
 Application Note

R01AN5653EJ0101 Rev.1.01 Page 1 of 127

Aug.31.21

RA4W1 Group

Bluetooth Low Energy Application Developer's Guide

Introduction

This document describes how to make Bluetooth Low Energy applications and provides some hints for
making Bluetooth Low Energy applications.

Target Device

RA4W1 Group

Related Documents

Bluetooth Core Specification (https://www.bluetooth.com)

Supplement of Bluetooth Core Specification (https://www.bluetooth.com)

RA4W1 Group User’s Manual: Hardware (R01UH0883)

RA Flexible Software Package User’s Manual

e2 studio Getting Started Guide (R20UT4204)

RA4W1 Group Bluetooth LE Profile API Document User's Manual (R11UM0154)

Bluetooth Low Energy Profile Developer’s Guide (R01AN5428)

Host Controller Interface Firmware(R01AN5429)

Public BD Address writing tool(R01AN5439)

Bluetooth Test Tool Suite operating instructions Application Note (R01AN4554)

RA4W1 Group Guidelines for 2.4 GHz Wireless Board Design (R01AN4886)

BLE sample application (R01AN5402)

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

https://www.bluetooth.com/
https://www.bluetooth.com/

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 2 of 127

Aug.31.21

Contents

1. Overview ... 6

1.1 Development environment .. 6

1.1.1 Hardware requirements ... 6

1.1.2 Software requirements .. 6

1.2 Typical design flow .. 7

1.2.1 Flexible Software Package .. 9

1.2.2 QE for BLE .. 9

1.2.3 Related Tools .. 9

1.3 Usage of this document ... 10

2. BLE Abstraction Driver .. 11

2.1 Supported features .. 11

2.2 How to add BLE Abstraction Driver to project ... 12

2.3 Configuration Options .. 12

2.4 How to adjust configuration option .. 13

2.4.1 How to adjust RAM usage ... 13

2.4.2 How to configure BD address .. 15

2.4.3 How to use random address ... 17

2.4.4 How to configure for minimum current consumption ... 18

3. How to implement user code ... 22

3.1 Example of implementation ... 24

4. Advertising ... 25

4.1 Advertising with abstraction API .. 26

4.1.1 White list .. 27

4.1.2 Privacy ... 27

4.2 Advertising with GAP API .. 28

4.2.1 Set advertising parameter ... 28

4.2.2 Advertising Data / Scan Response Data ... 32

4.2.3 Start Advertising .. 32

4.2.4 Stop Advertising .. 32

4.3 Periodic Advertising with GAP API .. 33

4.3.1 Non-Connectable Advertising Parameter .. 34

4.3.2 Periodic Advertising Parameter ... 34

4.3.3 Periodic Advertising Data .. 34

4.3.4 Start Periodic Advertising .. 34

4.3.5 Stop Periodic Advertising .. 36

4.4 Advertising Data / Scan Response Data / Periodic Advertising Data ... 37

4.4.1 Data format .. 38

4.4.2 Advertising data update ... 40

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 3 of 127

Aug.31.21

4.4.3 Periodic Advertising Data Update ... 40

4.4.4 Total advertising data size ... 41

4.5 Typical use case for advertising .. 42

4.5.1 Connection with Smart Phone ... 42

4.5.2 Beacon .. 43

5. Scan .. 44

5.1 Scan with abstraction API ... 45

5.1.1 Scan filtering .. 45

5.1.2 Privacy ... 45

5.2 Scan with GAP API.. 46

5.2.1 Set scan parameters ... 46

5.2.2 Start scan .. 47

5.2.3 Stop scan ... 47

5.2.4 Received information by scan ... 48

5.3 Scan filtering .. 49

5.3.1 White list .. 49

5.3.2 Duplicate advertising filtering .. 49

5.3.3 Discoverable mode filtering ... 50

5.3.4 Advertising data filtering .. 50

5.4 Periodic advertising synchronization with GAP API .. 51

5.4.1 Start scan .. 52

5.4.2 Detect periodic advertiser .. 52

5.4.3 Establish periodic advertising sync ... 52

5.4.4 Periodic advertiser list ... 53

5.4.5 Receive periodic advertising PDUs ... 53

5.4.6 Lost periodic advertising sync ... 53

5.4.7 Terminate periodic advertising sync .. 53

6. Connection .. 54

6.1 Requesting connection with abstraction API ... 54

6.1.1 White list filtering ... 54

6.1.2 Privacy ... 54

6.2 Requesting connection with GAP API ... 55

6.3 Cancelling Connection Request .. 55

6.4 White list filtering ... 55

6.5 Privacy ... 56

6.6 Multiple connection .. 57

6.6.1 Connecting to multiple peripheral devices .. 58

6.6.2 Connection to multiple central devices .. 63

6.6.3 Multi role connection ... 67

6.7 Disconnection .. 72

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 4 of 127

Aug.31.21

7. Communication .. 73

7.1 Changing PHY ... 73

7.2 Changing maximum transmission packet length ... 76

7.3 Updating connection parameter .. 78

7.4 Changing MTU .. 83

7.5 Flow control ... 85

7.6 High throughput communication .. 86

8. Security ... 87

8.1 Pairing ... 87

8.1.1 Pairing Parameters .. 89

8.1.2 Key generation and registration .. 93

8.1.3 OOB (Out of Band) data transmission and reception.. 94

8.1.4 Pairing request .. 94

8.1.5 Response to pairing request ... 94

8.1.6 Pairing method .. 95

8.1.7 Key exchange .. 97

8.1.8 Completion of pairing .. 97

8.2 Bonding ... 98

8.2.1 Store remote device keys .. 99

8.2.2 Store local device keys .. 100

8.2.3 Reset the stored keys .. 100

8.3 Encryption .. 101

8.3.1 Request Encryption ... 101

8.3.2 Respond to an encryption request .. 103

8.3.3 Completion of encryption ... 104

8.4 Privacy ... 105

8.4.1 Generate and resolve local device RPA ... 105

8.4.2 Resolve remote device RPA ... 109

9. Profile and service ... 110

9.1 Standard profile and Standard Service ... 111

9.2 APIs of GATT Procedure ... 117

9.2.1 Read operation .. 117

9.2.2 Write operation .. 118

9.2.3 WriteWithoutResponse operation .. 119

9.2.4 Notification operation ... 120

9.2.5 Indication operation ... 121

9.2.6 ReliableWrite operation ... 123

9.2.7 Broadcast Operation ... 125

9.3 Example of using GATT Procedure ... 126

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 5 of 127

Aug.31.21

Revision History .. 127

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 6 of 127

Aug.31.21

1. Overview

This document describes how to make Bluetooth Low Energy applications and provides some hints for
making Bluetooth Low Energy applications.

1.1 Development environment

This section describes environment for BLE application development.

1.1.1 Hardware requirements

Table 1 shows the hardware requirements for building and debugging the BLE application.

Table 1. Hardware requirements

Hardware Description

Host PC Windows® 10 PC with USB interface.

MCU board The board with RA4W1 or EK-RA4W1[RTK7EKA4W1S00000BJ]

Note: This document uses EK-RA4W1 for explanation.

On-chip debugging

emulators

The EK-RA4W1 has an on-board debugger (J-Link OB), therefore it is not
necessary to prepare an emulator.

E2-Lite emulator Needed if user want to write device-specific data in user’s custom board by
using Renesas Flash Programmer.

USB cables Used to connect to the MCU board.

EK-RA4W1: 2 USB A-micro B cable

1.1.2 Software requirements

Table 2 shows the software requirements for building and debugging the BLE application.

Table 2. Software requirements

Software Version Description

GCC

environment

e² studio 2021-04 Integrated development environment (IDE) for Renesas
devices.

GCC ARM
Embedded

V9 C/C++ Compiler. (download from e2 studio installer)

Renesas Flexible
Software Package
(FSP)

V3.2.0 Software package for making applications for the RA
microcontroller series.

QE for BLE[RA] V1.2.0 Generates the source codes (BLE base skeleton program)
as a base for the BLE Application and the BLE Profile.

https://www.renesas.com/qe-ble

SEGGER J-Flash V6.86 Tool for programming the on-chip flash memory of
microcontrollers.

Integer types It uses ANSI C99 “Exact width integer types”. These types
are defined in stdint.h.

Endian Little endian

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 7 of 127

Aug.31.21

1.2 Typical design flow

Bluetooth SIG defines specifications of application profiles for typical use case in BLE. User can interconnect
with existing BLE device by using such an application profile. On the other hand, it is necessary to newly
design application profile as well as user application when user wants to perform new BLE bidirectional
communication. User needs to design following items when user make the new BLE bidirectional
communication.

 The structure of application data exchanged between GATT server and clients.

 The method of accessing the GATT database.

 The setting of GAP communication parameters.

 The method of connecting devices.

 Security level.

Renesas provides some tools for BLE application development. User can design BLE application by using
these tools. Typical BLE application design flow and related Renesas provided tools in each step are shown
in Figure 1.

Figure 1. Bluetooth LE application development procedure and auxiliary tools

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 8 of 127

Aug.31.21

Figure 2 shows typical software structure generated by Renesas provided tools.

Figure 2. Software structure

Implementation

Included in BLE Abstraction Driver on rm_ble_abs

Code-generated by QE for BLE

Bluetooth LE

architecture
Application

GAP (Generic Access Profile) GATT (Generic Attribute Profile)

L2CAP (Logical Link Control and Adaptation Protocol)

ATT (Attribute Protocol)

HCI (Host Controller Interface)

LL (Link Layer)

PHY (Physical Layer)

 Host

 Controller

Hardware (RA4W1)

BLE Protocol Stack (library)

- R_BLE_API
- Host stack (GAP, SMP, GATT, ATT, L2CAP)
- Scheduler
- HCI
- LL
- Others (Vendor Specific, MCU Low Power Consumption)

SMP (Security Manager Protocol)

BLE FSP module

- RM_BLE_ABS APIs

Application part

Application Framework

Profile part

Profile Framework

- Profile API

- GATT Database

FSP module
except BLE

Add the user program using various API.

Generate the any profile using QE
for BLE.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 9 of 127

Aug.31.21

1.2.1 Flexible Software Package

BLE Protocol Stack is included in BLE Abstraction Driver on rm_ble_abs which is a part of Flexible Software
Package. The driver provides the BLE features that comply with the Bluetooth Core Specification version 5.0
defined by Bluetooth SIG. User can add the driver to their own project from FSP configuration in e2studio and
start BLE application development. The BLE features are provided in static library format as a BLE Protocol
Stack. The BLE Protocol Stack controls the BLE procedures (e.g. Advertising, Scanning, Initiating,
Connection) and manages execution of RF events. Refer to BLE sample application (R01AN5402) about
adding BLE Abstraction Driver on rm_ble_abs to user’s project.

1.2.2 QE for BLE

QE for BLE is tool for designing BLE application profiles. QE for BLE tool can generate profile and BLE
application skeleton code. And user can modify QE for BLE generated codes according to use case. Refer to
Bluetooth Low Energy Profile Developer's Guide(R01AN5428) about usage of QE for BLE tool.

1.2.3 Related Tools

Renesas provides tools shown in Table 3 to assist BLE application development.

Table 3. Supporting tools for application development

Tool Description

GATT Browser

Smartphone application for accessing to GATT Server. User can confirm about
Bluetooth Low Energy primitive communication and GATT database structure on
GATT server and so on from smartphone which installed this application. This
application can download from,

Android : https://play.google.com/store/apps/details?id=com.renesas.ble.gattbrowser

iOS : https://itunes.apple.com/us/app/gattbrowser/id1163057977?mt=8

Bluetooth Test tool Suite

(BTTS)

Tool suite to control RA4W1 connected with Windows PC via USB Serial and evaluate
three functions of RF, Beacon and Data Communication in Bluetooth Core
Specification 5.0. It can be also used when getting Radio Law certification for the
device. Refer to Bluetooth Test Tool Suite operating instructions Application Note

(R01AN4554).

https://play.google.com/store/apps/details?id=com.renesas.ble.gattbrowser
https://itunes.apple.com/us/app/gattbrowser/id1163057977?mt=8

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 10 of 127

Aug.31.21

1.3 Usage of this document

One of typical BLE applications on RA4W1 is that accepts connection from PC, smartphones, etc. and
operates as a GATT server or client. In each case, refer to the chapters shown in Table 4.

Table 4. Typical BLE application and referenced chapter

Application Process Description

GATT server Advertising Refer to Chapter 4.

Connection When receiving a connection request from Master, BLE Protocol
Stack automatically establishes a connection and notifies

BLE_GAP_EVENT_CONN_IND event.

Pairing Refer to chapter 8.

Data communication

(Notification)

Refer to chapter 7.

GATT client Scan Refer to chapter 5.

Connection Refer to chapter 6.

Pairing Refer to chapter 8.

Data Communication

(Read, Write)

Refer to chapter 7.

Other examples of BLE applications on RA4W1 are shown below.

 GATT Server application that collects operation logs of industrial equipment and sensor data of
healthcare equipment and uploads them to clients such as PCs and smartphones.

➢ Refer to section 2.4.4, section 6.6 and chapter 8.

 GATT Server application that transfers the data downloaded from clients such as PCs and
smartphones.

➢ Refer to section 7.6 and chapter 8.

 GATT Server application that uploads data (e.g. image data, audio data, etc.) to clients such as PCs
and smartphones.

➢ Refer to section 7.6.

 GATT Server applications for electronic locks, OA devices, consumer devices, etc. that are operated
from multiple clients such as smartphones.

➢ Refer to section 6.6 and chapter 8.

 Beacon application that periodically broadcasts data such as sensor data.

➢ Refer to section 4.5.2.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 11 of 127

Aug.31.21

2. BLE Abstraction Driver

BLE Abstraction Driver is a part of Flexible Software Package. The driver provides BLE features that comply
with the Bluetooth Core Specification version 5.0 defined by Bluetooth SIG.

2.1 Supported features

Table 5 shows BLE Abstraction Driver supported features.

Table 5. BLE features

Bluetooth
Version

LE features and description Remark

5.0 LE 2M PHY (2 Msym/s PHY for LE)

2Mbps PHY data rate.

High data throughput.

Low power consumption by
short communication time.

5.0 LE Coded PHY (LE Long Range)

500kbps/125kbps PHY data rate.

Extend communication distance.

5.0 LE Advertising Extensions

Enable Advertising by secondary channel.

(Up to 4 independent Advertising can be executed simultaneously
in RA4W1.)

Expansion of Advertising Data/Scan Response Data size up from
31 bytes to 1650 bytes.

Advertising by Long Range.

Periodic Advertising is possible.

Wireless interference reduction.

Beacon information expansion.

Establishing connection in long-
distance.

Utilization of secondary channel.

5.0 LE Channel Selection Algorithm #2

Improving the channel hopping algorithm.

Wireless interference reduction.

5.0 High Duty Cycle Non-Connectable Advertising

Shorten minimum Advertising Interval (100ms→20ms).

Shortening the time to connect.

Higher frequency of beacon
transmission.

4.2 LE Data Packet Length Extension

Expand the data communication packet size (27 bytes→251
bytes).

High data throughput.

Low power consumption by
short communication time.

4.2 LE Secure Connections

Support the pairing with the Elliptic curve Diffie-Hellman (ECDH)
key exchange for passive eavesdropping protection.

Enhanced security.

4.2 Link Layer Privacy

Link Layer supports address resolution of Privacy feature.

Faster address resolution.

4.2 Link Layer Extended Scanner Filter Policies

4.1 Low Duty Cycle Directed Advertising

Support Low Duty Cycle Advertising for reconnection with known
devices.

4.1 32-bit UUID Support in LE

Support 32-bit UUID (extended to 128-bit when used by GATT).

4.1 LE L2CAP Connection-Oriented Channel Support

Support the communication using L2CAP credit based flow control
channel.

4.1 LE Privacy v1.1

Avoid the tracking from other LE devices by changing the BD
Address periodically.

Enhanced security.

4.1 LE Link Layer Topology

Support both Master and Slave roles, and can operate as Master
when connecting to one remote device and as Slave when
connecting to another remote device.

Enhanced topology.

4.1 LE Ping

Checks whether connection is maintained by a packet
transmission request including MIC field after connection
encryption.

Addendum 2 Appearance Data Type

Appearance characteristic can be used in GAP service.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 12 of 127

Aug.31.21

Bluetooth
Version

LE features and description Remark

4.0 Bluetooth Low Energy

- Low Energy Controller
Low Energy Physical Layer (PHY)
Low Energy Link Layer (LL)

- Low Energy Host
Enhancements to L2CAP for Low Energy
Security Manager (SM)

- Enhancements to HCI for Low Energy

- Low Energy Direct Test Mode

- AES Encryption

- Enhancements to GAP for Low Energy

- Attribute Protocol (ATT)

- Generic Attribute profile (GATT)

Low Energy Controller is

mandatory feature.

Low Energy Host is mandatory
feature.

ATT is mandatory feature.

GATT is mandatory feature.

Note: BR/EDR (Basic Rate/Enhanced Data Rate) is not supported.

Note: The feature except mandatory feature is optional (vendor dependent). Therefore, some device (e.g.

smart phone may not support such an optional feature.

2.2 How to add BLE Abstraction Driver to project

Refer to BLE sample application (R01AN5402) Chapter 3 and 4.

2.3 Configuration Options

BLE Abstraction Driver has some configuration options. These options can modify in properties of FSP
configuration, as shown in Figure 3.

Figure 3. Common options

Refer to BLE sample application (R01AN5402) Chapter 4 about each configuration option.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 13 of 127

Aug.31.21

2.4 How to adjust configuration option

This section describes how to adjust configuration option in some scenarios.

2.4.1 How to adjust RAM usage

This section describes how to adjust RAM usage by changing BLE Abstraction Driver configuration options.
BLE Abstraction Driver (includes BLE Protocol Stack library, related peripherals, NOT include BLE
application and profiles) consumes the ROM/RAM size shown in Table 6 according to extended / balance /
compact configuration. Refer to BLE sample application (R01AN5402) Chapter 1 about extended, balance
and compact configuration.

Table 6. BLE Abstraction Driver ROM/RAM usage

Configuration ROM [KB] RAM[KB]

Extended 216 44

Balance 170 30

Compact 145 29

Consumption of RAM can be reduced by changing following configuration options. Table 7 shows
relationship between RAM consumption and related configuration options.

Table 7. Dependency of RAM size vs. configuration option

Configuration option Setting range (default) RAM size

Maximum number of connections 1 – 7 (7) Require 1 [KB] per one connection.

Maximum connection data length 27 – 251 (251) Require 0.5 [KB] per 64 [bytes] of
connection data.

Maximum advertising data length 31 – 1650 (1650) See Table 8.

Maximum advertising set number*1 1 - 4 (4) See Table 8.

Maximum periodic sync set number*2 1 – 2 (2) Require 64 [bytes] per one sync.

*1: Number of advertising sets that can be broadcasted simultaneously.

*2: Number of sets that can be synchronize with periodic advertising.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 14 of 127

Aug.31.21

Table 8 shows relationship between RAM consumption and Maximum advertising data length configuration
option and Maximum advertising set number configuration option.

Table 8. Dependency of RAM size vs. Max. advertising data length and Max. advertising set number

M
a

x
im

u
m

 a
d

v
e

rt
is

in
g
 s

e
t

n
u

m
b

e
r

1 Maximum advertising data
length

0-252 253-504 505-756 757-1008 1009-1260 1261-1512 1513-1650

Required additional RAM size
[bytes] based on hatched cell

0 512 1024 1536 2048 2560 3072

2 Maximum advertising data
length

0-252 253-504 505-756 757-1008 1009-1260 1261-1512 1513-1650

Required additional RAM size
[bytes] based on hatched cell

0 1024 2048 3072 4096 5120 6144

3 Maximum advertising data
length

0-252 253-504 505-756 757-1008 1009-1260 1261-1650

Required additional RAM size
[bytes] based on hatched cell

0 1536 3072 4608 6144 7680

4 Maximum advertising data
length

0-252 253-504 505-756 757-1008 1009-1650

Required additional RAM size
[bytes] based on hatched cell

0 2048 4096 6144 7168

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 15 of 127

Aug.31.21

2.4.2 How to configure BD address

Bluetooth SIG defines Bluetooth Device address (BD address), as shown in Table 9.

Table 9. BD address types

BD address type Description

Public device address Unique 48bit Bluetooth device address/

Random

device address

Static address Random address where MSB starts with 11b and the remaining
bits can be set randomly to be used.

<Example>

Cx:xx:xx:xx:xx:xx, Dx:xx:xx:xx:xx:xx, Ex:xx:xx:xx:xx:xx,
Fx:xx:xx:xx:xx:xx

Note: Refer to Bluetooth Core Specification Vol 6, PartB, "1.3.2
Random Device Address".

Note: BLE Protocol Stack does not check address format.

Private

address

Non-resolvable

private address

Random address where MSB starts with 00b and the remaining

bits can be dynamically regenerated.

<Example>

0x:xx:xx:xx:xx:xx, 1x:xx:xx:xx:xx:xx, 2x:xx:xx:xx:xx:xx,
3x:xx:xx:xx:xx:xx

Resolvable

Private Address

(RPA)

Random address where MSB starts with 01b and the remaining
bits can be dynamically regenerated and enhanced with privacy

feature.

<Example>

4x:xx:xx:xx:xx:xx, 5x:xx:xx:xx:xx:xx, 6x:xx:xx:xx:xx:xx,

7x:xx:xx:xx:xx:xx

BLE Protocol Stack adopts BD address from following area.

1. Data flash specified block

2. Code flash specified block

3. Firmware initial value

Related configurations are shown in Table 10. Refer to BLE sample application (R01AN5402) chapter 4
about details of these configurations.

Table 10. BD address configurations

Configuration option Initial value

Debug Public Address 74:90:50:FF:FF:FF (Firmware initial value of Public address)

Debug Random Address FF:FF:FF:FF:FF:FF (Firmware initial value of Random address)

Device Specific Data Flash Block -1 (Data flash area is not used for BD address)

Code Flash (ROM) Device Data Block 255 (Code block 255 is used)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 16 of 127

Aug.31.21

BLE Abstraction Driver adopts BD address according to the priority shown in Figure 4.

