Desktop Batch Processing

Jim Gray and Chris Nyberg

San Francisco Systems Center
Digital Equipment Corporation
455 Market Street, San Francisco, CA 94015
{Gray, Nyberg} @ SFbay.enet.dec.com

Abstract:

Today, online transaction processing
applications can  downsize  from  mainframes to
microprocessors. Commodity database systems, operating

systems, and hardware came of age in 1993., -- they
surpassed the online transaction processing performance of
proprietary solutions.

There are lingering doubts about downsizing batch
transaction processing applications. The doubts center on
the ability of microprocessor hardware to handle the high
10 bandwidth required by batch processing, and on doubts
that microprocessor systems offer the software services and
utilities key to batch processing applications.

This paper reviews the impressive progress of made by
commodity software and hardware in processing OLTP
workloads. The discussion is quantitative because the
Transaction Processing Performance Council defined a set
of benchmarks that characterize OLTP and that quantify
price and performance.

Discussion then turns to batch transaction processing.
There is less consensus on the characteristics of batch
transaction processing. Consequently, much of the
discussion focuses on requirements. The discussion ends
with some performance measurements of utilities running on
DEC Alpha AXP microprocessors and on commodity disks.
These results indicate that microprocessors today have the
capacity to process batch workloads at mainframe speeds.
We predict that over the next few years, batch-processing
software, exploiting parallel processing will emerge. This,
combined with commodity hardware will provide both
superior performance and price performance.

1. Client/Server Economics

Downsizing and rightsizing are driven by economics: in
particular the economy of scale. There are 100,000,000
microprocessors in use while there are at most 50,000
mainframes in use. This creates a diseconomy of scale. The
fixed engineering costs associated with mainframes must be
amortized across a few thousand units. These costs, in
excess of a billion dollars, drive unit costs into the millions.
The benefits of mainframes do not justify these huge fixed
costs.

C. Gordon Bell observes that there are seven computers
classes ranked by price [1]:
Type Example Population

Less than 10$: Wristwatch 109

Less than 100$: Pocket calculator 108
Less than 1,000$: PC/Notebook/cellular 108
Less than 10,000$: Workstation 107
Less than 100,000$: Departmental server 100
Less than 1,000,000$:
Less than 10,000,000%:

Mainframe server 104
Supercomputer 102

The small populations (right-hand column) have large fixed
costs spread over a few units. These fixed costs make "big"
machines disproportionately expensive. To make these
arguments concrete, consider the following prices and
volumes.

Micro Mainframe Ratio
$/SPECint 100$/SPECint  10,000$/SPECint  100:1
$/RAM megabyte  50$/MB 1,000$/MB  20:1
$/Disk Gigabyte 500%/GB 5,000$/GB 10:1

The high mainframe prices reflect multi-billion dollar
engineering costs amortized across a few thousand units.

Similar arguments apply to software. Bill Joy observed that
one should not write software for a platform with less than
100,000 licenses because the economics are terrible: The
engineering cost is spread across only a few units and so is
prohibitive. 'When Joy formulated this rule, commodity
meant 100,000 units. Today, commodity means one million
or ten million units. Today one should not write software
for a platform with less than a million or ten million units.

To make the argument concrete, consider the database
systems used for OLTP. IBM's DB2 database system costs
over 100,000$ as an initial license fee for the complete
product. There are about 10,000 such systems. Microsoft
Access costs about 100$ and has several million licenses.
Both systems generate 300M$ in annual revenue and both
can sustain a comparable engineering organization. Digital's
Rdb database system has about 100,000 licenses and
averages about 30,000$/license, giving it a comparable
business. Several other database vendors are operating in



this range. Oracle is able to generate 1.5B$ annual revenue
through a combination of higher volumes and premium
prices.

The message here is clear: the high-volume producers have
low unit-costs. This will eventually drive the market to a
few producers in each area. This is happening for
microprocessors, disks, printers, displays, and operating
systems. It is also happening to layered software --
graphical user interfaces, programming environments, class
libraries, and database systems. It is happening to generic
applications like word processors, spreadsheets, mail,
workflow, general ledger, inventory control, MRP, etc.
Each of these will have to sell millions of units to be
competitive.

