Specifications: Analog I/O Modules

Chapter

In This Chapter...

Analog I/O Modules Overview 6-2
Analog Input Modules 6-2
Analog Output Modules 6-3
Analog Input/Output Module. 6-3
How to Access the Analog I/O Modules 6-4
F2-04AD-1(L) Analog Input 6-6
Setting the Module Jumpers 6-7
F2-04AD-1(L) Addressing 6-8
F2-04AD-2(L), Analog Input 6-9
Setting the Module Jumpers 6-10
F2-04AD-2(L) Addressing 6-11
F2-08AD-1, Analog Input 6-12
Setting the Module Jumpers 6-13
F2-08AD-1 Addressing 6-14
F2-08AD-2, Analog Input 6-15
Setting the Module Jumpers 6-16
F2-08AD-2 Addressing 6-17
F2-04RTD 6-18
Setting the Module Jumpers 6-19
F2-04RTD Addressing 6-21
F2-04THM 6-22
Setting the Module Jumpers 6-24
F2-02DA-1(L), Analog Output 6-28
F2-02DA-2(L), Analog Output 6-30
Unipolar Ranges 6-33
Bipolar Ranges. 6-33
F2-02DAS-1, Analog Output 6-34
F2-02DAS-2, Analog Output 6-36
Setting the Module Jumpers 6-37
F2-08DA-1, Analog Output 6-39
F2-08DA-2, Analog Output 6-41
Setting the Module Jumpers. 6-42
F2-4AD2DA, Analog Input/Output 6-44
Input. 6-46
Output 6-46
F2-8AD4DA-1 Analog Input/Output 6-47
Input 6-50
Output 6-50
Input Configuration Using Do-more Designer Version 1.1 or Newer 6-51
Input Resolution Selection (WYn+4) 6-52
Input Track and Hold Selection (WYn+6) 6-53
F2-8AD4DA-2 Analog Input/Output 6-54
Input Configuration Using Do-more Designer Version 1.1 or Newer 6-58
Input Resolution Selection (WYn+4) 6-59
Input and Output Range Selection (WYn+5) 6-60
Input Track and Hold Selection (WYn+6) 6-61

Analog I/O Modules Overview

There are 19 analog I/O modules that can be used in local and remote I/O bases. The specifications and wiring diagrams for these modules are found in this chapter. Each analog I/O module is identified as an "Input", "Output", or "Input/Output" module using the color coding scheme shown below. A blue bar on the front panel signifies an Input I/O module, a red bar signifies an Output I/O module and a white bar signifies a combination Input/Output module.

Analog Input Modules

Analog Input Modules			
Part Number	Number of Channels	Description	See Page
F2-04AD-1	4	Analog Current Input	$6-6$
F2-04AD-2	4	Analog Voltage Input	$6-9$
F2-08AD-1	8	Analog Current Input	$6-12$
F2-08AD-2	8	Analog Voltage Input	$6-15$
F2-04RTD	4	RTD	$6-18$
F2-04THM	4	Thermocouple	$6-22$

Analog I/O Modules Overview - continued

Analog Output Modules

Analog Input/Output Module

Analog I/O Modules Overview- continued

How to Access the Analog I/O Modules

With the Do-more PLC, the WX and WY memory addresses are assigned to exchange analog data with the analog I/O modules. (WX = Analog input data, WY = Analog output data and setup data) X addresses are also assigned to some analog I/O modules to indicate the status of those analog I/O modules.
The following table shows how many X, WX and WY addresses are assigned to each analog I/O module type.

Analog Input/Output Module Addressing				
Part Number	Module ID	\mathbf{X}	WX	WY
F2-04AD-1	$0 \times 3 E$	8	4	-
F2-04AD-2	$0 \times 3 \mathrm{E}$	8	4	-
F2-08AD-1	$0 \times 3 \mathrm{~B}$	8	8	-
F2-08AD-2	$0 \times 3 B$	8	8	-
F2-04RTD	$0 \times 3 C$	8	4	-
F2-04THM	$0 \times 3 C$	8	4	-
F2-02DA-1(L)	$0 \times 3 F$	-	-	2
F2-02DA-2(L)	$0 \times 3 F$	-	-	2
F2-02DAS-1	$0 \times 4 \mathrm{E}$	-	-	2
F2-02DAS-2	$0 \times 4 \mathrm{E}$	-	-	2
F2-08DA-1	$0 \times 4 F$	-	-	8
F2-08DA-2	$0 \times 4 F$	-	-	8
F2-4AD2DA	$0 \times 3 D$	8	4	2
F2-8AD4DA-1	0×37	8	8	7
F2-8AD4DA-2	0×37	8	8	7

Analog I／O Modules Overview－continued

You can check which X, WX and WY addresses are assigned to each analog I／O module in the I／O Mapping tab of the System Configuration window，as shown below．

Select the pull－down menu PLC＞System Configuration to open the System Configuration window and click the I／O Mapping tab．

PLC	Debug Window Help
闌	Connect．．．
－	Disconnect．．．
包	Re－open Session．．．
－	Link Setup．．．
＊	Tools．．．
\％	Device List．．．
加	Program Check．．．
目	PLC Modes．．．Ctrl＋Shift＋R
4	System Information．．．
XY	System Configuration．．．
	Memory Configuration．．．

F2-04AD-1(L) Analog Input

F2-04AD-1(L) 4-Channel Analog Gurrent In	
Number of Channels	4, single ended (1 common)
Input Ranges	4-20mA current
Resolution	12-bit (1 in 4096)
Active Low-pass Filtering	-3 dB at $120 \mathrm{~Hz}, 2$ poles (-12dB per octave)
Input Impedance	$250 \Omega \pm 0.1 \%, 1 / 2 \mathrm{~W}$ current input
Absolute Maximum Ratings	-40mA to +40mA, current input
Converter Type	Successive approximation
Conversion Time (PLC Update Rate)	4 channels per scan maximum
Linearity Error (End to End)	± 1 count (0.025\% of full scale) maximum
Input Stability	± 1 count
Full Scale Calibration Error (not incl. offset error)	± 12 counts max, @ 20mA current input
Offiset Calibration Error	± 7 counts max,.@ 4mA current input
Step Response	F2-04AD-1: 4.9 ms to 95% of F.S. change F2-04AD-1L: 4ms to 95% of .S. change
Maximum Inaccuracy	$\pm 0.5 \%$ @ $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ $\pm 0.65 \% 32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Accuracy vs Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale (Including max. offset change)

Recommended Fuse	0.032 A , Series 217 fast-acting, current inputs
Base Power	F2-04AD-1: 100mA
Required 5 VDC	F2-04AD-1L: 50 mA
External Power Supply	F2-04AD-1: 5 mA maximum, +10 to +30 VDC F2-04AD-1L: 90mA maximum, +10 to +15 VDC
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $60^{\circ} \mathrm{C}$)
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95\% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304
Terminal Type (included)	Removable; D2-810CON
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	$\begin{aligned} & \text { ZL-D2-CBL10 (0.5 m) } \\ & \text { ZL-D2-CBL10-1 }(1.0 \mathrm{~m}) \end{aligned}$
	ZL-D2-CBL10-2 (2.0 m)

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).
Note 1: Shields should be grounded at the signal source.

More than one external power supply can be used provided all the power supply commons are connected. A Series 217, 0.032A, fast-acting fuse is recommended for $\mathbf{4 - 2 0 ~ m A ~ c u r r e n t ~ l o o p s . ~ I f ~ t h e ~ p o w e r ~ s u p p l y ~ c o m m o n ~ o f ~ a n ~ e x t e r n a l ~ p o w e r ~ s u p p l y ~ i s ~ n o t ~ c o n n e c t e d ~ t o ~} 0$ VDC on the module, then the output of the external transmitter must be isolated. To avoid "ground loop" errors, recommended 4-20 mA transmitter types are: 2 or $\mathbf{3}$ wire - Isolation between input signal and power supply or $\mathbf{4}$ wire - Isolation between input signal, power supply, and 4-20 mA output.

F2-04AD-1(L), Analog Input - continued

Setting the Module Jumpers

There are two channel selection jumpers, labeled +1 and +2 , that are used to select the number of channels that will be used. See the figure below to find the jumpers on your module. The module is set from the factory for four channel operation. Any unused channels are not processed, so if you only select channels 1 thru 3, channel 4 will not be active. The following table shows how to use the jumpers to select the number of channels. Unused jumpers can be stored on a single post to prevent losing them.

$$
\text { Yes }=\text { Jumper Installed } \quad N o=\text { Jumper Removed }
$$

F2-04AD-1(L) Modiule Jumper Table			
Number of Channels	Active Channels	$\mathbf{+ 1}$	$\mathbf{+ 2}$
One	Channel 1	No	No
Two	Channels 1 and 2	Yes	No
Three	Channels 1, 2 and 3	No	Yes
Four	Channels 1, 2, 3 and 4	Yes	Yes

Jumper Location on Modules Having Date Code 0609F3 and Previous
(Two Circuit Board Design)

Jumper Location on Modules Having Date Code 0709G and Above
(Single Circuit Board Design)

F2-04AD-1(L), Analog Input - continued

F2-04AD-1 (L) Addressing

The Do-more CPU module assigns the following memory addresses to this module.

F2-04AD-1(L) X Addressing	
Address	Description
$X \boldsymbol{n}$	On when the external 24VDC input power is missing or terminal block is removed.
$X n+\mathbf{1}$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 2 input is not used)
$X n+\mathbf{2}$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 3 input is not used)
$X n+\mathbf{3}$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 4 input is not used)
$X n+\mathbf{4}$	Not used
$X n+\mathbf{5}$	Not used
$X n+6$	Not used
$X n+\mathbf{7}$	Not used

Xn: Starting X address assigned to this module

F2-04AD-1(L) WX Addiressing	
Address	Description
$W X \boldsymbol{n}$	Channel 1 Input Data (0 to 4095)
$W X_{n+1}$	Channel 2 Input Data (0 to 4095)
$W X n+2$	Channel 3 Input Data (0 to 4095)
$W X n+3$	Channel 4 Input Data (0 to 4095)

WXn: Starting WX address assigned to this module

F2-04AD-2(L), Analog Input

F2-04AD-2(L) 4-Channel Analog Voltage in	
Number of Channels	4, single ended (1 common)
Input Ranges	0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{VDC}$
Resolution	12 bit (1 in 4096) uni-polar 13 bit (1 in 8191) bi-polar
Active Low-pass Filtering	-3 dB at $80 \mathrm{~Hz}, 2$ poles (-12 dB per octave)
Input Impedance	$>20 \mathrm{M} \Omega$
Absolute Maximum Ratings	-75 to +75 VDC
Converter Type	Successive approximation
Conversion Time (PLC Update Rate)	4 channels per scan maximum
Linearity Error (End to End)	± 1 count (0.025% of full scale) maximum ± 2 counts maximum (bi-polar)
Input Stability	± 1 count
Full Scale Calibration Error (not incl. offset error)	± 3 counts maximum
Offset Calibration Error	± 1 count maximum (0V input)
Step Response	F2-04AD-2: 8.2 ms to 95% of F.S change F2-04AD-2L: 10 ms to 95% of $\mathrm{F} . \mathrm{S}$ change

Maximum Inaccuracy	$\begin{aligned} & \pm 0.1 \% @ 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right) \\ & \pm 0.3 \% 32^{\circ} \text { to } 140^{\circ} \mathrm{F}\left(0^{\circ} \text { to } 60^{\circ} \mathrm{C}\right) \end{aligned}$
Accuracy vs. Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ full scale calibration change (Including maximum offset change)
Base Power Required 5VDC	$\begin{aligned} & \text { F2-04AD-2: } 110 \mathrm{~mA} \\ & \text { F2-04AD-2L: } 60 \mathrm{~mA} \end{aligned}$
External Power Supply	F2-04AD-2: 5mA maximum, +10 to +30 VDC $\begin{aligned} & \text { F2-04AD-2L: } 90 \mathrm{~mA} \text { maximum, } \\ &+10 \text { to }+15 \mathrm{VDC}\end{aligned}$
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0\right.$ to $60^{\circ} \mathrm{C}$)
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95\% (Non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304
Terminal Type (included)	Removable; D2-810CON
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	$\begin{aligned} & \text { ZL-D2-CBL10 }(0.5 \mathrm{~m}) \\ & \text { ZL-D2-CBL10-1 }(1.0 \mathrm{~m}) \end{aligned}$
	ZL-D2-CBL10-2 (2.0 m)

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).
Note 1: Shields should be grounded at the signal source.
Note 2: Unused inputs should be jumpered together (i.e. CH4- to CH4+).

