other data collection
programs.

You can view this text in the Variable Extension Wizard, however, it appears in green to
indicate that it does not become part of the _VARDEFS.INI file and is not downloaded to
the RTU.

If you want to convert this text so it can be downloaded to the RTU, you have two options:

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

412 Variable Extension Wizard

Option 1: Identify the text for each individual variable:

If you only want the descriptive text for certain variables to be downloaded to the RTU you
must position your cursor in the descriptor field of the Variable Extension Wizard, and
press the [Enter] key.

The text now changes color from green to black, and can be downloaded as if it was
entered directly in the Variable Extension Wizard. Repeat this process for each variable you
want to have descriptive text.

Option 2: Specify that you want descriptive text for ALL variables to be downloaded

If you want the descriptive text entered in variable worksheets for ALL variables to be
downloaded to the RTU, click All > Store All Descriptors. Note: This method requires
OpenBSI 5.9 or newer.

Saving the Initialization Files and Exiting the Wizard
To save the initialization files, click on File Save.

To exit the wizard, click on File Exit.

Note:

If you subsequently rename your ControlWave project, via a File Save As command, you
must then re-start the Variable Extension Wizard, and save the initialization files to update
the project name within the initialization files; otherwise the initialization files will still have
the old project name.

Format of Initialization Files
We recommend you generate these initialization files only using the Variable Extension
Wizard.

Advanced users may want to edit the initialization files manually, with an ASCII text editor.
Exercise extreme care when doing this, because syntactical errors could result in problems
in your ControlWave project.

Position the cursor in the
field.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 413

Do NOT leave spaces between lines of these files.

__LISTS.INI

*LIST listnumber
variable1
variable2
 :
variablen

where listnumber is the number used to identify this list.

 variable1-n are the variables in the list.

For example:

*LIST 1
@GV._AI_FOR_NON_ALARMS
@GV._ALARMS_BSAP_PORT1
@GV._ALARMS_BSAP_PORT1
@GV._ALARMS_BSAP_PORT10
@GV._ALARMS_BSAP_PORT11
@GV._ALARMS_BSAP_PORT11
@GV._T16_AVG_DUR

__RBE.INI

variable1 [deadband]
variable2 [deadband]
 :
variablen [deadband]

where:

variable1 –
variablen

are the names of variables you want marked for RBE
collection.

[deadband] is an RBE deadband applied to analog variables. This does
NOT apply for BOOL variables. The deadband can be
entered as a constant value, or a variable name can be
entered, in which case, the value of that variable will serve
as the deadband.

Example:

@GV.TANK_LEVEL @GV.TANK_LVL_DB

@GV.PRESSURE_NOW 10

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

414 Variable Extension Wizard

__VAR_DEFS.INI

This file is created by the Variable Extension Wizard; however, it may be edited manually
using a text editor.

[VERSION]
ProjName=project_name
Build=number
Date=mm/dd/yy hh:mm:ss
NumAlms=number_of_alarms

[SIG_n]
Name=variable_name
Alarm=variable_type
Units=text
Desc=description
LogPri=logical_alarm_priority
HiLimit=high_limit
HiPri=high_priority
HiHiLimit=high_high_limit
HiHiPri=high_high_priority
LoLimit=low_limit
LoPri=low_priority
LoLoLimit=low_low_limit
LoLoPri=low_low_priority
HiDB=high_deadband
LoDB=low_deadband

project_name

the name of the ControlWave Designer project.

number

the version number of the build for this project
(incremented automatically by the Variable Extension
Wizard).

mm/dd/yy hh:mm:ss the date and time the project was built where mm/dd/yy
refers to the 2 digit month, day, and year, respectively,
and hh:mm:ss refers to the hour (0-23), minute, and
seconds, respectively.

number_of_alarms

the number of alarms defined in the file

[Sig_n] the number of the variable. A separate [Sign_n] section
must be defined for each variable included in the file.

variable_name

the variable name, including any instance name

variable_type

the type of the alarm variable. This can be any one of the
following:

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 415

Analog Analog alarm variable

Log_True Logical alarm variable. Alarm is generated

when its value becomes TRUE.

Log_False Logical alarm variable. Alarm is generated

when its value becomes FALSE.

Log_State Logical alarm variable. Alarm is generated

when its value changes state from TRUE
to FALSE or FALSE to TRUE.

None Regular non-alarm variable.

text

For analog variables this refers to the engineering units
text, e.g. MSCFH, GPM, MGD, DEGC, DEGF, etc. Units text
can be up to six (6) characters. The 6 characters of units
text may alternatively be held in a STRING variable, in
which case the string variable name should be specified
here, preceded by a tilde ‘~’ character.

For logical (BOOL) variables, this refers to the ON / OFF
text of the variable. Up to six characters of ON text
followed by a slash ‘/’ and then up to six characters of OFF
text is supported. The ON/OFF text may alternatively be
held in a STRING variable, in which case the string variable
name should be specified here, preceded by a tilde ‘~’
character.

description

Descriptive text for the variable, up to 64 characters.
Alternatively, the descriptive text may be stored in a
separate STRING variable, in which case the string variable
name should be specified here, preceded by a tilde ‘~’
character.

high_limit,
high_high_limit,
low_limit,
low_low_limit

For Analog alarm variables ONLY. These limits specify
alarm limits, for this analog alarm variable. When the
variable’s value exceeds the high_limit or high_high_limit,
or falls below the low_limit, or low_low_limit, alarm
messages are generated. When the variable’s value comes
back within limits, a return-to-normal message is
generated. These limits may be entered as constant
values, or they may be stored in variables, in which case
the variable name would be entered here, preceded by a

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

416 Variable Extension Wizard

tilde ‘~’. NOTE: Deadbands may be set up to reduce
fluctuations into and out-of the alarm state.

low_deadband,
high_deadband

In the case of a high, or high-high alarm, the alarm
condition does not clear (i.e. generate a ‘return to normal’
alarm message) until the value of the variable goes below
the alarm limit, minus the value of the high_deadband. In
the case of a low, or low-low alarm, the alarm condition
does not clear until the value of the variable rises above
the alarm limit, plus the value of the low_deadband. These
deadbands may be entered as constant values, or they
may be stored in variables, in which case the variable
name would be entered here, preceded by a tilde ‘~’.

logical_alarm_priority
high_priority,
high_high_priority,
low_priority,
low_low_priority

Alarm priorities designate the importance of the alarm.
Logical (BOOL) variables have a single alarm priority;
analog alarm variables can have up to four alarm priorities
– one for each alarm limit. Alarm priorities from least
important to most important are:

Event (Evt)
Operator Guide (OpG)
Non Critical (NCrit)
Critical (Crit)

Example:

[Version]
ProjName=bktest1
Build=7
Date=11:25:16 01-21-08
NumAlms=3
[SIG_5]
Name=@GV.PRESSUR3_CURRENT
AI=1
[SIG_1]
Name=@GV.OUTPUT_1
Alarm=Log_True
LogPri=0
Units=START/STOP
[SIG_2]
Name=@GV.PRESSUR1_CURRENT
Desc=CURRENT PRESSURE READING
Units=PSI
[SIG_3]
Name=@GV.PRESSUR3_CURRENT
Alarm=Analog
HiPri=2
HiLimit=@GV.PRESSURE_HI_LIM

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Extension Wizard 417

HiHiPri=3
HiHiLimit=@GV.PRESSURE_HIHI_LIM
LoPri=1
LoLimit=@GV.PRESSURE_LO_LIM
LoLoPri=0
LoLoLimit=@GV.PRESSURE_LOLO_LIM
LoDB=@GV.PRESSURE_LO_DB
AI=1
MI=1

Troubleshooting Tips

I can’t see function blocks for the alarms, audit, or lists I created when I open my project?

You won’t. The Variable Extension Wizard is an alternate method for creating these data
structures, so they won’t appear as function blocks in your project – they are configured
via the INI files only.

The wizard is hung up when I type in certain fields. I can’t go to another field. What should I
do?

The Wizard won’t let you move to another field unless you first press the [Enter] key. Press
[Enter] and you should be able to proceed. The [Esc] also allows you to exit the field.

I ran the Variable Extension Wizard to Create My Alarms, but they don’t appear in my
Project?

Did you rename the project? If so, you must re-start the Variable Extension wizard in the
new project, and save the initialization files again. Otherwise, they will still hold the old
project name, before you renamed it.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

418 Variable Extension Wizard

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variables and Data Types 419

Variables and Data Types
Variables are structures that hold a single numerical, Boolean, or string value, that can
typically be changed or updated either by user intervention, or by logic in your
ControlWave project. Variables serve the same purpose as ‘signals’ used in the Network
3000 series product line.

Variables can be any of several different data types. For example, a numerical variable
could be of data type REAL, or INT (integer).

Global Variables Vs. Local Variables
Variables fall into one of two categories – local and global. They are declared as either local
or global when you create them in a particular program. Generally, unless you have a
specific reason for defining a variable as global, for example, it is an I/O variable, or you
know it has to be used in more than one of the POUs listed in the ‘Logical POUs’ branch of
the project tree, you should define it as local.

Global variables:

 may be accessed and used in any or all of the POUs in your project

 must be declared as VAR_GLOBAL in the global variables declaration worksheet

 must be declared as VAR_EXTERNAL in each POU in which they are used

The Global Variables worksheet is shown, above. All variables are defined as ‘VAR_GLOBAL’
because they can be used in any logical POU of the project.

Data Type

Variable
name

Usage shows
whether this variable
is used locally or
globally

Optional description
(used as a comment
in the program)

Internal address
used to store and
reference the
variable

Initial value
of the
variable

Check RETAIN if you
want to keep the
variable in retain
memory.

Check PDD if you
want to collect this
variable via OpenBSI
utilities such as
DataView.

Check OPC if you want to
export this variable for use
in an HMI database such as
in an OpenEnterprise Server.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

420 Variables and Data Types

Local variables:

 are only used in a single POU of your project

 they are unknown to all other POUs in your project

 are declared in the worksheet of the POU in which they are used

The Local Variables Worksheet for a particular POU in the project tree is shown, above.
Notice that the F101_INPUT variable is defined as ‘VAR_EXTERNAL’ and several fields are
NOT available. This is because F101_INPUT is a global variable which happens to be used in
this POU, but is defined in the Global Variables Worksheet (see previous page).

Variable Addressing
Variables addresses identify where a variable is located within the ControlWave project. In
general, users do NOT need to be concerned with variable addresses, as they are assigned
automatically by the I/O Configurator, or when the variable is created.

Variable addresses follow the format:

AT %locationsize. Address

Where: location is one of the following:

 I indicates that this is a physical input (input I/O variable)
 Q indicates that this is a physical output (output I/O variable)

Data Type
Variable
name

Usage shows
whether this variable
is used locally or
globally

Optional description
(used as a comment
in the program)

Initial value
of the
variable

Check RETAIN
if you want to
keep the
variable in
retain memory.

Check PDD if you
want to collect this
variable via OpenBSI
utilities such as
DataView.

Check OPC if you want to
export this variable for use
in an HMI database such as
in an OpenEnterprise Server.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variables and Data Types 421

 M indicates that this is a variable in memory (non-I/O variable)

 size is one of the following

 X single bit size (only used with data type of BOOL)
 nothing if left blank, indicates single bit size
 B byte size (8 bits)
 W Word size (16 bits)

D Double word size (32 bits)

 Address is the actual address in memory

An example variable address is shown below:

AT %MW 1.1018

System Variables
One special category of variables is system variables. System variables are created
automatically by the system and are used for special ‘housekeeping’ purposes within the
ControlWave system. See the System Variables section in this manual for more information.