Figure 4. BD address adoption flow of BLE Abstraction Driver

Following items describe how to modify BD addresses which are stored in data flash area, code flash area
and RAM area.

1. How to modify BD address which stored in data flash area

Use R_BLE_VS_SetBdAddr() API to write BD address to data flash area. After writing BD address, RA4W1
must be reboot at once to adopt the BD address. Refer to RA Flexible Software Package Documentation for
details of the API.

2. How to modify BD address which stored in code flash area

To write BD address to code flash area, use Renesas E2-Lite emulator and Renesas Flash

Programmer (RFP) unique code function. Refer to BLE sample application (R01AN5402) chapter 4 about

detail procedures.

3. Other method

When user wants to dynamically change BD address, R_BLE_VS_SetBdAddr API can be used. Refer to RA
Flexible Software Package Documentation for details of the API.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 17 of 127

Aug.31.21

2.4.3 How to use random address

Code 1 is a sample code for advertising with a random address.

ble_abs_legacy_advertising_parameter_t g_ble_advertising_parameter =
{
………
.own_bluetooth_address_type = BLE_GAP_ADDR_RAND,
………
};

………

void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 /* Get BD address for Advertising */
 R_BLE_VS_GetBdAddr(BLE_VS_ADDR_AREA_REG, BLE_GAP_ADDR_RAND);
 } break;
………
}

………

void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
………
 switch(type)
 {
 case BLE_VS_EVENT_GET_ADDR_COMP:
 {
 /* Start advertising when BD address is ready */
 st_ble_vs_get_bd_addr_comp_evt_t * get_address

= (st_ble_vs_get_bd_addr_comp_evt_t *)p_data->p_param;

 memcpy(g_ble_advertising_parameter.own_bluetooth_address, get_address->addr.addr,
BLE_BD_ADDR_LEN);

 RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl, &g_ble_advertising_parameter);
 } break;
………
}

Code 1. Sample of using random address

Set advertising parameter to use random address

Get random address

After this API call,
BLE_VS_EVENT_GET_ADDR_COMP event will
happen and vs_cb() will execute.

Copy random address to advertising parameter
and start advertising.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 18 of 127

Aug.31.21

2.4.4 How to configure for minimum current consumption

The configurations shown in Table 11 make the current consumption minimize.

Table 11. Configurations for minimum current consumption

Configuration options Comments

FSP configuration /
Clocks

Clock source: HOCO

HOCO clock frequency: 32MHz

Note: Make non-used clocks disable
or set minimum clock frequency to
minimize current consumption. ICLK: 32MHz

PCLKA and PCLKD: 32MHz

FCLK: 32MHz

CLKOUT: Disable

BLE Abstraction Driver
Properties

DC-DC converter: Enable DC-DC converter Note: refer to RA4W1 Group
Guidelines for 2.4 GHz Wireless
Board Design (R01AN4886).

RF_DEEP_SLEEP Transition: Enable Refer to BLE sample application
(R01AN5402) chapter 4 about detail

of configuration options.

Note: The transmit current can be
reduced by lowering the RF transmit
power, but the communication
range will be shortened accordingly

CLKOUT_RF Output: No Output

Transmission Power Maximum Value

Transmission Power Default Value

MCU Low Power Need to add Low Power Modes Driver on r_lpm.

And set Low Power Mode option on the driver to
Software Standby Mode.

Refer to BLE sample application
(R01AN5402) chapter 4 about
adding Low Power Modes Driver on
r_lpm to user application.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 19 of 127

Aug.31.21

2.4.4.1 RF Sleep mode

The BLE Protocol Stack will transit to RF sleep mode to reduce current consumption of RF part when the
following conditions are met.

 RF_DEEP_SLEEP Transition option (see section 2.3) is set to enable.

 There is no task to be executed by BLE Protocol Stack.

 There is a time of 80ms or more before the start of the next RF event time.

➢ The “time” mean “RF idle time” between the completion of one RF event and the start of the next
RF event. Therefore, it is necessary to set the RF event interval to 100ms or more in consideration
of the processing time of each layer to shift the RF part to sleep mode. In Scanning operation, the
time difference between the Scan interval and Scan window must also be set to 100ms or more.

The BLE Protocol Stack performs RF sleep processing and RF wake-up processing to transition the RF part
to sleep mode. Figure 5 shows MCU/RF operation overview with RF sleep.

Figure 5. MCU/RF operation overview with RF sleep

While the MCU is idle, it is possible to transition the MCU to the low power consumption mode or execute the
other application processing. However, if the RF wakeup process is not performed before the RF event
starts, the RF event cannot be executed because the other application process occupied. Therefore,
application processing must be implemented so as not to interfere RF event execution.

R_BLE_Execute
RF Wakeup
Processing

R_BLE_Execute
Event callback,

RF Sleep
Processing

R
F W

akeu
p

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE

MCU

RF

RF event interval

RF idle time

RF sleep time

R
F W

akeu
p

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE
RF

SLEEP
RF

SLEEP
RF

SLEEP

MCU
IDLE

MCU
IDLE

MCU
IDLE

R_BLE_Execute
RF Wakeup
Processing

R_BLE_Execute
Event callback,

RF Sleep
Processing

MCU
IDLE

MCU
IDLE

BLEIRQ
(RF Wakeup)

BLEIRQ
(RF event)

BLEIRQ
(RF Wakeup)

BLEIRQ
(RF event)

MCU IDLE

R_BLE_Execute

Application processing possible.

Required processing by call R_BLE_Execute.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 20 of 127

Aug.31.21

The current consumption during RF idle time will increases when the condition to transition to RF sleep mode
does not met. However, the MCU idle time can be used to user application process since it is not necessary
to consider RF wake up process. Figure 6 shows MCU/RF operation without RF sleep.

Figure 6. MCU/RF operation overview without RF sleep

If user application occupies the MCU and RF event cannot execute, then the BLE connection will be lost. It is
recommended that the application processing is short time to ensure RF event execution time.

2.4.4.2 MCU low power mode

(1) BareMetal environment

The MCU can be shifted to the low power consumption state even when using the BLE function. The basic
policy of the transition to Low power consumption state is as below.

• BLE application can use MCU Low Power Mode from completion RF event execution to start next RF

event execution.

• It is necessary to check whether all the used components (including the BLE function) can shift MCU to

Low power consumption state or not before entering MCU low power mode.

• When BLE communication occurs, it resumes from MCU low power mode by RF interrupt.

However, since there is a possibility that RF interrupt may occur during processing for disabling

interrupts, check the status of BLE task once after disabling interrupts, If BLE task state is not free, skip

transition to Low power consumption state of MCU.

Refer to RA4W1 Group User’s Manual: Hardware (R01UH0883) regarding MCU low power mode.

Example for entering MCU low power mode is shown in Code 2.

R_BLE_Execute
Event callback

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE

MCU

RF

RF event interval

RF idle time

RF
Event

(Tx/Rx)
RF

IDLE

MCU
IDLE

MCU
IDLE

R_BLE_Execute
Event callback

MCU
IDLE

BLEIRQ
(RF event)

BLEIRQ
(RF event)

MCU IDLE

R_BLE_Execute

Application processing possible.

Required processing by call R_BLE_Execute.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 21 of 127

Aug.31.21

void app_main(void)
{
………
 /* Initialize Low Power Module */
 g_lpm0.p_api->open(g_lpm0.p_ctrl, g_lpm0.p_cfg);

/* Initialize BLE and profiles */
 ble_init();
………
 /* main loop */
 while (1)
 {
 /* Process BLE Event */
 R_BLE_Execute();
………
 /* Disable IRQ */
 __disable_irq();

 /* Check whether there are executable BLE task or not */
 if (0 != R_BLE_IsTaskFree())
 {

 /* There are no executable BLE task */
 /* Enter low power mode */
 g_lpm0.p_api->lowPowerModeEnter(g_lpm0.p_ctrl);

 /* Enable interrupt for processing interrupt handler after wake up */
 __enable_irq();
 }
 else
 {
 /* There is BLE related task */
 __enable_irq();
 }
………
}

Code 2. Transition to MCU Low power mode

(2) FreeRTOS environment

FreeRTOS kernel enter MCU low power mode in vApplicationIdleHook.

Initialize MCU Low Power Driver on the top of
application main.

Check whether it can be use MCU Low Power mode.

User can add further check here if needed.

(e.g. Check the operating status of peripheral which user application used)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 22 of 127

Aug.31.21

3. How to implement user code

QE for BLE generates:

 Application profiles.

 Skeleton code for user’s BLE application.

These QE for BLE generated codes ready to connect with remote device shown in Figure 7. The BLE
Protocol Stack automatically handles the dotted line responses and operations. Therefore, no code is
required.

Figure 7. Behavior of codes generated by QE for BLE

Central
(GATT Client)

Peripheral
(GATT Server)

Power ON

Stack ON

BLE_GAP_EVENT_STACK_ON BLE_GAP_EVENT_STACK_ON

Advertising using device name
(RBLE_DEV)

Advertising

Scan with filtering using device
name (RBLE_DEV)

BLE_GAP_EVENT_ADV_REPT_IND

BLE_GAP_EVENT_CONN_IND
BLE_GAP_EVENT_CONN_IND

BLE_GAP_EVENT_DATA_LEN CHG

BLE_GAP_EVENT_DATA_LEN CHG

Start service discovery for
designed profile

BLE_GATTC_CONN_IND

Complete discovery

disc_comp_cb

QE for BLE code-generation

Power ON

Stack ON

Connection request

Establish connection

BLE Protocol Stack
automation process

Response service discovery

Connection response

Request changing maximum packet length

Response changing maximum packet length

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 23 of 127

Aug.31.21

And User can use APIs shown in Table 12 when making BLE application.

Table 12. APIs for making BLE application

Functions API/Macro name Include header and Usage

Bluetooth LE R_BLE_XXX

R_BLE_GAP_XXX

R_BLE_GATT_GetMtu

R_BLE_GATTS_XXX

R_BLE_GATTC_XXX

R_BLE_L2CAP_XXX

#include "r_ble_api.h"

 R_BLE_GAP_XXX

➢ API result can be received as BLE_GAP_EVENT_XXX
event once registering callback function by using
RM_BLE_ABS_Open or R_BLE_GAP_Init API.

 R_BLE_GATTS_XXX

➢ API result can be received as BLE_GATTS_EVENT_XXX
event once registering callback function by using
RM_BLE_ABS_Open or R_BLE_GATTS_RegisterCb API.

 R_BLE_GATTC_XXX

➢ API result can be received as BLE_GATTC_EVENT_XXX
event once registering callback function by using

RM_BLE_ABS_Open or R_BLE_GATTC_RegisterCb API.

 R_BLE_L2CAP_XXX

➢ API result can be received as BLE_L2CAP_EVENT_XXX
event once registering callback function by using
R_BLE_L2CAP_RegisterCfPsm API.

No need to register callback function for R_BLE_XXX and
R_BLE_GATT_GetMtu. Since result of these API can be received
immediately. And R_BLE_XXX_Init, R_BLE_XXX_RegisterCb,
R_BLE_GAP_SetPairingParams can also receive API result
immediately.

Vendor Specific
(VS)

R_BLE_VS_XXX #include "r_ble_api.h"

API result can be received as BLE_VS_EVENT_XXX event once
registering callback function by using RM_BLE_ABS_Open or
R_BLE_VS_Init API.

Abstraction API RM_BLE_ABS_XXX #include "rm_ble_abs.h"

API result can be received as following events once registering
callback function by using RM_BLE_ABS_Open.

BLE_GAP_EVENT_XXX

BLE_GATTS_EVENT_XXX

BLE_GATTC_EVENT_XXX

BLE_VS_EVENT_XXX event. event once registering callback
function by using RM_BLE_ABS_Open API.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 24 of 127

Aug.31.21

Functions API/Macro name Include header and Usage

Profile common R_BLE_DISC_XXX

R_BLE_SERVC_XXX

R_BLE_SERVS_XXX

#include "discovery/r_ble_disc.h"

#include "profile_cmn/r_ble_servc_if.h"

#include "profile_cmn/r_ble_servs_if.h"

These APIs are generated by QE for BLE.

 R_BLE_DISC_XXX

➢ Once registering callback function by using
R_BLE_DISC_Start, Service Discovery result can be
received.

 R_BLE_SERVC_XXX

➢ Once registering callback function using
R_BLE_SERVC_GattcCb, API result can be received.

 R_BLE_SERVS_XXX

➢ Once registering callback function using
R_BLE_SERVS_GattsCb, API result can be received as
event.

 Function to receive VS event in SERVS

➢ It is necessary to passing the event data from callback
function registered by R_BLE_VS_Init or
RM_BLE_ABS_Init to R_BLE_SERVS_VsCb as it is.

Profile API R_BLE_[service
name]_XXX

#include "r_ble_[service name].h"

Generated by QE for BLE.

Once registering callback function using R_BLE_[service name]_Init,
event can be received when receiving Write, Read, Indication,
Notification from remote device.

3.1 Example of implementation

Refer to BLE sample application (R01AN5402) Chapter 3 and 4.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 25 of 127

Aug.31.21

4. Advertising

Bluetooth LE device broadcasts data to nearby scanning devices by advertising. This chapter describes how
to use advertising feature by using related APIs. Figure 8 shows the flow chart of advertising procedure in an
BLE application. Details of each step are explained in the following sections.

Figure 8. Advertising procedure

User can use following categories of API to perform above procedure.

 Abstraction API (RM_BLE_ABS_XXX API)

➢ User can use advertising feature with a single API call. However, detailed parameter settings
are not possible.

 GAP API (R_BLE_GAP_XXX API)

➢ User uses advertising feature by combining several APIs. However, detailed parameter
settings are possible.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 26 of 127

Aug.31.21

4.1 Advertising with abstraction API

When user uses abstraction API, the procedure from setting advertising parameters to starting advertising is
performed by single abstraction API call. This kind of abstraction APIs are defined in Table 13. Refer to RA
Flexible Software Package Documentation about usage of these APIs. And samples of typical use cases are
shown in section 4.5.

Table 13. Advertising type supported by the Abstraction API

Abstraction API Legacy or
Extended

Advertising type Advertising PDU Advertising
handle

Maximum
Advertising
Data Size (Bytes)

RM_BLE_ABS_StartLegacy
Advertising

Legacy Connectable and
Scannable Undirected

ADV_IND 0 31

RM_BLE_ABS_StartExtended
Advertising

Extended Connectable
Undirected

ADV_EXT_IND 1 245

AUX_ADV_IND

Connectable Directed ADV_EXT_IND 239

AUX_ADV_IND

RM_BLE_ABS_StartNonConnectable
Advertising

Legacy Non-Connectable and
Non-Scannable
Undirected

ADV_NONCONN_IND 2 31

Extended ADV_EXT_IND Maximum advertising
data length*1 option

AUX_ADV_IND

AUX_CHAIN_IND

Extended Non-Connectable and
Non-Scannable
Directed

ADV_EXT_IND Maximum advertising
data length*1 option

AUX_ADV_IND

AUX_CHAIN_IND

RM_BLE_ABS_StartPeriodic
Advertising

Extended Periodic ADV_EXT_IND 3 Maximum advertising
data length*1 option

AUX_ADV_IND

AUX_SYNC_IND

AUX_CHAIN_IND

*1: Configure in properties of BLE Abstraction Driver on rm_ble_abs. Refer to BLE sample application
(R01AN5402) Chapter 4.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 27 of 127

Aug.31.21

4.1.1 White list

White list is a feature that filters a specific BD address from the received wireless packet.
RM_BLE_ABS_StartLegacyAdvertising and RM_BLE_ABS_StartExtendedAdvertising APIs can use the
feature by applying following steps.

1. Register a known device BD address to the white list by calling R_BLE_GAP_ConfWhiteList API.

2. Set value listed in Table 17 to use white list feature for advertising_filter_policy field in:

 ble_abs_legacy_advertising_parameter_t structure when use
RM_BLE_ABS_StartLegacyAdvertising API.

 ble_abs_extended_advertising_parameter_t structure when use
RM_BLE_ABS_StartExtenedAdvertising API.

4.1.2 Privacy

Privacy is a feature that prevents other devices from tracking advertising packet by periodically changing BD
address, which is a part of advertising packet. Advertising related abstraction APIs can use the privacy
feature except RM_BLE_ABS_StartPeriodicAdvertising API. Privacy feature can be used after preparing IRK
for using privacy feature according to section 8.4.1 and set value of Table 14 to:

 ble_abs_legacy_advertising_parameter_t structure when use RM_BLE_ABS_StartLegacyAdvertising
API.

 ble_abs_extended_advertising_parameter_t structure when use
RM_BLE_ABS_StartExtenedAdvertising API.

 ble_abs_non_connectable_advertising_parameter _t structure when use
RM_BLE_ABS_StartNonConnectableAdvertising API.

Table 14. Parameters used for the privacy feature

Field Value Description

own_bluetooth_address_type BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02) Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo API
is public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03) Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo API
is random address.

p_peer_address Specify the remote device identity address
registered by R_BLE_GAP_ConfRslvList API.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 28 of 127

Aug.31.21

4.2 Advertising with GAP API

When user uses GAP API, the procedure from setting advertising parameters to starting or stopping
advertising is performed by combining several API calls. This section describes each procedure.

4.2.1 Set advertising parameter

It is necessary to configure advertising parameter to st_ble_gap_adv_param_t structure and call
R_BLE_GAP_SetAdvParam API. Refer to RA Flexible Software Package Documentation about detail of the
structure. The following sections describe the parameter settings for some use cases.

4.2.1.1 Advertising Type

Advertising type is specified by a combination of following items.

 Response to a connection request from remote device (Connectable or Non-Connectable)

 Response to a scan request from remote device (Scannable or Non-Scannable)

 Designation of remote address (Direct or Undirect)

 Type of advertising that a remote device supports (legacy or extended advertising)

 Maximum size of the Advertising Data

The above combination is specified by adv_prop_type field in st_ble_gap_adv_param_t structure as shown
in Table 15.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 29 of 127

Aug.31.21

Table 15. Correspondence between Advertising type and adv_prop_type field

Advertising type Corresponding
advertising PDU

The adv_prop_type field value Legacy
or
extended

Max size of
advertising
data (byte)

Connectable and
Scannable
Undirected *4

ADV_IND BLE_GAP_LEGACY_PROP_ADV_IND legacy 31

Connectable
Undirected

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_UNDIRECT extended 245*1

AUX_ADV_IND

Connectable
Directed

ADV_DIRECT_IND BLE_GAP_LEGACY_PROP_ADV_DIRECT_IND or
BLE_GAP_LEGACY_PROP_ADV_HDC_DIRECT_IND

legacy 0

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_DIRECT or
BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_HDC_DIRECT

extended 239*1

AUX_ADV_IND

Non-
Connectable and
Non-Scannable
Undirected

ADV_NONCONN_IND BLE_GAP_LEGACY_PROP_ADV_NONCONN_IND legacy 31

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT extended Maximum
advertising

data length*5
AUX_ADV_IND

AUX_CHAIN_IND*2

Non-
Connectable and
Non-Scannable
Directed

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_DIRECT or
BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_HDC_DIRECT

extended Maximum
advertising

data length*5
AUX_ADV_IND

AUX_CHAIN_IND*3

Scannable
Undirected *4

ADV_SCAN_IND BLE_GAP_LEGACY_PROP_ADV_SCAN_IND legacy 31

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_UNDIRECT extended 0

AUX_ADV_IND

Scannable
Directed *4

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_DIRECT or
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_HDC_DIRECT

extended 0

AUX_ADV_IND
*1: Max size of advertising data is 1 byte less that the value listed in the table when

BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER (0x0040) set to adv_prop_type field in
st_ble_gap_adv_param_t structure.

*2: If the Advertising Data is 245 bytes or less, AUX_CHAIN ID is not used.

*3: If the Advertising Data is 239 bytes or less, AUX_CHAIN ID is not used.

*4: Figure 10 shows about scan response PDU and data length of the PDU.

*5: Configure in properties of BLE Abstraction Driver on rm_ble_abs. Refer to BLE sample application
(R01AN5402) Chapter 4.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 30 of 127

Aug.31.21

Advertising PDUs are sent as shown in Figure 9 when the advertising type is extended and non-scannable.
The advDelay is a random delay from 0 to 10ms.

Figure 9. Extended Advertising PDU

Advertising PDUs are sent as shown in Figure 10 when the advertising type is extended and scannable.

Figure 10. Scannable Advertising PDU

Remote device sent scan request PDU (AUX_SCAN_REQ) to advertising device, scan response PDUs
(AUX_SCAN_RSP and AUX_CHAIN_IND) shown in Table 16 are sent according to configuration of
adv_prop_type field in st_ble_gap_adv_param_t structure.

Table 16. Scan Response Data PDU

Value set to the adv_prop_type field Scan Response
Data PDU

legacy or
extended

Max Size
(byte)

BLE_GAP_LEGACY_PROP_ADV_IND
BLE_GAP_LEGACY_PROP_ADV_SCAN_IND

SCAN_RSP legacy 31

BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_UNDIRECT
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_DIRECT
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_HDC_DIRECT

AUX_SCAN_RSP extended BLE_CFG_RF_
ADV_DATA_
MAX*2 *3

AUX_CHAIN_IND*1

*1: If the Scan Response Data is 253 bytes or less, the AUX_CHAIN_IND is not used.
*2: Max size of advertising data is 1 byte less that the value listed in the table when

BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER (0x0040) set to adv_prop_type field in

st_ble_gap_adv_param_t structure.
*3: Configure in properties of BLE Abstraction Driver on rm_ble_abs. Refer to BLE sample application

(R01AN5402) Chapter 4.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 31 of 127

Aug.31.21

4.2.1.2 White list

White list is a feature that filters a specific BD address from the received wireless packet. If the advertising
type is connectable or scannable, white list feature can be used by applying following steps.

1. Register a known device BD address to the white list by calling R_BLE_GAP_ConfWhiteList API.

2. Set to use white list feature for filter_policy field in st_ble_gap_adv_param_t structure as shown in Table
17.

Table 17. The value set to the filter_policy field

Value set to the filter_policy field Description

BLE_GAP_SCAN_ALLOW_
ADV_ALL(0x00)

Process scan and connection requests from all devices.

