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Abstract
Crowdsourced big data from Internet users have long been of interest to modern machine learning technologies, and recent 
advances in deep learning have shown great potentials in exploring the hidden information therein. Deep learning relies on 
strong computation power to process the massive amount of data, which is typical offered by modern data centers, so for data 
storage. A cloud built on top of the data center, which seamlessly integrates storage and computation, seems to be an ideal 
platform for learning. It however faces significant challenges from data collection and service distribution over the network, 
given the end users are globally and remotely distributed. In this article, we present edge learning for networked intelligent 
applications, which complements the cloud-centric design to effectively reduce network traffic and inference latency. We 
discuss the key design issues of edge learning, including strategies to push data pre-processing and preliminary learning 
to the network edge, as well as to confine computation to local regions with high accuracy. A prototype demonstrates its 
feasibility with off-the-shelf hardware and confirms its superiority with realworld experiments.
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1  Introduction

With the advances in personal computing devices and the 
deep penetration of mobile broadband networks, the world 
has been well connected. Globally distributed end users and 
terminal devices are now actively engaged in the Internet 
ecosystem for data contribution, rather than consuming data 

only. The data generated and contributed by them, ranging 
from text, voice, to picture and video, are enormous and 
contain invaluable infor-mation worth discovering. Recent 
advances in deep neural networking or deep learning have 
shown great potentials in exploring the hidden information 
therein, e.g., for speech recognition, video classification, 
and online shopping recommendation, to name but a few 
Schmidhuber (2015).

Deep learning relies on strong computation power to pro-
cess the massive amount of data, which is typical offered 
by machine clusters, or more general, modern data cent-
ers. A data center also serves as the rendezvous of the data 
worldwide. A cloud, built on top of data centers, further 
offers virtualized and auto-scaled compu-tation and storage 
resources, providing a seemingly ideal platform for learning. 
For instance, the Deep Learning AMIs (Amazon Machine 
Images) in the AWS cloud provide machine learning prac-
titioners and researchers with the infrastructure and tools 
to accelerate learning at any scale. Amazon EC2 instances 
can be launched with pre-installed popular deep learning 
frameworks, e.g., TensorFlow and Caffe, to train sophisti-
cated AI models.

While the cloud-centric learning works well for the data 
that are available in datacenters, gathering the data to a data 
center however involves transmission over the Internet. 
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The transmission from data sources worldwide unavoid-
ably incurs high traffic and, more importantly, latency that 
challenges such realtime learning applications as face rec-
ognition and human tracking in camera networks. For these 
applications, their raw data can be huge, which takes rela-
tively long time for both data transfer and model training; 
their ultra-low inference latency requirement, say less than 
10 ms, can be hardly met by the cloud-centric paradigm, 
since it can be quite difficult for today’s Internet to sustain 
a latency under 100 ms, even with ultra high-speed link and 
distributed data centers. The highly diversified data sources 
and distribution channels (e.g., WiFi and 4G/5G) further 
complicate the design, deployment, and management among 
the data sources, the learning engine, and the end users.

The concept of edge computing has been recently advo-
cated as a complement to cloud computing. It pushes appli-
cations, data, and computing content away from the central-
ized data centers. Extending services to the network edge, 
a substantial amount of storage, communication, control, 
configuration, measurement, and management can be placed 
close to end users, as shown in Fig. 1. As such, it can signifi-
cantly accelerate the training process by reducing the traffic 
transferred to the cloud and the inference latency for a broad 
spectrum of deep learning applications.

In this article, we present edge learning for networked 
intelligent applications, which complements the cloud-
centric design to effectively reduce the network traffic and 
inference latency for deep learning. We present details on 
how to push data pre-processing and feature extracting to 
the network edge. We have implemented a practical edge 
learning prototype and showcase with an image analytic 

application that recognizes human face with the MS-Celeb-
1M dataset.1 Our experiments show that, with comparable 
learning accuracy as the cloud-centric design, edge learning 
reduces the inference latency and network traffic volume by 
69% and 80%, respectively.

2 � Deep learning over the network

2.1 � Deep learning primer

Neural network approaches, e.g., feed-forward neural net-
works and recurrent neural networks, have attracted signifi-
cant efforts from the research community in recent decades, 
Fig. 2 shows feed-forward neural networks Huang et al. 
(2004), a new emerging generation of machine learning 
technique, which can be divided into the three main lay-
ers: input layer, hidden layer, and output layer. Perceptrons 
are arranged in layers, with the first layer taking in inputs 
and the last layer producing outputs. The hidden layers have 
no connection with the external world, and each percep-
tron in one layer is connected to every perceptron on the 
next layer, so that the information is fed forward from one 
layer to the next. Recent years, multi-layer neural network 
Schmidhuber (2015), namely deep neural networks or deep 
learning, has gained huge success in efficiently solving a 
broad spectrum of problems, such as image recognition, 
computer vision, natural language processing, and speech 
recognition. Deep learning also has been widely used in the 
industry, e.g., Google, Microsoft and Nvidia. In particular, 
Google has adopted deep learning for the speech and image 
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Fig. 1   The overview of edge computing
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Fig. 2   Deep neural networks

