
Intel® Communications Chipset 8925
to 8955 Series Software
Programmer's Guide

July 2014

Order No.: 330751-001

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL
OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no license,
express or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.

Basis, BlueMoon, BunnyPeople, Celeron, Centrino, Cilk, Flexpipe, Intel, the Intel logo, the Intel Anti-Theft technology logo, Intel AppUp, the Intel
AppUp logo, Intel Atom, Intel CoFluent, Intel Core, Intel Inside, the Intel Inside logo, Intel Insider, Intel NetMerge, Intel NetStructure, Intel RealSense,
Intel SingleDriver, Intel SpeedStep, Intel vPro, Intel Xeon Phi, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Iris,
Itanium, Kno, Look Inside., the Look Inside. logo, MCS, MMX, Pentium, picoArray, Picochip, picoXcell, Puma, Quark, SMARTi, smartSignaling, Sound
Mark, Stay With It, the Engineering Stay With It logo, The Creators Project, The Journey Inside, Thunderbolt, the Thunderbolt logo, Transcede, Transrf,
Ultrabook, VTune, Xeon, X-GOLD and XMM are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013–2014, Intel Corporation. All rights reserved.

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
2 Order No.: 330751-001

http://www.intel.com/design/literature.htm

Revision History

Date Revision Description

July 2014 001 Updates include:
• First “public” version of the document. Based on “Intel Confidential”

document number 523126-1.3 with the revision history of that
document retained for reference purposes

• Added Support for Multiple Acceleration Hardware Generations on page
21

• Added Utility for Loading Configuration Files and Sending Events to the
Driver - adf_ctl on page 37

• Updated and added new sections to Heartbeat Feature and Recovery
from Hardware Errors on page 49

• Updated Build Flag Summary on page 58 and General Parameters on
page 63

• Added Stateless Compression Level Details on page 55
• Added further explanation and images to "decompression service" bullet

at end of Intel QuickAssist Technology API Limitations on page 93
• Added PfVfComms Feature Functions on page 123
• Added Reset Device Function on page 125

March 2014 1.3 Updates include:
• Added new information to "direct user space access" bullet in

Acceleration Drivers Overview on page 32
• Added further detail to note in Hardware Assisted Rings on page 32
• Updated Linux* Software Context for Acceleration Drivers on page 34
• Added Stateless Compression Level Details on page 55
• Added Dynamic Compression for Data Compression Service on page

96, Maximal Expansion with Auto Select Best Feature for Data
Compression Service on page 97, and Maximal Expansion and
Destination Buffer Size

December
2013

1.2 Updates include:
• Added new information to Intel QuickAssist Technology API Limitations

on page 93
• Changed document and software title (expanded SKU range to include

"8955")

October 2013 1.1 Updates include:
• Added NRBG and DRBG information to Random Number Generation

Functions on page 112

October 2013 1.0 Corresponds with software release 1.0. Updates include:
• Removed two stateful compression/decompression limitations from Intel

QuickAssist Technology API Limitations on page 93
• Changed product branding

June 2013 0.5 Corresponds with software release 0.5

Revision History—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 3

Contents

Revision History..3

Part 1: Overview..11

1.0 Introduction..12
1.1 Terminology...12
1.2 Document Organization... 12
1.3 Product Documentation... 12
1.4 Typographical Conventions...13

2.0 Platform Overview.. 14
2.1 Platform Synopsis... 14
2.2 Determining the PCH SKU Type.. 14
2.3 Determining the PCH Device Stepping... 16

3.0 Software Overview... 17
3.1 High-Level Software Architecture Overview.. 17
3.2 Logical Instances.. 19

3.2.1 Response Processing... 19
3.2.1.1 Interrupt Mode... 19
3.2.1.2 Polled Mode..20

3.3 Operating System Support... 21
3.4 OpenSSL* Library Inclusion and Usage.. 21
3.5 Support for Multiple Acceleration Hardware Generations...21

Part 2: Core and Chipset Drivers..23

4.0 Embedded Drivers...24
4.1 Overview... 24
4.2 USB Drivers... 24
4.3 SATA Drivers..25
4.4 LPC Device...25

4.4.1 Watch Dog Timer Drivers... 26
4.4.2 Serial I/O Drivers..26

4.5 SPI Drivers.. 26
4.6 GPIO Drivers..27
4.7 Crystal Beach DMA Application..27
4.8 Non-Transparent Bridge (NTB) Driver.. 27
4.9 Intel Technology Support...28

4.9.1 Intel® Virtualization Technology (Intel® VT)... 28
4.9.2 Intel® Simultaneous Multi-Threading (Intel® SMT).. 29
4.9.3 Intel® 64... 29

4.10 Other Supported Technologies and Standards... 29

Intel® Communications Chipset 8925 to 8955 Series Software—Contents

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
4 Order No.: 330751-001

Part 3: Acceleration Drivers...31

5.0 Acceleration Drivers Overview.. 32
5.1 Hardware Assisted Rings..32
5.2 Basic Software Context for Acceleration Drivers.. 33
5.3 Linux* Software Context for Acceleration Drivers.. 34
5.4 Acceleration Drivers.. 35

5.4.1 Framework Overview...35
5.4.2 Service Access Layer... 36
5.4.3 Acceleration Driver Framework... 36
5.4.4 Acceleration Driver Configuration File.. 37
5.4.5 Utility for Loading Configuration Files and Sending Events to the Driver -

adf_ctl..37
5.5 Acceleration Architecture in Kernel and User Space... 38

5.5.1 Communication Between User Space and Kernel Space Drivers....................... 39
5.5.2 User Space Memory Allocation.. 40

5.5.2.1 Accelerator Driver Memory Allocation...40
5.5.2.2 Application Payload Memory Allocation...41

5.5.3 User Space Additional Functions..42
5.5.4 User Space Configuration...43
5.5.5 User Space Response Processing...44

5.5.5.1 User Space Interrupt Mode...44
5.5.5.2 User Space Polled Mode... 45

5.6 Managing Acceleration Devices Using qat_service..45
5.7 Debug Feature... 46
5.8 Heartbeat Feature and Recovery from Hardware Errors..49

5.8.1 User Proc Entry Read (not Enabled by Default)...49
5.8.2 User Application Heartbeat APIs (not Enabled by Default)...............................50
5.8.3 Handling Heartbeat Failures... 50

5.8.3.1 AER and Uncorrectable Errors... 51
5.8.4 Handling Device Failures in a Virtualized Environment....................................51

5.9 Driver Threading Model..53
5.9.1 Thread-less Mode..54

5.10 Stateful Compression Status Codes... 54
5.11 Stateful Compression Level Details.. 54
5.12 Stateless Compression Level Details.. 55
5.13 Acceleration Driver Error Scenarios..56

5.13.1 User Space Process Crash.. 56
5.13.2 Hardware Hang Detected by Heartbeat.. 57
5.13.3 Hardware Error Detected by AER...57
5.13.4 Virtualization: User Space Process Crash (in Guest OS)................................ 57
5.13.5 Virtualization: Guest OS Kernel Crash.. 57
5.13.6 Virtualization: Hardware Hang Detected by Heartbeat.................................. 58
5.13.7 Virtualization: Hardware Hang Detected by AER.. 58

5.14 Build Flag Summary.. 58
5.15 Compiling with Debug Symbols.. 60

6.0 Acceleration Driver Configuration File...62
6.1 Configuration File Overview..62
6.2 General Section.. 63

Contents—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 5

6.2.1 General Parameters...63
6.2.2 Statistics Parameters...65
6.2.3 Optimized Firmware for Wireless Applications... 66

6.3 Logical Instances Section...67
6.3.1 [KERNEL] Section... 67

6.3.1.1 Cryptographic Logical Instance Parameters.......................................68
6.3.1.2 Data Compression Logical Instance Parameters.................................69

6.3.2 [DYN] Section.. 69
6.3.2.1 Dynamic Instance Configuration Example...70

6.3.3 User Process [xxxxx] Sections.. 71
6.3.3.1 Maximum Number of Process Calculations.. 71

6.4 Configuring Multiple PCH Devices in a System...72
6.5 Configuring Multiple Processes on a Multiple-Device System....................................... 73
6.6 Sample Configuration File (V2)... 76
6.7 Compression Only SKU.. 83
6.8 Configuration File Version 2 Differences... 83

7.0 Secure Architecture Considerations.. 85
7.1 Terminology...85

7.1.1 Threat Categories... 85
7.1.2 Attack Mechanism...85
7.1.3 Attacker Privilege..86
7.1.4 Deployment Models...86

7.2 Threat/Attack Vectors..87
7.2.1 General Mitigation...87
7.2.2 General Threats..87

7.2.2.1 DMA..88
7.2.2.2 Intentional Modification of IA Driver...88
7.2.2.3 Modification of Intel® QuickAssist Accelerator Firmware......................88
7.2.2.4 Modification of the PCH Configuration File...89
7.2.2.5 Malicious Application Code..89
7.2.2.6 Contrived Packet Stream..89

7.2.3 Threats Against the Cryptographic Service... 90
7.2.3.1 Reading and Writing of Cryptographic Keys...................................... 90
7.2.3.2 Modification of Public Key Firmware... 90
7.2.3.3 Failure of the Entropy Source for the Random Number Generator........ 90
7.2.3.4 Interference Among Users of the Random Number Service................. 91

7.2.4 Data Compression Service Threats.. 91
7.2.4.1 Read/Write of Save/Restore Context..91
7.2.4.2 Stateful Behavior.. 91
7.2.4.3 Incomplete or Malformed Huffman Tree... 92
7.2.4.4 Contrived Packet Stream..92

8.0 Supported APIs...93
8.1 Intel® QuickAssist Technology APIs..93

8.1.1 Intel® QuickAssist Technology API Limitations.. 93
8.1.1.1 Dynamic Compression for Data Compression Service 96
8.1.1.2 Maximal Expansion with Auto Select Best Feature for Data

Compression Service .. 97
8.1.1.3 Maximal Expansion and Destination Buffer Size 98

8.1.2 Data Plane APIs Overview.. 98
8.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs.......................99

Intel® Communications Chipset 8925 to 8955 Series Software—Contents

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
6 Order No.: 330751-001

8.1.2.2 Usage Constraints on the Data Plane APIs...................................... 100
8.1.2.3 Cryptographic API Descriptions... 101

8.2 Additional APIs... 101
8.2.1 Dynamic Instance Allocation Functions...102

8.2.1.1 icp_sal_userCyGetAvailableNumDynInstances................................. 103
8.2.1.2 icp_sal_userDcGetAvailableNumDynInstances................................. 103
8.2.1.3 icp_sal_userCyInstancesAlloc..104
8.2.1.4 icp_sal_userDcInstancesAlloc..104
8.2.1.5 icp_sal_userCyFreeInstances.. 105
8.2.1.6 icp_sal_userDcFreeInstances.. 105

8.2.2 IOMMU Remapping Functions..106
8.2.2.1 icp_sal_iommu_get_remap_size..106
8.2.2.2 icp_sal_iommu_map..106
8.2.2.3 icp_sal_iommu_unmap.. 107
8.2.2.4 IOMMU Remapping Function Usage..107

8.2.3 Polling Functions... 108
8.2.3.1 icp_sal_pollBank... 108
8.2.3.2 icp_sal_pollAllBanks.. 109
8.2.3.3 icp_sal_CyPollInstance...109
8.2.3.4 icp_sal_DcPollInstance...110
8.2.3.5 icp_sal_CyPollDpInstance... 111
8.2.3.6 icp_sal_DcPollDpInstance... 111

8.2.4 Random Number Generation Functions...112
8.2.4.1 icp_sal_drbgGetEnropyInputFuncRegister....................................... 113
8.2.4.2 icp_sal_drbgGetInstance.. 113
8.2.4.3 icp_sal_drbgGetNonceFuncRegister..114
8.2.4.4 icp_sal_drbgHTGenerate.. 114
8.2.4.5 icp_sal_drbgHTGetTestSessionSize.. 115
8.2.4.6 icp_sal_drbgHTInstantiate.. 115
8.2.4.7 icp_sal_drbgHTReseed... 116
8.2.4.8 icp_sal_drbgIsDFReqFuncRegister... 116
8.2.4.9 icp_sal_nrbgHealthTest.. 117
8.2.4.10 DRBG Health Test and cpaCyDrbgSessionInit Implementation Detail.117

8.2.5 User Space Access Configuration Functions...118
8.2.5.1 icp_sal_userStart.. 118
8.2.5.2 icp_sal_userStartMultiProcess... 119
8.2.5.3 icp_sal_userStop...120

8.2.6 User Space Heartbeat Functions..121
8.2.6.1 icp_sal_check_device...121
8.2.6.2 icp_sal_check_all_devices.. 122

8.2.7 Version Information Function.. 122
8.2.7.1 icp_sal_getDevVersionInfo... 122

8.2.8 PfVfComms Feature Functions...123
8.2.8.1 icp_get_pfvfcomms_status.. 124
8.2.8.2 icp_send_msg_to_vf / icp_send_msg_to_pf...................................124
8.2.8.3 icp_get_msg_from_vf / icp_get_msg_from_pf................................125

8.2.9 Reset Device Function..125
8.2.9.1 icp_reset_device... 126

Contents—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 7

Part 4: Applications and Usage Models.. 127

9.0 Application Usage Guidelines.. 128
9.1 Mapping Service Instances to Hardware Accelerators on the PCH...............................128

9.1.1 Processor and PCH Device Communication..129
9.1.2 Service Instances and Interaction with the Hardware................................... 130
9.1.3 Service Instance Configuration..131
9.1.4 Guidelines for Using Multiple Intel® QuickAssist Instances for Load

Balancing in Cryptography Applications... 132
9.2 Cryptography Applications..132

9.2.1 IPsec and SSL VPNs...132
9.2.2 Encrypted Storage..133
9.2.3 Web Proxy Appliances..134

9.3 Data Compression Applications... 134
9.3.1 Compression for Storage..134
9.3.2 Data Deduplication and WAN Acceleration..135

Appendix A Acceleration Driver Configuration File - Earlier File Format.......................... 136
A.1 Configuration File Overview..136
A.2 General Section.. 137

A.2.1 General Parameters...137
A.2.2 Statistics Parameters...137

A.3 [Accelerator0] Section... 137
A.3.1 Interrupt Coalescing Parameters... 137
A.3.2 Affinity Parameters..138

A.4 Logical Instances Section... 139
A.4.1 [KERNEL] Section..140

A.4.1.1 User Process Instance [xxxxx] Sections... 140
A.4.1.2 Cryptographic Logical Instance Parameters.....................................141
A.4.1.3 Data Compression Logical Instance Parameters...............................141

A.5 Sample Configuration File (V1)... 142

Appendix B Glossary... 151

Intel® Communications Chipset 8925 to 8955 Series Software—Contents

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
8 Order No.: 330751-001

Figures
1 Shumway with Intel® Communications Chipset 8925 to 8955 Series Platform Example..... 14
2 PCH SKU Identification Example.. 15
3 Software Architecture Overview...17
4 Kernel Space Response Ring Processing..20
5 Intel® QuickAssist Accelerator Ring Access..33
6 Basic Software Context.. 33
7 Linux Software Context.. 34
8 Acceleration Driver Framework..35
9 Software Architecture for Kernel and User Space... 39
10 User Space Memory Allocation at Initialization... 41
11 User Space Process with Two Logical Instances..43
12 User Space Response Processing for Interrupt Mode...45
13 Ring Banks... 62
14 Dynamic Compression Data Path... 96
15 Amortizing the Cost of an MMIO Across Multiple Requests... 100
16 Processor and PCH Device Components.. 128
17 Processor and PCH Device Communication.. 130
18 Service Instance Attributes and Hardware Components...131
19 Service Instance Configuration.. 131
20 Ring Banks... 136
21 Ring Bank Affinity to Core for MSI-X Interrupts..138

Figures—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 9

Tables
1 Device Enumeration Example.. 38
2 Required Build Flags.. 58
3 Optional Build Flags... 59
4 General Parameters... 63
5 Statistics Parameters... 66
6 Cryptographic Logical Instance Parameters... 68
7 User Process [xxxxx] Sections Parameters.. 71
8 System Threat Categories...85
9 Attack Mechanisms and Examples..86
10 Attacker Privilege.. 86
11 Deployment Models... 87
12 Compression/Decompression Overflow Behavior ... 95
13 Service Instance Attributes... 131
14 Interrupt Coalescing Parameters - Earlier File Format... 138
15 Ring Bank Affinity Parameters... 139
16 Cryptographic Logical Instance Parameters - Earlier File Format...................................141

Intel® Communications Chipset 8925 to 8955 Series Software—Tables

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
10 Order No.: 330751-001

Part 1: Overview

Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 11

1.0 Introduction

This Programmer’s Guide provides information on the architecture of the software and
usage guidelines. Information on the use of Intel® QuickAssist Technology APIs, which
provide the interface to acceleration services (cryptographic, data compression), is
documented in the related QuickAssist Technology Software Library documentation
(see Product Documentation on page 12).

Terminology

In this document, for convenience:

• Software package is used as a generic term for the Intel® Communications
Chipset 8925 to 8955 Series software package.

• Accelerator is used as a generic term for the Intel® QuickAssist Accelerator
integrated in the Intel® Communications Chipset 8925 to 8955 Series PCH.

• Acceleration driver is used as a generic term that allows the Intel® QuickAssist
Software Library APIs to access the Intel® QuickAssist Accelerator device(s)
integrated in the Intel® Communications Chipset 8925 to 8955 Series PCH.

Refer to Glossary on page 151 for the definition of acronyms and other terms used in
this document.

Document Organization

This document is organized as follows:

• Part 1: Provides an overview of the supported hardware and an overview of the
software architecture.

• Part 2: Describes the core and chipset drivers provided in the software package.

• Part 3: Describes the acceleration drivers included in the software package.

• Part 4: Provides information on specific applications and software usage models.

A glossary of the terms and acronyms used in this guide is provided at the end of the
document.

Product Documentation

Documentation supporting the software package includes:

• Intel® Communications Chipset 8925 to 8955 Series Software Release Notes

• Intel® Communications Chipset 8925 to 8955 Series Software for Linux* Getting
Started Guide

• Intel® Communications Chipset 8925 to 8955 Series Software Programmer’s
Guide (this document)

Related QuickAssist Technology Software Library documentation includes:

1.1

1.2

1.3

Intel® Communications Chipset 8925 to 8955 Series Software—Introduction

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
12 Order No.: 330751-001

• Intel® QuickAssist Technology API Programmer’s Guide

• Intel® QuickAssist Technology Cryptographic API Reference Manual

Other related documentation:

• Intel® Communications Chipset 89xx Series External Design Specification (EDS)

• Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist
Technology Application Note

• Intel® Xeon® Processor (storage) - External Design Specification (EDS) Addendum
- Rev. 1.1 (Reference: 503997)

Typographical Conventions

The following conventions are used in this manual:

• Courier font - file names, path names, code examples, command line entries, API
names, parameter names and other programming constructs

• Italic text – key terms and publication titles

• Bold text - graphical user interface entries and buttons

1.4

Introduction—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 13

2.0 Platform Overview

The platform described in this manual is a follow on to previous generation platforms
that continue to reduce power, reduce footprint and increase performance for
communications infrastructure systems. The platforms deliver leadership solutions
with Intel® QuickAssist Technology hardware: the acceleration for cryptography and
data compression.

Platform Synopsis

At a high level, the platform pairs an Intel® architecture processor with the Intel®
Communications Chipset 8925 to 8955 Series chipset. Functionally, Intel®
Communications Chipset 8925 to 8955 Series chipset can be most easily described as
a Platform Controller Hub (PCH) that includes both standard PC interfaces (for
example, PCI Express*, SATA, USB and so on) together with accelerator and I/O
interfaces (for example, Intel® QuickAssist Accelerator).

• Shumway with Intel® Communications Chipset 8925 to 8955 Series (see Figure 1
on page 14) is a next-generation communications platform that features the
Intel® Xeon® Processor E5-2658 and E5-2448L with Intel® Communications
Chipset 89xx Development Kit.

Figure 1. Shumway with Intel® Communications Chipset 8925 to 8955 Series Platform
Example

XDP1

x4 DMI

QPI

XDP0

PCIe Gen3 x8

Slot 1

DDR3 (Ch A)

Ch A Ch B

LPC

SATA

USB

Intel
®

Communications

Chipset 8925 to

8955 Series

System

BIOS

SPI

SERIAL 2 Right

Angle DB9

USB

DRA

M
PLD Port 80

DRA

M
SIO PS2

Optional

PCIe Gen2 x16

PCIe Gen3 x16

PCIe Gen1 x4
Slot 2

Intel
®
 Xeon

®

Processor
(CPU0)

Socket R

DMI

PCIe Gen2 x16

Intel
®
 Xeon

®

Processor
(CPU1)

Socket B2

DMI
Slot 3

TPM Header

Slot 0
PCIe Gen3 x8

Intel
®

Communications

Chipset 8925 to

8955 Series

BGA

27 mm x 27 mm

DDR3 (Ch B)

DDR3 (Ch C)

DDR3 (Ch D)

Ch C Ch D

DDR3 (Ch A)

Ch ACh B

DDR3 (Ch B)

DDR3 (Ch C)

Ch C

SATA

USB

SERIAL

LPC

S
lo

t 4

PCIe Gen1 x4

Hotplug slot

FLASH
Hot-plug

Controller

FLASHFLASH

FLASHCK420BQ

FLASHDB1900Z

Clock

Stuffing option

FLASHFLASH

FLASHFLASH

FLASHFLASH

SPI Program

Headers

SPI

2
sd

 System

BIOS *

1 Vertical DB9

4 USB STACK

RIGHT ANGLE

2X5 HDR

FOR 2 USB

4 Vertical USB

2X5 HDR

FOR 2 USB

PE1

PE3PE2PE1
PE3

PEA

PEP
PEA

PEP

QPI0

QPI1
Not

used

QPI0

BGA

27 mm x 27 mm

Determining the PCH SKU Type

Determine the PCH SKU type as follows:

2.1

2.2

Intel® Communications Chipset 8925 to 8955 Series Software—Platform Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
14 Order No.: 330751-001

1. Find out the bus, slot and function of the PCH devices:

lspci -d 8086:0435

03:00.0 Co-processor: Intel Corporation Device 0435
82:00.0 Co-processor: Intel Corporation Device 0435

This displays the PCI configuration space for the 0435 device. In the case of the
first entry, the bus number=0x03, the device number=0x0 and the function
number=0x0.

2. Read the config space using the command:

od -tx4 -Ax /proc/bus/pci/03/00.0

where:

• -tx4 displays the output in a readable 4-bytes word format

• -Ax specifies Hex. format

3. Read the last element of the 0x00040 offset using the following command:

od -tx4 -Ax /proc/bus/pci/03/00.0 | grep 000040 | awk '{print $2}'

This gives an output similar to the following:

00101000

Example

Specific bits in this output determine the SKU type depending on the silicon stepping
as indicated in the following table.

Silicon Bits to Check SKU Type

A0 21:20 = 00
21:20 = 01
21:20 = 10
21:20 = 11

SKU1 -> DH8925CL
SKU2 -> DH8955CL
SKU3 -> DH8926CL
SKU4 -> DH8950CL

If the 0x00101000 output from the command is analyzed in binary form as shown in
the following figure, it can be determined that bits 21:20 are 01, indicating SKU 2.

Figure 2. PCH SKU Identification Example

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

B
it
 3

1

B
it
 0

B
it
 4

B
it
 8

B
it
 1

2

B
it
 1

6

B
it
 2

0

B
it
 2

4

B
it
 2

8

0 0 1 0 1 0 0 0

Platform Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 15

Determining the PCH Device Stepping

Determine the PCH stepping as follows:

1. Find out the bus, device, and function of the PCH device.

2. Read the config space using the command:

od -tx1 -Ax /proc/bus/pci/<bus number>/<device number>.<function number>

3. Look at offset 0x08 (Revision ID register for the device) from the beginning of PCI
Configuration Space for the PCH device.

The following is the bit definition of the Revision ID register, an 8-bit register with
bits[07:00].

bits[07:04] identify the "Major Revision":

0000 = A stepping
0001 = B stepping
0010 = C stepping
0011 = D stepping

bits[03:00] identify the "Minor Revision":

0000 = x0 stepping
0001 = x1 stepping
0010 = x2 stepping
0011 = x3 stepping

Example
For example, if you find the PCH device at bus number 02, device number 00 and
function 0 then, the command to enter is:

od -tx1 -Ax /proc/bus/pci/02/00.0 | grep 000000

This gives an output similar to the following:

000000 86 80 35 04 06 04 10 00 00 00 40 0b 10 00 00 00

[0x08] (in bold face above) = 0x00, which is 0000_0000, in binary form bits[07:00]:

• bits[07:04] is the Major Revision, 0000 indicates an A stepping.

• bits[03:00] is the Minor Revision, 0000 indicates an x0 stepping.

Therefore, the PCH device is an A0 stepping.

2.3

Intel® Communications Chipset 8925 to 8955 Series Software—Platform Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
16 Order No.: 330751-001

3.0 Software Overview

In addition to the hardware mentioned in Platform Overview, the respective platforms
have critical software components that are part of the offering. The software includes
drivers and acceleration code that runs on the Intel® architecture (IA) CPUs and on
the accelerators in the PCH.

High-Level Software Architecture Overview

The primary components that describe the high-level architecture are shown in the
following figure.

Figure 3. Software Architecture Overview

Acceleration Software Subsystem

Acceleration Driver Framework

Platform Hardware

Services

Intel
®
 QuickAssist Technology APIs

Hardware

Management

OS

Management

Acceleration Services

OSAL

Standard OS

Drivers and

PreBoot

Firmware

Patch Layers

Open Source Frameworks

Firmware

Intel
®
 QuickAssist Accelerator

Customer Application

The main software components are:

• Pre-boot Firmware

The (PCH) pre-boot firmware (provided by an IBV) executes when the system is
reset or powered up. It initializes and configures system memory, chipset
functions, interrupts, console devices, disk devices, integrated I/O controllers, PCI
buses and devices, and additional application processors (AP) if present. IBV pre-
boot firmware solutions are available to support both the legacy BIOS interface
and the newer Unified Extensible Firmware Interface (UEFI).

• Standard OS Drivers

3.1

Software Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 17

These drivers (provided in a standard OS distribution) include support for standard
peripherals on a traditional Intel® architecture platform such as USB, SATA,
Ethernet* and so on. Intel provides a patch to the OS so that it recognizes the
Device IDs (DIDs). These standard OS drivers are described in Part 2: of this
manual.

• Acceleration Software Subsystem

A subsystem (provided by Intel) which includes the software components that
provide acceleration to applications running on the PCH. It contains the following:

— Services (Cryptographic, Data Compression)

Includes the firmware that drives the various workload slices in the
accelerators, and the associated Intel® architecture Service libraries that
expose these workloads via APIs. The Service libraries use the Acceleration
Driver Framework (ADF) to plug into the OS and gain access to the hardware
to communicate with the firmware. The architecture for this subsystem is
detailed in Part 3: Acceleration Drivers on page 31 of this manual.

— Intel® QuickAssist Technology APIs

The Intel® QuickAssist Technology APIs provide service level interfaces for
customer applications or Ecosystem Middleware to access the accelerator(s) in
the PCH. More detail on the APIs and associated architecture is detailed in Part
3: “Acceleration Drivers” of this manual.

— Acceleration Driver Framework (ADF)

The Acceleration Driver Framework (ADF) includes infrastructure libraries that
provide various services to the different software components of the
acceleration drivers. The software framework is used to provide the
acceleration services API to the application. A configuration file enables
customization of system operation. See Configuration File Overview on page
62 for more information.

• Open Source Frameworks

This layer includes open source stacks, such as the Linux Kernel Crypto
framework, zlib, and OpenSSL. The software package works to integrate the
Intel® QuickAssist Technology APIs with these stacks using patch layers. These
open source stacks are not developed or provided by Intel.

• Patch Layers

As described above, the PCH integrates with different OS stacks and Ecosystem
Middleware using patch layers (translation layers). These patch layers may be
developed by Intel or ecosystem vendors.

• Customer Applications

Customer applications may connect to the Services directly via the Intel®
QuickAssist Technology API or may connect through the supported open source
frameworks and associated patches.

Such applications can migrate to the PCHwith little or no change provided that the
Intel® QuickAssist Technology APIs are integrated with the OS stack or
middleware used.

Intel® Communications Chipset 8925 to 8955 Series Software—Software Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
18 Order No.: 330751-001

Logical Instances

A logical instance may be thought of as a channel to the hardware. A logical instance
allows an address domain (that is, kernel space and individual user space processes)
to configure the rings to be used by that address domain and to define the behavior of
that ring.

Response Processing

Each logical instance may be configured to operate in one of two modes:

• Interrupt mode

• Polled mode

Interrupt Mode

When configured in interrupt mode, the Accelerator Driver Framework (ADF) registers
an interrupt handler for response ring processing.

As the latency in servicing an interrupt may be costly, the hardware assisted ring
provides a mechanism to amortize the cost of an interrupt into a single interrupt that
may service multiple responses. The interrupt coalescing section of the configuration
file allows the user to select the mechanism to amortize response interrupts using
either a time-based interrupt scheme or a number-of-responses-based scheme.

The ADF registers an interrupt handler to service the ring bank interrupt. When an
interrupt fires, the ADF services the interrupt and creates an interrupt handler bottom
half1 to consume the responses from the response ring. When MSI-X is supported, the
bottom half of the interrupt handler is created and affinitized to the configured core.
Configuration of this feature is available in the legacy variant of the configuration file
only; see Interrupt Coalescing Parameters on page 137 for details. Callbacks to the
application code occur in the context of this tasklet. This sequence is shown in the
following figure (the full sequence has been reduced for clarity).

3.2

3.2.1

3.2.1.1

1 Linux (and other operating systems) split an interrupt handler into two halves. The so-called
"top half" is the routine that actually responds to the interrupt, that is, the one you register with
request_irq. The "bottom half" is a routine that is scheduled by the top half to be executed later,
at a safer time.

Software Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 19

Figure 4. Kernel Space Response Ring Processing

Application Service Access Layer

cpaCyOpPerform()

Format hardware message

ADF

ringPut()

Hardware

Signal request

Process request

Response Ring Interrupt

Schedule Tasklet

Callback SAL

Retrieve message

Interpret message

Callback Application

Ring processing is in a

Linux tasklet context

Polled Mode

If the cost of servicing an interrupt and scheduling the interrupt handler bottom half is
not desired, a user can choose to disable interrupts and poll for responses. This
mechanism can be configured on a per logical instance basis by setting the or
DcXIsPolledattribute of a logical instance in the configuration file to 1. See
Cryptographic Logical Instance Parameters on page 68 and Data Compression
Logical Instance Parameters on page 69 for more information. When configured to
1, the ADF does not service interrupts for that logical instance.

The ADF provides a set of APIs to allow the client to poll a single bank or all banks on
a given accelerator:

• icp_sal_pollBank - Poll the rings on the given bank number for a given accelerator.

• icp_sal_pollAllBanks - Poll the rings on all banks for a given accelerator.

The Service Access Layer (SAL) provides an API to poll on an individual logical
instance:

• icp_sal_CyPollInstance - Poll a specific cryptographic (Cy) logical instance

• icp_sal_DcPollInstance - Poll a specific data compression (Dc) logical instance

See Polling Functions for details on all the polling functions.

3.2.1.2

Intel® Communications Chipset 8925 to 8955 Series Software—Software Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
20 Order No.: 330751-001

Operating System Support

The software package supports the Linux* operating system.

OpenSSL* Library Inclusion and Usage

The Intel® Communications Chipset 8925 to 8955 Series Software Linux* package is
distributed with an OpenSSL library file. This library file has certain dependencies that
will be met in most cases. In the event that these dependencies are not met, it may
be necessary to build OpenSSL on the development platform and link any Intel®
Communications Chipset 8925 to 8955 Series Software applications to the relevant
OpenSSL library.

Support for Multiple Acceleration Hardware Generations

Note: Not all Intel® QuickAssist Technology releases come with support for multiple
acceleration hardware generations.

Note: See Utility for Loading Configuration Files and Sending Events to the Driver - adf_ctl
on page 37 for additional details.

Software Architecture

The acceleration drivers for Intel® Communications Chipset 8900 to 8920 Series and
Intel® Communications Chipset 8925 to 8955 Series devices are not compatible,
however later Intel® QuickAssist Technology software releases allow for both sets of
drivers to be loaded on the same target. Compatibility with the Intel® QuickAssist
Technology API is maintained via a "mux" layer that provides the dynamic linking to
the appropriate driver based on the particular device.