BLE_GAP_ADV_ALLOW_
SCAN_WLST_CONN_ANY(0x01)

Process connection requests from all devices and scan requests
from only devices that are in the White List.

BLE_GAP_ADV_ALLOW_

SCAN_ANY_CONN_WLST(0x02)
Process scan requests from all devices and connection requests
from only devices that are in the White List.

BLE_GAP_ADV_ALLOW_

SCAN_WLST_CONN_WLST(0x03)
Process scan and connection requests from only devices in the
White List.

4.2.1.3 Privacy

Privacy is a feature that prevents other devices from tracking advertising packet by periodically changing BD
address, which is a part of advertising packet. To use the privacy function, it is necessary to configure the
field shown in Table 18 in st_ble_gap_adv_param_t structure and perform procedure described in section
8.4.1.

Table 18. The parameters used for the privacy feature

Field Value Description

o_addr_type BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02) Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03) Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
static address.

p_addr_type Specify the remote device identity address
registered by R_BLE_GAP_ConfRslvList().

―

p_addr

4.2.1.4 Multiple advertising set

Multiple advertising set is a feature that broadcasts different parameters of Advertising in parallel. How many
sets of advertising can be sent is configured by Maximum advertising set number configuration in properties
of BLE Abstraction Driver on rm_ble_abs. Refer to BLE sample application (R01AN5402) in detail of
configuration. Each advertising set is identified by adv_hdl field in the st_ble_gap_adv_param_t structure.
However, when using multiple advertising set feature with abstraction APIs, the advertising handle is
determined as Table 13 for each abstraction API.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 32 of 127

Aug.31.21

4.2.2 Advertising Data / Scan Response Data

Refer to section 4.4.

4.2.3 Start Advertising

When starting advertising, call the R_BLE_GAP_StartAdv API. It is necessary to specify following arguments
when calling the API.

 adv_hdl: advertising handle to start advertising.

 duration: advertising continuing period (duration x 10ms).

 max_extd_adv_evt: number of broadcasting advertising packets.

4.2.4 Stop Advertising

The API for stopping advertising, call R_BLE_GAP_StopAdv API. It is necessary to specify advertising
handle which want to stop advertising with argument adv_hdl. And in case of connectable advertising, the
advertising will stop automatically when established connection with a remote device.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 33 of 127

Aug.31.21

4.3 Periodic Advertising with GAP API

Periodic advertising is a feature that broadcasts periodic advertising PDUs at predictable timing. When the
scanner performs the synchronization with periodic advertising which describe in section 5.4, the scanner
can get periodic advertising PDUs. The following sections describe the details of periodic advertising
procedure shown in Figure 11.

Figure 11. Periodic Advertising procedure

User can use only GAP API for broadcasting periodic advertising PDUs.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 34 of 127

Aug.31.21

4.3.1 Non-Connectable Advertising Parameter

To start periodic advertising, it is necessary to configure advertising parameter as non-connectable
advertising by using R_BLE_GAP_SetAdvParam API. Also Refer to section 4.2.1.

4.3.2 Periodic Advertising Parameter

It is necessary to configure st_ble_gap_perd_adv_param_t structure and call
R_BLE_GAP_SetPerdAdvParam API with the structure. Refer to RA Flexible Software Package
Documentation about detail of the structure.

4.3.3 Periodic Advertising Data

For details about setting Periodic Advertising Data, refer to section 4.4.

4.3.4 Start Periodic Advertising

When starting periodic advertising, call R_BLE_GAP_StartPerdAdv API. The periodic advertising PDUs are
shown in Table 19 and broadcast timing is shown in Figure 12.

Table 19. Periodic Advertising PDU

Advertising type Periodic advertising PDU Legacy or
Extended

Maximum Size
(Bytes)

Periodic Advertising AUX_SYNC_IND extended Maximum
advertising data
length*2, *3

AUX_CHAIN_IND*1

*1: If the periodic advertising Data is 253 bytes or less, AUX_CHAIN ID is not used.
*2: Max size of advertising data is 1 byte less that the value listed in the table when

BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER (0x0040) set to adv_prop_type field in

st_ble_gap_adv_param_t structure.
*3: Configure in properties of BLE Abstraction Driver on rm_ble_abs. Refer to BLE sample application

(R01AN5402) Chapter 4.

Figure 12. Periodic Advertising PDUs

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 35 of 127

Aug.31.21

An example of starting Periodic Advertising is shown in Code 3.

/* Advertising data */
static uint8_t gs_adv_data[] =
{

 /* Flag (mandatory) */
 2, /* Data Size */
 0x01, /* Data Type: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE |
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /* Data */

 /* Complete Local Name */
 9, /* Data Size */
 0x09, /* Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */
};

/* Periodic Advertising Data */
static uint8_t gs_perd_adv_data[] =
{

 /* Complete Local Name */
 9, /* Data Size */
 0xFF, /* Data Flag: Manufacturer Specific data type */
 0x36, 0x00,/* Company ID: Renesas Electronics Corporation */
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, /* Data */

};

/* some code is omitted. */
static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 st_ble_gap_adv_set_evt_t * p_adv_set_param;

 switch(type)
 {
 case BLE_GAP_EVENT_STACK_ON :
 {
 st_ble_gap_adv_param_t adv_param =
 {
 .adv_hdl = 0x02,
 .adv_prop_type = BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT,
 .adv_intv_min = 0x0200,
 .adv_intv_max = 0x0200,
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
 .filter_policy = BLE_GAP_ADV_ALLOW_SCAN_ANY_CONN_ANY,
 .adv_phy = BLE_GAP_ADV_PHY_1M,
 .sec_adv_phy = BLE_GAP_ADV_PHY_1M,
 };
 /* Set Advertising parameter */
 R_BLE_GAP_SetAdvParam(&adv_param);
 } break;

 case BLE_GAP_EVENT_ADV_PARAM_SET_COMP :
 {
 p_adv_set_param = (st_ble_gap_adv_set_evt_t *)p_data->p_param;
 st_ble_gap_adv_data_t adv_data_param =
 {
 .adv_hdl = 0x02,
 .data_type = BLE_GAP_ADV_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_adv_data),
 .p_data = gs_adv_data ,
 };
 /* Set Advertising Data */
 R_BLE_GAP_SetAdvSresData(&adv_data_param);
 } break;

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 36 of 127

Aug.31.21

 case BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP :
 {
 /* Periodic Advertising Data parameter */
 st_ble_gap_adv_data_t perd_adv_data_param = {
 .adv_hdl = 0x02,
 .data_type = BLE_GAP_PERD_ADV_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_perd_adv_data),
 .p_data = gs_perd_adv_data ,
 };

 /* Set Periodic Advertising Data */
 R_BLE_GAP_SetAdvSresData(&perd_adv_data_param);
 } break;

 case BLE_GAP_EVENT_PERD_ADV_ON :
 {
 p_adv_set_param = (st_ble_gap_adv_set_evt_t *)p_data->p_param;
 /* Start Advertising */
 R_BLE_GAP_StartAdv(0x02, 0, 0);
 }
 break;

 case BLE_GAP_EVENT_ADV_DATA_UPD_COMP :
 {
 st_ble_gap_adv_data_evt_t * p_adv_data_set_param;
 p_adv_data_set_param = (st_ble_gap_adv_data_evt_t *)p_data->p_param;
 if (BLE_GAP_ADV_DATA_MODE == p_adv_data_set_param->data_type)
 {
 st_ble_gap_perd_adv_param_t perd_param =
 {
 .adv_hdl = 0x02,
 .prop_type = 0x0000,
 .perd_intv_min = 0x0100,
 .perd_intv_max = 0x0100,
 };
 /* Set Periodic Advertising parameter */
 R_BLE_GAP_SetPerdAdvParam(&perd_param);
 }
 else
 {
 if(BLE_GAP_PERD_ADV_DATA_MODE == p_adv_data_set_param->data_type)
 {
 /* Start Periodic Advertising parameter */
 R_BLE_GAP_StartPerdAdv(0x02);
 }
 }
 } break;

 default:
 break;
 }
}

Code 3. Sample of starting Periodic Advertising

4.3.5 Stop Periodic Advertising

When stopping Periodic Advertising, call R_BLE_GAP_StartPerdAdv API.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 37 of 127

Aug.31.21

4.4 Advertising Data / Scan Response Data / Periodic Advertising Data

Advertising PDU could include following data to inform auxiliary information to scanner device.

 Advertising Data

 Scan Response Data

 Periodic Advertising Data

It is necessary to call R_BLE_GAP_SetAdvSresData API to configure / update above data. And these APIs
can be used even if user perform advertising by using abstraction API. The API has argument of
st_ble_gap_adv_data_t structure. The data_type field in the structure is set, as shown in Table 20.

Table 20. Value set to the data_type field

Data type Value set to the data_type field

Advertising Data BLE_GAP_ADV_DATA_MODE(0x00)

Scan Response Data BLE_GAP_SCAN_RSP_DATA_MODE(0x01)

Periodic Advertising Data BLE_GAP_PERD_ADV_DATA_MODE(0x02)

When setting advertising data and scan response data continuously, it is necessary to perform following
steps.

1. Set advertising data by calling R_BLE_GAP_SetAdvSresData API.

2. Confirm the completion of the advertising data setting in GAP callback function.

3. Set scan response data by calling R_BLE_GAP_SetAdvSresData API.

4. Confirm the completion of the scan response data setting in GAP callback function.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 38 of 127

Aug.31.21

4.4.1 Data format

Figure 13 shows the format of Advertising Data / Scan Response Data / Periodic Advertising Data.

Figure 13. Advertising Data / Scan Response Data / Periodic Advertising Data format

Advertising Data / Scan Response Data / Periodic Advertising Data includes one or more AD Structures.
Each AD Structure consists of Length, AD Type and AD Data. The Length is the sum of the size of AD Type
(1 byte) and the size of the AD Data, and the unit is bytes. The value to be set in AD Type is defined by
Bluetooth SIG in Supplement to the Bluetooth Core Specification (CSS). Table 21 shows the AD Type that is
often used.

Table 21. AD Type and AD Data

Data Type AD Type Description

Flags 0x01 Used for Connectable advertising.
The Flags value used for Bluetooth LE is as follows.

Octet Bit Description

0 0 LE Limited Discoverable Mode

0 1 LE General Discoverable Mode

0 2 BR/EDR Not Supported.

A scanner is available Discoverable Mode for filtering by the mode.
If adding Discoverable Mode, select Limited or General.

Service
UUID

Incomplete List of 16-bit Service UUIDs 0x02 UUID List.
The AD Type varies depending on the size.
If the AD Data includes all UUIDs, select Complete List.
If the AD Data include not all UUIDs, select Incomplete List.

Complete List of 16-bit Service UUIDs 0x03

Incomplete List of 32-bit Service UUIDs 0x04

Complete List of 32-bit Service UUIDs 0x05

Incomplete List of 128-bit Service UUIDs 0x06

Complete List of 128-bit Service UUIDs 0x07

Local
Name

Shortened Local Name 0x08 Strings that show the head of the device name to the middle.

Complete Local Name 0x09 Complete Device Name.

Manufacturer Specific Data 0xFF More than 2 bytes manufacturer specific data.
First 2 bytes shows the Company ID.
For details of the Company ID, refer to Assigned Number
(https://www.bluetooth.com/specifications/assigned-numbers/)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 39 of 127

Aug.31.21

An example of setting the Advertising Data including Flags and Complete Local Name and the Scan
Response Data including Complete Local Name is shown in Code 4.

/* Advertising Data */
uint8_t gs_adv_data[] =
{
 /* Flags */
 2, /* Data Size: 2byte */
 0x01, /* AD type: Flags */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE |
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /* Data */

 /* Complete Local Name */
 9, /* Data Size: 9byte */
 0x09, /* AD type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */
};

/* Scan_Response Data */
uint8_t gs_sres_data[] =
{
 /* Complete Local Name */
 9, /* Data Size: 9byte */
 0x09, /* AD type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */

};
/* some code is omitted. */

/* Advertising Data parameter */
st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = 0x00,
 .data_type = BLE_GAP_ADV_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_adv_data),
 .p_data = gs_adv_data ,
};

/* Scan_Response Data parameter */
st_ble_gap_adv_data_t sres_data_param = {
 .adv_hdl = 0x00,
 .data_type = BLE_GAP_SCAN_RSP_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_sres_data),
 .p_data = gs_sres_data,
};

/* some code is omitted. */

/* Set Advertising Data */
R_BLE_GAP_SetAdvSresData(&adv_data_param);

/* some code is omitted. */

/* GAP Callback */
void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 /* some code is omitted. */
 case BLE_GAP_EVENT_ADV_DATA_UPD_COMP :
 {
 st_ble_gap_adv_data_evt_t * p_adv_data_set_param;
 p_adv_data_set_param = (st_ble_gap_adv_data_evt_t *)p_data->p_param;
 if((0x00 == p_adv_data_set_param->adv_hdl) &&
 (BLE_GAP_ADV_DATA_MODE == p_adv_data_set_param->data_type))
 {
 R_BLE_GAP_SetAdvSresData(&sres_data_param);
 }
 } break;
 /* some code is omitted. */
 }
}

Code 4. Sample of setting Advertising Data and Scan Response Data

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 40 of 127

Aug.31.21

4.4.2 Advertising data update

Advertising data and scan response data can be dynamically updated while advertising is running if the
conditions shown in Table 22 are met.

Table 22. Conditions for updating Advertising Data and Scan Response Data

Legacy or Extended Condition

Legacy Can be updated at any time

Extended advertising Data to be updated is 251 bytes or less.

It is necessary to call R_BLE_GAP_SetAdvSresData API to update advertising data and scan response
data. Example of the value for each field of st_ble_gap_adv_data_t structure for updating advertising data is
shown in Code 5.

st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = “Advertising handle of the advertising data to be update”,
 .data_type = BLE_GAP_ADV_DATA_MODE,
 .data_length = “Size of the data to be updated”,
 .p_data = “Pointer to the data to be updated”,
};

Code 5. Parameters for updating Advertising Data / Scan Response Data

If user want to update more than 252 bytes of data, stop advertising at once according to section 4.2.4 and
use R_BLE_GAP_SetAdvSresData API to update the data.

4.4.3 Periodic Advertising Data Update

Periodic advertising data can be dynamically updated while periodic advertising is running if the conditions
shown in Table 23 are met.

Table 23. Requirement for updating Periodic Advertising Data

Advertising type Condition

Periodic Advertising The data length is 252 bytes or less.

It is necessary to call R_BLE_GAP_SetAdvSresData API to update periodic advertising data. Example of the
value for each field of st_ble_gap_adv_data_t structure for updating periodic advertising data is shown as
following.

Set the parameters shown in Code 6 and call R_BLE_GAP_SetAdvSresData to update Periodic Advertising
Data.

st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = “Advertising handle of the Periodic Advertising Data to be update”,
 .data_type = BLE_GAP_PERD_ADV_DATA_MODE,
 .data_length = “Size of the data to be updated”,
 .p_data = “Pointer to the data to be updated”,
};

Code 6. Parameters for updating Periodic Advertising Data

If user want to update more than 253 bytes of data, stop periodic advertising at once according to section
4.3.5 and use R_BLE_GAP_SetAdvSresData API to update the data.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 41 of 127

Aug.31.21

4.4.4 Total advertising data size

As shown in Table 15, extended advertising can be set Advertising Data or Scan Response Data up to the
Maximum advertising data length configuration value. And the size of buffer for Advertising Data and Scan
Response Data in the BLE Protocol Stack is 4250 bytes. Therefore, the amount size of Advertising Data and
Scan Response Data in all sets must be 4250 bytes or less.

As shown in Table 19, periodic advertising can be set periodic advertising data up to the Maximum
advertising data length configuration value. And the size of buffer for Periodic Advertising Data in the BLE
Protocol Stack is 4306 bytes. Therefore, the amount size of periodic advertising data in all sets must be 4306
bytes or less.

Example of data size in each advertising set is shown in Figure 14 and Figure 15.

Figure 14. Example of setting advertising data (Successful case)

Figure 15. Example of setting advertising data (Failure case)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 42 of 127

Aug.31.21

4.5 Typical use case for advertising

4.5.1 Connection with Smart Phone

An example of sending advertising packets to connect with Smart Phone is shown in Code 7.

/* Advertising Data */
static uint8_t gs_adv_data[] =
{
 /* Flag (mandatory) */
 2, /**< Data Size */
 0x01, /**< Data Flag: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE | BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /**< Data Value */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */

};

/* Scan_Response Data */
static uint8_t gs_sres_data[] =
{
 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */

};

/* Advertising parameters */
static ble_abs_legacy_adv_param_t gs_adv_param =
{
 .slow_adv_intv = 0x00A0,
 .slow_period = 0,
 .p_adv_data = gs_adv_data,
 .adv_data_length = ARRAY_SIZE(gs_adv_data),
 .p_sres_data = gs_sres_data,
 .sres_data_length = ARRAY_SIZE(gs_sres_data),
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .filter = BLE_ABS_ADV_ALLOW_CONN_ANY,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
 .o_addr = {0},
};

/** some code is omitted **/

/* Start Advertising */
RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl, &gs_adv_param);

Code 7. Sample of advertising for connecting with Smart Phone

When starting advertising, user application will be notified of the BLE_GAP_EVENT_ADV_ON event. Smart
Phone can detect the device to connect as “RBLE-DEV“ after the event notification.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 43 of 127

Aug.31.21

4.5.2 Beacon

When user want to broadcast iBeacon (Apple Inc) or Eddystone (Google), use non-connectable advertising.

An example of sending non-connectable advertising packets as beacon is shown in Code 8.

/* Advertising Data */
static uint8_t gs_adv_data[] =
{
 /* Flag */
 2, /**< Data Size */
 0x01, /**< Data Flag: Flag */
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED, /**< Data Value */

 /* Complete Local Name */
 9, /* Data Size */
 0x09, /* Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */

};

/* Advertising parameters */
static ble_abs_non_conn_adv_param_t gs_non_conn_adv_param =
{
 .p_addr = NULL,
 .p_adv_data = gs_adv_data,
 .adv_intv = 0x00A0,
 .duration = 0,
 .adv_data_length = ARRAY_SIZE(gs_adv_data),
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
 .adv_phy = BLE_GAP_ADV_PHY_1M,
 .sec_adv_phy = BLE_GAP_ADV_PHY_1M,
 .o_addr = {0},
};

/** some code is omitted **/

/* Start Advertising */
RM_BLE_ABS_StartNonConnectableAdvertising(g_ble_abs0_ctrl, &gs_non_conn_adv_param);

Code 8. Sample of using RM_BLE_ABS_StartNonConnectableAdvertising

When starting advertising, user application will be notified of the BLE_GAP_EVENT_ADV_ON event. After
the event notification, remote devices can detect the beacon as “RBLE-DEV” when performing scan

For more information about iBeacon and Eddystone, refer to the following.

iBeacon : https://developer.apple.com/ibeacon/

Eddystone : https://developers.google.com/beacons/eddystone

https://developer.apple.com/ibeacon/
https://developers.google.com/beacons/eddystone

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 44 of 127

Aug.31.21

5. Scan

Bluetooth LE device receives advertising packets from other devices by scan. This chapter describes how to
use scan feature by using related APIs.

User can use following categories of API to perform the procedure shown in Figure 16.

 Abstraction API (RM_BLE_ABS_XXX API)

➢ User can use scan feature with a single API call. However, detailed parameter settings are
not possible.

 GAP API (R_BLE_GAP_XXX API)

➢ User uses scan feature by combining several APIs. However, detailed parameter settings
are possible.

Figure 16. Scan procedure

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 45 of 127

Aug.31.21

5.1 Scan with abstraction API

When user uses abstraction API, the procedure from set scan parameter to start scan is performed by single
abstraction API (RM_BLE_ABS_Start_Scanning) call. Refer to RA Flexible Software Package
Documentation about usage of the API. And sample code of acquiring information obtained by scan is shown
in section 5.2.4.

5.1.1 Scan filtering

Refer to section 5.3.

5.1.2 Privacy

Scan abstraction API cannot use the privacy feature. It is necessary to use GAP API when user want to use
the privacy feature.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 46 of 127

Aug.31.21

5.2 Scan with GAP API

When user uses GAP API, the procedure from set scan parameters to start / stop scan is performed by
combining several API calls. This section describes each procedure.

5.2.1 Set scan parameters

It is necessary to configure st_ble_gap_scan_param_t and st_ble_gap_scan_on_t structures and call
R_BLE_GAP_StartScan API with these structures as arguments. Refer to RA Flexible Software Package
Documentation about detail of these structures and API. These structures include following fields which
specify the interval and period of scan.

 scan_intv: Specify scan interval

 scan_window: Specify scan window

 duration: Specify scan duration

 period: Specify scan period

Figure 17 shows relationship of these parameters.

Figure 17. The relationship of scan interval, window, duration, period

These structures also include fast_xxx and slow_xxx fields. These fields specify frequency of scan. Fast
scan increases a detection probability of advertising PDUs from remote device and the slow scan decreases
a detection probability of advertising PDUs from remote device. Figure 18 shows the relationship between
the fast scan and slow scan.

Figure 18. The relationship between the fast scan and slow scan

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 47 of 127

Aug.31.21

Table 24 shows the event regarding the fast scan and slow scan.

Table 24. The event regarding the fast scan and slow scan

Scan Start Scan Fast/Slow switch Scan End

BLE_GAP_EVENT_SCAN_ON BLE_GAP_EVENT_SCAN_TO
BLE_GAP_EVENT_SCAN_ON

BLE_GAP_EVENT_SCAN_TO

BLE_GAP_EVENT_SCAN_ON BLE_GAP_EVENT_SCAN_OFF
BLE_GAP_EVENT_SCAN_ON

BLE_GAP_EVENT_SCAN_OFF

5.2.1.1 White list

Refer to section 5.3.

5.2.1.2 Privacy

Privacy is a feature that prevents other devices from tracking advertising packet by periodically changing BD
address, which is a part of scan request packet. Privacy feature can use after preparing IRK for using privacy
feature according to section 8.4.1 and set value shown in Table 25 to o_addr_type field in
st_ble_gap_scan_param_t structure.

Table 25. The parameters used for the privacy feature

Field Value Description

o_addr_type BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02) Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03) Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
static address.

5.2.2 Start scan

When starting scan, call R_BLE_GAP_StartScan API.

