YPRESS

PERFORM

"Illw
@

PSoC® Creator™ Component Datasheet

Capacitive Sensing (CapSense® CSD)

3.10

Features CapSense 1
CapSense CSD

® Support for user-defined combinations of button, slider, touchpad, and
proximity capacitive sensors

® Automatic SmartSense™ tuning or manual tuning with integrated PC

CapSense_1

GUI. [CapSense CSD
® High immunity to AC power line noise, EMC noise, and power supply ~Delock shield |+
voltage changes. vref [~

® Optional two scan channels (parallel synchronized), which increases
sensor scan rate.

B Shield electrode support for reliable operation in the presence of water film or droplets.

® Guided sensor and terminal assignments using the CapSense customizer.

General Description

Capacitive Sensing, using a Delta-Sigma Modulator (CapSense CSD) component, is a versatile
and efficient way to measure capacitance in applications such as touch sense buttons, sliders,
touchpad, and proximity detection.

Read the following documents after you read this datasheet. They can be found on the Cypress
Semiconductor web site at www.cypress.com:
B Getting Started with CapSense

® Waterproof Capacitive Sensing — AN2398

When to Use a CapSense Component

Capacitance sensing systems can be used in many applications in place of conventional buttons,
switches, and other controls, even in applications that are exposed to rain or water. Such
applications include automotive, outdoor equipment, ATMs, public access systems, portable
devices such as cell phones and PDAs, and kitchen and bathroom applications.

Cypress Semiconductor Corporation < 198 Champion Court < San Jose, CA 95134-1709 -+ 408-943-2600
Document Number: 001-73645 Rev. ** Revised November 11, 2011

http://www.cypress.com/?rID=2740
http://www.cypress.com/?rID=48787
http://www.cypress.com/

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Input/Output Connections

This section describes the various input and output connections for the CapSense CSD
component. An asterisk (*) in the list of I/Os indicates that the 1/0O may be hidden on the symbol

under the conditions listed in the description of that 1/O.

clock — Input *

Supplies the clock for the CapSense CSD component. The clock input is only visible if the
Enable clock input parameter is selected.

shield — Output *

The shield electrode signal is connected to this output. It is only available if shield electrode is
enabled. Details on shield use are provided in the Component Parameters section.

vref — Output *

The analog reference voltage is connected to this output. It can be used to adjust the shield
signal amplitude. It is only available if the Shield option is enabled in IDAC Sourcing mode.
Vref output should be connected to SIO reference when SIO is used for a shield signal. Details
on vref use are provided in the Functional Description section of this datasheet.

I

gl

I

==# CYPRESS

Page 2 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet

Component Parameters

Capacitive Sensing (CapSense® CSD)

Drag a CapSense CSD component onto your design and double-click it to open the Configure
dialog. This dialog has several tabs to guide you through the process of setting up the CapSense

CSD component.

General Tab

Configure 'CapSense_C5D°

2=

M ame: IEapS ense_1

General]/-'-.l'-.-'idgets Config I/SEan Order]/.ﬁ.dvanced]/Tune Helper]/Built- q p

| Load Settings | Save Settings

Tuning method INDne j
Mumber of channels |1 [default] j
Raw Data Maize Filker IFirst Order IR 144 [default] j

™ wiater proofing and detection

Clack Settings
™ Enable clack inpLk

Scan Clock

BEUS_CLK : 24 MH=

[ratazhest | (]

Apply

Cancel

4

Load Settings/Save Settings

Save Settings is used to save all settings and tuning data configured for a component. This
allows quick duplication in a new project. Load Settings is used to load previously saved

settings.

The stored settings can also be used to import settings and tuning data into the Tuner GUI.

Tuning method

This parameter specifies the tuning method. There are three options:

® Auto (SmartSense) — Provides automatic tuning of the CapSense CSD component.

This is the recommended tuning method for all designs. Firmware algorithms determine the
best tuning parameters continuously at run time. Additional RAM and CPU resources are

required in this mode.

=

‘CYPRESS

r

i
W,

Document Number: 001-73645 Rev. **

Page 3 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Important — Only one CapSense_CSD component in SmartSense mode can be placed onto
the project schematic. SmartSense tuning may be used with an EZI2C communication
component, which is specified on the Tuner Helper tab, to transmit data from the target
device to the Tuner GUI.

® Manual — Allows you to tune the CapSense CSD component manually using the Tuner GUI.

To launch the GUI, right-click on the symbol and select Launch Tuner. For more information
about manual tuning, see the Tuner GUI User Guide section in this datasheet. Manual tuning
requires an EZI2C communication component, which is specified on the Tuner Helper tab, to
transmit data between the target device and the Tuner GUI.

® None (default) — Disables tuning.
All tuning parameters are stored in flash. You should use this option only after all parameters

of the CapSense component are tuned and finalized. If you use this option, Tuner will work in
read-only mode.

Number of channels
This parameter specifies the number of hardware scanning channels implemented.

® 1 (default) — Best used for 1 to 20 sensors. The component can perform one capacitive scan
at a time. One sensor is scanned at a time in succession. Because only a single channel is
implemented in hardware, this option results in the minimum use of hardware resources.

O The AMUX buses are tied together.

Note If all capacitive sensors are allocated on one side of the chip Left (#even ports GPIO
for example: PO[X], P2[X], P4[X]) or Right (#odd ports GPIO for example: P1[X], P3[X],
P5[X]) the AMUX buses do not tie together; one half of the AMUX bus is used.

Note The port pins P15[0-5] have connections to different AMUX buses Left and Right.
P12[X] and P15[6-7] do not have a connection to the AMUX bus. Refer to the TRM for the

selected part.
O The component is capable of scanning 1 to (#GPIO — 1) capacitive sensors.

Q One Cyop external capacitor is required.

® 2 — Best used for over 20 sensors. The component can perform two simultaneous capacitive
scans. Both the Left and Right AMUX buses are used, one for each channel. Right and Left
sensors are scanned two at time (one Right sensor and one Left sensor) in succession. If one
channel has more sensors than the other, the channel with the greater number of sensors will
finish scanning the remaining sensors in its array one at a time until done while the other
channel performs no scans. Two channels doubles the resource used compared to one
channel but it also doubles the sensor scan rate.

O The Left AMUX bus can scan 1 to (#even ports GPIO — 1) capacitive sensors.
O The Right AMUX bus can scan 1 to (#odd ports GPIO — 1) capacitive sensors.

gl

.

"| 4

CYPRESS

Page 4 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Q Two Cuop external capacitors are required, one for each channel.
Q Parallel scans run at the same scan rate.

Raw Data Noise Filter

This parameter selects the raw data filter. Only one filter can be selected and it is applied to all
sensors. You should use a filter to reduce the effect of noise during sensor scans. Details about
the types of filters can be found in Filters in the Functional Description section in this document.

® None — No filter is provided. No filter firmware or SRAM variable overhead is incurred.
® Median — Sorts the last three sensor values in order and returns the middle value.
® Averaging — Returns the simple average of the last three sensor values

® First Order IIR 1/2 — Returns one-half of the most current sensor value added to one-half of
the previous filter value. IIR filters require the lowest firmware and SRAM overhead of all of
the filter types.

® First Order lIR 1/4 (default) — Returns one-fourth of the most current sensor value added to
three-fourths of the previous filter value.

B Jitter — If the most current sensor value is greater than the last sensor value, the previous
filter value is incremented by 1; if it is less, the value is decremented.

® First Order lIR 1/8 — Returns one-eighth of the most current sensor value added to seven-
eighths of the previous filter value.

® First Order lIR 1/16 — Returns one-sixteenth of the most current sensor value added to
fifteen-sixteenths of the previous filter value.

Water proofing and detection

This feature configures the CapSense CSD to support water proofing (disabled by default). This
feature sets the following parameters:

® Enables the Shield output terminal

® Adds a Guard widget

Note If you do not want the Guard widget with water proofing, you can remove it on the
Advanced tab.

Enable clock input

This parameter selects whether the component uses an internal clock or displays an input
terminal for a user-supplied clock connection (disabled by default).

=

4

CYPRESS

PERFORM

Document Number: 001-73645 Rev. ** Page 5 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Note This option is unavailable if the tuning method is Auto (SmartSense) because the
customizer must know the clock frequency to calculate internal data.

Scan Clock

This parameter specifies the internal CapSense component clock frequency. The range of
values is 3 MHz to 24 MHz (12 MHz default). This feature is unavailable if the Enable clock
input is selected.

Note Setting Analog Switch Drive Source to FF Timer, Digital Implementation to FF Timer,
or both, does not support the CapSense CSD clock less than or equal to BUS CLK; therefore,
you should select BUS_CLK.

Widgets Config Tab

H ame: IEapS enze_1

General/]/Widgets Config]fﬁcan Crder]/P.dvanced]/Tune Helper [~ Built 4 #
Ex Add Proximity Sensar | E] Remaove | Fename |

- | Buttons B General
----- f<] Buttan Mumber of Dedicated 51 1
5] Buttoni = Tuning
5] Button2 Finger Threshold 100
=l | Linear Sliders Moize Threshold 20
- I<] LinearSliderd Huysteresiz 10
= || Radial Sliders Debounce]
- <] RadialSlidem Scan Fezolution 10 bits [default]

=) Matrix Buttons

- [<] MatrizButtoni

- Touch Pads

JE TouchPadi

(=) Prowimity Sensars
i F<] ProsimityS ensorl

-----) Generics

D atazhest k. Apply Cancel

4

Definitions for various parameters are provided in the Functional Description section.

— %
==

———""u .,;E
=% CYPRESS

T PERFORM

Page 6 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet

Capacitive Sensing (CapSense® CSD)

Toolbar

The to
= Ad

olbar contains the following commands:

d widget (hot key - Insert) — Adds the selected type of widget to the tree. The widget types

are:

Q

Q

Buttons — A button detects a finger press on a single sensor and provides a single
mechanical button replacement.

Linear Sliders — A linear slider provides an integer value based on interpolating the
location of a finger press on a small number of sensors.

Radial Sliders — A radial slider is similar to a linear slider except that the sensors are
placed in a circle.

Matrix Buttons — A matrix button detects a finger press at the intersection formed by a
row sensor and column sensor. Matrix buttons provide an efficient method of scanning a
large number of buttons.

Touch Pads — A touchpad returns the X and Y coordinates of a finger press within the
touchpad area. A touchpad is made of multiple row and column sensors.

Proximity Sensors — A proximity sensor is optimized to detect the presence of a finger,
hand, or other large object at a large distance from the sensor. This avoids the need for
an actual touch.

Generic Sensors — A generic sensor provides raw data from a single sensor. This allows
you to create unique or advanced sensors not otherwise possible with processed outputs
of the other sensor types.

® Remove widget (hot key - Delete) — Removes the selected widget from the tree.

® Rename (hot key — F2) — Opens a dialog to change the selected widget name. You can also
double-click a widget to open the dialog.

Buttons

Configure 'CapSense_CSD" 7] %]

M ame; |Eap5 enze_1

E5 &dd Butkon | E] Remaove | Fename |

General)/\'r'idgets Config]/Scan Crder]/-P.d\.fanced]/Tune Helper [~ Built 4 #

=~ | Buttons E Tuning
B EEm Finger Threshold 100
------ | Linear Sliders MNoize Threzhaold 20
------ | Radial Sliders Hysteresis 10
------ | Matriz Buttons Debounce 5
oo Touch Pads Scan Rezolution 10 bits [default]
[N
==# CYPRESS

Document Number: 001-73645 Rev. **

Page 7 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Tuning:

Finger Threshold — Defines sensor active threshold resulting in increased or decreased
sensitivity to touches. When the sensor scan value is greater than this threshold the button is
reported as touched. Default value is 100. Valid range of values is [1...255]. Finger
Threshold + Hysteresis cannot be more than 254.

Noise Threshold — Defines sensor noise threshold. Count values above this threshold do not
update the baseline. If the noise threshold is too low, sensor and thermal offsets may not be
accounted for. This can result in false or missed touches. If the noise threshold is too high, a
finger touch may be interpreted as noise and artificially increase the baseline resulting in
missed finger touches. Default value is 20. Valid range of values is [1...255].

Hysteresis — Adds differential hysteresis for sensor active state transitions. If the sensor is
inactive, the difference count must overcome the finger threshold plus hysteresis. If the
sensor is active, the difference count must go below the finger threshold minus hysteresis.
Hysteresis helps to ensure that low-amplitude sensor noise and small finger moves do not
cause cycling of the button state. Default value is 10. Valid range of values is [1...255].
Finger Threshold + Hysteresis cannot be more than 254.

Debounce — Adds a debounce counter to detect the sensor active state transition. For the
sensor to transition from inactive to active, the difference count value must stay above the
finger threshold plus hysteresis for the number of samples specified. Default value is 5.
Debounce ensures that high-frequency high-amplitude noise does not cause false detection
of a pressed button. Valid range of values is [1...255].

Scan Resolution — Defines the scanning resolution. This parameter affects the scanning
time of the sensor within the button widget. The maximum raw count for the scanning
resolution for N bits is 2" — 1. Increasing the resolution improves sensitivity and the signal-to-
noise ratio (SNR) of touch detection but increases scan time. Default value is 10 bits.

o o
CYPRESS

I

Page 8 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Linear Sliders

Configure 'CapSense_CsD" ilil

M arme; IEapS enze_1

General/]/Widgets Config]fﬁcan Crder]/P.dvanced]/Tune Helper [~ Built 4 #
B &dd Linear Slider | Ed remaove | Rename |

| Buttons B General
: Murnber of Senzor Elem 5
{ : APl Rezolution 100

| Radial Sliders Diplexing MHan diplexed [default]

| Matrix Buttans Pozition Moise Filker First Order IR 1./4 [default]

| Touch Pads B Tuning
e Progimity Senzars Finger Threshald 100
e | Generics Moize Threshold 20

Scan Reszolution 10 bits [default]

General:

® Numbers of Sensor Elements — Defines the number of elements within the slider. A good
ratio of API resolution to sensor elements is 20:1. Increasing the ratio of API resolution to
sensor elements too much can result in increased noise on the calculated finger position.
Valid range of values is [2...32]. Default value is 5 elements.

® API Resolution — Defines the slider resolution. The position value will be changed within this
range. Valid range of values is [1...255].

® Diplexing — Non diplexed (default) or Diplexed. Diplexing allows two slider sensors to share
a single device pin, which reduces the total number of pins required for a given number of
slider sensors.

e
R Ve B
o .
— BN —-
- ~ — iy
-]]
Non Diplexed Diplexed

Position Noise Filter — Selects the type of noise filter to perform on position calculations.
Only one filter can be applied for a selected widget. Details about the types of filters can be
found in Filters in the Functional Description section in this document.

O None

Document Number: 001-73645 Rev. ** Page 9 of 87

Capacitive Sensing (CapSense® CSD)

PSoC® Creator™ Component Datasheet

O Median

O Averaging

O First Order IIR 1/2

Q First Order IIR 1/4 (default
Q Jitter

Tuning:

® Finger Threshold — Defines sensor active threshold resulting in increased or decreased
sensitivity to touches. When the sensor scan value is greater than this threshold the button is
reported as touched. Default value is 100. Valid range of values is [1...255].

Noise Threshold — Defines the sensor noise threshold for slider elements. Count values
above this threshold do not update the baseline. If the noise threshold is too low, sensor and
thermal offsets may not be accounted for. This can result in false or missed touches. If the
noise threshold is too high, a finger touch may be interpreted as noise and artificially increase
the baseline resulting in centroid location calculation errors. Count values below this
threshold are not counted in the calculation of the centroid. Default value is 20. Valid range of

values is [1...255].

® Scan Resolution — Defines the scanning resolution. This parameter affects the scanning
time of all sensors within the linear slider widget. The maximum raw count for scanning
resolution for N bits is 2" — 1. Increasing the resolution improves sensitivity and the SNR of
touch detection but increases scan time. Default value is 10 bits.

Radial Slider
ET |EapSense_1
GeneraI/VWidgets Config I/Sn:an Crrder]/-.ﬁ.d'-.fann:ed]/Tune Helper | Builk 4 »

B3 Add Radial Slider | Ed Remove | Renarme |

General:

----- Buttonz El General
----- Linear Shders Mumber af Senzar Elerm 5
= Fadial Sliders AP R esolution 100

Puozition Moise Filker Firzt Qrder IR 1/4 [default]

----- b atriv Buttons El Tuning

----- Touch Pads Finger Threzhald 100

----- Prowimity Senzors Maoize Threshald 20

----- Genencs Scan Rezolution 10 bitz [default)

® Numbers of Sensor Elements — Defines the number of elements within the slider. A good
ratio of API resolution to sensor elements is 20:1. Increasing the ratio of API resolution to

Page 10 of 87

I

S

“YPRESS

RFORM

I

i
W
[®]

Ilﬁ?

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

sensor elements too much can result in increased noise on the resolution calculation. Valid
range of values is [2...32]. Default value is 5 elements.

® API Resolution — Defines the resolution of the slider. The position value will be changed
within this range. Valid range of values is [1...255].

® Position Noise Filter — Selects the type of noise filter to perform on position calculations.
Only one filter may be applied for a selected widget. Details about the types of filters can be
found in Filters in the Functional Description section of this datasheet.

0 None
O Median
O Averaging
O First Order lIR 1/2
Q First Order IIR 1/4 (default)
Q Jitter
Tuning:

® Finger Threshold — Defines the sensor active threshold resulting in increased or decreased
sensitivity to touches. When the sensor scan value is greater than this threshold the button is
reported as touched. Default value is 100.

® Noise Threshold — Defines the sensor noise threshold for slider elements. Count values
above this threshold do not update the baseline. If the noise threshold is too low, sensor and
thermal offsets may not be accounted. This can result in false or missed touches. If the noise
threshold is too high, a finger touch may be interpreted as noise and artificially increase the
baseline resulting in centroid location calculation errors. Count values below this threshold
are not counted in the calculation of the centroid. Default value is 20. Valid range of values is
[1...255].

® Scan Resolution — Defines the scanning resolution. This parameter affects the scanning
time of all sensors within a radial slider widget. The maximum raw count for scanning
resolution for N bits is 2" — 1. Increasing the resolution improves sensitivity and the SNR of
touch detection but increases scan time. Default value is 10 bits.