Software Packaging

This package includes:

• QAT 1.5 tarball of Intel architecture (IA) driver

• QAT 1.6 tarball of IA driver

• qat_mux (included in the QAT 1.6 tarball), which exposes the Intel® QuickAssist
Technology API in the case where both above drivers are installed. When only one
of the above drivers is installed, the Intel® QuickAssist Technology API is exposed
by the driver and the qat_mux is not installed.

Different devices are supported by different Intel® QuickAssist Technology drivers;
please see the following table:

Device Driver

DH8900 - DH8920 QAT 1.5

C2XXX QAT 1.5

DH8925 - DH8955 QAT 1.6

In the Intel® QuickAssist Technology software package, the directory "QAT1.5"
contains the driver for the Intel® Communications Chipset 8900 to 8920 Series and
Intel® Atom™ Processor C2000 Product Family for Communications Infrastructure

3.3

3.4

3.5

Software Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 21

devices, and the directory "QAT1.6" contains the driver for the Intel® Communications
Chipset 8925 to 8955 Series devices. The "mux" directory contains the software to
build in support for all of the above devices.

Build Installation Details

Some Intel® QuickAssist Technology releases can support multiple acceleration
hardware generations (e.g., both Intel® Communications Chipset 8900 to 8920 Series
and Intel® Communications Chipset 8925 to 8955 Series). By default, software
releases with support for multiple acceleration hardware generations will build or
install according to the devices visible on the platform. For instance:

• If one or more Intel® Communications Chipset 8900 to 8920 Series devices are
visible on the PCIe bus and no Intel® Communications Chipset 8925 to 8955
Series device is present, the installer.sh will build with support for Intel®
Communications Chipset 8900 to 8920 Series devices only.

• If one or more Intel® Communications Chipset 8925 to 8955 Series devices are
visible on the PCIe bus and no Intel® Communications Chipset 8900 to 8920
Series device is present, the installer.sh will build with support for Intel®
Communications Chipset 8900 to 8920 Series devices only.

• If one or more Intel® Communications Chipset 8925 to 8955 Series devices are
visible on the PCIe bus and one or more Intel® Communications Chipset 8900 to
8920 Series devices are present, the installer.sh will build with support for both
Intel® Communications Chipset 8900 to 8920 Series devices and Intel®
Communications Chipset 8925 to 8955 Series.

There are two primary usage models for building with support for multiple acceleration
hardware generations:

1. Concurrent usage of acceleration devices across multiple acceleration hardware
generations.

2. Deployment of a software release/image that supports multiple acceleration
hardware generations, without the expectation that a given platform will have
more than one acceleration hardware generation present.

To support multiple acceleration hardware generations, the icp_qa_al.ko kernel
module is not used. Instead, a "mux" kernel module (cpa_mux.ko) and one or both of
qat_1_5_mux.ko and qat_1_6_mux.ko, depending on which hardware must be
supported. In addition, any applications that make use of the acceleration software
must link to different libraries. In summary, the following table applies:

Case Kernel object(s) User Space object(s) Static Libraries

QAT 1.5 only build option icp_qa_al.ko libicp_qa_al_s.so libicp_qa_al.a

QAT 1.6 only build option icp_qa_al.ko libicp_qa_al_s.so libicp_qa_al.a

Mux case qat_1_5_mux.ko
qat_1_6_mux.ko

qat_mux.ko

libqat_1_5_mux.s.so
libqat_1_6_mux.s.so

libqat_mux.s.so

libqat_1_5_mux.a
libqat_1_6_mux.a

libqat_mux.a

Intel® Communications Chipset 8925 to 8955 Series Software—Software Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
22 Order No.: 330751-001

Part 2: Core and Chipset Drivers

Core and Chipset Drivers—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 23

4.0 Embedded Drivers

In general, the software package can be described as containing two kinds of drivers:

• Embedded Drivers - These drivers are enumerated in this chapter.

• Acceleration Drivers - These drivers are described in Acceleration Drivers Overview
on page 32.

Overview

The platform supports the following embedded drivers:

• USB

• SATA (supports two ports)

• LPC (includes WDT and Serial I/O)

• SPI

• GPIO

• Crystal Beach DMA (server platform only)

• Non-Transparent Bridge (server platform only)

When more than one PCH device is present on a platform, only one of the PCH devices
has the standard PC drivers enabled; the others make only the PCIe* end-point
visible.

USB Drivers

The PCH provides one EHCI USB2 Host Controller with six ports. The Enhanced Host
Controller Interface (EHCI) provides a standard register interface to USB 2.0. There is
also the ability to access these same six ports via the Universal Host Controller
Interface (UHCI), the previous generation register interface, which only supports USB
1.1. The following features are provided:

• USB Rate Matching Hub

• Two debug ports

• Supports wake up from S1-S5

• Legacy keyboard/mouse software with USB keyboard/mouse

• Per port USB disable

• VCp for isochronous traffic (VC0 for asynchronous)

• Capability to use reduced Frame List Sizes

• Support for hot plug and surprise removal

The following limitations apply:

4.1

4.2

Intel® Communications Chipset 8925 to 8955 Series Software—Embedded Drivers

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
24 Order No.: 330751-001

• USB-Redirect, which provides the ability for a remote management agent to gain
access through the NIC and act as if it were a local USB device (typically a
keyboard or mouse), is not supported.

• USB on the Go is not supported in the PCH.

SATA Drivers

The PCH provides up to two SATA Controllers, supporting two SATA Ports. Advanced
Host Controller Interface (AHCI), the SATA standard register interface, is supported
(on one function, as described below).

The features are as follows:

• Integrated DMA operations on two ports

• SATA Gen2 support, 300 MB/s on each port

• Per port activity LEDs

• Multiple MSI message vectors

• Dynamic AFE Squelch

• Legacy IDE software interface supported as configuration option (in BIOS)

Two modes are supported in the SATA Controller:

• AHCI

• Legacy IDE

When in AHCI mode, the SATA Controller only exposes one PCI function, Device 31
Function 2 (D31F2). When in Legacy IDE mode, an additional function is exposed,
Device 31 Function 5 (D31F5).

This is controlled through the register offset 90h MAP, Port Mapping Register. Bit 5 is
the SATA Port to controller Config register (SC).

• When this bit is ‘0’ (Legacy Mode):

— Up to four SATA ports are in the D31F2 controller with port[3:0]. In the PCH,
none of these ports are enabled.

— Up to two SATA ports are available in the D31F5 controller with port[5:4]
(according to SATA pin list). These are the two implemented SATA ports.

• When this bit is ‘1’ (AHCI Mode):

— Up to six SATA ports are in the D31F2 controller with port [5:0]. Only Ports 4
and 5 are enabled.

No SATA port is available in the D31F5 controller. For operation in IDE mode, this bit
should be ‘0’. Legacy Mode offers less performance than AHCI mode and therefore
should only be used in OSs where AHCI is not available.

In AHCI mode, it is the AHCI Port Disable bit that allows a driver to know if a given
SATA Port exists (this is in the Port Mapping Register). Therefore, in the Intel®
Communications Chipset 8925 to 8955 Series PCH, Ports 0 through 3 are disabled.

LPC Device

The PCH provides the Low-Pincount (LPC) interface. This interface:

4.3

4.4

Embedded Drivers—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 25

• Allows connection of devices such as Super I/O, micro controllers, customer ASICs

• Supports two master/DMA devices

• Uses a memory size up to 8 MB

In addition, the WDT and Serial I/O are integrated into the LPC. Note that there is no
separate LPC driver as such, instead, there are the drivers for the devices on the LPC
bus, specifically separate drivers for WDT and Serial I/O.

Watch Dog Timer Drivers

The PCH includes Serial I/O and Watch Dog Timer (WDT) as part of the LPC. The WDT
features are as follows:

• 33 MHz Clock (30 ns clock ticks)

• Multiple Modes (WDT and Free-Running)

• Timer can be disabled (default state) or Locked

• WDT Automatic Reload of Preload value when WDT Reload Sequence is performed

Note: The WDT driver is not part of any standard Linux* distribution and is provided as
sample code only.

Note: In addition to the WDT described above, there are two other watch dog entities
available in the system:

• TCO Watch dog (Total Cost Ownership/System Management Watch dog); a kernel
patch has been submitted for this driver against Linux kernel version 2.6.xx

• Per-Thread watch dog - (device ID 0x2360)

Serial I/O Drivers

The serial I/O has the following features:

• Two Full Function 16550 Compatible Serial Ports

• Configurable I/O addresses and interrupts

• 16-Byte FIFOs

• Supports up to 115 Kbps

• Programmable Baud Rate Generator

• Modem Control Circuitry

• 14.7456 MHz, 33 MHz, and 48 MHz supported for UART baud clock input

SPI Drivers

The PCH supports a single SPI interface. The SPI is used to connect the Flash device
used to boot the system. Its features include:

• Supports up to two 16 MB devices (two chip selects)

• Supports the SPI Fast Read instruction

• Hardware decompression for Acceleration Engine Sx Operation

4.4.1

4.4.2

4.5

Intel® Communications Chipset 8925 to 8955 Series Software—Embedded Drivers

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
26 Order No.: 330751-001

Note: The SPI drivers are not part of any standard Linux* distribution and are provided as
sample code only.

GPIO Drivers

The PCH supports GPIO pins some of which are available for customer use. See the
External Design Specification for more information.

A GPIO driver is not provided. Instead, illustrative code is provided that shows how
the GPIOs can be used. See the General Purpose I/O (GPIO) Use in Software
Application Note for more information.

Crystal Beach DMA Application

Note: The Crystal Beach (CB) DMA application is supported on server platforms only.

Crystal Beach (CB) technology provides a set of chipset functions that allow discrete
PCI Express* (PCIe*) adapters to achieve higher performance while decreasing
adapter cost. The main features of CB are as follows:

• Supports write operations from memory to I/O, but not from I/O to memory

• Instantiated as a root complex integrated PCIe end point device

• Chipset DMA that is controllable by software executing on the processor

• PCI Express enhancements such as relaxed ordering

• A standardized software interface for controlling and accessing DMA features

• One MSI or MSI-X vector supported per CB channel/function

• SR-IOV support is not provided in the hardware

• Support for Asynch_tx on the CB driver

There are eight software visible CB DMA engines, visible as PCI functions. Each engine
has one channel. Each can be independently operated, and in a virtualized system
each can be independently assigned to a VM. In the PCH, all eight channels are DMA
engines.

For Linux*, Crystal Beach uses async_tx. Refer to the Asynchronous Transfers/
Transforms API document for a description. Other operating systems are not
supported.

Note: The CB DMA application is not part of any standard OS distribution and is provided as
sample code only.

For more information on the Crystal Beach (CB) DMA feature, see the Intel® Xeon®

Processor (storage) - External Design Specification (EDS) Addendum - Rev. 1.1
(Reference: 503997).

Non-Transparent Bridge (NTB) Driver

Note: The Non-Transparent Bridge (NTB) driver is only supported on Shumway.

4.6

4.7

4.8

Embedded Drivers—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 27

http://edc.intel.com/Download.aspx?id=3407
http://edc.intel.com/Download.aspx?id=3407
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/crypto/async-tx-api.txt;hb=HEAD
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/crypto/async-tx-api.txt;hb=HEAD

On server platforms, one of the root ports may be converted to a Non-Transparent
Bridge (NTB) device interface. While a transparent bridge simply forwards requests
and responses from one side to the other using the PCIe* header for routing, an NTB
is used to isolate one root complex from another and to selectively allow specific
memory range forwarding.

In a typical system, when an NTB is enabled, it exposes primary and secondary sides
to the host and remote systems respectively. The NTB is seen as a Root Complex
Integrated Endpoint (RCiEP) from the primary side. As such, the NTB device behaves
mainly as a PCIe endpoint device with a couple of different rules as follows:

• It does not support OS power management that is separate from the chipset

• It cannot support I/O (as opposed to MMIO) requests

The BIOS will configure the PCIe port as one of the following possible configurations:

• A PCIe root port

• An NTB that is connected to a second NTB on another system, called back-to-back
(B2B)

The software package includes a set of device drivers provided as sample code for use
by the client software to support each of the NTB configurations.

The NTB device exposes a Type-0 PCIe configuration space on each side. The
upstream side nearest the CPU is visible as a Type-0 Root Complex Integrated
Endpoint (RCiEP) and the downstream secondary side exposes itself to another system
as a PCIe Endpoint (EP).

Note: The NTB driver in the software package is a modified version of the NTB driver that
has been upstreamed to the later Linux kernel 3.9. Fedora 16 uses an earlier kernel
version.

See the Intel® Xeon® Processor C5500/C3500 Series Non-Transparent Bridge
Programmer's Guide for more information.

Intel Technology Support

The platforms described in this manual support the following Intel technologies:

• Intel® Virtualization Technology (Intel® VT)

• Intel® 64 architecture

• Intel® Simultaneous Multi-Threading (Intel® SMT)

See the following topics for short descriptions and pointers to more detailed
information.

Intel® Virtualization Technology (Intel® VT)

Hardware-assisted Intel® Virtualization Technology (Intel® VT) provides greater
flexibility and maximum system utilization by consolidating multiple environments into
a single server, workstation, or PC. With fewer systems required for the same tasks,
Intel® VT delivers:

• Simplified resource management, increasing IT efficiency.

4.9

4.9.1

Intel® Communications Chipset 8925 to 8955 Series Software—Embedded Drivers

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
28 Order No.: 330751-001

http://download.intel.com/embedded/processor/designguide/323401.pdf
http://download.intel.com/embedded/processor/designguide/323401.pdf

• Greater systems reliability and availability, reducing corporate risk and real-time
losses from downtime.

• Lower hardware acquisition costs with increased utilization of the machines you
already have.

The platforms described in this manual support the following:

• Intel® Virtualization Technology (Intel® VT-x); (see http://www.intel.com/
technology/virtualization/technology.htm)

• Intel® Virtualization Technology for Directed I/O (Intel® VT-d); (see http://
www.intel.com/technology/itj/2006/v10i3/2-io/1-abstract.htm)

• Intel® Virtualization Technology for Connectivity (Intel® VT-c); (see http://
www.intel.com/network/connectivity/solutions/vmdc.htm)

— Virtual Machine Device Queues (VMDq); (see http://www.intel.com/network/
connectivity/vtc_vmdq.htm)

Intel® VT also complements the Single Root I/O Virtualization and Sharing (SR-IOV)
specification created by the Peripheral Component Interconnect Special Interest
Group* (PCI-SIG*).

The acceleration driver supports simultaneous access of the acceleration hardware
from a Virtual Machine (VM) through a Virtual Function (VF) and a Virtual Machine
Manager (VMM) through a Physical Function (PF).

For specific detail, see the Using Intel® Virtualization Technology (Intel® VT) with
Intel® QuickAssist Technology Application Note.

Intel® Simultaneous Multi-Threading (Intel® SMT)

Intel® Simultaneous Multi-Threading (Intel® SMT) technology is an architectural
feature of a processor that allows multiple threads to issue instructions on each cycle.
In other words, SMT allows the functional units that make up the processor to work on
behalf of more than one thread at the same time.

Intel® 64

Intel® 64, formerly known as Intel® Extended Memory 64 Technology (EM64T), allows
server, workstation, and desktop platforms to access larger amounts of memory. This
enhancement allows a processor to run newly written 64-bit code and access larger
amounts of memory than 32-bit code. Intel 64 is often referred to as “64-bit
extensions” to the Intel architecture 32-bit (IA-32).

See http://www.intel.com/technology/intel64/index.htm for more information.

Other Supported Technologies and Standards

The platforms described in this manual also support:

• Intel® AES New Instructions (Intel® AES-NI) - See http://software.intel.com/en-
us/articles/intel-advanced-encryption-standard-instructions-aes-ni/ for details.

Note: AES denotes Advanced Encryption Standard.

• Intel® Advanced Vector Extensions (Intel® AVX) - See http://
software.intel.com/en-us/avx/ for more information.

4.9.2

4.9.3

4.10

Embedded Drivers—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 29

http://www.intel.com/technology/virtualization/technology.htm
http://www.intel.com/technology/virtualization/technology.htm
http://www.intel.com/technology/itj/2006/v10i3/2-io/1-abstract.htm
http://www.intel.com/technology/itj/2006/v10i3/2-io/1-abstract.htm
http://www.intel.com/network/connectivity/solutions/vmdc.htm
http://www.intel.com/network/connectivity/solutions/vmdc.htm
http://www.intel.com/network/connectivity/vtc_vmdq.htm
http://www.intel.com/network/connectivity/vtc_vmdq.htm
http://www.intel.com/technology/intel64/index.htm
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/avx/
http://software.intel.com/en-us/avx/

• Asynchronous DRAM Refresh (ADR) - See the white paper at http://pcache-
www.intel.com/cd/00/00/45/60/456090_456090.pdf for more information.

Note: ADR is supported on the server platforms only.

Intel® Communications Chipset 8925 to 8955 Series Software—Embedded Drivers

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
30 Order No.: 330751-001

http://pcache-www.intel.com/cd/00/00/45/60/456090_456090.pdf
http://pcache-www.intel.com/cd/00/00/45/60/456090_456090.pdf

Part 3: Acceleration Drivers

Acceleration Drivers—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 31

5.0 Acceleration Drivers Overview

In general, Intel® Communications Chipset 8925 to 8955 Series Software can be
described as containing two kinds of drivers:

• Embedded Drivers - These drivers are described in Embedded Drivers on page 24.

• Acceleration Drivers - These drivers are described in this chapter.

For each supported acceleration service (Cryptographic, Data Compression), the
following application usage models are supported:

• Kernel mode, where both the application and the service(s) are running in kernel
space.

• Direct user space access to services running in user space. In this model, both the
application and service(s) are running in user space and access to the hardware is
also performed from user space. The kernel space driver is needed to perform the
mapping for user space access.

The Acceleration Drivers are supported on 64-bit and 32-bit kernels. 32-bit user space
applications are supported on 32-bit and 64-bit kernels.

For Linux*, the acceleration drivers are provided for both user and kernel space. A
porting guide is available that provides guidance on porting the software to other
Operating Systems including RTOSs that do not distinguish between user and kernel
space. Refer to the Intel® QuickAssist Technology Acceleration Software OS Porting
Guide for additional information.

Hardware Assisted Rings

Hardware assisted rings are used as the communication mechanism to transfer
requests between the CPU and the accelerator(s) on the chipset device and vice-
versa. The hardware supports 512 rings, each with head and tail Configuration Status
Register (CSR) pointers that are mapped to PCIe* memory on the CPU. The rings may
be configured as:

• Request rings, where the CPU is a producer and the accelerator is a consumer

• Response rings, where the accelerator is a producer and the CPU is a consumer

The rings have a default size of 512 entries each (request and response). The CPU
may be arranged as a producer or a consumer on a ring, but cannot be both a
consumer and producer on the same ring, as shown in the following figure. This is to
avoid atomicity issues associated with multiple writers.

Note: The rings are configured and serviced by the provided kernel space driver for use by
the application either in kernel or user space.

5.1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
32 Order No.: 330751-001

Figure 5. Intel® QuickAssist Accelerator Ring Access

Application

 Intel
®
 QuickAssist Technology APIs

Service Access Layers

Acceleration Driver Framework

O
S

A
L

R
e

q
u

e
s
t

R
in

g

R
e

s
p

o
n

s
e

R
in

g

Acceleration Hardware

Tail

Pointer

Head

Pointer

Head

Pointer

Tail

Pointer

Rings are grouped into ring banks with each ring bank containing 16 rings.

For each ring bank, hardware supports the generation of the interrupt when data is
available for processing on the response ring within the bank.

MSI-X interrupts are supported by the Intel® QuickAssist Accelerator, and if the OS
supports MSI-X interrupts, the response may be directed to any core on system. This
allows an even distribution of response processing among the cores on the system.
The configuration of bank interrupts and core affinity is detailed in Affinity Parameters
on page 138.

All rings on the device are shared by the Intel QuickAssist Accelerators on the device.
The hardware load balances requests from these rings across the Intel QuickAssist
Accelerators.

Basic Software Context for Acceleration Drivers

The following figure depicts the basic OS-agnostic software model for the acceleration
drivers.

Figure 6. Basic Software Context

CryptoAcc CompressAcc

Intel
®
 QuickAssist Technology API

Intel
®
 QuickAssist Accelerator

Firmware

Application Clients

5.2

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 33

The key elements of this model are as follows:

• The firmware encompasses software executing on the accelerator(s).

• Intel® architecture software entities that fall into two groups:

— Driver level entities - CryptoAcc, CompressAcc, and the Intel® QuickAssist
Technology API

— Application level entities - application clients

• Application-level software that runs on Intel® architecture.

— Application entities executing at an Intel® architecture level that make use of
the accelerators via the Intel® QuickAssist Technology APIs.

Linux* Software Context for Acceleration Drivers

The following figure shows an example of the Linux* operating environment for the
Acceleration Driver Framework.

Figure 7. Linux Software Context

User Space

Driver (e.g.

cryptodev

for OCF)

Crypto Accelerator

Intel
®
 QuickAssist Technology API

Patch Layer

Crypto Kernel Space

Driver

Open Source Framework

(e.g. Linux Kernel

CyptoFramework, OCF)

Kernel App

(e.g. NETKEY,

Openswan,

KLIPS)

Crypto User Space

Library User Space

Kernel Space

Patch Layer

Open Source Framework

(e.g. OpenSSL libcrypto)

Open Source

Application

Open Source API

(e.g. scatterlist, OCF)

Intel
®
 QuickAssist Technology API

Kernel

Application

User Space

Application

User Space

Application

Open Source API

Open Source

Application

(e.g.

Openswan

pluto for IKE)

(e.g. OCF, cryptodev)

Open Source API

(e.g. EVP API)

5.3

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
34 Order No.: 330751-001

The Services support applications in kernel space as well as user space. User space
access is hardware direct access with mapping from kernel space driver. Catering for
these access options provides full flexibility in the use of the accelerator.

The driver architecture supports simultaneous operation of multiple applications using
any and all combinations of acceleration access options. However, some limitations
apply. These are called out clearly in following topics.

Note: The applications identified in the figure above are examples only and do not serve as
an statement of intent for enabling.

Note: Software packages for patches, such as OpenSSL, Linux Kernel Crypto Framework,
and NetKey and zlib are distributed separately. See Product Documentation on page
12. You will need an Intel Business Link (IBL) account and a subscription to the
Electronic Design Kit (EDK).

Acceleration Drivers

The Acceleration Driver is divided into a number of functional components as shown in
the following figure. The figure shows the basic driver framework.

Figure 8. Acceleration Driver Framework

Framework/Application

Service

Init and Ctrl
QAT

Init & Ctrl

Crypto CompressConfig Mgt

Debug OSAL

Download PCIe event

Ring Ctrl Ring Access (Send and Receive)

Acceleration Engine Firmware

Acceleration Driver Framework

Intel
®
 QuickAssist Accelerator Driver

Service Access Layer

Intel
®
 QuickAssist Technology APIs

Framework Overview

An acceleration driver contains a number of logical units that are primarily exposed via
the Intel® QuickAssist Technology APIs. Figure 8 on page 35 depicts the main
components of the driver. These are:

• Service Access Layer (SAL)

5.4

5.4.1

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 35

Provides the main access to the acceleration services of the accelerator. Each
service is provided by a service entity in that layer. Though contained in a single
logical layer, each service is separate and distinct and as such services do not
depend on each other.

• Acceleration Driver Framework (ADF)

An acceleration driver provides a supporting framework which contains services
that the SAL depends on and also provides the hardware level interactions for PCI
in particular, including PCI registration and interaction.

Service Access Layer

The Service Access Layer (SAL) is responsible for providing access to the individual
acceleration services contained in the accelerator. As shown in Figure 8 on page 35,
the layer is made up of the individual services as well as an Initialization and Control
component.

This layer is largely OS-agnostic. In particular, the layer is designed in such a way as
to allow it to operate in kernel space as well as user space Linux* environments.

The primary responsibilities of this layer are as follows:

• Register for notification of, query, observe and handle initialization/discovery/error
events from the ADF framework. The layer initializes and stops services based on
the state of the accelerator as indicated by ADF.

• Initialize the service layers based on the settings in a configuration file.

• Initialize and model the logical accelerator instances as configured in the
configuration file.

• Be aware of the execution context for the SAL, that is, whether operating as a
driver in kernel space or a library in user space and perform the necessary
initializations required.

• Process Intel® QuickAssist Technology API functions and pass them on as requests
to the firmware.

Acceleration Driver Framework

This topic outlines the services in the ADF that the SAL depends on.

Services include:

• Events: The SAL relies on the ADF for an event notification function with which
the SAL registers to get notified of key runtime events. It uses these events to
trigger initialization and shutdown operations in particular. The SAL also queries
the ADF for the status.

• Discovery: The ADF framework is responsible for all hardware level discovery and
provides notification to the SAL when accelerator discovery events occur such as
accelerator plug and play events.

• Download & Init: The ADF framework takes care of the download and starting of
the firmware. The ADF notifies the SAL that the firmware is downloaded and
started.

• Ring Control and Access: The ADF provides the mechanism by which the
accelerator rings are configured, including the enabling of interrupts on ring sets.
In addition, the ADF abstracts the communication mechanism with the accelerator.

5.4.2

5.4.3

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
36 Order No.: 330751-001

• Configuration: ADF provides access to the configuration text files used to
configure an acceleration driver. Some elements of the configuration file such as
ring bank configuration belong to the ADF itself, while other settings are owned by
the SAL. The ADF provides the mechanism by which the SAL gets access to the
configuration settings.

• OS Abstraction: The SAL layer is OS independent and makes use of the OSAL
provided as part of the ADF.

Note: When operating in user space, the SAL should be considered to have the same
dependencies on the ADF as it does in kernel space.

Acceleration Driver Configuration File

An acceleration driver has a configuration file that is used to configure the driver for
runtime operation. There is a single configuration file for each PCH device in the
system. The configuration file format is described in Acceleration Driver Configuration
File on page 62. The older legacy configuration file format (which is still supported)
is described in Acceleration Driver Configuration File - Earlier File Format on page
136.

Utility for Loading Configuration Files and Sending Events to
the Driver - adf_ctl

The adf_ctl user space utility is separate to the driver and provides the mechanism
for:

• Loading configuration file data to the kernel driver. The kernel space driver uses
the data and also provides the data to the user space driver.

• Sending events to the driver to bring devices up and down.

The adf_ctl utilities provided in the QAT 1.5 package and earlier QAT 1.6 packages can
only be used to interface with the driver they are provided with.

The adf_ctl provided with the QAT1.6 driver in the single package can be used to
interface with both drivers. It can bring up all devices supported by both drivers.

Usage

./adf_ctl [dev] [up|down|reset] - to bring up or down or reset device(s).

or

./adf_ctl status - to print device(s) status

Device Enumeration

Device enumeration varies within the driver code, in adf_ctl and on the API. This is
best illustrated with an example. The following table illustrates device enumeration on
a platform with three different device types, two DH895xccs, two DH89xxccs and one
C2xxx.

5.4.4

5.4.5

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 37

Table 1. Device Enumeration Example

Driver adf_ctl status Conf File
Name

API

devices types Inst_id Used by
client in call
to
icp_sal_poll
Bank, etc.

Passed by
mux to
driver in
call to
icp_sal_poll
Bank, etc

accelId hw_data.
dev_class.na
me

hw_data.
InstanceId

accelId on
API

accel_dev.ac
celId in
driver

QAT1.6 icp_dev0 dh895xcc 0 dh895xcc_qa
_dev0.conf

0 0

QAT1.6 icp_dev1 dh895xcc 1 dh895xcc_qa
_dev1.conf

1 1

QAT1.5 icp_dev2 dh89xxcc 0 dh89xxcc_qa
_dev0.conf

2 0

QAT1.5 icp_dev3 c2xxx 0 c2xxx_qa_de
v0.conf

3 1

QAT1.5 icp_dev4 dh89xxcc 1 dh89xxcc_qa
_dev1.conf

4 2

Examples of Manual Sequence for Starting the Driver

Note: For the full installation, see the Intel® Communications Chipset 8925 to 8955 Series
Software for Linux* Getting Started Guide.

Case where only DH895xcc devices are on the platform

1. Copy firmware to /lib/firmware/dh895xcc
2. Copy a config file for each device to /etc
3. insmod ./QAT1.6/build/icp_qa_al.ko
4. ./QAT1.6/build/adf_ctl up

Case where DH895xcc and DH89xxcc devices are on the platform

1. Copy firmware for DH89xxcc to /lib/firmware and for DH895xcc to /lib/firmware/
dh895xcc

2. Copy a config file for each device to /etc
3. insmod ./QAT1.6/build/cpa_mux.ko
4. insmod./QAT1.5/build/qat_1_5_mux.ko
5. insmod ./QAT1.6/build/qat_1_6_mux.ko
6. ./QAT1.6/build/adf_ctl up

Acceleration Architecture in Kernel and User Space

The Intel® QuickAssist Accelerator software is architected to allow it operate in either
kernel or user space using a ”build time” decision. The overall architecture of the
software stack is shown in the following figure.

5.5

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
38 Order No.: 330751-001

Figure 9. Software Architecture for Kernel and User Space

User Space Application

Acceleration Hardware

 Intel
®
 QuickAssist Technology APIs

Service Access Layers

Acceleration Driver Framework

Kernel Space Application

 Intel
®
 QuickAssist Technology APIs

Service Access Layers

Acceleration Driver Framework

User Space

Kernel Space

QAT Ctrl

O
S

A
L

O
S

A
L

Request

Ring

Response

Ring

Request

Ring

Response

Ring

The Intel® QuickAssist Technology API is OS agnostic and has the same function
signatures in both kernel or user space. The SAL component is also OS agnostic and
may be compiled as a user space library or as a kernel space module. The SAL uses
the OSAL for all OS services and versions of OSAL have been implemented for Linux
user space and kernel space.

Communication Between User Space and Kernel Space Drivers

The QAT kernel space driver creates several Linux* device drivers as a means of
interacting with the QAT user-space driver that is linked in to client user-space
processes. The paths to the Linux device drivers vary depending on which QAT driver
is loaded as indicated in the following table.

QAT1.5 driver QAT1.6 driver, if not built for
mux. (and so QAT1.5 can/will

not be loaded on this platform)

QAT1.6 driver, if built for mux.
(and so QAT1.5 may be loaded

on this platform)

/dev/icp_adf_ctl /dev/icp_adf_ctl /dev/icp_mux/icp_adf_ctl

/dev/icp_devX_csr /dev/icp_devX_csr /dev/icp_mux/icp_devX_csr

/dev/icp_devX_ring /dev/icp_devX_ring /dev/icp_mux/icp_devX_ring

/dev/icp_dev_processes /dev/icp_dev_processes /dev/icp_mux/icp_dev_processes

/dev/icp_dev_mem /dev/icp_dev_mem /dev/icp_mux/icp_dev_mem

/dev/icp_dev_pfvfcomms /dev/icp_mux/icp_dev_pfvfcomms

5.5.1

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 39

These drivers are typically used at driver and device initialization, rather than on the
data path, with the exception of icp_dev_ring which is used for user-space interrupt
processing. For maximum performance on the data path, the user-space driver
accesses memory mapped into user space or accesses the device directly.

User Space Memory Allocation

For user space applications, two aspects of memory allocation need to be considered:

• Accelerator driver memory allocation

• Application payload memory allocation

Accelerator Driver Memory Allocation

At initialization, the accelerator driver allocates memory for use in communications
with the Intel® QuickAssist Accelerator hardware. This memory needs to be resident,
DMA accessible and needs a physical address to provide to the accelerator hardware.

In kernel space, the SAL calls the OSAL memory routines to allocate this memory.
Principally, the function used by SAL is osalMemAllocContiguousNUMA. In the kernel, this
OSAL routine is implemented with kmalloc_node. Memory allocated using kmalloc_node
is guaranteed to be contiguous, resident and the OSAL routine also exists to retrieve
the associated physical address.

In user space, it is a little more complex. The OSAL implementation of
osalMemAllocContiguousNUMA needs to return memory that is resident and contiguous.
To do this, the OSAL in kernel space creates a device, called icp_dev_mem that may be
called through an IOCTL function by the OSAL in user space to allocate memory. When
called with IOCTL DEV_MEM_IOC_MEMALLOC, the OSAL kernel mode driver returns the
allocated memory.

For communications with the Intel® QuickAssist Accelerator device, the ADF needs
access to the rings. The hardware ring CSRs are mapped from kernel space MMIO
space to the application's user space by ADF. The DRAM memory for the hardware
rings are also mapped to the user space application. In user space, the ADF exposes a
ring put and a ring get API to the SAL to allow it to communicate with the Intel®
QuickAssist Accelerator hardware.

The following figure shows the ring CSRs and allocation buffers that are required to be
mapped to user space.