5.2.3 Stop scan

When stopping scan, call R_BLE_GAP_StopScan API. In addition to the API call, the conditions for stopping
scan are as follows.

 If the period field of st_ble_gap_scan_on_t structure which is argument of R_BLE_GAP_StopScan API
is set to other than 0, the scan stops after the period is expired.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 48 of 127

Aug.31.21

5.2.4 Received information by scan

After starting scan, the BLE Protocol Stack notifies user application that an advertising packet is received
from another device by BLE_GAP_EVENT_ADV_REPT_IND event. Received advertising packet is stored in
a st_ble_gap_adv_rept_evt_t structure. Refer to RA Flexible Software Package Documentation about detail
of the structure. An example of displaying the RSSI of received advertising packet is shown in Code 9.

/* GAP callback function */
void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 int8_t rssi;
 switch (type)
 {
 /** some code is omitted **/
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t *adv_rept_evt_param =
 (st_ble_gap_adv_rept_evt_t *)data->p_param;

 switch (adv_rept_evt_param->adv_rpt_type)
 {
 /* receive legacy advertising PDU */
 case 0x00:
 {
 st_ble_gap_adv_rept_t *adv_rept_param =
 (st_ble_gap_adv_rept_t *)adv_rept_evt_param->param.p_adv_rpt;

 /* Save RSSI */
 Rssi = adv_rept_param->rssi;
 } break;

 /* receive extended advertising PDU */
 case 0x01:
 {
 st_ble_gap_ext_adv_rept_t *ext_adv_rept_param =
 (st_ble_gap_ext_adv_rept_t *)ext_adv_rept_param->
 param.p_ext_adv_rpt;

 /* Save RSSI */
 rssi = ext_adv_rept_param->rssi;
 } break;
 /** some code is omitted **/

Code 9. Sample of displaying the RSSI included in a received advertising packet

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 49 of 127

Aug.31.21

5.3 Scan filtering

Received advertising packets can be filtered by the following methods.

 White list

 Duplicate advertising filtering

 Discoverable mode filtering

 Advertising data filtering

By using these methods, user can obtain essential advertising packets for their own application. Each
method describes in following sections.

5.3.1 White list

White list is a feature that filters a specific BD address from the received wireless packet. White list feature
can be used by applying following steps.

1. Register a known device BD address to the white list by calling R_BLE_GAP_ConfWhiteList API.

2. Set to use white list feature for:

 Set BLE_GAP_SCAN_ALLOW_ADV_WLST (0x01) to device_scan_filter_policy field in
ble_abs_scan_parameter_t structure when performing scan with abstraction API.

 Set BLE_GAP_SCAN_ALLOW_ADV_WLST (0x01) to filter_policy field
in,st_ble_gap_scan_param_t structure when performing scan with GAP API.

5.3.2 Duplicate advertising filtering

Duplicate advertising filtering is a feature that avoid receiving duplicate advertising packet from same
advertiser. Duplicate advertising filtering feature can be used by setting
BLE_GAP_SCAN_FILT_DUPLIC_ENABLE (0x01) or
BLE_GAP_SCAN_FILT_DUPLIC_ENABLE_FOR_PERIOD (0x02) to:

 filter_duplicate field in ble_abs_scan_parameter_t structure when performing scan with abstraction
API.

 filter_dups field in st_ble_gap_scan_on_t structure when performing scan with GAP API.

Up to 8 types of advertising packet can be filtered with this feature. If there are more than 9 types of
advertising packet around scan device, the 9th and subsequent advertising packet will not be filtered.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 50 of 127

Aug.31.21

5.3.3 Discoverable mode filtering

Discoverable mode filtering is a feature to select advertising packet to be received according to AD_TYPE
field contained in advertising data. Refer to section 4.4.1 about AD_TYPE field. This feature can be used by
setting value shown in Table 26 to proc_type field in st_ble_gap_scan_on_t structure when performing scan
with GAP API. Abstraction API does not support this feature.

Table 26. The value to be set for filtering with Discoverable Mode

Macro Description

BLE_GAP_SC_PROC_OBS(0x00) Observation Procedure. Notify all advertising PDUs.

BLE_GAP_SC_PROC_LIM(0x01) Limited Discovery Procedure.

Notify advertising PDUs from only devices in the limited discoverable mode.

BLE_GAP_SC_PROC_GEN(0x02) General Discovery Procedure.

Notify advertising PDUs from devices in the limited discoverable mode and
the general discoverable mode.

5.3.4 Advertising data filtering

The Abstraction API can filter by the data included in advertising data. GAP API does not support this
feature. Specify the data for filtering to the following parameters in the ble_abs_scan_parameter_t structure.

 p_filter_data: The filtered data.

 filter_data_length: The filtered data size.

 filter_ad_type: The AD_TYPE of the filtered data.

Example configuration to ble_abs_scan_parameter_t structure is shown in Code 10.

/* Scan filter data */
static uint8_t gs_filter_data[] =
{
 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Scan parameters */
static ble_abs_scan_parameter_t gs_scan_param =
{
 .phy_parameter_1M = &gs_scan_phy_param,
 .p_filter_data = gs_filter_data,
 .slow_scan_period = 0,
 .filter_data_length = ARRAY_SIZE(gs_filter_data),
 .device_scan_filter_policy = BLE_GAP_SCAN_ALLOW_ADV_ALL,
 .filter_duplicate = BLE_GAP_SCAN_FILT_DUPLIC_ENABLE,
};

Code 10. Sample of advertising data filtering

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 51 of 127

Aug.31.21

5.4 Periodic advertising synchronization with GAP API

A scanner can establish a Periodic Advertising Synchronization (Sync) with an advertiser which broadcasts
periodic advertising packets. Figure 19 shows the procedure that a scanner establishes a Periodic
Advertising Sync in application. The following sections describe the details of Periodic Advertising Sync
procedure shown in Figure 19.

Figure 19. Periodic advertising sync procedure

User can use only GAP API for periodic advertising synchronization.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 52 of 127

Aug.31.21

5.4.1 Start scan

Refer to section 5.2.2.

5.4.2 Detect periodic advertiser

After calling the R_BLE_GAP_StartScan API, the BLE Protocol Stack notifies user application that an
advertising packet is received from another device by BLE_GAP_EVENT_ADV_REPT_IND event. The
scanner can establish a periodic advertising sync with the advertiser if perd_adv_intv field of
st_ble_gap_adv_rept_evt_t structure includes in a received advertising packet is not zero. And the
synchronization can be established up to the value specified in Maximum periodic sync set number option.
Refer to BLE sample application (R01AN5402) Chapter 4 about the configuration option.

5.4.3 Establish periodic advertising sync

Call R_BLE_GAP_CreateSync API to establish a Periodic Advertising Sync. User can specify the advertiser
to establish synchronization by setting argument of R_BLE_GAP_CreateSync API or by using periodic
advertiser list feature which is described in section 5.4.4. To cancel establishing a Periodic Advertising Sync
after calling R_BLE_GAP_CreateSync API, call R_BLE_GAP_CancelCreateSync API. When the
cancellation has been completed, user application is notified of the BLE BLE_GAP_EVENT_SYNC_EST
event, indicating that the result is BLE_ERR_NOT_YET_READY(0x0012). An example of from starting scan
to establishing a Periodic Advertising Sync is shown in Code 11.

/** some code is omitted **/

static st_ble_dev_addr_t gs_sync_advr;
static uint8_t gs_adv_sid;

static ble_abs_scan_phy_param_t gs_phy_param_1M =
{
 .fast_scan_interval = 0x0200,
 .slow_scan_interval = 0x0800,
 .fast_scan_window = 0x0100,
 .slow_scan_window = 0x0100,
 .scan_type = BLE_GAP_SCAN_PASSIVE,
};

static ble_abs_scan_parameter_t gs_scan_param =
{
 .p_phy_parameter_1M = &gs_phy_param_1M,
 .p_phy_parameter_coded = NULL,
 .p_filter_data = NULL,
 .fast_scan_period = 0x0100,
 .slow_scan_period = 0x0000,
 .filter_data_length = 0,
 .device_scan_filter_policy = BLE_GAP_SCAN_ALLOW_ADV_ALL,
 .filter_duplicate = BLE_GAP_SCAN_FILT_DUPLIC_DISABLE,
};

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 /** some code is omitted **/
 switch(type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &gs_scan_param);
 } break;

 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t * p_adv_rept_evt_param =
 (st_ble_gap_adv_rept_evt_t *)p_data->p_param;

 switch (p_adv_rept_evt_param->adv_rpt_type)
 {
 case 0x01:
 {
 st_ble_gap_ext_adv_rept_t * p_ext_adv_rept_param =
 (st_ble_gap_ext_adv_rept_t *)p_adv_rept_evt_param->param.p_ext_adv_rpt;

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 53 of 127

Aug.31.21

 if(0x0000 != p_ext_adv_rept_param->perd_adv_intv)
 {
 /* found */
 memcpy(gs_sync_advr.addr, p_ext_adv_rept_param->p_addr,
 BLE_BD_ADDR_LEN);
 gs_sync_advr.type = p_ext_adv_rept_param->addr_type;
 gs_adv_sid = p_ext_adv_rept_param->adv_sid;
 R_BLE_GAP_ConfPerdAdvList(BLE_GAP_LIST_ADD_DEV,
 &gs_sync_advr,
 &gs_adv_sid,
 1);
 }

 } break;
 /** some code is omitted **/
 }
 } break;

 case BLE_GAP_EVENT_PERD_LIST_CONF_COMP:
 {
 R_BLE_GAP_CreateSync(NULL, 0, 100, 100);
 } break;

 case BLE_GAP_EVENT_SYNC_EST:
 {
 } break;
 /** some code is omitted **/
 }
}

/** some code is omitted **/

Code 11. Sample of establishing a Periodic Advertising Sync

5.4.4 Periodic advertiser list

It is possible to register the BD address of a known advertiser to the Periodic Advertiser List by calling
R_BLE_GAP_ConfPerdAdvList API. Code 11 contains an example of the API usage.

5.4.5 Receive periodic advertising PDUs

After the periodic advertising sync has been established with the advertiser, user application is notified by the
BLE_GAP_EVENT_ADV_REPT_IND event that a periodic advertising packet is received. A received
periodic advertising packet is stored in a st_ble_gap_adv_rept_evt_t structure. RA Flexible Software
Package Documentation about detail of the structure.

5.4.6 Lost periodic advertising sync

When the advertiser stops Periodic Advertising, user application is notified by the
BLE_GAP_EVENT_SYNC_LOST event that the Periodic Advertising Sync is loss.

5.4.7 Terminate periodic advertising sync

When the scanner terminates the Periodic Advertising Sync, call BLE_GAP_TerminateSync API. When the
Periodic Advertising Sync has been terminated, user application is notified of the
BLE_GAP_EVENT_SYNC_TERM event.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 54 of 127

Aug.31.21

6. Connection

Bluetooth LE devices can communicate bi-directionally by establishing a connection between BLE devices.
This chapter describes how to use scan feature by using related APIs. User can use following categories of
API to perform above procedure.

 Abstraction API (RM_BLE_ABS_XXX API)

➢ User can use connection feature with a single API call. However, detailed parameter settings
are not possible.

 GAP API (R_BLE_GAP_XXX API)

➢ User uses connection feature by combining several APIs. However, detailed parameter
settings are possible.

6.1 Requesting connection with abstraction API

When user uses abstraction API, call RM_BLE_ABS_Create_Connection API for requesting connection with
advertiser. Refer to RA Flexible Software Package Documentation about usage of the API.

6.1.1 White list filtering

Refer to section 6.4.

6.1.2 Privacy

Abstraction API cannot use the privacy feature. It is necessary to use GAP API when user want to use the
privacy feature.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 55 of 127

Aug.31.21

6.2 Requesting connection with GAP API

When user uses GAP API, call R_BLE_GAP_CreateConn API for requesting connection with advertiser.
Refer to RA Flexible Software Package Documentation about usage of the API.

6.3 Cancelling Connection Request

A connection request cannot be sent until the connection is established by previous connection request or
the connection request is cancelled. After sending a connection request, if user wants to send another
connection request, it is possible to cancel the previous connection request by calling
BLE_GAP_CancelCreateConn API. This API can use in any case where requesting a connection using
abstraction API and GAP API. After cancelling the connection request, user application is notified by
BLE_GAP_EVENT_CONN_IND event that the result is BLE_ERR_INVALID_HDL(0x000E).

6.4 White list filtering

When user want to reconnect with a known device, it is possible to use white list feature by applying
following procedures.

1. Register the BD address of the remote device to white list by calling R_BLE_GAP_ConfWhiteList API.

2. Set to use white list feature for:

 Set BLE_GAP_INIT_FILT_USE_WLST(0x01) to filter_parameter field in
ble_abs_connection_parameter_t structure when use RM_BLE_ABS_CreateConnection API.

 Set BLE_GAP_INIT_FILT_USE_WLST(0x01) to init_filter_policy filed in
st_ble_gap_create_conn_param_t structure when use R_BLE_GAP_CreateConn API.

An example of connecting a remote device registered in the White List is shown in Code 12.

/* remote device address */
dev.addr = {"Remote device BD_ADDR" };
dev.type = BLE_GAP_ADDR_PUBLIC;

/* register remote device to white list */
R_BLE_GAP_ConfWhiteList(BLE_GAP_LIST_ADD_DEV, &dev, 1);

/** some code is omitted **/

/* reconnect */
st_ble_gap_conn_param_t conn_1M = {
 .conn_intv_min = 0x0100,
 .conn_intv_max = 0x0100,
 .conn_latency = 0x0000,
 .sup_to = 0x03BB,
 .min_ce_length = 0xFFFF,
 .max_ce_length = 0xFFFF,
};

st_ble_gap_create_conn_param_t conn_param;
conn_param.init_filter_policy = BLE_GAP_INIT_FILT_USE_WLST;
conn_param.own_addr_type = BLE_GAP_ADDR_PUBLIC;

/* set connection parameters for 1M */
st_ble_gap_conn_phy_param_t conn_phy_1M = {
 .scan_intv = 0x0300,
 .scan_window = 0x0300,
 p_conn_param = &conn_1M,
};
conn_param.p_conn_param_1M = &conn_phy_1M;
R_BLE_GAP_CreateConn(&conn_param);

/** some code is omitted **/

Code 12. Connection Request using the White List

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 56 of 127

Aug.31.21

6.5 Privacy

Privacy feature can use after preparing IRK for using privacy feature according to section 8.4.1 and set value
shown in Table 27 to st_ble_gap_create_conn_param_t structure.

Table 27. The parameters used for the privacy feature

Field Value Description

own_addr_type BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02) Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
public address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03) Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
static address.

remote_bd_addr_type Specify the remote device address registered by
R_BLE_GAP_ConfRslvList.

―

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 57 of 127

Aug.31.21

6.6 Multiple connection

This section describes how to connect with multiple devices at the same time. With the BLE Protocol Stack,
up to 7 devices can be connected simultaneously. The connection procedure is the same as for one-to-one
communication which describes in previous section. Following are the notes on creating a BLE application
that performs multiple connection.

1. Connection handle

Connection handle specifies connection with remote device. User application is notified of the connection
handle when establish connection. The connection handle allocated for connection, not device. Therefore,
connection handle will change even when reconnecting same remote device.

2. Attribute handle

Attribute handle is used to access GATT database in remote device. It is necessary to keep the attribute
handle for each remote device when BLE application perform GATT client role. By using Profile common
which include QE for BLE, it can hold the attribute handles for each remote device up to 10.

3. Characteristics value

In the use case where the GATT server role accepts connections from multiple clients, there are some
characteristic values that the server must be retained for each remote device, such as Client Configuration
Characteristics Descriptor.

Implementation examples of application code that connects multiple devices for some typical use cases are
explained in following sections.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 58 of 127

Aug.31.21

6.6.1 Connecting to multiple peripheral devices

This section describes implementation example when local device performs GAP central and communicate
with multiple GAP peripheral devices, as shown in Figure 20. This is a one of typical case when collecting
data from multiple sensors which perform GAP peripheral.

Figure 20. Connection with multiple peripheral devices

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 59 of 127

Aug.31.21

Sequence chart of implementation example is shown in Figure 21.

Figure 21. Sequence chart when connecting to a peripheral device

In this implementation, central device performs connection procedure after completing service discovery to
ensure connection establishment one by one. The circled numbers in the sequence chart correspond to the
numbers “(x)” in the example codes shown in Code 13, Code 14 and Code 15.

Repeat from ① to ⑥.

Central
(GATT Client)

RM_BLE_ABS_StartScanning

BLE Protocol Stack

BLE_GAP_EVENT_ADV_REPT_IND

R_BLE_GAP_StopScan

BLE_GAP_EVENT_SCAN_OFF

RM_BLE_ABS_CreateConnection

BLE_GAP_EVENT_CONN_IND

BLE_GATTC_EVENT_CONN_IND

R_BLE_DISC_Start

disc_comp_cb

Peripheral
(GATT Server)

Advertising

Connection Request

Connection Resonse

Service Discovery

Service information

①

②

③

④

⑤

⑥

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 60 of 127

Aug.31.21

/* Scan phy parameters */
static ble_abs_scan_phy_paramter_t gs_scan_phy_param =
{
 /* TODO: Modify scan phy parameter. */
 .fast_scab_interval = 0x200,
 .fast_scan_window = 0x100,
 .slow_scan_interval = 0x200,
 .slow_scan_window = 0x100,
 .scan_type = BLE_GAP_SCAN_PASSIVE,
};

/* Scan filter data */
static uint8_t gs_filter_data[] =
{
 /* TODO: Modify filter of advertise data. Value of Data Flag is defined in

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Scan parameters */
static ble_abs_scan_parameter_t gs_scan_param =
{
 /* TODO: Modify scan parameter. */
 .p_phy_parameter_1M = &gs_scan_phy_param,
 .p_filter_data = gs_filter_data,
 .slow_scan_period = 0,
 .filter_data_length = ARRAY_SIZE(gs_filter_data),
 .device_scan_filter_policy = BLE_GAP_SCAN_ALLOW_ADV_ALL,
 .filter_duplicate = BLE_GAP_SCAN_FILT_DUPLIC_ENABLE,
};

/* Connection phy parameters */
static ble_abs_connection_phy_parameter_t gs_conn_phy_param =
{
 /* TODO: Modify connection phy parameter. */
 .connection_intverval = 0x0130,
 .connection_slave_latency = 0x0000,
 .supervision_timeout = 0x03BB,
};

/* Connection device address */
static st_ble_dev_addr_t gs_conn_bd_addr;

/* Connection parameters */
static ble_abs_conn_parameter_t gs_conn_param =
{
 .p_connection_phy_parameter_1M = &gs_conn_phy_param,
 .p_device_address = &gs_conn_bd_addr, /**< Set BD address of connecting device. */
 .filter_parameter = BLE_GAP_INIT_FILT_USE_ADDR,
 .connection_timeout = 5,
};

Code 13. Setting initial values for scan parameters and connection parameters

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 61 of 127

Aug.31.21

/* Connection handle */
uint16_t g_conn_hdl[BLE_CFG_RF_CONN_MAX];
static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON: /* (1) */
 {
 RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &gs_scan_param);

 } break;

 case BLE_GAP_EVENT_CONN_IND: /* (4) */
 {

 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;

 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == BLE_GAP_INVALID_CONN_HDL)
 {
 g_conn_hdl[i] = p_gap_conn_evt_param->conn_hdl;
 }
 }

 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param =
 (st_ble_gap_disconn_evt_t*)p_data->p_param;

 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == p_gap_disconn_evt_param->conn_hdl)
 {
 g_conn_hdl[i] = BLE_GAP_INVALID_CONN_HDL;
 }
 }
 } break;

 case BLE_GAP_EVENT_ADV_REPT_IND: /* (2) */
 {
 st_ble_gap_adv_rept_evt_t *p_adv_rept_param = (st_ble_gap_adv_rept_evt_t *)p_data->p_param;
 st_ble_gap_ext_adv_rept_t *p_ext_adv_rept_param =

(st_ble_gap_ext_adv_rept_t *)p_adv_rept_param->param.p_ext_adv_rpt;

gs_conn_param.p_addr->type = p_ext_adv_rept_param->addr_type;
 memcpy(gs_conn_param.p_addr->addr, p_ext_adv_rept_param->p_addr, BLE_BD_ADDR_LEN)

 R_BLE_GAP_StopScan();
 } break;

 case BLE_GAP_EVENT_SCAN_OFF: /* (3) */
 {
 RM_BLE_ABS_CreateConnection(&g_ble_abs0_ctrl, &gs_conn_param);
 }
 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 14. Implementation example of GAP callback function when connecting multiple units

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 62 of 127

Aug.31.21

/* XXX Service UUID */
static uint8_t XXXC_UUID[] =

{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

/* Service discovery parameters */
static st_ble_disc_entry_t gs_disc_entries[] = {

 {
 .p_uuid = XXXC_UUID,
 .uuid_type = BLE_GATT_128_BIT_UUID_FORMAT,
 .serv_cb = R_BLE_XXXC_ServDiscCb,
 },
};

static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &gs_scan_param); /* (6) */
 return;
}

static void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
 R_BLE_SERVC_GattcCb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of GATTC. Check BLE API reference for events. */

 case BLE_GATTC_EVENT_CONN_IND: /* (5) */
 {
 R_BLE_DISC_Start(p_data->conn_hdl, gs_disc_entries, ARRAY_SIZE(gs_disc_entries), disc_comp_cb);
 } break;

 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 15. Implementation example of service discovery using Profile Common Library

As shown in bold frame of Code 15, when user registers R_BLE_XXX_ServDiscCb which generated by QE
for BLE, attribute handle of each peripheral device will be retained in the service API. The user application
can access the GATT database of each peripheral device using the connection handle without managing the
attribute handle of each peripheral device.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 63 of 127

Aug.31.21

6.6.2 Connection to multiple central devices

This section describes implementation example when local device performs GAP peripheral and
communicate with multiple GAP central devices, as shown in Figure 22. This is a one of typical case when
home appliance equipment accepts control from multiple smart phones which perform GAP central.

Figure 22. Connection with multiple central devices

Sequence chart of implementation example is shown in Figure 23.

