

404251-EB

General Science Daily Bell Ringers 100+ Quick Activities

Mark Twain Media/Carson-Dellosa Publishing LLC

About the Authors

Schyrlet Cameron (left) has 34 years of experience as an elementary and middle-school teacher. She has authored or co-authored over 30 teacher resource books. Schyrlet is currently working as a writer and educational consultant. She has presented workshops at the national, state, and local levels on a variety of topics. Schyrlet holds a Master of Education Degree in Elementary Education and has received recognition for her professionalism in teaching, including the Missouri Science Teacher of the

Year Award and the national Excellence in Teaching Elementary Science Presidential Award.

Carolyn Craig (right) has 26 years of experience as an elementary and middle-school teacher. She has co-authored over 20 teacher resource books. Carolyn is currently working as a writer and educational consultant. She holds a Master of Education Degree in Curriculum. Carolyn has presented workshops on a variety of topics and has received recognition by the Missouri Middle School Association for her collaborative teamwork.

To see these products and more, visit your nearest teacher bookstore or go online at **www.carsondellosa.com** and Shop by Brand for Mark Twain Media, Inc., Publishers.

CD-404163 100+ Science Experiments

CD-404164 Ooey Gooey Science

CD-404165 Science Games & Puzzles

CD-404103 Daily Skill Builders: General Science 5–8

This product has been correlated to Common Core State Standards and other current state, national, and Canadian provincial standards. Visit www.carsondellosa.com to search and view its correlations to your standards, or call 800-321-0943 for more information.

General Science: Daily Bell Ringers, Grades 5–8

Authors:Schyrlet Cameron and Carolyn CraigEditor:Mary DieterichProofreaders:April Albert and Margaret Brown

COPYRIGHT © 2016 Mark Twain Media, Inc.

ISBN 978-1-62223-613-8

Printing No. 404251-EB

Mark Twain Media, Inc., Publishers Distributed by Carson-Dellosa Publishing LLC

The purchase of this book entitles the buyer to reproduce the student pages for classroom use only. Other permissions may be obtained by writing Mark Twain Media, Inc., Publishers.

All rights reserved. Printed in the United States of America.

Visit us at www.carsondellosa.com

Table of Contents

Introduction to the Teacheriv
Scientific Inquiry Bell Ringer 1: Scientific Method 1 Bell Ringer 2: Laboratory Safety 1 Bell Ringer 3: Lab Equipment 2 Bell Ringer 4: Reading Measurements 2
Physical Science
Bell Ringer 5: Matter 3
Bell Ringer 6: Physical Properties of
Matter3
Bell Ringer 7: Chemical Properties of
Matter
Bell Ringer 8: States of Matter
Change 5
Bell Ringer 10 [°] Atoms 5
Bell Ringer 11: Atom Structure
Bell Ringer 12: Elements, Molecules,
and Compounds6
Bell Ringer 13: Chemical Bonds7
Bell Ringer 14: Periodic Table7
Bell Ringer 15: Chemical Formulas,
Reactions, and Equations
Bell Ringer 17: Solutions, Colloids
Allovs, and Suspensions
Bell Ringer 18: Acids and Bases
Bell Ringer 19: pH Scale 10
Bell Ringer 20: Buoyancy 10
Bell Ringer 21: Bernoulli's Principle 11
Bell Ringer 22: Pascal's Principle 11
Bell Ringer 23: Gravity
Bell Ringer 25: Balanced and
Unbalanced Forces 13
Bell Ringer 26: Friction
Bell Ringer 27: Newton's First Law of
Motion 14
Bell Ringer 28: Newton's Second Law of
Motion
Bell Ringer 29: Newton's Third Law of
IVIOTION

Bell Ringer 30: Momentum	15
Bell Ringer 31: Work and Power	16
Bell Ringer 32: Simple Machines	16
Bell Ringer 33: Compound Machines	.17
Bell Ringer 34: Types of Energy	.17
Bell Ringer 35: Potential vs. Kinetic	
Energy	.18
Bell Ringer 36: Heat Transfer	18
Bell Ringer 37: Wave Energy	19
Bell Ringer 38: Characteristics of	
Waves	19
Bell Ringer 39: Transverse vs.	
Longitudinal Waves	20
Bell Ringer 40: Electromagnetic Waves	20
Bell Ringer 41: Light on Surfaces	21
Bell Ringer 42: Light and Color	21
Bell Ringer 43: Concave Lens vs.	
Convex Lens	22
Bell Ringer 44: Sound Energy	22
Bell Ringer 45: Electricity	23
Bell Ringer 46: Static Electricity	23
Bell Ringer 47: Current Electricity	24
Bell Ringer 48: Parts of a Circuit	24
Bell Ringer 49: Complete Circuits	25
Bell Ringer 50: Series Circuit and	
Parallel Circuit	25
Bell Ringer 51: Ohm's Law	26
Bell Ringer 52: Magnetic Field	26
Bell Ringer 53: Electromagnetism	27
Bell Ringer 54: Renewable and	
Nonrenewable Resources	27

Life Science

Bell Ringer 55: Characteristics of Living	
Organisms	28
Bell Ringer 56: Classification Hierarchy	28
Bell Ringer 57: Fungi Kingdom	29
Bell Ringer 58: Protist Kingdom	29
Bell Ringer 59: Monera Kingdom	30
Bell Ringer 60: Animal Kingdom	30
Bell Ringer 61: Plant Kingdom	31
Bell Ringer 62: Dicot/Monocot	31
Bell Ringer 63: Angiosperm and	
Gymnosperm Plants	32

Table of Contents (cont.)

Bell Ringer 64: Photosynthesis 32	2
Bell Ringer 65: Parts of a Flower 33	3
Bell Ringer 66: Endoskeleton and	
Exoskeleton 33	3
Bell Ringer 67: Cold- and Warm-	
Blooded34	1
Bell Ringer 68: Vertebrates and	
Invertebrates34	1
Bell Ringer 69: Plant and Animal Cells 35	5
Bell Ringer 70: Cell Division-Mitosis 35	5
Bell Ringer 71: DNA, Genes, and	
Heredity	3
Bell Ringer 72: Consumers, Producers,	
and Decomposers	3
Bell Ringer 73: Herbivores, Carnivores,	
and Omnivores37	7
Bell Ringer 74: Food Chains, Food Webs,	
and Energy Pyramids	7
Bell Ringer 75: Symbiotic Relationships 38	3
Bell Ringer 76: Carbon Dioxide-Oxygen	
Cycle	3
Bell Ringer 77: Ecological Succession 39)
Bell Ringer 78: Biomes)

Earth and Space Science

Bell Ringer 79: Earth Structure and	
Composition4	0
Bell Ringer 80: Plate Tectonics 44	0
Bell Ringer 81: Parts of a Volcano 4	1
Bell Ringer 82: Types of Volcanoes 4	1
Bell Ringer 83: Minerals 42	2
Bell Ringer 84: Types of Rocks 42	2
Bell Ringer 85: Rock Cycle 43	3
Bell Ringer 86: Earthquakes 43	3
Bell Ringer 87: Chemical and Mechanical	
Weathering44	4
Bell Ringer 88: Erosion and Deposition 44	4
Bell Ringer 89: Ocean Currents 4	5
Bell Ringer 90: Parts of the Ocean	
Floor4	5
Bell Ringer 91: Earth's Atmosphere 4	6
Bell Ringer 92: The Water Cycle 44	6

Bell Ringer 93: Factors Affecting	17
Bell Ringer 94: Weather Maps and	47
Symbols	47
Bell Ringer 95: Air Masses	48
Bell Ringer 96: Cold and Warm Fronts	48
Bell Ringer 97 Types of Clouds	49
Bell Ringer 98: Types of Precipitation	49
Bell Ringer 99: Weather instruments	50
Bell Ringer 100: Air Pressure	50
Bell Ringer 101: Day-Rotation	51
Bell Ringer 102: Seasons-Revolution	51
Bell Ringer 103: Moon Phases	52
Bell Ringer 104: Lunar and Solar	
Eclipses	52
Bell Ringer 105: Solar System	53
Bell Ringer 106: Parts of the Sun	53

Introduction to the Teacher

General Science: Daily Bell Ringers, Grades 5–8 is a book filled with activities that quiz students over content they should learn in middle-school science. The 106 activities are designed to provide students with the opportunity to review or gain extra practice with the skills and concepts presented in the regular science curriculum.

Organization

The daily bell ringers are arranged by topic, with the focus of this book being on physical science, life science, and earth and space sciences. Each activity page is divided into two reproducible sections that can be cut apart and used separately, placed on a whiteboard, or downloaded by students to their laptops.

Suggestions for Use

Bell ringers may be used as a class warm-up, a review of a topic covered earlier in the year, as extra practice on a topic currently being studied, in a learning center for review or extra practice, or as a homework assignment. The warm-ups typically take about five minutes to complete. Students may be allowed to use their science book or class notes to complete the short activity while the teacher takes attendance, collects homework, or does other small chores. The activities can be read and comments made before the teacher starts the day's lesson, but they do not necessarily need to be graded. They can be used to help the teacher gauge what the students have remembered from previous lessons or determine if additional lessons are needed. They can also be saved by students and used for review before unit tests or end-of-the-year state standardized assessments.

State and National Standards

General Science: Daily Bell Ringers was written with state and national science standards in mind. The short, thought-provoking activities take only a few minutes each day to review key topics. This book is an excellent resource for teachers to prepare students for standardized science and end-of-the-term assessments.

Scientific Inquiry

Bell Ringer 1: Scientific Method

Scientists use the steps in the **scientific method** to design and conduct scientific investigations to explore questions they have about the world around them.

Directions: Put the steps of the scientific method in order by numbering them 1 through 6 from first to last.

Step # _____ Draw Conclusion

Step # _____ Research the Problem

Step # _____ Analyze the Data

Step # _____ Design and Carry Out the Experiment

Step # _____ Choose a Problem

Step # _____ Construct a Hypothesis

Bell Ringer 2: Laboratory Safety

Name:
Date:

Directions: Write the meaning for each symbol in the chart.

Safety Symbol	Meaning	Safety Symbol	Meaning
1.		5.	
2.		6.	
3.		7.	
4.		8.	

Name: _____

Date: ___

Scientific Inquiry

Bell Ringer 3: Lab Equipment

Name: .	
Date:	

Directions: Write the name of the lab equipment under the correct picture.

Bell Ringer 4: Reading Measurements

Name: ______
Date: _____

Directions: Complete the exercises below.

1. Record the length that corresponds to each line along the metric ruler. Label your answers in centimeters.

Bell Ringer 5: Matter

Name: _____ Date: _

Matter is anything that contains a certain amount of material (has mass) and takes up space (has volume).

Directions: Circle each item below that is matter and cross out each one that is not.

paper milk steel dreams peach skin light glue rock book thoughts planet mud hair rose leaf emotions water spit pencil blood diamond ideas tape sand tree nest love heat germs

Bell Ringer 6: Physical Properties of Matter

Name:	
Date: _	

Characteristics that help us identify matter are called properties. All matter has physical properties.

Directions: Match each example of a physical property with its definition.

- 1. _____ density a. the ability to be pressed or pounded into a thin sheet 2. _____ ductility b. how well a substance allows electricity to flow through it 3. _____ malleability c. the temperature at which a substance changes from a solid to a liquid 4. _____ boiling point d. the ability to dissolve in another substance 5. _____ melting point e. the ability to be pulled into a thin strand, like a wire 6. _____ electrical f. the temperature at which a substance changes from a conductivity liquid to a gas 7. _____ solubility
 - g. the amount of matter in a given volume

Name: _____

Date: _

Physical Science

Bell Ringer 7: Chemical Properties of Matter

A **chemical property** is a characteristic of matter that describes its ability to change into a new substance.

Directions: Complete the table by filling in the definition for each chemical property of matter.

Chemical Property	Definition
1. oxidation	
2. toxicity	
3. radioactivity	
4. biodegradability	
5. flammability	

Bell Ringer 8: States of Matter

Name:	
Date: _	

There are three familiar states of matter: **solid**, **liquid**, and **gas**. **Plasma** is a fourth state of matter that only occurs at extremely high temperatures.

