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Preface

This “solutions manual” is not intended for students, although I leave it to the judgment of
the instructor whether to post part or all of it online for student use. Most of the speculative
guestions that | ask have so many possible “correct” answers that it is nearly pointless to
suggest possible answers. The suggested answers in this book are off-the-top-of-my-head
responses to questions that | thought of months ago when | was writing the book itself. In
many cases they are not the answers that | had in mind when | originally wrote the question.
In many more cases, they are merely my own idiosyncratic views about the kind of world

| would personally like to live in, a world that others may dislike. They are seldom the
ripe fruit of many years of reflection, and if they give the instructor the chance to say that
the author is a fool and deliver a withering refutation of them, that also helps promote the
exchange of ideas and provokes students to think for themselves. In short, | have rather
“let myself go” in writing these answers, in a way that | would not do when attempting

to impart information. The answers are replete with my persobdeér dictaon a variety

of social and philosophical questions on which | have no particular expertise. | have spent
many decades reading the works of the great philosophers, but have never taken a course in
philosophy. Thus | have a lot of ideas of my own, utterly untested against the sophistication
of a well-informed philosopher. Most undergraduate students are in the same situation, a
few of them being a step ahead of me on this score. Hence we meet on more or less equal
grounds. The result, | hope, will be at least interesting, if occasionally infuriating.

Since the problems are taken from the book itself, | have left all literature citations in
these solutions just as in the text, but | have not included the list of literature from the text.
Likewise, there are references to figures and equations in these solutions, and those will
make sense only if you have a copy of the book at hand as you read.

Roger Cooke
March 2005
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CHAPTER 1

The Origin and Prehistory of Mathematics

1.1. At what point do you find it necessary to count in order to say how large a collection
is? Can you look at a word such tsndentiousand see immediately how many letters it
has? The American writer Henry Thoreau (1817-1863) was said to have the ability to pick
up exactly one dozen pencils out of a pile. Try as an experiment to determine the largest
number of pencils you can pick up out of a pile without counting. The point of this exercise
is to see where direct perception needs to be replaced by counting.

Answer.Answers to this question will vary from person to person. With some practice (and
much experience working cryptic crossword puzzles), | have learned to group words into
syllables at a glance and sum the numbers of letters. That is not the same thing as direct
perception of the number. Generally symmetry or asymmetry distinguishes words with an
even or odd number of letters. Up to about 8 letters, direct perception is possible. | am not
able to come anywhere close to Thoreau’s legendary ability. Beyond five or six, the hand
becomes very unreliable.

1.2. In what practical contexts of everyday life are the fundamental operations of arith-
metic—addition, subtraction, multiplication, and division—needed? Give at least two ex-
amples of the use of each. How do these operations apply to the problems for which the
theory of proportion was invented?

Answer.Addition is needed if you keep a running total of what you are spending while you
shop and if you are “counting calories” on a diet. Subtraction is useful in entering checks
into the register of a checkbook or figuring out how much change you have due when mak-
ing a purchase with a large bill. Multiplication enables you to compute how much food to
buy when planning a party (you multiply the number of guests by the allotted consumption
per person) and how much money you have earned, when you are paid by piecework or
by the hour. Division is used to compute the fuel economy of an automobile. (Usually,
the distance traveled is divided by the amount of fuel consumed to yield the number of
kilometers per liter or, in the USA, miles per gallon.) It is also important wherever sports
records such as earned-run averages and batting averages are kept.

Proportion depends on the operations of division and multiplication. The proportion
A : B C: Dis expressed numerically by measuridg B, C, and D to get numbers
a, b, ¢, andd respectively. The proportion is then interpreted as the numerical equality
5 = 7 or,what is the same, equality of the produets= bc.

1.3. What significance might there be in the fact that there are three columns of notches on
the Ishango Bone? What might be the significance of the numbers of notches in the three
series?

Answer. Just to recall what is in the text, one column contains the series 11, 21, 19, 9;
the second contains 11, 13, 17, and 19; and the third contains 3, 6, 4, 8, 10, 5, 5, and

1



2 1. THE ORIGIN AND PREHISTORY OF MATHEMATICS

7. If the bone was used for a practical purpose, the three columns could correspond to
physicallocationsand the successive numbers in each column to successive time periods,
in which certain objects of interest were counted at the locations. Or the roles of space and
time might be reversed here. Since the potential numbers of objects, places, and times is
so large, we have virtually endless possibilities with this interpretation of the usefulness
of the bone, ranging from peaceful gathering of eggs or berries at one extreme to deadly
warfare at the other.

If the purpose was purely esthetic or intellectual, it is striking that so many odd num-
bers occur, and one should try to explain that fact. Were these numbers the lengths of parts
of a geometric figure? Or perhaps the lengths of strings on a musical instrument? Again,
the possibilities are endless, and it does not seem likely that anyone today can narrow them
down so that some will be noticeably more probable than others.

1.4. Is it possible that the Ishango Bone was used for divination? Can you think of a way
in which it could be used for this purpose?

Answer. As the discussion of divination in Chapter 7 shows, one needs some physical
device that can display various outcomes. Unless the Ishango Bone was part of a set, it
probably was not used for divination. It would have to be used in some way so that one of
the 16 numbers on it could be distinguished in some “random trial,” like the top face on a
die.

1.5. Is it significant that one of the yarrow sticks is isolated at the beginning of each step
in the Chinese divination procedure described above? What difference does this step make
in the outcome?

Answer. If this step were not taken, the number of different possible outcomes would be
greatly reduced. This extra step enables the “randomness” of modular arithmetic to exert
its effect. (That randomness is what makes modular arithmetic the basis of RSA codes.)

1.6. Measuring a continuous object involves finding its ratio to some standard unit. For
example, when you measure out one-third of a cup of flour in a recipe, you are choosing a
guantity of flour whose ratio to the standard cup is 1: 3. Suppose that you have a standard
cup without calibrations, a second cup of unknown size, and a large bowl. How could you
determine the volume of the second cup?

Answer. You could count the number of standard cups needed to fill the large bowl with
water, then count the number of cupfuls of the second cup needed to fill the same bowl. If
the bowl is very large, the two numbers will be approximately in the inverse ratio of the
two volumes.

1.7. Units of time, such as a day, a month, and a year, have ratios. In fact you probably
know that a year is abomﬁsi days long. Imagine that you had never been taught that
fact. How would you—how did people originally—determine how many days there are in
ayear?

Answer. You could put a stake in the ground and each morning at sunrise place another
stake some reasonable distance to the east of the first stake, right in line with the rising sun.
That second stake will move back and forth from south to north (if you are not too close to
the equator). If you count the number of days between its extreme points (solstices) over a
period of many years, you will get an equation of the forndays~ nyears, from which

the ratio can be worked out.
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1.8. Why is a calendar needed by an organized society? Would a very small society (con-
sisting of, say, a few dozen families) require a calendar if it engaged mostly in hunting,
fishing, and gathering vegetable food? What if the principal economic activity involved
following a reindeer herd? What if it involved tending a herd of domestic animals? Fi-
nally, what if it involved planting and tending crops?

Answer.Any society that is dependent on growing seasons or needs to adapt to changing
temperatures must be able to plan its years, knowing when to plant and when to stock up
on fuel and food for the winter. Nomadic societies probably have little need of this, since
the herds that they live upon control where they go. Pastoral and agricultural societies have
more need, since there are breeding, planting, and harvesting seasons. In most societies
these events become both social and religious occasions, and the civil and religious festi-
vals accompanying them need to be planned. Although the underlying economic activity

is tied to the sun rather than the moon, the moon is much easier to keep track of, and
it is noteworthy that many religious festivals such as Easter, Passover, and Ramadan are
scheduled in terms of the moon.

1.9. Describe three different ways of measuring time, based on different physical princi-
ples. Are all three ways equally applicable to all lengths of time?

Answer.One of the oldest clocks is the water clock, which presumes that the time required
for a bowl with a hole in the bottom to empty is the same each time the bowl is filled with
water. Another is the pendulum clock, which works on the principle that the oscillations
of a pendulum are isochronous. Still a third is the movement of the stars, moon, and
sun across the sky. The water clock obviously is useful for keeping track of one specific
length of time. The pendulum clock can keep track of smaller units for longer times. The
star clock, in conjunction with very accurate telescopes, was for a long time the standard
of accuracy in time measurement, only recently replaced by the oscillations of certain
crystals.

1.10. In what sense is it possible to know teeactvalue of a number such ag2? Obvi-

ously, if a number is to be known only by its decimal expansion, nobody does know and
nobody ever will know the exact value of this number. What immediate practical conse-
guences, if any, does this fact have? Is there any other sense in which one could be said
to know this numbeexactly? If there are no direct consequences of being ignorant of its
exact value, is there any practical value in havingdbaceptof an exact square root of

2? Why not simply replace it by a suitable approximation such as 1.41421? Consider also
other “irrational” numbers, such as e, and® = (1++/5)/2. What is the value of having
theconceptof such numbers as opposed to approximate rational replacements for them?

Answer. This question goes to the very heart of abstract mathematics. Of what value
are any abstractions? The chief value is that they provide a simplified model of what
we observe in the real world. If the important fact about the diaganaf a square, for
example, is that the square on it equals twice the square of which it is the diagonal, then
that fact is captured by saying that the lengtl/a$ +/2s, wheres is the length of the side,
much better and more compactly than by saying that the diagonal is “approxiréétefy

the side.” Itis really better to remember that= +/2s than to choose some approximation
that may vary from one situation to anothegen if the basic relatioa?> = 2s2 is only
approximate

1.11. Find a unicursal tracing of the graph shown in Fig. 1.
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FIGURE 1. A graph for which a unicursal tracing is possible.

Answer.Imagine you are a tennis ball bouncing around.

1.12. Does the development of personal knowledge of mathematics mirror the historical
development of the subject? That is, do we learn mathematical concepts as individuals in
the same order in which these concepts appeared historically?

Answer. Not always. Rigorous proof in geometry which is taught (or at leasgd to

be taughj during the sophomore year in American high schools, preceded by a thousand
years the algebra that is taught to middle-school and first-year high school students. And,
as mentioned in connection with the work of Piaget, children learn topology intuitively
long before they learn even the geometry of measurement. On the other hand, personal
knowledge of arithmetic does more or less follow what seems to have been the historical
order of development.

1.13. Topology, which may be unfamiliar to you, studies (among other things) the math-
ematical properties of knots, which have been familiar to the human race at least as long
as most of the subject matter of geometry. Why was such a familiar object not studied
mathematically until the twentieth century?

Answer. The secret of studying knots and other topological objects, such as manifolds,
is the application of analysis and algebra, including modern algebra. One really cannot
make much progress at classifying knots, except on a purely empirical level, without ho-
motopy theory. Similarly, human behavior has been right under our noses for thousands of
years, but we understand better what is happening at the center of Betelgeuse than what is
happening in the center of our neighbor’s brain. It's a matter of complexity.

1.14. One aspect of symbolism that has played a large role in human history is the mysti-
cal identification of things that exhibit analogous relations. The divination practiced by the
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Malagasy is one example, and there are hundreds of others: astrology, alchemy, numerol-
ogy, tarot cards, palm reading, and the like, down to the many odd beliefs in the effects
of different foods based on their color and shape. Even if we dismiss the validity of such
divination (as the author does), is there any value for science in the development of these
subjects?

Answer.Here again, only personal answers can be given. As a hard-headed skeptic, | be-
lieve that mysticism has value only in the early stages of science, when intuition is the only
available tool of analysis. Such intuition is usually based on some kind of analogy or pro-
portion. This kind of informal speculation preceding what the philosopher Charles Coul-
ston Gillispie called theedge of objectivity can become quite elaborate, as one can see
from the cosmology in Plato’Simaeusand the phlogiston theory of combustion. Sooner

or later, the critical faculty should be applied, at which point—I claim—paranormalists
ought not to be funded out of taxpayers’ money. | do not mean to assert absolutely that
the paranormalists (whether they are investigating telepathy, astrology, dowsing, or other
“psychic” phenomena) are wrong, although I think it highly probable that they are wrong.

| grant that it is logically possible that the universe contains “sporadic” events not sub-
ject to investigation by the ordinary rules of science. But if such events can neither be
controlled nor understood, they do not reach the level of definiteness that we normally as-
sociate with science, and should not be considered science. Again, | do not assert that all
of reality is amenable to study by science, and | am quite content that those who consider
such investigations promising should pursue them—ijust let them raise the funds to do so
privately.

1.15. What function does logic fulfill in mathematics? Is it needed to provide a psycho-
logical feeling of confidence in a mathematical rule or assertion? Consider, for example,
any simple computer program that you may have written. What really gave you confidence
that it worked? Was it your logical analysis of the operations involved, or was it empirical
testing on an actual computer with a large variety of different input data?

Answer.Again, a personal answer is called for. The older | become, the less confident | am
about any chain of reasoning, and the more | am convinced that the main function of proof
is to exhibit the logical interrelations among the parts of a theory. Its function in assuring
that a given result is correct is decidedly secondary. Merely to kilava proposition

is true, without knowingwhy it is true is of limited value. And, when | have written a
program of any complexity at all, | like to test it with extreme input data to see how robust
it is. Experience has taught me that | am far more likely to find the bugs that way than by
pretending | am the computer and executing the operations on paper.

1.16. Logic enters the mathematics curriculum in high-school geometry. The reason for
introducing it at that stage is historical: Formal treatises with axioms, theorems, and proofs
were a Greek innovation, and the Greeks were primarily geometers. Therddgioal

reason why logic is any more important in geometry than in algebra or arithmetic. Yet it
seems that without the explicit statement of assumptions, the parallel postulate of Euclid
(discussed in Chapter 10) would never have been questioned. Suppose things had happened
that way. Does it follow that non-Euclidean geometry would never have been discovered?
How important is non-Euclidean geometry, anyway? What other kinds of geometry do you
know about? Is it necessary to be guided by axioms and postulates in order to discover or
fully understand, say, the non-Euclidean geometry of a curved surface in Euclidean space?
If it is not necessary, what is the value of an axiomatic development of such a geometry?

1 Charles Coulston GillispieThe Edge of ObjectivityPrinceton University Press, 1973.
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Answer.Here again we cut to the heart of the usefulness of mathematical abstraction. The
primary advantage of mathematics is its use in providing simple models for thought that
can be approximated and implemented as what we call “applied mathematics.” Now the
non-Euclidean geometry that has proved of most use in physics (and it would be hard to
name any other area where non-Euclidean geometry has been of any use at all) is part
of differential geometrywhich was created simultaneously with non-Euclidean geometry
(and parts of it, even earlier). Its roots are as much algebraic and analytic as geometric. The
role of the purer non-Euclidean geometry created by Taurinius, Schweickart, Lobachevskii,
and Bdlyai, has been to provide a general guide to geometric thought.

1.17. Perminov (997, p. 183) presents the following example of tacit mathematical rea-
soning from an early cuneiform tablet. Given a right triangl€ B divided into a smaller
triangle DEB and a trapezoidd CE D by the line DE parallel to the legdC, such that

EC has length 20E B has length 30, and the trapezoid” ED has area 320, what are
the lengthsAC and DE? (See Fig. 3.) The author of the tablet very confidently computes
these lengths by the following sequence of operations3Z)- 20 = 16; (2) 30 -2 = 60;
(3)60 + 20 = 80; (4)320+-80=4;(5)16 +4 =20 = AC; (6) 16 —4 = 12 = DE.

As Perminov points out, to present this computation with any confidence, you would have
to know exactly what you are doing. Whatsthis anonymous author doing?

To find out, fill in the reasoning in the following sketch. The author’s first computation

shows that a rectangle of height 20 and base 16 would have exactly the same area as
the trapezoid. Hence if we draw the vertical lid&{ through the midpoiniG of A D,
and complete the resulting rectangles as in Fig. 3, rectafigl€ I will have area 320.
SinceAF = MI = FJ = DI, it now suffices to find this common length, which
we will call x; for AC = CF + FA = 16 + x and DE = EI — DI = 16 — x.
By the principle demonstrated in Fig. 2CED has the same area &KL M, so that
DKLM + FJDI = DKLM + 20x. ExplainwhyDKLM = 30-2-x, and hence why
320 = (30-2+ 20) - x.

Could this procedure have been obtained experimentally?

Answer.The first step is obviously to find the average width of the trapezoid, which is the
average ofDE and AC. As discussed in Chapter 6, the writers of the cuneiform tablets
frequently computed the average and half the difference of any two numbers they dealt
with. From these two numbers the original numbers could be recovered as the sum and
difference. Now the remaining problem is to get half of the difference, which we call
the semi-differencéor convenience. Observe that the area of the rectaDdld. M is 30

times the difference betweetfC and DE, in other words, 60 times the semi-difference.
Hence to get the area ofCE D, which is the same as the area®K L M, we need to
multiply the semi-difference by 60. But, if we add 20 times the semi-difference to the
area of/JCED, we will get 320. That is, 60 + 20 (= 80) times the semi-difference is 320,
and therefore the semi-difference is 4. As mentioned, this was a standard technique for
finding two numbersAC = averaget+ semi— difference= 16 + 4 = 20, and DE =
average- semi— difference= 16 —4 = 12.

Whether this answer was obtained experimentally depends on your notion of “exper-
imental.” The facts involved are rock-hard geometric truths. Somehow, sometime, some-
one had tanoticethem, and that noticing was probably an empirical fact at the time, but
it was one that accorded with intuition, and it could not have been convincing without
some recognition that the two smaller rectangles inside the larger one were obtained by
subtracting equal triangles from equal triangles.
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FIGURE 3. (@) Line DE divides triangled BC into triangle DEB and
trapezoidACED. (b) Line FGIH bisects linedD. RectangleFCE I
has the same area as trapezdidE D, and rectangle/ CE D equals
rectangleM DK L.

1.18. A famous example of mathematical blunders committed by mathematicians (not
statisticians, however) occurred some two decades ago. At the time, a very popular televi-
sion show in the United States was callext’'s Make a Deal On that show, the contestant

was often offered the chance to keep his or her current winnings, or to trade them for a
chance at some other unknown prize. In the case in question the contestant had chosen
one of three boxes, knowing that only one of them contained a prize of any value, but not
knowing the contents of any of them. For ease of exposition, let us call the boxes A, B,
and C, and assume that the contestant chose box A.

The emcee of the program was about to offer the contestant a chance to trade for
another prize, but in order to make the program more interesting, he had box B opened, in
order to show that it was empty. Keep in mind that the emaevwhere the prize was
and would not have opened box B if the prize had been there. Just as the emcee was about
to offer a new deal, the contestant asked to exchange the chosen box (A) for the unopened
box (C) on stage. The problem posed to the reader is: Was this a good strategy? To decide,
analyze 300 hypothetical games, in which the prize is in box A in 100 cases, in box B in
100 cases (in these cases, of course, the emcee will open box C to show that it is empty),
and in box C in the other 100 cases. First assume that in all 300 games the contestant
retains box A. Then assume that in all 300 games the contestant exchanges box A for the
unopened box on stage. By which strategy does the contestant win more games?

Answer. Since the two strategies are complementary (each wins precisely when the other
one loses), the contestant who always retains Box A will win precisely 100 of the 300
games. The contestant who always switches will win the other 200 games. It was smart to
switch.

1.19. Explain why the following analysis of the game described in Problem 1.18 leads to
an erroneous result. Consider all the situations in which the contestant has chosen box A
and the emcee has shown box B to be empty. Imagine 100 games in which the prize is in
box A and 100 games in which it is in box C. Suppose the contestant retains box A in all
200 games; then 100 will be won and 100 lost. Likewise, if the contestant switches to box
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C in all 200 games, then 100 will be won and 100 lost. Hence there is no advantage to
switching boxes.

Answer.This model attempts to define the problem away, It begs the question by assuming
from the outset that the prize is equally likely to be on the stage or in the contestant’s hand.
But it isn't. It is twice as likely that the prize is on stage.

1.20. The fallacy discussed in Problem 1.19 is not in the mathematics, but rather in its ap-
plication to the real world. The question involves what is known@ditional probability.
Mathematically, the probability of event Bjven that event F has occurred defined as

the probability that E and F both occur, divided by the probability of F. The many math-
ematicians who analyzed the game erroneously proceeded by taking E as the event “The
prize is in box C” and F as the event “Box B is empty.” Given that box B has a 2/3 probabil-

ity of being empty and the event “E and F” is the same as event E, which has a probability
of 1/3, one can then compute that the probability of E given Fl1i8)/(2/3) = 1/2.

Hence the contestant seems to have a 50% probability of winning as soon as the emcee
opens Box B, revealing it to be empty.

Surely this conclusion cannot be correct, since the contestant’s probability of having
chosen the box with the prize is only 1/3 and the emcee can always open an empty box on
stage. Replace event F with the more precise event “The emceshtasthat box B is
empty” and redo the computation. Notice that the emcemisgto show that either box
B or box C is empty, and that the two outcomes are equally likely. Hence the probability
of this new event F is 1/2. Thus, even though the mathematics of conditional probability
is quite simple, it can be a subtle problem to describe just what event has occurred. Con-
clusion: To reason correctly in cases of conditional probabiityg must be very clear in
describing the event that has occurred.

Answer.The problem doesn’t leave much for the reader to do. The probability of the new
event Fisl /2, since the emcee is equally likely to show that box B is empty or not (that is,
to show that box C is empty). Hence the probability of E given Bj8)/(1/2) = 2/3.

1.21. Reinforcing the conclusion of Problem 1.20, exhibit the fallacy in the following
“proof” that lotteries are all dishonest

Proof. The probability of winning a lottery is less than one chance in 1,000,680 (~°).
Since all lottery drawings are independent of one another, the probability of winning a

lottery five times is less tha(‘lO‘6)5 = 10739, But this probability is far smaller than the
probability of any conceivable event. Any scientist would disbelieve a report that such an
event had actually been observed to happen. Since the lottery has been won five times in
the past year, it must be that winning it is not a random event; that is, the lottery is fixed.

What is the event that has to occur here? Is it “Person A (specified in advance) wins
the lottery,” or is it “At least one person in this population (of 30 million people) wins the
lottery”? What is the difference between those two probabilities? (The same fallacy occurs
in the probabilistic arguments purporting to prove that evolution cannot occur, based on the
rarity of mutations.)

Answer. The small probability given is the probability thatspecifiedticket will be the
winning number. The probability that winning ticket will be solds much higher, since
the number of sets of numbers on the tickets sold is usually a considerable portion (of the
order of 10% or even 20%) of the total number.

The reference to anti-evolution arguments is included only because they have become
very popular of late and embody a very clear and definite fallacy. The probability of a
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specified organism having a specified mutation is extremely small. The probability that
a specified organism ha®memutation is much higher, since there are so many loci in
genetic material where a mutation can occur. Likewise the probability that a given locus
will have a mutation within a breeding population is much higher still, especially if the
population consists of billions of individual organisms (like bacteria). If a mutation is
favorable and confers a reproductive advantage, there will soon be a whole new population
of billions of the mutated organism. In geological terms, the time period required is of
the order of a few dozen generations, not long at all, even for large animals. A chain of
favorable mutations, seen in terms of populations rather than individuals, is not at all an
unlikely thing.

1.22. The relation between mathematical creativity and musical creativity, and the math-
ematical aspects of music itself are a fascinating and well-studied topic. Consider just the
following problem, based on the standard tuning of a piano keyboard. According to that
tuning, the frequency of the major fifth in each scale should be 3/2 of the frequency of the
base tone, while the frequency of the octave should be twice the base frequency. Since
there are 12 half-tones in each octave, starting at the lowest A on the piano and ascending
in steps of a major fifth, twelve steps will bring you to the highest A on the piano. If all

these fifths are tuned properly, that highest A should have a frequer@/) ot times the
frequency of the lowest A. On the other hand, that highest A is seven octaves above the
lowest, so that, if all the octaves are tuned properly, the frequency shodd times as

high. The difference between these two frequency rafid$3/4096 ~ 1.746 is called

the Pythagorean commaThe Greek wordkommameans a break or cutoff.) What is the
significance of this discrepancy for music? Could you hear the difference between a piano
tuned so that all these fifths are exactly right and a piano tuned so that all the octaves are
exactly right? (The ratio of the discrepancy between the two ratios to either ratio is about
0.01%.)

Answer. The last sentence gives the answer: One can feel a difference in tonal quality
between the two, but it is difficult to call it a difference jpitch. However, when the two
tones are played together, the result is a nerve-shattering twitter. Since it is difficult to
impart sound in a book, a visual representation will have to suffice. VWhaethematica
is used to produce 2-second long sinusoidal waves having these frequencies, via the com-
mandPlay [{Sin[27 a t], Cos[27 b tl}, {t,0,2}]1, wherea = 3520 for the high
A when the piano is tuned in octaves ad= 29229255/8192 ~ 3568.02 for the same
high A when it is tuned in fifths, the resulting sound waves are depicted graphically as
follows:

_
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When the two tones are played together, the picture is as follows. (You can see the
conflict here.)
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The tones superimposed

1.23. What meaning can you make of the statement attributed to the French poet Sully
(René Frangois Armand) Prudhomme (1839-1907), “Music is the pleasure the soul expe-
riences from counting without realizing it is counting”?

Answer. The unconscious counting referred to is probably the rhythmic alternation of
stressed and unstressed beats and the syncopation effects that result when two different
patterns of rhythm are superimposed, such as (my personal favorite) 3 beats against 4.
This kind of counting can be felt directly by those who “have rhythm” (most people),
without the need for conscious use of numbersn fact, it is extremely difficult tocount
three beats against four, but | have found that a whole classroom of students can learn to
beat three against four with their two hands in less than a minute by simply listening and
imitating, getting a feel for the rhythm.

There is a second kind of periodicity that Prudhomme probdimy’t have in mind,
the kind that is sensed gétch and results in the tones that result from string and wind
instruments in the form of chords and counterpoint. These frequencies are too rapid to be

2 Music teachers have traditionally told their pupils to count. Fortunately those among them who were fated to
become real musicians managed to ignore this advice.
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counted, but the mathematical analysis of them, starting with the problem of the vibrating
string in the eighteenth century, reveals an intricate mathematical structure in the theory of
sound in general.
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CHAPTER 2

M athematical Cultures|

2.1. Does mathematics realize Plato’s program of understanding the world by contemplat-
ing eternal, unchanging forms that are perceived only by reason, not by the senses?

Answer.It would be presumptuous to claim anything like a definitive answer to this ques-
tion. Arithmetic and geometry deal wiideasthat correspond teelationsin the physical

world. Arerelationsreal, physical things, like the elementary particles that we imagine the
world is made of? If not, how does it happen that these ideas in human minds correspond
to the physical world so well that they enable us to predict and sometimes control what
happens? If relations are in some sense a real part of the world, what does their reality
consist of? | am very far from regarding myself as a Platonist—I think his metaphysics is
a hopeless muddle—and yet there is a certain plausibility about Plato’s idea of linking the
observed world with a world that exists only in thought. A case in point is the notion of
energy, which is a mathematical function of position and velocity in classical mechanics.
Is energy real? Some would say it is thely reality, that everything is a form of energy.

Yet one does not observe energy directly: To find its value for a given physical system,
you observe the position and velocity of a mass, or measure the strength of electric and
magnetic fields, or take the temperature of a sample of matter. What is the underlying
reality? The energy or these observables? Energy is of supreme importance in physics:
Where would physics be without the law of conservation of energy, or the matter-energy
equivalence expressed y = mc2? With these ruminations, | leave the question to the
student.

2.2. To what extent do the points of view expressed by Hamming and Hardy on the value
of pure mathematics reflect the nationalities of their authors and the prevailing attitudes in
their cultures? Consider that unlike the public radio and television networks in the United
States, the CBC in Canada and the BBC in Britain do not spend four weeks a year pleading
with their audience to send voluntary donations to keep them on the air. The BBC is
publicly funded out of revenues collected by requiring everyone who owns a television set
to pay a yearly license fee.

Answer.Public opinion, at least in my own informal, unsystematic sample of US citizens,
divides along conservative-liberal lines (as those words are currently understood), with
the liberals supporting an “elitist” view that the government has an obligation to raise the
general level of culture of its citizens and conservatives supporting the “populist” view
that people ought not to be taxed to support arts, entertainment, and research that does not
bring them any direct benefits. | leave to any European and Canadians | may be fortunate
enough to number among my readers to give their view of the contrast between their own
countries’ systems and the system in the United States, and | would not presume to answer
for them. 1 personally like what is on public television and radio and have almost no
use for the AM dial on my radio, but | do appreciate the libertarian objection to publicly
funded broadcasts. If the technology existed for sending out broadcast signals in code and

13
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allowing each broadcaster to charge a monthly fee for decoding technology, | would be
delighted. Then each of us could pay the full price for the news and entertainment of his
or her own choice.

2.3. In an article in theReview of Modern Physic§1, No. 3 (July 1979), the physicist
Norman David Mermin (b. 1935) wrote, “Bridges would not be safer if only people who
knew the proper definition of a real number were allowed to design them” (quoted by
Mackay, 1991 p. 172). Granting that at the final point of contact between theory and
the physical world, when a human design is to be executed in concrete and steel, every
number is only an approximation, is there any value for science and engineering in the
concept of an infinitely precise real number? Or is this concept only for idealistic, pure
mathematicians? (The problems below may influence your answer.)

Answer.The question is phrased in such a way that a fuller answer can be given after the
following questions are answered. In the meantime, see the comments on the usefulness
of +/2 in Problem 1.10. May we presume that the Tacoma Narrows Bridge was designed
by a person whalid know the proper definition of a real number?

2.4. In 1837 and 1839 the crystallographer Auguste Bravais (1811-1863) and his brother
Louis (1801-1843) published articles on the growth of pldntsin these articles they
studied the spiral patterns in which new branches grow out of the limbs of certain trees
and classified plants into several categories according to this pattern. For one of these
categories they gave the amount of rotation around the limb between successive branches
as137° 30’ 28”. Now, one could hardly measure the limb of a tree so precisely. To measure
within 10° would require extraordinary precision. To refine such crude measurements
by averaging to the claimed precision bf, that is,1/3600 of a degree, would require
thousands of individual measurements. In fact, the measurements were carried out in a
more indirect way, by counting the total number of branches after each full turn of the
spiral. Many observations convinced the brothers Bravais that normally there were slightly
more than three branches in two turns, slightly less than five in three turns, slightly more
than eight in five turns, and slightly less than thirteen in eight turns. For that reason they
took the actual amount of revolution between successive branches to be the number we call
1/® = (v/5—-1)/2 = & — 1 of a complete §60°) revolution, since
8 13 5

—<—-<®P<—< .

2 5 8 3
Observe thaB60° <+ @ ~ 222.4922359° ~ 222°29'32” = 360° — (137°30'28"). Was
there scientific value in making use of thiesal (infinitely precise) numbe@® even though
no actual plant grows exactly according to this rule?

Answer. Obviously, | think the answer is “Yes.” The positive value that | see is in ob-
taining a single number for the amount of rotation between branches, to which the actual
numbers observed in many physical specimens can be regarded as approximating. As in
Problem 1.10, the numbe® provides a single, simple mathematical model that fits ap-
proximately a large number of observable cases and makes some sense out of what would
otherwise be a chaotic jumble of observations and humbers. The nunveuld never

1 see the article by I. Adler, D. Barabe, and R. V. Jean, “A history of the study of phyllotéxisals of Botany

80 (1997), 231-244, especially p. 234. The articles by Auguste and Louis Bravais are “Essai sur la disposition
générale des feuilles curvisées,”Annales des sciences nature|lgg1837), 42—110, and “Essai sur la disposi-

tion générale des feuilles rectiséeis,"Congres scientifique de Frangg(1839), 278-330.
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have been discovered by measurement, but in this case the counting technique that the Bra-
vais brothers used (like the technique for discovering the ratio between a month and a year)
showed near matches between revolutions and numbers of branches at successive numbers
in the “Fibonacci” sequencg, 2, 3, 5, 8, 13,..., where each term is the sum of its two
predecessors. It is well-known that the limit of the ratio of each term to its predecessor is

@. Moreover, as the Bravais brothers found, if you start a “Fibonacci” sequence with the
same rule but different initial numbers, for example, 1, 3, 4, 7, 11, 18&here are actual

families of plants that grow according to the corresponding pattérhus the mathematics

has more than a superficial connection with the phenomenon being studied.

2.5. Plate 4 shows a branch of a flowering crab apple tree from the author’s garden with
the twigs cut off and the points from which they grew marked by pushpins. The “zeroth”
pin at the left is white. After that, the sequence of colors is red, blue, yellow, green, pink,
clear, so that the red pins correspond to 1, 7, and 13, the blue to 2 and 8, the yellow to 3
and 9, the green to 4 and 10, the pink to 5 and 11, and the clear to 6 and 12. Observe that
when these pins are joined by string, the string follows a helical path of nearly constant
slope along the branch. Which pins fall nearest to the intersection of this helical path with
the meridian line marked along the length of the branch? How many turns of the spiral
correspond to these numbers of twigs? On that basis, what is a good approximation to the
number of twigs per turn? Between which pin numbers do the intersections between the
spiral and the meridian line fall? For example, the fourth intersection is between pins 6 and
7, indicating that the average number of pins per turn up to that point is betgleen.s

and% = 1.75. Get upper and lower estimates in this way for all numbers of turns from 1

to 8. What are the narrowest upper and lower bounds you can place on the number of pins
per turn in this way?

Answer. This question gives me a chance to insert some clearer pictures of the branch in
guestion, as the one in Plate 4 was rather blurry. Here are three views of the branch, rotated
through a right angle from one to the next.

If you trace around the spiral, counting both the number of branches and the number
of turns as you go, you can log your “trip” from the white pin at the start to the red pin at
the end in the following table:
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Turns | Branches
0 0 (white)
1 (red)
1
2 (blue)
3 (yellow)
2
4 (green)
3
5 (pink)
6 (clear)
4
7 (red)
8 (blue)
5
9 (yellow)
6
10 (green)
11 (pink)
7
12 (clear)
8 13 (red)

From this table, by comparing the number of branches indicated just before and just
after each complete revolution, you can get the following seven inequalities for the number
r, the average number of branches per turn:

1< r <2
15—§< ro <2
T2
1.33 4< <5 1.67
33~ - r -~ 1.
3 3
6 7
15=-< r <-=1.75
4 4
1.6=§< r <2=1.8
5 5
9 10
1‘5:€< r <Z%1.67
1.57 11< <12 1.71
ST~ — r — =~ 1.
7 7

From these inequalities, choosing the strongest on both sides, weedirdr < 1.67. The
last line of the table shows thata 1373 = 1.625.

2.6. Suppose that the pins in Plate 4 had been joined by a curve winding in the opposite
direction. How would the numbers of turns of the spiral and the number of pins joined
compare? What change would occur in the slope of the spiral?

Answer.lf you can visualize this, you have very good geometric intuition. The table given
above gets replaced by the following table.
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Turns | Branches
0 0 (white)
1 (red)
2 (blue)
1
3 (yellow)
4 (green)
5 (pink)
2
6 (clear)
7 (red)
3
8 (blue)
9 (yellow)
10 (green)
4
11 (pink)
12 (clear)
5 13 (red)

As a result, one gets the following set of inequalities for the number of branches per
turn when we spiral in this direction:

2< r <3
5 6
25==-< r <=-=3
2 2
2.33%z< r <§%2.67
3 3
2.5 10< <11 2.75
S=— r — =2.
4 4

That is to say, each of our estimates is “moved up one,” but the series is shortened, since
only five turns of the spiral occur. The final result shows that we get al@%ui: 2.6
branches per turn this way. In terms of theory, we ought to expect this. If indeed the angle
of turning between successive branchek/i® of a revolution, then when we go the other
way, the angle ought to ble— 1 /@ of a revolution between successive branches, and so the
number of branches per turn should be the reciprocal of this number, th@af (& — 1).