Data Types
IEC 61131-3 supports three different categories of data types.

Elementary data types are used as building blocks of more complex data types. The
elementary data types are shown in the table, below:

Data Type Description Size (in bits) Valid Range
BOOL Boolean 1 1 or 0 (TRUE or FALSE)
SINT Short Integer 8 -127 … 127
INT Integer 16 -32768 … 0 … 32767
DINT Double integer 32 -2,147,483,648 up to 2,147,483,647 ?

USINT Unsigned short integer 8 0 up to 255
UINT Unsigned integer 16 0 up to 65535
UDINT Unsigned double integer 32 0 up to 4,294,967,295
REAL Real numbers 32 + 1.18 x 1038 up to + 3.40 x 1038

TIME Time (duration) 32 + #4,294,976,295 milliseconds up to + #

4,294,976,295 seconds

BYTE Bit string of length 8 8 0x00…0xFF
STRING Sequence of characters 80
WORD Bit string of length 16 16 0x0000 … 0xFFFF
DWORD Bit string of length 32 32 0x00000000 … 0xFFFFFFFF

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

422 Variables and Data Types

Generic Data Types are data types made up of elementary data types. For example,
ANY_BIT, or ANY_INT.

User Defined Data Types are data types created by the user, such as ARRAYs.

Notes about STRING variables
The standard IEC62591 STRING data type allows up to 80 characters. You can also create
string variables using user-defined STRING data types of varying lengths. Be aware that in
either case, there are restrictions on displaying strings in programs outside of ControlWave
Designer.

 ControlWave RTUs do not report strings that exceed 127 characters and behave as if
the variable does not exist when data requests come in for that variable from software.

 OpenEnterprise SCADA software, OpenBSI tools such as DataView, Web_BSI web
pages communicating over a serial connection, and any other program using the RDB
interface to retrieve data can only display the first 64 characters of a ControlWave
string variable.

 Web_BSI web pages communicating over IP can display up to 127 characters of a
string variable’s value.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Variable Naming Conventions 423

Variable Naming Conventions
 Variable names consist of a combination of letters (A-Z, a-z), numbers (0-9) and the

underscore character '_'.

 The first character of a variable name cannot be a number.

 Variables are not case sensitive, i.e. MY_VARIABLE, my_variable, and mY_vAriaBLe are
all considered to be the same variable name.

 Although you won't always see it, in addition to the variable name you enter, the
system automatically precedes every variable by one or more instance names,
separated by periods, depending upon where the variable was defined ('@GV.' for
global variables, task and function block instance names for local variables) e.g.
@GV.F101_INPUT or Flow1.V003

 If you have OpenBSI Utilities Version 4.0 or earlier, we recommend your variable
names be limited to 20 characters or less (including the instance name or '@GV.'
described above). This is recommended because prior to OpenBSI Version 4.1, tools
such as DataView only recognized the first 20 characters; and so, that is the only
portion of the variable name those tools will display. Newer versions recognize up to
64 characters.

 If you decide to use longer variable names (up to 128 characters are allowed), only the
first 30 characters will be recognized within ControlWave Designer. If you have
variables in your ControlWave POU worksheet with more than 30 characters, however,
make sure there are no two variables in which the first 30 characters are the same, or
else those two variables will be treated as the same variable.

For example, two variables named:

COMPRESSOR_STATION_FOUR_STATUS_ON

and

COMPRESSOR_STATION_FOUR_STATUS_OFF

should not be included in the same worksheet because the first 30 characters

'COMPRESSOR_STATION_FOUR_STATUS' are the same, and therefore the

difference between the '_ON' and '_OFF' would not be recognized by the compiler.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

424 Variable Naming Conventions

Here are some legal variable names:

 COMPRESSOR_4_STATUS

 _PUMP_START

 tank_level_hi_alarm

Here are some illegal variable names, and the reason they are illegal:

 1_STATION4_MAINSWITCH (*illegal because it starts with a number*)

 PUMP#4_START (*illegal because the '#' character is not allowed*)

ControlWave Designer Programmer’s Handbook
D301426X012

September 2020

Versions and Compatibility 425

Versions and Compatibility
To use ControlWave Designer with a particular ControlWave firmware revision, you must
ensure that the compatible resource is loaded in ControlWave Designer. The following
table lists each ControlWave hardware platform and the compatible resource required for
each given firmware revision.

Controller Type Compatible Resource Firmware Required
ControlWave Process Automation Controller IPC_30 Earlier than 03.10
Firmware Prefix: CWP IPC_33 03.10 or newer
 IPC_40 04.40 or newer

ControlWave Low Power (LP) Controller IPC_30 Earlier than 03.10
Firmware Prefix: LPS IPC_33 03.10 or newer
 IPC_40 04.40 or newer

ControlWave Redundant Controller IPC_30 Earlier than 03.10
Firmware Prefix: CWP IPC_33 03.10 or newer
 IPC_40 04.40 or newer

ControlWave Micro Controller ARM_L_33 4.00 or newer
Firmware Prefix: CWM ARM_L_40 4.40 or newer
ControlWave Electronic Flow Meter (EFM) ARM_L_33 4.32 or newer
Firmware Prefix: CWE ARM_L_40 4.40 or newer
ControlWave Gas Flow Computer (GFC) ARM_L_33 4.40 or newer
Firmware Prefix: CWI ARM_L_40 4.40 or newer
ControlWave Express GFC/RTU/PAC:
14 Mhz CPU
Firmware Prefix: E1S

ARM_L_40 4.60 or newer

ControlWave Express GFC/RTU/PAC:
33 Mhz CPU
Firmware Prefix: E3S

ARM_L_40 4.60 or newer

ControlWave Explosion Proof GFC (XFC)
Firmware Prefix: CWX

ARM_L_40 4.41 or newer

ControlWave_10, _30, _35
Firmware Prefix: C_3

ARM_L_40 4.50 or newer (10/30)
4.70 or newer (35)

ControlWave_31
Firmware Prefix: C_1

ARM_L_40 4.70 or newer

Additionally, the ControlWave I/O Expansion Rack has a firmware prefix of CWR and the
ControlWave Micro I/O Expansion Rack has a firmware prefix of CMR and the HART
Interface Board (HIB) has a firmware prefix of HBA.

ControlWave Designer Programmer’s Handbook
D301426X012
September 2020

426 Versions and Compatibility

ControlWave Firmware Release Summary

For full details, consult official release notes.

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

CWP 01.00.00

Released on
April 20, 2001

IPC_30

3.0 4.0 or
newer

Communications: This version supported BSAP slave messages only.
No BSAP Master Port capability is provided.

This initial release incorporated the following functions and function
blocks in the BBISFB Library:

● AGA3I ● CUSTOM ● LIST030
● AGA8GROS ● DACCUMULATOR ● LIST050
● ALARM_ANALOG ● DEMUX ● LIST100
● ALARM_LOGICAL_OFF ● DIFFERENTIATOR ● MUX
● ALARM_LOGICAL_ON ● ENCODE ● PDO
● ALARM_STATE ● FUNCTION ● PID3TERM
● ANOUT ● HILOLIMITER ● REG_ARRAY
● ARCHIVE ● HILOSELECT ● R_INT
● AUDIT ● HSCOUNT ● R_RND
● AUTOADJUST ● INTEGRATOR ● SEQUENCER
● AVERAGER ● LEAD_LAG ● STEPPER
● COMMAND ● LIST010 ● TOT_TRND
● COMPARATOR ● LIST020 ● VLIMIT

CWP 02.00.00

LPS 02.00.00

Released on
November 20,
2001

IPC_30 3.0 4.02
or newer

New features include BSAP Master support, IP and BSAP client-server,
generic serial protocol, and the following new function blocks:

● AGA3 ● AGA8DETAIL
● GENERIC_SERIAL ● AGA3TERM
● CLIENT ● ISO5167
● AGA5 ● CRC
● AGA7 ● FPV
● REDUN_SWITCH (currently unused)
● SERVER

CWP 02.01.00
LPS 02.01.00

Released on
December 18,
2001

IPC_30 3.0 4.02
or newer

Maintenance — No new features

CWP 02.10.00
LPS 02.10.00

Released on April
1, 2002

IPC_30 3.0 4.1 or
newer

Maintenance — No new features

CWP 02.11.00
LPS 02.11.00

Released on May
28, 2002

IPC_30 3.0 4.2 or
newer

Maintenance — No New Features

ControlWave Designer Programmer’s Handbook
D301426X012

September 2020

Versions and Compatibility 427

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

CWP 02.20.00
LPS 02.20.00

Released on July
11, 2002

IPC_30 3.0 4.2 or
newer

New function blocks for file management, as well as the VIRT_PORT
function block for serial connections to a terminal server:

● FILE_CLOSE ● FILE_READ ● VIRT_PORT
● FILE_DELETE ● FILE_READ_STR
● FILE_DIR ● FILE_WRITE
● FILE_OPEN ● FILE_WRITE_STR

In addition, this version supported the I/O Expansion Rack interface.

CWP 03.00.00
LPS 03.00.00
CWR 03.00.00

Released on
September 30,
2002

IPC_30 3.0 4.2 or
newer

First release which supports Redundancy. (CWP only)
New function blocks added:

● LIST_ELEM_NAME ● VAR_SEARCH
● SCHEDULER ● VMUX,
● VAR_FETCH

I/O Expansion Rack released (CWR 03.00.00) — Host must have CWP
03.00.00 or newer. I/O Expansion Rack not supported with
ControlWave LP, or other platforms. Only for ControlWave Process
Automation Controller.

CWP 03.10.00
LPS 03.10.00
CWR 03.10.00

Released on May
15, 2003

IPC_33 3.3 5.0 or
newer

New System Variables including:
● _pn_IMM_DIS.
● _USE_ACCOL_NAME

Function Block Library now called ‘ACCOL3’.
Numerous enhancements and corrections.

CWP 03.11.00
LPS 03.11.00
CWR 03.11.00

Released on June
5, 2003

IPC_33 3.3 5.0 or
newer

Only change from previous version is to support ControlWave FLASH
upgrade. Previous 4MB of FLASH was available. Now 8MB is supported.
(ControlWave only.) This change also required boot firmware to be
upgraded CWB04.

CWP 04.00.00
LPS04.00.00
CWM04.00.00
CWR04.00.00

Released on
September 5,
2003

IPC_33 for CWP,
LPS, and CWR

ARM_L_33 for
CWM

3.3 5.1 or
newer

First release of ControlWave Micro (CWM firmware).
New function blocks added:
● DBLOAD ● DIAL_CTRL

New system variables added:
● _ALARMS_PRESENT ● _Px_DIAL_ACTIVE
● _AUD_ALM_PRESENT ● _Px_DIAL_PORT
● _AUD_EVT_PRESENT ● _TOTAL_ALARMS
● _BSAP_FLAG_SENSE ● _TOTAL_AUD_ALARMS
● _NHP_IGNORE_NRT ● _TOTAL_AUD_EVENTS
● _NHP_IGNORE_TS ● _USE_ACCOL_NAMES

CWP 04.01.00
LPS04.01.00
CWM04.01.00

IPC_33 for CWP,
LPS, and CWR

3.3 5.1 or
newer

Maintenance — No New Features

ControlWave Designer Programmer’s Handbook
D301426X012
September 2020

428 Versions and Compatibility

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

CWR04.01.00

Released on
September 10,
2003

ARM_L_33 for
CWM

CWP 04.10.00
LPS04.10.00
CWM04.10.00
CWR04.10.00

Released on
December 17,
2003

IPC_33 for CWP,
LPS, and CWR

ARM_L_33 for
CWM

3.3 5.2 or
newer

CYBOCON function block library added.

