SinuTrain

Milling made easy with ShopMill
Training Documentation •08/2006

SINUMERIK

$4^{\text {th }}$ and revised edition 08/2006
Valid from software version V06.04

All rights reserved
Duplication or transmission of text, graphics or drawings in this document is prohibited unless express permission has been obtained in writing from the publisher. This also applies for duplication by photocopying or any other process including transfer to film, tape, disk, transparency or other media.

This Beginner's Guide was produced in cooperation with Messrs.
SIEMENS AG
Automatisierungs- und Antriebstechnik
Motion Control Systems
Postfach 3180, D-91050 Erlangen
and
R. \& S. KELLER GmbH

Siegfried Keller, Stefan Nover, Klaus Reckermann, Olaf Anders, Kai Schmitz
Postfach 131663, D-42043 Wuppertal.

Order No.: 6FC5095-0AA50-0BP2

Preface

Faster from the drawing to the workpiece - but how?

Up to now, NC production mainly involved complicated, abstract, coded NC programming. Work that only specialists were able to carry out. However, every technical worker learns his trade and is able to put the experience gained in the area of conventional machining to use to cope with the most difficult tasks - even if the cost/benefit ratio often suffered gravely. A way had to be found to let these technical experts apply their knowledge effectively using NC machine tools. This is why SIEMENS took a new approach with ShopMill, which saved the need for any coding on the part of the operator. Instead, SIEMENS provides these technical experts with a new generation of SINUMERIK controls:

The solution here is to create a work plan rather than a program.
By creating a workplan with detailed operations of the kind a technician would carry out, the ShopMill user is able to apply his real expertise to the machining process, his actual know-how is not lost.

Even the most complicated of contours and workpieces can be produced easily with ShopMill thanks to the integrated, powerful traversing path creation function. The following therefore applies:

Move easier and faster from the drawing to the workpiece - with ShopMill!

Although ShopMill is really easy to learn, this ShopMill training course will introduce you to the new world even better. Before we start to work with ShopMill, we will address important fundamental issues in the first three chapters:

- First of all, we will outline the benefits of working with ShopMill.
- Then we shall demonstrate the basic operation to you.
- The geometrical and technological basics of production are then explained for newcomers in the chapter that follows. Theory is followed by ShopMill practice:
- Five examples are used to explain the machining options offered by ShopMill; the complexity of the examples is increased continuously. At the outset, all the keys to be pressed are specified; later, you are prompted to act on your own.
- Then you are tought how to use ShopMill in automatic mode.
- If you wish, you can then test how fit you are in ShopMill.

Please note that the technology data used here can only be seen as examples, due to the numerous different conditions that apply in the workshop.

Just as ShopMill was produced with help from technicians, this training document was produced using input from practical users. In this vein. we wish you every success in your work with ShopMill.

The authors

Erlangen/Wuppertal, September 2003

ShopMill Training Documentation

Table of contents

1 Benefits of working with ShopMill 5
1.1 You save training time 5
1.2 You save programming time 6
1.3 You save production time 8
2 So that everything runs smoothly 10
2.1 Tried-and-tested technology 10
2.2 The machine operator panel 11
2.3 Contents of the basic menu 13
3 Fundamentals for newcomers 18
3.1 Geometry basics 18
3.1.1 Tool axes and work planes 18
3.1.2 Points in the work area 20
3.1.3 Absolute and incremental dimensions 21
3.1.4 Movements on a straight line 22
3.1.5 Circular movements 23
3.2 Technology fundamentals 24
3.2.1 Modern milling and drilling tools 24
3.2.2 Tools used 25
3.2.3 Cutting velocity and speeds 26
3.2.4 Feed per tooth and feedrates 27
4 Well equipped 28
4.1 Tool management 28
4.2 Tools used 30
4.3 Tools in the magazine 31
4.4 Measuring tools 31
4.5 Set the workpiece zero 32
5 Example 1: Longitudinal guide 34
5.1 Program management and creating a program 35
5.2 Calling the tool, cutter radius correction and travel path input 37
5.3 Creating holes and position repetitions 39
6 Example 2: Injection form 42
6.1 Straight lines and circular paths via polar coordinates 43
6.2 Rectangular pocket 47
6.3 Circular pockets on a position pattern 49
7 Example 3: Mold plate 51
7.1 Path milling for open contours 52
7.2 Stock removal, residual material and finishing of contour pockets 55
7.3 Machining on several planes 59
7.4 Considering obstacles 61
8 Example 4: Lever 64
8.1 Face milling 65
8.2 Creating a border for the lever island 66
8.3 Producing the lever 67
8.4 Creating a border for the circular islands 71
8.5 Creating a size-30 circular island 72
8.6 Creating a size-10 circular island 73
8.7 Copying the size-10 circular island 74
8.8 Production of the circular island using the extended editor 75
8.9 Deep-hole drilling 78
8.10 Helical milling 79
8.11 Boring 80
8.12 Thread cutting 81
8.13 Programming contours with polar coordinates 82
9 Example 5: Flange 84
9.1 Creating a subroutine 85
9.2 Mirroring work steps 89
9.3 Holes 92
9.4 Rotation of pockets 93
9.5 Chamfering contours 98
9.6 Longitudinal groove and circumferential groove 99
10 So now we can start 102
10.1 Approach reference point 102
10.2 Clamp the workpiece 103
10.3 Set the workpiece zero 103
10.4 Edit work plan 104
11 How fit are you with ShopMill? 106
Index 110
Index of figures 113

1 Benefits of working with ShopMill

This chapter states the special benefits of working with ShopMill.

1.1 You save training time

... because there is no coding in ShopMill and no foreign-language terms that you must learn:
All necessary inputs are queried in plain text.

... because ShopMill provides colored help displays for your assistance.

	G	N25 G17 G54 G64 G98 G94
	T	N38 T=EM16
...because you can also integrate DIN/ISO-SQL	G	N35 G8 X85 Y22.5
commands in the graphic work plan .	G	N48 G8 $\mathbf{z 2}$ S500 M3 M8
	G	N45 G8 $\mathbf{z - 1 0}$
	G	N50 G1 X-85 F200
	G	N55 G0 Y-22.5
	G	N60 G1 X85
	G	N65 G0 2100 M5 M9

... because you can switch between the individual steps and the workpiece graphic at any time while producing a work plan.