Directions: Read each description. Write the state of matter being described.

- 1. _____ has a definite shape and volume
- 2. _____ has no definite volume or shape
- 3. _____ has no definite shape or volume and is a highly energized gas
- 4. _____ has a definite volume but no definite shape
- 5. _____ common in the universe; not common on Earth
- 6. _____ will expand to fill any container and will take the shape of the container
- 7. _____ will take the shape of the container in which it is placed but does not expand to fill the container
- 8. _____ when placed in a container, keeps its shape and takes up the same amount of space

Bell	Ringer 9:	Physica	VS.	Chemical	Change
				••••••	

Name: _____

Date: ___

Directions: Decide whether the changes listed below are chemical or physical. Write the change under the correct heading.

freezing water rotting wood cake baking	burning paper bread molding iron rusting	crushing rock drying clothes folding paper	shredding paper ice melting exploding fireworks
Phy	sical Change	Che	emical Change
Bell Ringer 10: Atom	 ms		
irections: Use the wo aragraph about atoms.	rd bank to fill in the b	planks in the Da	ite:
prot nuc neu	tons vale leus elec trons ator	ence energy elec ctron cloud ma ms	ctrons tter
Everything is m	ade of	, and all matte	er is made of
here are three basic pa	arts of the atom: prot	ons, neutrons, and _	The
a	nd	are located in t	he center of the atom; this are
s called the	The elect	rons are found orbiti	ng around the nucleus in an ar
e call the		They are o	rganized into levels within
ne electron cloud, and t	he outermost level is	s referred to as the _	
evel.			

Bell Ringer 11: Atom Structure

Name: _		
Date:		

The three basic parts of the **atom** are the **proton**, **neutron**,

and **electron**. While an atom is said to be electrically neutral,

its particles are positively charged, negatively charged, or electrically neutral.

Directions: Complete the table below. Add the electrical charge of each particle and the location of the particle in the atom.

Particle	Electrical Charge	Location
proton		
neutron		
electron		

Bell Ringer 12: Elements, Molecules, and Compounds

(
Name: .	
Dato:	
Dale	

Different kinds of atoms are called **elements**. The simplest **molecule** contains only two atoms. A **compound** is formed when two or more different atoms chemically join together in a fixed ratio.

Directions: List the items in the word bank under the correct column to indicate which are elements, molecules of elements, and compounds of more than one element.

Element		Molecule	Compound
Fe ((iron)	H ₂ (hydrogen)	$C_{12}H_{22}O_{11}$ (table sugar)
O ₂ (oxygen)	Au (gold)	$NaHCO_3$ (baking soda)

Bell Ringer 13: Chemical Bonds

The elements in a compound are held together by

chemical bonds. Covalent and ionic are two types of chemical bonds.

Directions: Covalent and ionic bonds form compounds with distinct properties. Write the name of the bond beside the correct property.

- 1. _____ electrons are transferred
- 2. _____ hard and brittle
- 3. _____ low melting point
- 4. _____ high melting point
- 5. _____ formed between two nonmetals
- 6. _____ electrons are shared

7. _____ compound arranged in a crystalline pattern

Bell Ringer 14: Periodic Table

Directions: Use a copy of the Periodic Table of Elements in your science book, online, or from another source to give the following information about the element listed below.

<u>Uranium</u>

- 1. _____ Atomic Number
- 2. _____ Symbol
- 3. _____ Group Name
- 4. _____ Solid, Liquid, or Gas
- 5. _____ Metal, Nonmetal, or Metalloid
- 6. _____ Natural or Manmade
- 7. _____ Radioactive or Stable

Name: _____

Date: _____

Name:		
Date:		

Jale. ____

Bell Ringer 15: Chemical Formulas, Reactions, and Equations

Direction: Match each term with its definition.

- 1. _____ chemical formula
- 2. ____ coefficient
- 3. _____ chemical reaction
- 4. _____ reactants
- 5. _____ products
- 6. _____ chemical equation
- 7. _____ law of conservation of mass

Name:		
Date:		

- a. one or more substances change to form one or more new substances
- b. $2 H_2 + O_2 \rightarrow 2 H_2 O$
- c. the substances that undergo the change in a chemical reaction
- d. matter can be neither created nor destroyed
- e. the substance that results from a chemical reaction
- f. CO₂
- g. the number of molecules (or atoms) involved in the reaction

Bell Ringer 16: Types of Mixtures

A **mixture** is a substance made by combining two or more different substances without a chemical reaction occurring.

	٦
Name:	
Date: _	
	J

In a **homogeneous mixture**, the particles are dispersed evenly throughout. A **heterogeneous mixture** is made of different substances that remain physically separate.

Directions: Write the mixtures in the word bank under the correct column heading.

Bell Ringer 17: Solutions, Colloids, Alloys, and Suspensions

Name:	

Date: _

Solutions, **colloids**, **alloys**, and **suspensions** are four types of **mixtures**. Each of the mixtures have different properties.

Directions: Complete the table about mixtures by filling in the correct information under each column heading.

Mixture	Definition	Example
solution		
colloid		
alloy		
suspension		

Bell Ringer 18: Acids and Bases

Directions: Complete the table by filling in the correct information about **acids** and **bases**.

Question	Acid	Base
What is it (definition)?		
How does it feel?		
How does it taste?		
What is the result of testing with litmus paper?		
What is an example you could find in your home?		
What is the pH range?		
What is an example of a chemical with which it reacts?		
What ions does it produce in solution?		

Name: ______

Bell Ringer 19: pH Scale

A **pH scale** is a device that helps measure how acidic or basic a solution is. The scale ranges from 0 to 14. A pH of 7 is neutral, pH below 7 is acidic, and pH above 7 is basic.

Directions: Identify the following substances as acid, neutral, or basic. Place an "x" under the correct column heading for each substance.

E) A(FR	EM C	EĽ	1		NE	υτι	RAL	-		EX	TR	EN B/	IELY ASIC
1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10	.011.0) 12.	0 13.	0 14.0
[
L														

Substance	pH Level	Acid	Base	Neutral
1. lemon juice	1.8			
2. sea water	8.0			
3. bleach	13.2			
4. baking soda	8.0			
5. orange juice	4.8			
6. ammonia	11.2			
7. vinegar	3.0			
8. blood	7.2			
9. distilled water	7.0			

Bell Ringer 20: Buoyancy

Directions: Match the terms below with their definitions.

- 1. _____ fluid
- 2. _____ buoyancy
- 3. _____ density
- 4. _____ displacement
- 5. _____ Archimedes' Principle

- Name: ______ Date: _____
- a. the tendency of certain objects to float or rise in fluid
- b. a body immersed in a fluid experiences a buoyant force equal to the weight of the fluid it displaces
- c. any material, either liquid or gas, that can flow
- d. the relationship between the mass and volume of an object
- e. a method used to find the volume of an irregular object
- 6. Explain why icebergs float in the ocean.

Name: _____

Date: ___

Bell Ringer 21: Bernoulli's Principle

Name:		

Date: ____

A **fluid** is a substance that has no definite shape and has the ability to flow: liquid, gas, and plasma. **Bernoulli's**

Principle states that in fluid flow, an increase in velocity causes a decrease in pressure. This means the faster a fluid flows, the less pressure it exerts.

Directions: Use Bernoulli's Principle to explain how an airplane can achieve lift.

Bell Ringer 22: Pascal's Principle

Name:
Date:

A fluid is a substance that has no definite shape and has

the ability to flow: liquid, gas, and plasma. Pascal's Principle

states that a change in the pressure applied to an enclosed container is transmitted without change throughout the fluid and acts in all directions.

Directions: Use Pascal's Principle to explain how a bicycle tire pump works to inflate a flat tire.

Bell Ringer 23: Gravity

Directions: Use the word bank to fill in the blanks of the paragraph about gravity.

> force distance gravitation attract gravity mass Newton

Gravity is a ______ that pulls objects toward each other. Isaac _____

realized that ______ was a force that acts everywhere in the universe, not just on Earth.

It is the force that makes an apple fall to the ground and the planets in our solar system orbit

around the sun. Newton developed the Law of Universal ______ to explain this

phenomena. The law states that the force of gravity acts between all objects in the universe.

This means that any two objects in the universe ______ each other. Two factors affect

the gravitational attraction between objects: mass and distance. If the ______ of objects

increases, the force of gravity increases. If the _____ between two objects increases,

the force of gravity decreases.

Bell Ringer 24: Mass vs. Weight

Den Hinger 24. Mass VS. Weight	Name:
Directions: Write mass or weight on the line in front of the	Date:
correct description.	

1. _____ doesn't change when an object's location changes

- a measurement of the amount of matter 2. _____ something contains
- changes with location 3. _____
- 4. _____ the measurement of the pull of gravity on an object
- 5. _____ the measurement unit is Newton (N)
- 6. _____ the measurement unit is kilogram (kg), gram (g), and milligram (mg)
- 7. is measured using a pan balance, a triple-beam balance, lever balance, or electronic balance
- is measured using a spring balance 8. _____

Date: ___

Name: _____

Bell Ringer 25: Balanced and Unbalanced Forces

Name:	-
Date: _	 -

Force is a push or a pull. Force appears in pairs and can be either balanced or unbalanced. **Balanced forces** produce no change in the motion of an object. They are equal in size and opposite in direction. **Unbalanced forces** produce a change in the motion of an object in the direction of the greatest force.

Direction: Write *balanced force* or *unbalanced force* on the line in front of the example.

1	 a parked truck
2	 a car being towed
3	 a see-saw with the same weight on both sides
4	 a person pushing on a cement wall
5	 a book rests on a table
6	 a student slides a book across the table to a friend

Bell Ringer 26: Friction

$\left(\right)$	
Name:	
Deter	
Date: _	

Friction is the force that opposes motion between two surfaces.

Directions: Complete the table for the four types of friction listed below. Explain the type of friction and give an example.

Туре	Explanation	Example
static		
sliding		
rolling		
fluid		

General Science: Daily Bell Ringers

Physical Science

Bell Ringer 27: Newton's First Law of Motion

Newton's First Law of Motion states that an object at rest tends to stay at rest, and an object moving at a constant velocity will continue moving at a constant velocity, unless it is acted upon by an unbalanced force.

Directions: Circle one of each pair of words or phrases within the parentheses to make each statement true.

1. Another way to state Newton's First Law of Motion is that all

objects have (mass / inertia).

- 2. Inertia depends on the (weight / mass) of an object.
- 3. The (less / greater) the mass of an object, the more inertia it has.
- 4. Newton's First Law of Motion is also called the law of (inertia / velocity).
- 5. The greater an object's mass, the (larger / smaller) the force needed to overcome the inertia.

Bell Ringer	28:	Newton's	Second	Law of
Motion				

Directions: Identify the following statements as true or false. Then write "T" for true or "F" for false. If a statement is false, cross out the word that makes it false and write the word that makes it true.

- 1. _____ Newton's Second Law of Motion explains the relationship between acceleration, mass, and matter.
- 2. _____ To increase the acceleration of a wagon, you can decrease the force used to pull it.
- 3. _____ To increase the acceleration of a wagon, you can decrease its mass.
- 4. _____ If two bike riders pedal with the same force, the rider moving the least mass will accelerate faster.
- 5. _____ Acceleration = net force/mass.
- 6. _____ Acceleration is measured in the SI unit newton (N).

Name: _____

Name:

Date: _____

Date: ____

Bell Ringer 29: Newton's Third Law of Motion

Name:	
Date:	

Newton's Third Law of Motion states that forces are found in pairs. For every action (force) there is an equal and opposite reaction (force).

Directions: Complete the table by providing an action and reaction for each example.

Example	Action	Reaction
A fish swimming through the water.		
A dog leaps in the air to catch a ball.		
A cannon ball is shot from a cannon.		
You sit in a chair.		
A girl kicks a soccer ball tossed to her.		

Bell Ringer 30: Momentum

ſ	
Name:	_
	_
Date: _	

Scientists define **momentum** as mass times velocity (Momentum = MV). Momentum is measured in kilogram-meters per second (kg•m/s).

