
 Application Note

R11AN0348EU0102 Rev. 1.02 Page 1 of 21
Oct.01.19

Renesas Synergy™ Platform

Synergy Device Identity Application
Introduction
This application note describes IoT security in general and offers a brief introduction to the security features
offered by the Synergy MCU, including different key generation options. The application example in this
package uses the Synergy Crypto Engine (SCE) module to generate a unique hardware-based device
identity that is securely stored in internal flash using the Security MPU and Flash Access Window (FAW).

This application note enables you to effectively use the Synergy SCE modules in your own design. Upon
completion of this guide, you will be able to add the SCE Synergy Software Package (SSP) modules to your
own design, configure them correctly for the target application, and write code using the included application
example code as a reference and efficient starting point. References to more detailed API descriptions, and
other application projects that demonstrate more advance uses of the module, are in the Synergy Software
Package (SSP) User’s Manual, to serve as a valuable resource in creating more complex designs.

Currently, the Synergy Device Identity Application is implemented and tested on the PK-S5D9/AE-CLOUD2
kit. Support for other Synergy kits/MCUs will be provided in upcoming releases.

Required Resources
To build and run the Synergy Device Identity Application example, you need the following resources:

Development tools and software
• e2 studio ISDE v7.3.0 or later (renesassynergy.com/devtools/e2studio), or IAR Embedded Workbench®

for Renesas Synergy™ v8.23.3 or later (renesassynergy.com/devtools/ewsyn)
• Synergy Software Package (SSP) v1.6.0 or later (renesassynergy.com/software/ssp), Synergy

Standalone Configurator (SSC) 7_3_0_R20190109 or later (renesassynergy.com/devtools/ssc)
• SEGGER J-link® USB driver (renesassynergy.com/devtools/jlink)

Hardware
• Renesas Synergy PK-S5D9 kit (renesassynergy.com/kits/pk-s5d9) or AE-CLOUD2 kit
• Test PC running Windows 7/10 OS
• Two Micro USB cables

Prerequisites and Intended Audience
This application note assumes you have some experience with the Renesas e2 studio ISDE and the Synergy
Software Package (SSP). Before you perform the procedures in this application note, follow the procedure in
the SSP User Manual to build and run the Blinky project. Doing so enables you to become familiar with the
e2 studio and the SSP, and validates the debug connection so the board functions properly. In addition, this
application note assumes that you have some knowledge of cryptography and familiarity with SCE features.

The intended audience are users who want to develop applications with SCE modules using Renesas
Synergy™ S5 or S7 MCU Series.

https://www.renesas.com/us/en/products/synergy/software/tools/e2-studio.html
https://www.renesas.com/us/en/products/synergy/software/tools/iar-ew-for-synergy.html
https://www.renesas.com/us/en/products/synergy/software/ssp.html
https://www.renesas.com/us/en/products/synergy/software/tools/renesas-ssc.html
https://www.renesassynergy.com/devtools/jlink
https://www.renesassynergy.com/kits/pk-s5d9

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 2 of 21
Oct.01.19

Contents

1. Introduction to IoT Security .. 3
1.1 Overview .. 3
1.2 Importance of Device Identity in an IoT Ecosystem .. 4
1.3 Synergy Hardware Security Features ... 4

2. Overview of Key Generation in Synergy MCUs ... 6
2.1 Key Wrapping .. 6
2.2 Key Generation in the Device .. 7
2.3 Key Injection from Secure Infrastructure ... 7

3. Device Identity Design Overview ... 7

4. Device Identity Application Example ... 8
4.1 Overview .. 8
4.2 Software Architecture Overview .. 8
4.3 Operational Overflow ... 10
4.4 Securely Storing Device Identity ... 11

5. Running the Device Identity Application Example ... 13
5.1 Importing, Building, and Running the Project for e2 studio .. 13
5.2 Powering up the Board .. 14
5.3 Debugging using ITM printf ... 14
5.4 Verifying the Demonstration .. 14

6. Importing and Building the Project: IAR Embedded Workbench ... 17

7. Adding Required Files ... 17

8. Building and Running the Project .. 18

9. Device Identity Application Next Steps .. 18

10. References .. 18

11. Known Issues and Limitations ... 19

12. Appendix .. 19
12.1 Glossary .. 19

Revision History .. 21

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 3 of 21
Oct.01.19

1. Introduction to IoT Security
This section provides an overview of IoT Security (in general) and covers the different aspects of the security
features offered by Synergy MCUs.

