

Bacterial Screening of NHSBT Platelet Components

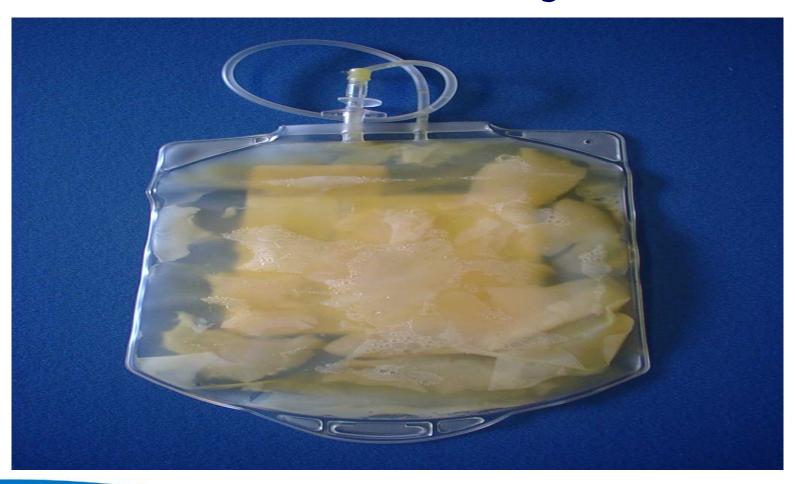
Dr. Carl McDonald
Head of Bacteriology
National Bacteriology Laboratory
NHS Blood and Transplant

Overview

- Impact of bacterial transmission
- Why PCs are the greatest risk
- NHSBT Strategy
- Impact diversion and improved donor arm disinfection
- NHSBT protocol Bacterial Screening
- NHSBT results Bacterial Screening
- Added value Bacterial Screening
- Future development

Bacterial Mortality Worldwide

USA	2005-2015	38 deaths	(FDA)
France	1994-2015	36 deaths	(Haemovigilance)
Germany	1997-2014	14 deaths	(Haemovigilance)
U.K.	1994	3 deaths	(Pre-SHOT)
U.K.	1996-2016	11 deaths	(SHOT)



Platelet Components Are The Greatest Risk!

- USA: (FDA) 2005 2015 platelet components comprised 87% (33/38) bacterial fatalities
- UK: (SHOT) 1996 2016 platelet components comprised 84% (37/44) cases

Klebsiella oxytoca

NHSBT Strategy

Improved donor arm disinfection

Diversion

Bacterial Screening

Interventions Introduced

- Improved Donor Arm Disinfection implemented nationally 2007
- Diversion implemented nationally 2003
- In combination 77% reduction in contamination

McDonald, C.P. et al., Relative Values of the Interventions of Diversion and Improved Donor-Arm

Disinfection to Reduce the Bacterial Risk from Blood Transfusion: Vox Sanguinis (2004), 86:178-182

Post Implementation Improved Donor Arm Disinfection and Diversion (2006 – 2010)

- 7 contamination incidents in PC
- 10 patients affected
- 3 deaths
- 5 near misses

NHSBT Bacterial Screening

Bacterial Screening of Platelet Components in NHSBT

- NHSBT Board Meeting in January 2010
- Decision was made to implement bacterial screening within 12 months
- February 2011 rolled out
- July 2011 all components screened

BacT/ALERT System

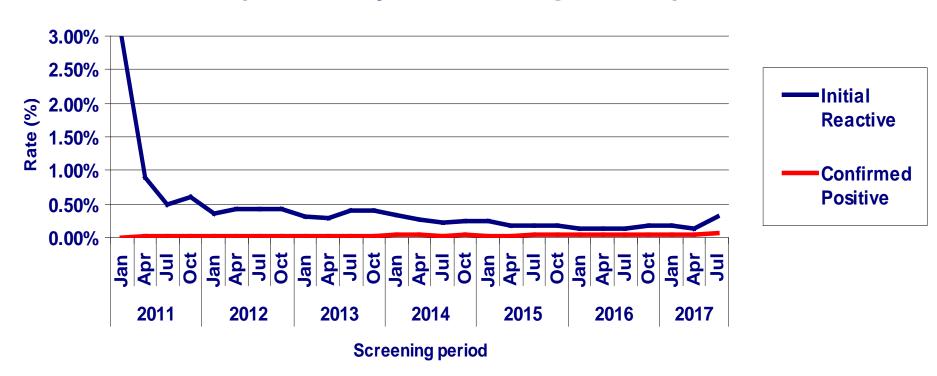
Bacterial Screening Laboratory

Bacterial Screening Laboratory

Bacterial Screening Laboratory

NHSBT Test Protocol (1 test, Extension Shelf Life to 7 Days)

- Platelet components held for ≥ 36hrs 48hrs after collection
- 2. Platelet components sampled and tested
- 3. Held for 6hrs
- 4. Released with a 7 day shelf life
- 5. Monitored for the component shelf life
- 6. Positives recalled


What Happened?