Directions: Calculate momentum for each problem. Label your answers correctly.

- 1. What is the momentum of a 12-kg dog running at 8 m/s?
- 2. What is the momentum of a 15-kg bicycle traveling at 3 m/s?
- 3. What is the momentum of a 50-kg dolphin swimming at 16.4 m/s?
- 4. What is the velocity of a 5.5-kg object that has the momentum of 550 kg·m/s?
- 5. Which has more momentum: a 129-kg football player who is running at 4 m/s or a 120-kg player running at 5 m/s? Explain your answer.

Bell Ringer 31: Work and Power

Directions: Circle one of each pair of words or phrases within the parentheses to make each statement true.

- 1. (Power / Work) occurs when an object moves in the same direction as the force acting on it.
- 2. The SI unit for power is (meter / watt).
- 3. Power is a measure of how much (force is applied / work is done) within a given length of time.
- 4. The SI unit for work is (joule / newton).
- 5. (Power / Work) = $\frac{\text{force x distance}}{\text{time}}$
- 6. The amount of work done on an object can be determined by multiplying force times (speed / distance).
- 7. An Olympic athlete lifting a barbell above his head is an example of (power / work).

Bell Ringer 32: Simple Machines

A **simple machine** is a device that makes work easier. There are six types of simple machines: **inclined plane**, **wedge**, **screw**, **lever**, **wheel and axle**, and **pulley**.

Name: .	
Date: _	

Directions: Under each picture, write the name of the type of simple machine represented.

- 1. flat screwdriver end
- 2. hook screw

5. knife blade

3. bicycle wheel

6. teeter totter

9. device for lowering bucket

7. door knob

4. carrying a box up a ramp

8. wheelbarrow

404251-EB ©Mark Twain Media, Inc., Publishers

Name:			

Date: .

Bell Ringer 33: Compound Machines

Namo	
name.	

Date: ___

A **compound machine** is made from two or more simple machines.

Directions: Complete the table by writing the name of the simple machines found in each compound machine.

Compound Machine	Simple Machines Present in Each Compound Machine
scissors	
wheelbarrow	
shovel	
bicycle	
ах	

Bell Ringer 34: Types of Energy

Directions: Solve the crossword puzzle using the clues below.

(All answers are two words.)

Across

- 4. the energy contained in the nuclei of atoms
- 5. the energy stored in chemical bonds
- 6. the energy produced by electric charges

Down

- 1. the energy carried by light and other kinds of electromagnetic waves
- 2. the energy carried by sound waves
- 3. the energy related to the temperature of a substance

Name: _____ Date: _____

Bel Ene	l Ringer 35: Potential ergy		Name: Date:		
Dire	ctions: Shade the circle for	or the correct answer to	each q	uestion.	\land
1.	What form of energy are I	kinetic energy and poter	ntial ene	ergy?	A L
	a.) electromagnetic	b.) mechanical	C.) re	flected	A Key
2.	Which of these is the ene	rgy an object has becau	use it is	moving?	
	a.) kinetic energy	b. potential energy	C.) we	ork energy	
3.	Which of these is the ene	rgy that results from the	e positio	n or shape of an o	bject?
	a. kinetic energy	b.) potential energy	C. ki	netic and potential	energy
4.	Which are factors that affe	ect kinetic energy?			
	a.) mass and velocity	(b.) speed and height	C.) we	eight and height	
5.	What type of potential end	ergy does a bow have w	hen an	archer pulls back	the arrow?
	a.) gravitational	(b.) elastic	C.) th	ermal	

Bell Ringer 36: Heat Transfer

Heat is the transfer of thermal energy between substances
that are at different temperatures. There are three methods $^{-1}$
of heat transfer: conduction , convection , and radiation .

Directions:	: Complete	the table	below.	Classify	the method	d used t	o transfer	heat as	conduct	tion
convection,	or radiation	۱.								

Example	Method of Transfer
1. rattlesnake uses infrared sensors to find prey in the dark	
2. hot air balloon rising into the air	
3. touching a hot pan from the oven	
4. sun heating the earth	
5. spoon becomes warm in a cup of hot soup	
6. heating a pot of water on the stove	

Bell Ringer 37: Wave Energy

Directions: Use the word bank to fill in the blanks in the paragraph about waves.

light vibrate medium electromagnetic wave energy solids mechanical

A ______ from place to place. The

material through which a wave travels is called a ______. Gases, liquids, and

_____ are all mediums through which waves can travel. Waves that travel through

matter are called ______ waves. Mechanical waves are produced when a source

of energy causes a medium to ______. An example of a mechanical wave is

sound waves. Waves that can travel through empty space are called _____

waves. _____ travels as an electromagnetic wave.

Bell Ringer 38: Characteristics of Waves

All **waves** have the following four characteristics: **amplitude**, **wavelength**, **frequency**, and **speed**.

Name	:
Date:	

Name: _____

Date: ____

Directions: Circle one of each pair of words within the parentheses to make each statement true.

- 1. The (amplitude / wavelength) of a wave is the distance a wave oscillates from its resting position.
- 2. (Frequency / Wave speed) is measured in hertz (Hz).
- 3. (Amplitude / Wavelength) is the distance from any point on one wave to the corresponding point on an adjacent wave.
- 4. (Frequency / Wave speed) is the number of oscillations produced in a certain amount of time.
- 5. (Wavelength / Wave speed) is the distance a wave travels in a given amount of time.
- 6. The larger the (amplitude / wavelength), the more energy carried by the wave.

Directions: First, label the electromagnetic wave diagram with the correct terms (*crest, trough, and wavelength*). Next,

correctly identify the following statements as true or false. Then write "T" for true or "F" for false. If the statement is false, cross out the word that makes it false and write the word that makes it true.

- 4. _____ An electromagnetic wave is a longitudinal wave.
- 5. _____ All electromagnetic waves travel at the speed of light.
- 6. _____ Microwaves have the most energy, while radio waves have the least energy.
- 7. ____ The light we can see is visible light.

404251-EB ©Mark Twain Media. Inc., Publishers

Physical Science

Bell Ringer 41: Light on Surfaces

Directions: Match the terms about light below with their descriptions.

- 1. _____ reflection
- 2. ____ transmission
- 3. _____ absorption
- 4. ____ law of reflection
- 5. _____ specular reflection
- 6. _____ diffuse reflection
- 7. ____ transparent
- 8. _____ refraction
- 9. ____ opaque
- 10. _____ translucent

- a. You can see this phenomenon when you put a spoon in a glass of water.
- b. An apple looks red because all other colors are absorbed.
- c. This is light reflected from a rough surface.
- d. If you shine light on a surface, some of that light will bounce off.
- e. An example is a sheet of waxed paper.
- f. When light passes through matter.
- g. Light will always be reflected by a surface at the same angle at which it hits the surface.
- h. This is light reflected from a smooth surface.
- i. You can see through water, air, and glass because light passes through these materials.
- j. Matter that does not transmit any light.

Bell Ringer 42: Light and Color

Directions: Use the word bank to fill in the blanks in the two paragraphs about light and color.

bent prism reflected spectrum black absorbed frequencies dispersion

White light is made up of many colors. When white light strikes an object, the object may absorb or reflect any or all of the parts of the color ______. That is why we see different colors. We see a red shirt because only red light is ______ off the shirt; all other colors of the spectrum making up white light are ______. White objects reflect all colors; ______ objects absorb all colors.

A __________ separates light into the colors of the visible spectrum; red, orange, yellow, green, blue, indigo, and violet. The separation of light by its frequency is called _______. Different colors of light have different _______. As the light enters at an angle and passes through the prism, it slows down and is _______, once going in and once going out of the prism.

Name: _____ Date: _____

Date: ____

Name: _____

Name:	
transmit any light.	
e materiais.	

Bell Ringer 43: Concave Lens vs. Convex Lens

Name:	

Date: __

Directions: Complete the table by filling in the correct information under each column heading.

Comparison	Concave Lens	Convex Lens
structure		
other name		
images formed		
meaning		
uses		

Bell Ringer 44: Sound Energy

Directions: Answer the questions about sound.

- 1. How is sound produced?
- 2. How does the amplitude of a sound wave affect its loudness?

3. How does the frequency of a sound wave determine its pitch?

4. What is the unit of measure used for loudness?

Bell Ringer 45: Electricity

Nama	
iname:	

Date:

Directions: Electricity is the interaction of electric charges. Explain using the diagram below.

Bell Ringer 46: Static Electricity

There are three methods by which charges can be transferred to build up **static electricity**: charging by **friction**, by **conduction**, and by **induction**.

Name:	
Date: _	

Directions: Complete the table by explaining the methods of transferring charges and give an example of each.

Method	Explanation	Example
friction		
conduction		
induction		

Bell Ringer 47: Current Electricity

Directions: Match the terms with the correct descriptions.

1.	 current electricity	a.	electric charges flow in one direction, then in the
0	alactric aurrent		reverse direction, over and over again
۷.		b.	the amount of charge that moves past a certain
3.	 ampere (amp A)		point each second
4	direct ourrest (DC)	C.	the SI unit of measurement for current
4.	 direct current (DC)	d.	a continuous flow of electric charge
5.	 alternating current (AC)	e.	a material which does not transfer electric charge well
0	a a radi v ata va	f.	is the measure of how difficult it is for charges to flow
6.	 conductors		through a material
7.	 insulators	g.	a material that permits an electric current to flow easily
0		h.	the potential difference that causes charges to move
8.	 resistance		in a circuit

i. the electric charges move in one direction

Name: _ Date: __

Name: ____ Date: ____

Bell Ringer 48: Parts of a Circuit

Electric current flows through a path called a **circuit**.

9. ____ voltage

Directions: Circle one of each pair of terms within the parentheses to make each statement true.

- 1. A(n) (closed circuit / open circuit) has a break in it.
- 2. A (battery / light bulb) pushes electric charges through a closed circuit.
- 3. Circuits deliver electrical energy to a (load / battery).
- 4. The (battery / wire) connects the energy source to the load.
- 5. The load in the diagram above is the (bulb / wire).
- 6. A(n) (energy source / switch) opens and closes a circuit.

Bell Ringer 49: Complete Circuits

Name:	_
Date:	_

Electric current flows through a path called a circuit. In a

complete circuit, electrons flow in a path from the source

to the **load** and then back to the source. The path must have no breaks.

Directions: Look closely at each diagram. Decide if the bulb will light. Circle yes if the bulb will light, or no if the bulb will not light.

Bell Ringer 50: Series Circuit and	
Parallel Circuit	

ſ)
	Name: _	
	D .	
	Date:	

An **electrical circuit** is a complete path through which electrons flow from an energy source. Two kinds of basic circuits are **series** and **parallel**.

Directions: Identify each type of circuit shown below. Then answer the questions that follow.

3. What will happen if bulb B is removed from circuit number 1? _____

4. What will happen if bulb C is removed from circuit number 2? _____

Bell Ringer 51: Ohm's Law

Name:
Date:

George Ohm, a physicist, discovered a very important

relationship between voltage (V), current (I), and resistance (R).

Voltage is measured in **volts**, current is measured in **amps**, and resistance is measured in **ohms**. Electricians use **Ohm's Law** to determine the efficiency of electrical circuits for safety purposes.

Formula for finding voltage $V = I \times R$

Directions: Calculate each problem. Remember to label answers with the correct unit of measurement.

1. If you have a current of 1.2 amps flowing through a device with a resistance of 10 ohms, the

voltage is _____

- Find the voltage if the current is 12.5 amps and resistance is 9.6 ohms.
- 3. Find the resistance if voltage is 120 volts and current is 12.8 amps.

Bell Ringer 52: Magnetic Field

The space around a magnet where a magnet exerts a force	l
is called a magnetic field . This invisible force exists around	

every magnet, and can be observed by sprinkling the magnets with iron filings.

Directions: Draw the magnetic lines of force that would appear if the magnets below were sprinkled with iron filings.

S N	S N N S	S N S N
-----	---------	---------

$\left(\right)$	
Name:	
Date: _	

Bell Ringer 53: Electromagnetism

Name:	
Date:	

Current electricity can be used to make an **electromagnet**.

