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CHAPTER 1

Defining Synthetic Data

Interest in synthetic data has been growing quite rapidly over the
last few years. This has been driven by two simultaneous trends. The
first is the demand for large amounts of data to train and build arti‐
ficial intelligence and machine learning (AIML) models. The second
is recent work that has demonstrated effective methods to generate
high-quality synthetic data. Both have resulted in the recognition
that synthetic data can solve some difficult problems quite effec‐
tively, especially within the AIML community. Groups and busi‐
nesses within companies like NVIDIA, IBM, and Alphabet, as well
as agencies such as the US Census Bureau, have adopted different
types of data synthesis to support model building, application devel‐
opment, and data dissemination.

This report provides a general overview of synthetic data generation,
with a focus on the business value and use cases, and high-level cov‐
erage of techniques and implementation practices. We aim to
answer the questions that a business reader would typically ask (and
has typically asked), but at the same time provide some direction to
analytics leadership seeking to understand the options available and
where to look to get started.

We show how synthetic data can accelerate AIML projects. Some
problems that can be tackled by using synthetic data would be too
costly or dangerous (e.g., in the case of training models controlling
autonomous vehicles) to solve using more traditional methods, or
simply cannot be done otherwise.
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AIML projects run in different industries, and the multiple industry
use cases that we include in this report are intended to give you a
flavor of the broad applications of data synthesis. We define an
AIML project quite broadly as well, to include, for example, the
development of software applications that have AIML components.

The report is divided into four chapters. This introductory chapter
covers basic concepts and presents the case for synthetic data. Chap‐
ter 2 presents the data synthesis process and pipelines, scaling
implementation in the enterprise, and best practices. A series of
industry-specific case studies follow in Chapter 3. Chapter 4 is
forward-looking and considers where this technology is headed.

In this chapter, we start by defining the types of synthetic data. This
is followed by a description of the benefits of using synthetic data—
the types of problems that data synthesis can solve. Given the recent
adoption of this approach into practice, building trust in analysis
results from synthetic data is important. We therefore also present
examples supporting the utility of synthetic data and discuss meth‐
ods to build trust.

Alternatives to data synthesis exist, and we present these next with
an assessment of strengths and weaknesses. This chapter then closes
with an overview of methods for synthetic data generation.

What Is Synthetic Data?
At a conceptual level, synthetic data is not real data but is data that
has been generated from real data and that has the same statistical
properties as the real data. This means that an analyst who works
with a synthetic dataset should get analysis results that are similar
to those they would get with real data. The degree to which a syn‐
thetic dataset is an accurate proxy for real data is a measure of util‐
ity. Furthermore, we refer to the process of generating synthetic data
as synthesis.

Data in this context can mean different things. For example, data
can be structured data (i.e., rows and columns), as one would see in a
relational database. Data can also be unstructured text, such as doc‐
tors’ notes, transcripts of conversations among people or with digital
assistants, or online interactions by email or chat. Furthermore,
images, videos, audio, and virtual environments are also types of
data that can be synthesized. We have seen examples of fake images
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in the machine learning literature; for instance, realistic faces of
people who do not exist in the real world can be created, and you
can view the results online.

Synthetic data is divided into two types, based on whether it is gen‐
erated from actual datasets or not.

The first type is synthesized from real datasets. The analyst will have
some real datasets and then build a model to capture the distribu‐
tions and structure of that real data. Here, structure means the mul‐
tivariate relationships and interactions in the data. Then the
synthetic data is sampled or generated from that model. If the model
is a good representation of the real data, the synthetic data will have
similar statistical properties as the real data.

For example, a data science group specializing in understanding
customer behaviors would need large amounts of data to build its
models. But because of privacy or other concerns, the process for
getting access to that customer data is slow and does not provide
good enough data when it does arrive because of extensive masking
and redaction of information. Instead, a synthetic version of the
production datasets can be provided to the analysts for building
their models. The synthesized data will have fewer constraints put
on its use and would allow them to progress more rapidly.

The second type of synthetic data is not generated from real data. It
is created by using existing models or by using background knowl‐
edge of the analyst. These existing models can be statistical models
of a process (for example, developed through surveys or other data
collection mechanisms) or they can be simulations. Simulations can
be created, for instance, by gaming engines that create simulated
(and synthetic) images of scenes or objects, or by simulation engines
that generate shopper data with particular characteristics (say, age
and gender) of people who walk past the site of a prospective store
at different times of the day.

Background knowledge can be, for example, a model of how a
financial market behaves based on textbook descriptions or based
on the behaviors of stock prices under various historical conditions,
or it can be knowledge of the statistical distribution of human traffic
in a store based on years of experience. In such a case, it is relatively
straightforward to create a model and sample from it to generate
synthetic data. If the analyst’s knowledge of the process is accurate,
the synthetic data will behave in a manner that is consistent with
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real-world data. Of course, this works only when the phenomenon
of interest is truly well understood.

As a final example, when a process is new or not well understood by
the analyst and there is no real historical data to use, an analyst can
make some simple assumptions about the distributions and correla‐
tions among the variables involved in the process. For example, the
analyst can make a simplifying assumption that the variables have
normal distributions and “medium” correlations among them, and
create data that way. This type of data will likely not have the same
properties as real data but can still be useful for some purposes, such
as debugging an R data analysis program or for some types of per‐
formance testing of software applications.

For some use cases, having high utility will matter quite a bit. In
other cases, medium or even low utility may be acceptable. For
example, if the objective is to build AIML models to predict cus‐
tomer behavior and make marketing decisions based on that, high
utility will be important. On the other hand, if the objective is to see
if your software can handle a large volume of transactions, the data
utility expectations will be considerably less. Therefore, understand‐
ing what data, models, simulators, and knowledge exist as well as the
requirements for data utility will drive the specific approach to use
for generating the synthetic data.

Table 1-1 provides a summary of the synthetic data types.

Table 1-1. Types of data synthesis with their utility and privacy
implications

Type of synthetic data Utility
Generated from real (nonpublic) datasets Can be quite high

Generated from real public data Can be high, although limitations exist because
public data tends to be de-identified or aggregated

Generated from an existing model of a
process, which can also be represented in a
simulation engine

Will depend on the fidelity of the existing
generating model

Based on analyst knowledge Will depend on how well the analyst knows the
domain and the complexity of the phenomenon

Generated from generic assumptions not
specific to the phenomenon

Will likely be low
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1 Government Accountability Office, “Artificial Intelligence: Emerging Opportunities,
Challenges, and Implications,” GAO-18-142SP (March 2018). https://oreil.ly/Cpyli.

2 McKinsey Global Institute, “Artificial Intelligence: The Next Digital Frontier?” (June
2017). https://oreil.ly/zJ8oZ.

3 Deloitte Insights, “State of AI in the Enterprise, 2nd Edition” (2018). https://oreil.ly/
l07tJ.

Now that you have an understanding of the types of synthetic data,
we will look at the benefits of data synthesis overall and for some of
these data types specifically.

The Benefits of Synthetic Data
In this section, we present several ways that data synthesis can solve
practical problems with AIML projects. The benefits of synthetic
data can be dramatic. It can make impossible projects doable, signif‐
icantly accelerate AIML initiatives, or result in material improve‐
ment in the outcomes of AIML projects.

Improving Data Access
Data access is critical to AIML projects. The data is needed to train
and validate models. More broadly, data is also needed for evaluat‐
ing AIML technologies that have been developed by others, as well
as for testing AIML software applications or applications that incor‐
porate AIML models.

Typically, data is collected for a particular purpose with the consent
of the individual; for example, for participating in a webinar or for
participating in a clinical research study. If you want to use that
same data for a different purpose, such as for building a model to
predict what kind of person is likely to sign up for a webinar or who
would participate in a study, then that is considered a secondary
purpose.

Access to data for secondary analysis is becoming problematic. The
US Government Accountability Office1 and the McKinsey Global
Institute2 both note that accessing data for building and testing
AIML models is a challenge for their adoption more broadly. A
Deloitte analysis concluded that data access issues are ranked in the
top three challenges faced by companies when implementing AI.3 A
recent survey from MIT Technology Review reported that almost
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4 MIT Technology Review Insights, “The Global AI Agenda: Promise, Reality, and a
Future of Data Sharing” (March 2020). https://oreil.ly/FHg87

5 Ben Lorica and Paco Nathan, The State of Machine Learning Adoption in the Enterprise
(O’Reilly).

6 Khaled El Emam, et al., “A Review of Evidence on Consent Bias in Research,” American
Journal of Bioethics 13, no. 4 (2013): 42–44. https://oreil.ly/SiG2N.

7 However, one should follow good practices, such as providing notice to individuals
about how the data is used and disclosed, and having ethics oversight on the uses of
data and AIML models.

half of the respondents identified data availability as a constraint to
the use of AI with their company.4 At the same time, the public is
getting uneasy about how their data is used and shared, and privacy
laws are becoming more strict. A recent survey by O’Reilly highligh‐
ted the privacy concerns of companies adopting machine learning
models, with more than half of companies experienced with AIML
checking for privacy issues.5 In the same MIT survey mentioned
previously, 64% of respondents note that “changes in regulation or
greater regulatory clarity on data sharing” is a development that
would be most likely to lead to more data sharing.