Figure 23. Sequence chart when connecting to a central device

Advertising will stop when establish connection with central device. Therefore, it is necessary to start
advertising again to perform multiple connection with central devices. The circled numbers in the sequence
chart correspond to the numbers “(x)” in the example codes shown in Code 16 and Code 17.

Peripheral
(GATT Server)

RM_BLE_ABS_StartLegacyAdvertising

BLE Protocol Stack

BLE_GAP_EVENT_ADV_OFF

BLE_GAP_EVENT_CONN_IND

Central
(GATT Client)

Scan

Conncetion Request

Connection Response

BLE_GAP_EVENT_ADV_ON

Repeat from ① to ⑥.

①

②

③

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 64 of 127

Aug.31.21

/* Advertising data */
static uint8_t gs_adv_data[] =
{
 /* TODO: Modify advertise data. Value of Data Flag is defined in

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Flag (mandatory) */
 2, /**< Data Size */
 0x01, /**< Data Type: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE | BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /**< Data Value */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Scan response Data */
static uint8_t gs_sres_data[] =
{
 /* TODO: Modify scan response data. Value of Data Flag is defined in

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Advertising parameters */
static ble_abs_legacy_advertising_parameter_t gs_adv_param =
{
 /* TODO: Modify advertise parameters. */
 .slow_advertising_interval = 0x300,
 .slow_advertising_period = 0,
 .p_advertising_data = gs_adv_data,
 .advertising_data_length = ARRAY_SIZE(gs_adv_data),
 .p_scan_response_data = gs_sres_data,
 .scan_response_data_length = ARRAY_SIZE(gs_sres_data),
 .advertising_channel_map = BLE_GAP_ADV_CH_ALL,
 .advertising_filter_policy = BLE_ABS_ADVERTISING_FILTER_ALLOW_ANY,
 .own_bluetooth_address_type = BLE_GAP_ADDR_PUBLIC,
};

Code 16. Advertise packet and parameter settings

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 65 of 127

Aug.31.21

uint16_t g_conn_hdl[BLE_CFG_RF_CONN_MAX];

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl, &gs_adv_param);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {

 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;
 RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl, &gs_adv_param);
 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == BLE_GAP_INVALID_CONN_HDL)
 {
 g_conn_hdl[i] = p_gap_conn_evt_param->conn_hdl;
 }

 }
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param = (st_ble_gap_disconn_evt_t*)p_data->p_param;

 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == p_gap_disconn_evt_param->conn_hdl)
 {
 g_conn_hdl[i] = BLE_GAP_INVALID_CONN_HDL;
 }
 }
 } break;

 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 17. Implementation example of GAP callback function when accepting connections from
multiple centrals

In Bluetooth Low Energy, the master (central device) controls the communication timing. Therefore,
disconnection may happen when communication timing of each connection accidentally collided. To avoid
such a disconnection, it is recommended to update the connection parameters so that there is a margin in
slave latency and supervision timeout time. For updating connection parameters, refer to section7.3.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 66 of 127

Aug.31.21

The GATT server may expose a common characteristic value to all connected GATT clients, or may expose
a different value for each client. When exposing different values for each client such as Client Configuration
Characteristic Descriptor, user can enable “Peer Specific” configuration on the characteristic screen of QE
for BLE as shown in Figure 24.

Figure 24. Setting to retain the value of characteristic for each device

A characteristic which has enabled “Peer Specific” configuration will be able to hold a separate value for up
to 7 client devices and a GATT database value is returned for each client accessed.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 67 of 127

Aug.31.21

6.6.3 Multi role connection

This section describes example of implementation when local device performs different GAP / GATT roles at
the same time, as shown in Figure 25. In such a case, local device communicates as central to one remote
device and as a peripheral to another remote device.

Figure 25. Multi roll connection example

1. GAP callback functions for each GAP role

QE for BLE cannot generate skeleton code for GAP callback function. Therefore, user needs to implement
GAP callback function by themselves, as shown in Code 18. In this example, GAP callback function for
peripheral and central is implemented separately.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 ble_peripheral_gapcb(type, result, p_data);
 ble_central_gapcb(type, result, p_data);
}

Code 18. Call GAP callback function for each role

Each GAP role of example code is shown in Code 19 and Code 20.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 68 of 127

Aug.31.21

/* Connection handle */
uint16_t g_central_conn_hdl;

static void ble_central_gapcb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 RM_BLE_ABS_StartScanning(&g_ble_abs0_ctrl, &gs_scan_param);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {
 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;
 if(0x00 == p_gap_conn_evt_param->role)
 {
 g_central_conn_hdl = p_gap_conn_evt_param->conn_hdl;
 }
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param =
 (st_ble_gap_disconn_evt_t *)p_data->p_param;
 if(p_gap_disconn_evt_param->conn_hdl == g_central_conn_hdl)
 {
 g_central_conn_hdl = BLE_GAP_INVALID_CONN_HDL;
 }
 } break;

 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
 (st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;
 if(p_conn_upd_req_evt_param->conn_hdl == g_central_conn_hdl)
 {
 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);
 }
 } break;
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t *p_adv_rept_param =
 (st_ble_gap_adv_rept_evt_t *)p_data->p_param;
 st_ble_gap_ext_adv_rept_t *p_ext_adv_rept_param =
 (st_ble_gap_ext_adv_rept_t *)p_adv_rept_param->param.p_ext_adv_rpt;

 gs_conn_param.p_addr->type = p_ext_adv_rept_param->addr_type;
 memcpy(gs_conn_param.p_addr->addr, p_ext_adv_rept_param->p_addr, BLE_BD_ADDR_LEN);

 R_BLE_GAP_StopScan();
 } break;

 case BLE_GAP_EVENT_SCAN_OFF:
 {
 RM_BLE_ABS_CreateConnection(&g_ble_abs0_ctrl, &gs_conn_param);
 }break;

 /** some code is omitted **/

Code 19. Example of GAP callback function when connecting as a central role

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 69 of 127

Aug.31.21

/* Connection handle */
uint16_t g_peripheral_conn_hdl;

static void ble_peripheral_gapcb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl, &gs_adv_param);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {
 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param = (st_ble_gap_conn_evt_t *)p_data->p_param;
 if(0x01 == p_gap_conn_evt_param->role)
 {
 g_peripheral_conn_hdl = p_gap_conn_evt_param->conn_hdl;
 }
 }
 } break;

 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
 (st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;

 if(p_conn_upd_req_evt_param->conn_hdl == g_peripheral_conn_hdl)
 {
 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param =
 (st_ble_gap_disconn_evt_t *)p_data->p_param;
 if(p_gap_disconn_evt_param->conn_hdl == g_peripheral_conn_hdl)
 {
 g_peripheral_conn_hdl = BLE_GAP_INVALID_CONN_HDL;
 }
 } break;

 default:
 {
 /* Do Nothing */
 }break;
}

Code 20. Example of GAP callback function when connected as a peripheral device

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 70 of 127

Aug.31.21

2. GATT callback functions for each GATT role

QE for BLE can generate skeleton code for GATT in case of multi roll. In the multi role case, enable both the
server and the client on QE for BLE as shown in Figure 26, and generate the service API for both the GATT
client and the server.

Figure 26. Select GATT Role on QE for BLE

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 71 of 127

Aug.31.21

In the example code shown in Code 21, local device performs as a GATT client when its own GAP role is
central. Therefore, service discovery will be performed when connection is established with peripheral
device.
/* XXX Service UUID */
static uint8_t XXXC_UUID[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };

/* Service discovery parameters */
static st_ble_disc_entry_t gs_disc_entries[] = {

 {
 .p_uuid = XXXC_UUID,
 .uuid_type = BLE_GATT_128_BIT_UUID_FORMAT,
 .serv_cb = R_BLE_XXXC_ServDiscCb,
 },
};
static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 return;
}

static void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
 R_BLE_SERVC_GattcCb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of GATTC. Check BLE API reference for events. */

 case BLE_GATTC_EVENT_CONN_IND:
 {
 if(g_central_conn_hdl == p_data->conn_hdl)
 {
 R_BLE_DISC_Start(p_data->conn_hdl,
 gs_disc_entries,
 ARRAY_SIZE(gs_disc_entries),
 disc_comp_cb);
 }
 } break;

 default:
 {
 /* Do nothing. */
 } break;

}
}

Code 21. Implementation example of service discovery as a central device

As shown in bold frame of Code 21, when user registers R_BLE_XXX_ServDiscCb generated by QE for
BLE, attribute handle of each peripheral device will be retained in the service API. The user application can
access the GATT database of each peripheral device using the connection handle without managing the
attribute handle of each peripheral device.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 72 of 127

Aug.31.21

6.7 Disconnection

To disconnect the established connection, call the following R_BLE_GAP_Disconnect API. Need to specify
the connection handle with conn_hdl and the disconnection reason with reason as argument of the API.
Normally, 0x13 (REMOTE USER TERMINATED CONNECTION) is specified as the disconnection reason.
For more information about the disconnection reason, refer to “Bluetooth Core Specification Vol. 2 Part D, 2
Error Code Descriptions”.

Both of central and peripheral device can call this API. When the disconnection occurs, user application is
notified of the BLE_GAP_EVENT_DISCONN_IND event. If the local device disconnects the link by
R_BLE_GAP_Disconnect API, the reason field in the st_ble_gap_disconn_evt_t structure notified in the
BLE_GAP_EVENT_DISCONN_IND event is 0x16 (Connection Terminated by Local Host). If the remote
device disconnects the link, the reason field in the st_ble_gap_disconn_evt_t structure notified in the
BLE_GAP_EVENT_DISCONN_IND event is specified as the reason why the remote device disconnects.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 73 of 127

Aug.31.21

7. Communication

User can adjust the communication speed and power consumption to suit their own application by changing
the communication parameters in Bluetooth Low Energy. This chapter describes how to configure
communication parameters.

Table 28 shows the correspondence between the communication parameters described in this chapter,
supported features and the version of Bluetooth.

Table 28. Bluetooth version and supported features and parameters

Communication
parameter

Feature name Bluetooth
Version

Description

PHY LE 2M PHY
LE Coded PHY
LE 1M PHY

5.0 (optional *1)
5.0 (optional *1)
4.0

Double the symbol rate
Forward error correction code added
-

Maximums transmission
packet length

LE Data Length
Extension

4.2 (optional *1) Maximum number of transmitted bytes
27 → 251 bytes

Connection parameters - 4.0 -

MTU - 4.0 -
*1: The optional features may not be supported on remote device.

The following sections describe how to change the communication parameters by using various APIs. Refer
to the “RA Flexible Software Package Documentation” about details of these APIs.

7.1 Changing PHY

PHY is a parameter that indicates the physical layer modulation method and coding scheme. User can
expect improvement of throughput and reach of radio wave. The modulation methods and coding schemes
are shown below.

 LE 1M PHY

➢ This is a modulation method that compatibles with all Bluetooth Low Energy devices.

 LE 2M PHY

➢ This is a modulation method that doubles the symbol rate from LE 1M PHY and shortens the
packet transmission time. This modulation method is used when performing high throughput
communication. User can also expect a reduction in power consumption since the packet
transmission time is shortened.

 LE Coded PHY

➢ This is a modulation method that applies a forward error correction code (coding scheme) of
1/2 or 1/8 to the header and payload of the packet. This modulation method increases
certainty of data arrival to remote device and makes it possible to extend the communication
distance compared to LE1M and LE2M PHY.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 74 of 127

Aug.31.21

To change the PHY, use the R_BLE_GAP_SetPhy API. To use this API, it is necessary to specify the
following arguments.

 tx_phys

➢ The modulation method for transmission.

 rx_phys

➢ The modulation method for reception.

 phy_options

➢ The coding scheme for transmission. Note that the receiving coding scheme does not be
changed.

Figure 27 shows the sequence chart when changing the PHY from the local device. In the figure, the local
device performs as central, but PHY changes can be initiated from either role.

Figure 27. Sequence chart when changing PHY

The example for changing the PHY to LE Coded PHY (S=8) is shown in Code 22. Multiple PHYs can be also
specified by bit sum.

st_ble_gap_set_phy_param_t set_phy = {
 .tx_phys = BLE_GAP_SET_PHYS_HOST_PREF_CD | BLE_GAP_SET_PHYS_HOST_PREF_1M,
 .rx_phys = BLE_GAP_SET_PHYS_HOST_PREF_CD | BLE_GAP_SET_PHYS_HOST_PREF_1M,
 .phy_options = BLE_GAP_SET_PHYS_OP_HOST_PREF_S_8
};

R_BLE_GAP_SetPhy(conn_hdl, &set_phy);

Code 22. Code to change PHY to LE Coded PHY (S=8)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 75 of 127

Aug.31.21

The GAP callback function (gap_cb) will be notified of following two events when changing PHY, as shown in
Code 23.

 BLE _GAP_EVENT_PHY_SET_COMP

➢ This event will be issued when controller layer of the local device accepts the PHY change.

 BLE_GAP_EVENT_PHY_UPD

➢ This event will be issued when the remote device accepts the PHY change. The issued event
data, tx_phy and rx_phy, represent the actual PHY used when transmitting from the local
device to the remote device and from the remote device to the local device, respectively.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_PHY_SET_COMP:
 {
 if(BLE_SUCCESS == result)
 {
 st_ble_gap_conn_hdl_evt_t *event_data =
 (st_ble_gap_conn_hdl_evt_t *)p_data->p_param;
 /*PHY parameter change in event_data->conn_hdl reaches Link Layer */
 }
 else if(BLE_ERR_INVALID_HDL == result)
 {
 st_ble_gap_conn_hdl_evt_t *event_data =
 (st_ble_gap_conn_hdl_evt_t *)p_data->p_param;
 /*The connection for event_data->conn_hdl was not found.*/
 }
 else
 {
 /* Do Nothing */
 }
 } break;

 case BLE_GAP_EVENT_PHY_UPD:
 {
 st_ble_gap_phy_upd_evt_t * event_data =
 (st_ble_gap_phy_upd_evt_t *)p_data->p_param;
 } break;
 }

}

Code 23. Event that occurs when PHY is changed

When the PHY is changed, the transmission time for the transmission packet length also changes. The BLE
Protocol Stack will automatically change the maximum transmission packet length according to the applied
PHY. When changed to LE Coded PHY, the maximum transmission packet length is set to 251 bytes and
the transmission time is set to 2704usec. If changing the maximum transmission packet length to 28 bytes or
more, see section 7.2.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 76 of 127

Aug.31.21

7.2 Changing maximum transmission packet length

This parameter sets the maximum packet length in the Link Layer. User can perform efficient communication
by extending the transmitting packet length when user want to transmit and receive application data that
exceeds 23 bytes. Packet length extension requires remote device to support the LE Data Packet Length
Extension feature in Bluetooth 4.2.

It is necessary for changing maximum transmission packet length to specify maximum number of bytes to be
transmitted and maximum transmission time. The packet transmission time is depended on PHY
configuration which describes in the previous section. And the maximum transmission packet length and
maximum transmission time can be set depending on whether the LE Data Packet Length Extension and LE
Coded PHY are supported. These relationships are shown in Table 29.

Table 29. Relationship between PHY and maximum transmission packet length and maximum
transmission time

LE Data Packet Length
Extension

LE Coded PHY feature
supported

Parameters with names
ending in “Octets”

Parameters with names
ending in “Time"

Min Max Min Max

No No 27 27 328 328

Yes No 27 251 328 2120

No Yes 27 27 328 2704

Yes Yes 27 251 328 17040

Bluetooth Core Specification V5.00 Vol 6, Part B

When connected to a remote device, BLE Protocol Stack request to change the maximum transmission
packet length to the value specified by “Maximum Connection data length” configuration which is one of
properties item of “BLE Abstraction Driver on rm_ble_abs”. Call R_BLE_GAP_SetDataLen API to change
maximum transmission packet length. It is necessary to specify connection handle whose configuration will
be changed, maximum number of bytes to send and maximum transmission time in microsecond as
argument of the API. The BLE Protocol Stack adopts the smaller value of the time required to send the
maximum number of bytes to be sent specified in the argument and the maximum transmission time
specified in the argument. Figure 28 shows a sequence chart when maximum transmission packet length
from the local device.

Figure 28. Sequence chart when changing the maximum transmission packet length

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 77 of 127

Aug.31.21

Code 24 is an example of expanding the packet length to 251 bytes when using the LE 1M PHY.

uint16_t tx_octets = 251;
uint16_t tx_time = 2120;

R_BLE_GAP_SetDataLen(conn_hdl, tx_octets, tx_time);

Code 24. Example of transmission packet length change request

GAP callback function (gap_cb) will be notified of following two events when changing the transmission
packet length, as shown in Code 25.

 BLE_GAP_EVENT_SET_DATA_LEN_COMP

➢ Occurs when the change in transmitted packet length is accepted by the controller layer.

 BLE_GAP_EVENT_DATA_LEN_CHG

➢ Occurs when the transmission packet length changes with the remote device. This event will
not occur if the remote device does not support LE Data Packet Length Extension.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_GAP_EVENT_SET_DATA_LEN_COMP:
 {
 st_ble_gap_conn_hdl_evt_t * event_data =

(st_ble_gap_conn_hdl_evt_t *)p_data->p_param;
 /* Do Nothing */
 } break;
 case BLE_GAP_EVENT_DATA_LEN_CHG:
 {
 st_ble_gap_data_len_chg_evt_t * event_data =

(st_ble_gap_data_len_chg_evt_t *)p_data->p_param;
 /* Do Nothing */
 } break;
 }

}

Code 25. Change packet length event

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 78 of 127

Aug.31.21

7.3 Updating connection parameter

Connection parameters are parameters related to communication frequency. Setting connection parameters
is important for the efficient operation of user application. The connection parameters include the following
items.

 Connection Interval

➢ The interval between packet exchanges. When the connection interval is shortened,
throughput will improve, but power consumption will increase. On the other hand, when the
connection interval is lengthened, throughput will decrease, but power consumption can be
reduced.

 Slave Latency

➢ The number of times the slave will ignore packets from the master. When the slave receives a
packet from the master, it returns a response. If there is no data to be transmitted from the
slave, the packet from the master can be ignored for the number of times set for slave latency.
The slave does not have to return the response for the number of times, so the power
consumption can be reduced. Figure 29 shows the relationship between Slave latency and
connection event.

Figure 29. Slave latency and connection event

 Supervision Timeout

➢ The time from the last packet reception to disconnection. If no packet is received within the
time, the BLE connection will be disconnected. This time must be set to meet the following
condition:

𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑜𝑢𝑡(𝑚𝑠𝑒𝑐) > (1 + 𝑆𝑙𝑎𝑣𝑒 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑛𝑢𝑚𝑏𝑒𝑟)) ∗ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑚𝑠𝑒𝑐) ∗ 2

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 79 of 127

Aug.31.21

 Connection Event Time

➢ Specify the connection event time that occurs at each connection interval. If zero is set,
packets will be exchanged only once for each round trip per connection event, as shown in
Figure 30. If 0xFFFF is specified, packets will be exchanged until the next connection event or
until the More Data bit is not set, as shown in Figure 31.

Figure 30. Connection event time and packet exchange (connection event time is set to 0)

Figure 31. Connection event time and packet exchange (connection event time is set to 0xFFFF)

The master determines and changes the connection parameters, but it is also possible to request connection
parameters changes from slave to master. The connection parameters can be updated any number of times
during the connection. The application flexibly updates the connection parameters to achieve efficient data
communication. Followings are typical scenarios.

 Since there is no data to send for a while, user wants to lengthen the connection interval to reduce
power consumption.

 Since data communication is performed with multiple remote devices, user wants to lengthen the
connection interval to ensure time for communication.

 User wants to shorten the connection interval to complete service discovery earlier.

 User wants to shorten the connection interval to send small data in a short time.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 80 of 127

Aug.31.21

Figure 32 shows the sequence chart for updating the connection parameters. The local device is the central
and the remote device is the peripheral.

Figure 32. Sequence chart when updating connection parameters

Use R_BLE_GAP_UpdConn API for request/response of connection parameter update. Code 26 is an
example of requesting to update the connection parameters from the local device.

st_ble_gap_conn_param_t conn_param = {
 .conn_intv_min = 0x0006, //Connection Interval
 .conn_intv_max = 0x0006,
 .conn_latency = 0x0000, //Slave Latency
 .sup_to = 0x0C80, //Supervision timeout
 .max_ce_length = 0xffff, //Connection event time
 .min_ce_length = 0xffff
};

R_BLE_GAP_UpdConn(conn_hdl , BLE_GAP_CONN_UPD_MODE_REQ , 0 , &conn_param);

Code 26. Implementation example of connection parameter update request

GAP callback function (gap_cb) will be notified of following two events when updating the connection
parameters.

 BLE_GAP_EVENT_CONN_PARAM_UPD_REQ

➢ Issued when a request to update connection parameters is received from the remote device.
User needs to implement the process of whether to accept.

 BLE_GAP_EVENT_CONN_PARAM_UPD_COMP

➢ Issued when the connection parameters have been updated. The argument result of gap_cb
contains information whether the request to update the connection parameter was accepted or
not. And the argument event of gap_cb contains the connection parameters used in the actual
connection.

Application BLE Protocol Stack BLE Protocol Stack

R_BLE_GAP_UpdConn

LL_CONNECTION_PARAM_REQ

BLE_GAP_EVENT_CONN_PARAM_UPD_COMP

BLE_GAP_CONN_PARAM_UPD_REQ

Application

Local Device
(Central)

Remote Device
(Peripheral)

LL_CONNECTION_PARAM_RSP
LL_CONNECTION_UPDATE_IND

R_BLE_GAP_UpdateConn

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 81 of 127

Aug.31.21

Code 27 is an implementation example of the response to the connection parameter update request from the
remote device. In this example, local device accepts all requests from remote devices. This process is
implemented in app_main.c.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {

case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
{

 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
(st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;

 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);

 } break;
 }

}

Code 27. Implementation example of response to connection parameter update request event

When connecting to a smartphone, update of connection parameters may not be accepted. For example,
refer to the following document for more information about iOS.

