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Section A:   Overview

CCG3 Technical Reference Manual consists of 2 books. This CCG3 Architecture Technical Reference Manual is Book 1 of 2.
For details on registers, refer to CCG3 Registers Technical Reference Manual (Book 2 of 2). 

This section encompasses the following chapters:

■ Introduction chapter on page 15

■ Getting Started chapter on page 21

■ Document Construction chapter on page 23

Document Revision History

Table 3-1.  Document Revision History

Revision Issue Date
Origin of 
Change

Description of Change

** 11/25/2015 VGT New CCG3 TRM.

www.cypress.com/?rID=108624
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1.   Introduction

CCG3 is a USB Type-C port controller that complies with the latest USB Type-C and USB Power Delivery standards. CCG3
provides a complete USB Type-C and USB Power Delivery port control solution for notebooks, dongles, monitors, docking
stations and power adapters. CCG3 uses Cypress’s proprietary M0S8 technology with a 32-bit, 48-MHz ARM® Cortex® -M0
processor with 128-KB flash, 8-KB SRAM, 20 GPIOs, full-speed USB device controller, a Crypto engine for authentication, a
20 V-tolerant regulator, and a pair of 1W FETs to generate a 5 V (VCONN) supply, which powers cables. CCG3 also inte-
grates two pairs of gate drivers to control external VBUS FETs and system level ESD protection.

CCG3 devices have these characteristics:

■ High-performance, 32-bit 48 MHz Cortex-M0 CPU core

■ Configurable Timer/Counter/PWM blocks

■ Configurable Serial Communication blocks to support I2C, SPI, UART

■ Integrated USB-PD BMC transceiver

■ Integrated VCONN FETs

■ Configurable resistors RA, RP and RD

■ Hardware Crypto block enables Authentication

■ Full-Speed USB Device Controller supporting Billboard Device Class

This document describes each function block of the CCG3 device in detail. This information will help designers to create
system-level designs.
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Introduction

1.1 Top Level Architecture

Figure 1-1 shows the major components of the CCG3 architecture. 

Figure 1-1.  CCG3 Family Functional Block Diagram

1.2 Features

CCG3 family of USB Type-C cable controllers has these
major components:

■ 32-bit Cortex-M0 CPU at 48 MHz

■ 128 KB flash and8 KB SRAM

■ Integrated USB-PD BMC transceiver

■ Integrated VCONN FETs

■ Hardware Crypto block to enable authentication

■ Full Speed USB device controller supporting Billboard
device class.

■ Up to 4 dedicated Timers and Counters block to meet
response times required by the USB-PD protocol

■ Four independent run-time reconfigurable Serial
Communication Blocks (SCB) with re-configurable I2C,
SPI or UART functionality.

■ Supports one USB Type-C port

■ Integrated oscillator eliminating the need of external
clock

■ Programming and debugging through serial wire debug
(SWD)
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Introduction

1.3 CPU and Memory 
Subsystem

1.3.1 Processor

The Cortex M0 in CCG3 is a 32-bit MCU, which is optimized
for low power operation with extensive clock gating. It
mostly uses 16-bit instructions and executes a subset of the
Thumb-2 instruction set which enables fully compatible
binary upwards migration of code to higher performance
processors such as the Cortex M3 and M4. The Cypress
option includes a hardware multiplier, which provides a 32-
bit result in one cycle. It includes an Interrupt Controller (the
NVIC block) with 32 Interrupt inputs and also includes a WIC
(Wakeup Interrupt Controller) which can wake the processor
up from Deep Sleep mode. The sub-system contains 128KB
of Flash organized in two banks of 64KB. The two-bank
flash allows the system to maintain two copies of the
firmware and update one copy while continuing to execute
from the other copy.

1.3.2 Interrupt Controller

The CPU subsystem of CCG3 includes a nested vectored
interrupt controller (NVIC) with 32 interrupt inputs and a
wakeup interrupt controller (WIC), which can wake the
processor from Deep-Sleep mode. The ARM Cortex-M0
CPU provides a Non Maskable Interrupt (NMI) input, which
is made available to the user when it is not in use for system
functions requested by the user.

1.4 USB PD Subsystem

This subsystem provides the interface to the Type-C USB
port. This sub-system comprises the USB-PD transceiver,
the FS USB transceiver, the high voltage regulator, OVP,
OCP and supply switch blocks. This sub-system also
contains the analog switches, the VCONN FETs and the 8-
bit ADC. This sub-system also includes all ESD required /
supported on the Type-C port.

1.4.1 USB-PD physical layer

The USB-PD Physical Layer consists of a transmitter and
receiver that communicate BMC encoded data over the CC
channel per the PD 2.0 standard. All communication is half-
duplex. The Physical Layer or PHY practices collision
avoidance to minimize communication errors on the
channel.

The USB-PD block includes all termination resistors (Rp, Rd
and Ra) and their switches as required by the USB-PD
spec. Rp and Rd resistors are required to implement

connection detection, plug orientation detection and for
establishment of the USB DFP / UFP roles. The Ra resistor
on the VCONN pin is used to identify a VCONN powered
accessory/dongle to the host. The Rp resistor is
implemented as a current source. In accessory applications,
Rp is not used. In dongle applications, the Ra resistor is
connected by default between the VCONN inputs and VSS.
Upon booting up, firmware can disconnect the Ra resistors
from VCONN inputs to save system power. 

According to the USB Type-C spec, a Type-C controller
such as CCG3 must present certain termination resistor
depending on its role in its un-powered state. The powered
accessory and UFP roles require that Ra and Rd resistors to
be present on one of the CC pins whereas the DFP role, as
in a power adapter, requires both CC lines to be open with
neither Rd nor Ra. To enable flexibility in such applications,
CCG3 includes the resistors required in un-powered state
on separate pad or pins. The dead battery Ra resistor is
available on a separate pin called VCONN and dead battery
Rd resistors are available on both CC pins. 

1.4.2 VCONN Input

CCG3 has an input pin called VCONN for connecting to
powered accessory's power supply input pin along with the
VSYS input. The VCONN input provides the required Ra
termination resistor as well as leaker circuits to ensure
complete discharge of the CC line upon disconnection. 

1.4.3 ADC 

The ADC is a 8-bit SAR ADC that is available for general
purpose A-D conversion applications in the chip. The ADC
can be accessed from all GPIOs and the DP/DM pins
through an on-chip analog mux.     

1.4.4 Analog Crossbar

CCG3 contains a set of analog switches to connect SBU1
and SBU2 pins of the Type-C connector to AUX_P and/or
AUX_N of a displayPort connector. All 4 pins are provided
with switchable pull-up and pull-down resistors as required
by their respective specs. 

1.4.5 Charger Detection

The charger detection block connected to the DP/DM pins
allow CCG3 to detect conventional battery chargers
conforming to BC 1.2 or other proprietary charger
specifications.
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1.5 System-Wide Resources

1.5.1 Clocking System

The clock system for the CCG3 controller consists of the
internal main oscillator (IMO) and an internal low-speed
oscillator (ILO) as internal clocks and has provision for an
external clock.

The IMO is the primary source of internal clocking in CCG3.
It is trimmed during production to achieve the desired accu-
racy of +/-2%. Trim values are stored in supervisory rows in
the Flash memory. Additional trim settings from Flash can
be used to compensate for changes. IMO Default frequency
for CCG3 is 24 MHz+/-2%.

The ILO is a 32 KHz low-power, less accurate oscillator and
is used to generate clocks for peripheral operation in Deep-
Sleep power mode. 

1.5.2 Power System

The power system provides assurance that voltage levels
are as required for each respective mode and will either
delay mode entry (on POR for instance) until voltage levels
are as required for proper function or will generate Resets
(BOD detection). 

CCG3 shall be able to operate from two possible external
supply sources VSYS and VBUS. The VSYS supply sup-
ports operation over 2.7 - 5.5 V while the VBUS input sup-
ports operation over 4.0 - 21.5 V. The range of VSYS is valid
for Powered Accessory and UFP applications not requiring a
billboard device function. All DFP and DRP applications
require VSYS to be over 3.0 V to ensure this device can
support disconnect thresholds of 2.7 V on CC pins. All use
cases requiring Billboard function require VSYS or VBUS to
be over 4.4 V. 

CCG3 has 3 different power modes (Active, Sleep and Deep
Sleep) transitions between which are managed by the
Power System. A separate power domain VDDIO is pro-
vided for the GPIOs.

VDDD, the output of the VBUS regulator and VCCD, the
output of the core (1.8V) regulator, are brought out only for
connecting external capacitors. These pins are not sup-
ported as a power supply sources.

1.5.3 GPIO

20 GPIOs are brought out on the 40-pin QFN and 42-ball
CSP package. Every GPIO in CCG3 has the following char-
acteristics:

■  Eight drive strength modes including strong push-pull, 
resistive pull-up and pull-down, weak (resistive) pull-up 

and pull-down, open drain and open source, input only, 
and disabled

■ Input threshold select (CMOS or LVTTL)

■ Individual control of input and output disables

■ Hold mode for latching previous state (used for retaining 
I/O state in Deep Sleep mode)

■ Selectable slew rates for dV/dt related noise control

 The pins are organized in three logical entities called Ports.
Port 0 contains the two OVT GPIOs. Ports 1, 2 and 3 are
assigned 8, 7 and 7 GPIOs respectively. During Power-on
and Reset, the blocks are forced to the Disable state so as
not to crowbar any inputs and/or cause excess turn-on
current. A multiplexing network known as a high-speed I/O
matrix is used to multiplex between various signals that may
connect to an I/O pin. Pin locations for Fixed-function
peripherals such as USB Type-C port are also fixed in order
to reduce internal multiplexing complexity. Data Output
Registers and Pin State Register store, respectively, the
values to be driven on the pins and the states of the pins
themselves. The configuration of the pins can be done by
programming of registers through software for each digital 
I/O Port. 

Every I/O pin can generate an interrupt if so enabled and
each I/O Port has an Interrupt Request (IRQ) and Interrupt
Service Routine (ISR) Vector associated with it.

The I/O Ports can retain their state during Deep Sleep mode
or remain ON. If operation is restored using reset then the
pins will go the High-Z state. If operation is restored by an
interrupt event then the pin drivers will retain their state until
firmware chooses to change it. The I/Os (on data bus) do
not draw current on power down. 

1.6 Fixed-Function Digital

1.6.1 Timer/Counter/PWM Block

The TCPWM block of CCG3 supports 4 timers. These
timers are available for internal timer use by firmware or for
providing PWM based functions on the GPIOs.

1.6.2 Serial Communication Block (SCB)

The CCG3 has four SCBs, which can each implement a
serial communication interface as I2C, universal
asynchronous receiver/transmitter (UART), or serial
peripheral interface (SPI).

The features of SCB includes:

■ Standard I2C multi-master and slave function
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■ Standard SPI master and slave function with Motorola, 
TI, and National (MicroWire) mode

■ Standard UART transmitter and receiver function

1.6.3 Crypto

The CCG3 Crypto block provides cryptography functionality.
It includes hardware acceleration blocks for AES (Advanced
Encryption Standard) block cipher, SHA-1 (Secure Hash
Algorithm) and SHA-2 hash, CRC (Cyclic Redundancy
Check) and pseudo random number generation. 
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2.   Getting Started

2.1 Support

Free support for CCG3 products is available online at http://www.cypress.com. Resources include training seminars, discus-
sion forums, application notes, CCG3 consultants, CRM technical support email, knowledge base articles, and application
notes.

For application assistance, visit http://www.cypress.com/support/ or call 1-800-541-4736.

2.2 Product Upgrades

Cypress provides scheduled upgrades and version enhancements for CCGx Software Development Kit. Upgrades can be
downloaded from Cypress website www.cypress.com/CCG3 in the Software section. Critical updates to system documenta-
tion are also provided in the Documentation section.

2.3 Development Kits
■ Development kits are available from www.cypress.com/CY4531. The Cypress Online Store contains development kits you 

need to successfully develop CCG3 based systems.

http://www.cypress.com
http://www.cypress.com/support/
www.cypress.com/CY4531
www.cypress.com/CCG2
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3.   Document Construction

The following sections in this document include these topics:

■ Section B: CPU System on page 27

■ Section C: Memory System on page 43

■ Section D: System-Wide Resources on page 47

■ Section E: Digital System on page 77

■ Section F: USB Power Delivery on page 163

■ Section G: Program and Debug on page 187

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

■ Section – Presents the top-level architecture, how to get started, and conventions and overview information about any 
particular area that inform the reader about the construction and organization of the product.

■ Chapter – Presents the chapters specific to an individual aspect of the section topic. These are the detailed implementa-
tion and use information for some aspect of the integrated circuit.

■ Glossary – Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms are pre-
sented in bold, italic font throughout.

■ CCG3 Registers Technical Reference Manual – Supplies all device register details summarized in the technical reference 
manual. These are additional documents. 

3.2 Documentation Conventions

This document uses only four distinguishing font types, besides those found in the headings.

■ The first is the use of italics when referencing a document title or file name.

■ The second is the use of bold italics when referencing a term described in the Glossary of this document.

■ The third is the use of Times New Roman font, distinguishing equation examples.

■ The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the CCG3 Registers TRM.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
‘3Ah’) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.
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3.2.3 Units of Measure

This table lists the units of measure used in this document.

3.2.4 Acronyms

This table lists the acronyms used in this document

Table 3-1.  Units of Measure

Symbol Unit of Measure

°C degrees Celsius

dB decibels

fF femtofarads

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k kilohms

MHz megahertz

M megaohms

µA microamperes

µF microfarads

µs microseconds

µV microvolts

µVrms microvolts root-mean-square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

 sigma: one standard deviation

V volts

Table 3-2.  Acronyms

Symbol Unit of Measure

ABUS analog output bus

AC alternating current

ADC analog-to-digital converter

AHB
AMBA (advanced microcontroller bus architecture) 
high-performance bus, an ARM data transfer bus

API application programming interface

APOR analog power-on reset

BMC Bi-Phase Mark Coding

BR bit rate

BRA bus request acknowledge

BRQ bus request

CAN controller area network

CC Configuration Channel

CCG3 Cypress’s 3rd Generation USB Type-C Controller

CI carry in

CMP compare

CO carry out

CPU central processing unit

CRC cyclic redundancy check

CT continuous time

DAC digital-to-analog converter

DC direct current

DFP Downstream Facing Port

DI digital or data input

DMA direct memory access

DNL differential nonlinearity

DO digital or data output

DRP Dual Role Port

DSI digital signal interface

DSM deep-sleep mode

ECO external crystal oscillator

EEPROM
electrically erasable programmable read only 
memory

EMCA Electronically Marked Cable Assembly

EMIF external memory interface

FB feedback

FIFO first in first out

FSR full scale range

GPIO general purpose I/O

HCI host-controller interface

HFCLK high-frequency clock

I2C inter-integrated circuit

IDE integrated development environment

ILO internal low-speed oscillator

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOR I/O read

Table 3-2.  Acronyms (continued)

Symbol Unit of Measure
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IOW I/O write

IRES initial power on reset

IRA interrupt request acknowledge

IRQ interrupt request

ISR interrupt service routine

IVR interrupt vector read

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

MISO master-in-slave-out

MMIO memory mapped input/output

MOSI master-out-slave-in

MSb most significant bit

MSB most significant byte

PC program counter

PCH program counter high

PCL program counter low

PD power down

PGA programmable gain amplifier

PM power management

PMA CCG3 memory arbiter

POR power-on reset

PPOR precision power-on reset

PRS pseudo random sequence

PSRR power supply rejection ratio

PSSDC power system sleep duty cycle

PWM pulse width modulator

RAM random-access memory

RETI return from interrupt

RF radio frequency

ROM read only memory

RW read/write

SAR successive approximation register

SC switched capacitor

SCB serial communication block

SIE serial interface engine

SIO special I/O

SE0 single-ended zero

SNR signal-to-noise ratio

SOF start of frame

SOI start of instruction

Table 3-2.  Acronyms (continued)

Symbol Unit of Measure

SOP Start of Packet

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random-access memory

SROM supervisory read only memory

SSADC single slope ADC

SSC supervisory system call

SYSCLK system clock

SWD single wire debug

TC terminal count

TD transaction descriptors

UART universal asynchronous receiver/transmitter

UFP Upstream Facing Port

USB universal serial bus

USBIO USB I/O

USB PD USB Power Delivery

WCO watch crystal oscillator

WDT watchdog timer

WDR watchdog reset

XRES external reset

XRES_N external reset, active low

Table 3-2.  Acronyms (continued)

Symbol Unit of Measure
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Section B: CPU System

This section encompasses the following chapters:

■ Cortex-M0 CPU chapter on page 29

■ Interrupts chapter on page 35

Top Level Architecture

CPU System Block Diagram

SWD/TC

Cortex M0 
48 MHz

FAST MUL
NVIC, IRQMX

System Interconnect
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4.   Cortex-M0 CPU

The CCG3 ARM Cortex-M0 core is a 32-bit CPU optimized for low-power operation. It has an efficient three-stage pipeline, a
fixed 4-GB memory map, and supports the ARMv6-M Thumb instruction set. The Cortex-M0 also features a low-latency inter-
rupt service routine (ISR) entry and exit.

The Cortex-M0 processor includes a number of other components that are tightly linked to the CPU core. These include a
nested vectored interrupt controller (NVIC), a SYSTICK timer, and debug.

This section gives an overview of the Cortex-M0 processor. For more details, see the ARM Cortex-M0 user guide or technical
reference manual, both available at http://www.arm.com.

4.1 Features
The CCG3 ARM Cortex-M0 has the following features:

■ Easy to use, program and debug, ensuring easier migration from 8- and 16-bit processors

■ Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power

■ Supports Thumb instruction set for improved code density, ensuring efficient use of memory

■ NVIC unit to support interrupts and exceptions for rapid and deterministic interrupt response

■ Extensive debug support including:

❐ Serial wire debug (SWD) port

❐ Breakpoints

❐ Watchpoints

http://www.arm.com
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4.2 Block Diagram
Figure 4-1.  CCG3 CPU Subsystem Block Diagram 

4.3 How It Works
The Cortex-M0 is a 32-bit processor with a 32-bit data path, 32-bit registers, and a 32-bit memory interface. It supports most
16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2 instruction set.

4.3.1 Registers

The Cortex-M0 has 16 32-bit registers, as Table 4-1 shows:

■ R0 to R12 – General-purpose registers. R0 to R7 can be accessed by all instructions; the other registers can be accessed 
by a subset of the instructions.

■ R13 – Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the CONTROL 
register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

■ R14 – Link register. Stores the return program counter during function calls.

■ R15 – Program counter. This register can be written to control program flow.

ARM Cortex-M0 CPU
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Table 4-2 shows how the PSR bits are assigned.

Table 4-1.  Cortex-M0 Registers

Name Typea

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Reset Value Description

R0-R12 RW Unknown R0-R12 are 32-bit general-purpose registers for data operations.

MSP

RW [0x00000000]

The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register indi-
cates the stack pointer to use:

0 = Main stack pointer (MSP). This is the reset value.

1 = Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

PSP

LR RW Unknown
The link register (LR) is register R14. It stores the return information for subroutines, function 
calls, and exceptions.

PC RW [0x00000004]
The program counter (PC) is register R15. It contains the current program address. On reset, 
the processor loads the PC with the value from address 0x00000004. Bit[0] of the value is 
loaded into the EPSR T-bit at reset and must be 1.

PSR RW Unknownb

b. Bit[24] is the T-bit and is loaded from bit[0] of the reset vector.

The program status register (PSR) combines:

Application Program Status Register (APSR).

Execution Program Status Register (EPSR).

Interrupt Program Status Register (IPSR).

APSR RW Unknown
The APSR contains the current state of the condition flags from previous instruction execu-
tions.

EPSR RO Unknownb The EPSR contains the Thumb state bit.

IPSR RO 0 The IPSR contains the exception number of the current ISR.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.

CONTROL RW 0 The CONTROL register controls the stack used when the processor is in Thread mode.

Table 4-2.  Cortex-M0 PSR Bit Assignments

Bit
PSR 

Register
Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSE V Overflow flag

27–25 – – Reserved

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0 
results in a HardFault exception.

23–6 – – Reserved

5–0 IPSR N/A

Exception number of current ISR:

0 = thread mode
1 = reserved
2 = Non maskable interrupt (NMI)
3 = HardFault
4 – 10 = reserved
11 = SVCall
12, 13 = reserved
14 = PendSV
15 = SysTick
16 = IRQ0
…

47 = IRQ31
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Use the MSR or CPS instruction to set or clear bit 0 of the
PRIMASK register. If the bit is 0, exceptions are enabled. If
the bit is 1, all exceptions with configurable priority, that is,
all exceptions except HardFault, NMI, and Reset, are dis-
abled. See the Interrupts chapter on page 35 for a list of
exceptions.

4.3.2 Operating Modes

The Cortex-M0 processor supports two operating modes:

■ Thread Mode – used by all normal applications. In the 
thread mode, the MSP or PSP can be used. The CON-
TROL register bit 1 determines which stack pointer is 
used:

❐ 0 = MSP is the current stack pointer

❐ 1 = PSP is the current stack pointer

■ Handler Mode – used to execute exception handlers. 
The MSP is always used.

In thread mode, use the MSR instruction to set the stack
pointer bit in the CONTROL register. When changing the
stack pointer, use an ISB instruction immediately after the
MSR instruction. This ensures that instructions after the ISB
execute using the new stack pointer.

In handler mode, explicit writes to the CONTROL register
are ignored, because the MSP is always used. The excep-
tion entry and return mechanisms automatically update the
CONTROL register.

4.3.3 Instruction Set

The Cortex-M0 implements a version of the Thumb instruc-
tion set. For details, see the Cortex-M0 Generic User Guide.

An instruction operand can be an ARM register, a constant,
or another instruction-specific parameter. Instructions act on
the operands and often store the result in a destination reg-
ister. Many instructions are unable to use, or have restric-
tions on using, the PC or SP for the operands or destination
register. 

Table 4-3.  Thumb Instruction Set

Mnemonic Brief Description

ADCS Add with Carry

ADD{S} Add

ADR PC-relative Address to Register

ANDS Bit wise AND

ASRS Arithmetic Shift Right

B{cc} Branch {conditionally}

BICS Bit Clear

BKPT Breakpoint

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CMN Compare Negative

CMP Compare

CPSID Change Processor State, Disable Interrupts

CPSIE Change Processor State, Enable Interrupts

DMB Data Memory Barrier

DSB Data Synchronization Barrier

EORS Exclusive OR

ISB Instruction Synchronization Barrier

LDM Load Multiple registers, increment after

LDR Load Register from PC-relative address

LDRB Load Register with word

LDRH Load Register with half-word

LDRSB Load Register with signed byte

LDRSH Load Register with signed half-word

LSLS Logical Shift Left

LSRS Logical Shift Right

MOV{S} Move

MRS Move to general register from special register

MSR Move to special register from general register

MULS Multiply, 32-bit result

MVNS Bit wise NOT

NOP No Operation

ORRS Logical OR

POP Pop registers from stack

PUSH Push registers onto stack

REV Byte-Reverse word

REV16 Byte-Reverse packed half-words

REVSH Byte-Reverse signed half-word

RORS Rotate Right

RSBS Reverse Subtract

SBCS Subtract with Carry

SEV Send Event

STM Store Multiple registers, increment after

STR Store Register as word

STRB Store Register as byte

STRH Store Register as half-word

SUB{S} Subtract

SVC Supervisor Call

SXTB Sign extend byte

SXTH Sign extend half-word

TST Logical AND based test

UXTB Zero extend a byte

UXTH Zero extend a half-word

WFE Wait For Event

WFI Wait For Interrupt

Table 4-3.  Thumb Instruction Set

Mnemonic Brief Description
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4.3.3.1 Address Alignment

An aligned access is an operation where a word-aligned
address is used for a word or multiple word access, or
where a half word-aligned address is used for a half word
access. Byte accesses are always aligned.

No support is provided for unaligned accesses on the Cor-
tex-M0 processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

4.3.3.2 Memory Endianness

The CCG3 ARM Cortex-M0 uses little-endian format, where
the least-significant byte of a word is stored at the lowest
address and the most significant byte is stored at the high-
est address.

4.3.4 Systick Timer

The Systick timer is integrated with the NVIC and generates
the SYSTICK interrupt. This interrupt can be used for task
management in a real-time system. The timer has a reload
register with 24 bits available to use as a countdown value.
The Systick timer uses the Cortex-M0 internal clock as a
source and can work in Sleep mode. 

4.3.5 Debug

CCG3 ARM Cortex-M0 contains a debug interface based on
SWD; it features four breakpoint (address) comparators and
two watchpoint (data) comparators.
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5.   Interrupts

The ARM Cortex-M0 (CM0) CPU in CCG3 supports interrupts and exceptions. Interrupts refer to those events generated by
peripherals external to the CPU such as timers, serial communication block, and port pin signals. Exceptions refer to those
events that are generated by the CPU such as memory access faults and internal system timer events. Both interrupts and
exceptions result in the current program flow being stopped and the exception handler or interrupt service routine (ISR) being
executed by the CPU. CCG3 provides a unified exception vector table for both interrupt handlers/ISR and exception handlers.

5.1 Features
CCG3 supports the following interrupt features:

■ Supports 32 interrupts

■ Nested vectored interrupt controller (NVIC) integrated with CPU core, yielding low interrupt latency

■ Vector table may be placed in either flash or SRAM

■ Configurable priority levels from 0 to 3 for each interrupt

■ Level-triggered and pulse-triggered interrupt signals

5.2 How It Works
Figure 5-1.  Interrupts Block Diagram

Figure 5-1 shows the interaction between interrupt signals and the Cortex-M0 CPU. CCG3 has 32 interrupts; these interrupt
signals are processed by the NVIC. The NVIC takes care of enabling/disabling individual interrupts, priority resolution, and
communication with the CPU core. The exceptions are not shown in Figure 5-1 because they are part of CM0 core generated
events, unlike interrupts, which are generated by peripherals external to the CPU.

Nested 
Vectored 
Interrupt 

Controller 
(NVIC)

Cortex-M0 
Processor Core

IRQ0

 

Cortex-M0 Processor

IRQ1

IRQ32

Interrupt signals 
from CCG3
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5.3 Interrupts and Exceptions - 
Operation

5.3.1 Interrupt/Exception Handling in 
CCG3

The sequence of events that occur when an interrupt or
exception event is triggered is:

1. Assuming that all the interrupt signals are initially low 
(idle or inactive state) and the processor is executing the 
main code, a rising edge on any one of the interrupt lines 
is registered by the NVIC. The interrupt line is now in a 
pending state waiting to be serviced by the CPU. 

2. On detecting the interrupt request signal from the NVIC, 
the CPU stores its current context by pushing the con-
tents of the CPU registers onto the stack. 

3. The CPU also receives the exception number of the trig-
gered interrupt from the NVIC. All interrupts and excep-
tions in CCG3 have a unique exception number, as 
given in Table 5-1. By using this exception number, the 
CPU fetches the address of the specific exception han-
dler from the vector table. 

4. The CPU then branches to this address and executes 
the exception handler that follows. 

5. Upon completion of the exception handler, the CPU reg-
isters are restored to their original state using stack pop 
operations; the CPU resumes the main code execution.

Figure 5-2.  Interrupt Handling When Triggered

When the NVIC receives an interrupt request while another
interrupt is being serviced or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the high-
est priority interrupt to the CPU. Thus, a higher priority inter-
rupt can block the execution of a lower priority ISR at any
time. 

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception num-
ber, which is used by the CPU to execute the appropriate
exception handler.

5.3.2 Level and Pulse Interrupts

CCG3 NVIC supports both level and pulse signals on the
interrupt lines (IRQ0 to IRQ31). The classification of an
interrupt as level or pulse is based on the interrupt source.

Figure 5-3.  Level Interrupts

Figure 5-4.  Pulse Interrupts 

Figure 5-3 and Figure 5-4 show the working of level and
pulse interrupts, respectively. Assuming the interrupt signal
is initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts: 

1. On a rising edge event of the interrupt signal, the NVIC 
registers the interrupt request. The interrupt is now in the 
pending state, which means the interrupt requests have 
not yet been serviced by the CPU.

2. The NVIC then sends the exception number along with 
the interrupt request signal to the CPU. When the CPU 
starts executing the ISR, the pending state of the inter-
rupt is cleared.

3. When the ISR is being executed by the CPU, one or 
more rising edges of the interrupt signal are logged as a 
single pending request. The pending interrupt is serviced 
again after the current ISR execution is complete (see 
Figure 5-4 for pulse interrupts).

4. If the interrupt signal is still high after completing the ISR, 
it will be pending and the ISR is executed again. 
Figure 5-3 illustrates this for level triggered interrupts, 
where the ISR is executed as long as the interrupt signal 
is high.

Rising Edge on Interrupt Line is 
registered by the NVIC

CPU detects the request signal 
from NVIC and stores its 

current context by pushing 
contents onto the stack

CPU receives exception 
number of triggered interrupt 

and fetches the address of the 
specific exception handle from 

vector table.

CPU branches to the received 
address and executes 

exception handler

CPU registers are restored 
using stack upon completion of 

exception handler.

IRQn
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Execution 
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main

ISR ISR
main

ISR
main

IRQn is still high

IRQn
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Execution 
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main

ISR
main
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5.3.3 Exception Vector Table

The exception vector table (Table 5-1), stores the entry point addresses for all exception handlers in CCG3. The CPU fetches
the appropriate address based on the exception number. 

In Table 5-1, the first word (4 bytes) is not marked as excep-
tion number zero. This is because the first word in the
exception table is used to initialize the main stack pointer
(MSP) value on device reset; it is not considered as an
exception. In CCG3, the vector table can be configured to
be located either in flash memory (base address of
0x00000000) or SRAM (base address of 0x20000000). This
configuration is done by writing to the VECT_IN_RAM bit
field (bit 0) in the CPUSS_CONFIG register. When the
VECT_IN_RAM bit field is ‘1’, CPU fetches exception han-
dler addresses from the SRAM vector table location. When
this bit field is ‘0’ (reset state), the vector table in flash mem-
ory is used for exception address fetches. You must set the
VECT_IN_RAM bit field as part of the device boot code to
configure the vector table to be in SRAM. The advantage of
moving the vector table to SRAM is that the exception han-
dler addresses can be dynamically changed by modifying
the SRAM vector table contents. However, the nonvolatile
flash memory vector table must be modified by a flash mem-
ory write.

The exception sources (exception numbers 1 to 15) are
explained in 5.4 Exception Sources. The exceptions marked
as Reserved in Table 5-1 are not used in CCG3, though
they have addresses reserved for them in the vector table.
The interrupt sources (exception numbers 16 to 47) are
explained in 5.5 Interrupt Sources.

5.4 Exception Sources
This section explains the different exception sources listed
in Table 5-1 (exception numbers 1 to 15).

5.4.1 Reset Exception

Device reset is treated as an exception in CCG3. It is always
enabled with a fixed priority of –3, the highest priority excep-
tion. A device reset can occur due to multiple reasons, such
as power-on-reset (POR), external reset signal on XRES
pin, or watchdog reset. When the device is reset, the initial
boot code for configuring the device is executed out of
supervisory read-only memory (SROM). The boot code and
other data in SROM memory are programmed by Cypress,
and are not read/write accessible to external users. After
completing the SROM boot sequence, the CPU code execu-
tion jumps to flash memory. Flash memory address
0x00000004 (Exception#1 in Table 5-1) stores the location
of the startup code in flash memory. The CPU starts execut-
ing code out of this address. Note that the reset exception
address in SRAM vector table will never be used because
the device comes out of reset with the flash vector table
selected. The register configuration to select the SRAM vec-
tor table can be done only as part of the startup code in flash
after the reset is de-asserted.

Table 5-1.  CCG3 Exception Vector Table

Exception Number Exception Exception Priority Vector Address

– Initial Stack Pointer Value Not applicable (NA)
Base_Address - Can be 0x00000000 (start of flash mem-

ory) or 0x20000000 (start of SRAM)a

a. Note that the reset exception address in SRAM vector table will never be used because the device comes out of reset with the flash vector table selected. 

1 Reset –3, the highest priority Base_Address + 0x04

2 Non Maskable Interrupt (NMI) –2 Base_Address + 0x08

3 HardFault –1 Base_Address + 0x0C

4–10 Reserved NA Base_Address + 0x10 to Base_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0–3) Base_Address + 0x2C

12–13 Reserved NA Base_Address + 0x30 to Base_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0–3) Base_Address + 0x38 

15 System Timer (SysTick) Configurable (0–3) Base_Address + 0x3C

16 External Interrupt (IRQ0) Configurable (0–3) Base_Address + 0x40

… … Configurable (0–3) …

47 External Interrupt (IRQ31) Configurable (0–3) Base_Address + 0xBC
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5.4.2 Non-Maskable Interrupt (NMI) 
Exception

Non-maskable interrupt (NMI) is the highest priority excep-
tion other than reset. It is always enabled with a fixed priority
of –2. There are two ways to trigger an NMI exception in
CCG3:

■ NMI exception by setting NMIPENDSET bit (user NMI 
exception): NMI exception can be triggered in software 
by setting the NMIPENDSET bit in the interrupt control 
state register (CM0_ICSR register). Setting this bit will 
execute the NMI handler pointed to by the active vector 
table (flash or SRAM vector table).

■ System Call NMI exception: This exception is used for 
nonvolatile programming operations in CCG3 such as 
flash write operation and flash checksum operation. It is 
triggered by setting the SYSCALL_REQ bit in the 
CPUSS_SYSREQ register. An NMI exception triggered 
by SYSCALL_REQ bit always executes the NMI excep-
tion handler code that resides in SROM. Flash or SRAM 
exception vector table is not used for system call NMI 
exception. The NMI handler code in SROM is not read/
write accessible because it contains nonvolatile pro-
gramming routines that should not be modified by the 
user.

5.4.3 HardFault Exception

HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher
priority than any exception with configurable priority. Hard-
Fault exception is a catch-all exception for different types of
fault conditions, which include executing an undefined
instruction and accessing an invalid memory addresses.
The CM0 CPU does not provide fault status information to
the HardFault exception handler, but it does permit the han-
dler to perform an exception return and continue execution
in cases where software has the ability to recover from the
fault situation.

5.4.4 Supervisor Call (SVCall) Exception

Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call.
The SVC instruction enables the application to issue a
supervisor call that requires privileged access to the system.
Note that the CM0 in CCG3 uses a privileged mode for the
system call NMI exception, which is not related to the SVCall
exception. (See the Chip Operational Modes chapter on
page 67 for details on privileged mode.) There is no other
privileged mode support for SVCall at the architecture level
in CCG3. The application developer must define the SVCall
exception handler according to the end application require-
ments.

The priority of a SVCall exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_11[31:30] of the System Handler Priority Register 2
(SHPR2). When the SVC instruction is executed, the SVCall
exception enters the pending state and waits to be serviced
by the CPU. The SVCALLPENDED bit in the System Han-
dler Control and State Register (SHCSR) can be used to
check or modify the pending status of the SVCall exception.

5.4.5 PendSV Exception

PendSV is another supervisor call related exception similar
to SVCall, normally being software-generated. PendSV is
always enabled and its priority is configurable. The PendSV
exception is triggered by setting the PENDSVSET bit in the
Interrupt Control State Register, CM0_ICSR. On setting this
bit, the PendSV exception enters the pending state, and
waits to be serviced by the CPU. The pending state of a
PendSV exception can be cleared by setting the PENDSV-
CLR bit in the Interrupt Control State Register, CM0_ICSR.
The priority of a PendSV exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_14[23:22] of the System Handler Priority Register 3
(CM0_SHPR3). See the ARMv6-M Architecture Reference
Manual for more details.

5.4.6 SysTick Exception

CM0 CPU in CCG3 supports a system timer, referred to as
SysTick, as part of its internal architecture. SysTick provides
a simple, 24-bit decrementing counter for various time keep-
ing purposes such as an RTOS tick timer, high-speed alarm
timer, or simple counter. The SysTick timer can be config-
ured to generate an interrupt when its count value reaches
zero, which is referred to as SysTick Exception. The excep-
tion is enabled by setting the TICKINT bit in the SysTick
Control and Status Register (CM0_SYST_CSR). The priority
of a SysTick exception can be configured to a value
between 0 and 3 by writing to the two bit fields
PRI_15[31:30] of the System Handler Priority Register 3
(SHPR3). The SysTick exception can always be generated
in software at any instant by writing a one to the PENDST-
SETb bit in the Interrupt Control State Register, CM0_ICSR.
Similarly, the pending state of the SysTick exception can be
cleared by writing a one to the PENDSTCLR bit in the Inter-
rupt Control State Register, CM0_ICSR.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
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5.5 Interrupt Sources
CCG3 supports 22 interrupts from peripherals. The source
of each interrupt is listed in Table 5-2. CCG3 provides flexi-
ble sourcing options for each of the 22 interrupt lines. The
interrupts include standard interrupts from on-chip peripher-
als such as TCPWM, serial communication block, and inter-
rupts from ports. The interrupt generated is usually the
logical OR of the different peripheral states. The peripheral
status register should be read in the ISR to detect which
condition generated the interrupt. These interrupts are usu-
ally level interrupts, which require the peripheral status reg-
ister to be read in the ISR to clear the interrupt. If the status
register is not read in the ISR, the interrupt will remain
asserted and the ISR will be executed continuously.

See the I/O System chapter on page 49 for details on GPIO
interrupts.

5.6 Exception Priority
Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. CCG3 provides flexibility in choosing priority values
for different exceptions. All exceptions except Reset, NMI,
and HardFault can be assigned a configurable priority level.
The Reset, NMI, and HardFault exceptions have a fixed pri-
ority of –3, –2, and –1 respectively. In CCG3, lower priority
numbers represent higher priorities. This means that the
Reset, NMI, and HardFault exceptions have the highest pri-
orities. The other exceptions can be assigned a configurable
priority level between 0 and 3.

CCG3 supports nested exceptions in which a higher priority
exception can obstruct (interrupt) the currently active excep-
tion handler. This pre-emption does not happen if the incom-
ing exception priority is the same as active exception. The
CPU resumes execution of the lower priority exception han-
dler after servicing the higher priority exception. The CM0
CPU in CCG3 allows nesting of up to four exceptions. When
the CPU receives two or more exceptions requests of the
same priority, the lowest exception number is serviced first.

The registers to configure the priority of exception numbers
1 to 15 are explained in Exception Sources on page 37.

The priority of the 32 interrupts (IRQ0–IRQ31) can be con-
figured by writing to the Interrupt Priority registers
(CM0_IPR). This is a group of four 32-bit registers with each
register storing the priority values of four interrupts, as given
in Table 5-3. The other bit fields in the register are not used.

Table 5-2.  List of CCG3 Interrupt Sources

Interrupt No. Interrupt Source

NMI

0 GPIO Interrupt - Port0

1 GPIO Interrupt - Port1 

2 GPIO Interrupt - Port2

3 GPIO Interrupt - Port3

4 GPIO Interrupt - Port 4 USB Wakeup

5 GPIO All ports

6 Ganged USBPD Interrupt

7 WDT or Temp (WDT only in DeepSleep)

8 SCB[0]

9 SCB[1]

10 SCB[2]

11 SCB[3]

12 SPC

13 Synchronous USBPD Interrupts

14 TCPWM counter #0

15 TCPWM counter #1

16 TCPWM counter #2

17 TCPWM counter #3

18 USB Start of Frame

19 USB EP1-EP8 data

20 USB EP1-EP8 data

21 Crypto block

Table 5-3.  Interrupt Priority Register Bit Definitions

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.
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5.7 Enabling/Disabling 
Interrupts

The NVIC provides registers to individually enable and dis-
able the 32 interrupts in software. If an interrupt is not
enabled, the NVIC will not process the interrupt requests on
that interrupt line. The Interrupt Set-Enable Register
(CM0_ISER) and the Interrupt Clear-Enable Register
(CM0_ICER) are used to enable and disable the interrupts
respectively. These registers are 32-bit wide and each bit
corresponds to the same numbered interrupt. These regis-
ters can also be read in software to get the enable status of
the interrupts. Table 5-4 shows the register access proper-
ties for these two registers. Note that writing zero to these
registers has no effect.

The CM0_ISER and CM0_ICER registers are applicable
only for the interrupts (IRQ0–IRQ31). These registers can-
not be used to enable or disable the exception numbers 1 to
15. The 15 exceptions have their own support for enabling
and disabling, as explained in Exception Sources on
page 37.

The PRIMASK register in Cortex-M0 (CM0) CPU can be
used as a global exception enable register to mask all the
configurable priority exceptions irrespective of whether they
are enabled. Configurable priority exceptions include all the
exceptions except Reset, NMI, and HardFault listed in
Table 5-1. They can be configured to a priority level
between 0 and 3, 0 being the highest priority and 3 being the
lowest priority. When the PM bit (bit 0) in PRIMASK register
is set, none of the configurable priority exceptions can be
serviced by the CPU, though they can be in the pending
state waiting to be serviced by the CPU after the PM bit is
cleared.

5.8 Exception States
Each exception can be in one of the following states.

The Interrupt Control State Register (CM0_ICSR) contains
status bits describing the various exceptions states.

■ The VECTACTIVE bits ([8:0]) in the CM0_ICSR store the 
exception number for the current executing exception. 
This value is zero if the CPU is not executing any excep-
tion handler (CPU is in thread mode). Note that the value 
in VECTACTIVE bit fields is the same as the value in bits 
[8:0] of the Interrupt Control State Register (ICSR), 
which is also used to store the active exception number.

■ The VECTPENDING bits ([20:12]) in the CM0_ICSR 
store the exception number of the highest priority pend-
ing exception. This value is zero if there are no pending 
exceptions.

■ The ISRPENDING bit (bit 22) in the CM0_ICSR indi-
cates if a NVIC generated interrupt (IRQ0 to IRQ31) is in 
a pending state.

Table 5-4.  Interrupt Enable/Disable Registers

Register Operation Bit Value Comment

Interrupt Set 
Enable Register 
(CM0_ISER)

Write
1 To enable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear 
Enable Register 
(CM0_ICER)

Write
1 To disable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Table 5-5.  Exception States

Exception State Meaning

Inactive
The exception is not active and not pend-
ing. Either the exception is disabled or the 
enabled exception has not been triggered.

Pending
The exception request has been received 
by the CPU/NVIC and the exception is 
waiting to be serviced by the CPU. 

Active

An exception that is being serviced by the 
CPU but whose exception handler execu-
tion is not yet complete. A high-priority 
exception can interrupt the execution of 
lower priority exception. In this case, both 
the exceptions are in the active state.

Active and Pending

The exception is being serviced by the 
processor and there is a pending request 
from the same source during its exception 
handler execution.
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5.8.1 Pending Exceptions

When a peripheral generates an interrupt request signal to
the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts
executing the corresponding exception handler routine, the
exception is changed from the pending state to the active
state.

The NVIC allows software pending of the 32 interrupt lines
by providing separate register bits for setting and clearing
the pending states of the interrupts. The Interrupt Set-Pend-
ing Register (CM0_ISPR) and the Interrupt Clear-Pending
Register (CM0_ICPR) are used to set and clear the pending
status of the interrupt lines. These registers are 32 bits wide,
and each bit corresponds to the same numbered interrupt.
Table 5-6 shows the register access properties for these two
registers. Note that writing zero to these registers has no
effect.

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding inter-
rupt is enabled. If the interrupt is not enabled, the interrupt
line will not move to the pending state until it is enabled by
writing to the CM0_ISER register.

Note that the CM0_ISPR and CM0_ICPR registers are used
only for the 32 peripheral interrupts (exception numbers 16-
47). These registers cannot be used for pending the excep-
tion numbers 1 to 15. These 15 exceptions have their own
support for pending, as explained in Exception Sources on
page 37.

5.9 Stack Usage for Exceptions
When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the Pro-
gram and Status Register (PSR), ReturnAddress, Link Reg-
ister (LR or R14), R12, R3, R2, R1, and R0. Cortex-M0 has
two stack pointers - MSP and PSP. Only one of the stack
pointers can be active at a time. When in thread mode, the

Active Stack Pointer bit in the Control register is used to
define the current active stack pointer. When in handler
mode, the MSP is always used as the stack pointer. The
stack pointer in Cortex-M0 always grows downwards and
points to the address that has the last pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the
control register to store the general-purpose register
contents. After the stack push operations, the CPU enters
handler mode to execute the exception handler. When
another higher priority exception occurs while executing the
current exception, the MSP is used for stack push/pop
operations, because the CPU is already in handler mode.
See the Cortex-M0 CPU chapter on page 29 for details.

The Cortex-M0 uses two techniques, tail chaining and late
arrival, to reduce latency in servicing exceptions. These
techniques are not visible to the external user and are done
as part of the internal processor architecture (http://
infocenter.arm.com/help/index.jsp?topic=/
com.arm.doc.ddi0419c/index.html). 

5.10 Interrupts and Low-Power 
Modes

CCG3 allows device wakeup from low-power modes when
certain peripheral interrupt requests are generated. The
Wakeup Interrupt Controller (WIC) block generates a
wakeup signal that causes the device to enter Active mode
when one or more wakeup sources generate an interrupt
signal. After entering Active mode, the ISR of the peripheral
interrupt is executed.