1.1 Overview
A generic IoT (Internet of Things) environment consists of the following:

• IoT Devices
• Cloud Server
• Device Management services
• Certificate Authority (CA)

Figure 1. IoT Environment Overview
IoT Devices
IoT devices constitute the network of physical devices embedded with software, sensors, and connectivity
that enable these devices to connect, collect, and exchange data. Devices can be in a secure or non-secure
location, but all are increasingly vulnerable to attack.

Cloud Server
A portal providing everyday services and access to those devices. Typically located in a highly secure and
controlled data center.

Device Management Services
Device Management services offers a comprehensive suite of IoT device management to enable any size
IoT customer to have complete control over their devices and data. This includes, but is not limited to:

• Application Security
Keys/certificates identifying the Cloud Server

• Device Management Security
Keys/certificates identifying each unique IoT Device
Keys/certificates identifying Device Management Services Server
Initial firmware deployment and subsequent firmware updates. Firmware contains a signature verifying its
authenticity and may be encrypted.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 4 of 21
Oct.01.19

Certificate Authority (CA)
An authorized and trusted entity that issues certificates as a service is commonly referred to as CA.
Certificates are used to give identity to public keys; thus, the devices that contain those keys. How a
certificate is generated for a key is a well-defined process that is part of your security scheme. A Certificate
Authority can be public or private. If the devices are managed in a tight eco-system (for example, devices for
Industrial setting), the CA is likely to be private. If the devices are distributed through a consumer channel
where the services and hardware are likely to be provided by different vendors (for example, surveillance
cameras, thermostats, home security systems, and so forth.), the CA is likely to be public.

1.2 Importance of Device Identity in an IoT Ecosystem
With an establishment of a strong device identity, each IoT device can uniquely be identified and
authenticated when they are connected to ensure secure and encrypted communication between other
devices, services and users.

Strong device identity addresses core IoT security requirements:

• Trust
When a device connects to the network, it must authenticate and establish trust between other devices,
services and users. Once trust is established, devices, users and services can securely communicate and
exchange encrypted data and information.

• Privacy
As more IoT devices connect, more data is generated, collected, and shared. This data can include
personal, sensitive, and financial information that must be kept private and secured — often under
regulatory compliance. A device identity can ensure authentication, identification when the IoT devices
are connected to one another.

• Integrity
Device integrity applies to both the devices and data being transmitted within the IoT ecosystem. The
integrity of a device starts with proving it is what it says it is. With a strong unique device identity, it can be
ensured that the devices are legitimate — reducing counterfeit products and protecting a company’s
brand. Data integrity is an often-overlooked requirement, but connected devices and systems rely on the
authenticity and reliability of the information being transmitted.

1.3 Synergy Hardware Security Features
Synergy MCUs provides a hardware root-of-trust via protected memory (read/write) which can only be
accessed by firmware modules located in secured memory segments. Protected memory features offered by
Synergy devices can be used for storing the secure boot code and device certificate/keys amongst other
sensitive data which are vital for device identity application.

1.3.1 ARM MPU
The ARM MPU is a memory protection function for the CPU that can be used to define memory access
permissions (that is, privileged access only or full access) and memory attributes (to be buffered/cached) for
different memory regions.

• ARM MPU can support up to eight programmable memory regions, each with their own programmable
starting addresses, size, and settings.

• Using a Memory Protection Unit (MPU) can protect applications from many potential errors, ranging from
undetected programming errors to errors introduced by system or hardware failures.

Configuration details of the ARM MPU is outside the scope of this application project. For more information
for the ARM MPU operation and functionality, see the applicable Synergy MCU Hardware User’s Manual.

1.3.2 Bus Master MPU
Bus master MPU monitors the addresses accessed by the bus masters in the entire MCU address space
(0000 0000h to FFFF FFFFh). The access control information, consisting of read and write permissions, can
be independently set for up to 32 regions. The bus master MPU monitors access to each region based on
these settings.