Note 3: More than one external power supply can be used provided the commons are connected together.

F2-04AD-2(L), Analog Input - continued

Setting the Module Jumpers

There are two channel selection jumpers, labeled +1 and +2 , that are used to select the number of channels that will be used. See the figure below to find the jumpers on your module. The module is set from the factory for four channel operation. Any unused channels are not processed, so if you only select channels 1 thru 3, channel 4 will not be active. The following table shows how to use the jumpers to select the number of channels. Unused jumpers can be stored on a single post to prevent losing them.

Yes $=$ Jumper Installed $\quad N o=$ Jumper Removed

F2-04AD-2(L) Module Jumper Table			
Number of Channels	Active Channels	$\mathbf{+ 1}$	$\mathbf{+ 2}$
One	Channel 1	No	No
Two	Channels 1 and 2	Yes	No
Three	Channels 1, 2 and 3	No	Yes
Four	Channels 1, 2, 3 and 4	Yes	Yes

Jumper Location on Modules Having Date Code 0609F3 and Previous
(Two Circuit Board Design)

Install J3 for 0-5V or $\pm 5 \mathrm{~V}$ operation.

Remove or store on single pin for $0-10 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ operation.

Jumper Location on Modules Having Date Code 0709G and Above
(Single Circuit Board Design)

As seen above, there is also one input signal range jumper, labeled J 2 or J3, that is used to select between the 5 V and 10 V signal ranges. The module is set from the factory for 10 V operation (jumper not installed).

F2-04AD-2(L), Analog Input - continued

F2-04AD-2(L) Addressing

The Do-more CPU module assigns the following memory addresses to this module.

F2-04AD-2(L) X Addressing	
Address	Description
$X n$	On when the external 24VDC input power is missing or terminal block is removed.
X_{n+1}	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 2 input is not used)
$X n+2$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 3 input is not used)
$X n+3$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 4 input is not used)
$X n+4$	Not used
$X n+5$	Not used
$X n+6$	Not used
$X n+7$	Not used

Xn: Starting X address assigned to this module

F2-04AD-2(L) WX Addressing	
Address	Description
$W X \boldsymbol{n}$	Channel 1 Input Data (0 to 4095 or -4095 to 4095)
$W X n+\mathbf{1}$	Channel 2 Input Data (0 to 4095 or -4095 to 4095)
$W X n+\mathbf{2}$	Channel 3 Input Data (0 to 4095 or -4095 to 4095)
$W X n+\mathbf{3}$	Channel 4 Input Data (0 to 4095 or -4095 to 4095)

wXn: Starting WX address assigned to this module

0 V to 5 V

Value in WX address

0 V to 10 V

Value in WX address
-5 V to 5 V

-10 V to 10 V

F2-08AD-1, Analog Input

F2-08AD-1 8-Ghannel Analog Gurrent In	
Number of Channels	8 , single e eded (1 common)
Input Ranges	4 to 20mA current
Resolution	12 bit (1 in 4096)
Low-pass Filtering	-3 dB at 200 Hz, (-6 dB per octave)
Input Impedance	$250 \Omega \pm 0.1 \%, 1 / 2 W$ current input
Absolute Maximum Ratings	-45mA to +45mA
Converter Type	Successive approximation
Conversion Time (PLC Update Rate)	8 channels per scan maximum
Linearity Error (End to End)	± 1 count ($(0.025 \%$ of full scale) maximum
Input Stability	± 1 count
Full Scale Calibration Error (Offset error not included)	± 5 counts max, © 20mA current input
Offset Calibration Error	± 2 counts max., @ 4mA current input
Step Response	$1 \mathrm{~ms} \mathrm{to} \mathrm{95} \mathrm{\%} \mathrm{of} \mathrm{F.S}$.
Maximum Inaccuracy	$\pm 0.1 \% @ 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ $+0.25 \% 32^{\circ}$ to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Accuracy vs Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale (Including max. offset change of two counts)

Recommended Fuse	0.032 A, Series 217 fast-acting, current inputs
Base Power Required 5VDC	100mA
External Power Supply	5 mA maximum, +10 to +30 VDC
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95\% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304
Terminal Type (included)	Removable; D2-810CON
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	ZL-D2-CBL10 (0.5 m) ZL-D2-CBL10-1 (1.0 m) ZL-D2-CBL10-2 (2.0 m)

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).
Note 1: Shields should be grounded at the signal source.

More than one external power supply can be used provided all the power supply commons are connected. A Series 217, 0.032A, fast-acting fuse is recommended for $\mathbf{4 - 2 0} \mathrm{mA}$ current loops. If the power supply common of an external power supply is not connected to 0 VDC on the module, then the output of the external transmitter must be isolated. To avoid "ground loop" errors, recommended 4-20 mA transmitter types are: 2 or $\mathbf{3}$ wire - Isolation between input signal and power supply or 4 wire - Isolation between input signal, power supply, and 4-20 mA output

F2-08AD-1, Analog Input - continued

Setting the Module Jumpers

There are three channel selection jumpers, labeled $+1,+2$, and +4 , that are used to select the number of channels that will be used. See the figure below to find the jumpers on your module. The module is set from the factory for eight channel operation (all three jumpers installed). Any unused channels are not processed, so if you only select channels 1 thru 3, channels 4 thru eight will not be active. The following table shows how to use the jumpers to select the number of channels. Unused jumpers can be stored on a single post to prevent losing them.

Yes $=$ Jumper Installed \quad No = Jumper Removed				
F2-08AD-1 Module Jumper Table				
Number of Channels	Active Channels	+1	+2	+4
One	Channel 1	No	No	No
Two	Channels 1-2	Yes	No	No
Three	Channels 1-3	No	Yes	No
Four	Channels 1-4	Yes	Yes	No
Five	Channels 1-5	No	No	Yes
Six	Channels 1-6	Yes	No	Yes
Seven	Channels 1-7	No	Yes	Yes
Eight	Channels 1-8	Yes	Yes	Yes

Jumper Location on Modules Having Date Code 0609B5 and Previous
(Two Circuit Board Design)

Jumper Location on Modules Having Date Code 0709C1 and Above
(Single Circuit Board Design)

F2-08AD-1, Analog Input - continued

F2-08AD-1 Addressing

The Do-more CPU module assigns the following memory addresses to this module.

F2-08AD-1 X Addressing	
Address	Description
Xn	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed.
$X n+1$	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 2 input is not used)
$X n+2$	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 3 input is not used)
$X n+3$	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 4 input is not used)
$X n+4$	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 5 input is not used)
$X n+5$	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 6 input is not used)
$X n+6$	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 7 input is not used)
$X n+7$	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 8 input is not used)

Xn: Starting X address assigned to this module

F2-08AD-1 WX Addressing

Address	Description
WXn	Channel 1 Input Data (0 to 4095)
$W X{ }^{\text {W }}+1$	Channel 2 Input Data (0 to 4095)
WXn+2	Channel 3 Input Data (0 to 4095)
WXn+3	Channel 4 Input Data (0 to 4095)
$W X n+4$	Channel 5 Input Data (0 to 4095)
WXn+5	Channel 6 Input Data (0 to 4095)
WXn+6	Channel 7 Input Data (0 to 4095)
$W X{ }^{1}+7$	Channel 8 Input Data (0 to 4095)

$W X n$: Starting $W X$ address assigned to this module

F2-08AD-2, Analog Input

F2-08AD-2 8-Channel Analog Voltage In	
Number of Channels	8 , single ended (1 common)
Input Ranges	0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{VDC}$
Resolution	12 bit (1 in 4096) uni-polar 13 bit (1 in 8191) bi-polar
Active Low-pass Filtering	$\begin{aligned} & -3 \mathrm{~dB} \text { at } 200 \mathrm{~Hz}, \\ & (-6 \mathrm{~dB} \text { per octave }) \end{aligned}$
Input Impedance	>20M Ω
Absolute Maximum Ratings	-75 to +75VDC
Converter Type	Successive approximation
Conversion Time (PLC Update Rate)	8 channels per scan maximum
Linearity Error (End to End)	± 1 count (0.025% of full scale) maximum
Input Stability	± 1 count
Full Scale Calibration Error (not incl. offset error)	± 3 counts maximum
Offset Calibration Error	± 1 count maximum (0V input)
Step Response	$1 \mathrm{~ms} \mathrm{to} \mathrm{95} \mathrm{\%} \mathrm{of} \mathrm{F.S}$.
Maximum Inaccuracy	$\begin{aligned} & \pm 0.1 \% @ 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right) \\ & \pm 0.3 \% 32^{\circ} \text { to } 140^{\circ} \mathrm{F}\left(0^{\circ} \text { to } 60^{\circ} \mathrm{C}\right) \end{aligned}$
Accuracy vs. Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale (Including max. offset change of 2 counts)

Base Power Required SVDC	100 mA
External Power Supply	5 mA maximum, +10 to +30 VDC
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Temperature	-4^{4} to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810 C 514.2
Shock	MIL STD 810 C 516.2
Noise Immunity	NEMA ICS3-304
Terminal Type (included)	Removable; D2-810con
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	ZL-D2-CBL10 (0.5 m)
ZL-D2-CBL10-1 $(1.0 \mathrm{~m})$	
ZL-D2-CBL10-2 (2.0 m)	

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096). Includes circuitry to automatically detect broken or open transmitters.

Note 1: Shields should be grounded at the signal source.
Note 2: Connect all external power supply commons.
Note 3: Connect unused channels (CH5+, CH6+, CH7+, CH8+ in this example) to OVDC.

F2-08AD-2, Analog Input - continued

Setting the Module Jumpers

There are three channel selection jumpers, labeled $+1,+2$, and +4 , that are used to select the number of channels that will be used. See the figure below to find the jumpers on your module. The module is set from the factory for eight channel operation (all three jumpers installed). Any unused channels are not processed, so if you only select channels 1 thru 3, channels 4 thru eight will not be active. The following table shows how to use the jumpers to select the number of channels. Unused jumpers can be stored on a single post to prevent losing them.

Yes $=$ Jumper Installed \quad No $=$ Jumper Removed
F2-08AD-2 Module Jumper Table

Number of Channels	Active Channels	$\mathbf{+ 1}$	$\mathbf{+ 2}$	$\mathbf{+ 4}$
One	Channel 1	No	No	No
Two	Channels $1-2$	Yes	No	No
Three	Channels $1-3$	No	Yes	No
Four	Channels $1-4$	Yes	Yes	No
Five	Channels $1-5$	No	No	Yes
Six	Channels $1-6$	Yes	No	Yes
Seven	Channels $1-7$	No	Yes	Yes
Eight	Channels $1-8$	Yes	Yes	Yes

Jumper Location on Modules Having Date Code 0609D4 and Previous
(Two Circuit Board Design)

Install J3 for 0-5V or $\pm 5 \mathrm{~V}$ operation. Remove or store on single pin for

Channel enable/disable jumpers
Jumper Location on Modules Having Date Code 0709E1 and Above
(Single Circuit Board Design)

As seen above, there is another jumper labeled J 3 that is used to select between the 5 V and 10 V signal ranges. The module is set from the factory for 10 V operation (jumper not installed).

F2-08AD-2, Analog Input - continued

F2-08AD-2 Addressing

The Do-more CPU module assigns the following memory addresses to this module.