Directions: List three ways to increase the strength of an electromagnet.

1.	
2.	
3	
0.	

Bell Ringer 54: Renewable and Nonrenewable Resources		Name: Date:
---	--	----------------

Everyday we use up huge amounts of different energy sources to make our lives more comfortable. The energy we use comes from **natural resources** (resources supplied by nature). Energy sources can be classified as **renewable** or **nonrenewable**.

Directions: Complete the table by filling in the correct information under each column heading.

Energy Source	Explanation	Example
renewable		
nonrenewable		

Bell Ringer 55: Characteristics of Living Organisms

Name:	

Date: ___

All living organisms are classified by six characteristics.

Directions: Complete the table. List the six characteristics of all living organisms and provide an example for each.

Characteristic	Example
1.	
2.	
3.	
4.	
5.	
6.	

Bell Ringer 56: Classification Hierarchy

ſ	
	Name:
	Date:

A **mnemonic device** is a memory technique to help you recall important information.

Directions: Create a mnemonic device to help you remember the levels of classification.

Levels	Example	Your Mnemonic Device
Kingdom	Ке ер	
Phylum	Putting	
Class	Cookies	
Order	Out	
Family	For	
Genus	Girl	
Species	Scouts	

Bell Ringer 57: Fungi Kingdom			Name:		
Directions: Use the words in the word bank to fill in the blanks in the paragraph about fungi .			Date:		
	celled recyclers	chlorophyll saprophytes	decompos soil	e humid walls	
Fungi a	Fungi are sometimes called "nature's" because they help to				
organic materials. Most fungi are many They					
have cell		and are ancho	ored in		They grow best in
warm, places. They do not contain,			,		
and therefore, cannot make their own food. They are					
because they feed on decaying or dead tissues.					

Bell Ringer 58: Protist Kingdom

Name: .	
Date:	
Dale	

Some **protists** feed on other organisms; others make their food through photosynthesis.

Directions: Decide whether the protists listed below produce their own food or must capture their food. Write the name of the protists under the correct heading.

ciliates diatoms flagellates protozoans		dinofla sarcod	agellates lines	euglena sporozoans
Animal-Like (must capture food)			Plan (produce th	t-Like neir own food)

Bell Ringer 59: Monera Kingdom

The Monera Kingdom is made up completely of bacteria.

Directions: Identify the following statements as true or false. Then write "T" for true or "F" for false. If a statement is false, cross out the word that makes it false and write the word that makes it true.

- 1. _____ Bacteria usually reproduce by fission.
- 2. _____ All bacteria contain DNA.
- 3. _____ There are two types of bacteria: eubacteria and archaebacteria.
- 4. _____ Eubacteria exist in extreme conditions.
- 5. _____ All bacteria make their own food.
- 6. _____ Bacteria come in three basic shapes: spheres, rods, and spirals.
- 7. _____ All bacteria make humans sick.
- 8. _____ Many cheeses are made using bacteria.

Bell Ringer	60: Animal	Kingdom
--------------------	------------	---------

Organisms can be classified by the way they get their food. An **autotroph** (producer) is an organism that makes its own

food by using the sun's energy. A **heterotroph** (consumer) is an organism that gets energy from other organisms. Members of the animal kingdom are heterotrophs.

Directions: Complete the table by classifying each organism as an autotroph or heterotroph.

Organism	Autotroph or Heterotroph?
1. cow	
2. tree	
3. algae	
4. fungi	
5. cat	
6. pumpkin	

Name:	
Date:	

~	٦
Name:	
Date:	

Bell Ringer 61: Plant Kingdom

Name: _____

Date: _

Most **plants** have four main parts.

Directions: Complete the table by filling in the function of each plant part.

Plant Part	Function
Root	
Leaf	
Stem	
Flower	

Bell Ringer 62: Dicot/Monocot

ſ	
Name:	
Data	
Date: _	

Dicot and **monocot** are both classifications for flowering plants.

Directions: Identify the parts of the dicot and monocot seeds. Record your answers in the table below.

Monocot Seed

Dicot Seed	Monocot Seed
1.	1.
2.	2.
3.	3.

Bell Ringer 63: Angiosperm and Gymnosperm Plants

Name: .	
Date: _	

Angiosperms are flowering plants that produce their seeds in fruit. **Gymnosperms** are nonflowering plants, and the seeds are formed on a cone.

Directions: Use the words in the word bank to list each plant type under the correct heading. You may need to list more than one word on each line for all the answers to fit.

cactus tulips	pine tree fir tree	cherry tree junipers	vegetables oak tree	palm tree spruce tree	grass
A	ngiosperms			Gymnosp	erms
Bell Ringer 6	64: Photos	ynthesis		Name:	

Photosynthesis (the process by which plants make food) happens in the leaf.

irections · Use the wor	d bank to label the	process of photosy	vnthesis in the leaf	diagram

Date: _

Bell Ringer 65: Parts of a Flower

The **flower** is the part of the plant that produces the seeds.

Directions: Complete the table by writing each flower part and its function under the correct column.

Flower Part	Function
1.	
2.	
3.	
4.	
5.	
6.	
7.	

Date:

Bell Ringer 66: Endoskeleton and Exoskeleton

Name:	
Date: _	

All **vertebrates** have a hard framework called an **endoskeleton** inside the body that supports muscles and soft body parts. The endoskeleton grows as the body of the animal grows. **Arthropods** (invertebrates) have a hard outer skeleton called an **exoskeleton** that supports the weight of the animal. Once formed, an exoskeleton cannot get larger, but the arthropod inside keeps growing. When it gets too large for the exoskeleton, the exoskeleton splits. The arthropod sheds the old exoskeleton, and it grows a new one.

Directions: Write endoskeleton or exoskeleton to classify the following organisms.

1.	grasshopper	 -
2.	elephant	 Kasi
3.	crab	
4.	snail	
5.	scorpion	 -

Name: .			

Bell Ringer 67: Cold- and Warm-Blooded

Cold-blooded animals take on the temperature of their surroundings. **Warm-blooded animals** try to keep the inside of their bodies at a constant temperature.

or their bodies at a constant temperature.

Directions: Write "C" or "W" to classify the organisms as cold-blooded or warm-blooded.

1 snake	2 frog	3 alligator	4 pig
5 polar bear	6 lizard	7 chicken	8 spider
9 trout	10 deer	11 cat	12 moth
13 tiger	14 bee	15 whale	16 bat
17 shark	18 turtle	19 penguin	20 dog
21 dolphin	22 eagle	23 shrimp	24 human
25 horse	26 lion	27 camel	28 cow

Bell Ringer 68: Vertebrates and Invertebrates

Invertebrates are animals that do not have a backbone. **Vertebrates** are animals that have a backbone.

\int	٦
Name: .	
Date: _	

Directions: Complete the table by classifying the animals as vertebrates or invertebrates.

Animal	Vertebrate or Invertebrate?
1. leech	
2. mouse	
3. octopus	
4. worm	
5. snake	
6. butterfly	
7. crab	

Name:		
Date: _		

Bell Ringer 69: Plant and Animal Cells

Plant and animal cells have many of the same structures.

Directions: Complete the table. Identify the structure as part of a plant or animal cell by writing "yes" or "no" under the correct column heading. Then describe the function of each cell structure.

Structure	Plant Cell (yes/no)	Animal Cell (yes/no)	Function of Structure
1. vacuole			
2. nucleus			
3. cell membrane			
4. cell wall			
5. chloroplast			
6. mitochondria			

Bell Ringer 70: Cell Division—Mitosis

All living things grow and repair themselves by the process of **mitosis** (cell division). The cell contents and the DNA are

divided equally between two daughter cells (new cells). There are four distinct stages of mitosis.

Directions: Write the name of each phase of mitosis under the correct illustration. Then write a paragraph explaining what is occurring during each phase.

Name: _____

Name:

Date: ____

Date: ____

Bell Ringer 71: DNA, Genes, and Heredity

By studying **heredity**, scientists learned how traits are passed from parents to their offspring.

Directions: Use the word bank to fill in the blanks in the paragraph about heredity. Some words may be used more than once.

	DNA	chromosomes	genes	traits	nucleus	blueprint
		ar	e controllec	l by genes ma	ade up of DNA lo	ocated on the
				(rod-shap	oed strands) con	taining genetic material
are lo	are located in the of the cell. The chromosome is divided into small					
sectio	sections called The consist of a long strand of					st of a long strand of
	contains the genetic					
for how an organism looks and functions (traits).						

Bell Ringer 72: Consumers, Producers, and Decomposers

Name:	
Date: _	

The **food chain** consists of three levels: producers, consumers, and decomposers. A **producer** is an organism that changes the sun's energy into food. A **consumer** is an organism that gets energy from eating plants and other animals. A **decomposer** is an organism that gets energy from dead or decaying organisms.

Directions: Complete the table by classifying each living thing as a producer, consumer, or decomposer.

Living Thing	Producer, Consumer, or Decomposer
1. bacteria	
2. rose bush	
3. mushroom	
4. green algae	
5. dragonfly	
6. rabbit	

Name:	
Date: _	

Bell Ringer 73: Herbivores, Carnivores, and Omnivores

Name:		
Date: _		

There are three kinds of consumers: herbivores, carnivores, and omnivores.

Directions: Write a definition and give two examples for each type of consumer.

Herbivore: _____

Carnivore: _____

Omnivore: _____

Bell	Ringer	74: Food	Chains,	Food	Webs,
and	Energy	Pyramids	3		

Name:	
Date:	

Food chains, **food webs**, and **energy pyramids** are tools used to represent the flow of energy from the sun to organisms and from one organism to another organism.

Directions: Complete the boxes below by constructing an example of each flow of energy. You do not have to draw pictures; you can use names and draw arrows between them.

Food Chain	Food Web	Energy Pyramid

Bell Ringer 75: Symbiotic Relationships

Symbiosis is a close relationship between two species where at least one of the organisms is benefiting. There

are three different types of symbiosis. **Commensalism** is a relationship between two kinds of organisms that benefits one without harming the other. **Mutualism** is a relationship that benefits both. **Parasitism** is a relationship in which one organism benefits while the other may be harmed by the relationship.

Directions: Write *commensalism, mutualism,* or *parasitism* to identify the symbiotic relationship described.

1	Ticks feed on dog blood. This helps the tick but harms the dog.
2	Barnacles latch on to whales for a free meal. This does not help or hurt the whale.
3	Oxpecker birds remove the ticks from rhinoceroses. Both benefit.
4	Fleas feed on mice's blood. The fleas benefit, and the mice are harmed.

Bell Ringer 76: Carbon Dioxide-Oxygen Cycle

Name: _	
Date:	

The continuous movement of carbon dioxide and oxygen between living things and the environment is known as the **carbon dioxide-oxygen cycle**.

Directions: Draw a diagram of the carbon dioxide-oxygen cycle in the box below. You do not have to draw pictures; you can use names and draw arrows between them.

38

Bell Ringer 77: Ecological Succession

404251-EB ©Mark Twain Media, Inc., Publishers

Ecological succession (a series of environmental changes that occur in an ecosystem) is the result of the activities of

man, other living things, or when natural disasters occur such as forest fires, floods, climate changes, or volcanic eruptions. These activities may reduce an area to bare soil and rock. The first organisms to return to a disrupted area, such as grasses, form a **pioneer community**. Eventually, animals return, and given a sufficient amount of time, new communities form. A climax community or stable community finally forms that may remain the same for many years.

Directions: In 1980, Mount St. Helens erupted, destroying a forest biome. Explain how the process of ecological succession will change the area back to a thriving forest once again.

Bell Ringer 78: Biomes A **biome** is a large region where plants, animals, insects,

and people live in a distinct type of climate.

Directions: Match the clue to the correct biome.

1. _____ tundra a. reptiles, such as snakes and lizards, are well adapted to this biome 2. ____ desert b. found in groups called chains or ranges 3. ____ mountain c. trees remain green throughout the year 4. ____ coniferous forest d. hot, dry climate perfect for growing food 5. _____ deciduous forest e. encircles the Arctic Ocean 6. ____ grasslands f. more than 60 inches of rainfall each year 7. ____ rain forest q. trees drop their leaves in the fall

Name: _____ Date: ___

Name: _____

Date: _

Bell Ringer 79: Earth Structure and Composition

Name:
Date:

The earth has four distinct layers: the **crust**, **mantle**, **outer core**, and **inner core**.