• If access to a protected region is detected, the bus master MPU generates a reset or non-maskable
interrupt (NMI).

• There are three Bus master MPU groups

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 5 of 21
Oct.01.19

 DMA Bus (group A)
 ETHER Bus (group B)
 GPX Bus (group C)

• The secure MPU regions are protected from the bus masters.

Configuration details of the Bus Master MPU are outside the scope of this application project. For more
information on the Bus Master MPU operation and functionality, see the applicable Synergy MCU Hardware
User’s Manual.

1.3.3 Bus Slave MPU
Bus slave MPU monitors access to the bus slave functions, such as flash or SRAM. The function can be
accessed from four bus masters, the CPU, and bus master MPU groups A, B, and C as follows:

• Bus slave MPU has a separate protection register for each of the four bus masters, with independent
access protection control, consisting of read and write permission.

• If access to a protected region is detected, the bus slave MPU generates a reset or NMI, and can store
the bus error address, bus error status, and error access status.

Configuration details of the Bus Master MPU is outside the scope of this application project. For more
information for the Bus Master MPU operation and functionality, see the applicable Synergy MCU Hardware
User’s Manual.

1.3.4 Security MPU
Synergy MCUs incorporate a security MPU with four secured regions. The four secure regions include
individual areas in Code flash, SRAM, and two security function regions. These regions can only be
accessed by secure code. Secure regions are protected from unauthorized accesses by:

• A non-secure program
• Additional bus masters, such as DMA, DTC, and so on
• Debugger interface

This mechanism allows untrusted code to exist and operate alongside trusted code. The security MPU
settings are stored in flash and activated before fetching the reset vector.

For more details on the Security MPU, see the applicable Synergy MCU Hardware User’s Manual.

1.3.5 Flash Access Window
Flash Access Window (FAW) registers are used to set the code flash address range, which can be
erased/programmed. Addresses that are outside this range, referred to as outside the FAW, cannot be
modified once programmed. This feature is used to prevent the device identity (keys/certifications) from
being erased or reprogrammed.

The example application project provided with this package includes a code reference to configure the FAW
using APIs provided by SSP for the device identity use case. Users can also refer to Secure data in the rest
application project for additional use cases on the FAW configuration.

For more details on FAW, see the SSP User’s Manual link in the reference section.

Note: The FAW is set to the area of flash that can be written, so the area of memory that is LOCKED is the
inverse of the FAW address range.

One Time Programmable Setting
The FAW and MPU registers can be permanently set using the one-time programmable setting FSPR bit.
The FSPR bit must only be set once, when all the settings are confirmed, and the device is ready to leave
the production floor.

In use cases where the Renesas Secure Boot Manager is used, the FSPR settings are done in the boot
loader code. In this case, the application needs for allocating memory regions to securely store device
certificates/keys should be considered as part of Secure boot loader design.

It is important this bit is set to prevent the FAW and MPU registers themselves from being modified in the
field. For example, when using the Security MPU, set the FAW and FSPR bit to lock the MPU settings.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 6 of 21
Oct.01.19

1.3.6 Secure Crypto Engine Module
The Secure Crypto Engine (SCE) is a Synergy hardware peripheral that provides several security features,
NIST certified algorithms, and support for primitive cryptographic algorithms.

There are three variants of the security hardware peripherals available in Synergy MCUs, as shown in the
following figure.

• SCE 7
• SCE 5
• Security and Encryption

Figure 2. Security Hardware Peripherals Available in Synergy MCUs
The SCE engine Synergy devices provide is used by the example application project in the following areas:

• Generate ECC key pairs (public and wrapped private key)
• Sign the challenge string using the ECC private key

2. Overview of Key Generation in Synergy MCUs
2.1 Key Wrapping
Device keys generated inside the Synergy MCU using the SCE hardware module can be either in plain text
or wrapped.

Plaintext Keys
Plaintext refers to information or data in an unencrypted or unprotected form that is readable by a human or
a machine and can be used without the need for any special processing. Plaintext can be used on other
systems and must be protected when they are private keys.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 7 of 21
Oct.01.19

Wrapped Keys
A wrapped key is a key encrypted by the SCE using a method that involves the MCU's unique ID. Because it
requires the MCU's unique ID to unwrap the key, the key can only be unwrapped by the same MCU that
wrapped it. Therefore, key wrapping on Synergy MCUs is considered secure, as a wrapped key can only be
used on the Synergy MCU on which it was generated, and it cannot be used outside of that MCU.