AGA3DENS function block added.

New system variables:
● _AI_FOR_NON_ALMS
● _ALARMS_BSAP_PORTx
● _ALARMS_IBP_DESTx

CWP 04.20.00
LPS04.20.00
CWM04.20.00
CWR04.20.00
CWE04.20.00

Released on
March 19, 2004

IPC_33 for CWP,
LPS, and CWR

ARM_L_33 for
CWM and CWE

3.3 5.3 or
newer

First release for ControlWave EFM (CWE).
Numerous enhancements, plus:

New function blocks:
● DISPLAY ● PORTCONTROL

New system variables:
● _CPU_BUSY_P1 ●_Px_CYCLE_INT
● _EBSAP_GROUP ● _Px_CYCLE_TIMEO
● _INH_SYS_EVENTS ● _Px_DCD_STATE
● _LOCAL_ADDRESS ● _Px_DTR_STATE
● _NHP_ADDITIONAL_MASK ● _Px_LOCAL_PORT
● _Px_AUTO_DTR

CWP 04.30.00
LPS04.30.00
CWM04.30.00
CWR04.30.00,
CWE04.30.00

Released on June
10, 2004

IPC_33 for CWP,
LPS, and CWR

ARM_L_33 for
CWM and CWE

3.3 5.3 or
newer

Larger historical archive files supported.

CWP 04.31.00
LPS04.31.00
CWM04.31.00
CWR04.31.00
CWE 04.31.00

Released on
August 19, 2004

IPC_33 for CWP,
LPS, and CWR

ARM_L_33 for
CWM and CWE

3.3 5.3 or
newer

Maintenance release

CWP 04.32.00
LPS04.32.00
CWM04.32.00
CWR04.32.00
CWE04.32.00

Released on

IPC_33 for CWP,
LPS, and CWR

ARM_L_33 for
CWM and CWE

3.3 5.3 or
newer

Maintenance — No new features

ControlWave Designer Programmer’s Handbook
D301426X012

September 2020

Versions and Compatibility 429

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

October 8, 2004

CWP 04.40.00
LPS04.40.00
CWM04.40.00
CWR04.40.00
CWE 04.40.00
CWI 04.40.00

Released on
February 7, 2005

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
CWM, CWE, and
CWI

4.0 5.4 or
newer

First release for the ControlWave Gas Flow Computer (CWI).

First release to support Report By Exception (RBE). Also, VSAT Slave
support added, and NIST23 calculations are supported via a new
library.

Alarms can now be reported via BTCP to OpenBSI.

EN/ENO IEC 61131 language support for CW and CW LP.

Other protocols added include: CIP, and DNP.

New function/function blocks:
● RBE ● PORT_ATTRIB
 ● STORAGE

● Trigonometric functions (ARCSIN, ARCCOS, ARCTAN) added for CW
and LP platforms.

Modifications:
● ARCHIVE function block: Mode 8 added.
● Custom - Modbus Enron mode for date/time format added.

New system variables:
● _CW_LOAD_STR ●_Px_RBE_REPEAT_TIMEOUT
● _HEAP_BLK_FREE ● _Px_RBE_REXMIT_COUNT
● _HEAP_CUR_FREE ● _Px_RBE_RM_COUNT
● _HEAP_RBLK_FREE ● _Px_RBE_RM_SINCE_ACK
● _HEAP_START_FREE ● _Px_RBE_STOP_RPT_MSG
● _Px_RBE_ACK_LIMIT ●_Px_RBE_USE_ACCOL_NAME
● _Px_RBE_CLIENT_ID ● _Px_VSAT_MAX_RESP
● _Px_RBE_ERE_COUNT ● _Px_VSAT_MIN_RESP
● _Px_RBE_ERE_FORMAT ● _Px_VSAT_UP_ACK_WAIT
● _Px_RBE_GO_ACT_ON_START
● _S11_IO_BOARD_ID_STRING
● _Px_RBE_PENDING ● _S12_IO_BOARD_ID_STRING
● _Px_RBE_POOL_OVRFLW ● _S13_IO_BOARD_ID_STRING
● _Px_RBE_POOL_SIZE ● _S14_IO_BOARD_ID_STRING

CWP 04.41.00
LPS04.41.00
CWM04.41.00
CWR04.41.00
CWE 04.41.00
CWI 04.41.00
CWX 04.41.00

Released on May
12, 2005

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
CWM, CWE,
CWI, and CWX

4.0 5.4
Service
Pack 1
and
Newer

Release to support XFC (ControlWave Explosion-Proof Gas Flow
Computer) CWX04.41.
Firmware for other platforms released for consistency purposes.
Enhancements include:
● AINet Slave Protocol
● Archive Access as Data Arrays
● New system variable: _ARCH_ACCESS_TYPE

CWP 04.50.00 IPC_40 for CWP, 4.0 5.4 New functions:

ControlWave Designer Programmer’s Handbook
D301426X012
September 2020

430 Versions and Compatibility

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

LPS04.50.00
CWM04.50.00
CWR04.50.00
CWE 04.50.00
CWI 04.50.00
CWX 04.50.00,
C_304.50.00

Released on
November 15,
2005

LPS, and CWR

ARM_L_40 for
CWM, C_3,
CWE, CWI, CWX

Service
Pack 2
and
Newer

● ARRAY_ANA_GET ● ARRAY_ANA_SET
● ARRAY_LOG_GET ● ARRAY_LOG_SET
● V_ATTRIB_GET ● V_ATTRIB_SET

Support for CW_10/CW_30 platform

New system variables:
● _OCTIME_ERROR ● _APPLICATION_LOCKED
● _TS_DELTA_ACCURACY ● _Pn_MAX_SLAVES
● _Pn_TOP_LEVEL_NODES ● _Pn_DEAD_ARRAY
● _Pn_DISABLE_ARRAY ● _Pn_TOTAL_NODES

CWP 04.60.00
LPS04.60.00
CWM04.60.00
CWR04.60.00
CWE 04.60.00
CWI 04.60.00
CWX 04.60.00
C_304.60.00
E1S04.60.00
E3S04.60.00
Released on May
25, 2006

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
CWM, CWE,
CWI, CWX, C_3,
E1S, and E3S.

4.5 5.5
Service
Pack 1

Online editing of archive configuration and lists via TechView.

First release for ControlWave Express product line.

CWM and ARM-based support POU size greater than 64K.

New system variables:
● _ALARM_FORMAT ● _Pn_RBE_STATE
● _iPn_RBE_STATE ● _Pn_PAD_FRONT
● _Pn_PAD_BACK

CWP 04.62.00
LPS04.62.00
CWM04.62.00
CWR04.62.00
CWE 04.62.00
CWI 04.62.00
CWX 04.62.00
C_304.62.00
E1S04.62.00
E3S04.62.00
Released on
October 12, 2006

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
CWM, C_3,
CWE, CWI,
CWX, E1S, and
E3S.

4.5 5.5
Service
Pack 2

Audit Trail record count added to Modbus Slave Enron Mode

CWP 04.63.00
LPS04.63.00
CWM04.63.00
CWR04.63.00
CWE 04.63.00
CWI 04.63.00
CWX 04.63.00
C_304.63.00
E1S04.63.00
E3S04.63.00
Released on
December 22,
2006

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
CWM, C_3,
CWE, CWI,
CWX, E1S, and
E3S.

4.5 5.6 Maintenance release

ControlWave Designer Programmer’s Handbook
D301426X012

September 2020

Versions and Compatibility 431

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

CWP 04.70.00
LPS04.70.00
CWM04.70.00
CWR04.70.00
CWE 04.70.00
CWI 04.70.00
CWX04.70.00
CMR04.70.00
C_104.70.00
C_304.70.00
E1S04.70.00
E3S04.70.00

Released January
17, 2007

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.5 5.6 New platforms:
ControlWave_35 (C_3)
ControlWave_31 (C_1)
ControlWave Micro I/O Expansion Rack (CMR)

New function blocks:

● BTI ● TCHECK
● XMTR

New I/O boards for expansion racks.

Alarm System: When upgrading the firmware from 04.32 or earlier
versions, collect all alarms from the running units prior to upgrading to
this release as the new firmware performs a complete re-initialization
of the alarm system.

CWP 04.71.00
LPS04.71.00
CWM04.71.00
CWR04.71.00
CWE 04.71.00
CWI 04.71.00
CWX 04.71.00
C_304.71.00
C_104.71.00
CMR04.71.00
E1S04.71.00
E3S04.71.00

Released March
14, 2007

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.5 5.6 Maintenance Release — No new features

CWP 04.72.00
LPS04.72.00
CWM04.72.00
CWR04.72.00
CWE 04.72.00
CWI 04.72.00
CWX04.72.00
C_304.72.00
C_104.72.00
CMR04.72.00
E1S04.72.00
E3S04.72.00
Released June 28,
2007

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.5 5.6
Service
Pack 1

Primarily a maintenance release — No new features, however, DNP3
performance was increased.

CWP 04.80.00
LPS04.80.00
CWM04.80.00
CWR04.80.00
CWE04.80.00

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.7 5.7 New function blocks:
● HWSTI
● TP-27 liquid FB library (LIQTAB23E, LIQTAB24E, LIQTAB53E,
LIQTAB54E, LIQTAB59E, LIQTAB60E)

ControlWave Designer Programmer’s Handbook
D301426X012
September 2020

432 Versions and Compatibility

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

CWI04.80.00
CWX04.80.00
C_304.80.00
C_104.80.00
CMR04.80.00
E1S04.80.00
E3S04.80.00

Released
September 27,
2007

Support for HEX Repeater protocol
Support for ON/OFF and units text in DISPLAY function block
Support for Audit / Archive clear function in RTU (Clear History
function in OpenBSI)
Support for configurable timeout in Immediate Response Mode.
Support for variable buffer length in Generic Serial Port
Support for collecting Archive Files as if they were Data Arrays

New system variables for load validation:
_LOAD_MEM_PRESENT
_LOAD_SRC_PRESENT
_LOAD_BOOT_PRESENT
_LOAD_MEM_CRC
_LOAD_BOOT_CRC
_LOAD_SRC_CRC

CWP 04.90.00
LPS04.90.00
CWM04.90.00
CWR04.90.00
CWE 04.90.00
CWI 04.90.00
CWX04.90.00
C_304.90.00
C_104.90.00
CMR04.90.00
E1S04.90.00
E3S04.90.00
C5R04.90.00

Released May 8,
2008

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.7 5.7
Service
Pack 1

Support for new platform: ELAN processor for ControlWave I/O
Expansion Rack (C5R).
Support for simplified alarm configuration using ALARM FB with the
Variable Extension Wizard in ControlWave Designer.
Standard application licensing.
Support in RDB for program instance names in ACCOL format variables
other than @GV.
Support for RTU to RTU transfer of archive files.
Support for Enron Modbus reading of archive files in wraparound
mode to simulate the data arrays used as archive data storage by some
vintage systems.
Support for new I/O board in ControlWave XFC.