=

4

CYPRESS

PERFORM

Document Number: 001-73645 Rev. ** Page 11 of 87

Capacitive Sensing (CapSense® CSD)

Matrix Buttons

PSoC® Creator™ Component Datasheet

Configure 'CapSense_CSD" ed |
M ame; |EapSense_1
General)/\'tidgets Config I/Sn:an Crrder]/-.ﬁ.d'-.fann:ed]/Tune Helper | Builk 4 »

B3 Add Matrix Bukkan | El Remove | Renarme |

----- Buttonz E Column Tuning
----- Linear Sliders Colurnn Finger Threshoh 700
----- Radial Shders Column Moize Thresholc 20
= Colurnt Hysteresis 10
Colurmn D ebounce 4]
----- Columni Scan Begolutior 10 bits [default]
----- Frosimity Sensors B General

Murnber of Senzor Bows: 5
Murnber of Senzor Colur 5
E Row Tuning
Raw Finger Threshald 7100
Row Moize Threshold 20
F o Hysteresiz 10
Fow Debounce]
10 bits [default]

----- Fenerncs

Row Scan Resalubion

Tuning:

® Column and Row Finger Threshold — Defines the sensor active threshold for matrix button

Page 12 of 87

columns and rows resulting in increased or decreased sensitivity to touches. When the
sensor scan value is greater than this threshold the button is reported as touched. Default
value is 100. Valid range of values is [1...255]. Finger Threshold + Hysteresis cannot be
more than 254.

Column and Row Noise Threshold — Defines the sensor noise threshold for matrix button
columns and rows. Count values above this threshold do not update the baseline. If the noise
threshold is too low, sensor and thermal offsets may not be accounted for. This can result in
false or missed touches. If the noise threshold is too high, a finger touch may be interpreted
as noise and artificially increase the baseline. This can result in missed finger touches.
Default value is 20. Valid range of values is [1...255].

Column and Row Hysteresis — Adds differential hysteresis for sensor active state
transitions for matrix button columns and rows. If the sensor is inactive, the difference count
must overcome the finger threshold plus hysteresis. If the sensor is active, the difference
count must go below the finger threshold minus hysteresis. Hysteresis helps to ensure that
low-amplitude sensor noise and small finger moves do not cause cycling of the button state.
Default value is 10. Valid range of values is [1...255]. Finger Threshold + Hysteresis cannot
be more than 254.

Column and Row Debounce — Adds a debounce counter for detection of the sensor active
state transition for matrix buttons column or row. For the sensor to transition from inactive to

o
CYPRESS

PERFORM

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

active, the difference count value must stay above the finger threshold plus hysteresis for the
number of samples specified. Default value is 5. Debounce ensures that high-frequency high-
amplitude noise does not cause false detection of a pressed button. Valid range of values is
[1...255].

® Column and Row Scan Resolution — Defines the scanning resolution of matrix button
columns and rows. This parameter affects the scanning time of all sensors within a column or
row of a matrix button widget. The maximum raw count for scanning resolution for N bits is
2"— 1. Increasing the resolution improves sensitivity and the SNR of touch detection but
increases scan time. The column and row scanning resolutions should be the same to get the
same sensitivity level. Default value is 10 bits.

General:

® Number of Sensor Columns and Rows — Defines the number of columns and rows that
form the matrix. Valid range of values is [2...32]. Default value is 5 elements for both columns
and rows.

Touch Pads

Configure 'CapSense_CSD" ed |

M ame; IEapS enze_1

GeneraI/VWidgets Config }/Scan Crder }/.ﬁ.dvanced }/Tune Helper [Built 4 #
B3 Add Touch Pad | El remove | Rename |

----- Buttonz E Column Tuning
----- Linear Sliders Colurnn Finger Threshoh 700
----- Radial Shders Column Moize Thresholc 20
----- b atriv Buttons Columnt Scan Besolutior 10 bits [default]
=+ Touch Pads B General
- <] TouchPadd Murber of Senzor Bow: 5
----- Prowirmity Senzors Mumber of Sensar Calur &
----- Generics Fow AP Resolution 100

Colurnn AP1 A esolution | 100

Puozition Moise Filker First Order IR 1/4 [default]
E Row Tuning

Fow Finger Threzhald 700

FRow Moize Threshold 20

Row Scan Resalubion 10 bits [default]

Tuning:

® Column and Row Finger Threshold — Defines the sensor active threshold for touchpad
columns and rows resulting in increased or decreased sensitivity to touches. When the
sensor scan value is greater than this threshold the touchpad reports the touch position.
Default value is 100. Valid range of values is [1...255].

Document Number: 001-73645 Rev. ** Page 13 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

® Column and Row Noise Threshold — Defines the sensor noise threshold for touchpad
columns and rows. Count values above this threshold do not update the baseline. Count
values below this threshold are not counted in the calculation of the centroid location. If the
noise threshold is too low sensor and thermal offsets may not be accounted for. This can
result in false or missed touches. If the noise threshold is too high a finger touch may be
interpreted as noise and artificially increase the baseline. This can result in centroid
calculation errors. Default value is 20. Valid range of values is [1...255].

® Column and Row Scan Resolution — Defines the scanning resolution of touchpad columns
and rows. This parameter affects the scanning time of all sensors within a column or row of a
touchpad widget. The maximum raw count for scanning resolution for N bits is 2N - 1.
Increasing the resolution improves sensitivity and the SNR of touch detection but increases
scan time. The column and row scanning resolution should be equal to get the same
sensitivity level. Default value is 10 bits.

General:

® Numbers of Sensors Column and Row — Defines the number of columns and rows that
form the touchpad. Valid range of values is [2...32]. Default value is 5 elements for both the
column and row.

® API Resolution Column and Row — Defines the resolution of the touchpad columns and
rows. The finger position values are reported within this range. Valid range of values is
[1...255].

® Position Noise Filter — Adds noise filter to position calculations. Only one filter may be
applied for a selected widget. Details on the types of filters can be found in Filters in the
Functional Description section in this datasheet.

O None

Median

Averaging

First Order lIR 1/2

First Order lIR 1/4 (default)
Jitter

O 00000

I

=
CYPRESS

I

Page 14 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet

Proximity Sensors

Configure ‘CapSense_Csp*

Capacitive Sensing (CapSense® CSD)

2%

M ame: IEapS ense_1

General/l/\'ﬁdgets Config]/-Scan Order]/-.ﬁ.dvanced]/-Tune Helper]fEiuiIt- 1 p
B3 Add Proximity Sensor | E3 Remove | Fenarme |

----- Buttons EH General
----- Linear Sliders Mumber of Dedicated S 1
----- Radial Sliders E Tuning
----- b atrix Buttonz Finger Threzhald 100
----- Touch Padz Moize Threzhold 20
= Prawirnity Senzors Hyzteresis 10
- 2B ProsimityS ensorl Debounce]
----- enerics Scan Resalution 10 bitz [default]
General:

® Number of Dedicated Sensor Elements — Selects the number of dedicated proximity
sensors. These sensor elements are in addition to all of the other sensors used for other
Widgets. Any Widget sensors may be used individually or connected together in parallel to
create proximity sensors.

O 0 - The proximity sensor only scans one or more existing sensors to determine proximity.
No new sensors are allocated for this widget.

Q 1 (default) — Number of dedicated proximity sensors in the system.

Tuning:

® Finger Threshold — Defines the sensor active threshold resulting in increased or decreased
sensitivity to the proximity of a touch. When the sensor scan value is greater than this
threshold the proximity sensor is reported as touched. Default value is 100. Valid range of
values is [1...255]. Finger Threshold + Hysteresis cannot be more than 254.

® Noise Threshold — Defines the sensor noise threshold. Count values above this threshold do
not update the baseline. If the noise threshold is too low, sensor and thermal offsets may not
be accounted for. This can result in false or missed proximity touches. If the noise threshold
is too high, a figure touch may be interpreted as noise and artificially increase the baseline.
This can result in missed finger touches. Valid range of values is [1...255].

Hysteresis — Adds differential hysteresis for the sensor active state transition. If the sensor is
inactive, the difference count must overcome the finger threshold plus hysteresis. If the
sensor is active, the difference count must go below the finger threshold minus hysteresis.
Hysteresis helps to ensure that low amplitude sensor noise and small finger or body moves
do not cause cycling of the proximity sensor state. Valid range of values is [1...255].

Debounce — Adds a debounce counter to detect the sensor active state transition. For the
sensor to transition from inactive to active, the difference count value must stay above the

=

'CYPRESS

PER

3

T

Document Number: 001-73645 Rev. ** Page 15 of 87

Capacitive Sensing (CapSense® CSD)

PSoC® Creator™ Component Datasheet

finger threshold plus hysteresis for the number of samples specified. Debounce ensures that
high-frequency high-amplitude noise does not cause false detection of a proximity event.
Valid range of values is [1...255].

Scan Resolution — Defines the scanning resolution. This parameter affects the scanning

time of a proximity widget. The maximum raw count for scanning resolution for N bits is
2N— 1. Increasing the resolution improves sensitivity and the SNR of touch detection but
increases scan time. It is best to use a higher resolution for proximity detection than what is
used for a typical button to increase detection range. Default value is 10 bits.

Generics

Configure ‘CapSense_Csp’

21

M ane: IEapS enze_1

GeneralXWidgets Config]/-Scan Crder]/-P.dvanced]/Tune Helper]fBuiIt- 4k

B3 Add Generic | El Remove | Renare |

o | Buttons

----- | Lingar Sliders

----- Radial Sliders

----- | Matriz Buttons
..... | Touch Pads

..... F"rn:u:-:il‘l‘lit_'r' Sensars
= Generlcs

Tuning:

E Tuming
Scan Resalutian

10 btz [default)

® Scan Resolution — Defines the scanning resolution. This parameter affects the scanni ’\9
time of a generic widget. The maximum raw count for scanning resolution for N bits is 2
Increasing the resolution improves sensitivity and the SNR of touch detection but increases
scan time. Default value is 10 bits.

Only one tuning option is available for a generic widget because all high-level handling is left to
you to support CapSense sensors and algorithms that do not fit into any of the predefined

widgets.

Page 16 of 87

——_—
= =
S,

=~FCYPR RESS

PERFORM

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Guard Sensor

This special sensor is added or removed using the Advanced tab. The guard sensor does not
report a finger press like other sensors but reports an invalid condition near the other widgets to
suppress their update. For more information about this sensor type and when it should be used,
see Guard Sensor Implementation in the Functional Description section of this datasheet.

Configure "Cap5ense_C5D' d |

M anne: |Eap5 enze_1

GeneraI/VWidgets Config]/-Sn:an Cirder]'/.ﬁ.dvanced]/Tune Helper]fBuiIt- qp

Add GuardSensor | Remove | Rename |
----- Buttons E Tuming
----- Linear Shders Finger Threzhold 100
----- Radial Sliders Moize Threshold 20
----- b atriw Buttonz Hysteresiz 10
----- Touch Padz Debounce]
----- Prosimity Senzors Scan Resolution 10 bits [default)
----- Generics
----- ¥ GuardSensar

Tuning:

® Finger Threshold — Defines sensor active threshold resulting in increased or decreased
sensitivity to touches. When the sensor scan value is greater than this threshold the guard
sensor is reported as touched. Default value is 100. Valid range of values is [1...255]. Finger
Threshold + Hysteresis, cannot be more than 254.

® Noise Threshold — Defines the sensor noise threshold. Count values above this threshold do
not update the baseline. If the noise threshold is too low, sensor and thermal offsets may not
be accounted for. This can result in false or missed touches. If the noise threshold is too high,
a finger touch may be interpreted as noise and artificially increase the baseline. This can
result in missed finger touches. Default value is 20. Valid range is [1...255].

® Hysteresis — Adds the differential hysteresis for sensor active state transition. If the sensor is
inactive, the difference count must overcome the finger threshold plus hysteresis. If the
sensor is active, the difference count must go below the finger threshold minus hysteresis.
Hysteresis helps to ensure that low-amplitude sensor noise and small finger moves do not
cause cycling of the button state. Default value is 10. Valid range of values is [1...255].
Finger Threshold + Hysteresis cannot be more than 254.

Debounce — Adds a debounce counter to detect the sensor active state transition. For the
sensor to transition from inactive to active the difference count value must stay above the
finger threshold plus hysteresis for the number of samples specified. Debounce ensures that
high-frequency high-amplitude noise does not cause false detection of the guard sensor.
Default value is 5. Valid range of values is [1...255].

Document Number: 001-73645 Rev. ** Page 17 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

® Scan Resolution — Defines the scanning resolution. This parameter affects the scanning
time of a guard sensor. The maximum raw count for scanning resolution for N bits is 2N — 1.
Increasing the resolution improves sensitivity and the SNR of touch detection but increases
scan time. Default value is 10 bits.

Scan Order Tab
2| x|

Marne: ICapS enze_]

General]/Widgets Config)/Sl:an Order]/F\dvanced]/Tune Helper I/Built-in] q I
4+ Promote 4 Demote | & Move tochanrel 1 4@ Move to channel 0 |

Scan Analog Switch
Clat Chi Sensor Chl Senzor Dtk

0 ButtonO__BTM LinearShider0_e0__LS 1

1 Buttorn]__BTH LinearShider0_e1_ LS 11

2 ButtonZ_ BTM LinearShiderd_e2_ LS 11
3 RadialSlider0_e0__ RS LinearSlhiderd_e3_ LS 11
4 RadialShider0_e1__RS LinearShder0_ed4_ LS 11
15 FadialSliderd_e2_ RS ‘rosimity S ensord__ PR O, Prosimit 3 d
5
7

FadialSlider0_e3_ RS
FadialSliderd_ed_ RS

lwl LinearsSlider0_en_ LS
[wl Linearslider0_el_ LS
[wl Linearslider0_ez_ LS
[] LinearSlider0_e3__LS
[] LinearSlider0_e4__LS

Sensar scan ktime: 0,723 mS Tokal 5can Time: 5,781 mS

IDAC Walue 200

[ata Sheet | Ok Apply Cancel |

4

Toolbar
The toolbar contains the following commands:

® Promote/Demote (hot key - Add/Subtract) — Moves the selected widget up or down in the
data grid. The whole widget is selected if one or more of its elements are selected.

® Move to Channel 1/Channel 0 (hot key - Shift + 1/0) — Moves the selected widget to another
channel. This option is active only in two-channel designs. The whole widget is selected if
one or more of its elements are selected

Note You should reassign pins if the scanning order changes.

Note A proximity sensor is excluded from the scanning process by default. Its scan must be
started manually at run time because it is typically not scanned at the same time as the other
Sensors.

%
=% CYPRESS

PERFORM

'l

Page 18 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Additional Hot Keys

B Ctrl + A — Select all sensors.

® Delete — Remove all sensors from the complex sensor (applies only to generic and proximity
widgets).

Analog Switch Divider Column

Specifies the Analog Switch Divider value and determines the precharge switch output
frequency for scan slot. Valid range of values is [1...255]. Default value is 11.

This column is hidden if Analog Switch Drive Source is set to Direct or Multiple Analog
Switch Divider is disabled (on Advanced tab).

IDAC Value

Specifies the IDAC value of the selected sensors. This option is active only when IDAC
Sourcing is selected as the Current Source (under the Advanced tab). Valid range is 0 to 255.
Default value is 200.

Sensitivity

Sensitivity is the nominal change in Cs (sensor capacitance) required to activate a sensor. The
valid range of values is [1...100], which corresponds to sensitivity levels: 0.1, 0.2, 0.3, and 10 pF.
The default value is 2. Sensitivity sets the overall sensitivity of the sensors to account for
different thicknesses of overlay material. Thicker material should use a lower sensitivity value.

This option is only available if the Tuning method parameter is set to Auto (SmartSense).

Sensor Scan Time
Shows the approximate scan time required for the selected sensor in typical systems.

When Auto(SmartSense) is selected as the tuning method, the displayed value may be
inaccurate because parameters are changed by the tuning procedure. Unknown is shown when
the CapSense CSD component input clock frequency is unknown.

The following parameters of the CapSense CSD component affect the scan time of sensor:
® Scan Speed
® Resolution

® CapSense CSD clock

Note Scan time, shown here, includes scanning time and estimated setup and preprocessing
time. It is not a distinct value, because it depends on other parts of the design, the compiler
selected, and the device selected (PSoC 3 or PSoC 5).

Document Number: 001-73645 Rev. ** Page 19 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Total Scan Time

Shows total scan time required to scan all of the sensors. This value is the approximate sensor
scan time, so it could be slightly different from the actual value.

When Auto(SmartSense) is selected as the tuning method, the displayed value may be
inaccurate because parameters are changed while tuning. Unknown is shown when the
CapSense CSD component input clock frequency is unknown.

Widget List
Widgets are listed in alternating gray and orange rows in the table. All sensors associated with a
widget share the same color to highlight different widget elements.

Proximity scan sensors can use dedicated proximity sensors, or they can detect proximity from a
combination of dedicated sensors, other sensors, or both. For example, the board may have a
trace that goes all the way around an array of buttons and the proximity sensor may be made up
of the trace and all of the buttons in the array. All of these sensors are scanned at the same time
to detect proximity. A drop down is provided on proximity scan sensors to choose one or more
sensors to scan to detect proximity.

Like proximity sensors, generic sensors can also consist of multiple sensors. A generic sensor
can get data from a dedicated sensor, any other existing sensor, or from multiple sensors. Select
the sensors with the drop down provided.