Wrapped keys provide the following advantages:

• A wrapped key can only be used on the Synergy MCU on which it was generated.
• It cannot be moved to another Synergy MCU. If moved to another Synergy device, the original key cannot

be recovered from the wrapped key.

2.2 Key Generation in the Device
This is the common use case where the device specific key is generated inside the Synergy MCU using the
SCE module. To generate the device key using the SSP, the SF Crypto Key framework module is used.

The SF_CRYPTO_KEY Framework provides a high-level API. The framework is implemented as the
SF_CRYPTO_KEY SSP module. The SF_CRYPTO_KEY Framework provides cryptographic key generation
services through the SCE HAL module, which in turn drives the SCE IP on the device.

SF CRYPTO KEY Framework Module Features
The following key types can be generated using the services of the SF_CRYPTO_KEY module using SCE7
hardware:

• RSA 2048-bit, 1024-bit plain text/raw keys in standard, and Chinese Reminder Theorem (CRT) format
• RSA 2048-bit, 1024-bit standard format wrapped private keys (public keys in plain text)
• AES 128-bit, 192-bit and 256-bit wrapped keys for ECB, CBC, CTR and GCM chaining modes
• AES 128-bit and 256-bit wrapped keys for XTS chaining mode
• ECC 192-bit, 256-bit plain-text/raw public keys and wrapped private keys.

In this application, crypto HAL module is used to generate wrapped ECC keys. The reason the crypto HAL
module is used instead of SF_CRYPTO_KEY framework is that the device identity application can be used in
non-RTOS use cases, as well such as the Secure Boot Manager provided by Renesas.

2.3 Key Injection from Secure Infrastructure
Key Injection is a security feature that is meant for use cases where a key is generated external to the MCU
device in a secure facility and then injected into the MCU. In general, the RSA key generation takes more
time when generated inside the MCU compared to if it was generated external to the device (through a PC
tool) inside a secure facility.

If hardware-based unique identity is not a requirement for the application, and/or if it is necessary to securely
inject customer-specific keys, key injection can be utilized. This process will be covered by a separate
Application Project.

3. Device Identity Design Overview
In this section explains how Synergy hardware and software features are integrated to create a unique
device identity for each device.

Key Generation
The first step in creating a device identity is key generation. The keys can be either generated inside the
Synergy MCU or they can be generated outside in a secure facility and injected into the Synergy device.
Each methodology has its pros and cons on their approach. Based on the customer use case, the decision
must be made.

Certificate Authority (CA)
Once the device keys are generated/injected an entity issues the proper digital certificates. A CA can be
either public or private CA located in the Cloud or in an on-premises CA (local CA), which would typically be
hosted on a secure server.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 8 of 21
Oct.01.19

Securing Device Identity
Once the device identity is created and programmed on the Synergy device, it must be securely stored to
prevent being stolen or corrupted. This can be achieved by using the Security MPU and FAW features
offered by Synergy MCU. The features configure a portion of internal code flash as secure code and data
regions. The secure code region contains API functions that are only authorized to work on the secure data
region. The secure data region contains key information such as device certificates. This section cannot be
accessed or modified by any un-secure code running on the Synergy MCU.

The Security MPU settings are locked using the FAW feature (using one-time programmable FPSR bit)
before leaving the secure facility (programming center) to prevent them from being modified.

4. Device Identity Application Example
4.1 Overview
This example application project demonstrates the Renesas Synergy™ device identity application using the
onboard Synergy SCE modules. For demonstration purposes, this application uses a local Certificate
Authority (CA), The CA runs on a windows PC to generate a signing key and the root CA will be used to sign
the device certificate. This project will be upgraded later to use a third-party CA to generate the device
certificate. USB-CDC is used as the primary communication interface between the PK-S5D9/AE-CLOUD2 kit
and the host console application running on the Windows PC.

4.2 Software Architecture Overview
The following figure shows the overall software architecture of the Synergy device identity application project.

