
nVidia Hardware Documentation
Release git

Marcelina Kościelnicka

May 24, 2021





Contents

1 Notational conventions 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bit operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Sign extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Bitfield extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 nVidia hardware documentation 7
2.1 nVidia GPU introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 GPU chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 nVidia PCI id database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 PCI/PCIE/AGP bus interface and card management logic . . . . . . . . . . . . . . . . . . . . . . . . 77
2.5 Power, thermal, and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.6 GPU external device I/O units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.7 Memory access and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.8 PFIFO: command submission to execution engines . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2.9 PGRAPH: 2d/3d graphics and compute engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
2.10 falcon microprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
2.11 Video decoding, encoding, and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
2.12 Performance counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
2.13 Display subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

3 nVidia Resource Manager documentation 519
3.1 PMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

4 envydis and envyas documentation 543
4.1 Using envydis and envyas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

5 TODO list 549

6 Indices and tables 685

Index 687

i



ii



nVidia Hardware Documentation, Release git

Contents:

Contents 1



nVidia Hardware Documentation, Release git

2 Contents



CHAPTER 1

Notational conventions

Contents

• Notational conventions

– Introduction

– Bit operations

– Sign extension

– Bitfield extraction

1.1 Introduction

Semantics of many operations are described in pseudocode. Here are some often used primitives.

1.2 Bit operations

In many places, the GPUs allow specifying arbitrary X-input boolean or bitwise operations, where X is 2, 3, or 4. They
are described by a 2**X-bit mask selecting the bit combinations for which the output should be true. For example,
2-input operation 0x4 (0b0100) is ~v1 & v2: only bit 2 (0b10) is set, so the only input combination (0, 1) results
in a true output. Likewise, 3-input operation 0xaa (0b10101010) is simply a passthrough of first input: the bits set in
the mask are 1, 3, 5, 7 (0b001, 0b011, 0b101, 0b111), which corresponds exactly to the input combinations
which have the first input equal to 1.

The exact semantics of such operations are:

# single-bit version
def bitop_single(op, *inputs):

(continues on next page)

3



nVidia Hardware Documentation, Release git

(continued from previous page)

# first, construct mask bit index from the inputs
bitidx = 0
for idx, input in enumerate(inputs):

if input:
bitidx |= 1 << idx

# second, the result is the given bit of the mask
return op >> bitidx & 1

def bitop(op, *inputs):
max_len = max(input.bit_length() for input in inputs)
res = 0
# perform bitop_single operation on each bit (+ 1 for sign bit)
for x in range(max_len + 1):

res |= bitop_single(op, *(input >> x & 1 for input in inputs)) << x
# all bits starting from max_len will be identical - just what sext does
return sext(res, max_len)

As further example, the 2-input operations on a, b are:

• 0x0: always 0

• 0x1: ~a & ~b

• 0x2: a & ~b

• 0x3: ~b

• 0x4: ~a & b

• 0x5: ~a

• 0x6: a ^ b

• 0x7: ~a | ~b

• 0x8: a & b

• 0x9: ~a ^ b

• 0xa: a

• 0xb: a | ~b

• 0xc: b

• 0xd: ~a | b

• 0xe: a | b

• 0xf: always 1

For further enlightenment, you can search for GDI raster operations, which correspond to 3-input bit operations.

1.3 Sign extension

An often used primitive is sign extension from a given bit. This operation is known as sext after xtensa instruction
of the same name and is formally defined as follows:

4 Chapter 1. Notational conventions



nVidia Hardware Documentation, Release git

def sext(val, bit):
# mask with all bits up from #bit set
mask = -1 << bit
if val & 1 << bit:

# sign bit set, negative, set all upper bits
return val | mask

else:
# sign bit not set, positive, clear all upper bits
return val & ~mask

1.4 Bitfield extraction

Another often used primitive is bitfield extraction. Extracting an unsigned bitfield of length l starting at position s in
val is denoted by extr(val, s, l), and signed one by extrs(val, s, l):

def extr(val, s, l):
return val >> s & ((1 << l) - 1)

def extrs(val, s, l):
return sext(extrs(val, s, l), l - 1)

1.4. Bitfield extraction 5



nVidia Hardware Documentation, Release git

6 Chapter 1. Notational conventions



CHAPTER 2

nVidia hardware documentation

Contents:

2.1 nVidia GPU introduction

Contents

• nVidia GPU introduction

– Introduction

– Card schematic

– GPU schematic - NV3:G80

– GPU schematic - G80:GF100

– GPU schematic - GF100-

2.1.1 Introduction

This file is a short introduction to nvidia GPUs and graphics cards. Note that the schematics shown here are simplified
and do not take all details into account - consult specific unit documentation when needed.

2.1.2 Card schematic

An nvidia-based graphics card is made of a main GPU chip and many supporting chips. Note that the following
schematic attempts to show as many chips as possible - not all of them are included on all cards.

7



nVidia Hardware Documentation, Release git

+------+ memory bus +---------+ analog video +-------+
| VRAM |------------| |-----------------| |
+------+ | | I2C bus | VGA |

| |-----------------| |
+--------------+ | | +-------+
| PCI/AGP/PCIE |---------| |
+--------------+ | | TMDS video +-------+

| |-----------------| |
+----------+ parallel | | analog video | |
| BIOS ROM |----------| |-----------------| DVI-I |
+----------+ or SPI | | I2C bus + GPIO | |

| |-----------------| |
+----------+ I2C bus | | +-------+
| HDCP ROM |----------| |
+----------+ | | videolink out +------------+

| |-----------------| external | +----+
+-----------+ VID GPIO | | I2C bus | TV |--| TV |
| voltage |----------| |-----------------| encoder | +----+
| regulator | | GPU | +------------+
+-----------+ | |

| I2C bus | |
+----------------| | videolink in+out +-----+
| | |------------------| SLI |

+--------------+ | | GPIOs +-----+
| thermal | ALERT | |
| monitoring |--------| | ITU-R-656 +------------+
| +fan control | GPIO | |-----------| | +-------+
+--------------+ | | I2C bus | TV decoder |--| TV in |

| | |-----------| | +-------+
| | | +------------+

+-----+ FAN GPIO | |
| fan |-------------| | media port +--------------+
+-----+ | |------------| MPEG decoder |

| | +--------------+
+-------+ HDMI bypass | |
| SPDIF |--------------| | +----------------------+
+-------+ audio input | |-----| configuration straps |

| | +----------------------+
+---------+

Note: while this schematic shows a TV output using an external encoder chip, newer cards have an internal TV
encoder and can connect the output directly to the GPU. Also, external encoders are not limitted to TV outputs -
they’re also used for TMDS, DisplayPort and LVDS outputs on some cards.

Note: in many cases, I2C buses can be shared between various devices even when not shown by the above schema.

In summary, a card contains:

• a GPU chip [see GPU chips for a list]

• a PCI, AGP, or PCI-Express host interface

• on-board GPU memory [aka VRAM] - depending on GPU, various memory types can be supported: VRAM,
EDO, SGRAM, SDR, DDR, DDR2, GDDR3, DDR3, GDDR5.

• a parallel or SPI-connected flash ROM containing the video BIOS. The BIOS image, in addition to standard

8 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

VGA BIOS code, contains information about the devices and connectors present on the card and scripts to boot
up and manage devices on the card.

• configuration straps - a set of resistors used to configure various functions of the card that need to be up before
the card is POSTed.

• a small I2C EEPROM with encrypted HDCP keys [optional, some G84:GT215, now discontinued in favor of
storing the keys in fuses on the GPU]

• a voltage regulator [starting with NV10 [?] family] - starting with roughly NV30 family, the target voltage
can be set via GPIO pins on the GPU. The voltage regulator may also have “power good” and “emergency
shutdown” signals connected to the GPU via GPIOs. In some rare cases, particularly on high-end cards, the
voltage regulator may also be accessible via I2C.

• optionally [usually on high-end cards], a thermal monitoring chip accessible via I2C, to supplement/replace the
bultin thermal sensor of the GPU. May or may not include autonomous fan control and fan speed measurement
capability. Usually has a “thermal alert” pin connected to a GPIO.

• a fan - control and speed measurement done either by the thermal monitoring chip, or by the GPU via GPIOs.

• SPDIF input [rare, some G84:GT215] - used for audio bypass to HDMI-capable TMDS outputs, newer GPUs
include a builtin audio codec instead.

• on-chip video outputs - video output connectors connected directly to the GPU. Supported output types depend
on the GPU and include VGA, TV [composite, S-Video, or component], TMDS [ie. the protocol used in DVI
digital and HDMI], FPD-Link [aka LVDS], DisplayPort.

• external output encoders - usually found with older GPUs which don’t support TV, TMDS or FPD-Link outputs
directly. The encoder is connected to the GPU via a parallel data bus [“videolink”] and a controlling I2C bus.

• SLI connectors [optional, newer high-end cards only] - video links used to transmit video to display from slave
cards in SLI configuration to the master. Uses the same circuitry as outputs to external output encoders.

• TV decoder chip [sometimes with a tuner] connected to the capture port of the GPU and to an I2C bus - rare, on
old cards only

• external MPEG decoder chip connected to so-called mediaport on the GPU - alleged to exist on some
NV3/NV4/NV10 cards, but never seen in the wild

In addition to normal cards, nvidia GPUs may be found integrated on motherboards - in this case they’re often missing
own BIOS and HDCP ROMs, instead having them intergrated with the main system ROM. There are also IGPs
[Integrated Graphics Processors], which are a special variant of GPU integrated into the main system chipset. They
don’t have on-board memory or memory controller, sharing the main system RAM instead.

2.1.3 GPU schematic - NV3:G80

PCI/AGP/PCIE bus +----------+ +--------+
-------------------| PMC+PBUS |--+ | VRAM |

+----------+ | +--------+
| | |
| | |
| | |

+-----------+ | +-----+ +------+ +---------+
|PTIMER+PPMI| | | PFB | | PROM | | PSTRAPS |
+-----------+ | +-----+ +------+ +---------+

| | |
SYSRAM | +----------+
access bus | | VRAM

| +-------+ | access bus

(continues on next page)

2.1. nVidia GPU introduction 9



nVidia Hardware Documentation, Release git

(continued from previous page)

+-----| PFIFO |-----+
| +-------+ |
| | | |
| | +---+ |
| | | | +-------------+

+----------+ | +--------+ | | | video input |
| PCOUNTER | +----| PGRAPH |-----+ +-------------+
+----------+ | +--------+ | | |

| | | +--------+
+--------+ | +-----+ +----| PMEDIA |
| therm | | | | +--------+
| sensor | | +------+ | |
+--------+ +------| PVPE |-----+ +--------------+

+------+ | | MPEG decoder |
| +--------------+
|

+--------+ | +-------+ +----------+
| PVIDEO |---+---| PCRTC |---| I2C+GPIO |
+--------+ +-------+ +----------+

| |
+---+-------+-------+
| |

+-----+ +---------+ +-----------------+
| PTV | | PRAMDAC | | PCLOCK+PCONTROL |
+-----+ +---------+ +-----------------+

| |
| |

+--------+ +--------------+
| TV out | | video output |
+--------+ +--------------+

The GPU is made of:

• control circuitry:

– PMC: master control area

– PBUS: bus control and an area where “misc” registers are thrown in. Known to contain at least:

* HWSQ, a simple script engine, can poke card registers and sleep in a given sequence [NV17+]

* a thermal sensor [NV30+]

* clock gating control [NV17+]

* indirect VRAM access from host circuitry [NV30+]

* ROM timings control

* PWM controller for fans and panel backlight [NV17+]

– PPMI: PCI Memory Interface, handles SYSRAM accesses from other units of the GPU

– PTIMER: measures wall time and delivers alarm interrupts

– PCLOCK+PCONTROL: clock generation and distribution [contained in PRAMDAC on pre-NV40 GPUs]

– PFB: memory controller and arbiter

– PROM: VBIOS ROM access

– PSTRAPS: configuration straps access

10 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• processing engines:

– PFIFO: gathers processing commands from the command buffers prepared by the host and delivers them
to PGRAPH and PVPE engines in orderly manner

– PGRAPH: memory copying, 2d and 3d rendering engine

– PVPE: a trio of video decoding/encoding engines

* PMPEG: MPEG1 and MPEG2 mocomp and IDCT decoding engine [NV17+]

* PME: motion estimation engine [NV40+]

* PVP1: VP1 video processor [NV41+]

– PCOUNTER: performance monitoring counters for the processing engines and memory controller

• display engines:

– PCRTC: generates display control signals and reads framebuffer data for display, present in two instances
on NV11+ cards; also handles GPIO and I2C

– PVIDEO: reads and preprocesses overlay video data

– PRAMDAC: multiplexes PCRTC, PVIDEO and cursor image data, applies palette LUT, coverts to output
signals, present in two instances on NV11+ cards; on pre-NV40 cards also deals with clock generation

– PTV: an on-chip TV encoder

• misc engines:

– PMEDIA: controls video capture input and the mediaport, acts as a DMA controller for them

Almost all units of the GPU are controlled through MMIO registers accessible by a common bus and visible through
PCI BAR0 [see PCI BARs and other means of accessing the GPU]. This bus is not shown above.

2.1.4 GPU schematic - G80:GF100

+---------------+
PCIE bus +----------+ +--|--+ +------+ |

-----------| PMC+PBUS |----| PFB |---| VRAM | |
+----------+ +--|--+ +------+ |

| | | | |
+--------+ ++-----+ | | memory |
| PTHERM | | | | partition |
+--------+ | +----|---+ |

| +--| PGRAPH | |
+---------+ | +----|---+ |
| PDAEMON |--+ | +---------------+
+---------+ | |

| +-------+ +----------+
+-------+ +--| PFIFO |----+ | PCOUNTER |
| PNVIO | | +-------+ | +----------+
+-------+ | | |

| | +-------+ | +-------+
| +--| PCOPY | | | PFUSE |

+----------+ | +-------+ | +-------+
| PDISPLAY |-+ |
+----------+ | +--------+ | +--------+

| +--| PVCOMP |---+ | PKFUSE |
+--------+ | +--------+ | +--------+

(continues on next page)

2.1. nVidia GPU introduction 11



nVidia Hardware Documentation, Release git

(continued from previous page)

| PCODEC | | |
+--------+ | +-----------------------+

+--| video decoding, crypt |
+--------+ | +-----------------------+
| PMEDIA |--+
+--------+

The GPU is made of:

• control circuitry:

– PMC: master control area

– PBUS: bus control and an area where “misc” registers are thrown in. Known to contain at least:

* HWSQ, a simple script engine, can poke card registers and sleep in a given sequence

* clock gating control

* indirect VRAM access from host circuitry

– PTIMER: measures wall time and delivers alarm interrupts

– PCLOCK+PCONTROL: clock generation and distribution

– PTHERM: thermal sensor and clock throttling circuitry

– PDAEMON: card management microcontroller

– PFB: memory controller and arbiter

• processing engines:

– PFIFO: gathers processing commands from the command buffers prepared by the host and delivers them
to PGRAPH and PVPE engines in orderly manner

– PGRAPH: memory copying, 2d and 3d rendering engine

– video decoding engines, see below

– PCOPY: asynchronous copy engine

– PVCOMP: video compositing engine

– PCOUNTER: performance monitoring counters for the processing engines and memory controller

• display and IO port units:

– PNVIO: deals with misc external devices

* GPIOs

* fan PWM controllers

* I2C bus controllers

* videolink controls

* ROM interface

* straps interface

* PNVIO/PDISPLAY clock generation

– PDISPLAY: a unified display engine

– PCODEC: audio codec for HDMI audio

12 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• misc engines:

– PMEDIA: controls video capture input and the mediaport, acts as a DMA controller for them

2.1.5 GPU schematic - GF100-

Todo: finish file

2.2 GPU chips

Contents

• GPU chips

– Introduction

– The GPU families

* NV1 family: NV1

* NV3 (RIVA) family: NV3, NV3T

* NV4 (TNT) family: NV4, NV5

* Celsius family: NV10, NV15, NV1A, NV11, NV17, NV1F, NV18

* Kelvin family: NV20, NV2A, NV25, NV28

* Rankine family: NV30, NV35, NV31, NV36, NV34

* Curie family

* Tesla family

* Fermi/Kepler/Maxwell/Pascal/Volta/Turing family

– Comparison table

2.2.1 Introduction

Each nvidia GPU has several identifying numbers that can be used to determine supported features, the engines it
contains, and the register set. The most important of these numbers is an 8-bit number known as the “GPU id”. If two
cards have the same GPU id, their GPUs support identical features, engines, and registers, with very minor exceptions.
Such cards can however still differ in the external devices they contain: output connectors, encoders, capture chips,
temperature sensors, fan controllers, installed memory, supported clocks, etc. You can get the GPU id of a card by
reading from its PMC area.

The GPU id is usually written as NVxx, where xx is the id written as uppercase hexadecimal number. Note that, while
cards before NV10 used another format for their ID register and don’t have the GPU id stored directly, they are usually
considered as NV1-NV5 anyway.

Nvidia uses “GPU code names” in their materials. They started out identical to the GPU id, but diverged midway
through the NV40 series and started using a different numbering. However, for the most part nvidia code names
correspond 1 to 1 with the GPU ids.

2.2. GPU chips 13



nVidia Hardware Documentation, Release git

The GPU id has a mostly one-to-many relationship with pci device ids. Note that the last few bits [0-6 depending on
GPU] of PCI device id are changeable through straps [see pstraps]. When pci ids of a GPU are listed in this file, the
following shorthands are used:

1234 PCI device id 0x1234

1234* PCI device ids 0x1234-0x1237, choosable by straps

123X PCI device ids 0x1230-0x123X, choosable by straps

124X+ PCI device ids 0x1240-0x125X, choosable by straps

124X* PCI device ids 0x1240-0x127X, choosable by straps

2.2.2 The GPU families

The GPUs can roughly be grouped into a dozen or so families: NV1, NV3/RIVA, NV4/TNT, Celsius, Kelvin, Rankine,
Curie, Tesla, Fermi, Kepler, Maxwell, Pascal, Volta and Turing.

This aligns with big revisions of PGRAPH, the drawing engine of the card. While most functionality was introduced
in sync with PGRAPH revisions, some other functionality [notably video decoding hardware] gets added in GPUs
late in a GPU family and sometimes doesn’t even get to the first GPU in the next GPU family. For example, NV11
expanded upon the previous NV15 chipset by adding dual-head support, while NV20 added new PGRAPH revision
with shaders, but didn’t have dual-head - the first GPU to feature both was NV25.

Also note that a bigger GPU id doesn’t always mean a newer card / card with more features: there were quite a few
places where the numbering actually went backwards. For example, NV11 came out later than NV15 and added
several features.

Nvidia’s card release cycle always has the most powerful high-end GPU first, subsequently filling in the lower-end
positions with new cut-down GPUs. This means that newer cards in a single sub-family get progressively smaller,
but also more featureful - the first GPUs to introduce minor changes like DX10.1 support or new video decoding are
usually the low-end ones.

Whenever a range of GPUs is mentioned in the documentation, it’s written as “NVxx:NVyy”. This is left-inclusive,
right-noninclusive range of GPU ids as sorted in the following list. For example, G200:GT218 means GPUs G200,
MCP77, MCP79, GT215, GT216. NV20:NV30 effectively means all NV20 family GPUs.

The full known GPU list, sorted roughly according to introduced features, is:

• NV1 family: NV1

• NV3 (aka RIVA) family: NV3, NV3T

• NV4 (aka TNT) family: NV4, NV5

• Celsius family: NV10, NV15, NV1A, NV11, NV17, NV1F, NV18

• Kelvin family: NV20, NV2A, NV25, NV28

• Rankine family: NV30, NV35, NV31, NV36, NV34

• Curie family:

– NV40 subfamily: NV40, NV45, NV41, NV42, NV43, NV44, NV44A

– G70 subfamily: G70, G71, G73, G72

– the IGPs: C51, MCP61, MCP67, MCP68, MCP73

– the special snowflake: RSX

• Tesla family:

– G80 subfamily: G80

14 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– G84 subfamily: G84, G86, G92, G94, G96, G98

– G200 subfamily: G200, MCP77, MCP79

– GT215 subfamily: GT215, GT216, GT218, MCP89

• Fermi family:

– GF100 subfamily: GF100, GF104, GF106, GF114, GF116, GF108, GF110

– GF119 subfamily: GF119, GF117

• Kepler family: GK104, GK107, GK106, GK110, GK110B, GK208, GK208B, GK20A, GK210

• Maxwell family: GM107, GM108, GM204, GM200, GM206, GM20B

• Pascal family: GP100, GP102, GP104, GP106, GP107, GP108

• Volta family: GV100

• Turing family: TU102, TU104, TU106, TU116, TU117

NV1 family: NV1

gpu-gen NV1
The first generation of nVidia GPUs. Includes only one GPU – the NV1. It has semi-legendary status, as it’s
very rare and hard to get. The GPU is also known by its SGS-Thomson code number, STG-2000. The most
popular card using this GPU is Diamond EDGE 3D.

This GPU is unusual for multiple reasons:

• It has a builtin sound mixer with a MIDI synthetizer (aka PAUDIO). It is supposed to be paired with an
audio codec (AD1848) for full integrated soundcard functionality.

• It is not fully VGA-compatible – there is some VGA emulation, but it’s quite rough and many features are
not supported.

• It has no integrated DAC or clock generators – it has to be paired with an accompanying external DAC,
the STG-1732 or STG-1764 that will convert raw framebuffer contents to display pixels. It is also charged
with generating the clocks for the GPU.

• The accompanying DAC chip also contains game port functionality, for a complete soundcard replacement.

• As if the game port was not enough, the DAC also supports two Sega Saturn controller ports.

• The so-called 3D engine renders textured quadratic surfaces, instead of triangles (as opposed to all later
GPUs). Rendering triangles with it is pretty much impossible.

The GPU was jointly manufactured by SGS-Thomson and nVidia, and uses SGS’ PCI vendor ID (there are
apparently variants using nVidia’s vendor id, but not much is known about these).

There’s also NV2, which has even more legendary status. It was supposed to be another card based on quadratic
surfaces, but it got stuck in development hell and never got released. Apparently it never got to the stage of
functioning silicon. The device id of NV2 was supposed to be 0x0010.

NV3 (RIVA) family: NV3, NV3T

gpu-gen NV3
The first [moderately] sane GPUs from nvidia, and also the first to use AGP bus. There are two chips in this
family, and confusingly both use GPU id NV3, but can be told apart by revision. The original NV3 is used in
RIVA 128 cards, while the revised NV3, known as NV3T, is used in RIVA 128 ZX. NV3 supports AGP 1x and a
maximum of 4MB of VRAM, while NV3T supports AGP 2x and 8MB of VRAM. NV3T also increased number

2.2. GPU chips 15



nVidia Hardware Documentation, Release git

of slots in PFIFO cache. These GPUs were also manufactured by SGS-Thomson and bear the code name of
STG-3000.

The NV3 GPU is made of the following functional blocks:

• host interface, connected to the host machine via PCI or AGP

• two PLLs, to generate video pixel clock and memory clock

• memory interface, connected to 2MB-8MB of external VRAM via 64-bit or 128-bit memory bus, shared
with an 8-bit parallel flash ROM

• PFIFO, controlling command submission to PGRAPH and gathering commands through DMA to host
memory or direct MMIO submission

• PGRAPH, the 2d/3d drawing engine, supporting windows GDI and Direct3D 5 acceleration

• VGA-compatible CRTC, RAMDAC, and associated video output circuitry, enabling direct connection of
VGA analog displays and TV connection via an external AD722 encoder chip

• i2c bus to handle DDC and control mediaport devices

• double-buffered video overlay and cursor circuitry in RAMDAC

• mediaport, a proprietary interface with ITU656 compatibility mode, allowing connection of external video
capture or MPEG2 decoding chip

NV3 introduced RAMIN, an area of memory at the end of VRAM used to hold various control structures for
PFIFO and PGRAPH. On NV3, RAMIN can be accessed in BAR1 at addresses starting from 0xc00000, while
later cards have it in BAR0. It also introduced DMA objects, a RAMIN structure used to define a VRAM
or host memory area that PGRAPH is allowed to use when executing commands on behalf of an application.
These early DMA objects are limitted to linear VRAM and paged host memory objects, and have to be switched
manually by host. See NV3 DMA objects for details.

NV4 (TNT) family: NV4, NV5

gpu-gen NV4
Improved and somewhat redesigned NV3. Notable changes:

• AGP x4 support

• redesigned and improved DMA command submission

• separated core and memory clocks

• DMA objects made more orthogonal, and switched automatically by card

• redesigned PGRAPH objects, introducing the concept of object class in hardware

• added BIOS ROM shadow in RAMIN

• Direct3D 6 / multitexturing support in PGRAPH

• bumped max supported VRAM to 16MB

• [NV5] bumped max supported VRAM to 32MB

• [NV5] PGRAPH 2d context object binding in hardware

This family includes the original NV4, used in RIVA TNT cards, and NV5 used in RIVA TNT2 and Vanta cards.

16 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Celsius family: NV10, NV15, NV1A, NV11, NV17, NV1F, NV18

gpu-gen Celsius
The notable changes in this generation are:

• NV10:

– redesigned memory controller

– max VRAM bumped to 128MB

– redesigned VRAM tiling, with support for multiple tiled regions

– greatly expanded 3d engine: hardware T&L, D3D7, and other features

– GPIO pins introduced for ???

– PFIFO: added REF_CNT and NONINC commands

– added PCOUNTER: the performance monitoring engine

– new and improved video overlay engine

– redesigned mediaport

• NV15:

– introduced vblank wait PGRAPH commands

– minor 3d engine additions [logic operation, . . . ]

• NV1A:

– big endian mode

– PFIFO: semaphores and subroutines

• NV11:

– dual head support, meant for laptops with flat panel + external display

• NV17:

– builtin TV encoder

– ZCULL

– added VPE: MPEG2 decoding engine

• NV18:

– AGP x8 support

– second straps set

Todo: what were the GPIOs for?

2.2. GPU chips 17



nVidia Hardware Documentation, Release git

pciid GPU pixel pipelines and
ROPs

texture
units

date notes

0100* NV10 4 4 11.10.1999 the first GeForce card [GeForce 256]
0150* NV15 4 8 26.04.2000 the high-end card of GeForce 2 lineup

[GeForce 2 Ti, . . . ]
01a0* NV1A 2 4 04.06.2001 the IGP of GeForce 2 lineup [nForce]
0110* NV11 2 4 28.06.2000 the low-end card of GeForce 2 lineup

[GeForce 2 MX]
017X NV17 2 4 06.02.2002 the low-end card of GeForce 4 lineup

[GeForce 4 MX]
01fX NV1F 2 4 01.10.2002 the IGP of GeForce 4 lineup [nForce 2]
018X NV18 2 4 25.09.2002 like NV17, but with added AGP x8 support

NV1A and NV1F are IGPs and lack VRAM, memory controller, mediaport, and ROM interface. They use the internal
interfaces of the northbridge to access an area of system memory set aside as fake VRAM and BIOS image.

Kelvin family: NV20, NV2A, NV25, NV28

gpu-gen Kelvin
The first cards of this family were actually developed before NV17, so they miss out on several features intro-
duced in NV17. The first card to merge NV20 and NV17 additions is NV25. Notable changes:

• NV20:

– no dual head support again

– no PTV, VPE

– no ZCULL

– a new memory controller with Z compression

– RAMIN reversal unit bumped to 0x40 bytes

– 3d engine extensions:

* programmable vertex shader support

* D3D8, shader model 1.1

– PGRAPH automatic context switching

• NV25:

– a merge of NV17 and NV20: has dual-head, ZCULL, . . .

– still no VPE and PTV

• NV28:

– AGP x8 support

The GPUs are:

18 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

pciid GPU vertex
shaders

pixel pipelines
and ROPs

texture
units

date notes

0200* NV20 1 4 8 27.02.2001the only GPU of GeForce 3 lineup
[GeForce 3 Ti, . . . ]

02a0* NV2A 2 4 8 15.11.2001the XBOX IGP [XGPU]
025X NV25 2 4 8 06.02.2002the high-end GPU of GeForce 4 lineup

[GeForce 4 Ti]
028X NV28 2 4 8 20.01.2003like NV25, but with added AGP x8

support

NV2A is a GPU designed exclusively for the original xbox, and can’t be found anywhere else. Like NV1A and NV1F,
it’s an IGP.

Todo: verify all sorts of stuff on NV2A

Rankine family: NV30, NV35, NV31, NV36, NV34

gpu-gen Rankine
The infamous GeForce FX series. Notable changes:

• NV30:

– 2-stage PLLs introduced [still located in PRAMDAC]

– max VRAM size bumped to 256MB

– 3d engine extensions:

* programmable fragment shader support

* D3D9, shader model 2.0

– added PEEPHOLE indirect memory access

– return of VPE and PTV

– new-style memory timings

• NV35:

– 3d engine now supports depth bounds check

• NV31:

– no NV35 changes, this GPU is derived from NV30

– 2-stage PLLs split into two registers

– VPE engine extended to work as a PFIFO engine

• NV36:

– a merge of NV31 and NV35 changes from NV30

• NV34:

– a comeback of NV10 memory controller!

– NV10-style mem timings again

– no Z compression again

2.2. GPU chips 19



nVidia Hardware Documentation, Release git

– RAMIN reversal unit back at 16 bytes

– 3d engine additions:

* ???

Todo: figure out NV34 3d engine changes

The GPUs are:

pciid GPU vertex
shaders

pixel pipelines and
ROPs

date notes

030X NV30 2 8 27.01.2003 high-end GPU [GeForce FX 5800]
033X NV35 3 8 12.05.2003 very high-end GPU [GeForce FX

59X0]
031X NV31 1 4 06.03.2003 low-end GPU [GeForce FX 5600]
034X NV36 3 4 23.10.2003 middle-end GPU [GeForce FX 5700]
032X NV34 1 4 06.03.2003 low-end GPU [GeForce FX 5200]

The pci vendor id is 0x10de.

Curie family

gpu-gen Curie
This family was the first to feature PCIE cards, and many fundamental areas got significant changes, which later
paved the way for G80. It is also the family where GPU ids started to diverge from nvidia code names. The
changes:

• NV40:

– RAMIN bumped in size to max 16MB, many structure layout changes

– RAMIN reversal unit bumped to 512kB

– 3d engine: support for shader model 3 and other additions

– Z compression came back

– PGRAPH context switching microcode

– redesigned clock setup

– separate clock for shaders

– rearranged PCOUNTER to handle up to 8 clock domains

– PFIFO cache bumped in size and moved location

– added independent PRMVIO for two heads

– second set of straps added, new strap override registers

– new PPCI PCI config space access window

– MPEG2 encoding capability added to VPE

– FIFO engines now identify the channels by their context addresses, not chids

– BIOS uses all-new BIT structure to describe the card

– individually disablable shader and ROP units.

20 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– added PCONTROL area to. . . control. . . stuff?

– memory controller uses NV30-style timings again

• NV41:

– introduced context switching to VPE

– introduced PVP1, microcoded video processor

– first natively PCIE card

– added PCIE GART to memory controller

• NV43:

– added a thermal sensor to the GPU

• NV44:

– a new PCIE GART page table format

– 3d engine: ???

• NV44A:

– like NV44, but AGP instead of PCIE

Todo: more changes

Todo: figure out 3d engine changes

The GPUs are:

pciid GPU id GPU names vertex
shaders

pixel
shaders

ROPs date notes

004X
021X

0x40/0x45 NV40/NV45/NV486 16 16 14.04.2004AGP

00cX 0x41/0x42 NV41/NV42 5 12 12 08.11.2004
014X 0x43 NV43 3 8 4 12.08.2004
016X 0x44 NV44 3 4 2 15.12.2004TURBOCACHE
022X 0x4a NV44A 3 4 2 04.04.2005AGP
009X 0x47 G70 8 24 16 22.06.2005
01dX 0x46 G72 3 4 2 18.01.2006TURBOCACHE
029X 0x49 G71 8 24 16 09.03.2006
039X 0x4b G73 8 12 8 09.03.2006
024X 0x4e C51 1 2 1 20.10.2005IGP, TURBOCACHE
03dX 0x4c MCP61 1 2 1 ??.06.2006 IGP, TURBOCACHE
053X 0x67 MCP67 1 2 2 01.02.2006IGP, TURBOCACHE
053X 0x68 MCP68 1 2 2 ??.07.2007 IGP, TURBOCACHE
07eX 0x63 MCP73 1 2 2 ??.07.2007 IGP, TURBOCACHE
- 0x4d RSX ? ? ? 11.11.2006FlexIO bus interface,

used in PS3

Todo: all geometry information unverified

2.2. GPU chips 21



nVidia Hardware Documentation, Release git

Todo: any information on the RSX?