1  MS-Celeb-1M is a large scale real world face image dataset to the 
public, encouraging researchers to develop the best face recognition 
techniques to recognize one million human face entities identified 
from Freebase. http://www.mscel​eb.org/.

http://www.msceleb.org/
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recognition capabilities of Google Translate and Google 
Photos, respectively.

Two recent trends have sparked widespread use of deep 
learning: the powerful and efficient parallel computing pro-
vided by GPU computing, and the avail-ability of massive 
amounts of training data. With thou-sands of computational 
cores, GPUs have become the processor of choice for pro-
cessing big data for data scientists. For instance, Google’s 
TensorFlow and DeepMind have exploited GPUs to paral-
lelize deep network training, which enables to train the deep 
neural networks using far larger training sets.

2.2 � Deep learning on cloud

Cloud-based deep learning is a promising practical solution 
to leveraging dynamic streaming data for online training. For 
example, Amazon EC2 with Elastic GPUs2 allows users to 
run deep learning applications in the cloud. The state-of-the-
art cloud-based deep learning system, e.g., face++ for face 
detection,3 forwards massive geologically distributed data to 
data centers, and then delivers the results to users to enable 
good user experience. As mentioned, the deep learning ser-
vice relies on the availability of massive amounts of training 
data. The advances in cloud computing offer the preferred 
choice in this era of big data computation at terabyte and 
even petabyte-scales, which inevitably requires not only 
GPU computing resources but also high network bandwidth.

Putting all the computing tasks on the cloud, especially 
deep learning applications, has been proven to be an viable 
way for data processing in certain scenarios, since the com-
putation power on the cloud outclasses the capability of end 
user devices. However, compared to the fast developing data 
processing speed, the bandwidth of the network has come 
to a standstill. With the growing volume of data generated 
by end users, the speed of data transportation is becoming 
the bottleneck for the cloud-based deep learning paradigm.

We take an image analytic application as an example, 
which can real-time search a specific person in the city with 
the widespread of mobile phones and network cameras. 
The video analytic application not only requires huge GPU 
resources for computation, but also tremendous network 
resources for video transmission. Yet, the cloud-based deep 
learning paradigm is difficult to leverage the wide area cam-
era data, since the videos from the camera are extremely 
time-consuming to be uploaded to the cloud. Even if the data 
are uploaded to the cloud, deep learning takes a long time 
to process such a huge quantity of data, which is not toler-
able for searching a person. Thus, the state-of-the-art cloud 

computing is no longer suitable for video analytics with the 
large data transmission latency and volume.

2.3 � From cloud to edge learning

Network as a bridge between diverse end-user devices and 
cloud computing platforms certainly open new opportuni-
ties. Edge networks, which are directly connected to end-
user devices, play a critical role here in aggregating such 
distributed data and forwarding them to data centers. Edge 
computing refers to the enabling technologies that allow 
computation to be performed at the edge networks, which 
aims to reduce latency by bringing the computation and 
storage resources from cloud infras-tructures to the prox-
imity of data sources, e.g., edge computation offloading 
Tan et al. (2017) Li et al. (2017) Chen et al. (2016) Habak 
et al. (2015), edge caching Drolia et al. (2017) Huang et al. 
(2017), and edge resource allocation Wang et al. (2017). The 
edge computing devices can be any computing or network-
ing resource residing between data sources and cloud-based 
data centers, e.g., a 5G cellular tower between smartphones 
and the cloud infrastructures.

Deep learning has achieved great success in numerous 
applications. Yet, the cloud-base services are still far away 
from satisfaction, which also has attracted significant efforts 
from the network prespective. DeepCham Li et al. (2016) is 
proposed as an adaptive mobile object recognition frame-
work, which introduces an edge master server to coordinate 
with participating mobile users and collabo-ratively train a 
domain-aware adaptation model. A distributed deep neural 
network (DDNN) Teerapittayanon et al. (2017) is proposed 
to partition neural networks across mobile devices, edges, 
and cloud, so as to reduce the latency.