Figure 3. Synergy Device Identity Application Software Architecture

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 9 of 21
Oct.01.19

The major software components of this application are:

• USBX CDC Device framework
• r_sce crypto driver
• r_flash_hp flash driver

The application contains the following thread:

• Main Thread

Main Thread
This is the main control thread which handles the following functions:

1. Incoming/outgoing USB data using the USBX CDC Device framework.
2. Decodes the command and calls the appropriate command handler functions, which in turn handle the

corresponding command functionalities.

The following commands are handled by the Main Thread:

• WRAPPER_KEY_REQUEST
• WRAPPED_KEY_CERT_PROGRAM
• WRAPPED_KEY_CHALLENGE_RESP

WRAPPER_KEY_REQUEST
This command is handled by the following API function: handleHrkKeyCreation ()

This function handles the key generation using SSP Crypto modules. This application supports ECC Key pair
generation. The public/private key pairs generated in the application are wrapped. Once the key pair is
generated, the public key is sent to the host application to be used for the device certificate.

The wrapped private key is stored internally in the data flash that will later be used for signing the challenge
response.

WRAPPED_KEY_CERT_PROGRAM
This command is handled by the following API function: handleHrkCertProgram ()

This function handles programming the device certificate received from the host application into the secure
region of the internal code flash.

WRAPPED_KEY_CHALLENGE_RESP
This command is handled by the following API function: handleHrkCertChallengeResp ()

The intention of this challenge request is to allow the target to prove its ownership of the device private key
for the corresponding public key being certified.

This function handles the challenge response request sent by the host application. Once the request is
received, it signs the string sent as part of the request using the private key generated as part of
WRAPPER_KEY_REQUEST command. The signed string is sent back to the host application for
verification. Once the host application receives the signed string, it verifies the signature using the device
public key extracted from the device certificate. When the signature validation is successful, the host
application sends the device certificate to the device to be stored securely using Security MPU and FAW.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 10 of 21
Oct.01.19

4.3 Operational Overflow

Figure 4. Operational Overflow
This application project consists of two software projects:

• Embedded project running on the PK-S5D9/AE-CLOUD2 kit
• Host application running on Windows (7/10) PC.

On powering up the PK-S5D9/AE-CLOUD2 kit, the embedded software initializes the platform and the
underlying USB CDC stack that is used for communication with the host application running on Windows PC.
At end of initialization, the embedded software is waiting for the USB device connect event. Once the user
connects the kit to the Windows PC through USB cable, the USB device detection event is processed, and
the USB CDC instance is created. At this stage, the embedded software is waiting for the commands from
the host application.

When the user runs the host utility on the Windows PC, it scans the available COM ports and opens the port
to which the PK-S5D9/AE-CLOUD2 kit is connected. Once the COM port is opened successfully, it
generates a signing key and root CA certificate that will later be used to sign the device certificate. Now, the
host application generates the WRAPPER_KEY_REQUEST command and sends it to the kit. On receiving
this request, the embedded code running on the target kit generates device key pairs and sends out the
public key to the host application. On the host application, it receives the public key from the device,
generates a device certificate (signed by CA’s signing key).

Before issuing the device certificate, the host application issues a challenge string to the device to prove that
the device owns the private key. The embedded software, on receiving the challenge string, then signs it
using its private key and sends it back to the host application. The host application validates the signature
using the device public key and if the validation is successful, the device certificate is sent to the
PK-S5D9/AE-CLOUD2 kit to be securely stored using the Security MPU and FAW on the Synergy MCU.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 11 of 21
Oct.01.19

4.4 Securely Storing Device Identity
The following two unique device identities are created as part of this application:

• Wrapped ECC private key
• Device certificate

These two device identities need to be securely stored inside the Synergy MCU using the security MPU and
FAW to avoid being accessed and modified. The private key generated as part of this application is already
wrapped, so the step to securely store the device key can be skipped. However, in some cases, users prefer
to also store the wrapped key in a secure location to avoid being misused in the device. This can be done
using the same steps used to store the device certificate.

Following is the memory map of the current device identity application project.

Figure 5. Memory Map used in the Application Project
The left side of Figure 5 shows the memory layout of the code flash in this application project. The green
color denotes the area where the application resides, orange color denotes the area reserved for storing the
device certificate, and blue color denotes the area reserved for the secure code region that accesses the
secure data region.