I

gl

% CYPRESS

I

Page 20 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Advanced Tab

Mame: ICapSense_ﬂ
General I/Widgets Config }/Scan Order}’/ndvanced]/Tune Helper }/Built—in] q b
Analog Switch Drive Source IUDB Timer [default] ‘I Current Source I|DAE Sirking j
Multiple Analog Switch Divider IEnabIed 'I |DC range |255 L&, [default] j
Ainalog Switch Divider I'I'I Mumber of Bleed Resistors, channel O I‘I VI
Murnber of Bleed Fesistors, channel 1 |1 vl
Scan Speed Mormal (default) =
PRS EMI Reduction | Enabled 16 bits, full speed [default]ﬂ Digital Resource Implementation, IUDB Tirnes [default] 'l
channel 0
Digital Rezource Implementation, IUDE Timer [default) 'l
Senzor &uto Reset IDisabIed [default] 'I channel 1
‘widget Resolution IB-hit [defaul] vI [~ Valtage reference source
& el 1 024V (default
Megative Moige Threshold |2D b (detaul]
) Wdae |B4 1.024%
Low B azeline Reset |5
Shield IEnabIed vI
Inactive Sensor Connection IGround [default] 'I
Guard Sensar IDisabIed [default] 'I

Datashest | ak I Apply Cancel

4

Analog Switch Drive Source

This parameter specifies the source of the analog switch divider, which determines the rate at
which the sensors are switched to and from the modulation capacitor Cyop. Implementing the
timer in the Fixed Function Timer blocks (FF Timer) results in minimal UDB resources used.

® Direct — Does not use FF Timer or UDB resources but limits device maximum clock rate to
the same as the analog switch rate. Not recommended in most designs.

® UDB Timer (default) — Uses UDB resources

® FF Timer — Does not use UDB resources

Multiple Analog Switch Divider

This parameter defines the Analog Switch Divider usage. If enabled, each scan slot uses a
dedicated Analog Switch Divider value, otherwise, sensors use only one Analog Switch Divider
value.

This feature is unavailable if Analog Switch Drive Source is set to Direct.

CYPRESS

PERFORM

Document Number: 001-73645 Rev. ** Page 21 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Analog Switch Divider

This parameter specifies the value of the analog switch divider and determines the precharge
switch output frequency. Valid range of values is [1...255]. Default value is 11.

This feature is unavailable if Analog Switch Drive Source is set to Direct or Multiple Analog
Switch Divider is Enabled.

The sensors are continuously switched to and from the modulation capacitor Cyop at the speed
of the precharge clock. The Analog Switch Divider divides the CapSense CSD clock to
generate the precharge clock. When the divider value is decreased, the sensors are switched
faster and the raw counts increase and vice versa.

Scan Speed

This parameter specifies the CapSense CSD component digital logic clock frequency, which
determines the scan time of sensors. Slower scanning speeds take longer but provide the
advantages of improved SNR and better immunity to power supply and temperature changes.

® Slow — Divides the component input clock by 16
® Normal (default) — Divides the component input clock by 8
® Fast — Divides the component input clock by 4

® Very Fast — Divides the component input clock by 2

Table 1. Scanning Time in gs versus Scan Speed and Resolution

Resolution, Scanning speed
bits Very Fast Fast Normal Slow

8 58 80 122 208

9 80 122 208 377
10 122 208 377 718

11 208 377 718 1400
12 377 718 1400 2770
13 718 1400 2770 5500
14 1400 2770 5500 10950
15 2770 5500 10950 21880
16 5500 10950 21880 43720

Note Table 1 scan time is an estimate based on the following settings. Master Clock and CPU
Clock = 48 MHz, CapSense CSD clock = 24 MHz, number of channels = 1. Scanning time was
measured as the time interval of one sensor scan. This time includes sensor setup time, sample

I

e

~—=# CYPRESS

PERFOR

I

Page 22 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

conversion interval, and data processing time. These values can be used to estimate scanning
speed for other clock rates and additional sensors by scaling the provided values linearly.

Values shown here may differ from those estimated by the customizer scan time because of the
approximation of the setup and preprocessing time made by the customizer.

PRS EMI Reduction

This parameter specifies whether the Psuedo Random Sequence (PRS) generator will be used
to generate the analog precharge clock. Use of the PRS is recommended as it spreads the
spectrum of the CapSense analog switching frequency, reducing EMI emissions and sensitivity.
The PRS clock source is provided by the Analog Switch Divider settings. If PRS EMI reduction
is not enabled, a single frequency will be used, resulting in increased emissions of the
fundamental frequency and harmonics.

® Disabled
® Enabled 8 bits — 8-bit provides better SNR but the shorter repeat period increases EMI.

® Enabled 16 bits, full speed (default) — 16 bit provides a lower SNR but superior EMI
reduction

® Enabled 16 bits, 1/4 full speed — Requires a 4 times faster clock to obtain the same PRS
clock output as Enable 16 bits, full speed

Sensor Auto Reset

This parameter enables auto reset, which causes the baseline to always update regardless of
whether the difference counts are above or below the noise threshold. When auto reset is
disabled, the baseline only updates when difference counts are within the plus/minus noise
threshold (the noise threshold is mirrored). You should leave this parameter Disabled unless
you have problems with sensors permanently turning on when the raw count suddenly rises
without anything touching the sensor.

® Enabled — Auto reset ensures that the baseline is always updated, avoiding missed button
presses and stuck buttons, but limits the maximum length of time a button will report as
pressed. This setting limits the maximum time duration of the sensor (typical values are 5 to
10 seconds), but it prevents the sensors from permanently turning on when the raw count
suddenly rises without anything touching the sensor. This sudden rise can be caused by a
large power supply voltage fluctuation, a high energy RF noise source, or a very quick
temperature change.

Disabled (default) — Abnormal system conditions can cause the baseline to stop updating by
continuously exceeding the noise threshold. This can result in missed button presses or stuck
buttons. The benefit is that a button can continue to report its pressed state indefinitely. You
may need to provide an application-dependent method of determining stuck or unresponsive
buttons.

Document Number: 001-73645 Rev. ** Page 23 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Autarazet Deabled

Baseline

= Rawcounts

Diflere nce

Autoreset Enabled Time

Time

Widget Resolution

This parameter specifies the signal resolution that the widget reports. 8 bits (1 byte) is the default
option and should be used for the vast majority of applications. If widget values exceed the 8-bit
range, the system is too sensitive and should be tuned to move the nominal value to
approximately mid range (~128). Slider and Touch Pad widgets that require high accuracy can
benefit from 16-bit resolution. 16-bit resolution increases linearity by avoiding rounding errors
possible with 8 bits but at the expense of additional SRAM usage of two bytes per sensor.

B 8-bit (1 byte) — default
® 16-bit (2 bytes)

Negative Noise Threshold

This parameter specifies the negative difference between the raw count and baseline levels for
baseline resetting to the raw count level. It is used when the Sensor Auto Reset parameter is
Enabled.

Low Baseline Reset

This parameter defines the number of samples with raw counts less than baseline needed to
make the baseline snap down to the raw count level.

 /
i

=7 CYPRESS

PERF

Page 24 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Shield

This parameter specifies if the shield electrode output, which is used to remove the effects of
water droplets and water films, is enabled or disabled. For more information about shield
electrode usage, see the Shield Electrode Use and Restrictions section.

® Disabled (default)
® Enabled

Inactive Sensor Connection
This parameter defines the default sensor connection for all sensors not being actively scanned

® Ground (default) — Use this for the vast majority of applications as it reduces noise on the
actively scanned sensors.

® Hi-Z Analog — Leaves the inactive sensors at Hi-Z.

B Shield — Provides the shield waveform to all unscanned sensors. The amplitude of the shield
signal is equal to Vppio. Provides increased water proofing and lower noise when used with
the shield electrode.

Guard Sensor

This parameter enables the guard sensor, which helps detect water drops in an application that
requires water proofing. This feature is enabled automatically if Water Proofing and detection
(under the General tab) is selected. For more information about the Guard sensor, see Guard
Sensor Implementation in the Functional Description section of this datasheet.

® Disabled (default)
® Enabled

Current Source

CapSense CSD requires a precision current source for detecting touch on the sensors. IDAC
Sinking and IDAC Sourcing require the use of a hardware IDAC on the PSoC device. External
Resistor uses a user-supplied resistor on the PCB rather than an IDAC and is useful in IDAC-
constrained applications.

IDAC Sourcing (default) — The IDAC sources the current into the modulation capacitor Cyop.
The analog switches are configured to alternate between the modulation capacitor Cyop and
GND, providing a sink for the current. IDAC Sourcing is recommended for most designs
because it provides the greatest signal-to-noise ratio of the three methods, but it may require
an additional VDAC resource to set the Vref level that the other modes do not require.

=

4

CYPRESS

PERFORM

Document Number: 001-73645 Rev. ** Page 25 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

® IDAC Sinking — The IDAC sinks current from the modulation capacitor Cyop. The analog
switches are configured to alternate between Vpp and the modulation capacitor Cyop
providing a source for the current. This works well in most designs, although SNR is generally
not as high as the IDAC Sourcing mode.

® External Resistor — This functions the same as the IDAC sinking configuration except the
IDAC is replaced with a bleed resistor to ground, Rb. The bleed resistor is connected
between the modulation capacitor, Cuwop and a GPIO. The GPIO is configured to Open-Drain
Drives Low drive mode allowing Cyop to be discharged through Rb. This mode requires the
fewest analog resources and should only be used when needed because of resource
constraints. Because this mode does not require an IDAC or VDAC it can result in the lowest
power configuration of the component. This is useful if power is a critical system
consideration.

IDAC range

This parameter specifies the IDAC range of the Current Source. This parameter is disabled if
Current Source is set to External Resistor. The default is the best choice for almost all
CapSense designs. The lower and higher current ranges are generally only used with non-touch-
capacitive based sensors.

= 32uA
= 255 uA (default)
= 2.04mA

Number of Bleed Resistors, channel 0/channel 1

This parameter specifies the number of bleed resistors. The maximum number of bleed resistors
is three per channel. This feature is unavailable if the Current Source is set to IDAC Source or
IDAC Sink. Multiple bleed resistors are supported to allow different currents for up to three
groups of sensors, which aids in system tuning. Most designs with a similar sensor size require
only one bleed resistor.

Digital Resource Implementation, channel 0/channel 1

This parameter specifies the type of resources to be used for implementing the digital portion of
CapSense, which includes a timer and a counter. For most designs this parameter should not be
changed because it is designed to provide maximum implementation flexibility.

® UDB Timer (default) — Most flexible implementation but uses valuable UDB resources

® FF Timer — FF Timer implementation frees UDB resources but does not support Scan Speed
= Very Fast.

o o
CYPRESS

I

Page 26 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Voltage Reference Source

This parameter specifies the type and level of the reference source voltage. It is best to have as
high a reference voltage as possible for IDAC Sourcing mode and as low a reference voltage as
possible for IDAC Sinking or External Resistor Current Source modes.

® Vref 1.024V (default) — Best for IDAC sink mode

® Vdac — Best for IDAC source mode. Allows adjusting the reference voltage using a Voltage
DAC to maximize the available range. Reference source VDAC is only available when
Current Source is set to IDAC Sourcing and requires a VDAC device resource. As the
reference voltage is increased so is sensitivity but the influence on the shield electrode is
decreased.

When VDAC is selected, the CapSense buffer is not used because it is designed for low voltage.
This causes Cyop to be charged to Vref from VDAC on start up. The amount of time required to
charge Cyop to Vref may cause baseline initialization fails. Typically, double baseline
initialization solves the problem.

Tune Helper Tab

Configure ‘CapSense_CSD’* e |
M ame: IEapSensej
General]/Widgets Zonfig]/-Scan Crder]/-.ﬁ.dvanced/Tune Helper]/Built-in] 4 B

" Enable Tune Helper

Inztance name for EzI2C component. |EZIZC

Pleaze open EzI2C component customizer and
assign these properties:

Sub-address size: I'IE YI bit

[ata Sheet | Ok Spply | Cancel I

4

Enable Tune Helper

This parameter adds functions to support easier communication with the Tuner GUI. Select this
feature if you are going to use the Tuner GUI. If this option is not selected, the communication
functions are still provided but do nothing. Therefore, when tuning is complete or the tuning
method is changed you do not need to remove these functions. Disabled by default.

Document Number: 001-73645 Rev. ** Page 27 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Instance name for EZI2C component

This parameter defines the instance name for the EZI2C component in your design to be used
for communication with the Tuner GUI.

Note There is no real time Design Rule Check to ensure the actual instance name matches the
instance name entered here. You must make sure they match. If the names do not match, build
errors will be generated during the project build because of misnamed APlIs.

For more information about how to use Tuner GUI, refer to the Tuner GUI User Guide section of
this datasheet.

Resources
The following table shows CapSense CSD analog and pins resources.
Analog resources
CapSense Pins (per External
Resources VIDAC Comparator Buffers 1/0)
Channels: 1 0 1 1 2 + Shield +
Current Mode: External resistor SensorsNumber
Channels: 2 0 2 2 4 + Shield +
Current Mode: External resistor SensorsNumber
Channels: 1 1 1 1 1 + Shield +
Current Mode: IDAC sinking SensorsNumber
Channels: 2 2 2 2 2 + Shield +
Current Mode: IDAC sinking SensorsNumber
Channels: 1 2 1 1 1 + Shield +
Current Mode: IDAC sorcing SensorsNumber
Vref: VDAC
Channels: 2 4 2 2 2 + Shield +
Current Mode: IDAC sorcing SensorsNumber
Vref: VDAC

The following table shows CapSense CSD digital resources (only scanning and sleep APIs are
included to Flash and RAM usage).

I

S

“YPRESS

RFORM

4

i
'“Ilﬁ?
|

Page 28 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

API Memory
Digital resources (Bytes)

Macro Status Control | Counter
Description Datapaths | cells | Registers | Registers 7 Interrupt Flash RAM

Channels: 1 4 19 0 1 1 1 1270 11

Current Mode:
External resistor

Channels: 2 6 31 0 1 1 2 2262 17

Current Mode:
External resistor

Channels: 1 4 19 0 1 1 1 1345 10

Current Mode:
IDAC sinking

Channels: 2 6 31 0 1 1 2 2446 15

Current Mode:
IDAC sinking

Channels: 1 4 18 0 1 1 1 1452 11

Current Mode:
IDAC sourcing

Vref: VDAC

Channels: 2 6 30 0 1 1 2 2656 17

Current Mode:
IDAC sourcing

Vref: VDAC

The following table shows CapSense CSD high-level API resources.

API Memory (Bytes)

Project Description Flash RAM
Widgets type: Buttons 1197 22
Count: 4
Widgets type: Nondiplexed linear slider 1866 25
Size: 5 sensors
Widgets type: Diplexed linear slider 2304 25
Size: 5 sensors
Widgets type: Matrix buttons 1526 55
Size: 5x5 sensors
Widgets type: Radial slider 1704 25
Size: 5 sensors

Document Number: 001-73645 Rev. ** Page 29 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

API Memory (Bytes)

Project Description Flash RAM

Widgets type: Touch pad 2289 48
Size: 5x5 sensors

Tuner GUI User Guide

This section includes instructions and information that will help you use the CapSense Tuner.

The CapSense Tuner assists in tuning the CapSense component to the specific environment of
the system when in manual tuning mode. It can also display the tuning values (read only) and
performance when the component is in SmartSense mode. No tuning is supported when the
component is in no tuning mode as all parameters are stored in flash and are read only for
minimum SRAM usage.

CapSense Tuning Process
The following is the typical process for using and tuning a CapSense component:

Create a Design in PSoC Creator
Refer to the PSoC Creator Help as needed.

Place and Configure an EZI2C Component
1. Drag an EZI2C component from the Component Catalog onto your design.

EZI2C_1 ﬁ::g
EZI2C Slave]
sdal- —< <

sclf-

100 kHz
2. Double-click it to open the Configure dialog.

3. Change the parameters as follows, and click OK to close the dialog.

QO Sub-address size must be 16 bit.

O The instance name must match the name used on the CapSense CSD Configure dialog,
under the Tune Helper tab, for the generated APIs to function.

o o
CYPRESS

I

Page 30 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet

Name: EZI2C 1
Basic Configuration | Built-n | qb

I2C Bus speed: [400 v] kbps
Numberof addresses: [1]
Primary slave address: l4_
Secondary slave address: Iﬁ_
Sub-address size: 16 | bit

12C pins connected to: |Any e I

I~ Enable wakeup from the Sleep Mode

The “12C Bus speed” value can be set
from 50 kbps to 1 Mbps. Actual speed
may differ.

If you choose two addresses, address
detection will be perfformed in software
and not hardware. Therefore the "Enable
wakeup from the Sleep Mode™ option
becomes invalid.

The “Enable wakeup from the Sleep
Mode™ option is valid if the SDA and SCL
signals are connected to 12C0 or 12C1
ports.

Data Sheet | | 0K I Apply Cancel

Place and Configure the CapSense Component

Capacitive Sensing (CapSense® CSD)

1. Drag a CapSense_CSD component from the Component Catalog onto your design.

CapSense_1
CapSense CSD|

2. Double-click it to open the Configure dialog.

3. Change CapSense CSD parameters as required for your application. Select Tuning method
as Manual or Auto (SmartSense). Click OK to close the dialog and save the selected

parameters.

— __N
—

J

=4 CYPRESS

PERFORM

Document Number: 001-73645 Rev. **

Page 31 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

21|
Mame: ICapSense_'l
General]/Widgets Config I/Scan Crder]/F\dvanced I/Tune Helper I/Built-in] 4k
,_3 Load Settings H Save Jethings
Tuning method IManuaI j
Mumber of channels |1 [default) j
Faw Data MNoige Filter INDnE j

™ wiater procfing and detection

Clock Seftings
[Enable clock Nt
Scan Clock

[atazhest |] I Apply Cancel

Selecting Auto (SmartSense)

Auto (SmartSense) allows you to tune the CapSense CSD component to the specifics of the
system automatically. CapSense CSD parameters are computed at run time by firmware.
Additional RAM and CPU time are used in this mode. Auto (SmartSense) eliminates the error-
prone and repetitive process of manually tuning the CapSense CSD component parameters to
ensure proper system operation. Selecting Auto (SmartSense) tunes the following CSD
parameters:

Parameter Calculation
Finger Threshold Calculated continuously during sensor scanning.
Noise Threshold Calculated continuously during sensor scanning.
IDAC Value Calculated once on CapSense CSD startup.
Analog Switch Divider Calculated once on CapSense CSD startup.
Scan Resolution Calculated once on CapSense CSD startup.

s o
=% CYPRESS

"PERFORM

f

Page 32 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

The following are restrictions of hardware parameters for Auto (SmartSense) tuning method:

Parameter Required Setting
Scan Clock Clock must be internal (Enable clock input in General tab cleared).
Current Source IDAC Sourcing.
PRS EMI Reduction Enabled 16 bits.
Scan Speed Normal
Vref 1.024 V

Configure your CapSense Component
1. Add widgets on the Widgets Config tab and configure them.