Contemporary privacy regulations, such as the US Health Insurance
Portability and Accountability Act (HIPAA) and the General Data
Protection Regulation (GDPR) in Europe, impose constraints or
requirements to using personal data for a secondary purpose. An
example is a requirement to get an additional consent or authoriza‐
tion from individuals. In many cases, this is not practical and can
introduce bias into the data because consenters and nonconsenters
differ in important characteristics.6

Data synthesis can give the analyst, rather efficiently and at scale,
realistic data to work with. Given that synthetic data would not be
considered identifiable personal data, privacy regulations would not
apply, and obligations of additional consent to use the data for sec‐
ondary purposes would not be required.7

Improving Data Quality
Given the difficulty in getting access to data, many analysts try to
just use open source or public datasets. These can be a good starting
point, but they lack diversity and are often not well matched to the
problems that the models are intended to solve. Furthermore, open
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data may lack sufficient heterogeneity for robust training of models.
For example, they may not capture rare cases well enough.

Sometimes the real data that exists is not labeled. Labeling a large
number of examples for supervised learning tasks can be time-
consuming, and manual labeling is error prone. Again, synthetic
labeled data can be generated to accelerate model development. The
synthesis process can ensure high accuracy in the labeling.

Using Synthetic Data for Exploratory Analysis
Analysts can use synthetic data models to validate their assumptions
and demonstrate the kind of results that can be obtained with their
models. In this way, the synthetic data can be used in an exploratory
manner. Knowing that they have interesting and useful results, the
analysts can then go through the more complex process of getting
the real data (either raw or de-identified) to build the final versions
of their models.

For example, an analyst who is a researcher could use their explora‐
tory models on synthetic data to then apply for funding to get access
to the real data, which may require a full protocol and multiple lev‐
els of approvals. In such an instance, work with synthetic data that
does not produce good models or actionable results would still be
beneficial because analysts would have avoided the extra effort
required to get access to the real data for a potentially futile analysis.

Another valuable use of synthetic data is for training an initial
model before the real data is accessible. Then when the analyst gets
the real data, they can use the trained model as a starting point for
training with the real data. This can significantly expedite the con‐
vergence of the real data model (hence reducing compute time), and
can potentially result in a more accurate model. This is an example
of using synthetic data for transfer learning.

Using Synthetic Data for Full Analysis
A validation server can be deployed to run the analysis code that
worked on the synthetic data on the real data. An analyst would per‐
form all of their analysis on the synthetic data, and then submit the
code that worked on the synthetic data to a secure validation server
that has access to the real data, as illustrated in Figure 1-1. Because
the synthetic data would be structured in the same way as the origi‐
nal data, the code that worked on the synthetic data should work
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directly on the real data. The results are then sent back to the analyst
to confirm their models.

This is not intended to be an interactive system. The output from
the validation server needs to be checked to ensure that no revealing
information is being sent out by the code output. Therefore, it is
intended to be used once or twice by the analyst at the very end of
their analysis. It does provide a way to provide assurance to the ana‐
lysts that the synthesis results are replicable on the real data.

Figure 1-1. The setup for a validation server used to execute final code
that produced results on the synthetic data (adapted from Replica
Analytics Ltd., with permission)

When the utility of the synthetic data is high enough, the analysts
can get similar results with the synthetic data as they would have
with the real data, and no validation server is required. In such a
case, the synthetic data plays the role of a proxy for the real data.
This scenario is playing out in more and more use cases: as synthesis
methods improve over time, this proxy outcome is going to become
more common.

Replacing Real Data That Does Not Exist
In some situations, real data may not exist. The analyst may be try‐
ing to model something completely new, or the creation or collec‐
tion of a real dataset from scratch may be cost prohibitive or
impractical. Synthesized data can cover edge or rare cases that are
difficult, impractical, or unethical to collect in the real world.

Synthetic data can also be used to increase the heterogeneity of a
training dataset, which can result in a more robust AIML model. For
example, unusual cases in which data does not exist or is difficult to
collect can be synthesized and included in the training dataset. In
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8 Jerome P. Reiter, “New Approaches to Data Dissemination: A Glimpse into the Future
(?),” CHANCE 17, no. 3 (June 2004): 11–15. https://oreil.ly/x89Vd.

that case, the utility of the synthetic data is measured in the robust‐
ness increment it gives to the AIML models.

We have seen that synthetic data can play a key role in solving a ser‐
ies of practical problems. One critical factor for the adoption of data
synthesis, however, is trust in the generated data. It has long been
recognized that high data utility will be needed for the broad adop‐
tion of data synthesis methods.8 This is the topic we turn to next.

Learning to Trust Synthetic Data
Initial interest in synthetic data started in the early ’90s with propos‐
als to use multiple imputation methods to generate synthetic data.
Imputation in general is the process of replacing missing data values
with estimates. Missing data can occur, for example, in a survey if
some respondents do not complete a questionnaire.

Accurate imputed data requires the analyst to build a model of the
phenomenon of interest by using the available data and then use
that model to estimate what the imputed value should be. To build a
valid imputation model, the analyst needs to know how the data will
be eventually used. With multiple imputation, you create multiple
imputed values to capture the uncertainty in these estimated values.
This process can work reasonably well if you know how the data will
be used.

In the context of using imputation for data synthesis, the real data is
augmented with synthetic data by using the same type of imputation
techniques. In such a case, the real data is used to build an imputa‐
tion model that is then used to synthesize new data.

The challenge is that if your imputation models are different from
the eventual uses of the data, the imputed values may not be very
reflective of the real values, and this will introduce errors in the data.
This risk of building the wrong synthesis model has led to historic
caution in the application of synthetic data.

More recently, statistical machine learning models have been used
for data synthesis. The advantage of these models is that they can
capture the distributions and complex relationships among the
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9 A review of utility assessment approaches can be found in Khaled El Emam, “Seven
Ways to Evaluate the Utility of Synthetic Data,” IEEE Security and Privacy (July/August
2020).

10 Aref N. Dajani, et al., “The Modernization of Statistical Disclosure Limitation at the
U.S. Census Bureau,” Census Scientific Advisory Committee Meeting (2017). https://
oreil.ly/OL4Oe.

variables quite well. In effect, they discover the underlying model in
the data rather than having that model prespecified by the analyst.
And now with deep learning data synthesis, these models can be
quite accurate in that they can capture much of the signal in the data
—even subtle signals.

Therefore, we are getting closer to the point where the generative
models available today are producing datasets that are becoming
quite good proxies for real data. There are also ways to assess the
utility of synthetic data more objectively.

For example, we can compare the analysis results from synthetic
data with the analysis results from the real data. If we do not know
what analysis will be performed on the synthetic data, a range of
possible analysis can be tried based on known examples of uses of
that data. Or an “all models” evaluation can be performed in which
all possible models are built from the real and synthetic datasets and
compared.9

The US Census Bureau has, at the time of writing, decided to lever‐
age synthetic data for some of its most heavily used public datasets,
the 2020 decennial census data. For its tabular data disseminations,
the agency will create a synthetic dataset from the collected
individual-level census data and then produce the public tabulations
from that synthetic dataset. A mixture of formal and nonformal
methods will be used in the synthesis process.10 We provide an over‐
view of the synthesis process in Chapter 2. This, arguably, demon‐
strates the large-scale adoption of data synthesis for one of the most
critical and heavily used datasets available today.

As organizations build trust in synthetic data, they will move from
exploratory analysis use cases, to the use of a validation server, and
then to using synthetic data as a proxy for real data.

A legitimate question is what are the other approaches that are avail‐
able today to access data for AIML purposes, in addition to data
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11 Khaled El Emam and Luk Arbuckle, Anonymizing Health Data: Case Studies and Meth‐
ods to Get You Started (O’Reilly 2014).

synthesis? We discuss these approaches, as well as their advantages
and disadvantages relative to data synthesis in the following section.

Other Approaches to Accessing Data
When real data exists, two practical approaches, in addition to data
synthesis, are available today that can be used to get access to the
data. The first is de-identification. The second is secure multiparty
computation.

Practical risk-based de-identification involves applying transforma‐
tions to the data and putting in place additional controls (security,
privacy, and contractual) to manage overall re-identification risks. A
transformation can be, for example, generalizing a date of birth to a
year of birth or a five-year range. Another transformation to data is
to add noise to dates of events. Examples of controls include access
controls to data and systems, performing background checks and
training of analysts on privacy, and the use of encryption for data in
transit and at rest. This process has worked well historically with
clearly defined methodologies.11

As the complexity of datasets that are being analyzed increases,
more emphasis is being put on the use of controls to manage the
risk. The reason is that additional transformation would reduce the
value of the data. Therefore, to ensure that the overall risk is accept‐
able, more controls are being put in place. This makes the econom‐
ics of this kind of approach more challenging.

Data synthesis requires less manual intervention than de-
identification, and there is no hard requirement for additional con‐
trols to be implemented by the synthetic data users.