It’s not clear how NV40 is different from NV45, or NV41 from NV42, or MCP67 from MCP68 - they even share pciid
ranges.

The NV4x IGPs actually have a memory controller as opposed to earlier ones. This controller still accesses only host
memory, though.

As execution units can be disabled on NV40+ cards, these configs are just the maximum configs - a card can have just
a subset of them enabled.

Tesla family

gpu-gen Tesla
The card where they redesigned everything. The most significant change was the redesigned memory subsystem,
complete with a paging MMU [see Tesla virtual memory].

• G80:

– a new VM subsystem, complete with redesigned DMA objects

– RAMIN is gone, all structures can be placed arbitrarily in VRAM, and usually host memory memory
as well

– all-new channel structure storing page tables, RAMFC, RAMHT, context pointers, and DMA objects

– PFIFO redesigned, PIO mode dropped

– PGRAPH redesigned: based on unified shader architecture, now supports running standalone compu-
tations, D3D10 support, unified 2d acceleration object

– display subsystem reinvented from scratch: a stub version of the old VGA-based one remains for VGA
compatibility, the new one is not VGA based and is controlled by PFIFO-like DMA push buffers

– memory partitions tied directly to ROPs

• G84:

– redesigned channel structure with a new layout

– got rid of VP1 video decoding and VPE encoding support, but VPE decoder still exists

– added VP2 xtensa-based programmable video decoding and BSP engines

– removed restrictions on host memory access by rendering: rendering to host memory and using block-
linear textures from host are now ok

– added VM stats write support to PCOUNTER

– PEEPHOLE moved out of PBUS

– PFIFO_BAR_FLUSH moved out of PFIFO

• G98:

– introduced VP3 video decoding engines, and the falcon microcode with them

– got rid of VP2 video decoding

• G200:

– developped in parallel with G98

– VP2 again, no VP3

22 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– PGRAPH rearranged to make room for more MPs/TPCs

– streamout enhancements [ARB_transform_feedback2]

– CUDA ISA 1.3: 64-bit g[] atomics, s[] atomics, voting, fp64 support

• MCP77:

– merged G200 and G98 changes: has both VP3 and new PGRAPH

– only CUDA ISA 1.2 now: fp64 support got cut out again

• GT215:

– a new revision of the falcon ISA

– a revision to VP3 video decoding, known as VP4. Adds MPEG-4 ASP support.

– added PDAEMON, a falcon engine meant to do card monitoring and power maanagement

– PGRAPH additions for D3D10.1 support

– added HDA audio codec for HDMI sound support, on a separate PCI function

– Added PCOPY, the dedicated copy engine

– Merged PSEC functionality into PVLD

• MCP89:

– added PVCOMP, the video compositor engine

The GPUs in this family are:

core hda id name TPCs MPs/TPC PARTs date notes
pciid pciid
019X - 0x50 G80 8 2 6 08.11.2006
040X - 0x84 G84 2 2 2 17.04.2007
042X - 0x86 G86 1 2 2 17.04.2007
060X+ - 0x92 G92 8 2 4 29.10.2007
062X+ - 0x94 G94 4 2 4 29.07.2008
064X+ - 0x96 G96 2 2 2 29.07.2008
06eX+ - 0x98 G98 1 1 1 04.12.2007
05eX+ - 0xa0 G200 10 3 8 16.06.2008
084X+ - 0xaa MCP77/MCP78 1 1 1 ??.06.2008 IGP
086X+ - 0xac MCP79/MCP7A 1 2 1 ??.06.2008 IGP
0caX+ 0be4 0xa3 GT215 4 3 2 15.06.2009
0a2X+ 0be2 0xa5 GT216 2 3 2 15.06.2009
0a6X+ 0be3 0xa8 GT218 1 2 1 15.06.2009
08aX+ - 0xaf MCP89 2 3 2 01.04.2010 IGP

Like NV40, these are just the maximal numbers.

Todo: geometry information not verified for G94, MCP77

Fermi/Kepler/Maxwell/Pascal/Volta/Turing family

gpu-gen Fermi
The card where they redesigned everything again.

2.2. GPU chips 23



nVidia Hardware Documentation, Release git

• GF100:

– redesigned PFIFO, now with up to 3 subfifos running in parallel

– redesigned PGRAPH:

* split into a central HUB managing everything and several GPCs doing all actual work

* GPCs further split into a common part and several TPCs

* using falcon for context switching

* D3D11 support

– redesigned memory controller

* split into three parts:

· per-partition low-level memory controllers [PBFB]

· per-partition middle memory controllers: compression, ECC, . . . [PMFB]

· a single “hub” memory controller: VM control, TLB control, . . . [PFFB]

– memory partitions, GPCs, TPCs have independent register areas, as well as “broadcast” areas that can
be used to control all units at once

– second PCOPY engine

– redesigned PCOUNTER, now having multiple more or less independent subunits to monitor various
parts of GPU

– redesigned clock setting

– . . .

• GF119:

– a major revision to VP3 video decoding, now called VP5. vµc microcode removed.

– another revision to the falcon ISA, allowing 24-bit PC

– added PUNK1C3 falcon engine

– redesigned I2C bus interface

– redesigned PDISPLAY

– removed second PCOPY engine

• GF117:

– PGRAPH changes:

* ???

gpu-gen Kepler
An upgrade to Fermi.

• GK104:

– redesigned PCOPY: the falcon controller is now gone, replaced with hardware control logic, partially
in PFIFO

– an additional PCOPY engine

– PFIFO redesign - a channel can now only access a single engine selected on setup, with
PCOPY2+PGRAPH considered as one engine

– PGRAPH changes:

24 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

* subchannel to object assignments are now fixed

* m2mf is gone and replaced by a new p2mf object that only does simple upload, other m2mf
functions are now PCOPY’s responsibility instead

* the ISA requires explicit scheduling information now

* lots of setup has been moved from methods/registers into memory structures

* ???

• GK110:

– PFIFO changes:

* ???

– PGRAPH changes:

* ISA format change

* ???

Todo: figure out PGRAPH/PFIFO changes

gpu-gen Maxwell

gpu-gen Pascal

gpu-gen Volta

gpu-gen Turing

GPUs in Fermi/Kepler/Maxwell/Pascal/Volta/Turing families:

core hda usb id name GPCs TPCs PARTs MCs ZCULLs PCOPYs HEADs UNK7 PPCs SUBPs SPOONs CE0 CE1 CE2 date
pciid pciid pciid /GPC /GPC /GPC /PART
06cX+ 0be5 - 0xc0 GF100 4 4 6 [6] [4] [2] [2] - - 2 3 0 0 - 26.03.2010
0e2X+ 0beb - 0xc4 GF104 2 4 4 [4] [4] [2] [2] - - 2 3 0? 0? - 12.07.2010
120X+ 0e0c - 0xce GF114 2 4 4 [4] [4] [2] [2] - - 2 3 0? 0? - 25.01.2011
0dcX+ 0be9 - 0xc3 GF106 1 4 3 [3] [4] [2] [2] - - 2 3 3 4 - 03.09.2010
124X+ 0bee - 0xcf GF116 1 4 3 [3] [4] [2] [2] - - 2 3 3 4 - 15.03.2011
0deX+ 0bea - 0xc1 GF108 1 2 1 2 4 [2] [2] - - 2 1 3 4 - 03.09.2010
108X+ 0e09 - 0xc8 GF110 4 4 6 [6] [4] [2] [2] - - 2 3 0 0 - 07.12.2010
104X* 0e08 - 0xd9 GF119 1 1 1 1 4 1 2 - - 1 1 3 - - 05.01.2011
1140 - - 0xd7 GF117 1 2 1 1 4 1 -[4] - 1 2 1 3 - - ??.04.2012
118X* 0e0a - 0xe4 GK104 4 2 4 4 4 3 4 - 1 4 3 ? 3 3 22.03.2012
0fcX* 0e1b - 0xe7 GK107 1 2 2 2 4 3 4 - 1 4 3 3 ? 3 24.04.2012
11cX+ 0e0b - 0xe6 GK106 3 2 3 3 4 3 4 - 1 4 3 3 ? 3 22.04.2012
100X+ 0e1a - 0xf0 GK110 5 3 6 6 4 3 4 - 2 4 3 ? ? ? 21.02.2013
100X+ 0e1a - 0xf1 GK110B 5 3 6 6 4 3 4 - 2 4 3 ? 3 3 07.11.2013
???? ???? - ???? GK210 ? ? ? ? ? ? ? - ? ? ? ? ? ? ?
128X+ 0e0f - 0x108 GK208 1 2 1 1 4 3 4 - 1 2 2 3 ? 3 19.02.2013
128X+ 0e0f - 0x106 GK208B 1 2 1 1 4 3 4 - 1? 2? 2? 3 ? 3 ???
- - - 0xea GK20A 1 1 1 1 4 3 -[4] - 1 1 1 -? -? 3 ?
138X+ 0fbc - 0x117 GM107 1 5 2 2 4 3 4 1 2 4 2 3 ? 3 18.02.2014
134X+ ???? - 0x118 GM108 1 3 1 1 4 3 4 0 ? ? 2 3 ? 3 ?
13cX+ 0fbb - 0x124 GM204 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Continued on next page

2.2. GPU chips 25



nVidia Hardware Documentation, Release git

Table 1 – continued from previous page
core hda usb id name GPCs TPCs PARTs MCs ZCULLs PCOPYs HEADs UNK7 PPCs SUBPs SPOONs CE0 CE1 CE2 date
pciid pciid pciid /GPC /GPC /GPC /PART
17cX+ 0fb0 - 0x120 GM200 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
140X+ 0fba - 0x126 GM206 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
- - - 0x12b GM20B ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
158X# ???? - 0x130 GP100 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
1b0X# 10ef - 0x132 GP102 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
1b8X# 10f0 - 0x134 GP104 4 5 4 4 4 4 4 2 ? ? ? ? ? ? ?
1c0X# 10f1 - 0x136 GP106 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
1c8X# 0fb9 - 0x137 GP107 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 10.25.2016
1d0X# 0fb8 - 0x138 GP108 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
10e5* - - 0x13b GP10B ? ? ? ? ? ? ? ? ? ? ? ? ? ? 14.03.2017
1d8X# 10f2 - 0x140 GV100 6 7 ? ? ? ? ? ? ? ? ? ? ? ? 12.07.2017
- - - 0x15b GV11B ? ? ? ? ? ? ? ? ? ? ? ? ? ? 03.06.2018
1e0X# 10f7 1ad6 0x162 TU102 6 6 ? ? ? ? ? ? ? ? ? ? ? ? 27.09.2018
1e8X# 10f8 1ad8 0x164 TU104 6 4 ? ? ? ? ? ? ? ? ? ? ? ? 20.09.2018
1f0X# 10f9 1ada 0x166 TU106 3 6 ? ? ? ? ? ? ? ? ? ? ? ? 17.10.2018
218X# 1aeb - 0x168 TU116 3 4 ? ? ? ? ? ? ? ? ? ? ? ? 22.02.2019
1f8X# - 0x167 TU117 2 4 ? ? ? ? ? ? ? ? ? ? ? ? 23.04.2019

Todo: it is said that one of the GPCs [0th one] has only one TPC on GK106

Todo: what the fuck is GK110B? and GK208B?

Todo: GK210

Todo: GK20A

Todo: GM20x, GP10x

Todo: another design counter available on GM107, another 4 on GP10x

Todo: TU117 one of the GPCs has only three TPCs (so 7 in total, not 8)

2.2.3 Comparison table

Name GPU id GPU generation Release date [approximate] Bus interface PCI vendor id PCI device IDs HDA PCI device id USB PCI device id UCSI PCI device id BIOS version prefix FB type # of FB partitions # of MCs per FB partition # of SUBPs per FB partition # of XF units # of GPCs # of TPCs [per GPC for Fermi+] # of SMs per TPC # of PPCs per GPC # of CEs
NV1 - NV1 09.1995 Pci 0x104a 0x0008-0x0009 - - - - NV1 - - - - - - - - -

Continued on next page

26 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 2 – continued from previous page
Name GPU id GPU generation Release date [approximate] Bus interface PCI vendor id PCI device IDs HDA PCI device id USB PCI device id UCSI PCI device id BIOS version prefix FB type # of FB partitions # of MCs per FB partition # of SUBPs per FB partition # of XF units # of GPCs # of TPCs [per GPC for Fermi+] # of SMs per TPC # of PPCs per GPC # of CEs
NV3 - NV3 04.1997 Pci 0x12d2 0x0018-0x0019 - - - - NV3 - - - - - - - - -
NV3T - NV3 23.02.1998 Pci 0x12d2 0x0018-0x0019 - - - - NV3T - - - - - - - - -
NV4 - NV4 23.03.1998 Pci 0x10de 0x0020 - - - - NV4 - - - - - - - - -
NV5 - NV4 15.03.1999 Pci 0x10de 0x0028-0x002b - - - 02.05 NV5 - - - - - - - - -
NV6 - NV4 15.03.1999 Pci 0x10de 0x002c-0x002f - - - 02.05 NV5 - - - - - - - - -
NVA - NV4 08.09.1999 Pci 0x10de 0x00a0 - - - ? NVA - - - - - - - - -
NV10 0x010 Celsius 11.10.1999 Pci 0x10de 0x0100-0x0103 - - - 02.10 NV10 - - - 1 - - - - -
NV15 0x015 Celsius 26.04.2000 Pci 0x10de 0x0150-0x0153 - - - 03.15 NV10 - - - 1 - - - - -
NV1A 0x01a Celsius 04.06.2001 Pci 0x10de 0x01a0-0x01a3 - - - 03.1a NV1A - - - 1 - - - - -
NV11 0x011 Celsius 28.06.2000 Pci 0x10de 0x0110-0x0113 - - - 03.11 NV10 - - - 1 - - - - -
NV17 0x017 Celsius 06.02.2002 Pci 0x10de 0x0170-0x017f - - - 04.17 NV10 - - - 1 - - - - -
NV1F 0x01f Celsius 01.10.2002 Pci 0x10de 0x01f0-0x01ff - - - 04.1f NV1F - - - 1 - - - - -
NV18 0x018 Celsius 25.09.2002 Pci 0x10de 0x0180-0x018f - - - 04.18 NV10 - - - 1 - - - - -
NV20 0x020 Kelvin 27.02.2001 Pci 0x10de 0x0200-0x0203 - - - 03.20 NV20 4 - - 1 - 2 - - -
NV2A 0x02a Kelvin 15.11.2001 Pci 0x10de 0x02a0-0x02a3 - - - - NV2A 4 - - 2 - 2 - - -
NV25 0x025 Kelvin 06.02.2002 Pci 0x10de 0x0250-0x025f - - - 04.25 NV25 4 - - 2 - 2 - - -
NV28 0x028 Kelvin 20.01.2003 Pci 0x10de 0x0280-0x028f - - - 04.28 NV25 4 - - 2 - 2 - - -
NV30 0x030 Rankine 27.01.2003 Pci 0x10de 0x0300-0x030f - - - 04.30 NV30 4 - - 2 - 2 - - -
NV35 0x035 Rankine 12.05.2003 Pci 0x10de 0x0330-0x033f - - - 04.35 NV35 4 - - 3 - 2 - - -
NV31 0x031 Rankine 06.03.2003 Pci 0x10de 0x0310-0x031f - - - 04.31 NV31 2 - - 1 - 1 - - -
NV36 0x036 Rankine 23.10.2003 Pci 0x10de 0x0340-0x034f - - - 04.36 NV36 2 - - 3 - 1 - - -
NV34 0x034 Rankine 06.03.2003 Pci 0x10de 0x0320-0x032f - - - 04.34 NV10 - - - 1 - 1 - - -
NV40 0x040 Curie 14.04.2004 Pci 0x10de 0x0040-0x004f - - - 05.40 NV40 4 - - 6 - 4 - - -
NV45 0x045 Curie 14.04.2004 Pci 0x10de 0x0040-0x004f - - - 05.40 NV40 4 - - 6 - 4 - - -
NV41 0x041 Curie 08.11.2004 Pcie 0x10de 0x00c0-0x00cf - - - 05.41 NV41 4 - - 5 - 3 - - -
NV42 0x042 Curie 08.11.2004 Pcie 0x10de 0x00c0-0x00cf - - - 05.41 NV41 4 - - 5 - 3 - - -
NV43 0x043 Curie 12.08.2004 Pcie 0x10de 0x0140-0x014f - - - 05.43 NV43 2 - - 3 - 2 - - -
NV44 0x044 Curie 15.12.2004 Pcie 0x10de 0x0160-0x016f - - - 05.44 NV44 ? - - 3 - 2 - - -
NV44A 0x04a Curie 04.04.2005 Pci 0x10de 0x0220-0x022f - - - 05.44 NV44 ? - - 3 - 2 - - -
G70 0x047 Curie 22.06.2005 Pcie 0x10de 0x0090-0x009f - - - 05.70 G70 4 - - 8 - 6 - - -
G72 0x046 Curie 18.01.2006 Pcie 0x10de 0x01d0-0x01df - - - 05.72 G72 ? - - 3 - 2 - - -
G71 0x049 Curie 09.03.2006 Pcie 0x10de 0x0290-0x029f - - - 05.71 G70 4 - - 8 - 6 - - -
G73 0x04b Curie 09.03.2006 Pcie 0x10de 0x0390-0x039f - - - 05.73 G73 2 - - 8 - 3 - - -
C51 0x04e Curie 20.10.2005 Igp 0x10de 0x0240-0x024f - - - 05.51 C51 ? - - 1 - 1 - - -
MCP61 0x04c Curie 06.2006 Igp 0x10de 0x03d0-0x03df - - - 05.61 MCP61 ? - - 1 - 1 - - -
MCP67 0x067 Curie 01.02.2006 Igp 0x10de 0x0530-0x053f - - - 05.67 MCP61 ? - - 1 - 1 - - -
MCP68 0x068 Curie 07.2007 Igp 0x10de 0x0530-0x053f - - - 05.67 MCP61 ? - - 1 - 1 - - -
MCP73 0x063 Curie 07.2007 Igp 0x10de 0x07e0-0x07ef - - - 05.73 MCP61 ? - - 1 - 1 - - -
RSX 0x04d Curie 11.11.2006 FlexIO - - - - - - G72 ? - - 8 - 6 - - -
G80 0x050 Tesla 08.11.2006 Pcie 0x10de 0x0190-0x019f - - - 60.80 G80 6 - - - - 8 2 - -
G84 0x084 Tesla 17.04.2007 Pcie 0x10de 0x0400-0x040f - - - 60.84 G80 2 - - - - 2 2 - -
G86 0x086 Tesla 17.04.2007 Pcie 0x10de 0x0420-0x042f - - - 60.86 G80 2 - - - - 1 2 - -
G92 0x092 Tesla 29.10.2007 Pcie 0x10de 0x0600-0x061f - - - 62.92 G80 4 - - - - 8 2 - -
G94 0x094 Tesla 29.07.2008 Pcie 0x10de 0x0620-0x063f - - - 62.94 G80 4 - - - - 4 2 - -
G96 0x096 Tesla 29.07.2008 Pcie 0x10de 0x0640-0x065f - - - 62.94 G80 2 - - - - 2 2 - -
G98 0x098 Tesla 04.12.2007 Pcie 0x10de 0x06e0-0x06ff - - - 62.98 G80 1 - - - - 1 1 - -
G200 0x0a0 Tesla 16.06.2008 Pcie 0x10de 0x05e0-0x05ff - - - 62.00 G80 8 - - - - 10 3 - -
MCP77 0x0aa Tesla 06.2008 Igp 0x10de 0x0840-0x085f - - - 62.77 MCP77 1 - - - - 1 1 - -
MCP79 0x0ac Tesla 06.2008 Igp 0x10de 0x0860-0x087f - - - 62.79 MCP77 1 - - - - 1 2 - -

Continued on next page

2.2. GPU chips 27



nVidia Hardware Documentation, Release git

Table 2 – continued from previous page
Name GPU id GPU generation Release date [approximate] Bus interface PCI vendor id PCI device IDs HDA PCI device id USB PCI device id UCSI PCI device id BIOS version prefix FB type # of FB partitions # of MCs per FB partition # of SUBPs per FB partition # of XF units # of GPCs # of TPCs [per GPC for Fermi+] # of SMs per TPC # of PPCs per GPC # of CEs
GT215 0x0a3 Tesla 15.06.2009 Pcie 0x10de 0x0ca0-0x0cbf 0x0be4 - - 70.15 G80 2 - - - - 4 3 - 1
GT216 0x0a5 Tesla 15.06.2009 Pcie 0x10de 0x0a20-0x0a3f 0x0be2 - - 70.16 G80 2 - - - - 2 3 - 1
GT218 0x0a8 Tesla 15.06.2009 Pcie 0x10de 0x0a60-0x0a7f 0x0be3 - - 70.18 G80 1 - - - - 1 2 - 1
MCP89 0x0af Tesla 01.04.2010 Igp 0x10de 0x08a0-0x08bf - - - 70.89 MCP77 2 - - - - 2 3 - 1
GF100 0x0c0 Fermi 26.03.2010 Pcie 0x10de 0x06c0-0x06df 0x0be5 - - 70.00 GF100 6 1 2 - 4 4 1 - 2
GF104 0x0c4 Fermi 12.07.2010 Pcie 0x10de 0x0e20-0x0e3f 0x0beb - - 70.04 GF100 4 1 2 - 2 4 1 - 2
GF114 0x0ce Fermi 25.01.2011 Pcie 0x10de 0x1200-0x121f 0x0e0c - - 70.24 GF100 4 1 2 - 2 4 1 - 2
GF106 0x0c3 Fermi 03.09.2010 Pcie 0x10de 0x0dc0-0x0ddf 0x0be9 - - 70.06 GF100 3 1 2 - 1 4 1 - 2
GF116 0x0cf Fermi 15.03.2011 Pcie 0x10de 0x1240-0x125f 0x0bee - - 70.26 GF100 3 1 2 - 1 4 1 - 2
GF108 0x0c1 Fermi 03.09.2010 Pcie 0x10de 0x0de0-0x0dff 0x0bea - - 70.08 GF100 1 2 2 - 1 2 1 - 2
GF110 0x0c8 Fermi 07.12.2010 Pcie 0x10de 0x1080-0x109f 0x0e09 - - 70.10 GF100 6 1 2 - 4 4 1 - 2
GF119 0x0d9 Fermi 05.01.2011 Pcie 0x10de 0x1040-0x107f 0x0e08 - - 75.19 GF100 1 1 1 - 1 2 1 - 1
GF117 0x0d7 Fermi 04.2012 Pcie 0x10de 0x1140-0x117f - - - ? GF100 1 1 2 - 1 2 1 1 1
GK104 0x0e4 Kepler 22.03.2012 Pcie 0x10de 0x1180-0x11bf 0x0e0a - - 80.04 GF100 4 1 4 - 4 2 1 1 3
GK107 0x0e7 Kepler 24.04.2012 Pcie 0x10de 0x0fc0-0x0fff 0x0e1b - - 80.07 GF100 2 1 4 - 1 2 1 1 3
GK106 0x0e6 Kepler 22.04.2012 Pcie 0x10de 0x11c0-0x11ff 0x0e0b - - 80.06 GF100 3 1 4 - 3 2 1 1 3
GK110 0x0f0 Kepler 21.02.2013 Pcie 0x10de 0x1000-0x103f 0x0e1a - - 80.10 GF100 6 1 4 - 5 3 1 2 3
GK110B 0x0f1 Kepler 07.11.2013 Pcie 0x10de 0x1000-0x103f 0x0e1a - - 80.80 GF100 6 1 4 - 5 3 1 2 3
GK210 ? Kepler ? Pcie 0x10de ? ? - - ? GF100 6 1 4 - 5 3 1 2 3
GK208 0x108 Kepler 19.02.2013 Pcie 0x10de 0x1280-0x12bf 0x0e0f - - 80.28 GF100 1 1 2 - 1 2 1 1 3
GK208B 0x106 Kepler ? Pcie 0x10de 0x1280-0x12bf 0x0e0f - - 80.28 GF100 1 1 2 - 1 2 1 1 3
GK20A 0x0ea Kepler ? Tegra - - - - - - GK20A 1 1 1 - 1 1 1 1 3
GM107 0x117 Maxwell 18.02.2014 Pcie 0x10de 0x1380-0x13bf 0x0fbc - - 82.07 GF100 2 1 4 - 1 5 1 2 3
GM108 0x118 Maxwell ? Pcie 0x10de 0x1340-0x137f ? - - 82.08 GF100 1 1 ? - 1 3 1 ? 3
GM204 0x124 Maxwell ? Pcie 0x10de 0x13c0-0x13ff 0x0fbb - - 84.04 GF100 ? 1 ? - ? ? 1 ? 3
GM200 0x120 Maxwell ? Pcie 0x10de 0x17c0-0x17ff 0x0fb0 - - 84.00 GF100 ? 1 ? - ? ? 1 ? 3
GM206 0x126 Maxwell ? Pcie 0x10de 0x1400-0x143f 0x0fba - - 84.06 GF100 ? 1 ? - ? ? 1 ? 3
GM20B 0x12b Maxwell ? Tegra - - - - - - GK20A ? 1 ? - ? ? 1 ? 3
GP100 0x130 Pascal ? Pcie 0x10de 0x1580-0x15ff ? - - 86.00 GF100 ? 1 ? - ? ? 1 ? 3
GP102 0x132 Pascal ? Pcie 0x10de 0x1b00-0x1b7f 0x10ef - - 86.02 GF100 ? 1 ? - ? ? 1 ? 3
GP104 0x134 Pascal ? Pcie 0x10de 0x1b80-0x1bff 0x10f0 - - 86.04 GF100 4 1 ? - 4 5 1 ? 3
GP106 0x136 Pascal ? Pcie 0x10de 0x1c00-0x1c7f 0x10f1 - - 86.06 GF100 ? 1 ? - ? ? 1 ? 3
GP107 0x137 Pascal 10.25.2016 Pcie 0x10de 0x1c80-0x1cff 0x0fb9 - - 86.07 GF100 ? 1 ? - ? ? 1 ? 3
GP108 0x138 Pascal ? Pcie 0x10de 0x1d00-0x1d7f 0x0fb8 - - 86.08 GF100 ? 1 ? - ? ? 1 ? 3
GP10B 0x13b Pascal 14.03.2017 Tegra 0x10de 0x10e5-0x1164 - - - - GF100 ? 1 ? - ? ? 1 ? 3
GV100 0x140 Volta 12.07.2017 Pcie 0x10de 0x1d80-0x1dff 0x10f2 - - 88.00 GF100 ? 1 ? - 6 7 1 ? 3
GV11B 0x15b Volta 03.06.2018 Tegra - - - - - - GF100 ? 1 ? - 6 7 1 ? 3
TU102 0x162 Turing 27.09.2018 Pcie 0x10de 0x1e00-0x1e7f 0x10f7 0x1ad6 0x1ad7 90.02 GF100 ? 1 ? - 6 6 1 ? 3
TU104 0x164 Turing 20.09.2018 Pcie 0x10de 0x1e80-0x1eff 0x10f8 0x1ad8 0x1ad9 90.04 GF100 ? 1 ? - 6 4 1 ? 3
TU106 0x166 Turing 17.10.2018 Pcie 0x10de 0x1f00-0x1f7f 0x10f9 0x1ada 0x1adb 90.06 GF100 ? 1 ? - 3 6 1 ? 3
TU116 0x168 Turing 22.02.2019 Pcie 0x10de 0x2180-0x21ff 0x1aeb 0x1ad6 0x1ad7 90.16 GF100 ? 1 ? - 3 4 1 ? 3
TU117 0x167 Turing 23.04.2019 Pcie 0x10de 0x1f80-0x1fff 0x10f7 0x1ad6 0x1ad7 90.17 GF100 ? 1 ? - 2 4 1 ? 3

2.3 nVidia PCI id database

Contents

• nVidia PCI id database

28 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– Introduction

– GPUs

* NV5

* NV10

* NV15

* NV11

* NV20

* NV17

* NV18

* NV1F (GPU)

* NV25

* NV28

* NV30

* NV31

* NV34

* NV35

* NV36

* NV40

* NV41/NV42

* NV43

* NV44

* NV44A

* C51 GPU

* G70

* G72

* G71

* G73

* MCP61 GPU

* MCP67 GPU

* MCP73 GPU

* G80

* G84

* G86

* G92

* G94

2.3. nVidia PCI id database 29



nVidia Hardware Documentation, Release git

* G96

* G98

* G200

* MCP77 GPU

* MCP79 GPU

* GT215

* GT216

* GT218

* MCP89 GPU

* GF100

* GF104

* GF114

* GF106

* GF116

* GF108

* GF110

* GF119

* GF117

* GK104

* GK106

* GK107

* GK110/GK110B

* GK208

* GM107

* GM108

* GM204

* GM206

* GP100

* GP102

* GP104

* GP106

* GP107

* GP108

* GV100

* TU102

30 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

* TU104

* TU106

* TU116

* TU117

– GPU HDA codecs

– GPU USB controllers

– BR02

– BR03

– BR04

– Motherboard chipsets

* NV1A [nForce 220 IGP / 420 IGP / 415 SPP]

* NV2A [XGPU]

* MCP

* NV1F [nForce2 IGP/SPP]

* MCP2

* MCP2A

* CK8

* CK8S

* CK804

* C19

* MCP04

* C51

* MCP51

* C55

* MCP55

* MCP61

* MCP65

* MCP67

* C73

* MCP73

* MCP77

* MCP79

* MCP89

– Tegra

* T20

2.3. nVidia PCI id database 31



nVidia Hardware Documentation, Release git

* T30

* T124

* T210

* T186

2.3.1 Introduction

nVidia uses PCI vendor id of 0x10de, which covers almost all of their products. Other ids used for nVidia products
include 0x104a (SGS-Thompson) and 0x12d2 (SGS-Thompson/nVidia joint venture). The PCI device ids with
vendor id 0x104a related to nVidia are:

device id product
0x0008 NV1 main function, DRAM version (SGS-Thompson branding)
0x0009 NV1 VGA function, DRAM version (SGS-Thompson branding)

The PCI device ids with vendor id 0x12d2 are:

device id product
0x0018 NV3 [RIVA 128]
0x0019 NV3T [RIVA 128 ZX]

All other nVidia PCI devices use vendor id 0x10de. This includes:

• GPUs

• motherboard chipsets

• BR03 and NF200 PCIE switches

• the BR02 transparent AGP/PCIE bridge

• GVI, the SDI input card

The PCI device ids with vendor id 0x10de are:

device id product
0x0008 NV1 main function, VRAM version (nVidia branding)
0x0009 NV1 VGA function, VRAM version (nVidia branding)
0x0020 NV4 [RIVA TNT]
0x0028-0x002f NV5
0x0030-0x003f MCP04
0x0040-0x004f NV40
0x0050-0x005f CK804
0x0060-0x006e MCP2
0x006f-0x007f C19
0x0080-0x008f MCP2A
0x0090-0x009f G70
0x00a0 NVA [Aladdin TNT2]
0x00b0 NV18 Firewire
0x00b4 C19
0x00c0-0x00cf NV41/NV42