But since@ satisfies the equatiof — 1 = 1/®, this number should bé?2, which by

this equation isP + 1. As a corollary, the slope of the spiral increases by a factap of
(approximately% as far as our sample shows).

2.7. With which of the two groups of people mentioned by Plato do you find yourself
more in sympathy: the “practical” people, who object to being taxed to support abstract
speculation, or the “idealists,” who regard abstract speculation as having value to society?

Answer.Again, this is purely a matter of political and social preference. | personally be-
lieve strongly, as Plato did, in the value of pure thought and all the other accoutrements of
what used to be called a liberal education. On the other hand, | am reluctant to trick people
into supporting this cause by urging spurious arguments that engineers are better engineers
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if they know history. It is very difficult to measure what economists call the marginal value
of time spent in history courses in place of time spent in engineering courses and next to
impossible to prove that that marginal value is positive rather than negative. | prefer to use
persuasion to convince people thia¢y will feel rewardedy learning abstract mathemat-

ics, philosophy, history, music, poetry and so on. Thegymake some professional use

of these subjects, but that is not the aim of teaching them.

2.8. The division between the practical and the ideal in mathematics finds an interesting
reflection in the interpretation of what is meant by solving an equation. Everybody agrees
that the problem is to find a number satisfying the equation, but interpretations of “finding

a number” differ. Inspired by Greek geometric methods, the Muslim and European alge-
braists looked for algorithms to invert the operations that defined the polynomial whose
roots were to be found. Their object was to generate a sequence of arithmetic operations
and root extractions that could be applied to the coefficients in order to exhibit the roots.
The Chinese, in contrast, looked for numerical processes to approximate the roots with
arbitrary accuracy. What advantages and disadvantages do you see in each of these ap-
proaches? What would be a good synthesis of the two methods?

Answer.There is beauty in both the abstract approach and in the numerical approach. The
abstract approach (Galois theory) can play a role here in relation to the numerical approach
analogous to the role | have envisioned above for mathematics in general in relation to
science. That is, it can suggest what is possible and act as a guide for numerical work.

2.9. When a mathematical document such as an early treatise or cuneiform tablet contains
problems whose answers “come out even,” should one suspect or conclude that it was a
teaching device—either a set of problems with simplified data to build students’ confidence
or a manual for teachers showing how to construct such problems?

Answer.These documents are seldom “applied mathematics.” It is overwhelmingly likely
that they were used for teaching and conveying the techniques of mathematical thought
to pupils who were to become “mathematicians” (scribes and overseers). That is why the
problems on them so often come out even. When we give examples, we like to keep them
as simple as possible.

2.10. From what is known of the Maya codices, is it likely that they were textbooks in-
tended for teaching purposes, like many of the cuneiform tablets and the early treatises
from India, China, and Egypt?

Answer. The Maya codices do not seem to contain any instructions about methods of
computation. Instead, they record observations and recount the Maya mythology relating
to the heavenly bodies. Of course, one should not forget the burning of the Maya books.
We are working from a very small sample here.

2.11. Why was the Chinese encounter with the Jesuits so different from the Maya en-
counter with the Franciscans? What differences were there in the two situations, and what
conditions account for these differences? Was it merely a matter of the degree of zeal
that inspired Diego de Landa and Matteo Ricci, or were there institutional or national dif-
ferences between the two as well? How much difference did the relative strength of the
Chinese and the Maya make?

Answer.Archaeological evidence indicates that the Maya civilization was in decline, prob-
ably because of climatic disasters (droughts and famines) many centuries before the Span-
ish arrived. Moreover, their population and resources were much smaller. It is difficult to
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believe that theonquistadoresould have done to the Chinese, with their long continuous
tradition of a literate civil service, what they succeeded in doing to the Maya. Of course,
history bears out this conclusion. Almost the last vestige of European dominance in Asia
disappeared when the British returned Hong Kong to Chinese rule in 1999. (The precari-
ous independence of Taiwan, defended by the threat of American military intervention, is
the very last.) In contrast, the European character of the Americas is now so deeply rooted
that it is impossible to imagine its disappearing any time soon.
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CHAPTER 3

Mathematical Culturesl|

3.1. Compare the way in which mathematicians have been supported in various societies
discussed in this chapter. If you were in charge of distributing the federal budget, how high
a priority would you give to various forms of pure and applied research in mathematics?
What justification would you give for your decision? Would it involve a practical “payoff”

in economic terms, or do you believe that the government has a responsibility to support
the creation of new mathematics, without regard to its economic value?

Answer.lt is revealing that Plato thought it the duty of the state (plodis or city-state of

his time) to support research into geometry. Plato was a member of the aristocracy of his
time and took it for granted that his class had the right to rule and to spend public funds in
accordance with its own priorities. As a citizen of a modern democracy, | do not believe
in any such absolute right, only the right of the elected government to govern. But that
comes down to the same thing in the end. Like Plato, | consider the elements of a liberal
education to be of intrinsic value. However, | much prefer that they be funded privately,
through tuition charged to students who benefit from the education. | also believe that most
of the research that plays such a large role in promotion, tenure, and salary decisions at our
universities is a distraction from the teaching duties of professors. Except for those who
can obtain government or private funding for their research, professors shoulthddest
amount of research, and it should be directly related to their teaching.

Of more interest are the early European universities, where people went to become ex-
perts in the classical quadrivium and trivium and such areas as theology. There was a rather
narrow orthodoxy in this last subject, and it developed into an elaborate system of doctrine
irrelevant to the lives of most people. Exactly the same is true of mathematics today, and
there are people much puffed up about their mastery of such arcane areas as topological
semi-groups. They expect to be, and often are, respected for having spent large parts of
their life learning about these ethereal entities. Looked at from a commonsense point of
view, it is rather mysterious that one can “sell” such products to the public, but universi-
ties have managed to do so for many centuries. | often wonder if the whole economy of
higher education has been based on a public misunderstanding. Did people in the Middle
Ages believe that the doctors of divinity bestowed some mysterious benefit on society with
their word-spinning disputes? Do people believe that today about, say, deconstructionism?
I do not wish this argument to be interpreted as an anti-intellectual blast against abstract
knowledge. As | have stressed in the text and in other parts of this answer manual, | con-
sider the ability merely to understand the world to be of great value. My point is that A's
understanding of the world through a liberal education is not of direct benefit to B. If | ask
B to support higher education, | want it to be on the basis that B gets a higher education
that really does enable B to understand the actual world of his or her experience better, not
the dream world of some of the more bizarre academic fads.

21
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3.2. Why is Seki Kowa the central figure in Japanese mathematics? Are comparisons
between him and his contemporary Isaac Newton justified?

Answer.Like Archimedes and Newton, Seki K owa mastered a wide range of mathematics
and introduced new methods that changed the way his successors thought about mathe-
matical problems. The scale of his achievements is not really comparable with Newton,
however, since the mathematics that he inherited from his predecessors was far less elabo-
rate.

3.3. What is the justification for the statement by the historian of mathematics T. Murata
that Japanese mathematics was not a science but an art?

Answer. It is very tempting to compare Japanese mathematics of the eighteenth century
with the delicate Japanese paintings of the same period. Indeed, the two almost merge in
the Sangakushown in Plate 2. The criteria for creativity in both cases seem to have been
esthetic. Little if any of this mathematics was aimed at the needs of physical science or
commerce or technology.

3.4. Why might Seki K'owa and other Japanese mathematicians have wanted to keep their
methods secret, and why did their students, such as Takeb®Keokor this secrecy?

Answer. In the case of the Japanese mathematicians, | suspect a mystical, philosophical,
or religious motive, which the students would honor out of respect fos#nsei Mathe-

matics seems to have been a leisure-time activity, not a profession, in Japan. In contrast,
mathematics among the sixteenth-century Italians had both intellectual and economic as-
pects.

3.5. For what purpose was algebra developed in Japan? Was it needed for science and/or
government, or was it an “impractical” liberal-arts subject?

Answer.Almost certainly, it was “liberal-artsy.” At least, none of the historians | have read
on this subject have pointed out any economic uses of the mathematics.

3.6. Dante’s final stanza, quoted in the text, uses the problem of squaring the circle to
express the sense of an intellect overwhelmed, which was inspired by his vision of heaven.
What resolution does he find for the inability of his mind to grasp the vision rationally?
Would such an attitude, if widely shared, affect mathematical and scientific activity in a
society?

Answer. Dante found his peace in surrender to the love of God. This outcome may be
morally higher than continued efforts to master the subject intellectually, but it amounts
to a decision to stop thinking about the problem, not a solution of the problem. One may
certainly debate how long one should continue to think about an unresolved problem. At
some point, it certainly must become an unprofitable use of one’s time. Whether religious
meditation is more profitable is a question that | leave to the reader.

3.7. One frequently repeated story about Christopher Columbus is that he proved to a
doubting public that the Earth was round. What grounds are there for believing that “the
public” doubted this fact? Which people in the Middle Ages would have been likely to
believe in a flat Earth? Consider also the frequently repeated story that people used to
believe the stars were near the Earth. How is that story to be reconciled with Ptolemy’s
assertion that it was acceptable to regard Earth as having the dimensions of a point relative
to the stars?
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Answer. The answer must be understood within the context of education in Columbus’
day. The overwhelming majority of people were illiterate and ignorant in a way that we
can hardly imagine today. What they believed about the shape of the earth is not easy to
ascertain, nor is it a question of any importance. But educated people during the Middle
Ages, who read Ptolemy, certainly knew that the universe was large—not as large as we
now know it to be, but very large nevertheless—and that the earth was spherical.

3.8. What are the possible advantages and disadvantages of eliminating or greatly reducing
the volume of journals, placing all articles on electronic files that can be downloaded from
various information systems?

Answer. Having experienced the joy of getting information from the World Wide Web
that would have taken weeks to acquire through Interlibrary Loan, and having used search
engines to locate sources whose existence | would never have suspected, | am an enthusi
astic proponent of putting absolutely everything on the Web—photostatic copies of ancient
manuscripts, texts of existing journals, and all new journals and books. Think of the trees
we can save, not to mention the overstuffed, inaccessible warehouses where most libraries
are now forced to put all their antiquarian materials (from those dim ages of the distant
past, such as the 1970s). But the primary benefit is the rapid, universal accessibility of
information stored in this way. The only disadvantage is in the progress of technology,
which will force the continuous acquisition of new methods of storage and retrieval. How-
ever, conversions to updated versions of the storage and retrieval software will no doubt be
accomplished by computers and should not be a serious problem.

3.9. Mathematical research is like any other commercial commodity in the sense that peo-
ple have to be paid to do it. We have mentioned the debate over taxing the entire public to
support such research and asked the student to consider whether there is a national interest
that justifies this taxation. A similar taxation takes place in the form of tuition payments

to American universities. Some of the money is spent to provide the salaries of profes-
sors who are required to do research. Is there an educational interest in such research that
justifies its increased cost to the student?

Answer.| believe the answer to this question is contained in my answers to several other
guestions above. It is a qualified, “Yes.” Professors should do reseaathd to their
teaching and that research should be funded out of tuition. Research into esoterica of
interest only to the initiates in a given area should not be funded out of money students
have paid in order to be taught.
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CHAPTER 4

Women M athematicians

4.1. Inthe late fourth and early fifth centuries the city of Alexandria, where Hypatia lived,
was divided into Christian, Jewish, and pagan cultures. Is it merely a random event that
the only woman mathematician of the time in this city with a long history of scholarship
happened to come from the pagan culture?

Answer. In the modern world both Jewish and Christian cultures have liberated women
and encouraged them to develop their talents. In the early Christian world, women played
a large and vital role in the community and were often prominent leaders. However, the
community itself did not produce any scientists, male or female; scientific curiosity was
not among its virtues. At the time when Hypatia lived, Christianity was developing a patri-
archal system of governance that relegated women to an auxiliary role for many centuries.
The pagan culture was apparently more egalitarian in this regard, but it was rapidly losing
out to Christianity, as shown by the termination of the Olympic Games by the Emperor
Theodosius in the year 395.

4.2. Compare the careers of Charlotte Angas Scott and Sof'ya Kovalevskaya. In what
aspects were they similar? What significant differences were there? Were these differ-
ences due to the continental circles in which Kovalevskaya moved compared to the Anglo-
American milieu of Scott’s career? Or were they due to individual differences between the

two women?

Answer. The most prominent difference that springs to mind is Kovalevskaya's marriage

of convenience, the only route she was able to find to pursue the career she wanted. While
marriages of convenience were known in Britain and France, | cannot think of one that
was entered into merely as a way of pursuing a career. As Elizaveta Fedorovna Litvinova
(1845-1919), another Russian woman who went to the West (Zurich) to obtain a degree,
explained, “You don't have to be a genius to understand this, but you do have to be a
Russian.” Of course, there were individual differences between the two women, hard for
us to judge, who never knew either woman. Still, from the public record that remains of
them, Scott seems to have been a much more even-tempered, phlegmatic type than the
volatile Kovalevskaya.

4.3. Choose two women mathematicians, either from among those discussed in this chap-
ter or by going to a suitable website. Read brief biographical sketches of them. Then try to
match each woman with a comparable male mathematician from the same era and coun-
try. Compare their motives for studying mathematics if any motives are given, the kind
of education they received, the journals where they published their work, and the kind of
academic positions they occupied.

Answer. This question, now that | have tried to answer it, seems far less useful than it
seemed when | posed it. The reason is that individual differences simply swamp all other

25
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differences when the sample is only two people. Only in terms of statistics are any gener-
alizations possible. Be that as it may, here are my two examples:

Case 1: Julia Bowman Robinson (1919-1985) and Norman Steenrod (1910-1871).
matched these two only because they were nearly contemporaries, and because both were
born in the American Midwest, Robinson in Saint Louis, Missouri, and Steenrod in Day-
ton, Ohio.

Julia Bowman’s mother died when Julia was only two years old, and she and her
older sister Constance (the author Constance Bowman Reid, whose biographies of famous
mathematicians—Julia Bowman Robinson among them—have won great acclaim) were
sent to live in Arizona, where their father joined them a year later, after his remarriage.
Julia had serious illnesses as a child and was tutored at home for a while. In high school,
she was the only girl in the more advanced science and mathematics courses. She went
to San Diego State University. The Great Depression of the 1930s bankrupted her father,
and he committed suicide during her second year of college. Supported by her aunt and
her sister, she transferred to the University of California at Berkeley for her senior year,
and blossomed as a student. There she met and married Raphael Robinson, a professor
of mathematics. Temporarily, because of anti-nepotism rules, her marriage derailed her
academic career. A miscarriage and her doctor’s advice not to have children devastated
her, but she turned her attention to mathematics and became one of the quartet of brilliant
mathematicians who together solved Hilbert's Tenth Problem, proving that no algorithm
could exist to determine whether a Diophantine equation has solutions. (The other three
were Hilary Putnam, Martin Davis, and Yuri Matiyasevich. Matiyasevich furnished the
final step in 1970.) She became the first woman officer of the American Mathematical
Society, the second to give one of its Colloquium letters, and its first president in 1982.
In 1976 she became the first woman elected to the Academy of Sciences. Matiyasevich
later recalled that she had insisted on having her name written out in full on an expository
publication about Hilbert’s Tenth Problem, to avoid being confused with John Robinson
and George Robinson, names that occurred in close conjunction with hers in a number
of contexts; ironically, he noted, he himself never realized that the J. Robinson whom he
knew of from a paper on game theory was in fact the Julia Robinson that he knew from
the Hilbert Problem. (She had published that paper in 1951 while working for the RAND
corporation.) She died (of leukemia) at the age of 65.

Norman Steenrod was the brilliant child of school teachers, who completed high
school at the age of 15 and enrolled in Miami of Ohio at the age of 17. He transferred
to the University of Michigan, where he made his first acquaintance with topology, the
subject that was to be at the heart of his career, graduating in 1932. Unfortunately, he did
not get any fellowship to graduate school. He went back home, worked on his own, and
wrote a good paper in topology. On that basis, he received an offer from Harvard, where he
went for a year before joining his former Michigan professor Wilder at Princeton. There
he became a student of Solomon Lefschetz and soon obtained the PhD. He married in
1938, and taught from 1939 through 1942 at the University of Chicago. He then taught
for five years at the University of Michigan, before coming to Princeton in 1947. He was
famous for his courses in topology (I myself attended one of them in 1963) and for his
research and expository work in the topology of fiber bundles. He was invited to give an
AMS Colloquium Lecture in 1957 and eventually became a member of the Academy of
Sciences.

In many ways these two mathematicians are quite comparable. Both, near the end of
their careers, abandoned pure research (Robinson because she was busy as president of the
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AMS, Steenrod because he realized that his best ideas were those he had had in the past—
at least so | was told by another Princeton faculty member.) One must say, however, that
it is very unlikely that Robinson would have been given the offers that Steenrod received.
Harvard and Princeton in those days, the best possible places for mathematicians, were not
congenial to the idea of recruiting women. Fortunately it is well recognized that Berkeley

is quite comparable to Harvard and Princeton, and Berkeley apparently made no issue of
Robinson’s gender—except for that anti-nepotism rule mentioned above.

Case 2: Olga Aleksandrovna Ladyzhenskaya (1922-2004) and Georgii Dmitrievich Su-
vorov (1919-1984)These two Russians lived in rather different parts of their vast country.
Ladyzhenskaya (pronounced La-DIH-zhenskaya) graduated from Moscow University in
1947 and did graduate work at Leningrad University, where she taught. After 1949 she
was also a member of the Academy of Sciences (Steklov) Mathematics Institute, Leningrad
Branch. Her work in partial differential equations is widely recognized as among the best
work done during the twentieth century in this area.

Suvorov, although born in Saratov, in western Russia, graduated from the University
of Tomsk, in Siberia, in 1941. | do not know what if any military service he performed
during the titanic struggle against the Nazis, but it is unlikely that he escaped military
service entirely. He completed his graduate work at Tomsk in 1949 (after the war) and
taught there until 1965, at which point he moved to Donetsk, in the Ukraine, to head a
department in the Academy of Sciences Institute of Applied Mathematics and Mechanics.
He is famous for his outstanding work in conformal mapping.

There are many similarities between these two mathematicians, in terms of the acclaim
their work received from specialists in their areas, although Ladyzhenskaya is certainly
better known in general, justifiably so in terms of the quantity of work produced. The
Soviet publicatiorMathematics in the USSR after Forty Years, 1917-1188&d 32 papers
by Ladyzhenskaya between 1950 and 1957, ten by Suvorov from 1948 to 1957.

4.4. How do you account for the fact that a considerable percentage (compared to their
percentage of the general population) of the women studying higher mathematics in the
United States during the 1930s were Roman Catholic nuns? (Some of these nuns produced
mathematical research of high quality, for example, Sister Mary Celine Fasenmyer (1906—
1996).)

Answer.First, let us give an idea of the impact of nuns on graduate work in mathematics.
Sister Miriam Cooney, who received the Ph.D. in 1969 from the University of Chicago for

a dissertation in algebra, conducted a study of over 100 nuns with PhDs in mathematics.
Considering how small a portion of the population huns amounted to, even when they
were relatively numerous, that is an amazingly large number of mathematicians. There
are probably many causes for this phenomenon, all connected with the fact that nuns tend
to lead a structured life, in which teaching and studying often plays a part, and that their
services were much in demand as teachers in Catholic schools and colleges. Of course,
there is a long tradition of the outstanding scholarly nun, going back at least as far as
Hildegard of Bingen (1098-1179) and Sor Juana Inés de la Cruz (1648-1695), so these
women had very good role models.

4.5. What were the advantages and disadvantages of marriage for a woman seeking an
academic career before the twentieth century? How much of this depended on the particu-
lar choice of a husband at each stage of the career? The cases of Mary Somerville, Sof'ya
Kovalevskaya, and Grace Chisholm Young will be illuminating, but it will be useful to
seek more detailed sources than the narratives above.
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Answer. This question is impossible to answer accurately, since we will never know how
many talented women were simply extinguished intellectually by getting married and trans-
ferring all their energies to domestic concerns. A comparison of the relative number of
single women among scientists and single women in the general population, if one exists,
might be of some help in answering this question. As noted in the text, Mary Somerville’s
first husband was a definite hindrance to her career, but her second husband seems to have
helped. Kovalevskaya'’s husband, who began by attempting to help her, ultimately became
a burden to her. Had he lived, | doubt if she would have achieved the fame that came to
her as a good mathematicians who was also a respectable widow with a daughter. Grace
Chisholm Young, as noted, hid her talents behind her husband, at least at first.

Thus, the disadvantages of marriage can be considerable. On the other hand, most
people do want to have children, and a marriage between mathematicians seems to in-
crease greatly the chances that the children will be scholars. The Youngs are one example.
Another, from Russia, is the marriage of Pelageya Yakovlevna Polubarinova (1899-1999)
and Nikolai Evgrafovich Kochin (1901-1944), whose daughter Nina Nikolaevna Kochina
wrote an articlettp: //www-sbras.nsc.ru/HBC/2000/n09/£9.html) examining the
fact that, despite what appeared to be full access to educational opportunities in the Soviet
Union, the number of women in both government and science there was much smaller than
the number of men. (The article is in Russian, and “HBC” is really “NVS,” standing for
the Russian phrase “science in Siberia.”)

The best “more detailed source™¢omen of Mathematics. A Biobibliographic Source-
book edited by Louise S. Grinstein and Paul J. Campbell. Greenwood Press, Westport, CT,
1987.

4.6. How big a part did chance play in the careers of the early women mathematicians?
(The wordchanceis used advisedly, rather thaurck, since the opportunities that came for
Sof’ya Kovalevskaya and Anna Johnson Pell Wheeler were the result of tragic misfortunes
to their husbands.)

Answer.Since there were no regular channels for women to become mathematicians until

a century ago, all were forced to make their own routes, taking advantage of whatever op-
portunities came their way. However, those opportunities were often mere chance remarks
and encouragement from mentors or friends and family, which turned a young woman’s

mind to the possibility of becoming a mathematician.

4.7. How important is (or was) encouragement from family and friends in the decision to
study science? How important is it to have a mentor, an established professional in the
same field, to help orient early career decisions? How important is it for a young woman
to have an older woman as a role model? Try to answer these questions along a scale from
“not at all important” through “somewhat important” and “very important” to “essential.”

Use the examples of the women whose careers are sketched above to support your rankings.

Answer. If being a mathematician is ever going to be a normal thing for a woman, not at
all marking her as different, such mentoring needs to be there. It is almost as important
for these role models to be apparent to the public in general as for them to be known to
the aspiring young mathematician. When a woman can tell people of her plan to become a
mathematician without getting a curious look that says, “How unusual!” we will know we
have nearly succeeded in “leveling the playing field.” | think we are nearly there; general
sensitivity to gender stereotypes has increased greatly of late. In the meantime, | would
regard answer all of these questions as “very important.” Of course a woman can get along
without them if necessary, but there is no doubt that they make things easier.
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4.8. Why were most of the women who received the first doctoral degrees in mathematics
at German universities foreigners? Why were there no Germans among them? In his
lectures on the development of nineteenth-century mathemat#26(\ol. 1, p. 284),

Klein mentions that a 17-year-old woman named Dorothea Schldzer (apparently German,
to judge by the name) had received a doctorate in economicsttingen a full century
earlier.

Answer. Probably the authorities in charge of such things at the universities and in the
government thought they could control the numbers of foreign women entering German
universities and wouldn’t have to let them into the workplace in Germany.

4.9. How strong are the “facts” that Loria adduces in his argument against admitting
women to universities? Were all the women discussed here encouraged by their fami-
lies when they were young? Is it really true that it is impossible to “fix with precision”
the original contributions of Sophie Germain and Sof'ya Kovalevskaya? You may wish
to consult biographies of these women in which their correspondence is discussed. Would
collaboration with other mathematicians make it impossible to “fix with precision” the
work of any male mathematicians? Consider also the case of Charlotte Angas Scott and
others. Is it true that they were exhausted after finishing their education?

Next, consider what we may call the “honor student” fallacy. Universities select the
top students in high school classes for admission, so that a student who excelled the other
students in high school might be able at best to equal the other students at a university.
Further selections for graduate school, then for hiring at universities of various levels of
prestige, then for academic honors, provide layer after layer of filtering. Except for an
extremely tiny elite, those who were at the top at one stage find themselves in the middle
at the next and eventually reach (what is ideally) a level commensurate with their talent.
What conclusions could be justified in regard to any gender link in this universal process,
based on a sample of fewer than five women? And how can Loria be sure he knows their
proper level when all the women up to the time of writing were systematically locked out
of the best opportunities for professional advancement? Look at the twentieth century and
see what becomes of Loria’s argument that women never reach the top.

Finally, examine Loria’s logic in the light of the cold facts of society: A woman who
wished to have a career in mathematics would naturally be well advised to find a mentor
with a well-established reputation, as Charlotte Angas Scott and Sof’ya Kovalevskaya did.
A woman who did not do that would have no chance of being cited by Loria as an example,
since she would never have been heard of. Is this argument not a classical example of
catch-227?

Answer.This is too easy a shot. In fact, all the leading questions asked in the course of this
problem give away the answer. Please enjoy writing your own rant against Loria.

4.10. Here is a policy question to consider. The primary undergraduate competition for
mathematics majors is the Putnam Examination, administered the first weekend in Decem-
ber each year by the Mathematical Association of America. In addition to its rankings
for the top teams and the top individuals, this examination also provides, for women who
choose to enter, a prize for the highest-ranking woman. (The people grading the examina-
tions do not know the identities of the entrants, and a woman can enter this competition
without identifying herself to the graders.) Is this policy an important affirmative-action
step to encourage talented young women in mathematical careers, or does it “send the
wrong message,” implying that women cannot compete with men on an equal basis in
mathematics? If you consider it a good thing, how long should it be continued? Forever?
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If not, what criterion should be used to determine when to discontinue the separate cat-
egory? Bear in mind that the number of women taking the Putnam Examination is still
considerably smaller than the number of men.

Answer.I'm on the side of “gender-neutrality” here and would prefer not to have a special
category for women. It took some time for a woman (Emmy Noether) to come along who
was in the very top rank of mathematicians of her generation, and it may be a while before
a woman comes in among the top finishers on the Putham Examination. But I'm very much
against calling attention to the absence of women among the winners by giving them their
own special category. It looks patronizing to me.

4.11. Continuing the topic of the Question 4.10, what criterion should be used to determine
when affirmative action policies designed to overcome the effects of past discrimination
against women will have achieved their aim? For example, are these policies to be con-
tinued until 50% of all mathematics professors are women within the universities of each
ranking? (The American Mathematical Society divides institutions into different rankings
according to the degrees they grant; there is also a less formal but still effective ranking in
terms of the prestige of institutions.) What goal is being pursued: that each man and each
woman should have equal access to the profession and equal opportunity for advancement
in it, or that equal numbers of men and women will choose the profession and achieve
advancement? Or is the goal different from both of these? If the goal is the first of these,
how will we know when it has been achieved?

Answer.Unless we completely reorganize society from top to bottom and force people to
make individual decisions about careers that will achieve a pre-ordained gender balance—
a colossal project that very few people of either gender actually want at present—I believe
it will be a long time before men and women in equal numbers choose to devote a major
portion of their time to raising children and other domestic duties. In fact, it may never
happen. Given that, there is bound to be a statistical difference in the numbers of women
and men working part-time and a statistical difference in the degree of commitment to
a career. These differences will of course result in a statistical difference in men’s and
women’s compensation. In addition, thenayalso be genuine differences in temperament
that make some subjects and careers more attractive to members of one gender. (I do not
assert that as fact, only as a possibility. Too little is known at present about objective gender
differences; and those who assert that such differences do or do not exist are inevitably
people who want the truth to be what they say it is.) Such differences, if they exist, are
merely statistical and should not be thought to apply to any particular person. To clarify: |
amnot asserting that there is any gender-related difference between a male mathematician
and a female mathematician. But themay bennate differences between men and women

in general that result in more men than women wanting to be mathematicians or—what |
think very likely in the near future—more women than men wanting to be mathematicians.

If the goal is to be that the whole set of women should have salaries and careers indis-
tinguishable statistically from those of the whole set of men, I think it is entirely unrealistic.
What is realistic (in my opinion) is that women and men performing comparable jobs with
comparable experience should not be statistically distinguishable in their compensation
and rank. Unfortunately, these statistical subtleties (not so subtle, really, but apparently
beyond the comprehension of most news reporters) are usually lost in the relentless stream

1 | am aware that many people think that no forcing of decisions would be necessary to bring about this outcome,
that such an equal balance would inevitably result if society simply allowed each person a free choice. | think
they are wrong.
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of media reporting on the overall differences between men’s and women’s compensation.
Where real discrimination against women still exists, | certainly want to see it rooted out.
But one needs to locate the actual villains of the piece, not (as the news reporters so fre-
guently do) merely report that “the average woman earns only 79 cents for every dollar
the average man earns” as if that fact all by itself proved that someone was discriminating
against women. The average man and the average woman are like the average book: they
don't exist. In short, what | would like is to eliminate the identifiable sources of discrim-
ination; | am against concluding that discrimination exists merely because of statistical
differences.

Lest all this seem to be an anti-feminist rant, let me say that what | confidently expect
to come about is a mathematics professoriate that is largely female. It will not happen
for another generation, by which time | even more confidently expect to be dead. But my
informal observation is that girls generally like school much better than boys and thereby
get a better start (as a group, statistically) on nearly all careers. | think many parents who
go to high school honors nights and see girls winning 90% of the honors, and (on the
university level) women constituting 90% of the inductees to Phi Beta Kappa, will know
what | mean. Unless we begin to pay more attention to the need for extra discipline that
boys have, we will be essentially wasting their talents, as we wasted the talents of girls for
many generations past. On the other hand, since only the most talented boys will become
scientists and mathematicians, male scientists will be disproportionately represented at the
top institutions. So much for my predictions. Time will tell.
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CHAPTER 5

Counting

5.1. Find an example, different from those given in the text, in which English grammar
makes a distinction between a set of two and a set of more than two objects.

Answer. Some grammarians will disagree with me, but | claim teath otherandone
anotheris such a distinction, as is the distinction betwéetweerandamong

5.2. Consider the following three-column list of number names in English and Russian.
The first column contains the cardinal numbers (those used for counting), the second col-
umn the ordinal numbers (those used for ordering), and the third the fractional parts. Study
and compare the three columns. The ordinal numbers and fractions and the numbers 1 and
2 are grammatically adjectives in Russian. They are given in the feminine form, since the
fractions are always given that way in Russian, the ndolya, meaningpart or share

always being understood. If you know another language, prepare a similar table for that
language, then describe your observations and inferences. What does the table suggest
about the origin of counting?

English Russian
one | first | whole|| odna pervaya tselaya
two | second| half dve vtoraya polovina
three| third | third tri tret'ya tret’

four | fourth | fourth || chetyre| chetvyortaya chetvert’
five | fifth fifth pyat’ pyataya pyataya
six | sixth | sixth || shest’ shestaya | shestaya

Answer.The corresponding table for French is as follows.

English French
one | first | whole un premier entier
two | second| half deux | seconde (deugime) demi
three| third | third || trois troisieme tiers
four | fourth | fourth || quatre quatrieme quart
five | fifth fifth cing cinquieme cinquieme (partie
six | sixth | sixth six sixieme sixieme (partie)

For Japaneseit is as follows.

1 Japanese grammar differs from English considerably, especially in regard to numbers. There are many ways of
counting things in Japanese, depending on the nature of what is being counted.

33
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English Japanese
one | first | whole ichi ichiban no zenbu
two | second| half ni nibanme no | nibunnoichi
three| third | third san sanbanme ng sanbun no ichi
four | fourth | fourth || shi(yon)| yonbanme no| yonbun no ichi
five | fifth fifth go gobanme no| gobun no ichi
Six sixth | sixth roku rokubanme ng rokubun no ichi

The French, English, and Russian languages show regularity setting in after the num-
ber 2. In Japanese the regularity applies even to the number 2. However, as noted, Japanese
has more than one way of counting. The number names here come from Chinese and were
superimposed on a Japanese counting system that already existed and is still used for count-
ing certain things. In the other system the numbers 1, 2, 3, 4,. hitatsu, futatsy mittsu
yottsu,.... The old Japanese word for four is retained in many cases, since the Chinese
word shisounds like the Japanese word for death.

5.3. How do you account for the fact that the ancient Greeks used a system of counting
and calculating that mirrored the notation found in Egypt, whereas in their astronomi-
cal measurements they borrowed the sexigesimal system of Mesopotamia? Why were
they apparently blind to the computational advantages of the place-value system used in
Mesopotamia?

Answer.lt maysimply be a case of which culture they encountered first. Once a system is
established, transferring to a new system may require too much modification of an existing
infrastructure. Why do we, for example, cling to the English system of spelling or the
standard, but inefficient “qwertyuiop” keyboard on our computers?

5.4. Atropical year is the time elapsed between successive south-to-north crossings of the
celestial equator by the Sun. A sidereal year is the time elapsed between two successive
conjunctions of the Sun with a given star; that is, it is the time required for the Sun to
make a full circuit of the ecliptic path that it appears (from Earth) to follow among the
stars each year. Because the celestial equator is rotating (one revolution in 26,000 years)
in the direction opposite to the Sun’s motion along the ecliptic, a tropical year is about
20 minutes shorter than a sidereal year. Would you expect the flooding of the Nile to be
synchronous with the tropical year or with the sidereal year? If the flooding is correlated
with the tropical year, how long would it take for the heliacal rising of Sirius to be one
day out of synchronicity with the Nile flood? If the two were synchronous 4000 years ago,
how far apart would they be now, and would the flood occur later or earlier than the heliacal
rising of Sirius?

Answer.Since the state of the Nile is determined by the weather and the climate and they
are linked to the Sun, | would expect the flooding of the Nile to be linked to the tropical
year. However, the flooding of the Nile was perhaps not so regular as some accounts would
have us believe. Some historians think the “decline and fall” of the Old Kingdom late in
the third millennium BCE may have been caused by the failure of the annual floods. The
Nile flood begins in Egypt in early July, reaching a peak about two months later.

It takes about 72 years for the difference between tropical and sidereal years to amount
to one day. That s, the heliacal rising of Sirius comes one day later every 72 years. In 4000
years, that would amount to about 8 weeks. Since the heliacal rising of Sirius is now at the
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end of July (Sirius is hidden by the sun during June and July), it would have occurred at
the end of May in ancient times, giving the Egyptians a month to get ready for the*lood.

5.5. How manyTzolkincycles are there in a Calendar Round?

Answer.73 (3$332).

5.6. The pattern of leap-year days in the Gregorian calendar has a 400-year cycle. Do the
days of the week also recycle after 400 years?

Answer.Yes. A 400-year cycle has 97 leap years. Hence the total number of days in such
acycleis4d00 x365+97=1x1+6=0mod 7.