The Wait For Interrupt (WFI) instruction, executed by the
CM0 CPU, triggers the transition into Sleep and Deep-Sleep
modes. The sequence of entering the different low-power
modes is detailed in the Power Modes chapter on page 69.
Chip low-power modes have two categories of fixed-function
interrupt sources:

■ Fixed-function interrupt sources that are available only in 
the Active and Deep-Sleep modes (watchdog timer inter-
rupt, I2C interrupts, USB PD and GPIO interrupts)

■ Fixed-function interrupt sources that are available only in 
the Active mode (all other fixed-function interrupts)

Table 5-6.  Interrupt Set Pending/Clear Pending Registers

Register Operation
Bit 

Value
Comment

Interrupt Set-
Pending Regis-
ter (CM0_ISPR)

Write
1

To put an interrupt to 
pending state

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

Interrupt Clear-
Pending Regis-
ter (CM0_ICPR)

Write
1

To clear a pending 
interrupt

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
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5.11 Exception - Initialization and 
Configuration

This section covers the different steps involved in initializing
and configuring exceptions in CCG3. 

1. Configuring the Exception Vector Table Location: The 
first step in using exceptions is to configure the vector 
table location as required - either in flash memory or 
SRAM. This configuration is done by writing either a ‘1’ 
(SRAM vector table) or ‘0’ (flash vector table) to the 
VECT_IN_RAM bit field (bit 0) in the CPUSS_CONFIG 
register. This register write is done as part of device ini-
tialization code. 

It is recommended that the vector table be available in 
SRAM if the application will need to change the vector 
addresses dynamically. If the table is located in flash, 
then a flash write operation is required to modify the vec-
tor table contents. 

2. Configuring Individual Exceptions: The next step is to 
configure individual exceptions required in an applica-
tion.

a. Configure the exception or interrupt source; this 
includes setting up the interrupt generation condi-
tions. The register configuration depends on the spe-
cific exception required.

b. Define the exception handler function and write the 
address of the function to the exception vector table. 
Table 5-1 gives the exception vector table format; the 
exception handler address should be written to the 
appropriate exception number entry in the table.

c. Set up the exception priority, as explained in Excep-
tion Priority on page 39.

d. Enable the exception, as explained in Enabling/Dis-
abling Interrupts on page 40.

5.13 Associated Documents
■ ARMv6-M Architecture Reference Manual - This document explains the ARM Cortex-M0 architecture, including the 

instruction set, NVIC architecture, and CPU register descriptions.

Table 5-7.  List of Registers

Register Name Description

CM0_ISER Interrupt Set-Enable Register

CM0_ICER Interrupt Clear Enable Register

CM0_ISPR Interrupt Set-Pending Register

CM0_ICPR Interrupt Clear-Pending Register

CM0_IPR Interrupt Priority Registers

CM0_ICSR Interrupt Control State Register

CM0_AIRCR Application Interrupt and Reset Control Register

CM0_SCR System Control Register

CM0_CCR Configuration and Control Register

CM0_SHPR2 System Handler Priority Register 2

CM0_SHPR3 System Handler Priority Register 3

CM0_SHCSR System Handler Control and State Register

CM0_SYST_CSR Systick Control and Status

CPUSS_CONFIG CPU Subsystem Configuration

CPUSS_SYSREQ System Request Register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
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Section C: Memory System

This section presents the following chapter:

■ Memory Map chapter on page 45

Top Level Architecture

Memory System Block Diagram
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6.   Memory Map

All CCG3 memory (flash, SRAM, and SROM) and all registers are accessible by the CPU and in most cases by the debug
system. This chapter contains an overall map of the addresses of the memories and registers.

6.1 Features
The CCG3 memory system has the following features:

■ 128K bytes flash, 8K bytes SRAM

■ 8K byte SROM contains boot and configuration routines

■ ARM Cortex-M0 32-bit linear address space, with regions for code, SRAM, peripherals, and CPU internal registers

■ Flash is mapped to the Cortex-M0 code region

■ SRAM is mapped to the Cortex-M0 SRAM region

■ Peripheral registers are mapped to the Cortex-M0 peripheral region

■ The Cortex-M0 Private Peripheral Bus (PPB) region includes registers implemented in the CPU core. These include reg-
isters for NVIC, SysTick timer, and serial communication block (SCB). For more information, see the Cortex-M0 
CPU chapter on page 29.

6.2 How It Works
The CCG3 memory map is detailed in the following tables. For additional information, refer to the CCG3 Registers TRM.

The ARM Cortex-M0 has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 6-1. Note that code can be executed
from the code and SRAM regions.

Table 6-1.  Cortex-M0 Address Map

Address Range Name Use

0x00000000–0x1FFFFFFF Code
Executable region for program code. You can also put data here. Includes the exception 
vector table, which starts at address 0.

0x20000000–0x3FFFFFFF SRAM Executable region for data. You can also put code here.

0x40000000–0x5FFFFFFF Peripheral All peripheral registers. Code cannot be executed out of this region.

0x60000000–0xDFFFFFFF – Not used

0xE0000000–0xE00FFFFF PPB Peripheral registers within the CPU core.

0xE0100000–0xFFFFFFFF Device CCG3 implementation-specific.
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Table 6-2 shows the CCG3 address map.

Table 6-2.  CCG3 Address Map

Address Range Use

0x00000000–0x0001FFFC 128 KB flash

0x0FFFF000–0x0FFFF3FF 1 KB supervisory flash

0x20000000–0x20001FFE 8 KB SRAM

0x40100000–0x4011FFFF CPU subsystem registers

0x40020000–0x40023FFF I/O port control (high-speed I/O matrix) registers

0x40040000–0x40043FFF I/O port registers

0x40070000–0x4007FFFF TCPWM registers

0x40050000–0x4005FFFF SCB registers

0x40080000–0x4008FFFF USB Power Delivery Controller registers

0x40030000–0x4003FFFF Power, clock, reset control registers

0xE0000000–0xE00FFFFF Cortex-M0 PPB registers

0xF0000000–0xF0000FFF CoreSight ROM
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Section D: System-Wide Resources

This section encompasses the following chapters:

■ I/O System chapter on page 49

■ Clocking System chapter on page 57

■ Power Supply and Monitoring chapter on page 63

■ Chip Operational Modes chapter on page 67

■ Power Modes chapter on page 69

■ Watchdog Timer chapter on page 69

■ Reset System chapter on page 73

■ Device Security chapter on page 75

Top Level Architecture

System-Wide Resources Block Diagram
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7.   I/O System

This chapter explains the CCG3 I/O system, its features, architecture, operating modes, and interrupts. The general-purpose
I/O (GPIOs) pins in CCG3 are grouped into ports; a port can have a maximum of eight GPIOs. The CCG3 die has a maximum
of 24 GPIOs arranged in four ports. 20 GPIOs are brought out on the 40-QFN and 42-CSP packages. These GPIO pins are
organized in four logical entities called Ports.

7.1 Features
The CCG3 GPIOs have these features:

■ Analog and digital input and output capabilities

■ 10-mA sink and 4-mA source current in digital mode

■ Separate port read (PS) and write (DR) data registers to avoid read-modify-write errors

■ Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis

■ Slew rate control

■ Selectable CMOS and low-voltage LVTTL input buffer mode

■ Two over voltage tolerant GPIOs (I2C pins from SCB0)
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7.2 Block Diagram
Figure 7-1.  GPIO Block Diagram

Note The GPIO features shown in this image may not be available on all the pins. 
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7.3 GPIO Drive Modes
Each I/O is individually configurable into one of the eight
drive modes listed in Table 7-1. Figure 7-2 is a simplified pin
diagram that shows the pin view based on each of the eight
drive modes.

Two port configuration registers are used to configure
GPIOs in CCG3: Port Configuration Register
(GPIO_PRTx_PC) and Port Secondary Configuration Regis-
ter (GPIO_PRTx_PC2). All CCG3 devices have ports with
dedicated GPIO_PRTx_PC and GPIO_PRTx_PC2 regis-
ters.

GPIO_PRTx_PC is used to configure the following proper-

ties of a port:

■ Output drive mode of each pin (three bits select a partic-
ular drive mode for a pin)

■ Slew rate of the whole port (see Slew Rate Control on 
page 53) 

■ Input threshold selection of the whole port (see CMOS 
LVTTL Level Control on page 53)

GPIO_PRTx_PC2 is used to enable/disable the input buffer
of each pin on the port, irrespective of the drive mode con-
figured in GPIO_PRTx_PC. When analog signals are pres-
ent on the pin, input buffer should be disabled by setting the
bit to ‘1’.

Figure 7-2.  I/O Drive Mode Block Diagram
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7.3.1 High-Impedance Analog

High-impedance analog mode is the default reset state; both
output driver and digital input buffer are turned off. This state
prevents an external voltage from causing a current to flow
into the digital input buffer. This drive mode is recommended
for pins that are floating or that support an analog voltage.
High-impedance analog pins cannot be used for digital
inputs. Reading the pin state register returns a 0x00 regard-
less of the data register value.

To achieve the lowest device current in low-power modes,
unused GPIOs must be configured to the high-impedance
analog mode.

7.3.2 High-Impedance Digital

High-impedance digital mode is the standard high-imped-
ance (High Z) state recommended for digital inputs. In this
state, the input buffer is enabled for digital input signals.

7.3.3 Resistive Pull-Up or Resistive Pull-
Down

Resistive modes provide a series resistance in one of the
data states and strong drive in the other. Pins can be used
for either digital input or digital output in these modes. If
resistive pull-up is required, a ‘1’ must be written to that pin’s
Data Register bit. If resistive pull-down is required, a ‘0’ must
be written to that pin’s Data Register. Interfacing mechanical
switches is a common application of these drive modes. The
resistive modes are also used to interface CCG3 with open
drain drive lines. Resistive pull-up is used when input is
open drain low and resistive pull-down is used when input is
open drain high.

7.3.4 Open Drain Drives High and Open 
Drain Drives Low

Open drain modes provide high impedance in one of the
data states and strong drive in the other. The pins can be
used as digital input or output in these modes. Therefore,
these modes are widely used in bi-directional digital commu-
nication. Open drain drive high mode is used when signal is
externally pulled down and open drain drive low is used
when signal is externally pulled high. 

A common application for open drain drives low mode is
driving I2C bus signal lines.

7.3.5 Strong Drive

The strong drive mode is the standard digital output mode
for pins; it provides a strong CMOS output drive in both high
and low states. Strong drive mode pins must not be used as
inputs under normal circumstances. This mode is often used
for digital output signals or to drive external transistors.

7.3.6 Resistive Pull-Up and Resistive 
Pull-Down

This mode is similar to the drive modes explained in 7.3.3
Resistive Pull-Up or Resistive Pull-Down. In the resistive
pull-up and resistive pull-down mode, the GPIO will have a
series resistance in both logic 1 and logic 0 output states.
The high data state is pulled up while the low data state is
pulled down. This mode is used when the bus is driven by
other signals that may cause shorts.

Table 7-1.  Drive Mode Settings

GPIO_PRTx_PC ('x' denotes port number and 'y' denotes pin number)

Bits Drive Mode Value Data = 1 Data = 0

3y+2: 3y

SEL'y’ Selects Drive Mode for Pin 'y' (0  y  7)

High-Impedance Analog 0 High Z High Z

High-impedance Digital 1 High Z High Z

Resistive Pull Up 2 Weak 1 Strong 0

Resistive Pull Down 3 Strong 1 Weak 0 

Open Drain, Drives Low 4 High Z Strong 0

Open Drain, Drives High 5 Strong 1 High Z

Strong Drive 6 Strong 1 Strong 0

Resistive Pull Up and Down  7 Weak 1 Weak 0 

Table 7-2.  Input Buffer Disable (Port Configuration 2)

GPIO_PRTx_PC2
 ('x' denotes port number and 'y' denotes pin number)

Bits Name Description

7:0 INP_DIS
Disables the input buffer independent of the port control drive mode. This bit should be set when ana-
log signals are present on the pin.
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7.4 Slew Rate Control
GPIO pins have fast and slow output slew rate options in
strong drive mode; this can be configured using the
GPIO_PRTx_PC[25] bit. Slew rate is individually
configurable for each port. This bit is cleared by default and
the port works in fast slew mode. This bit can be set if a slow
slew rate is required. The fast slew rate is recommended for
signals higher than 1 MHz. Slower slew rate results in
reduced EMI and crosstalk; hence, the slow option is
recommended for signals that are not speed critical –
generally less than 1 MHz.

7.5 CMOS LVTTL Level Control
I/O pins can work at two voltage levels. These levels can be
selected by writing to the GPIO_PRTx_PC[24] bit. 

Input level is individually configurable for each port. This bit
is cleared by default and the port works in CMOS mode.
This bit can be set to reconfigure the port to LVTTL mode.

CMOS mode can be used in most cases, whereas LVTTL
can be used for custom interface requirements, which works
at lower voltage levels. See the device datasheet for the
input voltage thresholds (VIH and VIL) for the modes.

7.6 GPIO-OVT
CCG3 device has two over-voltage tolerant (OVT) pins –

I2C pins from SCB0. It is similar to regular GPIOs with the
following additional features:

■ Over-voltage tolerant

■ Provides better pull-down drive strength

■ Serial Communication Block (SCB) when configured as 
I2C and its lines routed to GPIO-OVT pins; it meets the 
following I2C specifications:

❐ Fast Mode hot-swap

❐ Fast Mode Plus IOL Specification

❐ Fast Mode and Fast Mode Plus Hysteresis and mini-
mum fall time specifications

See the CCG3 datasheet for specifications.

7.7 High-Speed I/O Matrix
High-speed I/O matrix (HSIOM) is a group of high-speed
switches that routes GPIOs to the resources inside CCG3.
These resources include TCPWMs, SCB, and the USB PD.
The HSIOM selects Active and Deep-Sleep power domain
sources for a pin. HSIOM_PORT_SELx are 32-bit wide reg-
isters that control the routing of GPIOs. Each register con-
trols one port; four dedicated bits are assigned to each
GPIO in the port. This provides up to 16 different options for
GPIO routing. This selection provides different pin functions,
as listed in Table 7-3.

Note The active and deep sleep sources are pin depen-
dent. See the “Pinouts” section of the device datasheet for
more details on the features supported by each pin. 

7.8 Firmware Controlled GPIO
See Table 7-3 to know the HSIOM settings for a firmware
controlled GPIO. GPIO_PRTx_DR is the data register used
to read and write the output data for the GPIOs. A write
operation to this register changes the GPIO output to the
written value. Note that a read operation reflects the output
data written to this register and not the current state of the
GPIOs. Using this register, read-modify-write sequences
can be safely performed on a port that has both input and

output GPIOs.

In addition to the data register, two other registers -
GPIO_PRTx_DR_SET and GPIO_PRTx_DR_CLR - are
provided to set or clear the output data of specific GPIOs in
port. Additionally, the GPIO_PRTx_DR_INV register can be
used to invert the output data of a specific GPIO.
GPIO_PRTx_PS is the port I/O pad register that provides
the state of the GPIOs when read. Writes to this register
have no effect.

See the CCG3 Registers TRM for the details of these regis-
ters. 

Table 7-3.  HSIOM Port Settings

HSIOM_PORT_SELx ('x' denotes port number and 'y' denotes pin number)

Bits Name (SEL 'y') Value Description (Selects pin 'y' source (0  y  7)

4y+3 : 4y

DR 0 Pin is regular firmware-controlled GPIO.

AMUXA 6 Pin is connected to AMUXBUS-A.

AMUXB 7
Pin is connected to AMUXBUS-B. This mode is also used for GPIO pre-charging of 
tank capacitors.

ACT_0 8 Pin-specific Active source # 0 (TCPWM, EXT CLOCK) 

ACT_1 9 Pin-specific Active source #1.

ACT_2 10 Pin-specific Active source #2.

ACT_3 11 Pin-specific Active source #3.

DPSLP_0 14 Pin-specific Deep-Sleep source #0 (SCB - I2C)

DPSLP_1 15 Pin-specific Deep-Sleep source #1 (SWD) 

http://www.cypress.com/?rID=108632
www.cypress.com/?rID=108624
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7.9 I/O Port Reconfiguration
Drive mode and GPIO can be reconfigured in runtime by
changing the value of the GPIO_PRTx_PC and
HSIOM_PORT_SELx registers. Take care to retain the pin
state during reconfiguration of pins when they are connected
directly to a digital peripheral. If the ports are driven by the
data registers, state maintenance is automatic. During port
configuration, the current configuration should be saved as
follows: 

1. Read the GPIO pin state - GPIO_PRTx_PS in software.

2. Write the GPIO_PRTx_PS value into the data registers - 
GPIO_PRTx_DR.

3. Change the corresponding field in HSIOM_PORT_SELx 
to drive the pin by the data register - GPIO_PRTx_DR.

7.10 I/O State on Power Up
By default, during power up all GPIOs are in high-imped-
ance analog state and input buffers are disabled. When the
chip is powered, its GPIOs can be configured according to
the required application, by writing to the associated regis-
ters.

7.11 Behavior in Low-Power 
Modes

The GPIOs maintain the current pin state during Sleep
mode. In Sleep mode, all the GPIOs are active and can be
driven by active peripherals, such as USB PD, TCPWM, and
SCB. 

In Deep-Sleep mode, all the pin states are latched and the
pin signals are retained, except the SCB pins, which remain
functional and can wake up the processor on I2C address
matching event. GPIO interrupts are also available in Deep-
Sleep mode with wake up ability.

For more details, see the Power Modes chapter on page 69,
Interrupts chapter on page 35, and Inter Integrated Circuit
(I2C) chapter on page 100.

To achieve the lowest device current in low-power modes,
unused I/Os must be configured in the high-impedance ana-
log mode.

7.12 GPIO Interrupt
This section describes the interrupt functionality of the
CCG3 GPIOs.

7.12.1 Features

The features of the GPIO interrupt are:

■ All eight pins in each port interface have an interrupt and 
an associated interrupt vector

■ Pin status bits provide easy determination of interrupt 
source down to the pin level

■ Rising, falling, or both edge-triggered interrupts are han-
dled

■ Pin interrupts can be individually enabled or disabled

■ AHB interfaces for read and write into its registers

■ Sends out a single port interrupt request (PIRQ) signal, 
derived from all GPIOs in a port, to the interrupt control-
ler

7.12.2 Interrupt Controller Block Diagram

Each port has its own individual interrupt request and asso-
ciated interrupt request (IRQ) vector and interrupt service
routine (ISR). Additionally, one pin can be selected on each
port that is routed through a 50-ns glitch filter to form a
glitch-tolerant interrupt for the port. The details are shown in
Figure 7-3. 

Figure 7-3.  Interrupt Generator

7.12.3 Function and Configuration

Each pin of the port can be configured independently to gen-
erate an interrupt on the rising edge, falling edge, or on both
edges by writing to the GPIO_PRTx_INTR_CFG register.

Level-sensitive interrupts are not supported.
GPIO_PRTx_INTR_CFG is also used to route a specific
channel to the glitch filter and generate a ninth glitch-tolerant
interrupt. 
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When a GPIO interrupt is triggered by a signal on an inter-
rupt-enabled port pin, the GPIO_PRTx_INTR register (Port
Interrupt Status Register) is updated. The firmware can read
this register to determine which GPIO triggered the interrupt.
Firmware can then clear the IRQ bit by writing a ‘1’ to its cor-
responding bit.

Additionally, when the Port Interrupt Control Status Register
is read at the same time an interrupt is occurring on the cor-

responding port, it can result in the interrupt not being prop-
erly detected. Therefore, when using GPIO interrupts, it is
recommended to read the status register only inside the cor-
responding interrupt service routine and not in any other
part of the code. 

See GPIO_PRTx_INTR_CFG and GPIO_PRTx_INTR in the
CCG3 Registers TRM for details.

7.13 Registers

Note The 'x' in the register name denotes the port number. For example, GPIO_PTR1_DR is the port 1 output data register. 

Table 7-4.  I/O Registers

Name Description

GPIO_PRTx_DR Port Output Data Register

GPIO_PRTx_DR_SET Port Output Data Set Register

GPIO_PRTx_DR_CLR Port Output Data Clear Register

GPIO_PRTx_DR_INV Port Output Data Inverting Register

GPIO_PRTx_PS Port Pin State Register - Used to read logical pin state of I/O

GPIO_PRTx_PC Port Configuration Register - Configures the output drive mode, input threshold, and slew rate

GPIO_PRTx_PC2 Port Secondary Configuration Register - Configures the input buffer of I/O pin

GPIO_PRTx_INTR_CFG Port Interrupt Configuration Register

GPIO_PRTx_INTR Port Interrupt Status Register

HSIOM_PORT_SELx HSIOM Port Selection Register
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8.   Clocking System

The CCG3 clock system includes these clock resources:

■ Two internal clock sources:

❐ 24–48 MHz internal main oscillator (IMO) ±2 percent across all frequencies with trim.

❐ 32-kHz internal low-speed oscillator (ILO)

■ External clock (EXTCLK) generated using a signal from an I/O pin

■ High-frequency clock (HFCLK) of up to 48 MHz selected from IMO or external clock

❐ Dedicated prescaler for HFCLK

■ Low-frequency clock (LFCLK) sourced by ILO

■ Dedicated prescaler for system clock (SYSCLK) of up to 48 MHz sourced by HFCLK

■ Eight peripheral clocks, 4 clocks with a 8 bit divider and rest of the 4 clocks are with 16 bit dividers

8.1 Block Diagram
Figure 8-1 gives a generic view of the clocking system in CCG3 devices.
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Figure 8-1.  Clocking System Block Diagram

The three clock sources in the device are shown in
Figure 8-1, on the left. The HFCLK mux selects the HFCLK
source from an external clock source or the IMO. The
HFCLK prescaler divides the HFCLK input. The SYSCLK
prescaler generates the SYSCLK and the peripheral divid-
ers generate the individual peripheral clocks. The ILO
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8.2 Clock Sources

8.2.1 Internal Main Oscillator

The internal main oscillator operates with no external com-
ponents and outputs a stable clock at frequencies spanning
24-48 MHz in 4-MHz increments. Frequencies are selected
by setting the frequency range in the CLK_IMO_TRIM2 reg-
ister and setting the IMO trim in the CLK_IMO_TRIM1 regis-
ter. Each device has IMO trim measured during
manufacturing to meet datasheet specifications; the trim is
stored in manufacturing configuration data in SFLASH.
These values may be loaded at startup to achieve the
desired configuration. Firmware can retrieve these trim val-
ues and reconfigure the device to change the frequency at
run-time.

8.2.1.1 Startup Behavior

After reset, the IMO is configured for 24-MHz operation.
During the “boot” portion of startup, trim values are read
from flash and the IMO is configured to achieve datasheet
specified accuracy. The HFCLK predivider is initially set to a
divide value of 4 to reduce current consumption at startup.

8.2.2 Internal Low-speed Oscillator

The internal low-speed oscillator operates with no external
components and outputs a stable clock at 32-kHz nominal.
The ILO is relatively low power and low accuracy. It is avail-
able in all power modes. The ILO is always used as the sys-
tem low-frequency clock LFCLK in CCG3. The ILO is
recommended to be always on, because it is the source of
the WDT, which is required for reliable system operation.
The ILO can be disabled by clearing the ENABLE bit in the
CLK_ILO_CONFIG register. The WDT reset must be dis-
abled before disabling the ILO. Otherwise, any register write
to disable the ILO will be ignored. Enabling the WDT reset
will automatically enable the ILO.

Note Disabling the ILO reset is not recommended if:

■ WDT protection is required against firmware crashes

■ WDT protection is required against the power supply 
events that produce sudden brownout events that may in 
turn compromise the CPU functionality. 

See the Clocking System chapter on page 57 for details.

8.2.3 External Clock

The external clock is a MHz range clock that can be gener-
ated from a signal on a designated CCG3 pin. This clock
may be used in place of the IMO as the source of the sys-
tem high-frequency clock HFCLK. The allowable range of
external clock frequencies is 0–48 MHz. CCG3 always
starts up using the IMO, and the external clock must be
enabled in user mode, so the device cannot be started from
a reset clocked by the external clock.

8.3 Clock Distribution
CCG3 clocks are developed and distributed throughout the
device, as shown in Figure 8-1. The distribution configura-
tion options are as follows:

■ HFCLK input selection

■ HFCLK predivider configuration

■ SYSCLK prescaler configuration

■ Peripheral divider configuration

8.3.1 HFCLK Input Selection

HFCLK in CCG3 has input options: IMO and EXTCLK. The
HFCLK input is selected using the CLK_SELECT register’s
DIRECT_SEL bits, as described in Table 8-1. 

When manually configuring a pin as the input to the EXTCLK, the drive mode of the pin must be set to high-impedance digital
to enable the digital input buffer. See the I/O System chapter on page 49 for more details.

8.3.2 HFCLK Predivider Configuration

The HFCLK predivider allows the device to divide the HFCLK selection mux input before use as HFCLK. The predivider is
capable of dividing the HFCLK by powers of 2 between 1 and 8. The predivider value is set using register CLK_SELECT bits
HFCLK_DIV, as described in Table 8-2. The HFCLK predivider is set to a divide value of 4 during boot to reduce current con-
sumption.

Note HFCLK's frequency cannot exceed 16 MHz.

Table 8-1.  HFCLK Input Selection Bits DIRECT_SEL

Name Description

DIRECT_SEL[2:0]

HFCLK input clock selection

0: IMO. Uses the IMO as the source of the HFCLK

1: EXTCLK. Uses the EXTCLK as the source of the HFCLK

2–7: Reserved. Do not use
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8.3.3 SYSCLK Prescaler Configuration

The SYSCLK Prescaler allows the device to divide the predivided HFCLK before use as SYSCLK, which allows for non-inte-
ger relationships between peripheral clocks and the system clock. SYSCLK must be equal to or faster than all other clocks in
the device that are derived from HFCLK. The SYSCLK prescaler is capable of dividing the HFCLK by powers of 2 between1
and 8. The prescaler divide value is set using register CLK_SELECT bits SYSCLK_DIV, as described in Table 8-3. The pres-
caler is initially configured to divide by 1. 

8.3.4 Peripheral Clock Divider 
Configuration

The eight peripheral clocks are derived from the HFCLK
using the 8-bit or 16-bit peripheral clock dividers. Each of the
eight dividers is controlled by a PERI_DIV_8_CTL or
PERI_DIV_16_CTL register, whose mapping is explained in
Table 8-4 and Table 8-5. 

The PERI_DIV_CMD register can be used to enable, dis-
able, and select the type of clock dividers for all peripheral
clock dividers. See the PERI_DIV_CMD in the CCG3 Regis-
ters TRM for more details.

Table 8-2.  HFCLK Predivider Value Bits HFCLK_DIV

Name Description

HFCLK_DIV[1:0]

HFCLK predivider value

0: 1. no divider on HFCLK

1: 2. divides HFCLK by 2

2: 4. divides HFCLK by 4

3: 8. divides HFCLK by 8

Table 8-3.  SYSCLK Prescaler Divide Value Bits SYSCLK_DIV

Name Description

SYSCLK_DIV[1:0]

SYSCLK prescaler divide value

0: 1. SYSCLK = HFCLK

1: 2. SYSCLK = HFCLK/2

2: 4. SYSCLK = HFCLK/4

3: 8. SYSCLK = HFCLK/8

Table 8-4.  Peripheral Clock Divider Control Register 
PERI_DIV_8_CTLx

Bits Name Description

0 EN

Enables or disables the divider

0: Divider disabled

1: Divider enabled

15:8 INT8_DIV
Divide value of the divider. Output = Input/
(INT8_DIV + 1)

Table 8-5.  Peripheral Clock Divider Control Register 
PERI_DIV_16_CTLx

Bits Name Description

0 EN

Enables or disables the divider

0: Divider disabled

1: Divider enabled

23:8 INT16_DIV

Divide value for the divider. Output = Input/
(INT16_DIV + 1)

Acceptable divide values range from 0 to 
65,536.
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Input clocks to the peripherals are selected by
PERI_PCLK_CTLx registers. Table 8-6 shows the periph-
eral clocks and their respective registers. See theCCG3
Registers TRM for more details.

8.4 Low-Power Mode Operation
CCG3 clock behavior is different in different power modes.
The MHz frequency clocks including the IMO, EXTCLK,
HFCLK, SYSCLK, and peripheral clocks operate only in
Active and Sleep modes. The ILO and LFCLK operate in all
power modes.

8.5 Register List

Table 8-6.  Selecting Peripheral Clocks

Clock Register

SCB0 PERI_PCLK_CTL0

SCB1 PERI_PCLK_CTL1

TCPWM PERI_PCLK_CTLx (x = 2–7)

USBPD (RX) PERI_PCLK_CTL8

USBPD (TX) PERI_PCLK_CTL9

USBPD (SAR) PERI_PCLK_CTL10

Table 8-7.  Clocking System Register List

Register Name Description

CLK_IMO_TRIM1 IMO Trim Register - This register contains IMO trim, allowing fine manipulation of its frequency.

CLK_IMO_TRIM2
IMO Frequency Selection Register - This register controls the frequency range of the IMO, allowing gross 
manipulation of its frequency.

CLK_ILO_CONFIG ILO Configuration Register - This register controls the ILO configuration.

CLK_SELECT 
Clock Select - This register controls clock tree configuration, selecting different sources for the system 
clocks.

PERI_DIV_16_CTLx
Peripheral Clock Divider Control Registers - These registers configure each of the peripheral clock dividers, 
enabling or disabling the divider and setting the integer divide value.

PERI_PCLK_CTLx Programmable clock control registers - These registers are used to select the input clocks to peripherals.
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9.   Power Supply and Modes

9.1 Block Diagram

Figure 9-1.  Power System Requirement Block Diagram

9.2 Power System Requirement Overview 

Figure 9-1 shows an overview of the CCG3 power system requirement. CCG3 shall be able to operate from two possible
external supply sources VBUS (4.0 - 21.5 V) or VSYS (2.7 - 5.5 V). The VBUS supply is regulated inside the chip with a LDO.
The chip's internal VDDD rail is intelligently switched between the output of the VBUS regulator and unregulated VSYS. The
switched supply, VDDD is either used directly inside some analog blocks or further regulated down to VCCD which powers
majority of the core using the regulators inside the SRSS-Lite block. CCG3 has 3 power modes: Active, Sleep and Deep
Sleep, transitions between which are managed by the power system. A separate power domain VDDIO is provided for the
GPIOs. The VDDD and VCCD pins, both the output of regulators are brought out for connecting a 1-uF capacitor for the
regulator stability only. These pins are not supported as a power supplies.
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9.3 Power Modes

The power modes of the device accessible and observable by the user are listed in the following table. 

9.4 Power Domain Model Diagram

Figure 9-2 shows the power domain model diagram of CCG3. All external components on the various power domains are
shown. Depending on the application, the bypass capacitor on unused primary supplies corresponding supply pins can be
skipped. 

Figure 9-2.  CCG3 Power Domain Model Diagram

Table 9-1.  CCG3 Power Modes

MODE DESCRIPTION

RESET
Power is Valid and XRES is not asserted. An internal reset source is asserted or SleepController is sequencing the system 
out of reset

ACTIVE Power is Valid and CPU is executing instructions. This mode includes the critical Type-C power spec requirements.

SLEEP Power is Valid and CPU is not executing instructions. All logic that is not operating is clock gated to save power.

DEEP SLEEP
Main regulator and "most of the blocks of the chip are shut off. DeepSleep regulator powers logic, but only low-frequency 
clock is available

SCAN
System is in SCAN mode. Scan mode is entered by applying DFT key during XRES and exited by applying something other 
than the DFT key (at least one bit).
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9.5 Mode Transitions

CCG3 follows the mode transitions supported for SRSS-Lite system resource block as described in  Section 16.5.1 SRSS-
Lite on page 155. The primary mode transition diagram is shown in Figure 9-3. 

Figure 9-3.  CCG3 Primary Mode Transition Diagram
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10.   Chip Operational Modes

CCG3 is capable of executing firmware in four different modes. These modes dictate execution from different locations in
Flash and ROM, with different levels of hardware privileges. Only three of these modes are used in end-applications; debug
mode is used exclusively to debug designs during firmware development. 

CCG3’s operational modes are:

■ Boot

■ User

■ Privileged

■ Debug

10.1 Boot
Boot mode is an operational mode where the device is configured by instructions hard-coded in the device SROM. This mode
is entered after the end of a reset, provided no debug-acquire sequence is received by the device. Boot mode is a privileged
mode; interrupts are disabled in this mode so that the boot firmware can set up the device for operation without being inter-
rupted. During the power-up phase, hardware trim settings are loaded from nonvolatile (NV) latches to guarantee proper
operation during power-up. When boot concludes, the device enters user mode and code execution from flash begins. 

10.2 User
User mode is an operational mode where normal user firmware from flash is executed. User mode cannot execute code from
SROM. Firmware execution in this mode includes the automatically generated firmware by the IDE and the firmware written
by the user. The automatically generated firmware can govern both the firmware startup and portions of normal operation.
The boot process transfers control to this mode after it has completed its tasks.

10.3 Privileged
Privileged mode is an operational mode, which allows execution of special subroutines that are stored in the device ROM.
These subroutines cannot be modified by the user and are used to execute proprietary code that is not meant to be inter-
rupted or observed. Debugging is not allowed in privileged mode. 

The CPU can transition to privileged mode through the execution of a system call. For more information on how to perform a
system call, see Performing a System Call on page 198. Exit from this mode returns the device to user mode.

10.4 Debug
Debug mode is an operational mode that allows observation of the CCG3 operational parameters. This mode is used to
debug the firmware during development. The debug mode is entered when an SWD debugger connects to the device during
the acquire time window, which occurs during the device reset. Debug mode allows IDEs such as Eclipse and ARM MDK to
debug the firmware. Debug mode is only available on devices in open mode (one of the four protection modes). For more
details on the debug interface, see the Program and Debug Interface chapter on page 189.

For more details on protection modes, see the Device Security chapter on page 75.



68 CCG3 TRM, Document No. 002-04130 Rev. **

Chip Operational Modes



CCG3 TRM, Document No. 002-04130 Rev. ** 69

11.   Watchdog Timer

The watchdog timer (WDT) is used to automatically reset the device in the event of an unexpected firmware execution path or
a brownout that compromises the CPU functionality. The WDT runs from the LFCLK (32-kHz clock), generated by the ILO.
The timer must be serviced periodically in firmware to avoid a reset. Otherwise, the timer will elapse and generate a device
reset. The WDT can be used as an interrupt source or a wakeup source in low-power modes.

11.1 Features

The WDT has these features:

■ Configurable timer period

■ Can generate an interrupt in Sleep and Deep-Sleep power modes to wake up the device

■ Can generate an interrupt in Active mode after a specified interval

11.2 Block Diagram

Figure 11-1.  Watchdog Timer Block Diagram
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11.3 How It Works

The WDT asserts a hardware reset to the device after three
WDT interrupts each of programmable interval of up to 2048
ms, unless it is periodically serviced in firmware.The WDT is
a 16-bit free-running wraparound up-counter. 

The WDT_COUNTER register provides the count value of
the WDT. The WDT generates an interrupt when the count
value in WDT_COUNTER equals the match value stored in
the WDT_MATCH register, but it does not reset the count to
'0'. Instead, the WDT keeps counting until it overflows and
rolls back to 0. When the count value again reaches the
match value, another interrupt is generated. 

A bit named WDT_MATCH in the SRSS_INTR register is set
whenever the WDT interrupt occurs. This interrupt must be
cleared by writing a '1' to the WDT_MATCH bit in
SRSS_INTR to feed the watchdog timer. If the firmware
does not feed the WDT for two consecutive interrupts, the
third match event will generate a hardware reset.

For details, see the WDT_COUNTER, WDT_MATCH, and
SRSS_INTR registers in theCCG3 Registers TRM.

When the WDT is used to protect against system crashes,
clearing the WDT interrupt bit to feed the watchdog must be
done from a portion of the code that is not directly associ-
ated with the WDT interrupt. Otherwise, even if the main
function of the firmware crashes or is in an endless loop, the
WDT interrupt vector can still be intact and feed the WDT
periodically.

The safest way to use the WDT against system crashes is:

■ Feed the watchdog by clearing the interrupt bit regularly 
in the main body of the firmware code.

■ Guarantee that the interrupt is cleared at least once 
every WDT period.

■ Use the WDT interrupt service routine (ISR) only as a 
timer to trigger certain actions and to change the next 
WDT_MATCH value. Do not feed WDT in this ISR.

Follow these steps to use WDT as a periodic interrupt gen-
erator:

1. Write the desired match value to the WDT_MATCH reg-
ister.

2. Clear the WDT_MATCH bit in SRSS_INTR to clear any 
pending WDT interrupt.

3. Enable the WDT interrupt by setting the WDT_MATCH 
bit in SRSS_INTR_MASK. 

4. In the ISR, clear the WDT interrupt and add the desired 
match value to the existing match value. By doing so, 
another periodic interrupt will be generated when the 
counter reaches the new match value.

5. The IGNORE_BITS in the WDT_MATCH register can be 
used to reduce the entire WDT counter period. The 
ignore bits can specify the number of MSbs that needs to 
be discarded. For example, if the IGNORE_BITS value 
is 3, then WDT counter becomes a 13-bit counter.

11.3.1 Enabling and Disabling WDT

The WDT is a free-running counter that cannot be disabled.
However, it is possible to disable the WDT reset by writing a
key '0xACED8865' to the WDT_DISABLE_KEY register.
Writing any other value to this register will enable the WDT
reset. If WDT reset is disabled, the firmware does not need
to periodically feed the WDT to avoid a reset. The WDT can
still be used as an interrupt source or wakeup source. The
only way to stop WDT from generating interrupts and
wakeup events is to disable the ILO by clearing the ENABLE
bit in the CLK_ILO_CONFIG register. The WDT reset must
be disabled before disabling the ILO. Otherwise, any regis-
ter write to disable the ILO will be ignored. Enabling the
WDT reset will automatically enable the ILO.

Note Disabling the WDT reset is not recommended if:

■ Protection is required against firmware crashes

■ The power supply can produce sudden brownout events 
that may compromise the CPU functionality

11.3.2 WDT Interrupts and Low-Power 
Modes

The WDT counter sends the interrupt requests to the CPU in
Active power mode and to the WakeUp Interrupt Controller
(WIC) in Sleep and Deep-Sleep power modes. It works as
follows:

■ Active Mode: In Active power mode, the WDT sends 
the interrupt to the CPU. The CPU acknowledges the 
interrupt request and executes the ISR. The interrupt 
must be cleared after entering the ISR in firmware.

■ Sleep or Deep-Sleep Mode: In this mode, the CPU sub-
system is powered down. Therefore, the interrupt 
request from the WDT is directly sent to the WIC, which 
will then wake up the CPU. The CPU acknowledges the 
interrupt request and executes the ISR. The interrupt 
must be cleared after entering the ISR in firmware.

For more details, see the Power Modes chapter on page 69.

11.3.3 WDT Reset Mode

The RESET_WDT bit in the RES_CAUSE register indicates
the reset generated by the WDT. This bit remains set until
cleared or until a power-on reset (POR), brownout reset
(BOD), or external reset (XRES) occurs. All other resets
leave this bit untouched.
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For more details, see the Reset System chapter on page 73.

11.4 Register List 

Table 11-1.  WDT Registers

Register Name Description

WDT_DISABLE_KEY Disables the WDT when 0XACED8865 is written, for any other value WDT works normally

WDT_COUNTER Provides the count value of the WDT

WDT_MATCH Stores the match value of the WDT

SRSS_INTR Feeds the WDT to avoid reset
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12.   Reset System

 CCG3 supports several types of resets that guarantee error-free operation during power up and allow the device to reset
based on user-supplied external hardware or internal software reset signals. CCG3 also contains hardware to enable the
detection of certain resets.

The reset system has these sources:

■ Power-on reset (POR) to hold the device in reset while the power supply ramps up

■ Brownout reset (BOD) to reset the device if the power supply falls below specifications during operation

■ Watchdog reset (WRES) to reset the device if firmware execution fails to service the watchdog timer

■ Software initiated reset (SRES) to reset the device on demand using firmware

■ External reset (XRES) to reset the device using an electrical signal external to  CCG3

■ Protection fault reset (PROT_FAULT) to reset the device if unauthorized operating conditions occur

12.1 Reset Sources
The following sections provide a description of the reset sources available in  CCG3.

12.1.1 Power-on Reset

Power-on reset is provided for system reset at power-up. POR holds the device in reset until the supply voltage, VDDD, is
according to the datasheet specification. The POR activates automatically at power-up. 

POR events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, BOD, or XRES.

12.1.2 Brownout Reset

Brownout reset monitors the digital voltage supply VCCD and generates a reset if VCCD is below the minimum logic operating
voltage specified in the device datasheet. BOD is available in all power modes. 

BOD events do not set a reset cause status bit, but in some cases they can be detected. In some BOD events, VCCD will fall
below the minimum logic operating voltage, but remain above the minimum logic retention voltage. Thus, some BOD events
may be distinguished from POR events by checking for logic retention.

12.1.3 Watchdog Reset

Watchdog reset (WRES) detects errant code by causing a reset if the watchdog timer is not cleared within the user-specified
time limit. This feature is enabled by setting the WDT_ENABLEx bit in the WDT_CONTROL register. 

The RESET_WDT status bit of the RES_CAUSE register is set when a watchdog reset occurs. This bit remains set until
cleared or until a POR or BOD reset; for example, in the case of a device power cycle. All other resets leave this bit
untouched.

For more details, see the Watchdog Timer chapter on page 69

12.1.4 Software Initiated Reset

Software initiated reset (SRES) is a mechanism that allows a software-driven reset. The Cortex-M0 application interrupt and
reset control register (CM0_AIRCR) forces a device reset when a ‘1’ is written into the SYSRESETREQ bit. CM0_AIRCR
requires a value of A05F written to the top two bytes for writes. Therefore, write A05F0004 for the reset.

The RESET_SOFT status bit of the RES_CAUSE register is set when a software reset occurs. This bit remains set until
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cleared or until a POR or BOD reset; for example, in the
case of a device power cycle. All other resets leave this bit
untouched.

12.1.5 External Reset

External reset (XRES) is a user-supplied reset that causes
immediate system reset when asserted. The XRES_N pin is
active low – a high voltage on the pin causes no behavior
and a low voltage causes a reset. The pin is pulled high
inside the device. XRES_N is available as a dedicated pin in
most of the devices. For detailed pinout, refer to the pinout
section of the device datasheet  .

The XRES pin holds the device in reset while held active.
When the pin is released, the device goes through a normal
boot sequence. The logical thresholds for XRES and other
electrical characteristics, are listed in the Electrical Specifi-
cations section of the  device datasheet.

XRES events do not set a reset cause status bit, but can be
partially inferred by the absence of any other reset source. If
no other reset event is detected, then the reset is caused by
POR, BOD, or XRES.

12.1.6 Protection Fault Reset

Protection fault reset (PROT_FAULT) detects unauthorized
protection violations and causes a device reset if they occur.

One example of a protection fault is if a debug breakpoint is
reached while executing privileged code. For details about
privilege code, see Privileged on page 67.

The RESET_PROT_FAULT bit of the RES_CAUSE register
is set when a protection fault occurs. This bit remains set
until cleared or until a POR or BOD reset; for example, in the
case of a device power cycle. All other resets leave this bit
untouched.

12.2 Identifying Reset Sources
When the device comes out of reset, it is often useful to
know the cause of the most recent or even older resets. This
is achieved in the device primarily through the RES_CAUSE
register. This register has specific status bits allocated for
some of the reset sources. The RES_CAUSE register sup-
ports detection of watchdog reset, software reset, and pro-
tection fault reset. It does not record the occurrences of
POR, BOD, or XRES. The bits are set on the occurrence of
the corresponding reset and remain set after the reset, until
cleared or a loss of retention, such as a POR reset or brown-
out below the logic retention voltage. 

If the RES_CAUSE register cannot detect the cause of the
reset, then it can be one of the non-recorded and non-reten-
tion resets: BOD, POR, or XRES. These resets cannot be
distinguished using on-chip resources.

12.3 Register List

Table 12-1.  Reset System Register List

Register Name Description

WDT_CONTROL Watchdog Timer Control Register - This register allows configuration of the device watchdog timer.

CM0_AIRCR
Cortex-M0 Application Interrupt and Reset Control Register - This register allows initiation of software 
resets, among other Cortex-M0 functions.

RES_CAUSE Reset Cause Register - This register captures the cause of recent resets.

http://www.cypress.com/?rID=108632
http://www.cypress.com/?rID=108632
http://www.cypress.com/?rID=108632


CCG3 TRM, Document No. 002-04130 Rev. ** 75

13.   Device Security

 CCG3 offers a number of options for protecting user designs from unauthorized access or copying. Disabling debug features
and robust flash protection provide a high level of security.

The debug circuits are enabled by default and can only be disabled in firmware. If disabled, the only way to re-enable them is
to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Addi-
tionally, all device interfaces can be permanently disabled for applications concerned about phishing attacks due to a mali-
ciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences.
Permanently disabling interfaces is not recommended for most applications because the designer cannot access the device.
For more information, as well as a discussion of flash row and chip protection, see the CCG3 Programming Specifications.

Note Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, CCG3
devices with full device security enabled may not be returned for failure analysis.

13.1 Features
The  CCG3 device security system has the following features:

■ User-selectable levels of protection

■ In the most secure case provided, the chip can be “locked” such that it cannot be acquired for test/debug and it cannot 
enter erase cycles. Interrupting erase cycles is a known way for hackers to leave chips in an undefined state and open to 
observation.

■ CPU execution in a privileged mode by use of the non-maskable interrupt (NMI). When in privileged mode, NMI remains 
asserted to prevent any inadvertent return from interrupt instructions causing a security leak.

13.2 How It Works
The CPU operates in normal user mode or in privileged mode, and the device operates in one of four protection modes:
BOOT, OPEN, PROTECTED, and KILL. Each mode provides specific capabilities for the CPU software and debug. You can
change the mode by writing to the CPUSS_PROTECTION register.