1．2 You save programming time ．．．

．．．because ShopMill provides optimum support while entering technology values：you only need to enter the following values from the book of tables：Feedrate／tooth and cutting speed －ShopMill automatically calculates the speed and the feedrate．

．．．because ShopMill can describe an entire machining step with one work step；and the necessary positioning movements（here from the tool change point to the workpiece and back）are gener－ ated automatically．

．．．because the graphic work plan in ShopMill represents all machining steps in a compact and concise manner．This gives you a complete overview and provides enhanced editing options，even in the case of extensive production sequences．

．．．because several machining operations with numerous position patterns can be linked during drilling and do not have to be called repeatedly．

易矿7		Centering	T＝CENTERDRILL12 F150／min S500rev．$\varnothing 11$
匆易，	N55	DRILL	T＝DRILL10 F150／min S35rev． $21=20$
\therefore－	N60	001：Positions	$\mathrm{Z} 0=-10 \times 0=-50 \quad Y 0=0 \quad \times 1=50 \quad Y 1=0$
\％	N65	002：Hole grid	$\mathrm{ZO}=0 \quad \mathrm{XQ}=-65 \quad Y \mathrm{~B}=-40 \mathrm{~N} 1=2 \mathrm{~N} 2=2$
： 5	N70	803：Hole full cir．	$Z 0=-10 \times 8=0 \quad Y 0=0 \quad$ R20 N6
END		Program end	

... because the integrated contour calculator can handle all conceivable dimensions and is still easy to operate - thanks to the general-language input and graphic support.

... because you can toggle between the static help displays and dynamic on-line graphics at any time with just one keystroke. The on-line graphic provides you with a direct means of visually checking the entered values.

... because the work plans Extensions and Finish are not mutually exclusive: With ShopMill you can create a new work plan in parallel with your production.

1 Benefits of working with ShopMill

1.3 You save production time ...

... because you are not restricted by the radius of the pocket in your selection of milling tools for machining contour pockets:
The remaining residual material is detected and automatically machined by a smaller milling tool.

... because there are no superfluous infeed movements between the return and machining plane during positioning operations. This is made possible by the settings Return on RP or Optimized return.

Return on machining plane

 = time saving during productionHelp displays in ShopMill

The setting Optimized return must be made in the program header by a technical expert. He must consider such obstacles as Clamping elements.
... because you can utilize the compact structure of the work plan to optimize your machining sequence easily (here, for example, by saving tool change operations).

... because ShopMill makes full use of digital technology (SIMODRIVE drives, SINUMERIK controls) to achieve fastest feedrates and highest accuracy for repeated operations.

2 So that everything runs smoothly

In this chapter, you learn the basics of how to operate ShopMill.

2.1 Tried-and-tested technology

The SINUMERIK 810D as the basis for ShopMill is the most cost-effective way to get started in the world of future-proof, digital CNC and drives for machine tools.

With the aid of the SIEMENS three-phase servo motors and ...
... SIEMENS gearbox technology, production is carried out at top speed, with the highest feedrates and with rapid traversing speeds where required.

2.2 The machine operator panel

It is okay having powerful software at hand; but it must be easy to operate.
The clearly laid out machine operator panel of ShopMill guarantees ease of operation. It is made up of three parts.

The most important navigation keys on the full CNC keyboard are shown here:

Alternative key (same function as olternat.
This key deletes the inputs to the left of the cursor. This key starts the calculator function.

The input key is used to:
... accept a value in the input field.
... terminate the computation process.
... move the cursor down.

2 So that everything runs smoothly

Take a look at the different groups of keys on the panel；they help you get used to ShopMill．

All main functions can be called via the horizontal softkeys．

The basic menu can be called at any time－irrespective of the particular operating step where you happen to be．

Basic menu

\square Ma－ chine	$\underline{\underline{\underline{\underline{N C}}} \text { 仡 }}$	Pro－ gram	F	Edit prog．	$\underline{\underline{\underline{\underline{\underline{\underline{N C}}}}} \text { c }}$	Alarm list	Tools WOs		

2.3 Contents of the basic menu

Calling a tool and entering technology values

Enter a target position

During production, the current work step is displayed. You can switch to a parallel simulation per keystroke. While processing a work plan, you can add work steps or start to create a new work plan.

Display of work steps and current technology data ...

The work plans and contours are managed here. Furthermore, you can also input or output work plans.

You can then save the various work plans in the different directories you have created.

The selected work plan is processed in the Automatic machine mode.

New folders and work plans are created.

Folders and work plans are renamed.

Work plans are grouped together for moving or copying.

The marked work plans are placed on a clipboard.

The contents of the clip board is added to another folder.

The marked work plans or work steps are removed here and placed on the clipboard. between the softkey bars.

To prevent a work plan list ecoming too long and difficult to handle, you can use the Program Manager to create as many directories as you like.

Work plans are moved from the hard disk to the NC Kernel.

Work plans are moved from the NC Kernel to the hard disk.

Block transmission is possible to execute long ISO programs.

More than one workpiece can be machined in parallel.

Existing work plans are renamed.

The work plans are exported to an external store.

The work plans are imported from an external store.

The softkeys Continue and Back can be used at any time to switch back and forward

The contour to be machined is entered graphically...
The work plan is created for the relevant workpiece here along with its full machining sequence. Prerequisite for the optimum sequence is the experience of the technician.

... and then converted to swarf:
Geometry and technology are fully interlinked.

Machining path milling

Example for the interlinking of geometry and technology

This geometrical/technological link is clearly demonstrated in the graphical display of the work steps in the form of a "grouping" of the relevant icons. The "grouping" refers to a geometry/ technology interlink.

The ShopMill interface is based on the tried-and-tested Sinumerik 810D control. You can use the CNC ISO to switch to the Sinumerik plane. The production can now run in exactly the same way as the other 810D controls.

The combination of ShopMill with the Sinumerik 810D produces high flexibility in the CNC production.

A dedicated Getting Started Guide (Order No. 6FC5095-0AB00-0BP1) with two sample programs for milling workpieces is available for the G code programming of the 810D/840D.

As explained in Chapter 1, you can also input NC programs in foreign control languages in addition to the standard SINUMERIK programs. These commands are "understood" by ShopMill and converted to chips.

N90 G291 (selection of the external language)
N100 G17 G54 Plane selection and zero point offset
N105 G90 G00 G43 X0 Y0 H1 Z100 ...
N110 G83 X10 Y11 Z-30 R10 F100 Q8 Drilling cycles with the control-related parameters
N120 X80 Y90 Drilling position
N130 G80 End of drilling cycles
N140 G53 X20 Y20...
N150 G55...
N160 G290 (back to SINUMERIK language)

All currently present messages and alarms are displayed with the corresponding error number, the time at which the error occurred and further details of the particular error.

A list of messages and alarms is given in the ShopMill user documentation. No stock removal without tools. You can manage these in a tool list ...

The zero points are saved in a clearly laid out table of zero points.

3 Fundamentals for newcomers

All the fundamentals of the geometry and technology for milling are explained in this chapter.
No entries have been made in ShopMill yet.

3.1 Geometry basics

3.1.1 Tool axes and work planes

The tool can be installed in parallel to each of the three main axes on universal milling machines. These axes which stand at right angles to each other are oriented according to DIN 66217 or ISO 841 on the main guide ways of the machine. The installation position of the tool produces a corresponding work plane. Z is usually the tool axis.

Tool axis Z

On modern machines, it only takes a few seconds to change the tool mounting position with a universal revolver and there is no need for conversion work.

Horizontal spindle

If the coordinate system on the previous page is rotated appropriately, the axes and their directions are changed in the corresponding work planes (DIN 66217).