New system variable: _JULIAN_TIME

New Function Blocks:
● ALARM

CWP 04.91.00
LPS04.91.00
CWM04.91.00
CWR04.91.00
CWE 04.91.00
CWI 04.91.00
CWX04.91.00
C_304.91.00
C_104.91.00
CMR04.91.00
E1S04.91.00
E3S04.91.00
C5R04.91.00

Released June 13,
2008

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.7 5.7
Service
Pack 1

Maintenance Release — No new features

ControlWave Designer Programmer’s Handbook
D301426X012

September 2020

Versions and Compatibility 433

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

CWP 04.92.00
LPS04.92.00
CWM04.92.00
CWR04.92.00
CWE 04.92.00
CWI 04.92.00
CWX04.92.00
C_304.92.00
C_104.92.00
CMR04.92.00
E1S04.92.00
E3S04.92.00
C5R04.92.00

Released June 27,
2008

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.7 5.7
Service
Pack 1

Maintenance Release — No new features

CWP 05.00.00
LPS05.00.00
CWM05.00.00
CWR05.00.00
CWE 05.00.00
CWI 05.00.00
CWX05.00.00
C_305.00.00
C_105.00.00
CMR05.00.00
E1S05.00.00
E3S05.00.00
C5R05.00.00

Released April 17,
2009

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.7 5.7
Service
Pack 2

Support for ControlWave WXFC
Support for Hart Interface Board (HIB)
Support for redundant AO/DO with readback
New function block: HART

CWP 05.10.00
LPS05.10.00
CWM05.10.00
CWR05.10.00
CWE 05.10.00
CWI 05.10.00
CWX05.10.00
C_305.10.00
C_105.10.00
CMR05.10.00
E1S05.10.00
E3S05.10.00
C5R05.10.00

Released

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.7 5.7
Service
Pack 2

New function blocks:
● FIELDBUS
● LIQTAB59D (In liquids library)
● LIQTAB60D (In liquids library)

New library: FB_RETAIN

Upgrades to new standards for AGA8Gros and ISO5167

Archive files now support ASCII data.

Various minor enhancements.

ControlWave Designer Programmer’s Handbook
D301426X012
September 2020

434 Versions and Compatibility

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

September 4,
2009

CWP 05.11.00
LPS05.11.00
CWM05.11.00
CWR05.11.00
CWE 05.11.00
CWI 05.11.00
CWX05.11.00
C_305.11.00
C_105.11.00
CMR05.11.00
E1S05.11.00
E3S05.11.00
C5R05.11.00

Released
December 3,
2009

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.7 5.7
Service
Pack 2

New function block: BASE_DENSITY (in Liquids library)

New system variable: _INH_EXTERNAL_EVENTS

CWP 05.12.00
LPS05.12.00
CWM05.12.00
CWR05.12.00
CWE 05.12.00
CWI 05.12.00
CWX05.12.00
C_305.12.00
C_105.12.00
CMR05.12.00
E1S05.12.00
E3S05.12.00
C5R05.12.00

Released
December 18,
2009

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

4.7 5.7
Service
Pack 2

Maintenance Release — No new features

CWP 05.20.00
LPS05.20.00
CWM05.20.00
CWR05.20.00
CWE 05.20.00
CWI 05.20.00
CWX05.20.00
C_305.20.00
C_105.20.00
CMR05.20.00
E1S05.20.00

IPC_40 for CWP,
LPS, and CWR

ARM_L_40 for
all others

5.0 OpenBSI
5.8

AUDIT FB enhanced to log user sign-on and sign-offs, and log out due
to sign-off.

ControlWave Micro now support full duplex comm. at 100MB
FLASH storage area for configuration parameters increased from 64K
to 128K.

Enhancement to allow detection of I/O board failures.

Number of ControlWave usernames increased from 32 to 240.

ControlWave Designer Programmer’s Handbook
D301426X012

September 2020

Versions and Compatibility 435

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

E3S05.20.00
C5R05.20.00

Released April 9,
2010

New function blocks:

● USER_ACTIVE
● USER_DEFINED

New system variables:
_SEC_SIGNIIN_AUD_ENA
_SEC_SIGIN_AUD_FTP_ENA
_SEC_SIGIN_FAILURES
_SEC_SIGNOFF_TMO

Enhancements to DNP protocol to support secure authentication.
Misc. enhancements to Enron Modbus protocol.

CWP 05.21.00
CWM05.21.00
CWE 05.21.00
CEW05.21.00
CWX05.21.00
C_305.21.00
C_105.21.00
CMR05.21.00
E1S05.21.00
E3S05.21.00
C5R05.21.00

Released July 22,
2010

IPC_40 for CWP,

ARM_L_40 for
all others

5.0 OpenBSI
5.8

New boot firmware to support additional memory:

CWB08 for ControlWave PAC (CWP) and ControlWave I/O Expansion
Rack (CWR) to support 32MB FLASH, and 64MB SDRAM.

CAB0521 for ControlWave Micro (CWM) and ControlWave Micro I/O
Expansion Rack (CMR) to support 16MB FLASH and 64MB SDRAM.

CBE0521 for ControlWave EFM (CWE) to support 16MB FLASH and
64MB SDRAM. NOTE: This is for the new EFM modules; earlier versions
had no SDRAM.

Support added for read-only Modbus slave.

CWP 05.30.00
CWM05.30.00
CWE 05.30.00
CEW05.30.00
CWX05.30.00
C_305.30.00
C_105.30.00
CMR05.30.00
E1S05.30.00
E3S05.30.00
C5R05.30.00

Released
September 9,
2010

IPC_40 for CWP

ARM_L_40 for
all others

5.0 OpenBSI
5.8

Support added for RS-485 serial communication to CW and CW Micro
I/O expansion racks. Including system variables:

_Pn_RESET_STATISTICS
_Pn_STATISTICS_ARRAY

Open Modbus Master / Slave custom modes now support an alternate
TCP port.

DNP protocol updated to level 3 compliance.

CWP 05.40.00
CWM05.40.00
CWE 05.40.00
CEW05.40.00
CWX05.40.00
C_305.40.00

IPC_40 for CWP

ARM_L_40 for
all others

5.0 OpenBSI
5.8
Service
Pack 2

Note: New 33MHz CPU board for CW Express with new boot flash.

New function block:

● AUDIT_SELECTED

ControlWave Designer Programmer’s Handbook
D301426X012
September 2020

436 Versions and Compatibility

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

C_105.40.00
CMR05.40.00
E1S05.40.00
E3S05.40.00
C5R05.40.00

Released February
4, 2011

Enhancements to XMTR function block to allow calibration of 3508
and 3808 transmitters via the HART interface board and the BTI
interface board.

CWP 05.43.00
CWM05.43.00
CWE 05.43.00
CEW05.43.00
CWX05.43.00
C_305.43.00
C_105.43.00
CMR05.43.00
E1S05.43.00
E3S05.43.00
C5R05.43.00

Released March
22, 2012

IPC_40 for CWP

ARM_L_40 for
all others

5.0 OpenBSI
5.8
Service
Pack 2

Updates to KW ProCOnOS 1131 operating system.

Enhancements:

COMMAND function block enhanced to allow double-precision
floating point value for runtime accumulations.

AUTOADJ function block now supports a new on-demand check of the
sensor rotor frequency.

New system variable for BSAP slave port and port sharing: -
Pn_INH_BSAP_SLAVE

An easier method is now supported for changing Modbus slave from
RTU transmission mode to ASCII transmission mode.

XMTR function block - enhancements for transmitter calibration.

AGA7 function block - enhanced error reporting.

DNP3 — enhancements for specifying the host IP address.

CWP 05.50.00
CWM05.50.00
CWE 05.50.00
CEW05.50.00
CWX05.50.00
C_305.50.00
C_105.50.00
CMR05.50.00
E1S05.50.00
E3S05.50.00
C5R05.50.00

Released July 31,
2012

IPC_40 for CWP

ARM_L_40 for
all others

5.0 OpenBSI
5.8
Service
Pack 2

New function blocks:

● IEC62591
● AGA3SELECT

CWP 05.60.00
CWM05.60.00
CWE 05.60.00
CEW05.60.00

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9 New function blocks:
RBE_DISABLE
WATCHDOG

ControlWave Designer Programmer’s Handbook
D301426X012

September 2020

Versions and Compatibility 437

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

CWX05.60.00
C_305.60.00
C_105.60.00
CMR05.60.00
E1S05.60.00
E3S05.60.00
C5R05.60.00

Released March 6,
2014

New version of NIST23 library
DNP3 enhancements

CWM05.70.00

Released August
13, 2014

ARM_L_40 5.35 5.9 IEC62591 FB enhanced to support discrete control.

CWP 05.71.00
CWM05.71.00
CWE 05.71.00
CEW05.71.00
CWX05.71.00
C_305.71.00
C_105.71.00
CMR05.71.00
E1S05.71.00
E3S05.71.00
C5R05.71.00

Released
Decenber 4, 2014

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9
Service
Pack 1

Added support to allow Field Tools to collect HART device information
from wired and wireless HART networks.

CWP 05.72.00
CWM05.72.00
CWE 05.72.00
CEW05.72.00
CWX05.72.00
C_305.72.00
C_105.72.00
CMR05.72.00
E1S05.72.00
E3S05.72.00
C5R05.72.00

Released April 1,
2015

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9
Service
Pack 1

Maintenance Release — No new features

CWP 05.73.00

Released April 23,
2015

IPC_40

5.35 5.9
Service
Pack 1

Maintenance Release — No new features

ControlWave Designer Programmer’s Handbook
D301426X012
September 2020

438 Versions and Compatibility

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

CWM05.74.00

Released July 1,
2015

ARM_L_40 5.35 5.9
Service
Pack 1

Maintenance Release — No new features

CWP 05.75.00
CWM05.75.00
CWE 05.75.00
CEW05.75.00
CWX05.75.00
C_305.75.00
C_105.75.00
CMR05.75.00
E1S05.75.00
E3S05.75.00
C5R05.75.00

Released October
1, 2015

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9
Service
Pack 2

Maintenance Release — No new features

CWP 05.76.00
CWM05.76.00
CWE 05.76.00
CEW05.76.00
CWX05.76.00
C_305.76.00
C_105.76.00
CMR05.76.00
E1S05.76.00
E3S05.76.00
C5R05.76.00

Released June 17,
2016

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9
Service
Pack 3

Support for array/list numbers greater than 255.

CWP 05.77.00
CWM05.77.00
CWE 05.77.00
CEW05.77.00
CWX05.77.00
C_305.77.00
C_105.77.00
CMR05.77.00
E1S05.77.00
E3S05.77.00
C5R05.77.00

Released April 28,
2017

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9
Service
Pack 3

Modification to ARCHIVE function block to support additional mode
values for timestamp.

ControlWave Designer Programmer’s Handbook
D301426X012

September 2020

Versions and Compatibility 439

Firmware
Release

Resource File
needed in
ControlWave
Designer and
Designer
Version

ControlWave
Designer
Version

OpenBSI
Version

Major Features

CWP 05.78.00
CWM05.78.00
CWE 05.78.00
CEW05.78.00
CWX05.78.00
C_305.78.00
C_105.78.00
CMR05.78.00
E1S05.78.00
E3S05.78.00
C5R05.78.00

Released
September 22,
2017

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9
Service
Pack 3

Maintenance Release — No new features

CWP 05.79.00
CWM05.79.00
CMR05.79.00
E1S05.79.00
E3S05.79.00
C5R05.79.00

Released
November 28,
2017

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9
Service
Pack 3

Maintenance Release — No new features

CWP 05.80.00
CWM05.80.00
CMR05.80.00
E1S05.80.00
E3S05.80.00
C5R05.80.00,
HBA05.80.00

Released October
27, 2019

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9
Service
Pack 3

Updates to IEC62591 function block to support various Rosemount
devices and several other enhancements. Note: IEC V1.20 is not
backwards compatible with ControlWave firmware versions 5.79 or
earlier.