Accessories for Design Guidelines for Apple Devices (https://developer.apple.com/accessories/Accessory-

Design-Guidelines.pdf)

If the remote device rejects to local device request, BLE_ERR_INVALID_ARG(0x0003) is stored in the result
variable at the time of BLE_GAP_EVENT_CONN_PARAM_UPD_COMP event notification.

https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf
https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 82 of 127

Aug.31.21

Code 28 is an implementation example in which the parameters are updated and request again after being
rejected by the remote device.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {

case BLE_GAP_EVENT_CONN_PARAM_UPD_COMP:
{
 if(BLE_ERR_INVALID_ARG == result)
{

 st_ble_gap_conn_param_t conn_param = {
 .conn_intv_min = 0x0028, /* Connection Interval */
 .conn_intv_max = 0x0028,
 .conn_latency = 0x0000, /* Slave Latency */
 .sup_to = 0x0C80, /* Supervision timeout */
 .max_ce_length = 0xffff, /* Connection event time */
 .min_ce_length = 0xffff

 };

 R_BLE_GAP_UpdConn(conn_hdl ,
BLE_GAP_CONN_UPD_MODE_REQ ,
0 ,
&conn_param);

}

} break;
 }

}

Code 28. Request to update connection parameters after being rejected by remote device

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 83 of 127

Aug.31.21

7.4 Changing MTU

MTU represents maximum packet length in GATT. Initial value of MTU size is 23 bytes. This is called the
default MTU. When user continue to use the default MTU as is:

 Client will use GATT Read Long Characteristic Value procedure to read data longer than 22 bytes from
server. This mean that multiple communications are required when reading data of 22 bytes or more
from server.

 Client will use Write Long Characteristic Value procedure to write data longer than 20 bytes to server.
This mean that multiple communications are required when writing data of 20 bytes or more to server.

 Notification or Indication procedure cannot send more than 20 bytes of data from sever.

The MTU can be changed from the GATT client only once during the connection to avoid such a
communication overhead. To minimize the overhead, user needs to adjust the relationship between MTU
and maximum transmission packet length described in section 7.2 as follows.

𝑀𝑇𝑈(𝑏𝑦𝑡𝑒) = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑦𝑡𝑒) − 4(𝑏𝑦𝑡𝑒)

Figure 33 shows the sequence chart when changing the MTU.

Figure 33. Sequence chart when changing MTU

Call R_BLE_GATT_ReqExMtu API to change the MTU, as shown in Code 29.

uint16_t mtu = 247
R_BLE_GATTC_ReqExMtu(conn_hdl, mtu);

Code 29. MTU change request example

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 84 of 127

Aug.31.21

GATT server / client callback function (gatts_cb / gattc_cb) will be notified of following two events when
changing the MTU.

 BLE_GATTS_EVENT_EX_MTU_REQ

➢ The server is notified when an MTU change request is received from a client device
(gatts_cb). The server returns the MTU it supports in this event.

 BLE_GATTC_EVENT_EX_MTU_RSP

➢ The client is notified when it receives an Exchange MTU Response from the server device
(gattc_cb). The smaller of the MTU that client supports and the MTU included in the response
is adopted as the MTU size.

Code 30 shows an implementation example of the GATT server response for the Exchange MTU Request
from the GATT client. For the response, use R_BLE_GATTS_RspExMtu API. For the argument of the API, it
is necessary to specify the MTU which supported in the local device. This process is implemented in
R_BLE_SERVS_GattsCb function provided by QE for BLE. And the size of the MTU returned by the GATT
server is set in the MTU Size Configured configuration in properties of BLE Abstraction Driver on
rm_ble_abs. When user generated GATT server code from QE for BLE, user application does not need to
implement MTU response.

static void gatts_cb(uint16_t type, ble_status_t result,
st_ble_gatts_evt_data_t *p_data)

{
 switch (type)
 {
 case BLE_GATTS_EVENT_EX_MTU_REQ:
 {
 R_BLE_GATTS_RspExMtu(p_data->conn_hdl, BLE_CFG_GATT_MTU_SIZE);
 } break;
 }
}

Code 30. Example of response to MTU change request

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 85 of 127

Aug.31.21

7.5 Flow control

BLE Protocol Stack has a flow control feature to send large application data in a short time. BLE Protocol
Stack has 10 send buffers for flow control feature. When flow control feature is enabled, an event will notify
according to usage of the send buffer. Figure 34 shows the number of empty buffers and event notification
timing. Number of remaining empty buffer will decrease as application repeatedly sends application data.
The application will be notified of BLE_VS_EVENT_TX_FLOW_STATE_CHG event when number of
remaining empty buffer reached Low Water Mark. Application should stop sending application data to
prevent buffer overflow when receive the event.

Figure 34. Number of empty buffers and events (Reach Low Water Mark)

Remaining empty buffer will increase as BLE Protocol Stack transmit application data to remote device. The
application will be notified of BLE_VS_EVENT_TX_FLOW_STATE_CHG event when number of remaining
empty buffer reached High Water Mark, as shown in Figure 35. Application should resume sending
application data when receiving the event.

Figure 35. Number of empty buffers and events (Reach High Water Mark)

Application can be transmitted large data efficiently by repeating above flow control.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 86 of 127

Aug.31.21

The flow control feature is enabled by calling R_BLE_VS_SetTxLimit API and R_BLE_VS_StartTxFlowEvtNtf
API, as shown in Code 31. R_BLE_VS_SetTxLimit API configure Low Water Mark and High Water Mark of
the send buffer where BLE_VS_EVENT_TX_FLOW_STATE_CHG event occurs. And
R_BLE_VS_StartTxFlowEvtNtf API to enable event notification.

/* Enable Vender Specific Tx Flow Control */
#define LOW_WATER_MARK (3)
#define HIGH_WATER_MARK (7)

R_BLE_VS_SetTxLimit(LOW_WATER_MARK, HIGH_WATER_MARK);
R_BLE_VS_StartTxFlowEvtNtf();

Code 31. Start of flow control feature

The flow control feature notifies the application of BLE_VS_EVENT_TX_FLOW_STATE_CHG event. The
event includes current buffer status. Example code is shown inCode 32. When number of empty buffer
recovers to the High Water Mark, the notification API (R_BLE_ServsCharNotification) is called only (10-Low
Water Mark) times continuously.

static void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 R_BLE_SERVS_VsCb(type, result, p_data);

 switch(type)
 {
 case BLE_VS_EVENT_TX_FLOW_STATE_CHG:
 {
 /* Apprize TxFlowState changed to txflow API */

 st_ble_vs_tx_flow_chg_evt_t * evt_data=
(st_ble_vs_tx_flow_chg_evt_t *)p_data->p_param;

 if(BLE_VS_TX_FLOW_CTL_ON == evt_data->state)
 {
 for (int i=0; i<(10-LOW_WATER_MARK); i++)

 {
 R_BLE_ServsCharNotification(conn_hdl, &app_data);
 }

 }
 else
 {
 /* Do Nothing */
 }
 } break;

}

Code 32. Implementation example of sending by flow control feature event

R_BLE_ServsCharNotification API is just example. Therefore, it is necessary change the API according to
service which using in your application.

7.6 High throughput communication

When performing high-throughput communication using Bluetooth Low Energy, it is important to set the
communication parameters to optimal values and call the send API continuously using the flow control
function.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 87 of 127

Aug.31.21

8. Security

This section describes the security features provided by the Bluetooth Low Energy.

8.1 Pairing

Pairing procedure is necessary to use Bluetooth security feature. Following shows typical scenarios which
need the pairing process.

 The remote device sets security requirement for accessing the GATT service.
 The local device resolves the remote device address.

Pairing procedure exchanges following keys with a remote device.

 LTK (Long Term Key)
➢ The LTK will be used as encryption key.

 IRK (Identity Resolving Key)
➢ The IRK will be used as resolving private address of remote device.

 CSRK (Connection Signature Resolving Key)
➢ Signed data transmission will use CSRK.

Pairing procedure has LE Legacy pairing and LE Secure Connections. LE Secure Connections is supported
from Bluetooth version 4.2. LE legacy pairing is the paring procedure is used by the device which does not
support LE Secure Connections. If a remote device supports LE Secure Connections, the BLE Protocol
Stack will perform LE Secure Connections. If a remote device does not support LE Secure Connections, the
BLE Protocol Stack will perform LE Legacy Pairing. The pairing procedure in an application shows Figure 36.
The following sections describe the details of pairing steps.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 88 of 127

Aug.31.21

Flow chart of pairing procedure is shown in Figure 36.

Figure 36. Pairing procedure in application

Set Pairing Parameter

Transmit / Receive OOB Data

Generate and register keys

Respond to pairing request

Respond to pairing method

Complete pairing

Exchange keys

[Pairing by OOB is enabled.]

[Pairing by OOB is disabled.]

[Local device starts pairing.]

[Remote device starts pairing.]

Start pairing

Step automatically performed by ABS API .

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 89 of 127

Aug.31.21

8.1.1 Pairing Parameters

It is necessary to configure pairing parameters before starting the pairing procedure. The pairing parameters
are set by using R_BLE_GAP_SetPairingParams API or RM_BLE_ABS_Open API. Table 30 shows the
pairing parameters. And following sections describe the detail of these parameters.

Table 30. Pairing Parameters

API

RM_BLE_ABS_Open R_BLE_GAP_SetPairing

Params

Value Range When generate

application code by

using QE for BLE, the

application code is

using

RM_BLE_ABS_Open

API and following

pairing parameters.

Parameter Structure ble_abs_pairing_parameter_t st_ble_gap_pairing_param_t

1. Input Output capabilities io_capabilitie_local_device iocap BLE_GAP_IOCAP_DISPLAY_
ONLY(0x00)

BLE_GAP_IOCAP_

NOINPUT_NOOUTPUT

(0x03)
BLE_GAP_IOCAP_DISPLAY_
YESNO(0x01)

BLE_GAP_IOCAP_KEYBOARD_
ONLY(0x02)

BLE_GAP_IOCAP_NOINPUT_
NOOUTPUT(0x03)

BLE_GAP_IOCAP_KEYBOARD_
DISPLAY(0x04)

2. MITM Protection Request mitm_protection_policy mitm BLE_GAP_SEC_MITM_BEST_
EFFORT(0x00)

BLE_GAP_SEC_MITM_

BEST_EFFORT(0x00)

BLE_GAP_SEC_MITM_STRICT(0x01)

3. Bonding No parameter
Fixed to BLE_GAP_
BONDING(0x01)

bonding BLE_GAP_BONDING_NONE(0x00) BLE_GAP_BONDING

(0x01)

BLE_GAP_BONDING(0x01)

4.
Encryption
Key Size

Max Size No parameter
Fixed to 16

max_key_size 7 .. 16 16

Min Size maximum_key_size min_key_size 7 .. 16 16

5.
Exchange
Key type

Keys that local
device
distributes

local_key_distribute loc_key_dist 0(Keys are not distributed.) BLE_GAP_KEY_DIST_
ENCKEY(0x01)

BLE_GAP_KEY_DIST_ENCKEY(0x01)

Keys that local
device requests
to distribute

remote_key_distribute rem_key_dist BLE_GAP_KEY_DIST_IDKEY(0x02) 0

BLE_GAP_KEY_DIST_SIGNKEY(0x04)

6. Key Press Notification
Support

No parameter
Fixed to BLE_GAP_
SC_KEY_PRESS_
NTF_NOT_SPRT

key_notf BLE_GAP_SC_KEY_PRESS_NTF_
NOT_SPRT(0x00)

BLE_GAP_SC_KEY_

PRESS_
NTF_NOT_SPRT(0x00)

BLE_GAP_SC_KEY_PRESS_NTF_

SPRT(0x01)

7. LE Secure Connections
Request

secure_connection_only sec_conn_only BLE_GAP_SC_BEST_EFFORT(0x00) BLE_GAP_SC_BEST_
EFFORT(0x00)

BLE_GAP_SC_STRICT(0x01)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 90 of 127

Aug.31.21

1. Input Output capabilities

Table 31 and Table 32 show Input and output capabilities that local device support.

Table 31. Input capability

Input capability Description

No Input Device cannot indicate “Yes” and “No”.

Yes / No Device can indicate “Yes” and “No”.

Keyboard Device can indicate “Yes” and “No” and input numbers 0 through 9.

Table 32. Output capability

Output capability Description

No Output Device cannot display 6-digit number.

Numeric output Device can display 6-digit number.

The values to be set in Input Output capabilities for each combination is shown in Table 33.

Table 33. Input Output capability

Output

No output Numeric output

Input No input NoInputNoOutput
BLE_GAP_IOCAP_NOINPUT_NOOUTPUT(0x03)

DisplayOnly
BLE_GAP_IOCAP_DISPLAY_ONLY(0x00)

Yes / No NoInputNoOutput
BLE_GAP_IOCAP_NOINPUT_NOOUTPUT(0x03)

DisplayYesNo
BLE_GAP_IOCAP_DISPLAY_YESNO(0x01)

Keyboard KeyboardOnly
BLE_GAP_IOCAP_KEYBOARD_ONLY(0x02)

KeyboardDisplay
BLE_GAP_IOCAP_KEYBOARD_DISPLAY(0x04)

2. MITM(Man-In-The-Middle) protection

The parameters in Table 34 specify whether to require protection against MITM.

Table 34. MITM Protection

MITM Protection Settings

Depending on remote device BLE_GAP_SEC_MITM_BEST_EFFORT(0x00)

Yes BLE_GAP_SEC_MITM_STRICT(0x01)

Completing pairing with the pairing method except Just Works according to section 8.1.6 enables the MITM
protection.

3. Bonding

Table 35 shows the bonding parameter settings whether the local device perform bonding or not. For more
details about bonding, refer to section 8.2.

Table 35. Bonding

Bonding Type Settings

No bonding BLE_GAP_BONDING_NONE(0x00)

Bonding BLE_GAP_BONDING(0x01)

If the application uses RM_BLE_ABS_Open API, the bonding type is fixed to “Bonding”.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 91 of 127

Aug.31.21

4. Encryption Key Size

Select encryption key size between 7 to 16 bytes. It recommends that the encryption key size is 16 bytes
because the short encryption key size causes to reject access to the remote device.

5. Type of key exchanged by pairing

Table 36 shows the type of keys which local device distributes and requests to the remote device.

Type of key exchanged by pairing parameter can be specified by OR.

Table 36. Key Type

Key type Settings

LTK BLE_GAP_KEY_DIST_ENCKEY(0x01)

IRK BLE_GAP_KEY_DIST_IDKEY(0x02)

CSRK BLE_GAP_KEY_DIST_SIGNKEY(0x04)

6. Key Press Notification support

Key Press Notification is used when Passkey Entry is selected according to section 8.1.6. If Key Press
Notification is supported, the event is notified to the remote device when the local device key is pressed.
Specify the feature support with the value in Table 37.

Table 37. Key Press Notification support

Key Press Notification Support Value

Not Support BLE_GAP_SC_KEY_PRESS_NTF_NOT_SPRT(0x00)

Support BLE_GAP_SC_KEY_PRESS_NTF_SPRT(0x01)

Key Press Notification support is fixed to “Not Support” when the application uses RM_BLE_ABS_Open API.

7. LE Secure Connections Requirement

Table 38 shows the parameter determine whether pairing is permitted by only LE Secure Connections or not.

Table 38. Secure Connections Only Requirement

LE Secure Connections Only Requirement Value

Depending on the remote device BLE_GAP_SC_BEST_EFFORT(0x00)

Required BLE_GAP_SC_STRICT(0x01)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 92 of 127

Aug.31.21

An example of setting the pairing parameters by using R_BLE_GAP_SetPairingParams API is shown in
Code 33.

st_ble_gap_pairing_param_t pairing_param = {
 .iocap = BLE_GAP_IOCAP_NOINPUT_NOOUTPUT,
 .mitm = BLE_GAP_SEC_MITM_BEST_EFFORT,
 .bonding = BLE_GAP_BONDING,
 .max_key_size = 16,
 .min_key_size = 16,
 .loc_key_dist = BLE_GAP_KEY_DIST_ENCKEY | BLE_GAP_KEY_DIST_IDKEY,
 .rem_key_dist = BLE_GAP_KEY_DIST_ENCKEY | BLE_GAP_KEY_DIST_IDKEY,
 .key_notf = BLE_GAP_SC_KEY_PRESS_NTF_NOT_SPRT,
 .sec_conn_only = BLE_GAP_SC_BEST_EFFORT,
};

R_BLE_GAP_SetPairingParams(&pairing_param);

Code 33. Example of setting pairing parameter

Above code does not need when the application uses RM_BLE_ABS_Open API.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 93 of 127

Aug.31.21

8.1.2 Key generation and registration

This section describes how to generate and register IRK and CSRK. These keys are used for key exchange
which is one of pairing procedures. Related APIs are shown in Table 39.

Table 39. The APIs used for key generation

Key API for key generation

IRK RM_BLE_ABS_SetLocalPrivacy *1 or
R_BLE_GAP_SetLocIdInfo

CSRK R_BLE_GAP_SetLocCsrk
*1 : RM_BLE_ABS_SetLocalPrivacy API performs both of generation and registration local device IRK.

An example of key generation and registration are shown in Code 34. In this example, 16-bytes of random
number which obtained by R_BLE_VS_GetRand API is used to generate IRK and CSRK.

/** some code is omitted **/
/* IRK generation */
R_BLE_VS_GetRand(0x10);
/** some code is omitted **/

/* Vendor Specific Callback function */

void vs_cb(uint16_t event_type, ble_status_t result,
 st_ble_vs_evt_data_t * p_event_data)
{

 /** some code is omitted **/
 case BLE_VS_EVENT_GET_RAND
 {
 st_ble_vs_get_rand_comp_evt_t * p_rand_param;
 p_rand_param = (st_ble_vs_get_rand_comp_evt_t *)p_event_data->p_param;
 /* register local IRK and identity address */
 R_BLE_GAP_SetLocIdInfo(&loc_bd_addr, p_rand_param);
 } break;

 /** some code is omitted **/
}

Code 34. Example of key generation and registration

Some notes about key generation and registration are shown in following.

 It does not need to generate and register the local device IRK when the application does not use RPA
(Resolvable Private Address).

 It does not need to generate and register the local device CSRK when the application does not
communicate with the signed data.

 It does not need to generate the local device LTK before start pairing.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 94 of 127

Aug.31.21

8.1.3 OOB (Out of Band) data transmission and reception

If local device and remote device have a common means of communications except Bluetooth (OOB) , the
data for pairing can be transmitted and received by OOB. The data consists of confirm value (16 bytes) and
random value (16 bytes). It needs to meet the condition in Table 40 to do pairing by OOB. If OOB is
available, the data is transmitted and received before starting pairing.

Table 40. The conditions to do pairing by OOB

Pairing method Condition

LE Secure Connections The one device can transmit the data for pairing by OOB and the other can receive it.

LE legacy pairing Both devices can transmit and receive the data for pairing by OOB.

Call R_BLE_GAP_CreateScOobData API when the local device send data by OOB. The API will generate
confirm value (16 bytes) and random value (16 bytes) as data for pairing according to SMP specifications.
When the data for pairing generation is complete, the BLE_GAP_EVENT_SC_OOB_CREATE_COMP event
is issued. The local device should send the data for pairing to remote device by OOB after the event notified.

Call R_BLE_GAP_SetRemOobData API when the local device received data for pairing from remote device.
The local device will notify remote device that OOB reception is success by calling the API.

8.1.4 Pairing request

To request pairing from a local device, use one of the following APIs.

 RM_BLE_ABS_StartAuthentication

 R_BLE_GAP_StartPairing

These APIs can be called from both central and peripheral.

8.1.5 Response to pairing request

BLE_GAP_EVENT_PAIRING_REQ event will be issued when a pairing request is received from a remote
device. It is necessary to respond with the event by using R_BLE_GAP_ReplyPairing API. An example of
responding a pairing request is shown in Code 35.

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_event_data)
{
 /** some code is omitted **/
 case BLE_GAP_EVENT_PAIRING_REQ :
 {
 st_ble_gap_pairing_info_evt_t * p_param;
 p_param = (st_ble_gap_pairing_info_evt_t *)p_event_data->p_param;
 R_BLE_GAP_ReplyPairing(p_param->conn_hdl, BLE_GAP_PAIRING_ACCEPT);
 }
 break;
 /** some code is omitted **/

Code 35. Response to a pairing request

If RM_BLE_ABS_StartAuthentication API is used, when receiving BLE_GAP_EVENT_PAIRING_REQ event,
call R_BLE_GAP_ReplyPairing API to automatically respond to a pairing request.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 95 of 127

Aug.31.21

8.1.6 Pairing method

By starting pairing or responding to pairing request, local device and the remote device exchange pairing
parameters. After exchanging the parameters, both devices select a pairing method in Table 41 and perform
the pairing method.

Table 41. Pairing Method

Pairing Method Description MITM Protection

OOB The application does not need to handle the pairing,
because the BLE Protocol Stack processes the OOB data
previously received/transmitted.

Enable

Passkey Entry The one device displays a 6-digit number, the other inputs
the number.

Enable

Numeric Comparison Both devices display a 6-digit number. Check if two
numbers are same.

Enable

Just Works The application does not need to handle the pairing,
because it is automatically performed.

Disable

The pairing method is determined according to following conditions.

1. If the OOB data is received/transmitted before pairing, the OOB pairing method will be selected.

2. If the OOB data is not received/transmitted and both devices do not require the MITM protection, the
Just Works pairing method will be selected.

3. If the OOB data is not received/transmitted and which device requires the MITM protection, the
pairing method is determined according to Table 42.

Table 42. Pairing Method Selection

Peripheral Central

DisplayOnly DisplayYesNo KeyboardOnly NoInputNoOutput KeyboardDisplay

DisplayOnly Just Works Just Works Passkey Entry Just Works Passkey Entry

DisplayYesNo Just Works Just Works
(LE legacy pairing)

Passkey Entry Just Works Passkey Entry
(LE legacy pairing)

Numeric Comparison
(LE Secure
Connections)

Numeric Comparison
(LE Secure
Connections)

KeyboardOnly Passkey
Entry

Passkey Entry Passkey Entry Just Works Passkey Entry

NoInputNoOutput Just Works Just Works Just Works Just Works Just Works

KeyboardDisplay Passkey
Entry

Passkey Entry
(LE legacy pairing)

Passkey Entry Just Works Passkey Entry
(LE legacy pairing)

Numeric Comparison
(LE Secure
Connections)

Numeric Comparison
(LE Secure
Connections)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 96 of 127

Aug.31.21

The pairing events and the API used for the response depend on selected pairing method.