In this article, we propose edge learning as shown in 
Fig.  3, which concerns not only data transmission, but 
rather the life cycle of deep learning, so as to provide ultra-
low latency application services. Edge learning introduces 
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Fig. 3   From cloud learning to edge learning

2  https​://aws.amazo​n.com/ec2/elast​ic-gpus/.
3  https​://www.facep​luspl​us.com/.

https://aws.amazon.com/ec2/elastic-gpus/
https://www.faceplusplus.com/
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computation offloading on edge servers to minimize the 
inference latency, as well as the traffic volume. Instead of 
training the whole deep learning model in the cloud infra-
structures, part of the model training is pushed to the edge 
servers; the extracted features are delivered to cloud server 
for further model training, and the results are returned to end 
users after successfully processing.

With the edge learning paradigm, the request of search-
ing a person can be generated from the cloud and pushed 
to tasks in a target area. Each edge servers can perform the 
request and report the extracted features from videos, so as 
to alleviate bandwidth pressure and minimize the inference 
latency. Also, the cloud platform can determine whether to 
query the raw videos based on extracted features.

3 � The edge learning framework design

In this section, we propose edge learning, a real-world case 
to discuss the challenges and solutions in designing and 
implementing an edge computing system for deep learning 
applications, which is a complementary concept to existing 
cloud infrastructure.

3.1 � Architecture and design

Figure 4 provides a high level description of the edge learn-
ing workflow, which consists of three major framework: end-
user devices, edge learning servers, and cloud-based deep 
learning platform. In the edge learning framework, terminal 
devices, e.g., mobile phones, cameras, and IoT devices, gen-
erate a large volume data, such as images streaming from the 
smart phone camera, and then upload them to edge servers. 
The workflow of our edge learning framework consists two 
phases, including training phase and inference phase.

In the training phase of our framework, a preproc-
essing module is deployed on edge servers. The basic 
idea is feature extractors are pushed from cloud towards 
the edge servers to reduce the traffic volume. The edge 

learning servers gather the massive raw data from end 
users and perform pre-processing with an autoencoder 
Bengio (2009) or a principal component analysis (PCA) 
Wold et al. (1987) algorithm, so as to filter out the noises 
and extract key features. We take the autoencoder as an 
example to illustrate the effectiveness of our edge learning 
framework. The autoencoder is a data compression algo-
rithm, which can abstract visual features such as edges and 
curves from raw images. The weights of the autoencoder 
on pre-processing module have been pre-trained based on 
a large dataset. Unless the applications on cloud infras-
tructures have a very unique problem space and dataset, 
the neural networks to be executed on the cloud will only 
need to detect the similar visual features and modify the 
input layer’s dimension according to the autoencoder’s 
configuration without changing other structure. Thus, we 
can use the pre-trained auto-encoder on edge servers to 
preprocess them and upload the extracted features to the 
cloud-based deep learning platform. The network band-
width demands from end users to cloud are significantly 
reduced, which alleviate the pressure on the network, com-
pared to state-of-the-art cloud computing architecture. As 
Fig. 4 illustrates, the cloud-based deep learning platform, 
equipped with powerful and scalable GPU resources, train 
the deep network based on the extracted features from 
edge servers.

In the inference phase of deep learning applications, 
edge learning framework pushes the trained model on 
edge servers to provide real-time services, which can sig-
nificantly reduce the inference latency. The learning-based 
applications that have an ever stricter latency requirement, 
e.g., automated driving cars and virtual reality, demand 
lightning-fast deep learning inference within tens of milli-
seconds. Edge learning can bringing inference acceleration 
with a ultra-low latency, which offloads inference compu-
tation from the cloud platform to edge servers.

3.2 � Implementation on our testbed

We have implemented edge learning design in a real-
world testbed. Our testbed consists of terminal devices, 
one edge servers, and the cloud-based deep learning plat-
form. In particular, the terminal devices include 4 Google 
Nexus 9 Android Tablets. The edge server works on 2 Dell 
servers (OPTIPLEX 7010), each equipped with an Intel 
Core i7-3770 3.4 GHz quad core CPU, 16 GB 1333 MHz 
DDR3 RAM, and an NVIDIA GeForce GTX 960 GPU. 
The cloud-based deep learning platform consists of one 
high performance customized PC, which is equipped with 
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an Intel Core i7-6850K 3.60 GHz 12-core CPU and Dual 
Nvidia GTX 1080 Ti GPUs.

In the training phase, we emulate the crowdsourced 
mechanism. The end devices upload the images from MS-
Celeb-1M dataset4 with the ground truth of the celebrities 
label in a sequence to the edge server. The edge server 
performs the autoencoder and the principle component 
analysis (PCA) with the received images, and then uploads 
the extracted features to the cloud-based deep learning 
platform. The cloud-based deep learning platform trains 
the deep learning model based on extracted features, which 
is implemented in Keras5 with Tensorflow6 backend.

In the inference phase, our edge learning app running on 
smart phones can timely upload the images captured by the 
device’s camera to edge servers, and identify the celebrities 
based on the pre-trained deep learning architecture, so as to 
provide realtime services to users.