Tool axis X

The figure shows the program header after switching to tool axis X.

Tool axis Y

You can of course use the \square key to call a help display to help you select the tool axis and enter the values in the program header.

3.1.2 Points in the work area

For orientation of a CNC control (like the SINUMERIK 810D with ShopMill) over the measuring system in the existing work area, important reference points must be defined.

Machine zero M

The machine zero M is defined by the manufacturer and cannot be changed. It lies in the origin of the machine coordinate system.

Workpiece zero W

The workpiece zero W is also referred to as the program zero and is the origin of the workpiece coordinate system. It can be selected freely and should be positioned at the point in the drawing where most dimensions originate.

Reference point \mathbf{R}

The reference point R is approached to set the measuring system to zero, since the machine zero generally cannot be approached. In this way, the control finds its starting point for counting in the linear measurement system.

3.1.3 Absolute and incremental dimensions

Absolute entry:

The input values refer to the workpiece zero.

Incremental inputs:

The input values refer to the starting point.

You can use the $\underset{\text { alternat. }}{\cup}$ key to switch over at any time.

For absolute inputs, you must always enter the absolute coordinate values of the end point (the start point is not considered).

For incremental inputs, you must always consider the direction when entering the difference values between start point and end point.

Here are some examples for the combination of absolute/incremental values:

Absolute: X15 Y5
Incremental: X-35 Y-25

Absolute: X-30 Y50
Incremental: X-15 Y40

Absolute: X-10 Y-5
Incremental: X30 Y25

3.1.4 Movements on a straight line

Two entries are required to precisely define the end point. The data could look like this:

Cartesian: entry of X and Y coordinates

Polar: enter the length and an angle

Angle $38.13^{\circ}=$ angle to previous element or

Angle $53.13^{\circ}=$ start angle at positive X axis

Input of the end point in X and an angle

The context-related ShopMill help displays can be called during entry of the values, and show the designations of the relevant input fields.

3.1.5 Circular movements

X and Y define the end point for the circular arc; the center point is entered with I and J. In ShopMill, you can enter these 4 values individually, either as absolute or incremental values.

Whereas X and Y are entered as absolute, the center point I and J are entered as incremental for most controls. Here, it is essential not only to determine the difference from the starting point \mathbf{A} to the center point \mathbf{M} (often in combination with mathematical computation), but also the direction and thus the sign.

With ShopMill on the other hand, you do not have to perform any calculation because you can enter the absolute center point; you can use the contour calculator to determine even the most complex contours graphically.

Entering the center point (absolute):

After input:

Values (in this case radii) that result from data already entered are computed automatically by ShopMill.

After input:

Circle	
Dir.of	frot. 2
R	15.000
X	185.000 abs
Y	70.800 abs
I	90.000 abs
J	70.800 abs
$\alpha 2$	Tangential
Trans. to next element	
R	0.000

ShopMill also enables you to display all possible geometry values:
Display of all parameters:

Circle	
Dir.of	rot. : 2
R	20.000
X	22.414 abs
X	12.414 inc
Y	58.505 abs
Y	18.505 inc
I	30.000 abs
I	20.000 inc
J	40.000 abs
J	0.000 inc
$\alpha 1$	90.000°
$\alpha 2$	Tangential
$\beta 1$	$22.291{ }^{\circ}$
$\beta 2$	67.709°
Trans. R	to next element 0.008

Circle	
Dir.of	rot. : 2
R	15.000
X	185.000 abs
X	20.690 inc
Y	70.800 abs
Y	-13.879 inc
I	90.800 abs
I	5.690 inc
J	70.000 abs
J	-13.879 inc
$\alpha 1$	$22.291{ }^{\circ}$
$\alpha 2$	Tangential
$\beta 1$	270.000°
$\beta 2$	$112.291{ }^{\circ}$
Trans. to next element R 0.008	

A further benefit of the absolute center point dimensioning: You do not have to recalculate the values for I and J when you reverse the milling direction.

3.2 Technology fundamentals

The basic requirements for optimized production are a sound knowledge of the tools (especially the cutting materials of the tools), the tool applications and the optimum cutting data.

3.2.1 Modern milling and drilling tools

Whereas HSS tool steels were dominant in the past, hard metals, ceramic plates, cubic bornitride (CBN) plates and polycrystalline diamond tools are used today. The following diagram shows the percentage distribution of the cutting materials and their properties, relative to their toughness and durability.

Tools with sintered cutting plates
The diagram is taken from a SANDVIK tool catalog. The newly developed carbide materials which combine toughness and durability to produce high productivity values are also listed. Such cutting materials also bring the following benefits: longer tool life and better surface qualities.

Non-coated tools made of HSS

Titan nitride (TiN)coated drilling and milling tools

3.2.2 Tools used

Face mill

The face mill (also referred to as revolving blade) is used to remove large volumes.

Shaft milling tool insert

The shaft milling tool insert is a multi-cut tool, which uses a spiral-form arrangement of the cutters to produce an especially "smooth" machined result.

Shell end mill

The shell end mill produces right-angled contour sections with vertical shoulders.

Long hole milling tool

The longitudinal hole mill (also referred to as a groove milling tool) cuts above the center and can also be inserted to the full depth. It generally has 2 or 3 cutting edges.

NC spot drill

NC spot drills are used for centering and to produce a chamfer for the subsequent drilling. ShopMill automatically calculates the depth when you specify the outside diameter of the chamfer.

Spiral drill

With ShopMill, you can choose between various types of drill (chip breakage, deep-hole drilling, etc.). The drill tip $1 / 3 \mathrm{D}$ is automatically taken into account in ShopMill.

Full drills are equipped with tool inserts and are only available for drills with a large diameter. The drilling process must always be made without interruption.

3.2.3 Cutting velocity and speeds

The optimum speed of the tool in each case depends on the cutter material and the workpiece material, as well as the workpiece diameter. You can often enter this speed on the basis of year-long experience, without calculation. However, it is better to calculate the speed from the cutting velocity given in the tables.

Determining the cutting velocity:

The manufacturer's catalog or a book of tables helps you to determine the optimum cutting velocity initially.

The mean value $\mathbf{v}_{\mathbf{c}}=\mathbf{1 1 5} \mathbf{~ m} / \mathbf{m i n}$ is selected
This cutting velocity and the known tool diameter is used to compute the speed \mathbf{n}.

$$
n=\frac{v_{c} \cdot 1000}{d \cdot \pi}
$$

In the example below, the speed is computed for two tools:

$$
\begin{gathered}
n_{1}=\frac{115 \mathrm{~mm} \cdot 1000}{40 \mathrm{~mm} \cdot \pi \cdot \min } \\
n_{1} \approx 900 \frac{1}{\min } \quad n_{2} \approx 580 \frac{1}{\min }
\end{gathered}
$$

The speed is specified with the letter \mathbf{S} (for speed) in the NC coding. So the inputs are as follows:

3.2.4 Feed per tooth and feedrates

On the previous page, you learned how to calculate the cutting velocity and the speed. For the tool to start cutting, this cutting velocity or speed must be assigned a tool feed rate.