Note: If your software has another mechanism for the allocation of contiguous memory, for
example, by reserving an area of memory from the OS, then replace the OSAL
memory functions (see $ICP_ROOT/quickassist/utilities/osal/include/Osal.h for
details) with your specific implementation.

5.5.2

5.5.2.1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
40 Order No.: 330751-001

Figure 10. User Space Memory Allocation at Initialization

User Space Application

Intel
®
 QuickAssist Technology APIs

Service Access Layers

Acceleration Driver Framework

User Space

Kernel Space

OSAL

Mapped Ring

CSRs

General

purpose

memory

 Ring Memory

O
S

A
L

Acceleration Hardware

Memory allocated

and mapped to user space

Ring CSRs mapped

to user space
Memory allocated

by kernel OSAL

Acceleration Driver Framework

Application Payload Memory Allocation

When performing offload operations through the Intel® QuickAssist Technology API, it
is required that the payload data be placed in a buffer that is resident, physically
contiguous and is DMA accessible from the acceleration hardware. It is the
application's responsibility to provide buffers with these constraints. A scheme similar
to the OSAL implementation mentioned above may be implemented by the user space
application.

Buffers are passed to the Intel® QuickAssist Accelerator service access layer with
virtual addresses. However, the accelerator layers need to pass physical addresses to
the hardware, therefore a virtual-to-physical address translation is required. The
Intel® QuickAssist Technology API allows an application to register a function that will
do this virtual-to-physical translation.

Cryptographic
service

cpaCySetAddressTranslation See the Intel® QuickAssist Technology
Cryptographic API Reference Manual for details.

Data Compression
service

cpaDcSetAddressTranslation See the Intel® QuickAssist Technology Data
Compression API Reference Manual for details.

When the SAL requires the physical address, it calls the registered function.

Note: This address translation function is called at least once per request. Consequently, for
optimal performance, the implementation of this function should be optimized.

5.5.2.2

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 41

User Space Additional Functions

To allow a user space process access to the Intel® QuickAssist Accelerator rings, the
service access layer needs to be configured to expose logical instances to the user
space process. Logical instances are configured using the per device configuration file.
See User Space Configuration on page 43 for an example.

To allow each process to have separate logical instances, the configuration file groups
a set of logical instances by name. The process then needs to call the
icp_sal_userStartMultiProcess on page 119 function (or icp_sal_userStart on page
118 if the older configuration file format is used) at initialization time with the name
associated with the group of logical instances. Similarly, on process exit, to free the
resources and make them available to other processes with the same name, the
process needs to call the function icp_sal_userStop on page 120.

For example, in the sequence in the following figure, the user has configured the
Service Access Layer to have two crypto logical instances available for the process
called "SSL". The user space process may then access these logical instances by
calling the cpaCyGetInstances function. The application may then initiate a session with
these logical instances and perform a cryptographic operation. See the Intel®
QuickAssist Technology Cryptographic API Reference Manual for more information on
the API functions available for use.

5.5.3

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
42 Order No.: 330751-001

Figure 11. User Space Process with Two Logical Instances

Application Service Access Layer

icp_sal_userStart("SSL")

Setup Logical Instances

Setup the rings associated

with the logical instance "SSL"

cpaCyGetInstances()

Return 2 logical instances

cpaCySymInitSession()

cpaCySymInitSession()

Application may now submit

requests to the Logical Instances

Select one

Logical Instance

Select next

Logical Instance

User Space Configuration

The section of the configuration file that details user space configuration follows the
[KERNEL] section.

For example, in the sequence in Figure 11 on page 43, the user has configured the
service access layer to have two crypto logical instances available for the process
called "SSL".

For this example, the logical instances section of the configuration file is as follows:

5.5.4

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 43

[KERNEL]
NumberCyInstances = 0
NumberDcInstances = 0

[SSL]
NumberCyInstances = 2
NumberDcInstances = 0
NumProcesses = 1

Crypto - User instance #0
Cy0Name = "SSL0"
Cy0IsPolled = 1
List of core affinities
Cy0CoreAffinity = 0,1

Crypto - User instance #1
Cy1Name = "SSL1"
Cy1IsPolled = 1
List of core affinities
Cy1CoreAffinity = 2,3

In this example, the user process SSL configures two logical instances (called ”SSL0”
and ”SSL1”).

User Space Response Processing

As in the case of kernel space operation, there are two modes of response processing
for user space operation:

• Interrupt mode

• Polled mode

User Space Interrupt Mode

Response ring processing in interrupt mode differs slightly from the kernel mode
response ring processing since the user space application needs to be signaled when a
response is placed on the response ring by the Intel® QuickAssist Accelerator
hardware.

The ADF is responsible for managing this signaling path. Initially, user space ADF
creates a dispatcher thread that is responsible for handling the notifications from the
ADF in kernel space. Upon creation, this thread blocks on reading a Linux character
device until the dispatcher thread has been signaled by the ADF in kernel space. For
each user space response ring that is subsequently created, ADF creates a ring thread
in user space for reading the response ring.

Upon receiving a response, the ADF in kernel space shall post a signal to wake-up the
blocked dispatcher thread. The dispatcher thread notifies the relevant ring thread and
the ADF will read the contents of the ring in the context of this ring thread. The ADF
calls back SAL and SAL in turn calls back the application to signal the completion of
the original request. This sequence is depicted in the following figure.

5.5.5

5.5.5.1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
44 Order No.: 330751-001

Figure 12. User Space Response Processing for Interrupt Mode

Acceleration Driver Framework

User Space

Kernel Space

Acceleration Hardware

Acceleration Driver Framework

ADF

Ring Thread

2. Signal ring activity

1. Interrupt

4. Read ring

Service Access Layers

User Space Application

 Intel
®
 QuickAssist Technology APIs

6. Callback

5. Callback

ADF

Dispatcher Thread

3. Unblock

User Space Polled Mode

The sequence for user space polling does not differ from that described in Polled Mode
on page 20.

Managing Acceleration Devices Using qat_service

The qat_service script is installed with the software package in the /etc/init.d/
directory. The script allows a user to start, stop, or query the status (up or down) of a
single device or all devices in the system.

Usage:

./qat_service start||stop||status||restart||shutdown

To view all devices in the system, use:

./qat_service status

5.5.5.2

5.6

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 45

If there are two acceleration devices in the system for example, the output will be
similar to the following:

icp_dev0 is up
icp_dev1 is up

For a system with multiple devices, you can start, stop or restart each individual
device by passing the device to be restarted or stopped as a parameter
(icp_dev<N>). For example:

./qat_service stop icp_dev0

where the device number <N> is equal to 0 in this case.

The shutdown qualifier enables the user to bring down all devices and unload driver
modules from the kernel. This contrasts with the stop qualifier which brings down one
or more devices, but does not unload kernel modules, so other devices can still run.

Debug Feature

For user space applications, there are a number of Intel® QuickAssist Technology API
functions that enable a user to retrieve statistics for a service instance. These
functions include:

• cpaCyDhQueryStats64 - Query statistics (64-bit version) for Diffie-Hellman
operations.

• cpaCyDsaQueryStats64 - Query 64-bit statistics for a specific DSA instance.

• cpaCyKeyGenQueryStats64 - Queries the Key and Mask generation statistics (64-bit
version) specific to an instance.

• cpaCyPrimeQueryStats64 - Query prime number statistics specific to an instance.

• cpaCyRsaQueryStats64 - Query statistics (64-bit version) for a specific RSA
instance.

• cpaCySymQueryStats64 - Query symmetric cryptographic statistics (64-bit version)
for a specific instance.

• cpaCyEcQueryStats64 - Query statistics for a specific EC instance.

• cpaCyEcdhQueryStats64 - Query statistics for a specific ECDH instance.

• cpaCyEcdsaQueryStats64 - Query statistics for a specific ECDSA instance.

• cpaCyDrbgQueryStats64 - Returns statistics specific to a session, or instance, of the
RBG API.

• cpaDcGetStats - Retrieves the current statistics for a compression.

See the Intel® QuickAssist Technology Cryptographic API Reference Manual and the
for detailed information.

5.7

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
46 Order No.: 330751-001

For kernel space instances, the same information can be obtained from the /proc file
system if the required statistics parameters are enabled in the configuration file, as
the following configuration file extract shows. See also Statistics Parameters on page
65 for more detail.

#Statistics, valid values: 1,0
statsGeneral = 1
statsDc = 1
statsDh = 1
statsDrbg = 1
statsDsa = 1
statsEcc = 1
statsKeyGen = 1
statsLn = 1
statsPrime = 1
statsRsa = 1
statsSym = 1

For each instance, a file is created with a name that is the same as the instance name
specified in the configuration file. For example, if in the ”User Process Instance
Section” of the configuration file, the IPSec0, IPSec1, IPSec2 and IPSec3 names are
used, the following command gives the result:

ls -l /proc/icp_dh895xcc_dev0/cy/
total 0
-r--------. 1 root root 0 Jun 21 14:18 IPSec0

-r--------. 1 root root 0 Apr 18 13:48 IPSec1
-r--------. 1 root root 0 Apr 18 13:48 IPSec2
-r--------. 1 root root 0 Apr 18 13:48 IPSec3

The statistics can then be queried simply by running cat on the corresponding file in
the /proc file system. For example:

cat /proc/icp_dh895xcc_dev0/cy/IPSec0

The output is similar to the following:

+--+
| Statistics for Instance IPSec0 |
| Symmetric Stats |
+--+
| Sessions Initialized: 86 |
| Sessions Removed: 86 |
| Session Errors: 0 |
+--+
| Symmetric Requests: 960 |
| Symmetric Request Errors: 0 |
| Symmetric Completed: 960 |
| Symmetric Completed Errors: 0 |
| Symmetric Verify Failures: 0 |
+--+
| DSA Stats |
+--+
| DSA P Param Gen Requests-Succ: 0 |
| DSA P Param Gen Requests-Err: 0 |
| DSA P Param Gen Completed-Succ: 0 |
| DSA P Param Gen Completed-Err: 0 |
+--+
| DSA G Param Gen Requests-Succ: 1 |
| DSA G Param Gen Requests-Err: 0 |
| DSA G Param Gen Completed-Succ: 1 |

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 47

| DSA G Param Gen Completed-Err: 0 |
+--+
| DSA Y Param Gen Requests-Succ: 20 |
| DSA Y Param Gen Requests-Err: 0 |
| DSA Y Param Gen Completed-Succ: 20 |
| DSA Y Param Gen Completed-Err: 0 |
+--+
| DSA R Sign Requests-Succ: 0 |
| DSA R Sign Request-Err: 0 |
| DSA R Sign Completed-Succ: 0 |
| DSA R Sign Completed-Err: 0 |
+--+
| DSA S Sign Requests-Succ: 0 |
| DSA S Sign Request-Err: 0 |
| DSA S Sign Completed-Succ: 0 |
| DSA S Sign Completed-Err: 0 |
+--+
| DSA RS Sign Requests-Succ: 20 |
| DSA RS Sign Request-Err: 0 |
| DSA RS Sign Completed-Succ: 20 |
| DSA RS Sign Completed-Err: 0 |
+--+
| DSA Verify Requests-Succ: 20 |
| DSA Verify Request-Err: 0 |
| DSA Verify Completed-Succ: 20 |
| DSA Verify Completed-Err: 0 |
| DSA Verify Completed-Failure: 0 |
+--+
| RSA Stats |
+--+
| RSA Key Gen Requests: 20 |
| RSA Key Gen Request Errors 0 |
| RSA Key Gen Completed: 20 |
| RSA Key Gen Completed Errors: 0 |
+--+
| RSA Encrypt Requests: 0 |
| RSA Encrypt Request Errors: 0 |
| RSA Encrypt Completed: 0 |
| RSA Encrypt Completed Errors: 0 |
+--+
| RSA Decrypt Requests: 20 |
| RSA Decrypt Request Errors: 0 |
| RSA Decrypt Completed: 20 |
| RSA Decrypt Completed Errors: 0 |
+--+
| Diffie Hellman Stats |
+--+
| DH Phase1 Key Gen Requests: 40 |
| DH Phase1 Key Gen Request Err: 0 |
| DH Phase1 Key Gen Completed: 40 |
| DH Phase1 Key Gen Completed Err: 0 |
+--+
| DH Phase2 Key Gen Requests: 40 |
| DH Phase2 Key Gen Request Err: 0 |
| DH Phase2 Key Gen Completed: 40 |
| DH Phase2 Key Gen Completed Err: 0 |
+--+
| Key Stats |
+--+
| SSL Key Requests: 0 |
| SSL Key Request Errors: 0 |
| SSL Key Completed 0 |
| SSL Key Complete Errors: 0 |
+--+
| TLS Key Requests: 0 |
| TLS Key Request Errors: 0 |
| TLS Key Completed 0 |
| TLS Key Complete Errors: 0 |
+--

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
48 Order No.: 330751-001

Heartbeat Feature and Recovery from Hardware Errors

The PCH can detect and report to the acceleration driver typically unrecoverable
hardware errors that the driver can recover from by resetting and restarting the
device. Additionally, the "Heartbeat" feature allows detection and recovery from
software/firmware errors in the PCH.

The Acceleration driver can optionally reset the device in the event of an admin
message timeout or a heartbeat query failure. The timeout or heartbeat query failure
indicates that the firmware running on the Accelerator has become unresponsive. This
can happen when an application sends invalid data, for example, invalid source data,
or an invalid output data pointer.

Note: Recovery on detection of a Heartbeat failure is not enabled by default. Automatic
recovery can be enabled by building the acceleration software with a compile-time
flag. The ICP_AUTO_DEVICE_RESET compile-time flag enables this functionality. When
the driver is not built with this flag, the acceleration software writes a message to the
system (/var/log/messages), reporting that the device is not responding and the
device will need to be restarted by the user.

When an heartbeat query is triggered by the user, the driver sends a 'SYNC' message
and after a pre-defined time sends a 'GET' message which returns a bit that indicates
if the device is blocked/not blocked. The firmware, if healthy, responds to the
heartbeat query reporting its state (blocked or not blocked). If the firmware is not
responsive a timeout occurs. The heartbeat query at low level is converted in two
heartbeat init/admin messages (SYNC and GET).

The Heartbeat feature can be used to poll the firmware to check for liveness using any
of the following methods:

• Periodically call heartbeat APIs, that is, icp_adf_check_device() or
icp_adf_check_all_devices().

• Watch on cat /proc/icp../qat or /proc/icp../heartbeat

It will report “QAT is not responding” message in the case that the firmware threads
hangs. The device will need to be reset to recover from this error. By default, the
device does not automatically reset. It can be manually reset using adf_ctl <deviceId>
reset or the icp_reset_device() API.

User Proc Entry Read (not Enabled by Default)

The user can periodically perform a read of the /proc entry as specified by any one of
the following methods:

Note: The examples below are for one device. The user should apply the desired method to
each device of interest.

• Manually from command line using the command:

cat /proc/icp_dh895xcc_dev0/heartbeat

• From a watch process running in background:

watch -n0.1 cat /proc/icp_dh895xcc_dev0/heartbeat > /dev/null

5.8

5.8.1

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 49

• From simple script running in the background:

#!/bin/bash
while :
do
 cat /proc/icp_dh895xcc_dev0/heartbeat > /dev/null
 sleep 1
done

For example, to send an admin message to device 2, the user issues the following
command:

cat /proc/icp_dh895xcc_dev1/heartbeat

If the device is functioning properly, the following message is displayed:

Device up and running!

If the device is unresponsive and if the acceleration software is built to automatically
reset the device on failure, the following message is displayed:

ERROR: QAT is not responding and it will be restarted

If the device is unresponsive and if the acceleration software is built to not
automatically reset the device on failure, the following message is displayed:

ERROR: QAT is not responding. Please restart the device

User Application Heartbeat APIs (not Enabled by Default)

Anytime after the initialization process, that is, after a call to either
icp_sal_userStart() or icp_sal_userStartMultiProcess(), the customer application
may periodically call either the icp_sal_check_device() or the
icp_sal_check_all_devices() function to perform the check of the firmware/hardware
on a given Acceleration device or on all Acceleration devices, respectively.

These functions have the following signatures:

CpaStatus icp_sal_check_device(Cpa32U accelId);

CpaStatus icp_sal_check_all_devices(void);

See icp_sal_check_device on page 121 and icp_sal_check_all_devices on page 122
for details on the functions and parameters.

Handling Heartbeat Failures

The driver must be compiled with ICP_AUTO_DEVICE_RESET defined to do recovery
sequence on detecting a heartbeat failure.

A typical heartbeat error use-case is as follows:

5.8.2

5.8.3

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
50 Order No.: 330751-001

1. The driver is loaded, initialized and started.

2. The user-space application registers for instance notifications by calling
cpaCyInstanceSetNotificationCb and cpaDcInstanceSetNotificationCb

3. The application detects that the firmware is unresponsive using the heartbeat
feature (see Heartbeat Feature and Recovery from Hardware Errors on page 49.

4. The kernel-space driver sends the Restarting event to user-space processes.

5. The user-space processes

• pass the restarting event on to the application instances registered

• free memory and rings associated with all the instances.

6. The kernel-space driver

• triggers the device reset (save state, initiate SBR, restore state)

• once the reset is complete, sends the Restarted event to user-space
processes.

7. The user-space processes

• set up each instance associated with the process, including allocating memory
and rings

• pass the restarted event on to the application instances registered.

In a driver built without ICP_AUTO_DEVICE_RESET, there is no automatic recovery on
device failure detection. The driver should be reset using adf_ctl reset or the
icp_reset_device() API.

AER and Uncorrectable Errors

Two other errors can be detected that need to be recovered by resetting the device.

• Uncorrectible errors feature . Errors detected by the QAT device generate an
interrupt handled by the driver. Errors will be seen in the log.

• Advanced Error Reporting feature . PCIEAER. If kernel detects an error caused
by the driver errors will be seen in the log and the kernel can trigger a device
reset.

The reset is only done if the driver is built with the ICP_AUTO_DEVICE_RESET
compiler flag.

On detecting either of these errors, the device will be automatically reset by the
driver.

Handling Device Failures in a Virtualized Environment

The heartbeat feature in the acceleration software can be used in a virtualized
environment. Refer to the Using Intel® Virtualization Technology (Intel® VT) with
Intel® QuickAssist Technology Application Note for more details on enabling SR-IOV
and the creation of Virtual Functions (VFs) from a single Intel® QuickAssist Technology
acceleration device to support acceleration for multiple Virtual Machines (VMs).

Note: The Physical Function (PF) driver used here refers to the Intel® QuickAssist
Technology PF driver. The Virtual Function (VF) driver used here refers to the Intel®
QuickAssist Technology VF driver.

5.8.3.1

5.8.4

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 51

The following sequence describe a possible use case for using the heartbeat feature in
a virtualized environment.

1. The PF driver is loaded, initialized and started.

2. The VF driver is loaded, initialized and started in the Guest OS in the VM.

3. The PF driver detects that the firmware is unresponsive (using either of the
following methods: User Proc Entry Read (not Enabled by Default) on page 49 or
User Application Heartbeat APIs (not Enabled by Default) on page 50).

4. The PF driver sends the "Restarting" event message to the VF via the internal PF-
to-VF communication messaging mechanism.

5. The VF driver sends the "Restarting" event to the application's registered callback
(the callback is registered using the cpaDcInstanceSetNotificationCb() or
cpaCyInstanceSetNotificationCb() Intel® QuickAssist Technology API function) in
the Guest OS.

• The application's callback function may perform any application-level cleanup.

6. The return from the application's callback triggers the VF driver to send an ACK
message back to the PF driver. At this time:

• The application may perform a complete shutdown.

• The user may force a graceful shutdown of the Guest OS in the VM.

7. The PF driver receives the ACK message from the VF driver (a timeout mechanism
is used to handle any unexpected condition).

8. The PF driver starts the Heartbeat feature sequence (save state, initiate reset, and
restore state).

9. The user restarts the Guest OS and loads the VF driver and application in the
Guest OS.

Note: If the heartbeat feature in the acceleration software is not enabled, the PF driver will
not notify the VF driver that the firmware is unresponsive.

Device errors requiring a device reset (Secondary Bus Reset or SBR) can be detected
by the Host using the Heartbeat, Uncorrectible Error and AER features. Typically the
Host application running on the PF will want to control the timing of any SBR. Even
though an SBR may be necessary to recover from errors, the Host may delay this so it
can communicate with VMs, allowing them to gracefully manage the errors until the
Host resets the device. Resetting one device can have knock-on effect on the VM
forcing it to restart and affecting all other functionality provided by the VM, e.g., if the
SBR is delayed in a system with multiple acceleration devices the VMs may divert
traffic away from the affected device to another device and so continue to provide
service with reduced capacity. Later at a quiet time, e.g., in the middle of the night,
the Host can reset the device and the affected VMs can be restarted

To allow the Host to control device reset timing the driver must be built without the
ICP_AUTO_DEVICE_RESET flag.

A typical heartbeat error use-case in a virtualized system:

1. The PF driver is loaded, initialized and started in the Host.

2. The VF driver is loaded, initialized and started in the Guest OS on the VM(s).

3. The Host user-space application detects that the firmware is unresponsive using
the heartbeat feature (see Heartbeat Feature and Recovery from Hardware Errors
on page 49) in the PF driver.

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
52 Order No.: 330751-001

4. The Host application communicates with the Guest application(s) on the VM(s)
using the Intel® QuickAssist Accelerator driver's PfVfComms feature (see
PfVfComms Feature Functions on page 123

5. The Guest and Host applications takes whatever steps are necessary to stop using
the errored device.

Sometime later...

6. The Host application calls a device reset using the icp_reset_device() API or
adf_ctl utility.

7. The PF kernel-space driver sends the Restarting event to any user-space
processes on the Host.

8. The PF driver sends the Restarting event message to any VFs which are up, via
the PfVfComms mechanism. Note there may not be any VFs up at this stage, as
Guest applications may have used the previous communication to bring the device
down.

9. On any VFs which are still up the VF kernel-space driver sends the Restarting
event to any user-space processes.

• The user-space processes pass it on to the Guest application's registered
callback.

• The Guest application may gracefully shutdown.

• The Guest OS may gracefully shutdown.

Note: The PF does not wait until VFs have completed any actions, once the
Restarting message has been received on all VFs it goes on to next step.

10. The PF driver triggers the device reset (save state, initiate SBR, restore state).

11. The Host application restarts the Guest OS and loads the VF driver and application
in the Guest.

If the PF driver is built with the ICP_AUTO_DEVICE_RESET flag, steps 4, 5 and 6 are
skipped and there is no delay between error detection and device reset.

Note: The error detection mechanisms are not available on the VF driver in the VM, but
device errors caused by any of the software running on the VM will be detected by the
PF driver using the above mechanisms.

Driver Threading Model

By default, when an application uses the acceleration driver (libicp_qa_al_s.so) in
user space, the driver creates threads internally.

When the application calls the icp_sal_userStart() or icp_sal_userStartMultiProcess()
function, the driver creates the following threads:

• Monitor Thread

There is only one instance of this thread per system. It loops infinitely and checks
if new devices become active in the system that the user proxy layer can start
using. If it finds such a device, it spawns a listener thread for that device and
continues.

• Listener Thread

5.9

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 53

There is one listener thread per active device in the system. A listener thread calls
a blocking read function on the /dev/icp_dev<N>_csr file, which blocks until there
are device events, such as EVENT_INIT, EVENT_START, EVENT_STOP, EVENT_SHUTDOWN,
EVENT_RESTARTING or EVENT_RESTARTED that need to be delivered to user space. If the
thread gets an event, it sends it to all user space subsystems (ADF, SAL) and calls
the blocking read again in a loop. In the case of a shutdown event, the thread
delivers the event and finishes.

• Ring Thread

Ring threads are only created for IRQ-driven service instances in user space. If all
instances are polled, no ring thread is created. For each IRQ driver response (Rx)
ring created in user space, there is one worker thread. User callbacks are called in
the context of this worker thread. Additionally, one dispatcher thread (per device)
is created when the first Rx ring is allocated (and exits when the last Rx ring is
freed). This thread waits for IRQs that are delivered by the kernel space driver
and dispatches jobs to worker threads.

Thread-less Mode

The user sets an environment variable:

setenv ICP_WITHOUT_THREAD = 1

When the driver is built with this flag set, no threads are created by the User Space
driver.

In this mode, no IRQ-driven instances are allowed and no events from kernel driver
are propagated to user space automatically (with the exception of the first EVENT_INIT
and EVENT_START events).

There are two new API functions that can be used in this mode:

• CpaStatus icp_sal_find_new_devices(void) - Performs a function similar to the
monitor thread, that is, checks if there are new devices in the system.

• CpaStatus icp_sal_poll_device_events(void) - Performs a function similar to the
listener thread, that is, polls for events.

It is the user's responsibility to use these functions to monitor the state of devices and
receive device-related events.

Stateful Compression Status Codes

The CpaDcRqResults structure should be checked for compression status codes in the
CpaDcReqStatus data field. The mapping of the error codes to the enums is included
in the quickassist/include/dc/cpa_dc.h file.

Stateful Compression Level Details

Throughput and compression ratio for stateful compression can be adjusted with the
compression levels to achieve particular requirements. The following table shows the
mapping of the compression levels to the history window, search depth, and context
size.

5.9.1

5.10

5.11

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
54 Order No.: 330751-001

Note: As highlighted in the following table, compression levels 3-9 are the same for the 32-
and 8-Kbyte History Windows.

Note: The State registers are also saved.

History Windows Compression Level Search Depth Context Size

32 kB 1 1 0

32 kB 2 1 48 kB

32 kB 3 4 0

32 kB 4 8 0

32 kB 5 8 32 kB

32 kB 6 8 40 kB

32 kB 7 16 0

32 kB 8 16 32 kB

32 kB 9 16 40 kB

8 kB 1 4 0

8 kB 2 4 32 kB

8 kB 3 4 40 kB

8 kB 4 8 0

8 kB 5 8 32 kB

8 kB 6 8 40 kB

8 kB 7 16 0

8 kB 8 16 32 kB

8 kB 9 16 40 kB

Stateless Compression Level Details

Throughput and compression ratio for stateless compression can be adjusted with the
compression levels to achieve particular requirements. The following table shows the
mapping of the compression levels to the history window, search depth, and context
size.

Note: As highlighted in the following table, compression levels 3-9 are the same for the 32-
and 8-Kbyte History Windows.

Note: No context is saved and no State registers are saved.

History Windows Compression Level Search Depth Context Size (Kbyte)

32 kB 1 1 0

32 kB 2 1 0

32 kB 3 4 0

32 kB 4 8 0

continued...

5.12

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 55

History Windows Compression Level Search Depth Context Size (Kbyte)

32 kB 5 8 0

32 kB 6 8 0

32 kB 7 16 0

32 kB 8 16 0

32 kB 9 16 0

8 kB 1 4 0

8 kB 2 4 0

8 kB 3 4 0

8 kB 4 8 0

8 kB 5 8 0

8 kB 6 8 0

8 kB 7 16 0

8 kB 8 16 0

8 kB 9 16 0

Acceleration Driver Error Scenarios

This section describes the behavior of the Acceleration Driver in various error
scenarios.

User Space Process Crash

Error Scenario A user space process crashes without cleanly stopping the user space
acceleration driver in the process.

Background The kernel acceleration driver keeps track of all rings created by each process on
a device. From the user space acceleration driver, rings are created on a device
via ioctl calls on icp_dev<N>_ring. The kernel acceleration driver maintains a list
of rings per pid, per device.
In a similar way, the kernel acceleration driver keeps track of all internal memory
allocation. Physically contiguous memory chunks are allocated from the user
space acceleration driver via ioctl calls on icp_dev_mem. The kernel driver keeps
track of all memory allocated per pid.
These files are opened at initialization when an application calls
icp_sal_userStart*() and are closed when an application calls icp_sal_userStop()
or closed by the operating system when the application is killed/crashed.

Sequence of Events 1. The user space process crashes.
2. The OS calls a release handler in the kernel acceleration driver, with the pid of

the crashed process, for each opened /dev/icp_dev_* file.
3. The kernel acceleration driver frees any allocated resources (rings/memory)

associated with the crashed process.
a. For memory allocations, the kernel acceleration driver frees all the

memory buffers in the list.
b. For rings, the kernel acceleration driver creates a new list and starts an

"orphan" thread (if it is not running at the given time) and passes the list
of rings associated with the process to the orphan thread. The orphan
thread then loops and waits for all the in-flight requests to come back,
then it frees the rings.

Side Effects None

5.13

5.13.1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
56 Order No.: 330751-001

Hardware Hang Detected by Heartbeat

Error Scenario Acceleration hardware hangs, for example, due to a bad DMA address passed to
the driver and hardware. A device reset is required to recover from the hang. The
hang is detected by a "heartbeat" poll that triggers a reset of the acceleration
device. The reset happens if an only if the Heartbeat feature is enabled using the
ICP_AUTO_DEVICE_RESET compile-time option.

Sequence of Events Refer to Handling Heartbeat Failures on page 50.

Hardware Error Detected by AER

Error Scenario Acceleration hardware detects an un-correctable error. A device reset is needed
to recover from the error.

Sequence of Events 1. Acceleration hardware detects an un-correctable error. It notifies the kernel
acceleration driver via an error interrupt.

2. If, and only if the automatic device reset feature is enabled by the
ICP_AUTO_DEVICE_RESET compile-time option, the kernel acceleration driver
resets the acceleration device upon receipt of the interrupt.

Side Effects Same as Hardware Hang Detected by Heartbeat on page 57.

Virtualization: User Space Process Crash (in Guest OS)

Error Scenario A user space process running in a guest OS within a Virtual Machine (VM)
crashes. It is assumed that the user space process is using an Intel® QuickAssist
Technology Virtual Function (VF) that has been assigned to the VM.

Sequence of Events Within the VM, the sequence of events is the same as for the non-virtualization
error scenario, see User Space Process Crash on page 56. There is no
involvement from the Intel® QuickAssist Technology Physical Function (PF) driver
in this scenario.

Side Effects None

Virtualization: Guest OS Kernel Crash

Error Scenario A Virtual Machine (VM) crashes in an uncontrolled manner, for example, due to a
kernel crash within the guest OS running in the VM.

Background In a controlled VM shutdown, the Intel® QuickAssist Technology Virtual Function
(VF) driver running in the VM informs the PF driver that it's shutting down. The
host OS/VMM then un-assigns the VF from the shutdown VM.
The Intel® QuickAssist Technology PF driver keeps track of the ring resources
used by each VF.

Sequence of Events 1. The VM crashes.
2. The host OS/VMM detects the VM crash and un-assigns the VF from the

crashed VM.

Side Effects It is possible that there are in-flight requests within the acceleration hardware
when the VM crashes. In this scenario, it is possible that memory accesses from
the acceleration hardware to the VM memory address space may cause a
hardware hang if that address space has been removed from the iommu.

5.13.2

5.13.3

5.13.4

5.13.5

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 57

Virtualization: Hardware Hang Detected by Heartbeat

Error Scenario The acceleration hardware hangs as a result of processing a bad request issued
from a Virtual Machine (VM), for example, due to a bad address passed to the
acceleration hardware. A full device reset is required to recover from the error.

Sequence of Events See Handling Device Failures in a Virtualized Environment on page 51

Side Effects All VMs that are assigned VFs from the same silicon device are affected.

Virtualization: Hardware Hang Detected by AER

Error Scenario The acceleration hardware detects an un-correctable error. A device reset is
needed to recover from the error.

Sequence of Events 1. The un-correctable error is reported to the Physical Function (PF) acceleration
driver running in the host OS.
See Handling Device Failures in a Virtualized Environment on page 51

Side Effects All VMs that are assigned VFs from the same silicon device are affected.

Build Flag Summary

The following tables summarize the options available when building the software.

The following table shows the build flags that must be specified.

Table 2. Required Build Flags

Symbol Description Default Reference

ICP_BUILDSYSTEM_PATH Set to the build system folder
located under the quickassist folder
(/QAT/quickassist/build_system)

User defined

ICP_BUILD_OUTPUT Set to directory that executable/
libraries are placed in (/QAT/build)

User defined

ICP_ENV_DIR Set to the directory that contains
the environmental build files (/QAT/
quickassist/build_system/
build_files/env_files)

User defined

ICP_ROOT Set to the directory where
acceleration software is extracted (/
QAT)

User defined

ICP_TOOLS_TARGET Set to accelcomp for Intel®
Communications Chipset 8925 to
8955 Series Software platforms

User defined

The following table shows the build flags that can be optionally specified.

5.13.6

5.13.7

5.14

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
58 Order No.: 330751-001

Table 3. Optional Build Flags

Symbol Description Default Reference

DISABLE_PARAM_CHECK When defined, parameter checking
in the top-level APIs is performed.
This can be set to optimize
performance.