The platform numbers are:

Platform Units

DOS 75,000,000

MS/Windows 25,000,000

Mac 5,000,000

X/Windows (= UNIX) 2,000,000

Presentation Manager (=Mainframes) 50,000

These numbers are dynamic, Windows is quickly penetrating
the DOS base. Microsoft's NT operating system has been
out for only three months, but already outsells UNIX 3:1.

There is an important distinction between client and server
software. Client software can sustain unit prices of about
100$ while server software can sustain unit prices of about
1,000$ -- about 100$/client. Hundred-dollar products can
afford at most 10$ of engineering expense and 25$ of
marketing and support expense. Since product engineering
routinely costs in excess of a million dollars, client products
must sell 100,000 units per year to be viable. For thousand-
dollar server products the engineering expense can be 100$
per unit and the company need only sell 10,000 per year to
be viable. If, as is typical for many software products, the
engineering expense is in the tens of millions of dollars, then
the company must sell a million clients or hundreds of
thousands of servers per year to be viable.

These simple economics ignore the support and marketing
issues -- large suppliers can spread their marketing and
support costs among more units and so have much better
visibility. Oracle and Microsoft have huge marketing and
support organizations. These economies of scale, and the
benefits of standardizing on a single code base make it
difficult for others to compete on product features and
engineering excellence.

This can be summarize by Mike Stonebraker's view that we
are going from class 5 software to class 3 software.
Stonebraker classifies software by the number of trailing
zeros in the price: a 100$ package is class 2 and a million

dollar package is class 6. The database server business is
currently driven by class 5 products -- both in the UNIX,
VMS, and MVS space. Recent price cuts and the packaging
of Sybase with NT and Oracle with NetWare have already
moved us to a class 4 price point. Stonebraker predicts we
will be at the Class 3 price point by 1995.

2. The Commoditization of OLTP

For most of the 1980's, the mainframe vendors and want-to-
be mainframe vendors had a goal to deliver SQL-based
transaction processing systems able to process 1,000
transactions per second -- 1Ktps. One side effect of this
effort was consensus on the definition of a transaction per
second. In 1988, essentially all the DB and TP vendors
formed a consortium called the Transaction Processing
Performance Council's (TPC). The TPC's goal was to
reduce the bench-marketing hype and smoke by defining a
level playing field on which all vendors could compete and
be measured. In 1989, these efforts bore their first fruit with
the TPC-A benchmark [2]. TPC-A defined metrics for
performance (tps) and price/performance ($/tps). TPC-A
was followed with a more realistic OLTP TPC-C
benchmark. The TPC is now defining decision support,
client/server, and mainframe benchmarks.

From 1989 to 1992, the performance and price-performance
metrics showed that proprietary systems had the best peak
performance and best price performance. For a while
Digital's VAX and Tandem's Cyclone/CLX had the best
peak performance and price performance. HP's best
performance was registered by its Allbase product. IBM's
AS/400 line also had impressive performance and price
performance -- substantially better than its RS/6000-AIX
offering. Significantly, IBM's DB2 mainframe system never
published results. Certainly, DB2 had excellent
performance (estimated in the hundreds of transactions per
second), but it ran on expensive mainframes. We conjecture
that IBM did not want to quantify the diseconomy of its
mainframes by publishing TPC-A results for them. The only
mainframe vendor to publish results, Unisys, came in at
about 45k$/tps. At the time, this was twice the average price
of its competitors.

Between 1989 and 1993, the commodity operating systems
(SCO UNIX, NetWare, NT), the commodity databases
(Oracle, Informix, Sybase, Ingres), and the commodity
transaction monitors (Tuxedo, VIS/TP, Encina) dramatically
improved their performance on simple transactions.