The second approach that can be applied to get access to the data is
to use secure multiparty computation. This technology allows com‐
putations to be performed on encrypted or garbled data; typically,
multiple independent entities perform the computation collabora‐
tively without sharing or leaking any raw data among themselves.
There are multiple ways to do this, such as using secret sharing tech‐
niques (the data is randomly split among the collaborating entities)
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12 Khaled El Emam, et al., “Secure Surveillance of Antimicrobial Resistant Organism Col‐
onization or Infection in Ontario Long Term Care Homes,” PLOS ONE 9, no. 4 (2014).
https://oreil.ly/9dzJ4.

or homomorphic encryption techniques (the data is encrypted, and
computations are performed on the encrypted values).

In general, to use secure computation techniques, the analytics that
will be applied need to be known in advance, and the security prop‐
erties of each analysis protocol must be validated. A good example
is in public health surveillance: the rate of infections in long-term
care homes was aggregated without revealing any individual home’s
rate.12 This works well in the surveillance case where the analysis is
well defined and static, but setting up secure multiparty computa‐
tion protocols in practice is complex.

Perhaps more of an issue is that few people understand the secure
computation technology, the methods underlying many of these
techniques, and can perform these security proofs. This creates key
dependencies on very few skilled resources.

Once you have made a decision to generate and use synthetic data,
you can turn to the next section for an overview of specific techni‐
ques to do so.

Generating Synthetic Data from Real Data
In this section, we consider methods for generating synthetic data
from real data. Other approaches—for instance, using simulators—
are discussed in Chapter 3 since they are more specific to the appli‐
cation domain.

At a general level, two classes of methods generate synthetic data
from real data. Both have a generation component followed by a dis‐
crimination component. The generation component builds a model
of the real data and generates synthetic data from that model. The
discrimination component compares the generated data with the real
data. If this comparison concludes that the generated data is very
different from the real data, the generation parameters are adjusted
and then new synthetic data is generated. The process iterates until
acceptable synthetic data is produced.

12 | Chapter 1: Defining Synthetic Data
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National University of Singapore, TRA6/18 (June 2018). https://oreil.ly/qLh0b.

An acceptable synthetic dataset is largely indistinguishable from the
real data. However, we must be careful not to build a model that
exactly replicates the original data. Such overfitting can create its
own set of problems—the key problem being that the synthetic data
can have nontrivial privacy problems.

The first approach to generating synthetic data is illustrated in
Figure 1-2. Here the input to synthesis is real data. Various techni‐
ques can be used for the generator.

One set of techniques fits the distributions of all the variables in the
real data (such as the type of distribution, the mean, and variance),
and computes the correlations among the variables. With that infor‐
mation, it is then possible to sample synthetic data by using Monte
Carlo simulation techniques while inducing the empirically
observed correlations.

There are more advanced techniques that consider more complex
interactions among the variables than just pairwise correlations
(such as multiway interactions). For example, some studies have
compared parametric, nonparametric, and artificial neural network
techniques for data synthesis.13 These empirical evaluations generate
many synthetic datasets and evaluate the data utility of these to
determine the extent to which the synthetic data produces analytics
results that are comparable to the real data.

Figure 1-2. In this general scheme for generating data, the primary
input is real data
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These evaluations have generally concluded that overall nonpara‐
metric statistical machine learning methods, such as decision trees,
produce the best results. They are also simple to use and tune.

Deep learning synthesis techniques, such as autoencoders, have not
been rigorously compared to nonparametric generators. However,
they would be a good alternative to decision trees and can also work
well in practice for data synthesis.

Other iterative techniques have been utilized, such as iterative pro‐
portional fitting (which is discussed in Chapter 3). These are suit‐
able for certain types of real data, such as when the source consists
of aggregate statistics rather than only individual-level or transac‐
tional data.

The second approach to generating synthetic data is illustrated in
Figure 1-3. Here, instead of real data being the input to the genera‐
tor, random data is provided as input. This is the configuration of
generative adversarial networks and similar architectures. The
model learns how to convert the random input into an acceptable
synthetic dataset that passes the discriminator test.

Things start to get quite interesting when some of these methods are
combined; for example, by creating ensembles to generate the syn‐
thetic data or by using the output of one method as the input to
another method. An ensemble would have more than one data gen‐
eration method, and, for example, would select the best synthesized
records to be retained. Opportunities certainly exist for further
experimentation and innovation in data synthesis methodologies.

Figure 1-3. In this general scheme for generating data, the primary
input is random data
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Conclusions
This chapter provided an overview of what synthetic data is, its ben‐
efits, and how to generate it, as well as some of the trends driving
the need for synthetic data. Both businesses and government alike
are utilizing synthetic data, as you’ll see in the use cases later in the
report. In the next chapter, we look at the processes, data pipelines,
and structure within an enterprise for data synthesis.
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CHAPTER 2

The Synthesis Process

In the previous chapter, we defined the types of synthetic data, its
benefits, and how to generate them. This chapter examines the prac‐
tical implementation of data synthesis in the enterprise.

The implementation of data synthesis at the enterprise level has two
key components: the process and the structure. The process consists
of the key steps that indicate how to integrate synthesis into a data
pipeline. The structure is typically operationalized through a Synthe‐
sis Center of Excellence. This would be a new entity within the orga‐
nization that provides support throughout the enterprise in terms of
process, technology, and governance for data synthesis implementa‐
tions. This chapter describes the process and structure in some
detail to provide guidance and present critical success factors.

In practice, the data synthesis capabilities described here may be
deployed by large organizations as well as solo practitioners in many
possible scenarios. Therefore, the following descriptions will need to
be tailored to accommodate specific circumstances.

Data Synthesis Projects
Data synthesis projects have some processes that are focused on the
generation of data and the validation of outputs, and other processes
that prepare real data so that it can be synthesized. Validation
includes both the evaluation of data utility and privacy assurance. In
this section, we describe these processes and provide guidance on
their application.
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Data Synthesis Steps
A general data synthesis process is shown in Figure 2-1. This illus‐
trates the complete process, although in certain situations and use
cases not all of the steps would be needed. We will go through each
of the steps next.

Figure 2-1. The overall data synthesis process (adapted from Replica
Analytics Ltd., with permission)

When synthetic data is generated from real data, we need to start
from the real data. The real data may be (a) individual-level datasets
(or household-level datasets, depending on the context), (b) aggre‐
gate data with summaries and cross-tabulations characterizing the
population, or (c) a combination of disaggregated and aggregate
data. The real data may be open data or nonpublic data coming from
production systems, for example.

The synthesis process itself can be performed using various techni‐
ques. We described some of these already in “Generating Synthetic
Data from Real Data” on page 12, such as decision trees, deep learn‐
ing techniques, and iterative proportional fitting. If real data does
not exist, existing models or simulations can be used for data syn‐
thesis. The exact choice will be driven by the specific problem that
needs to be solved and the level of data utility that is desired.

In many situations, a utility assessment needs to be done. This pro‐
vides assurance to the data consumers that the data utility is accept‐
able, and helps with building trust in the synthesized data. These
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utility comparisons can be formalized using various similarity met‐
rics so that they are repeatable and automated.

The utility assessment has two stages. The first stage consists of
general-purpose comparisons of parameters calculated from the real
and synthetic data; for example, comparisons of distributions and
bivariate correlations. These act as a “smoke test” of the synthesis
process. The second stage provides more workload-aware utility
assessments.

Workload-aware utility assessments involve doing analyses on the
synthetic data that are similar to the types of analyses that would be
performed on the real data if that was available. For example, if the
real data would be used to build multivariate prediction models,
utility assessment would examine the relative accuracy of the predic‐
tion models built on synthetic datasets.

When the synthetic data pertains to individuals and potential pri‐
vacy concerns exist, a privacy assurance assessment should also be
performed. Privacy assurance evaluates the extent to which real peo‐
ple can be matched to records in the synthetic data and how easy it
would be to learn something new if these matches were correct.
Some frameworks have been developed to assess this risk
empirically.

If the privacy assurance assessment demonstrates that the privacy
risks are elevated, it would be necessary to revisit the synthesis pro‐
cess and change some of the parameters. For example, the stopping
criterion for training the generative model may need to be adjusted
because it was overfit, causing the synthetic records to be quite simi‐
lar to the real records.

The utility assessment needs to be documented to provide the evi‐
dence that the level of utility is acceptable. Data analysts will likely
want that utility confidence for the data that they are working on.
And more importantly for compliance reasons, privacy assurance
assessments must also be documented.

In practice, data generation would include utility assessment every
time, and therefore they are bundled together as part of the Gener‐
ate Report component in Figure 2-1. Privacy assurance can be per‐
formed across multiple synthesis projects since the results are
expected to hold across similar datasets and would apply to the
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whole generation methodology. Hence that is bundled into a sepa‐
rate Privacy Assurance component in Figure 2-1.

The activities described here assume that the input real data is ready
to be synthesized. In practice, data preparation will be required
before real data can be synthesized. Data preparation is not unique
to synthesis projects; however, it is an important step that we need to
emphasize.

Data Preparation
When generating synthetic data from real data, as with any data
analysis project that starts with real data, there will be a need for
data preparation. This should be accounted for as part of the overall
process.