5.7. (The revised Julian calendpiThe Gregorian calendar bears the name of the Pope
who decreed that it should be used. It was therefore adopted early in many countries with
a Catholic government, somewhat later in Anglican and Protestant countries. Countries
that are largely Orthodox in faith resisted this reform until the year 1923, when a council
suggested that century years should be leap years only when they leave a remainder of 2
or 6 when divided by 9. (This reform was not mandated, but was offered as a suggestion,
pending universal agreement among all Christians on a date for Easter.) This modification
would retain only two-ninths of the century years as leap years, instead of one-fourth, as
in the Gregorian calendar. What is the average number of days in a year of this calendar?
How does it compare with the actual length of a year? Is it more or less accurate than the
Gregorian calendar?

Answer.In this calendar, the average number of days in a year, over a long period of time,

will be

1 7 164359
6 - — — = ——— & 365.24222.
365+ 4 900 450 365

That is as accurate as astronomy can get at the present time. However, with the newest
methods of tracking time, we are now inserting “leap-seconds” occasionally to compensate
for a very gradual slowing of the earth’s rotation, so that the Gregorian calendar will not
soon be out of synchrony with the seasons.

5.8. In constructing a calendar, we encounter the problem of measuring time. Measuring
spaceis a comparatively straightforward task, based on the notion of congruent lengths.
One can use a stick or a knotted rope stretched taut as a standard length and compare
lengths or areas using it. Two lengths are congruent if each bears the same ratio to the
standard length. In many cases one can move the objects around and bring them into
coincidence. But what is meant by congrutnte interval® In what sense is the interval

of time from 10:15 to 10:23 congruent to the time interval from 2:41 to 2:49?

Answer.The equality of time intervals as measured by standard clocks must be accepted as
the starting point for quantitative science. It has no meaning outside of that context. The
assumption is well justified by the consistency of the notion of equal time intervals when
measured by different chronometers.

5.9. It seems clear that the decimal place-value system of writing integemsténtially
infinite; that is there is no limit on the size of number that can be written in this system. But
in practical terms, there is always a largest number for which a name exists. In ordinary
language, we can talk about trillions, quadrillions, quintillions, sextillions, septillions, oc-
tillions, and so on. But somewhere before the numit9éf is reached, most people (except

2 On the average. The month of warning leaves a reasonable safety margin in case the flood comes early.
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Latin scholars) will run out of names. Some decades ago, a nephew of the American math-
ematician Edward Kasner (1878-1955) coined the ngoogolfor the numbern 0'°°, and

later the nameyoogolplexfor 1019 This seems to be the largest number for which a
name exists in English. Does there exist a positive integer for which no naniépossi-

bly be found, not merely an integer larger than all the integers that have been or will have
been named before the human race becomes extinct? Give a logical argument in support
of your answer. (And, while you are at it, consider what is meant by saying that an integer
“exists.”)

Answer.l think the answer here is “Yes,” but | am willing to listen to contrary arguments if
anybody has one. One such argument is that such an integer would have to be undescrib-
able. If we had a description of such an integer, that description would be tantamount to a
name. But since | think the structure of the numbers reflects some necessary structure of
the universe and that it is meaningful to say that the objects in the universe and the relations
among them are real, | see no reason not to use the colloquial modes of speech and say that
there exist numbers no one will ever think of. Notice that English contains a potentially
infinite set of words. We could rename the sequence of positive integers “ba,” “baba,”
“bababa,” “babababa,” and so on, and then agree to use these names for the corresponding
object only where a name does not already exist.

Here | am taking the philosophical position that integers “exist” in some sense—not
the same sense in which physical objects exist. But | admit that assertions containing this
use of the wordexistare not to be taken in the same sense as the assertions that trees
and shopping malls exist. What we mean when we say a number exists can be rephrased
without using any word involving existence. For example, the assertion that the number
three “exists” means that some sets consist of three members. The abstract concept of the
number three and the notion of existence are merely linguistic conveniences, to help us in
our quantitative reasoning. The elements of a three-element set (if they are physical) have
the ordinary kind of existence. The set and the number three do not.
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Calculation
6.1. Double the hieroglyphic numb&TW| mmm'
| NNN
Answer.|| ANNAA°

6.2. Multiply 27 times 42 the Egyptian way.

Answer.
1 42
* 2 84
4 168
* 8 336
* 16 672

Total 27 1134
6.3. (Stated in the Egyptian style.) Calculate with 13 so as to obtain 364.

Answer.
1 13
2 26
4 52 *
8 104 *
16 208 *
28 364 Result

6.4. Problem 23 of the Ahmose Papyrus asks what parts must be added to the gum of

8, 10, 30, and45 to obtain3. See if you can obtain the author's answeBaf0, starting
with his technique of magnifying the first row by a factor of 45. Remembergha'ust be

expressed a3 8.

Answer. This is one problem where the solution procedure is not shown in the Papyrus
itself. Hence we can only conjecture the process used. When magnified by a factor of 45,
the terms to be complemented to2al 2 4 8, and the term to be reached is 30. What is to

be added then i§ 8. We need to divide this number by 45, that is, “calculate” with 45 so as
to reach it. Apparently the scribe was observant enough to noticéihat8 -5+ 1- 5, so

that the Horus-eye fractions could be used. Dividisgoy 40 then gavel 8, so that only

5 was lacking, and it was produced by simply dividing 45 by 9. A different solution was
suggested in the first edition of this book, and Gillings gives yet two more possibilities.

6.5. Problem 24 of the Ahmose Papyrus asks for a number that yléldghen its seventh
part is added to it, and concludes that one must perforri dme same operations that
yield 19 when performed o8. Now in Egyptian terms§ must be multiplied by2 4 8 in

37
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order to obtainl9. Multiply this number by7 to obtain the scribe’s answelr6 28. Then
multiply that result by7, add the product to the result itself, and verify that you do obtain
19, as required.

Answer.
1 7
* 2 14
2 32
* 4 124
* 8 248
Total 248 14124248

This last number id6 2 8. Multiplying by 7 yields (since the double 6f is 4 28) the

number2 4 14 28 56, and when we add this t6 2 8 we get18 2 4 8 14 28 56. The scribe

had to recognize somehow thit 28 56 is §._Pgbably_the Horus-eye representation
7 =4+ 2 + 1 was the secret of doing so, sinbg 28, and56 are in those proportions.

6.6. Problem 33 of the Ahmose Papyrus asks for a quantity that yields 37 when increased
by its two parts (two-thirds), its half, and its seventh part. Try to get the author’s answer:
The quantity is 166 679 776. [Hint: Look in the table of doubles of parts for the double

of 97. The scribe first tried the number 16 and found that the result of these operations

applied to 16 fell short of 37 by the double @2, which, as it happens, is exactly3 2 7
times the double 0§7.]

Answer. Using the “false position” method and trying 16, we find that the prescribed

operations yield6 3, 4 28. This is very close to 37. To complemeht4 28 to 1, we
multiply by 42, getting28 10 2 1 2, which is 40. We are therefore lacking 2 units and need

to “calculate with 42 so as to obtain 2. In a way that seems weird to us, the author focused
on the equatio®7 = 42 + 28 + 21 + 6 = 42(1 + % + % + %), which he would have
thought of as the relatiof2 = 97(1 + 2 + 1 + 1). Hence he had only to consult the table

for the double 0P 7.

A more interesting question concerns the source of this problem. Where did that
strange mixture of fractions in the statement of the problem arise? My guess is that it
arose precisely from starting with the number 42, taking some integer “parts” of it, and
adding them. The result happened to be 97. | believe the author started with the answer
and tailored the problem to arrive at it. When the process is turned around and stated
backwards, as in the Papyrus, the effect is to make the solution appear mysteriously, out of
nowhere.

6.7. Verify that the solution to Problem 71 (i) is the correctpesuof the diluted beer
discussed in the problem.

Answer.Since the original jug contained haltekatof grain, it follows that one-eighth of
a hekat was removed, leavid@® of a hekat The reciprocal of this number is calculated in
the ordinary way.
1 43
8 3
23 1
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6.8. Compare thepesuproblems in the Ahmose Papyrus with the following problem,
which might have been taken from almost any algebra book written in the past century:
A radiator is filled with 16 quarts of a 10% alcohol solution. If it requires a 30% alcohol
solution to protect the radiator from freezing when it is turned off, how much 95% solution
must be added (after an equal amount of the 10% solution is drained off) to provide this
protection? Think of the alcohol as the grain in beer and the liquid in the radiator as the
beer. The liquid has pesuof 10. What is thepesuthat it needs to have, and what is the
pesuof the liquid that is to be used to achieve this result?

Answer. | actually took this problem from an algebra book. Unfortunately | do not re-
member exactly which algebra book; but that does not matter, since all algebra books are
more or less interchangeable, and one cannot copyright a problem of this sort. The easiest
way to compare the two problems is to solve the modern problem as we think an ancient
Egyptian would have done. We are trying to mix a liquid witp@suof 10 and a liquid

with a pesuof 1 19 to get 16 quarts of a liquid with a pesu of33 If we were Egyptians,

we would first “calculate with 3 so as to reach 16.” The result would bé 40 30, which

is the number of quarts of alcohol that must be in the final mixture. The amount now in it
is 12 10 (found by dividing 16 by 10), so that we need to increase i8lfy30, which, as

the scribe undoubtedly would have recognized, % Blow each quart opesu10 solution
containsl 0 quarts of alcohol, and each quartdsul 19 solution containg 4 5 quarts of
alcohol. Hence each quart replaced will increase the amount of alcoHbihiy quarts.

We are thus looking for a number which, multiplied Byt 10 will yield 3 5. Scaling the
problem by multiplying it by 20 shows that we need to “calculate with 17 so as to obtain
64.” One can conjecture the following solution of that problem.

1 17
2 34
3 113
17 1

%« 34102 3

The answer would therefore be given as
3317 34 102.
Here the last two terms come from the table as the doubfd of

6.9. Verify that the solu_tiorﬁ 10 given above for Problem 35 is correct, that is, multiply
this number by 3 and by and verify that the sum of the two resultslis

Answer.This is straightforward:

* 1 510
* 2
* 3
Total 33 5103 155 1530

W
—

There is a lot of juggling ofs and 15 when this last expression is condensed, since the

double of15is 10 30 and the double of is 3 15. In the end, one gets 5 10 30, which
one can scale by 30 and see that the result is correct.
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6.10. Why do you suppose that the author of the Ahmose Papyrus did not choose to say

that the double of the thirteenth part is the seventh part plus the ninety-first part, that is,
2 1 1
=7t o’
Why is the relation
2 1 1 1
BTsTn i
made the basis for the tabular entry instead?

Answer.Undoubtedly the author preferred fractions with even numbers.

6.11. Generalizing Question 6.10, investigate the possibility of using the identity
2 1 1

— = +
ro () (5

to express the double of the reciprocal of an odd numbeass a sum of two reciprocals.

Which of the entries in the table of Fig. 1 can be obtained from this pattern? Why was it

not used to express; ?

Answer.This pattern fits only the doubles of the reciprocals of 5, 7, 11, and 23 in the table.
The difficulty seems to be that the second denominator tends to get Iarge.ﬁ/\/itbr
example, itis 120, whereas the table gives the simpler decompositien - + ..

6.12. Why not simply write13 13 to stand for what we caly? What is the reason for
using two or three other “parts” instead of these two obvious parts?

Answer.This method leaves no way of combining the parts into simpler parts, for example
replacing6 30 with 5. Each time you double, you also double the number of terms you have
to write down, and we all know how quickly doubling things leads to unwieldy amounts.

6.13. Could the ability to solve a problem such as Problem 35, discussed in Subsection 1.2
of this chapter, have been of any practical use? Try to think of a situation in which such a
problem might arise.

Answer. One plausible conjecture is to calculate the volume of a new handmade pottery
vessel in terms of a standdndkat Thus if the vessel is filled three times and emptied into
the standardhekatvessel, but does not quite fill the standard vessel, one could fill the new
vessel approximately one-third the way full and discover that this amount just tops up the
standarchekat It would then be possible to use this computation to mark the volume of
the vessel on its outside. (Please do not infer that the Egyptians adidithis. | have no
direct evidence that they did. | am saying only that toeyld have done i}

6.14. We would naturally solve many of the problems in the Ahmose Papyrus using an
equation. Would it be appropriate to say that the Egyptians solved equations, or that they
did algebra? What does the waathebramean to you? How can you decide whether you
are performing algebra or arithmetic?

Answer.They certainly found unknown numbers from properties that they must have. That
is the essence of algebra. Their techniques were not ours, since they didn’t write down and
manipulate equations, but the underlying thought process was to reason from a description
of a number to make it reveal itself in the notation they used for numbers. On that basis |
say, “Yes, they did algebra.”
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6.15. Why did the Egyptians usually begin the process of division by multiplying?by
instead of the seemingly simpl2?

Answer.As mentioned in the text, when you are putting numbers together from pieces, it
saves labor to have the pieces as large as possible.

6.16. Early mathematicians must have been adept at thinking in terms of expressions.
But considering the solutions to the riders-and-carts problem and the colorful language
of Brahmagupta in relation to the Rule of Three, one might look at the situation from
a different point of view. Perhaps these early mathematicians were good “dramatists.”
In any algorithm the objects we now call variables amount to special “roles” played, with
different numbers being assigned to “act” in those roles; an algorithm amounts to the drama
that results when these roles are acted. That is why it is so important that each part of
the algorithm have its own name. The letters that we use for variables amount to names
assigned to roles in the drama. A declaration of variables at the beginning of a program
is analogous to the section that used to be titled “Dramatis Personae” at the beginning of a
play.

Explain long division from this point of view, using the roles of dividend, divisor,
guotient, and remainder.

Answer.Long Division: A Play in One Act by Matthew Love.

Characters in the Drama:

Dividend. The cruel tyrant who has reduc€lliotientto a mere cipher as the play begins.
His pride goes before his fall, and in the end, he confesses himself vanquished and takes
up the humble role oRemaindertrailing obediently behindivisor andQuotient

Divisor. The fearless champion who challendggidend attacking him until the repeated
assaults redudeividendto a mere shadow of his former self.

Quotient.Afraid to show himself at the opening of the play, this character grows in strength
as the play proceeds.

Synopsis:The story is told as an allegory of a soccer match. As the play off#ins,
dend wearing a jersey with a large number on the front and back, comes to the front of
the stage, proclaims himself the league champion, and boasts of his recent shutout victory
over Quotient who huddles miserably at stage left, his jersey bearing the number-0.
visor, wearing a jersey with a smaller number tHaiwidend then enters from stage right
and challengeBividendto a match.Dividend accepts the challenge; they claghyisor
shatchedividends jersey, and rips it off.Dividendis revealed to be wearing a second
jersey underneath, with a number smaller than the original by exactly the number worn by
Divisor. Quotientjoyfully leaps up and rips off his own jersey, waving it in triumph and
revealing a jersey underneath with the number 1 on front and baskdendboasts that
he still has a bigger number thdivisor, and the two clash again. Each time they clash,
Divisor rips off Dividends jersey, revealing a new jersey with a number that is smaller than
its predecessor by an amount equabiwisor’s jersey number. After each clag)uotient
rips off his jersey and waves it, revealing another jersey underneath with a number one
larger than its predecessor. FinalBjividendis left with a jersey whose number is smaller
thanDivisor's number. At that point, he renounces his league championship and the role
of Dividend accepting the humbler position Bemainder

The one-act play of Matthew Love ends at this point. However, the Greek dramatist O.
Euclid has written a more elaborate play, in whRbBmaindelattempts to get revenge by
attackingDivisor. He succeeds in his effort, and in the end usiDpasor’s role, reducing
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him to the role ofRemainder Like all Greek drama, this cycle of revenge continues until
ultimatelyDivisor andDividend/Remaindeannihilate each other. In still other versions of

the drama neither of the two is ever able to score a permanent victory over the other, and
the conflict continues forever.

6.17. Imitate the reasoning used in solving the problem of riders and carts above to solve
Problem 17 of th&Sun Zi Suan JingThe problem asks how many guests were at a banquet
if every two persons shared a bowl of rice, every three persons a bow! of soup, and every
four persons a bowl of meat, leading to a total of 65 bowls. Don't use algebra, but try to
explain the rather cryptic solution given by Sun Zi: Put down 65 bowls, multiply by 12 to
obtain 780, and divide by 13 to get the answer.

Answer. We can see that 12 is the least common multiple of 2, 3, and 4. Each group of
twelve people consumed six bowls of rice, four bowls of soup, and three bowls of meat,
a total of 13 bowls. Since 65 bowls were used, it follows that there were five groups of
twelve people, or 60 people. We obtained that answer by the “Rule of Three,” dividing the
number 65 by 13 and multiplying by 12. Sun Zi first multiplied by 12, then divided by 13.

6.18. Compare the following loosely interpreted problems from fe Zhang Suanshu
and the Ahmose Papyrus. First, from thie Zhang SuanshuFive officials went hunting
and killed five deer. Their ranks entitle them to shares in the propottiod : 3 : 4 : 5.
What part of a deer does each receive?

Second, from the Ahmose Papyrus (Problem 40): 100 loaves of bread are to be divided
among five people (in arithmetic progression), in such a way that the amount received by
the last two (together) is one-seventh of the amount received by the first three (together).
How much bread does each person receive?

Answer.We won't bother to solve these simple problems. Our interest here is in the kind of
mathematics needed (proportional allocations in both cases). One wonders if the text of the
problem reflects the real application of the mathematics. If we were talking about salaries,
one can find echoes of this kind of problemNfoby Dick when the sailors sign onto a
whaling ship for a proportion of the ultimate profit, not knowing in advance, of course,
how much that profit will be. The proportion is determined by negotiation, but the more
skilled harpooneers were given a higher proportion than the mere rowers and deckhands.
The two examples seem realistic, considering that they came from an economy in which
coinage was probably not a universal means of exchange.

6.19. Compare the interest problem (Problem 20 of Chapter 3) frondth&hang Suan-
shudiscussed above, with the following problem, taken from the American textbleok
Practical Arithmeticby Benjamin Greenleafl876):

The interest on $200 for 4 months being $4, what will be the interest on
$590 for 1 year and 3 months?

Are there any significant differences at all in the nature of the two problems, written nearly
2000 years apart?

Answer.There is no significant difference at all. The arithmetic of finance is the same the
world over.

6.20. Problem 4 in Chapter 6 of th#iu Zhang Suanshimvolves what is calledouble false
position The problem reads as follows: A number of families contribute equal amounts
to purchase a herd of cattle. If the contribution (the same for each family) were such
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that seven families contribute a total of 190 [units of money], there would be a deficit
of 330 [units of money]; but if the contribution were such that nine families contribute
270 [units of money], there would be a surplus of 30 [units of money]. Assuming that
the families each contribute the correct amount, how much does the herd cost, and how
many families are involved in the purchase? Explain the solution given by the author of
theJiu Zhang Suanshwhich goes as follows. Put down the proposed values (assessment
to each family, that is% and% = 30), and below each put down the corresponding
surplus or deficit (a positive number in each case). Cross-multiply and add the products to
form theshi (30 - 122 + 330- 2709 = 3099). Add the surplus and deficit to form tia

(330 + 30 = 360). Subtract the smaller of the proposed values from the larger, to get the

difference €22 — 13 = 2%). Divide theshi by the difference to get the cost of the goods
(120 = 3750); divide thefa by the difference to get the number of famili%% = 126).

Answer.This is easy enough fastify if you merely write the problem down as the pair of
linear equations

190
e = y-330.
7 Y

30x = y+30.

The question is nqustificationbutexplanation How did the author know what to do? The
operations suggested ought to have some relation to the commercial transactions imagined.
The first cross-multiplication followed by addition can be thought of as attempting to make
the first purchase 30 times, leading to a deficiBof 330 and the second purchase 330
times, leading to a surplus of the same amount. Hence if one does both things, the amount
of money paid will be exactly 360 (that is, 330 + 30) times the purchase price. The amount
each family would have to contribute in order to make these 360 purchases is what the
author called theshi. Hence it is only necessary to divide tBhi by thefa to get the
amount each family needs to contribute to make the purchase one time. However, the
author doesn’t do that. He probably reasoned that if the purchase was made according to
the terms of the second transaction, and then reversed according to the terms of the first
transaction, each family would have pa\%ﬂ units of money and the whole village would

be entitled to a refund of 360 units of money, which would represent the total amount of
money paid. Hence the number of families must{@% = 126.

6.21. Compare the pond-filling problem (Problem 26 of Chapter 6) ofliluezhang Suan-
shu(discussed above) with the following problem from Greenld&4g p. 125):A cistern

has three pipes; the first will fill it in 10 hours, the second in 15 hours, and the third in 16
hours. What time will it take them all to fill it?s there any real difference between the two
problems?

Answer. Once again, there is no real difference in the two problems. Algebra is just as
lamely seeking “practical” applications today as it was two thousand years ago.

6.22. The fair taxation problem from th&iu Zhang Suanshoonsidered above treats dis-
tances and population with equal weight. That is, if the population of one county is double
that of another, but that county is twice as far from the collection center, the two counties
will have exactly the same tax assessment in grain and carts. Will this impose an equal
burden on the taxpayers of the two counties? Is there a direct proportionality between
distance and population that makes them interchangeable from the point of view of the
taxpayers involved? Is the growing of extra grain to pay the tax fairly compensated by a
shorter journey?
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Answer.One would have to be a citizen of the place to know how relatively onerous paying
a tax and traveling a distance over possibly rough terrain would be. This problem arises in
all sorts of contexts, most especially in do-it-yourself projects. One must balance the value
of one’s own time and amateur skills against the budgetary impact of hiring a professional
to do a job.

6.23. Perform the divisionﬂs—s" following the method used by Brahmagupta.

AnswerWrite 45 = 49 — 4 We then have
980 980 /49 4 4-4 7
—=—(=)=20(1+—=)=20+ — =21-.
45 49 (45) ( t35) =20+ 9
6.24. Convert the sexagesimal numbser3s, 10 to decimal form and the numbat4.7 to
sexigesimal form.

Answer.
35 10 7 1 1800 +210+1 2001 667 67
535,10 =54 of— =544 = +20+ 0 _ _ %67 _ 67
60 ' 3600 12 ' 360 360 360 120 120
3M7—3M+’7—3M+42—ﬁ¢42
T 0 60 ~

6.25. As mentioned in connection with the lunisolar calendar, 19 solar years equal almost
exactly 235 lunar months. (The difference is only about two hours.) In the Julian calendar,
which has a leap year every fourth year, there is a natural 28-year cycle of calendars. The
28 years contain exactly seven leap-year days, giving a total of exactly 1461 weeks. These
facts conjoin to provide a natural 532-year cydl8X = 28-19) of calendars incorporating

the phases of the Moon. In particular, Easter, which is celebrated on the Sunday after the
first full Moon of spring, has a 532-year cycle (spoiled only by the two-hour discrepancy
between 19 years and 235 months). According to Simod@®89, this 532-year cycle

was known to Cyrus (Kirik) of Novgorod when he wrote his “Method by which one may
determine the dates of all years” in the year 6644 from the creation of the world (1136 CE).
Describe how you would create a table of dates of Easter that could, in principle, be used
for all time, so that a user knowing the number of the current year could look in the table
and determine the date of Easter for that year. How many rows and how many columns
should such a table have, and how would it be used?

Answer.Well, the thingcould bel x 532. Then you'd just have to divide the year by 532
and take the remainder to know the date of Easter. However, it would be simpler if it were
19 x 28. Then just divide the year by 19 and take the remainder to get the row and take
the remainder on division by 28 to get the column. (Here I'd assume that the table user
knew how to handle a remainder of 0. The old tables for Easter in prayer books used to
make a special rule for that case in getting the “golden number,” requiring the user to work
with the integers from 1 to 19 instead of from 0 to 18. See the next problem for further
explanation.)

6.26. From 1901 through 2099 the Gregorian calendar behaves like the Julian calendar,
with a leap year every four years. Hence the 19-year lunar cycle and 28-year cycle of days
interact in the same way during these two centuries. As an example, we calculate the date
of Easter in the year 2039. The procedure is first to compute the remainder when 2039 is
divided by 19. The resultis €039 = 19 x 107 + 6). This number tells us where the year
2039 occurs in the 19-year lunar cycle. In particular, by consulting the table below for year
6, we find that the first full Moon of spring in 2039 will occur on April 8. (Before people
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became familiar with the use of the number 0, it was customary to add 1 to this remainder,
getting what is still known in prayer books as thelden numberThus the golden number
for the year 2039is 7.)

We next determine by consulting the appropriate calendar in the 28-year cycle which
day of the week April 8 will be. In fact, it will be a Friday in 2039, so that Easter will fall
on April 10 in that year. The dates of the first full Moon in spring for the years of the lunar
cycle are as follows. The year numbers are computed as above, by taking the remainder
when the Gregorian year number is divided by 19.

Year 0 1 2 3 4 5 6
Full Moon | Apr. 14 | Apr.3 | Mar. 23| Apr. 11 | Mar. 31| Apr. 18| Apr. 8
Year 7 8 9 10 11 12 13
Full Moon | Mar. 28| Apr.16 | Apr.5 | Mar. 25| Apr. 13 | Apr.2 | Mar. 22
Year 14 15 16 17 18

Full Moon | Apr. 10 | Mar. 30| Apr. 17 | Apr.7 | Mar. 27

Using this table, calculate the date of Easter for the years from 2040 through 2045.
You can easily compute the day of the week for each of these dates in a given year, starting
from the fact that March 21 in the year 2000 was a Tuesddwptd If the first full Moon
of spring falls on a Sunday, Easter is the following Sunday.]

Answer. We can conveniently explain the answer by the following table. The only thing
not in the table is the use of the year number modulo 28. It is easiest to keep track of the
day name given to March 21 in these years. In 2040 that date will be a Wednesday. Hence
it will be a Thursday in 2041, Friday in 2042, Saturday in 2043, Monday in 2044, and
Tuesday in 2045. You can work out the day of the full moon from that point.

| Year | Year mod 19 | Dateof Full Moon | Dateof Easter ]

2040 7 March 28 (Wednesday))  April 1
2041 8 April 16 (Tuesday) April 21
2042 9 April 5 (Saturday) April 6
2043 10 March 25 (Wednesday) March 29
2044 11 April 13 (Wednesday) April 17
2045 12 April 2 (Sunday) April 9

6.27. Prosthapheeresis can be carried out using only a table of cosines by making use of

the formula
coda + f) + cos — f)
5 .
Multiply 3562 by 4713 using this formula and a table of cosines. (It is fair to use your
calculator as a table of cosines; just don't use its arithmetical capabilities.)

COSw COSf =

Answer. By using a calculator | find thad = arcco$.3562) = 69.2329924597 and
B = arccos.4713) = 61.8812845172. Hence by prosthapheeresis,

3562 x 4713 = 10® c0g69.2329954597) cog61.881284572) =
. 108cos(131.014276977) +€097.25170794244) ~ 33575412
= > =
The intriguing thing about this computation is that one can use a trigonometric table in
radians or degrees or any other unit of angle measure. The procedure yields the same
(correct) result every way.

= 16787706.
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6.28. Do the multiplication742518 - 635942 with pencil and paper without using a hand
calculator, and time yourself. Also count the number of simple multiplications you do.
Then get a calculator that will display 12 digits and do the same problem on it to see what
errors you made, if any. (The author carried out the 36 multiplications and 63 additions
in just under 5 minutes, but had two digits wrong in the answer as a result of incorrect
carrying.)

Next, do the same problem using prosthaphaeresis. (Again, you may use your hand
calculator as a trigonometric table.) How much accuracy can you obtain this way? With
a five-place table of cosines, using interpolation, the author found the two angles to be
50.52° and42.05°. The initial digits of the answer would thus be those(cbs(8.47°) +
c0992.57°))/2, yielding 47213 as the initial digits of the 12-digit number. On the other
hand, using a calculator that displays 14 digits, one finds the angle$00316114088363°
and 42.053645425939°. That same calculator then returns all 12 digits of the correct
answer as the numerical value (0fos(8.45646866242°) + €0992.563759514302°)) /2.
Compared with the time to do the problem in full the time saved was not significant.

Finally, do the problem using logarithms. Again, you may use your calculator to look
up the logarithms, since a table is probably not readily available.

Answer.The author’s results are already explained in the problem, except for the use of the
logarithm. It should be done as follows, using natural logarithms.

In(742518) = 13.5178023918

IN(635942) = 13.3628626432
IN(742518 x 635942) = 26.880665035

742518 x 635942 = 472198381956.

This answer is completely accurate. Tables would not have been so accurate unless they
were very voluminous.



CHAPTER 7

Ancient Number Theory

7.1. Compute the sexagesimal representation of the number

(p/q —4q/ p)z
2

for the following pairs of integer$p, ¢): (12, 5), (64,27), (75, 32), (125, 54), and(9, 5).

Then correct column 1 of Plimpton 322 accordingly.

Answer.In sexagesimal notation rows 1, 2, 3, 4, and 15 should be respectively

0; 59, 0, 15

0; 56, 56, 58, 14, 50, 6, 15
0; 55, 7, 41, 15, 33, 45

0; 53, 10, 29, 32, 52, 16
0; 23, 13, 46, 6, 40.

7.2. On the surface the Euclidean algorithm looks easy to use, and indeedasy to

use when applied to integers. The difficulty arises when it is applied to continuous objects
(lengths, areas, volumes, weights). In order to execute a loop of this algorithm, you must
be able to decide which element of the p@irb) is larger. But all judgments as to relative

size run into the same difficulty that we encounter with calibrated measuring instruments:
limited precision. There is a point at which one simply cannot say with certainty that
the two quantities are either equal or unequal. Does this limitation have any practical
significance? What is its theoretical significance? Show how it could give a wrong value
for the greatest common measure even when the greatest common measure exists. How
could it ever show that two quantities hawe common measure?

Answer. In both practical and theoretical terms, the limitation in precision simply means
that any two quantities do have a common measure, namely the smallest observable quan-
tity of the same type. Even if the greatest common measure really does exist, it will not
have apractical unambiguous value, since it will be indistinguishable from an infinite
number of other quantities. In practical terms, as noted above, the Euclidean algorithm
cannot show that tweasuredjuantities are incommensurable, since all measurements
are given as integer multiples of the smallest unit.

7.3. The remainders in the Euclidean algorithm play an essential role in finding the greatest
common divisor. The greatest common divisor of 488 and 24 is 8, so that the fraction
24 /488 can be reduced t8/61. The Euclidean algorithm generates tquotients 20 and

3 (in order of generation). What is their relation to the two numbers? Observe the relation

1 3

— T =
204 <
+3

47
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Octagonal numbers (O= 3k? — 2k)

If you find the greatest common divisor of 23 and 56 (which is 1) this way, you will
generate the quotients 2, 2, 3, 3. Verify that

23 1
e
56 P

24—

34—
+3

This expression is called theontinued fraction representatiorepresentation 023/56.
Formulate a general rule for finding the continued fraction representation of a proper frac-
tion.

Answer. For a proper fractioff> (numerator smaller than denominator), if the successive
guotients in the Euclidean algorithm aye, ¢2, . . ., ¢x, then

m 1

n 1
q1 +

1
q2+_

n

7.4. Draw dot figures for the first five heptagonal and octagonal numbers. What kind of
figure would you need for nonagonal numbers?

Answer.See the figure. You would need to glue 5 triangles onto a square to get a figure for
nonagonal numbers. They wouldn't fit neatly.
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7.5. Prove the formulas given in the caption of Fig. 1 6y, S,,, P,, andH,. Then prove
thatSn =Tu+Tw1, Pp=Sp+Tp1 =Ty + 2Ty, Hy = Py +Ty—1=Typ+3T5—1.
If Py, is thenth k-gonal number, give a general formula By, in terms ofk andn.

Answer. The formula isn? + (k — 4)@, obtained by gluingc — 4 triangles onto a
square of side. One can, of course, manipulate this expression t&g%tzz - k%“n

7.6. Prove that the Pythagorean procedure always produces a perfect number. That is, if
p = 2" — 1is prime, thenN = 2" ! p is perfect. This theorem is not difficult to prove
nowadays, since the “parts” (proper divisors)\ofare easy to list and sum.

Answer.The sum of the parts af*~1(2" — 1) is

(I+24- 42" H 4+ Q"= DA 424+ +2"2) =2"1 +--- 42" 427 =
=2"" -+ 2" =2 24 ) =2 - ).

7.7. Let N, be thenth perfect number, so tha&{; = 6, N, = 28, N3 = 496, Ny, = 8128.
Assuming that all perfect numbers are given by the Pythagorean formula, that is, they are
of the form27=1(2" — 1) when2"” — 1 is a prime, prove thal,;; > 16N, if n > 1.
Conclude that there cannot be more than brdigit perfect number for each.

AnswerWe’'llassumen > 2. If 2" — 1 is prime, then certainly is prime, since fop > 1
andg > 1 we find2P? — 1 = (27)7 — 1, which is divisible by2? — 1, which is larger than
1 and smaller tha@?? — 1. In particular, the next possible prime of the foh— 1 after
2" — 1 would be2"+2 — 1. Therefore the next possible perfect number atter' 27 — 1)
would be2"+1(27+2 —1). Since2" ™! = 4.2"Tand2"*?2 —1 > 2"*2 —4 =4.(2" - 1),
we see that the nepossibleperfect number aftedv, is larger thanl 6 V,,. Hence certainly
the nextactualperfect number is larger tharb v, .

7.8. (V. A. Lebesgue’s proof of Euler’s theorem on even perfect nuinBeppose that the
perfect numberV has the prime factorizatioN = 2% p/'! ---ka, wherep;, ..., px are
distinct odd primes and, ny,. .., n; are nonnegative integers. Sin¥eis perfect, the sum
of all its divisors is2N'. This means that

2“"’1]);’1...]):" =04+2+--4+290 + py +”’+P?l)"’(l+Pk+"'+PZk)
=2 D)0+ pr+-+p) L+ pre++ pF).

Rewrite this equation as follows:

(za-l—l _l)p;llka +p:llka —
=2 =)0+ pr+- 4P (L4 pr+ -+ pF),

ny nj
P pk

Since the second term on the left must be an integer, it follows2ttiat — 1 must divide

p;” ---ka. This is not a significant statementdf = 0 (N is an odd number). But if

N is even, so thatt > 0, it implies that2**! — 1 = p"' ... p;"* for integersm; <
ny,...,my < ng, notall zera Thus, the left-hand side consists of the tdistinctterms

it pt 4 pit -+ p. Itfollows that the right-hand side must also be equal to this sum.
Now it is obvious that the right-hand sid®ntainsthese two terms. That means the sum

of the remaining terms on the right-hand side must be zero. But since the coefficients of
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all these terms are positive, theran beonly two terms on the right. Since the right-hand
side obviously containg:; + 1)(n2 + 1)--- (nx + 1) terms, we get the equation

2=y + Dna+ 1) (ng + 1).

Deduce from this equation thaf must be of the forn2”~!(2” — 1) and that2” — 1 is
prime.

Answer.There really isn't much left to do. The only way that a product of positive integers
can equal 2 is for one of the factors to be 2 and all the others to be 1. That means
andn; = 0 for k > 1. Thatis,N = 2%p, wherep is a prime. But then the sum of the
parts will be

(424 4294+ pl+24+--+2H =2 - D(p+ 1) +2% =
=(2a_l)p+20t+1_1=N+20t+1_p_1‘

Since this sum must equal, the last equation implies that= 2%*! — 1.

7.9. Generalize Diophantus’ solution to the problem of finding a second representation of
a number as the sum of two squares, using his examplg ef 22 4 32 and letting one of
the numbers béc + 3)? and the othetkc — 2)2.