Continued on next page

32 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 3 – continued from previous page
device id product
0x00d0-0x00d2 CK8
0x00d3 CK804
0x00d4-0x00dd CK8
0x00df-0x00ef CK8S
0x00f0-0x00ff BR02
0x0100-0x0103 NV10
0x0110-0x0113 NV11
0x0140-0x014f NV43
0x0150-0x0153 NV15
0x0160-0x016f NV44
0x0170-0x017f NV17
0x0180-0x018f NV18
0x0190-0x019f G80
0x01a0-0x01af NV1A
0x01b0-0x01b2 MCP
0x01b3 BR03
0x01b4 MCP
0x01b7 NV1A, NV2A
0x01b8-0x01cf MCP
0x01d0-0x01df G72
0x01e0-0x01f0 NV1F
0x01f0-0x01ff NV1F GPU
0x0200-0x0203 NV20
0x0210-0x021f NV40?
0x0220-0x022f NV44A
0x0240-0x024f C51 GPU
0x0250-0x025f NV25
0x0260-0x0272 MCP51
0x027e-0x027f C51
0x0280-0x028f NV28
0x0290-0x029f G71
0x02a0-0x02af NV2A
0x02e0-0x02ef BR02
0x02f0-0x02ff C51
0x0300-0x030f NV30
0x0310-0x031f NV31
0x0320-0x032f NV34
0x0330-0x033f NV35
0x0340-0x034f NV36
0x0360-0x037f MCP55
0x0390-0x039f G73
0x03a0-0x03bc C55
0x03d0-0x03df MCP61 GPU
0x03e0-0x03f7 MCP61
0x0400-0x040f G84
0x0410-0x041f G92 extra IDs
0x0420-0x042f G86
0x0440-0x045f MCP65
0x0530-0x053f MCP67 GPU

Continued on next page

2.3. nVidia PCI id database 33



nVidia Hardware Documentation, Release git

Table 3 – continued from previous page
device id product
0x0540-0x0563 MCP67
0x0568-0x0569 MCP77
0x056a-0x056f MCP73
0x0570-0x057f MCP* ethernet alt ID
0x0580-0x058f MCP* SATA alt ID
0x0590-0x059f MCP* HDA alt ID
0x05a0-0x05af MCP* IDE alt ID
0x05b0-0x05bf BR04
0x05e0-0x05ff G200
0x0600-0x061f G92
0x0620-0x063f G94
0x0640-0x065f G96
0x06c0-0x06df GF100
0x06e0-0x06ff G98
0x0750-0x077f MCP77
0x07c0-0x07df MCP73
0x07e0-0x07ef MCP73 GPU
0x07f0-0x07fe MCP73
0x0800-0x081a C73
0x0840-0x085f MCP77 GPU
0x0860-0x087f MCP79 GPU
0x08a0-0x08bf MCP89 GPU
0x0a20-0x0a3f GT216
0x0a60-0x0a7f GT218
0x0a80-0x0ac8 MCP79
0x0ad0-0x0adb MCP77
0x0be0-0x0bef GPU HDA
0x0bf0-0x0bf1 T20
0x0ca0-0x0cbf GT215
0x0d60-0x0d9d MCP89
0x0dc0-0x0ddf GF106
0x0de0-0x0dff GF108
0x0e00 GVI SDI input
0x0e08-0x0e0f GPU HDA
0x0e12-0x0e13 T124
0x0e1a-0x0e1b GPU HDA
0x0e1c-0x0e1d T30
0x0e20-0x0e3f GF104
0x0f00-0x0f1f GF108 extra IDs
0x0fae-0x0faf T210
0x0fb0-0x0fbf GPU HDA
0x0fc0-0x0fff GK107
0x1000-0x103f GK110/GK110B
0x1040-0x107f GF119
0x1080-0x109f GF110
0x10c0-0x10df GT218 extra IDs
0x10e5-0x10e6 T186
0x10ef-0x10f9 GPU HDA
0x1140-0x117f GF117

Continued on next page

34 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 3 – continued from previous page
device id product
0x1180-0x11bf GK104
0x11c0-0x11ff GK106
0x1200-0x121f GF114
0x1240-0x125f GF116
0x1280-0x12bf GK208
0x1340-0x137f GM108
0x1380-0x13bf GM107
0x13c0-0x13ff GM204
0x1400-0x143f GM206
0x1580-0x15ff GP100
0x1617-0x161a GM204 extra IDs
0x1667 GM204 extra ID
0x1ad0-0x1adf GPU USB
0x1b00-0x1b7f GP102
0x1b80-0x1bff GP104
0x1c00-0x1b7f GP106
0x1c80-0x1cff GP107
0x1d00-0x1d7f GP108
0x1d80-0x1dff GV100
0x1e00-0x1e7f TU102
0x1e80-0x1eff TU104
0x1f00-0x1f7f TU106
0x2180-0x21ff TU116
0x1f80-0x1fff TU117

2.3.2 GPUs

NV5

device id product
0x0028 NV5 [RIVA TNT2]
0x0029 NV5 [RIVA TNT2 Ultra]
0x002c NV5 [Vanta]
0x002d NV5 [RIVA TNT2 Model 64]

NV10

device id product
0x0100 NV10 [GeForce 256 SDR]
0x0101 NV10 [GeForce 256 DDR]
0x0102 NV10 [GeForce 256 Ultra]
0x0103 NV10 [Quadro]

2.3. nVidia PCI id database 35



nVidia Hardware Documentation, Release git

NV15

device id product
0x0150 NV15 [GeForce2 GTS/Pro]
0x0151 NV15 [GeForce2 Ti]
0x0152 NV15 [GeForce2 Ultra]
0x0153 NV15 [Quadro2 Pro]

NV11

device id product
0x0110 NV11 [GeForce2 MX/MX 400]
0x0111 NV11 [GeForce2 MX 100/200]
0x0112 NV11 [GeForce2 Go]
0x0113 NV11 [Quadro2 MXR/EX/Go]

NV20

device id product
0x0200 NV20 [GeForce3]
0x0201 NV20 [GeForce3 Ti 200]
0x0202 NV20 [GeForce3 Ti 500]
0x0203 NV20 [Quadro DCC]

NV17

device id product
0x0170 NV17 [GeForce4 MX 460]
0x0171 NV17 [GeForce4 MX 440]
0x0172 NV17 [GeForce4 MX 420]
0x0173 NV17 [GeForce4 MX 440-SE]
0x0174 NV17 [GeForce4 440 Go]
0x0175 NV17 [GeForce4 420 Go]
0x0176 NV17 [GeForce4 420 Go 32M]
0x0177 NV17 [GeForce4 460 Go]
0x0178 NV17 [Quadro4 550 XGL]
0x0179 NV17 [GeForce4 440 Go 64M]
0x017a NV17 [Quadro NVS 100/200/400]
0x017b NV17 [Quadro4 550 XGL]???
0x017c NV17 [Quadro4 500 GoGL]
0x017d NV17 [GeForce4 410 Go 16M]

36 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

NV18

device id product
0x0181 NV18 [GeForce4 MX 440 AGP 8x]
0x0182 NV18 [GeForce4 MX 440-SE AGP 8x]
0x0183 NV18 [GeForce4 MX 420 AGP 8x]
0x0185 NV18 [GeForce4 MX 4000]
0x0186 NV18 [GeForce4 448 Go]
0x0187 NV18 [GeForce4 488 Go]
0x0188 NV18 [Quadro4 580 XGL]
0x0189 NV18 [GeForce4 MX AGP 8x (Mac)]
0x018a NV18 [Quadro NVS 280 SD]
0x018b NV18 [Quadro4 380 XGL]
0x018c NV18 [Quadro NVS 50 PCI]
0x018d NV18 [GeForce4 448 Go]
0x00b0 NV18 Firewire controller

NV1F (GPU)

device id product
0x01f0 NV1F GPU [GeForce4 MX IGP]

NV25

device id product
0x0250 NV25 [GeForce4 Ti 4600]
0x0251 NV25 [GeForce4 Ti 4400]
0x0252 NV25 [GeForce4 Ti]
0x0253 NV25 [GeForce4 Ti 4200]
0x0258 NV25 [Quadro4 900 XGL]
0x0259 NV25 [Quadro4 750 XGL]
0x025b NV25 [Quadro4 700 XGL]

NV28

device id product
0x0280 NV28 [GeForce4 Ti 4800]
0x0281 NV28 [GeForce4 Ti 4200 AGP 8x]
0x0282 NV28 [GeForce4 Ti 4800 SE]
0x0286 NV28 [GeForce4 Ti 4200 Go]
0x0288 NV28 [Quadro4 980 XGL]
0x0289 NV28 [Quadro4 780 XGL]
0x028c NV28 [Quadro4 700 GoGL]

2.3. nVidia PCI id database 37



nVidia Hardware Documentation, Release git

NV30

device id product
0x0301 NV30 [GeForce FX 5800 Ultra]
0x0302 NV30 [GeForce FX 5800]
0x0308 NV35 [Quadro FX 2000]
0x0309 NV35 [Quadro FX 1000]

NV31

device id product
0x0311 NV31 [GeForce FX 5600 Ultra]
0x0312 NV31 [GeForce FX 5600]
0x0314 NV31 [GeForce FX 5600XT]
0x031a NV31 [GeForce FX Go5600]
0x031b NV31 [GeForce FX Go5650]
0x031c NV31 [GeForce FX Go700]

NV34

device id product
0x0320 NV34 [GeForce FX 5200]
0x0321 NV34 [GeForce FX 5200 Ultra]
0x0322 NV34 [GeForce FX 5200]
0x0323 NV34 [GeForce FX 5200LE]
0x0324 NV34 [GeForce FX Go5200]
0x0325 NV34 [GeForce FX Go5250]
0x0326 NV34 [GeForce FX 5500]
0x0327 NV34 [GeForce FX 5100]
0x0328 NV34 [GeForce FX Go5200 32M/64M]
0x0329 NV34 [GeForce FX Go5200 (Mac)]
0x032a NV34 [Quadro NVS 280 PCI]
0x032b NV34 [Quadro FX 500/FX 600]
0x032c NV34 [GeForce FX Go5300/Go5350]
0x032d NV34 [GeForce FX Go5100]

NV35

device id product
0x0330 NV35 [GeForce FX 5900 Ultra]
0x0331 NV35 [GeForce FX 5900]
0x0332 NV35 [GeForce FX 5900XT]
0x0333 NV35 [GeForce FX 5950 Ultra]
0x0334 NV35 [GeForce FX 5900ZT]
0x0338 NV35 [Quadro FX 3000]
0x033f NV35 [Quadro FX 700]

38 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

NV36

device id product
0x0341 NV36 [GeForce FX 5700 Ultra]
0x0342 NV36 [GeForce FX 5700]
0x0343 NV36 [GeForce FX 5700LE]
0x0344 NV36 [GeForce FX 5700VE]
0x0347 NV36 [GeForce FX Go5700]
0x0348 NV36 [GeForce FX Go5700]
0x034c NV36 [Quadro FX Go1000]
0x034e NV36 [Quadro FX 1100]

NV40

device id product
0x0040 NV40 [GeForce 6800 Ultra]
0x0041 NV40 [GeForce 6800]
0x0042 NV40 [GeForce 6800 LE]
0x0043 NV40 [GeForce 6800 XE]
0x0044 NV40 [GeForce 6800 XT]
0x0045 NV40 [GeForce 6800 GT]
0x0046 NV40 [GeForce 6800 GT]
0x0047 NV40 [GeForce 6800 GS]
0x0048 NV40 [GeForce 6800 XT]
0x004e NV40 [Quadro FX 4000]
0x0211 NV40? [GeForce 6800]
0x0212 NV40? [GeForce 6800 LE]
0x0215 NV40? [GeForce 6800 GT]
0x0218 NV40? [GeForce 6800 XT]

Todo: wtf is with that 0x21x ID?

NV41/NV42

device id product
0x00c0 NV41/NV42 [GeForce 6800 GS]
0x00c1 NV41/NV42 [GeForce 6800]
0x00c2 NV41/NV42 [GeForce 6800 LE]
0x00c3 NV41/NV42 [GeForce 6800 XT]
0x00c8 NV41/NV42 [GeForce Go 6800]
0x00c9 NV41/NV42 [GeForce Go 6800 Ultra]
0x00cc NV41/NV42 [Quadro FX Go1400]
0x00cd NV41/NV42 [Quadro FX 3450/4000 SDI]
0x00ce NV41/NV42 [Quadro FX 1400]

2.3. nVidia PCI id database 39



nVidia Hardware Documentation, Release git

NV43

device id product
0x0140 NV43 [GeForce 6600 GT]
0x0141 NV43 [GeForce 6600]
0x0142 NV43 [GeForce 6600 LE]
0x0143 NV43 [GeForce 6600 VE]
0x0144 NV43 [GeForce Go 6600]
0x0145 NV43 [GeForce 6610 XL]
0x0146 NV43 [GeForce Go 6200 TE / 6660 TE]
0x0147 NV43 [GeForce 6700 XL]
0x0148 NV43 [GeForce Go 6600]
0x0149 NV43 [GeForce Go 6600 GT]
0x014a NV43 [Quadro NVS 440]
0x014c NV43 [Quadro FX 540M]
0x014d NV43 [Quadro FX 550]
0x014e NV43 [Quadro FX 540]
0x014f NV43 [GeForce 6200]

NV44

device id product
0x0160 NV44 [GeForce 6500]
0x0161 NV44 [GeForce 6200 TurboCache]
0x0162 NV44 [GeForce 6200 SE TurboCache]
0x0163 NV44 [GeForce 6200 LE]
0x0164 NV44 [GeForce Go 6200]
0x0165 NV44 [Quadro NVS 285]
0x0166 NV44 [GeForce Go 6400]
0x0167 NV44 [GeForce Go 6200]
0x0168 NV44 [GeForce Go 6400]
0x0169 NV44 [GeForce 6250]
0x016a NV44 [GeForce 7100 GS]

NV44A

device id product
0x0221 NV44A [GeForce 6200 (AGP)]
0x0222 NV44A [GeForce 6200 A-LE (AGP)]

40 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

C51 GPU

device id product
0x0240 C51 GPU [GeForce 6150]
0x0241 C51 GPU [GeForce 6150 LE]
0x0242 C51 GPU [GeForce 6100]
0x0244 C51 GPU [GeForce Go 6150]
0x0245 C51 GPU [Quadro NVS 210S / NVIDIA GeForce 6150LE]
0x0247 C51 GPU [GeForce Go 6100]

G70

device id product
0x0090 G70 [GeForce 7800 GTX]
0x0091 G70 [GeForce 7800 GTX]
0x0092 G70 [GeForce 7800 GT]
0x0093 G70 [GeForce 7800 GS]
0x0095 G70 [GeForce 7800 SLI]
0x0098 G70 [GeForce Go 7800]
0x0099 G70 [GeForce Go 7800 GTX]
0x009d G70 [Quadro FX 4500]

G72

device id product
0x01d0 G72 [GeForce 7350 LE]
0x01d1 G72 [GeForce 7300 LE]
0x01d2 G72 [GeForce 7550 LE]
0x01d3 G72 [GeForce 7300 SE/7200 GS]
0x01d6 G72 [GeForce Go 7200]
0x01d7 G72 [Quadro NVS 110M / GeForce Go 7300]
0x01d8 G72 [GeForce Go 7400]
0x01d9 G72 [GeForce Go 7450]
0x01da G72 [Quadro NVS 110M]
0x01db G72 [Quadro NVS 120M]
0x01dc G72 [Quadro FX 350M]
0x01dd G72 [GeForce 7500 LE]
0x01de G72 [Quadro FX 350]
0x01df G72 [GeForce 7300 GS]

2.3. nVidia PCI id database 41



nVidia Hardware Documentation, Release git

G71

device id product
0x0290 G71 [GeForce 7900 GTX]
0x0291 G71 [GeForce 7900 GT/GTO]
0x0292 G71 [GeForce 7900 GS]
0x0293 G71 [GeForce 7900 GX2]
0x0294 G71 [GeForce 7950 GX2]
0x0295 G71 [GeForce 7950 GT]
0x0297 G71 [GeForce Go 7950 GTX]
0x0298 G71 [GeForce Go 7900 GS]
0x0299 G71 [GeForce Go 7900 GTX]
0x029a G71 [Quadro FX 2500M]
0x029b G71 [Quadro FX 1500M]
0x029c G71 [Quadro FX 5500]
0x029d G71 [Quadro FX 3500]
0x029e G71 [Quadro FX 1500]
0x029f G71 [Quadro FX 4500 X2]

G73

device id product
0x0390 G73 [GeForce 7650 GS]
0x0391 G73 [GeForce 7600 GT]
0x0392 G73 [GeForce 7600 GS]
0x0393 G73 [GeForce 7300 GT]
0x0394 G73 [GeForce 7600 LE]
0x0395 G73 [GeForce 7300 GT]
0x0397 G73 [GeForce Go 7700]
0x0398 G73 [GeForce Go 7600]
0x0399 G73 [GeForce Go 7600 GT]
0x039a G73 [Quadro NVS 300M]
0x039b G73 [GeForce Go 7900 SE]
0x039c G73 [Quadro FX 560M]
0x039e G73 [Quadro FX 560]

MCP61 GPU

device id product
0x03d0 MCP61 GPU [GeForce 6150SE nForce 430]
0x03d1 MCP61 GPU [GeForce 6100 nForce 405]
0x03d2 MCP61 GPU [GeForce 6100 nForce 400]
0x03d5 MCP61 GPU [GeForce 6100 nForce 420]
0x03d6 MCP61 GPU [GeForce 7025 / nForce 630a]

42 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

MCP67 GPU

device id product
0x0531 MCP67 GPU [GeForce 7150M / nForce 630M]
0x0533 MCP67 GPU [GeForce 7000M / nForce 610M]
0x053a MCP67 GPU [GeForce 7050 PV / nForce 630a]
0x053b MCP67 GPU [GeForce 7050 PV / nForce 630a]
0x053e MCP67 GPU [GeForce 7025 / nForce 630a]

Note: mobile is apparently considered to be MCP67, desktop MCP68

MCP73 GPU

device id product
0x07e0 MCP73 GPU [GeForce 7150 / nForce 630i]
0x07e1 MCP73 GPU [GeForce 7100 / nForce 630i]
0x07e2 MCP73 GPU [GeForce 7050 / nForce 630i]
0x07e3 MCP73 GPU [GeForce 7050 / nForce 610i]
0x07e5 MCP73 GPU [GeForce 7050 / nForce 620i]

G80

device id product
0x0191 G80 [GeForce 8800 GTX]
0x0193 G80 [GeForce 8800 GTS]
0x0194 G80 [GeForce 8800 Ultra]
0x0197 G80 [Tesla C870]
0x019d G80 [Quadro FX 5600]
0x019e G80 [Quadro FX 4600]

2.3. nVidia PCI id database 43



nVidia Hardware Documentation, Release git

G84

device id product
0x0400 G84 [GeForce 8600 GTS]
0x0401 G84 [GeForce 8600 GT]
0x0402 G84 [GeForce 8600 GT]
0x0403 G84 [GeForce 8600 GS]
0x0404 G84 [GeForce 8400 GS]
0x0405 G84 [GeForce 9500M GS]
0x0406 G84 [GeForce 8300 GS]
0x0407 G84 [GeForce 8600M GT]
0x0408 G84 [GeForce 9650M GS]
0x0409 G84 [GeForce 8700M GT]
0x040a G84 [Quadro FX 370]
0x040b G84 [Quadro NVS 320M]
0x040c G84 [Quadro FX 570M]
0x040d G84 [Quadro FX 1600M]
0x040e G84 [Quadro FX 570]
0x040f G84 [Quadro FX 1700]

G86

device id product
0x0420 G86 [GeForce 8400 SE]
0x0421 G86 [GeForce 8500 GT]
0x0422 G86 [GeForce 8400 GS]
0x0423 G86 [GeForce 8300 GS]
0x0424 G86 [GeForce 8400 GS]
0x0425 G86 [GeForce 8600M GS]
0x0426 G86 [GeForce 8400M GT]
0x0427 G86 [GeForce 8400M GS]
0x0428 G86 [GeForce 8400M G]
0x0429 G86 [Quadro NVS 140M]
0x042a G86 [Quadro NVS 130M]
0x042b G86 [Quadro NVS 135M]
0x042c G86 [GeForce 9400 GT]
0x042d G86 [Quadro FX 360M]
0x042e G86 [GeForce 9300M G]
0x042f G86 [Quadro NVS 290]

G92

device id product
0x0410 G92 [GeForce GT 330]
0x0600 G92 [GeForce 8800 GTS 512]
0x0601 G92 [GeForce 9800 GT]
0x0602 G92 [GeForce 8800 GT]

Continued on next page

44 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 4 – continued from previous page
device id product
0x0603 G92 [GeForce GT 230]
0x0604 G92 [GeForce 9800 GX2]
0x0605 G92 [GeForce 9800 GT]
0x0606 G92 [GeForce 8800 GS]
0x0607 G92 [GeForce GTS 240]
0x0608 G92 [GeForce 9800M GTX]
0x0609 G92 [GeForce 8800M GTS]
0x060a G92 [GeForce GTX 280M]
0x060b G92 [GeForce 9800M GT]
0x060c G92 [GeForce 8800M GTX]
0x060f G92 [GeForce GTX 285M]
0x0610 G92 [GeForce 9600 GSO]
0x0611 G92 [GeForce 8800 GT]
0x0612 G92 [GeForce 9800 GTX/9800 GTX+]
0x0613 G92 [GeForce 9800 GTX+]
0x0614 G92 [GeForce 9800 GT]
0x0615 G92 [GeForce GTS 250]
0x0617 G92 [GeForce 9800M GTX]
0x0618 G92 [GeForce GTX 260M]
0x0619 G92 [Quadro FX 4700 X2]
0x061a G92 [Quadro FX 3700]
0x061b G92 [Quadro VX 200]
0x061c G92 [Quadro FX 3600M]
0x061d G92 [Quadro FX 2800M]
0x061e G92 [Quadro FX 3700M]
0x061f G92 [Quadro FX 3800M]

G94

device id product
0x0621 G94 [GeForce GT 230]
0x0622 G94 [GeForce 9600 GT]
0x0623 G94 [GeForce 9600 GS]
0x0625 G94 [GeForce 9600 GSO 512]
0x0626 G94 [GeForce GT 130]
0x0627 G94 [GeForce GT 140]
0x0628 G94 [GeForce 9800M GTS]
0x062a G94 [GeForce 9700M GTS]
0x062b G94 [GeForce 9800M GS]
0x062c G94 [GeForce 9800M GTS ]
0x062d G94 [GeForce 9600 GT]
0x062e G94 [GeForce 9600 GT]
0x0631 G94 [GeForce GTS 160M]
0x0635 G94 [GeForce 9600 GSO]
0x0637 G94 [GeForce 9600 GT]
0x0638 G94 [Quadro FX 1800]
0x063a G94 [Quadro FX 2700M]

2.3. nVidia PCI id database 45



nVidia Hardware Documentation, Release git

G96

device id product
0x0640 G96 [GeForce 9500 GT]
0x0641 G96 [GeForce 9400 GT]
0x0643 G96 [GeForce 9500 GT]
0x0644 G96 [GeForce 9500 GS]
0x0645 G96 [GeForce 9500 GS]
0x0646 G96 [GeForce GT 120]
0x0647 G96 [GeForce 9600M GT]
0x0648 G96 [GeForce 9600M GS]
0x0649 G96 [GeForce 9600M GT]
0x064a G96 [GeForce 9700M GT]
0x064b G96 [GeForce 9500M G]
0x064c G96 [GeForce 9650M GT]
0x0651 G96 [GeForce G 110M]
0x0652 G96 [GeForce GT 130M]
0x0653 G96 [GeForce GT 120M]
0x0654 G96 [GeForce GT 220M]
0x0655 G96 [GeForce GT 120]
0x0656 G96 [GeForce GT 120 ]
0x0658 G96 [Quadro FX 380]
0x0659 G96 [Quadro FX 580]
0x065a G96 [Quadro FX 1700M]
0x065b G96 [GeForce 9400 GT]
0x065c G96 [Quadro FX 770M]
0x065f G96 [GeForce G210]

46 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

G98

device id product
0x06e0 G98 [GeForce 9300 GE]
0x06e1 G98 [GeForce 9300 GS]
0x06e2 G98 [GeForce 8400]
0x06e3 G98 [GeForce 8400 SE]
0x06e4 G98 [GeForce 8400 GS]
0x06e6 G98 [GeForce G100]
0x06e7 G98 [GeForce 9300 SE]
0x06e8 G98 [GeForce 9200M GS]
0x06e9 G98 [GeForce 9300M GS]
0x06ea G98 [Quadro NVS 150M]
0x06eb G98 [Quadro NVS 160M]
0x06ec G98 [GeForce G 105M]
0x06ef G98 [GeForce G 103M]
0x06f1 G98 [GeForce G105M]
0x06f8 G98 [Quadro NVS 420]
0x06f9 G98 [Quadro FX 370 LP]
0x06fa G98 [Quadro NVS 450]
0x06fb G98 [Quadro FX 370M]
0x06fd G98 [Quadro NVS 295]
0x06ff G98 [HICx16 + Graphics]

G200

device id product
0x05e0 G200 [GeForce GTX 295]
0x05e1 G200 [GeForce GTX 280]
0x05e2 G200 [GeForce GTX 260]
0x05e3 G200 [GeForce GTX 285]
0x05e6 G200 [GeForce GTX 275]
0x05e7 G200 [Tesla C1060]
0x05e9 G200 [Quadro CX]
0x05ea G200 [GeForce GTX 260]
0x05eb G200 [GeForce GTX 295]
0x05ed G200 [Quadro FX 5800]
0x05ee G200 [Quadro FX 4800]
0x05ef G200 [Quadro FX 3800]

2.3. nVidia PCI id database 47



nVidia Hardware Documentation, Release git

MCP77 GPU

device id product
0x0840 MCP77 GPU [GeForce 8200M]
0x0844 MCP77 GPU [GeForce 9100M G]
0x0845 MCP77 GPU [GeForce 8200M G]
0x0846 MCP77 GPU [GeForce 9200]
0x0847 MCP77 GPU [GeForce 9100]
0x0848 MCP77 GPU [GeForce 8300]
0x0849 MCP77 GPU [GeForce 8200]
0x084a MCP77 GPU [nForce 730a]
0x084b MCP77 GPU [GeForce 9200]
0x084c MCP77 GPU [nForce 980a/780a SLI]
0x084d MCP77 GPU [nForce 750a SLI]
0x084f MCP77 GPU [GeForce 8100 / nForce 720a]

MCP79 GPU

device id product
0x0860 MCP79 GPU [GeForce 9400]
0x0861 MCP79 GPU [GeForce 9400]
0x0862 MCP79 GPU [GeForce 9400M G]
0x0863 MCP79 GPU [GeForce 9400M]
0x0864 MCP79 GPU [GeForce 9300]
0x0865 MCP79 GPU [ION]
0x0866 MCP79 GPU [GeForce 9400M G]
0x0867 MCP79 GPU [GeForce 9400]
0x0868 MCP79 GPU [nForce 760i SLI]
0x0869 MCP79 GPU [GeForce 9400]
0x086a MCP79 GPU [GeForce 9400]
0x086c MCP79 GPU [GeForce 9300 / nForce 730i]
0x086d MCP79 GPU [GeForce 9200]
0x086e MCP79 GPU [GeForce 9100M G]
0x086f MCP79 GPU [GeForce 8200M G]
0x0870 MCP79 GPU [GeForce 9400M]
0x0871 MCP79 GPU [GeForce 9200]
0x0872 MCP79 GPU [GeForce G102M]
0x0873 MCP79 GPU [GeForce G102M]
0x0874 MCP79 GPU [ION]
0x0876 MCP79 GPU [ION]
0x087a MCP79 GPU [GeForce 9400]
0x087d MCP79 GPU [ION]
0x087e MCP79 GPU [ION LE]
0x087f MCP79 GPU [ION LE]

48 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

GT215

device id product
0x0ca0 GT215 [GeForce GT 330]
0x0ca2 GT215 [GeForce GT 320]
0x0ca3 GT215 [GeForce GT 240]
0x0ca4 GT215 [GeForce GT 340]
0x0ca5 GT215 [GeForce GT 220]
0x0ca7 GT215 [GeForce GT 330]
0x0ca9 GT215 [GeForce GTS 250M]
0x0cac GT215 [GeForce GT 220]
0x0caf GT215 [GeForce GT 335M]
0x0cb0 GT215 [GeForce GTS 350M]
0x0cb1 GT215 [GeForce GTS 360M]
0x0cbc GT215 [Quadro FX 1800M]

GT216

device id product
0x0a20 GT216 [GeForce GT 220]
0x0a22 GT216 [GeForce 315]
0x0a23 GT216 [GeForce 210]
0x0a26 GT216 [GeForce 405]
0x0a27 GT216 [GeForce 405]
0x0a28 GT216 [GeForce GT 230M]
0x0a29 GT216 [GeForce GT 330M]
0x0a2a GT216 [GeForce GT 230M]
0x0a2b GT216 [GeForce GT 330M]
0x0a2c GT216 [NVS 5100M]
0x0a2d GT216 [GeForce GT 320M]
0x0a32 GT216 [GeForce GT 415]
0x0a34 GT216 [GeForce GT 240M]
0x0a35 GT216 [GeForce GT 325M]
0x0a38 GT216 [Quadro 400]
0x0a3c GT216 [Quadro FX 880M]

2.3. nVidia PCI id database 49



nVidia Hardware Documentation, Release git

GT218

device id product
0x0a60 GT218 [GeForce G210]
0x0a62 GT218 [GeForce 205]
0x0a63 GT218 [GeForce 310]
0x0a64 GT218 [ION]
0x0a65 GT218 [GeForce 210]
0x0a66 GT218 [GeForce 310]
0x0a67 GT218 [GeForce 315]
0x0a68 GT218 [GeForce G105M]
0x0a69 GT218 [GeForce G105M]
0x0a6a GT218 [NVS 2100M]
0x0a6c GT218 [NVS 3100M]
0x0a6e GT218 [GeForce 305M]
0x0a6f GT218 [ION]
0x0a70 GT218 [GeForce 310M]
0x0a71 GT218 [GeForce 305M]
0x0a72 GT218 [GeForce 310M]
0x0a73 GT218 [GeForce 305M]
0x0a74 GT218 [GeForce G210M]
0x0a75 GT218 [GeForce 310M]
0x0a76 GT218 [ION]
0x0a78 GT218 [Quadro FX 380 LP]
0x0a7a GT218 [GeForce 315M]
0x0a7c GT218 [Quadro FX 380M]
0x10c0 GT218 [GeForce 9300 GS]
0x10c3 GT218 [GeForce 8400GS]
0x10c5 GT218 [GeForce 405]
0x10d8 GT218 [NVS 300]

MCP89 GPU

device id product
0x08a0 MCP89 GPU [GeForce 320M]
0x08a2 MCP89 GPU [GeForce 320M]
0x08a3 MCP89 GPU [GeForce 320M]
0x08a4 MCP89 GPU [GeForce 320M]

50 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

GF100

device id product
0x06c0 GF100 [GeForce GTX 480]
0x06c4 GF100 [GeForce GTX 465]
0x06ca GF100 [GeForce GTX 480M]
0x06cb GF100 [GeForce GTX 480]
0x06cd GF100 [GeForce GTX 470]
0x06d1 GF100 [Tesla C2050 / C2070]
0x06d2 GF100 [Tesla M2070]
0x06d8 GF100 [Quadro 6000]
0x06d9 GF100 [Quadro 5000]
0x06da GF100 [Quadro 5000M]
0x06dc GF100 [Quadro 6000]
0x06dd GF100 [Quadro 4000]
0x06de GF100 [Tesla T20 Processor]
0x06df GF100 [Tesla M2070-Q]

GF104

device id product
0x0e22 GF104 [GeForce GTX 460]
0x0e23 GF104 [GeForce GTX 460 SE]
0x0e24 GF104 [GeForce GTX 460 OEM]
0x0e30 GF104 [GeForce GTX 470M]
0x0e31 GF104 [GeForce GTX 485M]
0x0e3a GF104 [Quadro 3000M]
0x0e3b GF104 [Quadro 4000M]

GF114

device id product
0x1200 GF114 [GeForce GTX 560 Ti]
0x1201 GF114 [GeForce GTX 560]
0x1202 GF114 [GeForce GTX 560 Ti OEM]
0x1203 GF114 [GeForce GTX 460 SE v2]
0x1205 GF114 [GeForce GTX 460 v2]
0x1206 GF114 [GeForce GTX 555]
0x1207 GF114 [GeForce GT 645 OEM]
0x1208 GF114 [GeForce GTX 560 SE]
0x1210 GF114 [GeForce GTX 570M]
0x1211 GF114 [GeForce GTX 580M]
0x1212 GF114 [GeForce GTX 675M]
0x1213 GF114 [GeForce GTX 670M]