Not defined

DISABLE_STATS When defined, disables statistics.
Disabling statistics can improve
performance.

Not defined,
therefore statistics
are enabled.

DRBG_POLL_AND_WAIT When defined, modifies the behavior
of cpaCyDrbgSessionInit and the
DRBG HT functions to poll for
responses internally rather than
depending on an external polling
thread.

Not defined DRBG Health Test
and
cpaCyDrbgSession
Init
Implementation
Detail on page
117

ICP_LOG_SYSLOG When defined, enables debug
messages to be output to the
system log file instead of standard
out for user space applications.

Not defined

ICP_WITHOUT_THREAD When defined, no user space
threads are created when a user
space application invokes
icp_sal_userStart or
icp_sal_userStartMultiProcess.

Not defined Thread-less Mode
on page 54

ICP_AUTO_DEVICE_RESET When undefined, the driver will
automatically reset the device on
detection of any of the following
errors:
• Heartbeat fail
• Uncorrectable error interrupt
• Advanced Error Report detected

by kernel
When defined, the device will not be
reset on error detection. The device
must be manually reset instead. It
is recommended that this be defined
for non-virtualized systems and not
defined for virtualized systems.

Not defined

ICP_NONBLOCKING_PARTIAL
S_PERFORM

When defined, results in partial
operations not being blocked.

Not defined Defined when
compiling the
driver using the
installer.sh
installation script.

ICP_SRIOV Indicates whether SRIOV should be
enabled in the driver.

Not defined

ICP_HOST_SRIOV Along with ICP_SRIOV, this may be
required to enable SRIOV for the
host software installation.

Not defined Defined when
"Install SR-IOV
Host Acceleration"
is selected using
the installer.sh
installation script.

ICP_TRACE Used to enable tracing capability for
debug purposes. Once the
acceleration driver is compiled with
this option, all the Cryptography
APIs will expose their parameters to

Not defined

continued...

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 59

Symbol Description Default Reference

the console for user space
applications OR to /var/log/
messages in kernel space.

LAC_HW_PRECOMPUTES When defined, enables hardware for
HMAC precomputes.

Not defined,
therefore the driver
uses software
(dependency on
OpenSSL and Linux
Crypto API.

NB_MR_ROUNDS Used to set the number of Miller
Rabin rounds for prime operations.
Setting this to a smaller value
reduces the memory usage required
by the driver.

50

WITH_CPA_MUX When defined, the driver will be
built for the mux environment, i.e.,
cpa_mux.ko will be built and will
expose the Intel® QuickAssist
Technology API. The drivers will not
export symbols but will instead
register with the cpa_mux.

Depends on devices
found on the
platform. Not
defined if devices
found can be
supported by a
single driver.
Defined otherwise,
e.g., if both
DH89xxcc and
DH895xcc devices
are found.

ICP_NUM_PAGES_PER_ALLOC If defined, the memory driver will
allocate a 128K memory to be the
memory Slab; otherwise it will
allocate 2M memory. For kernel
versions older than 2.6.32, this
variable should be set.

Not defined

ICP_DC_RETURN_COUNTERS_
ON_ERROR

Used to update the "consumed" and
"produced" fields of the
CpaDcRqResults structure even if an
error occurs during compression or
decompression operations.

Not defined See
implementation
details provided
under the final
bullet of Intel
QuickAssist
Technology API
Limitations on
page 93

Compiling with Debug Symbols

To compile the driver with debug symbols (for easier debug or for performance
profiling), build/rebuild the driver after making the following changes:

1. In $ICP_ROOT/quickassist/build_system/build_files/OS/linux_2.6.mk, add the -g
flag to the user space CFLAGS, as shown:

ifeq ($($(PROG_ACY)_OS_LEVEL), user_space)
CFLAGS+=-fPIC $(DEBUGFLAGS) -g -Wall -Wpointer-arith $(INCLUDES)

5.15

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Drivers Overview

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
60 Order No.: 330751-001

2. In $ICP_ROOT/quickassist/build_system/build_files/common.mk, set the
optimization level to 0, as shown:

#Set default optimization level
$(PROG_ACY)_OPT_LEVEL?=0
EXTRA_CFLAGS+=-O$($(PROG_ACY)_OPT_LEVEL)

Acceleration Drivers Overview—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 61

6.0 Acceleration Driver Configuration File

This chapter describes the configuration file(s) managed by the Acceleration Driver
Framework (ADF) that allow customization of runtime operation. This configuration
file(s) must be tuned to meet the performance needs of the target application.

Note: The software package includes a default configuration file against which optimal
performance has been validated. Consider performance implications as well as the
configuration details provided in this section if your system requires modifications to
the default configuration file.

Configuration File Overview

There is a single configuration file for each Intel® Communications Chipset 8925 to
8955 Series (PCH) device. Each ring bank has an interrupt that can be directed to a
specific Intel® architecture core. Each ring bank has 16 rings (hardware assisted
queues). This hierarchy is shown in the following figure.

Figure 13. Ring Banks

Intel® Communications Chipset 8925 to 8955 Series

Accelerator 0

Ring
Bank 0

Ring
Bank 1

Ring
Bank 31

Data Path Rings (512)

Note: Depending on the model number, a PCH device may also contain no accelerators.

The configuration file is split into a number of different sections: a General section and
one or more Logical Instance sections.

6.1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
62 Order No.: 330751-001

• General - includes parameters that allow the user to:

— Specify which services are enabled.

— The configuration file format.

— Firmware location configuration.

— Concurrent request default configuration.

— Interrupt coalescing configuration (optional).

— Statistics gathering configuration.

Additional details are included in General Section on page 63.

Note: The concurrent request parameters include both transmit (Tx) and receive
(Rx) requests. For example, if a concurrent request parameter is set to 64,
this implies 32 requests for Tx and 32 for Rx.

• Logical Instances - one or more sections that include parameters that allow the
user to:

— The number of cryptography or data compression instances being managed.

— For each instance, the name of the instance, the accelerator number, whether
polling is enabled or not and the core to which an instance is affinitized.

Additional details are included in Logical Instances Section on page 67.

A sample configuration file, targeted at a high-end IPsec box, is included in Sample
Configuration File (V2) on page 76.

General Section

The general section of the configuration file contains general parameters and statistics
parameters.

General Parameters

The following table describes the parameters that can be included in the General
section:

Table 4. General Parameters

Parameter Description Default Range

WirelessEnabled Enables use of optimized wireless
service

0 0 or 1

ConfigVersion Used to signify the simpler
configuration file format. If this
parameter is present, the
configuration file is in a new format
that requires fewer parameter
definitions.
If this parameter is not present, this
implies this is V1 configuration file.
V1 configuration files are 100%
compatible with this software
release.

2 Integer

ServicesEnabled Defines the service(s) available
(cryptographic [cyX], data
compression [dc]).

cy;dc cy, dc

continued...

6.2

6.2.1

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 63

Parameter Description Default Range

Note: Multiple
values
permitted,
use ; as the
delimiter.

cyHmacAuthMode Determines when HMAC precomputes
are done.

1 1 - HMAC
precomputes are
done during
session
initialization
2 - HMAC
precomputes are
done during the
perform operation
Note: In general,

with this
parameter
set to 1,
performance
is expected
to be better.

Firmware_MofPath Path and Name of the Microcode
(UCode) Object File (UOF) firmware.

dh895xcc/
mof_firmware.bi
n

Firmware_MmpPath Name of the Modular Math Processor
(MMP) firmware.

dh895xcc/
mmp_firmware.
bin

CyNumConcurrentSymReq
uests

Specifies the number of
cryptographic concurrent symmetric
requests for cryptographic instances
in general.
Note: This parameter value can be

overridden for a particular
cryptographic instance if
necessary.

512 64, 128, 256, 512,
1024, 2048 or
4096

CyNumConcurrentAsymReq
uests

Specifies the number of
cryptographic concurrent asymmetric
requests for cryptographic instances
in general.
Note: This parameter value can be

overridden for a particular
cryptographic instance if
necessary.

64 64, 128, 256, 512,
1024, 2048 or
4096

DcNumConcurrentRequests Specifies the number of data
compression concurrent requests for
data compression instances in
general.
Note: This parameter value can be

overridden for a particular
data compression instance if
necessary.

512 64, 128, 256, 512,
1024, 2048 or
4096

InterruptCoalescingEnabled
Note: This parameter is

optional.

Specifies if interrupt coalescing is
enabled for ring banks.

1 0 or 1

InterruptCoalescingTimerN
s
Note: This parameter is

optional.

Specifies the coalescing time, in
nanoseconds (ns) for ring banks.
Note: If a value outside the range is

set, the default value is used.

10000 500 to 1048575

continued...

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
64 Order No.: 330751-001

Parameter Description Default Range

InterruptCoalescingNumRe
sponses
Note: This parameter is

optional.

Specifies the number of responses
that need to arrive from hardware
before the interrupt is triggered. It
can be used to maximize throughput
or adjust throughput latency ratio.

0 (disable) 0 to 248

ProcDebug Debug feature. When set to 1
enables additional entries in the /
proc file system.

0 (disable) 0 or 1

drbgPollAndWaitTimeMS An optional parameter that specifies
the polling interval (in milliseconds)
used when DRBG_POLL_AND_WAIT
is defined. Refer to DRBG Health Test
and cpaCyDrbgSessionInit
Implementation Detail on page 117.

10 1 to 20

SRIOV_Enabled Enables or disables Single Root
Complex I/O Virtualization. If
enabled (set to 1), SRIOV and VT-d
must be enabled in the BIOS. If
disabled (set to 0), then SRIOV and
VT-d must be disabled in the BIOS.

0 (disabled) 0 or 1

PF_bundle_offset When using virtualization and the
version 2 configuration file, this
parameter indicates the first bank on
which to allocate instances for the
Physical Function (PF). For example,
when PF_bundle_offset = 5,
instances in the PF are allocated
starting from bank 5, therefore the
first five banks (0 to 4) per PCH
device are free and available to be
assigned to Virtual Machines (VMs).
Note: This param should be

commented out in the .conf
file if the PF will not use any
instances.

Note: This parameter should not be
used if the version 1
configuration file is used.

1 0 to 31

Note: "Default" denotes the value in the configuration file when shipped.
Note: The concurrent request parameters include both transmit (Tx) and receive (Rx) requests. For

example, if a concurrent request parameter is set to 64, this implies 32 requests for Tx and 32 for
Rx.

Statistics Parameters

The following table shows the parameters in the configuration file, prefixed with stats,
that can be used to enable or disable certain types of statistics.

Note: There is a performance impact when statistics are enabled. In particular, the IA cost of
offload is expected to increase when statistics are enabled.

When the statistics are enabled, the collected data can be retrieved using the
following methods:

• Calling the appropriate Intel® QuickAssist Technology API function. For example,
cpaCySymQueryStats or cpaCySymQueryStats64 for symmetric cryptography. See the
Intel® QuickAssist Technology Cryptographic API Reference Manual for more
information about these functions.

6.2.2

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 65

• For kernel space instances, looking at entries in the /proc/icp_dh895xcc_devX
directory, where X is the device number. For example, /proc/
icp_dh895xcc_dev0/cy/IPSec0 for all statistics related to cryptography instance
IPSec0, where IPSec0 is the name given to the instance in the config file
(Cy0Name = "IPSec0"). See Debug Feature on page 46 for more information.

Table 5. Statistics Parameters

Parameter Description Default Range

statsGeneral Enables/disables statistics in general. 1 1 or 0

statsDh Enables/disables statistics for the Diffie-
Hellman algorithm.

1 1 or 0

statsDrbg Enables/disables statistics for the
Deterministic Random Bit Generator
(DRBG).

1 1 or 0

statsDsa Enables/disables statistics for the Digital
Signature Algorithm (DSA).

1 1 or 0

statsEcc Enables/disables statistics for Elliptic
Curve Cryptography (ECC).

1 1 or 0

statsKeyGen Enables/disables statistics for the Key
Generation algorithm.

1 1 or 0

statsLn Enables/disables statistics for the Large
Number generator.

1 1 or 0

statsPrime Enables/disables statistics for the Prime
Number detector.

1 1 or 0

statsRsa Enables/disables statistics for the RSA
algorithm.

1 1 or 0

statsSym Enables/disables statistics for symmetric
ciphers.

1 1 or 0

Note: "Default" denotes the value in the configuration file when shipped. A value of 1 indicates "enabled"; a
value of 0 indicates "disabled".

Optimized Firmware for Wireless Applications

When using the simplified configuration file format (indicated by the existence of the
ConfigVersion parameter), if the NumProcesses parameter in the [WIRELESS] section of
the configuration file is greater than 0, a version of the firmware optimized for small
cryptography packets is automatically selected. In this case, each cryptography
process consumes six rings as in the "standard" firmware case. The range for the
NumProcesses parameter in the [WIRELESS] section is constrained in the same way as
that describe in Maximum Number of Process Calculations on page 71), except that
only cryptography instances (no data compression instances) are supported by the
optimized firmware.

The optimized firmware operates with the following constraints and characteristics:

• SGL and Flat buffers are supported.

• The maximum supported Source/Destination payload size is 2K (where payload is
either a flat buffer with a size up to 2K or the total number of bytes in flat buffers
specified in SGL descriptors.

• There is no support for the runtime (resent) Init AE and Init Ring info messages
(these messages must be sent once in the start-up phase per AE).

6.2.3

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
66 Order No.: 330751-001

• Cipher Only and Auth Only (Mode0/Mode1/Mode2) processing is supported.

• TRNG (INIT/GET ENTROPY)/Compression/Asymmetric (PKE) services are not
supported.

• Admin service is not supported.

• Chained (Cipher-Auth/Auth-Cipher/GCM/CCM) operation is not supported.

• Partial Cipher Only or Partial Auth Only requests are not supported.

• Nested Auth operation is not supported.

• Key generation services, such as TLS/SSL/MGF are not supported.

• Wireless image does not support virtualized environments.

• Request ordering is always enabled.

Logical Instances Section

This section allows the configuration of logical instances in each address domain
(kernel space and individual user space processes). See Hardware Assisted Rings on
page 32 and Logical Instances on page 19 for more information.

The address domains are in the following format:

• For the kernel address domain: [KERNEL]
• For user process address domains: [xxxxx], where xxxxx may be any ASCII value

that uniquely identifies the user mode process.

To allow a driver to correctly configure the logical instances associated with a user
process, the process must call the function icp_sal_userStartMultiProcess, passing the
xxxxx string during process initialization. When the user space process is finished, it
must call the function icp_sal_userStop to free resources. See User Space Access
Configuration Functions on page 118 for more information.

The NumProcesses parameter (in the User Process section) indicates the max number of
user space processes within that section name with access to instances on this device.
See icp_sal_userStartMultiProcess Usage for more information.

The items that can be configured for a logical instance are:

• The name of the logical instance

• The accelerator associated with this logical instance

• The core to which the instance is affinitized (optional)

[KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and
type of kernel instances can be defined.

The following table describes the parameters that determine the number of kernel
instances for each service.

Note: The maximum number of cryptographic instances supported is 64; for exceptions,
please see Configuration File Version 2 Differences on page 83.

6.3

6.3.1

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 67

Parameter Description Default Range

NumberCyInstances Specifies the number of cryptographic
instances.
Note: Depends on the number of

allocations to other services.

1 0 to 64

NumberDcInstances Specifies the number of data compression
instances.
Note: Depends on the number of

allocations to other services.

1 0 to 64

Note: "Default" denotes the value in the configuration file when shipped.

Cryptographic Logical Instance Parameters

The following table shows the parameters that can be set for cryptographic logical
instances.

Table 6. Cryptographic Logical Instance Parameters

Parameter Description Default Range

CyXName Specifies the name of cryptographic
instance number X.

IPSec0 String (max. 64
characters)

CyXIsPolled Specifies if cryptographic instance
number X works in poll mode or IRQ
mode.

0 for kernel
space
instances
1 for user
space
instances

0 (interrupt
mode), 1 (poll
mode)

CyXNumConcurrentSymRequest
s (optional)

Specifies the number of in-progress
cryptographic concurrent symmetric
requests (and responses) for
cryptographic instance number X.
Note: Overrides the default

CyNumConcurrentSymRequests
value in the General section for
this specific instance.

Note: In the configuration file, this
parameter must be specified
before the CyXCoreAffinity
parameter. If it is not, the
default value specified in
CyNumConcurrentSymRequests in
the General section is used.

N/A 64, 128, 256,
512, 1024, 2048
or 4096

CyXNumConcurrentAsymReques
ts (optional)

Specifies the number of concurrent
asymmetric requests for cryptographic
instance number X.
Note: Overrides the default

CyNumConcurrentAsymRequests
value in the General section for
this specific instance.

N/A 64, 128, 256,
512, 1024, 2048
or 4096

continued...

6.3.1.1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
68 Order No.: 330751-001

Parameter Description Default Range

Note: In the configuration file, this
parameter must be specified
before the CyXCoreAffinity
parameter. If it is not, the
default value specified in
CyNumConcurrentAsymRequests in
the General section is used.

CyXCoreAffinity Specifies the core to which the
instance should be affinitized.

Varies
depending
on the value
of X.

0 to max.
number of cores
in the system

Note: "Default" denotes the value in the configuration file when shipped.

Data Compression Logical Instance Parameters

The following table shows the parameters in the configuration file that can be set for
data compression logical instances.

Note: The maximum number of data compression instances supported is 64.

Parameter Description Default Range

DcXName Specifies the name of data compression
instance number X.

IPComp0 String (max. 64
characters)

DcXIsPolled Specifies if data compression instance
number X works in poll mode or IRQ
mode.

0 for
kernel
space
instances
1 for user
space
instances

0 (interrupt mode),
1 (poll mode)

DcXNumConcurrentRequests
(optional)

Specifies the number of data compression
concurrent requests.
Overrides the default
DcNumConcurrentRequests value in the
General section for this specific instance.
Note: In the configuration file, this

parameter must be specified
before the DcXCoreAffinity
parameter. If it is not, the default
value specified in
DcNumConcurrentRequests in the
General section is used.

N/A 64, 128, 256, 512,
1024, 2048 or 4096

DcXCoreAffinity Specifies the core to which this data
compression instance is affinitized.

Varies
dependin
g on the
value of
X.

0 to max. number
of cores in the
system

Note: "Default" denotes the value in the configuration file when shipped.

[DYN] Section

In the [DYN] section of the configuration file, information about the number and type
of instances that can be allocated dynamically are specified.

The parameters that can be included in the [DYN] section are the same as those that
can be included in the [KERNEL] section. See [KERNEL] Section on page 67 for details.

6.3.1.2

6.3.2

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 69

Once the logical instances are reserved in the configuration file, they can be allocated
using the dynamic instance allocation APIs. See Dynamic Instance Allocation Functions
on page 102 for more information.

Dynamic Instance Configuration Example

The following configuration file snippets demonstrate the reservation of instances for
dynamic allocation. In a system that uses the two configuration files below,
icp_sal_userCyInstancesAlloc can allocate up to 26 cryptographic (cy) instances and
icp_sal_userDcInstancesAlloc can allocate up to 14 data compression (dc) instances.
See Dynamic Instance Allocation Functions on page 102 for more information.

Taken from: /etc/dh895xcc_qa_dev0.conf

...

[DYN]
NumberCyInstances = 10
NumberDcInstances = 4

Crypto - User instance DYN #0
Cy0Name = "DYN0"
Cy0IsPolled = 1

List of core affinities
Cy0CoreAffinity = 0

Crypto - User instance DYN #1
Cy1Name = "DYN1"
Cy1IsPolled = 1

List of core affinities
Cy1CoreAffinity = 1

Crypto - User instance DYN #2
Cy2Name = "DYN2"
Cy2IsPolled = 1

List of core affinities
Cy2CoreAffinity = 2

...

Data Compression - User space DYN instance #0
Dc0Name = "DCDYN0"
Dc0AcceleratorNumber = 0
Dc0IsPolled = 1
Dc0CoreAffinity = 0

Data Compression - User space DYN instance #1
Dc1Name = "DCDYN1"
Dc1AcceleratorNumber = 1
Dc1IsPolled = 1
Dc1CoreAffinity = 1

...

Taken from: /etc/dh895xcc_qa_dev1.conf

...

[DYN]
NumberCyInstances = 16

6.3.2.1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
70 Order No.: 330751-001

NumberDcInstances = 10

...

User Process [xxxxx] Sections

In each [xxxxx] section of the configuration file, user space access to the device can
be configured.

The following table shows the parameters in the configuration file that can be set for
user process [xxxxx] sections.

Table 7. User Process [xxxxx] Sections Parameters

Parameter Description Default Range

NumProcesses The number of user space processes with
section name [xxxxx] that have access to
this device.
The maximum number of processes that
can call icp_sal_userStartMultiProcess and
be active at any one time. See
icp_sal_userStartMultiProcess Usage on
page 120 for more information.
Caution: Resources are preallocated. If

this parameter value is set too
high, the driver fails to load.

1 For constraints,
see Maximum
Number of Process
Calculations on
page 71.

LimitDevAccess Indicates if the user space processes in
this section are limited to only access
instances on this device.

0 0 (disabled,
processes in this
section can access
multiple devices)
or 1 (enabled,
processes in this
section can only
access this device)

NumberCyInstances Specifies the number of cryptographic
instances.
Note: Depends on the number of

allocations to other services.

2 0 to 64

NumberDcInstances Specifies the number of data compression
instances.
Note: Depends on the number of

allocations to other services.

2 0 to 64

Note: "Default" denotes the value in the configuration file when shipped.
Note: The order of NumProcesses and LimitDevAccess parameters is important. The NumProcess parameter

must appear before the LimitDevAccess parameter in the section.

Parameters for each user process instance can also be defined. The parameters that
can be included for each specific user process instance are similar to those in the
Logical Instances Section on page 67.

Maximum Number of Process Calculations

The NumProcesses parameter is the number of user space processes within the [xxxx]
section domain with access to this device.

6.3.3

6.3.3.1

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 71

The value to which this parameters can be set is determined by a number of factors,
most significantly, the number of cryptography instances and/or data compression
instances in the processes. The total number of instances created by the driver is
given by the expression:

(NumProcesses) x (NumberCyInstances)

There are 32 ring banks per Intel® Communications Chipset 8925 to 8955 Series
device and a max of two cryptography instances and two compression instances per
bank. This limits the maximum number of instances per device to 64 for cryptography
and 64 for compression.

A further constraint is if interrupts are being used with user space processes. In this
case, there is an interrupt vector per ring bank, and sharing of an interrupt vector and
associated interrupt CSRs related to the bank between processes is not advised.

The following are examples that that illustrate the maximum number of processes
possible with a device:

• All processes / instances in polling mode:

NumProcesses = 64

NumCyInstances = 1

NumDcInstances = 1

• All processes / instances in interrupt mode:

NumProcesses = 32

NumCyInstances = 2

NumDcInstances = 2

Configuring Multiple PCH Devices in a System

A platform may include more than one PCH device. Each device must have its own
configuration file. The format and structure of the configuration file is exactly the
same for all devices. Consequently, the configuration file for device 0,
dh895xcc_qa_dev0.conf, can be cloned for use with other PCH devices.

Simply make a copy of the file and rename it by changing the ”dev0” part of the file
name, for example, for device 1 change the file name to dh895xcc_qa_dev1.conf, for
device 2, change the file name to dh895xcc_qa_dev2.conf and so on. Then, you can
configure each device by editing the corresponding configuration file accordingly.
There can be up to 32 PCH devices on a platform.

Each PCH device must have its own configuration file. If a configuration file does not
exist for a device, that device will not start at all and an error is displayed indicating
that a configuration file was not found.

To determine the number of PCH devices in a system, use the lspci utility:

lspci -d 8086:0435

6.4

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
72 Order No.: 330751-001

The output from a system with two PCH devices is similar to the following:

08:00.0 Co-processor: Intel Corporation Device 0435
09:00.0 Co-processor: Intel Corporation Device 0435

Then, after the driver is loaded, the user can use the qat_service script to determine
the name of each device and its status. For example:

./qat_service status

icp_dev0 - type=dh895xcc, inst_id=0, bsf=03:00:0, #accel=6, #engines=12, state=up
icp_dev1 - type=dh895xcc, inst_id=0, bsf=82:00:0, #accel=6, #engines=12, state=up

The user can also use the qat_service to start, stop, restart and shutdown each device
separately or all devices together. See Managing Acceleration Devices Using
qat_service on page 45 for more information.

Some important configuration file information when using multiple PCH devices:

• When specifying kernel and user space instances in the configuration file, the
Cy<Number>Name and Dc<Number>Name parameters must be unique in the context of
the section name only. For example, it is valid to have a parameter called Cy0Name
in both a kernel instance section and a user instance section in the same
configuration file without issue. Also, the parameter names do not need to be
unique at a system-wide level. For example, it is valid to have a parameter called
Cy0Name in both the configuration file for dev0 and the configuration file for dev1
without issue.

• For devices with configuration files that have the same section name, for example,
"SSL" and the same data in that section, is it necessary to use the
cpaCyInstanceGetInfo2() function to distinguish between devices. The
cpaCyInstanceGetInfo2() allows the user of the API to query which physical device
a cryptography instance handle belongs to. In addition, for any application domain
defined in the configuration files ([KERNEL], [SSL] and so on), a call to
cpaCyGetNumInstances() returns the number of cryptography instances defined for
that domain across all configuration files. A subsequent call to cpaCyGetInstances()
obtains these instance handles.

• When using multiple configuration files, the LimitDevAccess parameter for a
process must be enabled or disabled in all configuration files. The driver may not
find the correct entries in the configuration file if the LimitDevAccess option is
enabled in one configuration file and disabled in another.

Configuring Multiple Processes on a Multiple-Device
System

As an example, consider a system with two PCH devices where it is necessary to
configure two user space sections. One section we identify as SSL and the other we
identify as IPSec.
• For the SSL section, we want to configure eight processes, where each process has

access to one acceleration instance.

• For the IPSec section, we want to configure one process, with access to eight
acceleration instances, four per device.

6.5

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 73

In this scenario, the user space section of the configuration files would look like the
following.

For dh895xcc_qa_dev0.conf:

[SSL] #User space section name
NumProcesses=4 #There are 4 user space process with section name SSL with access
to this device
LimitDevAccess=1 # These 4 SSL user space processes only use this device
NumCyInstances=1 # Each process has access to 1 Cy instance on this device
NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Crypto - User instance #0
Cy0Name = "SSL0"
Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name
NumProcesses=1 #There is 1 user space process with section name IPSec with access
to this device
LimitDevAccess=0 # This IPSec user space process may have access to other devices
NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device
NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Crypto - User instance #0
Cy0Name = "IPSec0"
Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #1
Cy1Name = "IPSec1"
Cy1IsPolled = 1

Cy1CoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #2
Cy2Name = "IPSec2"
Cy2IsPolled = 1

Cy2CoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #3
Cy3Name = "IPSec3"
Cy3IsPolled = 1

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

For dh895xcc_dev1.conf:

[SSL] #User space section name
NumProcesses=4 #There are 4 user space process with section name SSL with access
to this device
LimitDevAccess=1 # These 4 SSL user space processes only use this device
NumCyInstances=1 # Each process has access to 1 Cy instance on this device
NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Crypto - User instance #0
Cy0Name = "SSL0"
Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name
NumProcesses=1 #There is 1 user space process with section name IPSec with access
to this device
LimitDevAccess=0 # This IPSec user space process may have access to other devices
NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device
NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
74 Order No.: 330751-001

Crypto - User instance #0
Cy0Name = "IPSec0"
Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #1
Cy1Name = "IPSec1"
Cy1IsPolled = 1

Cy1CoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #2
Cy2Name = "IPSec2"
Cy2IsPolled = 1

Cy2CoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #3
Cy3Name = "IPSec3"
Cy3IsPolled = 1

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

Eight processes (with section name SSL) can call the
icp_sal_userStartMultiProcess("SSL", CPA_TRUE) function to get access to one crypto
instance each. One process (with section name IPSec) can call the
icp_sal_userStartMutliProcess("IPSec", CPA_FALSE) function to get access to eight
crypto instances.

Internally in the driver, this works as follows:

1. When the driver is configured (that is, the service qat_service is called), the driver
reads the configuration file for the device and populates an internal configuration
table.

2. Reading the configuration file for dev0:

a. For the section named [SSL], the driver determines that four processes are
required and that these processes are limited to access to this device only. In
this case, the driver creates four internal sections that it labels SSL_DEV0_INT_0,
SSL_DEV0_INT_1, SSL_DEV0_INT_2 and SSL_DEV0_INT_3. Each section is given
access to one crypto instance as described.

b. For section name [IPSec], the driver determines that one process is required
and that this process is not limited to access to this device only (that is, it may
access instances on other devices). In this case, the driver creates one
internal section that it labels IPSec_INT_0 and gives this access to four crypto
instances on this device.

3. Reading the configuration file for dev1:

a. For the section named [SSL], the driver determines that four processes are
required and that these processes are limited to access this device only. In
this case, the driver creates four internal sections that it labels SSL_DEV1_INT_0,
SSL_DEV1_INT_1, SSL_DEV1_INT_2 and SSL_DEV1_INT_3. Each section is given
access to one crypto instance as described.

b. For the section named [IPSec], the driver determines that one process is
required and that this process may have access to instances on other devices.
In this case, the driver creates one internal section that it labels IPSec_INT_0
and gives this access to four crypto instances on this device. Notice that this
section name now appears in both devices' internal configuration and
therefore the process that gets assigned this section name will have access to
instances on both devices.

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 75

4. In total, there are nine separate sections (SSL_DEV0_INT_0, SSL_DEV0_INT_1,
SSL_DEV0_INT_2, SSL_DEV0_INT_3, SSL_DEV1_INT_0, SSL_DEV1_INT_1, SSL_DEV1_INT_2,
SSL_DEV1_INT_3 and IPSec_INT_0) with access to crypto instances.

When a process calls the icp_sal_userStartMultiProcess("SSL", CPA_TRUE) function,
the driver locates the next available section of the form SSL_DEV<m>_INT<....> (of
which there are eight in total in this example) and assigns this section to the process.
This gives the process access to corresponding crypto instances.

When a process calls the icp_sal_userStartMultiProcess("IPSec", CPA_FALSE) function,
the driver locates the next available section of the form IPSec_INT_<....> (of which
there is only one in total for this example) and assigns this section to the process. This
gives the process access to the corresponding crypto instances.

Note: If a process calls the icp_sal_userStartMultiProcess("IPSec", CPA_TRUE) function, the
driver locates the next available section of the form IPSec_DEV<m>_INT<....> and gives
the process access to corresponding crypto instances (zero in this example, since
LimitDevAccess=0 in the IPSec section of the config file). When the process queries the
number of crypto instances in this case (using cpaCyGetNumInstances()), the number
returned will be zero because this process was assigned a section that was not
configured with any instances using the config file.

Sample Configuration File (V2)

This following sample configuration file is provided in the software package.

###
#
@par
This file is provided under a dual BSD/GPLv2 license. When using or
redistributing this file, you may do so under either license.

GPL LICENSE SUMMARY

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution
in the file called LICENSE.GPL.