■ BOOT mode: The device comes out of reset in BOOT mode. It stays there until its protection state is copied from super-
visor flash to the protection control register (CPUSS_PROTECTION). The debug-access port is stalled until this has hap-
pened. BOOT is a transitory mode required to set the part to its configured protection state. During BOOT mode, the CPU 
always operates in privileged mode.

■ OPEN mode: This is the factory default. The CPU can operate in user mode or privileged mode. In user mode, flash can 
be programmed and debugger features are supported. In privileged mode, access restrictions are enforced.

■ PROTECTED mode: The user may change the mode from OPEN to PROTECTED. This disables all debug access to 
user code or memory. Access to most registers is still available; debug access to registers to reprogram flash is not avail-
able. The mode can be set back to OPEN but only after completely erasing the flash.

■ KILL mode: The user may change the mode from OPEN to KILL. This removes all debug access to user code or memory, 
and the flash cannot be erased. Access to most registers is still available; debug access to registers to reprogram flash is 
not available. The part cannot be taken out of KILL mode; devices in KILL mode may not be returned for failure analysis.

www.cypress.com/?rID=108626
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Section E: Digital System

This section encompasses the following chapters:

■ Serial Communications (SCB) chapter on page 79

■ Timer, Counter, and PWM chapter on page 117

■ Cryptography Block chapter on page 137

■ USB Full Speed (USB FS) chapter on page 157

Top Level Architecture

Digital System Block Diagram
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14.   Serial Communications (SCB)

The Serial Communications Block (SCB) of  CCG3 supports three serial interface protocols: SPI, UART, and I2C. Only one of
the protocols is supported by an SCB at any given time.  CCG3 devices have four SCBs. 

14.1 Features

This block supports the following features:

■ Standard SPI master and slave functionality with Motorola, Texas Instruments, and National Semiconductor protocols

■ Standard UART functionality with SmartCard reader, Local Interconnect Network, and IrDA protocols

■ Standard I2C master and slave functionality

■ SPI and I2C EZ mode, which allows for operation without CPU intervention

■ Low-power (Deep-Sleep) mode of operation for SPI and I2C protocols (using external clocking)

Each of the three protocols is explained in the following sections.

14.2 Serial Peripheral Interface (SPI)

The SPI protocol is a synchronous serial interface protocol. Devices operate in either master or slave mode. The master initi-
ates the data transfer. The SCB supports single master-multiple slaves topology for SPI. Multiple slaves are supported with
individual slave select lines. 

You can use the SPI master mode when the  CCG3 has to communicate with one or more SPI slave devices. The SPI slave
mode can be used when the  CCG3 has to communicate with an SPI master device. 

14.2.1 Features

■ Supports master and slave functionality

■ Supports 3 types of SPI protocols:

❐ Motorola SPI – modes 0, 1, 2, and 3

❐ TI SPI, with coinciding and preceding data frame indicator for mode 1

❐ National (MicroWire) SPI for mode 0

■ Data frame size programmable from 4 bits to 16 bits

■ Interrupts or polling CPU interface

■ Programmable oversampling

■ Supports EZ mode of operation (Easy SPI (EZSPI) Protocol (applicable only for SPI slave functionality))

■ Supports externally clocked slave operation:

❐ In this mode, the slave operates in Active, Sleep, and Deep-Sleep system power modes

❐ EZSPI mode allows for operation without CPU intervention
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14.2.2 General Description

Figure 14-1 illustrates an example of SPI master with four slaves.

Figure 14-1.  SPI Example

A standard SPI interface consists of four signals as follows. 

■ SCLK: Serial clock (clock output from the master, input 
to the slave).

■ MOSI: Master-out-slave-in (data output from the master, 
input to the slave).

■ MISO: Master-in-slave-out (data input to the master, out-
put from the slave).

■ Slave Select (SS): Typically an active low signal (output 
from the master, input to the slave).

A simple SPI data transfer involves the following: the master
selects a slave by driving its SS line, then it drives data on
the MOSI line and a clock on the SCLK line, The slave uses
the edges of SCLK to capture the data on the MOSI line; it
also drives data on the MISO line, which is captured by the
master.

By default, the SPI interface supports a data frame size of
eight bits (1 byte). The data frame size can be configured to
any value in the range 4 to 16 bits. The serial data can be
transmitted either most significant bit (MSB) first or least sig-
nificant bit (LSB) first.

Three different variants of the SPI protocol are supported by
the SCB:

■ Motorola SPI: This is the original SPI protocol.

■ Texas Instruments SPI: A variation of the original SPI 
protocol, in which data frames are identified by a pulse 
on the SS line.

■ National Semiconductors SPI: A half duplex variation of 
the original SPI protocol.

14.2.3 SPI Modes of Operation

14.2.3.1 Motorola SPI

The original SPI protocol was defined by Motorola. It is a full
duplex protocol. Multiple data transfers may happen with the
SS line held at '0'. As a result, slave devices must keep track
of the progress of data transfers to separate individual data
frames. When not transmitting data, the SS line is held at '1'
and SCLK is typically off.

Modes of Motorola SPI

The Motorola SPI protocol has four different modes based
on how data is driven and captured on the MOSI and MISO
lines. These modes are determined by clock polarity (CPOL)
and clock phase (CPHA). 

Clock polarity determines the value of the SCLK line when
not transmitting data. CPOL = '0' indicates that SCLK is '0'
when not transmitting data. CPOL = '1' indicates that SCLK
is '1' when not transmitting data.
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Clock phase determines when data is driven and captured.
CPHA=0 means sample (capture data) on the leading (first)
clock edge, while CPHA=1 means sample on the trailing
(second) clock edge, regardless of whether that clock edge
is rising or falling. With CPHA=0, the data must be stable for
setup time before the first clock cycle.

■ Mode 0: CPOL is '0', CPHA is '0': Data is driven on a fall-
ing edge of SCLK. Data is captured on a rising edge of 
SCLK.

■ Mode 1; CPOL is '0', CPHA is '1': Data is driven on a ris-
ing edge of SCLK. Data is captured on a falling edge of 
SCLK.

■ Mode 2: CPOL is '1', CPHA is '0': Data is driven on a ris-
ing edge of SCLK. Data is captured on a falling edge of 
SCLK.

■ Mode 3: CPOL is '1', CPHA is '1': Data is driven on a fall-
ing edge of SCLK. Data is captured on a rising edge of 
SCLK.

Figure 14-2 illustrates driving and capturing of MOSI/MISO
data as a function of CPOL and CPHA.

Figure 14-2.  SPI Motorola, 4 Modes
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Figure 14-3 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0 (CPOL is '0', CPHA is '0').

Figure 14-3.  SPI Motorola Data Transfer Example

Configuring SCB for SPI Motorola Mode

To configure the SCB for SPI Motorola mode, set various
register bits in the following order: 

1. Select SPI by writing '01' to the SCB_MODE (bits 
[25:24]) of the SCB_CTRL register.

2. Select SPI Motorola mode by writing '00' to the 
SCB_MODE (bits [25:24]) of the SCB_SPI_CTRL regis-
ter.

3. Select the mode of operation in Motorola by writing to 
the SCB_CPHA and SCB_CPOL fields (bits 2 and 3 
respectively) of the SCB_SPI_CTRL register.

4. Follow steps 2 to 4 mentioned in Enabling and Initializing 
SPI on page 89. 

For more information on these registers, see the CCG3
Registers TRM.

14.2.3.2 Texas Instruments SPI

The Texas Instruments' SPI protocol redefines the use of
the SS signal. It uses the signal to indicate the start of a data
transfer, rather than a low active slave select signal, as in
the case of Motorola SPI. As a result, slave devices need

not keep track of the progress of data transfers to separate
individual data frames. The start of a transfer is indicated by
a high active pulse on slave select signal for a single bit
transfer period. This pulse can be configured to occur one
cycle before the transmission of the first data bit, or coincide
with the transmission of the first data bit. The TI SPI protocol
supports only mode 1 (CPOL is '0' and CPHA is '1'): data is
driven on a rising edge of SCLK and data is captured on a
falling edge of SCLK.

Figure 14-4 illustrates a single 8-bit data transfer and two
successive 8-bit data transfers. The SELECT pulse
precedes the first data bit. Note how the SELECT pulse of
the second data transfer coincides with the last data bit of
the first data transfer.

SCLK

Slave Select

MOSI

MISO

LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

CPOL = 0,  CPHA = 0 single data transfer

MSB LSB

MSB LSB MSB LSB

LSBMSB

MSB LSB MSB LSB

                                                              CPOL = 0,  CPHA = 0   two successive data transfers
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Figure 14-4.  SPI TI Data Transfer Example
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LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK
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MOSI
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CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

  
 CPOL=0, CPHA=1  two successive data transfers
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Figure 14-5 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse coincides with
the first data bit of a frame.

Figure 14-5.  SPI TI Data Transfer Example

Configuring the SCB for SPI TI Mode

To configure the SCB for SPI TI mode, set various register
bits in the following order: 

1. Select SPI by writing '01' to the SCB_MODE (bits 
[25:24]) of the SCB_CTRL register.

2. Select SPI TI mode by writing '01' to the SCB_MODE 
(bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in TI by writing to the 
SELECT_PRECEDE field (bit 1) of the SCB_SPI_CTRL 
register ('1' configures the SELECT pulse to precede the 
first bit of next frame and '0' otherwise).

4. Follow steps 2 to 4 mentioned in Enabling and Initializing 
SPI on page 89. 

For more information on these registers, see the CCG3
Registers TRM.

14.2.3.3 National Semiconductors SPI

The National Semiconductors' SPI protocol is a half duplex
protocol. Rather than transmission and reception occurring

at the same time, they take turns. The transmission and
reception data sizes may differ. A single "idle" bit transfer
period separates transmission from reception. However, the
successive data transfers are NOT separated by an "idle" bit
transfer period.

The National Semiconductors SPI protocol only supports
mode 0 (CPOL is ‘0’ and CPHA is ‘0’): data is driven on a
falling edge of SCLK and data is captured on a rising edge
of SCLK.

Figure 14-6 illustrates a single data transfer and two succes-
sive data transfers. In both cases the transmission data
transfer size is eight bits and the reception data transfer size
is four bits.

SCLK

Slave Select

MOSI

MISO

LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

                                                                                          
CPOL=0, CPHA=1   two successive data transfers
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Figure 14-6.  SPI NS Data Transfer Example

Configuring the SCB for SPI NS Mode

To configure the SCB for SPI NS mode, set various register
bits in the following order: 

1. Select SPI by writing '01' to the SCB_MODE (bits 
[25:24]) of the SCB_CTRL register.

2. Select SPI NS mode by writing '10' to the SCB_MODE 
(bits [25:24]) of the SCB_SPI_CTRL register.

3. Follow steps 2 to 4 mentioned in Enabling and Initializing 
SPI on page 89. 

For more information on these registers, see the CCG3
Registers TRM.

14.2.4 Easy SPI (EZSPI) Protocol

The easy SPI (EZSPI) protocol is based on the Motorola SPI
operating in mode 0 (CPOL is ‘0’ and CPHA is ‘0’). EZSPI
mode is applicable only for slave functionality in a single
slave topology. It allows communication between a master
and a single slave without the need for CPU intervention at
the level of individual frames.

The EZSPI protocol defines an 8-bit EZ address that
indexes a memory array (32-entry array of eight bit per entry
is supported) located on the slave device. To address these
32 locations, the lower five bits of the EZ address are used.
All EZSPI data transfers have 8-bit data frames. 

Note The SCB has a FIFO memory, which is a 16 word by
16-bit SRAM, with byte write enable. The access methods
for EZ and non-EZ functions are different. In non-EZ mode,
the FIFO is split into TXFIFO and RXFIFO. Each has eight
entries of 16 bits per entry. The 16-bit width per entry is used
to accommodate configurable data width. In EZ mode, it is
used as a single 32x8 bit EZFIFO because only a fixed 8-bit
width data is used in EZ mode.

EZSPI has three types of transfers: a write of the EZ
address from the master to the slave, a write of data from
the master to an addressed slave memory location, and a
read by the master from an addressed slave memory loca-
tion.

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB

“idle” ‘0’ cycle

“idle” ‘0’ cycle
No “idle” cycle

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=0 Transfer of one MOSI  and one MISO data frame

CPOL=0, CPHA=0 Successive transfer of two MOSI  and one MISO data frame

LEGEND: 
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out
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14.2.4.1 EZ Address Write

A write of the EZ address starts with a command byte (0x00)
on the MOSI line indicating the master's intent to write the
EZ address. The slave then drives a reply byte on the MISO
line to indicate that the command is observed (0xFE) or not
(0xFF). The second byte on the MOSI line is the EZ
address.

14.2.4.2 Memory Array Write

A write to a memory array index starts with a command byte
(0x01) on the MOSI line indicating the master's intent to
write to the memory array. The slave then drives a reply byte
on the MISO line to indicate that the command was
observed (0xFE) or not (0xFF). Any additional write data
bytes on the MOSI line are written to the memory array at
locations indicated by the communicated EZ address. The
EZ address is automatically incremented by the slave as
bytes are written into the memory array. When the EZ
address exceeds the maximum number of memory entries
(32), it wraps around to 0.

14.2.4.3 Memory Array Read

A read from a memory array index starts with a command
byte (0x02) on the MOSI line indicating the master's intent to
read from the memory array. The slave then drives a reply
byte on the MISO line to indicate that the command was
observed (0xFE) or not (0xFF). Any additional read data
bytes on the MISO line are read from the memory array at
locations indicated by the communicated EZ address. The
EZ address is automatically incremented by the slave as
bytes are read from the memory array. When the EZ
address exceeds the maximum number of memory entries
(32), it wraps around to 0.

Figure 14-7 illustrates the write of EZ address, write to a
memory array and read from a memory array operations in
the EZSPI protocol.
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Figure 14-7.  EZSPI Example
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LEGEND :
CPOL : Clock Polarity                                               0x00 : Write EZ address
CPHA : Clock Phase                                                 0x01 : Write DATA
SCLK : SPI Interface Clock                                       0x02 : Read DATA
MISO : SPI Master-In-Slave-Out                               0xFE : “slave ready”
MOSI : SPI Master-Out-Slave-In                               0xFF  : “slave busy”
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14.2.4.4 Configuring SCB for EZSPI Mode

By default, the SCB is configured for non-EZ mode of opera-
tion. To configure the SCB for EZSPI mode, set various reg-
ister bits in the following order: 

1. Select EZ mode by writing '1' to the EZ_MODE bit (bit 
10) of the SCB_CTRL register.

2. Follow steps 2 to 4 mentioned in Enabling and Initializing 
SPI on page 89.

3. Use continuous transmission mode for transmitter by 
writing '1' to the SCB_CONTINUOUS bit of 
SCB_SPI_CTRL register. 

4. EZSPI mode is applicable only for slave functionality 
(write '0' to the SCB_MASTER_MODE field, bit 31 of 
SCB_SPI_CTRL register).

5. Set the data frame width eight bits long (write ‘0111’ to 
the SCB_DATA_WIDTH field, bits [3:0] of 
SCB_TX_CTRL and SCB_RX_CTRL registers).

6. Set the shift direction as MSB first (write '1' to the 
SCB_MSB_FIRST field, bit 8 of SCB_TX_CTRL and 
SCB_RX_CTRL registers).

For more information on these registers, see the CCG3
Registers TRM.

14.2.5 SPI Registers

The SPI interface is controlled using a set of 32-bit control
and status registers listed in Table 14-1. For more informa-
tion on these registers, see the CCG3 Registers TRM.

14.2.6 SPI Interrupts

The SPI supports both internal and external interrupt
requests. The internal interrupt events are listed here. 

The SPI predefined interrupts can be classified as TX inter-
rupts and RX interrupts. The TX interrupt output is the logi-
cal OR of the group of all possible TX interrupt sources. This
signal goes high when any of the enabled TX interrupt
sources are true. The RX interrupt output is the logical OR of
the group of all possible RX interrupt sources. This signal
goes high when any of the enabled Rx interrupt sources are

true. Various interrupt registers are used to determine the
actual source of the interrupt. 

The SPI supports interrupts on the following events: 

■ SPI transfer done

■ SPI is Idle

■ TX FIFO is not full

■ TX FIFO is empty

■ SPI Byte/Word transfer complete

■ RX FIFO is empty

Table 14-1.  SPI Registers

Register Name Operation

SCB_CTRL
Enables the SCB, selects the type of serial interface (SPI, UART, I2C), and selects internally and externally 
clocked operation, EZ and non-EZ modes of operation.

SCB_STATUS In EZ mode, this register indicates whether the externally clocked logic is potentially using the EZ memory.

SCB_SPI_CTRL
Configures the SPI as either a master or a slave, selects SPI protocols (Motorola, TI, National) and clock-
based submodes in Motorola SPI (modes 0,1,2,3), selects the type of SELECT signal in TI SPI.

SCB_SPI_STATUS Indicates whether the SPI bus is busy and sets the SPI slave EZ address in the internally clocked mode.

SCB_TX_CTRL
Enables the transmitter, specifies the data frame width, and specifies whether MSB or LSB is the first bit in 
transmission.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the receiver.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clears the transmitter FIFO and shift registers, and performs the FREEZE opera-
tion of the transmitter FIFO. 

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO - 
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data 
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the 
FIFO; behavior is similar to that of a PEEK operation.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by 
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides 
if the transmitter FIFO holds the valid data.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_EZ_DATA Holds the data in EZ memory location 
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■ RX FIFO is not empty

■ Attempt to write to a full RX FIFO.

■ RX FIFO is Full

14.2.7 Enabling and Initializing SPI 

The SPI must be programmed in the following order:

1. Program protocol specific information using the 
SCB_SPI_CTRL register, according to Table 14-2. This 
includes selecting the submodes of the protocol and 
selecting master-slave functionality.

2. Program the generic transmitter and receiver information 
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 14-3:

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be 
transmitted/received.

c. Enable the transmitter and receiver.

3. Program the transmitter and receiver FIFOs using the 
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters respectively, as shown in Table 14-4:

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift 
registers.

c. Freeze the TX and RX FIFO.

4. Program SCB_CTRL register to enable the SCB block. 
Also select the mode of operation. These register bits 
are shown in Table 14-5.

After the block is enabled, control bits should not be
changed. Changes should be made AFTER disabling the
block; for example, to modify the operation mode (from
Motorola mode to TI mode) or to go from externally to inter-
nally clocked operation (explained in Internally and Exter-
nally Clocked SPI Operations on page 90). The change
takes effect only after the block is re-enabled. Note that re-
enabling the block causes re-initialization and the associ-
ated state is lost (for example, FIFO content).

The last step of initialization should always be to enable the
block (write a '1' to the ENABLED bit of the SCB_CTRL reg-
ister).

Table 14-2.  SCB_SPI_CTRL Register

Bits Name Value Description

[25:24] MODE

00 SPI Motorola submode

01
SPI Texas Instruments sub-
mode

10
SPI National Semiconductors 
submode

11 Reserved

31
MASTER_
MODE

0 Master mode

1 Slave mode

Table 14-3.  SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0]
DATA_ 
WIDTH

'DATA_WIDTH + 1' is the number of bits 
in the transmitted or received data 
frame. The valid range is [3, 15]. This 
does not include start, stop, and parity 
bits.

8 MSB_FIRST
1= MSB first

0= LSB first

31 ENABLED

Transmitter enable bit for 
SCB_TX_CTRL and receiver enable bit 
for SCB_RX_CTRL registers. They 
must be enabled for all the protocols. 
Otherwise, the block may not function or 
the data may get lost.

Table 14-4.  SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL 
Registers

Bits Name Description

[2:0]
TRIGGER_LE
VEL

Trigger level. When the transmitter 
FIFO has less entries or receiver FIFO 
has more entries than the value of this 
field, a transmitter or receiver trigger 
event is generated in the respective 
case.

16 CLEAR
When '1', the transmitter or receiver 
FIFO and the shift registers are 
cleared.

17 FREEZE

When '1', hardware reads/writes to the 
transmitter or receiver FIFO have no 
effect. Freeze does not advance the 
TX or RX FIFO read/write pointer.

Table 14-5.  SCB_CTRL Register

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block enabled

1 SCB block disabled
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14.2.8 Internally and Externally Clocked 
SPI Operations

The SCB supports both internally and externally clocked
operations for SPI and I2C functions. An internally clocked
operation uses a clock provided by the chip. An externally
clocked operation uses a clock provided by the serial inter-
face. Externally clocked operation enables operation in the
Deep-Sleep system power mode, in which a no-chip internal
clock is provided to the block. 

Internally clocked operation uses the high-frequency clock
of the system. For more information on system clocking, see
the Clocking System chapter on page 57. It also supports
oversampling. Oversampling is implemented with respect to
the high-frequency clock. The SCB_OVS (bits [3:0]) of the
SCB_CTRL register specify the oversampling. 

In SPI master mode, the valid range for oversampling is 4 to
16. Hence, the maximum bit rate is 12 Mbps. However, if

you consider the I/O cell and routing delays, the effective
oversampling range becomes 6 to 16. So, the maximum bit
rate is 8 Mbps. Note LATE_MISO_SAMPLE must be set to
'1' in SPIM mode.

In SPI slave mode, the oversampling field (bits [3:0]) of
SCB_CTRL register is not used. However, there is a fre-
quency requirement for the SCB clock with respect to the
interface clock (SCLK). This requirement is expressed in
terms of the ratio (SCB clock/SCLK). This ratio is dependent
on two fields: MEDIAN of SCB_RX_CTRL register and
LATE_MISO_SAMPLE of SCB_CTRL register. With the
MEDIAN bit set to ‘0’ and LATE_MISO_SAMPLE bit set to
‘1’, the SCB can achieve a maximum bit rate of 16 Mbps.
However, if you consider the I/O cell and routing delays, the
maximum data rate that can be achieved becomes 8 Mbps.
Based on these bits, the maximum bit rates are given in
Table 14-6. 

Externally clocked operation is limited to:

■ Slave functionality.

■ EZ functionality. EZ functionality uses the block's SRAM 
as a memory structure. Non-EZ functionality uses the 
block's SRAM as TX and RX FIFOs; FIFO support is not 
available in externally clocked operation.

■ Motorola mode 0 (in the case of SPI slave functionality).

Externally clocked EZ mode of operation can support a data
rate of 48 Mbps (at a peripheral clock of 48 MHz).

Internally and externally clocked operation is determined by
two register fields of the SCB_CTRL register:

■ EC_AM_MODE: Indicates whether SPI slave selection 
is internally ('0') or externally ('1') clocked. SPI slave 
selection comprises the first part of the protocol.

■ EC_OP_MODE: Indicates whether the rest of the proto-
col operation (besides SPI slave selection) is internally 
('0') or externally ('1') clocked. As mentioned earlier, 
externally clocked operation does NOT support non-EZ 
functionality.

These two register fields determine the functional behavior
of SPI. The register fields should be set based on the
required behavior in Active, Sleep, and Deep-Sleep system
power mode. Improper setting may result in faulty behavior
in certain system power modes. Table 14-7 and Table 14-8
describe the settings for SPI (in EZ and non-EZ mode).

14.2.8.1 Non-EZ Mode of Operation

In non-EZ mode there are two possible settings. As exter-
nally clocked operation is not supported for non-EZ function-
ality (no FIFO support), EC_OP_MODE should always be
set to '0'. However, EC_AM_MODE can be set to '0' or '1'.
Table 14-7 gives an overview of the possibilities. The combi-
nation EC_AM_MODE=0 and EC_OP_MODE=1 is invalid
and the block will not respond.

Table 14-6.  SPI Slave Maximum Data Rates

Median of 
SCB_RX_CTRL

LATE_MISO_SAMPLE of SCB_CTRL Ratio Requirement Maximum Bit Rate at Peripheral Clock of 48 MHz

0 0 12 4 Mbps

0 1 6 8 Mbps

1 0 16 3 Mbps

1 1 8 6 Mbps
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EC_OP_MODE is '0' and EC_AM_MODE is '0': This setting
only works in Active and Sleep system power modes. The
entire block's functionality is provided in the internally
clocked domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1': This setting
works in Active and Sleep system power mode and provides
limited (wake up) functionality in Deep-Sleep system power
mode. SPI slave selection is performed by both the inter-
nally and externally clocked logic: in Active system power
mode both are active and in Deep-Sleep system power
mode only the externally clocked logic is active. When the
externally clocked logic detects slave selection, it sets a
wakeup interrupt cause bit, which can be used to generate
an interrupt to wake up the CPU.

■ In Active system power mode, the CPU and the block's 
internally clocked slave selection logic are active and the 
wakeup interrupt cause is disabled (associated MASK 
bit is '0'). But in the Sleep mode, wakeup interrupt cause 
can be either enabled or disabled (MASK bit can be 
either '1' or '0') based on the application. The remaining 
operations in the Sleep mode are same as that of the 
Active mode. The internally clocked logic takes care of 
the ongoing SPI transfer.

■ In Deep-Sleep system power mode, the CPU needs to 
be woken up and the wakeup interrupt cause is enabled 
(MASK bit is '1'). Waking up takes time, so the ongoing 
SPI transfer is negatively acknowledged ('1' bits or 
"0xFF" bytes are send out on the MISO line) and the 
internally clocked logic takes care of the next SPI trans-
fer when it is woken up.

14.2.8.2 EZ Mode of Operation

EZ mode has three possible settings. EC_AM_MODE can
be set to '0' or '1' when EC_OP_MODE is '0' and
EC_AM_MODE must be set to '1' when EC_OP_MODE is
'1'. Table 14-8 gives an overview of the possibilities. The
grey cells indicate a possible, yet not recommended, setting
because it involves a switch from the externally clocked
logic (slave selection) to the internally clocked logic (rest of
the operation). The combination EC_AM_MODE=0 and
EC_OP_MODE=1 is invalid and the block will not respond.

Table 14-7.  SPI Non-EZ Mode

SPI, Standard (non-EZ) Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

System Power Mode EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 1 EC_AM_MODE=0

Active and Sleep

Selection using internal 
clock. 

Operation using internal 
clock.

Selection using external 
clock: Wakeup interrupt 
cause is disabled in Active 
mode (MASK = 0) and in the 
Sleep mode, the MASK bit 
can be configured by the 
user.

After that, selection using 
internal clock.

Operation using internal 
clock.

Not supported

Invalid configuration

Deep-Sleep Not supported

Selection using external 
clock: Wakeup interrupt 
cause in enabled (MASK = 
1).

Generate 0xff bytes.

Not supported
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EC_OP_MODE is '0' and EC_AM_MODE is '0': This setting
only works in Active system power mode. The entire block's
functionality is provided in the internally clocked domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1': This setting
works in Active system power mode and provides limited
(wake up) functionality in Deep-Sleep system power mode.
SPI slave selection is performed by both the internally and
externally clocked logic: in Active system power mode both
are active and in Deep-Sleep system power mode only the
externally clocked logic is active. When the externally
clocked logic detects slave selection, it sets a wakeup inter-
rupt cause bit, which can be used to generate an interrupt to
wake up the CPU.

■ In Active system power mode, the CPU and the block's 
internally clocked slave selection logic are active and the 
wakeup interrupt cause is disabled (associated MASK 
bit is '0'). But in Sleep mode, wakeup interrupt cause can 
be either enabled or disabled (MASK bit can be either '1' 
or '0') based on the application. The remaining opera-
tions in the Sleep mode are same as that of the Active 
mode. The internally clocked logic takes care of the 
ongoing SPI transfer.

■ In Deep-Sleep system power mode, the CPU needs to 
be woken up and the wakeup interrupt cause is enabled 
(MASK bit is '1'). Waking up takes time, so the ongoing 
SPI transfer is negatively acknowledged ('1' bits or 
"0xFF" bytes are send out on the MISO line) and the 
internally clocked logic takes care of the next SPI trans-
fer when it is woken up.

EC_OP_MODE is '1' and EC_AM_MODE is '1': This setting
works in Active system power mode and Deep-Sleep sys-
tem power mode. The SCB functionality is provided in the

externally clocked domain. Note that this setting results in
externally clocked accesses to the block's SRAM. These
accesses may conflict with internally clocked accesses from
the device. This may cause wait states or bus errors. The
field FIFO_BLOCK of the SCB_CTRL register determines
whether wait states ('1') or bus errors ('0') are generated.

14.3 UART

The Universal Asynchronous Receiver/Transmitter (UART)
protocol is an asynchronous serial interface protocol. UART
communication is typically point-to-point. The UART inter-
face consists of two signals:

■ TX: Transmitter output

■ RX: Receiver input

14.3.1 Features

■ Asynchronous transmitter and receiver functionality

■ Supports a maximum data rate of 1 Mbps

■ Supports UART protocol

❐ Standard UART

❐ SmartCard (ISO7816) reader.

❐ IrDA

■ Supports Local Interconnect Network (LIN)

❐ Break detection

❐ Baud rate detection

❐ Collision detection (ability to detect that a driven bit 
value is not reflected on the bus, indicating that 
another component is driving the same bus).

Table 14-8.  SPI EZ Mode

SPI, EZ Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

System Power Mode EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 1 EC_AM_MODE=0 

Active and Sleep

Selection using internal 
clock.

Operation using internal 
clock.

Selection using external 
clock: Wakeup interrupt 
cause is disabled in Active 
mode (MASK = 0) and in 
Sleep mode, the mask bit 
can be configured by the 
user.

After that, selection using 
internal clock.

Operation using internal 
clock.

Selection using external 
clock.

Operation using exter-
nal clock.

Invalid configuration

Deep-Sleep Not supported

Selection using external 
clock: Wakeup interrupt 
cause is enabled (MASK = 
1). 

Generate 0xff bytes.

Selection using external 
clock.

Operation using exter-
nal clock.
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■ Multi-processor mode

■ Data frame size programmable from 4 bits to 16 bits.

■ Programmable number of STOP bits, which can be set 
to 1, 1.5, or 2 data bits

■ Parity support (odd and even parity)

■ Interrupt or polling CPU interface

■ Programmable oversampling

14.3.2 General Description

Figure 14-8 illustrates a standard UART TX and RX.

Figure 14-8.  UART Example

A typical UART transfer consists of a "Start Bit" followed by
multiple "Data Bits", optionally followed by a "Parity Bit" and
finally completed by one or more "Stop Bits". The Start and
Stop bits indicate the start and end of data transmission.
The Parity bit is sent by the transmitter and is used be the
receiver to detect single bit errors. As the interface does not
have a clock (asynchronous), the transmitter and receiver
use their own clocks; also, they need to agree upon the
period of a bit transfer.

Three different serial interface protocols are supported:

■ Standard UART protocol

❐ Multi-Processor Mode

❐ Local Interconnect Network (LIN)

■ SmartCard, similar to UART, but with a possibility to 
send a negative acknowledgement

■ IrDA, modification to the UART with a modulation 
scheme

By default, UART supports a data frame width of eight bits.
However, this can be configured to any value in the range of
4 to 9. This does not include start, stop, and parity bits. The
number of stop bits can be in the range of 1 to 3. The parity
bit can be either enabled or disabled. If enabled, the type of

parity can be set to either even parity or odd parity. The
option of using the parity bit is available only in the Standard
UART and SmartCard UART modes. For IrDA UART mode,
the parity bit is automatically disabled. Figure 14-9 depicts
the default configuration of the UART interface of the SCB.

Note UART interface does not support external clocking
operation. Hence, UART operates only in the Active and
Sleep system power modes. 

14.3.3 UART Modes of Operation

14.3.3.1 Standard Protocol

A typical UART transfer consists of a start bit followed by
multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start bit
value is always '0', the data bits values are dependent on
the data transferred, the parity bit value is set to a value
guaranteeing an even or odd parity over the data bits, and
the stop bits value is '1'. The parity bit is generated by the
transmitter and can be used by the receiver to detect single
bit transmission errors. When not transmitting data, the TX
line is '1' – the same value as the stop bits. 

Because the interface does not have a clock, the transmitter
and receiver need to agree upon the period of a bit transfer.
The transmitter and receiver have their own internal clocks.
The receiver clock runs at a higher frequency than the bit
transfer frequency, such that the receiver may oversample
the incoming signal. 

The transition of a stop bit to a start bit is represented by a
change from '1' to '0' on the TX line. This transition can be
used by the receiver to synchronize with the transmitter
clock. Synchronization at the start of each data transfer
allows error-free transmission even in the presence of fre-
quency drift between transmitter and receiver clocks. The
required clock accuracy is dependent on the data transfer
size. 

The stop period or the amount of stop bits between succes-
sive data transfers is typically agreed upon between trans-
mitter and receiver, and is typically in the range of 1 to 3-bit
transfer periods. 

Figure 14-9 illustrates the UART protocol.

Figure 14-9.  UART, Standard Protocol Example

UART UART

TX

RX
TX

RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)

LEGEND:
TX / RX : Transmit or Receive line

TX / RX
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The receiver oversamples the incoming signal; the value of the sample point in the middle of the bit transfer period (on the
receiver's clock) is used. Figure 14-10 illustrates this. 

Figure 14-10.  UART, Standard Protocol Example (Single Sample)

Alternatively, three samples around the middle of the bit transfer period (on the receiver's clock) are used for a majority vote to
increase accuracy. Figure 14-11 illustrates this.

Figure 14-11.  UART, Standard Protocol (Multiple Samples)

UART Multi-Processor Mode

The UART_MP (multi-processor) mode is defined with "single-master-multi-slave" topology, as shown in Figure 14-12. This
mode is also known as UART 9-bit protocol because the data field is nine bits wide. UART_MP is part of Standard UART
mode. 

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line
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Figure 14-12.  UART MP Mode Bus Connections

The main properties of UART_MP mode are: 

■ Single master with multiple slave concept (multi-drop network)

■ Each slave is identified by a unique address

■ Using 9-bit data field, with the ninth bit as address/data flag (MP bit). When set high, it indicates an address byte; when 
set low it indicates a data byte. A data frame is illustrated in Figure 14-13

■ Parity bit is disabled

Figure 14-13.  UART MP Data Frame

The SCB can be used as either master or slave device in
UART_MP mode. Both SCB_TX_CTRL and
SCB_RX_CTRL registers should be set to 9-bit data frame
size. When the SCB works as UART_MP master device, the
firmware changes the MP flag for every address or data
frame. When it works as UART_MP slave device, the
MP_MODE field of the SCB_UART_RX_CTRL register
should be set to '1'. The SCB_RX_MATCH register should
be set for the slave address and address mask. The
matched address is written in the RX_FIFO when
SCB_ADDRESS_ACCEPT field of the SCB_CTRL register
is set to '1'. If received address does not match its own
address, then the interface ignores the following data, until
next address is received for compare.

UART LIN (Local Interconnect Network) Mode

The LIN (Local Interconnect Network) protocol is supported
by the SCB as part of the standard UART. LIN is designed
with single master-multi slave topology. There is one master
node and multiple slave nodes on the LIN bus. The SCB

UART supports both LIN master and slave functionality.
Figure 14-14 illustrates the UART_LIN and LIN Transceiver.

UART MP
Master

UART MP
Slave 1

UART MP
Slave 2

UART MP
Slave 3

TX

RXTX TXTX

RX

RXRX

Master TX

Master RX

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field
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Figure 14-14.  UART_LIN and LIN Transceiver

LIN protocol defines two tasks:

■ Master task: This task involves sending a header packet 
to initiate a LIN transfer. 

■ Slave task: This task involves transmitting or receiving a 
response.

The master node supports master task and slave task; the
slave node supports only slave task, as shown in
Figure 14-15. 

Figure 14-15.  LIN Bus Nodes and Tasks

LIN is based on the transmission of frames at pre-deter-
mined moments of time. A frame is divided into header and
response fields.

■ The header field consists of:

❐ Break field (at least 13 bit periods with the value '0').

❐ Sync field (a 0x55 byte frame). A sync field can be 
used to synchronize the clock of the slave task with 
that of the master task.

❐ Identifier field (a frame specifying a specific slave).

■ The response field consists of data and checksum.

The UART LIN of SCB supports slave task, receiving the
header and transmitting the response. It provides baud rate
detection (using sync field - 0x55) operation. Apart from the
break field, a frame transmission (both header and
response) consist of one or multiple byte frame transmis-
sions, with each byte transmission consisting of a start bit, 8
data bits and 1 or more stop bits (on both the UART TX and
RX lines).

To support LIN, a dedicated (off-chip) line driver/receiver is
required. Supply voltage range on the LIN bus is 7 V to 18 V.
Typically, LIN line drivers will drive the LIN line with the value
provided on the SCB TX line and present the value on the

LIN line to the SCB RX line. By comparing TX and RX lines
in the SCB, bus collisions can be detected (indicated by the
SCB_UART_ARB_LOST field of the SCB_INTR_TX regis-
ter).

Configuring the SCB as Standard UART interface

To configure the SCB as a standard UART interface, set
various register bits in the following order:

1. Configure the SCB as UART interface by writing '10' to 
the SCB_MODE field (bits [25:24]) of the SCB_CTRL 
register.

2. Configure the UART interface to operate as a Standard 
protocol by writing '00' to the SCB_MODE field (bits 
[25:24]) of the SCB_UART_CTRL register.

3. To enable the UART MP Mode or UART LIN Mode, write 
'1' to the SCB_MP_MODE (bit 11) or SCB_LIN_MODE 
(bit 12) respectively of the SCB_UART_RX_CTRL regis-
ter.

4. Follow steps 2 to 4 described in Enabling and Initializing 
UART on page 98.

For more information on these registers, see the CCG3
Registers TRM.

14.3.3.2 SmartCard (ISO7816)

ISO7816 is asynchronous serial interface, defined with sin-
gle-master-single slave topology. ISO7816 defines both
Reader (master) and Card (slave) functionality. For more
information, refer to the ISO7816 Specification. Only master
(reader) function is supported by the SCB. This block pro-
vides the basic physical layer support with asynchronous
character transmission. UART_TX line is connected to
SmartCard IO line, by internally multiplexing between
UART_TX and UART_RX control modules.

The SmartCard transfer is similar to a UART transfer, with
the addition of a negative acknowledgement (NACK) that
may be sent from the receiver to the transmitter. A NACK is
always '0'. Both master and slave may drive the same line,
although never at the same time. 

UART LIN

LIN Transceiver

UART LIN

LIN Transceiver

LIN Master 1 LIN Slave 1 LIN Slave 2

TX RX TX RX

LIN BUS

UART LIN

LIN Transceiver

TX RX

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38770
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A SmartCard transfer has the transmitter drive the start bit
and data bits (and optionally a parity bit). After these bits, it
enters its stop period by releasing the bus. Releasing results
in the line being '1' (the value of a stop bit). After one bit
transfer period into the stop period, the receiver may drive a
NACK on the line (a value of '0') for one bit transfer period.
This NACK is observed by the transmitter, which reacts by
extending its stop period by one bit transfer period. For this

protocol to work, the stop period should be longer than one
bit transfer period. Note that a data transfer with a NACK
takes one bit transfer period longer, than a data transfer
without a NACK. Typically, implementations use a tristate
driver with a pull-up resistor, such that when the line is not
transmitting data or transmitting the Stop bit, its value is '1'.

Figure 14-16 illustrates the SmartCard protocol.

Figure 14-16.  SmartCard Example

The communication Baud rate for ISO7816 is given as:

Baud rate= f7816 × (D/F)

Where f7816 is the clock frequency, F is the clock rate con-
version integer, and D is the baud rate adjustment integer.

By default, F = 372, D = f1, and the maximum clock fre-
quency is 5 MHz. Thus, maximum baud rate is 13.4 Kbps.
Typically, a 3.57-MHz clock is selected. The typical value of
the baud rate is 9.6 Kbps. 

Configuring SCB as UART SmartCard Interface

To configure the SCB as a UART SmartCard interface, set
various register bits in the following order. For more informa-
tion on these registers, see the CCG3 Registers TRM.

1. Configure the SCB as UART interface by writing '10' to 
the SCB_MODE (bits [25:24]) of the SCB_CTRL regis-
ter.

2. Configure the UART interface to operate as a Smart-
Card protocol by writing '01' to the SCB_MODE (bits 
[25:24]) of the SCB_UART_CTRL register.

3. Follow steps 2 to 4 described in Enabling and Initializing 
UART on page 98.

14.3.3.3 IrDA

The SCB supports the Infrared Data Association (IrDA) pro-
tocol for data rates of up to 115.2 Kbps using the UART
interface. It supports only the basic physical layer of IrDA
protocol with rates less than 115.2 Kbps. Hence, the system
instantiating this block must consider how to implement a

complete IrDA communication system with other available
system resources.

The IrDA protocol adds a modulation scheme to the UART
signaling. At the transmitter, bits are modulated. At the
receiver, bits are demodulated. The modulation scheme
uses a Return-to-Zero-Inverted (RZI) format. A bit value of
'0' is signaled by a short '1' pulse on the line and a bit value
of '1' is signaled by holding the line to '0'. For these data
rates (<=115.2 Kbps), the RZI modulation scheme is used
and the pulse duration is 3/16 of the bit period. The sam-
pling clock frequency should be set 16 times the selected
baud rate, by configuring the SCB_OVS field of the
SCB_CTRL register. 

Different communication speeds under 115.2 Kbps can be
achieved by configuring corresponding block clock fre-
quency. Additional allowable rates are 2.4 Kbps, 9.6 Kbps,
19.2 Kbps, 38.4 Kbps, and 57.6 Kbps. An IrDA serial infra-
red interface operates at 9.6 Kbps. Figure 14-17 shows how
a UART transfer is IrDA modulated.

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) without NACK
TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

STOPNACK
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Figure 14-17.  IrDA Example

Configuring the SCB as UART IrDA Interface

To configure the SCB as a UART IrDA interface, set various
register bits in the following order. For more information on
these registers, see the CCG3 Registers TRM.

1. Configure the SCB as UART interface by writing '10' to 
the SCB_MODE (bits [25:24]) of the SCB_CTRL regis-
ter.

2. Configure the UART interface to operate as IrDA proto-
col by writing '10' to the SCB_MODE (bits [25:24]) of the 
SCB_UART_CTRL register.

3. Configure the SCB as described in Enabling and Initializ-
ing UART on page 98.

14.3.4 UART Registers

The UART interface is controlled using a set of 32-bit regis-
ters listed in Table 14-9. For more information on these reg-
isters, see the CCG3 Registers TRM.

14.3.5 UART Interrupts

The UART supports both internal and external interrupt
requests. The internal interrupt events are listed in this sec-
tion. 

The UART predefined interrupts can be classified as TX
interrupts and RX interrupts. The TX interrupt output is the
logical OR of the group of all possible TX interrupt sources.
This signal goes high when any of the enabled TX interrupt
sources are true. The RX interrupt output is the logical OR of
the group of all possible RX interrupt sources. This signal
goes high when any of the enabled Rx interrupt sources are
true. The UART provides interrupts on the following events: 

■ UART transmission done.

■ UART TX received a NACK in SmartCard mode.

■ UART arbitration lost (in LIN or SmartCard modes).

■ Frame error in received data frame.

■ Parity error in received data frame.

■ LIN baud rate detection is completed.

■ LIN break detection is successful.

14.3.6 Enabling and Initializing UART

The UART must be programmed in the following order:

1. Program protocol specific information using the 
SCB_UART_CTRL register, according to Table 14-10. 
This includes selecting the submodes of the protocol, 
transmitter-receiver functionality, and so on. 

2. Program the generic transmitter and receiver information 
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 14-11.

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be 
transmitted or received.

c. Enable the transmitter and receiver.

3. Program the transmitter and receiver FIFOs using the 
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters respectively, as shown in Table 14-12. 

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift 
registers.

‘1' ‘0' PARIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX

‘1'‘1' ‘1' ‘1' ‘1' ‘1'‘0' ‘0' ‘0'

IrDA
TX / RX

LEGEND:
TX / RX : Transmit or Receive line

Table 14-9.  UART Registers

Register Name Operation

SCB_UART_CTRL
Used to select the sub-modes of UART 
(standard UART, SmartCard, IrDA), also 
used for local loop back control.

SCB_UART_STAT
US

Used to specify the BR_COUNTER value 
that determines the bit period.

SCB_UART_TX_C
TRL

Used to specify the number of stop bits, 
enable parity, select the type of parity, and 
enable retransmission on NACK.

SCB_UART_RX_C
TRL

Performs same function as 
SCB_UART_TX_CTRL but is also used for 
enabling multi processor mode, LIN mode 
drop on parity error, and drop on frame 
error.

SCB_TX_CTRL

Used to enable the transmitter, also to spec-
ify the data frame width and to specify 
whether MSB or LSB is the first bit in trans-
mission.

SCB_RX_CTRL
Performs the same function as that of the 
SCB_TX_CTRL register, but for the 
receiver.
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c. Freeze the TX and RX FIFOs.

4. Program the SCB_CTRL register to enable the SCB 
block. Also select the mode of operation, as shown in 
Table 14-13.

After the block is enabled, control bits should not be
changed. Changes should be made AFTER disabling the
block; for example, to modify the operation mode (from
SmartCard to IrDA). The change takes effect only after the
block is re-enabled. Note that re-enabling the block causes
re-initialization and the associated state is lost (for example
FIFO content).

The last step of initialization should always be to enable the
block (write a '1' to the ENABLED bit of the SCB_CTRL reg-
ister).

Table 14-10.  SCB_UART_CTRL Register

Bits Name Value Description

[25:24] MODE

00 Standard UART

01 SmartCard

10 IrDA

11 Reserved

16 LOOP_BACK
Loop back control. This allows a SCB UART transmitter to communicate with its 
receiver counterpart.

Table 14-11.  SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the no. of bits in the transmitted or received data frame. The 
valid range is [3, 15]. This does not include start, stop, and parity bits.