2.3. nVidia PCI id database 51



nVidia Hardware Documentation, Release git

GF106

device id product
0x0dc0 GF106 [GeForce GT 440]
0x0dc4 GF106 [GeForce GTS 450]
0x0dc5 GF106 [GeForce GTS 450]
0x0dc6 GF106 [GeForce GTS 450]
0x0dcd GF106 [GeForce GT 555M]
0x0dce GF106 [GeForce GT 555M]
0x0dd1 GF106 [GeForce GTX 460M]
0x0dd2 GF106 [GeForce GT 445M]
0x0dd3 GF106 [GeForce GT 435M]
0x0dd6 GF106 [GeForce GT 550M]
0x0dd8 GF106 [Quadro 2000]
0x0dda GF106 [Quadro 2000M]

GF116

device id product
0x1241 GF116 [GeForce GT 545 OEM]
0x1243 GF116 [GeForce GT 545]
0x1244 GF116 [GeForce GTX 550 Ti]
0x1245 GF116 [GeForce GTS 450 Rev. 2]
0x1246 GF116 [GeForce GT 550M]
0x1247 GF116 [GeForce GT 635M]
0x1248 GF116 [GeForce GT 555M]
0x1249 GF116 [GeForce GTS 450 Rev. 3]
0x124b GF116 [GeForce GT 640 OEM]
0x124d GF116 [GeForce GT 555M]
0x1251 GF116 [GeForce GTX 560M]

52 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

GF108

device id product
0x0de0 GF108 [GeForce GT 440]
0x0de1 GF108 [GeForce GT 430]
0x0de2 GF108 [GeForce GT 420]
0x0de3 GF108 [GeForce GT 635M]
0x0de4 GF108 [GeForce GT 520]
0x0de5 GF108 [GeForce GT 530]
0x0de8 GF108 [GeForce GT 620M]
0x0de9 GF108 [GeForce GT 630M]
0x0dea GF108 [GeForce 610M]
0x0deb GF108 [GeForce GT 555M]
0x0dec GF108 [GeForce GT 525M]
0x0ded GF108 [GeForce GT 520M]
0x0dee GF108 [GeForce GT 415M]
0x0def GF108 [NVS 5400M]
0x0df0 GF108 [GeForce GT 425M]
0x0df1 GF108 [GeForce GT 420M]
0x0df2 GF108 [GeForce GT 435M]
0x0df3 GF108 [GeForce GT 420M]
0x0df4 GF108 [GeForce GT 540M]
0x0df5 GF108 [GeForce GT 525M]
0x0df6 GF108 [GeForce GT 550M]
0x0df7 GF108 [GeForce GT 520M]
0x0df8 GF108 [Quadro 600]
0x0df9 GF108 [Quadro 500M]
0x0dfa GF108 [Quadro 1000M]
0x0dfc GF108 [NVS 5200M]
0x0f00 GF108 [GeForce GT 630]
0x0f01 GF108 [GeForce GT 620]

GF110

device id product
0x1080 GF110 [GeForce GTX 580]
0x1081 GF110 [GeForce GTX 570]
0x1082 GF110 [GeForce GTX 560 Ti]
0x1084 GF110 [GeForce GTX 560]
0x1086 GF110 [GeForce GTX 570]
0x1087 GF110 [GeForce GTX 560 Ti]
0x1088 GF110 [GeForce GTX 590]
0x1089 GF110 [GeForce GTX 580]
0x108b GF110 [GeForce GTX 580]
0x1091 GF110 [Tesla M2090]
0x109a GF110 [Quadro 5010M]
0x109b GF110 [Quadro 7000]

2.3. nVidia PCI id database 53



nVidia Hardware Documentation, Release git

GF119

device id product
0x1040 GF119 [GeForce GT 520]
0x1042 GF119 [GeForce 510]
0x1048 GF119 [GeForce 605]
0x1049 GF119 [GeForce GT 620]
0x104a GF119 [GeForce GT 610]
0x1050 GF119 [GeForce GT 520M]
0x1051 GF119 [GeForce GT 520MX]
0x1052 GF119 [GeForce GT 520M]
0x1054 GF119 [GeForce 410M]
0x1055 GF119 [GeForce 410M]
0x1056 GF119 [NVS 4200M]
0x1057 GF119 [NVS 4200M]
0x1058 GF119 [GeForce 610M]
0x1059 GF119 [GeForce 610M]
0x105a GF119 [GeForce 610M]
0x107d GF119 [NVS 310]

GF117

device id product
0x1140 GF117 [GeForce GT 620M]

GK104

device id product
0x1180 GK104 [GeForce GTX 680]
0x1183 GK104 [GeForce GTX 660 Ti]
0x1185 GK104 [GeForce GTX 660]
0x1188 GK104 [GeForce GTX 690]
0x1189 GK104 [GeForce GTX 670]
0x1199 GK104 [GeForce GTX 870M]
0x119f GK104 [GeForce GTX 780M]
0x11a0 GK104 [GeForce GTX 680M]
0x11a1 GK104 [GeForce GTX 670MX]
0x11a2 GK104 [GeForce GTX 675MX]
0x11a3 GK104 [GeForce GTX 680MX]
0x11a7 GK104 [GeForce GTX 675MX]
0x11ba GK104 [Quadro K5000]
0x11bc GK104 [Quadro K5000M]
0x11bd GK104 [Quadro K4000M]
0x11be GK104 [Quadro K3000M]
0x11bf GK104 [GRID K2]

54 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

GK106

device id product
0x11c0 GK106 [GeForce GTX 660]
0x11c6 GK106 [GeForce GTX 650 Ti]
0x11e0 GK106 [GeForce GTX 770M]
0x11fa GK106 [Quadro K4000]

GK107

device id product
0x0fc0 GK107 [GeForce GT 640]
0x0fc1 GK107 [GeForce GT 640]
0x0fc2 GK107 [GeForce GT 630]
0x0fc6 GK107 [GeForce GTX 650]
0x0fd1 GK107 [GeForce GT 650M]
0x0fd2 GK107 [GeForce GT 640M]
0x0fd3 GK107 [GeForce GT 640M LE]
0x0fd4 GK107 [GeForce GTX 660M]
0x0fd5 GK107 [GeForce GT 650M]
0x0fd8 GK107 [GeForce GT 640M]
0x0fd9 GK107 [GeForce GT 645M]
0x0fe0 GK107 [GeForce GTX 660M]
0x0fe9 GK107 [GeForce GT 750M Mac Edition]
0x0ff9 GK107 [Quadro K2000D]
0x0ffa GK107 [Quadro K600]
0x0ffb GK107 [Quadro K2000M]
0x0ffc GK107 [Quadro K1000M]
0x0ffd GK107 [NVS 510]
0x0ffe GK107 [Quadro K2000]
0x0fff GK107 [Quadro 410]

GK110/GK110B

device id product
0x1003 GK110 [GeForce GTX Titan LE]
0x1004 GK110 [GeForce GTX 780]
0x1005 GK110 [GeForce GTX Titan]
0x101f GK110 [Tesla K20]
0x1020 GK110 [Tesla K20X]
0x1021 GK110 [Tesla K20Xm]
0x1022 GK110 [Tesla K20c]
0x1026 GK110 [Tesla K20s]
0x1028 GK110 [Tesla K20m]

2.3. nVidia PCI id database 55



nVidia Hardware Documentation, Release git

GK208

device id product
0x1280 GK208 [GeForce GT 635]
0x1282 GK208 [GeForce GT 640 Rev. 2]
0x1284 GK208 [GeForce GT 630 Rev. 2]
0x1290 GK208 [GeForce GT 730M]
0x1291 GK208 [GeForce GT 735M]
0x1292 GK208 [GeForce GT 740M]
0x1293 GK208 [GeForce GT 730M]
0x1294 GK208 [GeForce GT 740M]
0x1295 GK208 [GeForce 710M]
0x12b9 GK208 [Quadro K610M]
0x12ba GK208 [Quadro K510M]

GM107

device id product
0x1381 GM107 [GeForce GTX 750]
0x1392 GM107 [GeForce GTX 860M]
0x139a GM107 [GeForce GTX 950M]
0x139b GM107 [GeForce GTX 960M]
0x13b0 GM107 [Quadro M2000M]

GM108

device id product
0x1340 GM108
0x1341 GM108 [GeForce 840M]
0x1346 GM108 [GeForce 930M]
0x1347 GM108 [GeForce 940M]
0x134d GM108 [GeForce 940MX]

GM204

device id product
0x13c0 GM204 [GeForce GTX 980]
0x13c2 GM204 [GeForce GTX 970]
0x13d7 GM204 [GeForce GTX 980M]
0x13d8 GM204 [GeForce GTX 970M]
0x13d9 GM204 [GeForce GTX 965M]

56 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

GM206

device id product
0x1401 GM206 [GeForce GTX 960]
0x1407 GM206 [GeForce GTX 750 v2]
0x1427 GM206 [GeForce GTX 965M v2]

GP100

device id product
0x15f7 GP100 [Tesla P100 PCIe 12GB]
0x15f8 GP100 [Tesla P100 PCIe 16GB]
0x15f9 GP100 [Tesla P100 SXM2 16GB]

GP102

device id product
0x1b00 GP102 [GeForce TITAN X]
0x1b02 GP102 [GeForce TITAN Xp]
0x1b06 GP102 [GeForce GTX 1080 Ti]
0x1b30 GP102 [Quadro P6000]
0x1b38 GP102 [Tesla P40]

GP104

device id product
0x1b80 GP104 [GeForce GTX 1080]
0x1b81 GP104 [GeForce GTX 1070]
0x1b82 GP104 [GeForce GTX 1070 Ti]
0x1b83 GP104 [GeForce GTX 1060 6GB]
0x1b84 GP104 [GeForce GTX 1060 3GB]
0x1ba0 GP104 [GeForce GTX 1080 Mobile]
0x1ba1 GP104 [GeForce GTX 1070 Mobile]
0x1ba2 GP104 [GeForce GTX 1070 Mobile]
0x1bb0 GP104 [Quadro P5000]
0x1bb3 GP104 [Tesla P4]
0x1bb6 GP104 [Quadro P5000 Mobile]
0x1bb7 GP104 [Quadro P4000 Mobile]
0x1bb8 GP104 [Quadro P3000 Mobile]
0x1be0 GP104 [GeForce GTX 1080 Mobile]
0x1be1 GP104 [GeForce GTX 1070 Mobile]

2.3. nVidia PCI id database 57



nVidia Hardware Documentation, Release git

GP106

device id product
0x1c02 GP106 [GeForce GTX 1060 3GB]
0x1c03 GP106 [GeForce GTX 1060 6GB]
0x1c20 GP106 [GeForce GTX 1060 Mobile]
0x1c23 GP106 [GeForce GTX 1060]
0x1c60 GP106 [GeForce GTX 1060 Mobile]
0x1c61 GP106 [GeForce GTX 1050 Ti Mobile]
0x1c62 GP106 [GeForce GTX 1050 Mobile]

GP107

device id product
0x1c81 GP107 [GeForce GTX 1050]
0x1c82 GP107 [GeForce GTX 1050 Ti]
0x1c83 GP107 [GeForce GTX 1050 3GB]
0x1c8c GP107 [GeForce GTX 1050 Ti Mobile]
0x1c8d GP107 [GeForce GTX 1050 Mobile]
0x1c8f GP107 [GeForce GTX 1050 Ti Max-Q]
0x1c92 GP107 [GeForce GTX 1050 Max-Q]

GP108

device id product
0x1d01 GP108 [GeForce GT 1030]
0x1d10 GP108 [GeForce MX150]
0x1d12 GP108 [GeForce MX150]

GV100

device id product
0x1d81 GV100 [TITAN V]
0x1db1 GV100 [Tesla V100 SXM2 16GB]
0x1db4 GV100 [Tesla V100 PCIe 16GB]
0x1db5 GV100 [Tesla V100 SXM2 32GB]
0x1db6 GV100 [Tesla V100 PCIe 32GB]
0x1dba GV100 [Quadro GV100]

58 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

TU102

device id product
0x1e02 TU102 [TITAN RTX]
0x1e04 TU102 [GeForce RTX 2080 Ti]
0x1e07 TU102 [GeForce RTX 2080 Ti]
0x1e30 TU102 [Quadro RTX 8000] (0x10de 0x129e)
0x1e30 TU102 [Quadro RTX 6000]
0x1e3c TU102 [Quadro RTX 6000]

TU104

device id product
0x1e82 TU104 [GeForce RTX 2080]
0x1e87 TU104 [GeForce RTX 2080]
0x1e89 TU104 [GeForce RTX 2060]
0x1e90 TU104 [GeForce RTX 2080 Mobile]
0x1eb0 TU104 [Quadro RTX 5000]
0x1eb1 TU104 [Quadro RTX 4000]
0x1ed0 TU104 [GeForce RTX 2080 Mobile]

TU106

device id product
0x1f02 TU106 [GeForce RTX 2070]
0x1f07 TU106 [GeForce RTX 2070]
0x1f08 TU106 [GeForce RTX 2060]
0x1f10 TU106 [GeForce RTX 2070 Mobile]
0x1f11 TU106 [GeForce RTX 2060 Mobile]
0x1f50 TU106 [GeForce RTX 2070 Mobile]
0x1f51 TU106 [GeForce RTX 2060 Mobile]

TU116

device id product
0x2182 TU116 [GeForce GTX 1660 Ti]
0x2184 TU116 [GeForce GTX 1660]

TU117

device id product
0x1f82 TU117 [GeForce GTX 1650]
0x1f91 TU117 [GeForce GTX 1650 Mobile]

2.3. nVidia PCI id database 59



nVidia Hardware Documentation, Release git

2.3.3 GPU HDA codecs

device id product
0x0be2 GT216 HDA
0x0be3 GT218 HDA
0x0be4 GT215 HDA
0x0be5 GF100 HDA
0x0be9 GF106 HDA
0x0bea GF108 HDA
0x0beb GF104 HDA
0x0bee GF116 HDA
0x0e08 GF119 HDA
0x0e09 GF110 HDA
0x0e0a GK104 HDA
0x0e0b GK106 HDA
0x0e0c GF114 HDA
0x0e0f GK208 HDA
0x0e1a GK110 HDA
0x0e1b GK107 HDA
0x0fb0 GM200 HDA
0x0fb8 GP108 HDA
0x0fb9 GP107 HDA
0x0fba GM206 HDA
0x0fbb GM204 HDA
0x0fbc GM107 HDA
0x10ef GP102 HDA
0x10f0 GP104 HDA
0x10f1 GP106 HDA
0x10f2 GV100 HDA
0x10f7 TU102 HDA
0x10f8 TU104 HDA
0x10f9 TU106 HDA
0x1aeb TU116 HDA
0x???? TU117 HDA

2.3.4 GPU USB controllers

device id product
0x1ad6 TU102 USB
0x1ad7 TU102 USB UCSI Controller
0x1ad8 TU104 USB
0x1ad9 TU104 USB UCSI Controller
0x1ada TU106 USB
0x1adb TU106 USB UCSI Controller

2.3.5 BR02

The BR02 aka HSI is a transparent PCI-Express - AGP bridge. It can be used to connect PCIE GPU to AGP bus, or
the other way around. Its PCI device id shadows the actual GPU’s device id.

60 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

device id product
0x00f1 BR02+NV43 [GeForce 6600 GT]
0x00f2 BR02+NV43 [GeForce 6600]
0x00f3 BR02+NV43 [GeForce 6200]
0x00f4 BR02+NV43 [GeForce 6600 LE]
0x00f5 BR02+G71 [GeForce 7800 GS]
0x00f6 BR02+NV43 [GeForce 6800 GS/XT]
0x00f8 BR02+NV40 [Quadro FX 3400/4400]
0x00f9 BR02+NV40 [GeForce 6800 Series GPU]
0x00fa BR02+NV36 [GeForce PCX 5750]
0x00fb BR02+NV35 [GeForce PCX 5900]
0x00fc BR02+NV34 [GeForce PCX 5300 / Quadro FX 330]
0x00fd BR02+NV34 [Quadro FX 330]
0x00fe BR02+NV35 [Quadro FX 1300]
0x00ff BR02+NV18 [GeForce PCX 4300]
0x02e0 BR02+G73 [GeForce 7600 GT]
0x02e1 BR02+G73 [GeForce 7600 GS]
0x02e2 BR02+G73 [GeForce 7300 GT]
0x02e3 BR02+G71 [GeForce 7900 GS]
0x02e4 BR02+G71 [GeForce 7950 GT]

2.3.6 BR03

The BR03 aka NF100 is a PCI-Express switch with 2 downstream 16x ports. It’s used on NV40 generation dual-GPU
cards.

device id product
0x01b3 BR03 [GeForce 7900 GX2/7950 GX2]

2.3.7 BR04

The BR04 aka NF200 is a PCI-Express switch with 4 downstream 16x ports. It’s used on Tesla and Fermi generation
dual-GPU cards, as well as some SLI-capable motherboards.

device id product
0x05b1 BR04 [motherboard]
0x05b8 BR04 [GeForce GTX 295]
0x05b9 BR04 [GeForce GTX 590]
0x05be BR04 [GeForce 9800 GX2/Quadro Plex S4/Tesla S*]

2.3.8 Motherboard chipsets

NV1A [nForce 220 IGP / 420 IGP / 415 SPP]

The northbridge of nForce1 chipset, paired with MCP.

2.3. nVidia PCI id database 61



nVidia Hardware Documentation, Release git

device id product
0x01a0 NV1A GPU [GeForce2 MX IGP]
0x01a4 NV1A host bridge
0x01a5 NV1A host bridge [?]
0x01a6 NV1A host bridge [?]
0x01a8 NV1A memory controller [?]
0x01a9 NV1A memory controller [?]
0x01aa NV1A memory controller #3, 64-bit
0x01ab NV1A memory controller #3, 128-bit
0x01ac NV1A memory controller #1
0x01ad NV1A memory controller #2
0x01b7 NV1A/NV2A AGP bridge

Note: 0x01b7 is also used on NV2A.

NV2A [XGPU]

The northbridge of xbox, paired with MCP.

device id product
0x02a0 NV2A GPU
0x02a5 NV2A host bridge
0x02a6 NV2A memory controller
0x01b7 NV1A/NV2A AGP bridge

Note: 0x01b7 is also used on NV1A.

MCP

The southbridge of nForce1 chipset and xbox, paired with NV1A or NV2A.

device id product
0x01b0 MCP APU
0x01b1 MCP AC’97
0x01b2 MCP LPC bridge
0x01b4 MCP SMBus controller
0x01b8 MCP PCI bridge
0x01bc MCP IDE controller
0x01c1 MCP MC’97
0x01c2 MCP USB controller
0x01c3 MCP ethernet controller

NV1F [nForce2 IGP/SPP]

The northbridge of nForce2 chipset, paired with MCP2 or MCP2A.

62 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

device id product
0x01e0 NV1F host bridge
0x01e8 NV1F AGP bridge
0x01ea NV1F memory controller #1
0x01eb NV1F memory controller #1
0x01ec NV1F memory controller #4
0x01ed NV1F memory controller #3
0x01ee NV1F memory controller #2
0x01ef NV1F memory controller #5

MCP2

The southbridge of nForce2 chipset, original revision. Paired with NV1F.

device id product
0x0060 MCP2 LPC bridge
0x0064 MCP2 SMBus controller
0x0065 MCP2 IDE controller
0x0066 MCP2 ethernet controller
0x0067 MCP2 USB controller
0x0068 MCP2 USB 2.0 controller
0x0069 MCP2 MC’97
0x006a MCP2 AC’97
0x006b MCP2 APU
0x006c MCP2 PCI bridge
0x006d MCP2 internal PCI bridge for 3com ethernet
0x006e MCP2 Firewire controller

MCP2A

The southbridge of nForce2 400 chipset. Paired with NV1F.

device id product
0x0080 MCP2A LPC bridge
0x0084 MCP2A SMBus controller
0x0085 MCP2A IDE controller
0x0086 MCP2A ethernet controller (class 0200)
0x0087 MCP2A USB controller
0x0088 MCP2A USB 2.0 controller
0x0089 MCP2A MC’97
0x008a MCP2A AC’97
0x008b MCP2A PCI bridge
0x008c MCP2A ethernet controller (class 0680)
0x008e MCP2A SATA controller

CK8

The nforce3-150 chipset.

2.3. nVidia PCI id database 63



nVidia Hardware Documentation, Release git

device id product
0x00d0 CK8 LPC bridge
0x00d1 CK8 host bridge
0x00d2 CK8 AGP bridge
0x00d4 CK8 SMBus controller
0x00d5 CK8 IDE controller
0x00d6 CK8 ethernet controller
0x00d7 CK8 USB controller
0x00d8 CK8 USB 2.0 controller
0x00d9 CK8 MC’97
0x00da CK8 AC’97
0x00dd CK8 PCI bridge

CK8S

The nforce3-250 chipset.

device id product
0x00df CK8S ethernet controller (class 0680)
0x00e0 CK8S LPC bridge
0x00e1 CK8S host bridge
0x00e2 CK8S AGP bridge
0x00e3 CK8S SATA controller #1
0x00e4 CK8S SMBus controller
0x00e5 CK8S IDE controller
0x00e6 CK8S ethernet controller (class 0200)
0x00e7 CK8S USB controller
0x00e8 CK8S USB 2.0 controller
0x00e9 CK8S MC’97
0x00ea CK8S AC’97
0x00ec CK8S ???? (class 0780)
0x00ed CK8S PCI bridge
0x00ee CK8S SATA controller #0

CK804

The AMD nforce4 chipset, standalone or paired with C19 or C51 to make nforce4 SLI x16 chipset.

64 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

device id product
0x0050 CK804 LPC bridge
0x0051 CK804 LPC bridge
0x0052 CK804 SMBus controller
0x0053 CK804 IDE controller
0x0054 CK804 SATA controller #0
0x0055 CK804 SATA controller #1
0x0056 CK804 ethernet controller (class 0200)
0x0057 CK804 ethernet controller (class 0680)
0x0058 CK804 MC’97
0x0059 CK804 AC’97
0x005a CK804 USB controller
0x005b CK804 USB 2.0 controller
0x005c CK804 PCI subtractive bridge
0x005d CK804 PCI-Express port
0x005e CK804 memory controller #0
0x005f CK804 memory controller #12
0x00d3 CK804 memory controller #10

C19

The intel nforce4 northbridge, paired with MCP04 or CK804.

device id product
0x006f C19 memory controller #3
0x0070 C19 host bridge
0x0071 C19 host bridge
0x0072 C19 host bridge [?]
0x0073 C19 host bridge [?]
0x0074 C19 memory controller #1
0x0075 C19 memory controller #2
0x0076 C19 memory controller #10
0x0078 C19 memory controller #11
0x0079 C19 memory controller #12
0x007a C19 memory controller #13
0x007b C19 memory controller #14
0x007c C19 memory controller #15
0x007d C19 memory controller #16
0x007e C19 PCI-Express port
0x007f C19 memory controller #1
0x00b4 C19 memory controller #4

MCP04

The intel nforce4 southbridge, paired with C19.

2.3. nVidia PCI id database 65



nVidia Hardware Documentation, Release git

device id product
0x0030 MCP04 LPC bridge
0x0034 MCP04 SMBus controller
0x0035 MCP04 IDE controller
0x0036 MCP04 SATA controller #0
0x0037 MCP04 ethernet controller (class 0200)
0x0038 MCP04 ethernet controller (class 0680)
0x0039 MCP04 MC’97
0x003a MCP04 AC’97
0x003b MCP04 USB controller
0x003c MCP04 USB 2.0 controller
0x003d MCP04 PCI subtractive bridge
0x003e MCP04 SATA controller #1
0x003f MCP04 memory controller

C51

The AMD nforce4xx/nforce5xx northbridge, paired with CK804, MCP51, or MCP55.

device id product
0x02f0 C51 memory controller #0
0x02f1 C51 memory controller #0
0x02f2 C51 memory controller #0
0x02f3 C51 memory controller #0
0x02f4 C51 memory controller #0
0x02f5 C51 memory controller #0
0x02f6 C51 memory controller #0
0x02f7 C51 memory controller #0
0x02f8 C51 memory controller #3
0x02f9 C51 memory controller #4
0x02fa C51 memory controller #1
0x02fb C51 PCI-Express x16 port
0x02fc C51 PCI-Express x1 port #0
0x02fd C51 PCI-Express x1 port #1
0x02fe C51 memory controller #2
0x02ff C51 memory controller #5
0x027e C51 memory controller #7
0x027f C51 memory controller #6

MCP51

The AMD nforce5xx southbridge, paired with C51 or C55.

66 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

device id product
0x0260 MCP51 LPC bridge
0x0261 MCP51 LPC bridge
0x0262 MCP51 LPC bridge [?]
0x0263 MCP51 LPC bridge [?]
0x0264 MCP51 SMBus controller
0x0265 MCP51 IDE controller
0x0266 MCP51 SATA controller #0
0x0267 MCP51 SATA controller #1
0x0268 MCP51 ethernet controller (class 0200)
0x0269 MCP51 ethernet controller (class 0680)
0x026a MCP51 MC’97
0x026b MCP51 AC’97
0x026c MCP51 HDA
0x026d MCP51 USB controller
0x026e MCP51 USB 2.0 controller
0x026f MCP51 PCI subtractive bridge
0x0270 MCP51 memory controller #0
0x0271 MCP51 SMU
0x0272 MCP51 memory controller #12

C55

Paired with MCP51 or MCP55.

2.3. nVidia PCI id database 67



nVidia Hardware Documentation, Release git

device id product
0x03a0 C55 host bridge [?]
0x03a1 C55 host bridge
0x03a2 C55 host bridge
0x03a3 C55 host bridge
0x03a4 C55 host bridge [?]
0x03a5 C55 host bridge [?]
0x03a6 C55 host bridge [?]
0x03a7 C55 host bridge [?]
0x03a8 C55 memory controller #5
0x03a9 C55 memory controller #3
0x03aa C55 memory controller #2
0x03ab C55 memory controller #4
0x03ac C55 memory controller #1
0x03ad C55 memory controller #10
0x03ae C55 memory controller #11
0x03af C55 memory controller #12
0x03b0 C55 memory controller #13
0x03b1 C55 memory controller #14
0x03b2 C55 memory controller #15
0x03b3 C55 memory controller #16
0x03b4 C55 memory controller #7
0x03b5 C55 memory controller #6
0x03b6 C55 memory controller #20
0x03b7 C55 PCI-Express x16/x8 port
0x03b8 C55 PCI-Express x8 port
0x03b9 C55 PCI-Express x1 port #0
0x03ba C55 memory controller #22
0x03bb C55 PCI-Express x1 port #1
0x03bc C55 memory controller #21

Todo: shouldn’t 0x03b8 support x4 too?

MCP55

Standalone or paired with C51, C55 or C73.

68 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

device id product
0x0360 MCP55 LPC bridge
0x0361 MCP55 LPC bridge
0x0362 MCP55 LPC bridge
0x0363 MCP55 LPC bridge
0x0364 MCP55 LPC bridge
0x0365 MCP55 LPC bridge [?]
0x0366 MCP55 LPC bridge [?]
0x0367 MCP55 LPC bridge [?]
0x0368 MCP55 SMBus controller
0x0369 MCP55 memory controller #0
0x036a MCP55 memory controller #12
0x036b MCP55 SMU
0x036c MCP55 USB controller
0x036d MCP55 USB 2.0 controller
0x036e MCP55 IDE controller
0x036f MCP55 SATA [???]
0x0370 MCP55 PCI subtractive bridge
0x0371 MCP55 HDA
0x0372 MCP55 ethernet controller (class 0200)
0x0373 MCP55 ethernet controller (class 0680)
0x0374 MCP55 PCI-Express x1/x4 port #0
0x0375 MCP55 PCI-Express x1/x8 port
0x0376 MCP55 PCI-Express x8 port
0x0377 MCP55 PCI-Express x8/x16 port
0x0378 MCP55 PCI-Express x1/x4 port #1
0x037e MCP55 SATA controller [?]
0x037f MCP55 SATA controller

MCP61

Standalone.

2.3. nVidia PCI id database 69



nVidia Hardware Documentation, Release git

device id product
0x03e0 MCP61 LPC bridge
0x03e1 MCP61 LPC bridge
0x03e2 MCP61 memory controller #0
0x03e3 MCP61 LPC bridge [?]
0x03e4 MCP61 HDA [?]
0x03e5 MCP61 ethernet controller [?]
0x03e6 MCP61 ethernet controller [?]
0x03e7 MCP61 SATA controller [?]
0x03e8 MCP61 PCI-Express x16 port
0x03e9 MCP61 PCI-Express x1 port
0x03ea MCP61 memory controller #0
0x03eb MCP61 SMBus controller
0x03ec MCP61 IDE controller
0x03ee MCP61 ethernet controller [?]
0x03ef MCP61 ethernet controller (class 0680)
0x03f0 MCP61 HDA
0x03f1 MCP61 USB controller
0x03f2 MCP61 USB 2.0 controller
0x03f3 MCP61 PCI subtractive bridge
0x03f4 MCP61 SMU
0x03f5 MCP61 memory controller #12
0x03f6 MCP61 SATA controller
0x03f7 MCP61 SATA controller [?]

MCP65

Standalone.

device id product
0x0440 MCP65 LPC bridge [?]
0x0441 MCP65 LPC bridge
0x0442 MCP65 LPC bridge
0x0443 MCP65 LPC bridge [?]
0x0444 MCP65 memory controller #0
0x0445 MCP65 memory controller #12
0x0446 MCP65 SMBus controller
0x0447 MCP65 SMU
0x0448 MCP65 IDE controller
0x0449 MCP65 PCI subtractive bridge
0x044a MCP65 HDA
0x044b MCP65 HDA [?]
0x044c MCP65 SATA controller (AHCI mode) [?]
0x044d MCP65 SATA controller (AHCI mode)
0x044e MCP65 SATA controller (AHCI mode) [?]
0x044f MCP65 SATA controller (AHCI mode) [?]
0x0450 MCP65 ethernet controller (class 0200)
0x0451 MCP65 ethernet controller [?]
0x0452 MCP65 ethernet controller (class 0680)

Continued on next page

70 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 6 – continued from previous page
device id product
0x0453 MCP65 ethernet controller [?]
0x0454 MCP65 USB controller #0
0x0455 MCP65 USB 2.0 controller #0
0x0456 MCP65 USB controller #1
0x0457 MCP65 USB 2.0 controller #1
0x0458 MCP65 PCI-Express x8/x16 port
0x0459 MCP65 PCI-Express x8 port
0x045a MCP65 PCI-Express x1/x2 port
0x045b MCP65 PCI-Express x2 port
0x045c MCP65 SATA controller (compatibility mode) [?]
0x045d MCP65 SATA controller (compatibility mode)
0x045e MCP65 SATA controller (compatibility mode) [?]
0x045f MCP65 SATA controller (compatibility mode) [?]