Contact Information:
Intel Corporation

BSD LICENSE

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

6.6

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
76 Order No.: 330751-001

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

version: QAT1.5.L.1.3.0-90
###
##
General Section
##

[GENERAL]
ServicesEnabled = cy0;cy1

Use version 2 of the config file
ConfigVersion = 2

Look Aside Cryptographic Configuration
cyHmacAuthMode = 1

Firmware Location Configuration
Firmware_MofPath = mof_firmware_c2xxx.bin
Firmware_MmpPath = mmp_firmware_c2xxx.bin

#Default values for number of concurrent requests*/
CyNumConcurrentSymRequests = 512
CyNumConcurrentAsymRequests = 64

#Statistics, valid values: 1,0
statsGeneral = 1
statsDh = 1
statsDrbg = 1
statsDsa = 1
statsEcc = 1
statsKeyGen = 1
statsLn = 1
statsPrime = 1
statsRsa = 1
statsSym = 1

#Debug feature, if set to 1 it enables additional entries in /proc filesystem
ProcDebug = 1

###
#
Logical Instances Section
A logical instance allows each address domain
(kernel space and individual user space processes)
to configure rings (i.e. hardware assisted queues)
to be used by that address domain and to define the
behavior of that ring.
#

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 77

The address domains are in the following format
- For kernel address domains
[KERNEL]
- For user process address domains
[xxxxx]
Where xxxxx may be any ascii value which uniquely identifies
the user mode process.
To allow the driver correctly configure the
logical instances associated with this user process,
the process must call the icp_sal_userStartMultiProcess(...)
passing the xxxxx string during process initialisation.
When the user space process is finished it must call
icp_sal_userStop(...) to free resources.
NumProcesses will indicate the maximum number of processes
that can call icp_sal_userStartMultiProcess on this instance.
Warning: the resources are preallocated: if NumProcesses
is too high, the driver will fail to load
#
Items configurable by a logical instance are:
- Name of the logical instance
- The accelerator associated with this logical
instance
- The core the instance is affinitized to (optional)
#
Note: Logical instances may not share the same ring, but
may share a ring bank.
#
The format of the logical instances are:
- For crypto:
Cy<n>Name = "xxxx"
Cy<n>AcceleratorNumber = 0-1
Cy<n>CoreAffinity = 0-7
#
Where:
- n is the number of this logical instance starting at 0.
- xxxx may be any ascii value which identifies the logical instance.
#
Note: for user space processes, a list of values can be specified for
the accelerator number and the core affinity: for example
Cy0AcceleratorNumber = 0,1
Cy0CoreAffinity = 0,2,4
These comma-separated lists will allow the multiple processes to use
different accelerators and cores, and will wrap around the numbers
in the list. In the above example, process 0 will use accelerator 0,
and process 1 will use accelerator 1
#
##

##
Kernel Instances Section
##
[KERNEL]
NumberCyInstances = 2

Crypto - Kernel instance #0
Cy0Name = "IPSec0"
Cy0AcceleratorNumber = 0
Cy0IsPolled = 0
Cy0CoreAffinity = 0

Crypto - Kernel instance #1
Cy1Name = "IPSec1"
Cy1AcceleratorNumber = 1
Cy1IsPolled = 0
Cy1CoreAffinity = 1

##
User Process Instance Section
##
[SSL]
NumberCyInstances = 2

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
78 Order No.: 330751-001

NumProcesses = 1
LimitDevAccess = 0

Crypto - User instance #0
Cy0Name = "SSL0"
Cy0IsPolled = 1
Cy0AcceleratorNumber = 0
List of core affinities
Cy0CoreAffinity = 0

Crypto - User instance #1
Cy1Name = "SSL1"
Cy1IsPolled = 1
Cy1AcceleratorNumber = 1
List of core affinities
Cy1CoreAffinity = 1

##
Wireless Process Instance Section
##
[WIRELESS]
NumberCyInstances = 1
NumProcesses = 0

Crypto - User instance #0
Cy0Name = "WIRELESS0"
Cy0IsPolled = 1
Cy0AcceleratorNumber = 0
List of core affinities
Cy0CoreAffinity = 0

###
#
@par
This file is provided under a dual BSD/GPLv2 license. When using or
redistributing this file, you may do so under either license.

GPL LICENSE SUMMARY

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution
in the file called LICENSE.GPL.

Contact Information:
Intel Corporation

BSD LICENSE

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 79

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

version: DH895xCC_ACCEL.L.0.5.0-80
###
##
#
This file is the configuration for a single dh895xcc_qa
device.
#
Each device has 32 independent banks.
#
- Each bank can contain up to 2 crypto and/or up to 2 data
compression services.
#
- The interrupt for each can be directed to a
specific core.
#
##

##
General Section
##

[GENERAL]
ServicesEnabled = cy;dc

Use version 2 of the config file
ConfigVersion = 2
Look Aside Cryptographic Configuration
cyHmacAuthMode = 1

Look Aside Compression Configuration
dcTotalSRAMAvailable = 0

Firmware Location Configuration
Firmware_MofPath = dh895xcc/mof_firmware.bin
Firmware_MmpPath = dh895xcc/mmp_firmware.bin

#Statistics, valid values: 1,0
statsGeneral = 1
statsDc = 1
statsDh = 1
statsDrbg = 1
statsDsa = 1
statsEcc = 1
statsKeyGen = 1
statsLn = 1
statsPrime = 1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
80 Order No.: 330751-001

statsRsa = 1
statsSym = 1

Debug feature, if set to 1 it enables additional entries in /proc filesystem
ProcDebug = 1

Enables or disables Single Root Complex IO Virtualization.
If this is enabled (1) then SRIOV and VT-d need to be enabled in
BIOS and there can be no Cy or Dc instances created in PF (Dom0).
If this is disabled (0) then SRIOV and VT-d needs to be disabled
in the BIOS and Cy and/or Dc instances can be used in PF (Dom0)
SRIOV_Enabled = 0

###
#
Logical Instances Section
A logical instance allows each address domain
(kernel space and individual user space processes)
to configure rings (i.e. hardware assisted queues)
to be used by that address domain and to define the
behavior of that ring.
#
The address domains are in the following format
- For kernel address domains
[KERNEL]
- For user process address domains
[xxxxx]
Where xxxxx may be any ascii value which uniquely identifies
the user mode process.
To allow the driver correctly configure the
logical instances associated with this user process,
the process must call the icp_sal_userStartMultiProcess(...)
passing the xxxxx string during process initialisation.
When the user space process is finished it must call
icp_sal_userStop(...) to free resources.
NumProcesses will indicate the maximum number of processes
that can call icp_sal_userStartMultiProcess on this instance.
Warning: the resources are preallocated: if NumProcesses
is too high, the driver will fail to load
#
Items configurable by a logical instance are:
- Name of the logical instance
- The response mode associated wth this logical instance (0
for IRQ or 1 for polled).
- The core the instance is affinitized to (optional)
#
The format of the logical instances are:
- For crypto:
Cy<n>Name = "xxxx"
Cy<n>IsPolled = 0|1
Cy<n>CoreAffinity = 0-7
#
- For Data Compression
Dc<n>Name = "xxxx"
Dc<n>IsPolled = 0|1
Dc<n>CoreAffinity = 0-7
#
Where:
- n is the number of this logical instance starting at 0.
- xxxx may be any ascii value which identifies the logical instance.
#
Note: for user space processes, a list of values can be specified for
the core affinity: for example
Cy0CoreAffinity = 0,2,4
These comma-separated lists will allow multiple processes to use
different accelerators and cores, and will wrap around the numbers
in the list. In the above example, process 0 will have affinity 0,
and process 1 will have affinity 2 etc.
#
##

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 81

##
Kernel Instances Section
##
[KERNEL]
NumberCyInstances = 1
NumberDcInstances = 1

Crypto - Kernel instance #0
Cy0Name = "IPSec0"
Cy0IsPolled = 0
Cy0CoreAffinity = 0

Crypto - Kernel instance #1
Cy1Name = "IPSec1"
Cy1IsPolled = 0
Cy1CoreAffinity = 1

Crypto - Kernel instance #2
Cy2Name = "IPSec2"
Cy2IsPolled = 0
Cy2CoreAffinity = 2

Crypto - Kernel instance #3
Cy3Name = "IPSec3"
Cy3IsPolled = 0
Cy3CoreAffinity = 3

Data Compression - Kernel instance #0
Dc0Name = "IPComp0"
Dc0IsPolled = 0
Dc0CoreAffinity = 0

Data Compression - Kernel instance #1
Dc1Name = "IPComp1"
Dc1IsPolled = 0
#Concurent request value can optionally be overwritten
#Dc1NumConcurrentRequests = 256
Dc1CoreAffinity = 1

##
User Process Instance Section
##
[SSL]
NumberCyInstances = 2
NumberDcInstances = 2
NumProcesses = 1
LimitDevAccess = 0

Crypto - User instance #0
Cy0Name = "SSL0"
Cy0IsPolled = 1
List of core affinities
Cy0CoreAffinity = 0

Crypto - User instance #1
Cy1Name = "SSL1"
Cy1IsPolled = 1
List of core affinities
Cy1CoreAffinity = 1

Crypto - User instance #2
Cy2Name = "SSL2"
Cy2IsPolled = 1
List of core affinities
Cy2CoreAffinity = 2

Crypto - User instance #3
Cy3Name = "SSL3"
Cy3IsPolled = 1
List of core affinities
Cy3CoreAffinity = 3

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
82 Order No.: 330751-001

Data Compression - User space instance #0
Dc0Name = "UserDC0"
Dc0IsPolled = 1
Dc0CoreAffinity = 0

Data Compression - User space instance #1
Dc1Name = "UserDC1"
Dc1IsPolled = 1
Dc1CoreAffinity = 1

Compression Only SKU

In the case of the compression only SKU, only the DC service is supported on the
device. This software support comes as part of the acceleration software package.

It is recommended to remove CY from the device config file(s) and set the
NumberOfCyInstances to 0 for both kernel space and user space. For example:

[GENERAL]

ServicesEnabled = dc

No crypto requests will be supported. Any CY requests at the API level will return an
error.

In the case of SR-IOV, the VF driver currently sees all capabilities regardless of SKU
information. The VF driver currently does not have access to the registers which hold
the SKU information. There are no threads mapped to the CY service when using this
SKU. If CY is enabled in the VF devices config file, the behavior is undefined.

It is also recommended to explicitly set WirelessEnabled = 0 in the config file for this
SKU. The wireless firmware does not support DC requests.

Configuration File Version 2 Differences

Note: Both the configuration file Version 2 and Version 1 are supported by the acceleration
driver. The ConfigVersion parameter if present and set to 2 (ConfigVersion = 2)
indicates that the new configuration format will be used. Otherwise, the older format
is used as before.

The following is a summary of the differences between the configuration file Version 2
and Version 1 file format:

• Bank and ring numbers are no longer specified in the configuration file; they are
dynamically allocated.

• Core affinity can be specified for each instance. The driver will allocate a bank with
that affinity.

• The number of current requests (for symmetric cryptography asymmetric
cryptography and data compression) are now specified in the General section of
the configuration file, and can be overwritten for each particular instance if
needed. If they are not specified at all, a default value is used by the driver.

• Interrupt coalescing parameters are now in the General section (previously in the
Accelerator sections).

6.7

6.8

Acceleration Driver Configuration File—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 83

• In the User Space section, the new NumProcesses parameter allows that number of
processes to use that section. The core affinity for each of the processes is
specified in a comma separated list.

For example, if CoreAffinity=0,1,2,3, the first process uses accelerator 0, the
second uses accelerator 1, and so on. If there are more processes than list
elements, it loops back. For example, if there are 8 processes and the list only
contains elements 0,1,2,3, the fourth process uses core 0 again, the fifth process
uses core 1, and so on. In order to use this functionality, the processes must be
started with the icp_sal_userStartMultiProcess function.

• The LimitDevAccess parameter has been added. This parameter indicates if the
user space processes in the section containing the LimitDevAccess parameter are
limited to only access instances on a specific device.

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
84 Order No.: 330751-001

7.0 Secure Architecture Considerations

This chapter describes the potential threats identified as part of the secure
architecture analysis of the Acceleration Complex within the Intel® Communications
Chipset 8925 to 8955 Series PCH and the actions that can be taken to protect against
these threats. This chapter concentrates on the Acceleration Complex. There are no
additional security considerations related to other major components within the PCH,
including the I/O component (based on the Intel® P55 Express Chipset) PCH.

First, the terminology covering the main threat categories and mechanisms, attacker
privilege and deployment models are presented. Then, some common mitigation
actions that can be applied to many of these threat categories and mechanisms are
discussed. Finally, more specific threat/attack vectors, including attacks against
specific services of the PCH device are described.

Terminology

Each of the potential threat/attack vectors discussed may be described in terms of the
following:

• Threat Categories on page 85

• Attack Mechanism on page 85

• Attacker Privilege on page 86

• Deployment Models on page 86

Threat Categories

System threats can be classified into the categories in the following table.

Table 8. System Threat Categories

Category Nature of Threat and Examples

Exposure of Data • Attacker reads data to which they should not have read access
• Attacker reads cryptographic keys

Modification of Data • Attacker overwrites data to which they should not have write access
• Attacker overwrites cryptographic keys

Denial of Service • Attacker causes application or driver software (running on an IA core)
to crash

• Attacker causes Intel® QuickAssist Accelerator firmware to crash
• Attacker causes excessive use of resource (IA core, Intel® QuickAssist

Accelerator firmware thread, silicon slice, PCIe* bandwidth, and so
on), thereby reducing availability of the service to legitimate clients

Attack Mechanism

Some of the mechanisms by which an attacker can carry out an attack are listed in the
following table.

7.1

7.1.1

7.1.2

Secure Architecture Considerations—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 85

Table 9. Attack Mechanisms and Examples

Mechanism Examples

Contrived packet stream Attacker crafts a packet stream that exploits known vulnerabilities in the
software, firmware or hardware. This could include vulnerabilities such as
buffer overflow bugs, lack of parameter validation, and so on.

Compromised application
software

Attacker modifies the application code calling the Intel® QuickAssist
Technology API to exploit known vulnerabilities in the driver/hardware.

Application Malware In an environment where an attacker may be able to run their own
application, separate from the main application software, they may invoke
the Intel® QuickAssist Technology API to exploit known vulnerabilities in
the driver/hardware.

Compromised IA driver
software

Attacker modifies the IA driver to exploit known vulnerabilities in the
driver/hardware.

Compromised Intel®
QuickAssist Technology
firmware

Attacker modifies the Intel® QuickAssist Technology firmware to exploit
vulnerabilities in the hardware.

Compromised public key
firmware
Note: For a description of this

public key firmware, and
how it differs from the
Intel® QuickAssist
Technology firmware,
see Crypto Service
Threats - Modification of
Public Key FW

Attacker modifies the public key firmware to exploit vulnerabilities in the
hardware.

Defect It is also possible that the attack is not malicious, but rather an
unintentional defect.

Attacker Privilege

The following table describes the privileges that an attacker may have. The table
describes the case of a non-virtualized system.

Table 10. Attacker Privilege

Privilege Comments

Physical access There is no attempt to protect against threats, such as signal probes,
where the attacker has physical access to the system. Customers can
protect their systems using physical locks, tamper-proof enclosures,
Faraday cages, and so on.

Logged in as privileged user There is no attempt to protect against threats where the attacker is
logged in as a privileged user. Customers can protect their systems
using strong, frequently-changed passwords, and so on.

Logged in as unprivileged user If the attacker is logged into a platform as an unprivileged user, it is
important to ensure that they cannot use the services of the to access
(read or write) any data to which they would not otherwise have
access.

Ability to send packets In almost all deployments, attackers have the ability to send arbitrary
packets from the network (either on LAN or WAN) into the system. It is
assumed that threats (for example, contrived packet streams to exploit
known vulnerabilities) may arrive in this way.

Deployment Models

Some of the possible deployment models are given in the following table.

7.1.3

7.1.4

Intel® Communications Chipset 8925 to 8955 Series Software—Secure Architecture
Considerations

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
86 Order No.: 330751-001

Table 11. Deployment Models

Deployment Model Examples

System with no untrusted users • Network security appliance
• Server in data center

System with potentially untrusted
users

• Server in data center

Threat/Attack Vectors

A thorough analysis has been conducted by considering each of the threat categories,
attack mechanisms, attacker privilege levels, and deployment models. As a result, the
following threats have been identified. Also described are the steps a user of the PCH
chipset can take to mitigate against each threat.

Some general practices that mitigate many of the common threats are considered
first. Thereafter, threats on specific services (such as cryptography, data compression)
and mitigation against those threats are described.

General Mitigation

The following mitigation techniques are generic to a number of different threat and
attack vectors:

• Intel follows Secure Coding guidelines, including performing code reviews and
running static analysis on its driver software and firmware, to ensure its
compliance with security guidelines. It is recommended that customers follow
similar guidelines when developing application code. This should include the use of
tools such as static analysis, fuzzing, and so on.

• Ensure each module (including the PCH chipset, processor, and DRAM) is
physically secured from attackers. This can include such examples as physical
locks, tamper proofing, and Faraday cages (to prevent side-channel attacks via
electromagnetic radiation).

• Ensure that network services not required on the module are not operating and
that the corresponding network ports are locked down.

• Use strong passwords to protect against dictionary and other attacks on
administrative and other login accounts.

General Threats

General threats include the following:

• DMA on page 88

• Intentional Modification of IA Driver on page 88

• Modification of Intel QuickAssist Accelerator Firmware on page 88

• Malicious Application Code on page 89

• Contrived Packet Stream on page 89

7.2

7.2.1

7.2.2

Secure Architecture Considerations—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 87

DMA

Threat: The PCH can perform Direct Memory Access (DMA, the copying of data)
between arbitrary memory locations, without any of the processor's normal memory
protection mechanisms. Once an attacker has sufficient privilege to invoke the Intel®
QuickAssist Technology API, or to write to/read from the hardware rings used by the
driver to communicate with the device, they can send requests to the Intel®
QuickAssist Accelerator to perform such DMA, passing arbitrary physical memory
addresses as the source and/or destination addresses, thereby reading from and/or
writing to regions of memory to which they would otherwise not have access.

Mitigation: Ensure that only trusted users are granted permissions to access the
Intel® QuickAssist Technology API, or to write to and read from the hardware rings.
Specifically, the PCH configuration file describes logical instances of acceleration
services and the set of hardware rings to be used for each such instance. User
processes can ask the kernel driver to map these rings into their address spaces. To
access a given device (identified by the number <N> in the filenames below), the user
must be granted read/write access to the following files, which may be in /dev
or /dev/icp_mux:

• icp_dev_mem
• icp_dev_mem_page

The recommendation is that these files have the following permissions by default1:

ls -l /dev/icp_dev0_ring
crw-------. 1 root root 249, 0 Jan 17 16:01 /dev/icp_dev0_ring

To grant permission to a given user to use the API, that user should be given
membership of a group, e.g. group “adm”, and the group ownership and permissions
should be changed to the following:

ls -l /dev/icp_dev0_ring
crw-rw----. 1 root adm 249, 0 Jan 17 16:02 /dev/icp_dev0_ring

Such permissions and group membership should only be provided to trusted users.
Such user accounts should be protected with strong passwords.

Intentional Modification of IA Driver

Threat: An attacker can potentially modify the IA driver to behave maliciously.

Mitigation: The driver object/executable file on disk should be protected using the
normal file protection mechanisms so that it is writable only by trusted users, for
example, a privileged user or an administrator.

Modification of Intel® QuickAssist Accelerator Firmware

Threat: An attacker can potentially modify the Intel® QuickAssist Accelerator
firmware to behave maliciously. The attacker can then attempt to overwrite the
firmware image on disk (so that it gets downloaded on future reboots) or to download
the malicious firmware image after the original image has been downloaded, thereby
overwriting it.

7.2.2.1

7.2.2.2

7.2.2.3

1 Permissions shown only for one file, but these apply to all files listed.

Intel® Communications Chipset 8925 to 8955 Series Software—Secure Architecture
Considerations

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
88 Order No.: 330751-001

Mitigation: The firmware image on disk should be protected using normal file
protection mechanisms so that it is writable only by trusted users, for example, a
privileged user or an administrator.

The implementation of the API for downloading firmware to the Intel® QuickAssist
Accelerator requires access to a special administrative hardware ring. See the
mitigation for the DMA on page 88 threat to limit access to this ring.

Modification of the PCH Configuration File

Threat: The PCH configuration file is read at initialization time by the driver and
specifies what instances of each service (cryptographic, data compression) should be
created, and which rings each service instance will use. Modifying this file could lead
to denial of service (by deleting required instances), or could be used to attempt to
create additional instances that the attacker could subsequently attempt to access for
malicious purposes.

Mitigation: The configuration file should be protected using the normal file protection
mechanisms so that it is writable only by trusted users, for example, a privileged user
or an administrator.

Note: By default, the configuration file is stored in the /etc directory and may be named
something like, dh895xcc_qa_dev0.conf. Its default permissions are that it is readable
and writeable only by root.

Malicious Application Code

Threat: An attacker who can gain access to the Intel® QuickAssist Technology API
may be able to exploit the following features of the API:

• Simply sending requests to the accelerator at a high rate reduces the availability
of the service to legitimate users.

• Buffers passed to the API have a specified length of up to 32 bits. By specifying
excessive lengths, an attacker may be able to cause denial of service by
overwriting data beyond the end of a buffer.

• Buffer lists passed to the API consist of a scatter gather list (array of buffers). An
attacker may incorrectly specify the number of buffers, causing denial of service
due to the reading or writing of incorrect buffers.

Mitigation: Only trusted users should be allowed to access the Intel® QuickAssist
Technology API, as described as part of the Mitigation threat for the DMA on page 88.

Contrived Packet Stream

Threat: An attacker may attempt to contrive a packet stream that monopolizes the
acceleration services, thereby denying service to legitimate users. This may consist of
one or more of the following:

• Sending packets that are compressed (for example, using IPComp) or encrypted
(for example, using IPsec), thereby reducing the availability of these services to
legitimate traffic.

• Sending excessively large packets, causing some latency for legitimate packets.

• Sending small packets at a high packet rate, causing extra bandwidth utilization
on the PCI Express* bus connecting the device to the processor.

7.2.2.4

7.2.2.5

7.2.2.6

Secure Architecture Considerations—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 89

Mitigation: Depending on the deployment scenario, it is usually not possible to
prevent such attempts at denial of service. The system should be designed to cope
with the worst case in terms of throughput and latency at all packet sizes.

Threats Against the Cryptographic Service

Threats against the cryptographic service include:

• Reading and Writing of Cryptographic Keys on page 90

• Modification of Public Key Firmware on page 90

• Failure of the Entropy Source for the Random Number Generator on page 90

• Interference Among Users of the Random Number Service on page 91

Reading and Writing of Cryptographic Keys

Threat: Cryptographic keys are stored in DRAM. An attacker who can determine
where these are stored could read the DRAM to get access to the keys, or could write
the DRAM to use keys known by the attacker, thereby compromising the
confidentiality of data protected by these keys.

Mitigation: DRAM is considered to be inside the cryptographic boundary (as defined
by FIPS 140-2). The normal memory protection schemes provided by the Intel®
architecture processor and memory controller, and by the operating system, prevent
unauthorized access to these memory regions.

Modification of Public Key Firmware

Background: In addition to the Intel® QuickAssist Accelerator firmware which is
downloaded to the Acceleration Complex within the PCH by the driver at initialization
time, there is a library of small public key firmware routines, one of which is
downloaded to the device along with each request to perform a public key
cryptographic primitive, such as an RSA sign operation. This public key firmware is
part of the driver image (on disk), and is stored in DRAM at run-time so that it can be
downloaded to the device when required.

Threat: An attacker can potentially modify the public key firmware to behave
maliciously. For this to be useful, they must overwrite the firmware image on disk (so
that it gets read into DRAM at initialization time on future reboots) or in DRAM (so
that it gets downloaded with future PKE requests).

Mitigation: The public key firmware image on disk should be protected using normal
file protection mechanisms so that it is writable only by trusted users, for example, a
privileged user or an administrator. The public key firmware image in DRAM is
accessible only to the process/context in which it is executing, and sending the image
to the Intel® QuickAssist Accelerator requires permission to use the API and write to
the corresponding hardware ring. See the mitigation for the DMA threat to limit access
to such rings.

Failure of the Entropy Source for the Random Number Generator

Threat: The PCH has a non-deterministic random bit generator (NRBG, aka True
Random Number Generator or TRNG) implemented in silicon that can be used as an
entropy source for a deterministic random bit generator (DRBG, aka Pseudo Random
Number Generator or PRNG). A failure of the entropy source can lead to poor quality
random numbers, which can compromise the security of the system.

7.2.3

7.2.3.1

7.2.3.2

7.2.3.3

Intel® Communications Chipset 8925 to 8955 Series Software—Secure Architecture
Considerations

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
90 Order No.: 330751-001

Mitigation: The NRBG has a built-in self test that detects repeated sequences of bits.
A failure of the entropy source is indicated to the application/user via calls to the API.
It is the responsibility of the application to decide whether and when to fail the module
as a result of a failed entropy source.

Interference Among Users of the Random Number Service

Threat: The original API for random number generation (in cpa_cy_rand.h file, as
delivered as part of an earlier generation of the Intel® QuickAssist Accelerator) had a
single instance of the DRBG that was shared by all users. An attacker with appropriate
permissions to access the DRBG service in one process/address space could re-seed
the DRBG and thereby modify the subsequent outputs of the DRBG in other processes
or contexts.

Mitigation: The API has been updated for the current generation. The updated API
(cpa_cy_drbg.h) supports a FIPS-compliant DRBG API with multiple instances. Re-
seeding one such instance does not interfere with the output of another instance. The
original API has been deprecated. Applications should use the new API.

Data Compression Service Threats

Threats against the Data Compression service include:

• Read/Write of Save/Restore Context on page 91

• Stateful Behavior on page 91

• Incomplete or Malformed Huffman Tree on page 92

• Contrived Packet Stream on page 92

Read/Write of Save/Restore Context

Threat: The save/restore context is stored in DRAM. An attacker may attempt to read
this memory to determine information about the packet stream. An attacker may also
overwrite this context, affecting the result of the compression/decompression.

Mitigation: DRAM is considered to be inside the cryptographic boundary (as defined
by FIPS 140-2). The normal memory protection schemes provided by the Intel®
architecture processor and memory controller, and by the operating system, prevent
unauthorized access to these memory regions.

Stateful Behavior

Threat: The combination of stateful behavior and requests to compress/decompress
small regions of memory can lead to reduced significant overhead, and could
potentially be exploited as part of a denial of service attack. This is because stateful
contexts requires that the service restore and save the session state for each request.
The session state includes history data and can be significantly larger than the packet,
especially for small packets.

Mitigation: To minimize this overhead, the application can use stateless sessions.

7.2.3.4

7.2.4

7.2.4.1

7.2.4.2

Secure Architecture Considerations—Intel® Communications Chipset 8925 to 8955 Series
Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 91

Incomplete or Malformed Huffman Tree

Threat: An attacker who can run malicious code on the platform (see Malicious
Application Code on page 89) can deny service (reduce performance) by sending in a
rogue request with an incomplete or malformed Huffman tree. A transmission error
may also lead to this situation occurring.

Mitigation: See the mitigation proposed in Malicious Application Code on page 89.
Furthermore, the slice detects such incomplete or malformed Huffman trees and
returns an error.

Contrived Packet Stream

Threat: Similar to the general attack mechanism described in Contrived Packet
Stream on page 89, there are some aspects that are specific to the data compression
service:

• An attacker can craft a compressed packet stream with a very large compression
ratio (for example, 1000:1). Generating an output buffer that is significantly larger
than the input buffer may reduce availability of the service to legitimate clients.

• An attacker can craft a packet stream with a large number of zero-length deflate
blocks. This causes the slice to consume input, but produce no output.

Mitigation: The output is limited to the size of output buffer. Buffer exhaustion
detection is built into the hardware. Therefore, the application developer should
allocate output buffers based on the largest compression ratio that they wish to deal
with, as required by the application or protocol, and then handle errors reported by
the API.

7.2.4.3

7.2.4.4

Intel® Communications Chipset 8925 to 8955 Series Software—Secure Architecture
Considerations

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
92 Order No.: 330751-001

8.0 Supported APIs

The supported APIs are described in two categories:

• Intel® QuickAssist Technology APIs on page 93

• Additional APIs on page 101

Intel® QuickAssist Technology APIs

The platforms described in this manual supports the following Intel® QuickAssist
Technology API libraries:

• Cryptographic - API definitions are located in: $ICP_ROOT/quickassist/include/lac,
where $ICP_ROOT is the directory where the Acceleration software is unpacked. See
the Intel® QuickAssist Technology Cryptographic API Reference Manual for details.

• Data Compression - API definitions are located in: $ICP_ROOT/quickassist/
include/dc. See the Intel® QuickAssist Technology Data Compression API
Reference Manual for details.

Base API definitions that are common to the API libraries are located in: $ICP_ROOT/
quickassist/include. See also the Intel® QuickAssist Technology API Programmer’s
Guide for guidelines and examples that demonstrate how to use the APIs.

Intel® QuickAssist Technology API Limitations

The following limitations apply when using the Intel® QuickAssist Technology APIs on
the platforms described in this manual:

• For all services, the maximum size of a single perform request is 4 GB.

• For all services, data structures that contain data required by the Intel®
QuickAssist Accelerator should be on a 64 Byte-aligned address to maximize
performance. This alignment helps minimize latency when transferring data from
DRAM to an accelerator integrated in the PCH device.

• For the key generation cryptographic API, the following limitations apply:

— Secure Sockets Layer (SSL) key generation opdata:

• Maximum secret length is 512 bytes

• Maximum userLabel length is 136 bytes

• Maximum generatedKeyLenInBytes is 248

— Transport Layer Security (TLS) key generation opdata:

• Secret length must be <128 bytes for TLS v1.0/1.1; <512 bytes for TLS
v1.2

• userLabel length must be <16 bytes

• Maximum seed size is 64 bytes

• Maximum generatedKeyLenInBytes is 248 bytes

8.1

8.1.1

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 93

— Mask Generation Function (MGF) opdata:

• Maximum seed length is 255 bytes

• Maximum maskLenInBytes is 65528

• For the cryptographic service, SNOW 3G and KASUMI operations are not
supported when CpaCySymPacketType is set to
CPA_CY_SYM_PACKET_TYPE_PARTIAL. The error returned in this case is
CPA_STATUS_INVALID_PARAM.

• For the cryptographic service, when using the Deterministic Random Bit Generator
(DRBG), only one in-flight request per each instantiated DRBG (that is, per each
DRBG session) is allowed. If the user calls the cpaCyDrbgGen or cpaCyDrbgReseed
function with the session handle of a session for which a previous request is still
being processed, CPA_STATUS_RETRY is returned.

• For the cryptographic service, when using DRBG, the requirement for the use of
the derivation function (DF) is not expected to change once DRBG is instantiated.

• For the cryptographic service, when using the asymmetric crypto APIs, the buffer
size passed to the API should be rounded to the next power of 2, or the next 3-
times a power of 2, for optimum performance.

• For the data compression service, only one outstanding compression request per
stateful session is allowed.

• For the data compression service, the size of all stateful decompression requests
have to be a multiple of two with the exception of the last request.

• For the data compression service, the CpaDcFileType field in the
CpaDcSessionSetupData data structure is ignored (previously this was considered for
semi-dynamic compression/decompression).

• For static compression, the maximum expansion during compression is ceiling
(9*Total_Input_Byte/8)+7 bytes. If
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS or
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS is selected, the
maximum expansion during compression is the input buffer size plus up to ceiling
(Total_Input_Byte/65535) * 5 bytes, depending on whether the stored headers
are selected. Note, however, due to the need for a skid pad and the way the
checksum is calculated in the stored block case to prevent compression overflow,
an output buffer size of ceiling (9*Total_Input_Byte/8) + 55 bytes needs to be
supplied (even though the stored block output size might be less).

• For the data compression service, if an overflow occurs during stateless
compression, the entire compression request must be resubmitted with a larger
output buffer. In this case, the consumed value returned in the cpaDcRqResults
structure will be zero.

• The decompression service can report various error conditions most of which arise
from processing dynamic Huffman code trees that are ill-formed. These soft error
conditions are reported at the the Intel® QuickAssist Technology API using the
CpaDcReqStatus enumeration. At the point of soft error, the hardware state will
not be accurate to allow recovery. Therefore, in this case, the Intel® QuickAssist
Technology software rolls back to the previous known good state and reports that
no input has been processed and no output produced. This allows an application to
correct the source of the error and resubmit the request.

For example, if the following source and destination buffers were submitted to the
Intel® QuickAssist Technology:

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
94 Order No.: 330751-001

The result would be:

The following table describes the behavior of the Intel® QuickAssist Technology
compression service when an overflow occurs during a compress or decompress
operation. It also describes the expected behavior, of an application using the
service, when an overflow occurs.

Table 12. Compression/Decompression Overflow Behavior

Stateful/
Stateless

Static/
Dynamic Overflow Input data

consumed?

Valid data
in output
buffer?

Status
Returned

Expected
Application
Behavior

Stateful Both Yes Yes Yes -11 Submit next
request
- Input data
pointer =
next byte
after
consumed
data of
previous
request
- Output
buffer: New
output buffer
(size does
not matter)

Stateless Both Yes No No -11 Re-submit
the request
- Input data
pointer =
same as for
previous
request
- Output
buffer =
must be
larger than
previous
request

Behavior when build flag ICP_DC_RETURN_COUNTERS_ON_ERROR is
defined

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 95

In some specialized applications, when a decompression soft error occurs, the
application has no way of correcting the source of the error and resubmitting the
request. The session will need to be invalidated and terminated. In this case it is
more useful to the application to output the uncompressed data up to the point of
soft error before terminating the session.

There is a compile time build flag (ICP_DC_RETURN_COUNTERS_ON_ERROR) to
select this mode of operation. This is the behavior of decompression in case of soft
error when this build flag is used.

If the following source and destination buffers were submitted to the Intel®
QuickAssist Technology API:

The result would be:

It is important to note in this case:

— The checksum returned is not valid.

— The consumed value returned in the CpaDcRqResults structure is not reliable.

— No further requests can be submitted on this session.

— Overflow is treated as a soft error in the stateless case.