Quarterly Bacterial Screening Rates (February 2011 - Sept 2017)

Initial Reactive and Confirmed Positive Rates (Cumulative Feb 2011 – Sept 2017)

	Number	Initial Reactive Rate	Confirmed Positive Rate
Apheresis*	1,285,959	0.33%	0.02%
Pooled*	530,804	0.25%	0.07%
Total	1,816,763	0.31%	0.04%

^{*}Apheresis platelets screened from Feb 2011 *Pooled platelets screened from May 2011

Initial Screen: Bottle Reactivity

(February 2011 – Sept 2017)

Bottle Type	Initial Reactive	False Positive
Anaerobic	73.8%	77.9%
Aerobic	21.3%	21.7%
Both	4.8%	0.4%

Confirmed Positives - Bottle Type (February 2011 – Sept 2017)

Anaerobic bottle 65%

Aerobic bottle 7%

•Both bottles 28%

Confirmed Positives (February 2011 – Sept 2017)

- 666 confirmed
- 640 Gram positives
- 26 Gram negatives

Confirmed Organisms | Confirmed Organisms |

Gram Positives (n=640):

Propionibacterium spp. = 346 Staphylococcus spp. = 163

Streptococcus spp. = 105

Gemella spp. = 6

Listeria monocytogenes = 4

Corynebacterium spp. = 3

Enterococcus spp = 3

Lactobacillus casei = 2

Bacillus cereus = 2

Granulicatella adaciens = 2

Lactococcus lactis = 1

Peptostreptococcus micros = 1

Finegoldia magna = 1

Misc. Gram Positive bacilli = 1

Gram Negatives (n=26):

Escherichia coli = 9

Serratia marcescens = 5

Klebsiella spp. = 5

Enterobacter spp = 2

Pseudomonas aeruginosa = 1

Haemophilus aphrophilus = 1

Bacteroides vulgatus = 1

Proteus mirabilis = 1

Campylobacter lari = 1

Confirmed Positive Gram Positive 'Pathogenic' Organisms (Feb 2011 – Sept 2017)

Organisms	n	Detection Time Range (hours)	Total Contaminated Components
Streptococcus dysgalactiae (Group G/C)	24	2-19	32
Staphylococcus aureus	17	2-21	21
Streptococcus pneumoniae	12	10-13	16
Streptococcus agalactiae (Group B)	6	6-16	5
Listeria monocytogenes	4	14-20	5
Bacillus cereus	2	11-14	2

Total cases with pathogenic organisms: 65
Total number of contaminated components: 81

Confirmed Positive Gram Negative 'Pathogenic' Organisms (Feb 2011- Sept 2017)

Organisms	n	Detection Time Range (hours)	Total Contaminated Components
Escherichia coli	9	3-14	19
Serratia marcescens	5	3-13	8
Klebsiella oxytoca	3	3-10	4
Klebsiella pneumoniae	2	4-11	3
Proteus mirabilis	1	14	1
Pseudomonas aeruginosa	1	15	1
Campylobacter lari	1	32	1

Total cases with pathogenic organisms: 22
Total number of contaminated components: 37

Number of Splits Contaminated in Confirmed Positive Apheresis Donations (Feb 2011 – Sept 2017)

	Total number of splits positive per investigation		
Splits per donation	1	2	3
2	47.9% (69)	52.1% (75)	N/A
3	50%	18.8%	31.2%
3	(16)	(6)	(10)

NB: when all components returned for confirmatory/reference testing

Near Misses and and Transmissions

Transmissions and Near Misses

•1 transmission:1 x Staphylococcus aureus

•4 near misses: 3 x S. aureus

1 x Serratia marcescens

Near Miss 1: 2013

- Apheresis platelet donation (2 splits)
- Large clumps reported in pack 2 by Hospital A
- Pack 1 issued to Hospital B but not transfused. No clumps present
- Both units received by NBL

Near Miss 1: 2013 (cont'd)

- No clumps visible in pack 2, but were present in pack 1
- BacT/ALERT cultures for both units positive in 3.8hr
- Staphylococcus aureus isolated
- Investigation of donor found S. aureus colonisation
- Strain typing of PC and donor isolates were indistinguishable

Near Miss 3

BacT/ALERT Culture Bottles

Near Miss 4: 2015

- Apheresis unit 2 splits
- Clumps observed in split 1 by SHU
- Packs and BacT/ALERT screening bottles sent to NBL

Near Miss4: 2015

Pack 1

Pack 2

Near Miss 4: 2015 (cont'd)

- Gram from pack 1 Gram negative rods
- Gram from pack 2 negative
- Clotted pack 1 positive on BacT/ALERT 3.7h
- Unclotted pack 2 negative on BacT/ALERT
- S. marcescens identified from pack 1