MCP67

Standalone.

device id product
0x0541 MCP67 memory controller #12
0x0542 MCP67 SMBus controller
0x0543 MCP67 SMU
0x0547 MCP67 memory controller #0
0x0548 MCP67 LPC bridge
0x054c MCP67 ethernet controller (class 0200)
0x054d MCP67 ethernet controller [?]
0x054e MCP67 ethernet controller [?]
0x054f MCP67 ethernet controller [?]
0x0550 MCP67 SATA controller (compatibility mode)
0x0551 MCP67 SATA controller (compatibility mode) [?]
0x0552 MCP67 SATA controller (compatibility mode) [?]
0x0553 MCP67 SATA controller (compatibility mode) [?]
0x0554 MCP67 SATA controller (AHCI mode)
0x0555 MCP67 SATA controller (AHCI mode) [?]
0x0556 MCP67 SATA controller (AHCI mode) [?]
0x0557 MCP67 SATA controller (AHCI mode) [?]
0x0558 MCP67 SATA controller (AHCI mode) [?]
0x0559 MCP67 SATA controller (AHCI mode) [?]
0x055a MCP67 SATA controller (AHCI mode) [?]
0x055b MCP67 SATA controller (AHCI mode) [?]
0x055c MCP67 HDA
0x055d MCP67 HDA [?]
0x055e MCP67 USB controller
0x055f MCP67 USB 2.0 controller
0x0560 MCP67 IDE controller
0x0561 MCP67 PCI subtractive bridge
0x0562 MCP67 PCI-Express x16 port
0x0563 MCP67 PCI-Express x1 port

2.3. nVidia PCI id database 71



nVidia Hardware Documentation, Release git

C73

Paired with MCP55.

device id product
0x0800 C73 host bridge
0x0801 C73 host bridge [?]
0x0802 C73 host bridge [?]
0x0803 C73 host bridge [?]
0x0804 C73 host bridge [?]
0x0805 C73 host bridge [?]
0x0806 C73 host bridge [?]
0x0807 C73 host bridge [?]
0x0808 C73 memory controller #1
0x0809 C73 memory controller #2
0x080a C73 memory controller #3
0x080b C73 memory controller #4
0x080c C73 memory controller #5
0x080d C73 memory controller #6
0x080e C73 memory controller #7/#17
0x080f C73 memory controller #10
0x0810 C73 memory controller #11
0x0811 C73 memory controller #12
0x0812 C73 memory controller #13
0x0813 C73 memory controller #14
0x0814 C73 memory controller #15
0x0815 C73 PCI-Express x? port #0
0x0817 C73 PCI-Express x? port #1
0x081a C73 memory controller #16

MCP73

Standalone.

device id product
0x056a MCP73 USB 2.0 controller
0x056c MCP73 IDE controller
0x056d MCP73 PCI subtractive bridge
0x056e MCP73 PCI-Express x16 port
0x056f MCP73 PCI-Express x1 port
0x07c0 MCP73 host bridge
0x07c1 MCP73 host bridge
0x07c2 MCP73 host bridge [?]
0x07c3 MCP73 host bridge
0x07c4 MCP73 host bridge [?]
0x07c5 MCP73 host bridge
0x07c6 MCP73 host bridge [?]
0x07c7 MCP73 host bridge
0x07c8 MCP73 memory controller #34
0x07cb MCP73 memory controller #1

Continued on next page

72 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 7 – continued from previous page
device id product
0x07cd MCP73 memory controller #10
0x07ce MCP73 memory controller #11
0x07cf MCP73 memory controller #12
0x07d0 MCP73 memory controller #13
0x07d1 MCP73 memory controller #14
0x07d2 MCP73 memory controller #15
0x07d3 MCP73 memory controller #16
0x07d6 MCP73 memory controller #20
0x07d7 MCP73 LPC bridge
0x07d8 MCP73 SMBus controller
0x07d9 MCP73 memory controller #32
0x07da MCP73 SMU
0x07dc MCP73 ethernet controller (class 0200)
0x07dd MCP73 ethernet controller [?]
0x07de MCP73 ethernet controller [?]
0x07df MCP73 ethernet controller [?]
0x07f0 MCP73 SATA controller (compatibility mode)
0x07f1 MCP73 SATA controller (compatibility mode) [?]
0x07f2 MCP73 SATA controller (compatibility mode) [?]
0x07f3 MCP73 SATA controller (compatibility mode) [?]
0x07f4 MCP73 SATA controller (AHCI mode)
0x07f5 MCP73 SATA controller (AHCI mode) [?]
0x07f6 MCP73 SATA controller (AHCI mode) [?]
0x07f7 MCP73 SATA controller (AHCI mode) [?]
0x07f8 MCP73 SATA controller (RAID mode)
0x07f9 MCP73 SATA controller (RAID mode) [?]
0x07fa MCP73 SATA controller (RAID mode) [?]
0x07fb MCP73 SATA controller (RAID mode) [?]
0x07fc MCP73 HDA
0x07fd MCP73 HDA [?]
0x07fe MCP73 USB controller

MCP77

Standalone.

device id product
0x0568 MCP77 memory controller #14
0x0569 MCP77 IGP bridge
0x0570-0x057f MCP* ethernet controller (class 0200 alt) [XXX]
0x0580-0x058f MCP* SATA controller (alt ID) [XXX]
0x0590-0x059f MCP* HDA (alt ID) [XXX]
0x05a0-0x05af MCP* IDE (alt ID) [XXX]
0x0751 MCP77 memory controller #12
0x0752 MCP77 SMBus controller
0x0753 MCP77 SMU
0x0754 MCP77 memory controller #0
0x0755 MCP77 memory controller #0 [?]

Continued on next page

2.3. nVidia PCI id database 73



nVidia Hardware Documentation, Release git

Table 8 – continued from previous page
device id product
0x0756 MCP77 memory controller #0 [?]
0x0757 MCP77 memory controller #0 [?]
0x0759 MCP77 IDE controller
0x075a MCP77 PCI subtractive bridge
0x075b MCP77 PCI-Express x1/x4 port
0x075c MCP77 LPC bridge
0x075d MCP77 LPC bridge
0x075e MCP77 LPC bridge
0x0760 MCP77 ethernet controller (class 0200)
0x0761 MCP77 ethernet controller [?]
0x0762 MCP77 ethernet controller [?]
0x0763 MCP77 ethernet controller [?]
0x0764 MCP77 ethernet controller (class 0680)
0x0765 MCP77 ethernet controller [?]
0x0766 MCP77 ethernet controller [?]
0x0767 MCP77 ethernet controller [?]
0x0774 MCP77 HDA
0x0775 MCP77 HDA [?]
0x0776 MCP77 HDA [?]
0x0777 MCP77 HDA [?]
0x0778 MCP77 PCI-Express 2.0 x8/x16 port
0x0779 MCP77 PCI-Express 2.0 x8 port
0x077a MCP77 PCI-Express x1 port
0x077b MCP77 USB controller #0
0x077c MCP77 USB 2.0 controller #0
0x077d MCP77 USB controller #1
0x077e MCP77 USB 2.0 controller #1
0x0ad0-0x0ad3 MCP77 SATA controller (compatibility mode)
0x0ad4-0x0ad7 MCP77 SATA controller (AHCI mode)
0x0ad8-0x0adb MCP77 SATA controller (RAID mode)

MCP79

Standalone.

device id product
0x0570-0x057f MCP* ethernet controller (class 0200 alt) [XXX]
0x0580-0x058f MCP* SATA controller (alt ID) [XXX]
0x0590-0x059f MCP* HDA (alt ID) [XXX]
0x0a80 MCP79 host bridge
0x0a81 MCP79 host bridge [?]
0x0a82 MCP79 host bridge
0x0a83 MCP79 host bridge
0x0a84 MCP79 host bridge
0x0a85 MCP79 host bridge [?]
0x0a86 MCP79 host bridge
0x0a87 MCP79 host bridge [?]
0x0a88 MCP79 memory controller #1

Continued on next page

74 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 9 – continued from previous page
device id product
0x0a89 MCP79 memory controller #33
0x0a8d MCP79 memory controller #13
0x0a8e MCP79 memory controller #14
0x0a8f MCP79 memory controller #15
0x0a90 MCP79 memory controller #16
0x0a94 MCP79 memory controller #23
0x0a95 MCP79 memory controller #24
0x0a98 MCP79 memory controller #34
0x0aa0 MCP79 IGP bridge
0x0aa2 MCP79 SMBus controller
0x0aa3 MCP79 SMU
0x0aa4 MCP79 memory controller #31
0x0aa5 MCP79 USB controller #0
0x0aa6 MCP79 USB 2.0 controller #0
0x0aa7 MCP79 USB controller #1
0x0aa8 MCP79 USB controller [?]
0x0aa9 MCP79 USB 2.0 controller #1
0x0aaa MCP79 USB 2.0 controller [?]
0x0aab MCP79 PCI subtractive bridge
0x0aac MCP79 LPC bridge
0x0aad MCP79 LPC bridge
0x0aae MCP79 LPC bridge
0x0aaf MCP79 LPC bridge
0x0ab0 MCP79 ethernet controller (class 0200)
0x0ab1 MCP79 ethernet controller [?]
0x0ab2 MCP79 ethernet controller [?]
0x0ab3 MCP79 ethernet controller [?]
0x0ab4-0x0ab7 MCP79 SATA controller (compatibility mode)
0x0ab8-0x0abb MCP79 SATA controller (AHCI mode)
0x0abc-0x0abf MCP79 SATA controller (RAID mode) [XXX: actually 0x0ab0-0xabb are accepted by hw without trickery]
0x0ac0 MCP79 HDA
0x0ac1 MCP79 HDA [?]
0x0ac2 MCP79 HDA [?]
0x0ac3 MCP79 HDA [?]
0x0ac4 MCP79 PCI-Express 2.0 x16 port
0x0ac5 MCP79 PCI-Express 2.0 x4/x8 port
0x0ac6 MCP79 PCI-Express 2.0 x1/x4 port
0x0ac7 MCP79 PCI-Express 2.0 x1 port
0x0ac8 MCP79 PCI-Express 2.0 x4 port

MCP89

Standalone.

2.3. nVidia PCI id database 75



nVidia Hardware Documentation, Release git

device id product
0x0580-0x058f MCP* SATA controller (alt ID) [XXX]
0x0590-0x059f MCP* HDA (alt ID) [XXX]
0x0d60 MCP89 host bridge
0x0d68 MCP89 memory controller #1
0x0d69 MCP89 memory controller #33
0x0d6d MCP89 memory controller #10
0x0d6e MCP89 memory controller #11
0x0d6f MCP89 memory controller #12
0x0d70 MCP89 memory controller #13
0x0d71 MCP89 memory controller #20
0x0d72 MCP89 memory controller #21
0x0d75 MCP89 memory controller #110
0x0d76 MCP89 IGP bridge
0x0d79 MCP89 SMBus controller
0x0d7a MCP89 SMU
0x0d7b MCP89 memory controller #31
0x0d7d MCP89 ethernet controller (class 0200)
0x0d80 MCP89 LPC bridge
0x0d84-0x0d87 MCP89 SATA controller (compatibility mode)
0x0d88-0x0d8b MCP89 SATA controller (AHCI mode)
0x0d8c-0x0d8f MCP89 SATA controller (RAID mode)
0x0d94-0x0d97 MCP89 HDA [XXX: actually 1-0xf]
0x0d9a MCP89 PCI-Express x1 port #0
0x0d9b MCP89 PCI-Express x1 port #1
0x0d9c MCP89 USB controller
0x0d9d MCP89 USB 2.0 controller

2.3.9 Tegra

T20

device id product
0x0bf0 T20 PCI-Express x4 port
0x0bf1 T20 PCI-Express x2 port

T30

device id product
0x0e1c T30 PCI-Express x4 port
0x0e1d T30 PCI-Express x2 port

T124

Also known as Tegra K1.

76 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

device id product
0x0e12 T124 PCI-Express x4 port
0x0e13 T124 PCI-Express x1 port

T210

Also known as Tegra X1.

device id product
0x0fae T210 PCI-Express x4 port
0x0faf T210 PCI-Express x1 port

T186

Also known as Tegra X2.

device id product
0x10e5 T186 PCI-Express x4 port
0x10e6 T186 PCI-Express x1 port

2.4 PCI/PCIE/AGP bus interface and card management logic

Contents:

2.4.1 PCI BARs and other means of accessing the GPU

Contents

• PCI BARs and other means of accessing the GPU

– Nvidia GPU BARs, IO ports, and memory areas

– PCI/PCIE configuration space

– BAR0: MMIO registers

– BAR1: VRAM aperture

– BAR2/BAR3: RAMIN aperture

– BAR2: NV3 indirect memory access

– BAR5: G80 indirect memory access

– BAR6: PCI ROM aperture

– INTA: the card interrupt

– Legacy VGA IO ports and memory

2.4. PCI/PCIE/AGP bus interface and card management logic 77



nVidia Hardware Documentation, Release git

Nvidia GPU BARs, IO ports, and memory areas

The nvidia GPUs expose the following areas to the outside world through PCI:

• PCI configuration space / PCIE extended configuration space

• MMIO registers: BAR0 - memory, 0x1000000 bytes or more depending on card type

• VRAM aperture: BAR1 - memory, 0x1000000 bytes or more depending on card type [NV3+ only]

• indirect memory access IO ports: BAR2 - 0x100 bytes of IO port space [NV3 only]

• ???: BAR2 [only NV1x IGPs?]

• ???: BAR2 [only NV20?]

• RAMIN aperture: BAR2 or BAR3 - memory, 0x1000000 bytes or more depending on card type [NV40+]

• indirect memory access IO ports: BAR5 - 0x80 bytes of IO port space [G80+]

• PCI ROM aperture

• PCI INTA interrupt line

• legacy VGA IO ports: 0x3b0-0x3bb and 0x3c0-0x3df [can be disabled in PCI config]

• legacy VGA memory: 0xa0000-0xbffff [can be disabled in PCI config]

PCI/PCIE configuration space

Nvidia GPUs, like all PCI devices, have PCI configuration space. Its contents are described in pci.

BAR0: MMIO registers

This is the main control space of the card - all engines are controlled through it, and it contains alternate means to
access most of the other spaces. This, along with the VRAM / RAMIN apertures, is everything that’s needed to fully
control the cards.

This space is a 16MB area of memory sparsely populated with areas representing individual engines, which in turn
are sparsely populated with registers. The list of engines depends on card type. While there are no known registers
outside 16MB range, the BAR itself can have a larger size on NV40+ cards if configured so by straps.

Its address is set up through PCI BAR 0. The BAR uses 32-bit addressing and is non-prefetchable memory.

The registers inside this BAR are 32-bit, with the exception of areas that are aliases of the byte-oriented VGA legacy
IO ports. They should be accessed through aligned 32-bit memory reads/writes. On pre-NV1A cards, the registers
are always little endian, on NV1A+ cards endianness of the whole area can be selected by a switch in PMC. The
endianness switch, however, only affects BAR0 accesses to the MMIO space - accesses from inside the card are
always little-endian.

A particularly important subarea of MMIO space is PMC, the card’s master control. This subarea is present on all
nvidia GPUs at addresses 0x000000 through 0x000fff. It contains GPU id information, Big Red Switches for engines
that can be turned off, and master interrupt control. It’s described in more detail in pmc.

For full list of MMIO areas, see mmio.

78 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

BAR1: VRAM aperture

This is an area of prefetchable memory that maps to the card’s VRAM. On native PCIE cards, it uses 64-bit addressing,
on native PCI/AGP ones it uses 32-bit addressing.

On non-TURBOCACHE pre-G80 cards and on G80+ cards with BAR1 VM disabled, BAR addresses map directly to
VRAM addresses. On TURBOCACHE cards, BAR1 is made of controllable VRAM and GART windows [see NV44
host memory interface]. G80+ cards have a mode where all BAR references go through the card’s VM subsystem, see
g80-host-mem and gf100-host-mem.

On NV3 cards, this BAR also contains RAMIN access aperture at address 0xc00000 [see NV3 VRAM structure and
usage]

Todo: map out the BAR fully

the BAR size depends on card type:

• NV3: 16MB [with RAMIN]

• NV4: 16MB

• NV5: 32MB

• NV10:NV17: 128MB

• NV17:G80: 64MB-512MB, set via straps

• G80-: 64MB-64GB, set via straps

Note that BAR size is independent from actual VRAM size, although on pre-NV30 cards the BAR is guaranteed not
to be smaller than VRAM. This means it may be impossible to map all of the card’s memory through the BAR on
NV30+ cards.

BAR2/BAR3: RAMIN aperture

RAMIN is, on pre-G80 cards, a special area at the end of VRAM that contains various control structures. RAMIN
starts from end of VRAM and the addresses go in reverse direction, thus it needs a special mapping to access it the
way it’ll be used. While pre-NV40 cards limitted its size to 1MB and could fit the mapping in BAR0, or BAR1 for
NV3, NV40+ allow much bigger RAMIN addresses. RAMIN BAR provides such RAMIN mapping on NV40 family
cards.

G80 did away with a special RAMIN area, but it kept the BAR around. It works like BAR1, but is independent on
it and can use a distinct VM DMA object. As opposed to BAR1, all accesses done to BAR3 will be automatically
byte-swapped in 32-bit chunks like BAR0 if the big-endian switch is on. It’s commonly used to map control structures
for kernel use, while BAR1 is used to map user-accessible memory.

The BAR uses 64-bit addressing on native PCIE cards, 32-bit addressing on native PCI/AGP. It uses BAR2 slot on
native PCIE, BAR3 on native PCI/AGP. It is non-prefetchable memory on cards up to and including G200, prefetchable
memory on MCP77+. The size is at least 16MB and is set via straps.

BAR2: NV3 indirect memory access

An area of IO ports used to access BAR0 or BAR1 indirectly by real mode code that cannot map high memory
addresses. Present only on NV3.

Todo: RE it. or not.

2.4. PCI/PCIE/AGP bus interface and card management logic 79



nVidia Hardware Documentation, Release git

BAR5: G80 indirect memory access

An area of IO ports used to access BAR0, BAR1, and BAR3 indirectly by real mode code that cannot map high
memory addresses. Present on G80+ cards. On earlier cards, the indirect access feature of VGA IO ports can be used
instead. This BAR can also be disabled via straps.

Todo: It’s present on some NV4x

This area is 0x80 bytes of IO ports, but only first 0x20 bytes are actually used; the rest are empty. The ports are all
treated as 32-bit ports. They are:

BAR5+0x00: when read, signature: 0x2469fdb9. When written, master enable: write 1 to enable remaining ports, 0
to disable. Only bit 0 of the written value is taken into account. When remaining ports are disabled, they read
as 0xffffffff.

BAR5+0x04: enable. if bit 0 is 1, the “data” ports are active, otherwise they’re inactive and merely store the last
written value.

BAR5+0x08: BAR0 address port. bits 0-1 and 24-31 are ignored.

BAR5+0x0c: BAR0 data port. Reads and writes are translated to BAR0 reads and writes at address specified by
BAR0 address port.

BAR5+0x10: BAR1 address port. bits 0-1 are ignored.

BAR5+0x14: BAR1 data port. Reads and writes are translated to BAR1 reads and writes at address specified by
BAR1 address port.

BAR5+0x18: BAR3 address port. bits 0-1 and 24-31 are ignored.

BAR5+0x1c: BAR3 data port. Reads and writes are translated to BAR3 reads and writes at address specified by
BAR3 address port.

BAR0 addresses are masked to low 24 bits, allowing access to exactly 16MB of MMIO space. The BAR1 addresses
aren’t masked, and the window actually allows access to more BAR space than the BAR1 itself - up to 4GB of VRAM
or VM space can be accessed this way. BAR3 addresses, on the other hand, are masked to low 24 bits even though the
real BAR3 is larger.

BAR6: PCI ROM aperture

Todo: figure out size

Todo: figure out NV3

Todo: verify G80

The nvidia GPUs expose their BIOS as standard PCI ROM. The exposed ROM aliases either the actual BIOS EEP-
ROM, or the shadow BIOS in VRAM. This setting is exposed in PCI config space. If the “shadow enabled” PCI config
register is 0, the PROM MMIO area is enabled, and both PROM and the PCI ROM aperture will access the EEPROM.
Disabling the shadowing has a side effect of disabling video output on pre-G80 cards. If shadow is enabled, EEPROM
is disabled, PROM reads will return garbage, and PCI ROM aperture will access the VRAM shadow copy of BIOS.

80 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

On pre-G80 cards, the shadow BIOS is located at address 0 of RAMIN, on G80+ cards the shadow bios is pointed to
by PDISPLAY.VGA.ROM_WINDOW register - see g80-vga for details.

INTA: the card interrupt

Todo: MSI

The GPU reports all interrupts through the PCI INTA line. The interrupt enable and status registers are located in PMC
area - see pmc-intr.

Legacy VGA IO ports and memory

The nvidia GPU cards are backwards compatible with VGA and expose the usual VGA ranges: IO ports 0x3b0-0x3bb
and 0x3c0-0x3df, memory at 0xa0000-0xbffff. The VGA ranges can however be disabled in PCI config space. The
VGA registers and memory are still accessible through their aliases in BAR0, and disabling the legacy ranges has no
effect on the operation of the card. The IO range contains an extra top-level register that allows indirect access to
the MMIO area for use by real mode code, as well as many nvidia-specific extra registers in the VGA subunits. For
details, see nv3-vga.

2.5 Power, thermal, and clock management

Contents:

2.5.1 Clock management

The nvidia GPUs, like most electronic devices, use clock signals to control their operation. Since they’re complicated
devices made of many subunits with different performance needs, there are multiple clock signals for various parts of
the GPU.

The set of available clocks and the method of setting them varies a lot with the card type.

Contents:

2.5.2 PDAEMON: card management microprocesor

Contents:

falcon parameters

Present on:

v0: GT215:MCP89

v1: MCP89:GF100

v2: GF100:GF119

v3: GF119:GK104

v4: GK104:GK110

2.5. Power, thermal, and clock management 81



nVidia Hardware Documentation, Release git

v5: GK110:GK208

v6: GK208:GM107

v7: GM107+

BAR0 address: 0x10a000

PMC interrupt line:

v0-v1: 18

v2+: 24

PMC enable bit:

v0-v1: none, use reg 0x22210 instead

v2+: 13

Version:

v0-v2: 3

v3,v4: 4

v5: 4.1

v6,v7: 5

Code segment size:

v0: 0x4000

v1:v7: 0x6000

v7: 0x8000

Data segment size:

v0: 0x3000

v1+: 0x6000

Fifo size:

v0-v1: 0x10

v2+: 3

Xfer slots:

v0-v2: 8

v3-v4: 0x10

Secretful:

v0:v7: no

v7: yes

Code TLB index bits:

v0-v2: 8

v3+: 9

Code ports: 1

Data ports: 4

82 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Version 4 unknown caps: 31, 27

Unified address space: yes [on v3+]

IO addressing type:

v0-v2: indexed

v3-v7: simple

Core clock:

v0-v1: gt215-clock-dclk

v2-v7: gf100-clock-dclk

Tesla VM engine: 0xe

Tesla VM client: 0x11

Tesla context DMA: [none]

Fermi VM engine: 0x17

Fermi VM client: HUB 0x12

Interrupts:

Line Type Present on Name Description
8 edge GT215:GF100 MEMIF_PORT_INVALID MEMIF port not initialised
9 edge GT215:GF100 MEMIF_FAULT MEMIF VM fault
9 edge GF100- MEMIF_BREAK MEMIF breakpoint
10 level all PMC_DAEMON PMC interrupts routed directly to PDAEMON
11 level all SUBINTR second-level interrupt
12 level all THERM PTHERM subinterrupts routed to PDAEMON
13 level all SIGNAL input signal rise/fall interrupts
14 level all TIMER the timer interrupt
15 level all IREDIR_PMC PMC interrupts redirected to PDAEMON by

IREDIR

Status bits:

Bit Present on Name Description
0 all FALCON Falcon unit
1 all EPWR_GRAPH PGRAPH engine power gating
2 all EPWR_VDEC video decoding engine power gating
3 all MEMIF Memory interface
4 GT215:MCP89 GF100- USER User controlled
4 MCP89:GF100 EPWR_VCOMP PVCOMP engine power gating
5 MCP89:GF100 USER User controlled

IO registers: pdaemon-io

PCOUNTER signals

Todo: write me

2.5. Power, thermal, and clock management 83



nVidia Hardware Documentation, Release git

Todo: discuss mismatched clock thing

• ???

• IREDIR_STATUS

• IREDIR_HOST_REQ

• IREDIR_TRIGGER_DAEMON

• IREDIR_TRIGGER_HOST

• IREDIR_PMC

• IREDIR_INTR

• MMIO_BUSY

• MMIO_IDLE

• MMIO_DISABLED

• TOKEN_ALL_USED

• TOKEN_NONE_USED

• TOKEN_FREE

• TOKEN_ALLOC

• FIFO_PUT_0_WRITE

• FIFO_PUT_1_WRITE

• FIFO_PUT_2_WRITE

• FIFO_PUT_3_WRITE

• INPUT_CHANGE

• OUTPUT_2

• INPUT_2

• THERM_ACCESS_BUSY

Todo: figure out the first signal

Todo: document MMIO_* signals

Todo: document INPUT_*, OUTPUT_*

Second-level interrupts

Because falcon has space for only 8 engine interrupts and PDAEMON needs many more, a second-level interrupt
register was introduced:

MMIO 0x688 / I[0x1a200]: SUBINTR

84 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bit 0: H2D - host to PDAEMON scratch register written

• bit 1: FIFO - host to PDAEMON fifo pointer updated

• bit 2: EPWR_GRAPH - PGRAPH engine power control

• bit 3: EPWR_VDEC - video decoding engine power control

• bit 4: MMIO - indirect MMIO access error

• bit 5: IREDIR_ERR - interrupt redirection error

• bit 6: IREDIR_HOST_REQ - interrupt redirection request

• bit 7: ???

• bit 8: ??? - goes to 0x670

• bit 9: EPWR_VCOMP [MCP89] - PVCOMP engine power control

• bit 13: ??? [GF119-] - goes to 0x888

Todo: figure out bits 7, 8

Todo: more bits in 10-12?

The second-level interrupts are merged into a single level-triggered interrupt and delivered to falcon interrupt line 11.
This line is asserted whenever any bit of SUBINTR register is non-0. A given SUBINTR bit is set to 1 whenever the
input second-level interrupt line is 1, but will not auto-clear when the input line goes back to 0 - only writing 1 to
that bit in SUBINTR will clear it. This effectively means that SUBINTR bits have to be cleared after the downstream
interrupt. Note that SUBINTR has no corresponding enable bit - if an interrupt needs to be disabled, software should
use the enable registers corresponding to individual second-level interrupts instead.

Note that IREDIR_HOST_REQ interrupt has special semantics when cleared - see IREDIR_TRIGGER documenta-
tion.

User busy indication

To enable the microcode to set the “PDAEMON is busy” flag without actually making any PDAEMON subunit perform
computation, bit 4 of the falcon status register is connected to a dummy unit whose busy status is controlled directly
by the user:

MMIO 0x420 / I[0x10800]: USER_BUSY Read/write, only bit 0 is valid. If set, falcon status line 4 or 5 [USER] is
set to 1 [busy], otherwise it’s set to 0 [idle].

Todo: what could possibly use PDAEMON’s busy status?

Host <-> PDAEMON communication

Contents

• Host <-> PDAEMON communication

2.5. Power, thermal, and clock management 85



nVidia Hardware Documentation, Release git

– Introduction

– Submitting data to PDAEMON: FIFO

– Submitting data to host: RFIFO

– Host to PDAEMON scratch register: H2D

– PDAEMON to host scratch register: D2H

– Scratch registers: DSCRATCH

Introduction

There are 4 PDAEMON-specific channels that can be used for communication between the host and PDAEMON:

• FIFO: data submission from host to PDAEMON on 4 independent FIFOs in data segment, with interrupts
generated whenever the PUT register is written

• RFIFO: data submission from PDAEMON to host on through a FIFO in data segment

• H2D: a single scratch register for host -> PDAEMON communication, with interrupts generated whenever it’s
written

• D2H: a single scratch register for PDAEMON -> host communication

• DSCRATCH: 4 scratch registers

Submitting data to PDAEMON: FIFO

These registers are meant to be used for submitting data from host to PDAEMON. The PUT register is FIFO head,
written by host, and GET register is FIFO tail, written by PDAEMON. Interrupts can be generated whenever the PUT
register is written. How exactly the data buffer works is software’s business. Note that due to very limitted special
semantics for FIFO uage, these registers may as well be used as [possibly interruptful] scratch registers.

MMIO 0x4a0+i*4 / I[0x12800+i*0x100], i<4: FIFO_PUT[i] The FIFO head pointer, effectively a 32-bit scratch
register. Writing it causes bit i of FIFO_INTR to be set.

MMIO 0x4b0+i*4 / I[0x12c00+i*0x100], i<4: FIFO_GET[i] The FIFO tail pointer, effectively a 32-bit scratch reg-
ister.

MMIO 0x4c0 / I[0x13000]: FIFO_INTR The status register for FIFO_PUT write interrupts. Write a bit with 1 to
clear it. Whenever a bit is set both in FIFO_INTR and FIFO_INTR_EN, the FIFO [#1] second-level interrupt
line to SUBINTR is asserted. Bit i corresponds to FIFO #i, and only bits 0-3 are valid.

MMIO 0x4c4 / I[0x13100]: FIFO_INTR_EN The enable register for FIFO_PUT write interrupts. Read/write, only
4 low bits are valid. Bit assignment is the same as in FIFO_INTR.

In addition, the FIFO circuitry exports four signals to PCOUNTER:

• FIFO_PUT_0_WRITE: pulses for one cycle whenever FIFO_PUT[0] is written

• FIFO_PUT_1_WRITE: pulses for one cycle whenever FIFO_PUT[1] is written

• FIFO_PUT_2_WRITE: pulses for one cycle whenever FIFO_PUT[2] is written

• FIFO_PUT_3_WRITE: pulses for one cycle whenever FIFO_PUT[3] is written

86 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Submitting data to host: RFIFO

The RFIFO is like one of the 4 FIFOs, except it’s supposed to go from PDAEMON to the host and doesn’t have the
interupt generation powers.

MMIO 0x4c8 / I[0x13200]: RFIFO_PUT MMIO 0x4cc / I[0x13300]: RFIFO_GET

The RFIFO head and tail pointers. Both are effectively 32-bit scratch registers.

Host to PDAEMON scratch register: H2D

H2D is a scratch register supposed to be written by the host and read by PDAEMON. It generates an interrupt when
written.

MMIO 0x4d0 / I[0x13400]: H2D A 32-bit scratch register. Sets H2D_INTR when written.

MMIO 0x4d4 / I[0x13500]: H2D_INTR The status register for H2D write interrupt. Only bit 0 is valid. Set when
H2D register is written, cleared when 1 is written to bit 0. When this and H2D_INTR_EN are both set, the H2D
[#0] second-level interrupt line to SUBINTR is asserted.

MMIO 0x4d8 / I[0x13600]: H2D_INTR_EN The enable register for H2D write interrupt. Only bit 0 is valid.

PDAEMON to host scratch register: D2H

D2H is just a scratch register supposed to be written by PDAEMON and read by the host. It has no interrupt genration
powers.

MMIO 0x4dc / I[0x13700]: D2H A 32-bit scratch register.

Scratch registers: DSCRATCH

DSCRATCH[] are just 4 32-bit scratch registers usable for PDAEMON<->HOST communication or any other pur-
poses.

MMIO 0x5d0+i*4 / I[0x17400+i*0x100], i<4: DSCRATCH[i] A 32-bit scratch register.

Hardware mutexes

The PDAEMON has hardware support for 16 busy-waiting mutexes accessed by up to 254 clients simultanously. The
clients may be anything able to read and write the PDAEMON registers - code running on host, on PDAEMON, or on
any other falcon engine with MMIO access powers.

The clients are identified by tokens. Tokens are 8-bit numbers in 0x01-0xfe range. Tokens may be assigned to clients
statically by software, or dynamically by hardware. Only tokens 0x08-0xfe will be dynamically allocated by hardware
- software may use statically assigned tokens 0x01-0x07 even if dynamic tokens are in use at the same time. The
registers used for dynamic token allocation are:

MMIO 0x488 / I[0x12200]: TOKEN_ALLOC Read-only, each read to this register allocates a free token and gives
it as the read result. If there are no free tokens, 0xff is returned.

MMIO 0x48c / I[0x12300]: TOKEN_FREE A write to this register will free a token, ie. return it back to the pool
used by TOKEN_ALLOC. Only low 8 bits of the written value are used. Attempting to free a token outside of
the dynamic allocation range [0x08-0xff] or a token already in the free queue will have no effect. Reading this
register will show the last written value, invalid or not.

2.5. Power, thermal, and clock management 87



nVidia Hardware Documentation, Release git

The free tokens are stored in a FIFO - the freed tokens will be used by TOKEN_ALLOC in the order of freeing. After
reset, the free token FIFO will contain tokens 0x08-0xfe in ascending order.