F2-08AD-2 X Addressing	
Address	Description
$X n$	On when the external 24VDC input power is missing or terminal block is removed.
$X n+1$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 2 input is not used)
$X n+2$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 3 input is not used)
$X n+3$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 4 input is not used)
$X n+4$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 5 input is not used)
$X n+5$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 6 input is not used)
Xn+6	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 7 input is not used)
$X n+7$	On when the external 24VDC input power is missing or terminal block is removed. (This address stays off if Channel 8 input is not used)

Xn: Starting X address assigned to this module

F2-08AD-2 WX Addressing	
Address	Description
WXn	Channel 1 Input Data (0 to 4095 or -4095 to 4095)
WXn+1	Channel 2 Input Data (0 to 4095 or -4095 to 4095)
WXn+2	Channel 3 Input Data (0 to 4095 or -4095 to 4095)
WXn+3	Channel 4 Input Data (0 to 4095 or -4095 to 4095)
WXn+4	Channel 5 Input Data (0 to 4095 or -4095 to 4095)
WXn+5	Channel 6 Input Data (0 to 4095 or -4095 to 4095)
WXn+6	Channel 7 Input Data (0 to 4095 or -4095 to 4095)
WXn+7	Channel 8 Input Data (0 to 4095 or -4095 to 4095)

WXn: Starting WX address assigned to this module

F2-04RTD

F2-04RTD 4-Channel RTD	
Number of Channels	4
Input Ranges	Type Pt100: -200.0 to $850.0^{\circ} \mathrm{C}$, -328.0 to $1562.0^{\circ} \mathrm{F}$ Type Pt1000: -200.0 to $595.0^{\circ} \mathrm{C}$, -328.0 to $1103.0^{\circ} \mathrm{F}$ Type jPt100: 38.0 to $450.0^{\circ} \mathrm{C}$, 36.0 to $842.0^{\circ} \mathrm{F}$ Type CU-10/25 Ω -200.0 to $260.0^{\circ} \mathrm{C}$, -328.0 to $500.0^{\circ} \mathrm{F}$
Resolution	16 bit (1 in 65535)
Display Resolution	$\pm 0.1^{\circ} \mathrm{C}, \pm 0.1^{\circ} \mathrm{F}(\pm 3276.7)$
RTD Excitation Current	$200 \mu \mathrm{~A}$
Input Type	Differential
Notch Filter	$\begin{aligned} & >100 \mathrm{db} \text { notches at } 50 / 60 \mathrm{~Hz} \\ & -3 \mathrm{db}=13.1 \mathrm{~Hz} \end{aligned}$
Maximum Setting Time	100ms (full-scale step input)
Common Mode Range	0-5 VDC
Absolute Maximum Ratings	Fault protected inputs to $\pm 50 \mathrm{VDC}$
Sampling Rate	160 ms per channel

Converter Type	Charge Balancing
Linearity Error	$\pm .05^{\circ} \mathrm{C}$ maximum, $\pm .01^{\circ} \mathrm{C}$ typical
Maximum Inaccuracy	$\pm 1^{\circ} \mathrm{C}$
PLC Update Rate	4 channels per scan maximum
Base Power Required 5VDC	90 mA
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Temperature Drift	None (self-calibrating)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810 C 514.2
Shock	MIL STD 810 C 516.2
Noise Immunity	NEMA ICS3-304
Terminal Type (included)	Removable; D2-810CON

Note 1. The three wires connecting the RTD to the module must be the same type and length. Do not use the shield or drain wire for the third connection.
Note 2. If an RTD sensor has four wires, the plus sense wire should be left unconnected as shown.

Note 3. This module is not compatible with the ZIPLink wiring systems.

Do-more H2 Series PLC User Manual, 1st Edition, Rev. I - H2-DM-M

F2-04RTD - continued

Setting the Module Jumpers

There are seven jumpers (J8) located on the PC board of this module. The description of each jumper's function is also located on the PC board. These jumpers configure the module for the following options:

- Number of channels: 1 thru 4.
- The input type: 10Ω or 25Ω copper RTDs; $j P t 100 \Omega$, Pt 100Ω or Pt 1000Ω RTDs.
- Temperature conversion: 2's complement or magnitude + sign format in Fahrenheit or Celsius.
There are two channel selection jumpers, labeled $\mathrm{CH}+1$ and $\mathrm{CH}+2$, that are used to select the number of channels that will be used. The module is set from the factory for four channel operation. Any unused channels are not processed, so if you only select channels 1 thru 3, channel 4 will not be active.

The following table shows how to use the jumpers to select the number of channels. Unused jumpers can be stored on a single post to prevent losing them.

Yes $=$ Jumper Installed \quad No $=$ Jumper Removed

F2-04Rill Module Jumper Table (Channel)			
Number of Channels	Active Channels	CH+1	CH+2
One	Channel 1	No	No
Two	Channels 1 and 2	Yes	No
Three	Channels 1, 2 and 3	No	Yes
Four	Channels 1, 2, 3 and 4	Yes	Yes

F2-04RTD - continued

The jumpers labeled RTD-0, RTD-1, and RTD-2 are used to select the type of RTD. The module can be used with many types of RTDs. All channels of the module must be the same RTD type.
The default setting from the factory is $\operatorname{Pt} 100 \Omega$ (RTD-2 comes with the jumper removed). This selects the DIN43760 European type RTD. European curve type RTDs are calibrated to DIN43760, BS1905, or IEC751 specifications which is $0.00385 \Omega / \Omega /{ }^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{C}=138.5 \Omega\right)$. The $j \operatorname{Pt} 100 \Omega$ type is used for the American curve ($0.00392 \Omega / \Omega /{ }^{\circ} \mathrm{C}$), platinum 100Ω RTDs. The 10Ω and 25Ω RTD settings are used with copper RTDs.
The following table shows how to arrange the jumpers to set the different input types.
Yes $=$ Jumper Installed $\quad N o=$ Jumper Removed
F2-04RTD Module Jumper Table (Input Type)

RTD Inputs	RTD-0	RTD-1	RTD-2
CU 10ת	No	No	No
CU 25	Yes	No	No
jPt 100	No	Yes	No
Pt 100	Yes	Yes	No
Pt 1000	No	No	Yes

The last two jumpers, Units-0 and Units-1, are used to set the conversion unit. The 2's complement options are Fahrenheit or Celsius. The module comes from the factory with both jumpers installed. For Fahrenheit, remove Units-1 jumper. For Celsius remove both Units-0 and Units-1 jumpers.
All RTD types are converted into a direct temperature reading in either Fahrenheit or Celsius. The data contains one implied decimal place. For example, a value in WX memory of 1002 would be $100.2^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$.
Negative temperatures are represented in 2's complement form.
To view this data format in the Do-more Designer software, select Native.
The following table shows how to arrange the jumpers to set the different conversion units.

Yes = Jumper Installed	No = Jumper Removed	
F2-04RTID Module Jumper Table (Temperature Gonversion Unit)		
Temperature Conversion Units	Units-0	Units-1
2's Complement (${ }^{\circ}$ F)	Yes	No
2's Complement (${ }^{\circ}$ C)	No	No

F2-04RTD - continued

F2-04RTD Addressing

The Do-more CPU module assigns the following memory addresses to this module.

F2-04RTII X Addressing	
Address	Description
$X \boldsymbol{n}$	On when the RTD is open or terminal block is removed.
$X n+\mathbf{1}$	On when the RTD is open or terminal block is removed. (This address stays off if Channel 2 input is not used)
$X n+\mathbf{2}$	On when the RTD is open or terminal block is removed. (This address stays off if Channel 3 input is not used)
$X n+\mathbf{3}$	On when the RTD is open or terminal block is removed. (This address stays off if Channel 4 input is not used)
$X n+\mathbf{4}$	Not used
$X n+\mathbf{5}$	Not used
$X n+\mathbf{6}$	Not used
$X n+\mathbf{7}$	Not used

Xn: Starting X address assigned to this module

F2-D4RIII WX Addressing	
Address	Description
WXn	Channel 1 Input Data (Temperature [Unit: 0.1 degree])
WXn+1	Channel 2 Input Data (Temperature [Unit: 0.1 degree])
WXn+2	Channel 3 Input Data (Temperature [Unit: 0.1 degree])
WXn+3	Channel 4 Input Data (Temperature [Unit: 0.1 degree])

WXn: Starting WX address assigned to this module

F2-04THM

F2-04THM 4-Channel Thermocouple		Thermocouple Specifications			
General Specifications		Input Ranges	Type J -190 to $760^{\circ} \mathrm{C}$ Type E -210 to $1000^{\circ} \mathrm{C}$ Type K-150 to $1372^{\circ} \mathrm{C}$ Type R 65 to $1768^{\circ} \mathrm{C}$ Type S 65 to $1768^{\circ} \mathrm{C}$ Type T -230 to $400^{\circ} \mathrm{C}$ Type B 529 to $1820^{\circ} \mathrm{C}$ Type N-70 to $1300^{\circ} \mathrm{C}$ Type C 65 to $2320^{\circ} \mathrm{C}$	-310 to $1400^{\circ} \mathrm{F}$ -346 to $1832^{\circ} \mathrm{F}$ -238 to $2502^{\circ} \mathrm{F}$ 149 to $3214^{\circ} \mathrm{F}$ 149 to $3214^{\circ} \mathrm{F}$ -382 to $752^{\circ} \mathrm{F}$ 984 to $3308^{\circ} \mathrm{F}$ -94 to $2372^{\circ} \mathrm{F}$ 149 to $4208^{\circ} \mathrm{F}$	
Number of Channels	4, differential				
Common Mode Range	$\pm 5 \mathrm{VDC}$				
Common Mode Rejection	90dB min. @ DC, 150dB min. @ $50 / 60 \mathrm{~Hz}$.				
Input Impedance	$1 \mathrm{M} \Omega$				
Absolute Maximum Ratings	Fault-protected inputs to $\pm 50 \mathrm{VDC}$				
		Display Resolution	$\pm 0.1{ }^{\circ} \mathrm{C}$ or $\pm 0.1{ }^{\circ} \mathrm{F}$		
Accuracy vs. Temperature	$\pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale calibration (Including maximum offset change)	Cold Junction Compensation	Automatic		
PLC Update Rate	4 channels per scan maximum	Conversion Time	100 ms per channel		
		Warm-Up Time	30 minutes typically $\pm 1^{\circ} \mathrm{C}$ repeatability		
External Power Supply Base Power Required 5VDC	60mA maximum, 18 to 26.4 VDC	Linearity Error(End to End)	$\pm 0.05{ }^{\circ} \mathrm{C}$ maximum, $\pm 0.01^{\circ} \mathrm{C}$ typical		
	110mA				
		Maximum Inaccuracy $\pm 3^{\circ} \mathrm{C}$ (excluding thermocouple error)			
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $60^{\circ} \mathrm{C}$)	Voltage Input Specifications			
Storage Temperature	$-4^{\circ} \text { to } 158^{\circ} \mathrm{F}\left(-20^{\circ} \text { to } 70^{\circ} \mathrm{C}\right)$	Voltage Ranges	$0-5 \mathrm{~V}, \pm 5 \mathrm{~V}, 0-156.25 \mathrm{mV}, \pm 156.25 \mathrm{mVDC}$		
Relative Humidity	5 to 95\% (non-condensing)		16 bit (1 in 65535)		
Environmental Air	No corrosive gases permitted	Full Scale Calibration Error (not incl. offset error)	± 13 counts typical ± 33 maximum		
Vibration	MIL STD 810C 514.2				
Shock	MIL STD 810C 516.2		± 1 count maximum, @ 0V input		
Noise Immunity	NEMA ICS3-304	Offset Calibration Error			
Terminal Type (included)	Non-removable	Linearity Error (End to End)	± 1 count maximum		
		(End to End)	$\pm 0.02 \%$ @ 25 ${ }^{\circ} \mathrm{C}$ (770\%)		

F2-04THM - continued

Voltage input wiring diagram

Note 1: Terminate shields at the respective signal source.