Data preparation includes the following:

• Data cleaning to remove errors in the data.
• Data standardization to ensure that all of the fields are using

consistent coding schemes.
• Data harmonization to ensure the data from multiple sources is

mapped to the same data dictionary (for example, all the Age
fields in the data, regardless of the field name and type, are rec‐
ognized as an Age field).

• Linking of data from multiple sources. It is not possible to link
synthetic data because the generated data does not match real
people, so all linking has to happen in advance.

With data synthesis, the generated data will reflect any data quality
challenges of the input data. Data analysis requires clean data, and it
is easier to clean the data before the synthesis process. Messy data
can distort the utility assessment process and cause convergence
of the synthesis models to take longer. Furthermore, as we discuss in
the next section with respect to pipelines, data synthesis may happen
multiple times for the same real dataset, and therefore it is much
easier to have data quality issues addressed once up front before
synthesis.

Real data will have certain deterministic characteristics, such as
structural zeros (these are zero values in the data that must be zero
because it wouldn’t make sense for them to be nonzero; i.e., the zero
is not a data collection artifact). For example, five-year-olds cannot
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have PhDs and get pregnant, so the “pregnancy?” count for some‐
one who is five will always be zero. Also body mass index (BMI) is a
deterministic derived calculation from height and weight. This
means that there is no uncertainty in deriving the BMI from height
and weight. The data synthesis process needs to capture these char‐
acteristics and address them. They can either be specified a priori as
a series of rules to be satisfied or as edits applied to the synthetic
data after the fact. This way, the synthesized data will maintain high
logical consistency.

A key consideration when implementing data synthesis is how to
integrate it within a data architecture or pipeline. In the next sec‐
tion, we address this issue and provide some common pipelines.

The Data Synthesis Pipeline
Understanding the data flows that are bringing in data to analysts
for their AIML projects is important for deciding where data prepa‐
ration and data synthesis should be implemented in that data flow. It
is easiest to explain this through a few examples. All of these exam‐
ples represent actual situations that we have seen in a variety of
industries (such as health care and financial services).

One relatively noncomplex setting is a single production dataset or a
single data source. In that case, the data flows are simple, as illustra‐
ted in Figure 2-2. The analysts receiving the synthetic data can then
work on that data internally or share it with external parties.

Figure 2-2. Synthesizing data from a production environment

In a more complex situation, the data source is in a different organi‐
zation. For example, the data may be coming from a financial insti‐
tution to an analytics consultancy or analytics vendor. This is
illustrated in the data flows in Figure 2-3.

Under these data flows, the data analysts/data consumers are not
performing the data synthesis because they do not have authority or
the controls to process the real data (which may be, for example,
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personally identifying financial information). Under contemporary
data protection regulations, such as the European GDPR, the obliga‐
tions and risks to process personally identifying information are not
trivial. Therefore, if the data analyst/data consumer can avoid these
obligations by having the data supplier or a trusted third party per‐
form the data synthesis, that would be preferable.

This data flow has three common scenarios. In scenario (a), the data
preparation and data synthesis both happen at the data supplier. In
scenario (b), a trusted third party performs both tasks. In scenario
(c), the data supplier performs the data preparation, and the trusted
third party performs the data synthesis. In this context, a trusted
third party would be an independent entity that has the authority
and controls in place to process the real data on behalf of the data
supplier.
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Figure 2-3. Synthesizing data coming from an external data supplier

The last set of examples of data flows that we will look at has many
data sources. These are extensions of the examples in Figure 2-3. In
the first data flow shown in Figure 2-4, the data is synthesized at the
source by each of multiple data suppliers. For example, the suppliers
may be different banks or different pharmacies sending the synthe‐
sized data to an analytics company to be pooled and to build models
on. Or a medical software developer may be collecting data centrally
from all of their deployed customers, with the synthesis performed
at the source within their software. Once the synthesized data rea‐
ches the data analysts, they can build AIML models without the
security and privacy obligations of working with real data.
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Figure 2-4. Synthesizing data from multiple external data suppliers

Another data flow with multiple data sources involves using a trus‐
ted third party who prepares and synthesizes the data on behalf of
all of them. The synthesis may be performed on each individual data
supplier’s data, or the data may be pooled first and then the synthe‐
sis performed on the pooled data. The exact setup will depend on
the characteristics of the data and the intervals that the data are
arriving at the third party. This is illustrated in Figure 2-5.
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Figure 2-5. Synthesizing data coming from multiple external data sup‐
pliers going through a single trusted third party that performs data
preparation and synthesis

The final data flow that we will consider is a variant of the one we
examined earlier. Here, the data preparation is performed at the data
source before being sent to the trusted third party, as illustrated in
Figure 2-6.
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Figure 2-6. Synthesizing data from multiple external data suppliers
going through a single trusted third party that performs only synthesis

The exact data flow used in a particular situation will depend on
multiple factors: (a) the number of data sources, (b) the costs and
readiness of the data analyst/data consumer to process real data and
meet any regulatory obligations, (c) the availability of qualified trus‐
ted third parties to perform these tasks, and (d) the ability of data
suppliers to implement automated data preparation and data syn‐
thesis processes. In this section, we have provided a set of common
pipelines that can be implemented, given the combinations of the
preceding factors.

In large organizations, data synthesis needs to be part of a broader
structure that is scalable and that can serve multiple business units
and client needs. We present the concept of program management,
which supports such scalability, in the next section.
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Synthesis Program Management
As data synthesis becomes a core part of an organization’s data pipe‐
line, an enterprise-wide structure is needed to ensure that the activi‐
ties are repeatable and scalable. Scale here can mean data synthesis
being used by multiple internal business units or as a capability used
by multiple clients. This can be supported at a programmatic level
by a center of excellence (CoE).

A Synthesis CoE is a mechanism that allows an organization to cen‐
tralize expertise and technology for the generation of synthetic data.
In large organizations, such centralization is beneficial because it
ensures learning over time (a shorter feedback loop), standardizes
methodologies across projects and datasets, and provides some
economies of scale with respect to the technologies and computa‐
tional capacity that may be needed.

The CoE can serve a single organization or, for that matter, can
serve a consortium of companies operating in the same space. The
end users of the synthetic data can be internal, or the CoE can sup‐
port clients in implementing, say, analytics tools by making appro‐
priate synthetic data available to them.

Those operating the CoE need both technical skills, to generate syn‐
thetic data and perform privacy assurance, and business analysis
skills, to be able to understand user requirements and translate those
into synthesis specifications. More importantly, change management
is key since transitioning analysts to using synthetic data will require
them to provide some education and possibly a series of utility
assessments.

CoE for an Analytics Service Provider
ConsultingCo provides management consulting services to a broad
spectrum of clients. Some years ago, the company created a data
analytics business that supports clients by helping them build data
analysis capacity (for example, finding, organizing, and cleaning the
data and building AIML models to inform the business lines) and
to do actual model building for them. One of the big challenges was
getting data early in the process.

Early on in these engagements, the clients often did not have a full
accounting of their data assets or the quality of that data. There
were also questions about the lawful basis for performing
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secondary analysis on that data. Complicating matters was the
internal reluctance by business lines to share data or to invest in
making data available for analytics before the value of the analytics
was demonstrated.

The data synthesis team at ConsultingCo provides synthetic data
early in these engagements to enable analysts to demonstrate the
value of using the data that is available to the clients and how mod‐
els that can be built would inform business decisions. The synthetic
data can be generated without real data or based on small samples
of real data.

The ability to demonstrate value early in the process greatly facili‐
tates getting buy-in for acquiring, cleaning, and using the data
within the organization. The synthesis CoE gives ConsultingCo a
competitive advantage in that the likelihood of success of these
engagements increases.

Data synthesis will be a new methodology for many organizations.
While the introduction of any data analytics method and technology
involves organizational change, data synthesis introduces specific
considerations during implementation. In the next section, best
practices for the implementation of data synthesis are discussed to
help increase your likelihood of a smooth adoption of this approach.

Best Practices for Implementing Data
Synthesis
The success of a synthetic data generation project depends on a set
of technical and change management factors. Change management is
used here to refer to the activities that are needed to support the
analysts and analytics leadership in changing their practices to
embed the use of synthetic data into their work. The practices we
cover in this section can have an oversized influence on the outcome
of implementing data synthesis.

While the amount of manual effort to synthesize data is relatively
small, many data synthesis methods are computationally intensive.
Therefore, we first discuss the importance of computing capacity.
We next consider the situation in which analysts need to work with
only cohorts rather than full datasets. The section closes with a
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discussion of the importance of validation studies, initially and con‐
tinuously, to get and maintain buy-in of data analysts and data users.

Having Sufficient Computing Capacity
One of the critical requirements for synthetic data generation is
computing capacity. This is especially true for large datasets, with
many variables and many transactions. In practice, synthesis models
require tuning, and being able to efficiently iterate can have a non‐
trivial impact on the speed of getting the data ready for subsequent
uses.

Even relatively straightforward decision tree data synthesis methods
can be computationally demanding. For example, most classification
decision tree algorithms will test all possible combinations when
performing their tree splits. This becomes a significant combinato‐
rial problem for variables with hundreds of categories, such as those
often seen in health datasets.