Dynamic Compression for Data Compression Service

Dynamic compression involves feeding the data produced by the compression
hardware block to the translator hardware block. The following figure shows the
dynamic compression data path.

Figure 14. Dynamic Compression Data Path

When the compression service returns an exception (e.g., overflow error) to the user,
it is recommended to examine the bytes consumed and returned in the CpaDcRqResults
structure to verify if all the data in the source data buffer has been processed.

8.1.1.1

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
96 Order No.: 330751-001

When the application selects the Huffman type to CPA_DC_HT_FULL_DYNAMIC in the
session and auto select best feature is set to CPA_DC_ASB_DISABLED, the compression
service may not always produce a deflate stream with dynamic Huffman trees. For
example, in the case of an overflow during dynamic compression, static data will be
returned in the destination buffer.

Maximal Expansion with Auto Select Best Feature for Data
Compression Service

Some input data may lead to a lower than expected compression ratio. This is because
the input data may not be very compressible. To achieve a maximum compression
ratio, the acceleration unit provides an auto select best (ASB) feature. In this mode,
the Intel® QuickAssist Technology hardware will first execute static compression
followed by dynamic compression and then select the output which yields the best
compression ratio. To use the ASB feature, configure the autoSelectBestHuffmanTree
enum during the session creation.

Regardless of the ASB setting selected, dynamic compression will only be attempted if
the session is configured for dynamic compression.

There are four possible settings available for the autoSelectBestHuffmanTree when
creating a session. Based on the ASB settings described below, the produced data
returned in the CpaDcRqResults structure will vary:

• CPA_DC_ASB_DISABLED - ASB mode is disabled.

• CPA_DC_ASB_STATIC_DYNAMIC
Both dynamic and static compression operations are performed. The size of produced
data returned in the CpaDcRqResults structure will be the minimal value of the two
operations.

Produced data in bytes = Min (Static, Dynamic)

• CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS

Both a dynamic and a static compression operation are performed. However, if the
produced data both for the dynamic and static operations return a greater value than
the uncompressed source data and source block headers, the source data will be used
as a stored block. With this ASB setting, a 5-byte stored block header is prepended to
the stored block.

The worst-case produced data can be estimated to:

Produced data in bytes = Total input bytes + ceil (Total input bytes / 65535) * 5

e.g., for an input source size of 111261 bytes, the worst-case produced data will be:

Produced data = 111261 + ceil (111261 / 65535) * 5
 = 111261 + ceil (1.698) * 5
 = 111261 + 2 * 5
Produced data = 111271 bytes

• CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS

8.1.1.2

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 97

With this ASB setting, both a dynamic and a static compression operation are
performed. However, if the produced data both for the dynamic and static operation
return a greater value than the uncompressed source data, the uncompressed source
data will be sent to the destination buffer though DMA transfer. This is the same
behavior as with the ASB setting CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS
except the stored block deflate headers are not prepended to the stored block. The
produced data can be estimated via the following:

Produced data in bytes = Min(Static, Dynamic, Uncompressed)

Maximal Expansion and Destination Buffer Size

For static compression operations, the worst-case possible expansion can be
expressed as:

Max Static Produced data in bytes = ceil(9 * Total input bytes / 8) + 7

The memory requirement for the destination buffer is expressed by the following
formula:

Destination buffer size in bytes = ceil(9 * Total input bytes / 8) + 55 bytes

The destination buffer size must take into account the worst-case possible maximal
expansion + 55 bytes; e.g., for an input source size of 111261 bytes, the worst-case
produced data will be:

Static Produced data = ceil(9 * 111261 / 8) + 7
 = ceil (125168.625) + 7
 = 125169 + 7
Worst case Static Produced data = 125176 bytes
Memory required for destination buffer = ceil(9 * 111261 / 8) + 55
 = ceil (125168.625) + 55
 = 125169 + 7
 = 125169 + 55
 = 125224 bytes to be allocated

Note: Regardless of the ASB settings, the memory must be allocated for the worst case. If
an overflow occurs, either from static or dynamic compression, then the returned
counters, status, and expected application behavior is as shown per the table in Intel
QuickAssist Technology API Limitations on page 93.

Data Plane APIs Overview

The Intel® QuickAssist Technology Cryptographic API Reference Manual and the
mentioned previously contain information on the APIs that are specific to data plane
applications.

These APIs are intended for use in user space applications that take advantage of the
functionality provided of the Intel® Data Plane Development Kit (Intel® DPDK). The
APIs are recommended for applications that are executing in a data plane environment
where the cost of offload (that is, the cycles consumed by the driver sending requests
to the hardware) needs to be minimized. To minimize the cost of offload, several

8.1.1.3

8.1.2

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
98 Order No.: 330751-001

constraints have been placed on the APIs. If these constraints are too restrictive for
your application, the traditional APIs can be used instead (at a cost of additional IA
cycles).

The definition of the Cryptographic Data Plane APIs are contained in:

$ICP_ROOT/quickassist/include/lac/cpa_cy_sym_dp.h

The definition of the Data Compression Data Plane APIs are contained in:

$ICP_ROOT/quickassist/include/dc/cpa_dc_dp.h

IA Cycle Count Reduction When Using Data Plane APIs

From an IA cycle count perspective, the Data Plane APIs are more performant than
the traditional APIs (that is, for example, the symmetric cryptographic APIs defined in
$ICP_ROOT/quickassist/include/lac/cpa_cy_sym.h). The majority of the cycle count
reduction is realized by the reduction of supported functionality in the Data Plane APIs
and the application of constraints on the calling application (see Usage Constraints on
the Data Plane APIs on page 100).

In addition, to further improve performance, the Data Plane APIs attempt to amortize
the cost of a Memory Mapped IO (MMIO) access when sending requests to, and
receiving responses from, the hardware.

A typical usage is to call the cpaCySymDpEnqueueOp() or the cpaDcDpEnqueueOp() function
multiple times with requests to process and the performOpNow flag set to CPA_FALSE.
Once multiple requests have been enqueued, the cpaCySymDpEnqueueOp() or
cpaDcDpEnqueueOp() function may be called with the performOpNow flag set to
CPA_TRUE. This sends the requests to the Intel® QuickAssist Accelerator for
processing. This sequence is shown in the following figure.

8.1.2.1

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 99

Figure 15. Amortizing the Cost of an MMIO Across Multiple Requests

Application Service Access Layer

cpaCySymDpEnqueueOp(pOpData, CPA_FALSE)

Format hardware message

ADF

ringPut()

Hardware

Request place on Queue,

but not signalled.

cpaCySymDpEnqueueOp(pOpData, CPA_FALSE)

Format hardware message

ringPut()

Request place on Queue,

but not signalled.

cpaCySymDpEnqueueOp(pOpData, CPA_TRUE)

Format hardware message

ringPut()

Signal Hardware

The Intel® QuickAssist Technology API returns a CPA_STATUS_RETRY when the ring
becomes full.

The number of requests to place on the ring is application dependent and it is
recommended that performance testing be conducted with tuneable parameter values.

Two functions, cpaCySymDpPerformOpNow() and cpaDCDpPerformOpNow() are also provided
that allow queued requests to be sent to the hardware without the need for queuing
an additional request. This is typically used in the scenario where a request has not
been received for some time and the application would like the enqueued requests to
be sent to the hardware for processing.

Usage Constraints on the Data Plane APIs

The following constraints apply to the use of the Data Plane APIs. If the application
can handle these constraints, the Data Plane APIs can be used:

8.1.2.2

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
100 Order No.: 330751-001

• Thread safety is not supported. Each software thread should have access to its
own unique instance (CpaInstanceHandle) to avoid contention on the hardware
rings.

• For performance, polling is supported, as opposed to interrupts (which are
comparatively more expensive). Polling functions (see Polling Functions on page
108) are provided to read responses from the hardware response queue and
dispatch callback functions.

• Buffers and buffer lists are passed using physical addresses to avoid virtual-to-
physical address translation costs.

• Alignment restrictions are placed on the operation data (that is, the
CpaCySymDpOpData structure) passed to the Data Plane API. The operation data
must be at least 8-byte aligned, contiguous, resident, DMA-accessible memory.

• Only asynchronous invocation is supported, that is, synchronous invocation is not
supported.

• There is no support for cryptographic partial packets. If support for partial packets
is required, the traditional Intel® QuickAssist Technology APIs should be used.

• Since thread safety is not supported, statistic counters on the Data Plane APIs are
not atomic.

• The default instance (CPA_INSTANCE_HANDLE_SINGLE) is not supported by the Data
Plane APIs. The specific handle should be obtained using the instance discovery
functions (cpaCyGetNumInstances(), cpaCyGetInstances()).

• The submitted requests are always placed on the high-priority ring.

Cryptographic API Descriptions

Full descriptions of the Intel® QuickAssist Technology APIs are contained in the Intel®
QuickAssist Technology Cryptographic API Reference Manual. In addition to the Intel®
QuickAssist Technology Data Plane APIs, there are a number of Data Plane Polling
APIs that are described in Polling Functions on page 108.

Additional APIs

There are a number of additional APIs that can serve for optimization and other uses
outside of the Intel® QuickAssist Technology services.

These APIs are grouped into the following categories:

• Dynamic Instance Allocation Functions on page 102

• IOMMU Remapping Functions on page 106

• Polling Functions on page 108

• Random Number Generation Functions

• User Space Access Configuration Functions on page 118

• Version Information Function on page 122

8.1.2.3

8.2

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 101

Dynamic Instance Allocation Functions

These functions are intended for the dynamic allocation of instances in user space.
The user can use these functions to allocate/free instances defined in the [DYN]
section of the configuration file.

These functions are useful if the user needs to dynamically allocate/free cryptographic
(cy) or data compression (dc) instances at runtime. This is in contrast to statically
specifying the number of cy or dc instances at configuration time, where the number
of instances cannot be changed unless the user modifies the .conf file and reruns ./
adf_ctrl d and ./adf_ctrl u.

The advantage of using these functions is that the number of cy/dc instances can be
changed on-demand at runtime. The disadvantage is that runtime performance is
impacted if the number of cy/dc instances is changed frequently.

If the user space application knows the number of instances to be used before
starting, then the user can define Number<Service>Instances in the [User Process]
section of the *.conf file.

If the user space application can only know the number of instances at runtime, or
wants to change the number at runtime, then the user can call the Dynamic Instance
Allocation functions to allocate/free instances dynamically. The
Number<Service>Instances in the [DYN] section of the .conf file(s) defines the
maximum number of instances that can be allocated by user processes.

This can be useful when sharing instances among multiple applications at runtime. The
maximum number of instances in a system is known in advance and it is possible to
distribute them statically between applications using the configuration files. Once the
driver is started, however, this cannot be changed. If, for example, there are 32 cy
instances and we need to provision 16 processes, we can statically assign two cy
instances per process. This can be a problem when a process needs more instances at
any given time. With dynamic instance allocation, we can create a pool of instances
that can be "shared" between the processes.

Continuing the example above with 32 cy instances and 16 processes, we can assign
statically one cy instance to each process and create a pool of 16 [DYN] instances
from the remainder. If at runtime one process needs more acceleration power, it can
allocate some more instances from the pool, say, for example, eight, use them as
appropriate and free them back to the pool when the work has been completed.
Thereafter, other processes can use these instances as needed.

All dynamic instance allocation function definitions are located in: $ICP_ROOT/
quickassist/lookaside/access_layer/include/icp_sal_user.h

The dynamic instance allocation functions include:

• icp_sal_userCyGetAvailableNumDynInstances on page 103

• icp_sal_userDcGetAvailableNumDynInstances on page 103

• icp_sal_userCyInstancesAlloc on page 104

• icp_sal_userDcInstancesAlloc on page 104

• icp_sal_userCyFreeInstances on page 105

• icp_sal_userDcFreeInstances on page 105

8.2.1

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
102 Order No.: 330751-001

icp_sal_userCyGetAvailableNumDynInstances

Get the number of cryptographic instances that can be dynamically allocated using the
icp_sal_userCyInstancesAlloc function.

Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstances (Cpa32U *pNumCyInstances);

Parameters

*pNumCyInstances A pointer to the number of cryptographic instances available for
dynamic allocation.

Return Value

The icp_sal_userCyInstancesAlloc function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances
available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

icp_sal_userDcGetAvailableNumDynInstances

Get the number of data compression instances that can be dynamically allocated using
the icp_sal_userDcInstancesAlloc function.

Syntax

CpaStatus icp_sal_userDcGetAvailableNumDynInstances (Cpa32U *pNumDcInstances);

Parameters

*pNumDcInstances A pointer to the number of data compression instances available
for dynamic allocation.

Return Value

The icp_sal_userDcGetAvailableNumDynInstances function returns one of the following
codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances
available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

8.2.1.1

8.2.1.2

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 103

icp_sal_userCyInstancesAlloc

Allocate the specified number of cryptographic (cy) instances from the amount
specified in the [DYN] section of the configuration file. The numCyInstances parameter
specifies the number of cy instances to allocate and must be less than or equal to the
value of the NumberCyInstances parameter in the [DYN] section of the configuration
file.

Syntax

CpaStatus icp_sal_userCyInstancesAlloc (Cpa32U numCyInstances, CpaInstanceHandle
*pCyInstances);

Parameters

numCyInstances The number of cy instances to allocate.

*pCyInstances A pointer to the cy instances.

Return Value

The icp_sal_userCyInstancesAlloc function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the sepecified number of cy instances.

CPA_STATUS_FAIL Indicates a failure.

icp_sal_userDcInstancesAlloc

Allocate the specified number of data compression (dc) instances from the amount
specified in the [DYN] section of the configuration file. The numDcInstances parameter
specifies the number of dc instances to allocate and must be less than or equal to the
value of the NumberDcInstances parameter in the [DYN] section of the configuration
file.

Syntax

CpaStatus icp_sal_userDcInstancesAlloc (Cpa32U numDcInstances, CpaInstanceHandle
*pDcInstances);

Parameters

numDcInstances The number of dc instances to allocate.

*pDcInstances A pointer to the dc instances.

Return Value

The icp_sal_userDcInstancesAlloc function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the specified number of dc instances.

CPA_STATUS_FAIL Indicates a failure.

8.2.1.3

8.2.1.4

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
104 Order No.: 330751-001

icp_sal_userCyFreeInstances

Free the specified number of cryptographic (cy) instances from the amount specified
in the [DYN] section of the configuration file. The numCyInstances parameter specifies
the number of cy instances to free.

Syntax

CpaStatus icp_sal_userCyFreeInstances (Cpa32U numCyInstances, CpaInstanceHandle
*pCyInstances);

Parameters

numCyInstances The number of cy instances to free.

*pCyInstances A pointer to the cy instances to free.

Return Value

The icp_sal_userCyFreeInstances function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully freed the specified number of cy instances.

CPA_STATUS_FAIL Indicates a failure.

icp_sal_userDcFreeInstances

Free the specified number of data compression (dc) instances from the amount
specified in the [DYN] section of the configuration file. The numDcInstances parameter
specifies the number of dc instances to free.

Syntax

CpaStatus icp_sal_userDcFreeInstances (Cpa32U numDcInstances, CpaInstanceHandle
*pDcInstances);

Parameters

numDcInstances The number of dc instances to free.

*pDcInstances A pointer to the dc instances to free.

Return Value

The icp_sal_userDcInstancesAlloc function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully freed the specified number of dc instances.

CPA_STATUS_FAIL Indicates a failure.

8.2.1.5

8.2.1.6

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 105

IOMMU Remapping Functions

These functions are intended for IOMMU remapping operations.

All IOMMU remapping function definitions are located in: $ICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal_iommu.h

The IOMMU remapping functions include:

• icp_sal_iommu_get_remap_size on page 106

• icp_sal_iommu_map on page 106

• icp_sal_iommu_unmap on page 107

icp_sal_iommu_get_remap_size

Returns the page_size rounded for IOMMU remapping.

Syntax

size_t icp_sal_iommu_get_remap_size (size_t size);

Parameters

size_t The minimum required page size.

Return Value

The icp_sal_iommu_get_remap_size function returns the page_size rounded for IOMMU
remapping.

icp_sal_iommu_map

Adds an entry to the IOMMU remapping table.

Syntax

CpaStatus icp_sal_iommu_map (Cpa64U phaddr, Cpa64U iova, size_t size);

Parameters

phaddr Host physical address.

iova Guest physical address.

size Size of the remapped region.

Return Value

The icp_sal_iommu_map function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

8.2.2

8.2.2.1

8.2.2.2

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
106 Order No.: 330751-001

icp_sal_iommu_unmap

Removes an entry from the IOMMU remapping table.

Syntax

CpaStatus icp_sal_iommu_unmap (Cpa64U iova, size_t size);

Parameters

iova Guest physical address to be removed.

size Size of the remapped region.

Return Value

The icp_sal_iommu_unmap function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

IOMMU Remapping Function Usage

These functions are required when the user wants to access an acceleration service
from the Physical Function (PF) when SR-IOV is enabled in the driver. In this case, all
I/O transactions from the device go through DMA remapping hardware. This hardware
checks 1) if the transaction is legitimate and 2) what physical address the given I/O
address needs to be translated to. If the I/O address is not in the transaction table, it
fails with a DMA Read error shown as follows:

DRHD: handling fault status reg 3
DMAR:[DMA Read] Request device [02:01.2] fault addr <ADDR>
DMAR:[fault reason 06] PTE Read access is not set

To make this work, the user must add a 1:1 mapping as follows:

1. Get the size required for a buffer:

int size = icp_sal_iommu_get_remap_size(size_of_data);

2. Allocate a buffer:

char *buff = malloc(size);

3. Get a physical pointer to the buffer:

buff_phys_addr = virt_to_phys(buff);

4. Add a 1:1 mapping to the IOMMU tables:

icp_sal_iommu_map(buff_phys_addr, buff_phys_addr, size);

5. Use the buffer to send data to the accelerator.

8.2.2.3

8.2.2.4

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 107

6. Before freeing the buffer, remove the IOMMU table entry:

icp_sal_iommu_unmap(buff_phys_addr, size);

7. Free the buffer:

free(buff);

The IOMMU remapping functions can be used in all contexts that the Intel®
QuickAssist Technology APIs can be used, that is, kernel and user space in a Physical
Function (PF) Dom0, as well as kernel and user space in a Virtual Machine (VM). In
the case of VM, the APIs will do nothing. In the PF Dom0 case, the APIs will update
the hardware IOMMU tables.

Polling Functions

These functions are intended for retrieving response messages that are on the rings
and dispatching the associated callbacks.

All polling function definitions are located in: $ICP_ROOT/quickassist/lookaside/
access_layer/include/icp_sal_poll.h

The polling functions include:

• icp_sal_pollBank

• icp_sal_pollAllBanks

• icp_sal_CyPollInstance

• icp_sal_CyPollDpInstance

icp_sal_pollBank

Poll all rings on the given accelerator on a given bank number to determine if any of
the rings contain response messages from the Intel® QuickAssist Accelerator. The
response_quota input parameter is per ring.

Syntax

CpaStatus icp_sal_pollBank (Cpa32U accelId, Cpa32U bank_number, Cpa32U
response_quota);

Parameters

accelId The device number associated with the acceleration device. The
valid range is 0 to the number of Intel® Communications Chipset
8925 to 8955 Series devices in the system.

bank_number The number of the memory bank on the Intel® Communications
Chipset 8925 to 8955 Series device that will be polled for response
messages. The valid range is 0 to 31.

response_quota The maximum number of responses to take from the ring in one
call.

8.2.3

8.2.3.1

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
108 Order No.: 330751-001

Return Value

The icp_sal_pollBank function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY There is no data on any ring on any bank or the banks are
already being polled.

CPA_STATUS_FAIL Indicates a failure.

icp_sal_pollAllBanks

Poll all banks on the given acceleration device to determine if any of the rings contain
response messages from the Intel® QuickAssist Accelerator. The response_quota input
parameter is per ring.

Syntax

CpaStatus icp_sal_pollAllBanks (Cpa32U accelId, Cpa32U response_quota);

Parameters

accelId The device number associated with the acceleration device. The
valid range is 0 to the number of Intel® Communications Chipset
8925 to 8955 Series devices in the system.

response_quota The maximum number of responses to take from the ring in one
call.

Return Value

The icp_sal_pollAllBanks function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY There is no data on any ring on any bank or the banks are
already being polled.

CPA_STATUS_FAIL Indicates a failure.

icp_sal_CyPollInstance

Poll the cryptographic (Cy) logical instance associated with the instanceHandle to
retrieve requests that are on response rings associated with that instance and
dispatch the associated callbacks. The response_quota input parameter is the
maximum number of responses to process in one call.

Note: The icp_sal_CyPollInstance() function is used in conjunction with the CyXIsPolled
parameter in the acceleration configuration file. Refer to Cryptographic Logical
Instance Parameters on page 141.

8.2.3.2

8.2.3.3

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 109

Syntax

CpaStatus icp_sal_CyPollInstance (CpaInstanceHandle instanceHandle, Cpa32U
response_quota);

Parameters

instanceHandle The logical instance to poll for responses on the response ring.

response_quota The maximum number of responses to take from the ring in one
call. When set to 0, all responses are retrieved.

Return Value

The cp_sal_CyPollInstance function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the
specified logical instance.
Note: A ring is only polled if it contains data.

CPA_STATUS_FAIL Indicates a failure.

icp_sal_DcPollInstance

Poll the data compression (Dc) logical instance associated with the instanceHandle to
retrieve requests that are on response rings associated with that instance, and
dispatch the associated callbacks. The response_quota input parameter is the
maximum number of responses to process in one call.

Note: The icp_sal_DcPollInstance() function is used in conjunction with the DcXIsPolled
parameter in the acceleration configuration file. Refer to Data Compression Logical
Instance Parameters on page 141.

Syntax

CpaStatus icp_sal_DcPollInstance (CpaInstanceHandle instanceHandle, Cpa32U
response_quota);

Parameters

instanceHandle The logical instance to poll for responses on the response ring.

response_quota The maximum number of responses to take from the ring in one
call. When set to 0, all responses are retrieved.

Return Value

The icp_sal_DcPollInstance function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS The function was successful.

8.2.3.4

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
110 Order No.: 330751-001

Code Meaning

CPA_STATUS_RETRY There are no responses on the rings associated with the
specified logical instance.
Note: A ring is only polled if it contains data.

CPA_STATUS_FAIL Indicates a failure.

icp_sal_CyPollDpInstance

Poll a particular cryptographic (Cy) data path logical instance associated with the
instanceHandle to retrieve requests that are on the high-priority symmetric ring
associated with that instance and dispatch the associated callbacks. The
response_quota input parameter is the maximum number of responses to process in
one call.

Syntax

Note: This function is a Data Plane API function and consequently the restrictions in Usage
Constraints on the Data Plane APIs on page 100 apply.

CpaStatus icp_sal_CyPollDpInstance (CpaInstanceHandle instanceHandle, Cpa32U
response_quota);

Parameters

instanceHandle The logical instance to poll for responses on the response ring.

response_quota The maximum number of responses to take from the ring in one
call. When set to 0, all responses are retrieved.

Return Value

The icp_sal_CyPollDpInstance() function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the
specified logical instance.

CPA_STATUS_FAIL Indicates a failure.

icp_sal_DcPollDpInstance

Poll a particular Data Compression (Dc) data path logical instance associated with the
instanceHandle to retrieve requests that are on the response ring associated with that
instance. The response_quota input parameter is the maximum number of responses
to process in one call.

Syntax

Note: This function is a Data Plane API function and consequently the restrictions in Usage
Constraints on the Data Plane APIs on page 100 apply.

8.2.3.5

8.2.3.6

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 111

CpaStatus icp_sal_DcPollDpInstance (CpaInstanceHandle instanceHandle, Cpa32U
response_quota);

Parameters

instanceHandle The logical instance to poll for responses on the response ring.

response_quota The maximum number of responses to take from the ring in one
call. When set to 0, all responses are retrieved.

Return Value

The icp_sal_DcPollDpInstance function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the
specified logical instance.

CPA_STATUS_FAIL Indicates a failure.

Random Number Generation Functions

These functions allow the configuration of the Intel® QuickAssist Technology random
number generation APIs.

Non Deterministic Random Bit Generator (NRBG) Support

Also known as True Random Number Generator (TRNG), NRBG is available on all of
the crypto instances.

The NRBG functionality can be accessed via the Intel® QuickAssist Technology NRBG
API.

Deterministic Random Bit Generator (DRBG) Support

Implemented in software, DRBG processing takes some entropy as input and then
performs Advanced Encryption Standard (AES) operations on the input using Intel®
Communications Chipset 8925 to 8955 Series hardware.

The output is a deterministic random number. Once the user has the first random
number from DRBG, the next number can be determined (assuming all AES
parameters are known).

The DRBG in Intel® QuickAssist Technology is configured with an entropy source. One
option is to use the Intel® QuickAssist Technology NRBG as the entropy source. This is
what the performance sample code does but any other entropy source can also be
configured (see the random number generation function list below).

All random number generation function definitions are located in the following header
files:

• $ICP_ROOT/quickassist/lookaside/access_layer/include/icp_sal_drbg_impl.h
• $ICP_ROOT/quickassist/lookaside/access_layer/include/icp_sal_drbg_ht.h
• $ICP_ROOT/quickassist/lookaside/access_layer/include/icp_sal_nrbg_ht.h

8.2.4

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
112 Order No.: 330751-001

The random number generation functions include:

• icp_sal_drbgGetEnropyInputFuncRegister

• icp_sal_drbgGetNonceFuncRegister

• icp_sal_drbgHTGenerate

• icp_sal_drbgHTGetTestSessionSize

• icp_sal_drbgHTInstantiate

• icp_sal_drbgHTReseed

• icp_sal_drbgIsDFReqFuncRegister

• icp_sal_nrbgHealthTest

The icp_sal_drbgGetEnropyInputFuncRegister, icp_sal_drbgGetNonceFuncRegister or
icp_sal_drbgIsDFReqFuncRegister functions must be called before calling any other
Deterministic Random Bit Generator (DRBG) function.

The other functions should be called to validate that the DRBG is working correctly.

icp_sal_drbgGetEnropyInputFuncRegister

Allows the client to register a function that the implementation uses to retrieve inputs
to the DRGB entropy source.

Syntax

IcpSalDrbgGetEntropyInputFunc icp_sal_drbgGetEntropyInputFuncRegister(
IcpSalDrbgGetEntropyInputFunc func);

Parameters

func The function that the implementation may call to retrieve the DRGB entropy
source.

Return Value

The icp_sal_drbgGetEntropyInputFuncRegister function returns the function that was
previously registered with the implementation or NULL if no function was previously
registered.

Sample Code

Refer to the sample application that demonstrates the random number generator
capability provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional/sym/
nrbg_sample/

icp_sal_drbgGetInstance

Retrieves the instance handle that DRBG is using.

Syntax

icp_sal_drbgGetInstance (CpaCyDrbgSessionHandle sessionHandle, CpaInstanceHandle
**pDrbgInstance);

8.2.4.1

8.2.4.2

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 113

Parameters

sessionHandle [in] The DRBG session handle structure that contains the session
handle.

**pDrbgInstance [out] A pointer to the instance handle.

Return Value

None

icp_sal_drbgGetNonceFuncRegister

Allows the client to register a function that the implementation uses to retrieve the
DRGB nonce.

Syntax

IcpSalDrbgGetNonceFunc icp_sal_drbgGetNonceFuncRegister(IcpSalDrbgGetNonceFunc
func);

Parameters

func The function that the implementation may call to retrieve the nonce.

Return Value

The icp_sal_drbgGetNonceFuncRegister function returns the function that was
previously registered with the implementation or NULL if no function was previously
registered.

Sample Code

Refer to the sample application that demonstrates the random number generator
capability provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional/sym/
nrbg_sample/

icp_sal_drbgHTGenerate

Tests the health of the Generate function as described in NIST SP 800-90, section
11.3.3.

Syntax

CpaStatus icp_sal_drbgHTGenerate (const CpaInstanceHandle instanceHandle,
IcpSalDrbgTestSessionHandle testSessionHandle);

Parameters

instanceHandle The handle of the instance for which DRBG is to be tested.

testSessionHandle The handle of the DRBG health test session. Physically contiguous
memory for this session should be allocated by the client of the
API.

8.2.4.3

8.2.4.4

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
114 Order No.: 330751-001

Return Value

The icp_sal_drbgHTGenerate function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Health tests passed.

CPA_STATUS_FAIL Health tests failed.

icp_sal_drbgHTGetTestSessionSize

Gets the size of the contiguous memory that needs to be allocated by the user for the
DRBG health test session.

Syntax

CpaStatus icp_sal_drbgHTGetTestSessionSize (CpaInstanceHandle instanceHandle,
Cpa32U *pTestSessionSize);

Parameters

instanceHandle The handle of the instance for which DRBG is to be tested.

*pTestSessionSize A pointer to a variable to store size of the memory required for
DRBG health test session.

Return Value

The icp_sal_drbgHTGetTestSessionSize function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the health test session size.

CPA_STATUS_FAIL Indicates a failure.

icp_sal_drbgHTInstantiate

Tests the health of Instantiate functionality as described in NIST SP 800-90, section
11.3.2. This function tests Instantiate for all possible setup configurations.

Syntax

CpaStatus icp_sal_drbgHTInstantiate (const CpaInstanceHandle instanceHandle,
IcpSalDrbgTestSessionHandle testSessionHandle);

Parameters

instanceHandle The handle of the instance for which DRBG is to be tested.

testSessionHandle The handle of the DRBG health test session. Physically contiguous
memory for this session should be allocated by the client of the
API.

Return Value

The icp_sal_drbgHTInstantiate function returns one of the following codes:

8.2.4.5

8.2.4.6

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 115

Code Meaning

CPA_STATUS_SUCCESS Health tests passed.

CPA_STATUS_FAIL Health tests failed.

icp_sal_drbgHTReseed

Tests the health of the Reseed function as described in NIST SP 800-90, section
11.3.4.

Syntax

CpaStatus icp_sal_drbgHTReseed (const CpaInstanceHandle instanceHandle,
IcpSalDrbgTestSessionHandle testSessionHandle);

Parameters

instanceHandle The handle of the instance for which DRBG is to be tested.

testSessionHandle The handle of the DRBG health test session. Physically contiguous
memory for this session should be allocated by the client of the
API.

Return Value

The icp_sal_drbgHTReseed function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Health tests passed.

CPA_STATUS_FAIL Health tests failed.

icp_sal_drbgIsDFReqFuncRegister

Allows the client to register a function that the implementation uses to check if a
derivation function is required.

Syntax

IcpSalDrbgIsDFReqFunc icp_sal_drbgIsDFReqFuncRegister(IcpSalDrbgIsDFReqFunc func)

Parameters

func The function that the implementation may call to check if a derivation function
is required.

Return Value

The icp_sal_drbgIsDFReqFuncRegister function returns the function that was previously
registered with the implementation or NULL if no function was previously registered.

Sample Code

Refer to the sample application that demonstrates the random number generator
capability provided by the software package in:

8.2.4.7

8.2.4.8

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
116 Order No.: 330751-001

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional/sym/
nrbg_sample/

icp_sal_nrbgHealthTest

This function performs a check on the deterministic parts of the NRBG. It also provides
the caller with the value of continuous random number generator test failures for
n=64 bits. Refer to FIPS 140-2, section 4.9.2 for details. A non-zero value for the
counter does not necessarily indicate a failure. It is statistically possible that
consecutive blocks of 64 bits will be identical, and the RNG will discard the identical
block in such cases. This counter allows the calling application to monitor changes in
this counter and to use this to decide whether to mark the NRBG as faulty, based on
the local policy or statistical model.

Syntax

CpaStatus icp_sal_nrbgHealthTest (const CpaInstanceHandle instanceHandle, Cpa32U
*pContinuousRngTestFailures);

Parameters

instanceHandle The handle of the instance.

*pContinuousRngTestFailures The number of continuous random number generator
test failures.

Return Value

The icp_sal_nrbgHealthTest function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Health tests passed.

CPA_STATUS_RETRY Resubmit the request.

CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

CPA_STATUS_RESOURCE Error related to system resources.

CPA_STATUS_FAIL Health tests failed.

Sample Code

Refer to the sample application that demonstrates the random number generator
capability provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional/sym/
nrbg_sample/

DRBG Health Test and cpaCyDrbgSessionInit Implementation Detail

When using the acceleration driver for DRBG functionality, calls to
cpaCyDrbgSessionInit() and the DRBG Health Test (DRBG HT) functions normally block
while waiting for a response. Something (for example, another thread) is required to
unblock the thread of execution.

8.2.4.9

8.2.4.10

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 117

When the application is using interrupts, this is not a problem. However, when the
application is polling, this is a issue, especially for single-threaded applications, where
there is no "polling thread".