Note 2: Connect unused channels to a common terminal (OV, CH4+, CH4).
Note 3: When using 0-156 mV and 5V ranges, connect (-) or (0) volts terminal to OV to ensure common mode range acceptance.
Note 4. This module is not compatible with the ZIPLink wiring system.
Note 5. With grounded thermocouples, take precautions to prevent having a voltage potential between thermocouple tips. A voltage of 5V or greater between tips will skew measurements.

F2-04THM - continued

Setting the Module Jumpers

There are eight jumpers (J7) and one single jumper (J9) located on the PC board of this module. These jumpers configure the module for the following options:

- Number of channels
- Input type
- Thermocouple or Voltage conversion units
- Calibrate enable

There are two channel selection jumpers, labeled $\mathrm{CH}+1$ and $\mathrm{CH}+2$, that are used to select the number of channels that will be used. The module is set from the factory for four channel operation. Any unused channels are not processed. The following table shows how to use the jumpers to select the number of channels. Unused jumpers can be stored on a single post to prevent losing them.

Yes $=$ Jumper Installed \quad No = Jumper Removed

F2-04THM Module Jumper Table (Channel)			
Number of Channels	Active Channels	CH+1	CH+2
One	Channel 1	No	No
Two	Channels 1 and 2	Yes	No
Three	Channels 1, 2 and 3	No	Yes
Four	Channels 1, 2, 3 and 4	Yes	Yes

F2-04THM - continued

The jumpers labeled Tc Type 0, Tc Type 1, Tc Type 2, and Tc Type 3 must be set to match the type of thermocouple being used or the input voltage level. This module can be used with many types of thermocouples, so use the following table to determine your settings.
This module comes from the factory with all four jumpers installed for use with a J type thermocouple. For example, to use an S type thermocouple, remove the jumper labeled Tc Type 2. All channels of the module must be the same thermocouple type or input voltage level.

Yes $=$ Jumper Installed $\quad N o=$ Jumper Removed

F2-04THM Module Jumper Table (Input Type)				
Thermocouple/ Voltage Level	TC Type 0	TC Type 1	TC Type 2	TC Type 3
J	Yes	Yes	Yes	Yes
K	No	Yes	Yes	Yes
E	Yes	No	Yes	Yes
R	No	No	Yes	Yes
R Wide*	No	Yes	No	No
S	Yes	Yes	No	Yes
T	No	Yes	No	Yes
B	Yes	No	No	Yes
N	No	No	No	Yes
C	Yes	Yes	Yes	No
0-5V	No	Yes	Yes	No
$\pm 5 \mathrm{~V}$	Yes	No	Yes	No
0-156 mV	No	No	Yes	No
$\pm 156 \mathrm{mV}$	Yes	Yes	No	No

* R Wide range is available only on modules with date code 0410E2 and later

Units-0 and Units-1 jumpers are used to set the conversion unit for either thermocouple or voltage inputs. The options are 2's complement in Fahrenheit or Celsius.
All thermocouple types are converted into a direct temperature reading in either Fahrenheit or Celsius. The data contains one implied decimal place. For example, a value in WX memory of 1002 would be $100.2^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$.
For thermocouple ranges which include negative temperatures (J,E,K,T,N), the display resolution is from -3276.7 to +3276.7 . For positive-only thermocouple ranges ($\mathrm{R}, \mathrm{S}, \mathrm{B}, \mathrm{C}$), the display resolution is 0 to 6553.5. Negative temperatures are represented in 2's complement form.

F2-04THM - continued

The 2's complement data format may be required to correctly display bipolar data on some operator interfaces. This data format could also be used to simplify averaging a bipolar signal. To view this data format in the Do-more software, select Native.

For unipolar thermocouple ranges (R,S,B,C), 2's complement should be selected.
This module comes with both jumpers installed. For Fahrenheit remove Units-1 jumper. For Celsius remove both Units-0 and Units-1 jumpers. Use the following table to select temperature conversion unit.

Yes $=$ Jumper Installed $\quad N o=$ Jumper Removed

F2-04THM Module Jumper Table (Temperature Gonversion Unit)		
Temperature Conversion Units	Units-0	Units-1
2's Complement (${ }^{\circ}$ F)	Yes	No
2's Complement $\left({ }^{\circ} \mathbf{C}\right.$)	No	No

The bipolar voltage input ranges, $\pm 5 \mathrm{~V}$ or $\pm 156 \mathrm{mV}$ (see previous page for $\pm 5 \mathrm{~V}$ and $\pm 156 \mathrm{mV}$ input settings), is converted to a 16 -bit 2 's complement value.
This module comes with both jumpers installed. Use the following table to select voltage conversion unit. For Example, remove the Units-1 jumper and leave the Units-0 jumper installed for 2's complement conversion. For Fahrenheit remove Units-1 jumper. For Celsius remove both Units-0 and Units-1 jumpers.

Yes = Jumper Installed		No = Jumper Removed
-2-04THM Module Jumper Table (Voltage Gonversion Unit)		
Voltage Conversion Units	Units-0	Units-1
2's Complement	Yes	No

The Calibrate Enable jumper J9 comes from the factory in the "jumper removed" setting (the jumper is installed over only one of the two pins). Installing this jumper disables the thermocouple active burn-out detection circuitry, which enables you to attach a thermocouple calibrator to the module. To make sure that the output of the thermocouple calibrator is within the 5 V common mode voltage range of the module, connect the negative side of the differential voltage input channel to the 0 V terminal, then connect the thermocouple calibrator to the differential inputs (for example, Ch 3+ and Ch 3).
For the voltage input ranges, this jumper is inactive and can be installed or removed with no effect on voltage input.

F2-04THM - continued

The Do-more CPU module assigns the following memory addresses to this module.

F2-04IHIM X Addressing	
Address	Description
Xn	On when the thermocouple is open or the external 24VDC input power is missing.
$X n+1$	On when the thermocouple is open or the external 24VDC input power is missing. (This address stays off if Channel 2 input is not used)
$X n+2$	On when the thermocouple is open or the external 24VDC input power is missing. (This address stays off if Channel 3 input is not used)
$X n+3$	On when the thermocouple is open or the external 24VDC input power is missing. (This address stays off if Channel 4 input is not used)
$X n+4$	Not used
$X n+5$	Not used
$X n+6$	Not used
$X n+7$	Not used

Xn: Starting X address assigned to this module

F2-04THM WX Addressing	
Address	Description
$W X \boldsymbol{n}$	Channel 1 Input Data (Temperature [Unit: 0.1 degree] or Voltage [0 to $\left.65535^{1}\right]$)
$W X n+\mathbf{1}$	Channel 2 Input Data (Temperature [Unit: 0.1 degree] or Voltage [0 to $\left.65535^{1}\right]$)
$W X n+2$	Channel 3 Input Data (Temperature [Unit: 0.1 degree] or Voltage [0 to $\left.65535^{1}\right]$)
$W X n+\mathbf{3}$	Channel 4 Input Data (Temperature [Unit: 0.1 degree] or Voltage [0 to $\left.65535^{1}\right]$]

WXn: Starting WX address assigned to this module

NOTE 1: The data format of the WX addresses is 'Signed Word'. They store -32768 to 32767 as default. To read and write 0 to 65535 into these memory addresses, use the casting ' $: U$ ' ($\because: U$ ’ is the casting for 'Unsigned' format). For instance, if you selected the voltage input for the first analog input channel and WXO is assigned to the channel, use 'WXO:U' to access this memory address in the ladder program and other tools in Do-more Designer.

F2-02DA-1(L), Analog Output

F2-02DA-1(L) 2-Channel Analog Gurrent Output	
Number of Channels	2
Output Ranges	4 to 20 mA
Resolution	12 bit (1 in 4096)
Output Type	Single ended, 1 common
Maximum Loop Supply	30VDC
Peak Output Voltage	4OVDC (clamped by transient voltage suppressor)
Load Impedance	0Ω minimum
Maximum Load/Power Supply	620』/18V, 910ת/24V, 1200』/30V
PLC Update Rate	2 channels per scan maximum
Linearity Error (end to end)	± 1 count (0.025% of full scale) maximum
Conversion Settling Time	$100 \mu \mathrm{~s}$ maximum (full scale change)
Full Scale Calibration Error (not incl. offset error)	± 5 counts max., $20 \mathrm{~mA} @ 77^{\circ} \mathrm{F}$ $\left(25^{\circ} \mathrm{C}\right)$
Offset Calibration Error	± 3 counts max., 4 mA @ $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
Accuracy vs. Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ full scale calibration change (including maximum offset change of 2 counts)
Maximum Inaccuracy	$\begin{aligned} & +0.1 \% @ 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right) \\ & \pm 0.3 \% @ 32 \text { to } 140^{\circ} \mathrm{F}\left(0 \text { to } 60^{\circ} \mathrm{C}\right) \end{aligned}$

Base Power Required 5VDC	40mA
External Power Supply	F2-02DA-1:18 to 30VDC, 60mA F2-02DA-1L: 10 to 15VDC, 70 mA (Add 20mA for each current loop used)
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $60^{\circ} \mathrm{C}$)
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95\% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304
Terminal Type (included)	Removable; D2-810CON
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	ZL-D2-CBL10 (0.5 m) ZL-D2-CBL10-1 (1.0 m) ZL-D2-CBL10-2 (2.0 m)

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).
Note 1: Shields should be connected to the OV of the module or the OV of the P/S.
Note 2: Unused voltage outputs should remain open (no connections) for minimum power consumption.

Do-more H2 Series PLC User Manual, 1st Edition, Rev. I - H2-DM-M

F2-02DA-1(L), Analog Output - continued

The Do-more CPU module assigns the following memory addresses to this module.

F2-02DA-1(L) WY Addressing	
Address	Description
$W Y n$	Channel 1 Output Data (0 to 4095)
$W Y n+1$	Channel 2 Output Data (0 to 4095)

WYn: Starting WY address assigned to this module

F2-02DA-2(L), Analog Output

F2-021A-2(L) 2-Ghannel Analog Voltage Output	
Number of Channels	2
Output Ranges	0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
Resolution	12 bit (1 in 4096)
Output Type	Single ended, 1 common
Peak Output Voltage	15VDC (clamped by transient voltage suppressor)
Load Impedance	2000Ω minimum
Load Capacitance	$0.01 \mu \mathrm{~F}$ maximum
PLC Update Rate	2 channels per scan maximum
Linearity Error (end to end)	± 1 count (0.025% of full scale) maximum
Conversion Settling Time	$5 \mu \mathrm{~s}$ maximum (full scale change)
Full Scale Calibration Error (not incl. offset error)	$\begin{aligned} & \pm 12 \text { counts max. unipolar @ } 77^{\circ} \mathrm{F} \\ & \pm\left(25^{\circ} \mathrm{C}\right) \\ & \pm 16 \text { counts max. bipolar @ } 77^{\circ} \mathrm{F} \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$
Offset Calibration Error	$\begin{aligned} & \pm 3 \text { ounts max., unipolar @ } 77^{\circ} \mathrm{F} \\ & \left(25^{\circ} \mathrm{C}\right) \\ & \pm 8 \mathrm{counts} \text { max., bipolar @ } 77^{\circ} \mathrm{F} \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$
Accuracy vs. Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ full scale calibration change (including maximum offset change of 2 counts)
Maximum Inaccuracy	$+0.3 \%$ unipolar ranges @ $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ $\pm 0.45 \%$ unipolar ranges $>77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right.$) $\pm 0.4 \%$ bipolar ranges @77 ${ }^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ $\pm 0.55 \%$ bipolar ranges $>77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$

Base Power Required 5VDC	40mA
External Power Supply	F2-02DA-2: 18 to 30VDC, 60mA (outputs fully loaded) F2-02DA-2L: 10 to 15VDC, 70 mA (outputs fully loaded)
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $60^{\circ} \mathrm{C}$)
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95\% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304
Terminal Type (included)	Removable; D2-810CON
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	ZL-D2-CBL10 (0.5 m) ZL-D2-CBL10-1 (1.0 m) ZL-D2-CBL10-2 (2.0 m)

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).
Note1: Shields should be connected to the OV of the module or the OV of the P / S.
Note 2: Unused voltage outputs should remain open (no connections) for minimum power consumption.