The actual mutex locking and unlocking is done by the MUTEX_TOKEN registers:

MMIO 0x580+i*4 / I[0x16000+i*0x100], i<16: MUTEX_TOKEN[i] The 16 mutices. A value of 0 means un-
locked, any other value means locked by the client holding the corresponding token. Only low 8 bits of the
written value are used. A write of 0 will unlock the mutex and will always succeed. A write of 0x01-0xfe will
succeed only if the mutex is currently unlocked. A write of 0xff is invalid and will always fail. A failed write
has no effect.

The token allocation circuitry additionally exports four signals to PCOUNTER:

• TOKEN_ALL_USED: 1 iff all tokens are currently allocated [ie. a read from TOKEN_ALLOC would return
0xff]

• TOKEN_NONE_USED: 1 iff no tokens are currently allocated [ie. tokens 0x08-0xfe are all in free tokens
queue]

• TOKEN_FREE: pulses for 1 cycle whenever TOKEN_FREE is written, even if with invalid value

• TOKEN_ALLOC: pulses for 1 cycle whenever TOKEN_ALLOC is read, even if allocation fails

CRC computation

The PDAEMON has a very simple CRC accelerator. Specifically, it can perform the CRC accumulation operation
on 32-bit chunks using the standard CRC-32 polynomial of 0xedb88320. The current CRC residual is stored in the
CRC_STATE register:

MMIO 0x494 / I[0x12500]: CRC_STATE The current CRC residual. Read/write.

And the data to add to the CRC is written to the CRC_DATA register:

MMIO 0x490 / I[0x12400]: CRC_DATA When written, appends the 32-bit LE value to the running CRC residual
in CRC_STATE. When read, returns the last value written. Write operation:

CRC_STATE ^= value;
for (i = 0; i < 32; i++) {

if (CRC_STATE & 1) {
CRC_STATE >>= 1;
CRC_STATE ^= 0xedb88320;

} else {
CRC_STATE >>= 1;

}
}

To compute a CRC:

1. Write the initial CRC residue to CRC_STATE

2. Write all data to CRC_DATA, in 32-bit chunks

3. Read CRC_STATE, xor its value with the final constant, use that as the CRC.

If the data block to CRC has size that is not a multiple of 32 bits, the extra bits at the end [or the beginning] have to be
handled manually.

88 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

The timer

Aside from the usual falcon timers, PDAEMON has its own timer. The timer can be configured as either one-shot or
periodic, can run on either daemon clock or PTIMER clock divided by 64, and generates interrupts. The following
registers deal with the timer:

MMIO 0x4e0 / I[0x13800]: TIMER_START The 32-bit count the timer starts counting down from. Read/write.
For periodic mode, the period will be equal to TIMER_START+1 source cycles.

MMIO 0x4e4 / I[0x13900]: TIMER_TIME The current value of the timer, read only. If
TIMER_CONTROL.RUNNING is set, this will decrease by 1 on every rising edge of the source clock.
If such rising edge causes this register to become 0, the TIMER_INTR bit 8 [TIMER] is set. The behavior
of rising edge when this register is already 0 depends on the timer mode: in ONESHOT mode, nothing will
happen. In PERIODIC mode, the timer will be reset to the value from TIMER_START. Note that interrupts
won’t be generated if the timer becomes 0 when copying the value from TIMER_START, whether caused
by starting the timer or beginning a new PERIODIC period. This means that using PERIODIC mode with
TIMER_START of 0 will never generate any interrupts.

MMIO 0x4e8 / I[0x13a00]: TIMER_CTRL

• bit 0: RUNNING - when 0, the timer is stopped, when 1, the timer is runinng. Setting this bit to 1 when it
was previously 0 will also copy the TIMER_START value to TIMER_TIME.

• bit 4: SOURCE - selects the source clock

– 0: DCLK - daemon clock, effectively timer decrements by 1 on every daemon cycle

– 1: PTIMER_B5 - PTIMER time bit 5 [ie. bit 10 of TIME_LOW]. Since timer decrements by 1 on
every rising edge of the clock, this effectively decrements the counter on every 64th PTIMER clock.

• bit 8: MODE - selects the timer mode

– 0: ONESHOT - timer will halt after reaching 0

– 1: PERIODIC - timer will restart from TIMER_START after reaching 0

MMIO 0x680 / I[0x1a000]: TIMER_INTR

• bit 8: TIMER - set whenever TIMER_TIME becomes 0 except by a copy from TIMER_START, write 1
to this bit to clear it. When this and bit 8 of TIMER_INTR_EN are set at the same time, falcon interrupt
line #14 [TIMER] is asserted.

MMIO 0x684 / I[0x1a100]: TIMER_INTR_EN

• bit 8: TIMER - when set, timer interupt delivery to falcon interrupt line 14 is enabled.

Channel switching

Todo: write me

PMC interrupt redirection

One of PDAEMON powers is redirecting the PMC INTR_HOST interrupt to itself. The redirection hw may be in one
of two states:

• HOST: PMC INTR_HOST output connected to PCI interrupt line [ORed with PMC INTR_NRHOST output],
PDAEMON falcon interrupt #15 disconnected and forced to 0

2.5. Power, thermal, and clock management 89



nVidia Hardware Documentation, Release git

• DAEMON: PMC INTR_HOST output connected to PDAEMON falcon interrupt #15 [IREDIR_PMC], PCI
interrupt line connected to INTR_NRHOST output only

In addition, there’s a capability enabling host to send “please turn redirect status back to HOST” interrupt with a
timeout mechanism that will execute the request in hardware if the PDAEMON fails to respond to the interrupt in a
given time.

Note that, as a side effect of having this circuitry, PMC INTR_HOST line will be delivered nowhere [falcon interrupt
line #15 will be 0, PCI interrupt line will be connected to INTR_NRHOST only] whenever the IREDIR circuitry is
in reset state, due to either whole PDAEMON reset through PMC.ENABLE / PDAEMON_ENABLE or DAEMON
circuitry reset via SUBENGINE_RESET with DAEMON set in the reset mask.

The redirection state may be read at:

MMIO 0x690 / I[0x1a400]: IREDIR_STATUS Read-only. Reads as 0 if redirect hw is in HOST state, 1 if it’s in
DAEMON state.

The redirection state may be controlled by:

MMIO 0x68c / I[0x1a300]: IREDIR_TRIGGER This register is write-only.

• bit 0: HOST_REQ - when written as 1, sends the “request redirect state change to HOST” interrupt, setting
SUBINTR bit #6 [IREDIR_HOST_REQ] to 1 and starting the timeout, if enabled. When written as 1 while
redirect hw is already in HOST state, will just cause HOST_REQ_REDUNDANT error instead.

• bit 4: DAEMON - when written as 1, sets the redirect hw state to DAEMON. If it was set to DAEMON
already, causes DAEMON_REDUNDANT error.

• bit 12: HOST - when written as 1, sets the redirect hw state to HOST. If it was set to HOST already, causes
HOST_REDUNDANT error. Does not clear IREDIR_HOST_REQ interrupt bit.

Writing a value with multiple bits set is not a good idea - one of them will cause an error.

The IREDIR_HOST_REQ interrupt state should be cleared by writing 1 to the corresponding SUBINTR bit. Once
this is done, the timeout counting stops, and redirect hw goes to HOST state if it wasn’t already.

The IREDIR_HOST_REQ timeout is controlled by the following registers:

MMIO 0x694 / I[0x1a500]: IREDIR_TIMEOUT The timeout duration in daemon cycles. Read/write, 32-bit.

MMIO 0x6a4 / I[0x1a900]: IREDIR_TIMEOUT_ENABLE The timeout enable. Only bit 0 is valid. When set to
0, timeout mechanism is disabled, when set to 1, it’s active. Read/write.

When timeout mechanism is enabled and IREDIR_HOST_REQ interupt is triggered, a hidden counter starts counting
down. If IREDIR_TIMEOUT cycles go by without the interrupt being acked, the redirect hw goes to HOST state, the
interrupt is cleared, and HOST_REQ_TIMEOUT error is triggered.

The redirect hw errors will trigger the IREDIR_ERR interrupt, which is connected to SUBINTR bit #5. The registers
involved are:

MMIO 0x698 / I[0x1a600]: IREDIR_ERR_DETAIL Read-only, shows detailed error status. All bits are auto-
cleared when IREDIR_ERR_INTR is cleared

• bit 0: HOST_REQ_TIMEOUT - set when the IREDIR_HOST_REQ interrupt times out

• bit 4: HOST_REQ_REDUNDANT - set when HOST_REQ is poked in IREDIR_TRIGGER while the hw
is already in HOST state

• bit 12: DAEMON_REDUNDANT - set when HOST is poked in IREDIR_TRIGGER while the hw is
already in DAEMON state

• bit 12: HOST_REDUNDANT - set when HOST is poked in IREDIR_TRIGGER while the hw is already
in HOST state

90 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

MMIO 0x69c / I[0x1a700]: IREDIR_ERR_INTR The status register for IREDIR_ERR interrupt. Only bit 0 is
valid. Set when any of the 4 errors happens, cleared [along with all IREDIR_ERR_DETAIL bits] when 1 is
written to bit 0. When this and IREDIR_ERR_INTR_EN are both set, the IREDIR_ERR [#5] second-level
interrupt line to SUBINTR is asserted.

MMIO 0x6a0 / I[0x1a800]: IREDIR_ERR_INTR_EN The enable register for IREDIR_ERR interrupt. Only bit 0
is valid.

The interrupt redirection circuitry also exports the following signals to PCOUNTER:

• IREDIR_STATUS: current redirect hw status, like the IREDIR_STATUS reg.

• IREDIR_HOST_REQ: 1 if the IREDIR_HOST_REQ [SUBINTR #6] interrupt is pending

• IREDIR_TRIGGER_DAEMON: pulses for 1 cycle whenever INTR_TRIGGER.DAEMON is written as 1,
whether it results in an error or not

• IREDIR_TRIGGER_HOST: pulses for 1 cycle whenever INTR_TRIGGER.HOST is written as 1, whether it
results in an error or not

• IREDIR_PMC: 1 if the PMC INTR_HOST line is active and directed to DAEMON [ie. mirrors falcon interrupt
#15 input]

• IREDIR_INTR: 1 if any IREDIR interrupt is active - IREDIR_HOST_REQ, IREDIR_ERR, or IREDIR_PMC.
IREDIR_ERR does not count if IREDIR_ERR_INTR_EN is not set.

PTHERM interface

PDAEMON can access all PTHERM registers directly, without having to go through the generic MMIO access func-
tionality. The THERM range in the PDAEMON register space is mapped straight to PTHERM MMIO register range.

On GT215:GF119, PTHERM registers are mapped into the I[] space at addresses 0x20000:0x40000, with addresses
being shifted left by 6 bits wrt their address in PTHERM - PTHERM register 0x20000+x would be visible at I[0x20000
+ x * 0x40] by falcon, or at 0x10a800+x in MMIO [assuming it wouldn’t fall into the reserved 0x10afe0:0x10b000
range]. On GF119+, the PTHERM registers are instead mapped into the I[] space at addresses 0x1000:0x1800, without
shifting - PTHERM reg 0x20000+x is visible at I[0x1000+x]. On GF119+, the alias area is not visible via MMIO [just
access PTHERM registers directly instead].

Reads to the PTHERM-mapped area will always perform 32-bit reads to the corresponding PTHERM regs. Writes,
however, have their byte enable mask controlled via a PDAEMON register, enabling writes with sizes other than
32-bit:

MMIO 0x5f4 / I[0x17d00]: THERM_BYTE_MASK Read/write, only low 4 bits are valid, initialised to 0xf on
reset. Selects the byte mask to use when writing the THERM range. Bit i corresponds to bits i*8..i*8+7 of the
written 32-bit value.

The PTHERM access circuitry also exports a signal to PCOUNTER:

• THERM_ACCESS_BUSY: 1 while a THERM range read/write is in progress - will light up for a dozen or so
cycles per access, depending on relative clock speeds.

In addition to direct register access to PTHERM, PDAEMON also has direct access to PTHERM interrupts - falcon
interrupt #12 [THERM] comes from PTHERM interrupt aggregator. PTHERM subinterrupts can be individually
assigned for PMC or PDAEMON delivery - see ptherm-intr for more information.

Idle counters

2.5. Power, thermal, and clock management 91



nVidia Hardware Documentation, Release git

Contents

• Idle counters

– Introduction

– MMIO Registers

Introduction

PDAEMON’s role is mostly about power management. One of the most effective way of lowering the power con-
sumption is to lower the voltage at which the processor is powered at. Lowering the voltage is also likely to require
lowering the clocks of the engines powered by this power domain. Lowering the clocks lowers the performance which
means it can only be done to engines that are under-utilized. This technique is called Dynamic Voltage/Frequency
Scaling (DVFS) and requires being able to read the activity-level/business of the engines clocked with every clock
domains.

PDAEMON could use PCOUNTER to read the business of the engines it needs to reclock but that would be a waste
of counters. Indeed, contrarily to PCOUNTER that needs to be able to count events, the business of an engine can be
polled at any frequency depending on the level of accuracy wanted. Moreover, doing the configuration of PCOUNTER
both in the host driver and in PDAEMON would likely require some un-wanted synchronization.

This is most likely why some counters were added to PDAEMON. Those counters are polling idle signals coming
from the monitored engines. A signal is a binary value that equals 1 when the associated engine is idle, and 0 if it is
active.

Todo: check the frequency at which PDAEMON is polling

MMIO Registers

On GT215:GF100, there were 4 counters while on GF100+, there are 8 of them. Each counter is composed of 3
registers, the mask, the mode and the actual count. There are two counting modes, the first one is to increment the
counter every time every bit of COUNTER_SIGNALS selected by the mask are set. The other mode only increments
when all the selected bits are cleared. It is possible to set both modes at the same time which results in incrementing
at every clock cycle. This mode is interesting because it allows dedicating a counter to time-keeping which eases
translating the other counters’ values to an idling percentage. This allows for aperiodical polling on the counters
without needing to store the last polling time.

The counters are not double-buffered and are independent. This means every counters need to be read then reset at
roughly the same time if synchronization between the counters is required. Resetting the counter is done by setting bit
31 of COUNTER_COUNT.

MMIO 0x500 / I[0x14000]: COUNTER_SIGNALS Read-only. Bitfield with each bit indicating the instantenous
state of the associated engines/blocks. When the bit is set, the engine/block is idle, when it is cleared, the
engine/block is active.

• bit 0: GR_IDLE

• bit 4: PVLD_IDLE

• bit 5: PPDEC_IDLE

• bit 6: PPPP_IDLE

• bit 7: MC_IDLE [GF100-]

92 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bit 8: MC_IDLE [GT215:GF100]

• bit 19: PCOPY0_IDLE

• bit 20: PCOPY1_IDLE [GF100-]

• bit 21: PCOPY2_IDLE [GK104-]

MMIO 0x504+i*10 / I[0x14100+i*0x400]: COUNTER_MASK The mask that will be applied on
COUNTER_SIGNALS before applying the logic set by COUNTER_MODE.

MMIO 0x508+i*10 / I[0x14100+i*0x400]: COUNTER_COUNT

• bit 0-30: COUNT

• bit 31: CLEAR_TRIGGER : Write-only, resets the counter.

MMIO 0x50c+i*10 / I[0x14300+i*0x400]: COUNTER_MODE

• bit 0: INCR_IF_ALL : Increment the counter if all the masked bits are set

• bit 1: INCR_IF_NOT_ALL : Increment the counter if all the masked bits are cleared

• bit 2: UNK2 [GF119-]

General MMIO register access

PDAEMON can access the whole MMIO range through the IO space.

To read from a MMIO address, poke the address into MMIO_ADDR then trigger a read by poking 0x100f1 to
MMIO_CTRL. Wait for MMIO_CTRL’s bits 12-14 to be cleared then read the value from MMIO_VALUE.

To write to a MMIO address, poke the address into MMIO_ADDR, poke the value to be written into MMIO_VALUE
then trigger a write by poking 0x100f2 to MMIO_CTRL. Wait for MMIO_CTRL’s bits 12-14 to be cleared if you want
to make sure the write has been completed.

Accessing an unexisting address will set MMIO_CTRL’s bit 13 after MMIO_TIMEOUT cycles have passed.

GF119 introduced the possibility to choose from which access point should the MMIO request be sent. ROOT can
access everything, IBUS accesses everything minus PMC, PBUS, PFIFO, PPCI and a few other top-level MMIO
range. On GF119+, accessing an un-existing address with the ROOT access point can lead to a hard-lock. XXX:
What’s the point of this feature?

It is possible to get an interrupt when an error occurs by poking 1 to MMIO_INTR_EN. The interrupt will be fired on
line 11. The error is described in MMIO_ERR.

MMIO 0x7a0 / I[0x1e800]: MMIO_ADDR Specifies the MMIO address that will be written to/read from by
MMIO_CTRL.

On GT215:GF119, this register only contains the address to be accessed.

On GF119, this register became a bitfield: bits 0-25: ADDR bit 27: ACCESS_POINT

0: ROOT 1: IBUS

MMIO 0x7a4 / I[0x1e900]: MMIO_VALUE The value that will be written to / is read from MMIO_ADDR when
an operation is triggered by MMIO_CTRL.

MMIO 0x7a8 / I[0x1e900]: MMIO_TIMEOUT Specifies the timeout for MMIO access. XXX: Clock source?
PDAEMON’s core clock, PTIMER’s, Host’s?

MMIO 0x7ac / I[0x1eb00]: MMIO_CTRL Process the MMIO request with given params (MMIO_ADDR,
MMIO_VALUE). bits 0-1: request

0: XXX 1: read 2: write 3: XXX

2.5. Power, thermal, and clock management 93



nVidia Hardware Documentation, Release git

bits 4-7: BYTE_MASK bit 12: BUSY [RO] bit 13: TIMEOUT [RO] bit 14: FAULT [RO] bit 16: TRIGGER

MMIO 0x7b0 / I[0x1ec00] [MMIO_ERR]

Specifies the MMIO error status:

• TIMEOUT: ROOT/IBUS has not answered PDAEMON’s request

• CMD_WHILE_BUSY: a request has been fired while being busy

• WRITE: set if the request was a write, cleared if it was a read

• FAULT: No engine answered ROOT/IBUS’s request

On GT215:GF119, clearing MMIO_INTR’s bit 0 will also clear MMIO_ERR. On GF119+, clearing
MMIO_ERR is done by poking 0xffffffff.

GT215:GF100: bit 0: TIMEOUT bit 1: CMD_WHILE_BUSY bit 2: WRITE bits 3-31: ADDR

GF100:GF119: bit 0: TIMEOUT bit 1: CMD_WHILE_BUSY bit 2: WRITE bits 3-30: ADDR bit 31: FAULT

GF119+: bit 0: TIMEOUT_ROOT bit 1: TIMEOUT_IBUS bit 2: CMD_WHILE_BUSY bit 3: WRITE bits
4-29: ADDR bit 30: FAULT_ROOT bit 31: FAULT_IBUS

MMIO 0x7b4 / I[0x1ed00] [MMIO_INTR] Specifies which MMIO interrupts are active. Clear the associated bit to
ACK. bit 0: ERR

Clearing this bit will also clear MMIO_ERR on GT215:GF119.

MMIO 0x7b8 / I[0x1ee00] [MMIO_INTR_EN] Specifies which MMIO interrupts are enabled. Interrupts will be
fired on SUBINTR #4. bit 0: ERR

Engine power gating

Todo: write me

Input/output signals

Contents

• Input/output signals

– Introduction

– Interrupts

Todo: write me

Introduction

Todo: write me

94 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Interrupts

Todo: write me

Introduction

PDAEMON is a falcon-based engine introduced on GT215. Its main purpose is autonomous power and thermal man-
agement, but it can be used to oversee any part of GPU operation. The PDAEMON has many dedicated connections
to various parts of the GPU.

The PDAEMON is made of:

• a falcon microprocessor core

• standard falcon memory interface unit

• a simple channel load interface, replacing the usual PFIFO interface

• various means of communication betwen falcon and host

• engine power gating controllers for the PFIFO-connected engines

• “idle” signals from various engines and associated idle counters

• misc simple input/output signals to various engines, with interrupt capability

• a oneshot/periodic timer, using daemon clock or PTIMER as clock source

• PMC interrupt redirection circuitry

• indirect MMIO access circuitry

• direct interface to all PTHERM registers

• CRC computation hardware

Todo: and unknown stuff.

There are 5 revisions of PDAEMON:

• v0: GT215:MCP89 - the original revision

• v1: MCP89:GF100 - added a third instance of power gating controller for PVCOMP engine

• v2: GF100:GF119 - removed PVCOMP support, added second set of input/output signals and ???

• v3: GF119:GK104 - changed I[] space layout, added ???

• v4: GK104- - a new version of engine power gating controller and ???

Todo: figure out additions

Todo: this file deals mostly with GT215 version now

2.5. Power, thermal, and clock management 95



nVidia Hardware Documentation, Release git

2.5.3 NV43:G80 thermal monitoring

Contents

• NV43:G80 thermal monitoring

– Introduction

– MMIO register list

– The ADC clock

– Reading temperature

– Setting up thresholds and interrupts

* Alarm

* Temperature range

– Extended configuration

Introduction

THERM is an area present in PBUS on NV43:G80 GPUs. This area is reponsible for temperature monitoring, probably
on low-end and middle-range GPUs since high-end cards have been using LM89/ADT7473 for a long time. Beside
some configuration knobs, THERM can generate IRQs to the HOST when the temperature goes over a configurable
ALARM threshold or outside a configurable temperature range. This range has been replaced by PTHERM on G80+
GPUs.

THERM’s MMIO range is 0x15b0:0x15c0. There are two major variants of this range:

• NV43:G70

• G70:G80

MMIO register list

Address Present on Name Description
0x0015b0 all CFG0 sensor enable / IRQ enable / ALARM configuration
0x0015b4 all STATUS sensor state / ALARM state / ADC rate configuration
0x0015b8 non-IGP CFG1 misc. configuration
0x0015bc all TEMP_RANGE LOW and HIGH temperature thresholds

MMIO 0x15b0: CFG0 [NV43:G70]

• bits 0-7: ALARM_HIGH

• bits 16-23: SENSOR_OFFSET (signed integer)

• bit 24: DISABLE

• bit 28: ALARM_INTR_EN

MMIO 0x15b0: CFG0 [G70:G80]

• bits 0-13: ALARM_HIGH

• bits 16-29: SENSOR_OFFSET (signed integer)

96 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bit 30: DISABLE

• bit 31: ENABLE

MMIO 0x15b4: STATUS [NV43:G70]

• bits 0-7: SENSOR_RAW

• bit 8: ALARM_HIGH

• bits 25-31: ADC_CLOCK_XXX

Todo: figure out what divisors are available

MMIO 0x15b4: STATUS [G70:G80]

• bits 0-13: SENSOR_RAW

• bit 16: ALARM_HIGH

• bits 26-31: ADC_CLOCK_DIV The division is stored right-shifted 4. The possible division values range
from 32 to 2016 with the possibility to completely bypass the divider.

MMIO 0x15b8: CFG1 [NV43:G70]

• bit 17: ADC_PAUSE

• bit 23: CONNECT_SENSOR

MMIO 0x15bc: TEMP_RANGE [NV43:G70]

• bits 0-7: LOW

• bits 8-15: HIGH

MMIO 0x15bc: TEMP_RANGE [G70:G80]

• bits 0-13: LOW

• bits 16-29: HIGH

The ADC clock

The source clock for THERM’s ADC is:

• NV43:G70: the host clock

• G70:G80: constant (most likely hclck)

(most likely, since the rate doesn’t change when I change the HOST clock)

Before reaching the ADC, the clock source is divided by a fixed divider of 1024 and then by ADC_CLOCK_DIV.

MMIO 0x15b4: STATUS [NV43:G70]

• bits 25-31: ADC_CLOCK_DIV

Todo: figure out what divisors are available

MMIO 0x15b4: STATUS [G70:G80]

• bits 26-31: ADC_CLOCK_DIV The division is stored right-shifted 4. The possible division values range
from 32 to 2016 with the possibility to completely bypass the divider.

2.5. Power, thermal, and clock management 97



nVidia Hardware Documentation, Release git

The final ADC clock is:

ADC_clock = source_clock / ADC_CLOCK_DIV

The accuracy of the reading greatly depends on the ADC clock. A clock too fast will produce a lot of noise. A clock
too low may actually produce an offseted value. The ADC clock rate under 10 kHz is advised, based on limited testing
on a G73.

Todo: Make sure this clock range is safe on all cards

Anyway, it seems like it is clocked at an acceptable frequency at boot time, so, no need to worry too much about it.

Reading temperature

Temperature is read from:

MMIO 0x15b4: STATUS [NV43:G70] bits 0-7: SENSOR_RAW

MMIO 0x15b4: STATUS [G70:G80] bits 0-13: SENSOR_RAW

SENSOR_RAW is the result of the (signed) addition of the actual value read by the ADC and SENSOR_OFFSET:

MMIO 0x15b0: CFG0 [NV43:G70]

• bits 16-23: SENSOR_OFFSET signed

MMIO 0x15b0: CFG0 [G70:G80]

• bits 16-29: SENSOR_OFFSET signed

Starting temperature readouts requires to flip a few switches that are GPU-dependent:

MMIO 0x15b0: CFG0 [NV43:G70]

• bit 24: DISABLE

MMIO 0x15b0: CFG0 [G70:G80]

• bit 30: DISABLE - mutually exclusive with ENABLE

• bit 31: ENABLE - mutually exclusive with DISABLE

MMIO 0x15b8: CFG1 [NV43:G70]

• bit 17: ADC_PAUSE

• bit 23: CONNECT_SENSOR

Both DISABLE and ADC_PAUSE should be clear. ENABLE and CONNECT_SENSOR should be set.

Todo: There may be other switches.

Setting up thresholds and interrupts

Alarm

THERM features the ability to set up an alarm that will trigger interrupt PBUS #16 when SENSOR_RAW >
ALARM_HIGH. NV43-47 GPUs require ALARM_INTR_EN to be set in order to get the IRQ. You may need to

98 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

set bits 0x40001 in 0x15a0 and 1 in 0x15a4. Their purpose has not been understood yet even though they may be
releated to automatic downclocking.

MMIO 0x15b0: CFG0 [NV43:G70]

• bits 0-7: ALARM_HIGH

• bit 28: ALARM_INTR_EN

MMIO 0x15b0: CFG0 [G70:G80]

• bits 0-13: ALARM_HIGH

When SENSOR_RAW > ALARM_HIGH, STATUS.ALARM_HIGH is set.

MMIO 0x15b4: STATUS [NV43:G70]

• bit 8: ALARM_HIGH

MMIO 0x15b4: STATUS [G70:G80]

• bit 16: ALARM_HIGH

STATUS.ALARM_HIGH is unset as soon as SENSOR_RAW < ALARM_HIGH, without any hysteresis cycle.

Temperature range

THERM can check that temperature is inside a range. When the temperature goes outside this range, an interrupt is
sent. The range is defined in the register TEMP_RANGE where the thresholds LOW and HIGH are set.

MMIO 0x15bc: TEMP_RANGE [NV43:G70]

• bits 0-7: LOW

• bits 8-15: HIGH

MMIO 0x15bc: TEMP_RANGE [G70:G80]

• bits 0-13: LOW

• bits 16-29: HIGH

When SENSOR_RAW < TEMP_RANGE.LOW, interrupt PBUS #17 is sent. When SENSOR_RAW >
TEMP_RANGE.HIGH, interrupt PBUS #18 is sent.

There are no hyteresis cycles on these thresholds.

Extended configuration

Todo: Document reg 15b8

2.6 GPU external device I/O units

Contents:

2.6. GPU external device I/O units 99



nVidia Hardware Documentation, Release git

2.6.1 G80:GF119 GPIO lines

Contents

• G80:GF119 GPIO lines

– Introduction

– Interrupts

– G80 GPIO NVIO specials

– G84 GPIO NVIO specials

– G94 GPIO NVIO specials

– GT215 GPIO NVIO specials

Todo: write me

Introduction

Todo: write me

Interrupts

Todo: write me

G80 GPIO NVIO specials

This list applies to G80.

100 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Line Output Input
0 PWM_0
1 -
2 -
3 tag 0x42?
4 SLI_SENSE_0?
5 -
6 -
7 - PTHERM_INPUT_0
8 - PTHERM_INPUT_2
9 related to e1bc and PTHERM?
10 -
11 SLI_SENSE_1?
12 tag 0x43?
13 tag 0x0f?
14 -

G84 GPIO NVIO specials

This list applies to G84:G94.

Line Output Input
4 PWM_0
8 THERM_SHUTDOWN? PTHERM_INPUT_0
9 PWM_1 PTHERM_INPUT_1
11 SLI_SENSE_0?
12 PTHERM_INPUT_2
13 tag 0x0f?
14 SLI_SENSE_1?

G94 GPIO NVIO specials

This list applies to G94:GT215.

Line Output Input
1 AUXCH_HPD_0
4 PWM_0
8 THERM_SHUTDOWN? PTHERM_INPUT_0
9 PWM_1 PTHERM_INPUT_1
12 PTHERM_INPUT_2
15 AUXCH_HPD_2
20 AUXCH_HPD_1
21 AUXCH_HPD_3

GT215 GPIO NVIO specials

This list applies to GT215:GF119.

2.6. GPU external device I/O units 101



nVidia Hardware Documentation, Release git

Line Output Input
1 AUXCH_HPD_0
3 SLI_SENSE?
8 THERM_SHUTDOWN? PTHERM_INPUT_0
9 PWM_1 PTHERM_INPUT_1
11 SLI_SENSE?
12 PTHERM_INPUT_2
15 AUXCH_HPD_2
16 PWM_0
19 AUXCH_HPD_1
21 AUXCH_HPD_3
22 tag 0x42?
23 tag 0x0f?
[any] FAN_TACH

2.7 Memory access and structure

Contents:

2.7.1 Memory structure

Contents

• Memory structure

– Introduction

– Memory planes and banks

– Memory banks, ranks, and subpartitions

– Memory partitions and subpartitions

– Memory addressing

Introduction

While DRAM is often treated as a flat array of bytes, its internal structure is far more complicated. A good under-
standing of it is necessary for high-performance applications like GPUs.

Looking roughly from the bottom up, VRAM is made of:

1. Memory planes of R rows by C columns, with each cell being one bit

2. Memory banks made of 32, 64, or 128 memory planes used in parallel - the planes are usually spread across
several chips, with one chip containing 16 or 32 memory planes

3. Memory ranks made of several [2, 4 or 8] memory banks wired together and selected by address bits - all banks
for a given memory plane reside in the same chip

4. Memory subpartitions made of one or two memory ranks wired together and selected by chip select wires -
ranks behave similarly to banks, but don’t have to have uniform geometry, and are in separate chips

102 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

5. Memory partitions made of one or two somewhat independent subpartitions

6. The whole VRAM, made of several [1-8] memory partitions

Memory planes and banks

The most basic unit of DRAM is a memory plane, which is a 2d array of bits organised in so-called columns and rows:

column
row 0 1 2 3 4 5 6 7
0 X X X X X X X X
1 X X X X X X X X
2 X X X X X X X X
3 X X X X X X X X
4 X X X X X X X X
5 X X X X X X X X
6 X X X X X X X X
7 X X X X X X X X

buf X X X X X X X X

A memory plane contains a buffer, which holds a whole row. Internally, DRAM is read/written in row units via the
buffer. This has several consequences:

• before a bit can be operated on, its row must be loaded into the buffer, which is slow

• after a row is done with, it needs to be written back to the memory array, which is also slow

• accessing a new row is thus slow, and even slower when there already is an active row

• it’s often useful to preemptively close a row after some inactivity time - such operation is called “precharging”
a bank

• different columns in the same row, however, can be accessed quickly

Since loading column address itself takes more time than actually accessing a bit in the active buffer, DRAM is
accessed in bursts - a series of accesses to 1-8 neighbouring bits in the active row. Usually all bits in a burst have to be
located in a single aligned 8-bit group.

The amount of rows and columns in memory plane is always a power of two, and is measured by the count of row
selection and column selection bits [ie. log2 of the row/column count]. There are typically 8-10 column bits and 10-14
row bits.

The memory planes are organised in banks - groups of some power of two number of memory planes. The memory
planes are wired in parallel, sharing the address and control wires, with only the data / data enable wires separate.
This effectively makes a memory bank like a memory plane that’s composed of 32/64/128-bit memory cells instead of
single bits - all the rules that apply to a plane still apply to a bank, except larger units than a bit are operated on.