As shown in the preceding memory map, the address region between 0x0 to 0x2000 contains the Security
MPU settings, and the address region from 0xFE000 (block aligned address boundary) contains secure data
and secure code that needs to be protected from being erased by the user application. To achieve this
protection, the FAW is configured to protect the memory regions 0x2000 to 0xFE000. By setting the FAW
start address to 0x2000 and the end address to 0xFE000, the sections outside these address regions are
protected from being modified. See the flash_FAW_Set() API found in the file,
Synergy_Device_Identity_Solution\embedded\common\src\framedProtocolTarget.c file. This file implements
the FAW settings.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 12 of 21
Oct.01.19

The right side of Figure 5 shows the SRAM region memory map in this application project. The SSP flash
driver module (r_flash_hp) is mapped to the bottom portion of the SRAM that has been configured as a
secured SRAM region. This region is needed to allow the flash driver to erase and program the secure data
region while loading the device certificate.

See the linker script associated with the example application project to see how these secured
data/code/SRAM regions are allocated and mapped. Also see the Synergy configurator settings as shown in
Figure 6 for details on how to configure a region in internal code flash as a secure region. The user can use
this example as a reference in their design when allocating a specific region in code flash/SRAM as a
secured location for storing the device identities and other application specific modules, such as protected IP
or third-party licensed FW, and so on.

Figure 6. Security MPU settings using e2 studio ISDE Configurator

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 13 of 21
Oct.01.19

5. Running the Device Identity Application Example
5.1 Importing, Building, and Running the Project for e2 studio
The embedded projects are included in the folder Synergy_Device_Identity_Solution\embedded.
The following instructions will show the user how to import these projects in their e2 studio workspace.

1. In e2 studio ISDE, select File -> Import… -> Existing Projects into Workspace and browse to the
above folder in the Select Root Directory section:

Figure 7. Importing the Project

2. Select to import all projects as shown in the following figure. DO NOT CHECK the “Copy projects into
workspace” box.

Figure 8. Selection for Importing All Projects

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 14 of 21
Oct.01.19

5.2 Powering up the Board
To connect power to the board, use the following instructions.

1. Connect the micro USB end of the supplied USB cable to the PK-S5D9 board J19 connector
(DEBUG_USB) or AE-CLOUD2 board J6 connector (DEBUG_USB).

Note: The kit contains a SEGGER J-Link® On-board (OB). J-Link provides full debug and programming for

the PK-S5D9/AE-Cloud2 board.

2. Connect the other end of the USB cable to the USB port on the workstation.

5.3 Debugging using ITM printf
In the embedded application project given in this package, there are number of printf () statements to
output information about the system. Rather than using the “Renesas Debug Console” in e2 studio that uses
semi-hosted printf which is intrusive into the Synergy processor’s real-time execution, the project is set up to
use printf via SWO. The output of the SWO printf can be captured and viewed directly within e2 studio using
the “Live Trace Console” window. However, the “Live Trace Console” has poor performance when capturing
printf output, as every packet (that is, character) that is captured from SWO is time-stamped and saved into a
trace file in the project. Instead, the SWO Viewer shipped with the JLink software tools can be used to
display the output of the SWO printf and with much better performance.

5.4 Verifying the Demonstration
At this stage, it is assumed section 5.1 was used to import, build, and load the application project into the
target kit. If not, go back to section 5.1 and follow the instructions before continuing this section.

1. Start a debug session for the e2 studio project and run to main ().

2. Run the JLink SWO viewer found under C:\Program Files (x86)
\SEGGER\JLink_V632f\JLinkSWOViewer.exe.

3. In the configuration dialog box, choose the device as R7FS5D97E, click the Measure button, then
replace the CPU clock (kHz) with 60000.

Note: The JLINK tool used in this application is v6.32f. It is recommended to use JLINK tool v6.32f or

greater.

4. Click OK. Ensure port 0 is selected as the data source.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 15 of 21
Oct.01.19

5. Resume execution of the project. The output from the SWO printf can be seen in the SWO viewer.

Figure 9. Welcome Message on SWO Viewer

6. Now, connect one end of a micro USB cable to the USB device port on the target kit. Connect the other
end to the window PC.