8 MSB_FIRST
1= MSB first

0= LSB first

31 ENABLED
Transmitter enable bit for SCB_TX_CTRL and receiver enable bit for 
SCB_RX_CTRL registers. They must be enabled for all the protocols. Otherwise, 
the block may not function or the data may get lost.

Table 14-12.  SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL Registers

Bits Name Description

[2:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or receiver FIFO has more 
entries than the value of this field, a transmitter or receiver trigger event is gener-
ated in the respective case.

16 CLEAR
When '1', the transmitter or receiver FIFO and the shift registers are cleared/invali-
dated.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no effect. 
Freeze will not advance the TX or RX FIFO read/write pointer.

Table 14-13.  SCB_CTRL Register

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block enabled

1 SCB block disabled
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14.4 Inter Integrated Circuit (I2C)

 CCG3 contains a Serial Communication Block (SCB) con-
figured to operate as a I2C block. This section explains the
I2C implementation in  CCG3. For more information on the
I2C protocol specification, refer to the I2C-bus specification
available on the NXP website.

14.4.1 Features

 CCG3 supports the following I2C features:

■ Master, slave, and master/slave mode

■ Slow-mode (50 kbps), standard-mode (100 kbps), fast-
mode (400 kbps), and fast-mode plus (1000 kbps) data-
rates

■ 7- or 10-bit slave addressing (10-bit addressing requires 
firmware support)

■ Clock stretching and collision detection

■ Programmable oversampling of I2C clock signal (SCL)

■ Error reduction using an digital median filter on the input 
path of the I2C data signal (SDA)

■ Glitch-free signal transmission with an analog glitch filter 

■ Interrupt or polling CPU interface

■ Supports EZ mode of operation (Easy I2C (EZI2C) Pro-
tocol - applicable only for I2C slave functionality)

14.4.2 General Description

Figure 14-18 illustrates an example of an I2C communica-
tion network.

Figure 14-18.  I2C Interface Block Diagram

The standard I2C bus is a two wire interface with the follow-
ing lines:

■ Serial Data (SDA)

■ Serial Clock (SCL)

I2C devices are connected to these lines using open collec-
tor or open-drain output stages, with pull-up resistors (Rp). A
simple master/slave relationship exists between devices.
Masters and slaves can operate as either transmitter or
receiver. Each slave device connected to the bus is software
addressable by a unique 7-bit address. 

14.4.3 Terms and Definitions

Table 14-14 explains the commonly used terms in an I2C
communication network.

Bus Stalling (Clock Stretching)

When a slave device is not yet ready to process data, it may
drive a ‘0’ on the SCL line to hold it down. Due to the imple-
mentation of the I/O signal interface, the SCL line value will
be '0', independent of the values that any other master or
slave may be driving on the SCL line. This is known as clock
stretching and is the only situation in which a slave drives
the SCL line. The master device monitors the SCL line and
detects it when it cannot generate a positive clock pulse ('1')
on the SCL line. It then reacts by postponing the generation

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

Table 14-14.  Definition of I2C Bus Terminology

Term Description

Transmitter The device that sends data to the bus

Receiver The device that receives data from the bus

Master
The device that initiates a transfer, generates 
clock signals, and terminates a transfer

Slave The device addressed by a master

Multi-master
More than one master can attempt to control the 
bus at the same time without corrupting the mes-
sage

Arbitration

Procedure to ensure that, if more than one mas-
ter simultaneously tries to control the bus, only 
one is allowed to do so and the winning message 
is not corrupted

Synchroniza-
tion

Procedure to synchronize the clock signals of two 
or more devices

Table 14-14.  Definition of I2C Bus Terminology

Term Description

http://www.nxp.com/documents/other/UM10204_v5.pdf
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of a positive edge on the SCL line, effectively synchronizing
with the slave device that is stretching the clock.

Bus Arbitration

The I2C protocol is a multi-master, multi-slave interface. Bus
arbitration is implemented on master devices by monitoring
the SDA line. Bus collisions are detected when the master
observes an SDA line value that is not the same as the
value it is driving on the SDA line. For example, when mas-
ter 1 is driving the value '1' on the SDA line and master 2 is
driving the value '0' on the SDA line, the actual line value will
be '0' due to the implementation of the I/O signal interface.
Master 1 detects the inconsistency and loses control of the
bus. Master 2 does not detect any inconsistency and keeps
control of the bus.

14.4.4 I2C Modes of Operation

I2C is a synchronous single master, multi-master, multi-
slave serial interface. Devices operate in either master
mode, slave mode, or master/slave mode. In master/slave
mode, the device switches from master to slave mode when
it is addressed. Only a single master may be active during a
data transfer. The active master is responsible for driving
the clock on the SCL line.

Table 14-15 illustrates the I2C modes of operation.

Data transfer through the I2C bus follows a specific format.
Table 14-16 lists some common bus events that are part of
an I2C data transfer. The Write Transfer and Read Transfer
sections explain the format of bits on an I2C bus during data
transfer.

When operating in multi-master mode, the bus should
always be checked to see if it is busy; another master may
already be communicating with a slave. In this case, the
master must wait until the current operation is complete
before issuing a START signal (see Table 14-16,
Figure 14-19 and Figure 14-20). The master looks for a
STOP signal as an indicator that it can start its data trans-
mission.

When operating in multi-master-slave mode, if the master
loses arbitration during data transmission, the hardware
reverts to slave mode and the received byte generates a
slave address interrupt.

With all of these modes, there are two types of transfer -
read and write. In write transfer, the master sends data to
slave; in read transfer, the master receives data from slave.
Write and read transfer examples are available in Master
Mode Transfer Examples on page 108, Slave Mode Trans-
fer Examples on page 110, and Multi-Master Mode Transfer
Example on page 114. 

Table 14-15.  I2C Modes

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi-master Supports more than one master on the bus

Multi-master-slave
Simultaneous slave and multi-master 
operation 

Table 14-16.  I2C Bus Events Terminology

Bus Event Description

START
A HIGH to LOW transition on the SDA line while 
SCL is HIGH

STOP
A LOW to HIGH transition on the SDA line while 
SCL is HIGH

ACK

The receiver pulls the SDA line LOW and it 
remains LOW during the HIGH period of the 
clock pulse after the transmitter transmits each 
byte.

NACK

The receiver does not pull the SDA line LOW 
and it remains HIGH during the HIGH period of 
clock pulse after the transmitter transmits each 
byte.

Repeated 
START

START condition generated by master at the 
end of a transfer instead of a STOP condition

Table 14-16.  I2C Bus Events Terminology

Bus Event Description
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14.4.4.1 Write Transfer

Figure 14-19.  Master Write Data Transfer

■ A typical write transfer begins with the master generating 
a START condition on the I2C bus. The master then 
writes a 7-bit I2C slave address and a write indicator ('0') 
after the START condition. The addressed slave trans-
mits an acknowledgement byte by pulling the data line 
low during the ninth bit time.

■ If the slave address does not match any of the slave 
devices or if the addressed device does not want to 
acknowledge the request, it transmits a no acknowl-
edgement (NACK). The absence of an acknowledge-
ment, results in an SDA line value of '1' due to the pull-
up resistor implementation. 

■ If no acknowledgement is transmitted by the slave, the 
master may end the write transfer with a STOP event. 
The master can also generate a repeated START condi-
tion for a retry attempt.

■ The master may transmit write data to the bus if it 
receives an acknowledgement. The addressed slave 
transmits an acknowledgement to confirm the receipt of 
the write data. Upon receipt of this acknowledgement, 
the master may transmit another data byte.

■ When the transfer is complete, the master generates a 
STOP condition.

14.4.4.2 Read Transfer

Figure 14-20.  Master Read Data Transfer

■ A typical read transfer begins with the master generating 
a START condition on the I2C bus. The master then 
writes a 7-bit I2C slave address and a read indicator ('1') 
after the START condition. The addressed slave trans-
mits an acknowledgement by pulling the data line low 
during the ninth bit time.

■ If the slave address does not match with that of the con-
nected slave device or if the addressed device does not 
want to acknowledge the request, a no acknowledge-
ment (NACK) is transmitted. The absence of an 

acknowledgement, results in an SDA line value of '1' due 
to the pull-up resistor implementation. 

■ If no acknowledgement is transmitted by the slave, the 
master may end the read transfer with a STOP event. 
The master can also generate a repeated START condi-
tion for a retry attempt.

■ If the slave acknowledges the address, it starts transmit-
ting data after the acknowledgement signal. The master 
transmits an acknowledgement to confirm the receipt of 
each data byte sent by the slave. Upon receipt of this 

MSB LSBSDA

SCL

START Slave address (7 bits) Write ACK ACKData(8 bits) STOP

Write data transfer(Master writes the data)

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

LEGEND :

MSB LSB

START Slave address (7 bits) Read ACK ACKData(8 bits) STOP

Read data transfer(Master reads the data)

SDA

SCL

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

LEGEND :
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acknowledgement, the addressed slave may transmit 
another data byte.

■ The master can send a NACK signal to the slave to stop 
the slave from sending data bytes. This completes the 
read transfer.

■ When the transfer is complete, the master generates a 
STOP condition.

14.4.5 Easy I2C (EZI2C) Protocol

The Easy I2C (EZI2C) protocol is a unique communication
scheme built on top of the I2C protocol by Cypress. EZI2C
mode is applicable only for slave functionality. It uses a soft-
ware wrapper around the standard I2C protocol to communi-
cate to an I2C slave using indexed memory transfers. This
removes the need for CPU intervention at the level of indi-
vidual frames.

The EZI2C protocol defines an 8-bit EZ address that
indexes a memory array (8-bit wide 32 locations) located on
the slave device. Five lower bits of the EZ address is used to
address these 32 locations. The number of bytes transferred
to or from the EZI2C memory array can be found by com-
paring the EZ address at the START event and the EZ
address at the STOP event.

Note The I2C block has a hardware FIFO memory, which is
16 bits wide and 16 locations deep with byte write enable.
The access methods for EZ and non-EZ functions are differ-
ent. In non-EZ mode, the FIFO is split into TXFIFO and
RXFIFO. Each has 16-bit wide eight locations. In EZ mode,
the FIFO is used as a single memory unit with 8-bit wide 32
locations.

EZI2C has two types of transfers: an EZ write of data from
the master to an addressed slave memory location, and a
read by the master from an addressed slave memory loca-
tion.

14.4.6 Memory Array Write

An EZ write to a memory array index is by means of an I2C
write transfer. The first transmitted write data is used to send
an EZ address from the master to the slave. The five lowest
significant bits of the write data are used as the "new" EZ
address at the slave. Any additional write data elements in
the write transfer are bytes that are written to the memory
array. The EZ address is automatically incremented by the
slave as bytes are written into the memory array. When the
EZ address exceeds 32 memory entries, it wraps around to
0. 

14.4.7 Memory Array Read

An EZ read from a memory array index is by means of an
I2C read transfer. The EZ read relies on an earlier EZ write
to have set the EZ address at the slave. The first received
read data is the byte from the memory array at the EZ
address memory location. The EZ address is automatically

incremented as bytes are read from the memory array.
When the EZ address exceeds the 32 memory entries, it
wraps around to 0.
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Figure 14-21.  EZI2C Write and Read Data Transfer

See EZ Slave Mode Transfer Example on page 112 for examples.

14.4.8 I2C Registers

The I2C interface is controlled by reading and writing a set of configuration, control, and status registers, as listed in
Table 14-17. 

LEGEND :

MS
B

LS
BSDA

SCL

START Slave address (7 bits) Write ACK ACKEZ address(8 bits) STOP

Write data transfer(single write data)

MSB LSB

START Slave address (7 bits) Read ACK ACKRead Data(8 bits) STOP

Read data transfer(single read data)

SDA

SCL

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

Write Data(8 bits) ACK

EZ  address

Address

Data

EZ Buffer
(32 bytes SRAM)

Table 14-17.  I2C Registers

Register Function

SCB_CTRL
Enables the SCB I2C block and selects the type of serial interface (SPI, UART, I2C). Also used to select 
internally and externally clocked operation and EZ and non-EZ modes of operation.

SCB_I2C_CTRL Selects the mode (master, slave) and sends an ACK or NACK signal based on receiver FIFO status.

SCB_I2C_STATUS
Indicates bus busy status detection, read/write transfer status of the slave/master, and stores the EZ slave 
address.

SCB_I2C_M_CMD Enables the master to generate START, STOP, and ACK/NACK signals.

SCB_I2C_S_CMD Enables the slave to generate ACK/NACK signals.

SCB_STATUS
Indicates whether the externally clocked logic is using the EZ memory. This bit can be used by software to 
determine whether it is safe to issue a software access to the EZ memory.

SCB_TX_CTRL
Enables the transmitter and specifies the data frame width; also used to specify whether MSB or LSB is the 
first bit in transmission.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clearing of the transmitter FIFO and shift registers, and FREEZE operation of the 
transmitter FIFO.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by 
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides 
if the transmitter FIFO holds the valid data. 
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Note Detailed descriptions of the I2C register bits are available in the CCG3 Registers TRM.

14.4.9 I2C Interrupts

The I2C block generates interrupts for the following condi-
tions.

■ Arbitration lost

■ Slave address match

■ I2C bus stop/start condition detected

■ I2C bus error detected

■ I2C byte/word transfer complete

■ I2C TX FIFO not full

■ I2C TX FIFO empty

■ I2C RX FIFO empty

■ I2C RX FIFO not empty

■ I2C RX FIFO overrun

■ I2C RX FIFO full

The I2C interrupt signal is hard-wired to the Cortex-M0 NVIC
and cannot be routed to external pins.

The interrupt output is the logical OR of the group of all pos-
sible interrupt sources. The interrupt is triggered when any
of the enabled interrupt conditions are met. Interrupt status
registers are used to determine the actual source of the
interrupt. For more information on interrupt registers, see
the CCG3 Registers TRM.

14.4.10 Enabling and Initializing the I2C

The following section describes the method to configure the
I2C block for standard (non-EZ) mode and EZI2C mode.

Configuring for I2C Standard (Non-EZ) Mode

The I2C interface must be programmed in the following
order.

1. Program protocol specific information using the 
SCB_I2C_CTRL register according to Table 14-18. This 
includes selecting master - slave functionality.

2. Program the generic transmitter and receiver information 
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 14-19. 

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be 
transmitted/received.

c. Enable the transmitter and receiver.

3. Program transmitter and receiver FIFO using the 
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters, respectively, as shown in Table 14-20. 

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift 
registers.

4. Program the SCB_CTRL register to enable the SCB 
block and select the I2C mode. These register bits are 
shown in Table 14-21. For a complete description of the 
I2C registers, see the CCG3 Registers TRM.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the receiver.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver. 

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO; 
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data 
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the 
FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as slave device address MASK. 

SCB_EZ_DATA Holds the data in an EZ memory location.

Table 14-17.  I2C Registers

Register Function

Table 14-18.  SCB_I2C_CTRL Register

Bits Name Value Description

30 SLAVE_MODE 1 Slave mode

31 MASTER_MODE 1 Master mode
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Configuring for EZI2C Mode

To configure the SCB block for EZI2C mode, set the follow-
ing I2C register bits

1. Select the EZI2C mode by writing '1' to the EZ_MODE 
bit (bit 10) of the SCB_CTRL register.

2. Follow steps 2 to 4 mentioned in Configuring for I2C 
Standard (Non-EZ) Mode.

3. Set the S_READY_ADDR_ACK (bit 12) and 
S_READY_DATA_ACK (bit 13) bits of the 
SCB_I2C_CTRL register.

14.4.11 Internal and External Clock 
Operation in I2C

The SCB supports both internally and externally clocked
operation for data-rate generation. Internally clocked opera-
tions use a clock signal derived from the  CCG3 system bus
clock. Externally clocked operations use a clock provided by
the user. Externally clocked operation allows limited func-
tionality in the Deep-Sleep power mode, in which on-chip
clocks are not active. For more information on system clock-
ing, see the Clocking System chapter on page 57. 

Externally clocked operation is limited to the following cases:

■ Slave functionality.

■ EZ functionality. TX and RX FIFOs do not support exter-
nally clocked operation; therefore, it is not used for non-
EZ functionality. 

Internally and externally clocked operations are determined
by two register fields of the SCB_CTRL register:

■ EC_AM_MODE (Externally Clocked Address Match-
ing Mode): Indicates whether I2C address matching is 
internally ('0') or externally ('1') clocked.

■ EC_OP_MODE (Externally Clocked Operation Mode): 
Indicates whether the rest of the protocol operation 
(besides I2C address match) is internally ('0') or exter-
nally ('1') clocked. As mentioned earlier, externally 
clocked operation does not support non-EZ functionality.

These two register fields determine the functional behavior
of I2C. The register fields should be set based on the
required behavior in Active, Sleep, and Deep-Sleep system
power modes. Improper setting may result in faulty behavior
in certain power modes. Table 14-22 and Table 14-22
describe the settings for I2C in EZ and non-EZ mode.

14.4.11.1 I2C Non-EZ Operation Mode

Externally clocked operation is not supported for non-EZ
functionality because there is no FIFO support for this mode.
So, the EC_OP_MODE should always be set to '0' for non-
EZ mode. However, EC_AM_MODE can be set to '0' or '1'.
Table 14-9 gives an overview of the possibilities. The combi-

Table 14-19.  SCB_TX_CTRL/SCB_RX_CTRL Register

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the number of bits in the transmitted or received data 
frame. The valid range is [3, 15]. 

8 MSB_FIRST
1= MSB first

0= LSB first

31 ENABLED
Transmitter enable bit for SCB_TX_CTRL and receiver enable bit for 
SCB_RX_CTRL registers. They must be enabled for all the protocols. Otherwise, 
the block may not function or the data may get lost.

Table 14-20.  SCB_TX_FIFO_CTRL/ SCB_RX_FIFO_CTRL 

Bits Name Description

[2:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or the receiver FIFO 
has more entries than the value of this field, a transmitter or receiver trigger event 
is generated in the respective case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no 
effect. Freeze does not advance the TX or RX FIFO read/write pointer.

Table 14-21.  SCB_CTRL Registers

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block enabled

1 SCB block disabled



CCG3 TRM, Document No. 002-04130 Rev. ** 107

Serial Communications (SCB)

nation EC_AM_MODE = 0 and EC_OP_MODE = 1 is invalid
and the block will not respond.

EC_AM_MODE is '0' and EC_OP_MODE is '0'.   This set-
ting only works in Active and Sleep system power modes.
All the I2C’s functionality is provided in the internally clocked
domain.

EC_AM_MODE is '1' and EC_OP_MODE is '0'.   This set-
ting works in Active and Deep-Sleep system power modes.
I2C address matching is performed by the externally
clocked logic in both these modes. When the externally
clocked logic matches the address, it sets a wakeup inter-
rupt cause bit, which can be used to generate an interrupt to
wakeup the CPU.

■ In Active system power mode, the CPU is active and the 
wakeup interrupt cause is disabled (associated MASK 
bit is '0'). The externally clocked logic takes care of the 
address matching and the internally locked logic takes 
care of the rest of the I2C transfer.

■ In the Sleep mode, wakeup interrupt cause can be either 
enabled or disabled based on the application. The 
remaining operations are similar to the Active mode.

■ In the Deep-Sleep mode, the CPU is shut down and will 
wake up on I2C activity if the wakeup interrupt cause is 
enabled. CPU wakeup up takes time and the ongoing 
I2C transfer is either negatively acknowledged (NACK) 
or the clock is stretched. In the case of a NACK, the 
internally clocked logic takes care of the first I2C transfer 
after it wakes up. For clock stretching, the internally 
clocked logic takes care of the ongoing/stretched trans-
fer when it wakes up. The register bit 
S_NOT_READY_ADDR_NACK (bit 14) of the 
SCB_I2C_CTRL register determines whether the exter-
nally clocked logic performs a negative acknowledge 
('1') or clock stretch ('0').

14.4.11.2 EZ Operation Mode

EZ mode has three possible settings. EC_AM_MODE can
be set to '0' or '1' when EC_OP_MODE is '0' and
EC_AM_MODE must be set to '1' when EC_OP_MODE is
'1'. Table 14-22 gives an overview of the possibilities. The
grey cells indicate a possible, yet not recommended setting
because it involves a switch from the externally clocked
logic (slave selection) to the internally clocked logic (rest of
the operation). The combination EC_AM_MODE=0 and
EC_OP_MODE=1 is invalid and the block will not respond.

■ EC_AM_MODE is '0' and EC_OP_MODE is '0'. This 
setting only works in Active/Sleep system power mode. 

■ EC_AM_MODE is '1' and EC_OP_MODE is '0'. This 
setting works same as I2C non-EZ mode.

■ EC_AM_MODE is '1' and EC_OP_MODE is '1'. This 
setting works in Active system power mode and Deep-
Sleep system power mode. 

The SCB functionality is provided in the externally clocked
domain. Note that this setting results in externally clocked
accesses to the block's SRAM. These accesses may conflict
with internally clocked accesses from the device. This may
cause wait states or bus errors. The field FIFO_BLOCK (bit
17) of the SCB_CTRL register determines whether wait
states ('1') or bus errors ('0') are generated.

14.4.12 Wake up from Sleep

The system wakes up from Sleep or Deep-Sleep system
power modes when an I2C address match occurs. The I2C
block performs either of two actions after address match:
Address ACK or Address NACK.

Address ACK - The I2C slave executes clock stretching
and waits until the device wakes up and ACKs the address. 

Address NACK - The I2C slave NACKs the address imme-
diately. The master must poll the slave again after the
device wakeup time is passed. This option is only valid in
the slave or multi-master-slave modes.

Note The interrupt bit WAKEUP (bit 0) of the INTR_I2C_EC
register must be enabled for the I2C to wake up the device
on slave address match while switching to the Sleep mode.

Table 14-22.  I2C EZ Mode

I2C, EZ Mode

System Power Mode
EC_OP_MODE= 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 1 EC_AM_MODE=0

Active and Sleep

Address match using inter-
nal clock

Operation using internal 
clock

Address match using 
external clock

Operation using internal 
clock

Address match using 
external clock 

Operation using exter-
nal clock 

Invalid configuration 

Deep-Sleep Not supported

Address match using 
external clock

Operation using internal 
clock

Address match using 
external clock 

Operation using exter-
nal clock
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14.4.13 Master Mode Transfer Examples

Master mode transmits or receives data.

14.4.13.1 Master Transmit

Figure 14-22.  Single Master Mode Write Operation Flow Chart
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14.4.13.2 Master Receive

Figure 14-23.  Single Master Mode Read Operation Flow Chart
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14.4.14 Slave Mode Transfer Examples

Slave mode transmits or receives data.

14.4.14.1 Slave Transmit

Figure 14-24.  Slave Mode Write Operation Flow Chart
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14.4.14.2 Slave Receive

Figure 14-25.  Slave Mode Read Operation Flow Chart
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14.4.15 EZ Slave Mode Transfer Example

The EZ Slave mode transmits or receives data.

14.4.15.1 EZ Slave Transmit

Figure 14-26.   EZI2C Slave Mode Write Operation Flow Chart

Default

Disable Fixed 
Function I2C block

Select Slave
mode

Enable
TX FIFO

Enable Fixed 
Function I2C block

Begin

Select EZ
mode

Receiving 
one byte slave 

address 
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

ACK

START detected

Wake up 

Transmitting one byte
data complete?

EZ buffer
empty?

Yes

Yes
E

Byte ACK’ed 
or NACK’ed?

ACK

No

Begin

E
Error

Begin

No

NACK

Data transfer
complete?

No

Yes

Select transmit
mode

E

Report and 
handle error



CCG3 TRM, Document No. 002-04130 Rev. ** 113

Serial Communications (SCB)

14.4.15.2 EZ Slave Receive

Figure 14-27.  EZI2C Slave Mode Read Operation Flow Chart
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14.4.16 Multi-Master Mode Transfer Example

In multi-master mode, data can be transferred with the slave mode enabled or not enabled.

14.4.16.1 Multi-Master - Slave Not Enabled

Figure 14-28.  Multi-Master, Slave Not Enabled Flow Chart
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14.4.16.2 Multi-Master - Slave Enabled

Figure 14-29.   Multi-Master, Slave Enabled Flow Chart
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15.   Timer, Counter, and PWM

CCG3 includes four blocks of the Timer, Counter, and Pulse Width Modulator (TCPWM) block. Each TCPWM in CCG3 imple-
ments the 16-bit timer, counter, pulse width modulator (PWM), and quadrature decoder functionality. The block can be used
to measure the period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter),
generate PWM signals, or decode quadrature signals. This chapter explains the features, implementation, and operational
modes of the TCPWM block.

15.1 Features
■ Four 16-bit timers, counters, or pulse width modulators (PWM)

■ The TCPWM block supports the following operational modes:

❐ Timer

❐ Counter

❐ Capture

❐ Quadrature decoding

❐ Pulse width modulation

❐ Pseudo-random PWM

❐ PWM with dead time

■ Multiple counting modes – up, down, and up/down 

■ Clock pre-scaling (division by 1, 2, 4, ... 64, 128)

■ Double buffering of compare/capture and period values

■ Supports interrupt on:

❐ Terminal Count (TC) – The final value in the counter register is reached

❐ Capture/Compare (CC) – The count is captured to the capture/compare register or the counter value equals the com-
pare value

■ Synchronized counters – The counters can reload, start, stop, and count at the same time

■ Complementary line output for PWMs
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15.2 Block Diagram
Figure 15-1.  TCPWM Block Diagram

The block has these interfaces:

■ Bus interface: Connects the block to the CPU subsys-
tem.

■ Interrupts: Provides interrupt request signals from each 
counter, based on terminal count (TC) or CC conditions, 
and a combined interrupt signal generated by the logical 
OR of all six interrupt request signals.

■ System interface: Consists of control signals such as 
clock and reset from the system resources subsystem.

This TCPWM block can be configured by writing to the
TCPWM registers. See TCPWM Registers on page 136 for
more information on all registers required for this block.

15.2.1 Enabling and Disabling Counter in 
TCPWM Block

The counter can be enabled by setting the
COUNTER_ENABLED field (bit 0) of the control register
TCPWM_CTRL. 

Note The counter must be configured before enabling it. If
the counter is enabled after being configured, registers are
updated with the new configuration values. Disabling the
counter retains the values in the registers until it is enabled
again (or reconfigured).

15.2.2 Clocking

The TCPWM receives the HFCLK through the system inter-
face to synchronize all events in the block. The counter
enable signal (counter_en), which is generated when the
counter is enabled, gates the HFCLK to provide a counter-
specific clock (counter_clock). Output triggers (explained
later in this chapter) are also synchronized with the HFCLK.

Clock Pre-Scaling: counter_clock can be pre-scaled, with
divider values of 1, 2, 4… 64, 128. This is done by modifying
the GENERIC field of the counter control
(TCPWM_CNT_CTRL) register, as shown in Table 15-1.

Note Clock pre-scaling cannot be done in quadrature mode
and pulse width modulation mode with dead time (PWM-
DT).
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Table 15-1.  Bit-Field Setting to Pre-Scale Counter Clock

GENERIC[10:8] Description

0 Divide by 1

1 Divide by 2

2 Divide by 4

3 Divide by 8

4 Divide by 16

5 Divide by 32

6 Divide by 64

7 Divide by 128
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15.2.3 Events Based on Trigger Inputs

These are the events triggered by hardware or software.

■ Reload

■ Start

■ Stop

■ Count

■ Capture/switch

Hardware triggers can be level signal, rising edge, falling
edge, or both edges.

Figure 15-2.  TCPWM Trigger Selection and Event Detection

Figure 15-2 shows the trigger selection and event detection
in the TCPWM block. The trigger control register 0
(TCPWM_CNT_TR_CTRL0) selects one of the 16 trigger
inputs as the event signal. Additionally, a constant '0' and '1'
signals are available to be used as the event signal.

Any edge (rising, falling, or both) or level (high or low) can
be selected for the occurrence of an event by configuring
the trigger control register 1 (TCPWM_CNT_TR_CTRL1).
This edge/level configuration can be selected for each trig-
ger event separately. Alternatively, firmware can generate
an event by writing to the counter command register
(TCPWM_CMD), as shown in Figure 15-2.

The events derived from these triggers can have different
definitions in different modes of the TCPWM block. 

■ Reload: A reload event initializes and starts the counter.

❐ In up counting mode, the count register 
(TCPWM_CNT_COUNTER) is initialized with ‘0’.

❐ In down counting mode, the counter is initialized with 
the period value stored in the 
TCPWM_CNT_PERIOD register.

❐ In up/down counting mode, the count register is ini-
tialized with ‘0’.

❐ In quadrature mode, the reload event acts as a 
quadrature index event. An index/reload event indi-
cates a completed rotation and can be used to syn-
chronize quadrature decoding.

■ Start: A start event is used to start counting; it can be 
used after a stop event or after re-initialization of the 
counter register to any value by software. Note that the 
count register is not initialized on this event. 

❐ In quadrature mode, the start event acts as quadra-
ture phase input phiB, which is explained in detail in 
Quadrature Decoder Mode on page 126.

■ Count: A count event causes the counter to increment 
or decrement, depending on its configuration. 

❐ In quadrature mode, the count event acts as quadra-
ture phase input phiA.

■ Stop: A stop event stops the counter from incrementing 
or decrementing. A start event will start the counting 
again. 

❐ In the PWM modes, the stop event acts as a kill 
event. A kill event disables all the PWM output lines.

■ Capture: A capture event copies the counter register 
value to the capture register and capture register value 
to the buffer capture register. In the PWM modes, the 
capture event acts as a switch event. It switches the val-
ues of the capture/compare and period registers with 
their buffer counterparts. This feature can be used to 
modulate the pulse width and frequency.

Notes

■ All trigger inputs are synchronized to the HFCLK.

■ When more than one event occurs in the same counter 
clock period, one or more events may be missed. This 
can happen for high-frequency events (frequencies 
close to the counter frequency) and a timer configuration 
in which a pre-scaled (divided) counter clock is used.

15.2.4 Output Signals

The TCPWM block generates several output signals, as
shown in Figure 15-3.

Figure 15-3.  TCPWM Output Signals
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15.2.4.1 Signals upon Trigger Conditions

■ Counter generates an internal overflow (OV) condition 
when counting up and the count register reaches the 
period value.

■ Counter generates an internal underflow (UN) condition 
when counting down and the count register reaches 
zero. 

■ The capture/compare (CC) condition is generated by the 
TCPWM when the counter is running and one of the fol-
lowing conditions occur:

❐ The counter value equals the compare value.

❐ A capture event occurs - When a capture event 
occurs, the TCPWM_CNT_COUNTER register value 
is copied to the capture register and the capture reg-
ister value is copied to the buffer capture register. 

Note These signals, when they occur, remain at logic high
for one cycle of the HFCLK. For reliable operation, the con-
dition that causes this trigger should occur in a frequency
less than a quarter of the HFCLK. For example, if the
HFCLK is running at 24 MHz, the condition causing the trig-
ger should occur at a frequency less than 6 MHz.

15.2.4.2 Interrupts

The TCPWM block provides a dedicated interrupt output sig-
nal from the counter. An interrupt can be generated for a TC
condition or a CC condition. The exact definition of these
conditions is mode-specific. All six interrupt output signals
from the four TCPWMs are also OR’ed together to produce
a single interrupt output signal.

Four registers are used for interrupt handling in this block,
as shown in Table 15-2.

15.2.4.3 Outputs

The TCPWM has two outputs, line_out and line_compl_out (complementary of line_out). Note that the OV, UN, and CC con-
ditions can be used to drive line_out and line_compl_out if needed, by configuring the TCPWM_CNT_TR_CTRL2 register
(see Table 15-3).

Table 15-2.  Interrupt Register

Interrupt Registers Bits Name Description

TCPWM_CNT_INTR

(Interrupt request register)

0 TC
This bit is set to '1', when a terminal count is detected. Write '1' to clear this 
bit.

1 CC_MATCH
This bit is set to ‘1’ when the counter value matches capture/compare regis-
ter value. Write with '1' to clear this bit.

TCPWM_CNT_INTR_SET

(Interrupt set request register)

0 TC
Write '1' to set the corresponding bit in the interrupt request register. When 
read, this register reflects the interrupt request register status.

1 CC_MATCH
Write '1' to set the corresponding bit in the interrupt request register. When 
read, this register reflects the interrupt request register status.

TCPWM_CNT_INTR_MASK

(Interrupt mask register)

0 TC Mask bit for the corresponding TC bit in the interrupt request register.

1 CC_MATCH
Mask bit for the corresponding CC_MATCH bit in the interrupt request reg-
ister.

TCPWM_CNT_INTR_MASKED

(Interrupt masked request register)

0 TC Logical AND of the corresponding TC request and mask bits.

1 CC_MATCH Logical AND of the corresponding CC_MATCH request and mask bits.

Table 15-3.  Configuring Output Line for OV, UN, and CC Conditions

Field Bit Value Event Description

CC_MATCH_MODE 
Default Value = 3

1:0

0 Set line_out to '1

Configures output line on a com-
pare match (CC) event

1 Clear line_out to '0

2 Invert line_out

3 No change

OVERFLOW_MODE 
Default Value = 3

3:2

0 Set line_out to '1

Configures output line on a over-
flow (OV) event

1 Clear line_out to '0

2 Invert line_out

3 No change
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15.2.5 Power Modes

The TCPWM block works in Active and Sleep modes. The TCPWM block is powered from VCCD. The configuration registers
and other logic are powered in Deep-Sleep mode to keep the states of configuration registers. See Table 15-4.

15.3 Modes of Operation
The counter block can function in six operational modes, as shown in Table 15-5. The MODE [26:24] field of the counter con-
trol register (TCPWM_CNTx_CTRL) configures the counter in the specific operational mode.

The counter can be configured to count up, down, and up/down by setting the UP_DOWN_MODE[17:16] field in the
TCPWM_CNTx_CTRL register, as shown in Table 15-6.

UNDERFLOW_MODE 
Default Value = 3

5:4

0 Set line_out to '1

Configures output line on a under-
flow (UN) event

1 Clear line_out to '0

2 Invert line_out

3 No change

Table 15-4.  Power Modes in TCPWM Block

Power Mode Block Status

Active This block is fully operational in this mode with clock running and power switched on.

Sleep All counter clocks are on, but bus interface cannot be accessed.

Deep-Sleep
In this mode, the power to this block is still on but no bus clock is provided; hence, the logic is not functional. 
All the configuration registers will keep their state.

Table 15-3.  Configuring Output Line for OV, UN, and CC Conditions

Field Bit Value Event Description

Table 15-5.  Operational Mode Configuration

Mode
MODE Field 

[26:24]
Description

Timer 000
Implements a timer or counter. The counter increments or decrements by '1' at every coun-
ter clock cycle in which a count event is detected.

Capture 010
Implements a timer or counter with capture input. The counter increments or decrements by 
'1' at every counter clock cycle in which a count event is detected. When a capture event 
occurs, the counter value copies into the capture register.

Quadrature Decoder 011
Implements a quadrature decoder, where the counter is decremented or incremented, 
based on two phase inputs according to the selected (X1, X2 or X4) encoding scheme.

PWM 100
Implements edge/center-aligned PWMs with an 8-bit clock prescaler and buffered compare/
period registers.

PWM-DT 101
Implements edge/center-aligned PWMs with configurable 8-bit dead time (on both outputs) 
and buffered compare/period registers.

PWM-PR 110 Implements a pseudo-random PWM using a 16-bit linear feedback shift register (LFSR).



122 CCG3 TRM, Document No. 002-04130 Rev. **

Timer, Counter, and PWM

15.3.1 Timer Mode

The timer mode is commonly used to measure time of occurrence of an event or to measure the time difference between two
events.

15.3.1.1 Block Diagram

Figure 15-4.  Timer Mode Block Diagram

15.3.1.2 How It Works

The timer can be configured to count in up, down, and up/
down counting modes. It can also be configured to run in
either continuous mode or one-shot mode.

The following explains the working of the timer:

■ The timer is an up, down, and up/down counter.

❐ The current count value is stored in the count regis-
ter (TCPWM_CNTx_COUNTER). Note  It is not rec-
ommended to write values to this register while the 
counter is running.

❐ The period value for the timer is stored in the period 
register.

■ The counter is re-initialized in different counting modes 
as follows:

❐ In the up counting mode, after the count reaches the 
period value, the count register is automatically 
reloaded with 0.

❐ In the down counting mode, after the count register 
reaches zero, the count register is reloaded with the 
value in the period register.

❐ In the up/down counting modes, the count register 
value is not updated upon reaching the terminal val-
ues. Instead the direction of counting changes when 
the count value reaches 0 or the period value.

■ The CC condition is generated when the count register 
value equals the compare register value. Upon this con-
dition, the compare register and buffer compare register 
switch their values if enabled by the 
AUTO_RELOAD_CC bit-field of the counter control 
(TCPWM_CNT_CTRL) register. This condition can be 
used to generate an interrupt request.

Figure 15-5 shows the timer operational mode of the counter
in four different counting modes. The period register con-
tains the maximum counter value. 

■ In the up counting mode, a period value of A results in 
A+1 counter cycles (0 to A).

■ In the down counting mode, a period value of A results in 
A+1 counter cycles (A to 0).

■ In the two up/down counting modes (both modes 0 and 1 
both), a period value of A results in 2*A counter cycles (0 
to A and back to 0).

Table 15-6.  Counting Mode Configuration

Counting Modes
UP_DOWN_M

ODE[17:16]
Description

UP Counting Mode 00
Increments the counter until the period value is reached. A Terminal Count (TC) condition is 
generated when counter reaches the period value.

DOWN Counting Mode 01
Decrements the counter from the period value until 0 is reached. A TC condition is gener-
ated when the counter reaches ‘0’.

UP/DOWN Counting Mode 0 10
Increments the counter until the period value is reached, and then decrements the counter 
until ‘0’ is reached. A TC condition is generated only when ‘0’ is reached.

UP/DOWN Counting Mode 1 11
Similar to up/down counting mode 0 but a TC condition is generated when the counter 
reaches ‘0’ and when the counter value reaches the period value.
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Figure 15-5.  Timing Diagram for Timer in Multiple Counting Modes 
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Figure 15-6.  

Note The OV and UN signals remain at logic high for one cycle of the HFCLCK, as explained in Signals upon Trigger Condi-
tions on page 120. The figures in this chapter assumes that HFCLK and counter clock are the same.

15.3.1.3 Configuring Counter for Timer Mode

The steps to configure the counter for Timer mode of opera-
tion and the affected register bits are as follows.

1. Disable the counter by writing '0' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select Timer mode by writing '000' to the MODE[26:24] 
field of the TCPWM_CNTx_CTRL register.

3. Set the required 16-bit period in the 
TCPWM_CNT_PERIOD register.

4. Set the 16-bit compare value in the TCPWM_CNT_CC 
register and the buffer compare value in the 
TCPWM_CNT_CC_BUFF register. Set 
AUTO_RELOAD_CC field of counter control register, if 
required to switch values at every CC condition.

5. Set clock pre-scaling by writing to the GENERIC[10:8] 
field of the counter control (TCPWM_CNT_CTRL) regis-
ter, as shown in Table 15-1.

6. Set the direction of counting by writing to the 
UP_DOWN_MODE[17:16] field of the 
TCPWM_CNT_CTRL register, as shown in Table 15-6.

7. The timer can be configured to run either in continuous 
mode or one-shot mode by writing 0 or 1, respectively to 
the ONE_SHOT[18] field of the TCPWM_CNT_CTRL 
register.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the 
trigger that causes the event (Reload, Start, Stop, Cap-
ture, and Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the 
edge of the trigger that causes the event (Reload, Start, 
Stop, Capture, and Count).

10. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 120.

11. Enable the counter by writing '1' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-

ter. A start trigger must be provided through firmware 
(TCPWM_CMD register) to start the counter if the hard-
ware start signal is not enabled.

15.3.2 Capture Mode

In the capture mode, the counter value can be captured at
any time either through a firmware write to command regis-
ter (TCPWM_CMD) or a capture trigger input. This mode is
used for period and pulse width measurement.

15.3.2.1 Block Diagram

Figure 15-7.  Capture Mode Block Diagram

15.3.2.2 How it Works

The counter can be set to count in up, down, and up/down
counting modes by configuring the
UP_DOWN_MODE[17:16] bit-field of the counter control
register (TCPWM_CNT_CTRL).

Operation in capture mode occurs as follows:

■ During a capture event, generated either by hardware or 
software, the current count register value is copied to the 
capture register (TCPWM_CNT_CC) and the capture 
register value is copied to the buffer capture register 
(TCPWM_CNT_CC_BUFF).
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■ A pulse on the CC output signal is generated when the 
counter value is copied to the capture register. This con-
dition can also be used to generate an interrupt request.

Figure 15-8 illustrates the capture behavior in the up counting mode. 

Figure 15-8.  Timing Diagram of Counter in Capture Mode, Up Counting Mode

In the figure, observe that:

■ The period register contains the maximum count value.

■ Internal overflow (OV) and TC conditions are generated 
when the counter reaches the period value.

■ A capture event is only possible at the edges or through 
software. Use trigger control register 1 to configure the 
edge detection.

■ Multiple capture events in a single clock cycle are han-
dled as:

❐ Even number of capture events - no event is 
observed

❐ Odd number of capture events - single event is 
observed

This happens when the capture signal frequency is greater
than the counter_clock frequency.

15.3.2.3 Configuring Counter for Capture 
Mode

The steps to configure the counter for Capture mode opera-
tion and the affected register bits are as follows.

1. Disable the counter by writing '0' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select Capture mode by writing '010' to the 
MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the 
TCPWM_CNT_PERIOD register.

4. Set clock pre-scaling by writing to the GENERIC[10:8] 
field of the TCPWM_CNT_CTRL register, as shown in 
Table 15-1.

5. Set the direction of counting by writing to the 
UP_DOWN_MODE[17:16] field of the 
TCPWM_CNT_CTRL register, as shown in Table 15-6.

6. Counter can be configured to run either in continuous 
mode or one-shot mode by writing 0 or 1, respectively to 
the ONE_SHOT[18] field of the TCPWM_CNT_CTRL 
register.

7. Set the TCPWM_CNT_TR_CTRL0 register to select the 
trigger that causes the event (Reload, Start, Stop, Cap-
ture, and Count).

8. Set the TCPWM_CNT_TR_CTRL1 register to select the 
edge that causes the event (Reload, Start, Stop, Cap-
ture, and Count).

9. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 120.

10. Enable the counter by writing '1' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter. A start trigger must be provided through firmware 
(TCPWM_CMD register) to start the counter if the hard-
ware start signal is not enabled.
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15.3.3 Quadrature Decoder Mode

Quadrature decoders are used to determine speed and position of a rotary device (such as servo motors, volume control
wheels, and PC mice). The quadrature encoder signals are used as phiA and phiB inputs to the decoder.

15.3.3.1 Block Diagram

Figure 15-9.  Quadrature Mode Block Diagram

15.3.3.2 How It Works

Quadrature decoding only runs on counter_clock. It can
operate in three sub-modes: X1, X2, and X4. These encod-
ing modes can be controlled by the
QUADRATURE_MODE[21:20] field of the counter control
register (TCPWM_CNT_CTRL). This mode uses double
buffered capture registers.

The Quadrature mode operation occurs as follows:

■ Quadrature phases phiA and phiB: Counting direction is 
determined by the phase relationship between phiA and 
phiB. These phases are connected to the count and the 
start trigger inputs, respectively as hardware input to the 
decoder. 

■ Quadrature index signal: This is connected to the reload 
signal as a hardware input. This event generates a TC 
condition, as shown in Figure 15-10.

On TC, the counter is set to 0x0000 (in the up counting 
mode) or to the period value (in the down counting 
mode).

Note The down counting mode is recommended to be 
used with a period value of 0x8000 (the mid-point value).

■ A pulse on CC output signal is generated when the count 
register value reaches 0x0000 or 0xFFFF. On a CC con-
dition, the count register is set to the period value 
(0x8000 in this case).

■ On TC or CC condition:

❐ Count register value is copied to the capture register

❐ Capture register value is copied to the buffer capture 
register

❐ This condition can be used to generate an interrupt 
request

■ The value in the capture register can be used to deter-
mine which condition caused the event and whether:

❐ A counter underflow occurred (value 0)

❐ A counter overflow occurred (value 0xFFFF)

❐ An index/TC event occurred (value is not equal to 
either 0 or 0xFFFF)

■ The DOWN bit field of counter status 
(TCPWM_CNTx_STATUS) register can be read to 
determine the current counting direction. Value '0' indi-
cates a previous increment operation and value '1' indi-
cates previous decrement operation. Figure 15-10 
illustrates quadrature behavior in the X1 encoding mode. 

❐ A positive edge on phiA increments the counter 
when phiB is '0' and decrements the counter when 
phiB is '1'.

❐ The count register is initialized with the period value 
on an index/reload event.

❐ Terminal count is generated when the counter is ini-
tialized by index event. This event can be used to 
generate an interrupt.

❐ When the count register reaches 0xFFFF (the maxi-
mum count register value), the count register value is 
copied to the capture register and the count register 
is initialized with period value (0x8000).
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Figure 15-10.  Timing Diagram for Quadrature Mode, X1 Encoding

The quadrature phases are detected on the counter_clock. Within a single counter period, the phases should not change
value more than once.

The X2 and X4 quadrature encoding modes count twice and four times as fast as the X1 encoding mode.