Directions: Label the diagram of the earth's layers. Then describe the composition of each layer.

Earth's Layers

Layer Composition

1.	
2.	
3.	
4	

Bell Ringer 80: Plate Tectonics

Scientists use plate tectonics to explain how the continents were able to move to their present locations.

Name:	
Date: _	

Directions: Complete the table by writing a definition for each plate tectonic vocabulary word.

Vocabulary	Definition
1. subduction	
2. Pangaea	
3. transform boundary	
4. convergent boundary	
5. divergent boundary	
6. lithosphere	

Bell Ringer 81: Parts of a Volcano

Volcanoes are mountains formed by material that erupts
and builts up over time. They are caused by the action of
magma below the surface of the earth.

Directions: Label the volcano diagram and write a definition for each word.

Definition		
1.		
2.		
3.		
4.		
5.		

Name: ____

Date: _

Bell Ringer 82: Types of Volcanoes

ſ	
	Name:
	Date:

Scientists classify volcanoes into three types based on how they form and the type of material of which they are built.

The three basic forms of volcanoes are **shield**, **cone**, and **composite**.

Directions: Complete the table by providing an example of each type of volcano and the location of that volcano.

Volcano Type	Volcano Name	Volcano Location
shield		
cone		
composite		

Bell Ringer 83: Minerals

Name:	
Date: .	

Minerals can be identified by several physical properties.

Directions: Solve the crossword puzzle using the clues below.

Across

- 3. how a mineral breaks into pieces along smooth planes
- 4. how light is reflected from a mineral's surface
- 5. measure of how easily a mineral can be scratched
- 6. color of a mineral when crushed to a powder

Down

- 1. a comparison of density to the density of an equal volume of water (two words)
- 2. tendency of a mineral to break with jagged edges

Bell Ringer 84: Types of Rocks

Name:	
Date [.]	
Duito	

A **rock** is a solid mixture of minerals, mineraloids, glass, or organic matter. Geologists classify rocks into one of three groups based on how they are formed.

Directions: Circle one of each pair of words within the parentheses to make each statement true.

- 1. Igneous rocks are formed by (sediments pressing / cooling magma).
- 2. (Igneous rocks / Metamorphic rocks) have been formed by pressure and heat.
- 3. Rocks that form below the earth's surface are (extrusive / intrusive) igneous rocks.
- 4. Detrital (sedimentary / metamorphic) rocks are made from broken fragments of other rocks.
- 5. Gneiss and slate are examples of (igneous rocks / metamorphic rocks).
- 6. (Extrusive / Intrusive) rocks are formed when lava cools on or near the earth's surface.
- 7. Sedimentary rocks are formed by (temperature and pressure / sediments pressing).

Bell Ringer 85: Rock Cycle

Name:	
Date: _	

The process of constant change in form and structure of rocks is called the **rock cycle**.

Directions: Identify and label the diagram with the type of rocks being formed.

Bell Ringer 86: Earthquakes

The shaking, trembling, or rolling movements usually caused by bodies of rock slipping past each other at faults are called **earthquakes**.

Directions: Match each term with its definition.

1. _____ focus a. a scientist who studies earthquakes 2. seismic b. the waves produced by an earthquake 3. _____ epicenter c. the seismic waves that cause rocks to move in the same direction as the waves 4. _____ surface d. the seismic waves that cause rock particles to vibrate at right angles to the direction of the waves e. the seismic waves that reach Earth's surface and travel 5. _____ secondary outward 6. _____ seismologist f. the surface point directly above an earthquake's focus 7. ____ primary g. the point inside the earth where the energy release occurs

Name:	
Date: _	

Bell Ringer 87: Chemical and Mechanical Weathering

Date:	Name	:	_
	Date:		

Chemical and mechanical weathering are forces that break up rock.

Directions: Identify the following statements as true or false. Then write "T" for true or "F" for false. If a statement is false, cross out the word that makes it false and write the word that makes it true.

- 1. _____ Water is needed for chemical weathering to take place.
- 2. _____ Ice wedging is an example of chemical weathering.
- 3. _____ Abrasion is the process of wearing rock down by friction.
- 4. _____ Rusting is an example of mechanical weathering.
- 5. _____ Chemical weathering formed Carlsbad Caverns in New Mexico.
- 6. _____ Exfoliation is the process in which layers of rock gradually break off.

Bell Ringer 88: Erosion and Deposition

Erosion is the wearing away of the earth's surface by wind, water, ice, or gravity. Erosion takes away the soil in one place and deposits it in another.

	(٦
	Name:	
,	Date:	

Directions: Solve the crossword puzzle using the clues below.

Across

- 3. the part of vegetation that helps hold soil together
- 4. this is vegetation planted to slow the force of the wind
- 5. when sediments slowly inch their way down a slope due to gravity
- 6. fine-grained particles tightly packed by wind

Down

- when rainwater carves a broad, deep gash in the land as it moves large amounts of soil (two words)
- 2. a ridge of material deposited at the end of a glacier

Bell Ringer 89: Ocean Currents

Name:	
Date:	

The temperature of ocean currents directly affects the temperature of the air above them. In general, **warm**

ocean currents flow away from the equator, and cold ocean currents flow toward the equator.

Directions: Identify and name each ocean current in the diagram. Use your science textbook or the Internet if you need help.

1.	 3. 2. 1.
2.	
3.	
4.	
5.	
6.	 WARM CURRENT
7.	 5. 5.

Bell Ringer 90: Parts of the Ocean Floor

Name:
Date:

The topography of the ocean floor is similar to many of the landforms on Earth.

Directions: Draw and label a diagram of the ocean floor in the box below. Use the ocean feature words from the word bank. Use your science textbook or the Internet if you need help.

abyssal plain	continental shelf	continental slope	
mid-ocean ridge	submarine canyon	trench	

Bell Ringer 91: Earth's Atmosphere				Name:			
The atmo	The earth is surrounded by different layers of air called the						
Dire	ctions: Circle the correct	ct a	nswer for each	multi	ple-choice	question.	
1.	In which layer do most	airp	planes fly?				
	a. stratosphere	b.	troposphere	C.	mesosph	ere d.	ionosphere
2.	Which layer has the co	lde	st temperatures	;?			
	a. exosphere	b.	thermosphere	C.	ozonospł	nere d.	mesosphere
3.	Which layer reflects rac	dio	waves back to I	Earth	?		
	a. magnetosphere	b.	ionosphere	C.	troposph	ere d.	thermosphere
4.	4. In which layer do we live?						
	a. mesosphere	b.	stratosphere	C.	troposph	ere d.	exosphere
5.	. Which layer has most of Earth's weather?						
	a. troposphere	b.	exosphere	C.	ozonospł	nere d.	thermosphere

Bell Ringer 92: The Water Cycle

The **water cycle** is an exchange of water between land, bodies of water, and the atmosphere.

Name: .	
Date:	

Directions: Label the water cycle diagram. Then write a description for each process you labeled in the water cycle diagram.

Description

Bell Ringer 93: Factors Affecting Climate

Name:		

Date: _

Climate is the average weather pattern of a region over a long period of time. Several factors affect the climate of a region.

Directions: Explain how the following factors affect the climate of a region.

1.	latitude
2.	elevation
~	
3.	topography

Bell Ringer 94: Weather Maps and Symbols

Name: _____

Weather boxes are organized collections of symbols meteorologists use to represent collected weather data.

Directions: Using the appropriate weather symbols, create a weather box for each of the cities listed in the table.

City	Cloud Cover	Temperature	Barometric Pressure	Type of Weather	Wind Speed/ Direction
Denver, CO	100%	45	29.1 🖌	Snow	15 mph W
Milwaukee, WI	50%	35	30.1 steady		11 mph NW
San Antonio, TX	Clear	80	30.0 🛉	Sunny	5 mph SW

Denver, CO	

Milwaul	kee, WI	
	,	

San	Ant	onio,	TX	

Earth and Space Science

Bell Ringer 95: Air Masses

Name: _____

An **air mass** is a large body of air that has the same temperature and amount of moisture as the surface over which it develops.

Directions: Solve the crossword puzzle using the clues below.

Across

- 3. air mass that forms north or south of the 50 degree latitudes and is cold
- 4. air mass that forms over oceans and is humid

Down

- 1. air mass that forms over land and is dry
- 2. air mass that forms over the tropics and is warm

	_		2		
3					
	4				

Bell Ringer 96: Cold and Warm Fronts

Fronts are found along leading edges of the air masses. The temperature and pressure of the air mass dictates the name of the front.

Name	:	
Date:		

Directions: Identify each clue as a cold front or a warm front. Write "C" for cold front or "W" for warm front.

- 1. _____ a fast-moving cold air mass meets a slow-moving warm air mass
- 2. _____ a faster-moving warm air mass collides with a slower-moving cold air mass
- 3. ____ moderate rains arrive lasting for hours or days
- 4. _____ a tornado could happen
- 5. _____ strong winds followed by heavy rain and thunderstorms
- 6. _____ a front passes and the weather turns cooler
- 7. _____ a front passes and the temperature becomes warm and humid
- 8. _____ a front that farmers usually prefer

Bell Ringer 97: Types of Clouds

Name: .	
Date: _	

Clouds are masses of water droplets or ice crystals located in the troposphere layer of the atmosphere. There are many

different types of clouds; they can be used to forecast the weather.

Directions: Complete the table with the name of the cloud type, description of the cloud, and the forecast associated with the cloud type.

Name of Cloud Type	Description	Forecast
1		
2		
22		
3		

Bell Ringer 98: Types of Precipitation

$\left(\right)$	
Name:	
Data	
Date: _	

Precipitation is water falling from clouds in the form of rain, snow, ice, or drizzle.

Directions: Identify the following statements as true or false. Then write "T" for true or "F" for false. If a statement is false, cross out the word that makes it false and write the word that makes it true.

- 1. ____ Rain is water vapor turning directly to ice crystals.
- 2. ____ Hail is round pellets of ice.
- 3. _____ Raindrops that freeze when they touch a cold surface are called freezing rain.
- 4. ____ Drops of water smaller than 0.5 mm in diameter are rain.
- 5. _____ Raindrops that freeze as they fall are called sleet.
- 6. ____ Drops of water at least 0.5 mm in diameter are drizzle.
- 7. ____ Hailstones are formed in strong thunderstorms.
- 8. ____ Snow forms in clouds where moisture in the air freezes into ice crystals.

50

Earth and Space Science

Name: _

Name:

Date: _

Bell Ringer 99: Weather Instruments

Date: . Meteorologists use many weather instruments to help them gather information about weather and climate.

Directions: Match the weather instrument to its function.

1.	wind vane	a. measures air pressure
2.	thermometer	b. measures amount of rainfall
3.	anemometer	c. measures temperature
4.	rain gauge	d. measures wind direction
5.	hygrometer	e. measures temperature, air pressure, humidity, and wind speed
6.	barometer	f. measures humidity
7.	weather balloon	g. measures wind speed

Bell Ringer 100: Air Pressure

Air pressure is also known as atmospheric pressure or barometric pressure. It is a measure of the weight of air pressing down on a given area of Earth's surface.

Directions: Complete the table by filling in the weather conditions associated with barometric pressure.

Barometric Pressure	Weather
1. falling air pressure	
2. sudden fall in air pressure	
3. air pressure rises	
4. air pressure is steady	

Name: _

Bell Ringer 101: Days—Rotation

The **rotation** of a planet on its **axis**, an invisible line drawn between its north and south poles, results in days and nights on the planet's surface.

Directions: Solve the crossword puzzle using the clues below.

Bell Ringer 102: Seasons-Revolution

The earth **revolves** around the sun in a yearly cycle producing the four seasons: summer, autumn, winter, and spring.

Directions: Complete the table by filing in the date of the first day of the season, the tilt of the earth on that day, and the length of that day (daylight hours).