CWP 05.91.00
CWM05.91.00
E1S05.91.00
E3S05.91.00
CMR05.91.00
C5R05.91.00,
Released August
2020

IPC_40 for CWP

ARM_L_40 for
all others

5.35 5.9
Service
Pack 3

Support added to allow binary inputs, counters, and analog inputs to
be retained as events for DNP3 use. These events can be backed up
redundantly over DNP3.

Support added for DNP3 over UDP.

ControlWave Designer Programmer’s Handbook
D301426X012
September 2020

440 Versions and Compatibility

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Virtual Ports 441

Virtual Ports
The VIRT_PORT function block offers a way to get around limits on the actual number of
physical communication ports. This is similar to the functionality for the OpenBSI
Redirector.

Using the VIRT_PORT function block, users can now attach to a terminal server and send
serial data out. (The terminal server could be one bought off the shelf or it could be any
ControlWave, including the I/O Expansion Rack.)

The terminal server then sends the data out as serial data. This could be a way to add a
BSAP Master port, for example.

To configure the ControlWave as a terminal server, you must set the CUSTOM user mode
to 31.

Up to 126 virtual ports can be defined.

For full details on this subject, please refer to the online help for the VIRT_PORT function
block.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

442 Virtual Ports

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Configuring a VSAT Slave Port 443

VSAT Slave Port – Configuration

Important

This activity requires ControlWave Designer 4.0 (or newer), OpenBSI 5.4 (or newer), and
04.40 ControlWave Firmware (or newer).

Very Small Aperture Terminal (VSAT) is a protocol used with satellite communications. The
VSAT slave port allows a ControlWave-series controller to be part of a VSAT system.

VSAT Slave Port configuration has two components:

 Configuring flash parameters

 Configuring system variables for the rort

Configuring Flash Parameters
1. In the Flash Configuration Utility, click on the Ports tab and choose the ControlWave

serial port you want to configure (COM1, COM2, etc.) Then select VSAT Slave as the
Mode.

Enter the baud rate for the communication line in the "Baud Rate" field. The default is
9600. The maximum supported for VSAT Slave is 57600.

2. Click on the [Save to Rtu] button, and respond to the sign-on prompts.

3. Turn off the ControlWave, then turn it back on for the new port definition to come into
effect.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

444 Configuring a VSAT Slave Port

Configuring System Variables
Within ControlWave Designer, start the System Variable Wizard by clicking on View
System Variable Wizard.

When the wizard has successfully established communications with ControlWave
Designer, and your project is open, do the following:

1. Choose the 'Port Detail' tab.

2. Select the "Enable" box for the port which will serve as the BSAP Slave.

3. Click [Configuration].

4. In the Configuration page, select only the items shown in the figure, on the next page,
and enter appropriate values. A discussion of the various items appears, below:

VSAT – Minimum
Response Time
(_Px_VSAT_MIN_ RESP)

 This defines the minimum period of time (in
milliseconds) during which this VSAT Slave node will wait
before responding to a message from its VSAT Master.

First, check the box
of the port you want
to configure.

Next, click on the
“Configuration”
button for that port.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Configuring a VSAT Slave Port 445

The purpose of this delay is to allow the VSAT Master
enough time to send messages to multiple VSAT slaves
before having to handle their response messages.

VSAT – Maximum
Response Time
(_Px_VSAT_MAX_ RESP)

 This defines the maximum period of time (in
milliseconds) that this VSAT Slave node will wait before
responding to a message from its VSAT Master. The
purpose of this delay is to allow enough time for
requested data to become available. If alarms become
available, they will be sent immediately, regardless of
this value. If no data becomes available by the conclusion
of this period, an acknowledgment will be sent to the
VSAT Master.

Click [OK] when finished.

These fields
apply to VSAT
Slave Ports.

Once you
select an item,
you can
specify the
value in the
corresponding
field.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

446 Configuring a VSAT Slave Port

VSAT Master Ports
OpenBSI Workstations with BSAP Master ports can serve as VSAT Masters because they
understand VSAT messages. The only configuration required is to configure the
UpAckDelay parameter in the BSBSAP.INI file. Similarly, ControlWave BSAP Master ports
can serve as VSAT Masters. The only configuration involves setting the
_VSAT_UP_ACK_WAIT system variable (shown under ‘Master’ in the figure above).

These parameters (UpAckDelay or _VSAT_UP_ACK_WAIT) define an interval of time (in
milliseconds) during which the driver will wait after sending an ACK for a message sent by
the slave. Since the VSAT slave will not be responding to the ACK, it allows the VSAT Slave
time to get ready for the next request from the VSAT Master.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Using Web Pages 447

Web Pages – Notes About Using
The standard set of web pages, referred to as Web_BSI, is described in detail in the Web_BSI
Manual (part number D301418X012). Various configuration details related to web page
setup are repeated here.

Specifying the Location of Your Web Browser

If the path of your web browser is other than the default (\Program Files\Internet
Explorer\) you need to use a text editor to edit the WEB_BROWSER_PATH parameter in
your NDF file to reflect the web browser’s location.

 WEB_BROWSER_PATH=C:\Program Files\Internet Explorer

Specifying the Startup Web Page For A Controller

During OpenBSI system configuration, you must
specify a startup HTML web page for each
controller. This can be done in NetView’s RTU
Wizard when you initially add the controller or
from the RTU’s Properties dialog box, after the RTU
is already in the network.

To access the RTU Properties dialog box, right click
on the icon for the controller, and choose
“Properties” from the pop-up menu.

 The startup web page resides on the PC workstation, so a full path and filename must
be entered in the “Startup” field of the RTU Properties dialog box.

 If you would like access to the standard web page set, specify web_bsi.htm as the
startup page. This web page is referred to as the Main Menu, and contains links to all of
the standard web pages.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

448 Using Web Pages

Other Notes About Using Web Pages
 For optimum results, set screen resolution to 1024 x 768 when using the Web_BSI

web pages.

 You can have multiple web pages open simultaneously, for example, to look at
different types of data from the same RTU. To do this, just open a new instance of
Internet Explorer (or open a new window in IE using the FileNew command). Note,
however, that if you terminate one instance (or window) communicating with a
particular RTU, you will terminate all instances or windows communicating with that
same RTU.

 If your ControlWave controller is part of a BSAP network, it will be treated as a BSAP
controller; and only those configuration facilities and features available for a BSAP
controller will be available.

 The standard set of web pages (Web_BSI) are stored in the directory:

Specify the complete path and filename on the PC, of the
startup web page here. (Click Browse to locate the web page, if
necessary.)

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Using Web Pages 449

 \ProgramData\Bristol\OpenBSI\WebPages

where openbsi_installation_path is whatever directory you chose for the installation of
OpenBSI. The default is OpenBSI.

Calling Up Web_BSI Pages
There are two different methods for calling up the Web_BSI web pages:

Important

If this is the first time you are calling up the Web_BSI web pages, you will need to use the
Node Locator page, to identify the nodes with which you want to communicate. After that,
you should not need to use it again, unless you are communicating with different nodes, or
if your network configuration has changed.

Method 1

With NetView or LocalView running, click as follows:

 StartProgramsOpenBSI ToolsWeb Page AccessStandard Pages

Important

Depending upon what version of the Windows operating system you use, you may need to
log in with Administrative privileges in order to use certain configuration web pages, in
particular the Node Locator.

Method 2

In order to call up the web page(s)
associated with a particular
controller, right click on the icon for
the controller in the OpenBSI
NetView tree, and choose
RTUWebPage Access from the pop-
up menu. Internet Explorer will be
started, and whichever startup web
page associated with the controller
will be displayed.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

450 Using Web Pages

Note:

If a web page is initially being stored within the controller, you must retrieve it for viewing
using the ControlView utility (RTU ControlView). See the BSI_Config User’s Guide (part
number D301428X012) for information on ControlView.

The Main Menu page in the standard set is shown above, although the startup page for
your controller may be different. Typically, the Security Sign-On always appears on the
Main Menu page.

The various web pages include category buttons along the left hand side, for calling up
additional pages; when you click your cursor on a category button, a list of pages
belonging in that category will appear below it. The category buttons are named Security,
Configuration, Statistics, Signal Data, and Historical Data.

A “Node Name” field displays the name of the current controller from which data is being
viewed on the web page.

To call up other web pages, click on a category, and then
select from the choices that appear below it.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Using Web Pages 451

Creating Your Own Web Pages to Use with the ControlWave
If desired, you can develop your own customized web pages to collect and display data
from a ControlWave series controller. To do this, you must use ActiveX controls. See
Appendix A of the Web_BSI Manual (part number D301418X012) for more information.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

452 Using Web Pages

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Appendix A: Troubleshooting Tips 453

Appendix A: Troubleshooting Tips
I had a previous version of ControlWave Designer installed. Now, I just installed a new copy
of ControlWave Designer 3.3 (or newer), but it will only operate in demo mode. How
come?

Prior to ControlWave Designer Version 3.3, a software copy protection key (dongle) had to
be plugged into the parallel port of the PC. Beginning with Version 3.3, you should NOT
use the copy protected key. Unplug it, and try starting ControlWave Designer again, and
all functions should be available.

When I try to download a project to the ControlWave, I get an 'Access locked by Switch'
message in the Sign On dialog box. What does that mean?

This typically refers to the key switch
which is just above COM port 1 on the
ControlWave. In order to download a
project, this switch must be either in
the 'REMOTE' or 'LOCAL' position,
depending upon whether you are
communicating serially, or using
TCP/IP. (Serial communications from
ControlWave Designer require the
switch be in the 'LOCAL' position;
TCP/IP communications support either
'REMOTE' or 'LOCAL'.)

OpenBSI downloads can occur with the switch in either the 'REMOTE' or 'LOCAL' position.

I am able to connect to the ControlWave, but Internet Explorer returns a '-404 File Not
Found' error when I try to call up a web page.

If you are using web pages, make sure you have the correct path and filename.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

454 Appendix A: Troubleshooting Tips

When this is checked,
all global variables
will be declared as ."PDD"

When this is checked,
local variables marked
as will be declared
as .

"PDD"
"PDD"

A variable is marked as
here.

"PDD"

In DataView, when I try to do a signal search, I can't see any of the variables in the
ControlWave project. Why?

DataView can only collect
variables which have been
defined as “PDD”.

Variables which are explicitly
marked as “PDD” by the user
(see picture at right) can be
collected by DataView if the
“Marked Variables” for PDD
option is selected in the
Resource Settings dialog box
(see below)

In addition, you can also choose to automatically mark all global variables as “PDD” by
choosing the "All global variables" option in the Resource Settings dialog box.

Most users choose NOT to do this, since it means that all global variables will be collected,
many of which are likely to not be of interest to the average user.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Appendix A: Troubleshooting Tips 455

Check the box"OPC"

In DataView, how come I can’t always call up the signal lists I want to see?,

In Version 5.9 Service Pack 2 and earlier, DataView could only display signal lists numbered
from 1 to 255; any higher number list could not be displayed. Edit the iiListNumber value
for any LIST function blocks to be from 1 to 255.

I made changes to configuration parameters in the ControlWave (port type, user accounts,
etc.) but the old settings are still in effect. How come?