In 1993, UNIX, Oracle, and Tuxedo became the price-
performance leaders. Oracle, Tuxedo, and Sequent's Dynix
operating system running on Intel 486 processors were the
first to break the lktps barrier that had stood for over a
decade. Using six Digital Alpha AXP processors on VMS,
both Rdb and Oracle broke the lktps barrier with slightly



better price performance. The peak performance and price
per transaction continue to improve rapidly. Currently
Compaq-SCO/UNIX-Oracle is the price performance leader.
Digital, HP and Sun have higher-performance but higher-
priced solutions. As of January 1994, the leaders in each
performance band are [3]:

Leader  $/tps
Compaq/Oracle Sk
Sun/Oracle 6k
Digital/Oracle 7k

Performance band
under 250 tps-A
under 1000 tps-A
over 1000 tps-A

A few years ago you could fault Compaq for having
machines with no parity on the memory or processor,
relatively unreliable discs, and no OLTP software. Their
machines were simply not competitors. Today, the story is
completely changed. Compagq is the world's largest supplier
of RAIDS disk arrays. The "enterprise" versions of their
products have extensive built-in diagnostics, remote
maintenance, integral UPS, and limited ability for one node
to fail-over to another. The SCO-UNIX offering, combined
with Tuxedo and Oracle or Informix is well respected in the
industry. The NetWare and NT offerings from Novell-
Oracle and Microsoft-Sybase are also getting good reviews
from users.

These commodity systems do not cluster at present.
Clustering allows a pool of processors provide service to
clients. Clusters provide a uniform programming and
management interface to the resource pools of the cluster.
Clustering is needed for scale up to really large
configurations containing dozens of disks and thousands of
clients. It is also needed for high availability. In clusters
other devices quickly switch in to provide access to a replica
of the server or data when a device or processor fails.

Today, robust clustering technology is restricted to
Tandem's Guardian operating system, Teradata's DBC/1024,
and to Digital's VMS operating system. However, every
vendor offers an early version of their clustering on UNIX
and NT. We expect that this cluster software to take a few
years to mature, but there is no question that it will be robust
by 1996.

In addition, the new software is substantially easier to use.
For example NT/Sybase provides a uniform naming and
security domain, a graphical interface to administration and
operations, and modern development tools. SQL stored
procedures, application generators like PowerBuilder,
SQLwindows, Windows 4GL, and others make it relatively
easy to build TP-lite client-server applications supporting as
many as a hundred users per server. Scaling to larger user
communities, requires partitioning the task into multiple
smaller servers or using conventional transaction processing
monitors like Tuxedo, Encina, ACMSxp, or CICS. Software

to automate this client-server split is offered by tools like
Ellipse and Forte.

So, times have changed. The OLTP business has been
commoditized. Downsizing from mainframe solutions to
commodity technology is in full swing. = Commodity
software has set new price points.

3. The Next Step: Commodity Batch Processing

Most users agree with what has been said so far. For them
the only question is how to move and how quickly to move
from the mainframe. In these discussions, there is one
recurring theme: what about batch? Users believe they can
now move their online transaction processing workload to a
microprocessor. The TPC-A results demonstrate that the
performance is there and that the software is there. But,
what about their batch workload?

Many users assume that their batch workload cannot move
off the mainframe to small servers. They point to hardware
and software limitations. In our view, concerns about
hardware are outdated -- modern commodity systems have
impressive performance and reliability. As explained below,
there are valid concerns about the absence of batch
processing software on commodity computers. Much of this
software is being ported from mainframes to micros, and
should be robust in a few years.

We discuss the hardware issue first, and then the software
issues.

3.1. Hardware Is Not The Problem

The Teradata DBC/1024 should dispel the notion that
microprocessors cannot drive large disk farms. Some of the
largest mainframes are just front-ends for a Teradata cluster
of a few hundred Intel 486 processors driving a few
thousand SCSI disks. Many large retailers use such multi-
terabyte disk farms to track their sales activity and to
optimize their inventory. These systems provide excellent
performance on data-intensive decision support workloads.

Today, the performance of the commodity Intel and RISC
processors is close to the performance of the fastest
mainframes. RISC clock rates are faster (300MZ), and the
overall performance on standard benchmarks are
comparable.

Consider the disk IO issue. In the PC space, systems were
hampered by compatibility with the PC-AT bus which
limited IO traffic to a few megabytes a second -- less than
the speed of a single modern disk. Today, with the
MicroChannel at 50MB/s and the PCI bus at 200MB/s,
Intel-based and DEC-Alpha-based servers can deliver



100MB/s from the disk to the application. This has been
demonstrated for both NetWare and for VMS.