First Day of the Season	Date	Tilt of Earth	Length of Day
1. summer solstice			
2. autumnal equinox			
3. winter solstice			
4. vernal equinox			

Name:
Date:

Bell Ringer 103: Moon Phases

Name:
Date:

When the moon moves around the earth, we see the sunlight from different angles. The different shapes that

the moon appears to have are called the **phases of the moon**.

Directions: Identify each phase of the moon in the diagram.

1.	
5	5.
6	
7	2. 1 4. 3.
8	

Bell Ringer 104: Lunar and Solar Eclipses

Name: .	
Date:	

A **lunar eclipse** occurs when Earth passes between the moon and the sun casting a shadow on the moon. A **solar**

eclipse is a blackout of the sun's light when the moon passes between the earth and the sun. The moon's shadow extends all the way to the earth and causes a brief period of darkness for people who are under it.

Directions: Identify the type of eclipse shown in diagrams 1 and 2. Label the parts of the shadow cast by the eclipse in diagram 3.

Bell Ringer 105: Solar System

There are eight **planets** in our **solar system**.

Directions: Complete the table by adding the correct information under each column heading.

Planet	Symbol	Distance From Sun	Length of Day	Length of Year	Number of Moons	Number of Rings
Mercury						
Venus						
Earth						
Mars						
Jupiter						
Saturn						
Uranus						
Neptune						

Bell Ringer 106: Parts of the Sun

Name: .	
Date:	

Name: _____

Date: _

The **sun** is a star at the center of our solar system. It has many different parts.

Directions: Write a term from the word bank on the line before the part of the sun being described.

$\left(\right)$	sunspot	corona	photosphere	solar flare	
	chromosphere	prominence	coronal hole	core	

- 1. _____ the outermost and largest layer
- 2. _____ a dark-appearing spot
- 3. _____ a bright, arching column that blasts material in space
- 4. _____ the layer from which light is given off
- 5. _____ layer between the photosphere and corona
- 6. _____ intense bright spot in the sun's chromosphere
- 7. _____ center portion of the sun where hydrogen is turned into helium

Answer Keys

Scientific Inquiry

Bell Ringer 1 (p. 1)

Steps: 6, 2, 5, 4, 1, 3

Bell Ringer 2 (p. 1)

- 1. safety goggles: proper eye protection should be worn
- 2. lab apron: wear to protect clothing and body
- 3. poison: substance may be poisonous if touched, inhaled, or swallowed
- electrical: possible electrical shock or burn 4.
- 5. flame: open flames, may cause fire

6. heat-resistant gloves: hand protection needed when handling hot or extreme cold

- 7. fumes: harmful vapors, work in ventilated area
- 8. sharp objects: tools or glassware that can cut

Bell Ringer 3 (p. 2)

- 1. graduated cylinder
- 2. ring stand spring scale 4.
- 3. horseshoe magnet 5. microscope
- safety goggles 6.
- 7. pipette
- 8. test tube
- 9. forceps 10. triple-beam balance 12. beaker

11. magnifying glass

Bell Ringer 4 (p. 2)

- 1. A. 0.7 cm B. 1.7 cm C. 3.2 cm D. 5.0 cm E. 7.0 cm F. 8.6 cm
- 2. Teacher check
- 3. 38 mL 55 grams 4.

Physical Science

Bell Ringer 5 (p. 3)

These words should be circled: paper, milk, steel, peach, skin, glue, rock, book, rose, planet, mud, hair, water, leaf, spit, pencil, blood, diamond, tape, sand, germs, tree, nest

Bell Ringer 6 (p. 3)

1.	g	2.	é	3.	а	4.	1
5.	C	6.	b	7.	d		

Bell Ringer 7 (p. 4)

- 1. ability to react with oxygen, causing rust
- 2. ability to be poisonous
- ability to spontaneously emit energetic 3. particles by the disintegration of their atomic nuclei
- 4. ability to break down naturally
- 5. ability to catch fire

Bell Ringer 8 (p. 4)

- 1. solid 2. gas 3. plasma
- 5. plasma 4. liquid 6. gas
- 7. liquid 8. solid

Bell Ringer 9 (p. 5)

Physical Change: freezing water, crushing rock, shredding paper, drying clothes, ice melting, folding paper

Chemical Change: burning paper, rotting wood, bread molding, cake baking, iron rusting, exploding fireworks

Bell Ringer 10 (p. 5)

matter, atoms, electrons, protons, neutrons, nucleus, electron cloud, valence energy

Bell Ringer 11 (p. 6)

proton: positive, nucleus neutron: neutral, nucleus electron: negative, electron cloud

Bell Ringer 12 (p. 6)

Element: Au, Fe Molecule: O₂, H₂ Compound: $NaHCO_3$, $C_{12}H_{22}O_{11}$

Bell Ringer 13 (p. 7)

- 1. ionic 2. ionic
 - 3. covalent 4. ionic 5. 6. covalent covalent 7. ionic

Bell Ringer 14 (p. 7)

1. 92 2. U 3. Actinide series solid 5. metal 6. natural 4.

7. radioactive Bell Binger 15 (p. 8)

,	inger	10 (F					
1.	f	2.	g	З.	а	4.	С
5.	е	6.	b	7.	d		

Bell Ringer 16 (p. 8)

Homogeneous: toothpaste, perfume, air, Heterogeneous: granite, Italian dressing, sand

Bell Ringer 17 (p. 9)

Examples may vary.

Solution: a mixture where one of the substances dissolves in the other

Colloid: a mixture where very small particles of one substance are evenly distributed throughout another substance

Alloy: a mixture of elements that has the characteristic of a metal

Suspension: a mixture between a liquid and particles of a solid

Bell Ringer 18 (p. 9)

Acid: any compound that produces hydrogen ions in water; corrosive/burns; sour; pink; answer will vary (vinegar, battery acid, citrus fruits); 0-7; answer will vary (metals, carbonates, bases); H+

Base: any compound that produces hydroxide ions in water; slippery (caustic); bitter; blue; answer will vary (soap, shampoo window cleaner,

drain cleaner, antacids, baking soda); 7-14; answer will vary (fats, oils, acids); OH-

Bell Ringer 19 (p. 10)

- 1. acidic 2. basic 3. basic
- 4. basic 5. acidic 6. basic
- 7. acidic 8. neutral (slightly basic)
- 9. neutral

Bell Ringer 20 (p. 10)

- 2. a 3. d 1. C 4 е
- 5. b
- 6. Weight is a force in the downward direction. Buoyant force is in the upward direction. The iceberg floats because the upward force of the water is equal to the weight (the downward force) of the iceberg.

Bell Ringer 21 (p. 11)

An aircraft can achieve lift because air flows faster over the top of the wing and slower underneath. Fast-moving air equals low air pressure while slow-moving air equals high air pressure. Lower pressure is caused by the increased speed of the air over the wing. The high air pressure underneath the wings will therefore push the aircraft up through the lower air pressure.

Bell Ringer 22 (p. 11)

When you pump a bike tire, you apply force on the pump that in turn exerts a force on the air going inside the tire. The air responds by pushing not only on the pump but also against the walls of the tire. As a result, the pressure increases by an equal amount throughout the tire, and the tire inflates.

Bell Ringer 23 (p. 12)

force, Newton, gravity, Gravitation, attract, mass, distance

Bell Ringer 24 (p. 12)

- 2. 1. mass mass 3. weight
- 4. weight 5. weight 6. mass
- 7. mass weight 8.

Bell Ringer 25 (p. 13)

- 1. balanced 3. balanced
- 2. unbalanced 4. balanced
- 5. balanced
 - 6. unbalanced

Bell Ringer 26 (p. 13) static: friction that acts on objects that are not

moving, answers will vary

sliding: occurs when two solid surfaces slide over each other, answers will vary

rolling: occurs when an object rolls across a surface, answers will vary

fluid: occurs when a solid object moves through a fluid, answers will vary

Bell Ringer 27 (p. 14)

- 1. inertia 2. mass 3. greater
- 4. inertia 5. larger

Bell Ringer 28 (p. 14)

- 1. False; matter should be force
- 2. False: decrease should be increase
- 3. True 4. True 5. True
- 6. False; Newton should be meter per second per second (m/s²).

Bell Ringer 29 (p. 15)

- 1. Action: A fish exerts a force backward on the water using its fins. Reaction: The water exerts an equal force forward on the fins.
- 2. Action: The dog exerts a force downward on the ground. Reaction: The ground exerts an equal force upward on the dog.
- 3. Action: The explosion exerts a force on the cannon backward. Reaction: The explosion exerts an equal force forward on the ball.
- 4. Action: Your body exerts a force downward on the chair. Reaction: The chair exerts an equal force upward on your body.
- 5. Action: Her foot exerts a force forward on the ball.

Reaction The ball exerts a force backward on her foot.

Bell Ringer 30 (p. 15)

- 1. 96 kg•m/s 2. 45 kg•m/s
- 3. 820.0 kg•m/s 4. 100 m/s
- 5. The momentum of the 129-kg player running at 4 m/s is 516 kg·m/s. The momentum of a 120-kg player running at 5 m/s is 600 kg·m/s. Therefore, the 120-kg player running at 5 m/s has more momentum.

Bell Ringer 31 (p. 16) 1. Work 2. watt

- 3. work is done
- 4. ioule 5. Power 6. distance
- 7. work

Bell Ringer 32 (p. 16)

- 1. wedge
- 2. screw 3. wheel and axle 4. inclined plane 6. lever
- 5. wedge
- 7. wheel and axle 8. lever, wheel and axle
- 9. wheel and axle, pulley

Bell Ringer 33 (p. 17)

Scissors: lever and wedge Wheelbarrow: lever, wheel and axle Shovel: lever, wedge

Bicycle: lever (brake handles), wheel and axle (wheels and pedals), screw (seat adjustment) Ax: lever and double wedge

Bell Ringer 34 (p. 17)

4. nuclear energy Across: 5. chemical energy 6. electrical energy

1. electromagnetic energy Down:

- 3. thermal energy 2. sound energy Bell Ringer 35 (p. 18)
 - 1. b 2. a 3. b 4. а 5. b

Bell Ringer 36 (p. 18)

- 1. radiation 2. convection
- 3. conduction 4. radiation
- 5. conduction 6. convection

Bell Ringer 37 (p. 19)

wave, energy, medium, solids, mechanical, vibrate, electromagnetic, Light

Bell Ringer 38 (p. 19)

- 1. amplitude 2. Frequency
- 3. Wavelength 4. Frequency
- 5. Wave speed 6. amplitude

Bell Ringer 39 (p. 20)

Transverse Wave: 1. amplitude 2. crest 3. wavelength 4. trough Longitudinal Wave: 1. compression

2. rarefaction

Bell Ringer 40 (p. 20)

- 1. crest 2. trough 3. wavelength
- 4. False; longitudinal should be transverse
- 5. True 6. False; Microwaves should be Gamma rays 7. True

Bell Ringer 41 (p. 21)

1.	d	2.	f	3	b	4.	g
5.	h	6.	С	7	i	8.	a
9.	j	10.	е				

Bell Ringer 42 (p. 21)

spectrum, reflected, absorbed, black, prism, dispersion, frequencies, bent

Bell Ringer 43 (p. 22)

Structure: Concave lens is thinner in the middle and thicker at the edges. A convex lens is thicker in the middle and thinner at the edges.

Other Name: A concave lens is called a diverging lens. A convex lens is called a converging lens. Images Formed: Concave lenses form virtual images. Images are always upright. Convex lens can form virtual images that are upright and real images that are inverted.

Meaning: Concave - curve inward Convex - curve outward

Uses: Concave lenses used in glasses (correct short sight), spy hole in doors, and some telescopes. Convex lenses used in glasses (correction of long sight), eye of camera, magnifying glass

Bell Ringer 44 (p. 22)

- Sound is produced when an object vibrates. 1.
- 2. The greater the amplitude of the sound wave, the louder the sound.
- 3. The higher the frequency of a sound wave, the higher the pitch.
- 4. Loudness is measured in decibels (dB).