Figure 15-11 illustrates the quadrature mode behavior in the X2 and X4 encoding modes.
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Figure 15-11.  Timing Diagram for Quadrature Mode, X2 and X4 Encoding

15.3.3.3 Configuring Counter for Quadrature 
Mode

The steps to configure the counter for quadrature mode of
operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select Quadrature mode by writing '011' to the 
MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the 
TCPWM_CNT_PERIOD register.

4. Set the required encoding mode by writing to the 
QUADRATURE_MODE[21:20] field of the 
TCPWM_CNT_CTRL register.

5. Set the TCPWM_CNT_TR_CTRL0 register to select the 
trigger that causes the event (Index and Stop).

6. Set the TCPWM_CNT_TR_CTRL1 register to select the 
edge that causes the event (Index and Stop).

7. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 120.

8. Enable the counter by writing '1' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.
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15.3.4 Pulse Width Modulation Mode

The PWM mode is also called the Digital Comparator mode. The comparison output is a PWM signal whose period depends
on the period register value and duty cycle depends on the compare and period register values.

PWM period = (period value/counter clock frequency) in left- and right-aligned modes

PWM period = (2 × (period value/counter clock frequency)) in center-aligned mode

Duty cycle = (compare value/period value) in left- and right-aligned modes

Duty cycle = ((period value-compare value)/period value) in center-aligned mode

15.3.4.1 Block Diagram

Figure 15-12.  PWM Mode Block Diagram

15.3.4.2 How It Works

The PWM mode can output left, right, center, or asymmetri-
cally aligned PWM signals. The desired output alignment is
achieved by using the counter's up, down, and up/down
counting modes selected using UP_DOWN_MODE [17:16]
bits in the TCPWM_CNT_CTRL register, as shown in
Table 15-6.

This CC signal along with OV and UN signals control the
PWM output line. The signals can toggle the output line or
set it to a logic '0' or '1' by configuring the
TCPWM_CNT_TR_CTRL2 register. By configuring how the
signals impact the output line, the desired PWM output
alignment can be obtained.

The recommended way to modify the duty cycle is:

■ The buffer period register and buffer compare register 
are updated with new values.

■ On TC, the period and compare registers are automati-
cally updated with the buffer period and buffer compare 
registers when there is an active switch event. The 
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD 
fields of the counter control register are set to ‘1’. When 
a switch event is detected, it is remembered until the 
next TC event. Pass through signal (selected during 
event detection setting) cannot trigger a switch event.

■ Updates to the buffer period register and buffer compare 
register should be completed before the next TC with an 
active switch event; otherwise, switching does not reflect 
the register update, as shown in Figure 15-14.

In the center-aligned mode, the output line is set to '0' at
Terminal Count and toggled at the CC condition.

At the reload event, the count register is initialized and starts
counting in the appropriate mode. At every count, the count
register value is compared with compare register value to
generate the CC signal on match.

Figure 15-13 illustrates center-aligned PWM with buffered
period and compare registers (up/down counting mode 0).
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Figure 15-13.  Timing Diagram for Center Aligned PWM

Figure 15-14 illustrates center-aligned PWM with software generated switch events:

■ Software generates a switch event only after both the period buffer and compare buffer registers are updated.

■ Because the updates of the second PWM pulse come late (after the terminal count), the first PWM pulse is repeated.

■ Note that the switch event is automatically cleared by hardware at TC after the event takes effect.
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Figure 15-14.  Timing Diagram for Center Aligned PWM (software switch event)

15.3.4.3 Other Configurations

■ For asymmetric PWM, the up/down counting mode 1 
should be used. This causes a TC when the counter 
reaches either ‘0’ or the period value. To create an 
asymmetric PWM, the compare register is changed at 
every TC (when the counter reaches either ‘0’ or the 
period value), whereas the period register is only 
changed at every other TC (only when the counter 
reaches ‘0’).

■ For left-aligned PWM, use the up counting mode; config-
ure the OV condition to set output line to '1' and CC con-
dition to reset the output line to '0'. See Table 15-3.

■ For right-aligned PWM, use the down counting mode; 
configure UN condition to reset output line to '0' and CC 
condition to set the output line to '1'. See Table 15-3.

15.3.4.4 Kill Feature

Kill feature gives the ability to disable both output lines
immediately. This event can be programmed to stop the
counter by modifying the PWM_STOP_ON_KILL and
PWM_SYNC_KILL fields of the counter control register, as
shown in Table 15-7.

A kill event can be programmed to be asynchronous or syn-
chronous, as shown in Table 15-8. 

In the synchronous kill, PWM cannot be started before the
next TC. To restart the PWM immediately after kill input is
removed, kill event should be asynchronous (see
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Table 15-7.  Field Setting for Stop on Kill Feature

PWM_STOP_ON_KI
LL Field

Comments

0
The kill trigger temporarily blocks the PWM 
output line but the counter is still running.

1
The kill trigger temporarily blocks the PWM 
output line and the counter is also stopped.

Table 15-8.  Field Setting for Synchronous/Asynchronous 
Kill

PWM_SYNC_KILL 
Field 

Comments

0
An asynchronous kill event lasts as long as 
it is present. This event requires pass 
through mode.

1
A synchronous kill event disables the out-
put lines until the next TC event. This 
event requires rising edge mode.
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Table 15-8). The generated stop event disables both output
lines. In this case, the reload event can use the same trigger
input signal but should be used in falling edge detection
mode.

15.3.4.5 Configuring Counter for PWM Mode

The steps to configure the counter for the PWM mode of
operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select PWM mode by writing '100' to the MODE[26:24] 
field of the TCPWM_CNT_CTRL register.

3. Set clock pre-scaling by writing to the GENERIC[10:8] 
field of the TCPWM_CNT_CTRL register, as shown in 
Table 15-1.

4. Set the required 16-bit period in the 
TCPWM_CNT_PERIOD register and the buffer period 
value in the TCPWM_CNT_PERIOD_BUFF register to 
switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC 
register and the buffer compare value in the 
TCPWM_CNT_CC_BUFF register to switch values, if 
required.

6. Set the direction of counting by writing to the 
UP_DOWN_MODE[17:16] field of the 
TCPWM_CNT_CTRL register to configure left-aligned, 
right-aligned, or center-aligned PWM, as shown in 
Table 15-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL 
fields of the TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the 
trigger that causes the event (Reload, Start, Kill, Switch, 
and Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the 
edge that causes the event (Reload, Start, Kill, Switch, 
and Count).

10. line_out and line _out_compl can be controlled by the 
TCPWM_CNT_TR_CTRL2 register to set, reset, or 
invert upon CC, OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 120.

12. Enable the counter by writing '1' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter. A start trigger must be provided through firmware 
(TCPWM_CMD register) to start the counter if the hard-
ware start signal is not enabled.

15.3.5 Pulse Width Modulation with Dead 
Time Mode

Dead time is used to delay the transitions of both ‘line_out’
and ‘line_out_compl’ signals. It separates the transition
edges of these two signals by a specified time interval. Two
complementary output lines 'dt_line' and 'dt_line_compl' are
derived from these two lines. During the dead band period,
both compare output and complement compare output are
at logic ‘0’ for a fixed period. The dead band feature allows
the generation of two non-overlapping PWM pulses. A maxi-
mum dead time of 255 clocks can be generated using this
feature.

15.3.5.1 Block Diagram

Figure 15-15.  PWM-DT Mode Block Diagram
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15.3.5.2 How It Works

The PWM operation with Dead Time mode occurs as fol-
lows:

■ On the rising edge of the PWM line_out, depending upon 
UN, OV, and CC conditions, the dead time block sets the 
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the 
period configured in the register.

■ When the dead band period is complete, dt_line is set to 
'1'.

■ On the falling edge of the PWM line_out depending upon 
UN, OV, and CC conditions, the dead time block sets the 
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the 
period configured in the register.

■ When the dead band period has completed, 
dt_line_compl_is set to '1'.

■ A dead band period of zero has no effect on the dt_line 
and is the same as line_out.

■ When the duration of the dead time equals or exceeds 
the width of a pulse, the pulse is removed.

This mode follows PWM mode and supports the following
features available with that mode:

■ Various output alignment modes

■ Two complementary output lines, dt_line and 
dt_line_compl, derived from PWM "line_out" and "line 
_out_compl", respectively

❐ Stop/kill event with synchronous and asynchronous 
modes

❐ Conditional switch event for compare and buffer 
compare registers and period and buffer period reg-
isters

This mode does not support clock pre-scaling. 

Figure 15-16 illustrates how the complementary output lines
"dt_line" and "dt_line_compl" are generated from the PWM
output line, "line_out".

Figure 15-16.  Timing Diagram for PWM, with and without Dead Time

15.3.5.3 Configuring Counter for PWM with 
Dead Time Mode

The steps to configure the counter for PWM with Dead Time
mode of operation and the affected register bits are as fol-
lows:

1. Disable the counter by writing '0' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select PWM with Dead Time mode by writing '101' to the 
MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required dead time by writing to the 
GENERIC[15:8] field of the TCPWM_CNT_CTRL regis-
ter, as shown in Table 15-1.

4. Set the required 16-bit period in the 
TCPWM_CNT_PERIOD register and the buffer period 

value in the TCPWM_CNT_PERIOD_BUFF register to 
switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC 
register and the buffer compare value in the 
TCPWM_CNT_CC_BUFF register to switch values, if 
required.

6. Set the direction of counting by writing to the 
UP_DOWN_MODE[17:16] field of the 
TCPWM_CNT_CTRL register to configure left-aligned, 
right-aligned, or center-aligned PWM, as shown in 
Table 15-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL 
fields of the TCPWM_CNT_CTRL register as required, 
as shown in the Pulse Width Modulation Mode on 
page 129.
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8. Set the TCPWM_CNT_TR_CTRL0 register to select the 
trigger that causes the event (Reload, Start, Kill, Switch, 
and Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the 
edge that causes the event (Reload, Start, Kill, Switch, 
and Count).

10. dt_line and dt_line_compl can be controlled by the 
TCPWM_CNT_TR_CTRL2 register to set, reset, or 
invert upon CC, OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 120.

12. Enable the counter by writing '1' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter. A start trigger must be provided through firmware 
(TCPWM_CMD register) to start the counter if hardware 
start signal is not enabled.

15.3.6 Pulse Width Modulation Pseudo-
Random Mode

This mode uses the linear feedback shift register (LFSR).
LFSR is a shift register whose input bit is a linear function of
its previous state.

15.3.6.1 Block Diagram

Figure 15-17.  PWM-PR Mode Block Diagram

15.3.6.2 How It Works

The counter register is used to implement LFSR with the polynomial: x16+x14+x13+x11+1, as shown in Figure 15-18. It gener-
ates all the numbers in the range [1, 0xFFFF] in a pseudo-random sequence. Note that the counter register should be initial-
ized with a non-zero value.

Figure 15-18.  Pseudo-Random Sequence Generation using Counter Register
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The following steps describe the process:

■ The PWM output line ‘line_out’ is driven with '1' when the 
lower 15-bit value of the counter register is smaller than 
the value in the compare register (when counter[14:0] < 
compare[15:0]). A compare value of ‘0x8000’ or higher 
always results in a '1' on the PWM output line. A com-
pare value of ‘0’ always results in a '0' on the PWM out-
put line. 

■ A reload event behaves similar to a start event; however, 
it does not initialize the counter.

■ Terminal count is generated when the counter value 
equals the period value. LFSR generates a predictable 
pattern of counter values for a certain initial value. This 
predictability can be used to calculate the counter value 
after a certain amount of LFSR iterations ‘n’. This calcu-
lated counter value can be used as a period value and 
the TC is generated after ‘n’ iterations.

■ At TC, a switch/capture event conditionally switches the 
compare and period register pairs (based on the 
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD 
fields of the counter control register).

■ A kill event can be programmed to stop the counter as 
described in previous sections. 

■ One shot mode can be configured by setting the 
ONE_SHOT field of the counter control register. At ter-
minal count, the counter is stopped by hardware.

■ In this mode, underflow, overflow, and trigger condition 
events do not occur.

■ CC condition occurs when the counter is running and its 
value equals compare value. Figure 15-19 illustrates 
pseudo-random noise behavior.

■ A compare value of 0x4000 results in 50 percent duty 
cycle (only the lower 15 bits of the 16- bit counter are 
used to compare with the compare register value).

Figure 15-19.  Timing Diagram for Pseudo-Random PWM

A capture/switch input signal may switch the values
between the compare and compare buffer registers and the
period and period buffer registers. This functionality can be
used to modulate between two different compare values
using a trigger input signal to control the modulation. 

Note Capture/switch input signal can only be triggered by
an edge (rising, falling, or both). This input signal is remem-
bered until the next terminal count.

15.3.6.3 Configuring Counter for Pseudo-
Random PWM Mode

The steps to configure the counter for pseudo-random PWM
mode of operation and the affected register bits are as fol-
lows.

1. Disable the counter by writing '0' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select pseudo-random PWM mode by writing '110' to the 
MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required period (16 bit) in the 
TCPWM_CNT_PERIOD register and buffer period value 

in the TCPWM_CNT_PERIOD_BUFF register to switch 
values, if required.

4. Set the 16-bit compare value in the TCPWM_CNT_CC 
register and the buffer compare value in the 
TCPWM_CNT_CC_BUFF register to switch values.

5. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL 
fields of the TCPWM_CNT_CTRL register as required.

6. Set the TCPWM_CNT_TR_CTRL0 register to select the 
trigger that causes the event (Reload, Start, Kill, and 
Switch).

7. Set the TCPWM_CNT_TR_CTRL1 register to select the 
edge that causes the event (Reload, Start, Kill, and 
Switch).

8. line_out and line_out_compl can be controlled by the 
TCPWM_CNT_TR_CTRL2 register to set, reset, or 
invert upon CC, OV, and UN conditions.

9. If required, set the interrupt upon TC or CC condition, as 
shown in Interrupts on page 120.

10. Enable the counter by writing '1' to the 
COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.
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15.4 TCPWM Registers

Table 15-9.  List of TCPWM Registers

Register Comment Features

TCPWM_CTRL TCPWM control register Enables the counter block

TCPWM_CMD TCPWM command register Generates software events

TCPWM_INTR_CAUSE TCPWM counter interrupt cause register Determines the source of the combined interrupt signal

TCPWM_CNTx_CTRL Counter control register
Configures counter mode, encoding modes, one shot 
mode, switching, kill feature, dead time, clock pre-scal-
ing, and counting direction

TCPWM_CNTx_STATUS Counter status register
Reads the direction of counting, dead time duration, 
and clock pre-scaling; checks if counter is running

TCPWM_CNTx_COUNTER Count register Contains the 16-bit counter value

TCPWM_CNTx_CC Counter compare/capture register
Captures the counter value or compares the value with 
the counter value

TCPWM_CNTx_CC_BUFF Counter buffered compare/capture register
Buffer register for counter CC register; switches com-
pare value

TCPWM_CNTx_PERIOD Counter period register Contains upper value of the counter

TCPWM_CNTx_PERIOD_BUFF Counter buffered period register
Buffer register for counter period register; switches 
period value

TCPWM_CNTx_TR_CTRL0 Counter trigger control register 0 Selects trigger for specific counter events

TCPWM_CNTx_TR_CTRL1 Counter trigger control register 1
Determines edge detection for specific counter input 
signals

TCPWM_CNTx_TR_CTRL2 Counter trigger control register 2
Controls counter output lines upon CC, OV, and UN 
conditions

TCPWM_CNTx_INTR Interrupt request register
Sets the register bit when TC or CC condition is 
detected

TCPWM_CNTx_INTR_SET Interrupt set request register 
Sets the corresponding bits in the interrupt request reg-
ister

TCPWM_CNTx_INTR_MASK Interrupt mask register Mask for interrupt request register

TCPWM_CNTx_INTR_MASKED Interrupt masked request register Bitwise AND of interrupt request and mask registers
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16.   Cryptography Block

The Cryptography block in CCG3 provides up to five cryptographic functionalities including:

■ Advanced Encryption Standard (AES) functionality: The AES component can be used to encrypt/decrypt data blocks of 
128-bit length and it supports programmable key length (128/192/256-bit key).

■ Secure Hash Algorithm (SHA) functionality: This component can be used to produce a fixed length hash (also called 
"message digest") from a variable length input data (called "message").

■ Cyclic Redundancy Check (CRC) functionality: This component performs a cyclic redundancy check with a programmable 
polynomial of up to 32-bits.

■ Pseudo Random Number Generator (PR): This component generates pseudo random numbers in a fixed range. This 
generator is based on 3 Linear Feedback Shift Registers (LFSRs).

■ True Random Number Generator (TR): This component generates true random numbers using up 6 sets of to ring oscilla-
tors.

16.1 Features
■ AES functionality supports both forward block cipher and inverse block cipher

■ Programmable key length (128/192/256-bit key) for AES

■ SHA functionality supports 160-bit hash or 224-bit hash or 256-bit hash

■ Pseudo random (PR) number generator

■ True random number generator (TR)

■ Polynomial for Cyclic Redundancy Check (CRC) functionality is programmable up to 32-bits

■ 2-KB SRAM memory buffer to store operands and results of all operations

■ Trigger interface to support HW initiation of an operation
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16.2 Block Diagram
Figure 16-1.  Crypto Block Diagram

The Cryptography block functionality includes:

■ AES functionality (block cipher), per FIPS 197 standard

❐ Forward block cipher (plaintext to ciphertext) with 
128/192/256-bit key

❐ Inverse block cipher (ciphertext to plaintext) with 
128/192/256-bit key

❐ SHA functionality (hash), per FIPS 180-4 standard

❐ SHA1, 160-bit hash

❐ SHA2, 224-bit hash

❐ SHA2, 256-bit hash (not supported: 384-bit and 512-
bit hash)

■ Cyclic Redundancy Check (CRC) functionality

❐ Programmable polynomial of up to 32-bits

■ Pseudo Random (PR) number generator

■ True Random (TR) number generator

Note: Only one of the functions can be used at any given
time. 

This block is connected to the bus infrastructure as an AHB-
Lite slave: it can receive AHB-Lite transfers (from the CPU
or another bus master) but it cannot initiate AHB-Lite trans-
fers. 

16.2.1 Block Application Overview 

The AES component can be used to encrypt plain text data
or decrypt cipher data.

The SHA component can be used to generate the signature
(or message digest) for the data block to ensure integrity
and authentication of the data. 

The PR component will be used to obtain pseudo random
values, which can be used as initialization vector (IV) for
AES encryption and for other purposes. 

The CRC is an optional component provided and it can be
used to generate CRC of the given data, if the application
requires it.

This block has the following interfaces:

■ An AHB-Lite slave interface connects the block to the 
AHB-Lite infrastructure. This interface supports 8/16/32-
bit AHB-Lite transfers. MMIO register accesses are 32-
bit accesses only (8/16-bit accesses to MMIO registers 
results in an AHB-Lite bus error). Memory buffer access 
can be 8/16/32-bit accesses.

■ Protection mode "protection_mode[]" signals (from the 
CPU subsystem) are provided to restrict the debug 
access port (DAP) accesses to the memory buffer. 

■ A trigger interface allows a block operation to be started 
by an external trigger ("tr_in"). When the operation com-
pletes, the block generates a trigger ("tr_out").

■ A single interrupt signal "interrupt" is used to signal the 
completion of an operation.

■ A clock and reset signal interface connects to the Sys-
tem Resources subsystem (SRSS). The block operates 
of a gated version of "clk_sys" and uses both Active 
("rst_sys_act_n") and DeepSleep ("rst_sys_dpslp_n") 
reset signals.
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16.2.2 Sub Block Descriptions

16.2.2.1 Pseudo random number generator

The pseudo random number generator component generates pseudo random numbers in a fixed range [0,
PR_CTL.MAX[31:0]]. The generator is based on three Fibonacci based Linear Feedback Shift Registers (LFSRs). 

The following three polynomials are implemented:

■ 32-bit polynomial: x32 + x30 + x26 + x25 + 1

■ 31-bit polynomial: x31 + x28 + 1 

■ 29-bit polynomial: x29 + x27 + 1

The following figures illustrate the LFSR functionality.

Figure 16-2.  Fixed Fibonacci based LFSRs

Software initializes the LFSRs need to be initialized with non-zero seed values The PR_LFSR_CTL0, PR_LFSR_CTL1, and
PR_LFSR_CTL2 MMIO registers are provided for this purpose. At any time, the state of these MMIO registers can be read to
retrieve the state of the LFSRs. The 32-bit LFSR generates a repeating bit sequence of 232 - 1 bits, the 31-bit LFSR gener-
ates a repeating bit sequence of 231 - 1, and the 29-bit LFSR generates a repeating bit sequence of 229 - 1.

The final pseudo random bit is the XOR of the three bits that are generated by the individual LFSRs. 

Figure 16-3.  XOR Reduction Logic

As the numbers 232-1, 231-1, and 229-1 are relatively
prime, the XOR output is a repeating bit sequence of
roughly 232+31+29.

A pseudo random number of n bits "pr[n-1:0]" uses 'n'
pseudo random bits from the pseudo random number gen-
erator. The pseudo random number generator component
uses a total of 33 pseudo random bits to generate a result in
the range [0, PR_CTL.MAX[31:0]]. 

To generate a pseudo random number result, the following
calculation is performed.

MAX_PLUS1[32:0] = PR_CTL.MAX[31:0] + 1;

product[63:0] = MAX_PLUS1[32:0] * pr[32:1] +
PR_CTL.MAX[31:0] * pr[0];

result = product[63:32];

The result is provided through the MMIO register
PR_RESULT.

pseudo random bitLFSR31 output
LFSR29 output

LFSR32 output
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16.2.2.2 True Random Number Generator

The true random number generator component (TRNG) generates true random numbers. The bit size of these generated
numbers is programmable in the range [0, 32].

The TRNG relies on up to six ring oscillators to provide physical noise sources. A ring oscillator consists of a series of invert-
ers connected in a feedback loop to form a ring. 

Post-processing produces bit samples that are considered true random bit samples. The true random bit samples are shifted
into a register, to provide random values of up to 32 bits. The following figure gives an overview of the TRNG component.

Figure 16-4.  TRNG Overview

The following are the ring oscillators on which the TRNG relies:

■ RO11: A fixed ring oscillator consisting of 11 inverters

■ RO15: A fixed ring oscillator consisting of 15 inverters

■ GARO15: A fixed Galois based ring oscillator of 15 inverters

■ GARO31: A flexible Galois based ring oscillator of up to 31 inverters. A programmable polynomial of up to order 31 pro-
vides the flexibility in the oscillator feedback

■ FIRO15: A fixed Galois based ring oscillator of 15 inverters

■ FIRO31: A flexible Galois based ring oscillator of up to 31 inverters. A programmable polynomial of up to order 31 pro-
vides the flexibility in the oscillator feedback

Each ring oscillator can be started or stopped. When stopped, the ring is "broken" to prevent switching. The following figures
illustrate the schematics of the fixed ring oscillators.

Figure 16-5.   Fixed Ring Oscillators: RO11, RO15, GARO15, and FIRO15
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The START signals originate from a MMIO register field.

The flexible Galois and Fibonacci based ring oscillators rely on programmable polynomials to specify the oscillator feedback.
This allows for rings of 1, 3, 5, …, 31 inverters (an odd number is required to generate an oscillating signal). 

The following figure gives an overview of the Galois based ring oscillator.

Figure 16-6.  Flexible Galois Ring Oscillator GARO31

When the ring oscillator is stopped, the polynomial is forced to "0" and the ring is broken as illustrated by the following figure.

Figure 16-7.  Flexible GARO31 when not Running

The programmable polynomial specifies the oscillator feedback. The following figures illustrate two examples.

GARO15: fixed polynomial: x15 + x14 + x7 + x6 + x5 + x4 + x2 + 1
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Figure 16-8.  Flexible GARO31 Examples

The following figure gives an overview of the Fibonacci based ring oscillator.

Figure 16-9.  Flexible Fibonacci Ring Oscillator FIRO31

When the ring oscillator is stopped, the polynomial is forced to "0" and the ring is broken as illustrated by the following Figure.

Figure 16-10.  Flexible FIRO31 when not Running

The programmable polynomial specifies the oscillator feedback. The following figures illustrate two examples.

Figure 16-11.   Flexible FIRO31 Examples

7-bit polynomial: x7 + x6 + 1 (POLYNOMIAL = 0x0000:0041 << 24)

29 28 2730 26 25 24 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 423 2 1
‘0’

Constant ‘ 0’

output

0

31 bit polynomial: x31 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (POLYNOMIAL = 0x04c1:1db7)

30 29 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 026

output

output

P
O

LY
N

O
M

IA
L[30]

P
O

LY
N

O
M

IA
L[29]

P
O

LY
N

O
M

IA
L[28]

P
O

LY
N

O
M

IA
L[27]

P
O

LY
N

O
M

IA
L[26]

P
O

LY
N

O
M

IA
L[25]

P
O

LY
N

O
M

IA
L[24]

P
O

LY
N

O
M

IA
L[23]

24252627282930 2223 21

P
O

LY
N

O
M

IA
L[22]

P
O

LY
N

O
M

IA
L[21]

10

P
O

LY
N

O
M

IA
L[10]

P
O

LY
N

O
M

IA
L[9]

P
O

LY
N

O
M

IA
L[8]

P
O

LY
N

O
M

IA
L[7]

P
O

LY
N

O
M

IA
L[6]

P
O

LY
N

O
M

IA
L[5]

P
O

LY
N

O
M

IA
L[4]

P
O

LY
N

O
M

IA
L[3]

P
O

LY
N

O
M

IA
L[2]

3456789 12 0

P
O

LY
N

O
M

IA
L[1]

P
O

LY
N

O
M

IA
L[0]

output
‘0’

24252627282930 2223 21 10 3456789 12 0

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

output
‘0’

Constant ‘ 1’

20

24252627282930 2223 21 10 3456789 12 020

7-bit polynomial: x7 + x6 + 1 (POLYNOMIAL = 0x0000:0041 << 24)

30 29 28 27 26 25 24 22 21 20 19 18 1723 16 15 14 13 10 9 8 7 6 512 11 4 3 2 1 0

output

31 bit polynomial: x31 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (POLYNOMIAL = 0x04c1:1db7)

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output



CCG3 TRM, Document No. 002-04130 Rev. ** 143

Cryptography Block

The TRNG has a build-in health monitor that performs tests
on the digitized noise source to detect deviations from the
intended behavior. E.g., the health monitor detects "stuck
at" faults in the digitized analog samples. The health monitor
tests one out of three selected digitized bit streams:

■ DAS bitstream. This is XOR of the digitized analog sam-
ples.

■ RED bitstream. This is the bitstream of reduction bits. 
Note that each reduction bit may be calculated over mul-
tiple DAS bits.

■ TR bitstream. This is the bitstream of true random bits 
(after the "von Neumann reduction" step).

The health monitor performs two different tests:

■ The repetition count test. This test checks for the repeti-
tion of the same bit value ('0' or '1') in a bitstream. A 
detection indicates that a specific active bit value (speci-
fied by a status field BIT) has repeated for a pre-pro-
grammed number of bits (specified by a control field 
CUTOFF_COUNT[7:0]). The test uses a counter to 
maintain the number of repetitions of the active bit value 
(specified by a status field REP_COUNT[7:0]).

If the test is started (specified by START_RC field) and a
change in the bitstream value is observed, the active bit
value BIT is set to the new bit value and the repetition coun-
ter REP_COUNT[] is set to "1". If the bitstream value is
unchanged, the repetition counter REP_COUNT[] is incre-
mented by "1". 

A detection stops the test (the START_RC field is set to '0'),
sets the associated interrupt status field to '1' and ensures
that HW does NOT modify the status fields. When the test is
stopped, REP_COUNT[] equals CUTOFF_COUNT[].

A detection stops the TRNG functionality (all TR_CMD
START fields are set to '0') if
TR_CTL.STOP_ON_RC_DETECT is set to '1'.

■ The adaptive proportion test. This test checks for a dis-
proportionate occurrence of a specific bit value ('0' or '1') 
in a bit stream. A detection indicates that a specific 
active bit value (specified by a status field BIT) has 
occurred a pre-programmed number of times (specified 
by a control field CUTOFF_COUNT[15:0]) in a bit 
sequence of a specific bit window size (specified by a 
control field WINDOW_SIZE[15:0]). The test uses a 
counter to maintain an index in the current window 
(specified by WINDOW_INDEX[15:0]) and a counter to 
maintain the number of occurrences of the active bit 
value (specified by a status field OCC_COUNT[15:0]).

If the test is started (specified by START_AP field), the bit-
stream is partitioned in bit sequences of a specific window
size. At the first bit of a bit sequence, the active bit value BIT
is set to the first bit value, the counter WINDOW_INDEX is
set to "0" and the counter OCC_COUNT is set to "1". For all
other bits of a bit sequence, the counter WINDOW_INDEX
is incremented by "1". If the new bit value equals the active
bit value BIT, the counter OCC_COUNT[15:0] is incre-
mented by "1". Note that the active bit value BIT is only set
at the first bit of a bit sequence.

A detection stops the test (the START_AP field is set to '0'),
sets the associated interrupt status field to '1' and ensures
that HW does NOT modify the status fields. When the test is
stopped, OCC_COUNT[] equals CUTOFF_COUNT[] and
the WINDOW_INDEX identifies the bit sequence index on
which the detection occurred.

A detection stops the TRNG functionality (all TR_CMD
START fields are set to '0') if
TR_CTL.STOP_ON_AP_DETECT is set to '1'.

The following figure illustrates the health monitor functional-
ity.

Figure 16-12.  TRNG Health Monitor Overview

16.2.2.3 AES

The AES component performs a block cipher or inverse
block cipher per the AES standard (FIPS 197).

■ The block cipher translates a 128 bit block of plaintext 
data into a 128 bit block of ciphertext data.

■ The inverse block cipher translates a 128 bit block of 
ciphertext data into a 128 bit block of plaintext data

AES is a symmetric block cipher: the cipher and inverse
cipher keys are the same. The component supports 128 bit,
192 bit and 256 bit keys. The AES algorithm generates so
called round keys "on the fly" from the (start) round key as
provided by SW. Round key generation is reversed for the
cipher and inverse cipher. 

The block cipher uses the symmetric key as the (start) round
key for the first cipher round. The round key for second
cipher round is derived from the symmetric key. The round
key for the third cipher round is derived from the round key
of the second cipher round, and so forth.

The inverse block cipher uses the round key of the final
cipher round as the (start) round key for the first inverse
cipher round. The round key for the second inverse cipher
round is derived from the round key of the first inverse
cipher round, and so forth.

The round key of the final inverse cipher round is the same
as the symmetric key.
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The generated round keys are only dependent on the start key of the first round (in case of the block cipher this is the sym-
metric key). It is possible to derive the start round key for the inverse block cipher from the symmetric key, by performing a
(forward) block cipher with arbitrary plaintext data.

The number of cipher (or inverse cipher) rounds depends on the key size. The following table gives the number of rounds.

All AES operand data is provided by the memory buffer. For example, an AES block cipher operation has two source oper-
ands:

■ SRC_CTL0 specifies the offset of the start key (symmetric key).

■ SRC_CTL1 specifies the offset of the plaintext.

An AES block cipher operation has two destination operands:

■ DST_CTL0 specifies the offset of the last round key.

■ DST_CTL1 specifies the offset of the ciphertext.

Note: It is a requirement that both source and destination key and both data buffers are fully (as in all bytes1) in the same
memory type. For example if Start Key (SRC_CTRL0) is privileged then the Round Key (DST_CTL0) must be in privileged too
(to avoid revealing the privileged key). The same must hold for the plaintext (SRC_CTL1) and ciphertext (DST_CTL1). If this
is not the case then the algorithm is aborted and the ACCESS_ERROR interrupt is generated.

Note: To reduce space needed in the buffer it is allowed to overwrite the 'start key' with the 'last round key' and similarly it is
also allowed to overwrite the input data with the output data. 

The following figure illustrates the AES-128 cipher functionality. It illustrates how a forward block cipher translates a plaintext
"pt_a[127:0]" into ciphertext "ct_a[127:0]" using a 128-bit start key "sk[127:0]". Besides the plaintext, the component produces
the round key of the last cipher round "rk9[127:0]". If the round key of the last cipher round "rk9[127:0]" is used as the start key
for an inverse block cipher on ciphertext "ct_a[127:0]", the original plaintext "pt_a[127:0]" is produced. Furthermore, the round
key of the last inverse cipher round is the same as the forward block cipher key "sk[127:0]".

Table 16-1.  AES Key vs Rounds

AES key size Cipher (or inverse cipher) rounds

128-bit 10 rounds

192-bit 12 rounds

256-bit 14 rounds

1.  Take into account buffer wraparound.
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Figure 16-13.  AES Operation Flow

16.2.2.4 SHA

The SHA component performs a Secure Hash Algorithm
(SHA) per the SHA standard (FIPS 180-4). The SHA algo-
rithm calculates a fixed length hash value from a variable
length message. The hash value is used to produce a mes-
sage digest or signature.

It is computationally impossible to change the message
without changing the signature.

The method is stateless: a given message always produces
the same hash value. To prevent "replay attacks", a counter
may be included in the message.

The SHA component supports a subset of the algorithms in
the SHA standard: SHA1, SHA2-224 and SHA2-256. 

The memory buffer provides a message block on which the
hash function is performed (SRC_CTL0) and the initial hash

value (SRC_CTL1). The message block must be laid out in
little endian format.

The memory buffer provides working space for message
schedule round constants (DST_CTL0). The HW derives
these constants from the message. The round constants
working space size depends on the algorithm. 

The memory buffer is used for the produced hash value
(DST_CTL1). 

The message must be preprocessed: a '1' bit must be
appended to the message followed by '0's and a 64-bit bit
size field. The preprocessed message consists of multiple
512-bit blocks. The SHA component processes a single
512-bit block at a time. The first SHA operation on the first
message block uses the initial SHA hash value (as defined
by the standard), subsequent SHA operations on succes-
sive blocks use the produced hash value of the previous
SHA operation.
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Table 16-2.  SHA Standard Hash Sizes

Algorithm Block size
Word 
size

Hash 
value size

Message digest 
size

SHA1 512 bits 32 bits 160 bits 160 bits

SHA2-224 512 bits 32 bits 256 bits 224 bits

SHA2-256 512 bits 32 bits 256 bits 256 bits

Table 16-3.  SHA SRAM Working Space Sizes

Algorithm Working Space For Round Constants

SHA1 320 Bytes

SHA2-224 256 Bytes

SHA2-256 256 Bytes
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The SHA operation on the last message block produces the
final hash value. The message digest is a subset of the final
hash value (SHA2-224) or the complete final hash value
(SHA1 and SHA2-256).

The following figure illustrates the SHA2-224 operation.

Figure 16-14.  SHA Operation Flow

Note that it is a requirement that the memory locations used
by the SHA operation are all of the same memory type, i.e.
either all user or all privileged. If this is not the case then the
algorithm is aborted and the ACCESS_ERROR interrupt is
generated. This restriction is required to prevent user code
from using the SHA operation to reveal information on data
in privileged locations. 

Using the SHA operation on privileged data will require a
new SystemCall API.

16.2.2.5 CRC

The CRC component performs a cyclic redundancy check
with a programmable polynomial of up to 32 bits.

The memory buffer provides the data on which the CRC is
performed (SRC_CTL0 specifies the offset of the data in the
buffer). The data must be laid out in little endian format
(least significant Byte of a multi-Byte word should be located
at the lowest memory address of the word). The MMIO reg-

ister field CRC_DATA_CTL.DATA_SIZE[10:0] specifies the
Byte size of the data. The MMIO register field
CRC_DATA_CTL.DATA_XOR[7:0] specifies a byte pattern
with which each data Byte is XOR'd. This allows for inver-
sion of the data Byte value. The MMIO register field
CRC_DATA_CTL.DATA_REVERSE allows for bit reversal
of the data Byte (this provides support for serial interfaces
that transfer Bytes in most-significant-bit first and least-sig-
nificant bit first configurations).

The MMIO register field CRC_POL_CTL.POLYNO-
MIAL[31:0] specifies the polynomial. The polynomial specifi-
cation omits the high order bit and should be left aligned. For
example, popular 32-bit and 16-bit CRC polynomials are
specified as follows:

CRC32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8
+ x7 + x5 + x4 + x2 + x + 1

CRC_POL_CTL.POLYNOMIAL[31:0] = 0x04c11db7

CRC16-CCITT: x16 + x12 + x5 + 1

CRC_POL_CTL.POLYNOMIAL[31:0] = (0x1021 << 16)

CRC16: x16 + x15 + x2 + 1

CRC_POL_CTL.POLYNOMIAL[31:0] = (0x8005 << 16)

The MMIO register field CRC_LFSR_CTL.LFSR[31:0] holds
the state of the CRC calculation. Before the CRC operation,
this field should be initialized with the CRC seed value.

The MMIO register field CRC_REM.REM[31:0] holds the
result of the CRC calculation, and is derived from the end
state of the CRC calculation (CRC_LFSR_CTL.LFSR[31:0]).
The MMIO register field CRC_REM_CTL.REM_XOR[31:0]
specifies a 32-bit pattern with which the end state is XOR'd.
The MMIO register field CRC_REM_CTL.REM_REVERSE
allows for bit reversal of the XOR'd state.

The following figure illustrates the CRC functionality.
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Figure 16-15.  CRC Operation Flow

Note that the data must be in the user part of the buffer, if the data is in privileged locations then the algorithm is aborted and
the ACCESS_ERROR interrupt is generated. The restriction is required to prevent user code from using the CRC operation to
read privileged memory locations.

The Linear Feedback Shift Register functionality operates on the LFSR state. It uses the programmed polynomial and con-
sumes a data bit for each iteration (8 iterations are performed per cycle to provide a throughput of one data Byte per cycle).
The following Figure illustrates the functionality for the CRC32 polynomial (x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 +
x8 + x7 + x5 + x4 + x2 + x + 1).

Figure 16-16.  CRC32 Polynomial
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Different CRC algorithms require different seed values and have different requirements w.r.t. XOR functionality and bit rever-
sal. The following Table provides the proper settings for the CRC32, CRC16-CCITT and CRC16 algorithms. 

The Table also provides the remainder after the algorithm
has been performed on a five byte array {0x12, 0x34, 0x56,
0x78, 0x9a}.

16.2.2.6 Trigger Interface

The crypto block operation is under SW control (MMIO CMD
register) or under HW control (trigger interface). In both
cases, the MMIO CTL.OPCODE register field specifies
which operation needs to be performed.

In case of HW controlled operation, the rising edge of the
input trigger "tr_in" starts an operation. When the operation
completes, a two cycle high/'1' pulse (on "clk_sys") is gener-
ated on the output trigger "tr_out" to indicate operation com-
pletion.

Note that "tr_out" is generated for both SW initiated opera-
tion and HW initiated operation.

16.2.2.7 Memory Buffer

The block uses regular registers to capture its MMIO control
and status information and uses SRAMs to capture its oper-
and data. The SRAMs maintain their information in Deep-
Sleep power mode. In DeepSleep power mode, the SRAM
array is powered and the SRAM periphery is not powered.
During DeepSleep, the functional SRAM inputs and outputs
are isolated (the unpowered periphery is isolated from pow-
ered logic).

The offsets of operand data in the memory buffer are under
SW control and as specified by the SRC_CTL0, SRC_CTL1,
DST_CTL0 and DST_CTL1 MMIO registers. Offsets are 32-
bit offsets in the memory buffer. Operand data "wraps
around" in the memory buffer. Operand data should not
overlap in the memory buffer as destination operands may
overwrite source operands.

SRC_CTL0 and SRC_CTL1 are used for source operands
and DST_CTL0 and DST_CTL1 are used for destination
operands. Operand data is dependent on the specific opera-
tion. For example, an AES block cipher operation has two
source operands:

■ SRC_CTL0 specifies the offset of the start key (symmet-
ric key).

■ SRC_CTL1 specifies the offset of the plaintext.

An AES block cipher operation has two destination oper-
ands:

■ DST_CTL0 specifies the offset of the last round key.

■ DST_CTL1 specifies the offset of the ciphertext.

Only a single operation can be performed at a time, e.g. it is
not possible to perform an AES block cipher and SHA hash
function simultaneously. However, it is possible to write the
source operand data of the next operation in the memory
buffer, when the current operation is active. Note that MMIO
access to the SRAM memory has higher priority over the
operation access to the SRAM memory.

16.2.2.8 Protection 

The CCG3 chip platform uses a chip protection mode, which
restricts DAP access to MMIO registers and memory
regions. The block's memory buffer is a memory region and
is subject to these restrictions. 

Next to that, the chip's platform uses a user/privileged exe-
cution mode. When the platform is in user execution mode
AHB does NOT have access to privileged MMIO and mem-
ory regions. When the platform is in Privileged execution
mode both user and privileged MMIO and memory are freely
accessible from AHB. The privilege/user boundary of the
memory buffer is set with the PRIV_BUF register, which
itself is privileged. 

Table 16-4.  Standard CRC Settings and Results

MMIO Register Field CRC32 CRC16-CCITT CRC16

CRC_POL_CTL.POLYNOMIAL 0x04c11db7 0x10210000 0x80050000

CRC_DATA_CTL.DATA_REVERSE 1 0 1

CRC_DATA_CTL.DATA_XOR 0x00 0x00 0x00

CRC_LFSR_CTL.LFSR (seed) 0xffffffff 0xffff0000 0xffff0000

CRC_REM_CTL.REM_REVERSE 1 0 1

CRC_REM_CTL.REM_XOR 0xffffffff 0x00000000 0x00000000

CRC_REM.REM 0x3c4687af 0xf8a00000 0x000048d0



CCG3 TRM, Document No. 002-04130 Rev. ** 149

Cryptography Block

The following table summarizes these restrictions.

Note: Blocking of DAP access to MMIO registers in PRO-
TECTED, BOOT and KILL modes is not implemented. It
implements MMIO register protection through
m0s8ahbb_ahbslv_if3 module and this module depends on
the fact that the MMIO accesses from DAP are blocked at
source (in m0s8cpussv3) in PROTECTED, BOOT and KILL
modes.

For the AES block cipher, the memory buffer is used to store
cipher and inverse cipher keys. As mentioned, the DAP has
no access to the memory buffer in BOOT, PROTECTED
and KILL protection modes. As a result, the DAP cannot
access keys in the memory buffer. To prevent accesses
from "untrusted" user mode CPU code, the chip platform's
user/privileged execution mode is used. This is achieved as
follows:

■ Typically encryption Keys can either be on chip secrets 
stored in privileged flash memory. Or Keys can be 
ephemeral and stored in user SRAM.

■ The privileged flash memory region is ONLY accessible 
from privileged code. Cypress provides FW functions 
(SystemCalls) to write key information in privileged flash 
memory and to copy key information from privileged 
flash memory to the privileged part of the memory buffer.

■ The Cypress customer uses the Cypress FW function to 
write key information in privileged flash memory during 
his manufacturing flow.

■ The customer application uses the Cypress FW function 
to copy key information from privileged flash memory to 
the privileged region in the memory buffer. As a result, 
only the privileged Cypress FW function, privileged flash 
memory and the block HW have knowledge of the 
Secret Key.

■ Ephemeral AES Keys, typically resulting from authenti-
cation communication, are stored in SRAM user loca-
tions. The customer application (in user mode) can 
handle those keys directly.

■ Each operation has restrictions on user/privilege loca-
tions of keys and data. These restrictions are required to 
prevent exposing privileged data to user code. If the 
restriction is violated by the application then the opera-
tion is aborted and the ACCESS_ERROR interrupt is 
set.

■ The privileged/user boundary in the PRIV_BUF MMIO 
register (which itself is privileged) is typically set during 
boot with a value from the supervisory rows. 

■ A new SystemCall allows the boundary to be moved, but 
as part of this SystemCall the privileged part of the mem-
ory buffer will first be cleared. 

Table 16-5.  Protection

Protection 
Mode

CPU (and DW/DMA) DAP
Memory Buffer 

Accesses
Mmio Register 

Accesses
Memory Buffer Accesses Mmio Register Accesses

VIRGIN Free access Free access Free access Free access

OPEN Privileges enforced Privileges enforced User mode only User mode only

PRO-
TECTED

Privileges enforced Privileges enforced Inoperable Inoperable

KILL Privileges enforced Privileges enforced Inoperable Inoperable

BOOT Free access CPU: Free access

DMA: User 
mode only

Inoperable Inoperable
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16.3 Block Operation

16.3.1 Reset and Initialization

This block receives two active low asynchronous reset inputs "rst_sys_act_n" and "rst_sys_dpslp_n".

The following diagram shows the reset connection strategy for this block.

Figure 16-17.  Reset Strategy

The "rst_sys_dpslp_n" is used to reset MMIO registers which can retain their value during DeepSleep power mode. 

The AHB-Lite slave interface component is connected to "rst_sys_act_n" reset.

Rest of the Active power domain logic (AES, SHA, PR, CRC and Non-retention MMIO registers) is connected to
"rst_crypto_act_n" reset signal as shown in the above figure. Hence this logic will be in reset state whenever the block is dis-
abled.

16.3.2 Functional Modes and Usage Requirements

16.3.2.1 Pseudo Random Number Generator

Pseudo Random number generation is under SW control. It involves the following steps:

1. Enable the block.

2. Initialize the LFSRs with non-zero seed values.

3. Configure the range [0, PR_CTL.MAX[31:0]].

4. Start a pseudo random number generation operation.

5. Retrieve the results when the operation has completed. Waiting for the operation to be completed can be done by either 
polling or through an ISR.

The following code sequence illustrates how a pseudo random number in the range [0, 9] is generated.