The basic value for computing the feedrate is the feedrate per tooth. Like the cutting velocity, the value for the feedrate per tooth is taken from the book of tables, the manufacturer documentation or from experience.

Determining the feedrate per tooth:

Tool cutter:

$$
\mathrm{f}_{\mathrm{z}}=0,1-0,2 \mathrm{~mm}:
$$

Select the average value $\mathbf{f}_{\mathbf{z}}=\mathbf{0 . 1 5} \mathbf{~ m m}$

The feedrate per tooth, the number of teeth and the known speed is used to compute the feedrate $\mathbf{v}_{\mathbf{f}}$.

$$
v f=f_{z} \cdot z \cdot n
$$

The feedrates for two tools with different numbers of teeth are computed in the example:

$$
v f_{1}=580 \frac{1}{\mathrm{~min}} \cdot 0,15 \mathrm{~mm} \cdot 4 \text { d } \quad \mathrm{d}_{2}=63 \mathrm{~mm}, \mathbf{z}_{1}=\mathbf{\mathbf { z } _ { 2 }}=\mathbf{9}
$$

In the NC coding, the feedrate is specified as \mathbf{F} for "feed". The entries are thus:

4 Well equipped

In this chapter，you learn how to create tools for the examples in the chapters that follow．An explanation is also given on how to compute typical workpiece lengths and how to set the workpiece zero．

4．1 Tool management

ShopMill offers three lists for tool management．

1．Tool list

All the tools and associated offset data in the NC are specified and displayed here，irrespective of whether the tools are assigned to a magazine location．

Numerous tool types are available There are various geometry param ters for each tool type（e．g．specifi angle for drilling）．	
近	CUTTER
θ	DRILL
U	CENTERDRILL
䓪	EDGE＿TRACER
d	3D＿PROBE
\cup	DIEMILL＿CYL
\checkmark	BALL＿END＿MILL
\square	MILL＿CORN＿RAD
苴	FACING TOOL
\square	MILL＿TAPER
脕	TAP

The tool name is suggested automat－ ically on the basis of the selected tool type．This name may be changed as required but must not exceed a length of 17 characters．All letters，number and underscores are permitted．

2. Tool wear list

You define the tool wear data for the relevant tools here.

You enter the tool wear here, relative to the dif- You specify the life in minutes here, provided that you have ference values for the tool length and the tool activated the function (T) previously. diameter.

You can use this toggle fields to define the following properties:

1. Lock tool
2. Oversize tool
3. Tool to fixed location

You enter the number of tool changes here, provided that you have activated this function (C) previously.

You define the tool monitoring here, relative to the tool life or the number of tool changes. T monitors the tool life, C the number of tool changes.

3. Magazine list

The magazine list contains all the tools that are assigned to one or more tool magazine(s). This list shows the status of each tool. Magazine positions can also be reserved or locked for particular tools.

The location lock is activated here.

4 Well equipped

4.2 Tools used

In this chapter, you enter the tools required later for machining in the examples in the tool list.

Create tool

Select tool type and enter data

Note: The milling tools with diameters 6, 10, 20 and 32 must be capable of being inserted because they are also used to mill pockets in the following examples.

4.3 Tools in the magazine

In the following sections, you learn how to insert tools in the magazine.
Select a tool from the tool list without location number and press the key

Load

The following dialog offers the first free magazine location which you may change or accept as offered.
The magazine for the following exercises could look like this.

4.4 Measuring tools

In the following, you will learn how the tools are calculated Load a tool into the spindle using softkey $\begin{aligned} & \text { T, } \mathrm{s}, \mathrm{M}\end{aligned}$. Change to the menu

륩 Meas.

4 Well equipped

4.5 Set the workpiece zero

To set the workpiece zero, you must switch to the Manual machine mode in the basic menu.

The option Meas. workp. in the submenu provides several options for setting the workpiece zero.

The example shows how to set the zero point of a workpiece edge (Edge) with an edge probe.

Procedure:

1.

2. Select the edge
x (the help display shows the necessary clicking direction).

This key calls the list of zero offsets, which can then be set in the Zero

Enter a zero offset

Clicking direction
left (+) or right (-)

Shift the workpiece zero
offset if it is not to lie at the edge of the workpiece
3. Click the workpiece edge
4.

Work measure

The workpiece zero is set, taking account of the edge probe diameter (4 mm).

This procedure must now be repeated for Y with the edge probe and for Z (usually with the milling tool).

Since the workpieces to be machined are not always present in the form of a cuboid or cannot be clamped in straight, further computation options are available:

If such a workpiece position is the case, the workpiece position/
 corner can be determined by approaching the four points.

3D probes are available in electronic and mechanical designs. The signals of the electronic probe can be processed directly by the control.

Considering a hole or a spigot:

When you insert an electronic 3D probe from the tool magazine, clamping tolerances apply. These would falsify the results in further measurements. To prevent this happening, you can use the Calibrate probe cycle for the 3D probe on any reference surface or in any reference hole for calibration purposes.

5 Example 1: Longitudinal guide

In this chapter, we will take a detailed look at the first steps required to create a workpiece:

- Program management and creating a program
- Calling the tool and chamfer radius offset
- Entering the traversing path
- Producing holes and position repetitions

Note: Since ShopMill always saves the last setting set via the \cup key or the softkey olternat. , you must make sure that all the units, texts and symbols are set as displayed in the dialog boxes shown for all the examples both for numerous of the input fields and for all toggle fields. The switchover option can always be identified by the \qquad sofkey that is visible.

5.1 Program management and creating a program

Keys		Screen		Explanations
			$\square \mathrm{\square}$	- In the basic menu, you can call the various areas of ShopMill (see Chapter 2). - In the program manager a list of the available ShopMill directories is shown.
New	W...	New directory Please enter the new name:		- A new directory is created to save the work plans in the next chapter. It is given the name "Workpieces".
				- The work plan and contour management is organized in the program manager (e.g. New, Open, Copy ...). - You can use \square to move the cursor to the WORKPIECES directory and the Δ key to open it.
New	L...	Name Type Loaded Size Date/time . WORKPIECES. WPDI.		- The name of the work plan is entered here, in this case "Longitudinal guide". - You can use Δ to accept the name. - The softkeys ShopMill program and G code program can also be used to select the input format.
(i)	$\begin{array}{r} 1 \Leftrightarrow \\ -75 \\ -50 \\ -\hat{\theta} \\ 0 \\ 0 \end{array}$			- The workpiece data and the general data about the program are entered in the program header. - Since the zero of the workpiece lies in the center of the workpiece surface, the coordinates of the left-hand workpiece corner have a negative value. - You can use the \qquad key to call the help displays at any time.

The tool returns over the workpiece at the safety clearance as appropriate to the contour.