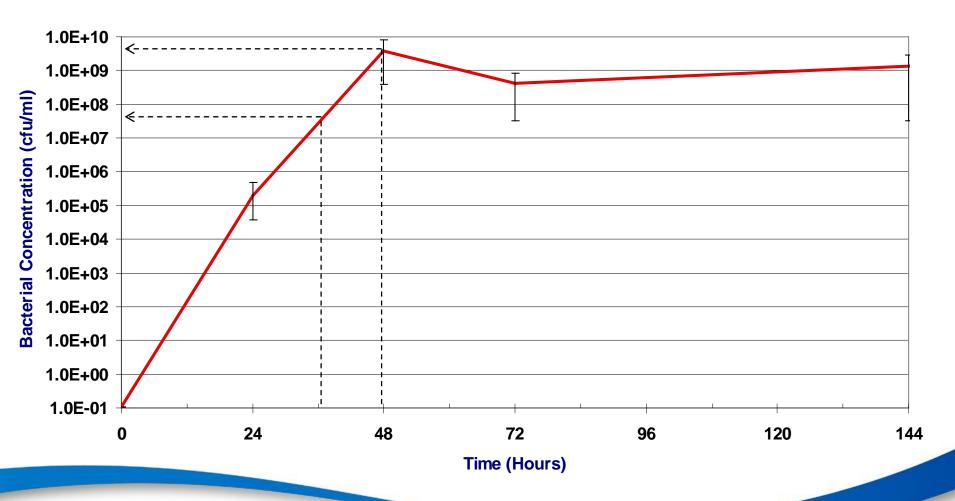
Near Miss 4: 2015

Inoculated

Uninoculated

Near Miss 4: 2015 (cont'd)

- BacT/ALERT bottles Gram stain negative (both packs)
- BacT/ALERT bottles subcultured into new bottles – negative
- Screening bottles inoculated S. marcescens
 - positive



Near Miss 4: Conclusion

- Not a BacT/ALERT failure
- Insufficient bacteria at sampling time?
- Contamination post screening?

Growth Kinetics of *S. marcescens* in Platelets Suspended in Plasma

Confirmed Transfusion-Transmitted Infection (TTI) 2015

- Pooled platelet unit transfused into AML patient
- After 15 mins, the patient became agitated and suffered rigors, tachycardia and pyrexia
 - Temperature rose to 38.7°C, then 40°C overnight
- Patient cultures grew Staphylococcus aureus

Confirmed TTI: 2015 (cont'd)

- Platelet unit received by NBL
- Unit was leaking through open port, sealed with a capped needle
- Remaining contents (~3ml) appeared 'cloudy'
- Gram stain showed heavy contamination with GPC
- BacT/ALERT cultures positive in 3.8h

Confirmed TTI: 2015 (cont'd)

- S. aureus isolated, strain type matched the patient isolate
- All 4 associated red cells units were cultured by NBL and remained negative after 7 days incubation
- 2/4 Donors investigated both had S. aureus in multiple sites
- Strain typing of 1st donor isolates showed a distinct strain (no match)
- Strain typing of 2nd donor showed closely-related Spa type and matching DNA fingerprint

Bacterial Screening: Added Value

Donor Healthcare Benefits Bacterial Screening

- Streptococcus bovis (n=4): donor's colonic polyps
- Streptococcus constellatus (n=3) and P. micros: dental

McDonald, C. et.al., Transfusion, 2013,53:2117-2119

Lee, CK. et.al., Transfusion, 2013,53:2205-2208

Bacterial Screening Provides Insight into Possible Source of Contamination

- Pseudomonas spp. poor hygiene facilities
- Staphylococcus spp. inadequate donor arm disinfection

Future

BacT/ALERT Virtuo

Virtuo Advantages

- Superior performance to BacT/Alert 3D
 - Faster detection times
 - -Potentially lower false positive rates
 - -Automated loading and unloading

NHSBT Screening (February 2011 to March 2017)

- •1 transmission in >1.8million PC screened (S.aureus)
- 4 near misses (3 S. aureus and S. marcescens)
- False negative rate 1 in 360,000 (0.0003%)
- •1 CP in 6015 TE platelets screened (S. pneumoniae)

Success NHSBT Bacterial Screening

- Delayed sampling
- High volume tested (5-7%)
- Screening of apheresis splits
- Use of a two bottle system

Conclusion **Bacterial Screening** within NHSBT has proven to be extremely successful risk reduction intervention!

Bacterial Screening of Platelet Components by National Health Service Blood and Transplant, an Effective Risk Reduction Measure

C. McDonald, J. Allen, et al.,

Transfusion 2017;57;1122-1131

Acknowledgements

- Jennifer Allen
- Kate Aplin
- Su Brailsford
- Richard de Ritis
- Rachael Morrison
- Tyrone Pitt
- Mariza Vasconcelos
- Tracy Ward

THANK YOU

carl.mcdonald@nhsbt.nhs.uk