A build option has been added to the acceleration driver to allow the
cpaCyDrbgSessionInit() and DRBG HT functions to poll for responses internally, rather
than depending on an external polling thread. Instead of just waiting, these functions
will now go into an internal loop, where they poll and wait with a pre-defined interval
between polls (default 10 ms).

To enable this functionality:

1. Define "DRBG_POLL_AND_WAIT=1" before compilation of the acceleration driver.
This can be done along with the other environmental variables (ICP_ROOT,
ICP_ENV_DIR, and so on).

2. Proceed with driver build/installation.

The default polling interval for cpaCyDrbgSessionInit() polling is 10 ms. This can be
modified by adding the drbgPollAndWaitTimeMS parameter to the GENERAL section of
the config file (see General Parameters on page 63). The polling in
cpaCyDrbgSessionInit() is limited to the low-priority symmetric response ring to
ensure that other rings in that instance do not have their responses polled.

Using the DRBG_POLL_AND_WAIT option at compile time now means that a polling
application that needs to use the DRBG functionality can now be single-threaded and
does not depend on a separate polling thread.

User Space Access Configuration Functions

Functions that allow the configuration of user space access to the Intel® QuickAssist
Technology services from processes running in user space.

All user space access configuration function definitions are located in $ICP_ROOT/
quickassist/lookaside/access_layer/include/icp_sal_user.h.

The user space access configuration functions include:

• icp_sal_userStartMultiProcess

• icp_sal_userStart

• icp_sal_userStop

icp_sal_userStart

Initializes user space access to an Intel® QuickAssist Accelerator and starts the
services configured in the pProcessName section of the configuration file. This function
needs to be called prior to any call to Intel® QuickAssist Technology API function from
the user space process. This function is typically called only once in a user space
process.

Note: The icp_sal_userStart function is for use only with the earlier configuration file variant
(that is, the configuration file does not contain ConfigVersion = 2).

Syntax

CpaStatus icp_sal_userStart (const char *pProcessName);

8.2.5

8.2.5.1

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
118 Order No.: 330751-001

Parameters

*pProcessName The name of the process corresponding to the section in the
configuration file that defines and configures the services accessible
to the process.

Return Value

The icp_sal_userStart function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully started user space access to the Intel® QuickAssist
Accelerator.

CPA_STATUS_FAIL Operation failed.

Notes

None

icp_sal_userStartMultiProcess

Performs a function similar to icp_sal_userStart(), that is, initializes user space
access to an Intel® QuickAssist Accelerator and starts the instances configured, if any,
in the given section of the configuration file.

Note: The icp_sal_userStartMultiProcess() function is to be used with the simplified
configuration file only (that is, the configuration file with ConfigVersion = 2).

The new configuration format allows the user to easily create a configuration for many
user space processes. The driver internally generates unique process names and a
valid configuration for each process based on the section name (pSectionName) and
mode (limitDevAccess) provided.

For example, on an M device system, if all M configuration files contain:

[IPSec]
NumProcesses = N
LimitDevAccess = 0

then N internal sections are generated (each with instances on all devices) and N
processes can be started at any given time. Each process can call
icp_sal_userStartMultiProcess("IPSec", CPA_FALSE) and the driver determines the
unique name to use for each process.

Similarly, on an M device system, if all M configuration files contain:

[SSL]
NumProcesses = N
LimitDevAccess=1

then M*N internal sections are generated (each with instances on one device only)
and M*N processes can be started at any given time. Each process can call
icp_sal_userStartMultiProcess("SSL", CPA_TRUE) and the driver determines the unique
name to use for each process.

8.2.5.2

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 119

Refer to Configuring Multiple Processes on a Multiple-Device System on page 73 for a
detailed example.

Syntax

CpaStatus icp_sal_userStartMultiProcess (const char *pSectionName, CpaBoolean
limitDevAccess);

Parameters

*pSectionName The section name described in the simplified configuration file
format.

limitDevAccess Corresponds to the LimitDevAccess parameter setting in the
simplified configuration file format.

Return Value

The icp_sal_userStartMultiProcess function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully started user space access to the Intel® QuickAssist
Accelerator as defined in the configuration file.

CPA_STATUS_FAIL Operation failed.

icp_sal_userStartMultiProcess Usage

This topic describes a typical usage of the icp_sal_userStartMultiProcess function.

A common approach is as follows:

1. The user starts a main application (for example, an Apache web server or an
OpenSSL speed application).

2. The main application spawns N child processes (workers). The number of child
processes running at a given time should not be greater that the value configured
by NumProcesses in the configuration file.

3. Each child process calls icp_sal_userStartMultiProcess("SSL", CPA_TRUE). In the
application spawns more child processes, the first N processes that call
icp_sal_userStartMultiProcess("SSL", CPA_TRUE) start successfully with access to
the accelerator. All subsequent calls start successfully but will not have access to
the accelerator. In this case, calls to cpaCyGetNumInstances() and
cpaDcGetNumInstances() return zero. If any of the N running processes finish their
work and call icp_sal_userStop() (or if a subprocess terminates non-gracefully),
another subprocess can call icp_sal_userStartMultiProcess("SSL", CPA_TRUE) and
it will succeed.

icp_sal_userStop

Closes user space access to the Intel® QuickAssist Accelerator; stops the services that
were running and frees the allocated resources. After a successful call to this function,
user space access to the Intel® QuickAssist Accelerator from a calling process is not
possible. This function should be called once when the process is finished using the
Intel® QuickAssist Accelerator and does not intend to use it again.

8.2.5.2.1

8.2.5.3

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
120 Order No.: 330751-001

Syntax

CpaStatus icp_sal_userStop (void);

Parameters

None.

Return Value

The icp_sal_userStop function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully stopped user space access to the Intel® QuickAssist
Accelerator.

CPA_STATUS_FAIL Operation failed.

Notes

None

User Space Heartbeat Functions

These functions allow the user space application to check the status of the firmware/
hardware of the Intel® Communications Chipset 8925 to 8955 Series device as part of
the Heartbeat functionality.

All user space heartbeat function definitions are located in $ICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal_user.h.

The heartbeat functions include:

• icp_sal_check_device on page 121

• icp_sal_check_all_devices on page 122

icp_sal_check_device

This function checks the status of the firmware/hardware for a given device and is
used as part of the Heartbeat functionality.

Syntax

CpaStatus icp_sal_check_device (Cpa32U accelID);

Parameters

accelID The device ID of the device of interest.

Return Value

The icp_sal_check_device function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS No error in operation.

8.2.6

8.2.6.1

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 121

Code Meaning

CPA_STATUS_FAIL Operation failed.

Notes

None

icp_sal_check_all_devices

This function checks the status of the firmware/hardware for all devices and is used as
part of the Heartbeat functionality.

Syntax

CpaStatus icp_sal_check_all_devices (void);

Parameters

None.

Return Value

The icp_sal_check_all_devices function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS No error in operation.

CPA_STATUS_FAIL Operation failed.

Version Information Function

A function that allows the retrieval of version information related to the software and
hardware being used.

The version information function definition is located in: $ICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal_versions.h.

There is only one version information function, that is, icp_sal_getDevVersionInfo.

icp_sal_getDevVersionInfo

Retrieves the hardware revision and information on the version of the software
components being run on a given device.

Note: The icp_sal_userStartMultiProcess (or icp_sal_userStart) function must be called
before calling this function. If not, calling this function returns
CPA_STATUS_INVALID_PARAM indicating an error. The icp_sal_userStartMultiProcess
(or icp_sal_userStart) function is responsible for setting up the ADF user space
component, which is required for this function to operate successfully.

Syntax

CpaStatus icp_sal_getDevVersionInfo (Cpa32U devId, icp_sal_dev_version_info_t
*pVerInfo);

8.2.6.2

8.2.7

8.2.7.1

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
122 Order No.: 330751-001

Parameters

devId The ID (number) of the device for which version information is to be
retrieved.

*pVerInfo A pointer to a structure that holds the version information.

Return Value

The icp_sal_getDevVersionInfo function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Operation finished successfully; version information
retrieved.

CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.

CPA_STATUS_RESOURCE System resource problem.

CPA_STATUS_FAIL Operation failed.

PfVfComms Feature Functions

These APIs can only be called on a virtualized system in user space.

These functions allow messages to be sent between user-space applications on the
Host and Guests. User messages are 14 bits of user-defined format and are targeted
at a specific device and on the PF at a specific VF.

The transport channel is designed for infrequent usage, and is not suitable for carrying
a heavy load. One CSR is available between the PF and each VF on each device; this
CSR must be shared by users sending from both PF and VF side and by user and
kernel space messages. It is reliable, i.e., the send_msg APIs will only return
CPA_STATUS_SUCCESS if a message has been delivered to the driver on the other
side; however, they can return CPA_STATUS_RETRY if the transport channel is in use.
In this case, the API should be retried.

Retrieving messages is designed to be highly performant and non-blocking. To achieve
this, the messages received by the kernel space driver are stored in memory mapped
to each user-space process. Only the last message received on any channel is stored,
so if the message buffer is not polled frequently enough, a message can be missed.
The user-space driver keeps track of which messages have been retrieved so that the
application is informed on the API call if a message has been missed. To make the
interface non-blocking, this metadata is not locked, so the trade-off is that it is not
multi-threaded, i.e., only one thread in each user-space process should use the "get"
APIs.

All user-space PfVfComms function definitions are located in $ICP_ROOT/quickassist/
lookaside/access_layer/src/common/include/lac_common.h

8.2.8

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 123

icp_get_pfvfcomms_status

This function returns CPA_TRUE if at least one message that has not been returned in
a call to icp_get_msg_from_pf or icp_get_msg_from_vf is available on any channel.

Syntax

CpaStatus icp_get_pfvfcomms_status (CpaBoolean *unreadMessage);

Parameters

unreadMessage Pointer to buffer to store status. Returns CPA_TRUE if at least one
message is available on any channel which hasn't been returned in a
call to icp_get_msg_from_pf or icp_get_msg_from_vf

Return Value

The icp_get_pfvfcomms_status function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

icp_send_msg_to_vf / icp_send_msg_to_pf

Send a message from vf to pf or vice versa.

Syntax

CpaStatus icp_send_msg_to_vf (Cpa32U accelid, Cpa32U vfNum, Cpa32U message);

CpaStatus icp_send_msg_to_pf (Cpa32U accelid, Cpa32U message);

Parameters

accelid The device number

VfNum VF number. Range: 1-32

message 14 bit message. Range: 0-2^14-1 i.e. bits 14-31 will be masked off and
only bits 0-13 passed across the comms channel. The 14 bit message can
be in any user-defined format.

Return Value

The icp_send_msg_to_vf function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_RETRY Transport channel is busy, try again later.

8.2.8.1

8.2.8.2

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
124 Order No.: 330751-001

Code Meaning

CPA_STATUS_UNSUPPORTED Returned if API called on a non-virtualized system

CPA_STATUS_INVALID_PARAM Invalid parameter passed in API

icp_get_msg_from_vf / icp_get_msg_from_pf

Get message from vf or pf.

Syntax

CpaStatus icp_get_msg_from_vf (Cpa32U accelid, Cpa32U vfNum, Cpa32U * message,
Cpa32U * messageCounter);

CpaStatus icp_get_msg_from_pf (Cpa32U accelid, Cpa32U * message, Cpa32U *
messageCounter);

Parameters

accelid The device number

vfNum VF number. Range: 1-32

message Pointer to buffer to store bit message. The message will be
returned in the bottom 14 bits.

messageCounter pointer to buffer to store the number of messages received on this
channel since API last called.

• 0 => No new message

• 1 => One message available

• n (>1) => Last message available, but missed n-1 messages.
As only the last message per device (and on the PF per VF) is
stored a message could be missed if the API is not called often
enough. This value allows the application to detect this.

Return Value

The icp_get_msg_from_vf or icp_get_msg_from_pf function returns one of the following
codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_UNSUPPORTED Returned if API called on a non-virtualized system.

CPA_STATUS_INVALID_PARAM Invalid parameter passed in API.

Reset Device Function

This API can only be called in user-space.

8.2.8.3

8.2.9

Supported APIs—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 125

The device can be reset using this API call. This will schedule a reset of the device.
See Heartbeat Feature and Recovery from Hardware Errors on page 49 for details of
the steps on a device reset. The device can also be reset using the adf_ctl utility, e.g.,
by calling adf_ctl icp_dev0 reset.

icp_reset_device

Resets the device.

Syntax

CpaStatus icp_reset_device (Cpa32U accelid);

Parameters

accelid The device number.

Return Value

The icp_reset_device function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

8.2.9.1

Intel® Communications Chipset 8925 to 8955 Series Software—Supported APIs

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
126 Order No.: 330751-001

Part 4: Applications and Usage
Models

Applications and Usage Models—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 127

9.0 Application Usage Guidelines

This chapter provides some usage guidelines and identifies some of the applications to
which the platforms described in this manual are ideally suited.

Note: The usage information provided in this section relates to the original configuration file
format. Much of the information is still appropriate when using the newer (default)
version of the configuration file.

Mapping Service Instances to Hardware Accelerators on
the PCH

On the platform(s) described in this manual, a processor can be connected to one or
more Intel® Communications Chipset 8925 to 8955 Series (PCH) devices. Each PCH
device contains one logical accelerator from a software perspective. Physically, each
device contains multiple accelerators which are abstracted behind a load balancing
hardware component. All requests sent to the one logical accelerator will be load
balanced automatically across the physical accelerators within a PCH device. This is a
key difference between previous generation 89xx devices.

A set of 32 ring banks provide the communication mechanism between a processor
and the acceleration complex on a PCH device. Each ring bank contains 16 individual
rings for communication. The following figure shows the relationship between
processors, PCH devices, accelerator(s) and ring banks.

Intel provides a driver as a starting point that abstracts the communication between
the host and the rings and presents the high-level Intel® QuickAssist Technology APIs.

Figure 16. Processor and PCH Device Components

9.1

Intel® Communications Chipset 8925 to 8955 Series Software—Application Usage Guidelines

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
128 Order No.: 330751-001

Package (PCH) #n

Package (PCH) #1

Package (PCH) #0

Accelerator #0

CY

Engine

DC

Engine

Processor #0 Processor #1

RBRB
#0

RB
#1 ...

Core
#0

Core
#1 ...

#31

Processor and PCH Device Communication

An acceleration service uses different rings for request and response messages.
Communication between the processor and PCH device is achieved using the following
operations (see also the following figure):

1. The processor uses a write (put) operation to place a request on the request ring.

2. The PCH device uses a read (get) operation to retrieve the request from the
request ring.

3. Once the operation has been performed, the PCH device uses a write (put)
operation to put the response to the response ring.

4. The processor uses a read (get) operation to retrieve the response from the
response ring.

9.1.1

Application Usage Guidelines—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 129

Figure 17. Processor and PCH Device Communication

Package (PCH) #0

Accelerator #0

CY

Engine

DC

Engine

Processor #0

RB
#31

RB
#0

RB
#1 ...

Core
#0

Core
#1 ...

1
4

2
3

Service Instances and Interaction with the Hardware

A ring bank supports two crypto instances and two compression instances.A service
instance can be thought of as a channel between an accelerator and a core/thread
running on the processor, which uses the rings for communication. The rings are not
exposed by an API, but are set up using configuration files (one for each PCH device).

In general, a service instance uses a pair of rings, one for requests and one for
responses. For cryptographic instances, separate request/response pairs are used for
the following:

• Symmetric (aka bulk) cryptography requests/responses

• TRNG requests/responses

• Public key cryptography requests/responses

The key attributes of a service instance are given in the following table.

9.1.2

Intel® Communications Chipset 8925 to 8955 Series Software—Application Usage Guidelines

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
130 Order No.: 330751-001

Table 13. Service Instance Attributes

Member Sub-field Description

coreAffinity N/A Identifies the core(s) to which interrupts (if enabled) are affinitized
(Bitmap)

isPolled N/A When delivering responses to the client, specifies whether:
• Interrupts are enabled (0)
• Polling is used (1)

The following figure shows how the attributes relate to hardware components.

Figure 18. Service Instance Attributes and Hardware Components

execEngineId

Processor

nodeId

CpaInstanceInfo2

serviceType
coreAffinity (bitmap)

physInstId

packageId

acceleratorId

Package

packageId

Accelerator

acceleratorId

Ring Bank

ringBankId

coreAffinity

1

n 0..n

0..n 0..8

Ring

ringId
16

n

1

coreId

1

Logical Core Compression
Instance

Crypto
Instance

Compression
Engine

Crypto Engine

6

2

executionEngineId

Service Instance Configuration

The configuration of a service instance is done in the configuration file.

The following figure shows an example extract of the relevant section in the
configuration file.

Figure 19. Service Instance Configuration

##

User Space Instances Section

##

[proc0]

NumberCyInstances = 1

NumberDcInstances = 0

Crypto - user space instance #0

Cy0Name = “proc0_0”

Cy0IsPolled = 1

Cy0CoreAffinity = 0

1

2

3

4

9.1.3

Application Usage Guidelines—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 131

In the previous figure, the meaning of each numbered item is explained as follows:

1. Each named address domain (one domain for the kernel, any number of user
space process domains) has its own service instances.

2. Specifies a name for the instance.

3. Specifies that the instance is using polling.

4. Specifies the core affinity for the instance.

Guidelines for Using Multiple Intel® QuickAssist Instances for
Load Balancing in Cryptography Applications

The application is responsible for load balancing/spreading requests across PCH
devices. Load balancing across the Intel® QuickAssist Technology accelerators within
the PCH device is performed by hardware.

Maximum performance from the hardware can be obtained from either of the following
service instance configurations:

• A single service instance

• Multiple service instances

Note: Depending on the specific design of an application that uses the hardware, using
multiple service instances may be required to get full performance.

When the PCH device has more capacity than required by an logical core, each logical
core can be assigned a different service instance. The load is balanced by spreading
the traffic across logical cores. When the capacity of the PCH device can be handled by
a single logical core, a single service instance can used and assigned to this logical
core.

Cryptography Applications

Cryptography applications supported by the platforms described in this manual
include, but are not limited to:

• Virtual Private Networks (VPNs, both IPsec and SSL). Both symmetric and public
key cryptography can be offloaded for bulk transfer and key exchange (IKE, SSL
handshakes and so on). See IPsec and SSL VPNs on page 132 for more
information.

• Encrypted Storage. See Encrypted Storage on page 133 for more information.

• Web Proxy Appliances. See Web Proxy Appliances on page 134.

See also the Accelerating a Security Appliance white paper. This was first written to
support the Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology.
Many of the concepts and ideas are applicable to the platforms described in this
manual also.

IPsec and SSL VPNs

Virtual Private Networks (VPNs) allow for private networks to be established over the
public internet by providing confidentiality, integrity and authentication using
cryptography. VPN functionality can be provided by a standalone security gateway box

9.1.4

9.2

9.2.1

Intel® Communications Chipset 8925 to 8955 Series Software—Application Usage Guidelines

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
132 Order No.: 330751-001

http://download.intel.com/design/intarch/ep80579/320124.pdf

at the boundary between the trusted and untrusted networks. It is also commonly
combined with other networking and security functionality in a security appliance, or
even in standard routers.

VPNs are typically based on one of two cryptographic protocols, either IPsec or DTLS.
Each has its advantages and disadvantages.

One of the most compute-intensive aspects of a VPN is the cryptographic processing
required to encrypt/decrypt traffic for confidentiality, to perform cryptographic hash
functionality for authentication and to perform public key cryptography, based on
modular exponentiation of large numbers or elliptic curve cryptography as part of key
negotiation and exchange. The PCH provides cryptographic acceleration that can
offload this computation from the CPU, thereby freeing up CPU cycles to perform other
networking, security or other value-add applications.

The PCH offers its acceleration services through an API, called the Intel® QuickAssist
Technology Cryptographic API. This can be invoked from the Linux* kernel or from
Linux user space as well as from other operating systems. Intel also provides plugins
to enable many of the PCH's cryptographic services to be accessed through open
source cryptographic frameworks, such as the Linux kernel crypto framework/API
(also known as the scatterlist API) and OpenSSL's libcrypto (through its EVP API). This
facilitates ease of integration with certain open source implementations of protocol
stacks, such as the Linux kernel's native IPsec stack (called NETKEY) or with OpenVPN
(an open source SSL VPN implementation).

Encrypted Storage

In recent years, cases of lost laptops containing sensitive information have made the
headlines all too frequently. Full disk encryption has become a standard procedure for
many corporate PCs. Safe-guarding critical data however is not just a necessity in the
client space, it is also a necessity in the data center.

Enterprise-class storage appliances achieve throughput rates in excess of 50 Gbps.
Several high-profile cases of data theft have triggered updates to government
regulations and industry standards. These regulations/standards now require
protection of data-at-rest for applications involving sensitive data such as medical and
financial records, typically using strong encryption. The high computational cost of
adding security to storage appliances makes offload solutions an attractive value
proposition.

Several complimentary standards for the security of data-at-rest exist, which when
combined with traditional network security protocols, such as IPsec or SSL/TLS,
provide an end-to-end secure storage solution, even for data-in-flight.

The IEEE Security in Storage working group is developing the IEEE 1619 series of
standards that deal with cipher algorithms for disk and tape storage devices (AES in
CCM and GCM modes). The cryptographic acceleration services of platforms that use
the Intel® Communications Chipset 8925 to 8955 Series (PCH) are ideally suited for
secure long-term storage solutions implementing the IEEE 1619.1 standard, by
providing acceleration of the AES-256 cipher in CBC, CCM, and GCM modes and HMAC
authentication using SHA-1, SHA-256 and SHA-512 hashes.

The Trusted Computing Group's (TCG) Storage Working Group does not prescribe a
particular set of algorithms for the disk encryption. Instead, it defines several Storage
Subsystem Classes (SSC) for various usage models, which define services such as
enrollment and connection, protected storage (an extension of TPM), locking, logging,

9.2.2

Application Usage Guidelines—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 133

cryptographic services, authorization, and firmware updates. The cryptographic
acceleration services of the platform can help by providing the highest level of security
for authenticating the host to trusted peripherals implementing the TCG storage
standards.

Web Proxy Appliances

Historically, Web Proxy appliances have evolved to present a public or intermediary
interface for clients seeking resources from other servers, providing services such as
web page caching and load balancing. These appliances are located at the edge of the
network, typically at network gateways. Due to their centralized presence in the
network, Web Proxy appliances today (referred to with a number of different names,
such as Application Delivery Controllers, Reverse Proxy, and so on) have become a
collection of services that include:

• Application Load Balancing (L4-L7)

• SSL Acceleration

• WAN Acceleration

• Caching

• Traffic Management

• Web Application Firewall

SSL and WAN acceleration have become common place capabilities of the Web Proxy
appliance, requiring compute intensive algorithms for cryptography (SSL) and
compression (WAN acceleration). Intel® Communications Chipset 8925 to 8955 Series
(PCH) devices on the platforms described in this manual provide acceleration of
asymmetric cryptography (RSA is the most commonly used key negotiation algorithm
in SSL), symmetric cryptography (all algorithms defined in the TLS RFCs can be
accelerated with the PCH) and compression (DEFLATE and LZS algorithms). With the
prominence of Web Proxy appliances in typical networks, this use case has
applications from cloud computing to small web server deployments.

Data Compression Applications

Data compression can be used as part of application delivery networks, data de-
duplication, as well as in a number of crypto applications, for example, VPNs, IDS/IPS
and so on.

Compression for Storage

In a time when the amount of online information is increasing dramatically, but
budgets for storing that information remain static, compression technology is a
powerful tool for improved information management, protection and access.

Compression appliances can transparently compress data such that clients can keep
between two- and five-times more data online and reap the benefit of other
efficiencies throughout the data lifecycle. By shrinking the primary data, all
subsequent copies of that data, such as backups, archives, snapshots, and replicas are
also compressed. Compression is the newest advancement in storage efficiency.
Storage compression appliances can shrink primary online data in real time, without
performance degradation. This can significantly lower storage capital and operating
expenses by reducing the amount of data that is stored, and the required hardware
that must be powered and cooled.

9.2.3

9.3

9.3.1

Intel® Communications Chipset 8925 to 8955 Series Software—Application Usage Guidelines

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
134 Order No.: 330751-001

Compression can help slow the growth of storage, reducing storage costs while
simplifying both operations and management. It also enables organizations to keep
more data available for use, as opposed to storing data offsite or on harder-to-access
media (such as tape).

Compression algorithms are very compute-intensive, which is one of the reasons why
the adoption of compression techniques in mainstream applications has been slow. As
an example, the DEFLATE Algorithm, which is one of the most used and popular
compression techniques today, involves several compute-intensive steps: string
search and match, sort logic, binary tree generation, Huffman Code generation. Intel®
Communications Chipset 8925 to 8955 Series (PCH) devices in the platforms
described in this manual provide acceleration capabilities in hardware that allow the
CPU to offload the compute-intensive DEFLATE algorithm operations, thereby freeing
up CPU cycles for other networking, security or other value-add operations.

Data Deduplication and WAN Acceleration

Data Deduplication and WAN Acceleration are coarse-grain data compression
techniques centered around the concept of single-instance storage. Identical blocks of
data (either to be stored on disk or to be transferred across a WAN link) are only
stored/moved once, and any further occurrences are replaced by a reference to the
first instance.

While the benefits of deduplication and WAN acceleration obviously depend on the
type of data, multi-user collaborative environments are the most suitable due to the
amount of naturally occurring replication caused by forwarded emails and multiple
(similar) versions of documents in various stages of development.

Deduplication strategies can vary in terms of inline vs post-processing, block size
granularity (file-level only, fixed block size or variable block-size chunking), duplicate
identification (cryptographic hash only, simple CRC followed by byte-level comparison
or hybrids) and duplicate look-up (for example, Bloom filter based index).

Cryptographic hashes are the most suitable techniques for reliably identifying
matching blocks with an improbably low risk for false positives, but they also
represent the most compute-intensive workload in the application. As such, the
cryptographic acceleration services offered by the hardware (PCH) through the Intel®
QuickAssist Technology Cryptographic API can be used to considerably improve the
throughput of deduplication/WAN acceleration applications. Additionally, the
compression/decompression acceleration services can be used to further compress
blocks for storage on disk, while optionally encrypting the compressed contents for
data security.

9.3.2

Application Usage Guidelines—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 135

Appendix A Acceleration Driver Configuration File - Earlier
File Format

Note: This chapter describes the older configuration file format. The older configuration file
format is fully supported, but the format is deprecated in favor of the simpler new file
format described earlier in this document.

This chapter describes the configuration file(s) managed by the Acceleration Driver
Framework (ADF) that allow customization of runtime operation. This configuration
file(s) must be tuned to meet the performance needs of the target application.

Note: The parameter values given in this chapter represent the configuration against which
the software has been validated. While the configuration file is intended to be
modified, no guarantee can be given for the expected behavior when parameter
values are changed.

Configuration File Overview

There is a single configuration file for each Intel® Communications Chipset 8925 to
8955 Series (PCH) device. The configuration file contains one accelerator subsection.
The accelerator has 32 independent ring banks (see the following figure).

Figure 20. Ring Banks

Intel® Communications Chipset 8925 to 8955 Series

Accelerator 0

Ring
Bank 0

Ring
Bank 1

Ring
Bank 31

Data Path Rings (512)

A.1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File - Earlier File Format

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
136 Order No.: 330751-001

The configuration file is split into three (or more) sections: General, Hardware Access
Ring Bank Configuration, and one or more Logical Instance sections.

• General - includes parameters that allow the user to:

— Specify which services are enabled.

— Configure the settings for the services.

Additional details are included in General Parameters on page 137.

• Hardware Access Ring Bank Configuration - includes parameters that allow
the user to:

— Enable and configure interrupt coalescing.

— Direct an MSI-x interrupt for a given ring bank to a specified Intel®
architecture core, assuming that the OS supports MSI-X interrupts.

Additional details are included in [Accelerator0] Section on page 137.

• Logical Instances - one or more sections that include parameters that allow the
user to:

— Configure rings to be used by that address domain (kernel space or individual
user space process) and define the behavior of the ring.

Additional details are included in Logical Instances Section on page 139.

A sample configuration file, targeted at a high-end IPsec box, is included in Sample
Configuration File (V1) on page 142.

General Section

The general section of the configuration file contains general parameters and statistics
parameters.

General Parameters

Please see Table 4 on page 63

Statistics Parameters

Please see Table 5 on page 66

[Accelerator0] Section

The [AcceleratorX] section of the configuration file contains interrupt coalescing and
core affinity parameters.

Interrupt Coalescing Parameters

For each accelerator, the interrupt coalescing parameters in the following table can be
configured.

A.2

A.2.1

A.2.2

A.3

A.3.1

Acceleration Driver Configuration File - Earlier File Format—Intel® Communications Chipset 8925
to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 137

Table 14. Interrupt Coalescing Parameters - Earlier File Format

Parameter Description Default Range

BankXInterruptCoalescingEnabled Specifies if interrupt coalescing is
enabled for ring bank X, where X is
in the range 0 to 31.

1 0 or 1

BankXInterruptCoalescingTimerNs Specifies the coalescing time, in
nanoseconds (ns), for ring bank X,
where X is in the range 0 to 31.
Note: If a value outside the range

is set, the default value is
used.

10000 500 to
1048575

BankXInterruptCoalescingNumRespo
nses

Specifies the number of responses
that need to arrive from hardware
before the interrupt is triggered. It
can be used to maximize
throughput or adjust throughput
latency ratio.

0 (disable) 0 to 248

Note: "Default" denotes the value in the configuration file when shipped.

Affinity Parameters

To use core affinity, it is necessary to disable the irqbalancer service using the
following command issued from an account with root privileges:

service irqbalance stop

Each accelerator has 32 ring banks (0 to 31). If the OS supports MSI-X interrupts,
each ring bank has a steerable MSI-X interrupt that may be affinitized to a particular
node/core as shown in the following figure.

Figure 21. Ring Bank Affinity to Core for MSI-X Interrupts

A.3.2

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File - Earlier File Format

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
138 Order No.: 330751-001

QA Accelerator 0

Crypto unit

Core 1 Core 2

Core 4Core 3

Bank 7Bank 0

MSI-X

Steerable Interrupt
MSI-X

Steerable Interrupt

Bank 31

MSI-X

Steerable Interrupt

MSI-X

Steerable Interrupt

Bank 8

For each accelerator, the ring bank parameters in the following table can be
configured.

Table 15. Ring Bank Affinity Parameters

Parameter Description Default Range

BankXCoreIDAffinity Defines core affinity for ring bank X,
where X is in the range 0 to 31.

0 0 to cpumax-1
Note: cpumax is

the number
of CPUs in
the system.

Note: "Default" denotes the value in the configuration file when shipped.

Logical Instances Section

A logical instance allows each address domain (kernel space and individual user space
processes) to configure rings (hardware assisted queues) to be used by that address
domain and to define the behavior of that ring. See Hardware Assisted Rings on page
32 and Logical Instances on page 19 for more information.

The address domains are in the following format:

• For the kernel address domain: [KERNEL]
• For user process address domains: [xxxxx], where xxxxx may be any ASCII value

that uniquely identifies the user mode process.

A.4

Acceleration Driver Configuration File - Earlier File Format—Intel® Communications Chipset 8925
to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 139

To allow a driver to correctly configure the logical instances associated with this user
process, the process must call the function icp_sal_userStart on page 118, passing the
xxxxx string during process initialization. When the user space process is finished, it
must call the function icp_sal_userStop on page 120 to free resources. See User
Space Access Configuration Functions on page 118 for more information.

The items that can be configured for a logical instance are:

• The name of the logical instance

• The ring bank associated with this logical instance

• The response mode associated with this logical instance (0 for IRQ, 1 for Polled)

• The rings for receiving and the rings for transmitting

• The number of concurrent requests supported by a pair of rings on this instance
(Tx and Rx).

Note: This number affects the amount of memory allocated by the driver. Also,
coalescing that is based on the number of responses is only enabled if: 1)
Time-based coalescing is enabled, 2) The number of concurrent requests =
512 (ring size = 16 KB) and 3)
Bank<n>InterruptCoalescingNumResponses != 0.

Note: Logical instances may not share the same rings, but may share a ring bank.

[KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and
type of kernel instances can be defined.

The following table describes the parameters that determine the number of kernel
instances for each service.

Note: The maximum number of cryptographic instances supported is 64.

Parameter Description Default Range

NumberCyInstances Specifies the number of cryptographic
instances.
Note: Depends on the number of

allocations to other services.

1 0 to 64

NumberDcInstances Specifies the number of data compression
instances.
Note: Depends on the number of

allocations to other services.

1 0 to 64

Note: "Default" denotes the value in the configuration file when shipped.