Bell Ringer 45 (p. 23)

Electricity is produced from the movement of electrons from one atom to another. When an atom is in balance, it has an equal number of protons and electrons. When an atom is not balanced, it needs to gain an electron. Electrons can be made to move from one atom to another. A proton with a positive charge from one atom attracts an electron with a negative charge from another atom. When the electron moves between the two atoms, a current of electricity is created. As one electron is attracted to an atom and another electron is lost, it creates a flow of electrons.

Bell Ringer 46 (p. 23)

Friction: Transfer of electrons from one object to another by rubbing. Examples will vary but may include clothes rubbing together in a dryer Conduction: Electrons transfer from an object that has negative charges to a positively charged object. Examples will vary but may include walking across carpet in socks and foot gets shocked.

Induction: Electrons move to one part of an object because it is in the electric field of another. Examples will vary but may include getting shocked when touching a metal door knob with fingertips.

Bell Ringer 47 (p. 24)

1.	d	2.	b	3.	С	4.	i
5.	а	6.	g	7.	е	8.	f

9. h

5.

Bell Ringer 48 (p. 24)

- open circuit 1. 2. battery load 3.
 - 4. wire
 - 6. switch

Bell Ringer 49 (p. 25)

bulb

1. no 2. no З. ves 4. ves 5. no 6. no

(The positive wire or positive end of the battery must touch the silver tip of the lightbulb. The negative wire must touch the metal side of the bulb base.)

Bell Ringer 50 (p. 25)

- 1. series 2. parallel
- 3. None of the lights will light.
- 4. The other lights will stay on.

Bell Ringer 51 (p. 26)

- 1. 12 volts 2. 120 volts
- 3. 9.375 ohms

Bell Ringer 52 (p. 26)

Bell Ringer 53 (p. 27)

Add more wire, batteries, or nails.

Bell Ringer 54 (p. 27)

Renewable resources: are not limited and can be replaced by natural processes.

Examples will vary but may included solar,

biomass, geothermal, hydro, wind, tidal/ocean, nuclear

Nonrenewable resources: are limited and cannot be replaced in a timely manner by natural processes.

Example: fossil fuels (oil, gas, coal, etc.)

Life Science

Bell Ringer 55 (p. 28)

Examples will vary. Answers may be in any order but should include:

- 1. Living organisms are made of cells.
- 2. Living organisms obtain and use energy.
- 3. Living organisms grow and develop.
- 4. Living organisms reproduce.
- 5. Living organisms respond to their environment.
- 6. Living organisms adapt to their environment.

Bell Ringer 56 (p. 28)

Answers will vary.

Bell Ringer 57 (p. 29)

recyclers, decompose, celled, walls, soil, humid, chlorophyll, saprophytes

Bell Ringer 58 (p. 29)

Animal-Like: protozoans, flagellates, sporozoans, ciliates, sarcodines

Plant-Like: euglena, dinoflagellates, diatoms Bell Ringer 59 (p. 30)

- 1. T 2. T 3. T
- 4. F; Eubacteria should be Archaebacteria
- 5. F; All should be Some 6. T
- 7. F; All should be Some 8. T

Bell Ringer 60 (p. 30)

- 1. heterotroph
- autotroph
- 5. heterotroph

Bell Ringer 61 (p. 31)

Root: anchors the plant in the ground

Leaf: makes food for the plant

Stem: supports the plant and holds the leaves up to the light

2. autotroph

6. autotroph

4. heterotroph

Flower: reproductive organ of a flowering plant

Bell Ringer 62 (p. 31)

Dicot Seed:	1.	embryo	2.	seed coat
	3.	cotyledon		
Monocot Seed:	1.	seed coat	2.	cotyledon
	3.	embryo		

Bell Ringer 63 (p. 32)

Angiosperms: vegetables, palm tree, cactus, grass, oak tree, cherry tree, tulips Gymnosperms: pine tree, spruce tree, fir tree, junipers

Bell Ringer 64 (p. 32)

- 1. glucose 2. water
- 3. carbon dioxide 4. sunlight
- 5. oxygen

Bell Ringer 65 (p. 33)

- 1. anther: part of the stamen where pollen is produced
- 2. stigma: part of the pistil where pollen germinates
- 3. pollen grains: microscopic bodies that contain the male reproductive cell
- 4. ovary: the enlarged base part of the pistil where ovules are produced
- 5. ovules/egg cells: join with male cells (sperm) to reproduce
- 6. filament: stalk-like structure that supports the anther
- 7. style: the stalk that supports the stigma and connects it to the ovary

Bell Ringer 66 (p. 33)

- 1. exoskeleton 2. endoskeleton
- 3. exoskeleton 4. exoskeleton
- 5. exoskeleton

Bell Ringer 67 (p. 34)

1.	С	2.	С	3.	С	4.	W
5.	W	6.	С	7.	W	8.	С
9.	С	10.	W	11.	W	12.	С
13.	W	14.	С	15.	W	16.	W
17.	С	18.	С	19.	W	20.	W
21.	W	22.	W	23.	С	24.	W
25.	W	26.	W	27.	W	28.	W

Bell Ringer 68 (p. 34)

- 1. invertebrate 2. vertebrate
- 3. invertebrate
- 5. vertebrate 6. invertebrate
- 7. invertebrate

Bell Ringer 69 (p. 35)

1. vacuole: yes; yes; storage structure for the cell

4. invertebrate

- 2. nucleus: yes; yes; controls the cell's activities
- 3. cell membrane: yes; yes; controls what materials go in and out of cells
- 4. cell wall: yes; no; provides support and gives shape to plants
- 5. chloroplasts: yes; no; where a plant cell's food (sugar) is made
- 6. mitochondria: yes; yes; use food molecules to make and release energy

Bell Ringer 70 (p. 35)

- 1. prophase 2. metaphase
- 3. anaphase 4. telophase

Paragraph: During prophase, the nucleus prepares for cell division; the chromosome copies are held together at their centers. During metaphase, the two copies of each chromosome line up in the center of the cell. The copies separate during anaphase; one complete set of chromosomes is pulled to one side of the cell while the other set is pulled to the other side. In the final stage of telophase, the cytoplasm pinches in at the center of the cell, splitting the original cell in half. Upon completion, two new daughter cells are formed; they are identical to the parent cell.

Bell Ringer 71 (p. 36)

Traits, chromosomes, Chromosomes, nucleus, genes, genes, DNA, DNA, blueprint

Bell Ringer 72 (p. 36)

- 1. decomposer 2. producer
- 3. decomposer 4. producer
- 5. consumer 6. consumer

Bell Ringer 73 (p. 37)

An herbivore is an organism that eats plants. (Examples may vary.)

A carnivore is an organism that eats other animals. (Examples may vary.)

An omnivore is an organism that eats plants and animals. (Examples may vary.)

Bell Ringer 74 (p. 37)

Answers may vary.

Bell Ringer 75 (p. 38)

- 1. parasitism
- mutualism
- Bell Ringer 76 (p. 38)
 - . 38)

2. commensalism

4. parasitism

Illustrations may vary.

Bell Ringer 77 (p. 39)

Pioneer organisms such as grasses will return, eventually animals return, and given sufficient amount of time, a new community will form. Finally, a stable community of plants and animals will remain with little change for years.

Bell Ringer 78 (p. 39)

1.	е	2.	а	3.	b	4.	С
5.	g	6.	d	7.	f		

Earth and Space Science

Bell Ringer 79 (p. 40)

- 1. crust: earth's cool outer layer of mostly solid rock
- 2. mantle: earth's vast middle layer of solid rock
- 3. outer core: melted iron and nickel
- 4. inner core: solid iron and nickel

Bell Ringer 80 (p. 40)

- 1. the movement of one plate under another
- 2. a supercontinent that broke apart over 200 million years ago to form smaller continents
- 3. when plates slide past one another
- 4. when two plates collide
- 5. when two plates move away from each other
- 6. area where the earth's crust and mantle bond together

Bell Ringer 81 (p. 41)

- 1. crater: the steep-walled depression at the top of a volcanic vent
- 2. lava flow: molten rock from a volcano flowing onto the earth's surface
- 3. pipe-vent: at the heart of a volcano where material wells up from beneath the surface
- 4. side vent: an opening exposed on the earth's surface where volcanic material is emitted
- 5. magma chamber: a large underground pool of liquid rock found beneath the surface of the earth

Bell Ringer 82 (p. 41)

Answers will vary.

Bell Ringer 83 (p. 42)

Across:	3.	cleavage	4.	luster	
	5.	hardness	6.	streak	
Down:	1.	specific gra	avity	2.	fracture

Bell Ringer 84 (p. 42)

- 1. cooling magma 2. Metamorphic rocks
- 3. intrusive sedimentary 4.
- 5. metamorphic rocks 6. Extrusive
- 7. sediments pressing

Bell Ringer 85 (p. 43)

- 1. igneous 2. metamorphic
- sedimentary
- Bell Ringer 86 (p. 43)
 - 2. b 3. f 1. g 4. е

С

7. 5. d 6. a

Bell Ringer 87 (p. 44)

- 1. T
- 2. F; chemical should be mechanical
- 3
- 4. F: mechanical should be chemical
- 5. T 6. T

Bell Ringer 88 (p. 44)

Across:	3.	roots	4.	winc	lbreak
	5.	creep	6.	loes	S
Down:	1.	gully erosion		2.	moraine

Bell Ringer 89 (p. 45)

- 1. Labrador Current
- 2. Gulf Stream
- 3. California Current
- 4. Equatorial Counter Current
- 5. Peru (Humboldt) Current
- 6. Antarctic Circumpolar Current
- 7. North Atlantic Current

Bell Ringer 90 (p. 45)

Diagram for ocean floor may vary.

Bell Ringer 91 (p. 46)

- 1. a 2. d 3. b 4. С
- 5. a

Bell Ringer 92 (p. 46)

- 1. precipitation: water released from clouds in the form of rain, freezing rain, sleet, snow, or hail.
- 2. evaporation: sun heats up water in rivers, lakes, or oceans and turns it into steam
- 3. condensation: water vapor is turned back into liquid form, as the temperature in the atmosphere drops. Clouds form as a result.

Bell Ringer 93 (p. 47)

1. Latitude affects climate depending on how close you are to the equator. If you are close to the equator, then the climate is warmer. If you are farther away, then it is cooler.

- 2. The higher the elevation, the cooler the temperatures.
- Mountains, valleys, and local topography 3. affect air movement, precipitation, and temperature. This results in areas that are wetter, drier, or warmer than surrounding flatlands.

Bell Ringer 94 (p. 47)

Bell Ringer 95 (p. 48)

Bell Ringer 96 (p. 48)						
1.	continental	2.	tropical			
3.	polar	4.	maritime			
	3. 1. • 96 (p	3. polar 1. continental 96 (p. 48)	3. polar 4. 1. continental 2. 96 (p. 48)			

С W 1. 2. 3. W 4. С W

С 5. 6. С 7. W 8.

Bell Ringer 97 (p. 49)

- 1. cumulus; big, scattered clouds with flat bottoms and round tops found about a mile above the earth; fair weather
- 2. cirrus; made up of tiny ice crystals, white feathery-looking clouds; found very high in the sky, about five to ten miles up; possible change in weather soon
- 3. stratus; cover the sky in a layer, rain and snow come from these clouds; found closer to earth, about 2,000 to 7,000 feet high; stormy weather

Bell Ringer 98 (p. 49)

- F; Rain should be Snow 2. Т 1.
- 4. F; rain should be drizzle 3 Т
- 5. Т 6. F; drizzle should be rain
- Т 7. 8. Т

Bell Ringer 99 (p. 50)

- 1. d 2. c 3. 4. b q
- 6. 7. 5. f а е

Bell Ringer 100 (p. 50)

- 1. warmer, wetter weather
- stormy weather is on its way 2.
- 3. fair weather is on its way
- no change in weather 4.

Bell Ringer 101 (p. 51)

Across:	1.	orbit	3.	day	4.	axis
Down:	2.	rotation				

Bell Ringer 102 (p. 51)

(Dates may vary slightly from year to year.)