Disc architectures available for Intel and DEC-Alpha
systems have excellent performance. Compagq is the largest
supplier of RAIDS5 disk arrays. Small Fast-Wide-
Differential SCSI disks are delivering 7MB/s today, and
arrays of these discs have been measured at over 60MB/s.
Modern SCSI discs are as reliable as their mainframe
brethren, but are about 2x faster and about 10x less
expensive. These disks have large and sophisticated caching
mechanisms built into the drive controller. These caches
make it relatively easy to read and write the disc at device
speed.

3.2. PC and UNIX File Systems are Improving

On the software side, UNIX and MS/DOS file systems were
not designed for high-performance disk 10. The more
modern systems, NetWare and NT, do not suffer these
limitations. UNIX offers raw disk interfaces, and
competition from NT is finally forcing the UNIX purists to
offer asynchronous and unbuffered (no extra copies) 10.

The original structure of the UNIX file system prevented
high speed sequential 10 -- UNIX tends to map the data to
disc as a tree of small blocks, rather than using an extent-
based file system. Traditional UNIX file systems do small
writes, tend to copy the data at least twice (as it moves
through the buffer pool), and UNIX traditionally performs
all IO operations as synchronous requests. In addition,
UNIX tends to generate many spurious IOs to maintain the
file system directory.

The UNIX directory IO problem has been "solved" by using
non-volatile RAM (Prestoserve), or by exploiting transaction
processing logging techniques to track directory updates., or
by using a log-structured file system.

More aggressive designs have compromised pure UNIX
semantics by providing a "traditional" file system modeled
after IBM's OS/360. These file systems, using extent-based
file allocation, have no extra data moves, and provide an
asynchronous IO interface. Cray and Sequent give good
examples of this UNIX adaptation.

To satisfy the needs of 10 intensive applications, almost all
UNIX systems provide a raw disk interface. The system
manager can designate zones of disc to be dedicated to an
application (these zones look like files). The application can
then do direct Get_Block() and Put_Block() reads and writes
to these files. This interface has low overhead. Most
database systems and high-performance applications use
these raw-disk interfaces rather than the "cooked" file
systems.

In addition, a variety of disk striping and disc mirroring
packages are appearing as integral parts of UNIX file
systems.

The NT file system is modeled on the VMS file system. It
includes an extent-based file system, direct and
asynchronous IO, disk mirroring, and disk striping. All
indications are that it provides excellent IO performance.

To summarize the IO story. Traditionally, the DOS,
NetWare, NT, and UNIX systems were hampered by low-
performance hardware IO subsystems. Modern commodity
cpu, bus, and disc subsystems have very impressive 10
performance --- typically in excess of SOMB/s.

3.3. The Software Barrier

Traditional and modern batch processing systems depend on
software seldom found on commodity systems. Each online
transaction generates data that is processed by an end-of-
day, end-of-week, or end-of-month batch transaction. These
batch transactions perform operations such as account
reconciliation, transaction settlement, monthly invoicing,
billing, task and equipment scheduling, materials resource
planning, or reporting.

Some argue, as we have, that corporations should be re-
engineered to have no batch steps: all batch operations
should be done online as mini-batch jobs during normal
processing. For example, billing and invoicing could be
done on the fly. Each transaction could update the
corresponding bill. Then, the billing cycle would consist of
the mini-batch job of printing or EDI-posting the bill to the
customer. Similarly, when a new order arrived, the order
entry job could initiate a mini-batch job to schedule the
manufacture and delivery of that order. Any changes to
work schedules and inventory planning would be part of this
task.

It may well be that we are right, mini-batch is the correct
way to engineer new applications. But, the fact is that no
large corporation works this way today. Banks, stock
exchanges, manufacturers, distributors, retailers,
governments, and all other large organizations have large
batch workloads. These workloads run on mainframes
today.

What will it take to downsize these batch workloads to
commodity systems? We believe the following software
services are prerequisite to a batch downsizing effort:

Tools (COBOL, RPG, MRP, SQL, Sort, ... ): Downsizing
to a commodity platform is easier if the new computer
system supports the traditional programming languages
and tools. The good news is that most of the UNIX and



PC systems support GUI interfaces to high function
versions of the traditional tools.

Job Control and Scheduling: Batch jobs are described in a

job control language. A simple workflow language that
says do this step, then this one. The language has
simple procedure steps, simple flow control and some
access to the process, job, and system environmental
variables. IBM's JCL and REX languages, and UNIX's
shell language are typical.