User Process Instance [xxxxx] Sections

For information about the number and type of user process instances, please see
Table 7 on page 71

Parameters for each user process instance can also be defined. The parameters that
can be included for each specific user process instance are similar to those in the
Logical Instances Section on page 139.

A.4.1

A.4.1.1

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File - Earlier File Format

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
140 Order No.: 330751-001

Cryptographic Logical Instance Parameters

The following table shows the parameters that can be set for cryptographic logical
instances.

Table 16. Cryptographic Logical Instance Parameters - Earlier File Format

Parameter Description Default Range

CyXName Specifies the name of cryptographic
instance number X.

IPSec0 String (max. 64
characters)

CyXBankNumber Specifies the bank number of the
cryptographic instance number X.

0 for kernel
space
instances
1 for user
space
instances

0 to 31

CyXIsPolled Specifies if cryptographic instance
number X works in poll mode or IRQ
mode.

0 for kernel
space
instances
1 for user
space
instances

0 (interrupt
mode), 1 (poll
mode)

CyXNumConcurrentSymRequest
s

Specifies the number of cryptographic
concurrent symetric requests for
cryptographic instance number X.

512 64, 128, 256,
512, 1024, 2048
or 4096

CyXNumConcurrentAsymReques
ts

Specifies the number of concurrent
asymmetric requests for cryptographic
instance number X.

64 64, 128, 256,
512, 1024, 2048
or 4096

CyXRingAsymTx Specifies the asymmetric request ring
number for cryptographic instance
number X.

0 0 or 1

CyXRingAsymRx Specifies the asymmetric response ring
number for cryptographic instance
number X.

8 Must be Tx+8,
i.e., 8 or 9

CyXRingSymTx Specifies the symmetric request ring
number for cryptographic instance
number X messages.

2 2 or 3

CyXRingSymRx Specifies the symmetric response ring
number for cryptographic instance
number X for messages.

10 10 or 11

CyXRingNrbgTx Specifies the NRBG transmit ring
number for cryptographic instance
number X.

4 4 or 5

CyXRingNrbgRx Specifies the NRBG response ring
number for cryptographic instance
number X.

12 Must be Tx+8,
i.e., 12 or 13

Note: "Default" denotes the value in the configuration file when shipped.

Data Compression Logical Instance Parameters

The following table shows the parameters in the configuration file that can be set for
data compression logical instances.

Note: The maximum number of data compression instances supported is 64.

A.4.1.2

A.4.1.3

Acceleration Driver Configuration File - Earlier File Format—Intel® Communications Chipset 8925
to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 141

Parameter Description Default Range

DcXName Specifies the name of data compression
instance number X.

IPComp0 String (max. 64
characters)

DcXBankNumber Specifies the bank number of data
compression instance number X.

0 for
kernel
space
instances
1 for user
space
instances

0 to 8

DcXIsPolled Specifies if data compression instance
number X works in poll mode or IRQ
mode.

0 for
kernel
space
instances
1 for user
space
instances

0 (interrupt mode),
1 (poll mode)

DcXNumConcurrentRequests Specifies the number of data compression
concurrent requests.

512 64, 128, 256, 512,
1024, 2048 or 4096

DcXRingTx Specifies the request ring number for data
compression instance number X.

6 6 or 7

DcXRingRx Specifies the response ring number for
data compression instance number X.

14 Must be Rx+8, i.e.,
14 or 15

Note: "Default" denotes the value in the configuration file when shipped.

Sample Configuration File (V1)

The following sample configuration file is intended for a high-end IPsec box.

###
#
@par
This file is provided under a dual BSD/GPLv2 license. When using or
redistributing this file, you may do so under either license.

GPL LICENSE SUMMARY

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution
in the file called LICENSE.GPL.

Contact Information:
Intel Corporation

A.5

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File - Earlier File Format

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
142 Order No.: 330751-001

BSD LICENSE

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

version: DH895xCC_ACCEL.L.0.5.0-80
###
###
#
This file is the configuration for a single dh895xcc_qa
device.
#
Each device has 32 independent banks.
#
- Each bank can contain up to 2 crypto and/or up to 2 data
compression services.
#
- The interrupt for each can be directed to a
specific core.
#
###

##
General Section
##

[GENERAL]
ServicesEnabled = cy;dc

Look Aside Cryptographic Configuration
cyHmacAuthMode = 1

Wireless Enabled
WirelessEnabled = 0

Firmware Location Configuration
Firmware_MofPath = dh895xcc/mof_firmware.bin
Firmware_MmpPath = dh895xcc/mmp_firmware.bin

Default values for number of concurrent requests
CyNumConcurrentSymRequests = 512
CyNumConcurrentAsymRequests = 64

Acceleration Driver Configuration File - Earlier File Format—Intel® Communications Chipset 8925
to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 143

Default number of DC concurrent requests.
DcNumConcurrentRequests = 512

#Statistics, valid values: 1,0
statsGeneral = 1
statsDc = 1
statsDh = 1
statsDrbg = 1
statsDsa = 1
statsEcc = 1
statsKeyGen = 1
statsLn = 1
statsPrime = 1
statsRsa = 1
statsSym = 1

Debug feature, if set to 1 it enables additional entries in /proc filesystem
ProcDebug = 1

Enables or disables Single Root Complex IO Virtualization.
If this is enabled (1) then SRIOV and VT-d need to be enabled in
BIOS and there can be no Cy or Dc instances created in PF (Dom0).
If this is disabled (0) then SRIOV and VT-d needs to be disabled
in the BIOS and Cy and/or Dc instances can be used in PF (Dom0)
SRIOV_Enabled = 0

###
#
Hardware Access Bank Configuration
Each device has 32 banks (0-31)
If the OS supports MSI-X, each bank has an
steerable MSI-x interrupt which may be
affinitized to a particular core.
#
There is only one logical accelerator:
[Accelerator0]
#
Items configurable per bank are:
- Interrupt Coalescing Enabled (MSI-x interrupts)
- The time in nano seconds before a coalesced interrupt is asserted
- The core to steer interrupts for this bank to
- Interrupt Coalescing based on the number of responses
- Latest time after a response has been put on the Rx ring
when (IAAP) autopushed metadata is available. For polled rings,
the poll period should be at least twice this
#
The format of the bank configurations are:
Bank<n>InterruptCoalescingEnabled = "xxxx"
Bank<n>InterruptCoalescingTimerNs = "xxxx"
Bank<n>CoreIDAffinity = "xxxx"
Bank<n>InterruptCoalescingNumResponses = "xxxx"
#
Where:
- n is the number of the bank starting at 0.
#
###

[Accelerator0]
Bank0InterruptCoalescingEnabled = 1
Bank0InterruptCoalescingTimerNs = 10000
Bank0CoreIDAffinity = 0
Bank0InterruptCoalescingNumResponses = 0

Bank1InterruptCoalescingEnabled = 1
Bank1InterruptCoalescingTimerNs = 10000
Bank1CoreIDAffinity = 1
Bank1InterruptCoalescingNumResponses = 0

Bank2InterruptCoalescingEnabled = 1
Bank2InterruptCoalescingTimerNs = 10000
Bank2CoreIDAffinity = 2

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File - Earlier File Format

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
144 Order No.: 330751-001

Bank2InterruptCoalescingNumResponses = 0

Bank3InterruptCoalescingEnabled = 1
Bank3InterruptCoalescingTimerNs = 10000
Bank3CoreIDAffinity = 3
Bank3InterruptCoalescingNumResponses = 0

Bank4InterruptCoalescingEnabled = 1
Bank4InterruptCoalescingTimerNs = 10000
Bank4CoreIDAffinity = 4
Bank4InterruptCoalescingNumResponses = 0

Bank5InterruptCoalescingEnabled = 1
Bank5InterruptCoalescingTimerNs = 10000
Bank5CoreIDAffinity = 5
Bank5InterruptCoalescingNumResponses = 0

Bank6InterruptCoalescingEnabled = 1
Bank6InterruptCoalescingTimerNs = 10000
Bank6CoreIDAffinity = 6
Bank6InterruptCoalescingNumResponses = 0

Bank7InterruptCoalescingEnabled = 1
Bank7InterruptCoalescingTimerNs = 10000
Bank7CoreIDAffinity = 7
Bank7InterruptCoalescingNumResponses = 0

Bank8InterruptCoalescingEnabled = 1
Bank8InterruptCoalescingTimerNs = 10000
Bank8CoreIDAffinity = 8
Bank8InterruptCoalescingNumResponses = 0

Bank9InterruptCoalescingEnabled = 1
Bank9InterruptCoalescingTimerNs = 10000
Bank9CoreIDAffinity = 9
Bank9InterruptCoalescingNumResponses = 0

Bank10InterruptCoalescingEnabled = 1
Bank10InterruptCoalescingTimerNs = 10000
Bank10CoreIDAffinity = 10
Bank10InterruptCoalescingNumResponses = 0

Bank11InterruptCoalescingEnabled = 1
Bank11InterruptCoalescingTimerNs = 10000
Bank11CoreIDAffinity = 11
Bank11InterruptCoalescingNumResponses = 0

Bank12InterruptCoalescingEnabled = 1
Bank12InterruptCoalescingTimerNs = 10000
Bank12CoreIDAffinity = 12
Bank12InterruptCoalescingNumResponses = 0

Bank13InterruptCoalescingEnabled = 1
Bank13InterruptCoalescingTimerNs = 10000
Bank13CoreIDAffinity = 13
Bank13InterruptCoalescingNumResponses = 0

Bank14InterruptCoalescingEnabled = 1
Bank14InterruptCoalescingTimerNs = 10000
Bank14CoreIDAffinity = 14
Bank14InterruptCoalescingNumResponses = 0

Bank15InterruptCoalescingEnabled = 1
Bank15InterruptCoalescingTimerNs = 10000
Bank15CoreIDAffinity = 15
Bank15InterruptCoalescingNumResponses = 0

Bank16InterruptCoalescingEnabled = 1
Bank16InterruptCoalescingTimerNs = 10000
Bank16CoreIDAffinity = 0
Bank16InterruptCoalescingNumResponses = 0

Acceleration Driver Configuration File - Earlier File Format—Intel® Communications Chipset 8925
to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 145

Bank17InterruptCoalescingEnabled = 1
Bank17InterruptCoalescingTimerNs = 10000
Bank17CoreIDAffinity = 1
Bank17InterruptCoalescingNumResponses = 0

Bank18InterruptCoalescingEnabled = 1
Bank18InterruptCoalescingTimerNs = 10000
Bank18CoreIDAffinity = 2
Bank18InterruptCoalescingNumResponses = 0

Bank19InterruptCoalescingEnabled = 1
Bank19InterruptCoalescingTimerNs = 10000
Bank19CoreIDAffinity = 3
Bank19InterruptCoalescingNumResponses = 0

Bank20InterruptCoalescingEnabled = 1
Bank20InterruptCoalescingTimerNs = 10000
Bank20CoreIDAffinity = 4
Bank20InterruptCoalescingNumResponses = 0

Bank21InterruptCoalescingEnabled = 1
Bank21InterruptCoalescingTimerNs = 10000
Bank21CoreIDAffinity = 5
Bank21InterruptCoalescingNumResponses = 0

Bank22InterruptCoalescingEnabled = 1
Bank22InterruptCoalescingTimerNs = 10000
Bank22CoreIDAffinity = 6
Bank22InterruptCoalescingNumResponses = 0

Bank23InterruptCoalescingEnabled = 1
Bank23InterruptCoalescingTimerNs = 10000
Bank23CoreIDAffinity = 7
Bank23InterruptCoalescingNumResponses = 0

Bank24InterruptCoalescingEnabled = 1
Bank24InterruptCoalescingTimerNs = 10000
Bank24CoreIDAffinity = 8
Bank24InterruptCoalescingNumResponses = 0

Bank25InterruptCoalescingEnabled = 1
Bank25InterruptCoalescingTimerNs = 10000
Bank25CoreIDAffinity = 9
Bank25InterruptCoalescingNumResponses = 0

Bank26InterruptCoalescingEnabled = 1
Bank26InterruptCoalescingTimerNs = 10000
Bank26CoreIDAffinity = 10
Bank26InterruptCoalescingNumResponses = 0

Bank27InterruptCoalescingEnabled = 1
Bank27InterruptCoalescingTimerNs = 10000
Bank27CoreIDAffinity = 11
Bank27InterruptCoalescingNumResponses = 0

Bank28InterruptCoalescingEnabled = 1
Bank28InterruptCoalescingTimerNs = 10000
Bank28CoreIDAffinity = 12
Bank28InterruptCoalescingNumResponses = 0

Bank29InterruptCoalescingEnabled = 1
Bank29InterruptCoalescingTimerNs = 10000
Bank29CoreIDAffinity = 13
Bank29InterruptCoalescingNumResponses = 0

Bank30InterruptCoalescingEnabled = 1
Bank30InterruptCoalescingTimerNs = 10000
Bank30CoreIDAffinity = 14
Bank30InterruptCoalescingNumResponses = 0

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File - Earlier File Format

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
146 Order No.: 330751-001

Bank31InterruptCoalescingEnabled = 1
Bank31InterruptCoalescingTimerNs = 10000
Bank31CoreIDAffinity = 15
Bank31InterruptCoalescingNumResponses = 0

###
#
Logical Instances Section
A logical instance allows each address domain
(kernel space and individual user space processes)
to be allocated to a bank and to define the
behavior of that bank.
- N.B. A single bank cannot be shared between two
address domains.
#
The address domains are in the following format
- For kernel address domains
[KERNEL]
- For user process address domains
[xxxxx]
Where xxxxx may be any ascii value which uniquely identifies
the user mode process.
To allow the driver correctly configure the
logical instances associated with this user process,
the process must call the icp_sal_userStart(...)
passing the xxxxx string during process initialisation.
When the user space process is finished it must call
icp_sal_userStop(...) to free resources.
If there are multiple devices present in the system all conf
files that describe the devices must have the same address domain
sections even if the address domain does not configure any instances
on that particular device. So if icp_sal_userStart("xxxxx") is called
then user process address domain [xxxxx] needs to be present in all
conf files for all devices in the system.
#
Items configurable by a logical instance are:
- Name of the logical instance
- The bank associated with this logical
instance.
- The response mode associated wth this logical instance (0
for IRQ or 1 for polled).
- The number of concurrent requests supported. Note this number
affects the amount of memory allocated by the driver. Also
Bank<n>InterruptCoalescingNumResponses is only supported for
number of concurrent requests equal to 512.
- The Ring number. Rx ring number = Tx ring number + 8
#
The format of the logical instances are:
- For crypto:
Cy<n>Name = "xxxx"
Cy<n>BankNumber = 0-31
Cy<n>IsPolled = 0|1
Cy<n>NumConcurrentSymRequests = 64|128|256|512|1024|2048|4096
Cy<n>NumConcurrentAsymRequests = 64|128|256|512|1024|2048|4096
Cy<n>RingAsymTx = 0|1
Cy<n>RingAsymRx = 8|9
Cy<n>RingSymTx = 2|3
Cy<n>RingSymRx = 10|11
Cy<n>RingNrbgTx = 4|5
Cy<n>RingNrbgRx = 12|13
#
- For Data Compression
Dc<n>Name = "xxxx"
Dc<n>BankNumber = 0-31
Dc<n>IsPolled = 0|1
Dc<n>NumConcurrentRequests = 64|128|256|512|1024|2048|4096
Dc<n>RingTx = 6|7
Dc<n>RingRx = 14|15
#
Where:

Acceleration Driver Configuration File - Earlier File Format—Intel® Communications Chipset 8925
to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 147

- n is the number of this logical instance starting at 0.
- xxxx may be any ascii value which identifies the logical instance.
#
##

##
Kernel Instances Section
##
[KERNEL]
NumberCyInstances = 4
NumberDcInstances = 2

Crypto - Kernel instance #0

Cy0Name = "IPSec0"
Cy0BankNumber = 0
Cy0IsPolled = 0
Cy0NumConcurrentSymRequests = 512
Cy0NumConcurrentAsymRequests = 64
Cy0RingAsymTx = 0
Cy0RingAsymRx = 8
Cy0RingSymTx = 2
Cy0RingSymRx = 10
Cy0RingNrbgTx = 4
Cy0RingNrbgRx = 12

Crypto - Kernel instance #1
Cy1Name = "IPSec1"
Cy1BankNumber = 1
Cy1IsPolled = 0
Cy1NumConcurrentSymRequests = 512
Cy1NumConcurrentAsymRequests = 64
Cy1RingAsymTx = 0
Cy1RingAsymRx = 8
Cy1RingSymTx = 2
Cy1RingSymRx = 10
Cy1RingNrbgTx = 4
Cy1RingNrbgRx = 12

Crypto - Kernel instance #2

Cy2Name = "IPSec2"
Cy2BankNumber = 0
Cy2IsPolled = 0
Cy2NumConcurrentSymRequests = 512
Cy2NumConcurrentAsymRequests = 64
Cy2RingAsymTx = 1
Cy2RingAsymRx = 9
Cy2RingSymTx = 3
Cy2RingSymRx = 11
Cy2RingNrbgTx = 5
Cy2RingNrbgRx = 13

Crypto - Kernel instance #3
Cy3Name = "IPSec3"
Cy3BankNumber = 1
Cy3IsPolled = 0
Cy3NumConcurrentSymRequests = 512
Cy3NumConcurrentAsymRequests = 64
Cy3RingAsymTx = 1
Cy3RingAsymRx = 9
Cy3RingSymTx = 3
Cy3RingSymRx = 11
Cy3RingNrbgTx = 5
Cy3RingNrbgRx = 13

Data Compression - Kernel instance #0
Dc0Name = "IPComp0"
Dc0IsPolled = 0
Dc0NumConcurrentRequests = 512

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File - Earlier File Format

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
148 Order No.: 330751-001

Dc0BankNumber = 0
Dc0RingTx = 6
Dc0RingRx = 14

Data Compression - Kernel instance #1
Dc1Name = "IPComp1"
Dc1IsPolled = 0
Dc1NumConcurrentRequests = 512
Dc1BankNumber = 1
Dc1RingTx = 6
Dc1RingRx = 14

##
User Process Instance Section
##
[SSL]
NumberCyInstances = 4
NumberDcInstances = 2

Crypto - User instance #0
Cy0Name = "SSL0"
Cy0BankNumber = 2
Cy0IsPolled = 1
Cy0NumConcurrentSymRequests = 512
Cy0NumConcurrentAsymRequests = 64
Cy0RingAsymTx = 0
Cy0RingAsymRx = 8
Cy0RingSymTx = 2
Cy0RingSymRx = 10
Cy0RingNrbgTx = 4
Cy0RingNrbgRx = 12

Crypto - User instance #1
Cy1Name = "SSL1"
Cy1BankNumber = 3
Cy1IsPolled = 1
Cy1NumConcurrentSymRequests = 512
Cy1NumConcurrentAsymRequests = 64
Cy1RingAsymTx = 0
Cy1RingAsymRx = 8
Cy1RingSymTx = 2
Cy1RingSymRx = 10
Cy1RingNrbgTx = 4
Cy1RingNrbgRx = 12

Crypto - User instance #2
Cy2Name = "SSL2"
Cy2BankNumber = 2
Cy2IsPolled = 1
Cy2NumConcurrentSymRequests = 512
Cy2NumConcurrentAsymRequests = 64
Cy2RingAsymTx = 1
Cy2RingAsymRx = 9
Cy2RingSymTx = 3
Cy2RingSymRx = 11
Cy2RingNrbgTx = 5
Cy2RingNrbgRx = 13

Crypto - User instance #3
Cy3Name = "SSL3"
Cy3BankNumber = 3
Cy3IsPolled = 1
Cy3NumConcurrentSymRequests = 512
Cy3NumConcurrentAsymRequests = 64
Cy3RingAsymTx = 1
Cy3RingAsymRx = 9
Cy3RingSymTx = 3
Cy3RingSymRx = 11
Cy3RingNrbgTx = 5
Cy3RingNrbgRx = 13

Acceleration Driver Configuration File - Earlier File Format—Intel® Communications Chipset 8925
to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 149

Data Compression - User instance #0
Dc0Name = "UserDC0"
Dc0BankNumber = 2
Dc0IsPolled = 1
Dc0NumConcurrentRequests = 512
Dc0RingTx = 6
Dc0RingRx = 14

Data Compression - User instance #1
Dc1Name = "UserDC1"
Dc1BankNumber = 3
Dc1IsPolled = 1
Dc1NumConcurrentRequests = 512
Dc1RingTx = 6
Dc1RingRx = 14

Intel® Communications Chipset 8925 to 8955 Series Software—Acceleration Driver Configuration
File - Earlier File Format

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
150 Order No.: 330751-001

Appendix B Glossary

ADF Acceleration Driver Framework

AHCI Advanced Host Controller Interface

AP Application Processor

ASIC Application Specific Integrated Circuit

Coleto Creek Codename for the Intel® Communications Chipset 8925 to 8955
Series PCH

Crystal Beach Codename for a set of chipset functions that allows discrete PCI
Express* (PCIe*) adapters to achieve higher performance.

DID Device ID

DMA Direct Memory Access

DRGB Deterministic Random Bit Generator

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

EHCI Enhanced Host Controller Interface

GPIO General Purpose Input Output

GPL General Public License

IBV Independent BIOS Vendor

LPC Low Pincount Interface

MGF Mask Generation Function

MSI Message Signaled Interrupts

PCH Platform Controller Hub. In this manual, a Intel® Communications
Chipset 8925 to 8955 Series device that includes standard interfaces
and accelerator and I/O interfaces.

RCiEP Root Complex Integrated Endpoint

RTOS Real Time Operating System

SAL Service Access Layer

SATA Serial Advanced Technology Attachment

SGL Scatter Gather List

SIO Serial I/O

SMBus System Management Bus

Glossary—Intel® Communications Chipset 8925 to 8955 Series Software

Intel® Communications Chipset 8925 to 8955 Series Software
July 2014 Programmer's Guide
Order No.: 330751-001 151

SoC System-on-a-Chip

SPI Serial Peripheral Interconnect

SR-IOV Single Root I/O Virtualization

SSL Secure Sockets Layer

TLS Transport Layer Security

UART Universal Asynchronous Receiver/Transmitter

UEFI Unified Extensible Firmware Interface

UHCI Universal Host Controller Interface

USB Universal Serial Bus

WDT Watch Dog Timer

Intel® Communications Chipset 8925 to 8955 Series Software—Glossary

Intel® Communications Chipset 8925 to 8955 Series Software
Programmer's Guide July 2014
152 Order No.: 330751-001

	Revision History
	Contents
	Figures
	Tables

	Overview
	1.0 Introduction
	1.1 Terminology
	1.2 Document Organization
	1.3 Product Documentation
	1.4 Typographical Conventions

	2.0 Platform Overview
	2.1 Platform Synopsis
	2.2 Determining the PCH SKU Type
	2.3 Determining the PCH Device Stepping

	3.0 Software Overview
	3.1 High-Level Software Architecture Overview
	3.2 Logical Instances
	3.2.1 Response Processing
	3.2.1.1 Interrupt Mode
	3.2.1.2 Polled Mode

	3.3 Operating System Support
	3.4 OpenSSL* Library Inclusion and Usage
	3.5 Support for Multiple Acceleration Hardware Generations

	Core and Chipset Drivers
	4.0 Embedded Drivers
	4.1 Overview
	4.2 USB Drivers
	4.3 SATA Drivers
	4.4 LPC Device
	4.4.1 Watch Dog Timer Drivers
	4.4.2 Serial I/O Drivers

	4.5 SPI Drivers
	4.6 GPIO Drivers
	4.7 Crystal Beach DMA Application
	4.8 Non-Transparent Bridge (NTB) Driver
	4.9 Intel Technology Support
	4.9.1 Intel® Virtualization Technology (Intel® VT)
	4.9.2 Intel® Simultaneous Multi-Threading (Intel® SMT)
	4.9.3 Intel® 64

	4.10 Other Supported Technologies and Standards

	Acceleration Drivers
	5.0 Acceleration Drivers Overview
	5.1 Hardware Assisted Rings
	5.2 Basic Software Context for Acceleration Drivers
	5.3 Linux* Software Context for Acceleration Drivers
	5.4 Acceleration Drivers
	5.4.1 Framework Overview
	5.4.2 Service Access Layer
	5.4.3 Acceleration Driver Framework
	5.4.4 Acceleration Driver Configuration File
	5.4.5 Utility for Loading Configuration Files and Sending Events to the Driver - adf_ctl

	5.5 Acceleration Architecture in Kernel and User Space
	5.5.1 Communication Between User Space and Kernel Space Drivers
	5.5.2 User Space Memory Allocation
	5.5.2.1 Accelerator Driver Memory Allocation
	5.5.2.2 Application Payload Memory Allocation

	5.5.3 User Space Additional Functions
	5.5.4 User Space Configuration
	5.5.5 User Space Response Processing
	5.5.5.1 User Space Interrupt Mode
	5.5.5.2 User Space Polled Mode

	5.6 Managing Acceleration Devices Using qat_service
	5.7 Debug Feature
	5.8 Heartbeat Feature and Recovery from Hardware Errors
	5.8.1 User Proc Entry Read (not Enabled by Default)
	5.8.2 User Application Heartbeat APIs (not Enabled by Default)
	5.8.3 Handling Heartbeat Failures
	5.8.3.1 AER and Uncorrectable Errors

	5.8.4 Handling Device Failures in a Virtualized Environment

	5.9 Driver Threading Model
	5.9.1 Thread-less Mode

	5.10 Stateful Compression Status Codes
	5.11 Stateful Compression Level Details
	5.12 Stateless Compression Level Details
	5.13 Acceleration Driver Error Scenarios
	5.13.1 User Space Process Crash
	5.13.2 Hardware Hang Detected by Heartbeat
	5.13.3 Hardware Error Detected by AER
	5.13.4 Virtualization: User Space Process Crash (in Guest OS)
	5.13.5 Virtualization: Guest OS Kernel Crash
	5.13.6 Virtualization: Hardware Hang Detected by Heartbeat
	5.13.7 Virtualization: Hardware Hang Detected by AER

	5.14 Build Flag Summary
	5.15 Compiling with Debug Symbols

	6.0 Acceleration Driver Configuration File
	6.1 Configuration File Overview
	6.2 General Section
	6.2.1 General Parameters
	6.2.2 Statistics Parameters
	6.2.3 Optimized Firmware for Wireless Applications

	6.3 Logical Instances Section
	6.3.1 [KERNEL] Section
	6.3.1.1 Cryptographic Logical Instance Parameters
	6.3.1.2 Data Compression Logical Instance Parameters

	6.3.2 [DYN] Section
	6.3.2.1 Dynamic Instance Configuration Example

	6.3.3 User Process [xxxxx] Sections
	6.3.3.1 Maximum Number of Process Calculations

	6.4 Configuring Multiple PCH Devices in a System
	6.5 Configuring Multiple Processes on a Multiple-Device System
	6.6 Sample Configuration File (V2)
	6.7 Compression Only SKU
	6.8 Configuration File Version 2 Differences

	7.0 Secure Architecture Considerations
	7.1 Terminology
	7.1.1 Threat Categories
	7.1.2 Attack Mechanism
	7.1.3 Attacker Privilege
	7.1.4 Deployment Models

	7.2 Threat/Attack Vectors
	7.2.1 General Mitigation
	7.2.2 General Threats
	7.2.2.1 DMA
	7.2.2.2 Intentional Modification of IA Driver
	7.2.2.3 Modification of Intel® QuickAssist Accelerator Firmware
	7.2.2.4 Modification of the PCH Configuration File
	7.2.2.5 Malicious Application Code
	7.2.2.6 Contrived Packet Stream

	7.2.3 Threats Against the Cryptographic Service
	7.2.3.1 Reading and Writing of Cryptographic Keys
	7.2.3.2 Modification of Public Key Firmware
	7.2.3.3 Failure of the Entropy Source for the Random Number Generator
	7.2.3.4 Interference Among Users of the Random Number Service

	7.2.4 Data Compression Service Threats
	7.2.4.1 Read/Write of Save/Restore Context
	7.2.4.2 Stateful Behavior
	7.2.4.3 Incomplete or Malformed Huffman Tree
	7.2.4.4 Contrived Packet Stream

	8.0 Supported APIs
	8.1 Intel® QuickAssist Technology APIs
	8.1.1 Intel® QuickAssist Technology API Limitations
	8.1.1.1 Dynamic Compression for Data Compression Service
	8.1.1.2 Maximal Expansion with Auto Select Best Feature for Data Compression Service
	8.1.1.3 Maximal Expansion and Destination Buffer Size

	8.1.2 Data Plane APIs Overview
	8.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs
	8.1.2.2 Usage Constraints on the Data Plane APIs
	8.1.2.3 Cryptographic API Descriptions

	8.2 Additional APIs
	8.2.1 Dynamic Instance Allocation Functions
	8.2.1.1 icp_sal_userCyGetAvailableNumDynInstances
	8.2.1.2 icp_sal_userDcGetAvailableNumDynInstances
	8.2.1.3 icp_sal_userCyInstancesAlloc
	8.2.1.4 icp_sal_userDcInstancesAlloc
	8.2.1.5 icp_sal_userCyFreeInstances
	8.2.1.6 icp_sal_userDcFreeInstances

	8.2.2 IOMMU Remapping Functions
	8.2.2.1 icp_sal_iommu_get_remap_size
	8.2.2.2 icp_sal_iommu_map
	8.2.2.3 icp_sal_iommu_unmap
	8.2.2.4 IOMMU Remapping Function Usage

	8.2.3 Polling Functions
	8.2.3.1 icp_sal_pollBank
	8.2.3.2 icp_sal_pollAllBanks
	8.2.3.3 icp_sal_CyPollInstance
	8.2.3.4 icp_sal_DcPollInstance
	8.2.3.5 icp_sal_CyPollDpInstance
	8.2.3.6 icp_sal_DcPollDpInstance

	8.2.4 Random Number Generation Functions
	8.2.4.1 icp_sal_drbgGetEnropyInputFuncRegister
	8.2.4.2 icp_sal_drbgGetInstance
	8.2.4.3 icp_sal_drbgGetNonceFuncRegister
	8.2.4.4 icp_sal_drbgHTGenerate
	8.2.4.5 icp_sal_drbgHTGetTestSessionSize
	8.2.4.6 icp_sal_drbgHTInstantiate
	8.2.4.7 icp_sal_drbgHTReseed
	8.2.4.8 icp_sal_drbgIsDFReqFuncRegister
	8.2.4.9 icp_sal_nrbgHealthTest
	8.2.4.10 DRBG Health Test and cpaCyDrbgSessionInit Implementation Detail

	8.2.5 User Space Access Configuration Functions
	8.2.5.1 icp_sal_userStart
	8.2.5.2 icp_sal_userStartMultiProcess
	8.2.5.2.1 icp_sal_userStartMultiProcess Usage

	8.2.5.3 icp_sal_userStop

	8.2.6 User Space Heartbeat Functions
	8.2.6.1 icp_sal_check_device
	8.2.6.2 icp_sal_check_all_devices

	8.2.7 Version Information Function
	8.2.7.1 icp_sal_getDevVersionInfo

	8.2.8 PfVfComms Feature Functions
	8.2.8.1 icp_get_pfvfcomms_status
	8.2.8.2 icp_send_msg_to_vf / icp_send_msg_to_pf
	8.2.8.3 icp_get_msg_from_vf / icp_get_msg_from_pf

	8.2.9 Reset Device Function
	8.2.9.1 icp_reset_device

	Applications and Usage Models
	9.0 Application Usage Guidelines
	9.1 Mapping Service Instances to Hardware Accelerators on the PCH
	9.1.1 Processor and PCH Device Communication
	9.1.2 Service Instances and Interaction with the Hardware
	9.1.3 Service Instance Configuration
	9.1.4 Guidelines for Using Multiple Intel® QuickAssist Instances for Load Balancing in Cryptography Applications

	9.2 Cryptography Applications
	9.2.1 IPsec and SSL VPNs
	9.2.2 Encrypted Storage
	9.2.3 Web Proxy Appliances

	9.3 Data Compression Applications
	9.3.1 Compression for Storage
	9.3.2 Data Deduplication and WAN Acceleration

	Appendix A Acceleration Driver Configuration File - Earlier File Format
	A.1 Configuration File Overview
	A.2 General Section
	A.2.1 General Parameters
	A.2.2 Statistics Parameters

	A.3 [Accelerator0] Section
	A.3.1 Interrupt Coalescing Parameters
	A.3.2 Affinity Parameters

	A.4 Logical Instances Section
	A.4.1 [KERNEL] Section
	A.4.1.1 User Process Instance [xxxxx] Sections
	A.4.1.2 Cryptographic Logical Instance Parameters
	A.4.1.3 Data Compression Logical Instance Parameters

	A.5 Sample Configuration File (V1)

	Appendix B Glossary