The tool returns on the return plane and feeds at the new position.

| | | | •The program header created is marked with
 the pictogram P. |
| :--- | :--- | :--- | :--- | :--- |
| | | You can use \rightarrow to re-call the program header
 to make a change, for example. | |

The program has now been created as the basis for further machining steps.
It has a name, a program header (abbreviated by the "P") and a program end (designated by the symbol "END").

The relevant machining steps and contours are stored one below the other in the program. Processing later is carried out from top to bottom.

5.2 Calling the tool, cutter radius correction and travel path input

Explanations for the topic radius offset:

Just imagine that the milling tool were to approach the center point on the contour that has been created:

5 Example 1: Longitudinal guide

5.3 Creating holes and position repetitions

The following entries center the 12 holes, drill them and produce the thread.

5 Example 1: Longitudinal guide

6 Example 2: Injection form

In this chapter, you learn the following new functions:

- Straight lines and circular paths via polar coordinates
- Rectangular pockets
- Circular pockets on a position pattern

Creating a work plan and approaching the starting point

First create a new work plan with the name "Injection form" yourself. The dimensions of the unmachined part are entered simultaneously (cf. chapter "Longitudinal guide" for procedure). Note the new zero point.

Then change to the size-20 milling tool (V $80 \mathrm{~m} / \mathrm{min}$) and position it at point $\mathrm{X}-12 / \mathrm{Y}-12 / \mathrm{Z}-5$ in rapid traverse. The starting point for X 5 and Y5 is approached on a straight line (F $100 \mathrm{~mm} / \mathrm{min}$, cutter radius correction left).

When you have entered the first traversing blocks, the work plan should look like this.

6.1 Straight lines and circular paths via polar coordinates

The end point of the traversing block can not only be described via its X and Y coordinates, but also via a polar reference point.

In this case, X and Y are unknown. You can also define the point indirectly: It lies 20 mm away from the center point of the circular pocket marked here behind the pole. The polar angle 176° results from the calculation $180^{\circ}-4^{\circ}$ (see workshop drawing).

		Screen	Explanations
Polar Polar Accept	$\begin{aligned} & 30 \stackrel{\rightharpoonup}{\Delta} \\ & 75 \stackrel{\Delta}{\Delta} \end{aligned}$		- Inputting the poles
Straight polar	$\begin{array}{r} 20 \stackrel{\rightharpoonup}{\Delta} \\ 176 \stackrel{\rightharpoonup}{\Delta} \end{array}$		- Length L defines the distance from the end point of the straight line from the pole. - The polar angle specifies how far the length L must be rotated around the pole to reach the end point of the straight line. - The polar angle can be rotated clockwise $\left(176^{\circ}\right)$ or counterclockwise (-184°).
Circle polar			- A circular path can also be defined via polar coordinates.

Since the pole applies both for the circular path and for the straight line, it need only be entered once.

The polar angle is 90° in this case.

Further information about these variations for the workpiece representation are given at the end of Chapter 7.

6.2 Rectangular pocket

The rectangular pocket is created with the following inputs.

Keys		Screen	Explanations
	$\begin{array}{r} 0.15 \\ 120 \end{array}$		- The tool for machining the pockets is the size-10 mill ($\mathrm{F} 0.15 \mathrm{~mm} /$ tooth and V $120 \mathrm{~m} / \mathrm{min}$). - The pocket should be roughed first. $\square \quad$ - Roughing icon (coarse machining) W - Finishing icon (fine machining) Use the U key to select the machining mode. - Note that the switchover button is set to Single position.
			- The geometrical data for the rectangular pocket are entered in these fields: Position, width and length, ...
	$\begin{gathered} 30 \Theta \\ -15 \Theta \\ 80 \Leftrightarrow \\ 2.5 \end{gathered}$		- The max. Infeed in the plane (DXY) indicates the width of stock removal for the material. This can be entered either as percentage of the cutter diameter or directly in mm (toggle with U). - The maximum infeed in the plane is specified in \% here.

Helical insertion

EP = Insertion pitch
ER = Insertion radius

Centered insertion

EW = Insertion angle

6.3 Circular pockets on a position pattern

The following entries create the circular pockets.

Keys		Screen	Explanations
Pocket Circular pocket Tools To program			- The size-10 milling tool (F $0.15 \mathrm{~mm} /$ tooth and V120 $\mathrm{m} / \mathrm{min}$) is used to machine the pockets. - Machining must be set to Roughing. - Analogous to drilling, you can create pockets of a position pattern. - In ShopMill, the last tool setting is stored. You must therefore switchover here if necessary.
	$\begin{array}{r} 30 \\ -10 \\ -\theta \\ 80 \\ 5 \\ 0 . \\ 0 . \\ 0.3 \end{array}$		- The maximum infeed in the plane is specified in \% here.
$\underset{\text { Accept }}{\checkmark}$			- The insertion must be set to helical if required.

7 Example 3: Mold plate

In this chapter, you learn about other important functions, in particular the contour calculator:

- Path milling for open contours
- Stock removal, residual material and finishing contour pockets
- Machining on several planes
- Considering obstacles

Creating a program

The workpiece dimensions must be taken from the drawing and entered in the program header of a new program. Observe the correct position of the zero point.

7.1 Path milling for open contours

To enter complex contours, ShopMill provides a contour calculator, which you can use to simplify the entry of highly complex contours.
-Vertical route
-Horizontal route

-Diagonal route

-Arc
This graphic contour calculator lets you enter contours more easily and faster than with conventional programming - without the need of mathematics.

		Screen	Explanations
	M... $\stackrel{\text { ® }}{ }$	New contour Please enter the new name: MOLD_PLATE_Outside	- Each contour will get its own name. This makes reading the program easier.
$\underset{\text { Accept }}{\checkmark}$	$\begin{array}{rr} & \stackrel{\rightharpoonup}{\bullet} \\ -35 \stackrel{\rightharpoonup}{\diamond} \\ -100 \stackrel{\rightharpoonup}{\Delta} \end{array}$	PROGBRM	- Enter the Starting point of the contour definition first. - The starting point of the structure is simultaneously the starting point for machining the contour later. - Note: You describe only the workpiece contour here, the approach and retraction paths are defined later.

The two work steps are linked in the work plan.

The simulation and subsequent 3D view show the correct production of the workpiece.

7.2 Stock removal, residual material and finishing of contour pockets

This contour pocket is created below. Then, the pocket is machined and finished.

$\underset{\text { Dialog }}{\text { accept }}$			- The Dialog accept softkey accepts the desired quadrant from the possible solutions.
$\underset{\text { Accept }}{\sqrt{6}}$			- The geometry processor has automatically detected that the programmed arc connects tangential to the straight line. The corresponding softkey Tangent prev. elem is displayed in inverse mode (i.e. printed).
	$\begin{array}{r} -20 \stackrel{\rightharpoonup}{\Delta} \\ 5 \stackrel{\rightharpoonup}{\Delta} \end{array}$		- The end point of the of the straight lines is known. The transition to R36 is rounded with R5.
f°			- A circular arc in clockwise direction follows.

7.3 Machining on several planes

The size-60 circular pocket is milled in two work steps in exactly the same way as in the "Injection form" example.