This is one of the most common occurrences in ControlWave. For new settings to take
effect, you must first reset the unit (turn the unit off, then turn it back on). The other
reason this can occur is if you still have the default switch in the OFF position. Changes to
soft switches are ignored when the default switch is OFF. On a standard ControlWave, the
default switch is SW1-3, on the LP, it is SW4-3, and on the MICRO, it is SW2-3.

Communications with the ControlWave operate fine until I connect it to a Network 3000
controller, then communications are seriously degraded, or stop entirely. Why?

This has been known to happen if you are using the wrong cable type, or if the
ControlWave or Network 3000 controllers are not properly grounded. See the hardware
manual for details about cabling and grounding.

I tried to start ControlWave Designer to communicate with the ControlWave, but I got the
message 'Could not attach to serial port'. What causes that?

This can occur if the serial port on the PC is already being used by some other program. For
example, if you are running NetView to communicate with the ControlWave, you cannot
use the same PC port simultaneously to communicate directly using ControlWave
Designer. You can, however, start ControlWave Designer from within NetView.

When I try to use the OPC Server to get data out of the ControlWave, I can't find anything.
How come?

The OPC Server can only access
variables which have been
specified for OPC access.

Variables which are explicitly
marked as “OPC” by the user (see
picture at right) are available to
the OPC Server if the “Marked
Variables” for OPC option is
selected in the Resource Settings
dialog box (see next page).

In addition, you can choose to automatically mark all global variables to be marked for
“OPC” access by choosing the “All global variables” OPC option in the Resource Settings
dialog box.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

456 Appendix A: Troubleshooting Tips

Make sure you have checked
or
, or both.

"Marked variables",
"All global variables"

If you still cannot collect variables via OPC, you should check that your configuration
settings for the OpenBSI Signal Extractor are correct. See Chapter 12 of the OpenBSI Utilities
Manual for details.

In ControlWave Designer, I can’t see the units text I entered for my variables. What’s
wrong?

If these are retain variables, you might not have enough retain memory allocated. See
Memory Usage.

Windows isn’t letting me run ControlWave Designer or the I/O Simulator. Why not?

Data Execution Settings (DEP) which exist in certain Windows versions can prevent
ControlWave Designer and I/O Simulator from running. You must change the settings
from Windows Control Panel. Call-up sequences vary slightly based on the operating
system, but the basic sequence is:

1. Click Start Settings Control Panel System

2. Click Advanced

3. Click Performance Settings

4. Click Data Execution Prevention on Performance Options:

5. Do the following, based on the platform:

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Appendix A: Troubleshooting Tips 457

Windows 2003 Server or Windows
2008 Server

Windows XP or Windows 7

Either:
Turn on DEP for essential programs and
services only
 Or
Turn on DEP for all programs and services
except those I select:
C:\windows\system32\rundll32.exe.

Turn on DEP for essential programs and services
only

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

458 Appendix A: Troubleshooting Tips

Select the node name
from which you want
to collect data.

Specify a name
for the log file
that will hold the
data from the
ControlWave.

Click on to specify what level of
detail of data you want to collect.

[Levels]

Using the Debug Information Tool

(ADVANCED USERS ONLY 04.40 Firmware or NEWER)

It is possible to view internal details about a ControlWave unit’s operation using the
ControlWave Debug Information tool. This tool is intended solely for use by Emerson
Development, Engineering, and Technical/Application Support personnel, or by customers
being directly assisted by these personnel.

The ControlWave Debug Information tool retrieves information such as:

 Contents of internal memory

 Contents of user stack (memory)

 Contents of messages sent/received via a particular port (similar to a Data Line
Monitor)

 RBE information

Starting the Debug Information Tool:

Note:

Communications via NetView, LocalView, or TechView must be active in order to use the
Debug Information Tool.

To start the Debug Information Tool, click on as follows:

Start Programs OpenBSI Tools Utility Programs ControlWave Debug Info

The Trouble Shooting Information
dialog box will appear:

First, choose the ControlWave
controller from which you want to
collect data. Enter the name of the
ControlWave in the “Node Name” or
choose the name from the list of nodes
in your NETDEF file using the [Select]
button. (If you’ve used the tool before,
the last node you looked at will appear
in the field, by default.)

Next, provide a name for the file that
will hold the collected data in the
“Output File” field, or use the [Browse]
file to locate one. Output files must
have the extension of *.LOG. (If you’ve
used the tool before, the last log file you

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Appendix A: Troubleshooting Tips 459

used will appear in the field, by default.)

Now, you need to specify what level of data you want to collect. To do this click on the
[Levels] button.

Specifying the Logging Levels for the Debug Information Tool

In the Configure Logging Levels dialog box, choose the sub-system (port, memory, etc.)
that you’re interested in, and click on the corresponding level column number.

The sub-systems are identified by a “Type” number. The type numbers are:

Type Sub-System
0 Memory
1 Port 1
2 Port 2

3 Port 3
4 Port 4
5 Port 5
6 Port 6

7 Port 7
8 Port 8
9 Port 9
10 Port 10

11 Port 11
12 Port 12 – UNUSED
13 Port 13 – UNUSED
14 Port 14 – UNUSED

15 Port 15 - UNUSED
16 Virtual Ports
17 Flash Access (covers read/write of files from FLASH memory)
18 Time Synch
19 Temporary Use

20 Custom Protocol
21 CIP Protocol
22 AMOCAMS AI Net Custom Protocol
40 RBE System

41 Display System
60 Dynamic IP Routes

The Change Logging Level dialog box will appear. Logging levels range from 1 to 8. The
higher the logging level, the more information will be collected, so generally, you should
choose ‘8’. Click on [OK] to update the level. Repeat this process for each additional item
you want to monitor. When you are finished, click on [OK] to exit the Configure Logging
Levels dialog box.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

460 Appendix A: Troubleshooting Tips

Choose the sub-systems within the ControlWave
that you want to monitor by clicking on the
corresponding level.

Use the scroll bar to bring more items into view.

The level settings are saved in the ControlWave, and will be used for all subsequent
logging sessions, unless changed or erased by a system cold start.

Collecting the Debug Data

Once you’ve finished defining the logging level, click on the [Refresh] button. The
[Start/Stop] button should now be labeled [Start].

Click on [Start] and data on the items you selected will begin to be stored in unused areas
of static memory. The debug data will not affect memory needed for system operation.

If you want the data to be preserved across warm starts of the ControlWave, click on
[Retain].

Note:

 Once the tool is started, you do not need to leave it running; since collection occurs in the
background.

Viewing the Debug Data

When you decide you want to retrieve the debug data into a log file, for viewing, click on
the [Retrieve] button in the Debug Information Tool, and the data will be stored in the log
file specified.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Appendix A: Troubleshooting Tips 461

Firmware Version: CWM 04.60.10
Link Date: 03/29
Crash Blocks: 0

**** Registers ****

*** Enhanced Crash Information. ***

 Version: 0000 Complement: 0000
 Mult Crash: 0

 Executing:

 Free Vol: 0 (0 bytes)
 Free Non Vol: 0 (0 bytes)
 Free Malloc: 0 bytes

*** User Stack ***

*** System Stack ***

*** Debug Activity Log ***

 Retain Log: 1
 Entries: 1126

 Log Active: T000: 8 T001: 8 T002: 8 T003: 8 T004: 8
 T005: 8
064cd064 MEM_SYS: Free 276, Address: 60006a70, Caller: 00000000
064cd158 MEM_SYS: Get 276, Address: 60006a70, Caller: 10052d04
064cd158 MEM_SYS: Free 276, Address: 60003008, Caller: 00000000
064cd3c8 P3: Lengths: Read: 11, Write: 0
064cd3c8 P3: RAW: 1002 02f58510 10100327
064cd3c8 P3: RAW: ad00 00000000 00000000
064cd408 P3: Lengths: Read: 11, Write: 0
064cd408 P3: RAW: 1002 03f68510 101003ae
064cd408 P3: RAW: 8300 00000000 00000000
064cd448 P3: Lengths: Read: 11, Write: 0
064cd448 P3: RAW: 1002 06f78510 10100341
064cd448 P3: RAW: b900 00000000 00000000
064cd448 P3: BSAP Recv, Slave/Len: 0605, S/DMex/ID: 89850310, S/D GLAD: 00000000
064cd448 P3: BSAP Send, Slave/Len: 0007, S/DMex/ID: 01870006, S/D GLAD: 00000000
064cd448 P3: Lengths: Read: 0, Write: 12
064cd448 P3: RAW: 1002 00f78706 00011003

Timestamp in hexadecimal
format, based on system time
from day 0.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

462 Appendix A: Troubleshooting Tips

You can view the log file in any text editor. As the information in the log file is intended
primarily for Emerson Development Engineering personnel, instructions for interpreting
the contents of the log file is beyond the scope of this manual.

DEBUG_LOG_NULL;0;0;0;NULL Entry
DEBUG_LOG_MEM_SUM;0;0;1;MEM_SYS: Sum - Ret Pages:%04x, Page Pool: %08x, Total: %08x
DEBUG_LOG_MEM_PFRET;0;1;0;MEM_SYS: Retain Page Free, %d Pages, Address: %08x
DEBUG_LOG_MEM_PARET;0;1;1;MEM_SYS: Retain Page Alloc, %d Pages, Address: %08x
DEBUG_LOG_MEM_PF;0;1;2;MEM_SYS: Page Free, %d Pages, Address: %08x
DEBUG_LOG_MEM_PA;0;1;3;MEM_SYS: Page Alloc, %d Pages, Address: %08x
DEBUG_LOG_MEM_GET;0;2;0;MEM_SYS: Get %5d, Address: %08x, Caller: %08x
DEBUG_LOG_MEM_FREE;0;2;1;MEM_SYS: Free %5d, Address: %08x, Caller: %08x
DEBUG_LOG_P1_MOD_CHANGE;1;0;0;P1: Modem Control Change: %d
DEBUG_LOG_P1_DCD_CHANGE;1;0;1;P1: Carrier Changed to: %d

Erasing Debug Data

If you don’t want the log entries retained between warm starts of the ControlWave, click
[Clear], and they will be erased at the next warm start. (An exception to this is if the unit
crashes and restarts; the information will not be erased.)

If you want to clear the log entries from static memory, immediately, and not wait until a
warm start, click [Initialize].

Other Debugging Tools (BTCP Spy, DLM Monitor)
These tools are reserved for Emerson Remote Automation Solutions support and
development personnel and are not intended for customer use.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Appendix B: ControlWave Designer Compatibility Issues 463

Appendix B: ControlWave Designer
Compatibility Issues

If you install ControlWave Designer on your PC Workstation, and you already have an
earlier version of ControlWave Designer installed, the earlier version is automatically
overwritten.

Important

ControlWave Designer is backward compatible such that older ControlWave projects can
be opened in a new version of ControlWave Designer. Any ControlWave project created or
modified with the newer version of ControlWave Designer, however, cannot subsequently
be brought back into the older version of ControlWave Designer.

In other words, once you bring a project created with an older version of ControlWave
Designer into a newer version if ControlWave Designer, you can’t edit it with the older
ControlWave Designer, because it would now be incompatible. Similarly, if you create an
all-new project in the newer ControlWave Designer, it also cannot be used within the older
ControlWave Designer.

For this reason, you should only open a project in the newer version of ControlWave
Designer if you intend to edit it, from that time onwards, in the newer version.

Bringing an Older ControlWave Project into a Newer Version
of ControlWave Designer

If you have an older ControlWave Designer project, that you want to open it in a newer
version of ControlWave Designer, there are certain steps you must take.