7. Use the following link for steps to load the Synergy USB CDC Communication driver for Windows (7/10)
PC: renesas.com/en-us/products/synergy/software/add-ons/usb-cdc-drivers.html.

The target kit displays as the Synergy USB Communication Port in the Device Manager. Make a note of
the COM port number of the target kit from the device manager.

8. In the SWO viewer, the following messages display on the console, indicating that the USB CDC
instance is created and it is ready for the host application.

9. Now, run the host application on the windows PC. To run the application, open the command window in
the windows PC and navigate to the folder where this application project is stored. The deploy.exe file is
located in the Synergy_Device_Identity_Solution\pc\apps\deploy\Release directory.

10. To run the host application, type the following command on the command window:
 deploy.exe connect <COM port Number>

https://www.renesas.com/en-us/products/synergy/software/add-ons/usb-cdc-drivers.html

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 16 of 21
Oct.01.19

Figure 10. Host application console messages
Notice the console messages from the host application shown above with the following console message on
the SWO viewer.

Figure 11. Console Messages on Target Kit
At this stage, the host application starts communicating with the target through the USB-CDC communication
interface. User application does the following tasks as shown in section 4.3:

1. Scans for the USB COM port provided by the user. If found, it opens the serial connection.
2. On successful serial connection, it issues the Generate Key Command to the target kit.
3. On the device side, the ECC key pairs are generated using SCE crypto modules. The public key is sent

back to the host application.
4. The host application creates root CA and signing key to be used to sign the device certificate at the latter

stage.
5. Generates a challenge/response string and sends it to the target kit.
6. On successful challenge/response, the host application signs and sends the device certificate to the

device.
7. The device certificate is securely stored in the internal code flash and protected by Security MPU and

FAW.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 17 of 21
Oct.01.19

6. Importing and Building the Project: IAR Embedded Workbench
Follow the steps in the enclosed r11an0023eu0121-synergy-ssp-import-guide.pdf to import the project
Synergy_DeviceID_PK_S5D9 in IAR EW for Renesas Synergy™.

Figure 12. Successful import screen

7. Adding Required Files
Using the File Explorer, locate where the original application program folder is located and copy the project
related common files to Synergy\Source Files\src folder.

• Copy the framedProtocolCommon.c file from
Synergy_Device_Identity_Solution\common\src to the top-level src folder.

• Copy the flash.c file from Synergy_Device_Identity_Solution\embedded\common\src to
top-level src folder.

• Copy the framedProtocolTarget.c file from
Synergy_Device_Identity_Solution\embedded\common\src to top-level src folder.

Note: Files can also be added through a right-click on the src folder (in IAR project workspace) and select

Add ->Add files select the files from the aforementioned paths.

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 18 of 21
Oct.01.19

8. Building and Running the Project

Figure 13. Successful build message

9. Device Identity Application Next Steps
This section provides a high-level overview of phase 2 features planned for device identity application.

Support for Third-party CA
In phase 1, the application project uses local CA running on a windows PC to create a self-signed root
certificate, generating a device certificate signed by the local CA’s signing key. In phase 2, an update the
application project is planned that uses a standard third-party CA to generate the device certificate.

As part of this feature, we are planning to create a generic interface that can allow plugging in another CA
seamlessly.

Support for interface to cloud providers (AWS, Google, Azure)
Current phase of Synergy Cloud connectivity solutions for AWS/Google Cloud/Azure uses the device keys
and certificates generated by the Cloud CA. These projects will be updated to use the Renesas supported
third-party CA for generating device identities.

Support for interface to SBM
After adding the support for standard third-party CA, this feature will be integrated with the existing Synergy
Secure Boot Manager.

Support for Key injection
Key Injection is a security feature that is meant for use cases where a key is generated external to the MCU
device in a secure facility and then injected into the MCU. This support will be documented separately.