Answer.The equationi3 = (¢ +3)% + (k¢ —2)? is equivalent tqk 2 + 1)c 2+ (6—4k)c =
0. That is, eliminating the case already found, in whick= 0,

_4k—6

STt

Thus a general rational solution of + y? = 13 looks like

3k +4k -3 2k%— 6k —2
X = _—

21 7T T kit
Herek can be any rational number whatsoever.

7.10. Take as a unit of tim@ = 2;—5 of a year, about 37 hours, 18 minutes, say a day
and a half in close approximation. Then one average lunar month is 197", and one
average solar year 8 = 2357. Given that the Moon was full on June 1, 1996, what is
the next year in which it will be full on June 4? Observe that June 4 in whatever year that
is will be 3 days 27') plus an integer number of years. We are seeking integer numbers of
months ) and years ), counting from June 1, 1996, such thetx = Yy + 2T, that

is (cancelingl’), 19x = 235y + 2. Use thekuttakato solve this problem and check your
answer against an almanac. If you use this technique to answer this kind of question, you
will get the correct answer most of the time. When the answer is wrong, it will be found
that the full moon in the predicted year is a day earlier or a day later than the prescribed
date. The occasional discrepancies occur because (1) the rdiaitiori 97 is not precise,

(2) full moons occur at different times of day, and (3) the greatest-integer function is not
continuous.

Answer.Thekuttakayields the quotients 12, 2, 1, 2. (The Euclidean algorithm would yield
one more 2 if we carried it all the way to the end, but Kuttakahalts at the stepeforethe
Euclidean algorithm yields a zero remainder.) Since we have an even number of quotients,
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we put a positive 2 at the bottom, and our reduction algorithm then yields

1

[\

12
2 12
2 12
1 2 198
— 1 — — 16 — .
2 6 16
4 6
2 N 4
0

Thus we get the solution = 198, y = 6. Sincey is the number of years, we see that the
moon should have been full on June 4, 2002. A check of the almanac shows that it indeed
was.

Comment.For the purposes of setting religious festivals, it really does not matter if the
festival is a day late or a day early, so that this algorithm is suitable in all cases for fixing a
calendar in advance.

7.11. Use Bhaskara’s method to find two integers such that the square of their sum plus the
cube of their sum equals twice the sum of their cubes. (This is a problem from Chapter 7
of the Vija Ganita.)

Answer.We make the problem determinate by fixing an arbitrary ragie= kx. In those
terms, the equatiox + y)? + (x + y)* = 2(x* + »*) becomes

k+1
X=-—.
k? —4k +1
This expression is an integer whén= 3 (x = -2, y = —6), whenk = 4 (x = 5,

y=1),andwherk =5(x =1,y = 3).

7.12. The Chinese mutual-subtraction algorithm (the Euclidean algorithm) can be used to
convert a decimal expansion to a common fraction and to provide approximations to it with
small denominators. Consider, for example, the nuneber 2.71828. By the Euclidean
algorithm, we get

271, 828 2-100,000 + 71, 828
100, 000 1-71,828+4 28,172
71,828 = 2-.28,1724 15,484
28,172 = 1-15,4844 12,688
15,484 = 1-12,688+ 2,796
12,688 = 4-.2,796+ 1,504
2,796 11,504+ 1,292
1,504 = 1-1,2924 212
1,292 = 6-212420
212 = 10-20412
20 = 1-12438
12 = 2-844

8§ = 2.4
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Thus the greatest common divisor of 271,828 and 100,000 is 4, and if it is divided out of
all of these equations, the quotients remain the same. We can thus write

27182 6 1
2.71828 = 788=ﬂ=2+
100000 25000 1
1+ I
2+l I
+1+ :
4 4 ...
The first few partial fractions here give
2+l = 3
1 - ’
1 8
1 —
+2
2 ! = 11—275
+71 —_— T— . )
1+ I
2 —
+1
1 5 19
24— = 2-=— =2.714285712485...,
1 7 7
1+ I
T
1
1 23 87
2+ = 24 —=_—-=2.71875,
1 32 32
1+ I
2+l I
+1+1
4

so that the approximations get better and better. Do the samerwith3.14159265, and
calculate the first five approximate fractions. Do you recognize any of these?

Answer.Let us taker a~ 3.14159. The Euclidean algorithm yields

314,159 = 3-100,000+ 14,159
100,000 = 7-14,159 + 887
14159 = 15-887 4 854
887 = 1-854+33
854 = 25-33+29
33 = 1:29+4
29 = T7-4+1

4 = 4.1
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The first few partial fractions are therefore

1 22
34 7 = - = 3.142857142857 ...
1 333
34 T = 106 = 3.141509433962...
7 R
+ 15
1 355
34— = — =3.14159292035...
1 113
7+ 1
15+ —
+ 1
1 8793
34 = —— = 3.141589901058...
1 415
1
15+ I
1 J—
+ 25
1 9563
34 = —— = 3.14159001314...
1 3044
7+ 1
15+ 1
I+ —
254 -

1
At this point, we cannot really get any closer to the numbesince the approximation
is now betterthan the decimal approximation we began with. This continued fraction,
if carried on for two more steps, would get us the numbér159 exactly Notice that
these approximations go alternately above and below the number they are approximating
(continued fractions always do that), but the last two are both lessithéris interesting,

however, that the two popular fractioﬁ,% and% both occur in the sequence.

7.13. Can the pair of amicable numbel$84 and1210 be constructed from Thabit ibn-
Qurra’s formula?

Answer.No. Thus nothing like V. A. Lebesgue’s theorem on perfect numbers will work for
amicable numbers.

7.14. Solve the generalized problem stated by Matsunaga of finding an indégkat is
simultaneously of the form? + a;x + b; and y*> + a2y + b,. To do this, show that
it is always possible to factor the numb@r§ + 4by) — (af + 4b,) as a producinn,

wherem andn are either both even or both odd, and that the solution is found by taking

HE ),y = K )

X =

Answer.lf the number(a% +4by)— (af +4by) = (aa +ay)(ay —ay) +4(by — by) is 0dd,

that is,a; anda, have opposite parity, we can always take this number asd then take

n = 1 (and we have to do that if the number is prime). If it is even, then bgth ¢, and

a; — ay; must be even (since they differ by the even numbey), and hence the number

is a multiple of4, so that it can be written as the product of two even numbers. The rest is
merely a matter of verifying an identity.

7.15. Leonardo’s solution to the problem of finding a second pair of squares having a
given sum is explained in general terms, then illustrated with a special case. He considers
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the caset? + 52 = 41. He first finds two numbers3(and4) for which the sum of the
squareds a square. He then forms the product4dfand the sum of the squares of the
latter pair, obtainin@5 - 41 = 1025. Then he finds two squares whose sum equals this

number:312 and8?2 or 322 and 12. He thus obtains the resultd!)® + (£)* = 41 and

(%)2 + (%)2 = 41. Following this method, find another pair of rational numbers whose
sum is41. Why does the method work?

Answer.Ilt works because of the identity? + b?)(c? + d?) = (ad — bc)* + (ac + bd)?.
If 2 +d? = gz, then

ad — bC)Z N (ac + ba’)2
g g ’
If we takec = 5,d = 12, g = 13, for example, we get
23\2 802
— 42 2 _ (= _
4l=4"+5 _(13) +(13) ‘
Leonardo found two pairs of squares whose sum was 1025, and you can do the same by
using the identity given above along with the identiay + 52)(c? + d?) = (ad + bc)? +
(ac — bd)?.

7.16. If the general term of the Fibonacci sequence,isshow that, < a,4+1 < 2ay, SO
that the ratiou,+,/a, always lies betweeh and2. Assuming that this ratio has a limit,
what is that limit?

a2+b2=(

Answer. Since it is obvious that the Fibonacci numbers are positive, it follows from the
recursive relation that defines them that.; = a, + ay,—1 < 2a,. If L is the limit, it
follows that L is between 1 and 2, and therefore, since

dnt1 n-1

:1+ s
dp dp

we havelL = 1 + 1. This means that

L>’-L+1=0,

and hencd. = 1+2“/§ = @.

7.17. Suppose that the pairs of rabbits begin to breed infits month after they are
born, but die after the second month (having produced two more pairs). What sequence of
numbers results?

Answer.We need to keep track of two classes of rabbits, those that are newborm#t the
month ¢,,), and those that are newborn at the 1st month(c,, = b,—1). The total number

of rabbitsa, isa, = b, + ¢, = by + by—1. Ourrecursion gives Us,;; = a,, So thab,, is

a Fibonacci sequence, and hengés just an advanced version of the Fibonacci sequence.
In other words, where the sequeniggis 1, 1, 2, 3, 5,..., the sequenegis 1, 2, 3, 5,....

7.18. Prove that ifx, y, andz are relatively prime integers such that + 2 = z2, with
x andz odd andy even, there exist integessandv such thate = u? —v?, y = 2uv, and
z = u? 4+ v2. [Hint: Start from the fact that? = (z — y)(z + »), so thatz — y = ¢? and
z+ y = b? for somea andb.]

Answer.Following the hint, we see that— y andz + y are relatively prime odd integers
whose product isc2, and hence each must be a square. det a> + y = b? — y,
wherea andb are odd integers and = ab. Then2y = b> —a* = (b —a)(b + a). It
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follows thaty = 2uv whereu = 234 andv = 22, Thenu? — v2 = ab = x, and so

22 = (u? —v?)? + 4u?v? = (u® + v?), as asserted.
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CHAPTER 8

Numbers and Number Theory in Modern Mathematics

8.1. We know a mathematical algorithm for computing as many decimal digitgDfis
we have time for, and/2 has a precise representation in Euclidean geometry as the ratio of
the diagonal of a square to its side. Itis a provable theorem of Euclidean geometry that that
ratio is the same for all squares, so that two observers using different squares should get
the same result. To the extent that physical space really is Euclidean, this definition makes
it possible to determing/2 empirically by measuring the sides and diagonals of physical
squares. In that sense, we could theoretically determienith arbitrarily prescribed
precision by physical measurements. In particular, it makes perfectly good sense to ask
what the 50th decimal digit of/2 is—it happens to be 4, but rounds up to 5—and we
could try to get instruments precise enough to yield this result from measurement.
Consider, in contrast, the case of a physical constant, say the universal gravitational
constant, usually denoteg,, which occurs in Newton’s law of gravitation:

M
F=Gy—2".
r

Here F is the force each of two bodies exerts on the otiérandm are the masses of the

two bodies, and is the distance between their centers of gravity. The accepted value of
G, given as upper and lower assured limits;674215 £ 0.000092 N - m?/kg?, although

some recent measurements have cast doubt on this value. From a mathematical point of
view, G is determined by the equation

Fr?

Gy = ,
0 Mm

and its value is found—as Cavendish actually did—by putting two known madsasdm

at a known distancefrom each other and measuring the force each exerts on the other. The
assertion that the ratiBr 2/ M m is the same for all masses and all distances is precisely the
content ofNewton’s law of gravity so that two experimenters using different masses and
different distances should get the same result. But Newton'’s law of gravity is not deducible
from axioms; it is, rather, an empirical hypothesis, to be judged by its explanatory power
and its consistency with observation. What should we conclude if two experimenters do
not get the same result for the value G? Did one of them do something wrong, or is
Newton'’s law not applicable in all cases? Does it ewggke sens® ask what the 50th
decimal digit of G is?

Answer. The way the question is worded strongly suggests the answer. It makes sense to
ask what the 50th decimal expansionaf is provided the physical law that it comes from

is accurate to that degree. We are not likely ever to know that, and in fact Newton'’s law of
gravity has been replaced for very precise computations by Einstein’s.

57
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Another point that should be made in this connection concerns the relation between
measurement and theory. The delicate measurements that are made using modern tele-
scopes, microscopes, and other instruments are interpmetée basis of physical theories
that explain how the instruments work we are testing theory A by making instruments
whose output is interpreted on the basis of theory B, then in effect we are testing A and B
together. The apparent asymmetry that causes people to write as if only theory A is at risk
comes about because in most cases we have more confidence in theory B. (Otherwise, we
wouldn’t use it to construct scientific equipment.)

8.2. You can represenfab geometrically by drawing putting a line of lengbrend-to-end
with a line of lengthz, drawing a circle having this new line as diameter, and then drawing
the perpendicular to the circle from the point where the two lines meet. T¢/gemnd+/b,

you would have to use Descartes’ unit lendths one of the factors. Is it possible to prove
by use of this construction thafabl = /a~/b? Was Dedekind justified in claiming that
this identity had never been proved?

Answer.Before giving the answer, | should note that the argument about square roots was
really a red herring. The Greeks could do a great many things with square roots that they
couldn’t do with cube roots. We are about to show how Euclid could have proved this
identity. But Dedekind’s point is no less cogent. It would have required a complicated
induction (if it could be done at all) to show that th#h root is a multiplicative function.

| don’t know of any place where it actuallyasproved. However, itould have been
proved with rigor comparable to Euclid’s, from the following considerations.AeB, C,
I, andO be points in the plane such th@4 stands for a number, OB for a numberB,
OC for a numbere (to be thought of agb), and OI for a number to be thought of ds
These interpretations are mapped into Euclidean geometry as the prop@ftio®A4 =
OB : OC (¢ = ab). Now let 4’, B/, andC’ be such thaD4’, OB’, andOC’ represent
respectivelyy/a, /b, and./c. That mean®I : 04’ = OA' : OA, OI : OB’ = OB’ :
OB, andOI : OC’ = OC’ : OC. Finally, let D be a point such that the numbér
identified with OD represents the produgta~/b. Thatis,0I : OA’ = OB’ : OD. What
is to be shown is thaDD equals (is congruent t@)C’. To do this, one needs to use certain
propositions about proportional lines from Euclid’s Book 6. In particular, his definition of
composite ratio (see p. 292 of the textbook) implies tfaat b).(c : d) = a : p provided
b:p=c:d.' ltfollows that

(04 : 04").(04' : OD) = 04 : OD .
Likewise,
(OD : OB").(OB’' : OB) = OD : OB.

However, sinceDl : 04’ = OA’ : OA andOI : OA’ = OB’ : OD, it follows that
OA' : OA = OB’ : OD, and by a trivial application of the definition of proportion,

OA: OA' = OD : OB'.
By symmetry (or by simply repeating the argument),
0A’ : OD = OB’ : OB.
1 Euclid uses this definition mostly to show in Proposition 23 of Book 6 that the ratio of two rectangles is

the composite of the ratio of their heights and the ratio of their widths and to show that similar polygons are
proportional to the duplicate ratios of their sides. (We would say the squares of their sides.)
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Then by substitution of equals (which is allowed by Proposition 2 of Euclitfisa), we
get

OA: OD = (04 : 04').(04' : OD) = (OD : OB').(OB' : OB) = OD : OB.

That is,04 : OD = OD : OB. According to Proposition 16 of Book 6, this means
the square oD equals the rectangle ofi4 and OB. That is,OD which by definition
represents the produgta~+/b, actually represents/ab, which was to be proved.

8.3. Try to give a definition of real numbers—perhaps using decimal expansions—that
will enable you to say what the numbev&, +/3, and+/6 are, and how they can be added
and multiplied. Does your definition enable you to prove th@t/3 = v/6?

Answer. We shall assume that the numbers to be added are known onlypoiémtially
infinite precision. Our model for this is the way we exprega decimally. Although we

will never at any finite point in time know all of the decimal digits of this number, we

do have a systematic procedure for finding initial segments of it that are arbitrarily long.
What is (in my view) the hardest thing to accept about Dedekind’s definition of a real
number is that it seems to require knowledge veittiually infinite precisionand the same
problem affects other variant definitions, such as Weierstrass’ definition in terms of Cauchy
sequences of rational numbers. This problem seems to be unavoidable. (At least, | don't
know any way to avoid it.) The following scenario is intended only to push the problem as
far away as possible.

It will simplify things if we regard real numbers as binary expansions; that is, an inte-
ger (given as a finite binary expansion) together with a fraction between 0 and 1 (given as
an infinite sequence of zeros and ones) in which we require that there be an infinite number
of zeros, just to make the expansions unique. Since adding integers is a finite process, we
concentrate on how to add two fractional parts. Again, we assume that such a fractional
part is known if we can find arbitrarily long initial segments of it. Our job is to show how
to add two such fractional part$ = [a;,az,...,an,...]andB = [by, b;, ..., by,...] SO
astogelC = [c1,¢2,...,¢n,...] = A+ B. In other words, by our interpretation of what
it means to define such a number, we have to show how it is possible to get arbitrarily long
initial segments of”, knowing arbitrarily long initial segments of and B and to assure
that C contains an infinite number of zeros. We note that ihas only a finite number
of ones in its expansion, then the expansiorCofoincides with the expansion & from
some point on, and the problem is trivial. Hence we assume that the expansions df both
and B contain an infinite number of ones.

The procedure we have in mind is best illustrated with an example. Suppose
[0,1,1,0,0,0,1,0,0,1,1,1,0,0,...]JandB = [1,0,0,1,1,1,1,1,1,0,0,0,0, 1, ...]. We
compare the two expansions until we come to the first place where both expansions have
the same digit. In this example, that occurs in the seventh place and the matching digit is
a one. We then writed = [0,1,1,0,0,0,1] 4+ A4;, where0 < 4, < 2~’—the second
inequality is strict because of the assumption that the expansidnooitains an infinite
number of zeros—an® = [1,0,0,1,1,1,1]+ By, where0 < B; < 277. We then add
the parts separately, gettiig= 1 + [0,0,0,0,0,0,0] + A; + B;. We now see that the
first six digits of C must be zero. Fod; + B; < 27%, so that this sum could not require
any ones before the seventh binary place. Hence we know the first six digits are zeros. The
seventh is temporarily a zero. It will become a one if and only if the next match is also a
pair of ones. Since these expansions both have infinitely many zeros, we will not have a
pair of ones in every place, and hence, eventuéllyyill get a permanent zero among its
digits.
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The problem now reduces to addiag = [0,0,0,0,0,0,0,0,0,1,1,1,0,0,...]and
B; =10,0,0,0,0,0,0,1,1,0,0,0,0,1,...], and the first match after the initial string of
seven zeros occurs in the thirteenth place, where each has a zero. We therefore write

A, =10,0,0,0,0,0,0,0,1,1,1,0,0]+ A4z,
where0 < 4, <2713 and
B; =10,0,0,0,0,0,0,1,0,0,0,1,0]+ B>,

where0 < B, < 2713, and setC; =[0,0,0,0,0,0,0,1,1,1,1,1,0]+ A, + B;, where

Ay + B, < 2712, Since the twelfth binary digit off, + B, will be zero, we now know

the first twelve digits of”y, and since the first seven digits are zero, we also know the first
twelve digits of C. Observe that this match leaves the zero that was in the seventh place
intact. That is true in general, each time the match switches from a pair of ones to a pair of
zeros, the zero inserted at the place of the previous match gets “frozen” there permanently.
On the other hand, each matching pair of 1's atitté place inserts a permanent O at place

N — 1, unless the previous match occurred at plate- 1. Thus, if there are infinitely

many gaps between matching places, there will be infinitely many zeros in the number
constructed as the sum, and if there are not, then the two numbers are identical from some
point on, and the sum from that point on is a simple matter of shifting one of the expansions
leftward by one place. In either case, there will be an infinite number of zeros. Finally,

if there are no more matches from some point on, then the expansions are complementary
from that point on, and it is only necessary to add insert a one in the last place where a
match occurred (temporarily containing a zero because of the match) and set all remaining
digits equal to zero. Thus we are assured of getting a binary expansion of the required form
for C.

This process can be continued as long as necessary. It shows that only one problem
arises in defining addition of real numbers via binary expansions: We must be able to
tell if two binary expansions have only a finite number of matching digits. This problem
brings back the difficulty of having to know infinitely much information in order to define
addition. | do not see how it can be overcome. It is worth noting, however, that the set
of pairs for which there are only finitely many matching digits have a sum that is a finite
binary expansion. All such pairs therefore lie on a countable set of lines in the plane, and
hence form a set of measure zero. In other words, it is infinitely unlikely that randomly
chosen numberd and B will exhibit this difficulty.

Once addition has been defined, multiplication is a fairly straightforward matter, since
it amounts to a sequence of register shifts followed by addition, which has already been
defined.

The square root algorithm works very simply in binary notation, since the doubling
procedure that it involves is merely a matter of adding a zero at the end of each number to
be doubled. If we know2n binary digits ofx, we can find: binary digits of/x by this
procedure. Hencg/x can be regarded as defined by our interpretation of what a number
is, providedyx itself is defined.

Because of the way the algorithm works, it is readily apparentifiat = 2./x (since
multiplying by 4 merely moves the binary point marker two digits to the left). By repeated
application of this principle, one can reduce the problem of showing = ./a+/b to the
case whewm andb lie between 0 and 1. By working with inequalities, for any two numbers
x, x', y, y' less thanl, one can show thatxy)? — (x'y’)?| < |((xy) + (x'y)) ((xy) —

'W))] = 2l(x —=x"y 4+ (v — ¥)x'| < 2(|x — x'| + |y — ¥'|). Thus ifx" is sufficiently
close tox and )’ is sufficiently close toy, thenx’y’ is close toxy. Applying this in a
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particular case where’ and y’ are finite binary numbers approximating= ./« and

y = /b, we find that(x’y’)? is a close approximation t6/a+/b)?. But for finite binary
numbers we know thate’ y')? = (x")2(y’)?, which is a good approximation te? y2, that

is, to (y/a)2(v/b)* = ab. Thus, in this interpretation of real numbers, we can prove that
Vab = /a~/b, and we could do the same foth roots.

8.4. Use the method of infinite descent to prove thél is irrational. Hint: Assuming
thatm? = 3n2, wherem andn are positive integers having no common factor, that is, they
are as small as possible, verify thfat — 317)? = 3(m — n)?. Note thatn < 2rn and hence

m — n < n, contradicting the minimality of the originak andr.]

Answer. Notice that if we had positive integers and» satisfying this equation, there
would have to be a smallest positive integerfor which there exists an such that the
equation holds. That would then have to be the smallest positive integdor which

there exists am such that the equation holds, sineeandr are strictly increasing (one-
to-one) functions of each other. #h > 2n, thenm? > 4n?> > 312, so we certainly
havem < 2n, and henc® < m —n < n. But the equation implies thaBn — m)? =
3.(3n%) —6mn +m? = 3m? —6mn + 3n*> = 3(m —n)?. The assertion that andn have

no common factor is of course true if they are minimal integers. But since no such integers
m andn even exist, it wasn't really relevant to include that property in the statement of the
problem.

8.5. Show that</3 is irrational by assuming that® = 313 with m andn positive integers
having no common factorHint: Show that(m — n)(m?* 4+ mn + n?) = 2n3. Hence, ifp
is a prime factor ofz, then p divides eithern —n or m? + mn + n?. In either case must
divide m. Sincem andr have no common factor, it follows that= 1.]

Answer.The work is essentially already done. Once we get to the poinitkatl, we are
saying that if /3 is rational, it must be aimteger But certainly there is no integer whose
cube equals 3.

8.6. Suppose that, y, andz are positive integers, no two of which have a common factor,
none of which is divisible by3, and such that® + y* = z3. Show that there exist
integersp, ¢, andr such that — x = p3,z —y = ¢3, andx + y = r3. Then, letting

m = r3— (p3 + ¢*) andn = 2pqr, verify from the original equation that3> = 3n?,
which by Problem 8.5 is impossible it andn are nonzero. Hence = 0, which means
thatp = 0orqg = 0 orr = 0, that is, at least one of and y equals). Conclude that no
such positive integers, y, andz can exist.

Answer.We give the proof that — x = p3. The proof thay; andr exist is the same. We
have

=) +xz+xH =23 -x>=)%.
But z — x andz? + xz + x2 must be relatively prime. For if is a prime number that
divides both, them divides(z — x)? = z? — 2xz + x2, and hence divides3xz. Butn is
not 3, since iz — x is divisible by3, so isy, contrary to hypothesis. Hengealivides either
x or z and so (since it divides — x) both of them, which is again contrary to hypothesis.
Now we have two relatively prime numbers whose product is a cube, and hence each must
be a cube. That is,— x = p? for some integep, as asserted. The rest of the argument is
merely a very messy computation.

8.7. Verify that
27° +84° +110° + 133° = 144°,
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[See L. J. Lander and T. R. Parkin, “Counterexample to Euler’s conjecture on sums of like
powers,” Bulletin of the American Mathematical Socief§?2 (1966), p. 1079. Smaller
counterexamples to this conjecture have been discovered more recently.]

Answer. | will assume the reader can compute these numbers accurately, or is willing to
trust a calculator to do it.

8.8. Prove Fermat’s little theorem by induction en [Hint: The theorem can be restated
as the assertion thatdividesa? —a for every positive integet. Use the binomial theorem
to show thatla + 1)? — (¢ + 1) = mp + a? — a for some integem.]

Answer.The assertion in the hint amounts to the statement that a prime nyritieides
all the binomial coefficient<’, = #_’k)! fork = 1,2,..., p — 1. Butthat is easy,
sinceC, x is known to be an integer. For

KW(p—k)NCpi = p!.
Hencep divides the left-hand side here. Hence it must divide eitfigg or some integer

smaller than the maximum &f and p — k. The latter is impossible, singeis larger than
all these integers. It follows that dividesC,, .

8.9. Verify the law of quadratic reciprocity for the primé§ and23 and for67 and71.

Answer.Sincel7 = 4 -4 + 1, we observe that the squares modulo 17 are 0, 1, 4, 9, 16,
8, 2, 15, 13, and that is not among them. It must therefore be true that 17 is not a square
modulo 23, and indeed that is true: The squares modulo 23 are 0, 1, 4, 9, 16, 2, 13, 3, 18,
12, 8, 6, and 17 is not among them.

Since both 67 and 71 are equal to 3 modulo 4, we expect precisely one to be a square
modulo the other. Sincgl = 4 = 22 mod 67, we conclude that 67 is not among the 36
squares modulo 71. These squares are 0, 1, 4, 9, 16, 25, 36, 49, 64, 10, 29, 50, 2, 27, 54,
12, 43,5, 40, 6, 45, 15, 58, 32, 8, 57, 37, 19, 3, 60, 48, 38, 30, 24, 20, 18, and indeed 67 is
not among them.

8.10. Show that the factorization of numbers of the form+ n+/—3 is not unique by
finding two different factorizations of. Is factorization unique for numbers of the form

m + n/—27?

Answer.We are helped in this effort by the existence of the valuali@m + nv/—3) =
m? + 3n2. This valuation has the property thE{zw) = V(z)V(w). In particular, since
V(z) > 1 for all nonzeroz, we see that it is impossible to factdr except trivially as
2=41-42. (If 2 = zw, thenV(z) V(w) = V(2) = 4. That leaves only the possibility
V(z) =1, V(w) =4o0rV(z) =4, V(w) = 1, sinceV(z) =2 = V(w) is impossible.
(The equationn? + 3n? = 2 has no integer solutions.) Hence eithee +1 orw = =+1.
Likewise, it is impossible to factor + +/—3, except trivially, and for the same reason.
Thus1 & /=3 and2 are irreducible numbers in this system. But

2.2=4=1+V=-3)1-v=-3).

Factorizationis unique for numbers of the formn + n+/—2, and that is because a
Euclidean algorithm exists for this structure: For any two elements of itz samydw # 0,
there exist a quotient and a remainder such that

z=qw +r
andV(r) < V(w). Here, of courseV (m + n+/—2) = m? + 2n>.
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To see why this is true, let=m + nv/—2 andw = s + tv/=2. If ¢ = x + yv/-2,
thengw = (sx — 2ty) + (sy + tx)+/—2. We claim it is possible to choose the integers
andy such tha(sx — 2ty —m)? + 2(sy + tx —n)? < s2 + 2¢2. In fact, the exact solution
of the equations

sx*=2ty* = m,
x*+sy* = n,
is

" ms — 2tn
x* = =,

52 4212
« _  2n—mt
YT i

Of course, this choice of* andy* may be nonintegers. Letandy be the nearestintegers
tox* andy* respectively. Thefx — x*| < 1 and|y — y*| < 1, and so we find that

(sx =2ty —m)* = (s(x —x*)—Zt(y—y*))2
= $2(x —x")? —dst(x — xM)(y — y") + 42 (y — yH)?,
(sy +tx—n)? = (s —y*) +1(x— x*))2

= Sy —y) +2st(x —xN)(y -y + 2 (x —x*)7.
It follows that
(sx =2ty —m)* +2(sy + tx —n)* = s*(x —x*)? +2(y — y*)?) +
+203((x = x")? +2(y — y)?) < g(s2 +21%) < s* + 212,

(Notice that this argument breaks downf=2 is replaced byv/—3.) From this crucial

result, it follows that a division algorithm exists for finding a greatest common divisor for

z andw. Since the valuation of the remaindedecreases at each stage, it forms a strictly
decreasing sequence of nonnegative integers until it reaches the value 0, which it must do
in a finite number of steps. But when the remainder is 0, the division comes out even, and
so the last non-zero remainder is the greatest common divisor. The same argument, based
on a chain of equations of the form= qw + r, shows that the greatest common divisor

of z andw is a multiple of any other common divisor, and hence if two different divisors
result from possibly different choices of the remainder at each stage in this algorithm, they
must divide each other and therefore must be either equal or negatives of each other. That
means, in particular, that if an irreducible numigedivides a productb in this system, it

must divide either or b. For, if not, its greatest common divisopg and p, with botha

andb respectively have the property that dividesa and p, p, dividesb and p. Since

p = L pga or p = +pp, that meangp dividesa or p dividesh. From that crucial fact, it
follows that a factorization into irreducible elements in this system is unique, up to factors
of +1.

8.11. Prove that the number of primes less than or equaVtes at least log(~N/3), by
proceeding as follows. Lep, ..., p, be the prime numbers amorg..., N, and let
6(N) be the number of square-free integers among ., N, that is, the integers not di-
visible by any square number. We then have the following relation, since it is known that
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o0 2y — 2
Y= (1/k%) = =*/6.

O(N) > N-— [

"1
> N(l— —)
;;Pi
> 1
> N(l— —)

2 N
(Here the square brackets denote the greatest-integer function.) Now a square-free integer
k betweenl and N is of the formk = pf‘ .-+ pa", Where eacle; is either0 or 1. Hence
O(N) < 2", and son > log,(N/3). This interesting bit of mathematical trivia is due to
the Russian—American mathematician Joseph Perott (1854-1924).

Answer. We will assume thatvV > 36, just for convenience. You can do the other 35
cases yourself. In the first inequality here, we have subtracted the number of integers
not greater tharV that are divisible byp,%. If we do this separately for each, we get
something strictly smaller thafi(/V), since some integers (36, for example) are divisible

by the squares of two different primes. The second inequality is merely the faptihatk

for positive integer. The third is the fact that all primes are at least 2 and that not every
integer is a prime. The last equality uses the stated value for the sum of the series and the
fact thatr? < 10.

. . . . .
8.12. Assuming that I|mM exists, use Chebyshév’s estimates to show that this

n—>00 n
limit must be 1 and hence that Legendre’s estimate cannot be valid beyond the first term.

Answer.Please note that the logarithm is a natural logarithm, which should probably have
been denoted In for the audience that is expected to read this book. According to one of
the estimates, with = 1, m = 2, we find
In()z(n) In() [, L dx 1
n ~ n CIn@m)
We can evaluate the limit of the right-hand side usingdfital’s rule. Itis

N Y AL
1+ lim — dx .
n—oon J, In(x)

Another application of I'Hbpital’s rule shows that the limit is

1+ lim =
+ n—oo |n(n)

Hence if |
. nn)m(n
im INGD7()
n—00 n
exists, it cannot be less thdn A similar argument with the other inequality shows that
this limit cannot be less than



CHAPTER 9

M easur ement

9.1. Show how it is possible to square the circle using ruler and compass given the as-
sumption thatr = (16+/2)/7.

Answer. We need to construct the side of the square, which\jsr. Sincer itself has
become constructible through this convenient (and incorrect) formula, we can construct its
square root by the well-known Euclidean construction. We then construct the product by
the construction given by Descartes. (See Chapters 10 and 12 for details on how to do
these two constructions.

9.2. Prove that the implied Egyptian formula for the volume of a frustum of a square
pyramid is correct. If the sides of the upper and lower squares arelb and the height
is &, the implied formula is:

h
V= g(a2 +ab + b?).
Answer. If we imagine the faces of the frustum continued upward to fill in the missing
pyramid on top and then slice through the full pyramid diagonally to the two bases, we see
that the heightt of the complete pyramid satisfig$ : b/~/2 = (H — h) : a/+/2. That
meansH = bh/(b —a) andH — h = ah/(b — a). Hence the full pyramid has volume
1b2(bh/(b—a)) = %(b*/(b—a)), and the piece on top has volurkés® /(b —a)). Hence
the frustum has volumé (5> — @) /(b — a) = %(a® + ab + b?).

9.3. Looking at the Egyptian pyramids, with their layers of brick revealed, now that most

of the marble facing that was originally present has been removed, one can see that the total
number of bricks must bé + 4 + 9 + - -- 4 n? if the slope gekedlis constant. Assuming

that the Egyptian engineers had the kind of numerical knowledge that would enable them
to find this sum a%n(n + 1)(2n + 1), can you conjecture how they may have arrived at

the formula for the volume of a frustum? Is it significant that in the only example we have
for this computation, the height is 6 units?

Answer.The number of bricks between layer(from the top) and layem (from the top),
assumingn > r and including layer: but not layem, is

1 3
g(2m3 +3m* + +m—2n* —3n? —n) = %(m2+mn+n2+ E(m+n)+ 1).
If the bricks are very small cubes, say of sidiéhen the volume of this pyramid is obtained

by multiplying this number by*. But thent(m — n) = h, t*m?* = b?, t>mn = ab, and
’n* = a®. We would thus find that

_hi, 2, 3 2
V_E(a +ab+b +§(a+b)t+t).

65
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Regarding as negligibly small, we get the required formula. However, | don’t know of
any good evidence that the Egyptians did think of the process this way. It looks to me like
the kind of retrospective fit that the experienced later generations think up.

9.4. Explain the author’s solution of the following problem from the cuneiform tablet BM
85 196. Here the numbers in square brackets were worn off the tablet and have been
reconstructed.

A beam of length 0;30 GAR is leaning against a wall. Its upper end is
0;6 GAR lower than it would be if it were perfectly upright. How far is
its lower end from the wall?

Do the following: Square 0;30, obtaining 0;15. Subtracting 0;6 from
0;30 leaves 0;24. Square 0;24, obtaining 0;9,36. Subtract 0;9,36 from
[0;15], leaving 0;5,24. What is the square root of 0;5,24? The lower end
of the beam is [0;18] from the walll.

When the lower end is 0;18 from the wall, how far has the top slid
down? Square 0;18, obtaining 0;5;24... .

Answer.The number 0;30 is the hypotenuse of the right triangle formed by the ladder and

its projections on the wall and the floor. The 0;24 is the projection on the wall, which was

given to be 0;6 GAR less than the full length of the ladder. Hence finding the projection on

the floor, which is what the problem asks for, is simply a matter of squaring the hypotenuse,
squaring the projection on the wall, subtracting, and then extracting the square root.

9.5. Show that the average of the areas of the two bases of a frustum of a square pyramid
is the sum of the squares of the average and semidifference of the sides of the bases. Could
this fact have led the Mesopotamian mathematicians astray in their computation of the
volume of the frustum? Could the analogy with the area of a trapezoid have been another
piece of misleading evidence pointing toward the wrong conclusion?