A single memory chip usually contains 16 or 32 memory planes for a single bank, thus several chips are often wired
together to make wider banks.

Memory banks, ranks, and subpartitions

A memory chip contains several [2, 4, or 8] banks, using the same data wires and multiplexed via bank select wires.
While switching between banks is slightly slower than switching between columns in a row, it’s much faster than
switching between rows in the same bank.

A memory rank is thus made of (MEMORY_CELL_SIZE / MEMORY_CELL_SIZE_PER_CHIP) memory chips.

2.7. Memory access and structure 103



nVidia Hardware Documentation, Release git

One or two memory ranks connected via common wires [including data] except a chip select wire make up a memory
subpartition. Switching between ranks has basically the same performance consequences as switching between banks
in a rank - the only differences are the physical implementation and the possibility of using different amount of row
selection bits for each rank [though bank count and column count have to match].

The consequences of existence of several banks/ranks:

• it’s important to ensure that data accessed together belongs to either the same row, or to different banks [to avoid
row switching]

• tiled memory layouts are designed so that a tile corresponds roughly to a row, and neighbouring tiles never share
a bank

Memory partitions and subpartitions

A memory subpartition has its own DRAM controller on the GPU. 1 or 2 subpartitions make a memory partition,
which is a fairly independent entity with its own memory access queue, own ZROP and CROP units, and own L2
cache on later cards. All memory partitions taken together with the crossbar logic make up the entire VRAM logic for
a GPU.

All subpartitions in a partition have to be configured identically. Partitions in a GPU are usually configured identically,
but don’t have to on newer cards.

The consequences of subpartition/partition existence:

• like banks, different partitions may be utilised to avoid row conflicts for related data

• unlike banks, bandwidth suffers if (sub)partitions are not utilised equally - load balancing is thus very important

Memory addressing

While memory addressing is highly dependent on GPU family, the basic approach is outlined here.

The bits of a memory address are, in sequence, assigned to:

• identifying a byte inside a memory cell - since whole cells always have to be accessed anyway

• several column selection bits, to allow for a burst

• partition/subpartition selection - in low bits to ensure good load balancing, but not too low to keep relatively
large tiles in a single partition for ROP’s benefit

• remaining column selection bits

• all/most of bank selection bits, sometimes a rank selection bit - so that immediately neighbouring addresses
never cause a row conflict

• row bits

• remaining bank bit or rank bit - effectively allows splitting VRAM into two areas, placing color buffer in one
and zeta buffer in the other, so that there are never row conflicts between them

2.7.2 NV1:G80 surface formats

Contents

• NV1:G80 surface formats

104 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– Introduction

Todo: write me

Introduction

Todo: write me

2.7.3 NV3 VRAM structure and usage

Contents

• NV3 VRAM structure and usage

– Introduction

Todo: write me

Introduction

Todo: write me

2.7.4 NV3 DMA objects

Contents

• NV3 DMA objects

– Introduction

Todo: write me

Introduction

Todo: write me

2.7. Memory access and structure 105



nVidia Hardware Documentation, Release git

2.7.5 NV4:G80 DMA objects

Contents

• NV4:G80 DMA objects

– Introduction

Todo: write me

Introduction

Todo: write me

2.7.6 NV44 host memory interface

Contents

• NV44 host memory interface

– Introduction

– MMIO registers

Todo: write me

Introduction

Todo: write me

MMIO registers

Todo: write me

2.7.7 G80 surface formats

106 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Contents

• G80 surface formats

– Introduction

– Surface elements

– Pitch surfaces

– Blocklinear surfaces

– Textures, mipmapping and arrays

– Multisampled surfaces

– Surface formats

* Simple color surface formats

* Shared exponent color format

* YUV color formats

* Zeta surface format

* Compressed texture formats

* Bitmap surface format

– G80 storage types

* Blocklinear color storage types

* Zeta storage types

– GF100 storage types

Introduction

This file deals with G80+ cards only. For older cards, see NV1:G80 surface formats.

A “surface” is a 2d or 3d array of elements. Surfaces are used for image storage, and can be bound to at least the
following slots on the engines:

• m2mf input and output buffers

• 2d source and destination surfaces

• 3d/compute texture units: the textures

• 3d color render targets

• 3d zeta render target

• compute g[] spaces [G80:GF100]

• 3d/compute image units [GF100+]

• PCOPY input and output buffers

• PDISPLAY: the framebuffer

Todo: vdec stuff

2.7. Memory access and structure 107



nVidia Hardware Documentation, Release git

Todo: GF100 ZCULL?

Surfaces on G80+ cards come in two types: pitch and blocklinear. Pitch surfaces have a simple format, but they’re
are limited to 2 dimensions only, don’t support arrays nor mipmapping when used as textures, cannot be used for zeta
buffers, and have lower performance than blocklinear textures. Blocklinear surfaces can have up to three dimensions,
can be put into arrays and be mipmapped, and use custom element arrangement in memory. However, blocklinear
surfaces need to be placed in memory area with special storage type, depending on the surface format.

Blocklinear surfaces have two main levels of element rearrangement: high-level and low-level. Low-level rearrange-
ment is quite complicated, depends on surface’s storage type, and is hidden by the VM subsystem - if the surface is
accessed through VM with properly set storage type, only the high-level rearrangement is visible. Thus the low-level
rearrangement can only be seen when accessing blocklinear system RAM directly from CPU, or accessing blocklinear
VRAM with storage type set to 0. Also, low-level rearrangement for VRAM uses several tricks to distribute load
evenly across memory partitions, while rearrangement for system RAM skips them and merely reorders elements
inside a gob. High-level rearrangement, otoh, is relatively simple, and always visible to the user - its knowledge is
needed to calculate address of a given element, or to calculate the memory size of a surface.

Surface elements

A basic unit of surface is an “element”, which can be 1, 2, 4, 8, or 16 bytes long. element type is vital in selecting the
proper compressed storage type for a surface. For most surface formats, an element means simply a sample. This is
different for surfaces storing compressed textures - the elements are compressed blocks. Also, it’s different for bitmap
textures - in these, an element is a 64-bit word containing 8x8 block of samples.

While texture, RT, and 2d bindings deal only with surface elements, they’re ignored by some other binding points, like
PCOPY and m2mf - in these, the element size is ignored, and the surface is treated as an array of bytes. That is, a
16x16 surface of 4-byte elements is treated as a 64x16 surface of bytes.

Pitch surfaces

A pitch surface is a 2d array of elements, where each row is contiguous in memory, and each row starts at a fixed
distance from start of the previous one. This distance is the surface’s “pitch”. Pitch surfaces always use storage type 0
[pitch].

The attributes defining a pitch surface are:

• address: 40-bit VM address, aligned to 64 bytes

• pitch: distance between subsequent rows in bytes - needs to be a multiple of 64

• element size: implied by format, or defaulting to 1 if binding point is byte-oriented

• width: surface width in elements, only used when bounds checking / size information is needed

• height: surface height in elements, only used when bounds checking / size information is needed

Todo: check pitch, width, height min/max values. this may depend on binding point. check if 64 byte alignment still
holds on GF100.

The address of element (x,y) is:

address + pitch * y + elem_size * x

Or, alternatively, the address of byte (x,y) is:

108 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

address + pitch * y + x

Blocklinear surfaces

A blocklinear surface is a 3d array of elements, stored in memory in units called “gobs” and “blocks”. There are two
levels of tiling. The lower-level unit is called a “gob” and has a fixed size. This size is 64 bytes × 4 × 1 on G80:GF100
cards, 64 bytes × 8 × 1 for GF100+ cards. The higher-level unit is called a “block”, and is of variable size between
1×1×1 and 32×32×32 gobs.

The attributes defining a blocklinear surface are:

• address: 40-bit VM address, aligned to gob size [0x100 bytes on G80:GF100, 0x200 bytes on GF100]

• block width: 0-5, log2 of gobs per block in x dimension

• block height: 0-5, log2 of gobs per block in y dimension

• block depth: 0-5, log2 of gobs per block in z dimension

• element size: implied by format, or defaulting to 1 if the binding point is byte-oriented

• width: surface width [size in x dimension] in elements

• height: surface height [size in y dimension] in elements

• depth: surface depth [size in z dimension] in elements

Todo: check bounduaries on them all, check tiling on GF100.

Todo: PCOPY surfaces with weird gob size

It should be noted that some limits on these parameters are to some extent specific to the binding point. In particular,
block width greater than 0 is only supported by the render targets and texture units, with render targets only supporting
0 and 1. block height of 0-5 can be safely used with all blocklinear surface binding points, and block depth of 0-5 can
be used with binding points other than G80 g[] spaces, which only support 0.

The blocklinear format works as follows:

First, the block size is computed. This computation depends on the binding point: some binding points clamp the
effective block size in a given dimension to the smallest size that would cover the whole surfaces, some do not. The
ones that do are called “auto-sizing” binding points. One of such binding ports where it’s important is the texture unit:
since all mipmap levels of a texture use a single “block size” field in TIC, the auto-sizing is needed to ensure that small
mipmaps of a large surface don’t use needlessly large blocks. Pseudocode:

bytes_per_gob_x = 64;
if (gpu < GF100)

bytes_per_gob_y = 4;
else

bytes_per_gob_y = 8;
bytes_per_gob_z = 1;
eff_block_width = block_width;
eff_block_height = block_height;
eff_block_depth = block_depth;
if (auto_sizing) {

while (eff_block_width > 0 && (bytes_per_gob_x << (eff_block_width - 1)) >= width
→˓* element_size)

(continues on next page)

2.7. Memory access and structure 109



nVidia Hardware Documentation, Release git

(continued from previous page)

eff_block_width--;
while (eff_block_height > 0 && (bytes_per_gob_y << (eff_block_height - 1)) >=

→˓height)
eff_block_height--;

while (eff_block_depth > 0 && (bytes_per_gob_z << (eff_block_depth - 1)) >= depth)
eff_block_depth--;

}
gobs_per_block_x = 1 << eff_block_width;
gobs_per_block_y = 1 << eff_block_height;
gobs_per_block_z = 1 << eff_block_depth;
bytes_per_block_x = bytes_per_gob_x * gobs_per_block_x;
bytes_per_block_y = bytes_per_gob_y * gobs_per_block_y;
bytes_per_block_z = bytes_per_gob_z * gobs_per_block_z;
elements_per_block_x = bytes_per_block_x / element_size;
gob_bytes = bytes_per_gob_x * bytes_per_gob_y * bytes_per_gob_z;
block_gobs = gobs_per_bigtils_x * gobs_per_block_y * gobs_per_block_z;
block_bytes = gob_bytes * block_gobs;

Due to the auto-sizing being present on some binding points, it’s a bad idea to use surfaces that have block size at
least two times bigger than the actual surface - they’ll be unusable on these binding points [and waste a lot of memory
anyway].

Once block size is known, the geometry and size of the surface can be determined. A surface is first broken down into
blocks. Each block convers a contiguous elements_per_block_x × bytes_per_block_y × bytes_per_block_z aligned
subarea of the surface. If the surface size is not a multiple of the block size in any dimension, the size is aligned up for
surface layout purposes and the remaining space is unused. The blocks making up a surface are stored sequentially in
memory first in x direction, then in y direction, then in z direction:

blocks_per_surface_x = ceil(width * element_size / bytes_per_block_x);
blocks_per_surface_y = ceil(height / bytes_per_block_y);
blocks_per_surface_z = ceil(depth / bytes_per_block_z);
surface_blocks = blocks_per_surface_x * blocks_per_surface_y * blocks_per_surface_z;
// total bytes in surface - surface resides at addresses [address, address+surface_
→˓bytes)
surface_bytes = surface_blocks * block_bytes;
block_address = address + floor(x_coord * element_size / bytes_per_block_x) * block_
→˓bytes

+ floor(y_coord / bytes_per_block_y) * block_bytes * blocks_per_surface_x;
+ floor(z_coord / bytes_per_block_z) * block_bytes * blocks_per_surface_x

→˓* blocks_per_surface_y;
x_coord_in_block = (x_coord * element_size) % bytes_per_block_x;
y_coord_in_block = y_coord % bytes_per_block_y;
z_coord_in_block = z_coord % bytes_per_block_z;

Like blocks in the surface, gobs inside a block are stored ordered first by x coord, then by y coord, then by z coord:

gob_address = block_address
+ floor(x_coord_in_block / bytes_per_gob_x) * gob_bytes
+ floor(y_coord_in_block / bytes_per_gob_y) * gob_bytes * gobs_per_block_x
+ z_coord_in_block * gob_bytes * gobs_per_block_x * gobs_per_block_y; //

→˓bytes_per_gob_z always 1.
x_coord_in_gob = x_coord_in_block % bytes_per_gob_x;
y_coord_in_gob = y_coord_in_block % bytes_per_gob_y;

The elements inside a gob are likewise stored ordered first by x coordinate, and then by y:

110 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

element_address = gob_address + x_coord_in_gob + y_coord_in_gob * bytes_per_gob_x;

Note that the above is the higher-level rearrangement only - the element address resulting from the above pseudocode
is the address that user would see by looking through the card’s VM subsystem. The lower-level rearrangement is
storage type dependent, invisible to the user, and will be covered below.

As an example, let’s take a 13 × 17 × 3 surface with element size of 16 bytes, block width of 1, block height of 1, and
block depth of 1. Further, the card is assumed to be G80. The surface will be located in memory the following way:

• block size in bytes = 0x800 bytes

• block width: 128 bytes / 8 elements

• block height: 8

• block depth: 2

• surface width in blocks: 2

• surface height in blocks: 3

• surface depth in blocks: 2

• surface memory size: 0x6000 bytes

| - x element bounduary
|| - x gob bounduary
||| - x block bounduary
[no line] - y element bounduary
--- - y gob bounduary
=== - y block bounduary

z == 0:
x -->

y+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
|| | 0 | 1 | 2 | 3 || 4 | 5 | 6 | 7 ||| 8 | 9 | 10 | 11 || 12 |
|+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
V| 0|0000|0010|0020|0030||0100|0110|0120|0130|||0800|0810|0820|0830||0900|
| 1|0040|0050|0060|0070||0140|0150|0160|0170|||0840|0850|0860|0870||0940|
| 2|0080|0090|00a0|00b0||0180|0190|01a0|01b0|||0880|0890|08a0|08b0||0980|
| 3|00c0|00d0|00e0|00f0||01c0|01d0|01e0|01f0|||08c0|08d0|08e0|08f0||09c0|
+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
| 4|0200|0210|0220|0230||0300|0310|0320|0330|||0a00|0a10|0a20|0a30||0b00|
| 5|0240|0250|0260|0270||0340|0350|0360|0370|||0a40|0a50|0a60|0a70||0b40|
| 6|0280|0290|02a0|02b0||0380|0390|03a0|03b0|||0a80|0a90|0aa0|0ab0||0b80|
| 7|02c0|02d0|02e0|02f0||03c0|03d0|03e0|03f0|||0ac0|0ad0|0ae0|0af0||0bc0|
+==+====+====+====+====++====+====+====+====+++====+====+====+====++====+
| 8|1000|1010|1020|1030||1100|1110|1120|1130|||1800|1810|1820|1830||1900|
| 9|1040|1050|1060|1070||1140|1150|1160|1170|||1840|1850|1860|1870||1940|
|10|1080|1090|10a0|10b0||1180|1190|11a0|11b0|||1880|1890|18a0|18b0||1980|
|11|10c0|10d0|10e0|10f0||11c0|11d0|11e0|11f0|||18c0|18d0|18e0|18f0||19c0|
+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
|12|1200|1210|1220|1230||1300|1310|1320|1330|||1a00|1a10|1a20|1a30||1b00|
|13|1240|1250|1260|1270||1340|1350|1360|1370|||1a40|1a50|1a60|1a70||1b40|
|14|1280|1290|12a0|12b0||1380|1390|13a0|13b0|||1a80|1a90|1aa0|1ab0||1b80|
|15|12c0|12d0|12e0|12f0||13c0|13d0|13e0|13f0|||1ac0|1ad0|1ae0|1af0||1bc0|
+==+====+====+====+====++====+====+====+====+++====+====+====+====++====+
|16|2000|2010|2020|2030||2100|2110|2120|2130|||2800|2810|2820|2830||2900|
+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+

z == 1:

(continues on next page)

2.7. Memory access and structure 111



nVidia Hardware Documentation, Release git

(continued from previous page)

x -->
y+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
|| | 0 | 1 | 2 | 3 || 4 | 5 | 6 | 7 ||| 8 | 9 | 10 | 11 || 12 |
|+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
V| 0|0400|0410|0420|0430||0500|0510|0520|0530|||0c00|0c10|0c20|0c30||0d00|
| 1|0440|0450|0460|0470||0540|0550|0560|0570|||0c40|0c50|0c60|0c70||0d40|
| 2|0480|0490|04a0|04b0||0580|0590|05a0|05b0|||0c80|0c90|0ca0|0cb0||0d80|
| 3|04c0|04d0|04e0|04f0||05c0|05d0|05e0|05f0|||0cc0|0cd0|0ce0|0cf0||0dc0|
+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
| 4|0600|0610|0620|0630||0700|0710|0720|0730|||0e00|0a10|0e20|0a30||0f00|
| 5|0640|0650|0660|0670||0740|0750|0760|0770|||0e40|0a50|0e60|0a70||0f40|
| 6|0680|0690|06a0|06b0||0780|0790|07a0|07b0|||0e80|0a90|0ea0|0ab0||0f80|
| 7|06c0|06d0|06e0|06f0||07c0|07d0|07e0|07f0|||0ec0|0ad0|0ee0|0af0||0fc0|
+==+====+====+====+====++====+====+====+====+++====+====+====+====++====+
| 8|1400|1410|1420|1430||1500|1510|1520|1530|||1c00|1c10|1c20|1c30||1d00|
| 9|1440|1450|1460|1470||1540|1550|1560|1570|||1c40|1c50|1c60|1c70||1d40|
|10|1480|1490|14a0|14b0||1580|1590|15a0|15b0|||1c80|1c90|1ca0|1cb0||1d80|
|11|14c0|14d0|14e0|14f0||15c0|15d0|15e0|15f0|||1cc0|1cd0|1ce0|1cf0||1dc0|
+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
|12|1600|1610|1620|1630||1700|1710|1720|1730|||1e00|1e10|1e20|1e30||1f00|
|13|1640|1650|1660|1670||1740|1750|1760|1770|||1e40|1e50|1e60|1e70||1f40|
|14|1680|1690|16a0|16b0||1780|1790|17a0|17b0|||1e80|1e90|1ea0|1eb0||1f80|
|15|16c0|16d0|16e0|16f0||17c0|17d0|17e0|17f0|||1ec0|1ed0|1ee0|1ef0||1fc0|
+==+====+====+====+====++====+====+====+====+++====+====+====+====++====+
|16|2400|2410|2420|2430||2500|2510|2520|2530|||2c00|2c10|2c20|2c30||2d00|
+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+

[z block bounduary here]
z == 2:
x -->

y+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
|| | 0 | 1 | 2 | 3 || 4 | 5 | 6 | 7 ||| 8 | 9 | 10 | 11 || 12 |
|+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
V| 0|3000|3010|3020|3030||3100|3110|3120|3130|||3800|3810|3820|3830||3900|
| 1|3040|3050|3060|3070||3140|3150|3160|3170|||3840|3850|3860|3870||3940|
| 2|3080|3090|30a0|30b0||3180|3190|31a0|31b0|||3880|3890|38a0|38b0||3980|
| 3|30c0|30d0|30e0|30f0||31c0|31d0|31e0|31f0|||38c0|38d0|38e0|38f0||39c0|
+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
| 4|3200|3210|3220|3230||3300|3310|3320|3330|||3a00|3a10|3a20|3a30||3b00|
| 5|3240|3250|3260|3270||3340|3350|3360|3370|||3a40|3a50|3a60|3a70||3b40|
| 6|3280|3290|32a0|32b0||3380|3390|33a0|33b0|||3a80|3a90|3aa0|3ab0||3b80|
| 7|32c0|32d0|32e0|32f0||33c0|33d0|33e0|33f0|||3ac0|3ad0|3ae0|3af0||3bc0|
+==+====+====+====+====++====+====+====+====+++====+====+====+====++====+
| 8|4000|4010|4020|4030||4100|4110|4120|4130|||4800|4810|4820|4830||4900|
| 9|4040|4050|4060|4070||4140|4150|4160|4170|||4840|4850|4860|4870||4940|
|10|4080|4090|40a0|40b0||4180|4190|41a0|41b0|||4880|4890|48a0|48b0||4980|
|11|40c0|40d0|40e0|40f0||41c0|41d0|41e0|41f0|||48c0|48d0|48e0|48f0||49c0|
+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+
|12|4200|4210|4220|4230||4300|4310|4320|4330|||4a00|4a10|4a20|4a30||4b00|
|13|4240|4250|4260|4270||4340|4350|4360|4370|||4a40|4a50|4a60|4a70||4b40|
|14|4280|4290|42a0|42b0||4380|4390|43a0|43b0|||4a80|4a90|4aa0|4ab0||4b80|
|15|42c0|42d0|42e0|42f0||43c0|43d0|43e0|43f0|||4ac0|4ad0|4ae0|4af0||4bc0|
+==+====+====+====+====++====+====+====+====+++====+====+====+====++====+
|16|5000|5010|5020|2030||5100|5110|5120|5130|||5800|5810|5820|5830||5900|
+--+----+----+----+----++----+----+----+----+++----+----+----+----++----+

112 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Textures, mipmapping and arrays

A texture on G80/GF100 can have one of 9 types:

• 1D: made of 1 or more mip levels, each mip level is a blocklinear surface with height and depth forced to 1

• 2D: made of 1 or more mip levels, each mip level is a blocklinear surface with depth forced to 1

• 3D: made of 1 or more mip levels, each mip level is a blocklinear surface

• 1D_ARRAY: made of some number of subtextures, each subtexture is like a single 1D texture

• 2D_ARRAY: made of some number of subtextures, each subtexture is like a single 2D texture

• CUBE: made of 6 subtextures, each subtexture is like a single 2D texture - has the same layout as a 2D_ARRAY
with 6 subtextures, but different semantics

• BUFFER: a simple packed 1D array of elements - not a surface

• RECT: a single pitch surface, or a single blocklinear surface with depth forced to 1

• CUBE_ARRAY [GT215+]: like 2D_ARRAY, but subtexture count has to be divisible by 6, and groups of 6
subtextures behave like CUBE textures

Types other than BUFFER and RECT are made of subtextures, which are in turn made of mip levels, which are
blocklinear surfaces. For such textures, only the parameters of the first mip level of the first subtexture are specified -
parameters of the following mip levels and subtextures are calculated automatically.

Each mip level has each dimension 2 times smaller than the corresponding dimension of previous mip level, rounding
down unless it would result in size of 0. Since texture units use auto-sizing for the block size, the block sizes will be
different between mip levels. The surface for each mip level starts right after the previous one ends. Also, the total
size of the subtexture is rounded up to the size of the 0th mip level’s block size:

mip_address[0] = subtexture_address;
mip_width[0] = texture_width;
mip_height[0] = texture_height;
mip_depth[0] = texture_depth;
mip_bytes[0] = calc_surface_bytes(mip[0]);
subtexture_bytes = mip_bytes[0];
for (i = 1; i <= max_mip_level; i++) {

mip_address[i] = mip_address[i-1] + mip_bytes[i-1];
mip_width[i] = max(1, floor(mip_width[i-1] / 2));
mip_height[i] = max(1, floor(mip_height[i-1] / 2));
mip_depth[i] = max(1, floor(mip_depth[i-1] / 2));
mip_bytes[i] = calc_surface_bytes(mip[1]);
subtexture_bytes += mip_bytes[i];

}
subtexture_bytes = alignup(subtexture_bytes, calc_surface_block_bytes(mip[0]));

For 1D_ARRAY, 2D_ARRAY, CUBE and CUBE_ARRAY textures, the subtextures are stored sequentially:

for (i = 0; i < subtexture_count; i++) {
subtexture_address[i] = texture_address + i * subtexture_bytes;

}

For more information about textures, see graph/g80-texture.txt

Multisampled surfaces

Some surfaces are used as multisampled surfaces. This includes surfaces bound as color and zeta render targets when
multisampling type is other than 1X, as well as multisampled textures on GF100+.

2.7. Memory access and structure 113



nVidia Hardware Documentation, Release git

A multisampled surface contains several samples per pixel. A “sample” is a single set of RGBA or depth/stencil
values [depending on surface type]. These samples correspond to various points inside the pixel, called sample posi-
tions. When a multisample surface has to be displayed, it is downsampled to a normal surface by an operation called
“resolving”.

G80+ GPUs also support a variant of multisampling called “coverage sampling” or CSAA. When CSAA is used,
there are two sample types: full samples and coverage samples. Full samples behave as in normal multisampling.
Coverage samples have assigned positions inside a pixel, but their values are not stored in the render target surfaces
when rendering. Instead, a special component, called C or coverage, is added to the zeta surface, and for each coverage
sample, a bitmask of full samples with the same value is stored. During the resolve process, this bitmask is used to
assign different weights to the full samples depending on the count of coverage samples with matching values, thus
improving picture quality. Note that the C component conceptually belongs to a whole pixel, not to individual samples.
However, for surface layout purposes, its value is split into several parts, and each of the parts is stored together with
one of the samples.

For the most part, multisampling mode does not affect surface layout - in fact, a multisampled render target is bound
as a non-multisampled texture for the resolving process. However, multisampling mode is vital for CSAA zeta surface
layout, and for render target storage type selection if compression is to be used - the compression schema used is
directly tied to multisampling mode.

The following multisample modes exist:

• mode 0x0: MS1 [1×1] - no multisampling

– sample 0: (0x0.8, 0x0.8) [0,0]

• mode 0x1: MS2 [2×1]

– sample 0: (0x0.4, 0x0.4) [0,0]

– sample 1: (0x0.c, 0x0.c) [1,0]

• mode 0x2: MS4 [2×2]

– sample 0: (0x0.6, 0x0.2) [0,0]

– sample 1: (0x0.e, 0x0.6) [1,0]

– sample 2: (0x0.2, 0x0.a) [0,1]

– sample 3: (0x0.a, 0x0.e) [1,1]

• mode 0x3: MS8 [4×2]

– sample 0: (0x0.1, 0x0.7) [0,0]

– sample 1: (0x0.5, 0x0.3) [1,0]

– sample 2: (0x0.3, 0x0.d) [0,1]

– sample 3: (0x0.7, 0x0.b) [1,1]

– sample 4: (0x0.9, 0x0.5) [2,0]

– sample 5: (0x0.f, 0x0.1) [3,0]

– sample 6: (0x0.b, 0x0.f) [2,1]

– sample 7: (0x0.d, 0x0.9) [3,1]

• mode 0x4: MS2_ALT [2×1] [GT215-]

– sample 0: (0x0.c, 0x0.c) [1,0]

– sample 1: (0x0.4, 0x0.4) [0,0]

• mode 0x5: MS8_ALT [4×2] [GT215-]

114 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– sample 0: (0x0.9, 0x0.5) [2,0]

– sample 1: (0x0.7, 0x0.b) [1,1]

– sample 2: (0x0.d, 0x0.9) [3,1]

– sample 3: (0x0.5, 0x0.3) [1,0]

– sample 4: (0x0.3, 0x0.d) [0,1]

– sample 5: (0x0.1, 0x0.7) [0,0]

– sample 6: (0x0.b, 0x0.f) [2,1]

– sample 7: (0x0.f, 0x0.1) [3,0]

• mode 0x6: ??? [GF100-] [XXX]

• mode 0x8: MS4_CS4 [2×2]

– sample 0: (0x0.6, 0x0.2) [0,0]

– sample 1: (0x0.e, 0x0.6) [1,0]

– sample 2: (0x0.2, 0x0.a) [0,1]

– sample 3: (0x0.a, 0x0.e) [1,1]

– coverage sample 4: (0x0.5, 0x0.7), belongs to 1, 3, 0, 2

– coverage sample 5: (0x0.9, 0x0.4), belongs to 3, 2, 1, 0

– coverage sample 6: (0x0.7, 0x0.c), belongs to 0, 1, 2, 3

– coverage sample 7: (0x0.b, 0x0.9), belongs to 2, 0, 3, 1

C component is 16 bits per pixel, bitfields:

– 0-3: sample 4 associations: 0, 1, 2, 3

– 4-7: sample 5 associations: 0, 1, 2, 3

– 8-11: sample 6 associations: 0, 1, 2, 3

– 12-15: sample 7 associations: 0, 1, 2, 3

• mode 0x9: MS4_CS12 [2×2]

– sample 0: (0x0.6, 0x0.1) [0,0]

– sample 1: (0x0.f, 0x0.6) [1,0]

– sample 2: (0x0.1, 0x0.a) [0,1]

– sample 3: (0x0.a, 0x0.f) [1,1]

– coverage sample 4: (0x0.4, 0x0.e), belongs to 2, 3

– coverage sample 5: (0x0.c, 0x0.3), belongs to 1, 0

– coverage sample 6: (0x0.d, 0x0.d), belongs to 3, 1

– coverage sample 7: (0x0.4, 0x0.4), belongs to 0, 2

– coverage sample 8: (0x0.9, 0x0.5), belongs to 0, 1, 2

– coverage sample 9: (0x0.7, 0x0.7), belongs to 0, 2, 1, 3

– coverage sample a: (0x0.b, 0x0.8), belongs to 1, 3, 0

– coverage sample b: (0x0.3, 0x0.8), belongs to 2, 0, 3

2.7. Memory access and structure 115



nVidia Hardware Documentation, Release git

– coverage sample c: (0x0.8, 0x0.c), belongs to 3, 2, 1

– coverage sample d: (0x0.2, 0x0.2), belongs to 0, 2

– coverage sample e: (0x0.5, 0x0.b), belongs to 2, 3, 0, 1

– coverage sample f: (0x0.e, 0x0.9), belongs to 1, 3

C component is 32 bits per pixel, bitfields:

– 0-1: sample 4 associations: 2, 3

– 2-3: sample 5 associations: 0, 1

– 4-5: sample 6 associations: 1, 3

– 6-7: sample 7 associations: 0, 2

– 8-10: sample 8 associations: 0, 1, 2

– 11-14: sample 9 associations: 0, 1, 2, 3

– 15-17: sample a associations: 0, 1, 3

– 18-20: sample b associations: 0, 2, 3

– 31-23: sample c associations: 1, 2, 3

– 24-25: sample d associations: 0, 2

– 26-29: sample e associations: 0, 1, 2, 3

– 30-31: sample f associations: 1, 3

• mode 0xa: MS8_CS8 [4×2]

– sample 0: (0x0.1, 0x0.3) [0,0]

– sample 1: (0x0.6, 0x0.4) [1,0]

– sample 2: (0x0.3, 0x0.f) [0,1]

– sample 3: (0x0.4, 0x0.b) [1,1]

– sample 4: (0x0.c, 0x0.1) [2,0]

– sample 5: (0x0.e, 0x0.7) [3,0]

– sample 6: (0x0.8, 0x0.8) [2,1]

– sample 7: (0x0.f, 0x0.d) [3,1]

– coverage sample 8: (0x0.5, 0x0.7), belongs to 1, 6, 3, 0

– coverage sample 9: (0x0.7, 0x0.2), belongs to 1, 0, 4, 6

– coverage sample a: (0x0.b, 0x0.6), belongs to 5, 6, 1, 4

– coverage sample b: (0x0.d, 0x0.3), belongs to 4, 5, 6, 1

– coverage sample c: (0x0.2, 0x0.9), belongs to 3, 0, 2, 1

– coverage sample d: (0x0.7, 0x0.c), belongs to 3, 2, 6, 7

– coverage sample e: (0x0.a, 0x0.e), belongs to 7, 3, 2, 6

– coverage sample f: (0x0.c, 0x0.a), belongs to 5, 6, 7, 3

C component is 32 bits per pixel, bitfields:

– 0-3: sample 8 associations: 0, 1, 3, 6

116 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– 4-7: sample 8 associations: 0, 1, 4, 6

– 8-11: sample 8 associations: 1, 4, 5, 6

– 12-15: sample 8 associations: 1, 4, 5, 6

– 16-19: sample 8 associations: 0, 1, 2, 3

– 20-23: sample 8 associations: 2, 3, 6, 7

– 24-27: sample 8 associations: 2, 3, 6, 7

– 28-31: sample 8 associations: 3, 5, 6, 7

• mode 0xb: MS8_CS24 [GF100-]

Todo: wtf is up with modes 4 and 5?