The first step is to rough the pocket down to -9.7 mm using the size-20 milling tool.

In the second step, the pocket is finished with the same tool.

Then, the inside circular pocket is machined down to the depth of -20 mm .
You must note here that the starting depth is -10 mm not 0 mm .

		Screen	Explanations
Mill- ing Pocket Circular pocket	$\begin{array}{r} \square \\ 0.15 \stackrel{\dagger}{\bullet} \\ 120 \stackrel{\rightharpoonup}{\oplus} \\ \ldots \end{array}$		- When you have entered the values as shown in the figure, you can accept the dialog box.
Mill- ing Pocket Circular pocket			- The second step is to finish the pocket. - The position, size and dimensions are taken automatically from the roughing step performed previously. So you only have to enter the technology values. - The value Z0 (= High workpiece) indicates the starting depth for machining.
			- The more complex the workpiece, the greater the significance of the 3D image in the preliminary production steps.

7.4 Considering obstacles

Just as for "Longitudinal guide", you can also chain various drilling patterns for this workpiece. But you must remember that one or more "obstacles" have to be traversed, depending on the order of machining operations. Traversing between the holes is carried out with the safety distance or on the retract plane, as appropriate to the settings you have defined.

First, create the work steps: Center and Drill in the manner you were taught in Chapter 5.

1. Work step Centering

2. Work step Drilling

After you have created these two work steps, enter the associated drilling positions on the next page.

Further information about the display of the workpiece:

1. The simulation can only run in the Top view or in the 3-plane view. The last setting remains active.
2. A static display can also be made in the volume model.

keys to switch to other display.

you increase the view zoom factor.

You can use the arrow keys to preset the cutting path execute this path with the \qquad key.

8 Example 4: Lever

In this chapter, you become acquainted with the further important functions of ShopMill:

- Face milling
- Creating borders (auxiliary pockets) for solid machining around islands
- Creating circular islands by copying
- Extended editor and producing the islands
- Deep-hole drilling, helical milling, boring and thread cutting
- Programming contours with polar coordinates (new with ShopMill V 6.4 and higher)
$A-A$

Creating a work plan

The workpiece dimensions must be taken from the drawing and entered in the program header. Here, you must observe that the unmachined part is to be 25 mm thick and that corner point 1 must therefore be set to 5 mm in Z .

When you have entered the data, the input window should look like this.

8.1 Face milling

8.2 Creating a border for the lever island

Islands are described as a contour in the graphic contour calculator in exactly the same manner as pockets. They do not become islands until they are linked in the work plan: The first contour always describes the pocket. One or more subsequent contours are interpreted as islands. Since there is no pocket in the "lever" example, a theoretical auxiliary pocket is applied to the outside contour. This is used as the required outside boundary for the traversing paths and thus defines the framework in which the tool movements are carried out.

Keys		Screen	Explanations
毼 Cont.	R... ${ }^{\text {a }}$	Please enter the new name: LEVER_Rectangular_Area	- The outside contour is given the name "LEVER Rectangular_Area".
$\begin{gathered} \text { New } \\ \text { contour } \end{gathered}$			

Design the pocket with the distances shown on the left (variable values) around the unmachined part.
The corners are rounded with R15.
Always make sure that the values you select cover the workpiece edges of the "Pocket"

When the contour is finished, the screen looks like this.

8.3 Producing the lever

When you have added the outside contour after the last work steps, the next step is to create the following island. To give you practice in creating geometries, this example is explained step-by-step.

The materials around the lever are first roughed and then finished to a depth of -6 .

8.4 Creating a border for the circular islands

A border is created below as a traversing limit for milling to depth -3 .

The values R36 and R26 are derived from the relevant

Island radius + cutter diameter (here 20 $\mathrm{mm}+1 \mathrm{~mm}$ allowance).

The radii R5 and R15 can be selected freely.

Keys		Screen	Explanations
	L... ${ }^{\text {® }}$	New contour Please enter the new name: LEVER_Lever_Area	- The contour is assigned the name "LEVER_Lever_Area"
			- The limit for the traversing paths is (as described above) designed around the workpiece contour in such a manner that the size20 cutter fits between the limitation and the islands. - Enter this limiting contour in the same way as the lever contour.

8.5 Creating a size-30 circular island

Now create the size-30 circular island.

Keys		Screen	Explanations
	C... $\stackrel{\text { ¢ }}{ }$	Hew contour Please enter the new name: LEVER_Circle_R15	- The contour is assigned the name "LEVER_Circle_R15"
			- The starting point of the circular structure lies at $\mathrm{X}-15$ and Y 0 . - Complete the entries for the circular contour on your own according to the values below. Note that several values have incremental dimensions.
$\underset{\text { Accept }}{\checkmark}$			

8.6 Creating a size-10 circular island

Now create the first size-10 circular island.

8.7 Copying the size-10 circular island

In the section below, you learn how to copy in ShopMill.

8.8 Production of the circular island using the extended editor

ShopMill offers a series of special functions that allow multiple use and management of sections of the work plan. These special functions can be reached at any time via the $>$ key on the flat panel.

These functions are explained below:

mark	You can use the Mark function to select several work steps for further processing (e.g. Copy or Cut).
copy	The Copy function copies the work steps to the clipboard.
Paste	The Paste function adds work steps to the work plan from the clipboard. Pasting is always performed behind the marked work step.
cut	The Cut function copies work steps to the clipboard and at the same time deletes them from their orig- inal location. The softkey is used purely for deletion purposes.
Find	You can use the Find function to look for texts in the program.
Rename	The Rename function can be used to change the names of the contours, directories and workplans.
Renumber	The Renumber function renumbers the work steps.
Back	The Back function returns you to the previous menu.

Some of the functions described initially are used below to produce 3 circular islands effectively. The efficiency is obtained by copying the existing work steps.

The border highlighted red in section 8.4 is used as the traversing path limitation here.

... is shown for checking.

8.9 Deep-hole drilling

A drill is used below.

8.10 Helical milling

Below, a milling tool is used to remove the residual material in a spiral motion, referred to as a helix.

Keys		Screen		Explanations
	\square			- The helix is used to remove the remaining circular ring after drilling. The CUTTER20 is used to do this (V $120 \mathrm{~m} / \mathrm{min}$).
Rapid traverse				- Since you are milling without cutter radius correction here, the milling tool must be positioned on the core hole diameter (here 45.84 mm) minus the finishing allowance.
Helix Accept				- The helix is milled in synchronism. - The pitch of the helix is 3 mm . - Since the tool travels over a sloped path, 6 revolutions are created here to prevent any residual material being left over (although the final depth is reached after five).

8.11 Boring

The pre-fabricated circular pocket is machined to dimension using a boring tool in the section below.

8.12 Thread cutting

The thread is produced with a thread cutter below.

8.13 Programming contours with polar coordinates

It is not uncommon that contour elements in workpiece drawings refer to a pole point. If so, you do not know the Cartesian coordinates (X/Y), but the polar coordinates, i.e. the distance (L) and the angle (φ) to this pole.