Marme: |CapSense_1
General)/\'ﬁdgets Config]/Scan Cirder]/.ﬁ.dvanced]/Tune Helper]/Built-in] 4 [
fdd Buttan | E3 remave | Rename |
=l Buttans EH Tuning
- Finger Threshald 100
] Buttoml Maise Threshold 20
=1+ | Linear Sliders Hysteresiz 10
fel LinearSliderD Debounce 5
----- | Fadial Sliders Scan Bezolutian 10 bits [default)
----- | Matriz Buttons
----- | Touch Pads
----- | Prosimity Sensors
----- | Generics

[ratashest | 0k Aoy Cancel

==
= =

"CYPRESS

=
=—

—_—
PERFORM

Document Number: 001-73645 Rev. ** Page 33 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

2. On the Tune Helper tab: The EZI2C component instance name must be entered and the
Enable Tune Helper check box must be selected.

Configure ‘CapSense_CSD"

Marmne: |Eap5ense_‘|

General }/Widgets Config l/Scan Crder I/Advanced)/Tune Helper |: Builk-in

¥ Enable Tune Helper

Inztance name for Ezl2C component;

Please open EzI2C component customizer and
aszzign these properties:

Sub-address size: |1B vl bit

Add Code

® Add Tuner initialization and communication code to the projects main.c file. Example main.c
file:

void main ()

{
CYGlobalIntEnable;
CapSense_ 1 TunerStart();
while (1)
{

CapSense 1 TunerComm() ;

}

Build the Design and Program the PSoC Device
Refer to PSoC Creator Help as needed.

Launch the Tuner application

® Right-click the CapSense CSD component icon and select Launch Tuner from the context
menu.

The Tuner application opens.

o
CYPRESS

--F‘ ER :’_; N-M

Page 34 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Ir, CapSense_CSD Tuner for ‘CapSense_1". Tuning method: Manual. - |E||1|
File Debug ‘alidation Tools n| Help

Tif, - Start E.d Skop ||m Configuration | B Enable Logging

Tuning]/Graphing]/Validation]/Logging]

|#] Reset Widgets Layout ButtonD__BTH
Max Value: 255

Button1 LinearSlidesD

250
0 1 2 3 4 200

150

100

50

a
SHR I
E " Revert Parameters |

IDAC Walu 200 =
Finger Thn 100

Husteresiz 10
Nehanee B

Analog Sw 12
|dach ange| fz_ 28504
Scanspee Mormal

ak Cancel

_ Speed: Desired Packet Size: 52 (0x34)

Configure Communication Parameters
1. Click Configuration to open the Tuner Communication dialog.

Tuner Communication Setup e |
Paorts: — Port Configuration
12C Yoltage: I 33 j
12C Speed: [400kH: =l
I2C Address: [4
Sub-address: |2-Bytes ﬂ
— Port Infarmation
FPGA Wersion: 1.15
PSal Yersion: 2.5
P Wersion: 2.95
(]9 | Cancel
Y

2. Set the communication parameters and click OK.

=
= =

==# CYPRESS

PERFORM

Document Number: 001-73645 Rev. ** Page 35 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Important: Properties must be identical to those in the EZI2C component: 12C Bus Speed, 12C
Address, Sub-address = 2 bytes.

Start Tuning

® Click Start on the tuning GUI. All of the CapSense elements start to show their values.

Edit CapSense Parameter Values

® Edit a parameter value for one of the elements, and it is automatically applied after you press
the [Enter] key or move to another option. The GUI continues to show the scanning data, but
it is now altered based on the application of the updated parameter. Refer to the Tuner GUI
Interface section later in this datasheet.

Fr. CapSense_CSD Tuner for ‘CapSense_1'. Tuning method: Manual. - |EI|1|

File Debug Validaton Tools n| Help

Start |ﬂ Stop | k= d Configuration EEnable Logging
Tuning]/Graphing]/\u'alidah'on]/Logging]
Reset Widgets Layout Button0__BTN
- - Max Value: 255
Button1 LinearSlides(250
0 1 2 3 4 200

150

100

50

IDAC Walu 200 =
Finger Thi 100

Moise Thr 20 —
Hysteresi: 10
Dehoamnee B
Analog Sw 12

0K Cancel

Running Speed: 83 pkisfs Desired Packet Size: 52 (0x34)

Repeat as Needed

® Repeat steps as needed until tuning is complete and the CapSense component gives reliable
touch sensor results.

Close the Tuner application

B Click OK and the parameters are written back to the CapSense CSD instance. The Tuner
application dialog closes.

—
<

== CYPRESS

PERFORM

f

Page 36 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

CapSense Validation Process

The validation mechanism determines whether the board has been sufficiently tuned. The typical
process for using the Tuner Validation feature to validate a CapSense design follows.

Start Validation

1. The Tuner and hardware must be ready before you start the scanning process. See the
previous section, CapSense Tuning Process, to prepare the system for scanning.

2. On the Validation tab, click Acquire Validation Data. Values will begin to appear for all
CapSense elements.

Fr. CapSense_CSD Tuner for ‘CapSense_1'. Tuning method: Manual. - |E||1|
File Debug ‘alidation Tools H]| Help

Skart |ﬂ Skop | k- Configuration |EEnabIe Logging
Tuning]/Graphing)/\\'alidation]/Logging]

Validation Status: NOTSTARTED | | Acquire Validation Data || ¢ How do 1 fix this | |2 Advanced || ShRs | Cross-taks
ButtonD Buttonl LinearSlhidedd
Acquire Yalidation Data
0 1 2 B3 4

You should use a calibrated slug rather than a simple finger.

ak Cancel

Running Speed: 86 pktsfs Desired Packet Size: 52 {(0x34)

Document Number: 001-73645 Rev. ** Page 37 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Stimulation Sensors

Fr. CapSense_CSD Tuner for ‘CapSense_1". Tuning method: Manual.
File Debug Walidation Tools
Skark |ﬂ Stop E Enable Logging

Tuning]/Graphing)/\l'alidation]/Logging]
Walidation Status: EXECUTING | Acquire Validation Data

=1oi x|
il Help

3 Configuration

¢, Howe doo T Ficx this |ff'ndvanced ||SNR5 |Cross-talks

ButtonD Button1 LinearShded

0 1 2 3 4
16

Scanning sensor: Button0__ BTN,

ak | Cancel |

Running Speed: 111 pktsfs Desired Packet Size: 52 {(0x34)

You will be prompted to apply a finger on each sensor. Each time you are prompted to press a
CapSense element, a flashing red arrow pointing to the target appears on the layout, with the

text PRESS HERE. Text appears beneath the Tuner that will guide you through the validation
process.

® To start scanning for the current sensor, press any key on the keyboard.

It is recommended that you use a calibrated slug instead of a finger press to stimulate the
Sensors.

— %
=

== CYPRESS

T PERFORM

Document Number: 001-73645 Rev. **

Page 38 of 87

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Validation Displays

Fr. CapSense_CSD Tuner for ‘CapSense_1". Tuning method: Manual. - |EI|1|
File Debug Walidation Tools n| Help
Skark ﬂ Stop | Configuration |-': Enable Logging

~ Tuning |: GraphingJ’ yalidation]/Logging]
_| P acquire Yalidation Data |_LHDW do I fix this |f{"ndvanced ||SNR5 |Cross-talks

ButtonD Button1 LinearShded

Cle)T DD

You should use a calibrated slug rather than a simple finger.

Running Speed: 112 pktsfs Desired Packet Size: 52 {(0x34)

ak Cancel

SNR warnings appear as follows:

Flashing red highlights surround any CapSense sensor that has an SNR less than the
Sufficient Value.

Flashing yellow highlights surround any CapSense sensor that has an SNR between the
Sufficient and Optimal Values.

Solid green highlights surround any CapSense sensor that has an SNR above the Optimal
Value.

Crosstalk effects warnings appear as follows:

Individual Crosstalk Check. During the validation process, the software monitors all
elements other than the one you have been told to stimulate. If an element exhibits difference
counts that exceed the Crosstalk Threshold Percentage (when not directly stimulated), a
crosstalk warning is generated. This is displayed by a flashing line between the element that
exhibits the unwanted counts and the element that was stimulated.

Worst Case Crosstalk Check. As each of the individual crosstalk checks are made, the
software keeps a record of each difference count measurement. At the completion of the
process, worst-case crosstalk estimates are made.

Document Number: 001-73645 Rev. ** Page 39 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

For each sensor, a sum appears, which is the number of the crosstalk effects equal to the
Worst Case Crosstalk Sensor Count. The largest crosstalk value is the first element in the
sum, the second largest is the second, and so on. For example: if you have the following
crosstalk counts (1,5,3,2,4,1,1,0) and the Worst Case Crosstalk Sensor Count is 2, then

the Worst Case Crosstalk computation will be (5 + 4 =9).

If this value exceeds the Worst Case Crosstalk Threshold, it is flagged with a flashing “C”
character in the middle of the sensor display.

Validation Results
If the validation process uncovers failures, a Validation Report will be displayed. This report

contains the following information:
® Any SNR values less than the Optimal Value
® Any SNR values less than Sufficient Value

® Any signals with a worst-case crosstalk failure, and, if so, the crosstalk number

You can also open the Validation Report by clicking the How do | fix this button on the
Validation tab.

I

gl

% CYPRESS

I

Page 40 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Manual Tuning Process

Enable the Shield electrode if needed 1
in the design
|
1
Set the switching frequency
(Scan Clock and Analog Switch ~—— 2
Divider)

Set the Scan Speed to "Fast’ H——— 3

Enable the PRS according to design
requirement and set the PRS E— 4
resolution (8 or 16 bits)

l

Open the Tuner GUI to tune the 5
CapSense CSD

l

Set the resolution to 10 bits as the 6
initial value
Set the IDAC to make the raw counts to 7

80% of the full scale

l

Monitor the raw counts in the Tuner 8
with and without finger touch

Yes

(Is SNR > 5)

l

Set Finger Threshold to 75% of peak
No finger response. 15

Add firmware filters. Choose the type of
filter based on the noise type presentin——— 10
the system

Set the hysteresis to 15% of peak 16
finger response

l

Set the noise threshold to 40% of the 17
peak finger response

l

Set the Debounce as per design 18
requirement

Is SNR > 5) & (Does Scan Time
meets design requirement)

Adjust the resolution and scan time
such that the SNR is above 5:1and —— 12
scan time within the spec

Is SNR > 5) & (Does Scan Time
meets design requirement)

Check the layout for improvement (refer

to Getting Started with CapSenseandif | _— 14

possible reduce the overlay thickness or
increase the button size

Document Number: 001-73645 Rev. ** Page 41 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

1.

The Shield is enabled or disabled depending on the design requirements. A shield is useful in
applications where the sensor overlay may become wet (see AN2398), to shield against EMI,
or to mitigate excessively high Cp. The shield signal must be connected to an SIO pin if the
current mode is set to IDAC Sourcing and the reference voltage is Vref 1.024V. Otherwise,
the shield can be routed to any pin. For more information, see the Shield Electrode section
later in this document.

. The switching frequency of each capacitive sensor should be set such that the sensor

completely charges and discharges. Scan Clock and Analog Switch Divider determine the
frequency at which the sensor capacitor is switched. Scan Clock is the primary clock source
for the CapSense component. The Analog Switch Divider (prescaler) divides the scan clock
to produce the switching clock used to charge and discharge each sensor. If the sensor is not
charging and discharging completely, reduce the switching frequency by increasing the
Analog Switch Divider.

To test whether sensors are charging and discharging completely, probe each sensor pin.
Note that, while observing the voltage on the sensor capacitor with an oscilloscope probe, the
probe capacitance is added to the sensor parasitic capacitance. Using probes in 10x mode
reduces the capacitance of the probes. Use an FET input probe, if available. Make sure that
the sensor is charging and discharging completely; if not, increase the Analog Switch
Divider value in the component configuration. Because this parameter cannot be changed in
the Tuner GUI, it must be set in the component configuration. Therefore, when this value is
changed in the component Configure dialog, the project should be built again and
programmed to the device.

The Scan Speed initial value is set to Fast. It can be changed later if the signal-to-noise ratio
(SNR) or the scan time requirements are not met.

. The PRS is enabled by default to reduce the effects of external EMI on CapSense as well as

to reduce sensor scan emissions. It is enabled in designs prone to EMI effects. The
resolution of the PRS is set to 8 or 16 bits depending on the scan time. For longer scan
times, use PRS 16; for shorter scan times, use PRS 8.

5. Open the CapSense Tuner GUI.

Set the resolution to 10.

Increasing the resolution and scan speed give better sensitivity but they increase the scan
time. Therefore, there is a trade off between scan time and sensitivity.

The resolution of 10 is a good starting value in the tuning process, although lower resolutions
of 8 and 9 can also be used as initial values if the design has thin overlays less than 1 mm.

Change the IDAC value in the GUI until the raw counts reach 80 percent of the full scale
value. The full scale value is 2*Resolution. Note that decreasing the IDAC value increases
the raw counts and vice versa. If it is not possible to achieve 80 percent with any of the IDAC
values, then you should change the IDAC range in the component configuration. The IDAC
range cannot be changed in the Tuner GUI; it should be changed in the component
Configure dialog. When the value is changed in the Configure dialog, you should build the
project again and program it to the device.

gl

.

"| 4

CYPRESS

Page 42 of 87 Document Number: 001-73645 Rev. **

http://www.cypress.com/?rID=2740

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

8.

9.

Monitor the raw counts with and without a finger present. Note the peak-to-peak noise and
peak finger response. Calculate the SNR as,

Peak Finger Response

SNR =
Peak to Peak Noise when
finger is not present

For a good CapSense design, the SNR should be above 5. Check whether the total scan
time fits the design. If the SNR requirement is not met, add firmware filters. See the Filters
section and select the type of filter that suits the noise present in the system. For most
designs, start with the First Order IIR 1/4 filter because it requires minimal SRAM and gives a
fast response.

10.Check the SNR as in step 8. Also, check whether the scan time requirement for the design is

11

met. The tuned values inside the GUI are updated in the component when the OK button is
clicked on the GUI. The scan time approximation is calculated by the component based on
the parameter settings. The scan time is shown in the scan order tab. If the design has many
sensors that have high resolution and low scan speed then the total scan time for all the
sensors will result in a long scan interval for the sensors.

If the SNR is below 5, increase the resolution, the scan speed, or both. By doing this, the
scan time increases. Therefore, the resolution and scan time both should be tuned to achieve
the SNR above 5 and keep the scan time below design spec. Recheck the SNR and scan. If
you cannot achieve the SNR of 5:1 and keep the scan time within the design spec, look for
improvements in the PCB layout or overlay design. Refer to Getting Started with CapSense
for PCB design guidelines. You can also reduce the overlay thickness or increase the button
diameter, which increases the sensitivity.

.After SNR of 5:1 is achieved, set the following firmware parameters.

O The Finger Threshold is the parameter the firmware uses as the threshold to determine
whether the sensor is active or not. Set this parameter to 75 percent of the peak finger
response.

U

Set the hysteresis to 15 percent of peak finger response.

U

Set the noise threshold to 40 percent of the finger response.

U

Debouncing ensures that high-frequency, high-amplitude noise such as an ESD event
does not cause a button activation. The debouncing value should be a small number such
as 1 or 2, because the spike or high frequency noise that can trigger a false button touch
will not be as wide as two scan lengths. In fast scanning designs, the debounce value
should be set to a higher value such as 5.

4

=

CYPRESS

PERFORM

Document Number: 001-73645 Rev. ** Page 43 of 87

http://www.cypress.com/?rID=48787

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Tuner GUI Interface

General Interface

Fr. CapSense_CSD Tuner for ‘CapSense_1". Tuning method: Manual. - |E||1|
File Debug ‘alidation Tools H]| Help
Tif, - Start Skop ||m Configuration | EEnable Logging
Tuning]/Graphing]/Validation]/Logging]
] Reset Widgets Layout Button0__BTN
- - Max Value: 255
Button1 LinearSlidedd 250
0 1 2 B3 4 200
150
100
50
a
SNR I
/
; Revert Parameters
IDAC Yalu 200 -~

Finger Thn 100

Moize Threfel] —
Hysteresiz 10

Dehones B
Analog Sw 12
IdacRange fz_ 2550,
Scanspee Mormal

-

ak Cancel

_ Speed: Desired Packet Size: 52 (0x34)

The top panel buttons are as follows:

® Start (or main menu item Debug > Start) — Starts reading and displaying data from the chip.
Also starts graphing and logging if configured.

® Stop (or main menu item Debug > Stop) — Stops reading and displaying data from the chip.

® Configuration (or main menu item Debug > Configuration) — Opens the Communication
Configuration dialog.

® Enable Logging (or main menu item Debug > Start) — Enables logging of data received
from the device to a log file.

Main Menu:

® File > Settings > Load Settings from File — Imports settings from an XML tuning file and
loads all data into the Tuner.

® File > Help — Opens help file.
Other items duplicate the functionality of top and bottom panel buttons.

lﬂ

-

=4 CYPRESS

TPERFORM

Page 44 of 87 Document Number: 001-73645 Rev. **

f

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Tabs:

® Tuning — Displays all of the component widgets as configured on a workspace. This allows
you to arrange the widgets similarly to the way they appear on the physical PCB or
enclosure. This tab is used for tuning widget parameters and visualizing widgets data and
states.

® Graphing — Displays detailed individual widget data on charts.

® Logging — Provides logging data functionality and debugging features.
Bottom panel buttons:

® OK (or main menu item File > Apply Changes and Close) — Commits the current values of
parameters to the CapSense component instance and exits the GUI.

® Cancel (or main menu item File > Exit) — Exits the GUI without committing the values of
parameters to the component instance.