Answer.

a+b\2 sa—b\2 a*+b?
( 2 ) + ( 2 ) T2

It seems very likely to me that, since the area of a trapezoid is the height times the average
of the two widths, the Mesopotamians might have believed that the volume of a frustum of

a square pyramid is the height times the average of the areas of the two bases. Being the
good algebraists that they were, they'd have been pleased to notice that the average is just
the sum of the squares of the average and semidifference of the bases.

9.6. The author of thezhou Bi Suan Jindhad a numerical method of finding the length

of the diagonal of a rectangle of widthand lengthb, which can be described as follows.
Square the sum of width and length, subtract twice the area, then take the square root.
Should one conclude from this that the author knew that the square on the hypotenuse was
the sum of the squares on the legs?

Answer.This amounts to the assertion that for a right triangle of sidés andc we have

c=+/(a+b)?—2ab.

Certainly that formula iquivalento the Pythagorean theorem, but it is not psychologi-
cally the same thing. However, one can solve any problem using this formula that one can
solve using the Pythagorean theorem, and vice versa. Moreover, I'm sure that if the author
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of theZhou Bi Suan Jindgpad seen the Pythagorean theorem stated in the form in which we
know it, he would have recognized it immediately as an application of this principle.

9.7. What happens to the estimate of the Sun’s altitude (36,000 km) given by Zhao Shuang
if the “corrected” figure for shadow lengthening fi@gn per 1000li) is used in place of the
figure of 1fenper 1000 ?

Answer.This would mean that the sun was overhead 15|D@®the south and that the sun
is only 20,000 high, that is, about 9,000 km.

9.8. Thegougusection of theliu Zhang Suanshoontains the following problem:

Under a tree 20 feet high and 3 in circumference there grows a vine,
which winds seven times the stem of the tree and just reaches its top.
How long is the vine?

Solve this problem.

Answer. Imagine the tree cut down and rolled out to unwind the vine. The base of the
tree will roll out a line 21 feet long (seven times its circumference). The vine will be the
hypotenuse of the right triangle formed by this line and the end position of the tree. Hence

its length isy/(20)? + (21)2 = 29 feet.

9.9. Another right-triangle problem from th&iu Zhang Suanshig the following. “There

is a string hanging down from the top of a pole, and the3dset of string are lying flat on

the ground. When the string is stretched, it reaches a pdat from the pole. How long

is the string?” Solve this problem. You can also, of course, figure out how high the pole is
from this information.

Answer. We get the equation? = 82 + (¢ — 3)2, so thatéc = 82 + 9 = 73. Hence
¢ = 121 feet. (The pole i9 feet high.)

9.10. Afrequently reprinted problem from thé&u Zhang Suanshig the “broken bamboo”
problem: A bamboo 10 feet high is broken and the top touches the ground at a point 3
feet from the stem. What is the height of the break? Solve this problem, which reappeared
several centuries later in the writings of the Hindu mathematician Brahmagupta.

Answer.The equation isc? + 9 = (10 — x)?2, which give20x = 91, sox = 4.5 feet.

9.11. TheJdiu Zhang Suanshimplies that the diameter of a sphere is proportional to the
cube root of its volume. Since this fact is equivalent to saying that the volume is pro-
portional to the cube of the diameter, should we infer that the author knew both propor-
tions? More generally, if an author knows (or has proved) “fact A,” and fact A is logically
equivalent to fact B, is it accurate to say that the author knew or proved fact B? (See also
Problem 9.6 above.)

Answer.In general, we shouldn’t automatically conclude that people who know one of two
logically equivalent propositions also know the second. It all depends on how obvious the
equivalence is. In this case, | think it is safe to say that the author would have recognized
the equivalence immediately.

9.12. Show that the solution to the quadrilateral problem of Sawaguchi Kazuyuk&s),

v=8w=5x=4,y= \/(1213 + 69+/273)/40, z = 10. (The approximate value of
v is 7.6698551.) From this result, explain how Sawaguchi Kazuyuki must have invented
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the problem and what the two values 60.8 and 326.2 are approximations for. How does
this problem illustrate the claim that these challenge problems were algebraic rather than
geometric?

Answer.This is simply a matter of verifying that these lengths do satisfy the condition of
being sides and diagonals of a quadrilateral. That is most easily done by represeging
the line joining(0, 0) and (10, 0) in the sz-plane. Then the point wheremeetsx can be
taken as one of the points of intersection of the cirgfes > = 16 and(s—10)% +12 = 81,

say the point withr < 0. Subtracting these equations gives the relaiaén= 35, so that

s = 1.75and sor = —/16 — (1.75)2 = —+/12.9375. Similarly, the point where: meets

w can be taken as the intersection of the cicle- 10)> + 1> = 64 ands? + > = 25 at

a point where > 0. Subtracting these equations givs = 61, so thats = 3.05 and

t = +/25—3.052 = /15.6975. The length ofy is then

\/(1.75 —3.05)2 + (v/12.9375 + +/15.6975)2 .

This works out to be

\/30.325 + 2+/203.27390625 = \/30.325 + 1.725+/273 = \/(1213 + 694/273)/40,

which is the number given above. The number 60.8 is thus an approximatida te >,
and326.2 is an approximation tg*> — 125. Notice that the sum i326.2 + 60.8 = 387 =
512 —125.

Itis evident that Sawaguchi Kazuyuki first drew two triangles sharing a side of length
10 and the other sides of length 5 and 8 on one side and 4 and 9 on the other side, then
simply computed the length of the other diagonal to getThen, to make an interesting
problem, he gave the data in the form of differences of cubes and challenged others to
uncover his tracks.

9.13. How is it possible that some Japanese mathematicians believed the area of the sphere
to be one-fourth the square of the circumference, that?s rather than the true value
47r?? Smith and Mikami 1914 p. 75) suggest a way in which this belief might have
appeared plausible. To explain it, we first need to see an example in which the same line
of reasoning really does work.

By imagining a circle sliced like a pie into a very large number of very thin pieces,
one can imagine it cut open and all the pieces laid out next to one another, as shown in
Fig. 17. Because these pieces are very thin, their bases are such short segments of the
circle that each base resembles a straight line. Neglecting a very tiny error, we can say
that if there aren pieces, the base of each piece is a straight line of lehgityn. The
segments are then essentially triangles of heigfiiecause of their thinness), and hence
area(1/2) - (2xr?)/n. Since there ara of them, the total area isr2. This heuristic
argument gives the correct result. In fact, this very figure appears in a Japanese work from
1698 (Smith and Mikamil1914 p. 131).

Now imagine a hemispherical bowl covering the pie. If the slices are extended upward
S0 as to slice the bowl into equally thin segments, and those segments are then straightened
out and arranged like the segments of the pie, they also will have bases e(%gél taut
their height will be one-fourth of the circumference, in other words,/2, giving a total
area for the hemisphere ¢f/2) - 72r2. Since the area 8z r2, this would imply that
7 = 4. What is wrong with the argument? How much error would there be in taking
T =47
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FIGURE 17. A disk cut into sectors and opened up.

Answer. The difficulty with the analogy is that a disk is flat and a sphere is curved. One
cannot flatten the sphere without distorting its area. (However,cangroject it into a
cylinder in a way that preserves area.)

9.14. What is the justification for the statement by the historian of mathematics T. Murata
that Japanese mathematieséar) was not a science but an art?

Answer.Mainly, | think, the difference lies in the applications made of the geometry and
algebra. An esthetically pleasing geometric figure was esteemed, especially if it led to
interesting algebra. The mathematics was not applied to solve any physical or practical
problems.

9.15. Show that Aryabhata’s list of sine differences can be interpreted in our language as
the table whosath entry is

3438[sin (%) —sin (%)} .

Use a computer to generate this table fior= 1,...,24, and compare the result with
Aryabhata’s table.

Answer.The increment in the table entries (225 minutes or 3.75 degrees) is exddity

When | generated the table wikhathematical got the numbers 224.856, 223.893, 221.971,
219.099, 215.289, 210.557, 204.923,198.411, 191.05, 182.871, 173.909, 164.202, 153.792,
142.724,131.044, 118.803, 106.053, 92.8493, 79.248, 65.3072, 51.0868, 36.6476, 22.0515,
7.36102. Rounding to the nearest integer gives 225, 224, 222, 219, 215, 211, 205, 198,
191, 183, 174, 164, 154, 143, 131, 119, 106, 93, 79, 65, 51, 37, 22, 7. The differences
were noted in the text: Aryabhata’s 210 should be 211 (but the actual error is only .557)
and his 199 should be 198 (again, the actual error is only .589).

9.16. If the recursive procedure described by Aryabhata is followed faithfully (as a com-
puter can do), the result is the following sequence.
225,224,222, 219, 215, 210, 204, 197, 189, 181, 172,
162, 151, 140, 128, 115, 102, 88, 74, 60, 45, 30, 15,0
Compare this list with Aryabhata’s list, and note the systematic divergence. These
differences should be approximately 225 times the cosine of the appropriate angle. That

is, dy ~ 225- cos(225(n + 0.5) minuteg. What does that fact suggest about the source of
the systematic errors in the recursive procedure described by Aryabhata?

Answer.The differences form the sequence 0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,4,5,
5,5,6,7, 7, 7. What we have here is an algebraic function attempting to approximate a
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transcendental function and losing track of it. If Aryabhata did use this formula, he must
have started over with a new “seed” several times in order to avoid the error accumulation
shown here.

9.17. Use Aryabhata’s procedure to compute the altitude of the Sun above the horizon in
London (latitude51° 32’) at 10:00 AM on the vernal equinox. Assume that the sun rises at
6:00 AM on that day and sets at 6:00 PM.

Answer.By the formula the altitude i§, where
6 = arcsin(sin(51° 32') sin(60°)) = 42°4135" .
(The sun ix0° along its daily arc in the sky at 10:00 AM on the vernal equinox.)

9.18. Why is it necessary that a quadrilateral be inscribed in a circle in order to compute
its diagonals knowing the lengths of its sides? Why is it not possible to do so in general?

Answer.The diagonals themselves are not determined by the lengths of the sides, since a
guadrilateral frame with pivots at its corners can change its shape. Knowing that all four
vertices lie on a circle makes the problem determinate, since the fourth vertex must be
at the intersection of the circle circumscribed about the other three vertices and a circle
having center at one of those vertices.

9.19. Show that the formula given by Brahmagupta for the area of a quadrilateral is correct
if and only if the quadrilateral can be inscribed in a circle.

Answer.For a quadrilateral of sides, b, ¢, andd Brahmagupta’s formula can be written
as the equation

1642 = 8abed +2a*b* +2a*c? +2a%d? +2b2c? +2b2%d* + 2¢%d* —a* —b* —c* —d*.

Now a necessary and sufficient condition for a quadrilateral to be inscribed in a circle

is that one pair of opposite angles be supplementary. (It then follows that both pairs of
opposite angles have this property, since the four angles taken together must sum to four
right angles.) Considering a quadrilateral with sides of lengind» on one side of a
diagonal of lengtte and sides of length andd on the other side, the condition that the
angles on opposite sides be supplementary says that their cosines must be negatives of each
other. Using the law of cosines, we find

a* + b*> —2abcosh = e? = ¢? + d* — 2cd cosyp.
Now if # andg total two right angles, we must have
cosf = — cosy,

and therefore
a* 4+ b? —c? —d? = 2(ab + cd) cosh,
so that
a?> +b%—c?—d?
2(ab + cd)

cosf =

Now the area of the quadrilateral is

A= %(ab sinf + cd sing).



9. MEASUREMENT 71

Hence the condition for the vertices to lie on a circle is that

A= %(ab + cd)sing =

%(ab+cd)m:\/<ab+cd)2_[(a2_,.bz)_(cz_,_dz)]z.

2 4

or
1642 = 4(ab + cd)? — [(a* + b?) — (c* + d*)]%.

Expanding the two squares in this last expression and gathering like terms results in pre-

cisely the formula of Brahmagupta.

9.20. Imagine a sphere as a polyhedron having a large number of very small faces. De-
duce the relation between the volume of a sphere and its area by considering the pyramids
obtained by joining the points of each face to the center of the sphere.

Answer. The volume of each pyramid is one-third the area of the base times its height.
Now the height of each these pyramids is approximately the radius of the sphere. Hence
the volume of each pyramid is the one-third the radius times the area of its base. Summing
all of these volumes, we find that the volume of the sphere is one-third the radius time the
area of the sphere. That i, = 1 4r.



72

9. MEASUREMENT



CHAPTER 10

Euclidean Geometry

10.1. Show how it would be possible to compute the distance from the center of a square
pyramid to the tip of its shadow without entering the pyramid, after first driving a stake
into the ground at the point where the shadow tip was located at the moment when vertical
poles cast shadows equal to their length.

Answer.One could sight from the stake toward the center (apex) of the pyramid and note
where the line of sight intersects the side of the base. It is easy to measure the distance
from there to the midpoint of the side of the pyramid, then use the Pythagorean theorem to
work out the distance from that point to the center of the pyramid. (One leg is half the side
of the pyramid. The other is the distance from the point in question to the midpoint of the
side.) Once that distance is found, simply add it to the measured distance from the stake to
the point on the side of the pyramid.

10.2. Describe a mechanical device to draw the quadratrix of Hippias. You need a smaller
circle of radius2 / times the radius that is rotating, so that you can use it to wind up a
string attached to the moving line; or conversely, you need the rotating radiusstgbe
times the radius of the circle pulling the line. How could you get such a pair of circles?

Answer. Wind a string around the circle, then stretch it out to a straight line. You now
have a line of lengtl2zr. Since you wanr/m, observe that it istr2 divided by this
length. Thus you need to construct a rectangle on the side of I@ngtiwvhose area equals

the square on the diameter of the given circle. That is a classical Euclidean construction
(application without defect or excess).

10.3. Prove that the problem of constructing a rectangle of prescribed area on part of a
given base: in such a way that the defect is a square is precisely the problem of finding
two numbers given their sum and product (the two numbers are the lengths of the sides
of the rectangle). Similarly, prove that the problem of application with square excess is
precisely the problem of finding two numbers (lengths) given their difference and product.

Answer.Let the two parts of the line have lengthsandy. Thenxy is the given area and

x + yisthe given line. Likewise, if the length of the base of the rectangle in the application
with excess problem is and its excess over the given linejisthenx — y is the given line
andxy is the given area.

10.4. Show that the problem of application with square excess has a solution for any given
area and any given base. What restrictions are needed on the area and base in order for the
problem of application with square defect to have a solution?

Answer. The corner of the rectangle opposite to one end of the given line lies on a ray
emanating from the other end of the line and making an angl& &% with the given line.
As a point on this ray moves away from the intersection with the given line, the area of
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A B

FIGURE 24. Diagonal and side of a square.

the rectangle increases continuously from zero to infinity. Hence there is a unique point at
which it equals the given area.

As for application with defect, the angle 45°, and the area increases as the point
moves along the ray only until it is directly above the midpoint of the given line. Then it
decreases to zero when the point is above the opposite endpoint. Hence the maximum area
that can be constructed is the square on half the line. In other words, the pair of equations
x + y = a,xy = A has positive solutions, y if and only if 4 < %az That, of course is
well, known, since the equations impty@ — x) = 4, thatis,x> —ax + 4 = 0, and the
discriminant condition is? — 44 > 0.

10.5. Use an argument similar to the argument in Chapter 8 showing that the side and
diagonal of a pentagon are incommensurable to show that the side and diagonal of a square
are incommensurable. That is, show that the Euclidean algorithm, when applied to the
diagonal and side of a square, requires only two steps to produce the side and diagonal of
a smaller square, and hence can never produce an equal pair. To do so, refer to Fig. 24.

In this figureAB = BC, angleABC is a right angle A D is the bisector of angle
CAB, and DE is drawn perpendicular tdC. Prove thatBD = DE, DE = EC, and
AB = AE. Then show that the Euclidean algorithm starting with the 04, A B) leads
first to the pair(4B, EC) = (BC, BD), and then to the pafCD, BD) = (CD, DE),
and these last two are the diagonal and side of a square.

Answer. Side AD is common to trianglest DE and ADB. Since AD is the bisector
of ZCAB, BD 1. AB, and DE L AC, it follows that trianglesADE and ADB are
congruent by angle—angle-side. Sinc€ DE must equalZCAB (because both must
be complementary t/C in their respective right triangles), it follows thatCDE is
congruent taZC, hence that triangl®CE is isosceles. ThereforEC = ED = BD.
We haved B = AE by the congruence of trianglesDB and A DE.

Starting the Euclidean algorithm with the p&itC, A B), we get(AC — AB, AB) =
(AC — AE,AB) = (EC,AB) = (BD, BC). SinceBC > BD, our next pair iYBC —
BD, BD) = (CD, BD) = (CD, DE), which, as asserted, form the diagonal and side of a
square.

10.6. It was stated above that Thales might have used the Pythagorean theorem in order to
calculate the distance from the center of the Great Pyramid to the tip of its shadow. How
could this distance be computed without the Pythagorean theorem?
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Answer.Draw as much as you can of a right triangle having the line from the center to the
tip of the shadow as its hypotenuse and one leg parallel to a side of the pyramid. You will
be able to draw all of this side. (The other leg will of course be perpendicular to the side,
and you won't be able to draw all of it.) Reflect this triangle about the point where the
tip of the shadow is. You can draw as long an extension of the hypotenuse as you like. If
you reflect all of the side parallel to the side of the pyramid, then draw a perpendicular to
that line at the endpoint of the extension, the point where the perpendicular intersects the
extension of the hypotenuse will determine the third vertex of a triangle congruent to the
one you can’t measure.

10.7. State the paradoxes of Zeno in your own words and tell how you would have advised
the Pythagoreans to modify their system in order to avoid these paradoxes.

Answer.My response to this question is already contained in the text, since the paradoxes
have been stated there in my words. In all cases, | think, the disconnect between verbal
reasoning and geometric intuition arises because the concept of a continuum requires a
set that isuncountableand an uncountable set cannot be “approximated” by a large finite
set. Itis a qualitatively different thing. The qualitative difference shows up in the notion

of geometric dimension and the consequent differences among length, area, and volume.
These different dimensions lose the Archimedean property: No multiple of a point can
ever exceed a curve, surface, or solid. No multiple of a curve can ever exceed a surface
or solid, and no multiple of a surface can ever exceed a solid. Hence one cannot think of
a line as being a bunch of points stacked up one on top of another. The intuitive attempt
to do that has to be replaced by a limiting process that works “down from above,” taking
lines or curves of finite length and letting that length go to zero. That way, the object you
are using to reach the infinitesimal level is comparable to the object you hope to synthesize
from those infinitesimals.

10.8. Do we share any of the Pythagorean mysticism about geometric shapes that Proclus
mentioned? Think of the way in which we refer to an honorable persopight, or speak

of getting asquare dealwhile a person who cheats is said todseoked Are there other
geometric images in our speech that have ethical connotations?

Answer. A person who speaks truthfully and frankly is said to bstiaight-talker Un-
complicated people who are regarded as dull are sometimes saidtek#mensionalA
broadly educated person is said tovell-rounded Words such agectitude coming from

the Latin, have similar roots. Topological notions enter ethics in such worbigeagity
(wholeness) anduplicity, the image being that a person of integrity is consistent and can
be relied upon, while a duplicitous (two-faced) person may appear to be of one opinion
in one context and an opposite opinion in some other. An insensitive person is sometimes
said to beobtuse(as opposed tacutd.

10.9. In the Pythagorean tradition there were two kinds of mathematical activity. One
kind, represented by the attempt to extend the theory of the transformation of polygons
to circles and solid figures, is an attempt to discover new facts and enlarge the sphere
of mathematics—to generalize. The other, represented by the discovery of incommensu-
rables, is an attempt to bring into sharper focus the theorems already proved and to test the
underlying assumptions of a theory—to rigorize. Are these kinds of activity complemen-
tary, opposed, or simply unrelated to each other?

Answer. They are partly independent, partly interactive. Some mathematicians gravitate
toward the philosophical end of the subject, others are caught up in its intuitive aspects and
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like to create new theories. Sometimes new theories are created in order to take account
of criticism, and sometimes reflection on the inner workings of a subject lead to useful
generalizations of it, as the basic underlying principles are isolated.

10.10. Hippocrates’ quadrature of a lune used the fact that the areas of circles are propor-
tional to the squares on their radii. Could Hippocrates have known this fact? Could he
have proved it?

Answer.That depends on what you mean by knowing and what you mean by proof. Hip-
pocrates was a late Pythagorean, who probably lived in the second half of the fifth century
BCE. He would have inherited the semi-formal approach to geometry that was partly in-
tuitive, partly logical. The more intense logical rigor that came after the criticism of Zeno
and the work of Plato’s students wouldn’t have been part of it. In particular, he lived long
before Eudoxus gave a theory of proportion that could handle incommensurable magni-
tudes.

10.11. Plato apparently refers to the famous 3—4-5 right triangle inRbpublic 546.
Proclus alludes to this passage in a discussion of right triangles with commensurable sides.
We can formulate the recipes that Proclus attributes to Pythagoras and Plato respectively
as

@n+1)? + @2n? +2n)* = 2n* +2n + 1)2
and

@n)? 4+ n? —1)?* = * + 1)°.

Considering that Euclid’s treatise is regarded as a compendium of Pythagorean mathemat-
ics, why is this topic not discussed? In which book of Elementsvould it belong?

Answer. As we saw in the text, Euclid also does not discuss figurate numbers, another
topic of interest to the Pythagoreans. Euclid was much more interested in the theory of
proportion than anything else. Once you have that theory and the general Pythagorean
theorem, integer-sided triangles are a topic of limited interest. If he had discussed this
topic, it would have been in Books 7-9.

10.12. Proposition 14 of Book 2 of Euclid shows how to construct a square equal in area
to a rectangle. Since this construction is logically equivalent to constructing the mean
proportional between two line segments, why does Euclid wait until Book 6, Proposition 13
to give the construction of the mean proportional?

Answer. The equivalence of the two things is not obvious and cannot be proved without
the Eudoxan theory of proportion. Euclid does prove the equivalence in Book 6, Proposi-
tion 16.

10.13. Show that the problem of squaring the circle is equivalent to the problem of squar-
ing one segment of a circle when the central angle subtended by the segment is known.
(Knowing a central angle means having two line segments whose ratio is the same as the
ratio of the angle to a full revolution.)

Answer.lt is very easy, and a direct application of the Eudoxan definition to show that the
area of asectorof a circle is directly proportional to the angle it subtends. Now suppose
thata andb are lines whose ratio : b equals the ratio of the whole circle to the sector
and thats is the side of a square equal to the area of the sector. We can threlside of a
square equal to the whole circle, as follows.
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Letm be the mean proportional betwegmndb, and construct on side a rectangle
equal to the rectangle whose sides@snds. Thent is the other side of the rectangle just
constructed. Form = as, so that : s = a : m. But the duplicate ratida : m).(a : m) is
a: b, sincem : b = a : m. Itfollows that the duplicate rati¢ : s).(¢ : s) is alsoa : b, and
hence the squares on sideands are in the ratiaz : 5. Since the square anequals the
sector, it follows that the square erequals the whole circle. The same argument shows
that one can square the sector if one knows how to square the circle.

Now, if we can square the sector subtended by the segment, then the segment, being
the difference between the sector and a triangle, can also be squared. The procedure is as
follows. Construct a square equal to the sector. Draw a semicircle having one side of that
square as diameter. Then, from one end of the diameter, mark off a chord equal to the side
of the square whose area is that of the triangular part of the sector. Connect the other end
of the chord to the other end of the diameter. That second chord is the side of a square
equal to the segment. Conversely, if we can square the segment, since we can also square
the triangle that complements the segment to make a sector, we can put the two squares
corner to corner so that their sides form the legs of a right triangle, and the square on the
hypotenuse will then be equal to the sector.

10.14. Referring to Fig. 18, show that all the right triangles in the figure formed by con-
necting B’ with C, C’ with K, andK’ with L are similar. Write down a string of equal
ratios (of their legs). Then add all the numerators and denominators to deduce the equation

(BB'+CC'+---+ KK'+ LM): AM = A'B : BA.

Answer.We have duplicated Fig. 18 here and added the letier®, Q, R, S, andT to
make it easier to refer to the triangles we need. Each of these right triangles has an acute

frown

angle inscribed in an arc equal to the artB . Thus all the trianglest OB, POB’, PQC,
RQC’, RSK, TSK’' andT M L are similar to one another and #aBA’. Thus we have

OB OB QC QC SK SK' LM

AO OP PQ QR RS ST TM'
Therefore, adding numerators to numerators and denominators to denominators, we find
that

OB+ OB+ QC+ QC'+SK+SK'+ LM  A'B
AM - AB’

This is the result asked for, siné@B + OB’ = BB’, and so on. Actually, for purposes
of completing Archimedes’ argument, it makes more sense to leave the expression as it is
here. For, according to Archimedes’ lemma the frustum of a cone generated by revolving,
say B’C’ about the diameted A’ has area equal to a circle whose radius is the mean
proportional betwee® C and the sunOB’+ QC. Since the area of a circle is proportional
(with constantr) to the square of the radius, that area is jusimes BC(OB’ + QC).
SinceAB = BC = CK = KL, cross-multiplying in this last equation and replacia@
successively by8C, CK, andK L, we find that the area generated by revolvihCK L
about4 A4’ is  times

AB - OB + BC(OB' + QC) + CK(QC' + SK) + KL(SK' + LM) = AM - A'B..

But if the sideA B of the polygon is taken sufficiently small, bothd and 4’ B will be

as close to the diameter as we like, and the area of the revolved polygon will be as close to
the area of the sphere as we like. Hence the area of the sphetéigs the square of its
diameter.
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FIGURE 18. Finding the surface area of a sphere.

Archimedes would have said that if the square on the radius of a given circle equals
the sum of the squares on the radii of a (finite) set of circles, then the area of the given
circle equals the sum of the areas of the set of circles. This equation is thus interpreted
by saying that the square of the radius of a circle equal to the area obtained by revolving
the polygon aboud A’ is AM - A’ B, and (in the limit, as we would say) the area of the
sphere equals the area of a circle whose squared radius equals the squared diameter of the
sphere, that is, a circle whose radius equals the diameter of the sphere. But of course, as
Archimedes knew and stated, the area of such a circle is four times the area of a great circle
on the sphere.

10.15. Show that Archimedes’ result on the relative volumes of the sphere, cylinder, and
cone can be obtained by considering the cylinder, sphere and double-napped cone formed
by revolving a circle inscribed in a square about a midline of the square, the cone being
generated by the diagonals of the square. In this case the area of a circular section of the
cone plus the area of the same section of the sphere equals the area of the section of the
cylinder since the three radii form the sides of a right triangle. The radius of a section of the
sphere cuts off a segment of the axis of rotation from the center equal to the radius of the
section of the cone, since the vertex angle of the cone is a right angle. These two segments
form the legs of a right triangle whose hypotenuse is a radius of the sphere, which is equal
to the radius of the section of the cylinder.

Answer. In the vertical cross section of such a solid (see the accompanying figure) the
square is the section of the cylinder, the circle the section of the sphere, and the crossed
diagonals the section of the double-napped cone. The horizontal line one-fourth of the dis-
tance from the top of the cylinder represents a horizontal cross section, whose intersections
with the three solids give three concentric circles of different radii. Since the areas of these
circles are proportional to the squares on the radii, we have only to observe that the square
on the radius of the cylindrical section equals the sum of the squares on the radii of the
sections of the sphere and cone. (Draw the radiBsfrom the center of the figure to the
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NZE

Sections of sphere, cylinder, and cone

H

FIGURE 25. Archimedes’ trisection of an angl&tAI"'A = %AAAE.

point where the horizontal line meets the circle. Together with the horizontalBatnand
the vertical armAC it forms a right triangled BC. The vertical armdC equals the radius
of the conical cross section, since the generating lines of the cone f#$frdegree angle
with the axis of the cone. The horizontal aBC is the radius of the cross-section of the
sphere, and the hypotenudes is the radius of the cylinder.

The conclusion is that the volume of the cylinder is the sum of the volumes of the cone
and the sphere.

10.16. A minor work attributed to Archimedes called tiBook of Lemmasontains an
angle trisection. In Fig. 25 we are given an acute anteA E, whose trisection is re-
quired. We draw a circle of any radiusaboutA, the vertex of the angle. Then, using a
straightedge, we mark off on it two poinf® and Q separated by the distanee Setting
the straightedge down so thatis at pointI” on the extension of the diamet&rAZ, Q is

at point B on the circle, and the poi is also on the edge of the straightedge, we draw
thelineAI’. By drawing E H parallel toAI", we get/ATI'E = ZI'EH. By joining AB,

we obtain the isosceles triangl& A. Now since/ BAZ is a central angle on the arRz
and is equal to/ BT A, WhICh is equal toéZEH WhICh is inscribed in the arZH it
follows that ZH = 2 BZ Slnce the arcsiE andBH are equal (being cut off by parallel

chords), we now geAE — BH= 3 BZ. Therefore L/AT'E = /BAZ = %AAAE.
Why is this constructionot a straightedge-and-compass trisection of the angle, which
is known to be impossible? How does it compare withribésistrisection shown above?
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Show how to obtain this same result more simply by erasing everything in the figure below
the diameter of the circle.

Answer.Letters here refer to the accompanying figure. We are given an acutecargle
ZAOB, whose trisection is required. We draw a cirelC of any radiusr aboutO,
the vertex of the angle. Then, using a straightedge, we mark off on it two pBiatsd O
separated by the distanee Setting the straightedge down so thats on the extension
of the diameteIC 4, Q is on the semicircled BC, and the pointB is also on the edge of
the straightedge, we draw the lil®B, which contains the poin®. By drawing the radius
QO we obtain two isosceles triangl€sQ P and QOB. The equal angles of the first of
these will be denote@, and since the exterior angle of a triangle equals the sum of the
two opposite interior angles, it follows that the equal angles of the second are e@gal to
ThereforeZBPO = 8, ZPBO = 2, and again by the exterior angle theorem= 3.
That is, we have constructed an anfglequal to one-third oé.

The construction fails because the liB is not determined, except visually. In
geometry a line can be determined in only three ways: 1) by knowing two points on it; 2)
by knowing one point on it and the angle it makes with a second line through that point; 3)
by knowing one point on it and a line that is parallel to it. None of these conditions is met
in the present case.

10.17. Show that the problem of increasing the size of a sphere by half is equivalent to the
problem of two mean proportionals (doubling the cube).

Answer.Given a sphere of radius one needs to find the radiwof a sphere that is half
again as large. Since spheres are in proportion to the triplicate ratio of their radii, it would
suffice to find two liness andz such thatr : s = s : ¢t = ¢ : %r. Conversely, if one
could find the radius, one could construct the third proportionaduch that : s = s : ¢
(Euclid, Book 6, Proposition 11), and then the third proportianalch that : ¢t = ¢ : u.

But thenr : u would be the triplicate ratio of : s and that triplicate ratio i : 3 by the

assumption on. Henceu = 3r.

10.18. A circle can be regarded as a special case of an ellipse. Whatl&éulseectunof
a circle?

Answer.The latus rectumof a circle is its diameter, since the perpendicular from a circle
to its diameter is the mean proportional between the segments of the diameter.
10.19. When the equatiop? = Cx — kx? is converted to the standard form
x —h)? 2
( : ) LY
a b?

what are the quantities, a, andb in terms ofC andk?

=1,

I

Answer.This is simple algebraz = % b=

B

2
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10.20. Show from Apollonius’ definition of the foci that the product of the distances from
each focus to the ends of the major axis of an ellipse equals the square on half of the minor
axis.

Answer.In general, any rectangle deficient by a square has area equal to the product of the
two line segments into which it divides the line segment to which it is applied. Apollonius

is asserting that (what we call) the foci are points at which this product is one-fourth the
product of the major axis and the latus rectum. By the geometric way in which the ellipse
is defined, it is clear that the square of the ordinate at the midpoint of the major axis (that
is, the square on half of the minor axis) will be exactly one-fourth of the rectangle on the
major axis and the latus rectum. (Simply put/ i the latus rectum, andandb are half

of the major and minor axes respectively, th#? = al. Note that for a circle, where

andb are both equal to the radius, this formula givess the diameter of the circle.) Hence

the assertion follows.

10.21. We have seen that the three- and four-line locus problems have conic sections as
their solutions. State and solve the two-line locus problem. You may use modern analytic

geometry and assume that the two lines arextlaxis and the lingy = ax. The locus is

the set of points whose distances to these two lines have a given ratio. What curve is this?

Answer.The distance from a general poi@t, y) to the lineax + by = ¢ is well-known
to belax + by — ¢|/+~/a* + b%. Hence the general equation is

-
|y] = ——=—=lax —y| = glax - y|,
va? +1

wherer is the ratio of the two distances agd= r/+va2 + 1. By squaring both sides,
transposing the left-hand side to the right, and then factoring the difference of the two
squares, we obtain the equation

[agx + (1 —q)yllagx — (1 +¢q)y] = 0,

which represents a pair of lines through the intersection of the two given lines. A pair of
intersecting lines is considered a degenerate hyperbola.

10.22. Show that the apparent generality of Apollonius’ statement of the three-line locus
problem, in which arbitrary angles can be prescribed at which lines are drawn from the
locus to the fixed lines, is illusory. (To do this, show that the ratio of a line from a pint

to line/ making a fixed anglé@ with the line/ bears a constant ratio to the line segment
from P perpendicular td. Hence if the problem is solved for all ratios in the special case
when lines are drawn from the locus perpendicular to the given lines, then it is solved for
all ratios in any case.)

Answer.The constant ratio is in fact the sine of the given angle at which the oblique lines
are drawn. To avoid using trigopnometry, one need only observe that the triangles formed
by the fixed line, the perpendicular to it, and the oblique to it, are all right triangles having
the given angle as an acute angle. Hence they are all similar, and, in particular the ratio of
the two lines in question is the same for all of them.

10.23. Show that the line segment from a poiRt= (x, y) to alineax + by = ¢ making
angled with the line has length
lax + by — c|

Vaz +bZsing’
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Use this expression and three given lidesa;x + b;y = ¢;,i = 1,2, 3, to formulate the
three-line locus problem analytically as a quadratic equation in two variables by setting the
square of the distance frofx, y) to line/; equal to a constant multiple of the product of
the distances tfy and/;. Show that the locus passes through the intersection of théline
with /; and/3, but not through the intersection &fwith /5. Also show that its tangent line
where it intersectg is /; itself,i = 2, 3.

Answer. The first assertion is more or less covered in the preceding two problems. It is
standard analytic geometry. The proposed equation has the form

(a1x + b1y —c1)* = r(axx + bay — c2)(@sx + b3y — c3),

This is a quadratic expression.inand y, hence represents a conic section. Note that
this equation is satisfied whefix + b;y —¢; = 0 fori = 1,2 andi = 1, 3, but not for
i = 2,3 (except in the degenerate case when all three lines are concurrent).

Using implicit differentiation, we find that whem; x + b; y —¢; = 0fori = 1,2 but
not fori = 3, the slope of the tangent line is

dy  a
dx B bz ’
which is exactly the slope df.