 Just Works, OOB

➢ Application is notified of no events.

 Passkey Entry

 [Input device]

➢ BLE_GAP_EVENT_PASSKEY_ENTRY_REQ event which requires to input 6-digit number is
notified to an application. If the application receives the event and the remote device displays
a 6-digit number, the application inputs the number by R_BLE_GAP_ReplyPasskeyEntry.

 [Display device]

➢ It is necessary to display (e.g. on terminal emulator via UART) 6-digit number when
BLE_GAP_EVENT_PASSKEY_DISPLAY_REQ event is received.

 Numeric Comparison

➢ BLE_GAP_EVENT_NUM_COMP_REQ event which requires to check whether the number
displayed on both devices are same. If the application receives the event, display the number (e.g.
on terminal emulator via UART). After checking the number displayed on the remote device, send
the result by R_BLE_GAP_ReplyNumComp.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 97 of 127

Aug.31.21

8.1.7 Key exchange

After the completion of the pairing method, both devices exchange keys. The link with the remote device is
encrypted before key exchange and the completion is notified by BLE_GAP_EVENT_ENC_CHG event.

When the keys are distributed from the remote device, BLE_GAP_EVENT_PEER_KEY_INFO event is
notified. Refer to section 8.2.1 for storing the keys received in the event.

When the local device is required to distribute the keys, user application is notified of
BLE_GAP_EVENT_EX_KEY_REQ event. The local device responds to the request with
R_BLE_GAP_ReplyExKeyInfoReq API. An example of the response to the key distribution request is shown
in Code 36.

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_event_data)
{
 /** some code is omitted **/
 case BLE_GAP_EVENT_EX_KEY_REQ :
 {
 st_ble_gap_conn_hdl_evt_t * p_param;
 p_param = (st_ble_gap_conn_hdl_evt_t *)p_event_data->p_param;
 R_BLE_GAP_ReplyExKeyInfoReq(p_param->conn_hdl);
 }
 break;
 /** some code is omitted **/

Code 36. Sample of responding to a key distribute request

If RM_BLE_ABS_StartAuthentication API is used, when BLE_GAP_EVENT_EX_KEY_REQ is notified, call

R_BLE_GAP_ReplyExKeyInfoReq API to automatically respond to the key distribution request.

8.1.8 Completion of pairing

When pairing has been completed, user application is notified of the BLE_GAP_EVENT_PAIRING_COMP
event. If the pairing is successful, the event result is BLE_SUCCESS(0x00). Any other value indicates a
pairing failure.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 98 of 127

Aug.31.21

8.2 Bonding

Bonding is procedure which store the keys exchanged during pairing procedure to non-volatile area (e.g.
Data Flash). When bonding process has done, pairing does not need to be done in reconnecting with a
paired device. Figure 37 shows the bonding procedure.

Figure 37. Boding procedure

Start Pairing

Complete pairing

Store remote device keys

Store remote device
key information

Terminate BLE Protocol Stack

Restore keys into
BLE Protocol Stack

Start BLE Protocol Stack

Generate local device keys

Store local device keys

Restart BLE Protocol Stack

Step automatically performed by ABS API .

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 99 of 127

Aug.31.21

8.2.1 Store remote device keys

Local device can store remote device keys and key information included in following events to Data Flash.

BLE_GAP_EVENT_PEER_KEY_INFO (key)

BLE_GAP_EVENT_PAIRING_COMP (key information)

An example of storing remote device keys is shown in Code 37.

case BLE_GAP_EVENT_PAIRING_COMP :
 {
 if(BLE_SUCCESS == event_result)
 {
 st_ble_gap_pairing_info_evt_t * p_param;
 p_param = (st_ble_gap_pairing_info_evt_t *)p_event_data->p_param;

 /* Add code storing p_param->auth_info into the Data Flash. */

 }
 }
 break;

case BLE_GAP_EVENT_PEER_KEY_INFO :
 {
 st_ble_gap_peer_key_info_evt_t * p_param;
 p_param = (st_ble_gap_peer_key_info_evt_t *)p_event_data->p_param;

 /* Add code storing p_param->key_ex_param into the Data Flash. */

 }
 break;

Code 37. Sample of storing received keys

If RM_BLE_ABS_StartAuthentication API is used and Store security data option on BLE Abstraction Driver
on rm_ble_abs are enabled, the keys received by BLE_GAP_EVENT_PEER_KEY_INFO event and the key
information received by BLE_GAP_EVENT_PAIRING_COMP event are automatically stored. And Data
Flash Block for Security Data configuration on properties of BLE Abstraction Driver on rm_ble_abs specifies
which block of Data Flash used for storing key information.

If the Abstraction API is not used or Store security data option on BLE Abstraction Driver on rm_ble_abs are
disabled, the keys received by BLE_GAP_EVENT_PEER_KEY_INFO event and the key information
received by BLE_GAP_EVENT_PAIRING_COMP event are not stored automatically.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 100 of 127

Aug.31.21

8.2.2 Store local device keys

If the local device uses the privacy feature, the IRK and the identity address registered by
R_BLE_GAP_SetLocIdInfo API or RM_BLE_ABS_SetLocalPrivacy API. When the Abstraction API is used
and Store Security Data configuration on properties of BLE Abstraction Driver on rm_ble_abs is enabled, the
local device IRK generated by RM_BLE_ABS_SetLocalPrivacy API and the identity address are
automatically stored in the Data Flash.

8.2.3 Reset the stored keys

When the BLE Protocol Stack restarts, the stored keys in the device need to be reset to the stack by
R_BLE_GAP_SetBondInfo API. If RM_BLE_ABS_Open API is used and Store Security Data configuration
on properties of BLE Abstraction Driver on rm_ble_abs is enabled, the stored keys are automatically reset to
the BLE Protocol Stack in restarting.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 101 of 127

Aug.31.21

8.3 Encryption

Bluetooth LE enables secure communication by encrypting data packets.The encryption in reconnection after
pairing uses the key exchanged by pairing.

8.3.1 Request Encryption

When reconnecting with a paired or bonded remote device, the local device will request encryption using one
of following APIs.

 RM_BLE_ABS_StartAuthentication

 R_BLE_GAP_StartEnc

Depending on the remote device implementation, the remote device does not respond an encryption request
from a peripheral device. In this case, if the above API is called, pairing may start. The encryption request
sequence is shown in Figure 38 and Figure 39.

1. Encryption request from local device(master)

Figure 38. Sequence of encryption request from local device(master)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 102 of 127

Aug.31.21

2. Encryption request from local device(slave)

Figure 39. Sequence of encryption request from local device(slave)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 103 of 127

Aug.31.21

8.3.2 Respond to an encryption request

When receiving an encryption request from a remote device, user application will be notified of
BLE_GAP_EVENT_LTK_REQ event. Call R_BLE_GAP_ReplyLtkReq API with the parameter received in the
event for responding to the encryption request. If the encryption is complete successfully, user application
will be notified of BLE_GAP_EVENT_LTK_RSP_COMP event. If the encryption fails, remove the remote
device LTK and perform pairing again.

An example of an encryption request event and respond API is shown in Code 38.

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result,
 st_ble_evt_data_t * p_event_data)
{
 /** some code is omitted **/
 /* Receive encryption request from a remote device */
 case BLE_GAP_EVENT_LTK_REQ :
 {
 st_ble_gap_ltk_req_evt_t * p_param;
 p_param = (st_ble_gap_ltk_req_evt_t *)p_event_data->p_param;
 R_BLE_GAP_ReplyLtkReq(p_param->conn_hdl, p_param->ediv,
 p_param->p_peer_rand, BLE_GAP_LTK_REQ_ACCEPT);
 }
 break;
 /** some code is omitted **/

Code 38. Sample of responding an encryption request in the event

If local device using Abstraction API to start encryption procedure, above response procedure is
automatically perform.

When reconnecting with a paired remote device, the local device needs to respond to the encryption request.
The sequence of response to an encryption request is shown in Figure 40 and Figure 41.

1. Response to an encryption request from remote device(master)

Figure 40. Sequence of response to an encryption request from remote device(master)

R_BLE &

Host Stack
ControllerApp Master A

R_BLE_GAP_Reply_LTK_Req()

[Encryption

from Slave]

R_BLE API

R_BLE Event

HCI_LE_Long_Term_Key_Request_Reply

LL_ENC_REQ

LL_ENC_RSPHCI_LE_Long_Term_Key_Request

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP
HCI_Encryption_Change

BLE_GAP_EVENT_LTK_REQ

HCI_Command_Complete

BLE_GAP_EVENT_ENC_CHG

ABS API

Link Established

LTK exchanged

BLE_GAP_EVENT_LTK_REQ

R_BLE_GAP_Reply_LTK_Req()

Use ABS API

Not use ABS API

alt

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 104 of 127

Aug.31.21

2. Response to an encryption request from remote device(slave)

Figure 41. Sequence of response to an encryption request from remote device(slave)

8.3.3 Completion of encryption

If the encryption has been completed successfully, user application is notified of
BLE_GAP_EVENT_ENC_CHG event. If the encryption has been failed because the remote device lost the
LTK, user application is notified of BLE_GAP_EVENT_PAIRING_COMP event with result of
BLE_ERR_SMP_LE_LOC_KEY_MISSING(0x2014). If the event is received, delete the local device LTK and
do pairing again and encrypt.

R_BLE &

Host Stack
ControllerABS API Slave A

[Encryption

from Master]

R_BLE API

R_BLE Event

HCI_LE_Start_Encryption

LL_ENC_REQ

LL_ENC_RSP

HCI_Command_Status

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP
HCI_Encryption_Change

BLE_GAP_EVENT_ENC_CHG

LL_Data_Packet / LL_Ack
security request

BLE_GAP_EVENT_PAIRING_REQ

App

Link Established

LTK exchanged

R_BLE_GAP_ReplyPairing()

BLE_GAP_EVENT_PAIRING_REQ

Confirm that

pairing has been done.

R_BLE_GAP_ReplyPairing()

Use ABS API

Not use ABS API

alt

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 105 of 127

Aug.31.21

8.4 Privacy

The privacy feature allows local device to change the address not to be identified from other devices. There
are two privacy mode: Network Privacy Mode and Device Privacy Mode. In Network Privacy Mode, both local
device and remote device use RPA. In Device Privacy Mode, only local device uses RPA. Default is Network
Privacy Mode.

8.4.1 Generate and resolve local device RPA

Before local device uses RPA, perform the following step1-4. The API called in step 1-4 can replace
RM_BLE_ABS_SetLocalPrivacy API.

1. Register local device key (IRK) and BD address

Call R_BLE_VS_GetRand API to generate the random value (16 bytes) notified by
BLE_VS_EVENT_GET_RAND event as IRK. The IRK and identity address are registered by
R_BLE_GAP_SetLocIdInfo into the BLE Protocol Stack. The IRK is distributed to the remote device in
pairing.

2. Register the IRK to the Resolving List

Call R_BLE_GAP_ConfRslvList API to register the IRK generated by step 1 in the Resolving List. A set
of identity address and IRK of a remote device needs to be registered to associate with the local device
IRK. If only the local device is uses RPA or it is in unpaired state, register a dummy remote device
identity address (e.g. All 0x55) and IRK (e.g. 0xAA) to associate with the local device IRK. The
completion is notified by BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event.

3. Set Privacy Mode

If Network Privacy Mode which is used, the procedure does not need to be done.
Call R_BLE_GAP_SetPrivMode API to set the privacy mode. The completion is notified by
BLE_GAP_EVENT_PRIV_MODE_SET_COMP event.

4. Start RPA feature

Call R_BLE_GAP_EnableRpa API to enable the RPA generation and resolution.
BLE_GAP_EVENT_RPA_EN_COMP event notifies user application of the completion.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 106 of 127

Aug.31.21

An example of the 1 - 4 procedure is shown in Code 39.

/** some code is omitted **/
#include "sec_data/r_ble_sec_data.h"
/** some code is omitted **/
st_ble_dev_addr_t gs_loc_bd_addr;
st_ble_dev_addr_t gs_rem_bd_addr;

/* Advertising parameters */
static ble_abs_legacy_advertiding_parameter_t gs_adv_param =
{
 /* TODO: Modify advertise parameters. */
 .p_peer_address = &gs_rem_bd_addr,
 .own_bluetooth_address_type = BLE_GAP_ADDR_RPA_ID_PUBLIC,
 /** some code is omitted **/
};
/** some code is omitted **/

/* Vendor Specific callback function */
void vs_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(event_type)
 {
 /** some code is omitted **/
 case BLE_VS_EVENT_GET_RAND :
 {
 st_ble_vs_get_rand_comp_evt_t * p_rand_param;
 p_rand_param = (st_ble_vs_get_rand_comp_evt_t *)p_data->p_param;
 R_BLE_GAP_SetLocIdInfo(&gs_loc_bd_addr, p_rand_param->p_rand);

 /* store local id info to Data Flash */

 /* Dummy remote address & remote IRK */
 st_ble_gap_rslv_list_key_set_t peer_irk;

 memset(peer_irk.remote_irk, 0xAA, BLE_GAP_IRK_SIZE);
 peer_irk.local_irk_type = BLE_GAP_RL_LOC_KEY_REGISTERED;
 memset(gs_rem_bd_addr.addr, 0x55, BLE_BD_ADDR_LEN);
 gs_rem_bd_addr.type = BLE_GAP_ADDR_RPA_ID_PUBLIC;

 /* Add local IRK to resolving list */
 R_BLE_GAP_ConfRslvList(BLE_GAP_LIST_ADD_DEV, &gs_rem_bd_addr, &peer_irk, 1);
 }
 break;
 /** some code is omitted **/
 }
}

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(event_type)
 {
 /** some code is omitted **/
 case BLE_GAP_EVENT_RSLV_LIST_CONF_COMP :
 {
 st_ble_gap_rslv_list_conf_evt_t * p_rslv_list_conf;
 p_rslv_list_conf = (st_ble_gap_rslv_list_conf_evt_t *)p_data->p_param;
 if(BLE_GAP_LIST_ADD_DEV == p_rslv_list_conf->op_code)
 {
 uint8_t priv_mode;
 priv_mode = BLE_GAP_NET_PRIV_MODE;

 /* Set Network Privacy Mode. */
 R_BLE_GAP_SetPrivMode(&gs_rem_bd_addr, &priv_mode, 1);
 }
 }
 break;

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 107 of 127

Aug.31.21

 case BLE_GAP_EVENT_PRIV_MODE_SET_COMP :
 {
 /* Enable RPA. */
 R_BLE_GAP_EnableRpa(BLE_GAP_RPA_ENABLED);
 }
 break;

 case BLE_GAP_EVENT_LOC_VER_INFO:
 {
 st_ble_gap_loc_dev_info_evt_t * ev_param;
 ev_param = (st_ble_gap_loc_dev_info_evt_t *)p_data->p_param;
 gs_loc_bd_addr = ev_param->l_dev_addr;
 /* Generate IRK */
 R_BLE_VS_GetRand(BLE_GAP_IRK_SIZE);
 } break;

 case BLE_GAP_EVENT_RPA_EN_COMP:
 {
 /* Start advertising */
 RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl, &gs_adv_param);
 } break;
 /** some code is omitted **/
 }
}

Code 39. Prepare for using RPA in the local device (1)

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 108 of 127

Aug.31.21

An example when using R_BLE_ABS_SetLocPrivacy API is shown in Code 40.

/** some code is omitted */
st_ble_dev_addr_t gs_rem_bd_addr;

/* Advertising parameters */
static ble_abs_legacy_advertising_parameter_t gs_adv_param =
{
 /* TODO: Modify advertise parameters. */
 .p_peer_address = &gs_rem_bd_addr,
 .own_bluetooth_address_type = BLE_GAP_ADDR_RPA_ID_PUBLIC,
 /** some code is omitted */
};
/** some code is omitted */

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(event_type)
 {
 case BLE_GAP_EVENT_LOC_VER_INFO:
 {
 R_BLE_ABS_SetLocPrivacy(&g_ble_abs0_ctrl, NULL, BLE_GAP_DEV_PRIV_MODE);
 } break;

 case BLE_GAP_EVENT_RPA_EN_COMP:
 {
 /* Start advertising */
 memset(gs_adv_param.p_addr->addr, 0x55, BLE_BD_ADDR_LEN);
 gs_adv_param.p_addr->type = BLE_GAP_ADDR_PUBLIC;
 RM_BLE_ABS_StartLegacyAdvertising(&g_ble_abs0_ctrl, &gs_adv_param);
 } break;
 /** some code is omitted */
 }
}

Code 40. Prepare for using RPA in the local device (2)

When the local device Advertising or Scan or Connection operation with specified the RPA as its own
address, the packet includes the RPA.

[Advertising]

When setting the advertising parameters by R_BLE_GAP_SetAdvParam API, configure the parameters in
Table 18.

[Scan]

When setting the scan parameters by R_BLE_GAP_StartScan API, configure RPA as its own address type.

[Connection]

When create a connection by R_BLE_GAP_CreateConn API, configure RPA as its own address type.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 109 of 127

Aug.31.21

8.4.2 Resolve remote device RPA

RPA of Remote device is resolved according to the following procedures.

1. Start RPA feature

Call R_BLE_GAP_EnableRpa API to enable the RPA generation and resolution. The completion is
notified by BLE_GAP_EVENT_RPA_EN_COMP event.

2. Pairing

Receive the remote device IRK and identity address by pairing.

3. Register remote device key (IRK) and BD address

Call R_BLE_GAP_ConfRslvList API to register the remote device IRK and identity address in the
Resolving List. The local device IRK is also registered at that time. If the local device does not use RPA,
register a dummy IRK (e.g. All 0x55). BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event notifies
user application that the registration is complete.

4. Set Privacy Mode

If Network Privacy Mode which is the default is used, the procedure does not need to be done.
Call R_BLE_GAP_SetPrivMode API to set the privacy mode.
BLE_GAP_EVENT_PRIV_MODE_SET_COMP event notifies user application of the completion.

5. Resolve RPA

After the 1-3 procedures, the BLE Protocol Stack can resolve the remote device RPA included in the
received packet and the remote device address included in the event that the application is notified of
becomes identity address.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 110 of 127

Aug.31.21

9. Profile and service

Profiles in Bluetooth LE communication are mechanisms for ensuring interoperability between devices by
defining the services and communication protocols that application share. Profile-based data communication
is achieved by accessing a common data structure called GATT database. As shown in Figure 42, the GATT
database consists of one or more multiple services. Services consist of one or more characteristics that
enable profile functionality, and characteristics define data structures and access procedures. The procedure
for accessing characteristics is called GATT procedure, and this procedure defines how to send and receive
data. The user profile can be designed using QE for BLE. For information on how to design profiles using QE
for BLE, refer to “Bluetooth Low Energy Profile Developer’s Guide (R01AN5428)”. This chapter describes the
profiles and services provided by Renesas and explains APIs for each GATT procedure including examples
of how to use them.

Figure 42. Data structure of GATT database

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 111 of 127

Aug.31.21

9.1 Standard profile and Standard Service

Standard profiles and services can be used in user applications using QE for BLE. RA4W1 supports the
standard profiles and services listed in Table 43. Table 44 lists the characteristics that included in each
standard service.