Do-more H2 Series PLC User Manual, 1st Edition, Rev. I - H2-DM-M

F2-02DA-2(L), Analog Output - continued

The F2-02DA-2(L) Analog Output module uses jumpers for selecting the voltage ranges for each channel. The range of each channel can be independently set. Available operating ranges are $0-5 \mathrm{~V}, 0-10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. There are three jumpers for each channel. Two sets are on the top board, and the third set is along the edge of the bottom board with the black D-shell backplane connector. Install or remove these jumpers to select the desired range.

- Two of the top board jumpers are labeled " $\mathrm{UNI} / \pm 5$ " and there is one for each channel. These jumpers are used in conjunction with the "BI-P 0-5" jumpers to determine output voltage polarity and range.
- The two bottom board jumpers are labeled "UNI" and there is one for each channel. These jumpers determine the format of the channel output data, and the effect of their settings is independent from that of the other jumpers on the module. With a UNI jumper removed, the corresponding channel requires data values in the range of ± 2047. With a UNI jumper installed, the channel requires data values in the range of 0 to 4095 .
- The other two top board jumpers are labeled "BI-P 0-5" and there is one for each channel. These jumpers are used in conjunction with the "UNI/ ± 5 " jumpers to determine output voltage polarity and range.

NOTE: It is important to set the module jumpers correctly. The module will not operate correctly if the jumpers are not properly set for the desired voltage range.

F2-02DA-2(L), Analog Output - continued

The table below lists the eight possible combinations of voltage ranges and data formats along with their corresponding jumper settings. For most applications, use one of the four standard selections shown in the shaded blocks in the table. Standard unipolar voltage ranges accept a data format of 0 to 4095 . Standard bipolar ranges accept a data format of -2047 to +2047 . Unused jumpers can be stored on a single post to prevent losing them.

Yes $=$ Jumper Installed \quad No = Jump					
F2-021A-2(L) Module Jumper Table					
Voltage Range	Output Data Format	UNI/ $\pm 5 \mathrm{~V}$ (Top board)	UNI (Bottom board)	BI-P 0-5V (Top board)	
				BI-P (Bipolar) Position	0-5V Position
0 to 5V	0 to 4095	Yes	Yes	No	Yes
0 to 10V	0 to 4095	Yes	Yes	No	No
0 to 5V	± 2047	Yes	No	No	Yes
0 to 10V	± 2047	Yes	No	No	No
$\pm 5 \mathrm{~V}$	± 2047	Yes	No	Yes	No
$\pm 10 \mathrm{~V}$	± 2047	No	No	Yes	No
$\pm 5 \mathrm{~V}$	0 to 4095	Yes	Yes	Yes	No
$\pm 10 \mathrm{~V}$	0 to 4095	No	Yes	Yes	No

For example, to select settings of " $\pm 5 \mathrm{~V}$ " voltage range with a " ± 2047 " output data format for channel 1 , refer to the table above and the figure on the previous page and arrange the jumpers as follows:

- Install the "CH1" "UNI/ $\pm 5 \mathrm{~V}$ " jumper.
- Remove the "CH1-UNI" jumper. Store the jumper so it does not get lost by placing it on one pin.
- Install the "CH1" "BI-P 0-5" jumper in the BI-P (bipolar) position on the left and center pins.
The non-standard selections in the table provide the opposite data format for both unipolar and bipolar voltage ranges. If you are using unipolar output ($0-5 \mathrm{~V}$ or $0-10 \mathrm{~V}$) on one channel and bipolar output $(\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V})$ on the other channel, then one of the outputs will use a nonstandard data format.

F2-02DA-2(L), Analog Output - continued

The Do-more CPU module assigns the following memory addresses to this module.

F2-021AA-2(L) WY Addressing	
Address	Description
$W Y \boldsymbol{n}$	Channel 1 Output Data (0 to 4095 or -2047 to 2047)
$W Y \boldsymbol{n + 1}$	Channel 2 Output Data (0 to 4095 or -2047 to 2047)

WYn: Starting WY address assigned to this module

Unipolar Ranges

Bipolar Ranges
-5 V to 5 V

Value in WY address
-10 V to 10 V

-5 V to 5 V

-10 V to 10 V

F2-02DAS-1, Analog Output

F2-02DAS-1 2-Ghannel Isolated Analog Gurrent Output	
Number of Channels	2, isolated
Output Ranges	$4-20 \mathrm{~mA}$
Resolution	16 bit (1 in 65536)
Output Type	Current sourcing
Isolation Voltage	$\pm 750 \mathrm{~V}$ continuous, channel to channel, channel' to logic
Base Power Required 5VDC	100 mA
Loop Supply	18-32 VDC
External Power Supply	18-32 VDC @ 50mA per channel
Output Loop Compliance	Vin -2.5V
Load Impedance	0-1375 (@ 32V)
Maximum Load/ Power Supply	$375 \Omega / 12 \mathrm{~V}, 975 \Omega / 24 \mathrm{~V}, 1375 \Omega / 32 \mathrm{~V}$
PLC Update Rate	2 channels per scan maximum
Conversion Settling Time	$3 \mathrm{~ms} \mathrm{to} \mathrm{0.1} \mathrm{\%} \mathrm{of} \mathrm{full} \mathrm{scale}$
Linearity Error (end to end)	$\pm \begin{aligned} & \pm 10 \text { count }(\pm 0.015 \% \text { of full scale) } \\ & \text { maximum }\end{aligned}$

Gain Calibration Error	± 32 counts ($\pm 0.05 \%$)
Offset Calibration Error	± 13 counts ($\pm 0.02 \%$)
Output Drift	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Maximum Inaccuracy	$\begin{aligned} & 0.07 \% @ 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ & 0.18 \% 0 \text { to } 60^{\circ} \mathrm{C}\left(32^{\circ} \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$
Operating Temperature	0° to $60^{\circ} \mathrm{C}$ (32° to $140^{\circ} \mathrm{F}$)
Storage Temperature	-20° to $70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $158^{\circ} \mathrm{F}$)
Relative Humidity	5 to 95\% (non-condensing)
Environmental air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304
Terminal Type (included)	Removable; D2-810CON
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	ZL-D2-CBL10 (0.5 m) ZL-D2-CBL10-1 (1.0 m) ZL-D2-CBL10-2 (2.0 m)
One count in the specification tab bit of the analog data value (1 in Note 1: Shields should be connect Note 2: Load must be within com	able is equal to one least significant in 65536). ected to the OV terminal of the module. mpliance voltage.

Note 3: For non-isolated outputs, connect all OV's together (0V1...0V2) and connect all +V's together (+V...+V2).

Do-more H2 Series PLC User Manual, 1st Edition, Rev. I - H2-DM-M

F2-02DAS-1, Analog Output - continued

The Do-more CPU module assigns the following memory addresses to this module.

F2-021AS-1 WY Addressing	
Address	Description
$W Y \boldsymbol{n}$	Channel 1 Output Data (0 to 65535 ${ }^{1}$)
$W Y n+1$	Channel 2 Output Data (0 to 65535 ${ }^{1}$)

WYn: Starting WY address assigned to this module
NOTE 1: The data format of the WY addresses is 'Signed Word'. They store -32768 to 32767 as default. To read and write 0 to 65535 into these memory addresses, use the casting ' $: U$ ' ($‘: U$ ' is the casting for 'Unsigned' format). For instance, if WYO is assigned to the first analog output channel, use 'WYO:U' to access this memory address in the ladder program and other tools in Do-more Designer.

F2-02DAS-2, Analog Output

F2-02DAS-2 2-Channel Isolated Analog Voltaye Output		Gain Calibration Error	± 32 counts ($\pm 0.05 \%$)
		Offset Calibration Error	± 13 counts ($\pm 0.02 \%$)
Number of Channels	2, isolated	Output Drift	50ppm/ ${ }^{\circ} \mathrm{C}$
Output Ranges	0-5 V, 0-10 V	Maximum Inaccuracy	$\begin{aligned} & 0.07 \% @ 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ & 0.18 \% 0 \text { to } 60^{\circ} \mathrm{C}\left(32^{\circ} \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$
Resolution	16 bit (1 in 65536)		
Output Type	Sourced through external loop supply	Operating Temperature	0° to $60^{\circ} \mathrm{C}$ (32° to $140^{\circ} \mathrm{F}$)
Isolation Voltage	$\pm 750 \mathrm{~V}$ continuous, channel to channel, channel to logic	Storage Temperature	-20° to $70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
		Relative Humidity	5 to 95\% (non-condensing)
Base Power Required 5VDC	60 mA	Environmental air	No corrosive gases permitted
		Vibration	MIL STD 810C 514.2
External Power Supply	21.6-26.4 VDC @ 60mA per channel	Shock	MIL STD 810C 516.2
Load Impedance	$2 \mathrm{k} \Omega$ min	Noise Immunity	NEMA ICS3-304
PLC Update Rate	2 channels per scan maximum	Terminal Type (included)	Removable; D2-810CON
Conversion Settling Time	$3 \mathrm{~ms} \mathrm{to} \mathrm{0.1} \mathrm{\%} \mathrm{of} \mathrm{full} \mathrm{scale}$	ZIPLink Module	ZL-RTB20 (Feedthrough)
Linearity Error (end to end)	± 10 count ($\pm 0.015 \%$ of full scale) maximum	ZIPLink Cable	ZL-D2-CBL10 (0.5 m) ZL-D2-CBL10-1 (1.0 m) ZL-D2-CBL10-2 (2.0 m)

Note1: Shields should be connected to the OV of the module or the OV of the P / S.

Do-more H2 Series PLC User Manual, 1st Edition, Rev. I - H2-DM-M

F2-02DAS-2, Analog Output - continued

Setting the Module Jumpers

The F2-02DAS-2 Analog Output module uses jumpers for selecting the voltage range for each channel. The range of each channel can be independently set. The available operating ranges are $0-5 \mathrm{~V}$ and $0-10 \mathrm{~V}$.
There is one jumper for each channel. Install or remove these jumpers to select the desired range. See the figures below to find the jumpers on your module. The module is set from the factory for the $0-5 \mathrm{~V}$ range. Refer to the following table in order to configure module differently. Unused jumpers can be stored on a single post to prevent losing them.

NOTE: It is important to set the module jumpers correctly. The module will not operate correctly if the jumpers are not properly set for the desired voltage range.

Yes $=$ Jumper Installed $\quad N o=$ Jumper Removed

F2-02DAS-2	
Voltage Range	$0-5 \mathrm{~V} / 0-10 \mathrm{~V}$ Jumper
0 to 5V	Yes
0 to 10V	No

F2-02DAS-2, Analog Output - continued

The Do-more CPU module assigns the following memory addresses to this module.

F2-02DAS-2 WY Addressing	
Address	Description
$W Y n$	Channel 1 Output Data (0 to $\left.65535^{1}\right)$
$W Y n+1$	Channel 2 Output Data (0 to $\left.65535^{1}\right)$

WYn: Starting WY address assigned to this module

NOTE 1: The data format of the WY addresses is 'Signed Word'. They store -32768 to 32767 as default. To read and write 0 to 65535 into these memory addresses, use the casting ' $: U$ ’ (' $: U$ ' is the casting for 'Unsigned' format). For instance, if WYO is assigned to the first analog output channel, use 'WYO:U' to access this memory address in the ladder program and other tools in Do-more Designer.