Moving to deep learning models for data synthesis, the computing
needs to build generative models for large datasets is not trivial. For
example, large structured data can have many variables or many
records—both demand computing capacity. The generation of a
large number of heterogeneous images through simulations or vir‐
tual environments also can require significant computation.

The next section discusses data quality and where the management
of data quality issues falls within the data synthesis process.

Synthesizing Cohorts Versus Full Datasets
As a practical matter, many data analyses and AIML models are per‐
formed or developed respectively on specific cohorts, or subsets of
the full dataset. For example, only a subset of consumers within a
specific age range may be of interest, or the analysis may be per‐
formed on only a subset of the variables. Then that cohort is extrac‐
ted from the master dataset and sent to the analysts.

For data synthesis, it is much easier to synthesize the full dataset
rather than synthesize each cohort as it is extracted. The advantage
over synthesizing individual cohorts is that the synthesis would be
done once, rather than every time a data extract is needed.

Given this argument, it is recommended that data be synthesized as
it is coming in rather than as it is going out. For example, if an
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organization has a data lake and is extracting cohorts from that for
specific analyses, the data synthesis should be performed when the
data is going into the data lake such that the data lake consists of
only synthetic data.

The final best practice that we cover in the next section pertains to
how to build trust and get buy-in for the deployment of synthetic
data on a sustainable basis.

Performing Validation Studies to Get Buy-In
Perhaps the key factor in the success of data synthesis projects is get‐
ting the buy-in of the data users and data analysts. In many instan‐
ces, the use of synthetic data is new for data analysts, for example.
Including validation steps in the process of deploying data synthesis
will be important, and we have included that explicitly in the process
of Figure 2-1. Validation means that case studies are performed to
demonstrate the utility of the synthetic data for the task at hand.
Even if case studies exist in other organizations, demonstrations on
their own data can be much more impactful for the data analysts
using the synthetic data.

A validation means showing that the results from the synthetic data
are similar to the results from the real data. The extent of the simi‐
larity will depend on the specific use case. For example, if the use
case is to use synthetic data for software testing, the criteria for simi‐
larity would be less stringent than if the data will be used to build an
AIML model to identify high-risk insurance claims.

Such validation studies should be chosen to be representative of the
datasets and situations that are likely going to be encountered in
practice. Choosing the most challenging dataset or context for a val‐
idation is not going to be very informative and increases the chances
of unsuccessful outcomes. Going in the other direction and choos‐
ing the simplest scenarios may not be convincing for the eventual
users of the synthetic data.

Conclusions
The adoption of synthetic data generation has been rapid over the
last couple of years. This is an indicator that, as a technology, it does
solve a real problem. The synthesis methods are evolving quite rap‐
idly and are being applied to increasingly complex datasets. It is
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therefore recommended that applied practitioners in this area keep
abreast of research work in the field. Unfortunately, the community
is dispersed among multiple disciplines and not centralized. This
makes the case for dedicated expertise to monitor developments in
this area in a CoE, to consolidate and disseminate them in a manner
that practicing analysts can use.

The deployment of data synthesis methods in an organization can
be scaled from discrete projects to a continuous synthesis flow. In all
cases, an understanding of the data flow and the actors in it helps
determine where synthesis should be implemented. More generally,
we have covered implementation best practices in this chapter
related to having enough computing capacity, dealing with cohorts,
and generating buy-in. While these are not an exhaustive list of
practices that need to be executed correctly, they are critical for the
success of a data synthesis implementation effort.
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CHAPTER 3

Synthetic Data Case Studies

While the technical concepts behind the generation of synthetic data
have been around for a few decades, their practical use has picked
up only quite recently. One reason is that this type of data solves
some challenging problems that were quite hard to solve before, or
solves them in a more cost-effective way. All of these problems per‐
tain to data access: sometimes it is just hard to get access to real
data.

In this chapter, we present a few application examples from various
industries. These examples are not intended to be exhaustive but
rather illustrative. Also, the same problem may exist in multiple
industries (for example, getting realistic data for software testing is a
common problem that data synthesis can solve), and the applica‐
tions of synthetic data to solve that problem will therefore be rele‐
vant in these multiple industries. Because we discuss software
testing, say, under only one heading does not mean that it would not
be relevant in another.

The first industry that we will examine is manufacturing and distri‐
bution. We then give examples from health care, financial services,
and transportation. The industry examples span the types of syn‐
thetic data we discussed, from generating structured data from real
individual-level and aggregate data, to using simulation engines to
generate large volumes of synthetic data.
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Manufacturing and Distribution
The use of AIML in industrial robots, coupled with improved sensor
technology, is further enabling factory automation for more com‐
plex and varied tasks.1 In the warehouse and on the factory floor,
these systems are increasingly able to pick up arbitrary objects off
shelves and conveyor belts, and to inspect, manipulate, and move
them, as illustrated, for example, by the Amazon Picking Challenge.2

However, robust training of robots to perform complex tasks in the
production line or warehouse can be challenging because of the
need to obtain realistic training data covering multiple anticipated
scenarios, as well as uncommon ones that are rarely seen in practice
but are still plausible. For example, recognizing objects under differ‐
ent lighting conditions, with different textures, and in various posi‐
tions requires training data that captures the variety and
combinations of these situations. It is not trivial to generate such a
training dataset.

Let’s consider an illustrative example of how data synthesis can be
used to train a robot to perform a complex task that requires a large
dataset for training. Engineers at NVIDIA were trying to train a
robot to play dominoes by using a deep learning model (see
Figure 3-1). The training needed many heterogeneous images that
capture the spectrum of situations that a robot may encounter in
practice. Such a training dataset did not exist, and it would have
been cost prohibitive and time-consuming to manually try to create
these images.
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Figure 3-1. The domino-playing robot

The NVIDIA team used a graphics rendering engine from its gam‐
ing platform to create images of dominoes in different positions,
with different textures, and under different lighting conditions (see
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Figure 3-2).3 No one actually manually set up dominoes and took
pictures of them to train the model; the images that were created for
training were simulated by the engine.

Figure 3-2. An example of a synthesized domino image

In this case, the image data did not exist. Creating a large enough
dataset manually would have taken a lot of people a long time—a
not very cost-effective option. The team used the simulation engine
to create hundreds of thousands of images to train the robot. This is
a good example of how synthetic data was used to train a robot to
recognize, pick up, and manipulate objects in a heterogeneous envi‐
ronment—the same type of model building that would be needed
for industrial robots.

Health Care
Getting access to data for building AIML models in the health
industry is often difficult because of privacy regulations or because
the data collection can be expensive. Health data is considered sensi‐
tive in many data protection regimes, and its use and disclosure for
analytics purposes must meet multiple conditions. These conditions
can be nontrivial to put in place (e.g., providing patients access to
their own data, strong security controls around the retention and
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processing of the data, staff training, and others).4 Also, the collec‐
tion of health data anew for specific studies or analyses can be quite
expensive. For instance, the collection of data from multiple sites in
clinical trials is costly.

The following examples illustrate how synthetic data has solved the
data access challenge in the health industry.

Data for Cancer Research
There are strong currents pushing governments and the pharma‐
ceutical industry to make their health data more broadly available
for secondary analysis. This is intended to solve the data access
problem and encourage more innovative research to understand
diseases and find treatments.

Regulators have required companies to make health data more
broadly available. A good example is the European Medicines
Agency, which has required pharmaceutical companies to make the
information that they submit for their drug approval decisions pub‐
licly available.5 Health Canada has also recently done so.6

In addition, medical journals are now strongly encouraging
researchers who publish articles to make their data publicly available
for other researchers to replicate the studies, and possibly lead to
innovative analyses on that same data.7

In general, when that data contains personal information, it needs to
be de-identified, or made nonpersonal, before it is made public
(unless consent is obtained from the affected individuals before‐
hand, which is not the case here). However, in practice, it is difficult

Health Care | 37

https://oreil.ly/7g4DP
https://oreil.ly/ReUFR
https://oreil.ly/Cun4r
https://oreil.ly/T7D1I


8 Khaled El Emam, “A De-identification Protocol for Open Data”, IAPP Privacy Tech
(2016). https://oreil.ly/ZtEXe.

9 Neal Batra, et al., “The Future of Health,” Deloitte Insights (April 2019). https://oreil.ly/
86nE1.

to de-identify complex data for a public release.8 There are a few rea‐
sons for this:

• Public data has few controls on it (e.g., the data users do not
need to agree to terms of use and they do not need to reveal
their identity, making it difficult to ensure that they are han‐
dling it securely). Therefore, the level of data transformations
needed to ensure that the risk of re-identification is low can be
extensive, ensuring that data utility has degraded significantly.

• Re-identification attacks on public data are getting more atten‐
tion by the media and regulators, and are also getting more
sophisticated. As a consequence, de-identification methods
need to err on the conservative side, further eroding data utility.

• The complexity of datasets that need to be shared further ampli‐
fies the data utility problems because a lot of the information in
the data would need to be transformed to manage the re-
identification risk.

Synthetic data makes it feasible to have complex open data. Com‐
plexity here means the data has many variables and tables, with
many transactions per individual. For example, data from an oncol‐
ogy electronic medical record would be considered complex. It
would have information about, for instance, the patient, visits, treat‐
ments, drugs prescribed and administered, and laboratory tests.