10.24. One reason for doubting Cavalieri’s principle is that it breaks down in one dimen-
sion. Consider, for instance, that every section of a right triangle parallel to one of its legs
meets the other leg and the hypotenuse in congruent figures (a single point in each case).
Yet the other leg and the hypotenuse are obviously of different lengths. Is there a way
of redefining “sections” for one-dimensional figures so that Cavalieri’s principle can be
retained? If you could do this, would your confidence in the validity of the principle be
restored?

Answer. One could define the “zero-dimensional volume” of the point of intersection of
two lines as the cosecant of their angle of intersection, so that two lines intersecting at a
right angle would have an intersection of zero-dimensional volume 1 and two lines that
coincide would have an intersection whose zero-dimensional volume is infinite, as one
would expect. Note that the cosecant is the same for any of the four angles formed by
two intersecting lines, so that this concept is unambiguously defined. For two intersecting
curves one could define the volume to be the volume of the intersection of their tangents at
the point of intersection.

This definition would then give consistent results for lines and curves in a plane. In-
cidentally, it provides a theorem about plane curvest y = f(x) andy = g(x) be
plane curves having continuously turning nonvertical tangents at each poiatc for all
¢ € [a, b]Ifforall ¢ € [a, b]the cosecant of the angle of intersection of the curve f(x)
with the vertical linex = ¢ bears the ratio- to the cosecant of the angle of intersection of
the curvey = g(x) with the same line, then the length of the former smes the length
of the latter. The proof is the observation that the cosecant of the angle in question is the
secant of the angle between the tangent line and the horizontal, that ig/}litis ( /7 (c))?
and+/1 + (g’(c))? for the two curves, and the integrals of these two functions give the arc
lengths of the two curves.

The need to consider this case points to a perhaps unnoticed assumption in the original
statement of the principle and a possibility of generalizing it. The unnoticed assumption
was that the sections of the given figures are taken inside a space of the same dimension
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as the figures themselves. The possibility of considering, for example, one-dimensional
sections of two-dimensional figures in three-dimensional space requires some convention
such as the one just introduced for zero-dimensional sections of one-dimensional figures
in two-dimensional space.

10.25. We know that interest in conic sectioagosebecause of their application to the
problem of two mean proportionals (doubling the cube). Why do you think interest in
them wassustainedo the extent that caused Euclid, Aristaeus, and Apollonius to write
treatises developing their properties in such detail?

Answer. As | hope the discussion above has shown, these objects have properties that

are fascinating to contemplate. They are of great esthetic beauty, and in addition suggest
applications to many other areas, especially in physics. The discussion in Chapter 12

shows that conic sections were a source of a huge amount of speculation because of their
projective properties. That aspect of the subject made them an essential part of geometry
right down to the present day.

10.26. Pappus’ history of the conics implies that people knew that the ellipse, for example,
could be obtained by cutting a right-angled cone with a plane.a@aryellipse be obtained

by cutting a right-angled cone with a plane? Prove that it can, by showing that amg

b whatsoever in Eq. (2) can be obtained as the section of the right-angled cone whose
equation isy? = zx by the planex = 2a — (¢?z/bh?). Then show that by taking =
eu/(1—e?),b =av1l—e? x = w,y = v, wheree = /w, you get Eq. (1). fint:

Recall thak is constant in a given conic section. Also, observe@hate < 1 for a section

of an acute-angled cone, sinke= w tan(6/2), wheref is the vertex angle of the cone.]

Answer.This is mostly just algebra. Substituting= 262 /a—(b*x /a?) yields the equation
y? = (2b*/a)x — b>x? /a?, which we write as
b2x? b?

— —2;x+b2+y2=b2,

which is
N2 2
woar v
a b2
The rest of the problem is very simple algebra.

=1.

10.27. As we have seen, Apollonius was aware of the string property of ellipses, yet he
did not mention that this property could be used to draw an ellipse. Do you think that he
did notnoticethis fact, or did he omit to mention it because he considered it unimportant?

Answer.My guess is that he “had bigger fish to fry” at the time. The fact may have been
well-known and considered to be non-mathematical, since it involved physical objects and
instruments. As such, it would have been out of place in a treatise on pure mathematics.
Also, it was not in the main line of his development of the subject, which was to imitate
Euclid and find the proportions among the important lines in conic sections.

10.28. Prove Proposition 54 of Book 3 of Apolloniu€onicsin the special case in which
the conic is a circle and the poiétis at the opposite end of the diameter frdh(Fig. 22).

Answer.In this special case, where everything is symmetric, the relation to be proved is
AZ AAEB
Al AE BA~
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Because of the symmetry,AB = ZBAE. (The left-hand side equals half of the central

angle on4 B, and the right-hand side is half of the central angleRii.) Let us call this
angles. Then, becausel A is parallel tol"H, it follows that ZAT'H equals2o. But
then the bisector o AI"H makes the same angle with/” that A B makes withA T,
namelyo. Hence the bisector of A" H is parallel toA B. SinceA B is perpendicular to
A® (the angle® A B is inscribed in a semicircle), it follows that the bisectorfiI"H is
perpendicular ted®. Thereforel” is the vertex angle of the isosceles triangl€' H. But
thatmeansAl” = I'H = AZ, and hence the relation we need to prove is

AE EB
AA  BA’
This relation is most easily derived from the law of sines:

EB _EBAB __  sn/AA® __ . AL
BA _ ABBA % sine T AN



CHAPTER 11

Post-Euclidean Geometry

11.1. The figure used by Zenodorus at the main step in his proof of the isoperimetric
inequality had been used earlier by Euclid to show that the apparent size of objects is not
inversely proportional to their distance. Prove this result by referring to the diagram on the
left in Fig. 14. Show thaBBE : EA :: AB : ZA :: 'A : ZA and that this last ratio is

larger thanHA@:ZA@.

Answer. The first proportion is merely the fact that triangl&B A4 is similar to triangle
AAZ. The second is the fact thatB = I'Z. As for the inequality, since triangles
EZTI and EAZ have the same altitude (namelyA), their areas are proportional to
their bases. Thu$'Z : AZ = AEZI : AEAZ > SectorEZH : AEAZ >

SectorEZH : Sectord®Z =HZ:Z®. Adding 1 to both sides of the proportion, we
getl'A > ZA >HB:Z6.

11.2. Use the diagram on the right in Fig. 14 to show that the ratio of a larger chord to a
smaller is less than the ratio of the arcs they subtend, that is, shofhatA B is less

thanBI":AB,whereAl” andAZ are perpendicularto each other. (HiA bisects angle
ABT'.) Ptolemy said, paradoxically, that the chordi®fhad been proved “both larger and
smaller than the same number” so that it mustperoximatelyl; 2, 50. Carry out the
analysis carefully and get accurate upper and lower bounds for the chafd &fonvert

E

~

FIGURE 14. Greek use of a fundamental inequality. Left: from Euclid’s
Optics Right: from Ptolemy'sAlmagest
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this result to decimal notation, and compare with the actual chot@ which you can find
from a calculator. (Itid20 sin(%o).)

Answer. This question is poorly worded, the result of inattention in proofreading. It had
originally been in the text itself. When | moved it to the exercises, | should have stated
as part of the construction th#A is the bisector o/ A BI" and thatAZ is drawn per-
pendicular toAI". In any case, we can see that the f|gure on the left is repeated on the

right, and so that argument shows thek : 47 >HE HO In terms of angles, this says
AFE : 1AF > /AAB : ZAAZ. Because of the b|sect|0171,A FA and thereforeA is

the midpoint ofAT". It then follows thatZ is the midpoint ofAI". Butthen,A Z extended
is a diameter of the circle, and hengel A Z is half of ZAAT'. Thus,

AE : %AF > /LAAB : %LAAF.

Hence we can clear out the fractions and write this as
Al : AE < LAAT : LZAAB.

Subtracting 1 from both sides of this inequality gives
ETl : AE < LEAT : ZAAB.

But, sinceBA is the bisector of anglet BI', it follows thatAB : AE = I'B : EI'.!
And since inscribed angles are proportional to their arcs, we get

BI': AB <BI':AB,
which was to be proved.

Now Ptolemy had said that the chord Q? was0; 47, 8 where the radius is 60 and
that the chord ot %0 wasl; 34, 15. Hence it followed that the chord Gh°) had to satisfy

2 4
1:2. 50 = 3(1: 34, 15) < Ch(1%) < 2 (0: 478) = (1: 20)(0: 478) = 1: 2. 50, 40.

Actually, Ptolemy didn’t have it quite right. The chord CDI‘é—0 is aboutl; 34, 14, 42, 19

and the chord oﬁo is about0; 47, 7, 24, 47. Thus the left-hand estimate here is not quite
proved by Ptolemy’s argument, and in fact it is not correct. The choid &f really about

1; 2, 49, 51, 48, which is ever so slightly smaller than Ptolemy claimed it was. But let us
remember that hdid only claim that this was an approximate value, and that is true.

11.3. Let 4, B, C, andD be squares such that : B :: C : D, and letr, s, ¢, andu
be their respective sides. Show that s :: ¢ : u by strict Eudoxan reasoning, giving the
reason for each of the following implications. Letandr be any positive integers. Then

mr >ns = m?A>n’>B = m*>C >n’D = mt > nu.

Answer. The first implication is simply a matter of squaring the inequality. The second
is the definition of the proportiodd : B :: C : D, and the third is a matter of taking the
square root of the preceding inequality. Taken altogether these inequalities (foaalil

n constitute a proof that : s :: 7 : u.

1 This is Proposition 3 of Book 6 of Euclid, but is not hard to prove, since the trianglES” and 4 EB are
similar, as areAI’'B andAET . HenceAI' : AE = AB: AE andAI' : AE=TB:ET.
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Pappus’ theorem

11.4. Sketch a proof of Pappus’ theorem on solids of revolution by beginning with right
triangles having a leg parallel to the axis of rotation, then progressing to unions of areas for
which the theorem holds, and finally to general areas that can be approximated by unions
of triangles.

Answer.We shall consider only the case of a full rotation. The direct proportion of volumes
and distances traveled by the centroid makes the extension to partial rotations an immediate
extension. Consider then a right triangle of legandb rotated about an axis parallel to the
leg of lengthb at a distance from that leg. Assume first that the triangle lies on the side of
the leg parallel to the axis opposite to the side containing the axis. This triangle generates
the area outside a cylinder and inside a frustum of a cone. The cone has bottom radius
r +a, top radius- and height. The volume of the frustumi& ((a +r)?(b + h)—r2h) =
Zb(a* + 3ar + 3r?) = Za*b + mwabr + wbr?. From this we subtract the volume of the
cylinder inside, which isrr2b, getting a volume equal t§ab(a + 3r). Now the centroid
M of this triangle is the intersection of its medians and lies at the vertex of a rectangle
of sides% and% having one corner at the right angle of the triangle. In particular, its
distance from the axis of rotation is+ ¢, and it therefore describes a circle of length
27 (r + £). Since the area i$ab, the product of these two isab (r + 1a), exactly the
volume generated. (See the left-hand side of the accompanying figure.)

In the case when the triangle lies on the same side of the leg parallel to the axis as the
axis itself, we must subtract a frustum having radi ¢ andr from a cylinder of radiug,
and the centroid lies at distance- 5 from the axis. The argument is the same, however.
(See the right-hand side of the accompanying figure.)

Now consider two aread and B rotated about an axis in such a way that the centroid
of aread is at distance from the axis and the centroid of aréais at distance, producing
volumesV andW respectively. Then the centroid of the combined area is at distance

Ar Bs
= +

A+B A+ B

from the axis. The product of the area and the distance this centroid travetg A5+
B)t = 2n(Ar + Bs) = V + W, which is exactly the volume produced. Now by induction
on the number of regions, it follows that this theorem is true for any finite union of regions

if it is true for each region individually. That includes all polygonal regions, since they can
be decomposed into finite unions of triangles of the specified type.

t



88 11. POST-EUCLIDEAN GEOMETRY

B’ c’

D D
BD = BC

Left: Thabit's theorem for an obtuse triangle. Right: Thabit's theorem when
BC is not the longest side. In both casB® (BB’ + CC’) = AB_ + 4AC .

Finally, by the method of exhaustion, it follows that the theorem holds for all planar
regions bounded by rectifiable curves.

11.5. Explain how Thabit ibn-Qurra’s generalization of the Pythagorean theorem reduces
to that theorem when angl¢ is a right angle. What does the figure look like if anglés
obtuse? Is there an analogous theore®df is not the longest side of the triangle?

Answerlf angle 4 is a right angle, the®’ = C’, the two rectangles built on sid®@C have
a side in common, and their union is precisely the square onBe Thus the theorem
becomes the Pythagorean theorem in that case.

If angle 4 is obtuse, there is a gap in the middle of siB€’, but it remains true that
the squares od B and AC equal the corresponding rectangles built on parts of #ide
(See the left-hand side of the accompanying figure.)

To get a corresponding theorem whB@' is not the longest side, you have to extend
the side and let the angle constructeddabe larger than angld. But a theorem can still
be obtained. (See the right-hand side of the accompanying figure.)

11.6. One form of non-Euclidean geometry, known as doubly elliptic geometry, is formed

by replacing the plane with a sphere and straight lines with great circles, that is, the inter-
sections of the sphere with planes passing through its center. Let one “line” (great circle)
be the equator of the sphere. Describe the equidistant curve generated by the endpoint of a
“line segment” (arc of a great circle) of fixed length and perpendicular to the equator when
the other endpoint moves along the equator. Why is this curve not a “line”?
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Answer.The equidistant curve is what we call a parallel of latitude. It is a circle (actually
a pair of circles, since the word “point” really should be interpreted as a pair of antipodal
points). But it is not a great circle. Hence it is not a shortest path between any two of its
points. Therefore it cannot be interpreted as a line.

11.7. Al-Haytham'’s attempted proof of the parallel postulate is fallacious because in non-
Euclidean geometry two straight lines cannot be equidistant at all points. Thus in a non-
Euclidean space the two rails of a railroad cannot both be straight lines. Assuming New-
ton’s laws of motion (an object that does not move in a straight line must be subject to
some force), show that in a non-Euclidean universe one of the wheels in a pair of opposite
wheels on a train must be subject to some unbalanced force at all times. [Note: The spher-
ical earth that we live on happens to be non-Euclidean. Therefore the pairs of opposite
wheels on a train cannot both be moving in a great circle on the earth’s surface.]

Answer. This problem is simply the remark that an object not moving along a geodesic
must be subject to an unbalanced force. It shows the difficulty with the concept of a rigid
body in non-Euclidean geometry. In special relativity there can be no rigid bodies. (If there
were, it would be possible to transmit information instantaneously by moving a rigid bar
in one place and having the other end of it write out information in another place.)

11.8. Prove that in any geometry, if a line passes through the midpoint of 4ileof
triangle ABC and is perpendicular to the perpendicular bisector of the 8ide then it

also passes through the midpointd€' . (This is easier than it looks: Consider the line that
doespass through both midpoints, and show that it is perpendicular to the perpendicular
bisector of BC; then argue that there is only one line passing through the midpoiBtof

that is perpendicular to the perpendicular bisectoB6f.)

Answer.If we draw the line through the midpoint8 and Q of AB and AC respectively

and drop perpendiculatd R, BS, CT to this line fromA4, B andC, we get two pairs

of congruent triangles (by the angle-angle-side criterion), nardghR, BPS and AQR,

CQT. ltfollows that AR, BS, andCT are all three equal. In particulaBS7 C is a

Thabit quadrilateral. Since the perpendicular bisector of the base and summit are the same,
it follows that the lineSPQT (which passes through the two midpointsand Q) is per-
pendicular to the perpendicular bisector®€'. But there is only one perpendicular from

P to this line, and hence the line throughperpendicular to the perpendicular bisector of

BC must pass througl®, which was to be shown.

11.9. Use the previous result to prove, independently of the parallel postulate, that the line
joining the midpoints of the lateral sides of a Thabit (Saccheri) bisects both diagonals.

Answer. The line joining the midpoints of the lateral sides of the Saccheri quadrilateral
forms a second Saccheri quadrilateral on the same base. In particular, that line is perpen-
dicular to the perpendicular bisector of the base. Therefore it passes through the midpoint
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of one side of the triangle formed by the base, one lateral side, and the diagonal. It must
therefore pass through the midpoint of the diagonal.



CHAPTER 12

Modern Geometries

12.1. Judging from Descartes’ remarks on mechanically drawn curves, should he have
admitted the conchoid of Nicomedes among the legitimate curves of geometry?

Answer.Yes. Since a mechanical device exists for drawing it, it is sufficiently determinate
to meet his standards.

12.2. Prove Menelaus’ theorem and its converse. What happens if the goistsl F are
suchthatdD : AE :: BD : BE? (Euclid gave the answer to this question.)

Answer.The similarity of trianglesE GF andCBF gives the following implication, where
it is only necessary to addto both sides of the equation.
FG  FE BG CE
BF CF  BF CF

The similarity of trianglesd DB and E D G similarly gives the following sequence of three
implications.

BD AD BG AE DG DE BD AD

— e s = 2 = —— = —— = ——,

DG DE DG DE BG AE BG AE
Here the first implication results from subtracting 1 from both sides, the second from taking
reciprocals, and the third from adding 1 to both sides. Now we simply multiply the last
two equalities to get

BD AD CE
BF ~ AE CF°
For the converse, we need to show that if the poiit®3, D, E, and F are given and

AD : AE < BD : BF, then the line througid and B meets the line througlk’ and F
on the side of the line through and £ on which B lies. But that is a simple consequence
of the parallel postulate. I& is located onBD so thatAD : AE = BD : BG, then it
folows thatBF < BG. SinceEG is parallel to4 B, the anglesBAD and A EF total less
than two right angles, and hence the lineB and E F meet on that side of the transversal

D

F

A B C

FIGURE 6. Menelaus’ theorem for a plane triangle.
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AD. The point of intersectio’ does satisfy the equality, as just proved, and since the
ratio CE : CF is strictly decreasing & moves away fron¥F, there can be only one point
on the lineE F having this property.

12.3. Use Menelaus’ theorem to prove that two medians of a triangle intersect in a point
that divides each in the ratio of 1:2.

Answer.This is the case whei¢E = ED and4B = BC, taking the triangle to bd CD.
SinceAD = 2AE in this case, we get

BD _ CE

BF ~CF’
By symmetry,

EC _,DB

EF  ~DF’
which we rewrite as

EF 1 DF

EC 2 DB’

Subtracting both sides of this equality from 1 gives
CF 1 1 BF

cE 2"

2 DB’
Now multiplying this equality by the first equality, we get
I BD 1 _,
2 BF 2 7
which can be rewritten as
BD
— =3.
BF

12.4. Deduce Brianchon’s theorem for a general conic from the special case of a circle.
How do you interpret the case of a regular hexagon inscribed in a circle?

Answer. Consider a hexagon inscribed in a conic section, where the conic section is pre-
cisely that: the intersection of a plane and a cone. Each edge of the hexagon determines
a unique plane through the vertex of the cone. Taking a fixed plane perpendicular to the
axis of the cone, so that its section is a circle, we see that the planes determined by the
sides of the hexagon intersect this plane in a hexagon inscribed in the circle. It is the
projection of the hexagon inscribed in the original conic onto the plane of the circle. Con-
versely, the original hexagon is the projection of the other hexagon onto the plane of the
original conic section. Since the opposite edges of the latter, when extended, meet in three
collinear points and projections preserve collinearity, we see that the same must be true for
the opposite edges of the original hexagon.

The three points of intersection of three pairs of parallel lines all lie on the same “line
at infinity.” If there is only one pair of parallel opposite edges, the line determined by the
intersections of the other two pairs of opposite edges will be parallel to the pair of parallel
edges. Hence the point at infinity where the other pair of edges meets lies on the line
determined by the points where the other two pairs meet.

12.5. Fillin the details of Plicker’s proof of Brianchon’s theorem, as follows: Suppose
that the equation of the conic igx, y) = y? + r1(x)y + r2(x) = 0, wherer;(x) is a
linear polynomial and-(x) is quadratic. Choose coordinate axes not parallel to any of
the sides of the inscribed hexagon and such thatxtoeordinates of all of its vertices
will be different, and also choose the seventh point to heasoordinate different from
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those of the six vertices. Then suppose that the polynomial generated by the three lines is
s(x,y) = ¥y} +11(x)y* + 12(x)y + 13(x) = 0, wherez;(x) is of degreej, j = 1,2, 3.
Then there are polynomials (x) of degreej, j = 1,2, 3, such that

s(x,y) = q(x, ) (y —u1(x)) + 2(x)y + u3(x)).
We need to show that, = 0 andu; = 0. At the seven points on the conic where both

q(x,y) ands(x, y) vanish it must also be true that (x)y + u3(x) = 0. Rewrite the
equatiory (x, y) = 0 at these seven points as

(u2p)? + riua(uzy) + u3ra =0

observe that at these seven powdy = —u3, so that the polynomia,1§ —riususz + u%rz,
which is of degree 6, has seven distinct zeros. It must therefore vanish identically, and that
means that

Qu; — r1u2)2 = u%(rl2 —4r;).
This means that either; is identically zero, which implies that; also vanishes identi-
cally, or elseu, dividesus. Prove that in the second case the conic must be a pair of lines,
and give a separate argument in that case.

Answer. Most of the work is already done. In the case wheltix) dividesus(x), say
uz(x) = uy(x)I(x), wherel(x) is a linear polynomial of the forny'x + g, we can divide
u? out of the equation, gettinkf — r;/ + r, = 0, and then

q(x.p) = (¥ + 1)) (y = 1(x) + 1 (x)) .
Thus the conic is a pair of lines, either parallel or intersecting, and the inscribed hexagon
has some parallel sides. It may even happen that two of the points of intersection coincide
in this case. But in any case, this situation lies within the realm of the straight line, that is,
the kind of geometry Euclid would have considered obvious.

12.6. Consider the two equations
xy = 0,
x(y—1) = 0.

Show that these two equations are independent, yet have infinitely many common solu-
tions. What kind of conic sections do these equations represent?

Answer.They are independent since the assumption that both are true leads to the conclu-
sionx = 0. But the converse of that statement is also true, and hence the equations have
infinitely many common solutions. Each represents a pair of intersecting lines, which is a
degenerate hyperbola.

12.7. Consider the general cubic equation

Ax® + Bx*y + Cxy* + Dy* + Ex> + Fxy + Gy* + Hx + Iy +J =0,
which has 10 coefficients. Show that if this equation is to hold for the 10 pgint),
(2,0), (3,0), 4,0), (0, 1), (0,2), (0,3), (1, 1), (2,2), (1,—1), all 10 coefficients,...,J
must be zero. In general, then, it is not possible to pass a curve of degree 3 through any 10
points in the plane. Use linear algebra to show that it is always possible to pass a curve of
degree 3 through any nine points, and that the curve is generally unique.

On the other hand, twdifferentcurves of degree 3 generally intersect in 9 points, a
result known as Bzout'’s theorem afteftienne Bzout (1730-1783), who stated it around

1 Note thatu; (x) in the equation given in the text has been corrected heyetau; (x).
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1758, although Maclaurin had stated it earlier. How does it happen that while nine points
generally determine mniquecubic curve, yetwo distinctcubic curves generally intersect

in nine points? Hint: Suppose that a set of eight poirfts;, y;) : j = 1,...,8}is

given for which the system of equations fdr ..., J has rank 8. Although the system of
linear equations for the coefficients is generally of rank 9 if another point is adjoined to this
set, there generally is a poifts, y9), the ninth point of intersection of two cubic curves
through the other eight points, for which the rank will remain at 8.]

Answer.The ten equations that result from putting in these ten valu¢s of) are
A+E+H+J = 0

8A+4E+2H+J =

21A+9E +3H +J =

644+ 16E +4H +J =

D+G+I1+J =

2D+4G+81+J =

3D+9G+2711+J =

A+B+D+D+E+F+G+H+I1+J =

84+8B+8C +8D+4E +4F+4G+2H +21 +J

A-B+C—-D+E-F+G+H-1+J

The first four of these are a system whose determinant (the Vandermonde determinant) is
not zero. Henced = E = H = J = 0. Given that/ = 0, the next three equations are
likewise a system whose (Vandermonde) determinant is not zero, abds@r = [ = 0.

Finally, the last three equations now say

SO O O O O o o O

(e}

B+C+F = 0
8B+8C +4F = 0
-B+C—-F = 0,

and it is easy to see that these equations indpkt C = F = 0.

On the other hand, for any nine points whatsoever, the corresponding set of homo-
geneous linear equations has more unknowns than equations and therefore has nonzero
solutions.

12.8. Find the Gaussian curvature of the hyperbolic parabatoid (x> — y?)/a at each
point usingx andy as parameters.

Answer. Let us take advantage of what we know about vectors to explain again in brief
terms how the curvature is computed. With the parameteriza{ion) — r(p,q), we
compute a normal vectar(p, ¢) = g—I’J X g—;. The surface then has an “element of area”

dA = |n|dpdq. The spherical map(p,q) = mn(p,q) is then a mapping into the

unit sphere and has its own normal veckt(p, ¢) = c¢(p,q)p(p,q), wherec(p,q) is a
scalar-valued function. The reashNrhas this form is that the normal line to a sphere at any
point passes through the center of the sphere. Hence the element of area for the spherical

map isdS = |c(p, q)| dp dq. The curvature is the ratio

c(p.q)
In(p.q)|
In particular, its sign depends entirely on the sigregf, g).
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Since we are taking = p, y = ¢,z = (p* — ¢?)/a, we find that the element of the
area of the surface is

1 A
dA = E\/az +4(p? +q?)dpdg = zdpdq,
whereA = /a? + 4(p? + ¢?).

The normal line to this surface has direction number2p/a,2q/a, 1), so that the
corresponding spherical map takgs ¢) to the point

—2p 2q a
p(p.q) = : : :
Va2 +4(p2 + ¢ Va2 +4(p2 +q?) Ja> +4(p +q?)
Although it is messy, one can compute that

4a
N(p.q) = —Ep(p,q).

Therefore the curvature is
442 —4q?
AT @ AT )
12.9. Find the Gaussian curvature of the pseudosphere obtained by revolving a tractrix
about thex-axis. Its parameterization can be takeh as

r(u,v) = (u - atanh(g), a cos(v)sech(g), asin(v)sech(g)) .

Observe that the elements of area on both the pseudosphere and its map to the sphere
vanish wheru = 0. (In terms of the first and second fundamental forfis= 0 = g

whenu = 0.) Hence curvature is undefined along the circle that is the image of that
portion of the parameter space. Explain why the pseudosphere can be thought of as “a
sphere of imaginary radius.” Notice that it has a cusp along the circle in which it intersects
the planex = 0.

Answer.We shall confine ourselves to the range- 0. The identites for trigonometric and
hyperbolic functions yield a normal vector

n(u,v) = —a tanh(g)sech(g)(sech(g), coqv) tanh(g), sin(v) tanh(g)) .

The “vector” factor in this expression happensma unit vector. Hence the element of
surface area on the pseudosphere is

u u
atanh(;)sech(;) ,
and the spherical mapping is

pu,v) = —(sech(g), coqv) tanh(g), sin(v) tanh(g)) .

We then find quite easily that

N(u,v) = —é tanh(g)sech(g)p(u, V).

Hence the curvature of the pseudospheref; It represents a “sphere of radius/'—1.”

2 This formula is emended from the less general and more messy one in the text.
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12.10. Prove that the Euler relatioi — £ + F = 2 for a closed polyhedron is equivalent

to the statement that the sum of the angles at all the vertic€is- 4)x, whereV is

the number of verticesHint: Assume that the polygon hd&faces, and that the numbers

of edges on the faces aeg,...,er. Then the number of edges in the polyhedron is

E = (e1 + --- + er)/2, since each edge belongs to two faces. Observe that a point
traversing a polygon changes direction by an amount equal to the exterior angle at each
vertex. Since the point returns to its starting point after making a complete circuit, the sum
of the exterior angles of a polygon i8x. Since the interior angles are the supplements of
the exterior angles, we see that their sura;is — 27 = (¢; — 2)7. The sum of all the
interior angles of the polyhedron is therefq®ef — 2 F) 7 .]

Answer.The hint essentially takes all the work out of this. The sum of all the angles at all
vertices willbe(2E —2 F)x. That willbe equaltq2V —4)z ifandonlyif V—E + F = 2.

12.11. Give an informal proof of the Euler relatioi — £ + F = 2 for closed polyhedra,
assuming that every vertex is joined by a sequence of edges to every other velitex. [
Imagine the polyedron inflated to become a sphere. That stretching will not clignge

or F. Start drawing the edges on a sphere with a single vertex, sd’thatl = F and

E = 0. Show that adding a new vertex by distinguishing an interior point of an edge as a
new vertex, or by distinguishing an interior point of a face as a new vertex and joining it to
an existing vertex, increases bdthand E by 1 and leaved” unchanged, while drawing a
diagonal of a face increasésand F by 1 and leaved” unchanged. Show that the entire
polyhedron can be constructed by a sequence of such operations.]

Answer.As long as every vertex in the polyhedron belongs to some edge and every edge
is connected to some other edge, one can draw all the edges this way. The operations
described leave no isolated vertices or edges, when there is more than one vertex, and of
course such isolated vertices or edges have to be ruled out in order to get the formula.



CHAPTER 13

Problems Leading to Algebra

13.1. What do the two problems of recovering two numbers from their sum and product
or from their difference and product have to do with quadratic equations as we understand
them today? Can we conclude that the Mesopotamians “did algebra”?

Answer.We have emphasized several times that the problem of finding two numbers given
their sum (or difference) and product is equivalent to the problem of solving a quadratic
equation. This fact is taught to high-school students as a way of solving quadratic equations
whose roots are integers (or rational numbers), the method students commonly refer to as
FOIL. That is, given a quadratic equatipn?+¢x -+ with integer coefficients, itis known
that a rational roof- must be such that: dividesr andn divides p. In that way, the list
of possible rational roots is reduced to a small set and one can then by brute force search
determine if there are any rational roots. The same principle applies to equations of any
degree, and what we know as Galois theory sets out from this point. That is, this algorithm
determines all rational roots that exist, and so one can restrict attention to equations that
have no rational roots.

The Mesopotamians knew the basic principle that we would phrase as the formula

(”+b) = (%2 2)* 4 ab and so were able to gé + b)/2 knowing (a — b)/2 andab.
Likewise they could geta — b)/2 knowing (¢ + b)/2 andab. Having (a + b)/2 and

(a — b)/2, they could then easily get bothandb. Although their method was natated

as a formal rule in any of the tablets, it wasedso consistently that there is no doubt it
waslearnedas a rule. On that basis, | have no hesitation in saying that they did algebra.

13.2. You can verify that the solution of the problem from tablet AO 8862 (15 and 12)
given by the author is not the only possible one. The numbers 14 and 13 will also satisfy
the conditions of the problem. Why didn’t the author give this solution?

Answer. Most likely the author wasn't trying to fin@ll solutions, so one was enough.
Possibly the use of the words flengthandwidth required length to be larger than width.

In that case, the method used, which involved adding 2 to the width, would have made the
new width larger than the length.

13.3. Of what practical value are the problems we have called “algebra”? Taking just the
guadratic equation as an example, the data can be construed as the area and the semiperime-
ter of a rectangle and the solutions as the sides of the rectangle. What need, if any, could
there be for solving such a problem? Where are you ever given the perimeter and area of a
rectangle and asked to find its shape?

Answer. While | wouldn’t be dogmatic about this, | think one can say that this problem

practically never arises in everyday life. If there had been a practical application, one would
expect to find it somewhere in the cuneiform tablets or the Chinese and Hindu classics.
But we don’t. Those documents are full of problems about ladders leaning against walls,
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FIGURE 3. Another scenario to “fit” a text on cuneiform tablet AO 6670.

broken bamboo, and so on. Applications of algebra alone are not common, and those that
do exist seem to have arisen after algebra was already in use. The algebra of economics
and finance, input-output analysis, and so forth, are modern topics.

13.4. Figure 3 gives a scenario that can be fit to the data in AO 6670. Given a square 1 unit
on a side, in the right angle opposite one of its corners construct a rectangle of prescribed
areaA that will be one-third of the completed gnomon. Explain how the figure fits the
statement of the problem. (As in Section 2, this scenanmtdeing proposed as a serious
explanation of the text.)

Answer. We are given a rectangle of unknown width+ x and heightl. We need to
construct a second rectangle on top of it having widthne less than this width and area
exactly half of it. That leads to the equationg = A, x+1 = 24, sothaty(24—1) = 4,

and soy = 574+ andx = .

13.5. Given a cubic equation
ax’ +bx*+cex=d,

where all coefficients are assumed positive,det= (2¢3)/(27d?) + (bc)/(3d) + a,
B = (c?)/(3d) + b, andt = (3A4dx)/(3Bd — c¢Bx), thatis,x = (3Bdt)/(3Ad + cAt).
Show that in terms of these new parameters, this equation is
A%d
B3
It could therefore be solved numerically by consulting a table of value$ af 2. [Again
a caution The fact that such a table exists and could be used this way does not imply that
it wasused this way, any more than the fact that a saucer can be used to hold paper clips
implies that it was designed for that purpose.]

£+ =

Answer.Fittingly, this problem is solved by tedious algebraic manipulation, unfortunately
made more tedious than necessary—in fact, impossible—by misprints in the definition of
A and the transformations betweerand: (corrected here).

Itis easier to take this one step at a time. Let us firskset3du/(3d + cu), whereu
is a new variable, namely = 3dx/(3d — cx). Substituting this value of in the equation,
clearing the denominators, and cancelihgives

27ad*u® 4+ 9bdu®(cu + 3d) + 3cu(cu + 3d)? = (cu + 3d)>.
Gathering like terms here yields
Fu®+Gu*=H,

where F = 27ad? + 9bcd + 2¢3, G = 27bd? + 9¢?d, andH = 27d3. The point is
that the parameters in the change of variable were chosen so as to make the linear term in
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u drop out. If we multiply this equation by?/G3, we get

F3 3 F2 2 2 3
Then, if we define a new variableast = Fu/G we get the equation
B3 +12=K,

whereK = HF?/G?. Observe that” = 27d*A andG = 27d>B, so thatHF?/G? =
A%d/B?,andt = Au/B = 3Adx/(3Bd — c¢Bx).

13.6. Considering the origin of algebra in the mathematical traditions we have studied,

do you find a point in their development at which mathematics ceases to be a disjointed
collection of techniques and becomes systematic? What criteria would you use for defining
such a point, and where would you place it in the mathematics of Egypt, Mesopotamia,
Greece, China, and India?

Answer. Like all periodizations in history, this one is an artificial boundary. Still, | have
always been intrigued by Gillispie’s notion of an “edge of objectivity” in the physical
sciences, an edge not yet reached in the social sciences and maybe unreachable there.
would like to define such an edge in mathematics, corresponding to the progression from
directly applicable mathematics to mathematics studied for its own sake. This point would
have to be different in different areas of mathematics. Considering the thematic division
of the present book, | would put two such divisions into the study of numbers and one
into the study of space. These would correspond to the steps from counting to calculation
and from calculation to number theory, and to the step from measurement to the abstract
study of proportion in geometry. There are of course other significant quantitative steps,
not all taken in serial order. All the vigorous areas of mathematics are continually getting
infusions of new ideas from both outside and inside the subject itself.
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CHAPTER 14

Equationsand Algorithms

14.1. Problem 6 of Book 1 of théArithmeticais to separate a given number into two
numbers such that a given fraction of the first exceeds a given fraction of the other by
a given number. In our terms this is a problem in two unknownsand y, and there

are four bits of data: the sum of the two numbers, which we denote tiye two proper
fractionsr ands, and the amourii by whichr» x exceedsy. Write down and solve the two
equations that this problem involves. Under what conditions will the solutions be positive
rational numbers (assuming thatb, », ands are positive rational numbers)? Compare
your statement of this condition with Diophantus’ condition, stated in very complicated
languageThe last given number must be less than that which arises when that fraction of
the first number is taken which exceeds the other fraction.