1. After you have brought the project in, you must
delete the ACCOL3 firmware library, and any other
(*.FWL) libraries.

2. Now, insert the most recent *.FWL libraries (which
come with the new version of ControlWave
Designer, you are using). Firmware libraries are
located in the path \Openbsi\mwt\plc\fw_lib\

3. Finally, re-build any user libraries (*.MWT) built based on the older libraries, by clicking
on Build Make.

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

464 Appendix B: ControlWave Designer Compatibility Issues

Warning - I/O Configurator and Multiple Copies of
ControlWave Designer

If you intend to run multiple copies of ControlWave Designer simultaneously, do NOT
attempt to run multiple copies of the I/O Configurator. If you do, you risk corrupting your
I/O definitions.

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Index 465

Index

_TIME system variables 371
ACCOL names ... 372, 373
Addressing

in an IP network ... 293
in BSAP networks ... 52

Alarms
_ALARM_FORMAT system variable 373
configuring .. 9
marking alarm variables in Variable Extension

Wizard ... 404
priority of... 10

Application
licensing of standard ControlWave applications

 .. 23
parameters .. 27

Archive File
configuring .. 29

Array
configuring an ... 41

Audit
configuration ... 43

breakpoint
clearing a ... 111
setting a .. 110

BSAP
local address .. 52
Master Port .. 55
Slave Port .. 61
what is it? .. 49

Challenge Handshaking Authentication Protocol
(CHAP) .. 305

CHAP... 355
setting the default username for 305
specifying for a PPP port 310

Cold start
application .. 325

starting with a System task 361
system ... 324

Communication Ports 67
defaults for .. 81
setting up a BSAP Master Port 55

setting up a BSAP Slave Port 61
setting up a Modbus Port 341
setting up a PPPort 309
setting up a VSAT Slave Port 443
setting up an Ethernet Port 307
sharing .. 92

Compiling your project 95
Conditional logic

in your ControlWave project 97
Configuring

Modbus ... 335
Data Types

IEC 61131-3 ... 421
DataView

using with ControlWave 101
Debugging your project 105
Default settings

for communicaton ports 81
Downloading your ControlWave project 113
EBSAP ... 127

group number ... 52
Ethernet Port .. 307
Firmware libraries ... 315
Flash Configuration utility

starting ... 149
Flash File access utility 155
Forcing a variable’s value 109
Function block

creating ... 159
executing once at startup 97
list of function blocks in ACCOLIII library 5
parameter name prefixes 165

Global variables ... 419
Group number

in an EBSAP network 52
Historical data ... 167
I/O Configurator .. 169
I/O Mapping .. 197
I/O Simulator .. 283
Initialization Files

in Variable Extension Wizard 412

ControlWave Designer Programmer’s Handbook
D301426X012
August 2020

466 Index

IP addressing ... 293
IP Parameters .. 301
IP Ports

Ethernet .. 307
PPP .. 309

IP Routes ... 311
Libraries

firmware and user .. 315
Licensing

of standard ControlWave applications 23
Lists

defining in Variable Extension Wizard 406
Local address

in a BSAP network .. 52
Local variables ... 420
Master Port See BSAP Master Port
Memory .. 319

Flash File Access utility 155
static memory area 393

Modbus
configuring .. 335
exporting security data to 351

Modus Port .. 341
Network Host PC (NHP) 301
Overwriting a variable's value 109
PAP ... 355

specifying for a PPP port 310
Passwords ... 345

CHAP usage ... 305
Patch POU ... 108
Point-to-Point Protocol (PPP) Port 309
Ports ... 67

defaults for .. 81
setting up a BSAP Master Port 55
setting up a BSAP Slave Port 61
setting up a Modbus Port 341
setting up a PPP Port 309
setting up a VSAT Slave Port 443
setting up an Ethernet Port 307
sharing .. 92

POU size .. 330
RBE collection

marking variables in Variable Extension Wizard
 .. 403

Reseting the ControlWave 343
Routing Internet Protocol (RIP) 302
Security .. 345

setting the default username for CHAP protocol
usage ... 305

Security Protocols ... 355
Serial port

sharing .. 92
Sharing

a serial port ... 92
Slave Port See BSAP Slave Port
Specifying IP address for an NHP 301
String Variables ... 422
System task .. 361
System Variables ... 363
User Security Management Tool 345
User-created libraries 315
Variable Extension Wizard 399
Variables ... 419

addresses of .. 420
default variable names for I/O 197
forcing or overwriting a value 109
naming conventions for............................... 423
system .. 363

Versions
compatibility of different software and firmware

 .. 425
Virtual Ports .. 441
VSAT Slave Port

setting up a ... 443
Warm start

application
starting with a System task 361

system .. 324
Watch window .. 105
Watchdog

what happens to memory............................ 323
Web browser

specifying the location of 447
Web pages

notes about using .. 447
Wizard

Variable Extension 399

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

Index 467

ControlWave Designer Programmer’s Handbook
D301426X012

August 2020

For customer service and technical support,
visit www.Emerson.com/SupportNet.

Global Headquarters,
North America, and Latin America:

Emerson Automation Solutions
Remote Automation Solutions
6005 Rogerdale Road
Houston, TX 77072 U.S.A.
T +1 281 879 2699 | F +1 281 988 4445
www.Emerson.com/RemoteAutomation

© 2003-2020 Remote Automation Solutions, a business unit of Emerson Automation
Solutions. All rights reserved.

This publication is for informational purposes only. While every effort has been made to
ensure accuracy, this publication shall not be read to include any warranty or guarantee,
express or implied, including as regards the products or services described or their use or
applicability. Remote Automation Solutions (RAS) reserves the right to modify or improve
the designs or specifications of its products at any time without notice. All sales are governed
by RAS terms and conditions which are available upon request. RAS accepts no responsibility
for proper selection, use or maintenance of any product, which remains solely with the
purchaser and/or end-user.

Europe:
Emerson Automation Solutions
Remote Automation Solutions
Unit 8, Waterfront Business Park
Dudley Road, Brierley Hill
Dudley UK DY5 1LX
T +44 1384 487200 | F +44 1384 487258

Middle East/Africa:
Emerson Automation Solutions
Remote Automation Solutions
Emerson FZE
P.O. Box 17033
Jebel Ali Free Zone – South 2
Dubai U.A.E.
T +971 4 8118100 | F +971 4 8865465

Asia-Pacific:
Emerson Automation Solutions
Remote Automation Solutions
1 Pandan Crescent
Singapore 128461
T +65 6777 8211| F +65 6777 0947

Remote Automation Solutions

http://www.emerson.com/SupportNet
http://www.emerson.com/SupportNet
http://www.emerson.com/RemoteAutomation
http://www.emerson.com/RemoteAutomation

	D301426X012_0_Cover&TOC
	D301426X012_1_Intro
	Introduction
	ControlWave Product Line
	Manuals You Should Read Before You Read This One
	What is Covered in this Manual?
	What Related Documentation is Available?

	D301426X012_2_ACCOLIII
	ACCOL III Function Block Library

	D301426X012_3_AlarmCfg
	Alarm Configuration
	What are Alarms?
	Where can I get detailed information about these function blocks?
	Configuring an Analog Alarm
	Using the ALARM_ANALOG function block
	Configuring a Logical Alarm
	Using the ALARM_LOGICAL_ON function block
	Configuring a Change of State Alarm

	D301426X012_4_AppLicensing
	Application Licensing

	D301426X012_5_ApParams
	Application Parameters

	D301426X012_6_ArchvCfg
	D301426X012_7_ArrayCfg
	Array Configuration

	D301426X012_8_AuditCfg
	Audit Configuration

	D301426X012_9_BSAPAddr
	BSAP Addressing and Networks

	D301426X012_10_BSAPMast
	BSAP Master Port

	D301426X012_11_BSAPSlav
	BSAP Slave Port

	D301426X012_12_CommPort
	Communication Ports
	ControlWave Process Automation Controller, ControlWave Redundant Controller
	ControlWave MICRO Process Automation Controller
	ControlWave MICRO I/O Expansion Rack
	ControlWave Electronic Flow Meter (EFM)
	ControlWave Gas Flow Computer Classic (GFC-CL)
	ControlWave Gas Flow Computer (GFC)
	ControlWave Express
	ControlWave Express PAC
	ControlWave Explosion-Proof Flow Computer (XFC)
	ControlWave CW_10
	ControlWave CW_30
	ControlWave CW_35
	ControlWave CW_31
	ControlWave I/O Expansion Rack
	Methods for Communicating with ControlWave-series Controllers.
	How do I configure the Ports on the ControlWave?
	What are the factory default settings for communication ports?
	How can the port configuration be changed?
	Dialing - An Overview
	Serial Port Sharing between the BSAP Slave and Custom Slave Protocols:

	D301426X012_13_Compile
	Compiling

	D301426X012_14_CondLogc
	Conditional Logic

	D301426X012_15_DataView
	DataView

	D301426X012_16_Debug
	Debugging – An Overview
	Starting Debug Mode
	Using the Watch Window
	Using the Cross-Reference Window
	Using the Force/Overwrite Options
	Forcing an I/O Variable’s Value
	Temporarily Overwriting a Variable’s Value

	Setting a Breakpoint
	Clearing the Breakpoint(s)
	Verifying that Breakpoints and Forces Have Been Cleared

	Exiting Debug Mode

	On-line Editing with Patch POU

	D301426X012_17_Download
	Downloading
	Two Methods Available for Downloading
	Downloading from within ControlWave Designer
	Using the Resource Settings Dialog Box to Set up ControlWave Designer Communications

	Downloading Your ControlWave Project from Within ControlWave Designer
	Downloading using the OpenBSI ControlWave Downloader
	Starting the ControlWave Downloader
	Using the ControlWave Downloader
	Creating Download Scripts for Batch Downloading of ControlWave Controllers

	D301426X012_18_EBSAP
	Expanded BSAP (EBSAP) Communications
	Expanded BSAP – The Concept
	General Requirements for Expanded BSAP (EBSAP):
	ControlWave-series Controller is the EBSAP Master
	Defining an EBSAP Master Port

	Configuring the Control and Status Arrays
	Defining the Virtual Nodes
	Defining the EBSAP Slave Nodes
	Defining the EBSAP Slave Port
	Specifying the EBSAP Group Number for a Slave Node

	Example 1 – OpenBSI Workstation is EBSAP Master to 1000 ControlWave controllers
	Example 2 – ControlWave Controller is EBSAP Master to 300 ControlWave EBSAP Slaves

	Creating an EBSAP Master
	OpenBSI Workstation is EBSAP Master
	Defining an EBSAP communication line:

	D301426X012_19_FlashCfg
	Flash Configuration Utility – An Overview

	D301426X012_20_FlashFileAccess
	Flash File Access

	D301426X012_21_FBCreate
	Function Blocks – Creating

	D301426X012_22_FBParam
	Function Block Parameter Name Prefixes

	D301426X012_23_HistData
	Historical Data

	D301426X012_24_IOConfig
	I/O Configurator
	Number of I/O Boards That May be Defined
	Effect of Number of Boards on the I/O Simulator
	I/O Configuration Wizard (Step 1 of 3): (Most users can skip to Step 2)
	I/O Configuration Wizard (Step 2 of 3):
	Tables of Board Types
	ControlWave Process Automation Controller (CW)
	ControlWave MICRO Process Controller (CWM) – series
	ControlWave 10/30 Controllers (CW_10, CW_30)
	ControlWave 35/31 Controller and I/O Rack (CW_35, CW_31)
	ControlWave Low-Power Controller (LP)
	ControlWave I/O Expansion Rack (ER)
	Expansion Rack ControlWave MICRO
	ControlWave Ethernet Remote I/O (BB)
	I/O Configuration Wizard (Step 3 of 3):