- June 21; the Northern Hemisphere is tilted toward the sun; the longest day of the year in the Northern Hemisphere (most hours of daylight)
- 2. September 22; not tilted toward or away from the sun; equal lengths of day and night all over Earth
- 3. December 21; Northern Hemisphere is tilted away from the sun; the shortest day of the year in the Northern Hemisphere (least hours of daylight)
- 4. March 21; not tilted toward or away from the sun; equal lengths of day and night all over Earth

Bell Ringer 103 (p. 52)

- 1. new moon
- 2. waxing crescent moon
- 3. first quarter moon
- 4. waxing gibbous moon
- 5. full moon
- 6. waning gibbous moon
- 7. third quarter moon
- 8. waning crescent moon

Bell Ringer 104 (p. 52)

- 1. solar eclipse 2. lunar eclipse
- 3. a. penumbra b. umbra

Bell Ringer 105 (p. 53)

(Numbers may change as new discoveries are made.)

Mercury: \bigvee 36 million miles; 58.7 earth-days;

88 Earth days; 0 moons; 0 rings

Venus: Q 67.2 million miles; 243 earth-days;

224.7 earth-days; 0 moons; 0 rings

Earth: \bigoplus 93 million miles;

23 hours, 56 minutes; 365.25 days; 1 moon; 0 rings

Mars: **O**^{*} 143 million miles;

24 hours, 37 minutes; 687 earth-days (1.88 earth-years); 2 moons; 0 rings

Jupiter: 9 484 million miles;

9 hours, 50 minutes; 11.9 earth-years; 50 known moons, 17 awaiting confirmation; 3 rings

Saturn: \hbar 887 million miles;

10 hours, 39 minutes; 29.5 earth-years; 53 known moons, 9 awaiting confirmation; 7 rings

Uranus: \coprod 1,784 million miles;

17 hours, 14 minutes; 84 earth-years; 27 moons; 13 rings

Neptune: Ψ 2,794 million miles;

16 hours, 7 minutes; 163.7 earth-years; 13 moons, 1 awaiting confirmation; 9 rings

(Pluto is no longer considered a planet.)

Bell Ringer 106 (p. 53)

- 1. corona 2. sunspot
- 3. prominence 4. photosphere
- 5. chromosphere 6. solar flare
- 7. core

General Science: Daily Bell Ringers Photo Credits

Pg. 60 Astrological Glyphs.jpg {PD-GFDL/CC-SA 3.0} Jojobinks, 15 Aug. 2005/ Maksim, 19 Mar. 2006. <https://commons. wikimedia.org/wiki/File:Astrological_Glyphs.jpg>

Look for these Mark Twain Media books for grades 4-8+ at your local teacher bookstore or online at www.carsondellosa.com.

SCIENCE

CD-404093	Jumpstarters for Meteorology
CD-404094	Strengthening Physical Science Skills
CD-404098	Forensic Investigations
CD-404102	Daily Skill Builders: Physical Science
CD-404103	Daily Skill Builders: General Science
CD-404105	Understanding the Human Body
CD-404107	Jumpstarters for Properties of Matter
CD-404109	Science Vocabulary Building: Gr. 3–5
CD-404110	Science Vocabulary Building: Gr. 5–8
CD-404114	Confusing Science Terms
CD-404117	Alternative Energy Experiments
CD-404118	Scientific Method Investigation
CD-404119	Chemistry
CD-404120	Simple Machines
CD-404121	Light and Sound
CD-404122	Electricity and Magnetism
CD-404123	Geology
CD-404124	Meteorology
CD-404125	Astronomy
CD-404134	Jumpstarters for Energy Technology
CD-404141	Using STEM to Investigate Issues in
	Alternative Energy
CD-404142	Using STEM to Investigate Issues in
	Food Production
CD-404143	Using STEM to Investigate Issues in
	Managing Waste
CD-404151	Scientific Theories, Laws, & Principles
CD-404163	100+ Science Experiments for School
	and Home
CD-404164	Ooey Gooey Science
CD-404165	Science Games and Puzzles
CD-404185	Elements and the Periodic Table
CD-404250	STEM Labs for Middle Grades
CD-404251	General Science: Daily Bell Ringers

SOCIAL STUDIES

CD-1828	Civil War: The War Between the States
CD-1873	Seven Wonders of the World and More
CD-1899	Holocaust
CD-1309	Elections
CD-1318	Basic Economics
CD-1326	Personal Finance
CD-1550	We the People: Government in America
CD-1572	Understanding Investment/Stock Market
CD-404037	U.S. History: Inventors, Scientists,
	Artists, & Authors
CD-404039	U.S. History: People and Events:
	1607–1865
CD-404040	U.S. History: People and Events:
	1865–Present
CD-404096	Economic Literacy
CD-404099	Jumpstarters for U.S. Government
CD-404100	Understanding the U.S. Constitution
CD-404129	Jumpstarters for African-American
	History
CD-404137	Exploration, Revolution, and
	Constitution
CD-404138	Westward Expansion and Migration
CD-404139	Slavery, Civil War, and Reconstruction
CD-404140	Industrialization Through the Great
	Depression
CD-404150	World Governments
CD-404157	Medieval Times
CD-404158	Renaissance
CD-404159	World Civilizations and Cultures
CD-404160	Egypt and the Middle East
CD-404161	Greek and Roman Civilizations
CD-404162	Mayan, Incan, and Aztec Civilizations
CD-404168	Economics and You
CD-404246	U.S. History Puzzles, Book 2

GEOGRAPHY

CD-404060	Jumpstarters for Geography
CD-404095	Daily Skill Builders: World Geography
CD-404133	World Geography Puzzles
CD-404169	Map Reading Skills
CD-404170	Exploring Africa
CD-404171	Exploring Antarctica
CD-404172	Exploring Asia
CD-404173	Exploring Australia
CD-404174	Exploring Europe
CD-404175	Exploring North America
CD-404176	Exploring South America
CD-404236	World Geography
CD-404247	Maps for U.S. History
CD-404248	U.S. States and Territories Maps

LANGUAGE ARTS

*

CD-404008	Diagraming Sentences
CD-404061-	-CD-404063 Daily Skill Builders:
	Grammar: Grades 3–6
CD-404064	Daily Skill Builders: Spelling & Phonics:
	Grades 3–4
CD-404067-	-CD-404068 Daily Skill Builders:
02 10 1001	Vocabulary: Grades 3–5
CD-404070-	-CD-404072 Daily Skill Builders:
00 101070	Beading: Grades 3-6
CD-404073	lumpstarters for Figurative Language
CD-404073	lumpstarters for Poot Words Profixes
CD-404001	8. Suffixee
CD-404112	a Sullives
CD-404112	Using Graphic Organizers: Gr. 5–6
CD-404113	lumpetertore for Applegies
CD-404130	Writing: Fundementals for the
CD-404131	Windle School Cleases
00 404450	
CD-404156	Grammar and Composition
CD-404148	Jumpstarters for Abbreviations
CD-404149	Jumpstarters for Synonyms and
	Antonyms
CD-404166-	-CD-404167 Nonfiction Reading
	Comprehension: Grades 5–6, 7–8
CD-404177	Reading: Literature Learning Stations
CD-404178	Reading: Informational Text Learning
	Stations
CD-404179	Language Learning Stations
CD-404180	Writing Learning Stations
CD-404181	Understanding Informational Text
	Features
CD-404182	Comprehending Functional Text
CD-404210	Literacy in Science and Technology:
	Learning Station Activities to Meet CCSS
CD-404211	Literacy in History and Social Studies:
	Learning Station Activities to Meet CCSS
CD-404212	Using Primary Sources to Meet
	Common Core State Standards
CD-404214	Project-Based Learning Tasks for
	Common Core State Standards
CD-404215	Common Core: Elements of Literature
CD-404216	Common Core: Conducting Research
	Projects
CD-404217	Common Core: Complex Issues in Text
CD-404218	Common Core: Types of Text
CD-404219	Common Core: Grammar Usage
CD-404223	Assessment Prep for Common Core
00 10 1220	Reading: Grade 6
CD-404224	Assessment Pren for Common Core
OD TOTELT	Reading: Grade 7
CD-404225	Assessment Pren for Common Core
50 -0-225	Reading: Grade 8
CD-404226	Common Core Language Arte
50-404220	Workoute: Grade 6
CD-404007	Common Coro Languago Arto
00-404227	Workouto, Grada 7
	WORNOUIS: Grade /
00-404228	Workouto, Grada 9
	WOINDUIS: GIAUE 0

CD-404250	Poetry Comprehension	
	Vocabulary	
CD-404245	Language Arts Warm-Ups: Expanding	
	and Application: Grades 5, 6, 7–8	
CD-404242-	-CD-404244 Language Arts: Practice	
	Tasks: Grade 8	
CD-404231	Test Prep for CCSS Performance	
	Tasks: Grade 7	
CD-404230	Test Prep for CCSS Performance	
	Tasks: Grade 6	
CD-404229	Test Prep for CCSS Performance	

STUDY SKILLS

CD-1859	Improving Study & Test-Taking Skills
CD-1597	Note Taking: Lessons to Improve
	Research Skills & Test Scores
CD-1625–C	D-1630 Preparing Students for
	Standardized Testing: Grades 3–8

MATH

CD-404020	Helping Students Understand Algebra
CD-404021	Helping Sts. Understand Pre-Algebra
CD-404028	Helping Students Understand Algebra II
CD-404029	Helping Students Understand Geometry
CD-404041	Pre-Algebra Practice
CD-404042	Algebra Practice
CD-404043	Algebra II Practice
CD-404044	Geometry Practice
CD-404083	Daily Skill Builders: Algebra
CD-404084	Daily Skill Builders: Division
CD-404085	Daily Skill Builders: Fractions & Decimals
CD-404086	Daily Skill Builders: Pre-Algebra
CD-404087	Daily Skill Builders: Word Problems
CD-404088	Exploring Fractions
CD-404089	Math Reference for Middle Grades
CD-404101	Pre-Algebra
CD-404132	Math Skills Mind Benders
CD-404144	Math Tutor: Algebra Skills
CD-404145	Math Tutor: Pre-Algebra Skills
CD-404146	Math Tutor: Fractions & Decimals
CD-404147	Math Tutor: Multiplication & Division
CD-404152	Math Games: Grades 5–6
CD-404153	Math Games: Grades 7–8
CD-404154	Basic Geometry
CD-404155	Math Projects
CD-404183	Adding and Subtracting Fractions
CD-404184	Multiplying and Dividing Fractions
CD-404213	All About Decimals: Math for CCSS
CD-404220	Common Core Math Workouts: Grade 6
CD-404221	Common Core Math Workouts: Grade 7
CD-404222	Common Core Math Workouts: Grade 8
CD-404232-	-CD-404234 Assessment Prep for
	Common Core Mathematics:
	Grade 6, 7, 8
CD-404235	Common Core Math Activities
CD-404237	Geometry Basics
CD-404238-	-CD-404240 Math for College and Career
	Readiness: Grades 6, 7, 8
CD-404241	Pre-Algebra and Algebra Warm-Ups
CD-404252	Math Connections to the Real World
	FINE ARTS

CD-1893	Theater Through the Ages
CD-1596	Musical Instruments of the World
CD-1632	Everyday Art for the Classroom
CD-404135	American Popular Music

HEALTH & WELL-BEING

CD-404079	Jumpstarters for the Human Body
CD-404090	Healthy Eating and Exercise
CD-404115	Life Skills
CD-404186	Health, Wellness, and Physical Fitnes

General Science: Daily Bell Ringers features short activities that quiz students over content they should learn in middle-school science. These activities take only a few minutes to complete each day and work as a resource to prepare students for standardized science and end-of-the-term assessments. Bell ringers may be used as a class warm-up, a review of a topic covered earlier in the year, as extra practice on a topic currently being studied, in a learning center for review or extra practice, or as a homework assignment. Each page features two separate reproducible activities.

Topics covered include:

- ✓ Scientific Inquiry
- Physical Science
- ✓ Life Science
- ✓ Earth and Space Science

For correlations to state, national, and provincial standards, visit www.carsondellosa.com.

404251-EB

Mark Twain Media/Carson-Dellosa Publishing LLC

P.O. Box 35665 Greensboro, NC 27425 www.carsondellosa.com