Answer.The equations are

X+y = a,
rx—sy = b.
The solution in our terms is
sa—+b
x = ,
r+s
_ra-— b
Y= r+s

These are certainly rational numbers, ang positive. Fory > 0 we needra > b. Here
a is the “first number,’d is the “last given number,” and the fractiorris

14.2. Carry out the solution of the bundles of wheat problem fromdhezhang Suanshu
Is it possible to solve this problem without the use of negative numbers?

Answer.We need to solve the equations

2x 4+ vy = 1
3y + z = 1
by + 4z = 1.

To avoid the use of negative numbers, one would have to use the slightly cumbersome
“solve and substitute” approach: The first equation gives 1 —2x. The second equation

then givesr = 1 — 3y = 6x — 2. The third equation then givels= x + 4z = 25x — 8.

Thusx = %, y = %, andz = 5%. Strictly speaking, none of these quantities is negative.
However, that fact is known only in retrospect. During the solution process it was necessary
to think of 2x being subtracted frorh. Since thevalueof x is not known at that point, it is
necessary to store tHeand the—2 in different “memory cells,” even if one merely stores
the2 with a note that it is to be subtracted. Logically such an operation amounts to storing

—2.
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14.3. Solve the equation for the diameter of a town considered by Li Rdintf Since
x = —3 is an obvious solution, this equation can actually be written’as 3x2 = 972.]

Answer.Of course we could use the cubic formula to solve this problem, but it makes more
sense to look for rational solutions first. We can guess a solution by wrifiag + 3) =
972 = 81-12 = 9%(9 + 3), so thatx = 9.

14.4. Solve the following legacy problem from al-Khwarizmi&slgebra A woman dies
and leaves her daughter, her mother, and her husband, and bequeaths to some person as
much as the share of her mother and to another as much as one-ninth of her entire capital.
Find the share of each personlt was understood from legal principles that the mother’s
share would be% and the husband's;.
Answer.Let the daughter’s share be According to the problem,
+ 2 + 3 + 2 ! 1
X+—=4+=4+—=+=-=1,
13 13 13 9

so that the daughter receives a share equé{gmf the estate.

14.5. Solve the problem of Abu Kamil in the text.

Answer.The conditions of the problem give
50 50 3
=—-3

x+3 x 4’
Clearing out the denominators results in
200x = 200(x + 3) — 15x(x + 3),

so that
¥ +3x—-40=0.
The only positive solution of this equationis= 5.

14.6. If you know some modern algebra, explain, by filling in the details of the following
argument, why it is not surprising that Omar Khayyam’s geometric solution of the cubic
cannot be turned into an algebraic procedure. Consider a cubic equation with rational
coefficients but no rational roots,such asx® + x2 + x = 2. By Omar Khayyam’s
method, this equation is replaced with the system + 1) = 2, z2 = (y + (2 —

¥), one obvious solution of which i = 2, z = 0. The desired value af is the y-
coordinate of the other solution. The procedure for eliminating one variable between the
two quadratic equations representing the hyperbola and circle is a rational one, involving
only multiplication and addition. Since the coefficients of the two equations are rational,
the result of the elimination will be a polynomial equation with rational coefficients. If the
root is irrational, that polynomial will be divisible by the minimal polynomial for the root
over the rational numbers. However, a cubic polynomial with rational coefficients but no
rational roots is itself the minimal polynomial for all of its roots. Hence the elimination
will only return the original problem.

L |f the coefficients are rational, their denominators can be cleared. Then all rational roots will be found among
the finite set of fractions whose numerators divide the constant term and whose denominators divide the leading
coefficient. There is an obvious algorithm for finding these roots.
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Answer.If £ is an irrational number satisfying an equation with rational coefficients, then
there is a unique polynomigl(x) = x"+a;x" ' +---+a,_1 x +a, with rational numbers
ai,...,ay such thatp(¢) = 0. This polynomial is called theninimal polynomialof &

over the rational numbers. The set of all polynomials) with rational coefficients such
thatg(x) = 0 can be shown (easily) to consist of precisely the polynomials of the form
p(x)r(x), wherer(x) also has rational coefficientsSince the original cubic polynomial
that had this root is such¢g(x), it must be a multiple ofp(x). But since this cubic has no
rational roots, neithep(x) norr(x) can be a nonzero linear polynomial. Henger) must

be cubic and (x) constant. That isp(x) is simplyg(x) divided by its leading coefficient.
(Note that if p(x) had a rational root, we could divide it byx — w and get a polynomial

of smaller degree that vanishestatontrary to hypothesis.)

14.7. Why did al-Khwarizmi include a complete discussion of the solution of quadratic
equations in his treatise when he had no applications for them at all?

Answer.Once again we ask why people do mathematics, and especially why they do alge-
bra. Mr. Hamming’s comments (see Chapter 2) begin to appear more and more pertinent.
There is not, in my opinion, a very large gap between the scholastic philosphers discussing
the hierarchy of angels and mathematicians a few centuries later classifying cubic equa-
tions. The usefulness of the latter did not appear until modern physics found a use for

solving equations. (Finding the eigenvalues of matrices is an eminently useful thing to do,

and that requires solving equations.)

14.8. Contrast the modern Western solution of the Islamic legacy problem discussed in
the text with the solution of al-Khwarizmi. Is one solution “fairer” than the other? Can
mathematics make any contribution to deciding what is fair?

Answer. This is a very subject. | give here a very personal statement on the meaning of
moral propositions, with which the reader is (naturally) free to disagree.

On the one hand one finds dogmatic people who think the universe has revealed what
is right and wrong. They usually go on to add that they know what the revelation was
and that people who disagree with them are making an objective mistake. Among these
people, surprisingly, one sometimes finds people who think that revelation amounts to
complete relativism: that all ethical systems are equally good and no one should prefer one
to another.

What isobjectivelyclear when persod says that procedur¥ is fair and procedure
Y is unfair is that perso wants to live in a world where&l’ occurs and” doesn’'t?> That
(A4’s preference) is an objective fact. & now says thal" is unfair andY is fair, we can
make the same inferences abdut Then 4 and B are inconflictsince they cannot both
get what they want, but there is tagical or factualdisagreement between them.

But one despairs of getting this understood. Inevitably the dogmatists will insist that
a person who doesn't believe the universe endorses his moral system doesn't “really” have
morals, that is, doesn’t really have any preferences for the kind of society he wishes to live
in and (they usually add) sees no difference between feeding the hungry and committing
murder. In fact, everybody except a few sociopaths do have such preferences. In every
society in history, people have been “socialized” to the extent that these preferences are

2 |n most cases more objective facts than that are availabieight, for instance, allege a direct divine revelation
of his principles. We could then infer thad believes his principles have a source beyond his own preference.
That is not the same as inferring that they realtyhave such a source, bdts belief in it is an objective fact
nevertheless.
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among the strongest motivations for action. Most people greatly prefer “death before dis-
honor.” The points wherel and B disagree about their preferences are the beginnings of
politics.

As for the question posed here, | don’t think mathematics has anything to contribute
to the formation of moral principles. It may be useful in the practical implementation of a
social or political program, of course. The specific application we are discussing seems to
me one of the less crucial points of cultural difference, like the appropriate level of taxation
that we discussed in connection with problems inthezhang Suan Shu

14.9. Consider the cubic equation of Sharaf al-Tusi’s third type, which we writexas—
ax?+ bx —c = 0. Using Horner's method, as described in Section 2, show that if the first
approximation isx = m, wherem satisfie3m? + 2am — b = 0, then the equation to be
satisfied at the second approximationts— (3m + a)y? — (m3 +am? —bm + ¢) = 0.

That is, carry out the algorithm for reduction and show that the process is

—c —m3 —am?* + bm —c
b _)—3m2—2am+b(=0)‘
—a —3m—a

—1 —1

Answer.All we have to do is fill in the intermediate steps of the computation. They are as
shown here:

—c —c +bm—am? —m? —c +bm—am? —m? —c 4+ bm—am?* —m3

b b—am—m? b —2am —3m? b —2am — 3m>
— — —

—a —a—m —a—2m —a—3m

-1 ~1 -1 -1

14.10. Consider Problem 27 of Book 1 &fe numeris datisTwo numbers are given whose
sum is 10. If one is divided by 4 and the other by 2, the product of the quotients is 2.
What are the two numbers3olve this problem in your own way, then solve it following
Jordanus’ recipe, which we paraphrase as follows. Let the two numberamey, and let

the quotients be and / whenx andy are divided by andd respectively; let the product

of the quotients be f = b. Letbc = h, which is the same agce or fx. Then multiply

d by h to producej, which is the same asdf or xy. Since we now know botk + y and

xy, we can findc andy.

Answer.The statement about the quotients is a roundabout way of saying that the product
of the two numbers is 16. We are thus looking for two numbers whose sum is 10 and whose
productis 16. The numbers are therefore 2 and 8.

Jordanus’ solution gives a general rule for solving problems of this sort, analogous to
a formula in which numerical values can be substituted. He tends to invent a new letter to
mark each stage of the solution process, carefully stating how it is related to all the letters
encountered at previous stages, resulting in a total of 9 letters to describe a process with
only two unknowns and four bits of data.

14.11. Solve the equation?® + 60x = 992 using the recipe given by Tartaglia.

Answer. We want two numbers whose differencedi$2 and whose product ié%f =

8000. Following the ancient method from Mesopotamia, we know that the average of the
two numbers is the square root of the sum of their product and the square of half their
difference, that is, the sum ig’8000 + (496)2 = 504. the two numbers are therefore
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504 4 496 = 1000 and504 — 496 = 8. Hence the solution is/1000 — /8 = 10—2 = 8.
It is easily verified that this solution is correct.

14.12. How can youprovethat i/\/108 + 10— i/«/108 —10=27?

Answer. A rigorous proof requires showing that the strictly increasing functfai) =

x? + 6x takes the same value at both numbers. In other words, one can only get a useful
form (namely 2) for the solution of the equation by proving that useful form satisfies the
equation. (If you ask a hand calculator to do these computations, chances are it will tell
you that the difference of the two cube roots has the value 2.000000001.)

14.13. If you know the polar form of complex numbets= r cosé + i r sinf, show that

the problem of taking the cube root of a complex number is equivalent to solving two of
the classical problems of antiquity simultaneously, just as Viete claimed: the problem of
two mean proportionals and the problem of trisecting the angle.

Answer.The complex number would be given by specifying the nonnegative numgsr
absolute value) and (its argument). It can then be verified from the formulas 3ws=
4 cos’ o — 3 cosa and sinda = sina(4 cos o — 1) (which are immediate consequences of

0 0\3
the addition formulas for sine and cosine) tiiéf[( cosg + i sin 5) ] =z

14.14. Consider Viete’s problem of finding three numbers in direct proportion given the
middle number and the difference between the largest and smallest. Show that this problem
amounts to findinge andy given,/xy andy — x. How do you solve such a problem?

Answer. You are given thay — x = d and thatx : a = a : y, where you know/ and

a = /xy. Ifyou squarez, you get a known number, and now you know the product and
difference ofy andx. It has been known for thousands of years that findiramd y from

this information is a problem having unique positive solutions.

14.15. Show that the equation® = px + ¢, wherep > 0 andg > 0, has the solution
x = /4p/3cost, wheref = Larccog(gv/27)/(2y/p?)). In order for this inverse
cosine to exist it is necessary and sufficient gtat4 — p3/27 < 0, which is precisely the
condition under which the Cardano formula requires the cube root of a complex number.
[Hint: Use the formulal cos' § — 3 cosf) = cog36).]

Observe that

1
0 = ! / ! dt,
3Ja M1=1¢2
wherea = (qﬁ)/(z/ﬁ). Thus, the solution of the cubic equation has a connection
with the integral of an algebraic functioly y, wherey satisfies the quadratic equation
y% = 1 — x2. This kind of connection turned out to be the key to the solution of higher-
degree algebraic equations. As remarked in the text, Viéete’s solution of the cubic uses a
transcendental method, even though an algebraic method exists.

Answer.Following the hint, all we have to do is substitute:

4p 24/ p3
= px =L 2P (4c08 6 — 3cosh) = cog30).
px =3y 3( ) N 936)

coq30) = @

N

But

and sox3 — px =gq.
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CHAPTER 15

Modern Algebra

15.1. Prove that if every polynomial with real coefficients has a zero in the complex num-
bers, then the same is true of every polynomial with complex coefficients. To get started,
let p(z) = z" +a;z" ! +---+ ay—1z + a, be a polynomial with complex coefficients
ai....,a,. Consider the polynomial(z) of degree2n given byq(z) = p(z) p(z), where

the overline indicates complex conjugation. This polynomial has real coefficients, and so
by hypothesis has a complex zexp

Answer.Sinceg(z) has a zeray, it follows that p(zo) p(Zo) = 0. Hence eithep(zo) = 0
or p(Zo) = 0. In either casep(z) has a zero.

15.2. Formulate Cauchy’s 1812 result as the following theorem and proveeitp be a
prime number3 < p < n. If a subgroup of the symmetric group erletters contains all
permutations of ordep, itis either the entire symmetric group or the alternating group.

Answer.Before doing this, | would like to engage in a rant against the algebraists who write
about permutations. It is not—to use a slightly outmoded colloquialism—*rocket science”
to distinguish between a location and the occupant of that location. Therefore one has to
wonder why algebraists have spent so many centuries confusing the two (and their readers)
with their notation. To take just one example, from the classic textbook of Birkhoff and
Mac Lane! “The cyclic permutatiory = (ay,as, ..., a,) carriesa; into a; 1.

Indeed. What, pray tell, does “carried into” mean? Does it mean that the symbol
is to occupy the positioformerly occupied by the symbal;-;? Or does it mean that the
symbolg; is to be replacedy the symbok;;? Both of these assumptions are reasonable
interpretations, but the two interpretations are exactly inverse to each other. After studying
the examples of those writers thoughtful enough to provide any (that is by no means all
of them) | usually conclude that they mean the former, but | wish they would say so more
clearly.

It gets worse. If the notatioubc) is slightly ambiguous, things become doubly am-
biguous when numbers are used instead of letters. Now one has to worry not only about
whether symbols are replacing symbols or locations locations, but also whether the num-
bers refer to symbols or locations. Consider, for example, an arrangement of the numbers
1 through 5 such a@, 3, 5, 1, 4). Now ask yourself how the symb¢123) means to rear-
range that.

(a) Is the symbol 1 to move to the position now occupied by 2, the symbol 2 to the position
now occupied by 3, and the symbol 3 to the position now occupied by 1? If so, the result
is(1,2,5,3,4).

(b) Is the symbol 1 to be erased and replaced with 2, the symbol 2 erased and replaced
with 3, and the symbol 3 erased and replaced by 1? If so, the regaltliss, 2, 4).

L A Survey of Modern Algebraevised edition, Macmillan, New York, 1953, p. 136.
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(c) Is the symbol in position 1 to be moved to position 2, the symbol in position 2 to
position 3, and the symbol in position 3 to position 1? If so, the resyf,i$, 2, 3, 4).

(d) Is the symbol in position 1 to be replaced by the symbol in position 2, the symbol
in position 2 by the symbol in position 3, and the symbol in position 3 by the symbol in
position 1? If so, the resulti@, 5, 1, 3, 4).

It gets yet worse. Algebraists tend to hate parentheses. That wouldn’t be so bad if,
like analysts, they wrote functional symbols to the left of their arguments; but many of
them seem perversely to prefer the opposite. Where the analyst w(it¢sthe algebraist
prefersxg. Very well, what doegab)(ac) mean? In which order do we perform these
transpositions? In the textbooks | have read this notation means to stawithe, . . .)
and do first(ab), getting(b, a, c, .. .), then(ac), getting(b, ¢, a, .. .). Notice that if these
transpositions were performed in the opposite order, the result would be the arrangement
(c,a,b,...).

End of rant. Let us return to the problem at hand, showing that a group of permu-
tations that contains all permutations of orgerwhere p is an odd prime, is either the
full symmetric group or the alternating group of even permutations. Just to be very clear:
Wherever the letters happen to be in an arrangmaeriten the cyclgabc) is applied the
resultis that: goes to the position wheteis, b goes to the position wheteis, andc goes
to the position where is. Thus if we have, saft, a, e, f, b), then the result of applying
(abc) is the arrangemertb, c, e, f, a).

The trick is to use Cauchy’s result that such a subgroup contains all 3-cycles. The proof
of that fact for the case gf = 5 is quite simple: Just note thétbc) = (adcbe)(aecdb).

If there are only three letters to permute then the soubgroup certainly contains the alter-
nating group, which consists precisely of the 3-cycles and the identity. Let us now assume
that we are permuting more than 3 letters, so that the set of elements being permuted is
a,b,c,d,.... Our subgroup contains all products of two interlocking transpositions, such
as(ab)(ac) = (ach), since these are 3-cycles. And since noninterlocking transpositions
can also be written in this way, for exampleb)(cd) = (cad)(abc), it follows that every
product of two transpositions is in the subgroup. Since every permutation is a product of
transpositions, every even permutation is in the subgroup

Now assume the subgroup also contains one transpositionuéay Then it also
contains(ac) = (ab)(abc), (ad) = (ac)(acd), and(cd) = (ca)(cad). It thus contains
all transpositions. Since every permutation is a product of transpositions, the subgroup
contains all permutations whatsoever.

15.3. Cauchy’s theorem that every cycle of order 3 can be written as the composition of
two cycles of ordem: if m > 3 looks as if it ought to apply to cycles of order 2 also. What
goes wrong when you try to prove this “theorem”?

Answer.lf you look at the case of permutations of three objects, you can see that the cycles
of order 3 cannot produce any cycle of order 2. The composition of either permutation of
order 3 with itself is the other permutation of order 3. Their composition with each other
is the identity permutation.

15.4. Let Sj(a, b, c, d) be thejth elementary symmetric polynomial, that is, the sum of
all products ofj distinct factors chosen frorfu, b, c,d}. Prove thatS;(a,b,c,d) =
Sj(b,c,d) +aSj—1(b,c,d). Derive as a corollary that given a polynomial equatidn-
Si(a,b,c,d)x3>+ Sy(a,b,c,d)x®>+ Ss(a,b,c,d)x+ Sy(a,b,c,d) =0 = x*—px3+
p2x? — p3x + pg4 havinga, b, c, d as roots, each elementary symmetric functioh,in, d
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can be expressed in termsaoénd the coefficientp;: Si(b,c,d) = p1—a, S2(b,c,d) =
p2—aSy(b,c.d) = py—apy +a?, Ss(b,c.d) = ps —apy + a*py — a>.

Answer.Simply break the sum that iS; (a, b, ¢, d) into two smaller sums, one consisting
of the terms that do not containas a factor (which must bg; (b, ¢, d)—otherwise, the
sumsS;(a., b, c, d) wouldn’t contain all possible terms) and those that do contaas a
factor (which must beS;_; (b, ¢, d) for the same reason). If we defidg (b, c,d) = 1,
this formula holds withj = 1, and if we defineSy(a,b,c,d) = 1, S_1(b,c,d) = 0,

it also holds forj = 0. The equations given for expressidg(b, ¢, d) as a polynomial
in a with coefficients from among, ..., p4 are immediate, trivial computations. For
example,p, = Sy(a.b,c,d) = Sy(b,c,d)+aSi(b,c,d) = Sy(b,c,d) +ap, —a?*, and
thereforeS, (b, c,d) = p, —ap, + a?, and so on.

15.5. Prove that ifz is a prime in the ring obtained by adjoining tixh roots of unity to
the integers (wherg is a prime), the equation

2P = xP 4 yP
can holdonly ifx =0 ory = 0.

Answer.This theorem fails fop = 2, since5? = 32 + 42. However, it can be restored by
adjoining the fourth roots of unity, and in fact becomes trivial in that case. | shall discuss
the “sufficiently typical” case op = 5, leaving the easier cage = 3 for the reader to
practice on. The general case is a little messier than | care to undertake. | am of course
assuming that, y, andz are integers.

Let us begin with some simple algebra. We note that the equatienl = 0 factors
as(z —1)(z* + 23 + 22+ z + 1) = 0. Any rootw satisfyingow* + 0> + 0> + 0+ 1 =0,
is a primitive 5th root of unity. You can easily verify that the other rootscbf+ x3 +
x2 4+ x + 1 = 0 are thenw?, »3, andw*. (Sincew’ = 1, you have, for example,
(@) + @) + (@) + 0’ +1 =0’ +0* +o+o0>+1 = 0. Hencew’ is a primitive
5th root of unity forj = 1,2, 3,4.) Since the polynomiaf (x) = x* + x3 + x2 4+ x + 1
is irreducible over the rational numbers, it is the minimal polynomiabofThat is, ifg (x)
is a polynomial with rational coefficients agdw) = 0, theng(x) = f(x)r(x) for some
polynomialr (x). In particular, ifg(x) has degree less than 5, then in fa¢t) = rf(x)
for some constant, and all the coefficients @f(x) are equal. Thus we have the proposition
thataw* + bw? + cw? + dw + e = 0 with rational numbers, b, ¢, d, e if and only if the
four equations: = b = ¢ = d = e hold.

That being established, we note that sipge) is a monic polynomial (has leading
coefficient 1) andp(w’) = 0 for j = 1,2, 3,4, it follows thatx* + x3 + x2 + x + 1 =
P(x) = (x —w)(x —0?)(x —03)(x —w*). Replacingx by —x and multiplying the right-
hand side byt = (—1)*, we getx* —x3+x2—x+1 = (x +0)(x + 0?)(x + 0 ) (x + 0*).
Multiplying both sides of this equation by + 1, we get finally

XHl=x+ D +o)(x +0)(x + o) (x + o).
As a corollary, takinge = “* and multiplying byr?, we find that
m’> +n’ = (m + n)(m + on)(m + o*n)(m + 0>n)(m + w*n).

What we have done so far extends easily to any odd prime numbé&tow we use the
special casg = 5 to save some messiness.

We wish to find all units in the rin@[w] of the forma+bw, wherez andb are integers.
Obviously+1 and+w are of this form. Since we have not saithich of the five roots we
have in mind, we have now identified ten units in the ring. We shall prove that there are
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precisely two others of the form + bw, namely£(1 + w). Again, since we have not
specifiedw, it follows that there are precisely two others of the farm b/, j =,2, 3, 4,
namely+(1+w’). Suppose then that+bw is a unit. Letw = p+qw +rw?+sw’ +tw*
be such thatv(a + bw) — 1 = 0. According to our criterion for this equality, we get the
following four equations forp, ¢, r, s, andz.

alp—t) + bit—-s) = 1,

bp + (a-byg - ar = 0,
bq + (@-byr - as = 0,

br + (a—-b)s - at = 0.

The first of these equations tells us thatind» must be relatively prime and cannot
both be zero. If one of them is zero, the other mustie and we have already considered
this case. Therefore we assume that neithaor b is zero. If we solve the remaining three
equations to gep in terms ofa, b, s, ands and substitute this value into the first equation,
the result is

b? = (t — s)(a* —a’b + a*b* —ab® + b*).

Now letm be any prime divisor 0b. Then, sincer andb are relatively primes: does not
divide the second factor on the right, and hencemust divider — s. Since this is true for
all prime divisors ofp, we haver — s = h3w, and then

w(a® + bd)

1= 4 3b 2b2_ b3 b4 —
w(@" —a’b+a ab® +b%) P

The first equation here shows that= +1 and the second shows that> 0, sincea> + b3
anda + b obviously are of the same sign. We thus have

1—a*b? =a* —a*b—ab® + b* = (@® —b*)(a—b) = (a —b)*(@* + ab + b*) > 0.

It follows thata?h? < 1 and so the only possible units that we have not considered have
a = £1,b = £1. But this last equation can be satisfied in this case only= b, and so
we have really only to consider the case= b = 1. Our original equations for this case
imply p =r =tandg = s = t—1. Thatis,(14+w)(t+(t—)w+tw*+(t—1)w? +to*) =
(1 + 0)(—w — »?), sincer(1 + w + w? + ©* + w*) = 0. Multiplying this out now yields
—w —w? — »® —v* = 1. We have now found the last two units of the form- hw.

With these preliminaries out of the way, the proof can now proceed very efficiently.
Assume thak, y, andz are positive integers such thats prime in this ring and

P =x"+1 =(x+ 1) +0y)(x +0?y)(x + 0’y +0ty).

Now z divides:z3, and so it divides the product on the right. Being prime (as opposed to
being merely irreducible); must divide one of the factors on the right, say o* y = uz.

We can then cancel one factorofrom both sides and start over wittt on the left-hand
side. Eventually we will arrive at an equation

z=x+o" y)w.

Sincez is irreducible, eithex + " y is a unit in this ring orw is a unit. The first assump-
tion, as we saw, implies that either= 0 or y = 0 or x = y. Since there are no nontrivial
solutions wheny = y, we need only show that the second assumption also leads to the
conclusion thatkk = 0 or y = 0. This time we add the assumption that# y, so that

X + w’ yisnotaunitunless = 0ory = 0.
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If wis a unit, then we have + »” y = vz, wherev is a unit. We can now go back to
the original equation and cancel one factoepfetting the equation

74 = vl_[(x+a)jy).
J#r
We now continue the reduction once again, getting eventualy u(x + »*y), where

s # r. The same argument now implies theis a unit. We can now start over once again
with an equation

2 =wu l_[(x+a)jy).
j;érss
Continuing as long as necessary, we eventually findrthat x + y, wherer is a unitin
thering. Ift =ty + tiw + hw? + w3 + t,w*, this equation says that

0=1ztg— (x + ) + z(tho + Lo* + Lo® + o).
Our criterion for this equation to hold then implies that= ¢, = #; = t4, and therefore
O0=z(to—t1))—(x+).

But sincety — #; must be a unit and, y, andz are all positive, it follows that = x + y.
We then have the equation

x+1)°=x>+)°,

which obviously cannot hold unless either= 0 or y = 0. This same proof works for any
prime p, provided one can establish what the units of the farm bw are.

15.6. Consider the complex numbers of the forme= m +nw, wherew = —1/2++/-3/2

is a cube root of unity. Show tha¥(z) = m? — mn + n? has the property (zw) =
N(z)N(w) and thatV (z + w) < Z(N(z) + N(w)). Then show that a Euclidean algorithm
exists for such complex numbers: Giverandw # 0, there existy andr. Such that

z =qw + r whereN(r) < N(w). Thus, a Euclidean algorithm exists for these numbers,
and so they must exhibit unique factorizatiomirit: N(z) = |z|>. Show that for every
complex numbet: there exists a numbaerof this form such thatg — u| < 1. Apply this
fact withu = z/w anddefiner to bez — qw.]

Answer.The identityN (zw) = N(z) N(w) is trivial algebra, since it amounts to the well-
known fact|zw| = |z| |w| for complex numbers. As foN (z + w) < Z(N(z) + N(w)),
we observe that/N(z + w) < /N(z) + /N (w), and squaring then gives the required
result, sinc&+v/ab < a + b.

Now letu = x + iy. Letn be the nearest integer &3/+/3, so thatjn — %| <1

and thereforq%3 -y < 4 Then letm be the nearest integer $ + x, so that

Im—%—x| < 1. We then have

Cul e (e (MB e 3
|m + nw u|_(m 7 x) +(2 y) _4+16<1.
Now suppose andw are any two numbers of this form with # 0. Takingu = z/w
and definingr = z — qw, we get|r|?> = |w|*|lu — q|*> < |w|?, thatis,N(r) < N(w).
That this property implies a Euclidean algorithm and unique factorization was proved in
Problem 8.10.
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15.7. Show that in quaternions the equati&i +r2 = 0, wherer is a positive real number
(scalar), is satisfied precisely by the quaternidns- x + £ such thatr = 0, |§| = r, that

is, by all the points on the sphere of radiudn other words, in quaternions the square roots

of negative numbers are simply the nonzero vectors in three-dimensional space. Thus, even
though quaternions act “almost” like the complex numbers, the absence of a commutative
law makes a great difference when polynomial algebra is considered. A linear equation
can have only one solution, but a quadratic equation can have an uncountable infinity of
solutions.

Answer.This is a routine computation:
X242 =(x?—£-E4+1rY) + (2x8).

If the vector part of this quaternion is to be zero, either 0 or & = 0. Buté = 0 implies
x2 4 r? = 0, which is impossible i # 0. Hence we must have = 0 and|£| = r.



CHAPTER 16

The Calculus

16.1. Show that the Madhava—Jyeshtadeva formula given at the beginning of the chapter
is equivalent to

tantkt+l g
0 = Dk
Z( ) 2k 41

or, lettingx = tané,
2k+1

arctany = Z(— )

Answer.This is routine, given our notation. From the formula given in the textbook, simply

divide by r, then use the fact that tén= ;”Sf)

16.2. Consider an ellipse with semiaxesandb and a circle of radiu$, both circle and
ellipse lying between a pair of parallel lines a distaéeapart. For every line between

the two lines and parallel to them, show that the portion inside the ellipse wil)be¢imes

the portion inside the circle. Use this fact and Cavalieri’s principle to compute the area of
the ellipse. This result was given by Kepler.

Answer. Without any loss of generality, we can take the equation of the circle to’be

y? = b? and the equation of the ellipse to béx? + a?>y? = a*h2. Now consider any
vertical liney = ¢, where—b < ¢t < b. This line intersects the circle in the two points
x = £+/b% —¢? and the ellipse in the two points = +(a/b)~/'b? — t2. Hence the ratio
of the two lines isa/b, as asserted. It follows that the area of the ellipse/is times the
area of the circle, that isb2(a/b) = mab.

16.3. Show that the point at which the tangent to the cupve= f(x) intersects they
axisisy = f(x) — xf’(x), and verify that the area under this curve—maore precisely, the
integral of f(x) — xf’(x) from x = 0 to x = a—is twice the area between the curve
y = f(x) and the lineuy = f(a)x between the point®, 0) and(a, f(a)). This result
was used by Leibniz to illustrate the power of his infinitesimal methods.

Answer. The equation of the tangent i@, ¢) coordinates is — f(x) = f/(x)(s — x).
When we sef = 0, we find that = f(x) — xf’(x). Then

/ S(x) = xf'(x)dx = / f(x)dx —/ xf'(x)dx .
0 0 0
Integrating by parts in this last expression we find

/ xS dx = /0 - / " fydx = af @) - / " fydx.

113
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Putting these results together, we find
a a 1
[ s =srmar=2( [* rws - Sar).

Since%af(a) is the area under the line = f(a)x/a fromx = 0tox = a (thatis, itis
the area of a triangle of bageand heightf'(«)), we are done.

16.4. Recall that Eudoxus solved the problem of incommensurables by changing the def-
inition of proportion, or rathermakinga definition to cover cases where no definition
existed before. Newton's “theorem” asserting that quantities that approach each other con-
tinually (we would say monotonically) and become arbitrarily close to each other in a finite
time must become equal in an infinite time assumes that one has a definition of equality
at infinity. What is the definition of equality at infinity? Since we canaotually reach
infinity, the definition will have to be stated as a potential infinity, that is, a statement about
all possible finite times. Formulate the definition and compare Newton’s solution of this
difficulty with Eudoxus’ solution of the problem of incommensurables.

Answer.f we formulate “equality after an infinite time” so as to avoid the actually infinite,
we find ourselves saying that for any prescribed difference there is a finite time after which
the quantities will differ by less than that amount. In that respect, Newton'’s “proposition”
becomes a mere tautology. It says that quantities that become arbitrarily close to each
other in a finite time must come closer than any prescribed difference in some finite time.
Thus Newton’s solution of the difficulty of “indivisibles” is, like Eudoxus’ solution of the
difficulty of incommensurables, an attempt to make a definition that fits intuition. Newton'’s
attempt to turn his definition into a theorem resembles in many respects Euclid’'s attempt
to define the ternpoint. Hidden in his use of the phrase “after an infinite time” was the
assumption that everyone had this intuitive notion and that one could intuit what happens
at infinity from what happens at all finite times.

As Zeno showed, such is not the case if the infinity is “too big,” as in the case of a
line made up of points. You can’t get anywhere near the properties of a line by considering
large numbers of points. Eudoxus similarly gave an intuitive formulation of what it meant
to compare two incommensurable magnitudes, essentially defining the difficulty away.

16.5. Draw a square and one of its diagonals. Then draw a very fine “staircase” by con-
necting short horizontal and vertical line segments in alternation, each segment crossing
the diagonal. The total length of the horizontal segments is the same as the side of the
square, and the same is true of the vertical segments. Now in a certain intuitive sense these
segments approximate the diagonal of the square, seeming to imply that the diagonal of a
square equals twice its side, which is absurd. Does this argument show that the method of
indivisibles is wrong?

Answer. What this example shows is that one cannot rely on intuition on the infinitesi-
mal level, at least not until it has been chastened and corrected—"debugged,” if you will.
Logical clarity and rigor is the result of a debugging process. It leads to ever-increasing
confidence that what we are doing is correct; but categorical, unqualified confidence is
rash, even today. In the present case, one needs to show that the approximation is good in
bothrelativeand absolute terms. That is the secret of the infinitesimal methods of calculus:
the approximation is good not only in the sense of being absolutely small, but in the sense
of being smalleven in comparison with the small objects doing the approximating

16.6. In the passage quoted from tAmalyst Berkeley asserts that the experience of the
senses provides the only foundation for our imagination. From that premise he concludes
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that we can have no understanding of infinitesimals. Analyze whether the premise is true,
and if so, whether it implies the conclusion. Assuming that our thinking processes have
been shaped by the evolution of the brain, for example, is it possible that some of our
spatial and counting intuition is “hard-wired” and not the result of any previous sense im-
pressions? The philosopher Immanuel Kant (1724-1804) thought so. Do we have the
power to make correct judgments about spaces and times on scales that we have not expe-
rienced? What would Berkeley have said if he had heard Riemann’s argument that space
may be finite, yet unbounded? How would he have explained the modern computer chip,
on which unimaginable amounts of data can be recorded in space far too small for the
senses to perceive? Go a step further and consider how quantum mechanics is understood
and interpreted.

Answer.Berkeley makes a very good point here. No doubt our picture of the nucleus of an
atom, for example, is not strictly speaking true. It is based on the use of delicate measuring
instruments whose results we interpret in the context of physical theories. There is no sense
in which a photograph of an atom made with a super-sensitive microscope is “what you
would see if you were that small.” In the first place if your size were comparable to that
of an atom, you wouldn’t have eyes. That point may seem naive, but it does show that the
way we tend to think (at least the way | personally tend to think) about physical theories is
not to be taken as a literal description of reality.