	Analog Boards
	Digital Boards
	High Speed Counter (HSC) Boards
	Remote I/O Status Board
	System Controller Board
	CWM_RTU Board
	Notes About Ethernet I/O Boards
	HART Interface Board (CWM_HIB)
	Changing Default Variable Names (All board types)

	D301426X012_25_IOMap
	I/O Mapping
	Common Device Map
	Local I/O - ControlWave
	CW_DO32 ControlWave 32 Output Pin Digital Board
	CW_DI32 ControlWave 32 Input Pin Digital Board
	CW_AI16 ControlWave 16 Input Pin Analog Board
	CW_AO8 ControlWave 8 Output Pin Analog Board
	CW_HSC12 ControlWave 12 Channel High Speed Counter / Universal Discrete Input Board
	CW_TC12 – ControlWave 12 Point Thermocouple Board
	CW_RTD8 - ControlWave 8 Point Resistance Temperature Device (RTD) Board

	Ethernet I/O
	BB_8DI8DO (8 Remote Digital Input and 8 Remote Digital Output Pin Ethernet I/O Board)
	BB_16DI-(16 Remote Digital Input Pin Ethernet I/O Board)
	BB_16DO (16 Remote Digital Output Pin Ethernet I/O Board)
	BB_8DI8AI - (8 Remote Digital Input and 8 Remote Analog Input Pin Ethernet I/O Board)
	BB_16AI (16 Remote Analog Input Pin Ethernet I/O Board)
	BB_8AI4AO - (8 Remote Analog Input and 4 Remote Analog Output Pin Ethernet I/O Board)
	BB_8INS (Instrumentation Ethernet I/O Board)
	BB_8HSC-(8 Channel High Speed Counter Channel Ethernet I/O Board)
	IPMB_INP (Open Modbus – Input Ethernet I/O Board)
	IPMB_OUT (Open Modbus – Output - Ethernet I/O Board)
	BB_4RTDI (RTD - Resistance Temperature Device Ethernet I/O Board)

	ControlWave I/O Expansion Rack Boards
	Common Status Information
	ER_DO32 32 Digital Output Pin ControlWave I/O Expansion Rack Board
	ER_DI32 32 Digital Input Pin ControlWave I/O Expansion Rack Board
	ER_AI16 16 Analog Input Pin ControlWave I/O Expansion Rack Board
	ER_AO8 8 Analog Output Pin ControlWave I/O Expansion Rack Board
	ER_HSC12 12 Channel High Speed Counter ControlWave I/O Expansion Rack Board
	ER_STAT ControlWave I/O Expansion Rack Statistics Board
	ER_TC12 ControlWave I/O Expansion Rack– 12 Point Thermocouple Board
	ER_RTD8 - ControlWave I/O Expansion Rack – 8 Point Resistance Temperature Device (RTD) Board

	Local I/O – ControlWave MICRO-series
	CWM_DO16 – ControlWave MICRO 16 pin Digital Output Board
	CWM_DI16 – ControlWave MICRO 16 pin Digital Input Board
	CWM_MD – ControlWave MICRO - Mixed Digital Board 12 Digital Input Pins / 4 Digital Output Pins
	CWM_AI8 – ControlWave MICRO 8 Analog Input Pin Board
	CWM_AO4 – ControlWave MICRO 4 Analog Output Pin Board
	CWM_MA – ControlWave MICRO - Mixed Analog Board - 6 Analog Input Pin / 2 Analog Output Pin Board
	CWM_AI6 – ControlWave MICRO - 6 Analog Input Pin Board
	CWM_HSC4 – ControlWave MICRO - 4 channel High Speed Counter Board
	CWM_BAT – ControlWave MICRO Battery (Voltage) Monitor
	CWM_MIX – ControlWave MICRO - 6 DI/O, 4AI, 1AO (optional), 2 HSC - Mixed I/O Board
	CWM_SCB – ControlWave EFM System Controller Board
	CWM_HIB – ControlWave MICRO – HART Interface Board

	Local I/O – ControlWave GFC-CL and ControlWave XFC
	CWM_RTU - Mixed I/O board
	Notes for Configuring DI/DO Points on the CWM_RTU board

	Local I/O – ControlWave Express and ControlWave GFC
	CWM_ECPU High Speed Counter/ RTD/ Wet End Interface Board
	CWM_EIO – Mixed I/O Board
	CWM_TC6 – ControlWave Micro – 6-point Thermocouple board
	CWM_RTD4 – ControlWave Micro – 4 Point Resistance Temperature Device (RTD) Board

	Local I/O – ControlWave CW10, CW30, CW35
	CXX_AI8 – ControlWave CW_10/CW_30/CW_35 4- or 8-Analog Input Pin Board
	CXX_AO4 – ControlWave CW_10/CW_30/CW_35 2 or 4 Analog Output Pin Board
	CXX_DI16 – ControlWave CW_10/CW_30/CW_35 4 or 8 or 16 Digital Input Pin Board
	CXX_DO16 – ControlWave CW_10/CW_30/CW_35 4- or 8- or 16-Digital Output Pin Board
	CXX_HSC8 – ControlWave CW_10/CW_30/CW_35 4 or 8 Channel High Speed Counter Board
	CXX_LL4 – ControlWave CW_10/CW_30/CW_35 4 Low-Level Analog Input Pin Board

	I/O – ControlWave CW_31
	Common Status Information
	RXX_AI8 – CW_31 4 or 8 Pin Analog Input Board
	RXX_AO4 – CW_31 2 or 4 Analog Output Pin Board
	RXX_DI16 CW_31 8 or 16 Digital Input Pin Board
	RXX_DO16 CW_31 4, 8 or 16 Digital Output Pin Board
	RXX_HSC8 CW_31 4 or 8 Channel High Speed Counter Board
	RXX_LL4 CW_31 4 Low Level Analog Input Pin Board
	RXX_STAT CW_31 Status Board

	ControlWave MICRO I/O Expansion Rack
	Common Status Information
	ERM_DO16 – ControlWave MICRO I/O Expansion Rack 16 Digital Output Pin Board
	ERM_DI16 – ControlWave MICRO I/O Expansion Rack 16 Digital Input Pin Board
	ERM_MD ControlWave MICRO I/O Expansion Rack Mixed Digital (12 DI / 4 DO) Board
	ERM_AI8 – ControlWave MICRO I/O Expansion Rack – 8 Analog Input Pin Board
	ERM_AO4 – ControlWave MICRO I/O Expansion Rack - 4 Analog Output Pin Board
	ERM_AI6 – ControlWave MICRO I/O Expansion Rack 6 Analog Input Pin Board
	ERM_MA – ControlWave MICRO I/O Expansion Rack - Mixed Analog (6 AI / 2 AO) Board
	ERM_MIX – ControlWave MICRO I/O Expansion Rack - Mixed I/O board
	ERM_HSC4 – ControlWave MICRO I/O Expansion Rack - 4 Channel High Speed Counter Board
	ERM_STAT – ControlWave MICRO I/O Expansion Rack Status Board
	ERM_TC6 – ControlWave MICRO I/O Expansion Rack 6 Point Thermocouple Board
	ERM_RTD4 – ControlWave Micro I/O Expansion Rack – 4 Point Resistance Temperature Device (RTD) Board

	D301426X012_26_IOSim
	I/O Simulator
	What is the I/O Simulator?
	Number of Boards Available within the I/O Simulator

	Starting the I/O Simulator
	Enabling / Disabling the Board Simulation

	Analog Boards
	Analog Input Boards
	Analog Output Boards

	Digital Boards
	Digital Input Boards
	Digital Output Boards

	Counter Boards
	Viewing the Board Configuration Status
	Viewing Simulated Alarms
	Shutting Down the I/O Simulator

	D301426X012_27_IPAddr
	IP Addressing and Networks

	D301426X012_28_IPParam
	IP Parameters

	D301426X012_29_IPENET
	IP Ports - Ethernet

	D301426X012_30_IPPPP
	IP Ports – PPP

	D301426X012_31_IPRoutes
	IP Routes

	D301426X012_32_Library
	Libraries

	D301426X012_33_Memory
	Memory Usage
	Some Background - What is Memory?
	What is Downloading?
	Types of Memory in the ControlWave Process Automation Controller (CW PAC)
	What happens in the event of a watchdog condition?
	What happens on restart after a power failure or watchdog?
	Variations when using ControlWave MICRO/EFM
	Variations when using ControlWave GFC/GFC-CL, XFC, Corrector, Express or ExpressPAC
	Variations when using ControlWave_10/ _30/ _35 (CW_10, CW_30, CW_35)
	Memory Allocation Issues
	Determining POU Size at Compilation Time
	Resolving “Not Enough Memory” Messages

	Notes about Flash Files and Folders

	D301426X012_34_Modbus
	Modbus Configuration
	Configuring Your ControlWave Controller as a Modbus Master Device
	Step 1. Insert the CUSTOM function block in your program.
	Step 2. Configure the CUSTOM function block for Modbus Master communications.
	Step 3. Set up the Custom List
	Step 4. Set up the I/O List

	Configuring Your ControlWave Controller as a Modbus Slave or Enron Modbus Slave Device

	D301426X012_35_ModbusPort
	D301426X012_36_ResetCW
	Reset ControlWave Utility

	D301426X012_37_Security
	Security
	Starting the Security Management Tool
	Defining Usernames and Passwords, and Specifying Privileges
	Adding A New User
	Loading the Security Definition for a Particular RTU into the tool
	Modifying the Privileges of an Existing User
	Cloning an Existing User
	Deleting an Existing User
	Saving / Retrieving the Master Security Configuration File
	Sending the Security Configuration to One or More RTUs
	Removing the Lockout That Prevents Other Tools From Modifying Security Configurations
	Exporting Security Data for Modbus Devices
	Default Switch Settings at the Controller
	Other Security-Related Issues
	Security Protocols for PPP Communication (PAP, CHAP)
	OpenBSI Security
	Network Infrastructure (UDP and TCP Sockets)
	Security Configuration for your Human Machine Interface (HMI) Software
	Virus Protection for Your Workstations
	Firewall Software for Your Networks
	Physical Security
	Networked Surveillance of Remote Sites using ControlWave
	Maintain Current Backups
	Human Factors

	D301426X012_38_PAPCHAP
	Security Protocols (CHAP and PAP)

	D301426X012_39_SysTask
	System Tasks (Warm/Cold Starts)

	D301426X012_40_SysVar
	System Variables
	Using the System Variable Wizard
	System Variable Mapping Charts
	Static Memory Area:
	Using the System Variable Viewer

	D301426X012_41_VarExtensionWiz
	Variable Extension Wizard

	D301426X012_42_Variables&DataTypes
	Variables and Data Types

	D301426X012_43_VarName
	Variable Naming Conventions

	D301426X012_44_Versions&Compatibility
	Versions and Compatibility

	D301426X012_45_VirtPort
	Virtual Ports

	D301426X012_46_VSATSlave
	VSAT Slave Port – Configuration

	D301426X012_47_WebPages
	Web Pages – Notes About Using

	D301426X012_AppA_Trouble
	Appendix A: Troubleshooting Tips

	D301426X012_AppB_Compatible
	Appendix B: ControlWave Designer Compatibility Issues

	D301426X012_Index
	Index

	REARCOVER