With ShopMill V 6.4 and higher, also such cases can easily be programmed graphically without pocket calculator or auxiliary construction.

You can understand this by means of a small change of the lever: The lower "lever arm" is then no longer perpendicular to zero at X 0 but rotated around 10° in clockwise direction.

9 Example 5: Flange

87This chapter addresses the following new contents:

- Creating a subroutine
- Mirroring work steps
- Rotation of pockets
- Chamfering any contours
- Longitudinal and circumferential grooves

Remarks: Up to now, almost all keys that you pressed were displayed. In this example, the entries are no longer specified, only the main keys. Since the values in the dialogs are very important, however, these dialogs are shown in large format. The result is shown as an overall display in the right-hand column.

9.1 Creating a subroutine

The example demonstrates the creation and mode of operation of the subroutines for the "flange" workpiece. The four corners are machined using a subroutine and the mirroring function below.

Keys		Screen	Explanations
		New ShopMill program Please enter the new name: Corner_machining	- The subroutine, which does not differ formally from the main program, is given the name "Corner_machining".
c... [
Accept			- Enter these data for the program header. Zero and blank dimensions are determined later centrally in the main program.
$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { cont } \\ \text { contour } \\ \text { contor }} \end{array}$	C... © ${ }^{\text {a }}$		- The contour is assigned the name "CORNER_MACHINI_Surface".
Accept	$\begin{aligned} & \dot{+} \\ & 57 \\ & 50 \stackrel{\theta}{\Delta} \end{aligned}$		- For example, the above right corner should be constructed. - Enter a suitable starting point.

When you have entered the two contour elements, the screen should look like this.

Incorporate the contour in the work plan.

The approach and return paths are approached here on a straight line. The length values are the distances between the edge of the milling tool and the workpiece.

		Screen	Explanations
${ }_{\text {m }}^{\text {miturn }}$			- The contour is to be finished with the same cutter (F $0.08 \mathrm{~mm} /$ tooth and V $150 \mathrm{~m} / \mathrm{min}$).
	C... ©	contour Please enter the new name	- Next, the corner of the unmachined cuboid should be rounded with R5. The contour is assigned the name "CORNER_MACHINI_Arc".
Accepet	$\begin{gathered} 70 \\ 50 \text { ® } \\ 50 \end{gathered}$		- Enter the starting point

9.2 Mirroring work steps

When the subprogram is completed, the main program is then created. The mirroring function from the Transformation menu can be used for all four workpiece corners.

Mirroring can be performed in two different ways: new and additive new means: mirroring is carried out from the location where the 1st machining step has been carried out. additive means: mirroring is carried out from the location machined last.

The order of machining is outlined in the schematic below with the setting new:

1. Machining (see subprogram)

3. Machining: mirroring of the X and Y axes (the X and Y values are mirrored here)

2. Machining: Mirroring of the X axis (the X values are mirrored here)

4. Machining: mirroring of the Y axis (the Y values are mirrored here)

Then the subprogram behind the mirroring function is copied: The 2nd machining step.

These processes mirroring and subprogram call are then repeated for the two other corners.

Auxilary display for mirroring

After the 4th machining step, the mirroring function is deactivated in all three axes (see line N45).

9 Example 5: Flange

9.3 Holes

The next work steps create four holes at the corners. Since there is an obstacle between the individual holes, these must be entered between the positions.

9.4 Rotation of pockets

The contour and machining for the pocket highlighted in yellow are programmed below.

The two other pockets are created by rotating the coordinate system.

9 Example 5: Flange

9 Example 5: Flange

Create the following work steps on your own:

- Now mark and copy the complete work step to define the pocket machining to the clipboard.

9.5 Chamfering contours

ShopMill version V6.4 and higher supports chamfering of contours. The selection field Machining - which is used for selecting roughing (∇), finishing ($\quad \mathrm{m}$) etc. - has therefore been supplemented with the "Chamfering" option (Chamfer).

The following figures demonstrate this on the example of the last milled "nodule".

A tool type is used which allows the input of a nose angle (here a center drill).

9.6 Longitudinal groove and circumferential groove

The grooves are programmed at the end. They must then be brought to the correct position via position pattern and positioning on a full circle.

	Screen	Explanations
		- The longitudinal grooves are roughed with the CUTTER6 tool (F $0.08 \mathrm{~mm} /$ tooth and V $120 \mathrm{~m} / \mathrm{min}$).
		- The longitudinal grooves are finished with the same tool (F $0.05 \mathrm{~mm} /$ tooth and V $150 \mathrm{~m} / \mathrm{min}$).

And finally: work plan, online graphique and 3D view

10 So now we can start

When you have acquired a sound knowledge of how to create a work plan with ShopMill by working through the examples, you can move on to produce workpieces.

10.1 Approach reference point

When you activate the control, you must approach the reference point before you run work plans or before you traverse manually. This enables ShopMill to find the counter starting point for the linear measurement system in the machine.

Since approaching the reference point may vary depending on the machine type and manufacturer, we can only provide a rough guide here:

1. Move the tool to a free location in the work space, from which you can move in all directions without collision. When you do this make sure that the tool does not then lie behind the reference point of the relevant axis (since the reference point of each axis is only approached in one direction, it is otherwise not possible to reach this point).
2. Approach the reference point exactly according to the specifications of the machine manufacturer.

10.2 Clamp the workpiece

In order to ensure production true-to-dimension, and also for your safety, make sure that the workpiece is clamped firmly. Normally, bolted machine blocks ...

10.3 Set the workpiece zero

Since ShopMill cannot guess where the workpiece is in the work area, you must determine the workpiece zero.

In the plane, the workpiece is usually set

- using the 3D key or
- with the edge key.

Symbol for workpiece zero W

In the tool axis, the workpiece zero is usually set

- by clicking the 3D key
- by scratching with a tool.

Please observe the instructions of the manufacturer when using measuring instruments or measuring cycles.

10 And now we can start production

10.4 Edit work plan

The machine is now ready, the workpiece set up and the tools calibrated (see Chapter 4). Now you can get started:

... will now apply to the workpieces YOU produce with ShopMill.

11 How fit are you with ShopMill?

The following 4 exercises form the base for your personal test in your work with ShopMill. A possible work plan is displayed to assist you in each case. The times stated are based on the procedure defined in the work plan. Please regard the times stated as a rough estimate for your answer to the question above.

Exercise 1: Can you manage that with ShopMill in 10 Minutes?

The rotated rectangular pocket has been constructed in the original coordinate system here. The start point initially lies on the zero point. An auxiliary straight line at 15° up to the edge of the pocket. The coordinates of this end point are the starting point for the actual construction. The auxiliary straight line must be deleted.
ShopMill also provides other ways to achieve this goal, e.g. with Rotation function or with the cycle rectangular spigot (see Exercise 3). Test which way is quickest for you and this procedure brings you the shortest production time.

Exercise 2: Can you manage that with ShopMill in 15 minutes?