Kant really did think that the propositions of arithmetic and geometry were what he
called “synthetica priori”! judgments. That is, they were not mere logical tautologies—
they were “synthetic’—obtained by joining two independent concepts to get a new one.
His examples were the arithmetic relatidn- 5 = 12 and the geometric proposition that
“a straight line is the shortest distance between two points.” Here the union of a group
of 7 and a group of 5 is one concept and a group of 12 is another concept, logically (so
Kant believed) independent of the first. Thus the propositibA-*5 = 12" is synthetic
rather than analytic. Yet, he said, it is a necessary result of the human thought process
and is not derived from experience. Therefore it represents some knowledge about the
world—universally true and necessarily true—that is innate in the human mind. Similarly
in geometry, the notion of shortest distance and the notion of a straight line, Kant believed,
were independent of each other, so that the proposition “a straight line is the shortest dis-
tance between two points” is synthetic knowledge. Again, our intuition rebels and will not
accept the assertion that a straight linaasthe shortest distance between two points, and
therefore this knowledge is universal and necessary, hamqoeri. Kant remarked that
analytic propositions, such as syllogisms, do not increase human knowledge beyond their
component parts. Thus, if | say “all children are young,” | am not saying anything that was
not already known to a person who knows what a child is and what it means to be young,
since a child, by definition, is a young person. But synthetic propositions, he believed,
really do add to human knowledge.

Now a modern mathematician and most modern mathematical philosophers would
have little patience with all this, pointing out that the concepts involved in Kant’'s examples
of synthetica priori propositions have not been defined. When they are properly defined,
as in modern geometry and set theory, they are seen to be analytic propositions. When we
get a proper definition of distance, in terms of an integral, we can prove that the geodesics
in Euclidean space are straight lines, and in set theory, when we define number properly,
we can prove thal + 5 = 12. In that way, these propositions are seen to be analytic,

1 The Latin phrasa priori meandrom earlier, that is,anterior to any human experience and so not derived from
observation or experience. Its oppositaiposteriori(from later), which is synonymous witempirical



116 16. THE CALCULUS

not synthetic. In Kant's defense, | would say that the definitions themselves conceal an
unconscious assumption that these propositions are true, so that the propositions are in a
sense circular reasoning.

For example, we define the length of a curve in Euclidean space apg®s bound
of the lengths of all brokemstraight linesinscribed in it. That definition thus makes it
trivial that the shortest distance between two points will be a straight line. But would we
have made such a definition if we did not already have in mind that a straightlthe
shortest distance? Similarly, you cannot tell anyone which symbols in set theory define
the number 7 in a way that could be understood by someone who did not already know
what the number 7 is. To be specific, we define the number 0 to be the empty et
number 1 to be the sz}, defined so that € 1 if and only if x is a set ande = 0.

We then define the number 2 to be, {@}}, that is,x € 2 if and only if x is a set and

x = 0 orx = 1. Butunless a person already knows how to count to seven, it would be

useless to try to explain thétis a set such that € 7 if and only if x is a set and = 0

orx =1lorx =2o0orx =30orx =4o0orx = 5o0orx = 6. How would you know

when you reached 7 if you didn’t already know how to count? Actually the definition of

7 given here is a theorem. We should defihas the successor 6f Thatis,x € 7 if

and only ifx is a set andc = 6 or x € 6. That definition would have meaning only6f

were already defined as the successa¥. o, doing our best for the set theorist/logicists

(discussed in Chapter 19), you could tell someone what the nufnisein this way, and

they could trace it back to its source in the empty set by following along the route already

laid out by the person who gave the definition. But the hypothetical person trying to find

out what7 is in this way doesn’t know that the process ever terminates, or, even if it does,

what information will be needed to get down to “bedrock.” That information has to be

supplied by the person communicating the definition. And it is obvious (is it not?) that this

definition is a psychological monstrosity. Nobody really thinks about the number 7 this

way. The chasm between the formal definition of 7 and the familiar number 7 is enormous.
| find attempts to explain what an ordered pair is similarly circular and fallacious.

Some mathematics textbooks define the ordered (aair) to be the sefa, {a, b}}, in

which the element of the set that has no elements of its own is the first element and, by

default, the other element is the second. But how would you know(that) is not nec-

essarily the same thing &5, «)? Before you say thab, a) = {b, {b, a}}, pause to reflect

that you couldn’t make this translation from the one symbol to the other unlesalyeady

knew that the order of the symbols on the page was part of the definitian bj.

| think Kant would have been unfazed by such attempts to make mathematics an an-
alytic subject. He knew that geometry and arithmetic could be used to produce deductive
systems thamnodelthe physical world. | think he would have regarded the modern mathe-
matical approach as simply another application of such deductive models to the case of his
synthetica priori judgments—models of them, but not to be mistaken for them, any more
than we think that a geometric line reallya light ray.

Against Kant's view is the hard fact that human intuition is Euclidean, but geome-
try need not be. Kant would have taken Euclid’s parallel postulate as a synthetic a priori
proposition. Not that that would have ruled out the logical consistency of non-Euclidean
geometry. Indeed, if non-Euclidean geometry wiaigically inconsistent, then Euclidean
geometry would consist of analytic propositions. But non-Euclidean geometry is (in my
view) fatal to Kant's philosophy even so, since one really can develop a non-Euclidean

2 | would very much like to believe that Kant was right. His philosophy seems quite profound to me. But |
reluctantly conclude that he was mistaken.
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intuition and think in terms of hyperbolic space. This shows, at least to me, that we do not
know the propositions of geometry innately. In addition, Kant held that ethical propositions
are synthetic a priori judgments. He thought that the knowledge of right and wrong was in-
nate in human beings and that it was factual knowledge. It seems to me far more likely that
what is innate in human beings, as opposed to (say) orangutans, is a very strong tendency
to seek social approval, so strong that, when social disapproval is supplemented by legal
sanctions against violators, the overwhelming majority of people conform and only a few
criminals defy the social code. That innate tendency will cause people to acquire the kind
of subjective feeling of certainty about moral propositions that they acquire about arith-
metic and geometry from everyday experience of counting and moving about. What the
underlying brain mechanism is for arithmetic and geometry is a matter for psychologists
and physiologists to ponder.

Modern technology and physics bring us increasingly face to face with the limitations
of our intuition. The computer on which | am writing these words has a hard drive that
stores 65 billion bytes of information. When | calculate the area of that hard drive, | find |
really cannot imagine finding the location of the cell containing the code for the period at
the end of this sentence. That code “looks like” 00101110 (binary code for the number 46)
and | picture it as a row of eight tiny magnets, with north poles pointing upward in the first,
second, fourth, and last places and downward in the other four. But thetingmbes not
do justice to the smallness of those magnets. To get 65 billion sets of eight magnets on a
disk, one must make them literally “unimaginably” small. We can’t imagine what they are
“really” like, but we can imagine what they “would” look like (there we go again, into the
subjunctive mood!) if suitably magnified. We can reason about them, and obviously our
reasoning is good, since this computer works very well.

When we go to the still smaller world of quantum mechanics, we find even stranger
things, things stranger than we eveanimagine, as a physicist has said. All we know
about quantum systems is their mathematics, yet that mathematics enables scientists to
make very accurate predictions.
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CHAPTER 17

Real and Complex Analysis

17.1. The familiar formula co® = 4 cos (9/3) — 3 cog6/3), can be rewritten as
p(cos6/3,cos8) =0,
wherep(x, y) = 4x3 — 3x — y. Observe that c@8 + 2mm) = cosf for all integersm,

so that 04
+ 2mn
p(cos(f), cos@) =0,

for allintegersn. That makes it very easy to construct the roots of the equatiencost) =
0. They must be coé(& + 2mm)/3) for m = 0, 1,2. What is the analogous equation for
dividing a circular arc into five equal pieces?

Suppose (as is the case for elliptic integrals) that the inverse function of an integral is
doubly periodic, so thaf (x + mw; + nw2) = f(x) for all m andn. Suppose also that
there is a polynomiap(x) of degree:? such tha’;p(f(&/n)) = f(0). Show that the roots
of the equatiorp(x) = f(8) mustbef(8/n + (k/n)w; + (I/n)w,), wherek and/ range
independently fron® ton — 1.

Answer.By the multi-angle formula ca$0) = 16 cos 6§ — 20 cos 6 + 5cost. We take
p(x,y) = 16x3—20x3 4 5x —y. Then the equatiop(x, cost) = 0 has the five solutions
cos((0 +27k)/5), k =0,1,2,3,4.

The second result is a consequence of the assumption that the equation holdg.for all
The right-hand side does not change whes replaced by + kw; + [w;, and hence the
left-hand side must also be unchanged.

17.2. Showthat ify(x, 1) = (f (x+ct)+ f(x—ct))/2is asolution of the one-dimensional
wave equation that is valid for all andz, andy(0,7) = 0 = y(L,¢) for all ¢, then f(x)
must be an odd function of peridif..

Answer. Takingx = 0, we find by the equation(0,7) = 0 that f(ct) + f(—ct) = 0,
which says thatf (x) is an odd function. Then, since(L,?) = 0, we find that /(L +
ct) + f(L —ct) = 0. Takingt = (x + L)/c, we find thatd = f(x + 2L) + f(—x) =
f(x +2L)— f(x)forall x, so thatf(x) has perio@ L.

17.3. Show that the problerX”(x) — A X (x) = 0, Y"(y) + AY(y) = 0, with boundary
conditionsY (0) = Y(2x) andY’(0) = Y’(27) has nonzero solutions only whén= n2,
wheren is an integer, and that the functioki(x)Y(y) must be of the forn‘(cne”x +

dne™*)(an cOgny) + by sin(ny)) if n # 0.

Answer. It is impossible to get a nonzero solution satisfying these boundary condition
if A < 0. ForletA = —w?. The equationt”(y) — w?Y(y) = 0 has as solutions

only functions of the formY'(y) = ae®” + be™®?. The conditionsY' (0) = Y(2x) and

Y’(0) = Y'(2n) then lead to a nondegenerate system of linear homogeneous equations for
a andb, and sz = b = 0.
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If A = 0, the equation i¥”(y) = 0, which means that'(y) = ay + b. The
conditionsY (0) = Y (2xr) then imply that and: = 0. The solution in this case is of the
form X(x)Y(y) = cx + d.

If A > 0, then the solutions are of the fordki = ceVr 4 de‘“/xx, andY =
acog+/Ay) + bsin(~/Ay). But the condition’ (0) = ¥(27) andY’(0) = ¥Y’(2x) then
imply A = n? for some integen, as shown in Problem 17.5 below.

17.4. Show that the differential equation
d d
=+ o
Vi—x* 1=y

has the solution = [(1—x?)/(1+x2)]'/2. Find another obvious solution of this equation.

Answer.The first assumption is mere computation:

dy_lld(l—xz)_l -2x —2x

dx 2ydx\1+x2 y(14+x2)2 (14 x2)3¥2(1 —x2)1/2°
We need to show that this last expression is the same as

I

Vi—x*

At least the negative sign is present in both expressions. Notice that

= (1- ﬂ)”z _ (L)”Z _
(14 x2)? (1 4+ x2)? 1+ x2
Sincev'1 — x* = /(1 — x2)(1 4 x2), we find, as required, that
Vi-y*t —2x
JToxt  (L+x2)72(1—x2)/2”

The obvious solution iy = —x.

17.5. Show that Fourier series can be obtained as the solutions to a Sturm-Liouville
problem on[0, 2] with p(x) = r(x) = 1, g(x) = 0, with the boundary conditions
y(0) = y(27), y'(0) = y'(27). What are the possible valuesid?

Answer.These values op, ¢, andr, give the equation” (¢) + Ay(t) = 0, whose solutions

for positive A are y(1) = acog~/Ar) + b(sin+/Ar). The boundary conditions(0) =
y(@2m), y'(0) = y'(2n) lead to a system of linear equations toandb, which will have

only trivial solutions unless the coefficient matrix is singular. The determinant of that
matrix iszﬁ(l —coq2m ﬁ) Thus co27 +/A) must equall, and s@s /A = 27 for
some integen. Thus+/A = n. Obviously, the solutions are constants.if= 0, and, as
shown in Problem 17.3 above, there are no nonzero solutions:if).



CHAPTER 18

Probability and Statistics

18.1. Weather forecasters are evaluated for accuracy usinBribes score Thea poste-

riori probability of rain on a given day, judged from the observation of that day, is 0 if rain
did not fall and 1 if rain did fall. A weather forecaster who said (the day before) that the
chance of rain was 30% gets a Briers scor@@f = 900 if no rain fell and70? = 4900 if

rain fell. Imagine a very good forecaster, who over many years of observation learns that
a certain weather pattern will bring rain 30% of the time. Also assume that for the sake of
negotiating a contract that forecaster wishes to optimize (minimize) his or her Briers score.
Should that forecaster state truthfully that the probability of rain is 30%? If we assume
that the prediction and the outcome are independent events, we find that, for the days on
which the true probability of rain is 30% the forecaster who makes a prediction of a 30%
probability would in the long run average a Briers scorésf- 702 + 0.7 - 302 = 2100.

This score is better (in the sense of a golf score—it is lower) than would result from ran-
domly predicting a 100% probability of rain 30% of the time and a 0% probability 70% of
the time. That strategy will be correct an expected 58% of the tifge£ .32 4 .72) and
incorrect 42% of the time, resulting in a Briers score4if- 100> = 4200. Let p be the

actual probability of rain and the forecast probability. Assuming that the event and the
forecast are independent, show that the expected Briers S@%J(rp(l —x)2+ (1-p)x?)

is minimized wheny = p. [Note If this result did not hold, a meteorologist who prized
his/her reputation as a forecaster, based on the Briers measure, would be well advised to
predict an incorrect probability, so as to get a better score for accuracy!]

Answer. The Briers score id0%(1 — x)? on a day when rain fell when the forecaster
gave a probability ofc. Itis 104x? if no rain fell. Hence, over a period of days when
the actual probability of rain ig and the predicted probability is (“actual” meaning
that it really will rain on pN of these days) the forecaster will accumulate an overall
Briers score oflO“N(p(l —x)* + (1 — p)x), for an average Briers score per day of
104(p(1 — x)* + (1 — p)x?). This is a quadratic function of, equal to

10*(x> = 2px + p) = 10*((x — p)* + p(1 - p)),
whose unique minimum valuk)* p(1 — p) occurs whemnx = p.

18.2. We saw above that Cardano (probably) and Pascal and Leibniz (certainly) miscal-
culated some elementary probabilities. As an illustration of the counterintuitive nature of
many simple probabilities, consider the following hypothetical games. (A casino could
probably be persuaded to open such games if there was enough public interest in them.)
In game 1 the dealer lays down two randomly-chosen cards from a deck on the table and
turns one face up. If that card is not an ace, no game is played. The cards are replaced in
the deck, the deck is shuffled, and the game begins again. If the card is an ace, players are
invited to bet against a fixed winning amount offered by the house that the other card is
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also an ace. What winning should the house offer (in order to break even in the long run)
if players pay one dollar per bet?

In game 2 the rules are the same, except that the game is played only when the card
turned up is the ace of hearts. What winning should the house offer in order to break even
charging one dollar to bet? Why is this amount not the same as for game 1?

Answer.For the first game, most of the hands dealt will not be played. There are only 198
different equally likely and playable hands, of which the house will win 192. Hence the
odds are 32 to 1 against the players. The house could offer $32 to the winning gambler and
lose only its overhead by doing so.

For the second game, even fewer of the hands dealt will be played, 51 to be exact.
Most of the games that would have been played previously but will not be played under the
new rules are games that the players would have lost. Under the new rules the house will
win 48 of the games and the players 3, so the odds are 16 to 1 against the players, twice as
good as in the other case.

18.3. Use the Maclaurin series fer- (/2> to verify that the series given by de Moivre
represents the integral

1 /1 1,
— | e72" d1,
V2 Jo

whichis the area under a standard normal (bell-shaped) curve within one standard deviation
of the mean, as given in many tables.

Answer.The Maclaurin series is

t2 I4 I6 I8 l10
e—(1/2)t2=1__+ _ 4 — ...
2 2421 263]  284] 21035)

Hence the integral is

1 1 2 1 1 1 1
—(1/2 gy — |- _ )
«/271/0 ¢ N/zn( 2350 7 )

However, | ought to have displayed the application of this series given by de Moivre, who
said that the sum of the terms in the expansioﬁ—éoﬂ— %)2" having binomial coefficients

2n 2n .
between( i ) and (n + l) would be (approximately)
2 ; 213 N 413 817 N
Jnc 1'-3n  2!-502  3!.7n* ’

wherec is “the circumference of a circle whose radius is unity,” thatiss 2z. He then
took/ = s./n, getting the expression we would write as

2 253 N 453 8s”7 N
[=(s— _ ).
e -3 21.5 31.7
1

Finally, he set = 7, getting

\/71 1 N 1 1 N
x\2 11.3.4 " 21.5.8 31.7-16 ’

as the sum of the terms between the middle §Qﬁ7 from the middle. This is trivially the
same as the expression given above for the integral.
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18.4. Use Daniel Bernoulli's concept of utility to explain why only a person with astro-
nomical amounts of money should play a Petersburg paradox-type game. In your explana-
tion, take account of what the utility of the stakes must be for a gambler versus the utility
of the gain. Make an analogy between risk and work in this regard. A laborer exchanges
time and effort for money; a gambler exchanges risk for potential gain. Remembering that
all economic decisions are made “at the margin,” at what point does additional work (or
risk) not bring enough additional utility to be worth the exchange?

Answer.Whether or not Daniel Bernoulli's specific formula for utility is valid, the phenom-
enon of diminishing returns or decreased marginal utility is well established qualitatively.
For a gambler with a small stake, the marginal utility of the money to be put at risk is very
high. What Bernoulli's formula recognizes is that the marginal utility of a large but im-
probable gain is not high. A strict adherence to mathematical expectation may account for
the purely monetary aspects of the game. But, just as the apparent size of distant objects is
not inversely proportional to their distance (as discussed in Chapter 10), the utility (analo-
gous to apparent size) of a win is not directly proportional to its probability. It decreases
faster than that as the probability decreases.

18.5. Radium-228is an unstable isotope. Each atom of Ra-228 has a probability of 0.1145
(about 1 chance in 9, or about the probability of rolling a 5 with two dice) of decaying to
form an atom of actinium within any given year. This means that the probability that the
atom will survive the year as an atom of Ra-228 is- 0.1145 = 0.8855. Denote this
“one-year survival” probability byp. Because any sample of reasonable size contains a
huge number of atoms, that survival probability (0.8855) is the proportion of the weight of
Ra-228 that we would expect to survive a year.

If you had one gram of Ra-228 to begin with, after one year you would expect to
have p = 0.8855 grams. Each succeeding year, the weight of the Ra-228 left would be
multiplied by p, so that after two years you would expect to have = (0.8855)% =
0.7841 grams. In general, afteryears, if you started with¥, grams, you would expect
to haveW = W, p' grams. Now push these considerations a little further and determine
how stronglyyou can rely on this expectation. Recall Chebyshév’s inequality, which says
that the probability of being more thahn standard deviations from the expected value is
never larger thaiil / k). What we need to know to answer the question in this case is the
standard deviation.

Our assumption is that each atom decays at random, independently of what happens to
any other atom. This independence allows us to think that observing our sample for a year
amounts to a large number of “independent trials,” one for each atom. We test each atom
to see if it survived as an Ra-228 atom or decayed into actiniumNb.dte the number of
atoms that we started with. Assuming that we started with 1 gram of Ra-228, there will be
No = 2.642-10%! atoms of Ra-228 in the original sample That is a very large number
of atoms. The survival probability ip = 0.8855. For this kind of independent trial, as
mentioned the standard deviation withy trials is

VNop(l —p) = \/ p(lT_op)No-

1 According to chemistry, the number of atoms in one gram of Ra-228 is\togadro numbes.023 - 1023
divided by 228.
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We write the standard deviation in this odd-looking way so that we can express it as a
fraction of the numbemV, that we started with. Since weights are proportional to the
number of atoms, that same fraction will apply to the weights as well.

Put in the given values g and Vy to compute the fraction of the initial sample that
constitutes one standard deviation. Since the original sample was assumed to be one gram,
you can regard the answer as being expressed in grams. The use Chebyshév’s inequality to
estimate the probability that the amount of the sample remaining will differ from the the-
oretically predicted amount by 1 millionth of a gram (1 microgram, thats,® grams)?

[Hint: How many standard deviations is one millionth of a gram?]

Answer. My calculator gives the standard deviation@$948 x 10~!2N, atoms, which

in our case amounts ®@1948 x 10~!2 grams. Hence the hypothetical deviationl6f¢

grams amounts to over 100,000 standard deviations. According to Chebyshév’s inequality,
the probability of being this far from the expected value is less tran®. That is, the

odds that you will observe a deviation this large are far less than 1 in ten billion.

18.6. Analyze the revised probabilities in the problem of two drawers, one containing two
gold coins, the other a gold and a silver coin, given an experiment in which dveoturs,
if B is the event, “a silver coin is drawn.”

Answer.Since there is no probability that you are in the drawer containing two gold coins,
the probabilities should now be 0 and 1. And indeed they are. A be the event, “The
drawer contains two gold coins,” arfd the event, “The drawer contains a gold coin and a
silver coin.” Then

P(A|B) P(ANB)/P(B)=0/0.25=0;
P(C|B) = P(CNB)/P(B)=0.25/025=1.
18.7. Consider the case of 200 men and 200 women applying to a university consisting

of only two different departments, and assume that the acceptance rates are given by the
following table.

Men Women
Department A | 120/160| 32/40
Department B 8/40 | 40/160

Observe that the admission rate for men in department% ighile that for women is‘—;.

In department B the admission rate for men%isand for women it is%. In both cases,

the people actually making the decisions are admitting a higher proportion of women than
of men. Now explain the source of the bias, in our example and at Berkeley in simple,
nonmathematical language.

Answer.Women as a group are applying to departments that are more difficult to get into.
The selection process at the university is not necessarily biased, but the applicant group
itself is biased in its selection of departments.



CHAPTER 19

Logic and Set Theory

19.1. Bertrand Russell pointed out that some applications of the axiom of choice are easier
to avoid than others. For instance, given an infinite collection of pairs of shoes, describe
a way of choosing one shoe from each pair. Could you do the same for an infinite set of
pairs of socks?

Answer.As you can readily see, the problem is one of distinguishing individual elements

of a set. If each element of a set is in some way distinguishable from every other one,
then one carorder the set. In the case of infinitely many pairs of shoes, since left and
right shoes are (nhormally) distinguishable, one can put “left before right” and then choose
the left shoe from each pair. In general, if sets are well-ordered, one can choose the first
element of each set. However, as we saw, the assumption that every set can be well-ordered
is equivalent to the axiom of choice.

19.2. Prove thatC = {x : x ¢ x} is a proper class, not a set, that is, it is not an element
of any class.

Answer.The assumption that is an element of itself would imply (by its definition) that

itis a set and isot an element of itself, which is a contradiction. If itis a set and is not an
element of itself, then by its own definition,i# an element of itself, again a contradiction
and a paradox. But if we grant thét is a proper class, we avoid the contradiction (as
already stated in the text) since the assumption that it is not an element of itself is not in
contradiction with its definition.

19.3. Suppose that the only allowable way of forming new formulas from old ones is
to connect them by an implication sign; that is, given tdatind B are well formed,
[4 = B]is well formed, and conversely, # and B are not both well formed, then neither
is[4 = B]. Suppose also that the only basic well-formed formulasarg andr. Show
that

[ip=r1=[lp == r]]
is well formed but

[[p =rl=r :>]]

is not. Describe a general algorithm for determining whether a finite sequence of symbols
is well formed.

Answer.By the rules for formation of well-formed formulagy = r] is well formed. The
formula[p = ¢] is also well formed, and hence so[[gv =q] = r]. Thus finally the
formula

[ip=r1=[lp=al=r]]
is also well formed.
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As a general algorithm, we note that a formula is a finite sequence of symbols chosen
from the set{[, ], p, ¢, r, =}. The first test in the algorithm is the followindf a formula
contains no occurrences e$, it must be a single symbol chosen frgm, g, r}. If the
formula is one of these three symbols, the algorithm terminates.

If the formula contains the symbeb, it passes the first test, but the algorithm pro-
ceeds to the second testhe formula must begin with the left bracket and end with the
right bracket, and the number of left brackets must equal the number of right brackets.

If a formula passes the second test, we apply a recursion that reduces the number of
occurrences of the symbeb: All but one of the occurrences of the symbel must be
between two or more pairs of left and right brackets, that is, exactly one occurrenee of
must be outside all pairs of brackets except the outer pidithe formula fails this test,
the algorithm terminates. If it passes, the algorithm moves recursively to two sequences
of symbols: the sequence preceding the occurrence giist discussed and the sequence
following it. The original formula is well formed if and only if both of these sequences of
symbols are well formed. Since each of these formulas has fewer occurreneeshain
the original formula, this algorithm must terminate in a finite number of steps. If at any
stage a formula is reached that is not well formed, the original formula is not well formed;
otherwise it is.

19.4. Consider the following theorem. There exists an irrational number that becomes

. : N . 2 .
rational when raised to an irrational poweroof: Consider the numbéer = ﬁ[. If this
number is rational, we have an example of such a number. If it is irrational, the equation

ov2 = ﬁz = 3 provides an example of such a number. Is this proof intuitionistically
valid?

Answer.The proofis not intuitionistically valid, since it asserts thatdr ¢” is true without
proving either thap is true or thay is true. In the intuitionistic propositional calculus, if
pV q is atheorem, then eitheris a theorem oy is a theorem.

19.5. Show that any two distincFermat number22” + 1 and22" + 1, m < n, are
relatively prime. (Use mathematical induction @) Apply this result to deduce that there
are infinitely many primes. Would this proof of the infinitude of the primes be considered
valid by an intuitionist?

Answer. Consider the number§,, = F,, — 1 = 2*" and observe thaG,; = G2.
HenceG, 4+ = G,an. This equality asserts that

Fire = 1+ (Fn— ¥
from which it follows by the binomial theorem that
Fuik = FY —2KF2' "V 4. 0k Fy 42 = QF, +2,

Thatis, each Fermat number, when divided by a smaller Fermat number, leaves a remainder
of 2. Thus the only possible common divisors of two Fermat numberg arel2. Since
all Fermat numbers are od2lcannot be a common divisor.

Hence if we take all the prime divisors of Fermat numbers, we must obtain an infinite
set of primes. This is short of exhibiting an algebraic formula that always generates a
prime,! but it does give amlgorithmin which each iteration produces a new prime. The
algorithm proceeds as follows. Form the numti&y. Then divideF;, by each positive

1 such a formula (an algebraic polynomial with integer coefficients) was constructed in principle by Matiyasevich
in the course of his solution of Hilbert's Tenth Problem, as discussed in the answer to Question 4.3.
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integer, starting witt3, until the first integer is reached at which the remainder is zero. Let
that integer, which is necessarily prime and necessarily less than or egligl toe p,,.
Incrementn and continue.

This algorithm ought to satisfy an intuitionist, who should confess that the primes are
at least potentially infinite.

19.6. Suppose that you prove a theorem by assuming that it is false and deriving a contra-
diction. What you have then proved is that either the axioms you started with are incon-
sistent or the assumption that the theorem is false is itself false. Why should you conclude
the latter rather than the former? Is this why some mathematicians have claimed that the
practice of mathematics requires faith?

Answer. The wordsfaith andshouldare slippery ones. The agnostic position is always
available to both scientists and mathematicians: It is possit#gptore the consequences

of a proposition withoutffirming the proposition. This position is not available in other
areas, and it contradicts the meaning of the waitth. Mathematicians who use set theory,

for example, can state that they are using it only to derive theorems and make no claim as
to its consistency. In that respect a mathematician need not assert tshbwd draw

any conclusions at all from our proofs, other than the hypothetical conclusion that “if all
our assumptions are true (and hence consistent with one another), then our conclusions are
also true.” Thus it can be argued that the wiaith is misapplied in both mathematics and
science, at least as far as pure logic is concerned.

Where logic is satisfied, however, human psychology is not. If mathematicians did not
have considerableonfidencé in the consistency of set theory, they would not use it, any
more than chemists and physicists would devote large amounts of time and effort seeking a
reaction (cold fusion, for example) that they did not believe possible. Thus thefaitind
comes back on the psychological level. It is a rather anemic faith, however, compared with
the degree of conviction that some religions expect their followers to have in reponse to a
detailed creed. Confidence exists in various degrees, expressed as probabilities: One can
bet at odds of arbitrarily high levels on the correctness of the multiplication table. | person-
ally would want much better odds before | would endorse every page in the classification
of the finite groups.

19.7. What are the advantages, if any, of building a theory by starting with abstract defi-
nitions, then later proving a structure theorem showing that the abstract objects so defined
are actually familiar objects?

Answer. The chief advantage is that the abstract approach reveals the logical structures
by which the theory produces its results. As long as mathematicians were confined to
dividing integers and polynomials, for example, they were hindered in seeing the under-
lying “valuations”™—V (n) = |r| for an integem, V(p) = 2", wheren is the degree of

the polynomial (by conventio’'(0) = 0)—that make the Euclidean algorithm applicable.
Another advantage is that one sees the contexts in which an argument can work and can
avoid trying to apply it where it won't work. On that basis, it is worthwhile studying finite-
dimensional division algebras over the real numbers to see what properties they have, even
though the only possible examples are the real numbers themselves, the complex numbers,
and the quaternions.

2 This is a “faith-based” word. It comes from the Latin wdidles meaningfaith.
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g(x)

FIGURE 1. The Brouwer fixed-point theorem.

19.8. Brouwer, the leader of the intuitionist school of mathematicians, is also known for
major theorems in topology, including the invariance of geometric dimension under home-
omorphisms and thBrouwer fixed-point theorenwhich asserts that for any continuous
mapping f of a closed disk into itself there is a pointsuch thatv = f(x). To prove this
theorem, suppose there is a continuous mapgirigr which f(x) # x at every pointx.
Construct a continuous mappirggby drawing a line fromf'(x) to x and extending it to

the pointg(x) at which it meets the boundary circle (see Fig. 1). Thén) maps the disk
continuously onto its boundary circle and leaves each point of the boundary circle fixed.
Such a continuous mapping is intuitively impossible (imagine stretching the entire head
of a drum onto the rim without moving any point already on the rim and without tearing
the head) and can be shown rigorously to be impossible (the disk and the circle have dif-
ferent homotopy groups). How can you explain the fact that the champion of intuitionism
produced theorems that are not intuitionistically valid?

Answer. As mentioned in the text, Brouwer wasn’t an intuitionist at the time when he
produced this theorem. There are, as far as | know, no proofs of this fixed-point theorem
that are valid on intuitionist principles, although | have seen one that is constructive except
for requiring the reader to recognize whether a set is finite or infinite at certain points.
Even for an intuitionist, however, these theorems proved using more general principles of
inference can serve a purpose, suggesting what an intuitionist wouldn’t try to do and what
it might be interesting to try.

19.9. A naive use of the formula for the sum of the geometric setigd + x) = 1 —

x4+ x2—x3+ ... seemstoimplythat — 5+ 25— 125+ --- = 1/(1 + 5) = 1/6.
Nineteenth-century analysts rejected this use of infinite series and confined themselves to
series that converge in the ordinary sense. However, Kurt Hensel (1861-1941) showed in
1905 that it is possible to define a notion of distance (tkadic metric) by saying that an
integer is close to zero if it is divisible by a large power of the prime nunbé¢in the
present casey = 5). Specifically, the distance from to 0 is given byd (m,0) = 57,
wheres* dividesm but 55*! does not dividen. The distance betweénand the rational
numberr = m/n is then by definitiord (m, 0)/d(n,0). Show thatd(1,0) = 1. If the
distance between two rational numbernds is defined to bel (r — s, 0), then in fact the
series just mentioned does converg%t'rm the sense that(sS,, %) — 0, whereS, is the

nth partial sum.

What does this historical experience tell you about the truth or falsity of mathematical
statements? Is there an “understood context” for every mathematical statement that can
never be fully exhibited, so that certain assertions wilMegbally true in some contexts
and verbally false in others, depending on the meaning attached to the terms?
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Answer.One way of getting around counterexamples is always to reinterpret the meaning
of the terms. Thus, Cauchy had given a definition of continuity that looked reasonable and
had given an argument that a limit of continuous functions is continuous. But he hadn't
been as specific as he might have been when giving the definition of convergence, and
Abel pointed out that there were cases where a sequence of continuous functions could
converge to a discontinuous functionone interpretation of the meaning of convergence
It then took some time for different varieties of convergence to be identified. Once they
were identified, Cauchy’s theorem could be reinstated, but the womndergencevould
henceforth be replaced by the phrasgform convergence

Inthe present example, it is easy to verify that the difference bet\%'emd the partial

sum of the series i&%, whose distance fromis 57"~ and hence tends to zero.

19.10. Are there true but unknowable propositions in everyday life? Suppose that your
class meets on Monday, Wednesday, and Friday. Suppose also that your instructor an-
nounces one Friday afternoon that you will be given a surprise exam at one of the regular
class meetings the following week. One of the brighter students then reasons as follows.
The exam will not be given on Friday, since if it were, having been told that it would be
one of the three days, and not having had it on Monday or Wednesday, we would know on
Thursday that it was to be given on Friday, and so it wouldn’t be a surprise. Therefore it
will be given on Monday or Wednesday. But then, sincekmewthat it can’t be given on
Friday, it also can't be given on Wednesday. For if it were, we would know on Tuesday
that it was to be given on Wednesday, and again it wouldn’t be a surprise. Therefore it
must be given on Monday, we know that now, and therefore it isn’t a surprise. Hence it is
impossible to give a surprise examination next week.

Obviously something is wrong with the student’s reasoning, since the instructor can
certainly give a surprise exam. Most students, when trying to explain what is wrong with
the reasoning, are willing to accept the first step. That is, they grant that it is impossible
to give asurpriseexam on thdast day of an assigned window of days. Yet they balk at
drawing the conclusion that this argument implies that the originally next-to-last day must
thereby become the last day. Notice that, if the professor had said nothing to the students, it
would be possible to give a surprise exam on the last day of the window, since the students
would have no way of knowing that there was any such window. The conclusion that the
exam cannot be given on Friday therefore does not follow from assuming a surprise exam
within a limited window alone, but rather from these assumptions supplemented by the
following proposition: The studentknowthat the exam is to be a surprise and theyow
the window in which it is to be given.

This fact is apparent if you examine the student’s reasoning, which is full of state-
ments about what the studemtsuld know Can they trulyjknowa statement (even a true
statement) if it leads them to a contradiction?

Explain the paradox in your own words, deciding whether the exam would be a sur-
prise if given on Friday. Can the paradox be avoided by saying that the conditions under
which the exam is promised are true but the students cdamawthat they are true?

How does this puzzle relate too@él's incompleteness result?

Answer. Whenever a system of propositions is capable of “talking about itself” and can
meaningfully formulate the assertion that certain propositions can be proved within the
system or cannot be proved within the system, the possibility of an incompleteness result
of this type occurs. The crux of the matter is the meaning of the phods®w In informal
speech we trust others enough to say that we know things that we have been told. But if
someone tells us something that leads to a contradiction, we cease to include their word
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as a basis for knowing. In the present instance the students are tantalized by being told
something by a teacher—ordinarily a sufficiently rigorous foundation for knowledge—
that apparently leads to a contradictibthey know it Hence they are in the situation of
“P implies not-P". Here P is the proposition “we know that the two statements made by the
instructor are true.” If P is true, it leads to correct inferences by the students that contradict
P. Therefore, any logician would agree, P is false. Notice that what is false is not what the
students were told; that was always true and remains true. What is false is that the students
know what they were told.

Godel's incompleteness result is of exactly this form. It is a formula whose interpre-
tation says that it cannot be proved. (Since in arithmetic proof and knowing are twins, the
formula really says, “I cannot be known to be true.”)
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