Synthesis would simultaneously address the privacy problem and
provide data that is of higher utility than the incumbent alternative.
A good example is the synthetic cancer registry data that has been
made publicly available by Public Health England. This synthetic
cancer dataset is available for download and can be used to generate
and test hypotheses and to do cost-effective and rapid feasibility
evaluations for future cancer studies.

Beyond data for research, a digital revolution is happening in medi‐
cine.9 For example, the large amounts of health data that exist with
providers and payers contain many insights that can be detected by
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the more powerful AIML techniques. New digital medical devices
are adding more continuous data about patient health and behavior.
Patient-reported outcome data provides patient assessments of func‐
tion, quality of life, and pain. And, of course, genomic and other
-omic data is at the core of personalized medicine. All this data
needs to be integrated and converted into decisions and treatments
that can be provided at the point of care. Innovations in AIML can
be a facilitator of that.

In the next section, we examine how digital health and health tech‐
nology companies can use synthetic data to tap into this innovation
ecosystem. And note that, increasingly, drug and device companies
are becoming digital health companies.

Evaluating Innovative Digital Health Technologies
Health technology companies are constantly looking for data-driven
innovations coming from the outside. These can be innovations
from start-up companies or from academic institutions. Typical
examples include data analysis (statistical machine learning or deep
learning models and tools), data wrangling (such as data standardi‐
zation and harmonization tools and data cleaning tools), and data
type detection tools (finding out where different types of data exist
in the organization).

Because the adoption of new technologies takes resources and has
opportunity cost, the decision to do so must be made somewhat
carefully. These companies need a mechanism to evaluate these
innovations in an efficient way to determine which ones really work
in practice and, more importantly, which ones will work with their
data. The best way to do that is to give these innovators some data
and have them demonstrate their wares on that data.

Some large companies get approached by innovators at a significant
pace—sometimes approaching multiple parts of an organization at
the same time. The pitches are compelling, and the potential bene‐
fits to their business can be significant. They want to bring these
innovations into their organizations. But experience has told them
that, for instance, some of the start-ups are pitching ideas rather
than mature products, and the academics are describing solutions
that worked on only small problems or in situations unlike theirs.
There is a need to test these innovations on their own problems and
data.
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In the pharmaceutical industry, providing data to external parties
can be complex because much of the relevant data pertains to
patients or health care providers. The processes needed to share that
data would usually require extensive contracting and an audit of the
security practices at the data recipient. Just these two tasks could
take quite some time and investment.

Sometimes the pharmaceutical company is unable to share its data
externally because of this complexity or of internal policies, and
therefore asks the innovator to come in and install the software in
the pharmaceutical company’s environment (for an example, see the
following sidebar). This creates significant complexity and delays
because now the pharmaceutical company needs to audit the soft‐
ware, address compatibility issues, and figure out integration points.
This makes technology evaluations quite expensive and uses up a lot
of internal resources. In addition, this is not scalable to the (poten‐
tially) hundreds of innovations that the pharmaceutical company
would want to test every year.

These companies have started to do two things to make this process
more efficient and to enable them to bring in innovations. First, they
have a standard set of synthetic datasets that are representative of
their patient or provider data. For example, a pharmaceutical com‐
pany would have a set of synthetic clinical trial datasets in various
therapeutic areas. These datasets can be readily shared with innova‐
tors for pilots or quick proof-of-concept projects.

Rapid Technology Evaluation
Cambridge Semantics (CS), a Boston company developing a graph
database and various analytics tools on top of that, was planning to
do a pilot with a large prospect in the health space to demonstrate
how its tools can be used to harmonize pooled clinical trial data. To
be able to do this pilot, CS needed to get data from the prospect.
That way, the company could demonstrate that its tools worked on
real data that was relevant for the prospect—few things are more
compelling than seeing a problem solved in an elegant way on your
own data.

The initial challenge was that getting data from the prospect meant
that CS would need to go through an audit to ensure that it had
adequate security and privacy practices to handle personal health
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information. That process would have taken three to four months
to complete.

An alternative that was considered was for CS to install its software
on the prospect’s private cloud and then to run it there using real
data. However, the complexities of introducing new software into a
regulated computing environment are not trivial. Furthermore, giv‐
ing CS staff access to the internal computing environment would
have required additional checks and processes. This also would
have taken three to four months.

The team landed on a synthetic data solution whereby multiple syn‐
thetic datasets were created and given to CS to demonstrate how it
would solve the specific problem. The pilot was completed in a few
days. At the time of writing, CS was close to closing the deal.

The second process that is used is to run competitions. The basic
idea is to define a problem that needs to be solved. Then invite inno‐
vators to solve that problem and provide entrants with synthetic
data to demonstrate their solutions. These can be open or closed
competitions. With the former, any start-up, individual, or institu‐
tion can participate, such as by organizing public hackathons or
datathons. With the latter, specific ones are invited to participate in
the competition.

With public hackathons or datathons, entrants are invited to solve a
given problem with a prize at the end for the winning individual or
team. The main difference is that the innovators are not selected in
advance, but rather participation tends to be more open. The diver‐
sity in these competitions means that many new ideas are generated
and evaluated in a relatively short period of time. Synthetic data can
be a key enabler under these circumstances by providing datasets
that the entrants can access with minimal constraints.

A good example of an open competition was the Heritage Health
Prize (HHP). The HHP was notable for the size of the prize and the
size of the dataset that was made available to entrants. At that time,
the availability of synthetic data was limited, and therefore a de-
identified dataset was created.10 Because of the challenges of de-
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identifying open datasets noted earlier, it has been more common
for health-related competitions to be closed. However, at the time of
writing there is no compelling reason to maintain that restriction.
Synthetic data is now being used to enable such competitions, as
described in “Datathons Enabled by Synthetic Data” on page 42.

In practice, only a small percentage of innovators succeed when
given a realistic dataset to work with. Those who make it through
the evaluation or competition are then invited to go through the
more involved process to get access to real data and do more
detailed demonstrations, or the company may decide to license the
innovation at that point. But at least the more costly investments in
the technology evaluation are performed only on candidates that are
known to have an innovation that works.

Datathons Enabled by Synthetic Data
The Vivli Microsoft Data Challenge was held in June 2019 in Bos‐
ton. The goal of the competition was to propose innovative meth‐
ods to facilitate the sharing of rare disease datasets, in a manner
that maintains the analytic value of the data while safeguarding par‐
ticipant privacy. Rare disease datasets are particularly difficult to
share while maintaining participant privacy, as these datasets often
contain relatively few individuals, and individuals may be uniquely
identified using only a handful of attributes.

This event gathered 60 participants on 11 teams from universities,
hospitals, and pharmaceutical, biotech, and software companies.
Each team had five hours to plan and propose a solution, then five
minutes to present the solution to the judges. The solutions devel‐
oped combined new and existing technologies in interesting ways
tailored for use in rare disease datasets. Unsurprisingly, the winning
team proposed a solution built around the use of synthetic data.

Synthetic data was critical to this event’s success, as it allowed all
participants to “get their hands dirty” with realistic clinical trial
data, without needing to use costly secure computational environ‐
ments or other control mechanisms. The synthetic data grounded
the competition in reality by providing participants with example
data that their solutions would need to be able to accommodate.
Groups that built demos of their solutions were also able to apply
their methods to the synthetic data as a proof of concept.
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Data challenges like this are dependent on providing high-quality
data to participants, and synthetic data is a practical means to do so.

Another large consumer of synthetic data is the financial services
industry. Part of the reason is that this industry has been an early
user of AIML technology and data-driven decision-making, such as
in fraud detection, claims processing, and consumer marketing. In
the next section, we examine specific use cases where synthetic data
has been applied in this sector.

Financial Services
Getting access to large volumes of historical market data in the
financial services industry can be expensive. These types of data are
needed, for example, for building models to drive trading decisions
and for software testing. Also, using consumer financial transaction
data for model building (say, in the context of marketing retail bank‐
ing services) is not always easy because that requires the sharing of
personal financial information with internal and external data
analysts.

The following use cases illustrate how synthetic data has been used
to solve some of these challenges.

Synthetic Data Benchmarks
When selecting software and hardware to process large volumes of
data, financial services companies need to evaluate vendors and sol‐
utions in the market. Instead of having each company evaluate tech‐
nologies from innovative vendors and academics one by one, it is
common to create standardized data benchmarks.

A data benchmark consists of a dataset and a set of tests that will be
performed on that dataset. Vendors and academics can then use
their software and hardware to produce the outputs by using this
data as inputs, and they can all be compared in a consistent manner.
Creating a benchmark would make the most sense in situations
where the market is large enough and the community can agree on a
benchmark that is representative.

In competitive scenarios in which multiple vendors and academics
can supply solutions to the same set of problems, the benchmarks
must be constructed in a manner that ensures that no one can easily
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game the system. With a standard input dataset, the solutions can
just be trained or configured to produce the correct output without
performing the necessary analytic computations.

Synthetic data benchmarks are produced from the same underlying
model, but each vendor or academic gets a unique and specific set of
synthetic data generated from that model. In that way, each entity
running the benchmark will need to produce different results to
score well on the benchmark.