Tuning Tab
Fr. CapSense_CSD Tuner for ‘CapSense_1'. Tuning method: Manual. - |EI|1|
File Debug Validaton Tools n| Help
Start |ﬂ Stop | k= d Configuration | EEnable Logging

Tuning]/Graphing]/\u'alidah'on]/Logging]

Reset Widgets Layout

LinearSlider) €2 1S
Max Value: 255

Buttonl Buttonl

250

48 0 1 3 4 200

150
hret

100

IDAC Walu 200

Finger Thi 100

Moise Thr 20

Scan Res: 10 bits (default)

Analog Sw 12

Running Speed: 107 pktsfs Desired Packet Size: 52 (0x34)

® Widgets schematic — Contains a graphical representation of all of the configured widgets. If
a widget is composed of more than one sensor the individual sensors may be selected for
detailed analysis. Every widget is movable within the schematic.

Document Number: 001-73645 Rev. ** Page 45 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

® Reset Widget Layout button — Moves widgets to default positions within the schematic.

® Bar graph - Displays signal values for the selected sensor.

O The maximum scale of the detailed view bar graph can be adjusted by double-clicking on
Max Value label. Valid range is between 1 and 255, default is 255.

O The current finger turn on threshold is displayed as a green line across the bar graph.
Q The current finger turn off threshold is displayed as a red line across the bar graph.
O The current noise threshold is displayed as a yellow line across the bar graph.
® SNR - The signal-to-noise ratio is computed in real time for the selected sensor. SNR values

below 5 are poor and colored red, 5 to 10 are marginal and yellow, and greater than 10 is
good and colored green. SNR value is calculated based on previously received data.

® Revert Parameters button — Resets the parameters to their initial values and sends those
values to the chip. Initial values are what were displayed when the GUI was launched.

® Sensor properties — Displays the properties for the selected sensor based on the widget
type. It is located on the right side panel.

® General CapSense properties (read only) — Displays global properties for the CapSense
CSD component that cannot be changed at run time. These are for reference only. This
information is located on the bottom of the right-side panel.

® Widget controls context menu (this functionality applies only to the layout of widget
controls in GUI):
O Send To Back — Sends widget control to the back of the view.
O Bring To Front — Brings widget control to the front of the view.

O Rotate Clockwise 90 — Rotates widget control 90 degrees clockwise. (Only for Linear
Sliders)

O Rotate Counter Clockwise 90 — Rotates widget control 90 degrees counter clockwise.
(Only for Linear Sliders)

U

Flip Sensors — Reverses the order of the sensors. (Only for Linear and Radial Sliders)

O Flip Columns Sensors — Reverses the order of the Columns sensors. (Only for Touch
Pads and Matrix Buttons)

O Flip Row Sensors — Reverses the order of the Row sensors. (Only for Touch Pads and
Matrix Buttons)

O Exchange Columns and Rows — Columns sensors become rows and rows sensors
become columns. (Only for Touch Pads and Matrix Buttons)

gl

CYPRESS

.

"| 4

Page 46 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet

Graphing Tab

Fr. CapSense_CSD Tuner for ‘CapSense_1'. Tuning method: Manual.

File Debug Validaton Tools

Capacitive Sensing (CapSense® CSD)

=lal x|
idl belp

Start |ﬁ Stop

ked Configuration

E Enable Logging

Tuning)/Graphing]/'u'alidah'on]/Logging]

Chedk Al Clear Al

360
340 EI--- O Line_T_rSIid:rg =
o b ouch Position
= 320 EID LinearSliderl_e0_
W 300 Froer b e O Raw
% I e T T TRTRRES A e | IR I O Baseline
o e0 oo oy e O Signal
~ 91 v O On/Off Status
L 240 =-[0 LinearSliderl_e1_
Do eI O Faw
o 200 - L - e e || I O Baseline
i et ¥ ey 'ﬁr O Sial
----- O On/Off Status
A B LinearSliderl_e2_
160 ﬂmmw*"'**”” 1| [Raw
140 .o S ISSSNS USSR WSS I v | TR S [Fl== EBaseline
|,-’ [F== Signal
120 l,"l ----- On/Cff Status
W 100 | =2+ LinearSiderD_e3_
E-. 50 | O Raw .
w 1 0 1 O Baseline
60 |] Signal
40 \ e e O On/Off Status—
=+ LinearSliderl_e4_
20 ‘ O Raw
0 | N S S I —— | A O Baseline
a 50 100 150 200 250 300 350 400 450 50 S O Signal Llj
0K | Cancel |
Running Speed: 96 pktsfs Desired Packet Size: 52 (0x34)

® Chart area — Displays charts for selected items from the tree view. If you right-click the menu
item Export to .jpg, you can generate a screenshot of the chart area that is saved as a .jpg

file.

Tree view — Gives all combinations of data for widgets and sensors which can be shown on

the chart and logged to a file if the logging feature is enabled. The On/Off Status data value
can only be logged, it cannot be shown on a chart.

=P/ CYPRESS

PERFORM

Document Number: 001-73645 Rev. **

Page 47 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Validation Tab
Fl'. CapSense_CSD Tuner for ‘CapSense_1". Tuning method: Manual. - |EI|1|

File Debug Walidation Tools n| Help
m Configuration |-': Enable Logging

Tuning]/Graphing)/\l'alidation]/Logging]
Validation Status: NOT STARTED | P acquire Yalidation Data CHew do T Fi this | 5 Advanced ||SNR5 |Cross-talks
ButtonD Button1 LinearShded

1 Skark Stop

0 1 2 3 4

You should use a calibrated slug rather than a simple finger.

ak | Cancel |

_ Speed: Desired Packet Size: 52 (0x34)

The Validation tab is for diagnostics only. The tab contains the widget layout view, but without
the ability to edit the layout. This layout portion is used as a display only.

® Widgets schematic — Contains a graphical representation of all of the configured widgets.
Top panel controls:

® Validation Status label — Shows validation status. It has following messages:

O VALIDATION NOT STARTED - The validation process has not been run since the last
time the design was changed.

O PASS - The full validation process has been completed without failures.

O FAIL — The validation process has uncovered failures; a validation report will be
displayed.

® Acquire Validation Data button (or main menu item Validation > Acquire Validation Data)
— Starts validation process. This process guides you through a sequence of operations in
which you are prompted to apply your finger to each sensor in sequence.

® How do I fix this button — Opens a report with a list of suggested fixes for sensors that did
not pass validation. This button is available only if the validation process was previously
completed and design errors were found.

\
Y

==7# CYPRESS

PERFORM

Page 48 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

® Advanced button (or main menu item Validation > Validation Advanced properties) —
Opens the properties window for validation properties (for more information, see Validation
Advanced Properties).

® SNRs button — In the widget schematic, turns the SNR display on or off (for more information,
see Validation Displays).

® Crosstalks button — In the widget, schematic turns crosstalk display on or off (for more
information, see Validation Displays).

Logging Tab
Fr. CapSense_CSD Tuner for ‘CapSense_1'. Tuning method: Manual. - |E||1|
File Debug ‘alidation Tools H‘]| Help
Skart ﬂ Skop | i Configuration | E:Enable Logging

Tuning]/Graphing]/Validation)/Logging]
Laog File Settings

Path:

| =

[Append new data to the existing file

Log duration I 1 3: min

—Debugging

Connect returned 0

ReadD ata returned 0. Address 0. Buffer: 184 034

ReadD ata returned 0. Address 0. Buffer: 1 84 034 FFFFO5D 064 096 099 0ACOBE OSEOGD 0G4095097 0ACOBEOSD 000000001 193800000000
ReadD ata returned 0. Address 0. Buffer: 1 84 034 FFFFOSD 064 096 099 0AC0OBEOSEOGD 0G4095097 0ACOBEOSD 000000001 193800000000
kel ata returned 0. Address 1. Buffer: 4

ReadD ata returned 0. Address 0. Buffer: 1 84 034 FFFFOSE 064 097 098 0AD0OBEOSEOGD 0G4095097 0ACOBEOSD 000000001 193800000000
Wwiorking ...

Address: |0 Data: |2 Catinect | Disconnectl Fead | frite |

ak | Cancel |

Running Speed: 93 pktsfs Desired Packet Size: 52 (0x34)

® Data that will be logged is indicated by selecting check boxes on the Tree View of the
Graphing tab.

® Path - Defines log file path (file extension is .csv).

® Append new data to existing file check box — If selected, new data is appended to an
existing file. If not selected, old data is erased from the file and replaced with the new data.

® Log duration — Defines log duration in minutes. Valid range is between 1 and 480; the
default is 255.

Document Number: 001-73645 Rev. ** Page 49 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Debugging group

This functionality exists only for debugging purposes. It helps you investigate Tuner
communication errors.

Debugging log window — Displays communication commands that the Tuner executes. All
communication errors are logged here. If the Tuner was successfully started, only the first
few communication commands are logged.

Connect — Connects to the PSoC device.
Disconnect — Disconnects from the PSoC device.
Address — Specifies the PSoC device address.

Read — Reads data from the PSoC device. The address field defines the address in the
buffer. The data field defines number of bytes to read.

Write — Writes data to the PSoC device. The address field defines the address in the buffer.
The data field defines the data to write.

Validation Advanced Properties

¥alidation Advanced Properties x|

Optimal SHA Value |?—
Sufficient SNR Value E
Crozgtalk. Threshold Percentage [%)] Im
“Wwiorgt Caze Crosztalk Threshold Percentage [%] Im
Warst Caze Crosstalk Sensor Count m

—alidation Besult File Settingz

[Enable Yalidation Logging
Fath:

| _

¥ | Auto &ppend Measurement Humber

Ok

Optimal SNR Value — Defines optimal SNR value. Valid range is between 0 and 100; default
is 7.

Sufficient SNR Value — Defines sufficient SNR value. Valid range is between 0 and 100;
default is 5.

P/ CYPRESS

PERFORMN

Page 50 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

® Crosstalk Threshold Percentage (%)— Defines crosstalk threshold value as a percentage of
the finger threshold for each sensor. Valid range is between 0 and 100 percent; default is 20.

® Worst Case Crosstalk Threshold Percentage (%) — Defines worst case crosstalk threshold
value as a percentage of worst case crosstalk. Valid range is between 0 and 100 percent;
default is 30.

® Worst Case Crosstalk Sensor Count — Defines the number of sensors used to compute
worst case crosstalk; Valid range is between 0 and 100; default is 2.

® Enable Validation Logging — Enables logging of validation data.
® Path - Defines log file path for validation data (file name extension is .csv).

® Auto Append Measurement Number check box — If selected, after each start of the
validation process, the log file name will be incremented (for example “validation001.csv”)
and data will be saved in a new file.

Save/Load Settings Feature

The Tuner GUI can also be opened as standalone application. In this case the you must use the
Save and Load Settings feature of the CapSense CSD component Tuner GUI.

1. Click the Save Settings button in the customizer.

Configure 'CapSense_CSD" 2] =]

M arne:

General]/'-.-'-.-'idgets onfig]/Scan Order]/.ﬁ.dvan-:ed]fTune Helper]/Built- q b
| Load Settings | Save Settings

Tuning method IManuaI j
Murnber af channels I‘I [defauilt] j
Faw Data Moize Filker IFirst Order IR 1./4 [default) j

2. In the Save File dialog box, specify name of the file and location where it will be saved.
3. Open the Tuner window and click File > Settings > Load Settings from File.

'Fr. CapSense_CSD Tuner for 'CapSense_1". Tuning method: Manual.
File Debug Valdation Tools

Settings

fpply Changes and Close Chrl+F4 —Imparts settings From a ¥ML tuning File
Exit

Button Buttonl LinearShided

Document Number: 001-73645 Rev. ** Page 51 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

4. In the File Open dialog box, point to the previously saved file with the component settings.
Settings will automatically load into the Tuner.

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software. The following table provides an overview of each function. The subsequent sections
cover each function in more detail.

By default, PSoC Creator assigns the instance name “CapSense_1" to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“CapSense.”

General APIs

These are the general CapSense API functions that place the component into operation or halt
operation:

Function Description
CapSense_Start() Preferred method to start the component. Initializes registers and enables
active mode power template bits of the subcomponents used within
CapSense.
CapSense_Stop() Disables component interrupts, and calls CapSense_ClearSensors() to reset

all sensors to an inactive state.

CapSense_Sleep() Prepares the component for the device entering a low-power mode. Disables
Active mode power template bits of the sub components used within
CapSense, saves nonretention registers, and resets all sensors to an inactive

state.
CapSense_Wakeup() Restores CapSense configuration and nonretention register values after the
device wake from a low power mode sleep mode.
CapSense_|Init() Initializes the default CapSense configuration provided with the customizer.
CapSense_Enable() Enables the Active mode power template bits of the subcomponents used

within CapSense.

CapSense_SaveConfig() Saves the configuration of CapSense nonretention registers. Resets all
sensors to an inactive state.

CapSense_RestoreConfig() Restores CapSense configuration and nonretention register values.

Page 52 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

void CapSense_Start(void)

Description: This is the preferred method to begin component operation. CapSense_Start() calls the
CapSense_Init() function, and then calls the CapSense_Enable() function. Initializes
registers and starts the CSD method of the CapSense component. Resets all sensors to an
inactive state. Enables interrupts for sensors scanning. When SmartSense tuning mode is
selected, the tuning procedure is applied for all sensors. The CapSense_Start() routine must
be called before any other API routines.

Parameters: None
Return Value: None

Side Effects: None

void CapSense_Stop(void)

Description: Stops the sensor scanning, disables component interrupts, and resets all sensors to an
inactive state. Disables Active mode power template bits for the subcomponents used within
CapSense.

Parameters: None
Return Value: None

Side Effects: This function should be called after all scanning is completed.

void CapSense_Sleep(void)

Description: This is the preferred method to prepare the component for device low-power modes.
Disables Active mode power template bits for the subcomponents used within CapSense.
Calls CapSense_SaveConfig() function to save customer configuration of CapSense
nonretention registers and resets all sensors to an inactive state.

Parameters: None
Return Value: None

Side Effects: This function should be called after scans are completed.

This function does not put pins used by CapSense component into lowest power
consumption state. To change a pin’s drive mode, use the functions described in the

Pins APls section.

Document Number: 001-73645 Rev. ** Page 53 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

void CapSense_Wakeup(void)

Description:

Parameters:
Return Value:

Side Effects:

Restores the CapSense configuration and nonretention register values. Restores the
enabled state of the component by setting Active mode power template bits for the
subcomponents used within CapSense.

None
None

This function does not restore pins used by the CapSense component to the state they
were before.

void CapSense_Init(void)

Description:

Parameters:
Return Value:
Side Effects:

Initializes the default CapSense configuration provided by the customizer that defines
component operation. Resets all sensors to an inactive state.

None
None

None

void CapSense_Enable(void)

Description:
Parameters:
Return Value:
Side Effects:

Enables Active mode power template bits for the subcomponents used within CapSense.
None
None

None

void CapSense_SaveConfig(void)

Description:

Parameters:
Return Value:

Side Effects:

Page 54 of 87

Saves the configuration of CapSense nonretention registers. Resets all sensors to an
inactive state.

None
None

This function should be called after scanning is complete.

This function does not put pins used by CapSense component into lowest power
consumption state. To change a pin’s drive mode, use the functions described in the

Pins APls section

CYPRESS

PERFORM

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

void CapSense_RestoreConfig(void)
Description: Restores CapSense configuration and nonretention registers.
Parameters: None
Return Value: None

Side Effects: This function should be called after scanning is complete.

This function does not restore pins used by the CapSense component to the state they
were in before.

Scanning Specific APIs

These API functions are used to implement CapSense sensor scanning.

Function Description

CapSense_ScanSensor() Sets scan settings and starts scanning a sensor or group of combined
sensors on each channel.

CapSense_ScanEnabledWidgets() | The preferred scanning method. Scans all of the enabled widgets.

CapSense_IsBusy() Returns the status of sensor scanning.

CapSense_SetScanSlotSettings() | Sets the scan settings of the selected scan slot (sensor or pair of sensors).

CapSense_ClearSensors() Resets all sensors to the nonsampling state.

CapSense_EnableSensor() Configures the selected sensor to be scanned during the next scanning
cycle.

CapSense_DisableSensor() Disables the selected sensor so it is not scanned in the next scanning cycle.

CapSense_ReadSensorRaw() Returns sensor raw data from the CapSense_SensorResult[] array.

CapSense_SetRBleed() Sets the pin to use for the bleed resistor (Rb) connection if multiple bleed

resistors are used.

void CapSense_ScanSensor(uint8 sensor)

Description: Sets scan settings and starts scanning a sensor or pair of sensors on each channel. If two
channels are configured, two sensors can be scanned at the same time. After scanning is
complete, the isr copies the measured sensor raw data to the global raw sensor array. Use
of the isr ensures this function is nonblocking. Each sensor has a unique number within the
sensor array. This number is assigned by the CapSense customizer in sequence.

Parameters: uint8 sensor: Sensor number
Return Value: None

Side Effects: None

Document Number: 001-73645 Rev. ** Page 55 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

void CapSense_ScanEnabledWidgets(void)

Description: This is the preferred method to scan all of the enabled widgets. Starts scanning a sensor or
pair of sensors within the enabled widgets. The isr continues scanning sensors until all
enabled widgets are scanned. Use of the isr ensures this function is nonblocking. All widgets
are enabled by default except proximity widgets. Proximity widgets must be manually
enabled as their long scan time is incompatible with the fast response required of other
widget types.

Parameters: None
Return Value: None

Side Effects: If no widgets are enabled the function call has no effect.

uint8 CapSense_IsBusy (void)
Description: Returns the status of sensor scanning.
Parameters: None
Return Value: uint8: Returns the state of scanning. ‘1’ — scanning in progress, ‘0’ — scanning completed.
Side Effects: None

void CapSense_SetScanSlotSettings(uint8 slot)

Description: Sets the scan settings provided in the customizer or wizard of the selected scan slot (sensor
or pair of sensors for a two-channel design). The scan settings provide an IDAC value (for
IDAC configurations) for every sensor, as well as resolution. The resolution is the same for
all sensors within a widget.

Parameters: uint8 slot: Scan slot number
Return Value: None

Side Effects: None

void CapSense_ClearSensors(void)

Description: Resets all sensors to the nonsampling state by sequentially disconnecting all sensors from
the Analog MUX Bus and connecting them to the inactive state.