The job control program can be executed interactively,
by invoking it from a command shell. More commonly,
the job placed in a batch execution queue and is
executed by a job scheduler. The scheduler advances
the job through its various steps. If a job fails due to
external events, the scheduler restarts it. The scheduler
performs load control by dispatching at most one job
from each queue at a time. Users want to track and
account for jobs rather than job steps --- the scheduler
accumulates the job step costs and generate accounting
reports. Today, the job schedulers on UNIX, NetWare,
and NT are rather primitive, but they will evolve
quickly as companies downsize to such platforms.

Spool and Print Services: Batch jobs typically generate

reports, bills, payrolls, statements and task lists. These
high-volume print jobs often use special forms. The
print spooler manages a pool of high speed printers and
their forms, typically driving them off forms-oriented
queues. If the printer runs out of forms or if some are
damaged, the job resumes where it left off -- rather than
reprinting the entire output. VMS, UNIX, NetWare,
and NT each have spoolers with these capabilities.

Tape Handling and a Tape Librarian: Magnetic tape is

used for archiving old data, for shelving infrequently
used data, and for making a backup copy of data in case
of disaster. Large shops accumulate tens of thousands
of tapes. Magnetic tapes are the standard form of high-
speed data interchange among corporations. Online
networking is increasingly common, but even today,
many organizations support only tape interchange.

It is rare to find good software to read ANSI labeled
tapes (no kidding) -- the mainframes have it but the
minis and micros have been slow to implement these
standards.  The tape library systems common to
mainframes are rare on commodity operating systems.
The promising news is that third party tape-handling
systems are being ported from the mainframes to UNIX,
VMS, and NT.

System Managed Storage (SMS) is sometimes called

Hierarchical Storage Management (HSM). Batch jobs
tend to read old files and create new ones (old-master

new-master). Over time the number of files can become
extraordinarily large. Rather than have a human being
manage file archival and retrieval, customers expect the
computer system to migrate old files to tape and retrieve
them on demand. SMS took a long time to implement
on the mainframe. Third party systems are being ported
to commodity platforms as part of the downsizing
movement.

Generation data sets: Batch programs often take an old-

master new-master approach to their data. They expect
the underlying operating system to manage versions of
data, discarding very old versions. Few commodity
operating systems have a versioning scheme built into
the system (UNIX, NetWare, and NT do not, VMS
does). This means that the application must manage file
versions.

Exotic Reader and Printer Support: Some batch jobs

have special 10 requirements like magnetic check
readers, optical, mark-sense readers, microfiche printers
(COM), or high-speed laser printers. These devices
traditionally had exotic interfaces suited to IBM 370,
UNIVAC, Burroughs, or NCR mainframes.
Increasingly they have Ethernet or FDDI interfaces --
but still, interfacing such paper-handling or film-
handling devices to commodity systems is a difficult
task.

Checkpoint-Restart: Batch transaction processing involves

a few big jobs. The traditional logging-undo-redo
protocols of OLTP are inappropriate for batch
transactions. Rather, batch processing uses an old-
master new-master scheme for coarse grained recovery,
and a checkpoint-restart scheme for fine grained
recovery. Checkpoint-restart interacts with job
scheduling (the failed job is rescheduled at the restart
point), printing (the spool output is resumed at the
checkpoint), tape handling (the tapes are repositioned to
the checkpoint) and so on. Checkpoint/Restart is an
integral part of a batch-processing operating system. It
is difficult to retrofit. The NetWare, UNIX, and NT
operating systems are unlikely to provide a restart
service -- rather applications will have to rely on the
coarser old-master new-master recovery combined with
application-level (user designed) checkpoint-restart.

High Speed Sequential 10: Batch programs read bulk

data, reorganize i, consolidate it and then produce a
variant of the data. These operations are designed to be
sequential so that they exploit the high-speed sequential
performance of disks and tapes. As argued earlier,
commodity systems used to have poor sequential
performance -- both due to hardware and software
limitations. But today, the non-UNIX systems have
good performance, and most UNIX systems are



beginning to provide high-performance asynchronous
unbuffered I0.