Table 43. Profile supported by RA4W1

Usage Profile Service

Healthcare Blood Pressure Profile BLS DIS

Health Thermometer Profile HTS DIS

Heart Rate Profile HRS DIS

Glucose Profile GLS DIS

Pulse Oximeter Profile PLXS DIS BAS CTS

BMS

Continuous Glucose Monitoring Profile CGMS DIS BMS

Reconnection Configuration Profile RCS BMS

Insulin Delivery Profile IDS DIS BAS CTS

BMS IAS

Sports and Fitness Cycling Power Profile CPS DIS BAS

Cycling Speed and Cadence Profile CSCS DIS

Running Speed and Cadence Profile RSCS DIS

Location and Navigation Profile LNS DIS BAS

Weight Scale Profile WSS BCS DIS BAS

CTS UDS

Fitness Machine Profile FTMS DIS UDS

Environmental Sensing Profile ESS DIS BAS

Radio tag Find Me Profile IAS

Proximity Profile IAS LLS TPS

Smartphone Alert Notification Profile ANS

Phone Alert Status Profile PASS

Time Profile CTS NDCS RTUS

HID (Human
Interface Device)

HID over GATT Profile HIDS DIS BAS

Scan Parameters Profile SCPS

Industrial equipment Automation IO Profile AIOS

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 112 of 127

Aug.31.21

Table 44. Structure of standard service

Service Characteristic GATT Procedure

Alert Notification Service

ANS

Supported New Alert Category Read

New Alert Notify

Supported Unread Alert Category Read

Unread Alert Status Notify

Automation IO Service

AIOS

Digital 0 Read, Write, WriteWithoutResponse,
Notify

Digital 1 Read, Write, WriteWithoutResponse,
Notify

Analog 0 Read, Write, WriteWithoutResponse,
Notify

Analog 1 Read, Write, WriteWithoutResponse,
Notify

Aggregate Read, Notify

Battery Service

BAS

Battery Level Read, Notify

Blood Pressure Service

BLS

Blood Pressure Measurement Indicate

Intermediate Cuff Pressure Notify

Blood Pressure Feature Read

Body Composition
Service

BCS

Body Composition Feature Read

Body Composition Measurement Indicate

Continuous Glucose
Monitoring Service

CGMS

CGM Measurement Notify

CGM Feature Read

CGM Status Read

CGM Session Start Time Read, Write

CGM Session Run Time Read

Record Access Control Point Write, Indicate

CGM Specific Ops Control Point Write, Indicate

Current Time Service

CTS

Current Time Read, Write, Notify

Local Time Information Read, Write

Reference Time Information Read

Cycling Power Service

CPS

Cycling Power Measurement Notify, Broadcast

Cycling Power Feature Read

Sensor Location Read

Cycling Power Vector Notify

Cycling Power Control Point Write, Indicate

Cycling Speed and
Cadence Service

CSCS

CSC Measurement Notify

CSC Feature Read

Sensor Location Read

SC Control Point Write, Indicate

Device Information
Service

Manufacturer Name String Read

Model Number String Read

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 113 of 127

Aug.31.21

Service Characteristic GATT Procedure

DIS Serial Number String Read

Hardware Revision String Read

Firmware Revision String Read

Software Revision String Read

System ID Read

IEEE 11073-20601 Regulatory
Certification Data List

Read

PnP ID Read

Environmental Sensing
Service

ESS

Descriptor Value Changed Indicate

Temperature 0 Read, Notify

Temperature 1 Read, Notify

Elevation 0 Read, Notify

Elevation 1 Read, Notify

Fitness Machine Service

FTMS

Fitness Machine Feature Read

Treadmill Data Notify

Cross Trainer Data Notify

Step Climber Data Notify

Stair Climber Data Notify

Rower Data Notify

Indoor Bike Data Notify

Training Status Read, Notify

Supported Speed Range Read

Supported Inclination Range Read

Supported Resistance Level Range Read

Supported Power Range Read

Supported Heart Rate Range Read

Fitness Machine Control Point Write, Indicate

Fitness Machine Status Notify

GAP Service

GAP

Device Name Read, Write

Appearance Read

Peripheral Preferred Connection
Parameters

Read

Central Address Resolution Read

Resolvable Private Address Only Read

GATT Service

GATT

Service Changed Indicate

Glucose Service

GLS

Glucose Measurement Notify

Glucose Measurement Context Notify

Glucose Feature Read

Record Access Control Point Write, Indicate

Health Thermometer Temperature Measurement Indicate

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 114 of 127

Aug.31.21

Service Characteristic GATT Procedure

Service

HTS

Temperature Type Read

Intermediate Temperature Notify

Measurement Interval Read, Write, Indicate

Heart Rate Service

HRS

Heart Rate Measurement Notify

Body Sensor Location Read

Heart Rate Control Point Write

Human Interface Device
Service

HIDS

Protocol Mode Read, WriteWithoutResponse

Report Read, Write, Notify

Report Map Read

Boot Keyboard Input Report Read, Write, Notify

Boot Keyboard Output Report Read, Write, WriteWithoutResponse

Boot Mouse Input Report Read, Write, Notify

HID Information Read

HID Control Point WriteWithoutResponse

Immediate Alert Service

IAS

Alert Level WriteWithoutResponse

Insulin Delivery Service

IDS

IDD Status Changed Read, Indicate

IDD Status Read, Indicate

IDD Annunciation Status Read, Indicate

IDD Features Read

IDD Status Reader Control Point Write, Indicate

IDD Command Control Point Write, Indicate

IDD Command Data InformativeText, Notify

IDD Record Access Control Point Write, Indicate

IDD History Data InformativeText, Notify

Link Loss Service

LLS

Alert Level Read, Write

Location and Navigation
Service

LNS

LN Feature Read

Location and Speed Notify

Position Quality Read

LN Control Point Write, Indicate

Navigation Notify

Next DST Change
Service

NDCS

Time with DST Read

Object Transfer Service

OTS

OTS Feature Read

Object Name Read, Write

Object Type Read

Object Size Read

Object First-Created Read, Write

Object Last-Modified Read, Write

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 115 of 127

Aug.31.21

Service Characteristic GATT Procedure

Object ID Read

Object Properties Read, Write

Object Action Control Point Write, Indicate

Object List Control Point Write, Indicate

Object List Filter 0 Read, Write

Object List Filter 1 Read, Write

Object List Filter 2 Read, Write

Object Changed Indicate

Phone Alert Status
Service

PASS

Alert Status Read, Notify

Ringer Setting Read, Notify

Ringer Control point WriteWithoutResponse

Pulse Oximeter Service

PLXS

PLX Spot-Check Measurement Indicate

PLX Continuous Measurement Notify

PLX Features Read

Record Access Control Point Write, Indicate

Reconnection
Configuration Service

RCS

RC Feature Read

RC Settings Read, Notify

Reconnection Configuration Control
Point

Write, Indicate

Reference Time Update
Service

RTUS

Time Update Control Point WriteWithoutResponse

Time Update State Read

Running Speed and
Cadence Service

RSCS

RSC Measurement Notify

RSC Feature Read

Sensor Location Read

SC Control Point Write, Indicate

Scan Parameters
Service

SCPS

Scan Interval Window WriteWithoutResponse

Scan Refresh Notify

Tx Power Service

TPS

Tx Power Level Read

User Data Service

UDS

First Name Read, Write

Last Name Read, Write

Email Address Read, Write

Age Read, Write

Date of Birth Read, Write

Gender Read, Write

Weight Read, Write

Height Read, Write

VO2 Max Read, Write

Heart Rate Max Read, Write

Resting Heart Rate Read, Write

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 116 of 127

Aug.31.21

Service Characteristic GATT Procedure

Maximum Recommended Heart Rate Read, Write

Aerobic Threshold Read, Write

Anaerobic Threshold Read, Write

Sport Type for Aerobic and Anaerobic
Thresholds

Read, Write

Date of Threshold Assessment Read, Write

Waist Circumference Read, Write

Hip Circumference Read, Write

Fat Burn Heart Rate Lower Limit Read, Write

Fat Burn Heart Rate Upper Limit Read, Write

Aerobic Heart Rate Lower Limit Read, Write

Aerobic Heart Rate Upper Limit Read, Write

Anaerobic Heart Rate Lower Limit Read, Write

Anaerobic Heart Rate Upper Limit Read, Write

Five Zone Heart Rate Limits Read, Write

Three Zone Heart Rate Limits Read, Write

Two Zone Heart Rate Limit Read, Write

Database Change Increment Read, Write, Notify

User Index Read

User Control Point Write, Indicate

Language Read, Write

Weight Scale Service

WSS

Weight Scale Feature Read

Weight Measurement Indicate

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 117 of 127

Aug.31.21

9.2 APIs of GATT Procedure

QE for BLE generates APIs according to the GATT procedure set to the characteristic. This section
describes how to implement each GATT procedure that can be configured from QE for BLE.
In following description, we will use function name and event name which will be generated from QE for BLE.
Abbreviation of the service is set to “XXX” and abbreviation of characteristic is set to “YYY” in QE for BLE.

9.2.1 Read operation

Read operation is procedure of the GATT client to check the data in the GATT database of the GATT server,
as shown in Figure 43. Using this procedure when checking the configuration and status of the GATT server.

GATT server:
When GATT server receives “Read Request”, BLE Protocol Stack transmits “Read Response” with the value
set in the GATT database. The event BLE_XXX_EVENT_YYY_READ_REQ occurs after receiving “Read
Request” but before determining the data to be send in “Read Response”. If user want to change the data to
be transmitted, use R_BLE_XXX_SetYYY API to change the value set in the GATT database. User can also
send errors by using R_BLE_GATTS_SetErrRsp API.

GATT client:
“Read Request” can be transmitted by using R_BLE_XXX_ReadYYY API. BLE Protocol Stack notify the
application of the event BLE_XXX_EVENT_YYY_READ_RSP indicating that “Read Response” has been
received. The data received in this event is included in the structure which is defined in the Fields window of
QE for BLE. The event BLE_XXX_EVENT _YYY_READ_RSP is received when read operation is completed.
User can start another operation after received event.

Figure 43. Flow of Read operation

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 118 of 127

Aug.31.21

9.2.2 Write operation

Write operation is procedure to change the GATT database of the GATT server by sending data from the
GATT client, as shown in Figure 44. GATT client can check whether the submitted data is reflected in the
GATT database in response from the GATT server. Using this procedure when user want to change the
settings of the GATT server.

GATT server:
BLE Protocol Stack notifies the application of the event BLE_XXX_EVENT_YYY_WRITE_REQ and
BLE_XXX_EVENT_WRITE_COMP indicating that “Write Request” has been received. The data received in
this event is included in the structure which is defined in the Fields window of QE for BLE. Event
BLE_XXX_EVENT_WRITE_REQ is an event to check the data received by “Write Request” before being
written to the GATT database. If user receives invalid data, use R_BLE_GATTS_SendErrRsp API to send an
error and the data would not be reflected in the GATT database. When using R_BLE_GATTS_SendErrRsp
API, user can define unique error code. From 0x3080 to 0x309F can be used as unique error code. If user
does not send an error, BLE Protocol Stack will send “Write Response”, so user does not need to add any
process to respond in application. Event BLE_XXX_EVENT_YYY_WRITE_COMP is an event after the data
received by “Write Request” is reflected in the GATT database and “Write Response” is sent. Process that
refers to GATT database directly or corresponds to the data received by “Write Request” should be added
after this event.

GATT client:
User can send “Write Request” by using R_BLE_XXX_WriteYYY API. Result of the Write operation can be
checked by the event BLE_XXX_EVENT_YYY_WRITE_RSP. Write operation is completed when the event
BLE_XXX_EVENT _YYY_WRITE_RSP is received. User can start another operation after this event.

Figure 44. Flow of Write operation

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 119 of 127

Aug.31.21

9.2.3 WriteWithoutResponse operation

WriteWithoutResponse operation is procedure to change the GATT database of the GATT server by sending
data from the GATT client, as shown in Figure 45. Since there is no response from the GATT server, it is
possible to continuously transmit data from the GATT client to GATT server and reduce the power
consumption of the GATT server device. On the other hand, it is not possible to verify that the data sent by
GATT client has been reflected in the GATT database. Using this procedure is recommended when user
wants to reduce power consumption on user’s device, or when user wants to send data continuously from
GATT client to GATT server.

GATT server:
BLE Protocol Stack notifies application of the event BLE_XXX_EVENT_YYY_WRITE_CMD indicating that
“Write Command” has been received. The data received in this event is included in the structure which is
defined in the Fields window of QE for BLE. Event. When the event BLE_XXX_EVENT_YYY_WRITE_CMD
is received, changes to the GATT database are not reflected. Therefore, process that refers to the GATT
database directly should not be added at the event.

GATT client:
User can send “Write Command” by using the function R_BLE_XXX_WriteWithoutResponseYYY API.
WriteWithoutResponse operation is completed when call R_BLE_XXX_WriteWithoutResponseYYY API.
User can start another operation after calling the API.

Figure 45. Flow of WriteWithoutResponse operation

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 120 of 127

Aug.31.21

9.2.4 Notification operation

Notification operation is procedure to send data from GATT server to GATT client, as shown in Figure 46.
For Notification operation, the CCCD must have been added as descriptor. The GATT client must also set
the CCCD to the appropriate value before the operation. Since there is no response from the GATT client, it
is possible to send data continuously from the GATT server. On the other hand, it is not possible to confirm
whether GATT client received the notification data. Using this procedure is recommended when user wants
to send data continuously from the GATT server.

GATT server:
Before the operation, verify that the CCCD has been changed to appropriate value. Make sure that
BLE_GATTS_CLI_CNFG_NOTIFICATION (0x0001) is written in the event
BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_COMP that occurs after the CCCD writing is completed. User
can send “Handle Value Notification” by using R_BLE_XXX_NotifyYYY API. If the value of CCCD has not
changed, the R_BLE_XXX_NotifyYYY API will return BLE_ERR_INVALID_OPERATION and does not send
”Handle Value Notification” from GATT server. Notification operation is completed when calling
R_BLE_XXX_NotifyYYY API. User can start another operation after calling the API.

GATT client:
Before the operation, it is necessary to change the value of CCCD to the appropriate value. Write
BLE_GATTS_CLI_CNFG_NOTIFICATION (0x0001) to CCCD of characteristic which performs Notification
operation. BLE Protocol Stack notifies the application of the event BLE_XXX_EVENT_YYY_HDL_VAL_NTF
indicating that “Handle Value Notification” has been received. The data received in this event is included in
the structure which is defined in the Fields window of QE for BLE.

Figure 46. Flow of Notification operation

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 121 of 127

Aug.31.21

9.2.5 Indication operation

Indication operation is procedure to send data from GATT server to GATT client, as shown in Figure 47. For
Indication operation, the CCCD must have been added as descriptor. The GATT client must also set the
CCCD to the appropriate value before the operation. GATT server can verify that GATT client has received
data sent from GATT server in a response from GATT client.

GATT server:
Before the operation, verify that the CCCD has been changed to appropriate value. Make sure that
BLE_GATTS_CLI_CNFG_INDICTION (0x0002) is written in the event
BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_COMP that occurs after the CCCD writing is completed. User
can send “Handle Value Indication” by using R_BLE_XXX_IndicateYYY API. If the value of CCCD has not
changed, the function R_BLE_XXX_IndicateYYY API will return BLE_ERR_INVALID_OPERATION and does
not send ”Handle Value Indication” from GATT server. Indication operation is completed when the event
BLE_XXX_EVENT_YYY_HDL_VAL_CNF is received. User can start another operation after this event.

GATT client:
Before the operation, it is necessary to change the value of CCCD to the appropriate value. Write
BLE_GATTS_CLI_CNFG_INDICATION (0x0002) to CCCD of characteristic which performs Indication
operation. BLE Protocol Stack notifies the application of the event BLE_XXX_EVENT_YYY_HDL_VAL_IND
indicating that “Handle Value Indication” has been received. The data received in this event is included in the
structure which defined in the Fields window of QE for BLE. After the event
BLE_XXX_EVENT_YYY_HDL_VAL_IND, BLE Protocol Stack automatically sends “Handle Value
Confirmation”. Therefore, user does not need to add any process to send confirmation.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 122 of 127

Aug.31.21

Figure 47. Flow of Indication operation

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 123 of 127

Aug.31.21

9.2.6 ReliableWrite operation

The ReliableWrite operation is procedure to send data from GATT client to GATT server, ensure that the
correct values are written, and then reflect it in the GATT database, as shown in Figure 48. There are two
steps for ReliableWrite operation.

1. GATT client sends data using “Prepare Write Request” and GATT server holds it in queue. GATT client

can verify that the correct data is being written in “Prepare Write Response”.

2. GATT server reflects the data held in queue in GATT database when receives “Execute Write Request”.

Using this procedure is recommended when user wants to highly reliable data communication. QE for BLE
does not generate APIs of ReliableWrite operation. Therefore, user need to implement this procedure by
using R_BLE APIs which provided BLE Protocol Stack. In addition, Characteristic Extended Properties
Descriptor must have been added as a descriptor for ReliableWrite operation.

GATT server:
Before the operation, reserve a queue for receiving data using R_BLE_GATTS_SetPrepareQueue API. Size
of the queue to be reserved should be greater than the total size of the characteristic which is able to
ReliableWrite operation (e.g. If the total size is 6, specify value greater than or equal to 7). BLE Protocol
Stack notifies the application of the event BLE_XXX_EVENT_YYY_WRITE_REQ indicating that “Prepare
Write Request” has been received. BLE Protocol Stack notifies the application by the event
BLE_XXX_EVENT_YYY_WRITE_COMP that GATT server received “Execute Write Request” and data held
in the queue is reflected in GATT database.

GATT client:
User can send “Prepare Write Request” using R_BLE_GATTC_ReliableWrites API. User can receive
“Prepare Write Response” for each data transmitted, and user can check the data in the event
BLE_GATTC_EVENT_RELIABLE_WRITE_TX_COMP. After verifying whether GATT server is receiving the
correct data, use R_BLE_GATTC_ExecWrite API with BLE_GATTC_EXECUTE_WRITE_EXEC_FLAG to
send “Execute Write Request” for reflecting data in GATT database. If confirmed data is incorrect, use
R_BLE_GATTC_ExecWrite API with BLE_GATTC_EXECUTE_WRITE_CANCEL_FLAG to send “Execute
Write Request” to discard the data held by GATT server.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 124 of 127

Aug.31.21

Figure 48. Flow of ReliableWrite operation

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 125 of 127

Aug.31.21

9.2.7 Broadcast Operation

Broadcast operation is procedure for transmitting data without connection to an unspecified number of
devices, as shown in Figure 49. The sender device is called Broadcaster and uses the Advertising operation.
The receiver device is called Observer and uses the Scan operation. Because of the communication without
a connection, there is no limit in number of devices that can communicate at once, but it cannot be
guaranteed that the receiver device is receiving data. QE for BLE does not generate APIs of Broadcast
operation. Therefore, user needs to implement this procedure by using R_BLE APIs which provided BLE
Protocol Stack. In addition, Server Characteristic Configuration Properties Descriptor must have been added
as a descriptor for Broadcast operation.

GATT server (Broadcaster):
Advertising operation is used for sending data. For an overview of advertising operation, refer to chapter 4.
Note that when Advertising as Broadcast operation, there are following limitations:

 For the advertising type specification (section 4.2.1.1), set adv_prop_type field with value indicated in

“Non-Connectable and Non-Scannable Undirected” or “Non-Connectable and Non-Scannable Directed”
in Table 15.

 For Advertising Data configuration (section 4.4), user can broadcast service data by setting AD
Structure which has “service Data (0x16 for 16-bit UUIDs, 0x21 for 128-bit UUIDs)” for AD Type and
service UUIDs and data for AD Data. If user wants to configure AD Structure with AD Type of ”Flags
(0x01)”, do not set “LE Limited Discoverable Mode” or “LE General Discoverable Mode”.

GATT client (Observer):
Scan operation is used for receiving data. For an overview of scan operation, refer to chapter 5. There are no
restrictions on the scan operation but set scan parameters so that user can receive the Advertising Event
sent by Broadcaster.

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 126 of 127

Aug.31.21

Figure 49. Flow of Broadcast operation

9.3 Example of using GATT Procedure

Refer to BLE sample application (R01AN5402).

RA4W1 Group Bluetooth Low Energy Application Developer's Guide

R01AN5653EJ0101 Rev.1.01 Page 127 of 127

Aug.31.21

Revision History

Rev. Date

Description

Page Summary

1.00 Jan.13.2021 — First edition issued.

1.01 Aug.31.2021 — Add ROM/RAM usage for extended/balance/compact
configuration to section 2.4.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Development environment
	1.1.1 Hardware requirements
	1.1.2 Software requirements

	1.2 Typical design flow
	1.2.1 Flexible Software Package
	1.2.2 QE for BLE
	1.2.3 Related Tools

	1.3 Usage of this document

	2. BLE Abstraction Driver
	2.1 Supported features
	2.2 How to add BLE Abstraction Driver to project
	2.3 Configuration Options
	2.4 How to adjust configuration option
	2.4.1 How to adjust RAM usage
	2.4.2 How to configure BD address
	2.4.3 How to use random address
	2.4.4 How to configure for minimum current consumption
	2.4.4.1 RF Sleep mode
	2.4.4.2 MCU low power mode
	(1) BareMetal environment
	(2) FreeRTOS environment

	3. How to implement user code
	3.1 Example of implementation

	4. Advertising
	4.1 Advertising with abstraction API
	4.1.1 White list
	4.1.2 Privacy

	4.2 Advertising with GAP API
	4.2.1 Set advertising parameter
	4.2.1.1 Advertising Type
	4.2.1.2 White list
	4.2.1.3 Privacy
	4.2.1.4 Multiple advertising set

	4.2.2 Advertising Data / Scan Response Data
	4.2.3 Start Advertising
	4.2.4 Stop Advertising

	4.3 Periodic Advertising with GAP API
	4.3.1 Non-Connectable Advertising Parameter
	4.3.2 Periodic Advertising Parameter
	4.3.3 Periodic Advertising Data
	4.3.4 Start Periodic Advertising
	4.3.5 Stop Periodic Advertising

	4.4 Advertising Data / Scan Response Data / Periodic Advertising Data
	4.4.1 Data format
	4.4.2 Advertising data update
	4.4.3 Periodic Advertising Data Update
	4.4.4 Total advertising data size

	4.5 Typical use case for advertising
	4.5.1 Connection with Smart Phone
	4.5.2 Beacon

	5. Scan
	5.1 Scan with abstraction API
	5.1.1 Scan filtering
	5.1.2 Privacy

	5.2 Scan with GAP API
	5.2.1 Set scan parameters
	5.2.1.1 White list
	5.2.1.2 Privacy

	5.2.2 Start scan
	5.2.3 Stop scan
	5.2.4 Received information by scan

	5.3 Scan filtering
	5.3.1 White list
	5.3.2 Duplicate advertising filtering
	5.3.3 Discoverable mode filtering
	5.3.4 Advertising data filtering

	5.4 Periodic advertising synchronization with GAP API
	5.4.1 Start scan
	5.4.2 Detect periodic advertiser
	5.4.3 Establish periodic advertising sync
	5.4.4 Periodic advertiser list
	5.4.5 Receive periodic advertising PDUs
	5.4.6 Lost periodic advertising sync
	5.4.7 Terminate periodic advertising sync

	6. Connection
	6.1 Requesting connection with abstraction API
	6.1.1 White list filtering
	6.1.2 Privacy

	6.2 Requesting connection with GAP API
	6.3 Cancelling Connection Request
	6.4 White list filtering
	6.5 Privacy
	6.6 Multiple connection
	6.6.1 Connecting to multiple peripheral devices
	6.6.2 Connection to multiple central devices
	6.6.3 Multi role connection

	6.7 Disconnection

	7. Communication
	7.1 Changing PHY
	7.2 Changing maximum transmission packet length
	7.3 Updating connection parameter
	7.4 Changing MTU
	7.5 Flow control
	7.6 High throughput communication

	8. Security
	8.1 Pairing
	8.1.1 Pairing Parameters
	8.1.2 Key generation and registration
	8.1.3 OOB (Out of Band) data transmission and reception
	8.1.4 Pairing request
	8.1.5 Response to pairing request
	8.1.6 Pairing method
	8.1.7 Key exchange
	8.1.8 Completion of pairing

	8.2 Bonding
	8.2.1 Store remote device keys
	8.2.2 Store local device keys
	8.2.3 Reset the stored keys

	8.3 Encryption
	8.3.1 Request Encryption
	8.3.2 Respond to an encryption request
	8.3.3 Completion of encryption

	8.4 Privacy
	8.4.1 Generate and resolve local device RPA
	8.4.2 Resolve remote device RPA

	9. Profile and service
	9.1 Standard profile and Standard Service
	9.2 APIs of GATT Procedure
	9.2.1 Read operation
	9.2.2 Write operation
	9.2.3 WriteWithoutResponse operation
	9.2.4 Notification operation
	9.2.5 Indication operation
	9.2.6 ReliableWrite operation
	9.2.7 Broadcast Operation

	9.3 Example of using GATT Procedure

	Revision History