An example of that is the STAC-A2 benchmark for evaluating soft‐
ware and hardware used to model financial market risk. The bench‐
mark has quality measures in the output that are assessed during the
computation of option price sensitives for multiple assets using
Monte Carlo simulation. A series of performance/scaling tests are
also performed using the data.

When financial services companies wish to select a technology ven‐
dor, they can compare the solutions on the market by using a con‐
sistent benchmark that was executed on comparable data. This
provides a neutral assessment of the strengths and weaknesses of
available offerings without having to perform their own evaluations
(which can be expensive and time-consuming), or relying on
vendor-specific assessments (which may be biased toward that
vendor).

Software Testing
Software testing is a classic use case for synthetic data. This includes
functional and performance testing of software applications by the
software developers. In some cases, large datasets are needed to
benchmark software applications to ensure that they can perform at
certain throughputs or with certain volumes. Extensions of the test‐
ing use case are datasets for running software demos by a sales team
and for training users of software on realistic data.

Software testing is common across many industries, and the prob‐
lems being addressed with synthetic data will be the same. The
financial services sector provides two common use cases. The first is
to test internal software applications (e.g., fraud detection) to ensure
that they perform the intended functions and do not have bugs. To
do so, realistic input data is needed, and this includes data covering
edge cases or unusual combinations of inputs. The second is to test
that these applications can scale their performance (for example,

44 | Chapter 3: Synthetic Data Case Studies

https://oreil.ly/P9BAu


response times in automated trading applications are important) to
handle large volumes of data that are likely to be met in practice.
This testing must also simulate unusual situations; for example,
when trading volumes spike because of an external political or envi‐
ronmental event.

In most software engineering groups, obtaining production data is
not easy. This may be because of privacy concerns or the data con‐
tains client confidential business information. Therefore, there is
reluctance to make that available to a large group of software devel‐
opers. The same applies to making data available for demos and for
training purposes. Furthermore, in some cases, the software is new
and there is insufficient customer data to use for testing.

One alternative that has been used is to de-identify the production
data before making it available to test teams. Because the need for
test data is continuous, the de-identification must also be performed
on a continuous basis. The cost-effectiveness of continuous de-
identification versus synthetic data would have to be considered.

The data utility demands for software testing are not as high as they
are for some of the other use cases that we looked at. It is possible to
generate synthetic data from theoretical distributions and then use it
for testing. Another approach that has been applied is to use public
datasets (open data) and replicate those multiple times to create
larger test datasets or resample with replacement.

More principled methods exist for the generation of synthetic data
for testing, demos, and training. These involve the generation of
synthetic data from real data by using the same approaches that are
used to generate data for building and testing AIML models. This
will ensure that the data is realistic, has correct statistical character‐
istics (e.g., a rare event in the real data will also be a rare event in the
synthetic data), and that key properties are maintained if large syn‐
thetic datasets are generated.

The next industry that we consider is transportation. Under that
heading, we will consider data synthesis for planning purposes
through microsimulation models and data synthesis for training
models in autonomous vehicles.
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Transportation
The use of synthetic data in the transportation industry goes back a
few decades. The main driver is the need to make very specific plan‐
ning and policy decisions about infrastructure in a data-limited
environment. Hence the use of microsimulation models became
important to inform decision-making. This is the first example we
consider. The second example is the use of gaming engines to syn‐
thesize virtual environments that are used to train AIML models,
which are then embedded in autonomous vehicles.

Microsimulation Models
Microsimulation environments allow users to do “what-if ” analyses
and run novel scenarios. These simulation environments become
attractive when no real data is available at all and therefore synthetic
data needs to be created.

In the area of transportation planning, it is necessary to evaluate the
impact of planned new infrastructure, such as a new bridge or a new
mall. Activity-based travel demand models can use synthetic data to
allow planners to do that.

A commonly used approach to creating synthetic data for these
models combines aggregate summaries (for example, from the cen‐
sus) with sample individual-level data collected from surveys. Cen‐
sus data normally provides information like household composition,
income, and number of children. The aggregate data normally cov‐
ers the whole population of interest but may not have all the needed
variables and not to the level of granularity desired. The survey data
will cover a sample of the population but have very detailed and
extensive variables.

Synthetic reconstruction then uses an iterative process such as itera‐
tive proportional fitting (IPF) to create synthetic individual-level
data that plausibly generates the aggregate summaries and uses the
sample data as the seed. The IPF procedure was developed in the
1940s,11 and has more recently been applied to the data synthesis
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problem.12 IPF has some known disadvantages in the context of syn‐
thesis; for example, when the survey data does not cover rare situa‐
tions. More robust techniques, such as combinatorial optimization,
have been developed to address them.13

The next step is to use other data, collected also through surveys or
directly from individuals’ cell phones, characterizing their behaviors
and movements. This data, such as the factors that influence the
choice of mode of transportation taken by an individual, is used to
build models.

By combining the synthetic data with the models, one can run
microsimulations of what would happen under different scenarios.
Note that the models can be cascaded in the simulation, describing a
series of complex behaviors and outcomes. For example, the models
can inform decisions like the impact on traffic, public transportation
usage, bicycle trips, and car usage when having a new bridge or a
new mall constructed in a particular location. These microsimula‐
tors can be validated to some extent by ensuring that they give out‐
puts that are consistent with reality under known historical
scenarios. But they can also be used to simulate novel scenarios to
inform planning and policy making.

Let’s now consider a very different use case for synthetic data in the
context of developing AIML models for autonomous vehicles. Some
of these models need to make decisions in real time and can have
significant safety impacts. Therefore, the robustness of their training
is quite critical.

Data Synthesis for Autonomous Vehicles
One of the critical functions of an autonomous vehicle (AV) is
perception. An AV must be able to recognize stationary and
dynamic objects in the vehicle’s path and surrounding it. Camera,
lidar, and radar systems provide the data feeds to an onboard AI
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supercomputer to enable object identification, as well as speed and
distance determination of these objects.

While real-world data is used to train the numerous deep neural
networks that run inside an AV, synthetic data is essential to test and
validate the AI models that process these signals. Real-world data
cannot capture every edge case, or rare or dangerous scenarios—
such as an animal darting into the vehicle’s path or direct sunlight
shining into a camera sensor—that an autonomous vehicle could
encounter. Additionally, the recorded environment is fixed and can‐
not respond to changes in the system’s behavior when it is run
through the scenario multiple times.

The only way to address these gaps is to leverage synthetic data. By
generating an extensive list of customizable scenarios, engineers can
model real-world environments—as well as create entirely new ones
—that can change and respond to different behaviors (see
Figure 3-3). While driving in the real world provides a valuable tool
for validation, it is not nearly exhaustive enough to prove a vehicle is
capable of driving without a human at the wheel.

Figure 3-3. Simulation enables large-scale scenario modeling in differ‐
ent environments, weather conditions, and times of day

Generally, in autonomous vehicles, simulation can be broken into
two main categories: postperception and end-to-end. Postperception
simulation is used for development of planning and control algo‐
rithms. It simulates the world and provides a list of objects in the
world with information about each to the planner. From the list of
objects, the planning and control algorithms must decide what to do
and when to execute.

The other category is end-to-end simulation, in which the simulator
simulates raw sensor data from a 3D world. The sensor data
is streamed to the perception networks in the AV stack, which must
comprehend the world state. The perception networks then provide
their output to the planning and control stacks. End-to-end
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simulation has the advantage of introducing realism into the simula‐
tion pipeline in the form of noise and errors in the perception stack
as it would in a vehicle before it is passed to the planning and con‐
trol algorithms.

Generating synthetic data detailed enough for autonomous vehicle
testing requires a rigorous process. First, the environment must be
created. It can either replicate a location in the real world, like New
York City, using actual data, or be an entirely synthetic place. For
end-to-end simulation, everything in the environment must accu‐
rately simulate the same material properties as the real world; for
example, the reflection of light off metal or the surface of asphalt.

A wide range of weather conditions can be modeled, as well as light‐
ing conditions based on the time of day. Even the sensor models
themselves must replicate the output of the sensors being tested,
requiring massive amounts of computing capacity.

Among the wide variety of simulation methods available for testing
and validation (such as model-in-the-loop, software-in-the-loop,
and object based), hardware-in-the-loop simulation provides one
solution to achieving high-fidelity bit-accurate results. An example
is the two-server NVIDIA DRIVE Constellation platform shown in
Figure 3-4.

Figure 3-4. The NVIDIA DRIVE Constellation simulation platform
uses one server to generate output from sensors, while the other
contains the in-vehicle AV computer making driving decisions in
real time
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One server simulates the output from camera, radar, and lidar sen‐
sors. The in-vehicle AV computer inside the other server then
receives the data as if it is coming from a real-world driving envi‐
ronment, runs the full vehicle software stack, makes decisions, and
sends vehicle control commands back to the simulator. This closed-
loop process enables bit-accurate, timing-accurate hardware-in-the-
loop testing.