F2-08DA-1, Analog Output

F2-080A-1 8-Channcl Analog Gurrent Output		Offset Calibration Error	± 9 counts max. sinking @ any load ± 9 counts max. sourcing @ 125Ω load ± 11 counts max. sourcing @ 250Ω load ± 13 counts max. sourcing @ 400Ω load
Number of Channels	8, single-ended		
Output Ranges	4 to 20 mA	Maximum Full Scale Inaccuracy @ $60^{\circ} \mathrm{C}$	0.5% sinking (any load) sinking \& sourcing @ 125Ω load 0.64% sourcing @ 250Ω load 0.83% sourcing @ 400』 load
Resolution	12 bit (1 in 4096)		
Output Type	Current sinking or current sourcing	Maximum Full Scale Inaccuracy @ $25^{\circ} \mathrm{C}$ (Incudes all errors and temp drift)	$\begin{aligned} & \text { 0.3\% sinking (any load) sinking \& } \\ & \text { sourcing @ 125』 load } \\ & 0.44 \% \text { surring @ 250 load } \\ & 0.63 \% \text { sourcing @ 400 } 10 a d \end{aligned}$
Base Power Required 5VDC	30 mA		
Maximum Loop Voltage	30VDC	Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $60^{\circ} \mathrm{C}$)
External Power Supply	18 to $30 \mathrm{VDC}, 50 \mathrm{~mA}$., class 2 (Add 20 mA for each current loop used)	Storage Temperature	-4 to $158^{\circ} \mathrm{F}\left(-20\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Source Load	0-400 Ω @ 18-30 VDC	Relative Humidity	5\% to 95\% (non-condensing)
		Environmental air	No corrosive gases permitted
Sink Load	0-600 $/ 18 \mathrm{~V}, 0-900 \Omega / 24 \mathrm{~V}, 0-1200 \Omega / 30 \mathrm{~V}$	Vibration	MIL STD 810C 514.2
Total Load (sink + source)	600 $/ 18 \mathrm{~V}, 900 \Omega / 24 \mathrm{~V}, 1200 \Omega / 30 \mathrm{~V}$	Shock	MIL STD 810 C 516.2
PLC Update Rate	8 channels per scan maximum	Noise Immunity	NEMA ICS3-304
Conversion Settling Time	$400 \mu \mathrm{~s}$ maximum (full scale change)	Terminal Type (included)	Removable; D2-1610CON
Linearity Error		ZIPLink Module	ZL-RTB20 (Feedthrough)
	± 2 count ($\pm 0.050 \%$ of full scale) maximum		ZL-D2-CBL19 (0.5 m) ZL-D2-CBL19-1 (1.0 m) ZL-D2-CBL19-2 (2.0 m) ZL-D2-CBL19-1P (1.0 m Pigtail) ZL-D2-CBL19-2P (2.0 m Pigtail)
Full Scale Calibration Error	± 12 counts max. sinking @ any load ± 12 counts max sorurcing @ 125Ω load ± 18 counts max. sourcing @ 250Ω load ± 26 counts max. sourcing @ 400Ω load	ZIPLink Cable	

Note 1: Shields should be connected to the OV of the module.

F2-08DA-1, Analog Output - continued

The Do-more CPU module assigns the following memory addresses to this module.

F2-08DA-1 WY Addiressing	
Address	Description
$W Y n$	Channel 1 Output Data (0 to 4095)
$W Y n+1$	Channel 2 Output Data (0 to 4095)
$W Y n+2$	Channel 3 Output Data (0 to 4095)
$W Y n+3$	Channel 4 Output Data (0 to 4095)
$W Y n+\mathbf{4}$	Channel 5 Output Data (0 to 4095)
$W Y n+5$	Channel 6 Output Data (0 to 4095)
$W Y n+6$	Channel 7 Output Data (0 to 4095)
$W Y n+7$	Channel 8 Output Data (0 to 4095)

WYn: Starting WY address assigned to this module

F2-08DA-2, Analog Output

F2-08DA-2 8-Channel Analog Voltage Output	
Number of Channels	8, single-ended, 1 common
Output Ranges	0 to 5V, 0 to 10V
Resolution	12 bit (1 in 4096)
Output Type	Voltage sourcing
Base Power Required 5VDC	60 mA
External Power Supply	21.6-26.4 VDC, 140 mA (outputs fully loaded)
Peak Output Voltage	15VDC (clamped by transient voltage suppressor)
Load Impedance	$1-10 \mathrm{k} \Omega$
Load Capacitance	$0.01 \mu \mathrm{~F}$ maximum
PLC Update Rate	8 channels per scan maximum
Conversion Settling Time	$400 \mu \mathrm{~s}$ maximum (full scale change) 4.5 ms to 9 ms for digital out to analog out
Linearity Error (end to end)	± 1 count ($\pm 0.025 \%$ of full scale) maximum

Full Scale Calibration Error	± 12 counts max. unipolar @ $25^{\circ} \mathrm{C}$ (77 ${ }^{\circ} \mathrm{F}$)
Offset Calibration Error	± 3 counts max., unipolar @ $25^{\circ} \mathrm{C}$ (770)
Accuracy vs. Temperature	$\pm 57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ full scale calibration change (including maximum offset change of 2 counts)
Maximum Inaccuracy	$\begin{aligned} & \pm 0.3 \% \text { @ } 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ & \pm 0.45 \% @ 0-60^{\circ} \mathrm{C}\left(32-140^{\circ} \mathrm{F}\right) \end{aligned}$
Operating Temperature	0° to $60^{\circ} \mathrm{C}$ (32° to $140^{\circ} \mathrm{F}$)
Storage Temperature	-20° to $70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Relative Humidity	5 to 95\% (non-condensing)
Environmental air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304
Terminal Type (included)	Removable; D2-810CON
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	ZL-D2-CBL10 (0.5 m) ZL-D2-CBL10-1 (1.0 m) ZL-D2-CBL10-2 (2.0 m)

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).

Note 1: Shields should be connected to the OV of the module.

F2-08DA-2, Analog Output- continued

Setting the Module Jumpers

The F2-08DA-2 module uses one jumper to select between the $0-5 \mathrm{~V}$ or $0-10 \mathrm{~V}$ operating ranges. Refer to the following figure and table for proper selection of voltage range. The output data format remains $0-4095$ for either voltage range selected. Unused jumpers can be stored on a single post to prevent losing them.

Yes $=$ Jumper Installed $\quad N o=$ Jumper Removed

	F2-08DA-2 Module Jumper Table	
Voltage Range	Output Data Format	0-5 V/0-10 V Jumper (top board)
O to 5V	O to 4095	Yes
O to 10V	O to 4095	No

F2-08DA-2, Analog Output- continued

The Do-more CPU module assigns the following memory addresses to this module.

F2-08DA-2 WY Addressing	
Address	Description
$W Y n$	Channel 1 Output Data (0 to 4095)
$W Y n+1$	Channel 2 Output Data (0 to 4095)
$W Y n+2$	Channel 3 Output Data (0 to 4095)
$W Y n+3$	Channel 4 Output Data (0 to 4095)
$W Y n+4$	Channel 5 Output Data (0 to 4095)
$W Y n+5$	Channel 6 Output Data (0 to 4095)
$W Y n+6$	Channel 7 Output Data (0 to 4095)
$W Y n+7$	Channel 8 Output Data (0 to 4095)
W	

WYn: Starting WY address assigned to this module
0 V to 5 V

F2-4AD2DA, Analog Input/Output

F2-4AD2DA 4-Ghannel Analog Gurrent Input / 2-Ghannel Analog Gurrent Output		Accuracy vs. Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ full scale calibration change (including maximum offset change)
		Maximum Inaccuracy	$\begin{aligned} & \pm 0.1 \% \text { @ } 77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right) \\ & \pm 0.3 \% \text { @ } 32 \text { to } 140^{\circ} \mathrm{F}\left(0 \text { to } 60^{\circ} \mathrm{C}\right) \end{aligned}$
Number of Input Channels	4, single-ended (1 common)	PLC Update Rate	4 input channels per scan maximum 2 output channels per scan maximum
Number of Output			
Channels	2, single-ended (1 common)	Base Power Required 5VDC	90 mA
Ranges	4 to 20mA current (Current sinking)		
Resolution	12 bit (1 in 4096)	External Power Supply Requirement	18-26.4 VDC @ 80mA 20mA per loop
Peak Withstanding	75VDC, current outputs	Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $60^{\circ} \mathrm{C}$)
Voltage	TSVEC, currentoupus	Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Maximum Continuous Overload	-40 to +40 mA , each current output	Relative Humidity	5 to 95\% (non-condensing)
		Environmental Air	No corrosive gases permitted
Input Impedance	$250 \Omega, \pm 0.1 \%, 1 / 2 \mathrm{~W}$, $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ current input resistance	Vibration	MIL STD 810C 514.2
		Shock	MIL STD 810C 516.2
External Load Resistance	0Ω minimum, current outputs	Noise Immunity	NEMA ICS3-304
Maximum Loop Supply	30VDC	Terminal Type (included)	Removable; D2-81OCON
	0.032 A , series 217 fast-acting	ZIPLink Module	ZL-RTB20 (Feedthrough)
Recommended Fuse	current inputs	ZIPLink Cable	ZL-D2-CBL10 (0.5 m) ZL-D2-CBL10-1 (1.0 m) ZL-D2-CBL10-2 (2.0 m)
Maximum Load/Power Supply	910 /24V, current outputs $620 \Omega / 18 \mathrm{~V}, 1200 \Omega / 30 \mathrm{~V}$		
Active Low-pass Filter	-3 dB @ 20Hz, 2 poles (-12dB per octave)		
Linearity Error (best fit)	± 1 count $(\pm 0.025 \%$ of full scale) maximum		
Output Settling Time	$100 \mu \mathrm{~s}$ maximum (full scale change)		

F2-4AD2DA, Analog Input/Output - continued

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).
Note 1: Shields should be connected at their respective signal source.
Note 2: Unused channel should remain open for minimum power consumption.
Note 3: More than one external power supply can be used provided the power supply commons are connected.
Note 4: A Series 217, 0.032A fast-acting fuse is recommended for 4-20 mA current input loops.
Note 5: f the power supply common of an external power supply is not connected to 0 VDC on the module, then the output of the external transmitter must be isolated. To avoid "ground loop" errors, recommended 4-20 mA transmitter types are: 2 or 3 wire - Isolation between input signal and power supply or 4 wire - Isolation between input signal, power supply, and 4-20 mA output.
Note 6: If an analog channel is connected backwards, then erroneous data values will be returned for that channel.
Note 7: To avoid small errors due to terminal block losses, connect 0 VDC, IN-, and OUT- on the terminal block as shown. The module's internal connection alone of these nodes is not sufficient to permit module performance up to the accuracy specifications.
Note 8: Choose an output transducer resistance according to the maximum load/power listed in the Output Specifications.

F2-4AD2DA, Analog Input/Output - continued

The Do-more CPU module assigns the following memory addresses to this module.