4 � Evaluation

In this section, we now evaluate the effectiveness of the pro-
posed edge learning system. We evaluate the system with two 
different preprocessing schemas on edge servers, e.g., PCA 
and autoencoder, to compare with the basic Keras system, in 
terms of the training time, learning accuracy, and traffic size 
from edge to cloud. We use a public MS-Celeb-1M dataset, 
which is a large training dataset which covers the top 100K 
celebrities. In our experiment, we choose 1,000 celebrities 
with 100,000 images and 1,089 MB volume, where 80% of 
the data are used as a training set and the remaining 20% 
are used as a test set. We run a representative application to 
evaluate the performance of these systems, which recognizes 
human face images with the existing information.

We first investigate the generated traffic uploaded to the 
deep learning cluster. From Fig. 5a, we can figure out that 
performing PCA on the edge can reduce 60%-70% traffic 
transmitted to the cluster, and autoencoder can achieve a 
63%-72% reduction on the traffic size. The benefits come 
from that PCA and autoencoder compress the raw image 
data and reduce the dimensionality of the input data to neu-
ral networks.

Then we set the training epoch number as 15 and explore 
the running time and the accuracy for training a CNN model 
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4  http://www.mscel​eb.org/.
5  https​://keras​.io/.
6  https​://www.tenso​rflow​.org/.
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on the deep learning cluster. As Fig. 5b shows, though the 
accuracy is relatively low when the training data scale is small, 
the accuracy grows fast as the training data scale increases. 
When the data set scale comes to 60,000, our edge learning 
framework has 10% less accuracy than direct learning. Fig. 5c 
shows that our edge learning framework significantly reduces 
the running time by 65%, as compared to the state-of-the-art 
cloud-based deep learning system without edge servers. The 
benefits stem from preprocessing on input data with the com-
pressing functionality of PCA and autoencoder.

Then we increase the training epoch number to 200. 
Fig. 5d shows that edge learning framework with the PCA 
can achieve similar accuracy with the state-of-the-art cloud-
based deep learning system, while autoencoder gets slightly 
lower accuracy. We can see that with more data for the 
model training, our edge learning framework can achieve a 
higher accuracy. When the number of training epoch number 
increases, our edge learning framework can achieve a similar 
accuracy with the state-of-the-art cloud-based deep learning 
system. On the other hand, our approach achieves a huge 
reduction in training time, as shown in Fig. 5e, although 
the overall running time still raises due to the increasing 
epoch number. Fig. 5f illustrates that for both PCA and 
autoencoder, the accuracy will increase when the dimension 
increases. Since the compression rate affects the accuracy, 
this result indicates that there should be a trade-off between 
the accuracy and the compression rate.

5 � Future work

Based on the proposed edge learning framework, the follow-
ing future work can be further pursued.

5.1 � Learning techniques on edge servers

We will implement our edge learning framework for a large 
scale distributed camera network, which consists of hun-
dreds of smart cameras as end devices. The challenge is that 
the large-scale raw data produced by the camera network 
will require sophisticated compressing and learning tech-
niques on the edge to provide cost-effective and low-latency 
data acquisition. Also, the data collected by the cameras 
in close proximity will have spatial and temporal relations, 
which are to be exploited on the edge servers to realize 
regional learning, so as to improve the performance of our 
edge learning framework.

5.2 � Enabling customer‑provided resources for edge 
learning

Driven by the strong demands, industrial pioneers have 
offered commercial cloud platforms for fast deployment of 
deep learning environments, which are known to be powerful 

and effective. Yet the cloud customers are normally pure 
consumers of cloud resources, which means that their local 
resources, though abundant, have been largely ignored. We 
can seamlessly integrate customers’ local resources as spot 
nodes into edge networks, enabling them to sell, buy, and 
utilize these resources. We can also investigate the potentials 
and challenges toward enabling customer-provided resources 
for cloud-based deep learning.

5.3 � Privacy and data collection

Users would be concerned about the privacy risk of sharing 
their personal mobile data with a service server. Thus, a low 
percentage of users will opt out of sharing their personal 
data, unless trustworthy privacy mechanisms are applied. An 
alternative research direction is deploying the trained model 
on the edge nodes to serve users. Meanwhile, anonymized 
data collection is adopted and the system can encourage the 
sharing of mobile data in return for rewarding points.

6 � Conclusion

In this article, we presented a retrospective view of past 
and present edge computing, followed by the very recent 
advances in crowdsourcing and deep learning. We presented 
the design principles of edge computing with deep learning. 
The unique challenges therein were discussed, particularly in 
pushing the tasks to edge servers and designing a framework 
for deep learning. In the case study, we developed an edge 
learning system and illustrate its advantages over state-of-
the-art cloud-based counterpart.
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