10. References
• SSP User Manual (renesassynergy.com/ssp)
• Secure Boot Manager Application Project (renesas.com/us/en/software/D6002619.html)
• Secure Data-at-rest application

http://renesassynergy.com/ssp
https://www.renesas.com/us/en/software/D6002619.html

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 19 of 21
Oct.01.19

11. Known Issues and Limitations
The host application is tested only on Windows (7/10) PC.

12. Appendix
12.1 Glossary

Term Meaning
Certificate Authority (CA) An entity that issues digital certificates according to policy-based rules. A CA

could be public or private, located in the Cloud, or in the case of an on-
premises CA, typically hosted on a secure appliance.

Device Certificate Certificate uniquely identifying an individual Synergy device. It is digitally
signed, asserting that the certificate comes from a known source and has not
been modified, and that the device is trusted (has the Secure Boot Manager
installed along with trusted application firmware).

Root of Trust Roots of trust are highly reliable hardware, firmware, and software
components that perform specific, critical security functions.
(https://csrc.nist.gov/projects/hardware-roots-of-trust)

SCE Secure Crypto Engine – A module in the MCU that provides for efficient, low-
power cryptographic acceleration TRNG (True Random Number Generation)
and creation and isolation of isolating cryptographic keys.

PKI Public Key Infrastructure – A set of roles, policies, and procedures needed to
create, manage, distribute, use, store, and revoke digital certificates, which
are typically used to manage secure identity via public key cryptography.

Key Pair Asymmetric keys are generated in pairs – a public and private key. The
private key is held in secret by only one party and can be used to assert that
party’s identity. The public key is freely distributed and is uniquely associated
with the private key.

 Secure Code A function or group of functions that reside in a secure region of internal
flash, as defined and enforced by the MPUs. These secure functions can
access both secure data and non-secure data regions.

Non-Secure code A function or group of functions which resides in a non-secure region of
internal flash. These non-secure codes cannot access the secure region.
They can only access the non-secure region.

HRK Hidden Root Key. This is a unique key stored inside the Synergy MCU.
SBM Secure Boot Manager is a collection of software that allows secure

download, booting, and update of the application binaries on the Synergy
MCU.

Challenge String Randomly generated string at the host application. This string is used by the
host application to validate the ownership of the private key by the target.

Unique ID An identification value, unique to each individual Synergy MCU, that is
stored inside the Synergy MCU. The unique ID is used by the SCE when it
wraps a key.

Challenge Response
String

The response to the challenge string. The Challenge Response String is the
signature of the challenge data as created by signing the Challenge String
with the receiver's private key.

https://csrc.nist.gov/projects/hardware-roots-of-trust

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 20 of 21
Oct.01.19

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform Synergy Device Identity Application

R11AN0348EU0102 Rev. 1.02 Page 21 of 21
Oct.01.19

Revision History

Rev. Date
Description
Page Summary

1.00 Oct.24.18 — Initial Release
1.01 Mar.27.19 1 Specified developers of applications with SCE modules using

Renesas Synergy™S5D9, S5D5, and S5D3 MCUs as
audience.

1.02 Oct.01.19 1,
18-19

Updated development tool and software versioning.
Added chapters 6, 7, 8.

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to IoT Security
	1.1 Overview
	1.2 Importance of Device Identity in an IoT Ecosystem
	1.3 Synergy Hardware Security Features
	1.3.1 ARM MPU
	1.3.2 Bus Master MPU
	1.3.3 Bus Slave MPU
	1.3.4 Security MPU
	1.3.5 Flash Access Window
	1.3.6 Secure Crypto Engine Module

	2. Overview of Key Generation in Synergy MCUs
	2.1 Key Wrapping
	2.2 Key Generation in the Device
	2.3 Key Injection from Secure Infrastructure

	3. Device Identity Design Overview
	4. Device Identity Application Example
	4.1 Overview
	4.2 Software Architecture Overview
	4.3 Operational Overflow
	4.4 Securely Storing Device Identity

	5. Running the Device Identity Application Example
	5.1 Importing, Building, and Running the Project for e2 studio
	5.2 Powering up the Board
	5.3 Debugging using ITM printf
	5.4 Verifying the Demonstration

	6. Importing and Building the Project: IAR Embedded Workbench
	7. Adding Required Files
	8. Building and Running the Project
	9. Device Identity Application Next Steps
	10. References
	11. Known Issues and Limitations
	12. Appendix
	12.1 Glossary

	Revision History