F2-4AD2DA X Addressing	
Address	Description
$X n$	On when the external 24VDC input power is missing or terminal block is removed.
X_{n+1}	On when the external 24VDC input power is missing or terminal block is removed.
X_{n+2}	On when the external 24VDC input power is missing or terminal block is removed.
$X n+3$	On when the external 24VDC input power is missing or terminal block is removed.
$X n+\mathbf{4}$	Not used
$X n+\mathbf{5}$	Not used
$X n+\mathbf{6}$	Not used
$X n+\mathbf{7}$	Not used

Xn: Starting X address assigned to this module

F2-4AD2DA WX Addicessing	
Address	Description
$W X n$	Channel 1 Input Data (0 to 4095)
$W X n+1$	Channel 2 Input Data (0 to 4095)
$W X n+2$	Channel 3 Input Data (0 to 4095)
$W X n+3$	Channel 4 Input Data (0 to 4095)

WXn: Starting WX address assigned to this module

F2-4AD2DA WY Addressing	
Address	Description
$W Y n$	Channel 1 Output Data (0 to 4095)
$W Y n+1$	Channel 2 Output Data (0 to 4095)

WYn: Starting WY address assigned to this module

F2-8AD4DA-1 Analog Input/Output

F2-8AD4DA-1 8-Channel Analog Gurrent Input / 4-Channel Analog Gurrent Output	
Input Channels per Module	8, single ended (one common)
Input Range	0 to 20 mA
Resolution	12, 14, 16-bit selectable
External DC Power Required	100mA @ 18-26.4 VDC
Max. Continuous Overload	$\pm 45 \mathrm{~mA}$
Input Impedance	$100 \Omega 0.1 \% 1 / 4 \mathrm{~W}$
Filter Characteristics	Active low pass, -3dB @ 80 Hz
Conversion Time	$\begin{aligned} & 12 \text {-bit }=1.5 \mathrm{~ms} \text { per channel } \\ & 14-\text {-bit }=6 \mathrm{~ms} \text { per channel } \\ & 16 \text {-bit }=25 \mathrm{~ms} \text { per channel } \end{aligned}$
Conversion Method	Over sampling successive approximation
Accuracy vs. Temperature	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max.
Maximum Inaccuracy	0.1\% of range
Linearity Error (End to End)	```12-bit = }\pm2\mathrm{ count max. (}\pm0.06% of range) 14-bit = }\pm10\mathrm{ count max. (}\pm0.06% o range) 16-bit = }\pm20\mathrm{ count max. (}\pm0.06%\mathrm{ of range) Monotonic with no missing codes```
Full Scale Calibration Error (not incl. offset error)	$\pm 0.07 \%$ of range max.
Offset Calibration Error	$\pm 0.03 \%$ of range max.
Rec. Fuse (external)	0.032A, Littelfuse Series 217 fast-acting
Base Power Required 5VDC	35 mA

Output Channels per Module	4
Output Range	4 to 20 mA
Resolution	16-bit, $0.244 \mathrm{~mA} / \mathrm{bit}$
Output Type	Current sourcing at 20mA max.
Load Impedance	0-750 Ω
Max. Inaccuracy	0.25\% of range
Max. Full Scale Calibration Error (not incl. offset error)	$\pm 0.075 \%$ of range max.
Max. Offset Calibration Error	$\pm 0.1 \%$ of range max.
Accuracy vs. Temperature	$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. full scale calibration change ($\pm 0.0025 \%$ of range $/{ }^{\circ} \mathrm{C}$)
Max. Crosstalk at DC, 50/60Hz	-70dB, 1 LSB
Linearity Error (End to End)	± 1 count max. ($\pm 0.025 \%$ of full scale) Monotonic with no missing codes
Output Stability and Repeatability	± 1 LSB after 10 min. warm-up typical
Output Ripple	0.005\% of full scale
Output Settling Time	$0.5 \mathrm{~ms} \mathrm{max.} ,\mathrm{5} \mathrm{\mu s} \mathrm{min}. \mathrm{(full} \mathrm{scale} \mathrm{change)}$
Max. Continuous Overload	Outputs open circuit protected
Type of Output Protection	Electronically current limited to 20 mA or less
Output Signal at Power-up and Power-down	4 mA
Terminal Type (included)	Removable; D2-1610CON
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	$\begin{aligned} & \text { ZL-D2-CBL19 }(0.5 \mathrm{~m}) \\ & \text { ZL-D2-CBL19-1 }(1.0 \mathrm{~m}) \\ & \text { ZL-D2-CBL19-2 }(2.0 \mathrm{~m}) \\ & \text { ZL-D2-CBL19-1P }(1.0 \mathrm{~m} \text { Pigtail }) \\ & \text { ZL-D2-CBL19-2P }(2.0 \mathrm{~m} \text { Pigtail }) \end{aligned}$

NOTE: Module revision B1 or newer of the F2-8AD4DA-1 (found on the product label) must be used with the Do-more PLC.

F2-8AD4DA-1 Analog Input/Output - continued

F2-8AD4DA-1 Analog Input/Output - continued

F2-8AD4DA-1 X Addressing						
Address	Description					
X_{n}	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed.					
X_{n+1}	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed.					
X_{n+2}	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed.					
X_{n+3}	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed.					
X_{n+4}	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed.					
X_{n+5}	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed.					
X_{n+6}	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed.					
X_{n+7}	On when the transmitter is broken, the external 24VDC input power is missing or terminal block is removed.					

Xn: Starting X address assigned to this module

F2-8AD4DA-1 WX Addressing	
Address	Description
WXn	Channel 1 Input Data (0 to 4095, 0 to 16383 or 0 to $65535{ }^{1}$)
$w X n+1$	Channel 2 Input Data (0 to 4095, 0 to 16383 or 0 to 655351)
$W X n+2$	Channel 3 Input Data (0 to 4095, 0 to 16383 or 0 to 65535¹)
WXn+3	Channel 4 Input Data (0 to 4095, 0 to 16383 or 0 to $65535{ }^{1}$)
WXn+4	Channel 5 Input Data (0 to 4095, 0 to 16383 or 0 to 65535^{1})
WXn+5	Channel 6 Input Data (0 to 4095, 0 to 16383 or 0 to $65535{ }^{1}$)
WXn+6	Channel 7 Input Data (0 to 4095, 0 to 16383 or 0 to $65535{ }^{1}$)
WXn+7	Channel 8 Input Data (0 to 4095, 0 to 16383 or 0 to $65535{ }^{1}$)

WXn: Starting WX address assigned to this module

The Do-more CPU module assigns the following memory addresses to this module.
The resolution of each analog input channel can be selected separately. Available resolutions are 12 bit (0 to 4095), 14 bit (0 to 16383) and 16 bit (0 to 65535). You need to use the memory address $\mathrm{WYn}+4$ to select the resolutions. Please refer to the next page for details.

NOTE 1: The data format of the WX addresses is 'Signed Word'. They store -32768 to 32767 as default. To read and write 0 to 65535 into these memory addresses, use the casting ' $: U$ ’ ($: U$ 'U' is the casting for 'Unsigned' format). For instance, if you selected the 16 bit resolution for the first analog input channel and WXO is assigned to the channel, use 'WXO:U' to access this memory address in the ladder program and other tools in Do-more Designer.

F2-8AD4DA-1 Analog Input/Output - continued

F2-8AD4DA-1 WY Addressing	
Address	Description
WYn	Channel 1 Output Data (0 to 655352)
$W Y n+1$	Channel 2 Output Data (0 to 65535²)
$W Y n+2$	Channel 3 Output Data (0 to 65535²)
$W Y n+3$	Channel 4 Output Data (0 to 655352)
$W Y \mathrm{n}+4$	Input Resolution Selection
$W Y \mathrm{n}+5$	Not used
$W Y \mathrm{n}+6$	Input Track and Hold Selection

WYn: Starting WY address assigned to this module

NOTE 2: The data format of the WY addresses is 'Signed Word'. They store -32768 to 32767 as default. To read and write 0 to 65535 into these memory addresses, use the casting ‘ $: U$ ’ ($: U$ ' U ’ is the casting for 'Unsigned' format). For instance, if WYO is assigned to the first analog output channel, use 'WYO:U' to access this memory address in the ladder program and other tools in Do-more Designer.

Chapter 6: Specifications - Analog I/O Modules

F2-8AD4DA-1 Analog Input/Output - continued

Input Configuration Using Do-more Designer Version 1.1 or Newer

Using the Module Configurations section of the Do-more Designer System Configuration, each of the eight input channels can be individually configured for resolutions: 12,14 , or 16 bit, configured for track and hold options: None (no hold), Minimum, Maximum, or Reset held value, or each input can be individually disabled.

From the System Configurations page, select Module Configuration(s) in the tab on the left. The screen below will appear showing the modules that are pre-configurable. Select the Type F2-8AD4DA-x in the table and click the Edit Config button on the right hand side.

Once the Edit Config button is selected, the Module Settings page shown below will open. From this page each input channel can be configured with Resolution and/or Track and Hold options. Select the radial button next to the desired option for each input and select the OK button when done.

NOTE: The Input and Output Range selections are for the F2-8AD4DA-2 module only.

F2-8AD4DA-1 Analog Input/Output - continued

Input Resolution Selection (WYn+4)

If not using Do-more Designer version 1.1 or newer, each of the eight input channels can be individually configured for 12,14 , or 16 bit resolution or disabled with memory address WYn+4 (WYn: Starting WY address assigned to this module). Two (2) bits in this memory address are assigned to each analog input channel.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$R-$															
$8 H$	$8 L$	$7 H$	$7 L$	$6 H$	6 L	5 H	5 L	4 H	4 L	3 H	3 L	2 H	2 L	1 H	1 L

Channel Resolution Selection Table		
Input Resolution	RnH (Resolution channel \mathbf{n} High bit)	RnL (Resolution channel n Low bit)
$\mathbf{1 2 ~ b i t ~}$	0	0
$\mathbf{1 4}$ bit	0	1
$\mathbf{1 6}$ bit	1	0
Disabled	1	1

The HEX data format is used to set up the input resolution as seen in the following example.
Example: An F2-8AD4DA-1 is installed in slot 0 and WY4 is used for the input resolution selection. Input channels 1-4 are 12 bit, channel 5 is 14 bit, channel 6 is 16 bit, and channels 7 and 8 are disabled. In this case, $0 \times \mathrm{xF} 900$ needs to be written into WY4.
Use the MOVE instruction to write the Hex value 0xF900 into WY4.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R-															
8H	8L	7H	7L	6H	6L	5H	5L	4H	4L	3H	3L	2 H	2L	1H	1L
1	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0
F				9				0				0			

F2-8AD4DA-1 Analog Input/Output - continued

Input Track and Hold Selection (WYn+6)

The track and hold feature for each of the eight inputs can be individually configured for minimum, maximum, no hold, or reset held value with memory address WYn+6 (WYn: Starting WY address assigned to this module). This configuration can be changed "on the fly" while the program is running. Two (2) bits in this memory address are assigned to each analog input channel.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\mathrm{~T}-$	$\mathrm{T}-$														
8 H	8 L	7 H	7 L	6 H	6 L	5 H	5 L	4 H	4 L	3 H	3 L	2 H	2 L	1 H	1 L

	Channel Track and Hold Sclection Table		
Track and Hold Select	TnH (Track and Hold channel n High bit)	TnL (Track and Hold channel n Low bit)	Result
No Track and Hold	0	0	Returns real time input value
Track and Hold Minimum Value	0	1	Maintains lowest measured value
Track and Hold Maximum Value	1	0	Maintains highest measured value
Reset Track and Hold Value	1	1	Resets previously held input value

The HEX data format is used to set up the track and hold option as seen in the following example.
Example: An F2-8AD4DA-1 is installed in slot 0 and WY6 is used for the track and hold selection. Input channel track and hold settings: ch 1-3 = none, ch 4-5 = minimum, ch 6-7 $=$ maximum, ch $8=$ reset. In this case, $0 x E 940$ needs to be written into WY6.
Use the MOVE instruction to write the Hex value 0xE940 into WY6.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T-															
8H	8L	7H	7L	6H	6L	5H	5L	4H	4L	3 H	3L	2H	2L	1H	1L
1	1	1	0	1	0	0	1	0	1	0	0	0	0	0	0
E				9				4				0			

F2-8AD4DA-2 Analog Input/Output

F2-8AD4DA-2 8-Ghannel Analog Voltage Input / 4-Channel Analog Voltage Output	
Input Channels per Module	8, single ended (one common)
Input Range	0 to $5 \mathrm{~V}, 0$ to 10 V
Resolution	12, 14, 16-bit selectable
External DC Power Required	80mA @ 18-26.4 VDC
Max. Continuous Overload	$\pm 100 \mathrm{~V}$
Input Impedance	>10M Ω
Filter Characteristics	Active low pass, -3 dB @ 80 Hz
Conversion Time	$\begin{aligned} & 12 \text {-bit }=1.5 \mathrm{~ms} \text { per channel } \\ & 14 \text {-bit }=6 \mathrm{~ms} \text { per channel } \\ & 16 \text {-bit }=25 \mathrm{~ms} \text { per channel } \end{aligned}$
Conversion Method	Over sampling successive approximation
Accuracy vs. Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max.
Maximum Inaccuracy	0.1\% of range
Linearity Error (End to End)	12 -bit $= \pm 1$ count max. ($\pm 0.025 \%$ of range) 14 -bit $= \pm 4$ count max. $\pm 0.025 \%$ of range $)$ 16 -bit $= \pm 16$ count max. ($\pm 0.025 \%$ of range) Monotonic with no missing codes
Full Scale Calibration Error (not incl. offset error)	$\pm 0.075 \%$ of range max.
Offset Calibration Error	$\pm 0.025 \%$ of range max.
Base Power Required 5VDC	35 mA