Even if it looks complicated, this contour presents no problem to ShopMill. And the automatic stock removal for residual material can be applied with optimum results here. Compare the production times if you were to remove all that with CUTTER10.

Exercise 3: Can you manage that with ShopMill in 20 minutes?

In this sample work plan, the surface around the island is first pre-milled roughly with the rectangular spigot cycle from the Milling menu. The rectangle described in this cycle is approached in circular motion and reaches the contour at the point described by the length and angle of rotation. The tool travels around the island once and exits at the same point again in a circle. The approach radius and return radius are obtained from the geometry of the remaining spigot.

Exercise 4: Can you manage that with ShopMill in $\mathbf{2 0}$ minutes?

In this sample work plan, the circular outside contour has been milled using circular outside contour and the Circular spigot cycle. The functional operation corresponds essentially to the rectangular spigots (see sample work plan for Exercise 3). The common center-point of the two arcs R45 and R50 (= starting point for the actual construction) is determined via polar coordinates (25 mm under 65°, relative to the pole point at $\mathrm{X} 0 / \mathrm{Y} 0$, cf. Section 8.13).

From software version V6.4, a flexibly usable Engraving cycle is available under the Milling menu.

Index

A Contour violation 4040
Absolute 23
Absolute dimensions 21
Address 23
Alarms 17
All parameters 69
Alternative key 11,37 11,37
Angle 22
Approach and return 54,86
Approach starting point 4
Auxiliary pocket 66,7
Auxiliary straight line 106
Back 75
Basic menu 12
Basic operation 10
Benefits of ShopMill 5
Book of tables 26, 27
Border 66,7
Boring 80
C
Calibrating tools 13
Call tool 37
Calling dialogs 36
Carbide metals 24
Cartesian 22
CBN plates 24
Centered insertion 48
Centering 61
Ceramic plates 24
Chaining 15
Chamfer 53
Chamfering contours 98
Circular movements 23
Circular pocket 49
Circumferential groove 99
Clamp the workpiece 103
Clicking direction 32
Close contour 57
CNC ISO 16
Comapre key 33
Contour 15
Contour calculator 7,52
Contour pockets 55
Coolant 28
Copy 75
Copying contours 74
Copying of work plans 14
Corner points 36
Create program 35
Create subroutine 85
Create work plan 43
Cut 9, 75
Cutter radius compensation 37
Cutting path 50,63
Cutting velocity 6, 26
Cycles 16
Deep-hole drilling 78
Depth of cut 41
Depth reference 41
Dialog Accept 56
Dialog selection 55
Diamond tools 24
Dimensioning 36
Direction of rotation 28
Directory 14,35
Drill 25
Drilling 61
Drilling holes 39
Duplo number 28
E
Edit work plan 104
Entry for traversing path 37
Error message 17
Exercises 106
Extended editor 75
F
Face mill 25
Face milling 65
Feedrate per tooth 6, 27
Feedrates 27
Find 75
Fine machining 47
Finishing 88
Finishing allowance 58
Finishing allowance, depth 48
Finishing allowance, plane 48
Finishing symbol 47
Finishing the base 58
Flat panel 11
Full circle 100
Full CNC keyboard. 11
G
Geometry basics 18
Gewindefräsen 82
Graphic work plan 6
Grid 40, 50
Grooves 99
H
Helix 79
Help displays 5, 19
HSS tool table 24
I
In opposite direction 36
INC 40
Incremental 23
Incremental dimension 21
Infeed in the plane 47
Info key 11
Input key 11
Inputting files 14
Insertion strategies 48
Line 40
List of work steps 38
Location lock 29
Long hole milling tool 25
Longitudinal groove 99
M
Machine control panel 11
Machine operator panel 11
Machine zero 20
Machining depth 54
Magazine 17, 31
Magazine list 29
Main element. 68
Managing work plans 14
Manual mode 13
Mark 75
Max. Infeed depth 48
Measure workpiece 32
Messages 17
Milling tools 24
Mirroring 89
Miscellaneous 90
Movements on a straight line 22
Moving work plans 14
N
NC programs 16
NC spot drill 25
Number of teeth 28
Obstacles 61,63
Open contours 52
Optimized return 8, 36
Oscillating insertion 48
Outputting data 14
P
Paste 9,75
Path milling 15, 52
Pitch. 41
Pocket calculator function 11
Points in the work area 20
Polar 22
Polar angle 43, 44
Polar coordinates 43, 82
Pole 43, 44
Position pattern 6, 49
Position repetitions 39
Positioning 40
Positions 39
Potentiometer 104
Production 102
Production time 8
Program header 35
Program management 34,35
Program Manager 14
Programming time 6
R
Radius 53
Radius offset. 53
Rectangular pocket. 47
Rectangular spigot 108
Reference point 20
Remaining surface 48
Rename 75
Renaming work plans 14
Renumber 75
Residual material 8,58, 107
Resistance to wear 24
Return plane 8,36
Rotation 93
Roughing 88
Roughing symbol 47
Rounding 53
Route of cut 50
S
Safety clearance 36
Set the workpiece zero 13,32, 103
Set up machine 13
Shaft milling tool insert 25
Shell end mill 25
Simulation 38, 46
Simulation - details 63
Sinumerik 810D 16
Sister tool 28
Softkeys 12
Speed monitoring 28
Speeds 26
Spiral drill 25
Start depth 54
Start key 104
Stock removal 48, 58, 80
Straight line 45
Subroutine 85, 88
Switchover 36
Synchronism 36
T
Tangent at previous element 56
Technology fundamentals 24
Thread 41
Thread cuttering 81
Times for work plans 106
To the left of the contour 37
To the right of the contour 37
Tool axes 18
Tool break monitoring 28
Tool condition 29
Tool list 17,28
Tool management 28
Tool name 28
Tool types 28, 30
Tool wear list 29
Tools for the examples 30
Top view 63
Toughness 24
Trace 104
Training time 5
Transformations 90
Transisiton element 53
Type of machining 36
V
Volume model 63
W
Width of mesh 47
Work plan graphic 73, 77
Work planes 18
Workpiece zero 20
Z
Zero offset 32
Zero points 17

Index of figures

We are grateful to

AMF
DMG

Verlag Europa-Lehrmittel

Haimer
Iscar
Krupp-Widia
Neumo
Reckermann
Renishaw
Röhm
Sandvik
Seco
for the provision of graphic material on pages $17,18,24,26,27,29,33,81,102$ and 103.

Further information

More details on JobShop are available under: www.siemens.com/jobshop

For detailed technical documentation refer to our Service\&Support portal:
www.siemens.com/automation/support
For contact persons near you refer to: www.siemens.com/automation/partner

Direct online ordering is possible in our mall: www.siemens.com/automation/mall

Siemens AG	Subject to change without prior notice
Industry Sector	6FC5095-0AA50-0BP2
Drive Technologies	
Motion Control	© Siemens AG 2008
Postfach 3180	
91050 Erlangen	
DEUTSCHLAND	
www.siemens.com/sinutrain	