*CRYPTO_CTL          = (1 << 31) | "CRC";// enable block
*CRYPTO_PR_LFSR_CTL0 = 0x12345678;// LFSR seed values
*CRYPTO_PR_LFSR_CTL1 = 0x7264f6a1;
*CRYPTO_PR_LFSR_CTL2 = 0x03456236;
*CRYPTO_PR_CTL       = 9;// results in the range [0, 9]
*CRYPTO_CMD          = (1 << 0);// start operation
while (*CRYPTO_CMD & (1 << 0)) ;// wait for operation to complete
result = *PR_RESULT;

rst_sys_act_n

CTL.ENABLED

rst_sys_dpslp_n

m0s8tk_rst_and rst_crypto_act_n

AHB-Lite 
IF

Retained 
MMIO 

registers

AES SHA PR CRC Non-retained 
MMIO 

registers

TR
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16.3.2.2 AES

The AES encryption operation is under SW control. It involves the following steps:

6. Enable the block.

7. Initialize the memory buffer with the start key.

8. Initialize the memory buffer with plaintext/ciphertext data.

9. Specify the memory buffer offsets of the source and destination operands.

10. Specify the key size.

11. Start a forward/inverse cipher operation.

12. Retrieve the results from the memory buffer when the operation has completed. 

The following code sequence illustrates how a 128-bit forward block cipher operation is performed.

uint8_t Key[] = {               // encryption key
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 
0x0f};
uint8_t PlainText[] = {         // plain text
 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 
0xff};
uint8_t CipherText[16];  // cipher text
uint8_t Check[] = {             // expected cipher text
 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 
0x5a};

*CRYPTO_CTL          = (1 << 31) | "AES cipher"; // enable block
for (i = 0 ; i < 16; i++) *(CRYPTO_MEM_BUFF        + i) = Key[i];
for (i = 0 ; i < 16; i++) *(CRYPTO_MEM_BUFF + 0x10 + i) = PlainText[i];
*CRYPTO_SRC_CTL0     = 0x00;// key offset
*CRYPTO_SRC_CTL1     = 0x10;// plain text offset
*CRYPTO_DST_CTL0     = 0x20;// round key 9 offset 
*CRYPTO_DST_CTL1     = 0x30;// cipher text offset
*CRYPTO_AES_CTL      = 0;// 128-bit key
*CRYPTO_CMD          = (1 << 0);// start block cipher operation
while (*CRYPTO_CMD & (1 << 0)) ;// wait for operation to complete
for (i = 0 ; i < 16; i++) CipherText[i] = *(CRYPTO_MEM_BUFF + 0x30 + i);

Note on AES operation modes.  NIST (National Institute of Standards and Technology) publication 800-30A specifies block
cipher modes of operation. It recommends five modes of operation for use with an underlying symmetric key block cipher
algorithm. They are:

■ ECB: Electronic Code Book

■ CBC:Cipher Block Chaining

■ CFB:Cipher FeedBack

■ OFB: Output FeedBack

■ CTR:Counter

The AES component of this block provides ECB mode of operation. The other modes of operation involve pre and/or post
XOR operations of an initialization vector and plaintext/ciphertext. These XOR operations can be implemented in SW to
implement other operation modes of AES.

16.3.2.3 SHA

The SHA operation is under SW control. It involves the following steps:

1. Enable the block.

2. Initialize the memory buffer with initial hash value.

3. Initialize the memory buffer with the message block.

4. Specify the memory buffer offsets of the source and destination operands.
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5. Specify the hash operation.

6. Start a hash operation.

7. Retrieve the results from the memory buffer when the operation has completed. 

The following code sequence illustrates how a SHA2-224 operation is performed on a three Byte message "abc".

uint8_t  Message[]   = "abc";
uint8_t InitHash[32] = {// initial hash value per the standard
 0xc1, 0x05, 0x9e, 0xd8, 0x36, 0x7c, 0xd5, 0x07, 0x30, 0x70, 0xdd, 0x17, 0xf7, 0x0e, 0x59, 
0x39,
 0xff, 0xc0, 0x0b, 0x31, 0x68, 0x58, 0x15, 0x11, 0x64, 0xf9, 0x8f, 0xa7, 0xbe, 0xfa, 0x4f, 
0xa4};
uint8_t ProducedHash[32] = {// expected final hash
 0x23, 0x09, 0x7d, 0x22, 0x34, 0x05, 0xd8, 0x22, 0x86, 0x42, 0xa4, 0x77, 0xbd, 0xa2, 0x55, 
0xb3,
 0x2a, 0xad, 0xbc, 0xe4, 0xbd, 0xa0, 0xb3, 0xf7, 0xe3, 0x6c, 0x9d, 0xa7, 0xd2, 0xda, 0x08, 
0x2d};

*CRYPTO_CTL          = (1 << 31) | "SHA"; // enable block

size = sizeof (Message) - 1;    // forget about trailing 0x00.

for (i = 0 ; i < size; i++) *(CRYPTO_MEM_BUFF + i) = Message[i];
*(CRYPTO_MEM_BUFF + i) = 0x80; i++;// append '1'
for (i < 63; i++) *(CRYPTO_MEM_BUFF + i) = 0x00;
*(CRYPTO_MEM_BUFF + 63) = 0x18;// bit size of message

for (i = 0 ; i < 32; i++) *(CRYPTO_MEM_BUFF + 0x80 + i) = InitHash[i];

*CRYPTO_SRC_CTL0     = 0x00;// message block offset
*CRYPTO_SRC_CTL1     = 0x80;// initial hash offset
*CRYPTO_DST_CTL0     = 0x100;// round keys (64 words) offset 
*CRYPTO_DST_CTL1     = 0x80;// produced hash
*CRYPTO_SHA_CTL      = 2;// SHA2-224
*CRYPTO_CMD          = (1 << 0);// start operation
while (*CRYPTO_CMD & (1 << 0));// wait for operation to complete
for (i = 0 ; i < 32; i++) ProducedHash[i] = *(CRYPTO_MEM_BUFF + 0x80 + i);

16.3.2.4 CRC

CRC is under SW control. It involves the following steps:

1. Enable the block.

2. Initialize the memory buffer with the data.

3. Specify the size of the data array.

4. Specify the memory buffer offsets of the source operand (data).

5. Specify the processing of the data (XOR mask and bit reversal).

6. Specify the polynomial.

7. Specify the LFSR seed values.

8. Specify the processing of the remainder (XOR mask and bit reversal).

9. Start a CRC operation.

10. Retrieve the results from the CRC_REM MMIO register when the operation has completed.

The following code sequence illustrates how a CRC operation is performed with a 32-bit polynomial:

uint8_t Data[] = {
 0x12, 0x34, 0x56, 0x78, 0x9a};

*CRYPTO_CTL          = (1 << 31) | "CRC";// enable block
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for (i = 0 ; i < 6; i++) *(CRYPTO_MEM_BUFF + i) = Data[i];
*CRYPTO_SRC_CTL0     = 0x00;// data offset
*CRYPTO_CRC_DATA_CTL0      = (5 << 16) | 1;// 6 Bytes, data byte bit reversal
*CRYPTO_CRC_DATA_CTL1      = 0x00;// data byte XOR pattern
*CRYPTO_CRC_POL_CTL        = 0x04c11db7;// polynomial
*CRYPTO_CRC_LFSR_CTL       = 0xffffffff;// seed value
*CRYPTO_CRC_DATA_CTL0      = 1;// remainder bit reversal
*CRYPTO_CRC_DATA_CTL1      = 0xffffffff;// remainder XOR pattern
*CRYPTO_CMD                = (1 << 0);// start CRC operation
while (*CRYPTO_CMD & (1 << 0)) ;// wait for operation to complete
result = *CRYPTO_CRC_REM;
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16.4 Block Interface 
Requirements

16.4.1 Functional Timing Requirements 
and Diagrams

Note the following:

■ The interrupt output ("interrupt") is level sensitive and 
remains high until SW clears it.

■ The trigger input can be asynchronous to "clk_sys", but 
its width should be at least two cycle pulse on "clk_sys".

■ The trigger output generated ("tr_out") is a two cycle 
pulse on "clk_sys".

16.4.2 Bandwidth/Latency Requirements

The following table documents the performance of crypto
block. The clock cycles referred to are related to this particu-
lar block's clock cycles. The performance depends on the
operation that is performed. The numbers are for the opera-
tion only, and do not include time that SW takes to setup the
MMIO registers or memory buffer or the time that SW takes
to retrieve the results from MMIO registers or memory buf-
fer.

Note: There will be one more cycle delay when the operation
is initiated by HW trigger input (because the trigger is syn-
chronized inside the block) if the number of cycles is mea-
sured between "tr_in" and "tr_out".

Note: SW should be aware of the number of cycles that an
operation is going to take when implementing Sleep power
mode and wake up through CRYPTO interrupt. A case
might happen where CRYPTO interrupt occurs before even
the WFI instruction is executed (depending on the delay
between start of CRYPTO operation and execution of WFI
instruction).

16.4.3 Bit/Byte Ordering

All the Bit/Byte ordering in this block is little-endian.

The operand data in the SRAM memory should also be laid
out in little-endian format (Least Significant Byte of multi
byte word should be located at the lowest memory address
of the word).

16.4.4 Data Underrun/Overrun

The SRAM memory stores the operand data and results of
the operation. Operand data should not overlap in the mem-
ory buffer as destination operands may overwrite source
operands. For AES, it is allowed to overwrite the 'start key'
with the 'last round key' and similarly it is also allowed to
overwrite the input data with the output data if user want to
reduce the space needed in buffer.

The following table shows the space required for each oper-
and pointer for AES and SHA operations.

Table 16-6.  Performance

Operation

Performance

(Clock Cycles refer to block's clock 
cycles)

AES-128 forward 
cipher

106 clock cycles

AES-128 inverse cipher 103 clock cycles

AES-192 forward 
cipher

126 clock cycles

AES-192 inverse cipher 123 clock cycles

AES-256 forward 
cipher

146 clock cycles

AES-256 inverse cipher 143 clock cycles

PR number generation 34 clock cycles

SHA1 516 clock cycles

SHA2-224 413 clock cycles

SHA2-256 413 clock cycles

CRC 1 clock cycle per data Byte + 4

Table 16-7.  AES and SHA Operand Space Requirements

Pointer AES-128 AES-192 AES-256 SHA1 SHA2

SRC_CTL0 16 Bytes 24 Bytes 32 Bytes 64 Bytes 64 Bytes

SRC_CTL1 16 Bytes 16 Bytes 16 Bytes 20 bytes 32 Bytes

DST_CTL0 16 Bytes 24 Bytes 32 Bytes
320 
Bytes

256 
Bytes

DST_CTL1 16 Bytes 16 Bytes 16 Bytes 20 bytes 32 Bytes
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16.5 Power Architecture and 
Modes

The following sections explain the power architecture for the
SRSS-Lite based SoCs.

16.5.1 SRSS-Lite

16.5.1.1 Power Modes

Active, Sleep, DeepSleep and XRES are the power modes
defined in SRSS-Lite System Resources Subsystem. The
following table describes the status of this block during dif-
ferent power modes in the SRSS-Lite based system.

16.5.1.2 Power Domains

The following figure shows the power domains for SRSS-
Lite based SoCs.

Figure 16-18.  SRSS-Lite Power Domains

The following figure shows the detailed SRAM power con-
nections. 

Figure 16-19.  SRSS-Lite SRAM power connections 

Note the following:

■ All the logic belongs in Active power domain only.

■ The SRAM memory periphery will be switched OFF dur-
ing DeepSleep power mode.

■ Isolation cells will be added both on inputs ("AD[]", "DI[]", 
"EN", "R_WB", and "BEN[]") and outputs ("DO[]") of 
SRAM memory as shown in the above Figure. Isolation 

cells on SRAM memory inputs are required to reduce 
leakage power due to pass gate multiplexing structures 
used in SRAM circuit. UPF defines isolation strategy for 
these isolation cells.

■ The scan related pins of SRAM memory ("ScanOutCC", 
"ScanInCC", "ScanInDL", and "ScanInDR") will be 
hooked up only after DfT insertion and should be iso-
lated after DfT insertion at chip level.

Table 16-8.  SRSS-Lite Power Modes

Power Mode Description

Active, Sleep
All the logic is powered on along with the SRAM 
memory. The Crypto block is functional in Active 
and Sleep power modes.

DeepSleep

All the logic is powered ON.

System clock "clk_sys" is gated OFF. 

SRAM memory periphery is powered OFF 
("act_power_en_n" = 1). 

SRAM array power is ON 
("dpslp_power_up_n"=0).

SRAM content and configuration MMIO are 
retained

crypto_pr

Memory buffer
(SRAM)

crypto_crc

crypto_mmio

crypto_aes crypto_sha

crypto_mem

0

0

inputs

outputs

crypto_sram_power

Active power domain

Default power domain

SRAM Memory 

CRYPTO logic
(Active power domain with “vccd” supply)

WLOFF

vpwrpc

vccdvpwrm

vpb

vgnd vssd

vnb

act_power_en_n

vpwra

vpwrp
WLBI

vpwrac

1'b0
DO

0 0

act_isolate_n

Bleeder

vssd

act_bleed

dpslp_power_up_n

AD, DI, R_WB, 
EN,BEN

TMtest_scan_mode

CLKin

ICG
clk_sys

clock_crypto_sram_en
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■ The SRAM memory contents will be retained in Deep-
Sleep power mode. Hence SRAM array power will not 
be switched OFF during DeepSleep power mode (Note 
how the array power control "vpwrac" is connected to 
"dpslp_power_up_en_n").

16.5.1.3 Retention Strategy

■ The MMIO registers are connected to "rst_sys_dpslp_n" 
and hence the MMIO configuration registers are retained 
in DeepSleep power mode. 

■ The SRAM memory contents will be retained in Deep-
Sleep power mode.
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17.   USB Full Speed (USB FS)

The CCG3 USB block acts as a USB device that communicates with a USB host. The USB block is available as a fixed-func-
tion digital block in the CCG3 device. It supports full-speed communication (12 Mbps) and is designed to be compliant with
the USB Specification Revision.2.0. USB devices can be designed for plug and play applications with the host and also sup-
port hot swapping. This chapter details the CCG3 USB block and transfer modes. For details about the USB specification,
see the USB Implementers Forum web site.

17.1 Features
The PSoC USB has these features:

■ Complies with USB Specification 2.0

■ Supports full-speed peripheral device operation with a signaling bit rate of 12 Mbps

■ Supports eight data endpoints and one control endpoint

■ Supports four types of transfers – bulk, interrupt, isochronous, and control

■ Supports bus- and self-powered configurations

■ USB suspend mode for low power

■ Supports the following logical transfer mode:

❐ Store and Forward mode

■ Differential signal (D+ and D-) output

■ Integrated 22- USB termination resistors on D+ and D– lines, and 1.5-k pull-up resistor on the D+ line

■ Supports maximum packet size of 64 bytes using the Store and Forward mode for bulk endpoints and maximum packet 
size of 512 for isochronous transfers in store and forward mode
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17.2 Block Diagram
Figure 17-1 illustrates the architecture of the USB block. It consists of the USB Physical Layer (USB PHY), Serial Interface
Engine (SIE), Arbiter, and the local 512-byte memory buffer.

Figure 17-1.  USB FS Block Diagram

17.2.1 USB Physical Layer (USB PHY)

This block takes care of physical layer communication with
the USB host through the D+ and D- pins. It handles the dif-
ferential mode communication with the host and monitoring
events such as SE0 on the USB bus.

17.2.2 Serial Interface Engine (SIE)

The Serial Interface Engine (SIE) is responsible for handling
the decoding and creating of data and control packets dur-
ing transmit and receive. It decodes the USB bit streams into
USB packets during receive and creates USB bit streams
during transmit. The following are the features of the SIE
block:

■ Conforms to the USB 2.0 Specification

■ Supports one device address

■ Supports eight data endpoints and control endpoint

■ Supports interrupt trigger event for each endpoint

■ Integrates an 8-byte buffer in the control endpoint

The registers for this block are mainly used to configure the
data endpoint operations and the control endpoint data buf-
fers. This block also controls the interrupt events available
for each endpoint.

17.2.3 Arbiter

The Arbiter is the block that handles access of the SRAM
memory by the endpoints. The SRAM memory can be
accessed by the CPU or the SIE. The Arbiter handles the
arbitration between the CPU and the SIE. The Arbiter con-
sists of the following blocks:

■ SIE Interface Module

■ CPU Interface Module

■ Memory Interface

■ Arbiter Logic

The Arbiter registers are used to handle the endpoint config-
urations, Read address, and Write address for the end-
points. It also configures the logical transfer type required for
each endpoint. The Arbiter in the CCG3 device family sup-
ports only mode 0.

17.2.3.1 SIE Interface Module

This module handles all the transactions with the SIE block.
The SIE reads data from the SRAM memory and transmits
to the host. Similarly, it writes the data received from the
host to the SRAM memory. These requests are registered in
the SIE Interface module and are handled by this block.

 

USB Block

Arbiter

Arbiter 
Logic

Memory 
Interface

CPU 
Interface

SIE 
Interface

SIE

CPU
Subsystem

512 Bytes 
SRAM

D+ D-

USB PHY
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17.2.3.2 Memory Interface

The memory interface is used to control the interface
between the USB block and the SRAM memory unit. The
maximum memory size supported is 512 bytes organized as
256 x a 16-bit memory unit. This is a dedicated memory for
the USB. The memory access can be requested by the SIE
or by the CPU. The SIE Interface block and the CPU Inter-
face block handle these requests.

17.2.3.3 Arbiter Logic

This is the main block of the Arbiter. It is responsible for arbi-
trations for all the transactions that happen in the Arbiter. It
arbitrates the CPU and SIE access to the memory unit and
the registers. This block also handles the memory manage-
ment. The memory management is either "Manual" or "Auto-
matic." In Manual memory management, the read and write
address manipulations are done by the firmware. This block
also handles the interrupt requests for each endpoint. 

17.3 How it Works

17.3.1 USB Physical Layer (USB PHY)

The USB block includes the transmitter and the receiver
(transceiver), which corresponds to the USB PHY.

Figure 17-2 shows the PHY architecture. The USB PHY in
PSoC also includes the pull-up resistor on the D+ line to
identity the device as full-speed type to the host. The PHY
integrates the 22- series termination resistors on the USB
lines. The signal between the USB device and the host is a
differential signal. The receiver receives the differential sig-
nal from the host and converts it to a single-ended signal for
processing by the SIE. The transmitter converts the single-
ended signal from the SIE to the differential signal, and
transmits it to the host. The differential signal is given to the
upstream devices at a nominal voltage range of 0 V to 3.3 V.

Figure 17-2.  USB PHY Architecture

17.3.1.1 Power Scheme

The USB PHY is powered by the VDDD power pad of the CCG3 device. The USB PHY needs a nominal voltage of 3.3 V for
its communication with the host. The REG_ENABLE bit in the USB_CR1 register controls the operation of the internal voltage
regulator. CCG3's VDDD rail is derived from a regulated output from VBUS or VSYS. For applications using VBUS as the pri-
mary supply (bus-powered applications), the regulator inside the USB PHY must be bypassed by setting REG_ENABLE bit to
0. In applications using VSYS as the primary supply (self-powered applications), the regulator should be enabled when the
VSYS is outside the 3.3 V (3.15 V to 3.45 V) range. When the VSYS supply voltage is in the 5-V range (4.35 V to 5.5 V), the
REG_ENABLE bit must be set high to enable the internal regulator.
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17.3.1.2 VBUS Detection

USB devices have the option of deriving power from the
VBUS power signal from the host (bus-powered configura-
tion) or having an external power supply independent of host
VBUS (self-powered configuration). The CCG3 VBUS regu-
lator is inside the USBPD subsystem. The VBUS detect
interrupt and status registers from the USBPD subsystem
must be used. 

The VBUS detect is mapped to the INT_WAKEUP interrupt
of the USBPD subsystem. The corresponding VBUS status
can be read from NCELL_STATUS register by reading the
VBUS_C_STATUS field. Once VBUS is detected through
the interrupt and status register, the CPU can enable the
pull-ups in the device to signal attach to the host.

17.3.1.3 USB PHY Isolation Logic 

The USB PHY has an isolation logic to disable the PHY out-
put signals when the host VBUS is not present.

Figure 17-3.  USB PHY Output Isolation Logic

The PHY is designed to operate from a VBUS supply inde-
pendent from any other supplies such as VDDD and VCCD
in the chip and contains the appropriate isolation logic.
Figure 17-3 shows the isolation logic signal (iso_n) genera-
tion. iso_n is an active low signal which is used to isolate the
output of the PHY (generated in the VBUS power domain)
from the rest of the chip operating in other independent
power domain. The device firmware can set the ISOLATE
bit field in the USB_POWER_CTRL register to isolate the
PHY outputs irrespective of the state of VBUS. 

The CCG3 PHY does not require any dynamic isolation con-
trol by firmware since it operates from a common VDDD
power rail. So the VBUS_VALID_OVR[1:0] bit fields in the
USB_POWER_CTRL register should be either selected to 1
or 3 from the following selection:

1: Force vbus_valid=1

3: Use vbus_valid signal from PHY detector.

■ The device firmware should enable the USB block oper- 
ation only after the host VBUS is present - detected by 
reading the status of VBUS from NCELL_STATUS regis-
ter of USBPD  (field VBUS_C_STATUS)

■ When VBUS is present, the device firmware should clear 
the ISOLATE bit field in the USB_POWER_CTRL regis- 
ter after a delay of at least 2 µs. Thereafter, the signal 
selected by VBUS_VALID_OVR[1:0] will take care of 
dynamic PHY output isolation. When the USB block is 
stopped in the device firmware, the ISOLATE bit field 
should be set as part of the stop sequence

17.3.1.4 USB D+ pin Pull-up Enable Logic

When a USB device is self-powered, the USB specification
warrants that the device enable the pull-up resistor on its D+
pin to identify itself as a full-speed device to the host. When
the host VBUS is removed, the device should disable the
pull-up resistor on the D+ line so as to not back power the
host. The USB PHY block includes an internal 1.5-k  pull- up
resistor on the D+ line to indicate to the host that the CCG3
is a full-speed device. The pull-up resistor can be enabled or
disabled by configuring the USBPUEN bit in the
USBIO_CR1 register. The firmware should read VBUS sta-
tus to enable/disable the pull-up resistor on the D+ pin.

17.3.1.5 Transmitter and Receiver Logic

The transmitter logic takes care of differential transmission
to the USB host. 

The transmitter can be manually forced to transmit signals.
The USB_USBIO_CR0 register is used to manually transmit
the signals. Examples are as follows:

■ When the manual transmission is enabled, the register 
can be configured to transmit Single-Ended Zero signal 
(that is, D+ and D– are low).

■ Configurable to transmit the USB signals. The USB sig-
nals can be two types:

❐ D+ low and D– high = J

❐ D+ high and D– low = K

■ The register also has a bit, which is used to read the 
received signal levels. The bit can show if D+ < D– or D+ 
> D–.

17.3.2 Endpoints

The SIE and Arbiter support eight data endpoints (EP1 to
EP8) and one control endpoint (EP0). The data endpoints
share the SRAM memory area of 512 bytes. The endpoint
memory management can be either Manual or Automatic.
The endpoints are configured for direction and other config-
uration using the SIE and arbiter registers. The endpoint
read address and write address registers are accessed
through the Arbiter. 

The endpoints can be individually made active. In the Auto
Management mode, the register USB_EP_ACTIVE is writ-
ten to control the active state of the endpoint. The endpoint
activation cannot be dynamically changed during runtime. In
Manual Memory Management mode, the firmware decides
the memory allocation, so it is not required to specify the
active endpoints. The USB_EP_ACTIVE register is ignored
during the manual memory management mode. The
USB_EP_TYPE register is used to control the transfer direc-
tion (IN, OUT) for the endpoints. The control endpoint has
separate eight bytes for its data (USB_EP0_DR registers).

iso_n (Control Signal to 
USB PHY)

ISOLATE
0

1

P0[0]

P13[2]
(VBUS pad)

VBUS_VALID_OVR [1:0]

0

1

2

3
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17.3.3 Transfer Types

The CCG3 USB supports full-speed transfers and is compli-
ant with the USB 2.0 Specification. It supports four types of
transfers:

■ Interrupt Transfer

■ Bulk Transfer

■ Isochronous Transfer

■ Control Transfer

For further details about these transfers, refer to the USB
Specification 2.0.

17.3.4 Interrupts

The USB block has three general-purpose interrupt lines –
INTR_LO, INTR_MED, and INTR_HI. Refer to the
Interrupts chapter on page 35 for the vector numbers of
these interrupt lines. The USB block has a predefined set of
12 interrupt trigger events that can be mapped to either one
of the three interrupts. The interrupt line to which each of the
trigger event is mapped is configured through the
USB_INTR_LVL_SEL register. Each of these three interrupt
lines has a status register to identify the event that cause of
the interrupt. These are the USB_INTR_CAUSE_LO,
USB_INTR_CAUSE_MED, and USB_INTR_CAUSE_HI
status registers.

The following 12 events can be used to generate an inter-
rupt on one of the three interrupt lines.

■ USB Start of Frame (SOF) Event 

■ USB Bus Reset Event

■ Eight Data Endpoint (EP1 – EP8) interrupt events 

■ Control Endpoint (EP0) interrupt event

■ Arbiter Interrupt event

The following sections provide details on each of these
interrupt events.

17.3.4.1 Data Endpoint Interrupt Events

These are eight interrupt events corresponding to each data
endpoint (EP1-EP8). Each of the endpoint interrupt events
can be enabled/disabled by using the corresponding bit in
the USB_SIE_EP_INT_EN register. The interrupt status of
each endpoint can be known by reading the
USB_SIE_EP_INT_SR status register. An endpoint whose
interrupt is enabled can trigger the interrupt on the following
events:

■ Successful completion of an IN/OUT transfer 

■ NAK-ed IN/OUT transaction if the corresponding 
NAK_INT_EN bit in the SIE_EPx_CR0 register is set

■ When there is an error in the transaction, the bit 
ERR_IN_TXN in the SIE_EPx_CR0 register is set and 
interrupt is generated. Refer to the register description 
for details on the conditions under which this bit can be 
set.

■ If the STALL bit in SIE_EPx_CR0 is set, then stall events 
can generate interrupts. This stall event can happen if an 

OUT packet is received for an endpoint whose mode bits 
in SIE_EPx_CR0 are set to ACK_OUT or if an IN packet 
is received with mode bits set to ACK_IN.

17.3.4.2 Control Endpoint (EP0) Interrupt 
Event

The interrupt event corresponding to the control endpoint
(EP0) is generated under the following events:

■ Successful completion of an IN/OUT transfer 

■ When a SETUP packet is received on the control end-
point

17.3.4.3 Arbiter Interrupt Event

The arbiter generates an interrupt event for the endpoints
during the following events - the final arbiter interrupt event
is the logical OR of these events.

IN endpoint local buffer full:

This event status is set on different conditions in Store and
Forward mode.

■ Store and Forward Mode: This status is set when the 
entire packet data has been transferred to the local 
memory. The check is that data written for the particular 
endpoint is equal to the programmed Byte Count for that 
endpoint in the USB.SIE_EPx.CNT0 and 
USB.SIE_EPx.CNT1 registers.

17.3.4.4 USB Start of Frame (SOF) Event

■ Generated whenever the SOF is received. The SOF 
interrupt is enabled by setting the SOF_INTR_MASK bit 
in the USB_INTR_SIE_MASK register. The SOF inter-
rupt status is reflected in the SOF_INTR status bit in the 
USB_INTR_SIE status register. 

■ The SOF interrupt status is also available in the 
SOF_INTR_MASKED bit of the 
USB_INTR_SIE_MASKED register – this bit is the logi-
cal AND of corresponding SOF bits in the 
USB_INTR_SIE_MASK register and the 
USB_INTR_SIE register.

■ The USB packet decoder in the SIE decodes the SOF 
PID and asserts a pulse of width one 12-MHz clock 
cycle. This pulse is synchronized to the system clock 
(SYSCLK) and can be routed as a digital signal through 
the Digital System Interconnect (DSI) interface. This 
routing feature is in addition to the interrupt feature.



162 CCG3 TRM, Document No. 002-04130 Rev. **

USB Full Speed (USB FS)

17.3.4.5 USB Bus Reset Event

■ Generated whenever a USB bus reset condition occurs. 
The bus reset interrupt is enabled by setting the 
BUS_RESET_INTR_MASK bit in the 
USB_INTR_SIE_MASK register. The bus reset interrupt 
status is reflected in the BUS_RESET_INTR status bit in 
the USB_INTR_SIE status register. 

■ The bus reset interrupt status is also available in the 
BUS_RESET_INTR_MASKED bit of the 
USB_INTR_SIE_MASKED register – this bit is the logi-
cal AND of corresponding bus reset bits in the 
USB_INTR_SIE_MASK register and the 
USB_INTR_SIE register.

■ The 32-kHz low-frequency clock (LFCLK) is used to 
detect the USB bus reset condition. It is required that the 
LFCLK is enabled in the application firmware. The SIE 
logic triggers on counter running on LFCLK when a SE0 
condition is detected on the USB bus. When the counter 
reaches the count value configured in the 
USB_BUS_RST_CNT register, the bus reset interrupt is 
triggered. It is recommended to set the count value in the 
USB_BUS_RST_CNT register to three to detect the bus 
reset condition. 

17.4 Logical Transfer Modes
The USB block in CCG3 devices supports only mode 1,
which is store and forward logical transfer mode. Table 17-1
describes the details of Store and Forward transfer mode.

The logical transfer can be configured using the register set-
ting for each endpoint. Any of the logical transfer methods
can be adapted to support the three types of data transfers
(Interrupt, Bulk, and Isochronous) mentioned in the USB 2.0
Specification. The Control transfer is mandatory in any USB
device.

Table 17-1.  USB Transfer Modes

Feature Store and Forward Mode

SRAM Memory Usage Requires more memory

SRAM Memory Management Manual

SRAM Memory Sharing
512 bytes of SRAM shared between end-
points. Sharing is done by firmware.

IN Command
Entire packet present in SRAM memory 
before the IN command is received.

OUT Command

Entire packet is written to SRAM memory 
on OUT command. After entire data is 
available, it is copied from SRAM memory 
to the USB device.

Transfer of Data
Data is transferred when all bytes are writ-
ten to the memory.

Supported Transfer Types Best suited for Interrupt and Bulk transfers
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Every endpoint has a set of registers that need to be handled during the modes of operation, as detailed in Table 17-2.

In Manual Memory Management, the endpoint read and
endpoint write address registers are updated by the firm-
ware. So the memory allocation can be done as required by
the user and the memory allocation decides which end-
points are active; that is, the user can decide to share the
512 bytes for all the eight endpoints or a lesser number of
endpoints.

In Automatic memory management, the endpoint read and
endpoint write address registers are updated by the USB
block. The block assigns memory to the endpoints that are
activated using the USB_EP_ACTIVE register. The size of
memory allocated depends on the value in the
USB_BUF_SIZE register. The rest of the memory, after allo-
cation, is called the "Common Area" memory and used for
the transfer of data.

In the following text, the algorithm for the IN and OUT trans-
action for each mode is discussed. An IN transaction is
when the data is read by the USB host (for example, PC).
An OUT transaction is when the data is written by the USB
host to the USB device. 

Table 17-2.  Endpoint Registers

Register Comment Content Usage

ARB_RWx_WA
Endpoint Write Address reg-
ister

Address of the 
SRAM 

This register indicates the SRAM location to which the data 
in the Data register is to be written.

ARB_RWx_RA
Endpoint Read Address reg-
ister

Address of the 
SRAM

This register indicates the SRAM location from which the 
data must be read and stored to the Data register.

ARB_RWx_DR Endpoint Data Register 8-Bit Data

Data register is read/ written to perform any transaction.

IN command: Data written to the Data register is copied to 
the SRAM location specified by the WA register. After 
write, the WA value is automatically incremented to point 
to the next memory location.

OUT command: Data available in the SRAM location 
pointed by the RA register is read and stored to the DR. 
When the DR is read, the value of RA is automatically 
incremented to point to the next SRAM memory location 
that must be read.

SIE_EPx_CNT0 and 
SIE_EPx_CNT1

Endpoint Byte Count Regis-
ter

Number of Bytes

Holds the number of bytes that can be transferred.

IN command: Holds the number of bytes to be transferred 
to host.

OUT command: Holds the maximum number of bytes that 
can be received. The firmware programs the maximum 
number of bytes that can be received for that endpoint. 
The SIE updates the register with the number of bytes 
received for the endpoint.

“Mode” bits in 
SIE_EPx_CR0 

Mode Values
Response to the 
Host

Controls how the USB device responds to the USB traffic 
and the USB host. Some examples of mode include ACK, 
NAK, STALL, etc. See Table 17-1 on page 162 for addi-
tional details.
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17.4.1 Store and Forward Mode

17.4.1.1 No DMA Access

This is the Manual Memory Management mode with no
DMA access.

IN Transaction (CPU Write, SIE Read): The steps for an IN
transaction on an IN endpoint are shown in Figure 17-4.
OUT Transaction (CPU Read, SIE Write): The steps for an
OUT transaction on an OUT endpoint are shown in
Figure 17-5.

Figure 17-4.  No DMA Access IN Transaction

Figure 17-5.  No DMA Access OUT Transaction

17.4.1.2 Manual DMA Access/CutThrough 
Mode

CCG3 does not support DMA modes (manual or cut-
through) as there is no DMA engine in CCG3 devices.

Write WA register (based on 
required memory allocation)

Write packet size to 
Byte Count register

Write data to Data 
register

Value automatically 

written to the SRAM 
specified by WA 

location. WA++

Is all 
data written to 

SRAM?

No

Write the RA 
register (same as 
initial WA register)

Set mode value in 
CR0 register

Is IN 
command 
received?

Wait

USB Block reads 
value from RA and 
transmits to host. 

RA++

Is all data 
transmitted?

Set the mode as NAK for the 
last byte in transfer. Status 

bits set by the block

Yes

No

Yes

Yes

No

Responds 
automatically 
with ACK 
(configured as 
Mode value)

Interrupt 
Generated

Write WA register (based on 
required memory allocation)

Write maximum packet size to 
Byte Count register

Data received from 
host written to SRAM 

location WA

SIE sets mode to NAK. Updates Byte 
Count with actual number of data 

received and sets the data valid bit

Write the RA value 
(same as initial 

WA)

Yes

Responds 
automatically 
with ACK 
(configured as 
mode value)

SIE Data 

Interrupt 
Generated

To inhibit CRC 
set the “crc_bypass” bit 

in the ARB_EPx_CFG 
register

Set mode value in 
CR0 register

Is OUT 
command 
received?

Wait

No

Is all 
data written to 

SRAM?

WA++
No

Yes

USB Block reads the data at 
location RA and writes to Data 

register

Data in Data 

register is read 

by CPU and 
given to device. 

RA++ is done 
automatically.

Is all 
data read from 

SRAM?

No

Yes

End



CCG3 TRM, Document No. 002-04130 Rev. ** 165

USB Full Speed (USB FS)

17.4.2 Control Endpoint Logical Transfer

The control endpoint has a special logical transfer mode. It
does not share the 512 bytes of memory. Instead, it has a
dedicated 8-byte register buffer (USB_EP0_DRx registers).
The IN and OUT transaction for the control endpoint is
detailed in the following figures.

Figure 17-6.  Control Endpoint IN Transaction

Figure 17-7.  Control Endpoint OUT Transaction
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17.5 Register Summary

Register Name Description

USBDEVv2_EP0_DRx Control Endpoint EP0 Data Register. 'x' can be 0–7 for the 8-byte EP0 data buffer

USBDEVv2_CR0 USB Control 0 Register. Register to enable the USB device and specify the 7-bit device address

USBDEVv2_CR1
USB Control 1 Register. Register to configure the USB block regulator, read bus activity status, 
and enable the internal oscillator to the USB traffic

USBDEVv2_SIE_EP_INT_EN USB SIE Data Endpoints Interrupt Enable Register

USBDEVv2_SIE_EP_INT_SR USB SIE Data Endpoint Interrupt Status

USBDEVv2_SIE_EPx_CNT0
Non-control Endpoint Byte Count Register. 'x' can be 1–8 corresponding to one of the eight data 
endpoints. This register stores the most significant 3-bits of the 11-bit byte counter, the toggle 
state of the data packet, and data valid status.

USBDEVv2_SIE_EPx_CNT1
Non-control Endpoint Byte Count Register. 'x' can be 1–8 corresponding to one of the eight data 
endpoints. This register stores the lower eight bits of the 11-bit byte count value.

USBDEVv2_SIE_EPx_CR0
Non-control Endpoint Control Register. 'x' can be 1–8 corresponding to one of the eight data end-
points. This register contains the endpoint operating mode, error status, stall control, and the NAK 
interrupt generation.

USBDEVv2_USBIO_CR0
USBIO Control 0 Register. This register contains the control and configuration bits for the USB 
I/Os (D+ and D– pins respectively) for single-ended and differential mode operation.

USBDEVv2_USBIO_CR1
USBIO Control 1 Register. This register contains the control and configuration bits for the USB 
I/Os (D+ and D– pins respectively) for selecting the USB operating mode, reading the single 
ended USBIO receiver outputs, and enabling pull-up resistor on the D+ line.

USBDEVv2_DYN_RECONFIG
USB Dynamic Reconfiguration Register. This register is used to control the status of dynamic 
reconfiguration of an endpoint.

USBDEVv2_SOF0 Start Of Frame Register. This register contains the lower eight bits [7:0] of the SOF frame number.

USBDEVv2_SOF1
Start Of Frame Register. This register contains the upper three bits [10:8] of the SOF frame num-
ber.

USBDEVv2_OSCLK_DR0
Oscillator Lock Data Register 0. This register contains the lower eight bits of the oscillator locking 
circuit's adder output.

USBDEVv2_OSCLK_DR1
Oscillator Lock Data Register 1. This register contains the upper seven bits of the oscillator lock-
ing circuit's adder output.

USBDEVv2_EP0_CR
Endpoint0 Control Register. This register contains operating mode of the control endpoint, and the 
status bits for different packet conditions on the control endpoint.

USBDEVv2_EP0_CNT
Endpoint0 Count Register. This register stores the 4-bit byte counter, the toggle state of the data 
packet, and data valid status.

USBDEVv2_ARB_EPx_CFG
Endpoint Configuration Register. 'x' can be 1–8 corresponding to one of the eight data endpoints. 
This register contains the settings to reset the endpoint buffer pointers, CRC bypass feature, man-
ual DMA request, and the data ready status.

USBDEVv2_ARB_EPx_INT_EN
Endpoint Interrupt Enable Register. 'x' can be 1–8 corresponding to one of the eight data end-
points. Register to configure the conditions under which an interrupt should be generated for an 
endpoint.

USBDEVv2_ARB_EPx_SR
Endpoint Interrupt Status Register. 'x' can be 1–8 corresponding to one of the eight data end-
points. Register to read the interrupt status of an endpoint.

USBDEVv2_ARB_RWx_WA
Endpoint Write Address value. 'x' can be 1–8 corresponding to one of the eight data endpoints. 
Lower eight bits of the 9-bit write address pointer.

USBDEVv2_ARB_RWx_WA_MSB
Endpoint Write Address value. 'x' can be 1–8 corresponding to one of the eight data endpoints. 
Most significant bit of the 9-bit write address pointer.

USBDEVv2_ARB_RWx_RA
Endpoint Read Address value. 'x' can be 1–8 corresponding to one of the eight data endpoints. 
Lower eight bits of the 9-bit read address pointer.

USBDEVv2_ARB_RWx_RA_MSB
Endpoint Read Address value. 'x' can be 1–8 corresponding to one of the eight data endpoints. 
Most significant bit of the 9-bit read address pointer.

USBDEVv2_ARB_RWx_DR Endpoint Data Register. 'x' can be 1–8 corresponding to one of the eight data endpoints.

USBDEVv2_BUF_SIZE Dedicated Endpoint Buffer Size Register

USBDEVv2_EP_ACTIVE Endpoint Active Indication Register
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USBDEVv2_EP_TYPE Endpoint Type (IN/OUT) Indication register

USBDEVv2_ARB_CFG
Arbiter Configuration Register. This register is used to configure the buffer management mode of 
the USB block.

USBDEVv2_USB_CLK_EN USB Block Clock Enable Register

USBDEVv2_ARB_INT_EN
Arbiter Interrupt Enable Register. This register contains the configuration to enable arbiter inter-
rupt generation for each endpoint.

USBDEVv2_ARB_INT_SR
Arbiter Interrupt Status Register. This register contains the status of arbiter interrupt generation 
due to each endpoint.

USBDEVv2_CWA
Common Area Write Address Register. This register contains the lower eight bits of the 9-bit write 
address pointer for the common area.

USBDEVv2_CWA_MSB
Common Area Write Address Register. This register contains the most significant bit of the 9-bit 
write address pointer for the common area.

USBDEVv2_DMA_THRES
DMA Burst/Threshold Configuration Register. This register contains the lower eight bits of the 9-
bit threshold byte count value.

USBDEVv2_DMA_THRES_MSB
DMA Burst/Threshold Configuration Register. This register contains the most significant bit of the 
9-bit threshold byte count value.

USBDEVv2_BUS_RST_CNT
Bus Reset Count Register. This register contains the number of clock cycles of LFCLK that should 
elapse to detect a bus reset condition.

USBDEVv2_MEM_DATAx This is the 512-byte data buffer for storing the non-control endpoint data. 'x' can be 0 to 511.

USBDEVv2_SOF16 16-bit version of the Start Of Frame Register

USBDEVv2_OSCLK_DR16 16-bit version of the Oscillator Lock Data Register

USBDEVv2_ARB_RWx_WA16 16-bit version of the Endpoint Write Address Value Register. 'x' can be 1 to 8.

USBDEVv2_ARB_RWx_RA16 16-bit version of the Endpoint Read Address Value Register. 'x' can be 1 to 8.

USBDEVv2_CWA16 16-bit version of the Common Area Write Address Register

USBDEVv2_ARB_RWx_DR16 16-bit version of the Endpoint Data Register. 'x' can be 1 to 8

USBDEVv2_DMA_THRES16 16-bit version of the DMA Burst/Threshold Configuration Register

USBDEVv2_USB_POWER_CTRL Power Control Register

USBDEVv2_USB_CHGDET_CTRL Charger Detection Control Register

USBDEVv2_USB_USBIO_CTRL USB I/O Control Register

USBDEVv2_USB_FLOW_CTRL Flow Control Register

USBDEVv2_USB_LPM_CTRL LPM Control Register

USBDEVv2_USB_LPM_STAT LPM Status Register

USBDEVv2_USB_INTR_SIE USB SOF, BUS RESET, and EP0 Interrupt Status Register

USBDEVv2_USB_INTR_SIE_SET USB SOF, BUS RESET, and EP0 Interrupt Set Register

USBDEVv2_USB_INTR_SIE_MASK USB SOF, BUS RESET, and EP0 Interrupt Mask Register

USBDEVv2_USB_INTR_SIE_MASKED USB SOF, BUS RESET, and EP0 Interrupt Masked Register

USBDEVv2_USB_INTR_LVL_SEL USB Interrupt Level Select Register

USBDEVv2_USB_INTR_CAUSE_HI High Priority Interrupt Cause Register

USBDEVv2_USB_INTR_CAUSE_MED Medium Priority Interrupt Cause Register

USBDEVv2_USB_INTR_CAUSE_LO Low Priority Interrupt Cause Register

USBDEVv2_USB_PHY_TRIM0 PHY Trim Control Register

USBDEVv2_USB_PHY_TRIM1 PHY Trim Control Register

USBDEVv2_USB_PHY_TRIM2 PHY Trim Control Register

USBDEVv2_USB_PHY_TRIM3 PHY Trim Control Register

USBDEVv2_USB_CHGDET_TRIM Charger Detect Trim Values Register

USBDEVv2_USB_TRIM Trim Values Register

USBDEVv2_USB_USBIO_TRIM Trim Values for I/Os Register

Register Name Description
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Section F: USB Power Delivery

This section encompasses the following chapter:

■ USB Power Delivery chapter on page 165

Top Level Architecture

USB Power Delivery Block Diagram
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18.   USB Power Delivery

 CCG3 uses an inbuilt USB Power Delivery (USB PD) baseband PHY. This PHY supports all the features as per the USB
Power Delivery 2.0 specification and USB Type-C Cable and Connector specification rev 1.0.

USB PD block implements the PD communication using a dedicated Communication Channel (CC) using Bi-phase Mark
Coding (BMC). USB PD block contains a dedicated SRAM to store USB PD Rx and Tx header and messages coming as a
part of USB PD negotiations. In addition, it includes all termination resistors required to implement various Type-C roles such
as DFP, UFP and DRP. This block includes everything necessary to support UFP, DFP, DRP and EMCAs for with the USB
Type-C connector. The baseband transceiver is used for SOP, SOP’ or SOP’’ communication over the CC line. The Rp/Rd/Ra
termination is chosen based on the application. The 8-bit ADC is used for generic voltage sensing of anything connected to
the analog mux (AMUX) buses, as well as voltage supply measurement and temperature sensing. 

18.1 Features
■ The CSA block implements a current sense amplifier and over current (OCP) detection circuit. This block can use the 

internal power FET as the sense resistor or it can use an external sense resistor for sensing the current.

■ The 20VREG block is a 20V to 5V regulator that can deliver a maximum of 30mA of load current. 

■ The UVOV block implements an under-voltage/over-voltage (UVOV) detection circuit. The thresholds for both OCP and 
UVOV are made programmable. 