Output Channels per Module	4
Output Range	0 to $5 \mathrm{~V}, 0$ to 10 V
Resolution	16-bit
Output Type	Voltage sourcing/sinking at 10mA max.
Load Impedance	>1000 ${ }^{\text {a }}$
Max. Inaccuracy	0.15\% of range
Max. Full Scale Calibration Error (not incl. offset error)	$\pm 0.075 \%$ of range max.
Max. Offset Calibration Error	$\pm 0.025 \%$ of range max.
Accuracy vs. Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max. full scale calibration change $\left(\pm 0.005 \%\right.$ of range $/{ }^{\circ} \mathrm{C}$)
Max. Crosstalk @ DC, 50/60Hz	-70dB, 1 LSB
Linearity Error (End to End)	± 1 count max. ($\pm 0.025 \%$ of full scale) Monotonic with no missing codes
Output Stability and Repeatability	± 1 LSB after 10 minute warm-up typical
Output Ripple	0.005\% of full scale
Output Settling Time	$0.5 \mathrm{~ms} \mathrm{max.}$,5 [s min. (full scale change)
Max. Continuous Overload	Outputs current limited to 15 mA typical
Type of Output Protection	1VDC peak output voltage (clamped by transient voltage suppressor)
Output Signal at Power-up and Powerdown	OV
Terminal Type (included)	Removable; D2-1610CON
ZIPLink Module	ZL-RTB20 (Feedthrough)
ZIPLink Cable	ZL-D2-CBL19 (0.5 m) ZL-D2-CBL19-1 (1.0 m) ZL-D2-CBL19-2 (2.0 m) ZL-D2-CBL19-1P (1.0 m Pigtail) ZL-D2-CBL19-2P (2.0 m Pigtail)

F2-8AD4DA-2 Analog Input/Output - continued

F2-8AD4DA-2 Analog Input/Output - continued

The Do-more CPU module assigns the following memory addresses to this module.

F2-8AD4DA-2 X Addressing	
Address	Description
$X n$	Not Used
$X n+1$	Not Used
$X n+2$	Not Used
$X n+3$	Not Used
$X n+4$	Not Used
$X n+5$	Not Used
$X n+6$	Not Used
$X n+7$	Not Used

Xn: Starting X address assigned to this module

F2-8AD4DA-2 WX Addressing	
Address	Description
WXn	Channel 1 Input Data (0 to 4095, 0 to 16383 or 0 to 65535^{1})
$W X{ }^{\prime}+1$	Channel 2 Input Data (0 to 4095, 0 to 16383 or 0 to 65535^{1})
$W X_{n+2}$	Channel 3 Input Data (0 to 4095, 0 to 16383 or 0 to 65535^{1})
WXn+3	Channel 4 Input Data (0 to 4095, 0 to 16383 or 0 to 65535 ${ }^{1}$)
WXn+4	Channel 5 Input Data (0 to 4095, 0 to 16383 or 0 to 65535^{1})
$W X_{n+5}$	Channel 6 Input Data (0 to 4095, 0 to 16383 or 0 to 65535^{1})
WXn+6	Channel 7 Input Data (0 to 4095, 0 to 16383 or 0 to 65535^{1})
WXn+7	Channel 8 Input Data (0 to 4095, 0 to 16383 or 0 to 655351)

WXn: Starting WX address assigned to this module

The resolution of each analog input channel can be selected separately. Available resolutions are 12 bit (0 to 4095), 14 bit (0 to 16383) and 16 bit (0 to 65535). You need to use the memory address WYn +4 to select the resolutions. Please refer to the next page for details.

NOTE 1: The data format of the WX addresses is 'Signed Word'. They store -32768 to 32767 as default. To read and write 0 to 65535 into these memory addresses, use the casting ' $: U$ ’ ($‘: U$ ' is the casting for 'Unsigned' format). For instance, if you selected the 16 bit resolution for the first analog input channel and WXO is assigned to the channel, use 'WXO:U' to access this memory address in the ladder program and other tools in Do-more Designer.

F2-8AD4DA-2 Analog Input/Output - continued

F2-8AD4DA-2 WY Addressing	
Address	Description
$W Y \mathrm{n}$	Channel 1 Output Data (0 to 65535²)
$W Y n+1$	Channel 2 Output Data (0 to 65535²)
$W Y n+2$	Channel 3 Output Data (0 to 65535²)
$W Y n+3$	Channel 4 Output Data (0 to 65535²)
WYn+4	Input Resolution Selection
WYn+5	Input and Output Ranges Selection
WYn+6	Input Track and Hold Selection

WYn: Starting WY address assigned to this module
NOTE 2: The data format of the WY addresses is 'Signed Word'. They store -32768 to 32767 as default. To read and write 0 to 65535 into these memory addresses, use the casting ' $: U$ ’ ($: \cdot U$ ’ is the casting for 'Unsigned' format). For instance, if WYO is assigned to the first analog output channel, use 'WY0:U' to access this memory address in the ladder program and other tools in Do-more Designer.

Input

0 V to 5 V

Value in WX address
Output
0 V to 5 V

Value in WY address

0 V to 10 V

Value in WX address

0 V to 10 V

Value in WY address

F2-8AD4DA-2 Analog Input/Output - continued

Input Configuration Using Do-more Designer Version $\mathbf{1 . 1}$ or Newer

Using the Module Configurations section of the Do-more Designer System Configuration, each of the eight input channels can be individually configured for resolutions: 12,14 , or 16 bit, configured for track and hold options: None (no hold), Minimum, Maximum, or Reset held value, or each input can be individually disabled. Input and output ranges can also be configured for 0 to 5 V or 0 to 10 V in this section.
From the System Configurations page, select Module Configuration(s) in the tab on the left. The screen below will appear showing the modules that are pre-configurable. Select the Type F2-8AD4DA-x in the table and click the Edit Config button on the right-hand side.

Once the Edit Config button is selected, the Module Settings page shown below will open. From this page each input channel can be configured with Resolution and/or Track and Hold options. Input/output range options are also available. Select the radial button next to the desired options and select the OK button when done.

Chapter 6: Specifications - Analog I/O Modules

F2-8AD4DA-2 Analog Input/Output - continued

Input Resolution Selection (WYn+4)

If not using Do-more Designer version 1.1 or newer, each of the eight input channels can be individually configured for 12,14 , or 16 bit resolution or disabled with memory address WYn+4 (WYn: Starting WY address assigned to this module). Two (2) bits in this memory address are assigned to each analog input channel.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$R-$															
$8 H$	$8 L$	$7 H$	$7 L$	$6 H$	6 L	5 H	5 L	4 H	4 L	3 H	3 L	2 H	2 L	1 H	1 L

Channc\| Resolution Selection Table		
Input Resolution	RnH (Resolution channel \mathbf{n} High bit)	RnL (Resolution channel n Low bit)
$\mathbf{1 2 ~ b i t ~}$	0	0
$\mathbf{1 4}$ bit	0	1
$\mathbf{1 6}$ bit	1	0
Disabled	1	1

The HEX data format is used to set up the input resolution as seen in the following example.
Example: An F2-8AD4DA-2 is installed in slot 0 and WY4 is used for the input resolution selection. Input channels $1-4$ are 12 bit, channel 5 is 14 bit, channel 6 is 16 bit, and channels 7 and 8 are disabled. In this case, $0 \times \mathrm{xF900}$ needs to be written into WY4.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\begin{aligned} & \hline \mathrm{R}- \\ & 8 \mathrm{H} \end{aligned}$	R-	$\begin{aligned} & \text { R- } \\ & 7 \end{aligned}$	$\begin{aligned} & \text { R- } \\ & 7 \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{R}- \\ & 6 \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { R- } \\ & 6 \mathrm{~L} \end{aligned}$	$\begin{gathered} \mathrm{R}- \\ 5 \mathrm{H} \end{gathered}$	$\begin{aligned} & \text { R- } \\ & 5 \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{R}- \\ & 4 \mathrm{H} \end{aligned}$	R-	$\begin{aligned} & \text { R- } \\ & 3 H \end{aligned}$	$\begin{aligned} & \text { R- } \\ & \text { 3L } \end{aligned}$	$\begin{aligned} & \text { R- } \\ & 2 H \end{aligned}$	$\begin{aligned} & \text { R- } \\ & \text { 2L } \end{aligned}$	$\begin{aligned} & \text { R- } \\ & 1 H \end{aligned}$	R-
1	1	1	1	1	0	0	1	0	0	0	0	0	0	0	0
F				9				0				0			

Use the MOVE instruction to write the Hex value $0 \mathrm{xF900}$ into WY4.

F2-8AD4DA-2 Analog Input/Output - continued

Input and Output Range Selection (WYn+5)

The range of the eight input channels can be collectively set for 0 to 5 V or for 0 to 10 V . The range of the four output channels can also be collectively set for either of the same two voltage ranges. The configuration is stored in memory address WYn +5 (WYn: Starting WY address assigned to this module). Only 2 bits in this memory address are used for the setup.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	OR	-	-	-	-	-	-	-	IR

Input/Output Range Sclection Table		
Input/Output Range	IR (Input Range)	OR (Output Range)
OV to 5V	0	0
OV to 10V	1	1

The HEX data format is used to set up the input resolution as seen in the following example. Example: An F2-8AD4DA-2 is installed in slot 0 and WY5 is used for the input and output resolution selection. Input channel range is set to 0 to 5 V and output channel range is set to 0 to 10 V . In this case, 0×100 needs to be written into WY5.
Use the MOVE instruction to write the Hex value 0x100 into WY5.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	OR	-	-	-	-	-	-	-	IR
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0				1				0				0			

F2-8AD4DA-2 Analog Input/Output - continued

Input Track and Hold Selection (WYn+6)

The track and hold feature for each of the eight inputs can be individually configured for minimum, maximum, no hold, or reset held value with memory address WYn +6 (WYn: Starting WY address assigned to this module). This configuration can be changed "on the fly" while the program is running. Two (2) bits in this memory address are assigned to each analog input channel.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\mathrm{~T}-$	$\mathrm{T}-$														
8 H	8 L	7 H	7 L	6 H	6 L	5 H	5 L	4 H	4 L	3 H	3 L	2 H	2 L	1 H	1 L

	Channel Track and Hold Sclection Table		
Track and Hold Select	TnH (Track and Hold channel n High bit)	TnL (Track and Hold channel n Low bit)	Result
No Track and Hold	0	0	Returns real time input value
Track and Hold Minimum Value	0	1	Maintains lowest measured value
Track and Hold Maximum Value	1	0	Maintains highest measured value
Reset Track and Hold Value	1	1	Resets previously held input value

The HEX data format is used to set up the track and hold option as seen in the following example.
Example: An F2-8AD4DA-2 is installed in slot 0 and WY6 is used for the track and hold selection. Input channel track and hold settings: ch 1-3 = none, ch 4-5 = minimum, ch 6-7 = maximum, ch $8=$ reset. In this case, $0 x E 940$ needs to be written into WY6.
Use the MOVE instruction to write the Hex value 0 xE 940 into WY6.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T-															
8 H	8L	7H	7L	6H	6L	5H	5L	4 H	4L	3 H	3L	2 H	2L	1H	1L
1	1	1	0	1	0	0	1	0	1	0	0	0	0	0	0
E				9				4				0			