The work needed to perform hardware-in-the-loop testing is signifi‐
cant, both in terms of infrastructure as well as in the vehicle. Achiev‐
ing the fidelity necessary for autonomous vehicle validation is
incredibly compute-intensive. First, a detailed world has to be gen‐
erated. Next, the sensor output must be simulated in a physically
accurate way—which takes time and massive amounts of computing
horsepower. Then the in-vehicle hardware and software can be fully
assessed through an extensive suite of simulated scenarios.

Conclusions
This chapter provided examples of the applications of synthetic data
in various industries. We have seen the adoption of synthetic data
grow in these industries, as well as others, over the last couple of
years. Because data access challenges are not likely to get any easier
or go away anytime soon, applicability of data synthesis to more use
cases is expected to grow.

Having said all this, more work still needs to be done to improve
data synthesis technology and to make its adoption easier. The next
chapter is more forward-looking in that it lays out the big things
that would be very beneficial to develop to support the growth of
synthesis capabilities in practice.
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CHAPTER 4

The Future of Data Synthesis

While significant progress has been made over the last few years in
making synthetic data generation practical and scalable, we need
some additional requirements for future work and improvements to
the current state of practice. This chapter is a summary of the key
issues that need to be worked on. It does not present a research and
development agenda, but rather a set of items to consider when
developing such an agenda.

We cover four main issues. First, we need to develop a data utility
framework. Such a framework would make it easier to benchmark
various data synthesis techniques. The second issue, which is com‐
ing up more frequently, is the need to remove certain relationships
from synthetic data for commercial or security reasons. Third, data
watermarking will become increasingly important as more synthetic
data is generated and shared. Finally, simulators that can generate
different types of synthetic data would provide powerful capabilities.

Creating a Data Utility Framework
As discussed in Chapter 1, data utility is important for the adoption
of synthetic data. The higher the data utility of synthetic data, the
greater the number of use cases where it would be a good tool to
accelerate AIML efforts, and the more likely that analysts will be
comfortable using it.

In practice, we are seeing that a significant dataset, the 2020 decen‐
nial US census, is being shared as synthetic data and derivatives
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from synthetic data. The question of whether the utility of synthetic
data is good enough or not may no longer be the right one to ask.
We have entered the era of large-scale synthetic data, and the utility
levels that are available today may be sufficient for many practical
problems.

The question now is how do we demonstrate this data utility to ana‐
lysts and data users so that they are confident and comfortable using
synthetic data? The answer has two parts (at least):

1. Data utility is defined as the ability to get substantively similar
results on synthetic data as on real data.

2. Data utility is defined relative to an alternative method of get‐
ting access to data, such as de-identified data.

It is good practice to perform a utility assessment for every synthe‐
sized dataset, and this is where a data utility framework would be of
value. The availability of a validation server would be a plus. Over
time, using synthetic data as a proxy for real data will become more
accepted, especially as synthesis methods continue to improve.

De-identified data is generally considered a good proxy for real data.
How does the utility of synthetic data compare to the utility of de-
identified data? This remains an empirical question and, over time,
evidence will be accumulated to inform this issue. However, we have
argued earlier in this report that, practically, the economics of de-
identification are potentially unfavorable compared to those of data
synthesis.

The use cases that we discussed in this report can be expanded upon
if it is possible to manipulate the synthetic data. This means that
instead of generating data that has high fidelity to real data, we want
to represent something different. In the next section, we consider
the need to remove relationships or information from generated
synthetic data.

Removing Information from Synthetic Data
Interesting applications emerge when we start looking at hybrid syn‐
thetic data. This data is generated from real data, but then is also
manipulated to exhibit characteristics that were not in the original
data. This section examines the removal of information from syn‐
thetic data to hide sensitive information.
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In domains such as law enforcement and intelligence, there is a need
to build AIML models, which means that there is a need to get
access to data. These models can, for example, characterize determi‐
nants of crime and predict adversary activities. But the data owners
may want to hide certain attributes or relationships to ensure that
they are not exhibited in the generated data. These hidden attributes
or relationships pertain to highly sensitive or classified information
that should not be known more broadly; for example, those that
reveal data surveillance capabilities or sources.

Another scenario requiring specific attributes or relationships to be
hidden comes up in commercial settings. For example, a financial
services company may want to create a synthetic version of a dataset
but not reveal specific commercially sensitive information in that
data. Therefore, there is a need to partially synthesize the data or
mask parts of it after synthesis.

In the next section, we discuss how data watermarking can be a use‐
ful capability as the adoption of synthetic data grows. Watermarking
of data has been used historically to establish data provenance; for
example, in the case of a data breach. Establishing a synthetic data
signature would be a new application of these capabilities.

Using Data Watermarking
Imagine a future whereby synthetic data is around every corner and
is commonly used as a key component of the data analytics and sec‐
ondary processing ecosystem. Some concerns that have been
expressed include the ability to tell the difference between real data
and synthetic data.

Data watermarking methods can address this concern. One type of
watermark would be a unique data pattern that is deliberately
embedded within the synthetic data and that is recoverable. Alterna‐
tively, a watermark can be computed algorithmically from the exist‐
ing patterns in the data, effectively being a signature characterizing
the data.

Whenever there is a question about the status of a dataset, it would
be compared to known watermarks to determine whether it is real
or synthetic. Given that synthetic data is generated through a
stochastic process, every instance of a dataset will have a unique
pattern to it.
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The difficulty with practical data watermarks is that they need to be
invariant to data subsets. For example, would the watermark still be
detectable for a subset of the variables or for a subset of the rows in
the dataset?

As our understanding of specific processes improves over time, it
becomes easier to build plausible models and simulators of these
processes. The simulators can act as data synthesizers as well. We
discuss this topic in the next section.

Generating Synthesis from Simulators
Within the context of data synthesis, a simulator is a statistical or a
machine learning model, or a set of rules that characterize a particu‐
lar process embedded in a software application. When the applica‐
tion is executed, it generates data from these models or rules. We
saw some of that in the context of gaming engines in Chapter 3,
which are used to generate data for training robots and training and
testing autonomous vehicle systems. In the same chapter, we looked
at microsimulation as another example of a simulation capability.
However, the concept can be implemented more broadly and in
other domains.

Generating data from simulators raises the possibility of setting the
desired heterogeneity of the synthetic data. For example, a simulator
can effectively oversample rare events or catastrophic events to
ensure that the trained models are robust against a larger domain of
inputs. However, these events need to be somewhat plausible. For
example, when generating images for training autonomous vehicles,
we would not want to have scenes with cars on top of buildings or
floating in air. Plus, how would one validate the trained models in
practice since the real situations are unlikely to occur (or occur
rarely in the real world)?

Some domains are more amenable to simulators than others. As our
understanding of health systems and biological systems improve,
they can plausibly be modeled more accurately, and these models
can be used to generate data. This will start off being done at the
macro level, but would increase in granularity over time.

In addition to being another source of synthetic data, simulators
allow us to manipulate synthetic data. For example, if we want to
test a new AIML technique to see if it can detect the genetic and
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other characteristics of patients who respond particularly well to
a drug, we can use a simulator to create datasets with signals of
different strengths.

The list of items for consideration as part of the future of data syn‐
thesis did not cover new techniques for data synthesis. However,
that is also an area of active development, with innovations in
genetic algorithms and deep learning models. A deep dive into spe‐
cific algorithms for synthesis is a specialized topic for a different
publication.

Conclusions
Synthetic data represents an exciting opportunity to solve some
practical problems related to accessing realistic data for numerous
significant use cases. The demand for data to drive AIML applica‐
tions, the greater availability of large datasets, and the increasing dif‐
ficulty in getting access to this data (because of data protection
regulations and concerns about data sharing) have created a unique
opening for data synthesis technologies to fill that gap.

As we discussed, data access problems span multiple industries,
such as manufacturing and distribution, healthcare and health
research, financial services, as well as transportation and urban
planning (including autonomous vehicles). The techniques and
methodologies that have been developed over the last few years have
achieved substantial data utility milestones. The number of use cases
for which data synthesis provides a good solution is increasing
rapidly.

In this report, we have looked at industries in which synthetic data
can be applied in practice to solve data access problems. Again, a
characteristic of these use cases is their heterogeneity and the ple‐
thora of problems that synthesis can solve. They are not a compre‐
hensive list of industries and applications, but do highlight what
early users are doing and illustrate the potential.

While we did not discuss the privacy benefits of synthetic data much
in this report, it is important to highlight that in our closing. The
current evidence suggests that the risk of matching synthetic data to
real people and learning something new from that matching is very
small. This is an important factor when considering the adoption of
data synthesis.
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Once a decision has been made to adopt data synthesis, the imple‐
mentation process must be considered. As data synthesis becomes
more programmatic across the enterprise, a center of excellence
becomes an appropriate organizational structure as opposed to
running individual projects. Depending on whether the demand
for data synthesis is discrete for specific datasets or a continuous
dataset, an architectural decision needs to be made on the imple‐
mentation of a pipeline and its integration within a data flow.
A data pipeline architecture would help with synthesis technology
implementation.

Exciting advances in synthetic data generation are in development
today that will help with broader adoption of this approach and type
of technology. It was already noted some time ago that the future of
data sharing, data dissemination, and data access will utilize one of
two methods: interactive analytics systems or synthetic data.1
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