■ The SBU block implements four bi-directional analog switches between SBU1/SBU2 pins and AUX_P/ AUX_N pins. It 
also implements terminations required for the DisplayPort 1.2 standard.

■ The 300MA_SW block implements a 5 V/300 mA power FET to meet the requirements of a regular VCONN switch.  

■ The VDDD_SW block is a 5-V power-switcher, which selects from two power supplies to provide the VDDD output. In this 
case the two supplies are the 20-V regulator output and the VSYS input.

■ The DPSLP_REF block implements voltage and current references which are used by all other parts of the USBPD block.

■ The CPUMP block generates the gate voltage for NMOS back-power protection devices.  

■ The VCONN_TERM implements Ra termination and VCONN detection for a single VCONN supply. This is necessary for 
Type-C VCONN powered accessories.

■ The VBUS_DISCHG block contains pull down control circuit for VBUS to ground discharge path.

■ The CHGDET block implements PHY portion of BC.1.2 and quick charge protocols.

■ CCG3 contains two ADC blocks. The ADC is an 8-bit SAR ADC, which can measure the voltage on either AMUX bus, 
measure the supply voltage level, and measure the on-die temperature. 

■ The USBPD block also includes the 8kV IEC ESD protection circuits to be used for the 20V VBUS pad, 5V CC1/2 pads 
and the 5V SBU1/2 pads. 
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18.2 Block Diagram

Figure 18-1 shows the USB PD system block diagram.

Figure 18-1.  USB PD Block Diagram
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18.3 Configuration Options
■ Type-C Connector Pull-up and Pull-down termination 

trim

■ Baseband Transceiver Tx and Rx trim

■ Options for increased Tx and Rx thresholds for addi-
tional Ground IR Drop

■ Type-C Connector voltage detect threshold trim

■ Termination configuration to support: UFP, DFP, DRP, 
Powered cable

■ Programmable overcurrent, overvoltage, and undervolt-
age thresholds

18.4 Block Applications 

The USBPD block supports the USB Power Delivery Specifi-
cation and the USB Type-C Specification. It implements the
analog portions of the USBPD BMC PHY, and Type-C con-
nector detect and termination functions. Figure 18-1 shows
the internal architecture of the USBPD block. The CC cell
contains a transceiver for communication over the Type-C
connector CC1 or CC2 lines. It contains configurable pull-up
and pull-down termination to communicate current capabili-
ties and detach/attach events. It has three comparators to
sense the connected device termination, determine current
source capabilities and detect detach/attach events. The
block also supports dead battery pull-down termination for
the Rd impedance, which is connected to the RD1 and CC2
pins. 8kV IEC ESD protection is provided by the CC_IEC
pad cell. A positive charge pump, CPUMP, provides a
boosted supply to drive the gates of NMOS back-power pro-
tection transistors. VCONN power is supplied to the cable
by the 300mA_Sw block, which connects the V5V supply to
either the CC1 or CC2 pin.

The SBU_SW cell contains a 2x2 crossbar analog switch
network. It allows connecting the SBU1/2 pins to the AUX_P
and AUX_N pins in one of two combinations. It also contains
controllable resistor termination that supports the auxiliary
mode for the DisplayPort 1.2 spec.

The VCONN_TERM cell provides 8kV IEC ESD protection
on the VCONN supply for VCONN-powered accessories. It
contains dead battery Ra termination, a negative charge
pump for disabling the Ra resistor, and a detector to deter-
mine if the VCONN supply is present.

The DPSLP_REF cell generates voltage and current refer-
ences, which are used in deep sleep mode. Many of the
blocks require these references during the deep sleep
mode.

The ADC cell is an 8-bit DAC and comparator used to form
an 8-bit SAR ADC with the appropriate SAR control logic. It
is used to measure voltages on the AMUX busses, measure
the supply voltage level, or measure the on-die temperature.

The 20VREG cell allows the chip to be powered off of the
VBUS supply, even when it is operating at 20V. The regula-

tor supplies power to the chip level VDDD supply. The
VDDD_SW cell can switch in the VSYS supply when it is
available, and prevents back-powering from the regulator
output in the VSYS supply. The DISCHG cell is a controlled
pull-down path for an external resistor to discharge the
VBUS supply.

The UVOV cell is used for detecting the voltage level of the
VBUS supply. It has programmable settings for detecting
two thresholds, and overvoltage threshold and an undervolt-
age threshold.

The CSA cell is a high-side CSA (Current Sensing Amplifier)
used for detecting the amount of current flowing from an
external power supply. It requires an external high precision
sense resistor. When current flows through the resistor, the
CSA amplifies and senses the small voltage developed
across the resistor. The amplified voltage is compared
against a reference voltage, and the output can be used for
OCP (Overcurrent Protection) to disable the external power
FET.

The CHGDET cell implements the charger detect and termi-
nation for legacy (pre-Type-C) charger schemes. 

18.4.1 CC Block

18.4.1.1 CC Block Brief Architecture & 
Functional Description

The block in Figure 18-2 contains the USB PD transceiver
for baseband signaling communication over the CC1/CC2
lines. The Transmitter (TX) drives 1.125V slew-rate con-
trolled data onto the chosen CC line. The Receiver (RX)
converts received data on the chosen CC line to a full-rail
signal for decoding. The comparator (COMP) block contains
two Deep Sleep comparators used to detect attach/detach
and CC line activity events, and determine the voltage range
on the chosen CC line. The idle voltage on the CC lines is
generated by the voltage divider of the pull-up and pull-
down termination, which indicates the advertised current
capability of the DFP. The Reference generator block gener-
ates the necessary voltages for the transmitter voltage,
receiver threshold, and comparator thresholds. 

The IPU blocks generate current sources for the pull up ter-
mination on the CC lines and they are configurable to indi-
cate which current profile the DFP or DRP supports.

When used in a DFP application and no cable is attached, it
is important to have the lowest possible deep sleep power
consumption. When waiting for attach, all blocks are dis-
abled except for the DS (Deep Sleep) Attach Detect block.
This implements a pull-up resistor and senses the CC lines
to determine if any pull-down termination is attached.

The Rd pull-down resistors are used for the UFP termina-
tion. When no power is present, the dead battery termina-
tion is presented by the Rd_db pull-down resistors. The
impedance of these resistors will be presented if the voltage
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on the CC line rises above a certain threshold, even if the
rest of the chip is not powered up.  The Rd_db termination is
brought out to separate rd1_term and rd2_term ports, so
that chip level connections can determine if dead battery ter-
mination is present on the CC lines.

Figure 18-2 shows the possible configuration options in
order to support different Type-C applications. The DFP
does not need any pull-down termination, so the chip level
CC1 and CC2 pins are connected to the CC1 and CC2
ports. The UFP, DRP, and Debug Accessory applications
need to have dead battery Rd termination on the CC1 and
CC2 pins, so they are additionally connected to the
rd1_term and rd2_term ports. The Powered Cable applica-
tion requires data communication over the CC line, and Ra
pull-down termination on the VCONN supply. The VCONN
Powered Accessory, needs CC communication as well Rd
termination on the CC line, with Ra pull-down termination on
the VCONN supply. Ra termination is implemented in the
VCONN_SW or VCONN_TERM block.

Figure 18-2.  Block Diagram of CC Block

18.4.2 CSA Block

18.4.2.1 CSA Block's Brief Architecture & 
Functional Description

The CSA current sense amplifier translates an elevated dif-
ferential signal across signals inp and inn to a ground refer-
enced signal, out_a, and compares it against a reference
voltage, vref, to produce an indicator output, out_d. Its pri-
mary function in the USB PD system is as an over current
detector.

As illustrated in Figure 18-3, the CSA block consists of two
stages. The first stage operates by reproducing the Vsense
voltage as V'sense across resistor RP and sending the
resulting current, IL, across RL. The DC gain is simply the
ratio of RL/RP and the output signal at out_a is given by the
following equation.

The second stage is a comparator that is used to signal the
relative logic state of out_a compared to the input voltage
reference signal, vref.

The iref_gen block receives an on-chip system reference
current (via iref) and produces the bias currents necessary
to activate the two stages.
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Figure 18-3.  Block Diagram of CSA Block

Either of the two outputs, out_a and out_d, can be used for mission-mode functionality, where out_a can be delivered to an
on-die ADC.

18.4.3 20VReg Block

18.4.3.1 20VReg's Brief Architecture & Functional Description

Figure 18-4 shows the block diagram of the high voltage interface system. Per the USB PD specifications, VBUS can go from
4.75 V to 24 V. The regulator is based on Low drop out based architecture with PMOS pass element. Typical regulator output
is 3.3 V and the reference voltage of 0.74 V is coming from DPSLP_REF block. 

Figure 18-4.  Block Diagram of 20VReg Block

inp

inn
+

-

RP

MPOUT

+

-

RL

out_d
stage2_comp

Vgnd

stage1_amp

gate_ctl

Vsense

Isense

+ -V'sense

IL

inp

hv

s

Stage2Stage1iref_gen

iref

iref_s1

iref_s2

Rsense

VIN

+

-

vref

out_a

vddd

vgnd

out1

c

+

-

NMOS 
protection

PMOS 
protection

VBUS_REG

Vrefdpslp

biasn1

biasn2

biasn3

biasn4

biasp1

biasp2

biasp3

biasp4

PMOS pass 
transistor

VBUS

Opamp

Source follower



176 CCG3 TRM, Document No. 002-04130 Rev. **

USB Power Delivery

18.4.4 UVOV Block

18.4.4.1 UVOV Block's Brief Architecture & Functional Description

Figure 18-5.  Block Diagram of UVOV Block

Figure 18-5 shows the block diagram for UVOV block and how the UVOV block is used to detect the overvoltage and/or
undervoltage condition on the VBUS input line. The threshold levels for the UV and OV detection can be set independent of
each other. Both UV and OV detector have programmable thresholds and can be programmed from 64 available values. 

A single resistor string from VBUS is used to drop the voltage from VBUS down to zero. The 6-bit input for both UV and OV is
decoded in LV domain and the outputs are level-shifted. The level-shifted output chooses one of the switches from the resistor
string. The output from the switch is applied to the comparator. The comparator compares the switch output to a fixed voltage
of 0.74 V. The 0.74 V is generated in HV_REF block and is always available once the chip is powered-up. 

This circuit is capable of detecting inputs all the way up to 28 V. However, the operating voltage is only 20 V. Higher voltages
will cause stress on the high side of resistor ladder. 

This block can be disabled in order to minimize power. The pd signal is used to turn off the comparator block UVOV_Comp
and the bias generator block UVOV_Bias.
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18.4.5 SBU_Sw Block

18.4.5.1 SBU_Sw Block's Brief Architecture & Functional Description

Figure 18-6.   Block Diagram of SBU_Sw Block

Figure 18-7.  Switch Architecture of SBU_Sw Block

Figure 18-6 shows the top level architecture of SBU block. It
has four switches between SBU1/SBU2 and AUX_P/AUX_N
pins. This block is used to route the SBU1/SBUS2 signals to
AUX_P/AUX_N pins according to Type-C plug orientation. 

Figure 18-7 shows the block diagram of switches shown in
Figure 18-6. It is a simple CMOS switch. Bulk switcher block
which is shown in the figure is used to pull the PMOS bulk to
VPUMP voltage when switch is in OFF state to reduce the

off leakage current. When switch is ON PMOS bulk is con-
nected to pin "in". Similarly bulk of NMOS is connected to
ground when switch is OFF. When switch is ON bulk of
NMOS is connected to pin "out".
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18.4.6 VDDD_Sw Block

18.4.6.1 VDDD_Sw Block's Brief Architecture & Functional Description

Figure 18-8.  Block Diagram of VDDD_Sw Block

Figure 18-8 shows the block diagram of the VDDD switch circuit which connects the VSYS supply of the chip to the VDDD
pin. It is a simple PMOS switch which is controlled using the "vsys_ovrd" signal of this block.

This block is a CMOS logic block and hence does not require to be disabled to save power. It can be used for operation during
deepsleep mode if appropriate LV power and control signals are provided.
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18.4.7 NGDO Block

18.4.7.1 NGDO Block's Brief Architecture & Functional Description

Figure 18-9.  Block Diagram of NGDO Block

Figure 18-9 shows the block diagram of the NMOS power
FET gate driver block. The charge-pump block is used to
boost the input VBUS to provide a higher voltage (VBUS +
2*VDDD) on the NGDO_OUT output. 

This block can be disabled to save power. It is meant to be
used for operation during Deep Sleep mode.
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18.4.8 DPSLP_Ref Block

18.4.8.1 DPSLP_Ref Block’s Brief Architecture & Function Description

Figure 18-10.  Block Diagram of DPSLP_Ref Block

Figure 18-10 shows the block diagram for the DPSLP_Ref block. This sub-block consists of three main blocks - Beta-Multi-
plier, Deepsleep IREF, and an IREF mirror.

The Beta multiplier block generates the reference voltage for the  System Resources SubSystem block in the deep-sleep
mode. The output of this block (vrefdpslp) is based on the difference between vth of the nhv device and the nhvnative device
and its default value is 740mV.

The Deepsleep current reference generator creates a voltage and temperature compensated 2.4µA reference current.  The
block creates PTAT, CTAT, and currents proportional to the supply voltage, and combines them to reduce the variance due to
temperature and voltage.

The current reference mirror block takes in one 2.4µA input and creates 20 copies of the same current by using a precision
current mirror. It also creates a 0.6µA reference for the VCONN_Sw block. 
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18.4.9 CPUMP block

18.4.9.1 CPUMP Block's Brief Architecture & Functional Description

Figure 18-11.  Block Diagram of CPUMP Block

This CPUMP block, shown in Figure 18-11, contains the analog circuitry for a charge pump that boosts the VCCD supply
input of 1.2 V to an output of ~5.25 V. This voltage is used for the gate control of the CC block's NMOS back power protection
devices. The block contents are: Control logic for level shifting and power down, Internal Oscillator, Clock MUX, 4-Stage
Charge Pump Core, and Feedback Resistor and Comparator.

The internal oscillator produces a ~24MHz clock for use with the charge pump core. The clock MUX selects between the
internal oscillator or an external clock source, clkin. The internal oscillator is necessary since this block may be operational in
deep sleep mode, when no other clocks are available. The 4-stage charge pump core pumps the vccd supply voltage from
1.2 V to >5 V. The feedback loop created by the resistor divider and comparator (referenced to the bandgap voltage vrefin)
clamp the voltage to 5.25 V.
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18.4.10 VCONN_Term Block

18.4.10.1 VCONN_Term Block's Brief Architecture & Functional Description

Figure 18-12.  Block Diagram of VCONN_Term Block

Figure 18-12 shows the block diagram of VCONN_Term block. R1 and R2 form a voltage divider from the VCONN supply to
ground, and the comparator checks against the 0.74V deep sleep reference to determine if VCONN is connected. The
VCONN Ra termination is implemented a resistor and a Negative Vt NMOS device. When the Ra termination needs to be dis-
abled, the gate voltage must be driven negative. A negative charge pump is implemented in order to generate the negative
gate voltage required. If the use is intended for cable applications, it is the cable's responsibility to discharge the VCONN
node when the cable is disconnected from the VCONN supply. Leaker circuits are implemented to meet this requirement.

To save power at the system level, the Ra termination should be disabled. This is accomplished by driving the Negative Vt
NMOS gate to a negative voltage. The negative charge pump generates this voltage, and must always be on, even in deep
sleep. However, if the VCONN supplies are not connected, then the charge pump can be disabled to save power during the
deep sleep mode of operation.
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18.4.11 VBUS_DISCHG Block

18.4.11.1 VBUS_DISCHG Block's Brief Architecture & Functional Description

Figure 18-13.  Block Diagram of VBUS_DISCHG Block

Figure 18-13 shows the block diagram of VBUS_DISCHG block, which has 20-V drain extended NFET connected from VBUS
supply to ground. The level shifted version of dischg_en controls the gate of the 20-V NFET after level shifted to VPUMP
domain.
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18.4.12 CHGDET Block

18.4.12.1 CHGDET Block's Brief Architecture & Functional Description

Figure 18-14.  Block Diagram of CHGDET Block

Figure 18-14 shows the CHGDET Block's top level architec-
ture diagram. This block implements the following:

Charger detection circuit which is compliant to BC 1.2 speci-
fication. The charger detect block diagram is shown in
Figure 18-15 which is part of the above architecture.

Figure 18-15.  BC1.2 Charger Detect and Termination

A unity gain voltage buffer drives a voltage divider resistor
chain with the bandgap voltage. The voltage divider pro-
duces a 600-mV reference to drive a voltage out onto datap
or datan (Vdp_src/Vdm_src). The 325-mV reference is used
for the comparator to detect Vdat_ref on datap or datan,
which produces the chgrdet_out output signal. A 10-µA cur-
rent source is used for the Idp_src source for data contact

detect. Two 100 µA current sources are used for the
Idp_sink and Idm_sink sources for primary and secondary
detection.

It also implements the various apple charger terminations
and apple charger detection circuits. Figure 18-16 shows
the apple termination implementation diagram.

Figure 18-16.   Apple Terminations
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The CHGDET block also implements Qualcomm charger
terminations and charger detection circuit which is compliant
to Qualcomm Quick Charge 2.0. Figure 18-17 shows the
Qualcomm termination resistors.

Figure 18-17.  Qualcomm Terminations

When this block is used as Portable device then portable
device terminations are used and when it is used as a
HVDCP (High voltage dedicated charging port) then pull
down terminations which are shown in Figure 18-17 are
used.

According to Qualcomm quick charge 2.0 spec to detect
Qualcomm terminations two comparators are needed with
trip points of 0.375 V and 2 V. In the architecture shown in
the Figure 18-17, there is a comparator with one input is
connected to either dp/dm and other end is connected to
configurable input where 0.375-V and 2-V inputs can be fed.
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18.4.13 ADC Block

18.4.13.1 ADC Block's Brief Architecture & 
Functional Description

This block contains the analog circuitry necessary to imple-
ment an 8-bit SAR (Successive Approximation Register)
ADC (Analog to Digital Converter). The block contents are:
Control logic for level shifting and power down, 8-bit DAC,
DFT Switch, Comparator (COMP), and a BJT NPN device.
These blocks are referenced to the Block Diagram in
Figure 18-18. 

The DAC takes an 8-bit control signal and outputs a voltage
referenced to the supply voltage. The comparator (COMP)
compares the DAC voltage versus one of the following input
voltages: either the amux_a or amux_b line, the bandgap
voltage (vbg), or the voltage generated from sourcing cur-
rent into a diode-connected BJT NPN device. If the DAC
voltage potential is greater than the muxed voltage, then the
comparator digital output is high. 

The DFT block contains an isolating switch that connects
the DAC output voltage to the chip's ADFT network. The
switch is closed when the dft_muxsel signal is high.

Figure 18-18.  Block Diagram of ADC Block
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Section G: Program and Debug

This section encompasses the following chapters:

■ Program and Debug Interface chapter on page 189

■ Nonvolatile Memory Programming chapter on page 197

Top Level Architecture

Program and Debug Block Diagram

S
ys

te
m

 B
u

s 
 

PROGRAM AND DEBUG

Program

Debug and Trace



188 CCG3 TRM, Document No. 002-04130 Rev. **



CCG3 TRM, Document No. 002-04130 Rev. ** 189

19.   Program and Debug Interface

The  CCG3 Program and Debug interface provides a communication gateway for an external device to perform programming
or debugging. The external device can be a Cypress-supplied programmer and debugger, or a third-party device that sup-
ports  CCG3 programming and debugging. The serial wire debug (SWD) interface is used as the communication protocol
between the external device and  CCG3.

19.1 Features

■ Programming and debugging through the SWD interface

■ Four hardware breakpoints and two hardware watchpoints while debugging

■ Read and write access to all memory and registers in the system while debugging, including the Cortex-M0 register bank 
when the core is running or halted

19.2 Functional Description

Figure 19-1 shows the block diagram of the program and debug interface in  CCG3. The Cortex-M0 debug and access port
(DAP) acts as the program and debug interface. The external programmer or debugger, also known as the “host”, communi-
cates with the DAP of the  CCG3 “target” using the two pins of the SWD interface - the bidirectional data pin (SWDIO) and the
host-driven clock pin (SWDCK). The SWD physical port pins (SWDIO and SWDCK) communicate with the DAP through the
high-speed I/O matrix (HSIOM). See the I/O System chapter on page 49 for details on HSIOM.
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Figure 19-1.  Program and Debug Interface

The DAP communicates with the Cortex-M0 CPU using the
ARM-specified advanced high-performance bus (AHB) inter-
face. AHB is the systems interconnect protocol used inside
CCG3, which facilitates memory and peripheral register
access by the AHB master.  CCG3 has two AHB masters –
ARM CM0 CPU core and DAP. The external device can
effectively take control of the entire device through the DAP
to perform programming and debugging operations.

19.3 Serial Wire Debug (SWD) 
Interface

 CCG3’s Cortex-M0 supports programming and debugging
through the SWD interface. The SWD protocol is a packet-
based serial transaction protocol. At the pin level, it uses a
single bidirectional data signal (SWDIO) and a unidirectional
clock signal (SWDCK). The host programmer always drives
the clock line, whereas either the host or the target drives
the data line. A complete data transfer (one SWD packet)
requires 46 clocks and consists of three phases:

■ Host Packet Request Phase – The host issues a 
request to the  CCG3 target.

■ Target Acknowledge Response Phase – The  CCG3 
target sends an acknowledgement to the host.

■ Data Transfer Phase – The host or target writes data to 
the bus, depending on the direction of the transfer.

When control of the SWDIO line passes from the host to the
target, or vice versa, there is a turnaround period (Trn)
where neither device drives the line and it floats in a high-
impedance (Hi-Z) state. This period is either one-half or one
and a half clock cycles, depending on the transition.

Figure 19-2 shows the timing diagrams of read and write
SWD packets.

H
S

IO
M

Cortex-M0 DAP

Debug Port (DP)

Access Port (AP)

AP Access

SWDCK

SWDIO

SWD

Cortex-M0 CPU

AHB DAP
AHB

ARM Cortex-M0 subsystem

AHB

S
P

C
 In

te
rf

a
ce

FLASH SROM SRAM
Peripheral 
Modules

AHB

CCG3

Host Device



CCG3 TRM, Document No. 002-04130 Rev. ** 191

Program and Debug Interface

Figure 19-2.  SWD Write and Read Packet Timing Diagrams

The sequence to transmit SWD read and write packets are
as follows:

1. Host Packet Request Phase: SWDIO driven by the host

a. The start bit initiates a transfer; it is always logic 1.

b. The “AP not DP” (APnDP) bit determines whether 
the transfer is an AP access – 1b1 or a DP access – 
1b0.

c. The “Read not Write” bit (RnW) controls which direc-
tion the data transfer is in. 1b1 represents a ‘read 
from’ the target, or 1b0 for a ‘write to’ the target.

d. The Address bits (A[3:2]) are register select bits for 
AP or DP, depending on the APnDP bit value. See 
Table 19-3 and Table 19-4 for definitions. 
Note Address bits are transmitted with the LSB first.

e. The parity bit contains the parity of APnDP, RnW, 
and ADDR bits. It is an even parity bit; this means, 
when XORed with the other bits, the result will be 0.

If the parity bit is not correct, the header is ignored by  
CCG3; there is no ACK response (ACK = 3b111). 
The programming operation should be aborted and 
retried again by following a device reset.

f. The stop bit is always logic 0.

g. The park bit is always logic 1.

2. Target Acknowledge Response Phase: SWDIO driven 
by the target

a. The ACK[2:0] bits represent the target to host 
response, indicating failure or success, among other 
results. See Table 19-2 for definitions. Note  ACK 
bits are transmitted with the LSB first.

3. Data Transfer Phase: SWDIO driven by either target or 
host depending on direction

a. The data for read or write is written to the bus, LSB 
first.

b. The data parity bit indicates the parity of the data 
read or written. It is an even parity; this means when 
XORed with the data bits, the result will be 0.

If the parity bit indicates a data error, corrective 
action should be taken. For a read packet, if the host 
detects a parity error, it must abort the programming 
operation and restart. For a write packet, if the target 
detects a parity error, it generates a FAULT ACK 
response in the next packet.

According to the SWD protocol, the host can generate any
number of SWDCK clock cycles between two packets with
SWDIO low. It is recommended to generate three or more
dummy clock cycles between two SWD packets if the clock
is not free-running or to make the clock free-running in IDLE
mode. 

The SWD interface can be reset by clocking the SWDCK
line for 50 or more cycles with SWDIO high. To return to the
idle state, clock the SWDIO low once.

19.3.1 SWD Timing Details

The SWDIO line is written to and read at different times
depending on the direction of communication. The host
drives the SWDIO line during the Host Packet Request
Phase and, if the host is writing data to the target, during the
Data Transfer phase as well. When the host is driving the
SWDIO line, each new bit is written by the host on falling
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SWDCK edges, and read by the target on rising SWDCK
edges. The target drives the SWDIO line during the Target
Acknowledge Response Phase and, if the target is reading
out data, during the Data Transfer Phase as well. When the
target is driving the SWDIO line, each new bit is written by
the target on rising SWDCK edges, and read by the host on
falling SWDCK edges.

Table 19-1 and Figure 19-2 illustrate the timing of SWDIO
bit writes and reads.

19.3.2 ACK Details

The acknowledge (ACK) bit-field is used to communicate the
status of the previous transfer. OK ACK means that previous
packet was successful. A WAIT response requires a data
phase. For a FAULT status, the programming operation
should be aborted immediately. Table 19-2 shows the ACK
bit-field decoding details.

Details on WAIT and FAULT response behaviors are as fol-
lows:

■ For a WAIT response, if the transaction is a read, the 
host should ignore the data read in the data phase. The 
target does not drive the line and the host must not 
check the parity bit as well.

■ For a WAIT response, if the transaction is a write, the 
data phase is ignored by the  CCG3. But, the host must 
still send the data to be written to complete the packet. 
The parity bit corresponding to the data should also be 
sent by the host.

■ For a WAIT response, it means that the  CCG3 is pro-
cessing the previous transaction. The host can try for a 
maximum of four continuous WAIT responses to see if 
an OK response is received. If it fails, then the program-
ming operation should be aborted and retried again.

■ For a FAULT response, the programming operation 
should be aborted and retried again by doing a device 
reset.

19.3.3 Turnaround (Trn) Period Details

There is a turnaround period between the packet request
and the ACK phases, as well as between the ACK and the
data phases for host write transfers, as shown in
Figure 19-2. According to the SWD protocol, the Trn period
is used by both the host and target to change the drive
modes on their respective SWDIO lines. During the first Trn
period after the packet request, the target starts driving the
ACK data on the SWDIO line on the rising edge of SWDCK.
This ensures that the host can read the ACK data on the
next falling edge. Thus, the first Trn period lasts only one-
half cycle. The second Trn period of the SWD packet is one
and a half cycles. Neither the host nor  CCG3 should drive
the SWDIO line during the Trn period.

19.4 Cortex-M0 Debug and 
Access Port (DAP)

The Cortex-M0 program and debug interface includes a
Debug Port (DP) and an Access Port (AP), which combine
to form the DAP. The debug port implements the state
machine for the SWD interface protocol that enables com-
munication with the host device. It also includes registers for
the configuration of access port, DAP identification code,
and so on. The access port contains registers that enable
the external device to access the Cortex-M0 DAP-AHB inter-
face. Typically, the DP registers are used for a one time con-
figuration or for error detection purposes, and the AP
registers are used to perform the programming and debug-
ging operations. Complete architecture details of the DAP is
available in the ARM® Debug Interface v5 Architecture
Specification.

19.4.1 Debug Port (DP) Registers

Table 19-3 shows the Cortex-M0 DP registers used for pro-
gramming and debugging, along with the corresponding
SWD address bit selections. The APnDP bit is always zero
for DP register accesses. Two address bits (A[3:2]) are used
for selecting among the different DP registers. Note that for
the same address bits, different DP registers can be
accessed depending on whether it is a read or a write opera-
tion. See the ARM® Debug Interface v5 Architecture Speci-
fication for details on all of the DP registers.

Table 19-1.  SWDIO Bit Write and Read Timing

SWD Packet Phase
SWDIO Edge

Falling Rising

Host Packet Request Host Write Target Read

Host Data Transfer

Target Ack Response Host Read Target Write

Target Data Transfer

Table 19-2.  SWD Transfer ACK Response Decoding

Response ACK[2:0]

OK 3b001

WAIT 3b010

FAULT 3b100

NO ACK 3b111

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
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19.4.2 Access Port (AP) Registers

Table 19-4 lists the main Cortex-M0 AP registers that are used for programming and debugging, along with the corresponding
SWD address bit selections. The APnDP bit is always one for AP register accesses. Two address bits (A[3:2]) are used for
selecting the different AP registers. 

19.5 Programming the CCG3 
Device

 CCG3 is programmed using the following sequence. Refer
to the CCG3 Device Programming Specifications  for com-
plete details on the programming algorithm, timing specifica-
tions, and hardware configuration required for programming.

1. Acquire the SWD port in  CCG3.

2. Enter the programming mode. 

3. Execute the device programming routines such as Sili-
con ID Check, Flash Programming, Flash Verification, 
and Checksum Verification.

19.5.1 SWD Port Acquisition

19.5.1.1 Primary and Secondary SWD Pin 
Pairs

The first step in device programming is to acquire the SWD
port in  CCG3. Refer to the CCG3 device datasheet for infor-
mation on SWD pins.

19.5.1.2  SWD Port Acquire Sequence

The first step in device programming is for the host to
acquire the target's SWD port. The host first performs a
device reset by asserting the external reset (XRES) pin.
After removing the XRES signal, the host must send an
SWD connect sequence for the device within the acquire
window to connect to the SWD interface in the DAP. The
pseudo code for the sequence is given here.

Code 1. SWD Port Acquire Pseudo Code

ToggleXRES(); // Toggle XRES pin to reset
device

//Execute ARM’s connection sequence to
acquire SWD-port
do
{

SWD_LineReset(); //perform a line reset
(50+ SWDCK clocks with SWDIO high)

ack = Read_DAP ( IDCODE, out ID); //Read
the IDCODE DP register

}while ((ack != OK) && time_elapsed < 2 ms); //
retry connection until OK ACK or timeout

Table 19-3.  Main Debug Port (DP) Registers

Register  APnDP
Address

A[3:2]
RnW Full Name Register Functionality

ABORT 0 (DP) 2b00 0 (W) AP Abort Register
This register is used to force a DAP abort and to clear the 
error and sticky flag conditions.

IDCODE 0 (DP) 2b00 1 (R)
Identification Code 
Register

This register holds the SWD ID of the Cortex-M0 CPU, which 
is 0x0BB11477.

CTRL/STAT 0 (DP) 2b01 X (R/W)
Control and Status 
Register

This register allows control of the DP and contains status 
information about the DP.

SELECT 0 (DP) 2b10 0 (W) AP Select Register
This register is used to select the current AP. In  CCG3, there 
is only one AP, which interfaces with the DAP AHB.

RDBUFF 0 (DP) 2b11 1 (R) Read Buffer Register This register holds the result of the last AP read operation.

Table 19-4.  Main Access Port (AP) Registers

Register  APnDP
Address

A[3:2]
RnW Full Name Register Functionality

CSW 1 (AP) 2b00 X (R/W)
Control and Status 
Word Register 
(CSW)

This register configures and controls accesses through the 
memory access port to a connected memory system (which is 
the  CCG3 Memory map)

TAR 1 (AP) 2b01 X (R/W)
Transfer Address 
Register

This register is used to specify the 32-bit memory address to 
be read from or written to

DRW 1 (AP) 2b11 X (R/W)
Data Read and Write 
Register

This register holds the 32-bit data read from or to be written to 
the address specified in the TAR register
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if (time_elapsed >= 2 ms) return FAIL; //check
for acquire time out

if (ID != CM0_ID) return FAIL; //confirm SWD ID
of Cortex-M0 CPU. (0x0BB11477)

In this pseudo code, SWD_LineReset() is the standard ARM
command to reset the debug access port. It consists of more
than 49 SWDCK clock cycles with SWDIO high. The trans-
action must be completed by sending at least one SWDCK
clock cycle with SWDIO asserted LOW. This sequence syn-
chronizes the programmer and the chip. Read_DAP() refers
to the read of the IDCODE register in the debug port. The
sequence of line reset and IDCODE read should be
repeated until an OK ACK is received for the IDCODE read
or a timeout (2 ms) occurs. The SWD port is said to be in the
acquired state if an OK ACK is received within the time win-
dow and the IDCODE read matches with that of the Cortex-
M0 DAP.

19.5.2 SWD Programming Mode Entry

After the SWD port is acquired, the host must enter the
device programming mode within a specific time window.
This is done by setting the TEST_MODE bit (bit 31) in the
test mode control register (MODE register). The debug port
should also be configured before entering the device pro-
gramming mode. Timing specifications and pseudo code for
entering the programming mode are detailed in the CCG3
Device Programming Specifications   document.

19.5.3 SWD Programming Routines 
Executions

When the device is in programming mode, the external pro-
grammer can start sending the SWD packet sequence for
performing programming operations such as flash erase,
flash program, checksum verification, and so on. The pro-
gramming routines are explained in the Nonvolatile Memory
Programming chapter on page 197. The exact sequence of
calling the programming routines is given in the CCG3
Device Programming Specifications   document.

19.6 CCG3 SWD Debug Interface
Cortex-M0 DAP debugging features are classified into two
types: invasive debugging and noninvasive debugging. Inva-
sive debugging includes program halting and stepping,
breakpoints, and data watchpoints. Noninvasive debugging
includes instruction address profiling and device memory
access, which includes the flash memory, SRAM, and other
peripheral registers.

The DAP has three major debug subsystems:

■ Debug Control and Configuration registers

■ Breakpoint Unit (BPU) – provides breakpoint support

■ Debug Watchpoint (DWT) – provides watchpoint sup-
port. Trace is not supported in Cortex-M0 Debug.

See the ARMv6-M Architecture Reference Manual for com-
plete details on the debug architecture. 

19.6.1 Debug Control and Configuration 
Registers

The debug control and configuration registers are used to
execute firmware debugging. The registers and their key
functions are as follows. See the ARMv6-M Architecture
Reference Manual for complete bit level definitions of these
registers.

■ Debug Halting Control and Status Register 
(CM0_DHCSR) – This register contains the control bits 
to enable debug, halt the CPU, and perform a single-
step operation. It also includes status bits for the debug 
state of the processor.

■ Debug Fault Status Register (CM0_DFSR) – This regis-
ter describes the reason a debug event has occurred. 
This includes debug events, which are caused by a CPU 
halt, breakpoint event, or watchpoint event.

■ Debug Core Register Selector Register (CM0_DCRSR) 
– This register is used to select the general-purpose reg-
ister in the Cortex-M0 CPU to which a read or write oper-
ation must be performed by the external debugger.

■ Debug Core Register Data Register (CM0_DCRDR) – 
This register is used to store the data to write to or read 
from the register selected in the CM0_DCRSR register.

■ Debug Exception and Monitor Control Register 
(CM0_DEMCR) – This register contains the enable bits 
for global debug watchpoint (DWT) block enable, reset 
vector catch, and hard fault exception catch.

19.6.2 Breakpoint Unit (BPU)

The BPU provides breakpoint functionality on instruction
fetches. The Cortex-M0 DAP in  CCG3 supports up to four
hardware breakpoints. Along with the hardware breakpoints,
any number of software breakpoints can be created by using
the BKPT instruction in the Cortex-M0. The BPU has two
types of registers.

■ The breakpoint control register (CM0_BP_CTRL) is used 
to enable the BPU and store the number of hardware 
breakpoints supported by the debug system (four for 
CM0 DAP in  CCG3).

■ Each hardware breakpoint has a Breakpoint Compare 
Register (CM0_BP_COMPx). It contains the enable bit 
for the breakpoint, the compare address value, and the 
match condition that will trigger a breakpoint debug 
event. The typical use case is that when an instruction 
fetch address matches the compare address of a break-
point, a breakpoint event is generated and the processor 
is halted.

19.6.3 Data Watchpoint (DWT)

The DWT provides watchpoint support on a data address
access or a program counter (PC) instruction address.
Trace is not supported by the Cortex-M0 in  CCG3. The
DWT supports two watchpoints. It also provides external
program counter sampling using a PC sample register,
which can be used for noninvasive coarse profiling of the

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
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program counter. The most important registers in the DWT
are as follows.

■ The watchpoint compare (CM0_DWT_COMPx) registers 
store the compare values that are used by the watch-
point comparator for the generation of watchpoint 
events. Each watchpoint has an associated 
DWT_COMPx register.

■ The watchpoint mask (CM0_DWT_MASKx) registers 
store the ignore masks applied to the address range 
matching in the associated watchpoints.

■ The watchpoint function (CM0_DWT_FUNCTIONx) reg-
isters store the conditions that trigger the watchpoint 
events. They may be program counter watchpoint event 
or data address read/write access watchpoint events. A 
status bit is also set when the associated watchpoint 
event has occurred.

■ The watchpoint comparator PC sample register 
(CM0_DWT_PCSR) stores the current value of the pro-
gram counter. This register is used for coarse, non-inva-
sive profiling of the program counter register.

19.6.4 Debugging the CCG3 Device

The host debugs the target  CCG3 device by accessing the
debug control and configuration registers, registers in the
BPU, and registers in the DWT. All registers are accessed
through the SWD interface; the SWD debug port (SW-DP) in
the Cortex-M0 DAP converts the SWD packets to appropri-
ate register access through the DAP-AHB interface.

The first step in debugging the target  CCG3 device is to
acquire the SWD port. The acquire sequence consists of an
SWD line reset sequence and read of the DAP SWDID
through the SWD interface. The SWD port is acquired when
the correct CM0 DAP SWDID is read from the target device.
For the debug transactions to occur on the SWD interface,
the corresponding pins should not be used for any other pur-
pose. See the I/O System chapter on page 49 to understand
how to configure the SWD port pins, allowing them to be
used only for SWD interface or for other functions such as
GPIO. If debugging is required, the SWD port pins should
not be used for other purposes. If only programming support
is needed, the SWD pins can be used for other purposes. 

When the SWD port is acquired, the external debugger sets
the C_DEBUGEN bit in the DHCSR register to enable
debugging. Then, the different debugging operations such
as stepping, halting, breakpoint configuration, and watch-
point configuration are carried out by writing to the appropri-
ate registers in the debug system.

Debugging the target device is also affected by the overall
device protection setting, which is explained in the Device
Security chapter on page 75. Only the OPEN protected
mode supports device debugging. The external debugger
and the target device connection is not lost for a device tran-
sition from Active mode to either Sleep or Deep-Sleep
modes. When the device enters the Active mode from either
Deep-Sleep or Sleep modes, the debugger can resume its
actions without initiating a connect sequence again.

19.7 Registers

Table 19-5.  List of Registers

Register Name Description

CM0_DHCSR
Debug Halting Control and Status 
Register

CM0_DFSR Debug Fault Status Register

CM0_DCRSR
Debug Core Register Selector Regis-
ter

CM0_DCRDR Debug Core Register Data Register

CM0_DEMCR
Debug Exception and Monitor Control 
Register

CM0_BP_CTRL Breakpoint control register

CM0_BP_COMPx Breakpoint Compare Register

CM0_DWT_COMPx Watchpoint Compare Register

CM0_DWT_MASKx Watchpoint Mask Register

CM0_DWT_FUNCTIONx Watchpoint Function Register

CM0_DWT_PCSR
Watchpoint Comparator PC Sample 
Register
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20.   Nonvolatile Memory Programming

Nonvolatile memory programming refers to the programming of flash memory in the  CCG3 device. This chapter explains the
different functions that are part of device programming, such as erase, write, program, and checksum calculation. Cypress-
supplied programmers and other third-party programmers can use these functions to program the  CCG3 device with the data
in an application hex file. They can also be used to perform bootload operations where the CPU will update a portion of the
flash memory.

20.1 Features
■ Supports programming through the debug and access port (DAP) and Cortex-M0 CPU

■ Supports both blocking and non-blocking flash program and erase operations from the Cortex-M0 CPU

20.2 Functional Description
Flash programming operations are implemented as system calls. System calls are executed out of SROM in the privileged
mode of operation. The user has no access to read or modify the SROM code. The DAP or the CM0 CPU requests the
system call by writing the function opcode and parameters to the System Performance Controller Interface (SPCIF) input
registers, and then requesting the SROM to execute the function. Based on the function opcode, the System Performance
Controller (SPC) executes the corresponding system call from SROM and updates the SPCIF status register. The DAP or the
CPU should read this status register for the pass/fail result of the function execution. As part of function execution, the code in
SROM interacts with the SPCIF to do the actual flash programming operations.

 CCG3 flash is programmed using a Program Erase Program (PEP) sequence. The flash cells are all programmed to a known
state, erased, and then the selected bits are programmed. This increases the life of the flash by balancing the stored charge.
When writing to flash the data is first copied to a page latch buffer. The flash write functions are then used to transfer this data
to flash.

External programmers program the flash memory in  CCG3 using the SWD protocol by sending the commands to the Debug
and Access Port (DAP). The programming sequence for the  CCG3 device with an external programmer is given in the CCG3
Device Programming Specifications  . Flash memory can also be programmed by the CM0 CPU by accessing the relevant
registers through the AHB interface. This type of programming is typically used to update a portion of the flash memory as
part of a bootload operation, or other application requirements, such as updating a lookup table stored in the flash memory.
All write operations to flash memory, whether from the DAP or from the CPU, are done through the SPCIF.

Note It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or unexpected
changes may be made to portions of the flash. Reset sources (see the Reset System chapter on page 73) include XRES pin,
software reset, and watchdog; make sure that these are not inadvertently activated. In addition, the low-voltage detect circuits
should be configured to generate an interrupt instead of a reset.
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20.3 System Call Implementation
A system call consists of the following items:

■ Opcode: A unique 8-bit opcode

■ Parameters: Two 8-bit parameters are mandatory for all 
system calls. These parameters are referred to as key1 
and key2, and are defined as follows:

key1 = 0xB6

key2 = 0xD3 + Opcode

The two keys are passed to ensure that the user system 
call is not initiated by mistake. If the key1 and key2 
parameters are not correct, the SROM does not execute 
the function, and returns an error code. Apart from these 
two parameters, additional parameters may be required 
depending on the specific function being called. 

■ Return Values: Some system calls also return a value on 
completion of their execution, such as the silicon ID or a 
checksum.

■ Completion Status: Each system call returns a 32-bit sta-
tus that the CPU or DAP can read to verify success or 
determine the reason for failure.

20.4 Blocking and Non-Blocking 
System Calls

System call functions can be categorized as blocking or
non-blocking based on the nature of their execution. Block-
ing system calls are those where the CPU cannot execute
any other task in parallel other than the execution of the sys-
tem call. When a blocking system call is called from a pro-
cess, the CPU jumps to the code corresponding in SROM.
When the execution is complete, the original thread execu-
tion resumes. Non-blocking system calls allow the CPU to
execute some other code in parallel and communicate the
completion of interim system call tasks to the CPU through
an interrupt. 

Non-blocking system calls are only used when the CPU initi-
ates the system call. The DAP will only use system calls dur-
ing the programming mode and the CPU is halted during this
process. 

The three non-blocking system calls are Non-Blocking Write
Row, Non-Blocking Program Row, and Resume Non-Block-
ing, respectively. All other system calls are blocking. 

Because the CPU cannot execute code from flash while
doing an erase or program operation on the flash, the non-
blocking system calls can only be called from a code execut-
ing out of SRAM. If the non-blocking functions are called
from flash memory, the result is undefined and may return a
bus error and trigger a hard fault when the flash fetch opera-
tion is being done.

The System Performance Controller (SPC) is the block that
generates the properly sequenced high-voltage pulses
required for erase and program operations of the flash mem-
ory. When a non-blocking function is called from SRAM, the
SPC timer triggers its interrupt when each of the sub-opera-
tions in a write or program operation is complete. Call the

Resume Non-Blocking function from the SPC interrupt ser-
vice routine (ISR) to ensure that the subsequent steps in the
system call are completed. Because the CPU can execute
code only from the SRAM when a non-blocking write or pro-
gram operation is being done, the SPC ISR should also be
located in the SRAM. The SPC interrupt is triggered once in
the case of a non-blocking program function or thrice in a
non-blocking write operation. The Resume Non-Blocking
function call done in the SPC ISR is called once in a non-
blocking program operation and thrice in a non-blocking
write operation.

The pseudo code for using a non-blocking write system call
and executing user code out of SRAM is given later in this
chapter.

20.4.1 Performing a System Call

The steps to initiate a system call are as follows:

1. Set up the function parameters: The two possible meth-
ods for preparing the function parameters (key1, key2, 
additional parameters) are:

a. Write the function parameters to the 
CPUSS_SYSARG register: This method is used for 
functions that retrieve their parameters from the 
CPUSS_SYSARG register. The 32-bit 
CPUSS_SYSARG register must be written with the 
parameters in the sequence specified in the respec-
tive system call table. 

b. Write the function parameters to SRAM: This method 
is used for functions that retrieve their parameters 
from SRAM. The parameters should first be written in 
the specified sequence to consecutive SRAM loca-
tions. Then, the starting address of the SRAM, which 
is the address of the first parameter, should be writ-
ten to the CPUSS_SYSARG register. This starting 
address should always be a word-aligned (32-bit) 
address. The system call uses this address to fetch 
the parameters.