Dusty Deck: Virtually every mainframe shop has some
programs that no one understands. The programs were
written long ago and just work. Often, the source for
the program (the deck of punched cards) has been lost
and there was never any documentation. There is no
easy way to migrate dusty decks. They just have to be
executed in emulation mode on the new platform or re-
implemented.

In summary, customer concern about downsizing batch jobs
to commodity platforms is legitimate. The hardware is
capable, but some key software components are missing.
Many software components are already present, and most
other components will appear in the next year or two. The
work we are doing in our laboratory is part of that trend.

4. The AlphaSort experience.

Our laboratory is focused on using parallelism to quickly
process very large databases. We assume that future high-
end severs will be built from hundreds of processors and
thousands of disks. The challenge is to fined ways to
program such an array of processors and disks [4].

In dealing with large databases, almost all operations are
batch operations. Loading the data, organizing it,
reorganizing it, and searching it all involve billions of
records. Such problems require clusters of processors and
farms of disks. Today we are using VMS clusters built on
DEC Alpha AXP processors and disks. Our techniques are
portable to other operating systems and processors.

We built a high-speed parallel sort utility as part of our
effort. It uses parallel IO from conventional SCSI disks, and
it uses shared-memory multiprocessors when possible.

Using a single DEC Alpha AXP 7000 processor (200Mhz),
we were able to read an array of 36 "slow" SCSI disks at
64MB/s using only 20% processor utilization. These were
"0ld" RZ26 drives capable of 2.3MB/s each -- today 1-year
old is "old". By using modern RZ28 drives capable of
4MB/s, the processor could easily drive this array at
100MB/s. Next yea's disks will nearly twice as fast.

Using the "slow" array with a new memory-intensive
algorithm called AlphaSort, we were able to sort records
very quickly. On the Datamation Sort benchmark [5],
AlphaSort sorted a million records in 7 seconds and sorted
10 million records (1 gigabyte) in less than a minute [6].
These times are four times faster than a Cray YMP, and
eight times faster than an 32-processor-32-disk Intel
Hypercube. They also beats the best IBM DFsort and
SyncSort times by a wide margin. In fairness, neither

DFsort nor SyncSort are able to use file striping since it is
not part of MVS operating system services.

In addition to this sorting work, we are building a parallel
execution environment the quickly load large databases.
Our current goal is to load and index a terabyte database in a
day.

Another Digital laboratory reports backing up and restoring
Rdb databases at rates in excess of 30 GB/hour using DEC
Alpha AXP processors -- that is substantially faster then the
best reported mainframe backup/restore speeds. By
partitioning the database and by using parallelism, one can
multiply these rates to hundreds of gigabytes per hour. This
software exists on VMS today, and is being ported to OSF/1
and NT.

These results convince us that Alpha AXP systems have
excellent hardware and software support for high-speed 10.
Batch oriented utilities are present on VMS today and are
coming to UNIX and NT soon.

5. Summary

Commodity hardware and software can deliver online
transaction processing today. The products are mature and
deliver superior performance and price performance.

Commodity hardware can support the large databases and
demanding workloads required for batch transaction
processing. Unfortunately, the corresponding batch
transaction processing software is either immature or non-
existent.

The good news is that many third-party batch software
infrastructure is being ported to commodity platforms as part
of the downsizing trend.

6. References

[1] Bell, C.G., J.E. MacNamara, High Tech Ventures,
Addison Wesley, Reading, MA., 1981.

[2] "TPC Benchmark A", Chapter 2 of The Benchmark
Handbook for Database and Transaction Processing
Systems, 2nd ed. Morgan Kaufmann, San Mateo, CA
1992.

[3] TPC Quarterly Report, Issue 8, Shanley Public
Relations, San Jose, CA., 15 Jan. 1993.

[4] DeWitt, D. W., Gray, J.N., "Parallel Database Systems:
the Future of High Performance Database Systems",
CACM, 35(6), June 1992.

[5] Anon Et Al., “A Measure of Transaction Processing
Power.” Datamation. 31(7): 112-118., 1 April 1998.

[6] Nyberg, C.T., Barclay, T.D., Cvetanovic, Z.Z., Gray,
J.N,, Lomet, D.L., "AlphaSort - A RISC-machine Sort",
Submitted to SIGMOD 94.