Parameters: None
Return Value: None

Side Effects: None

CYPRESS

PERFORM

Page 56 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

void CapSense_EnableSensor(uint8 sensor)

Description:

Parameters:
Return Value:

Side Effects:

Configures the selected sensor to be scanned during the next measurement cycle. The
corresponding pins are set to Analog HI-Z mode and connected to the Analog Mux Bus. This
also affects the comparator output.

uint8 sensor: Sensor number
None

None

void CapSense_DisableSensor(uint8 sensor)

Description:

Parameters:
Return Value:
Side Effects:

Disables the selected sensor. The corresponding pins are disconnected from the Analog
Mux Bus and put into the inactive state.

uint8 sensor: Sensor number
None

None

uint16 CapSense_ReadSensorRaw(uint8 sensor)

Description:

Parameters:
Return Value:
Side Effects:

Returns sensor raw data from the global CapSense_SensorResult[] array. Each scan
sensor has a unique number within the sensor array. This number is assigned by the
CapSense customizer in sequence. Raw data can be used to perform calculations outside of
the CapSense provided framework.

uint8 sensor: Sensor number
uint16: Current raw data value

None

Document Number: 001-73645 Rev. ** Page 57 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

void CapSense_SetRBleed(uint8 rbleed)

Description:

Parameters:
Return Value:
Side Effects:

Sets the pin to use for the bleed resistor (Rb) connection. This function can be called at run
time to select the current Rb pin setting from those defined in the customizer. The function
overwrites the component parameter setting. This function is available only if Current
Source is set to External Resistor.

This function is effective when some sensors need to be scanned with different bleed resistor
values. For example, regular buttons can be scanned with a lower value of bleed resistor.
The proximity detector can be scanned less often with a larger bleed resistor to maximize
proximity detection distance. This function can be used in conjunction with the
CapSense_ScanSensor() function.

uint8 rbleed: Ordered number for bleed resistor defined in CapSense customizer.
None

The number of bleed resistors is restricted by three. The function does not check for an out-
of-range number.

High-Level APIs

These API functions are used to work with raw data for sensor widgets. The raw data is retrieved
from scanned sensors and converted to on/off for buttons, position for sliders, or X and Y
coordinates for touchpads.

Function Description

CapSense_InitializeSensorBaseline() Loads the CapSense_SensorBaseline[sensor] array element with an

initial value by scanning the selected sensor.

CapSense_InitializeEnabledBaselines() | Loads the CapSense_SensorBaseline[] array with initial values by

scanning enabled sensors only.
This function is available only for two-channel designs.

CapSense_InitializeAllBaselines() Loads the CapSense_SensorBaseline[] array with initial values by

scanning all sensors.

CapSense_UpdateSensorBaseline() The historical count value, calculated independently for each sensor, is

called the sensor's baseline. This baseline updated uses a low-pass filter
with k = 256.

CapSense_UpdateEnabledBaselines Checks the CapSense_SensorEnableMask[]array and calls the

CapSense_UpdateSensorBaseline() function to update the baselines for
enabled sensors.

CapSense_EnableWidget() Enables all sensor elements in a widget for the scanning process.
CapSense_DisableWidget() Disables all sensor elements in a widget from the scanning process.
CapSense_ChecklsWidgetActive() Compares the selected of widget to the CapSense_Signal[] array to

determine if it has a finger press.

CapSense_ChecklsAnyWidgetActive() | Uses the CapSense_ChecklsWidgetActive() function to find if any widget

of the CapSense CSD component is in active state.

Page 58 of 87

CYPRESS

PERFORM

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Function Description

CapSense_GetCentroidPos() Checks the CapSense_SensorSignal[] array for a finger press in a linear

slider and returns the position.

CapSense_GetRadialCentroidPos() Checks the CapSense_SensorSignal[] array for a finger press in a radial

slider widget and returns the position.

CapSense_GetTouchCentroidPos() If a finger is present, this function calculates the X and Y position of the

finger by calculating the centroids within the touchpad.

CapSense_GetMatrixButtonPos() If a finger is present, this function calculates the row and column position

of the finger on the matrix buttons.

void CapSense_InitializeSensorBaseline(uint8 sensor)

Description:

Parameters:
Return Value:

Side Effects:

Loads the CapSense_SensorBaseline[sensor] array element with an initial value by scanning
the selected sensor (one-channel design) or pair of sensors (two-channel design). The raw
count value is copied into the baseline array for each sensor. The raw data filters are
initialized if enabled.

uint8 sensor: Sensor number
None

None

void CapSense_lInitializeEnabledBaselines(void)

Description:

Parameters:
Return Value:
Side Effects:

Scans all enabled widgets. The raw count values are copied into the
CapSense_SensorBaseline[] array for all sensors enabled in scanning process. Initializes
CapSense_SensorBaseline[] with zero values for sensors disabled from the scanning
process. The raw data filters are initialized if enabled.

This function is available only for two-channel designs.
None
None

None

void CapSense_lInitializeAllBaselines(void)

Description:

Parameters:
Return Value:
Side Effects:

Uses the CapSense_InitializeSensorBaseline() function to load the
CapSense_SensorBaseline[] array with initial values by scanning all sensors. The raw count
values are copied into the baseline array for all sensors. The raw data filters are initialized if
enabled.

None
None

None

Document Number: 001-73645 Rev. ** Page 59 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

void CapSense_UpdateSensorBaseline(uint8 sensor)

Description: The sensor's baseline is a historical count value, calculated independently for each sensor.
Updates the CapSense_SensorBaseline[sensor] array element using a low-pass filter with
k = 256. The function calculates the difference count by subtracting the previous baseline
from the current raw count value and stores it in CapSense_SensorSignal[sensor].

If the auto reset option is enabled, the baseline updates independent of the noise threshold.

If the auto reset option is disabled, the baseline stops updating if the signal is greater than
the noise threshold and resets the baseline when the signal is less than the minus noise
threshold.

Raw data filters are applied to the values if enabled before baseline calculation.
Parameters: uint8 sensor: Sensor number
Return Value: None

Side Effects: None

void CapSense_UpdateEnabledBaselines(void)

Description: Checks the CapSense_SensorEnableMask]] array and calls the
CapSense_UpdateSensorBaseling() function to update the baselines for all enabled sensors.

Parameters: None
Return Value: None
Side Effects: None

void CapSense_EnableWidget(uint8 widget)
Description: Enables the selected widget sensors to be part of the scanning process.

Parameters: uint8 widget: Widget number. For every widget there are defines in this format:

#define CapSense "widget name" "widget type" 5
Example:

#define CapSense MY VOLUMEl LS 5

#define CapSense MY UP BNT 6

All widget names are upper case.
Return Value: None

Side Effects: None

CYPRESS

PERFORM

Page 60 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

void CapSense_DisableWidget(uint8 widget)
Description: Disables the selected widget sensors from the scanning process.

Parameters: uint8 widget: Widget number. For every widget there are defines in this format:

#define CapSense "widget name" "widget type" 5
Example:

#define CapSense MY VOLUMEl RS 5

#define CapSense MY UP MB 6

All widget names are upper case.
Return Value: None

Side Effects: None

uint8 CapSense_ChecklsWidgetActive(uint8 widget)

Description: Compares the selected sensor CapSense_Signal[] array value to its finger threshold.
Hysteresis and debounce are considered. If the sensor is active, the threshold is lowered by
the hysteresis amount. If it is inactive, the threshold is increased by the hysteresis amount. If
the active threshold is met, the debounce counter increments by one until reaching the
sensor active transition, at which point this API sets the widget as active. This function also
updates the sensor's bit in the CapSense_SensorOnMask[] array.

The touchpad and matrix buttons widgets need to have active sensor within col and row to
return widget active status.

Parameters: uint8 widget: Widget number. For every widget there are defines in this format:

#define CapSense "widget name" "widget type" 5
Example:
#define CapSense MY VOLUMEl LS 5

All widget names are upper case.

Return Value: uint8: Widget sensor state. 1 if one or more sensors within the widget are active, 0 if all
sensors within the widget are inactive.

Side Effects: This function also updates values in CapSense_SensorOnMask]] for all sensors belonging
to the widget. The debounce counter is also modified on every call when there is a transition
to the active state.

uint8 CapSense_ChecklsAnyWidgetActive(void)

Description: Compares all sensors of the CapSense_Signal[] array to their finger threshold. Calls
Capsense_ChecklsWidgetActive() for each widget so that the CapSense_SensorOnMask]]
array is up to date after calling this function.

Parameters: None
Return Value: uint8: 1 if any widget is active, 0 no widgets are active.

Side Effects: Has the same side effects as the CapSense_ChecklsWidgetActive() function but for all
Sensors.

Document Number: 001-73645 Rev. ** Page 61 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

uint16 CapSense_GetCentroidPos(uint8 widget)

Description:

Parameters:

Return Value:
Side Effects:

Checks the CapSense_Signal[] array for a finger press within a linear slider. The finger
position is calculated to the API resolution specified in the CapSense customizer. A position
filter is applied to the result if enabled. This function is available only if a linear slider widget
is defined by the CapSense customizer.

uint8 widget: Widget number. For every linear slider widget there are defines in this format:

#define CapSense "widget name" LS 5
Example:
#define CapSense MY VOLUMEl LS 5

All widget names are upper case.
uint16: Position value of the linear slider

If any sensors within the slider widget are active, the function returns values from zero to the
API resolution value set in the CapSense customizer. If no sensors are active, the function
returns OXFFFF. If an error occurs during execution of the centroid/diplexing algorithm, the
function returns OxFFFF.

There are no checks of widget argument provided to this function. An incorrect widget value
causes unexpected position calculations.

Note If noise counts on the slider segments are greater than the noise threshold, this
subroutine may generate a false finger press result. The noise threshold should be set
carefully (high enough above the noise level) so that noise will not generate a false finger
press.

uint16 CapSense_GetRadialCentroidPos(uint8 widget)

Description:

Parameters:

Return Value:

Side Effects:

Page 62 of 87

Checks the CapSense_Signal[] array for a finger press within a radial slider. The finger
position is calculated to the API resolution specified in the CapSense customizer. A position
filter is applied to the result if enabled. This function is available only if a radial slider widget
is defined by the CapSense customizer.

uint8 widget: Widget number. For every radial slider widget there are defines in this format:

#define CapSense "widget name" RS 5
Example:
#define CapSense MY VOLUME2 RS 5

All widget names are upper case.
uint16: Position value of the radial slider.

If any sensors within the slider widget are active, the function returns values from zero to the
API resolution value set in the CapSense customizer. If no sensors are active, the function
returns OxFFFF.

There are no checks of widget type argument provided to this function. An incorrect widget
value causes unexpected position calculations.

Note If noise counts on the slider segments are greater than the noise threshold, this
subroutine may generate a false finger press result. The noise threshold should be set
carefully (high enough above the noise level) so that noise will not generate a false finger
press.

CYPRESS

PERFORM

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

uint8 CapSense_GetTouchCentroidPos(uint8 widget, uint16* pos)

Description:

Parameters:

Return Value:

Side Effects:

If a finger is present on touchpad, this function calculates the X and Y position of the finger
by calculating the centroids within the touchpad sensors. The X and Y positions are
calculated to the API resolutions set in the CapSense customizer. Returns a ‘1’ if a finger is
on the touchpad. A position filter is applied to the result if enabled. This function is available
only if a touchpad is defined by the CapSense customizer.

uint8 widget: Widget number. For every touchpad widget there are defines in this format:

#define CapSense "widget name" TP 5
Example:
#define CapSense MY TOUCH1 TP 5

All widget names are upper case.

(uintl6* pos): pointer to an array of two uintl6, where touch
postion will be stored:

pos[0] - X position;

pos[l] - Y position.

uint8: 1 if finger is on the touchpad, 0 if not.

uint8 CapSense_GetMatrixButtonPos(uint8 widget, uint8* pos)

Description:

Parameters:

Return Value:

Side Effects:

If a finger is present on matrix buttons, this function calculates the row and column position
of the finger. Returns a ‘1’ if a finger is on the matrix buttons. This function is available only if
a matrix buttons are defined by the CapSense customizer.

uint8 widget: Widget number. For every matrix buttons widget there are defines in this
format:

#define CapSense "widget name" MB 5
Example:
#define CapSense MY TOUCH1l MB 5
All widget names are upper case.
(uint8* pos): pointer to an array of two uint8, where touch
postion will be stored:
pos[0] - column position;
pos[l] - row position.

uint8: 1 if finger is on the touchpad, 0 if not.

Document Number: 001-73645 Rev. ** Page 63 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Tuner Helper APIs

These API functions a

re used to work with the Tuner GUI.

Function

Description

CapSense_TunerStart()

Initializes CapSense CSD and EZI2C components, initializes baselines
and starts the sensor scanning loop.

CapSense_TunerComm()

Execute communication between the Tuner GUI.

void CapSense_TunerStart(void)

Description: Initializes the CapSense CSD component and EZI2C component. Also initializes baselines

and
Parameters: Non
Return Value: Non

Side Effects: Non

starts the sensor scanning loop with the currently enabled sensors.
e
e

e

void CapSense_TunerComm(void)

Description: Executes communication functions with Tuner GUI.

Manual mode: Transfers sensor scanning and widget processing results to the Tuner
GUI from the CapSense CSD component. Reads new parameters from Tuner GUI and
apply them to the CapSense CSD component.

Auto (SmartSense): Executes communication functions with Tuner GUI. Transfer sensor
scanning and widget processing results to Tuner GUI. The auto tuning parameters also
transfer to Tuner GUI. Tuner GUI parameters are not transferred back to the CapSense
CSD component.

This function is blocking and waits while the Tuner GUI modifies CapSense CSD component
buffers to allow new data.

Parameters: Non
Return Value: Non
Side Effects: Non

Page 64 of 87

e

e

e

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Pins APIs

These API functions are used to change the drive mode of pins used by the CapSense
component. These APIs are most often used to place CapSense CSD component pins into the
Strong drive mode to minimize leakage while the device is in a low -power mode.

Function Description

CapSense_SetAllSensorsDriveMode() | Sets the drive mode for all pins used by capacitive sensors within the
CapSense component.

CapSense_SetAllCmodsDriveMode() | Sets the drive mode for all pins used by Cyop capacitors within the
CapSense component.

CapSense_SetAlIRbsDriveMode() Sets the drive mode for all pins used by bleed resistors (Rb) within the
CapSense component. Only available when Current Source is set to
External Resistor.

void CapSense_SetAllSensorsDriveMode(uint8 mode)
Description: Sets the drive mode for all pins used by capacitive sensors within the CapSense component.

Parameters: uint8 mode: Desired drive mode. See the Pins component datasheet for information on drive
modes.

Return Value: None

Side Effects: None

void CapSense_SetAllCmodsDriveMode(uint8 mode)
Description: Sets the drive mode for all pins used by Cyop capacitors within the CapSense component.

Parameters: uint8 mode: Desired drive mode. See the Pins component datasheet for information on drive
modes.

Return Value: None

Side Effects: None

Document Number: 001-73645 Rev. ** Page 65 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

void CapSense_SetAlIRbsDriveMode(uint8 mode)

Description: Sets the drive mode for all pins used by bleed resistors (Rb) within the CapSense
component. Only available when Current Source is set to External Resistor.

Parameters: uint8 mode: Desired drive mode. See the Pins component datasheet for information on drive
modes.

Return Value: None

Side Effects: None

Data Structures

The API functions use several global arrays for processing sensor and widget data. You should
not alter these arrays manually. These values can be viewed for debugging and tuning purposes.
For example, you can use a charting tool to display the contents of the arrays. The global arrays
are:

B CapSense_SensorRaw []

B CapSense_SensorEnableMask []

B CapSense_portTable[] and CapSense _maskTable]]
B CapSense_SensorBaseline []

® CapSense_SensorBaselineLow]]

® CapSense_SensorSignal []

B CapSense_SensorOnMask]]

CapSense_SensorRaw []

This array contains the raw data for each sensor. The array size is equal to the total number of
sensors (CapSense_ TOTAL_SENSOR_COUNT). The CapSense_SensorRaw]] data is updated
by these functions:

® CapSense_ScanSensor()

® CapSense_ScanEnabledWidgets()

B CapSense_InitializeSensorBaseline()
B CapSense_InitializeAllBaselines()

® CapSense_UpdateEnabledBaselines()

I

=
CYPRESS

I

Page 66 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

CapSense_SensorEnableMask]|]

This is a byte array that holds the sensor scanning state CapSense_SensorEnableMask[0]
contains the masked bits for sensors 0 through 7 (sensor 0 is bit 0, sensor 1 is bit 1).
CapSense_SensorEnableMask[1] contains the masked bits for sensors 8 through 15 (if needed),
and so on. This byte array holds as many elements as are necessary to contain the total number
of sensors. The value of a bit specifies if a sensor is scanned by the
CapSense_ScanEnabledWidgets() function call: 1 — sensor is scanned , 0 — sensor is not
scanned. The CapSense_SensorEnableMask[] data is changed by functions:

® CapSense_EnabledWidget()

® CapSense_DisableWidget()
The CapSense_SensorEnableMask][] data is used by function:

® CapSense_ScanEnabledWidgets()

CapSense_portTable[] and CapSense_maskTable]]

These arrays contain port and pin masks for every sensor to specify what pin the sensor is
connected to.

® Port — Defines the port number that pin belongs to.

® Mask — Defines pin number within the port.

CapSense_SensorBaselineLow[]

This array holds the fractional byte of baseline data of each sensor used in the low pass filter for
baseline update. The array’s size is equal to the total number of sensors. The
CapSense_SensorBaselineLow]] array is updated by these functions:

® CapSense_lInitializeSensorBaselinge()
® CapSense_|InitializeAllIBaselines()
® CapSense_UpdateSensorBaseling()

® CapSense_UpdateEnabledBaselines()

CapSense_SensorBaseline[]

This array holds the baseline data of each sensor. The array’s size is equal to the total number
of sensors. The CapSense_SensorBaseline[] array is updated by these functions:

B CapSense_InitializeSensorBaseline()

® CapSense_InitializeAllBaselines()

Document Number: 001-73645 Rev. ** Page 67 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

® CapSense_UpdateSensorBaseling()

® CapSense_UpdateEnabledBaselines()

CapSense_SensorSignal[]

This array holds the sensor signal count computed by subtracting the previous baseline from the
current raw count of each sensor. The array size is equal to the total number of sensors. The
Widget Resolution parameter defines the resolution of this array as 1 byte or 2 bytes. The
CapSense_SensorSignal[] array is updated by these functions:

B CapSense_InitializeSensorBaseline()
® CapSense_InitializeAllBaselines()
® CapSense_UpdateSensorBaseline()

® CapSense_UpdateEnabledBaselines()

CapSense_SensorOnMask]]
This is a byte array that holds the sensor’s on/off state.