2. Specify the system call using its opcode and initiating 
the system call: The 8-bit opcode should be written to 
the SYSCALL_COMMAND bits ([15:0]) in the 
CPUSS_SYSREQ register. The opcode is placed in the 
lower eight bits [7:0] and 0x00 be written to the upper 
eight bits [15:8]. To initiate the system call, set the 
SYSCALL_REQ bit (31) in the CPUSS_SYSREG regis-
ter. Setting this bit triggers a non-maskable interrupt that 
jumps the CPU to the SROM code referenced by the 
opcode parameter.

3. Wait for the system call to finish executing: When the 
system call begins execution, it sets the PRIVILEGED bit 
in the CPUSS_SYSREQ register. This bit can be set 
only by the system call, not by the CPU or DAP. The 
DAP should poll the PRIVILEGED and SYSCALL_REQ 
bits in the CPUSS_SYSREG register continuously to 
check whether the system call is completed. Both these 
bits are cleared on completion of the system call. The 
maximum execution time is one second. If these two bits 
are not cleared after one second, the operation should 
be considered a failure and aborted without executing 
the following steps. Note that unlike the DAP, the CPU 
application code cannot poll these bits during system call 
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execution. This is because the CPU executes code out 
of the SROM during the system call. The application 
code can check only the final function pass/fail status 
after the execution returns from SROM.

4. Check the completion status: After the PRIVILEGED and 
SYSCALL_REQ bits are cleared to indicate completion 
of the system call, the CPUSS_SYSARG register should 
be read to check for the status of the system call. If the 
32-bit value read from the CPUSS_SYSARG register is 

0xAXXXXXXX (where ‘X’ denotes don’t care hex val-
ues), the system call was successfully executed. For a 
failed system call, the status code is 0xF00000YY where 
YY indicates the reason for failure. See Table 20-1 for 
the complete list of status codes and their description.

5. Retrieve the return values: For system calls that return 
values such as silicon ID and checksum, the CPU or 
DAP should read the CPUSS_SYSREG and 
CPUSS_SYSARG registers to fetch the values returned.

20.5 System Calls
Table 20-1 lists all the system calls supported in  CCG3 along with the function description and availability in device protec-
tion modes. See the Device Security chapter on page 75 for more information on the device protection settings. Note that
some system calls cannot be called by the CPU as given in the table. Detailed information on each of the system calls follows
the table.

20.5.1 Silicon ID

This function returns a 12-bit family ID, 16-bit silicon ID, and an 8-bit revision ID, and the current device protection mode.
These values are returned to the CPUSS_SYSARG and CPUSS_SYSREQ registers. Parameters are passed through the
CPUSS_SYSARG and CPUSS_SYSREQ registers.

Parameters

Table 20-1.  List of System Calls

System Call Description
DAP Access CPU 

AccessOpen Protected Kill

Silicon ID Returns the device Silicon ID, Family ID, and Revision ID ✔ ✔ – ✔

Load Flash Bytes
Loads data to the page latch buffer to be programmed later into the 
flash row, in 1 byte granularity, for a row size of 64 bytes

✔ – – ✔

Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer

✔ – – ✔

Program Row Programs a row of flash with data in the page latch buffer ✔ – – ✔

Erase All
Erases all user code in the flash array; the flash row-level protection 
data in the supervisory flash area

✔ – –

Checksum
Calculates the checksum over the entire flash memory (user and super-
visory area) or checksums a single row of flash

✔ ✔ – ✔

Write Protection
This programs both flash row-level protection settings and chip-level 
protection settings into the supervisory flash (row 0)

✔ ✔ –

Non-Blocking Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer. During program/erase pulses, the user may execute code from 
SRAM. This function is meant only for CPU access

– – – ✔

Non-Blocking Program 
Row

Programs a row of flash with data in the page latch buffer. During pro-
gram/erase pulses, the user may execute code from SRAM. This func-
tion is meant only for CPU access

– – – ✔

Resume Non-Blocking
Resumes a non-blocking write row or non-blocking program row. This 
function is meant only for CPU access

– – – ✔

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD3 Key2
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Return

20.5.2 Configure Clock

This function initializes the clock necessary for flash programming and erasing operations. This API is used to ensure that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz prior to calling the flash write and flash
erase APIs. The flash write and erase APIs will exit without acting on the flash and return the "Invalid Pump Clock Frequency"
status if the IMO is the source of the charge pump clock and is not 48 MHz. 

Parameters

Return

Bits [31:16] 0x0000 Not used

CPUSS_SYSREQ register

Bits [15:0] 0x0000 Silicon ID opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [7:0] Silicon ID Lo See the CCG3 device datasheet for Silicon ID values for dif-
ferent part numbersBits [15:8] Silicon ID Hi

Bits [19:16] Minor Revision Id See the CCG3 Device Programming Specifications   for these 
valuesBits [23:20] Major Revision Id

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28] 0xA Success status code 

CPUSS_SYSREQ register

Bits [11:0] Family ID Family ID is 0x093 for  CCG3

Bits [15:12] Chip Protection See the Device Security chapter on page 75

Bits [31:16] 0xXXXX Not used

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xE8 Key2

Bits [31:16] 0xXXXX Don’t care

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0015 Configure clock opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description
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20.5.3 Load Flash Bytes

This function loads the page latch buffer with data to be programmed into a row of flash. The load size can range from 1-byte
to the maximum number of bytes in a flash row, which is 64 bytes. Data is loaded into the page latch buffer starting at the
location specified by the “Byte Addr” input parameter. Data loaded into the page latch buffer remains until a program opera-
tion is performed, which clears the page latch contents. The parameters for this function, including the data to be loaded into
the page latch, are written to the SRAM; the starting address of the SRAM data is written to the CPUSS_SYSARG register.
Note that the starting parameter address should be a word-aligned address.

Parameters

Return

20.5.4 Write Row

This function erases and then programs the addressed row of flash with the data in the page latch buffer. If all data in the
page latch buffer is 0, then the program is skipped. The parameters for this function are stored in SRAM. The start address of

Address Value to be Written Description

SRAM Address - 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD7 Key2

Bits [23:16] Byte Addr

Start address of page latch buffer to write data

0x00 – Byte 0 of latch buffer

0x40 - Byte 64 of latch buffer

Bits [31:24] Flash Macro Select

0x00 – Flash Macro 0

0x01 – Flash Macro 1

(Refer to the Cortex-M0 CPU chapter on page 29 for the 
number of flash macros in the device)

SRAM Address- 32’hYY + 0x04

Bits [7:0] Load Size

Number of bytes to be written to the page latch buffer.

0x00 – 1 byte

0x3F - 64 bytes

Bits [15:8] 0xXX Don’t care parameter

Bits [23:16] 0xXX Don’t care parameter

Bits [31:24] 0xXX Don’t care parameter

SRAM Address- From (32’hYY + 0x08) to (32’hYY + 0x08 + Load Size)

Byte 0 Data Byte [0] First data byte to be loaded

. . .

. . .

Byte (Load size –1) Data Byte [Load size –1] Last data byte to be loaded

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0004 Load Flash Bytes opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 
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the stored parameters is written to the CPUSS_SYSARG register. This function clears the page latch buffer contents after the
row is programmed. 

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash Bytes function before
calling this function. This function can do a write operation only if the corresponding flash row is not write protected.

Note that the SROM does not modify, enable, or disable any clock during any flash operation. Refer to the
CLK_IMO_CONFIG register in the CCG3 Registers TRM for more information.

Parameters

Return

20.5.5 Program Row

This function programs the addressed row of the flash, with data in the page latch buffer. If all data in the page latch buffer is
0, then the program is skipped. The row must be in an erased state before calling this function. This clears the page latch buf-
fer contents after the row is programmed. 

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash Bytes function before
calling this function. The row must be in an erased state before calling this function. This function can do a program operation
only if the corresponding flash row is not write-protected.

Parameters

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD8 Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0005 Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xD9 Key2

Bits [31:16] Row ID
Row number to program

0x0000 – Row 0

CPUSS_SYSARG register



CCG3 TRM, Document No. 002-04130 Rev. ** 203

Nonvolatile Memory Programming

Return

20.5.6 Erase All

This function erases all the user code in the flash main arrays and the row-level protection data in supervisory flash row 0 of
each flash macro. 

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. This API can be called only from the DAP
in the programming mode and only if the chip protection mode is OPEN. If the chip protection mode is PROTECTED, then the
Write Protection API must be used by the DAP to change the protection settings to OPEN. Changing the protection setting
from PROTECTED to OPEN automatically does an erase all operation. 

Parameters

Return

20.5.7 Checksum

This function reads either the whole flash memory or a row of flash and returns the 24-bit sum of each byte read in that flash
region. When performing a checksum on the whole flash, the user code and supervisory flash regions are included. When
performing a checksum only on one row of flash, the flash row number is passed as a parameter. Bytes 2 and 3 of the param-
eters select whether the checksum is performed on the whole flash memory or a row of user code flash. 

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0006 Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDD Key2

Bits [31:16] 0xXXXX Don’t care

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that 
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x000A Erase All opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description
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Parameters

Return

20.5.8 Write Protection

This function programs both the flash row-level protection settings and the device protection settings in the supervisory flash
row. The flash row-level protection settings are programmed separately for each flash macro in the device. Each row has a
single protection bit. The total number of protection bytes is the number of flash rows divided by eight. The chip-level protec-
tion settings (1-byte) are stored in flash macro zero in the last byte location in row zero of the supervisory flash. The size of
the supervisory flash row is the same as the user code flash row size.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. The Load Flash Bytes function is used to
load the flash protection bytes of a flash macro into the page latch buffer corresponding to the macro. The starting address
parameter for the load function should be zero. The flash macro number should be one that needs to be programmed; the
number of bytes to load is the number of flash protection bytes in that macro.

Then, the Write Protection function is called, which programs the flash protection bytes from the page latch to be the corre-
sponding flash macro’s supervisory row. In flash macro zero, which also stores the device protection settings, the device level
protection setting is passed as a parameter in the CPUSS_SYSARG register. 

Parameters

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDE Key2

Bits [31:16] Row ID

Selects the flash row number on which the checksum operation is done

Row number – 16 bit flash row number

or

0x8000 – Checksum is performed on entire flash memory

CPUSS_SYSREQ register

Bits [15:0] 0x000B Checksum opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:24] 0xX Not used (don’t care) 

Bits [23:0] Checksum 24-bit checksum value of the selected flash region

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xE0 Key2

Bits [23:16] Device Protection Byte

Parameter applicable only for Flash Macro 0

0x01 – OPEN mode

0x02 – PROTECTED mode

0x04 – KILL mode
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Return

20.5.9 Non-Blocking Write Row

This function is used when a flash row needs to be written by the CM0 CPU in a non-blocking manner, so that the CPU can
execute code from SRAM while the write operation is being done. The explanation of non-blocking system calls is explained
in Blocking and Non-Blocking System Calls on page 198. 

The non-blocking write row system call has three phases: Pre-program, Erase, Program. Pre-program is the step in which all
of the bits in the flash row are written a ‘1’ in preparation for an erase operation. The erase operation clears all of the bits in
the row, and the program operation writes the new data to the row.

While each phase is being executed, the CPU can execute code from SRAM. When the non-blocking write row system call is
initiated, the user cannot call any system call function other than the Resume Non-Blocking function, which is required for
completion of the non-blocking write operation. After the completion of each phase, the SPC triggers its interrupt. In this inter-
rupt, call the Resume Non-Blocking system call.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. 

Note  The device firmware must not attempt to put the device to sleep during a non-blocking write row. This will reset the
page latch buffer and the flash will be written with all zeroes.

Call the Load Flash Bytes function before calling this function to load the data bytes that will be used for programming the
row. In addition, the non-blocking write row function can be called only from the SRAM. This is because the CM0 CPU cannot
execute code from flash while doing the flash erase program operations. If this function is called from the flash memory, the
result is undefined, and may return a bus error and trigger a hard fault when the flash fetch operation is being done.

Parameters

Bits [31:24] Flash Macro Select
0x00 – Flash Macro 0

0x01 – Flash Macro 1

CPUSS_SYSREQ register

Bits [15:0] 0x000D Write Protection opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:24] 0xX Not used (don’t care) 

Bits [23:0] 0x000000

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDA Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first function 
parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0007 Non-Blocking Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Value to be Written Description
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Return

20.5.10 Non-Blocking Program Row

This function is used when a flash row needs to be programmed by the CM0 CPU in a non-blocking manner, so that the CPU
can execute code from the SRAM when the program operation is being done. The explanation of non-blocking system calls is
explained in Blocking and Non-Blocking System Calls on page 198. While the program operation is being done, the CPU can
execute code from the SRAM. When the non-blocking program row system call is called, the user cannot call any other sys-
tem call function other than the Resume Non-Blocking function, which is required for the completion of the non-blocking write
operation. 

Unlike the Non-Blocking Write Row system call, the Program system call only has a single phase. Therefore, the Resume
Non-Blocking function only needs to be called once from the SPC interrupt when using the Non-Blocking Program Row sys-
tem call.

Usage Requirements: Call the Configure Clock API before calling this function. The Configure Clock API ensures that the
charge pump clock (clk_pump) and the HF clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash Bytes function before
calling this function to load the data bytes that will be used for programming the row. In addition, the non-blocking program
row function can be called only from SRAM. This is because the CM0 CPU cannot execute code from flash while doing flash
program operations. If this function is called from flash memory, the result is undefined, and may return a bus error and trigger
a hard fault when the flash fetch operation is being done.

Parameters

Return

20.5.11 Resume Non-Blocking

This function completes the additional phases of erase and program that were started using the non-blocking write row and
non-blocking program row system calls. This function must be called thrice following a call to Non-Blocking Write Row or once
following a call to Non-Blocking Program Row from the SPC ISR. No other system calls can execute until all phases of the
program or erase operation are complete. More details on the procedure of using the non-blocking functions are explained in
Blocking and Non-Blocking System Calls on page 198.

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDB Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0008 Non-Blocking Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 
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Parameters

Return

20.6 System Call Status
At the end of every system call, a status code is written over the arguments in the CPUSS_SYSARG register. A success sta-
tus is 0xAXXXXXXX, where X indicates don’t care values or return data in the case of the system calls that return a value. A
failure status is indicated by 0xF00000XX, where XX is the failure code.

 

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1 

Bits [15:8] 0xDC Key2

Bits [31:16] 0xXXXX Don’t care. Not used by SROM

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first 
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0009 Resume Non-Blocking opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code 

Bits [27:0] 0xXXXXXXX Not used (don’t care) 

Table 20-2.  System Call Status Codes

Status Code 
(32-bit value in 

CPUSS_SYSARG register)
Description

AXXXXXXXh
Success – The “X” denotes a don’t care value, which has a value of ‘0’ returned by the SROM, unless the 
API returns parameters directly to the CPUSS_SYSARG register. 

F0000001h Invalid Chip Protection Mode – This API is not available during the current chip protection mode.

F0000003h
Invalid Page Latch Address – The address within the page latch buffer is either out of bounds or the size pro-
vided is too large for the page address.

F0000004h Invalid Address – The row ID or byte address provided is outside of the available memory. 

F0000005h Row Protected – The row ID provided is a protected row.

F0000007h
Resume Completed – All non-blocking APIs have completed. The resume API cannot be called until the next 
non-blocking API. 

F0000008h
Pending Resume – A non-blocking API was initiated and must be completed by calling the resume API, 
before any other API’s may be called. 

F0000009h
System Call Still In Progress – A resume or non-blocking is still in progress. The SPC ISR must fire before 
attempting the next resume.

F000000Ah Checksum Zero Failed – The calculated checksum was not zero.
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20.7 Non-Blocking System Call Pseudo Code
This section contains pseudo code to demonstrate how to set up a non-blocking system call and execute code out of SRAM
during the flash programming operations.

#define REG(addr)(*((volatile uint32 *) (addr)))
#define CM0_ISER_REG REG( 0xE000E100 )
#define CPUSS_CONFIG_REGREG( 0x40100000 )
#define CPUSS_SYSREQ_REG REG( 0x40100004 )
#define CPUSS_SYSARG_REG REG( 0x40100008 )
#define ROW_SIZE              64

//Variable to keep track of how many times SPC ISR is triggered
__ram int iStatusInt = 0x00;

__flash int main(void)
{
   DoUserStuff();

   //CM0 interrupt enable bit for spc interrupt enable
   CM0_ISER_REG |= 0x00000040;

   //Set CPUSS_CONFIG.VECS_IN_RAM because SPC ISR should be in SRAM
   CPUSS_CONFIG_REG |= 0x00000001;
   //Call non-blocking write row API

   NonBlockingWriteRow();

   //End Program
   while(1);
}

__sram void SpcIntHandler(void)
{
   /* Call Resume API */

   // Write key1, key2 parameters to SRAM
   REG( 0x20000000 ) = 0x0000DCB6;

   //Write the address of key1 to the CPUSS_SYSARG reg
   CPUSS_SYSARG_REG = 0x20000000;

   //Write the API opcode = 0x09 to the CPUSS_SYSREQ.COMMAND
   //register and assert the sysreq bit
   CPUSS_SYSREQ_REG = 0x80000009;

   iStatusInt ++; // Number of times the ISR has triggered
}

__sram void NonBlockingWriteRow(void)
{

int iter;

/*Load the Flash page latch with data to write*/

F000000Bh Invalid Opcode – The opcode is not a valid API opcode.

F000000Ch Key Opcode Mismatch – The opcode provided does not match key1 and key2. 

F000000Eh Invalid Start Address – The start address is greater than the end address provided. 

F0000012h
Invalid Pump Clock Frequency - IMO must be set to 48 MHz and HF clock source to the IMO clock source 
before flash write/erase operations.

Table 20-2.  System Call Status Codes

Status Code 
(32-bit value in 

CPUSS_SYSARG register)
Description



CCG3 TRM, Document No. 002-04130 Rev. ** 209

Nonvolatile Memory Programming

//Write key1, key2, byte address, 
 //and macro sel parameters to SRAM

REG( 0x20000000 ) = 0x0000D7B6;

//Write load size param (64 bytes) to SRAM
REG( 0x20000004 ) = 0x0000003F;

for(i = 0; i < ROW_SIZE/4; i += 1);
{

REG( 0x20000008 + i*4 ) = 0xDADADADA;
}

//Write the address of the key1 param to CPUSS_SYSARG reg
CPUSS_SYSARG_REG = 0x20000000;

//Write the API opcode = 0x04 to CPUSS_SYSREQ.COMMAND
//register and assert the sysreq bit
CPUSS_SYSREQ_REG = 0x80000004;

/*Perform Non-Blocking Write Row on Row 200 as an example */

//Write key1, key2, row id to SRAM
//row id = 0xC8 -> which is row 200
REG( 0x20000000 ) = 0x00C8DAB6;

//Write the address of the key1 param to CPUSS_SYSARG reg
CPUSS_SYSARG_REG = 0x20000000;

//Write the API opcode = 0x07 to CPUSS_SYSREQ.COMMAND
//register and assert the sysreq bit
CPUSS_SYSREQ_REG = 0x80000007;

//Execute user code until iStatusInt equals 3 to signify
//3 SPC interrupts have happened. This should be 1 in case
// of non-blocking program System Call 
while( iStatusInt != 0x03 )
{

DoOtherUserStuff();
} 

//Get the success or failure status of System Call
syscall_status = CPUSS_SYSARG_REG;

}

In the code, the CM0 exception table is configured to be in SRAM by writing 0x01 to the CPUSS_CONFIG register. The
SRAM exception table should have the vector address of the SPC interrupt as the address of the SpcIntHandler() function,
which is also defined to be in SRAM. See the Interrupts chapter on page 35 for details on configuring the CM0 exception table
to be in SRAM. The pseudo code for a non-blocking program system call is also similar, except that the function opcode and
parameters will differ and the iStatusInt variable should be polled for 1 instead of 3. This is because the SPC ISR will be trig-
gered only once for a non-blocking program system call.
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The Glossary section explains the terminology used in this technical reference manual. Glossary terms are characterized in
bold, italic font throughout the text of this manual.

A

accumulator In a CPU, a register in which intermediate results are stored. Without an accumulator, it is neces-
sary to write the result of each calculation (addition, subtraction, shift, and so on.) to main mem-
ory and read them back. Access to main memory is slower than access to the accumulator,
which usually has direct paths to and from the arithmetic and logic unit (ALU). 

active high 1. A logic signal having its asserted state as the logic 1 state.

2. A logic signal having the logic 1 state as the higher voltage of the two states.

active low 1. A logic signal having its asserted state as the logic 0 state.

2. A logic signal having its logic 1 state as the lower voltage of the two states: inverted logic.

address The label or number identifying the memory location (RAM, ROM, or register) where a unit of
information is stored.

algorithm A procedure for solving a mathematical problem in a finite number of steps that frequently
involve repetition of an operation.

ambient temperature The temperature of the air in a designated area, particularly the area surrounding the device.

analog See analog signals.

analog blocks The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous
time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain
stages, and much more.

analog output An output that is capable of driving any voltage between the supply rails, instead of just a logic 1
or logic 0.

analog signals A signal represented in a continuous form with respect to continuous times, as contrasted with a
digital signal represented in a discrete (discontinuous) form in a sequence of time.

analog-to-digital (ADC) A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,
an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs
the reverse operation.
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AND See Boolean Algebra.

API (Application Pro-
gramming Interface)

A series of software routines that comprise an interface between a computer application and
lower-level services and functions (for example, user modules and libraries). APIs serve as build-
ing blocks for programmers that create software applications.

array An array, also known as a vector or list, is one of the simplest data structures in computer pro-
gramming. Arrays hold a fixed number of equally-sized data elements, generally of the same
data type. Individual elements are accessed by index using a consecutive range of integers, as
opposed to an associative array. Most high-level programming languages have arrays as a built-
in data type. Some arrays are multi-dimensional, meaning they are indexed by a fixed number of
integers; for example, by a group of two integers. One- and two-dimensional arrays are the most
common. Also, an array can be a group of capacitors or resistors connected in some common
form.

assembly A symbolic representation of the machine language of a specific processor. Assembly language
is converted to machine code by an assembler. Usually, each line of assembly code produces
one machine instruction, though the use of macros is common. Assembly languages are consid-
ered low-level languages; where as C is considered a high-level language.

asynchronous A signal whose data is acknowledged or acted upon immediately, irrespective of any clock sig-
nal.

attenuation The decrease in intensity of a signal as a result of absorption of energy and of scattering out of
the path to the detector, but not including the reduction due to geometric spreading. Attenuation
is usually expressed in dB.

B

bandgap reference A stable voltage reference design that matches the positive temperature coefficient of VT with the
negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) refer-
ence.

bandwidth 1. The frequency range of a message or information processing system measured in hertz.

2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or 
loss); it is sometimes represented more specifically as, for example, full width at half maxi-
mum.

bias 1. A systematic deviation of a value from a reference value.

2. The amount by which the average of a set of values departs from a reference value.

3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a 
reference level to operate the device.

bias current The constant low-level DC current that is used to produce a stable operation in amplifiers. This
current can sometimes be changed to alter the bandwidth of an amplifier.
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binary The name for the base 2 numbering system. The most common numbering system is the base
10 numbering system. The base of a numbering system indicates the number of values that may
exist for a particular positioning within a number for that system. For example, in base 2, binary,
each position may have one of two values (0 or 1). In the base 10, decimal, numbering system,
each position may have one of ten values (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).

bit A single digit of a binary number. Therefore, a bit may only have a value of ‘0’ or ‘1’. A group of 8
bits is called a byte. Because the  CCG3's M8CP is an 8-bit microcontroller, the  CCG3 devices's
native data chunk size is a byte.

bit rate (BR) The number of bits occurring per unit of time in a bit stream, usually expressed in bits per second
(bps). 

block 1. A functional unit that performs a single function, such as an oscillator.

2. A functional unit that may be configured to perform one of several functions, such as a digital  
CCG3 block or an analog  CCG3 block.

Boolean Algebra In mathematics and computer science, Boolean algebras or Boolean lattices, are algebraic struc-
tures which "capture the essence" of the logical operations AND, OR and NOT as well as the set
theoretic operations union, intersection, and complement. Boolean algebra also defines a set of
theorems that describe how Boolean equations can be manipulated. For example, these theo-
rems are used to simplify Boolean equations, which will reduce the number of logic elements
needed to implement the equation.

The operators of Boolean algebra may be represented in various ways. Often they are simply
written as AND, OR, and NOT. In describing circuits, NAND (NOT AND), NOR (NOT OR), XNOR
(exclusive NOT OR), and XOR (exclusive OR) may also be used. Mathematicians often use +
(for example, A+B) for OR and for AND (for example, A*B) (in some ways those operations are
analogous to addition and multiplication in other algebraic structures) and represent NOT by a
line drawn above the expression being negated (for example, ~A, A_, !A). 

break-before-make The elements involved go through a disconnected state entering (‘break”) before the new con-
nected state (“make”).

broadcast net A signal that is routed throughout the microcontroller and is accessible by many blocks or sys-
tems.

buffer 1. A storage area for data that is used to compensate for a speed difference, when transferring 
data from one device to another. Usually refers to an area reserved for I/O operations, into 
which data is read, or from which data is written.

2. A portion of memory set aside to store data, often before it is sent to an external device or as 
it is received from an external device.

3. An amplifier used to lower the output impedance of a system.

bus 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets 
with similar routing patterns.

2. A set of signals performing a common function and carrying similar data. Typically repre-
sented using vector notation; for example, address[7:0].

3. One or more conductors that serve as a common connection for a group of related devices.

byte A digital storage unit consisting of 8 bits.
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C

C A high-level programming language.

capacitance A measure of the ability of two adjacent conductors, separated by an insulator, to hold a charge
when a voltage differential is applied between them. Capacitance is measured in units of Farads.

capture To extract information automatically through the use of software or hardware, as opposed to
hand-entering of data into a computer file.

chaining Connecting two or more 8-bit digital blocks to form 16-, 24-, and even 32-bit functions. Chaining
allows certain signals such as Compare, Carry, Enable, Capture, and Gate to be produced from
one block to another.

checksum The checksum of a set of data is generated by adding the value of each data word to a sum. The
actual checksum can simply be the result sum or a value that must be added to the sum to gen-
erate a pre-determined value.

clear To force a bit/register to a value of logic ‘0’.

clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is
sometimes used to synchronize different logic blocks.

clock generator A circuit that is used to generate a clock signal.

CMOS The logic gates constructed using MOS transistors connected in a complementary manner.
CMOS is an acronym for complementary metal-oxide semiconductor.

comparator An electronic circuit that produces an output voltage or current whenever two input levels simul-
taneously satisfy predetermined amplitude requirements.

compiler A program that translates a high-level language, such as C, into machine language.

configuration In a computer system, an arrangement of functional units according to their nature, number, and
chief characteristics. Configuration pertains to hardware, software, firmware, and documentation.
The configuration will affect system performance.

configuration space In  CCG3 devices, the register space accessed when the XIO bit, in the CPU_F register, is set to
‘1’.

crowbar A type of over-voltage protection that rapidly places a low-resistance shunt (typically an SCR)
from the signal to one of the power supply rails, when the output voltage exceeds a predeter-
mined value.

CPUSS CPU subsystem

crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelec-
tric crystal is less sensitive to ambient temperature than other circuit components.
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cyclic redundancy 
check (CRC)

A calculation used to detect errors in data communications, typically performed using a linear
feedback shift register. Similar calculations may be used for a variety of other purposes such as
data compression.

D

data bus A bi-directional set of signals used by a computer to convey information from a memory location
to the central processing unit and vice versa. More generally, a set of signals used to convey
data between digital functions.

data stream A sequence of digitally encoded signals used to represent information in transmission.

data transmission Sending data from one place to another by means of signals over a channel.

debugger A hardware and software system that allows the user to analyze the operation of the system
under development. A debugger usually allows the developer to step through the firmware one
step at a time, set break points, and analyze memory.

dead band A period of time when neither of two or more signals are in their active state or in transition.

decimal A base-10 numbering system, which uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 (called digits)
together with the decimal point and the sign symbols + (plus) and - (minus) to represent num-
bers.

default value Pertaining to the pre-defined initial, original, or specific setting, condition, value, or action a sys-
tem will assume, use, or take in the absence of instructions from the user.

device The device referred to in this manual is the  CCG3 device, unless otherwise specified.

die An non-packaged integrated circuit (IC), normally cut from a wafer.

digital A signal or function, the amplitude of which is characterized by one of two discrete values: ‘0’ or
‘1’.

digital blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC gen-
erator, pseudo-random number generator, or SPI.

digital logic A methodology for dealing with expressions containing two-state variables that describe the
behavior of a circuit or system.

digital-to-analog (DAC) A device that changes a digital signal to an analog signal of corresponding magnitude. The ana-
log-to-digital (ADC) converter performs the reverse operation.

direct access The capability to obtain data from a storage device, or to enter data into a storage device, in a
sequence independent of their relative positions by means of addresses that indicate the physi-
cal location of the data. 

duty cycle The relationship of a clock period high time to its low time, expressed as a percent.
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E

External Reset 
(XRES_N)

An active high signal that is driven into the  CCG3 device. It causes all operation of the CPU and
blocks to stop and return to a pre-defined state.

F

falling edge A transition from a logic 1 to a logic 0. Also known as a negative edge.

feedback The return of a portion of the output, or processed portion of the output, of a (usually active)
device to the input.

filter A device or process by which certain frequency components of a signal are attenuated.

firmware The software that is embedded in a hardware device and executed by the CPU. The software
may be executed by the end user, but it may not be modified.

flag Any of various types of indicators used for identification of a condition or event (for example, a
character that signals the termination of a transmission).

Flash An electrically programmable and erasable, volatile technology that provides users with the pro-
grammability and data storage of EPROMs, plus in-system erasability. Nonvolatile means that
the data is retained when power is off.

Flash bank A group of flash ROM blocks where flash block numbers always begin with ‘0’ in an individual
flash bank. A flash bank also has its own block level protection information.

Flash block The smallest amount of flash ROM space that may be programmed at one time and the smallest
amount of flash space that may be protected. A flash block holds 64 bytes.

flip-flop A device having two stable states and two input terminals (or types of input signals) each of
which corresponds with one of the two states. The circuit remains in either state until it is made to
change to the other state by application of the corresponding signal.

frequency The number of cycles or events per unit of time, for a periodic function.

G

gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively.
Gain is usually expressed in dB.

gate 1. A device having one output channel and one or more input channels, such that the output 
channel state is completely determined by the input channel states, except during switching 
transients.

2. One of many types of combinational logic elements having at least two inputs (for example, 
AND, OR, NAND, and NOR (also see Boolean Algebra)). 
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ground 1. The electrical neutral line having the same potential as the surrounding earth.

2. The negative side of DC power supply.

3. The reference point for an electrical system.

4. The conducting paths between an electric circuit or equipment and the earth, or some con-
ducting body serving in place of the earth.

H

hardware A comprehensive term for all of the physical parts of a computer or embedded system, as distin-
guished from the data it contains or operates on, and the software that provides instructions for
the hardware to accomplish tasks. 

hardware reset A reset that is caused by a circuit, such as a POR, watchdog reset, or external reset. A hardware
reset restores the state of the device as it was when it was first powered up. Therefore, all regis-
ters are set to the POR value as indicated in register tables throughout this document.

hexadecimal A base 16 numeral system (often abbreviated and called hex), usually written using the symbols
0-9 and A-F. It is a useful system in computers because there is an easy mapping from four bits
to a single hex digit. Thus, one can represent every byte as two consecutive hexadecimal digits.
Compare the binary, hex, and decimal representations:

bin = hex = dec

0000b = 0x0 = 0

0001b = 0x1 = 1

0010b = 0x2 = 2

...

1001b = 0x9 = 9

1010b = 0xA = 10

1011b = 0xB = 11

...

1111b = 0xF = 15

So the decimal numeral 79 whose binary representation is 0100 1111b can be written as 4Fh in
hexadecimal (0x4F).

high time The amount of time the signal has a value of ‘1’ in one period, for a periodic digital signal.
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I

I2C A two-wire serial computer bus by Phillips Semiconductors (now NXP Semiconductors). I2C is an
Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The
original system was created in the early 1980s as a battery control interface, but it was later used
as a simple internal bus system for building control electronics. I2C uses only two bidirectional
pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at
100 Kbps in standard mode and 400 Kbps in fast mode. 

idle state A condition that exists whenever user messages are not being transmitted, but the service is
immediately available for use.

impedance 1. The resistance to the flow of current caused by resistive, capacitive, or inductive devices in a 
circuit.

2. The total passive opposition offered to the flow of electric current. Note the impedance is 
determined by the particular combination of resistance, inductive reactance, and capacitive 
reactance in a given circuit.

input A point that accepts data, in a device, process, or channel.

input/output (I/O) A device that introduces data into or extracts data from a system.

instruction An expression that specifies one operation and identifies its operands, if any, in a programming
language such as C or assembly.

instruction mnemonics A set of acronyms that represent the opcodes for each of the assembly-language instructions, for
example, ADD, SUBB, MOV.

integrated circuit (IC) A device in which components such as resistors, capacitors, diodes, and transistors are formed
on the surface of a single piece of semiconductor.

interface The means by which two systems or devices are connected and interact with each other.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed.

interrupt service rou-
tine (ISR)

A block of code that normal code execution is diverted to when the M8CP receives a hardware
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code
block. Each ISR code block ends with the RETI instruction, returning the device to the point in
the program where it left normal program execution.

J

jitter 1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption 
that occurs on serial data streams.

2. The abrupt and unwanted variations of one or more signal characteristics, such as the inter-
val between successive pulses, the amplitude of successive cycles, or the frequency or 
phase of successive cycles.
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L

latency The time or delay that it takes for a signal to pass through a given circuit or network.

least significant bit 
(LSb)

The binary digit, or bit, in a binary number that represents the least significant value (typically the
right-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in LSb.

least significant byte 
(LSB)

The byte in a multi-byte word that represents the least significant values (typically the right-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in LSB.

Linear Feedback Shift 
Register (LFSR)

A shift register whose data input is generated as an XOR of two or more elements in the register
chain.

load The electrical demand of a process expressed as power (watts), current (amps), or resistance
(ohms).

logic function A mathematical function that performs a digital operation on digital data and returns a digital
value.

lookup table (LUT) A logic block that implements several logic functions. The logic function is selected by means of
select lines and is applied to the inputs of the block. For example: A 2 input LUT with 4 select
lines can be used to perform any one of 16 logic functions on the two inputs resulting in a single
logic output. The LUT is a combinational device; therefore, the input/output relationship is contin-
uous, that is, not sampled.

low time The amount of time the signal has a value of ‘0’ in one period, for a periodic digital signal.

low-voltage detect 
(LVD)

A circuit that senses VDDD and provides an interrupt to the system when VDDD falls below a
selected threshold.

M

M8CP An 8-bit Harvard Architecture microprocessor. The microprocessor coordinates all activity inside
a  CCG3 device by interfacing to the flash, SRAM, and register space.

macro A programming language macro is an abstraction, whereby a certain textual pattern is replaced
according to a defined set of rules. The interpreter or compiler automatically replaces the macro
instance with the macro contents when an instance of the macro is encountered. Therefore, if a
macro is used five times and the macro definition required 10 bytes of code space, 50 bytes of
code space will be needed in total.

mask 1. To obscure, hide, or otherwise prevent information from being derived from a signal. It is usu-
ally the result of interaction with another signal, such as noise, static, jamming, or other forms 
of interference.

2. A pattern of bits that can be used to retain or suppress segments of another pattern of bits, in 
computing and data processing systems.
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master device A device that controls the timing for data exchanges between two devices. Or when devices are
cascaded in width, the master device is the one that controls the timing for data exchanges
between the cascaded devices and an external interface. The controlled device is called the
slave device.

microcontroller An integrated circuit device that is designed primarily for control systems and products. In addi-
tion to a CPU, a microcontroller typically includes memory, timing circuits, and I/O circuitry. The
reason for this is to permit the realization of a controller with a minimal quantity of devices, thus
achieving maximal possible miniaturization. This in turn, will reduce the volume and the cost of
the controller. The microcontroller is normally not used for general-purpose computation as is a
microprocessor. 

mnemonic A tool intended to assist the memory. Mnemonics rely on not only repetition to remember facts,
but also on creating associations between easy-to-remember constructs and lists of data. A two
to four character string representing a microprocessor instruction.

mode A distinct method of operation for software or hardware. For example, the Digital  CCG3 block
may be in either counter mode or timer mode.

modulation A range of techniques for encoding information on a carrier signal, typically a sine-wave signal. A
device that performs modulation is known as a modulator.

Modulator A device that imposes a signal on a carrier.

MOS An acronym for metal-oxide semiconductor.

most significant bit 
(MSb)

The binary digit, or bit, in a binary number that represents the most significant value (typically the
left-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in MSb.

most significant byte 
(MSB)

The byte in a multi-byte word that represents the most significant values (typically the left-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in MSB.

multiplexer (mux) 1. A logic function that uses a binary value, or address, to select between a number of inputs 
and conveys the data from the selected input to the output.

2. A technique which allows different input (or output) signals to use the same lines at different 
times, controlled by an external signal. Multiplexing is used to save on wiring and I/O ports.

N

NAND See Boolean Algebra.

negative edge A transition from a logic 1 to a logic 0. Also known as a falling edge.

net The routing between devices.

nibble A group of four bits, which is one-half of a byte.

noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.

2. The random variations of one or more characteristics of any entity such as voltage, current, 
or data. 
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NOR See Boolean Algebra.

NOT See Boolean Algebra.

O

OR See Boolean Algebra.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

output The electrical signal or signals which are produced by an analog or digital block.

P

parallel The means of communication in which digital data is sent multiple bits at a time, with each simul-
taneous bit being sent over a separate line.

parameter Characteristics for a given block that have either been characterized or may be defined by the
designer.

parameter block A location in memory where parameters for the SSC instruction are placed prior to execution.

parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make the
sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).

path 1. The logical sequence of instructions executed by a computer.

2. The flow of an electrical signal through a circuit.

pending interrupts An interrupt that is triggered but not serviced, either because the processor is busy servicing
another interrupt or global interrupts are disabled.

phase The relationship between two signals, usually the same frequency, that determines the delay
between them. This delay between signals is either measured by time or angle (degrees).

pin A terminal on a hardware component. Also called lead.

pinouts The pin number assignment: the relation between the logical inputs and outputs of the  CCG3
device and their physical counterparts in the printed circuit board (PCB) package. Pinouts will
involve pin numbers as a link between schematic and PCB design (both being computer gener-
ated files) and may also involve pin names. 

port A group of pins, usually eight.

positive edge A transition from a logic 0 to a logic 1. Also known as a rising edge.

posted interrupts An interrupt that is detected by the hardware but may or may not be enabled by its mask bit.
Posted interrupts that are not masked become pending interrupts.
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Power On Reset (POR) A circuit that forces the  CCG3 device to reset when the voltage is below a pre-set level. This is
one type of hardware reset.

program counter The instruction pointer (also called the program counter) is a register in a computer processor
that indicates where in memory the CPU is executing instructions. Depending on the details of
the particular machine, it holds either the address of the instruction being executed, or the
address of the next instruction to be executed. 

protocol A set of rules. Particularly the rules that govern networked communications.

pulse A rapid change in some characteristic of a signal (for example, phase or frequency), from a base-
line value to a higher or lower value, followed by a rapid return to the baseline value.

pulse width modulator 
(PWM)

An output in the form of duty cycle which varies as a function of the applied measure.

R

RAM An acronym for random access memory. A data-storage device from which data can be read out
and new data can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a know state. See hardware reset and software reset.

resistance The resistance to the flow of electric current measured in ohms for a conductor.

revision ID A unique identifier of the  CCG3 device.

ripple divider An asynchronous ripple counter constructed of flip-flops. The clock is fed to the first stage of the
counter. An n-bit binary counter consisting of n flip-flops that can count in binary from 0 to 2n - 1.

rising edge See positive edge.

ROM An acronym for read only memory. A data-storage device from which data can be read out, but
new data cannot be written in.

routine A block of code, called by another block of code, that may have some general or frequent use.

routing Physically connecting objects in a design according to design rules set in the reference library.

runt pulses In digital circuits, narrow pulses that, due to non-zero rise and fall times of the signal, do not
reach a valid high or low level. For example, a runt pulse may occur when switching between
asynchronous clocks or as the result of a race condition in which a signal takes two separate
paths through a circuit. These race conditions may have different delays and are then recom-
bined to form a glitch or when the output of a flip-flop becomes metastable.
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S

sampling The process of converting an analog signal into a series of digital values or reversed.

schematic A diagram, drawing, or sketch that details the elements of a system, such as the elements of an
electrical circuit or the elements of a logic diagram for a computer.

seed value An initial value loaded into a linear feedback shift register or random number generator.

serial 1. Pertaining to a process in which all events occur one after the other.

2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a 
single device or channel. 

set To force a bit/register to a value of logic 1.

settling time The time it takes for an output signal or value to stabilize after the input has changed from one
value to another.

shift The movement of each bit in a word one position to either the left or right. For example, if the hex
value 0x24 is shifted one place to the left, it becomes 0x48. If the hex value 0x24 is shifted one
place to the right, it becomes 0x12.

shift register A memory storage device that sequentially shifts a word either left or right to output a stream of
serial data.

sign bit The most significant binary digit, or bit, of a signed binary number. If set to a logic 1, this bit rep-
resents a negative quantity.

signal A detectable transmitted energy that can be used to carry information. As applied to electronics,
any transmitted electrical impulse.

silicon ID A unique identifier of the  CCG3 silicon.

skew The difference in arrival time of bits transmitted at the same time, in parallel transmission.

slave device A device that allows another device to control the timing for data exchanges between two
devices. Or when devices are cascaded in width, the slave device is the one that allows another
device to control the timing of data exchanges between the cascaded devices and an external
interface. The controlling device is called the master device.

software A set of computer programs, procedures, and associated documentation about the operation of a
data processing system (for example, compilers, library routines, manuals, and circuit diagrams).
Software is often written first as source code, and then converted to a binary format that is spe-
cific to the device on which the code will be executed.

software reset A partial reset executed by software to bring part of the system back to a known state. A software
reset will restore the M8CP to a know state but not  CCG3 blocks, systems, peripherals, or regis-
ters. For a software reset, the CPU registers (CPU_A, CPU_F, CPU_PC, CPU_SP, and CPU_X)
are set to 0x00. Therefore, code execution will begin at flash address 0x0000.
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SRAM An acronym for static random access memory. A memory device allowing users to store and
retrieve data at a high rate of speed. The term static is used because, when a value is loaded
into an SRAM cell, it will remain unchanged until it is explicitly altered or until power is removed
from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the
device, calibrate circuitry, and perform flash operations. The functions of the SROM may be
accessed in normal user code, operating from flash.

stack A stack is a data structure that works on the principle of Last In First Out (LIFO). This means that
the last item put on the stack is the first item that can be taken off.

stack pointer A stack may be represented in a computer’s inside blocks of memory cells, with the bottom at a
fixed location and a variable stack pointer to the current top cell.

state machine The actual implementation (in hardware or software) of a function that can be considered to con-
sist of a set of states through which it sequences.

sticky A bit in a register that maintains its value past the time of the event that caused its transition, has
passed.

stop bit A signal following a character or block that prepares the receiving device to receive the next
character or block.

switching The controlling or routing of signals in circuits to execute logical or arithmetic operations, or to
transmit data between specific points in a network.

switch phasing The clock that controls a given switch, PHI1 or PHI2, in respect to the switch capacitor (SC)
blocks. The  CCG3 SC blocks have two groups of switches. One group of these switches is nor-
mally closed during PHI1 and open during PHI2. The other group is open during PHI1 and closed
during PHI2. These switches can be controlled in the normal operation, or in reverse mode if the
PHI1 and PHI2 clocks are reversed.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock 
signal.

2. A system whose operation is synchronized by a clock signal.

T

tap The connection between two blocks of a device created by connecting several blocks/compo-
nents in a series, such as a shift register or resistive voltage divider.

terminal count The state at which a counter is counted down to zero.

threshold The minimum value of a signal that can be detected by the system or sensor under consider-
ation.
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Thumb-2 The Thumb-2 instruction set is a highly efficient and powerful instruction set that delivers signifi-
cant benefits in terms of ease of use, code size, and performance. The Thumb-2 instruction set is
a superset of the previous 16-bit Thumb instruction set, with additional 16-bit instructions along-
side 32-bit instructions.

transistors The transistor is a solid-state semiconductor device used for amplification and switching, and
has three terminals: a small current or voltage applied to one terminal controls the current
through the other two. It is the key component in all modern electronics. In digital circuits, transis-
tors are used as very fast electrical switches, and arrangements of transistors can function as
logic gates, RAM-type memory, and other devices. In analog circuits, transistors are essentially
used as amplifiers.

tristate A function whose output can adopt three states: 0, 1, and Z (high impedance). The function does
not drive any value in the Z state and, in many respects, may be considered to be disconnected
from the rest of the circuit, allowing another output to drive the same net.

U

UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data
and serial bits. 

user The person using the  CCG3 device and reading this manual.

user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and
configuring the lower level Analog and Digital  CCG3 Blocks. User Modules also provide high
level API (Application Programming Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified
during normal program execution and not just during initialization. Registers in bank 1 are most
likely to be modified only during the initialization phase of the program.

V

VDDD A name for a power net meaning "voltage drain." The most positive power supply signal. Usually
5 or 3.3 volts.

volatile Not guaranteed to stay the same value or level when not in scope.

VSS A name for a power net meaning "voltage source." The most negative power supply signal.
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W

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU will reset after a specified
period of time.

waveform The representation of a signal as a plot of amplitude versus time.

X

XOR See Boolean Algebra.
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