CapSense_SensorOnMask[0] contains the masked bits for sensors 0 through 7 (sensor 0 is bit
0, sensor 1 is bit 1). CapSense_SensorOnMask[1] contains the masked bits for sensors 8
through 15 (if needed), and so on. This byte array holds as many elements as are necessary to
contain the total number of sensors. The value of a bit is 1 if the sensor is on (active) and 0 if the
sensor is off (inactive). The CapSense_SensorOnMask|] data is updated by functions:

® CapSense_ChecklsWidgetActive()
® CapSense_ChecklsAnyWidgetActive()

Constants

The following constants are defined. Some of the constants are defined conditionally and will
only be present if needed for the current configuration.

® CapSense TOTAL_SENSOR_COUNT - Defines the total number of sensors within the
CapSense CSD component.

For two-channel designs the number of sensors that belong to a channel is defined as:

® CapSense TOTAL_SENSOR_COUNT__ CHO — Defines the total number of sensors that
belong to channel 0.

B CapSense TOTAL_SENSOR_COUNT__ CH1 — Defines the total number of sensors that
belong to channel 1.

I

g

CYPRESS

.

"| 4

Page 68 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

B CapSense CSD TOTAL_SCANSLOT_COUNT - Defines the maximum sensor count in
either channel 0 or channel 1.

Sensor Constants

A constant is provided for each sensor. These constants can be used as parameters in the
following functions:

® CapSense_EnableSensor()

® CapSense_DisableSensor()
The constant names consist of:

Instance name + "_SENSOR" + Widget Name + element + "#element number” + "_" +
Widget Type

For example:

#define CapSense SENSOR TP1 ROWO TP
#define CapSense SENSOR TP1 ROW1 TP
#define CapSense SENSOR TP1 COLO TP
#define CapSense SENSOR TP1 COLO TP
#define CapSense SENSOR LSO EO LS

#define CapSense SENSOR LSO E1 LS

#define CapSense SENSOR PROX1 PROX

~N o0t w N O

® Widget Name — The user-defined name of the widget (must be a valid C style identifier). The
widget name must be unique within the CapSense CSD component. All Widget Names are
upper case.

® Element Number — The element number only exists for widgets that have multiple elements,
such as radial sliders. For touchpads and matrix buttons, the element number consists of the
word ‘Col’ or ‘Row’ and its number (for example: Col0, Col1, Row0, Row1). For linear and
radial sliders, the element number consists of the character ‘e’ and its number (for example:
e0, e1, e2, e3).

® Widget Type — There are several widget types:

Alias Description
BTN Buttons
LS Linear Sliders
RS Radial Sliders
TP Touch Pads
MB Matrix Buttons
PROX Proximity Sensors

Document Number: 001-73645 Rev. ** Page 69 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Alias Description
GEN Generic Sensors
GRD Guard Sensor

Widget Constants

A constant is provided for each widget. These constants can be used as parameters in the
following functions:

B CapSense_ChecklsWidgetActive()

® CapSense_EnableWidget() and CapSense_DisableWidget()
® CapSense_GetCentroidPos()

B CapSense_GetRadialCentroidPos()

B CapSense_GetTouchCentroidPos()
The constants consist of:
Instance name + Widget Name + Widget Type

For example:

#define CapSense UP_ BTN
#define CapSense DOWN BTN
#define CapSense VOLUME SL
#define CapSense TOUCHPAD TP

w N~ O

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

I

gl

% CYPRESS

I

Page 70 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Pin Assignments

The CapSense customizer generates a pin alias name for each of the CapSense sensors and
support signals. These aliases are used to assign sensors and signals to physical pins on the
device. Assign CapSense CSD component sensors and signals to pins in the Pin Editor tab of
the Design Wide Resources file view.

Sides

The analog routing matrix within the PSoC device is divided into two halves: left and right. Even
port number pins are on the left side of the device and odd port number pins are on the right
side.

For serial sensing applications, sensor pins can be assigned to either side of the device. If the
application uses a small number of sensors, assigning all sensor signals to one side of the
device makes routing of analog resources more efficient and frees analog resources for other
components.

In parallel sensing applications, the CapSense component can perform two simultaneous scans
on two independent sets of hardware. Each of the two parallel circuits has a separate Cyop and
Rb (as applicable), and its own set of sensor pins. One set occupies the right side and the other
occupies the left side of the device. The signal name alias indicates which side the signal is
associated with.

Sensor Pins — CapSense_cPort — Pin Assignment

Aliases are provided to associate sensor names with widget types and widget names in the
CapSense customizer.

The aliases for sensors are:
Widget Name + Element Number + "__" + Widget Type

Note In two-channel designs, widget elements that belong to a channel can only be connected to
the same side of the chip as that channel's Cyiop. The Pin Editor does not verify correct pin
assighment with a design rule check. Pin placement errors will be flagged during the build
process.

Note The Opamp outputs PO[0], PO[1], P3[6], and P3[7] have greater parasitic capacitance than
other pins. This causes less finger response from PO[0], PO[1], P3[6], and P3[7] in CapSense
applications, so they should be avoided if possible. If they must be used, they should be used for
individual buttons where the capacitive difference will not translate into position errors for sliders
and touchpads.

Document Number: 001-73645 Rev. ** Page 71 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

CapSense_cCmod_Port — Pin Assignment

One side of the external modulator capacitor (Cvop) should be connected to a physical pin and
the other to GND. Two-channel designs require two Cyop capacitors, one for the left side and
one for the right side of the device. The Cuop can be connected to any pin, but for the most
efficient analog routing, the following pins allow for a direct connection:

® Left side: P2[0], P2[4], P6[0], P6[4], P15[4]

® Right side: P1[0], P1[4], P5[0], P5[4]
The aliases for the Cyop capacitors are as follows.

Alias Description
CmodCHO Cwop for channel 0
CmodCH1 Cwop for channel 1. Only available in two-channel designs.

The ideal value for Cyop depends on the voltage swing of the sensor scan voltage. The higher
the voltage swing, the higher the Cyop value should be. The voltage swing of the sensor
depends on the IDAC mode and the reference voltage setting (Vref). The recommended Cyop
value uses the following formula:

For IDAC sourcing mode:
Cwmop = 2.2 nF x Vref
For IDAC sinking mode:
Cwmop = 2.2 nF x (Vpp — Vref
Use a ceramic capacitor. The capacitor’'s temperature coefficient is not important.

When Current Source is set to External Resistor, the external Rb feedback resistor value
should be selected before determining the optimal Cyop value.

CapSense_cRb_Ports — Pin Assignment

An external bleed resistor (Rb) is required when Current Source is set to External Resistor.
The external bleed resistor (Rb) should be connected to a physical pin and to the ungrounded
connection of the modulator capacitor (Cyop).

Up to three bleed resistors are supported per channel. The three pins can be allocated for bleed
resistors: cRb0, cRb1 and cRb2.

The aliases for external bleed resistors are:

Alias Description

RbOCHO, Rb1CHO, Rb2CHO External resisters for channel 0

Rb0OCH1, Rb1CH1, Rb2CH1 External resisters for channel 1. Only available in two-channel designs.

I

=
CYPRESS

I

Page 72 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

The resistor values depend on the total sensor capacitance. The resistor value should be
selected as follows:

® Monitor the raw counts for different sensor touches.

® Select a resistance value that provides maximum readings about 30 percent less than the full
scale readings at the selected scanning resolution. The raw count value is increased when
the resistor values increase.

Typical bleed resistor values are 500 Q to 10 kQ depending on sensor capacitance.

Interrupt Service Routines

The CapSense component uses an interrupt that triggers after the end of each sensor scan.
Stub routines are provided where you can add your own code if required. The stub routines are
generated in the CapSense_INT.c file the first time the project is built. The number of interrupts
depends on the CapSense mode selection based on the Number of Channels, one per channel.
Your code must be added between the provided comment tags in order to be preserved between
builds.

Two Channel Mode ISR Priority Set

The ISRs routines of the CapSense CSD component are not reentrant. This causes a restriction
on the ISR priority set for two-channel designs. To prevent the channel ISR routines from
becoming reentrant the ISR priority of the two channels must be the same.

CapSenze_CSD_|=rCHT Default <7 [] 15
CapSenze_CSD_larCHO | Default <7 w»] 19

Functional Description

Definitions

Sensor

One CapSense element connected to PSoC via one pin. A sensor is a conductive element on a
substrate. Examples of sensors include: Copper on FR4, Copper on Flex, Silver ink on PET, ITO
on glass.

Scan Time

A scan time is a period of time that the CapSense module is scanning one or more capacitive
sensors. Multiple sensors can be combined in a given scan sensor to enable modes such as
proximity sensing.

=

4

CYPRESS

Document Number: 001-73645 Rev. ** Page 73 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

CapSense Widget

A CapSense widget is built from one or more scan sensors to provide higher-level functionality.
Some examples of CapSense Widgets include buttons, sliders, radial sliders, touchpads, matrix
buttons, and proximity sensors.

FingerThreshold
This value is used to determine if a finger is present on the sensor.

NoiseThreshold

Determines the level of noise in the capacitive scan. The baseline algorithm filters the noise in
order to track voltage and temperature variations in the sensor baseline value.

Debounce

Adds a debounce counter to the sensor active transition. For the sensor to transition from
inactive to active, the difference count value must stay above the finger threshold plus hysteresis
for the number of samples specified. This is necessary to filter out high-amplitude and frequency
noise.

Hysteresis

Sets the hysteresis value used with the finger threshold. If hysteresis is desired, the sensor will
not be considered "On" or "Active" until the count value exceeds the finger threshold plus the
hysteresis value. The sensor will not be considered "Off" or "Inactive" until the measured count
value drops below the finger threshold minus the hysteresis value.

API Resolution — Interpolation and Scaling

With slider sensors and touchpads, it is often necessary to determine finger (or other capacitive
object) position to more resolution than the native pitch of the individual sensors. The contact
area of a finger on a sliding sensor or a touchpad is often larger than any single sensor.

In order to calculate the interpolated position using a centroid calculation, the array is first
scanned to verify that a given sensor location is valid. The requirement is for some number of
adjacent sensor signals to be above the noise threshold. When the strongest signal is found, that
signal and adjacent contiguous signals larger than the noise threshold are used to compute a
centroid. As few as two and as many as eight sensors are used to calculate the centroid.

Ny + Ny +Niy

NCent =
The calculated value is typically fractional. In order to report the centroid to a specific resolution,

for example a range of 0 to 100 for 12 sensors, the centroid value is multiplied by a scalar. It is
more efficient to combine the interpolation and scaling operations into a single calculation and

I

=
CYPRESS

I

Page 74 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

report this result directly in the desired scale. This is handled in the high-level APIs. Slider sensor
count and resolution are set in the CapSense CSD customizer.

Diplexing

In a diplexed slider, each PSoC sensor connection in the slider is mapped to two physical
locations in the array of slider sensors. The first (or numerically lower) half of the physical
locations is mapped sequentially to the base assigned sensors, with you assigning the port pin
using the CapSense customizer. The second (or upper) half of the physical sensor locations is
automatically mapped by an algorithm in the customizer and listed in an include file. The order is
established so that adjacent sensor actuation in one half does not result in adjacent sensor
actuation in the other half. Be careful to determine this order and map it onto the printed circuit
board.

Figure 1. Diplexing

@E-----DE]--EI.-

You should balance sensor capacitance in the slider. Depending on sensor or PCB layouts,
there may be longer routes for some of the sensor pairs. The diplex sensor index table is
automatically generated by the CapSense customizer when you select diplexing and is included
in the following table for your reference.

Counts

[abowve Moisz Threshold)

Document Number: 001-73645 Rev. ** Page 75 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Table 2. Diplexing Sequence for Different Slider Segment Counts

Total Slider

Segment
Count Segment Sequence

10 0,1,2,3,4,0,3,1,4,2

12 0,1,2,3,4,5,0,3,1,4,2,5

14 0,1,2,3,4,5,6,0,3,6,1,4,2,5

16 0,1,2,3,4,5,6,7,0,3,6,1,4,7,2,5

18 0,1,2,3,4,5,6,7,8,0,3,6,1,4,7,2,5,8

20 0,1,2,3,4,5,6,7,8,9,0,3,6,9,1,4,7,2,5,8

22 0,1,2,3,4,5,6,7,8,9,10,0,3,6,9,1,4,7,10,2,5,8

24 0,1,2,3,4,5,6,7,8,9,10,11,0,3,6,9,1,4,7,10,2,5,8,11

26 0,1,2,3,4,5,6,7,8,9,10,11,12,0,3,6,9,12,1,4,7,10,2,5,8,11

28 0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,3,6,9,12,1,4,7,10,13,2,5,8,11

30 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,3,6,9,12,1,4,7,10,13,2,5,8,11,14

32 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,3,6,9,12,15,1,4,7,10,13,2,5,8,11,14

34 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,0,3,6,9,12,15,1,4,7,10,13,16,2,5,8,11,14

36 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,0,3,6,9,12,15,1,4,7,10,13,16,2,5,8,11,14,17

38 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,0,3,6,9,12,15,18,1,4,7,10,13,16,2,5,8,11,14,17

40 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,0,3,6,9,12,15,18,1,4,7,10,13,16,19,2,5,8,11,14,17

42 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,0,3,6,9,12,15,18,1,4,7,10,13,16,19,2,5,8,11,14,
17,20

44 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,2,5,8,
11,14,17,20

46 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,22
,2,5,8,11,14,17,20

48 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19
,22,2,5,8,11,14,17,20,23

50 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,0,3,6,9,12,15,18,21,24,1,4,7,10,13
,16,19,22,2,5,8,11,14,17,20,23

52 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,0,3,6,9,12,15,18,21,24,1,4,7,10
,13,16,19,22,25,2,5,8,11,14,17,20,23

54 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,0,3,6,9,12,15,18,21,24,1,4,7
,10,13,16,19,22,25,2,5,8,11,14,17,20,23,26

56 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,0,3,6,9,12,15,18,21,24,2

7,1,4,7,10,13,16,19,22,25,2,5,8,11,14,17,20,23,26

Page 76 of 87

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Filters

Several filters are provided in the CapSense component: median, averaging, first order IR and
jitter. The filters can be used with both raw sensor data to reduce sensor noise and with position
data of sliders and touchpad to reduce position noise.

Median Filter

The median filter looks at the three most recent samples and reports the median value. The
median is calculated by sorting the three samples and taking the middle value. This filter is used
to remove short noise spikes and generates a delay of one sample. This filter is generally not
recommended because of the delay and RAM use. Enabling this filter consumes 4 bytes of RAM
for each sensor(raw) and Widget(position). It is disabled by default.

Averaging Filter

The averaging filter looks at the three most recent samples of position and reports the simple
average value. It is used to remove short noise spikes and generates a delay of one sample.
This filter is generally not recommended because of the delay and RAM use. Enabling this filter
consumes 4 bytes of RAM for each sensor(raw) and Widget(position). It is disabled by default.

First Order IIR Filter

The first order IIR filter is the recommended filter for both raw and sensor filters because it
requires the smallest amount of SRAM and provides a fast response. The IIR filter scales the
most recent sensor or position data and adds it to a scaled version of the previous filter output.
Enabling this filter consumes and 2 bytes of RAM for each sensor(raw) and Widget(position).
The 1IR1/4 is enabled by default for both raw and position filters.

1st-Order IIR filters:
[IR1/2 = 1/2previous + 1/2current
lIR1/4 = 3/4 previous +1/4 current
[IR1/8 = 7/8 previous + 1/8 current
[IR1/16 = 15/16 previous + 1/16 current

Jitter Filter

This filter eliminates noise in the raw sensor or position data that toggles between two values
(jitter). If the most current sensor value is greater than the last sensor value, the previous filter
value is incremented by 1; if it is less, it is decremented. This is most effective when applied to
data that contains noise of four LSBs peak-to-peak or less and when a slow response is
acceptable, which is useful for some position sensors. Enabling this filter consumes two bytes of
RAM for each sensor(raw) and Widget(position). It is disabled by default.

=

4

CYPRESS

PERFORM

Document Number: 001-73645 Rev. ** Page 77 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

Water Influence on CapSense System

The water drop and finger influence on CapSense are similar. However, water drop influence on
the whole surface of the sensing area differs from a finger influence.

There are several variants of water influence on the CapSense surface:
® Forming of thin stripes or streams of water on the device surface.
B Separate drops of water.

B Stream of water covering all or a large portion of the device surface, when the device is being
washed or dipped.

Salts or minerals that the water contains make it conductive. Moreover, the greater their
concentration, the more conductive the water is. Soapy water, sea water, and mineral water are
liquids that influence the CapSense unfavorably. These liquids emulate a finger touch on the
device surface, which can cause faulty device performance.

Waterproofing and Detection

This feature configures the CapSense CSD component to suppress water influence on the
CapSense system. This feature sets the following parameters:

® Enables a Shield electrode to be used to compensate for the water drops’ influence on the
sensor at the hardware level.

® Adds a Guard sensor. The guard sensor should surround all sensors such that the guard
sensor placement ensures that it will be covered by water if any of the actual sensing widgets
are covered. CapSense output of widget status should be blocked programmatically when the
Guard sensor triggers.

Shield Electrode

Some applications require reliable operation in the presence of water film or droplets. White
goods, automotive applications, various industrial applications, and others need capacitive
sensors that do not provide false triggering because of water, ice, and humidity changes that
cause condensation. In this case, a separate shielding electrode can be used. This electrode is
located behind or around the sensing electrodes. When water film is present on the device
overlay surface, the coupling between the shield and sensing electrodes is increased. The shield
electrode allows you to reduce the influence of parasitic capacitance, which gives you more
dynamic range for processing sense capacitance changes.

In some applications it is useful to select the shield electrode signal and its placement relative to
the sensing electrodes such that increasing the coupling between these electrodes caused by
moisture causes a negative touch change of the sensing electrode capacitance measurement.
This simplifies the high-level software API| work by suppressing false touches caused by
moisture. The CapSense CSD component supports separate outputs for the shield electrode to
simplify PCB routing.

o o
CYPRESS

I

Page 78 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Figure 2. Possible Shield Electrode PCB Layout

Dyerlay

N 1.
—!— X
Cpar
FPCE ﬂ

Sensor
electrodes

Shield
electrode

Figure 2 illustrates one possible layout configuration for the button’s shield electrode. The shield
electrode is especially useful for transparent ITO touchpad devices, where it blocks the LCD
drive electrode’s noise and reduces stray capacitance at the same time.

In this example, the button is covered by a shielding electrode plane. As an alternative, the
shielding electrode can be located on the opposite PCB layer, including the plane under the
button. A hatch pattern is recommended in this case, with a fill ratio of about 30 to 40 percent.
No additional ground plane is required in this case.

When water drops are located between the shield and sensing electrodes, the parasitic
capacitance (Cpar) is increased and modulator current can be reduced.

The shield electrode can be connected to any pins. Set the drive mode to Strong Slow to reduce
ground noise and radiated emissions. Also, a slew limiting resistor can be connected between
the PSoC device and the shielding electrode.

Shield Electrode Use and Restrictions
The CapSense CSD component provides the following modes for shield electrode use.

Current Mode IDAC Source

This mode has some restrictions, because the sensors alternate between GND and Vref =
1.024 V. The shield electrode signal alternates between GND and Vddio (typically equal to
power supply). The difference is significant and the shield signal could completely offset the
signal from the sensors. The possible solutions are:

® Use a high Vref to eliminate the difference to a minimal value. The VDAC as reference could
be used for this purpose.

Document Number: 001-73645 Rev. ** Page 79 of 87

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Datasheet

® Use SIO pins as the shield to provide output equal to Vref. The CapSense CSD output Vref
terminal could be used to route Vref to the SIO pins. This is the preferred method. The
Sensor Connection to Shield should not be used in this mode because it provides output
equal to Vddio. The Vref = 1.024 V setting has routing limitations and can not be routed to
pins.

Current Mode IDAC Sink and External Resistor

These modes have no restriction on shield and inactive sensor mode use, because the sensor
alternates between Vddio and Vref = 1.024 V. The shield electrode signal alternates between
GND and Vddio (typically equal to power supply). The difference is not significant enough in this
case to cause issues.

Guard Sensor Implementation
The Guard sensor is commonly used in water-proof applications to detect water on the surface.

An Advanced tab option is provided to add a guard sensor. This sensor has to have a special
layout, typically located around the perimeter of the sensing area surface. When water is on the
surface of the Guard sensor, the widget becomes active. The widget active detection firmware
CapSense_1_IsWidgetActive() is available to define the state of the Guard sensor.

The detection of CapSense widgets should block programmatically in user code for a certain
period of time when the Guard sensor triggers. If the guard sensor triggers, water is present and
the other sensors can not be reliably sensed.

Taking into consideration the Guard sensor’s size, its signal will differ from other sensors’
signals. This means a larger amount of water may be present on its surface than on a standard
sensor’s surface. Therefore, the signal received with the presence of water drops will be much
stronger than the signal caused by a finger touch. This allows setting the trigger threshold and
filter so that a finger’s touch on the Guard sensor has no effect. The Guard sensor scans without
any special options. The shield electrode is not disabled while the Guard sensor is scanning. The
Guard sensor in two-channel designs always scans last and by itself.

I

gl

% CYPRESS

I

Page 80 of 87 Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Block Diagram and Configuration

Capacitive sensing using a Sigma-Delta (CSD) modulator) provides capacitance sensing using a
switched capacitor analog technique and a digital delta-sigma modulator to convert the sensed
switched capacitor current into a digital code. It allows implementation of buttons, sliders,
proximity detectors, touchpads, and touchscreens using arrays of conductive sensors. High-level
software routines allow for enhancement of slider resolution using diplexing, and compensation
for physical and environmental sensor variation. There are three analog hardware variations
possible on the basic CSD method. They are detailed in the following sections.

IDAC Sourcing

The sensor switch stage is configured to alternate between GND and the AMUX bus that
connects to the modulation capacitor. In this configuration, the IDAC is configured to source
current to the sensor.

Dadicatad L]
Digltal
Clock .
1 —AT—FX
EN UDB

|

|

|

16-bit Timer |

|

Dedicated

Digital |

I

|

|

|
|
|
|
|
|
I Clock ™
| R = ~
| UDB &

PV o
| 15
' B4
I Clock from UDB l
| I e
I [W of - l I

+
: IDAC : N
|

| Vo — |
| |
i i

Document Number: 001-73645 Rev. ** Page 81 of 87

Capacitive Sensing (CapSense® CSD)

IDAC Sinking

PSoC® Creator™ Component Datasheet

The sensor switch stage is configured to alternate between Vpp and the AMUX bus that connects
to the modulation capacitor. In this configuration, the IDAC is configured to sink current from the

sensor.

| PSoC Clock from UDB_|

VEC-
Gort Crn
@& &
7

Dedicated
Digital

Clock

Pra-Charge

‘._I_?:Q 4 Ver

Ref
Vi —

N upB
16-bit Timer
Cs-a
Dedicatad

Digital
Clack =
uDB D;(
PWM o]
f=
[

Clock from UDE
C

mad

—_—_———_— — —_— —_— —_—— —_—— —_———_——_— — —

Page 82 of 87

— %
==

———""u .,;E
=% CYPRESS

T PERFORM

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

IDAC Disabled, Use External Rb

Using an external bleed resistor Rb functions the same as the IDAC Sinking configuration except
the IDAC is replaced by a resistor to ground, Rb. The bleed resistor is physically connected
between Cyop and a GPIO. The GPIO is configured in the "Open-Drain Drives Low" drive mode.
This mode allows Cyop to be discharged through Rb.

16-bit Timer

uoe
P

sng XMWY

—— e = — o — e — — — = — ——)

DC and AC Electrical Characteristics

5.0-V/3.3-V DC and AC Electrical Characteristics

Power Supply Voltage
Parameter Test Conditions and Comments Min Typ | Max Units
Value - 27 5.0 55 |V
Noise
Parameter Test Conditions and Comments Min Typ | Max Units
Noise counts, peak-peak | Resolution = 16 (noise counts/(baseline counts) - 0.2 - %
(noise counts/(baseline -
counts) Resolution = 14 - 0.3 - %
Resolution = 10 - 1.0 - %

Document Number: 001-73645 Rev. ** Page 83 of 87

Capacitive Sensing (CapSense® CSD)

Power Consumption

PSoC® Creator™ Component Datasheet

Parameter Test Conditions and Comments Min Typ Units
Active Current | Vpp =3.3 V, CPU Clock= 24 MHz, CapSense Scan Clock = - 8 mA
24 MHz, Average current during scan, 8 sensors
Sleep/Wake Vpp =3.3 V, CPU Clock= 24 MHz, CapSense Scan Clock = - 78.9 MA
Current with 24 MHz, Scanning Speed = Ultra Fast,
100 ms Report | Resolution =9, 8 sensors
Rate
Vpp =3.3 V, CPU Clock= 24 MHz, CapSense Scan Clock = - 484 MA
24 MHz, Scanning Speed = Fast, Resolution = 12, 8
sensors
Sleep/Wake Vpp =3.3 V, CPU Clock= 24 MHz, CapSense Scan Clock = - 8.2 MA
Current with 24 MHz, Scanning Speed = Fast, Resolution= 12, 1 sensor
1-s Report
Rate

Figures — Rawcount Versus Supply Voltage

Rawcount versus Supply Voltage at Different Scan
Speeds, PRS 16 full speed

Speeds, PRS 8

Rawcount versus Temperature at Different Scan
Speeds, PRS 16 full speed

Page 84 of 87

PRS 8

F050

,...--""""'_"——‘ 3000

Rawcount versus Supply Voltage at Different Scan

Raw Count versus Temperature at Different Speeds,

S
— e

Fast

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Variation of Baseline with time for different raw count step change values
(a) RawCounts Step Change for different step values
(b) Difference between Raw Count.

3500

3400

———=Peak Diff=500:

3300
—— Peak Diff=300!

3200 — Peak Diff=170

3100

3000

RawCount

2900

2800

2700

2600

2500
a 1000 2000 3000 4000 5000 6000 7000 8000

#sample

(k)

700

Peak Diff= 800
Peak Diff=300
Paak Diff=170

600

500

400

\
\
NN

200 400 600 800 1000 1200 1400 1600 1800 2000
#sample

Baseline - RawCournt Diflerence

T i
0 02 075 1.25 1.75 225 275 3.25 4,25
t,sec

W

==# CYPRESS

PERFORM

f

Document Number: 001-73645 Rev. ** Page 85 of 87

Capacitive Sensing (CapSense® CSD)

Component Changes

PSoC® Creator™ Component Datasheet

Version

Description of Changes

Reason for Changes / Impact

3.10

Prefixed several variables with the instance name
to make them unique per component instance.

Prevents collision of variables when more than one
CapSense CSD component is included in a design.
These collisions would cause incorrect behavior.
This fix is specific to PSoC 3 ES2 and PSoC 5.

Updated CapSense_EnableSensor() and
CapSense_DisableSensor() functions to handle
pins on Port 15 correctly.

Allows the use of Port 15 pins with CapSense.
Without this fix Port 15 pins were not enabled and
these functions for Port 15 pins could result in
memory corruption.

3.0

CapSense_GetMatrixButtonPos() API function
was added for matrix buttons touch position
calculation.

Previously matrix button touch position was
calculated by the user. New function simplifies this
problem

Matrix button touch position is transmitted to the
Tuner and is shown in the appropriate GUI widget.

Since new function was added to the matrix button
for touch position calculation, this position is
transmitted to the Tuner. Previously touch position
was calculated by the Tuner independently from the
API.

Multiple Analog switch dividers option was added,
which provides ability to set individual Analog
switch dividers for each scan slot. Component can
work with single Analog switch divider (the same
as in previous component versions) or with
multiple Analog switch dividers.

Using different analog switch divider values for
different sensors allows flexible tuning for individual
scan slot.

Analog switch dividers are transmitted to the
Tuner and are shown by the GUI. Furthermore,
Analog switch dividers can be changed from the
Tuner.

Allows user to see and change the analog switch
divider of the sensors.

Auto-tuning procedure functionality was extended
by allowing user to use different IDAC modes
(source and sink) and Vref values (1.024V and
VDAC). Additional calculations were added to the
customizer and firmware parts.

Enables Auto-tuning with IDAC sink mode and
allows use of VDAC for reference voltage
generation.

Changed the data preparation and transmission
procedure when Tuner is enabled.

Previously the data preparing for transmission and
transmission were processed in the parallel, what
have caused the problem when byte swapping was
executed.

Changed the baseline update algorithm when
Auto-reset is enabled.

Previously, when autoreset function was enabled,
the baseline did not immediately adjust back to the
raw data when the raw data jumped many counts
below the baseline. This could happen when a user
holds a finger on the node for a long time, causing
the baseline to slowly reach the raw data during ON
condition. It “stair stepped” downward just as it
“stair stepped” upward. This wasn’t the same as
PSoC 1 CapSense functionality.

Page 86 of 87

Document Number: 001-73645 Rev. **

PSoC® Creator™ Component Datasheet Capacitive Sensing (CapSense® CSD)

Version Description of Changes Reason for Changes / Impact

Changed the CapSense_GetTouchCentroidPos() | Previous version of the function used global array
API function to eliminate using global arrays for for touch-pad touch position storing. It required
storing touch position calculation. additional memory and was convenient for the user,
because user should calculate the array indexes
when several touch-pads were used. In the new
version, the pointer to the array for touch position
storing is transmitted to the function as a local
parameter. It allows use of a stack for that array
storing and eliminates index calculation when
several touch-pads are used.

© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® and CapSense® are registered trademarks, and SmartSense™, PSoC Creator™, and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other
trademarks or registered trademarks referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-73645 Rev. ** Page 87 of 87

	Features
	General Description
	When to Use a CapSense Component

	Input/Output Connections
	clock – Input *
	shield – Output *
	vref – Output *

	Component Parameters
	General Tab
	Load Settings/Save Settings
	Tuning method
	Number of channels
	Raw Data Noise Filter
	Water proofing and detection
	Enable clock input
	Scan Clock

	Widgets Config Tab
	Toolbar
	Buttons
	Linear Sliders
	Radial Slider
	Matrix Buttons
	Touch Pads
	Proximity Sensors
	Generics
	Guard Sensor

	Scan Order Tab
	Toolbar
	Additional Hot Keys
	Analog Switch Divider Column
	IDAC Value
	Sensitivity
	Sensor Scan Time
	Total Scan Time
	Widget List

	Advanced Tab
	Analog Switch Drive Source
	Multiple Analog Switch Divider
	Analog Switch Divider
	Scan Speed
	PRS EMI Reduction
	Sensor Auto Reset
	Widget Resolution
	Negative Noise Threshold
	Low Baseline Reset
	Shield
	Inactive Sensor Connection
	Guard Sensor
	Current Source
	IDAC range
	Number of Bleed Resistors, channel 0/channel 1
	Digital Resource Implementation, channel 0/channel 1
	Voltage Reference Source

	Tune Helper Tab
	Enable Tune Helper
	Instance name for EZI2C component

	Resources
	Tuner GUI User Guide
	CapSense Tuning Process
	Create a Design in PSoC Creator
	Place and Configure an EZI2C Component
	Place and Configure the CapSense Component
	Selecting Auto (SmartSense)
	Configure your CapSense Component
	Add Code
	Build the Design and Program the PSoC Device
	Launch the Tuner application
	Configure Communication Parameters
	Start Tuning
	Edit CapSense Parameter Values
	Repeat as Needed
	Close the Tuner application

	CapSense Validation Process
	Start Validation
	Stimulation Sensors
	Validation Displays
	Validation Results

	Manual Tuning Process
	Tuner GUI Interface
	General Interface
	Tuning Tab
	Graphing Tab
	Validation Tab
	Logging Tab
	Validation Advanced Properties
	Save/Load Settings Feature

	Application Programming Interface
	General APIs
	void CapSense_Start(void)
	void CapSense_Stop(void)
	void CapSense_Sleep(void)
	void CapSense_Wakeup(void)
	void CapSense_Init(void)
	void CapSense_Enable(void)
	void CapSense_SaveConfig(void)
	void CapSense_RestoreConfig(void)

	Scanning Specific APIs
	void CapSense_ScanSensor(uint8 sensor)
	void CapSense_ScanEnabledWidgets(void)
	uint8 CapSense_IsBusy (void)
	void CapSense_SetScanSlotSettings(uint8 slot)
	void CapSense_ClearSensors(void)
	void CapSense_EnableSensor(uint8 sensor)
	void CapSense_DisableSensor(uint8 sensor)
	uint16 CapSense_ReadSensorRaw(uint8 sensor)
	void CapSense_SetRBleed(uint8 rbleed)

	High-Level APIs
	void CapSense_InitializeSensorBaseline(uint8 sensor)
	void CapSense_InitializeEnabledBaselines(void)
	void CapSense_InitializeAllBaselines(void)
	void CapSense_UpdateSensorBaseline(uint8 sensor)
	void CapSense_UpdateEnabledBaselines(void)
	void CapSense_EnableWidget(uint8 widget)
	void CapSense_DisableWidget(uint8 widget)
	uint8 CapSense_CheckIsWidgetActive(uint8 widget)
	uint8 CapSense_CheckIsAnyWidgetActive(void)
	uint16 CapSense_GetCentroidPos(uint8 widget)
	uint16 CapSense_GetRadialCentroidPos(uint8 widget)
	uint8 CapSense_GetTouchCentroidPos(uint8 widget, uint16* pos)
	uint8 CapSense_GetMatrixButtonPos(uint8 widget, uint8* pos)

	Tuner Helper APIs
	void CapSense_TunerStart(void)
	void CapSense_TunerComm(void)

	Pins APIs
	void CapSense_SetAllSensorsDriveMode(uint8 mode)
	void CapSense_SetAllCmodsDriveMode(uint8 mode)
	void CapSense_SetAllRbsDriveMode(uint8 mode)

	Data Structures
	CapSense_SensorRaw []
	CapSense_SensorEnableMask[]
	CapSense_portTable[] and CapSense_maskTable[]
	CapSense_SensorBaselineLow[]
	CapSense_SensorBaseline[]
	CapSense_SensorSignal[]
	CapSense_SensorOnMask[]

	Constants
	Sensor Constants
	Widget Constants

	Sample Firmware Source Code
	Pin Assignments
	Sides
	Sensor Pins – CapSense_cPort – Pin Assignment
	CapSense_cCmod_Port – Pin Assignment
	CapSense_cRb_Ports – Pin Assignment

	Interrupt Service Routines
	Two Channel Mode ISR Priority Set

	Functional Description
	Definitions
	Sensor
	Scan Time
	CapSense Widget
	FingerThreshold
	NoiseThreshold
	Debounce
	Hysteresis
	API Resolution – Interpolation and Scaling
	Diplexing

	Filters
	Median Filter
	Averaging Filter
	First Order IIR Filter
	Jitter Filter

	Water Influence on CapSense System
	Waterproofing and Detection

	Shield Electrode
	Shield Electrode Use and Restrictions
	Current Mode IDAC Source
	Current Mode IDAC Sink and External Resistor

	Guard Sensor Implementation

	Block Diagram and Configuration
	IDAC Sourcing
	IDAC Sinking
	IDAC Disabled, Use External Rb

	DC and AC Electrical Characteristics
	5.0-V/3.3-V DC and AC Electrical Characteristics
	Power Supply Voltage
	Noise
	Power Consumption
	Figures – Rawcount Versus Supply Voltage

	Component Changes