Todo: nail down MS8_CS24 sample positions

Todo: figure out mode 6

Todo: figure out MS8_CS24 C component

Note that MS8 and MS8_C* modes cannot be used with surfaces that have 16-byte element size due to a hardware
limitation. Also, multisampling is only possible with blocklinear surfaces.

Todo: check MS8/128bpp on GF100.

The sample ids are, for full samples, the values appearing in the sampleid register. The numbers in () are the geometric
coordinates of the sample inside a pixel, as used by the rasterization process. The dimensions in [] are dimensions of a
block represents a pixel in the surface - if it’s 4×2, each pixel is represented in the surface as a block 4 elements wide
and 2 elements tall. The numbers in [] after each full sample are the coordinates inside this block.

Each coverage sample “belongs to” several full samples. For every such pair of coverage sample and full sample,
the C component contains a bit that tells if the coverage sample’s value is the same as the full one’s, ie. if the last
rendered primitive that covered the full sample also covered the coverage sample. When the surface is resolved, each
sample will “contribute” to exactly one full sample. The full samples always contribute to themselves, while coverage
sample will contribute to the first full sample that they belong to, in order listed above, that has the relevant bit set in
C component of the zeta surface. If none of the C bits for a given coverage sample are set, the sample will default to
contributing to the first sample in its belongs list. Then, for each full sample, the number of samples contributing to it
is counted, and used as its weight when performing the downsample calculation.

Note that, while the belongs list orderings are carefully chosen based on sample locations and to even the weights, the
bits in C component don’t use this ordering and are sorted by sample id instead.

The C component is 16 or 32 bits per pixel, depending on the format. It is then split into 8-bit chunks, starting from
LSB, and each chunk is assigned to one of the full samples. For MS4_CS4 and MS8_CS8, only samples in the top
line of each block get a chunk assigned, for MS4_CS12 all samples get a chunk. The chunks are assigned to samples
ordered first by x coordinate of the sample, then by its y coordinate.

2.7. Memory access and structure 117



nVidia Hardware Documentation, Release git

Surface formats

A surface’s format determines the type of information it stores in its elements, the element size, and the element
layout. Not all binding points care about the format - m2mf and PCOPY treat all surfaces as arrays of bytes. Also,
format specification differs a lot between the binding points that make use of it - 2d engine and render targets use a
big enum of valid formats, with values specifying both the layout and components, while texture units decouple layout
specification from component assignment and type selection, allowing arbitrary swizzles.

There are 3 main enums used for specifying surface formats:

• texture format: used for textures, epecifies element size and layout, but not the component assignments nor type

• color format: used for color RTs and the 2d engine, specifies the full format

• zeta format: used for zeta RTs, specifies the full format, except the specific coverage sampling mode, if appli-
cable

The surface formats can be broadly divided into the following categories:

• simple color formats: elements correspond directly to samples. Each element has 1 to 4 bitfields corresponding
to R, G, B, A components. Usable for texturing, color RTs, and 2d engine.

• shared exponent color format: like above, but the components are floats sharing the exponent bitfield. Usable
for texturing only.

• YUV color formats: element corresponds to two pixels lying in the same horizontal line. The pixels have three
components, conventionally labeled as Y, U, V. U and V components are common for the two pixels making up
an element, but Y components are separate. Usable for texturing only.

• zeta formats: elements correspond to samples. There is a per-sample depth component, optionally a per-sample
stencil component, and optionally a per-pixel coverage value for CSAA surfaces. Usable for texturing and ZETA
RT.

• compressed texture formats: elements correspond to blocks of samples, and are decoded to RGBA color values
on the fly. Can be used only for texturing.

• bitmap texture format: each element corresponds to 8x8 block of samples, with 1 bit per sample. Has to be used
with a special texture sampler. Usable for texturing and 2d engine.

Todo: wtf is color format 0x1d?

Simple color surface formats

A simple color surface is a surface where each element corresponds directly to a sample, each sample has 4 components
known as R, G, B, A [in that order], and the bitfields in element correspond directly to components. There can be less
bitfields than components - the remaining components will be ignored on write, and get a default value on read, which
is 0 for R, G, B and 1 for A.

When bound to texture unit, the simple color formats are specified in three parts. First, the format is specified, which
is an enumerated value shared with other format types. This format specifies the format type and, for simple color
formats, element size, and location of bitfields inside the element. Then, the type [float/sint/uint/unorm/snorm] of each
element component is specified. Finally, a swizzle is specified: each of the 4 component outputs [R, G, B, A] from
the texture unit can be mapped to any of the components present in the element [called C0-C3], constant 0, integer
constant 1, or float constant 1.

Thanks to the swizzle capability, there’s no need to support multiple orderings in the format itself, and all simple color
texture formats have C0 bitfield starting at LSB of the first byte, C1 [if present] at the first bit after C0, and so on.
Thus it’s enough to specify bitfield lengths to uniquely identify a texture type: for example 5_5_6 is a format with 3

118 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

components and element size of 2 bytes, C0 at bits 0-4, C1 at bits 5-9, and C2 at bits 10-15. The element is always
treated as a little-endian word of the proper size, and bitfields are listed from LSB side. Also, in some cases the texture
format has bitfields used only for padding, and not usable as components: these will be listed in the name as X<size>.
For example, 32_8_X24 is a format with element size of 8 bytes, where bits 0-31 are C0, 32-39 are C1, and 40-63 are
unusable. [XXX: what exactly happens to element layout in big-endian mode?]

However, when bound to RTs or the 2d engine, all of the format, including element size, element layout, component
types, component assignment, and SRGB flag, is specified by a single enumerated value. These formats have a many-
to-one relationship to texture formats, and are listed here below the corresponding one. The information listed here
for a format is C0-C3 assignments to actual components and component type, plus SRGB flag where applicable. The
components can be R, G, B, A, representing a bitfield corresponding directly to a single component, X representing
an unused bitfield, or Y representing a bitfield copied to all components on read, and filled with the R value on write.

The formats are:

Element size 16:

• texture format 0x01: 32_32_32_32

– color format 0xc0: RGBA, float

– color format 0xc1: RGBA, sint

– color format 0xc2: RGBA, uint

– color format 0xc3: RGBX, float

– color format 0xc4: RGBX, sint

– color format 0xc5: RGBX, uint

Element size 8:

• texture format 0x03: 16_16_16_16

– color format 0xc6: RGBA, unorm

– color format 0xc7: RGBA, snorm

– color format 0xc8: RGBA, sint

– color format 0xc9: RGBA, uint

– color format 0xca: RGBA, float

– color format 0xce: RGBX, float

• texture format 0x04: 32_32

– color format 0xcb: RG, float

– color format 0xcc: RG, sint

– color format 0xcd: RG, uint

• texture format 0x05: 32_8_X24

Element size 4:

• texture format 0x07: 8_8_8_X8

Todo: htf do I determine if a surface format counts as 0x07 or 0x08?

• texture format 0x08: 8_8_8_8

– color format 0xcf: BGRA, unorm

2.7. Memory access and structure 119



nVidia Hardware Documentation, Release git

– color format 0xd0: BGRA, unorm, SRGB

– color format 0xd5: RGBA, unorm

– color format 0xd6: RGBA, unorm, SRGB

– color format 0xd7: RGBA, snorm

– color format 0xd8: RGBA, sint

– color format 0xd9: RGBA, uint

– color format 0xe6: BGRX, unorm

– color format 0xe7: BGRX, unorm, SRGB

– color format 0xf9: RGBX, unorm

– color format 0xfa: RGBX, unorm, SRGB

– color format 0xfd: BGRX, unorm [XXX]

– color format 0xfe: BGRX, unorm [XXX]

• texture format 0x09: 10_10_10_2

– color format 0xd1: RGBA, unorm

– color format 0xd2: RGBA, uint

– color format 0xdf: BGRA, unorm

• texture format 0x0c: 16_16

– color format 0xda: RG, unorm

– color format 0xdb: RG, snorm

– color format 0xdc: RG, sint

– color format 0xdd: RG, uint

– color format 0xde: RG, float

• texture format 0x0d: 24_8

• texture format 0x0e: 8_24

• texture format 0x0f: 32

– color format 0xe3: R, sint

– color format 0xe4: R, uint

– color format 0xe5: R, float

– color format 0xff: Y, uint [XXX]

• texture format 0x21: 11_11_10

– color format 0xe0: RGB, float

Element size 2:

• texture format 0x12: 4_4_4_4

• texture format 0x13: 1_5_5_5

• texture format 0x14: 5_5_5_1

– color format 0xe9: BGRA, unorm

120 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– color format 0xf8: BGRX, unorm

– color format 0xfb: BGRX, unorm [XXX]

– color format 0xfc: BGRX, unorm [XXX]

• texture format 0x15: 5_6_5

– color format 0xe8: BGR, unorm

• texture format 0x16: 5_5_6

• texture format 0x18: 8_8

– color format 0xea: RG, unorm

– color format 0xeb: RG, snorm

– color format 0xec: RG, uint

– color format 0xed: RG, sint

• texture format 0x1b: 16

– color format 0xee: R, unorm

– color format 0xef: R, snorm

– color format 0xf0: R, sint

– color format 0xf1: R, uint

– color format 0xf2: R, float

Element size 1:

• texture format 0x1d: 8

– color format 0xf3: R, unorm

– color format 0xf4: R, snorm

– color format 0xf5: R, sint

– color format 0xf6: R, uint

– color format 0xf7: A, unorm

• texture format 0x1e: 4_4

Todo: which component types are valid for a given bitfield size?

Todo: clarify float encoding for weird sizes

Shared exponent color format

A shared exponent color format is like a simple color format, but there’s an extra bitfield, called E, that’s used as a
shared exponent for C0-C2. The remaining three bitfields correspond to the mantissas of C0-C2, respectively. They
can be swizzled arbitrarily, but they have to use the float type.

Element size 4:

• texture format 0x20: 9_9_9_E5

2.7. Memory access and structure 121



nVidia Hardware Documentation, Release git

YUV color formats

These formats are also similar to color formats. However, The components are conventionally called Y, U, V: C0 is
known as U, C1 is known as Y, and C2 is known as V. An element represents two pixels, and has 4 bitfields: YA
representing Y value for first pixel, YB representing Y value for second pixel, U representing U value for both pixels,
and V representing V value of both pixels. There are two YUV formats, differing in bitfield order:

Element size 4:

• texture format 0x21: U8_YA8_V8_YB8

• texture format 0x22: YA8_U8_YB8_V8

Todo: verify I haven’t screwed up the ordering here

Zeta surface format

A zeta surface, like a simple color surface, has one element per sample. It contains up to three components: the depth
component [called Z], optionally the stencil component [called S], and if coverage sampling is in use, the coverage
component [called C].

The Z component can be a 32-bit float, a 24-bit normalized unsigned integer, or [on G200+] a 16-bit normalized
unsigned integer. The S component, if present, is always an 8-bit raw integer.

The C component is special: if present, it’s an 8-bit bitfield in each sample. However, semantically it is a per-pixel
value, and the values of the samples’ C components are stitched together to obtain a per-pixel value. This stitching
process depends on the multisample mode, thus it needs to be specified to bind a coverage sampled zeta surface as a
texture. It’s not allowed to use a coverage sampling mode with a zeta format without C component, or the other way
around.

Like with color formats, there are two different enums that specify zeta formats: texture formats and zeta formats.
However, this time the zeta formats have one-to-many relationship with texture formats: Texture format contains in-
formation about the specific coverage sampling mode used, while zeta format merely says whether coverage sampling
is in use, and the mode is taken from RT multisample configuration.

For textures, Z corresponds to C0, S to C1, and C to C2. However, C cannot be used together with Z and/or S in a
single sampler. Z and S sampling works normally, but when C is sampled, the sampler returns preprocessed weights
instead of the raw value - see graph/g80-texture.txt for more information about the sampling process.

The formats are:

Element size 2:

• zeta format 0x13: Z16 [G200+ only]

– texture format 0x3a: Z16 [G200+ only]

Element size 4:

• zeta format 0x0a: Z32

– texture format 0x2f

• zeta format 0x14: S8_Z24

– texture format 0x29

• zeta format 0x15: Z24_X8

– texture format 0x2b

122 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• zeta format 0x16: Z24_S8

– texture format 0x2a

• zeta format 0x18: Z24_C8

– texture format 0x2c: MS4_CS4

– texture format 0x2d: MS8_CS8

– texture format 0x2e: MS4_CS12

Element size 8:

• zeta format 0x19: Z32_S8_X24

– texture format 0x30

• zeta format 0x1d: Z24_X8_S8_C8_X16

– texture format 0x31: MS4_CS4

– texture format 0x32: MS8_CS8

– texture format 0x37: MS4_CS12

• zeta format 0x1e: Z32_X8_C8_X16

– texture format 0x33: MS4_CS4

– texture format 0x34: MS8_CS8

– texture format 0x38: MS4_CS12

• zeta format 0x1f: Z32_S8_C8_X16

– texture format 0x35: MS4_CS4

– texture format 0x36: MS8_CS8

– texture format 0x39: MS4_CS12

Todo: figure out the MS8_CS24 formats

Compressed texture formats

Todo: write me

Bitmap surface format

A bitmap surface has only one component, and the component has 1 bit per sample - that is, the component’s value can
be either 0 or 1 for each sample in the surface. The surface is made of 8-byte elements, with each element representing
8×8 block of samples. The element is treated as a 64-bit word, with each sample taking 1 bit. The bits start from LSB
and are ordered first by x coordinate of the sample, then by its y coordinate.

This format can be used for 2d engine and texturing. When used for texturing, it forces using a special “box” filter:
result of sampling is a percentage of “lit” area in WxH rectangle centered on the sampled location. See graph/g80-
texture.txt for more details.

2.7. Memory access and structure 123



nVidia Hardware Documentation, Release git

Todo: figure out more. Check how it works with 2d engine.

The formats are:

Element size 8:

• texture format 0x1f: BITMAP

– color format 0x1c: BITMAP

G80 storage types

On G80, the storage type is made of two parts: the storage type itself, and the compression mode. The storage type is
a 7-bit enum, the compression mode is a 2-bit enum.

The compression modes are:

• 0: NONE - no compression

• 1: SINGLE - 2 compression tag bits per gob, 1 tag cell per 64kB page

• 2: DOUBLE - 4 compression tag bits per gob, 2 tag cells per 64kB page

Todo: verify somehow.

The set of valid compression modes varies with the storage type. NONE is always valid.

As mentioned before, the low-level rearrangement is further split into two sublevels: short range reordering, rearrang-
ing bytes in a single gob, and long range reordering, rearranging gobs. Short range reordering is performed for both
VRAM and system RAM, and is highly dependent on the storage type. Long range reordering is done only for VRAM,
and has only three types:

• none [NONE] - no reordering, only used for storage type 0 [pitch]

• small scale [SSR] - gobs rearranged inside a single 4kB page, used for non-0 storage types

• large scale [LSR] - large blocks of memory rearranged, based on internal VRAM geometry. Boundaries between
VRAM areas using NONE/SSR and LSR need to be properly aligned in physical space to prevent conflicts.

Long range reordering is described in detail in G80:GF100 VRAM structure and usage.

The storage types can be roughly split into the following groups:

• pitch storage type: used for pitch surfaces and non-surface buffers

• blocklinear color storage types: used for non-zeta blocklinear surfaces

• zeta storage types: used for zeta surfaces

On the original G80, non-0 storage types can only be used on VRAM, on G84 and later cards they can also be used on
system RAM. Compression modes other than NONE can only be used on VRAM. However, due to the G80 limitation,
blocklinear surfaces stored in system RAM are allowed to use storage type 0, and will work correctly for texturing and
m2mf source/destination - rendering to them with 2d or 3d engine is impossible, though.

Correct storage types are only enforced by texture units and ROPs [ie. 2d and 3d engine render targets + CUDA
global/local/stack spaces], which have dedicated paths to memory and depend on the storage types for performance.
The other engines have storage type handling done by the common memory controller logic, and will accept any
storage type.

The pitch storage type is:

124 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

storage type 0x00: PITCH long range reordering: NONE valid compression modes: NONE There’s no short range
reordering on this storage type - the offset inside a gob is identical between the virtual and physical addresses.

Blocklinear color storage types

Todo: reformat

The following blocklinear color storage types exist:

storage type 0x70: BLOCKLINEAR long range reordering: SSR valid compression modes: NONE valid surface
formats: any non-zeta with element size of 1, 2, 4, or 8 bytes valid multisampling modes: any

storage type 0x72: BLOCKLINEAR_LSR long range reordering: LSR valid compression modes: NONE valid
surface formats: any non-zeta with element size of 1, 2, 4, or 8 bytes valid multisampling modes: any

storage type 0x76: BLOCKLINEAR_128_LSR long range reordering: LSR valid compression modes: NONE
valid surface formats: any non-zeta with element size of 16 bytes valid multisampling modes: any

[XXX]

storage type 0x74: BLOCKLINEAR_128 long range reordering: SSR valid compression modes: NONE valid sur-
face formats: any non-zeta with element size of 16 bytes valid multisampling modes: any

[XXX]

storage type 0x78: BLOCKLINEAR_32_MS4 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: any non-zeta with element size of 4 bytes valid multisampling modes: MS1, MS2*,
MS4*

storage type 0x79: BLOCKLINEAR_32_MS8 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: any non-zeta with element size of 4 bytes valid multisampling modes: MS8*

storage type 0x7a: BLOCKLINEAR_32_MS4_LSR long range reordering: LSR valid compression modes:
NONE, SINGLE valid surface formats: any non-zeta with element size of 4 bytes valid multisampling modes:
MS1, MS2*, MS4*

storage type 0x7b: BLOCKLINEAR_32_MS8_LSR long range reordering: LSR valid compression modes:
NONE, SINGLE valid surface formats: any non-zeta with element size of 4 bytes valid multisampling modes:
MS8*

[XXX]

storage type 0x7c: BLOCKLINEAR_64_MS4 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: any non-zeta with element size of 8 bytes valid multisampling modes: MS1, MS2*,
MS4*

storage type 0x7d: BLOCKLINEAR_64_MS8 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: any non-zeta with element size of 8 bytes valid multisampling modes: MS8*

[XXX]

storage type 0x44: BLOCKLINEAR_24 long range reordering: SSR valid compression modes: NONE valid sur-
face formats: texture format 8_8_8_X8 and corresponding color formats valid multisampling modes: any

storage type 0x45: BLOCKLINEAR_24_MS4 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: texture format 8_8_8_X8 and corresponding color formats valid multisampling
modes: MS1, MS2*, MS4*

2.7. Memory access and structure 125



nVidia Hardware Documentation, Release git

storage type 0x46: BLOCKLINEAR_24_MS8 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: texture format 8_8_8_X8 and corresponding color formats valid multisampling
modes: MS8*

storage type 0x4b: BLOCKLINEAR_24_LSR long range reordering: LSR valid compression modes: NONE valid
surface formats: texture format 8_8_8_X8 and corresponding color formats valid multisampling modes: any

storage type 0x4c: BLOCKLINEAR_24_MS4_LSR long range reordering: LSR valid compression modes:
NONE, SINGLE valid surface formats: texture format 8_8_8_X8 and corresponding color formats valid multi-
sampling modes: MS1, MS2*, MS4*

storage type 0x4d: BLOCKLINEAR_24_MS8_LSR long range reordering: LSR valid compression modes:
NONE, SINGLE valid surface formats: texture format 8_8_8_X8 and corresponding color formats valid multi-
sampling modes: MS8*

[XXX]

Zeta storage types

Todo: write me

GF100 storage types

Todo: write me

2.7.8 Tesla virtual memory

Contents

• Tesla virtual memory

– Introduction

– VM users

– Channels

– DMA objects

– Page tables

– TLB flushes

– User vs supervisor accesses

– Storage types

– Compression modes

– VM faults

126 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Introduction

G80 generation cards feature an MMU that translates user-visible logical addresses to physical ones. The translation
has two levels: DMA objects, which behave like x86 segments, and page tables. The translation involves the following
address spaces:

• logical addresses: 40-bit logical address + channel descriptor address + DMAobj address. Specifies an address
that will be translated by the relevant DMAobj, and then by the page tables if DMAobj says so. All addresses
appearing in FIFO command streams are logical addresses, or eventually translated to logical addresses

• virtual addresses: 40-bit virtual address + channel descriptor address, specifies an address that will be looked
up in the page tables of the relevant channel. Virtual addresses are always a result of logical address translation
and can never be specified directly.

• linear addresses: 40-bit linear address + target specifier, which can be VRAM, SYSRAM_SNOOP, or SYS-
RAM_NOSNOOP. They can refer to:

– VRAM: 32-bit linear addresses - high 8 bits are ignored - on-board memory of the card. Supports LSR
and compression. See G80:GF100 VRAM structure and usage

– SYSRAM: 40-bit linear addresses - accessing this space will cause the card to invoke PCIE read/write
transactions to the given bus address, allowing it to access system RAM or other PCI devices’ memory.
SYSRAM_SNOOP uses normal PCIE transactions, SYSRAM_NOSNOOP uses PCIE transactions with
the “no snoop” bit set.

Mostly, linear addresses are a result of logical address translation, but some memory areas are specified directly
by their linear addresses.

• 12-bit tag addresses: select a cell in hidden compression tag RAM, used for compressed areas of VRAM. See
G80 VRAM compression

• physical address: for VRAM, the partition/subpartition/row/bank/column coordinates of a memory cell; for
SYSRAM, the final bus address

Todo: kill this list in favor of an actual explanation

The VM’s job is to translate a logical address into its associated data:

• linear address

• target: VRAM, SYSRAM_SNOOP, or SYSRAM_NOSNOOP

• read-only flag

• supervisor-only flag

• storage type: a special value that selects the internal structure of contained data and enables more efficient
accesses by increasing cache locality

• compression mode: if set, write accesses will attempt to compress the written data and, if successful, write only
a fraction of the original write size to memory and mark the tile as compressed in the hidden tag memory. Read
accesses will transparently uncompress the data. Can only be used on VRAM.

• compression tag address: the address of tag cell to be used if compression is enabled. Tag memory is addressed
by “cells”. Each cell is actually 0x200 tag bits. For SINGLE compression mode, every 0x10000 bytes of
compressed VRAM require 1 tag cell. For DOUBLE compression mode, every 0x10000 bytes of VRAM
require 2 tag cells.

• partition cycle: either short or long, affecting low-level VRAM storage

• encryption flag [G84+]: for SYSRAM, causes data to be encrypted with a simple cipher before being stored

2.7. Memory access and structure 127



nVidia Hardware Documentation, Release git

A VM access can also end unsuccessfully due to multiple reasons, like a non present page. When that happens, a
VM fault is triggered. The faulting access data is stored, and fault condition is reported to the requesting engine.
Consequences of a faulted access depend on the engine.

VM users

VM is used by several clients, which are identified by VM client id:

A related concept is VM engine, which is a group of clients that share TLBs and stay on the same channel at any single
moment. It’s possible for a client to be part of several VM engines. The engines are:

Client+engine combination doesn’t, however, fully identify the source of the access - to disambiguate that, DMA slot
ids are used. The set of DMA slot ids depends on both engine and client id. The DMA slots are [engine/client/slot]:

• 0/0/0: PGRAPH STRMOUT

• 0/3/0: PGRAPH context

• 0/3/1: PGRAPH NOTIFY

• 0/3/2: PGRAPH QUERY

• 0/3/3: PGRAPH COND

• 0/3/4: PGRAPH m2mf BUFFER_IN

• 0/3/5: PGRAPH m2mf BUFFER_OUT

• 0/3/6: PGRAPH m2mf BUFFER_NOTIFY

• 0/5/0: PGRAPH CODE_CB

• 0/5/1: PGRAPH TIC

• 0/5/2: PGRAPH TSC

• 0/7/0: PGRAPH CLIPID

• 0/9/0: PGRAPH VERTEX

• 0/a/0: PGRAPH TEXTURE / SRC2D

• 0/b/0-7: PGRAPH RT 0-7

• 0/b/8: PGRAPH ZETA

• 0/b/9: PGRAPH LOCAL

• 0/b/a: PGRAPH GLOBAL

• 0/b/b: PGRAPH STACK

• 0/b/c: PGRAPH DST2D

• 4/4/0: PEEPHOLE write

• 4/8/0: PEEPHOLE read

• 6/4/0: BAR1 write

• 6/8/0: BAR1 read

• 6/4/1: BAR3 write

• 6/8/1: BAR3 read

• 5/8/0: FIFO pushbuf read

128 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 5/4/1: FIFO semaphore write

• 5/8/1: FIFO semaphore read

• c/8/1: FIFO background semaphore read

• 1/6/8: PVP1 context [G80:G84]

• 7/6/4: PME context [G80:G84]

• 8/6/1: PMPEG CMD [G80:G98 G200:MCP77]

• 8/6/2: PMPEG DATA [G80:G98 G200:MCP77]

• 8/6/3: PMPEG IMAGE [G80:G98 G200:MCP77]

• 8/6/4: PMPEG context [G80:G98 G200:MCP77]

• 8/6/5: PMPEG QUERY [G84:G98 G200:MCP77]

• b/f/0: PCOUNTER record buffer [G84:GF100]

• 1/c/0-f: PVP2 DMA ports 0-0xf [G84:G98 G200:MCP77]

• 9/d/0-f: PBSP DMA ports 0-0xf [G84:G98 G200:MCP77]

• a/e/0: PCIPHER context [G84:G98 G200:MCP77]

• a/e/1: PCIPHER SRC [G84:G98 G200:MCP77]

• a/e/2: PCIPHER DST [G84:G98 G200:MCP77]

• a/e/3: PCIPHER QUERY [G84:G98 G200:MCP77]

• 1/c/0-7: PPDEC falcon ports 0-7 [G98:G200 MCP77-]

• 8/6/0-7: PPPP falcon ports 0-7 [G98:G200 MCP77-]

• 9/d/0-7: PVLD falcon ports 0-7 [G98:G200 MCP77-]

• a/e/0-7: PSEC falcon ports 0-7 [G98:GT215]

• d/13/0-7: PCOPY falcon ports 0-7 [GT215-]

• e/11/0-7: PDAEMON falcon ports 0-7 [GT215-]

• 7/14/0-7: PVCOMP falcon ports 0-7 [MCP89-]

Todo: PVP1

Todo: PME

Todo: Move to engine doc?

Channels

All VM accesses are done on behalf of some “channel”. A VM channel is just a memory structure that contains the
DMA objects and page directory. VM channel can be also a FIFO channel, for use by PFIFO and fifo engines and
containing other data structures, or just a “bare” VM channel for use with non-fifo engines.

2.7. Memory access and structure 129



nVidia Hardware Documentation, Release git

A channel is identified by a “channel descriptor”, which is a 30-bit number that points to the base of the channel
memory structure:

• bits 0-27: bits 12-39 of channel memory structure linear address

• bits 28-29: the target specifier for channel memory structure - 0: VRAM - 1: invalid, do not use - 2: SYS-
RAM_SNOOP - 3: SYSRAM_NOSNOOP

The channel memory structure contains a few fixed-offset elements, as well as serving as a container for channel
objects, such as DMA objects, that can be placed anywhere inside the structure. Due to the channel objects inside it,
the channel structure has no fixed size, although the maximal address of channel objects is 0xffff0. Channel structure
has to be aligned to 0x1000 bytes.

The original G80 channel structure has the following fixed elements:

• 0x000-0x200: RAMFC [fifo channels only]

• 0x200-0x400: DMA objects for fifo engines’ contexts [fifo channels only]

• 0x400-0x1400: PFIFO CACHE [fifo channels only]

• 0x1400-0x5400: page directory

G84+ cards instead use the following structure:

• 0x000-0x200: DMA objects for fifo engines’ contexts [fifo channels only]

• 0x200-0x4200: page directory

The channel objects are specified by 16-bit offsets from start of the channel structure in 0x10-byte units.

DMA objects

The only channel object type that VM subsystem cares about is DMA objects. DMA objects represent contiguous
segments of either virtual or linear memory and are the first stage of VM address translation. DMA objects can be
paged or unpaged. Unpaged DMA objects directly specify the target space and all attributes, merely adding the base
address and checking the limit. Paged DMA objects add the base address, then look it up in the page tables. Attributes
can either come from page tables, or be individually overriden by the DMA object.

DMA objects are specifid by 16-bit “selectors”. In case of fifo engines, the RAMHT is used to translate from user-
visible 32-bit handles to the selectors [see RAMHT and the FIFO objects]. The selector is shifted left by 4 bits and
added to channel structure base to obtain address of DMAobj structure, which is 0x18 bytes long and made of 32-bit
LE words:

word 0:

• bits 0-15: object class. Ignored by VM, but usually validated by fifo engines - should be 0x2 [read-only],
0x3 [write-only], or 0x3d [read-write]

• bits 16-17: target specifier:

– 0: VM - paged object - the logical address is to be added to the base address to obtain a virtual address,
then the virtual address should be translated via the page tables

– 1: VRAM - unpaged object - the logical address should be added to the base address to directly obtain
the linear address in VRAM

– 2: SYSRAM_SNOOP - like VRAM, but gives SYSRAM address

– 3: SYSRAM_NOSNOOP - like VRAM, but gives SYSRAM address and uses nosnoop transactions

• bits 18-19: read-only flag

– 0: use read-only flag from page tables [paged objects only]

130 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– 1: read-only

– 2: read-write

• bits 20-21: supervisor-only flag

– 0: use supervisor-only flag from page tables [paged objects only]

– 1: user-supervisor

– 2: supervisor-only

• bits 22-28: storage type. If the value is 0x7f, use storage type from page tables, otherwise directly
specifies the storage type

• bits 29-30: compression mode

– 0: no compression

– 1: SINGLE compression

– 2: DOUBLE compression

– 3: use compression mode from page tables

• bit 31: if set, is a supervisor DMA object, user DMA object otherwise

word 1: bits 0-31 of limit address

word 2: bits 0-31 of base address

word 3:

• bits 0-7: bits 32-39 of base address

• bits 24-31: bits 32-39 of limit address

word 4:

• bits 0-11: base tag address

• bits 16-27: limit tag address

word 5:

• bits 0-15: compression base address bits 16-31 [bits 0-15 are forced to 0]

• bits 16-17: partition cycle

– 0: use partition cycle from page tables

– 1: short cycle

– 2: long cycle

• bits 18-19 [G84-]: encryption flag

– 0: not encrypted

– 1: encrypted

– 2: use encryption flag from page tables

First, DMA object selector is compared with 0. If the selector is 0, NULL_DMAOBJ fault happens. Then, the logical
address is added to the base address from DMA object. The resulting address is compared with the limit address from
DMA object and, if larger or equal, DMAOBJ_LIMIT fault happens. If DMA object is paged, the address is looked up
in the page tables, with read-only flag, supervisor-only flag, storage type, and compression mode optionally overriden
as specified by the DMA object. Otherwise, the address directly becomes the linear address. For compressed unpaged
VRAM objects, the tag address is computed as follows:

2.7. Memory access and structure 131



nVidia Hardware Documentation, Release git

• take the computed VRAM linear address and substract compression base address from it. if result is negative,
force compression mode to none

• shift result right by 16 bits

• add base tag address to the result

• if result <= limit tag addres, this is the tag address to use. Else, force compression mode to none.

Places where DMA objects are bound, that is MMIO registers or FIFO methods, are commonly called “DMA slots”.

Most engines cache the most recently bound DMA object. To flush the caches, it’s usually enough to rewrite the
selector register, or resubmit the selector method.

It should be noted that many engines require the DMA object’s base address to be of some specific alignment. The
alignment depends on the engine and slot.

The fifo engine context dmaobjs are a special set of DMA objects worth mentioning. They’re used by the fifo engines
to store per-channel state while given channel is inactive on the relevant engine. Their size and structure depend on
the engine. They have fixed selectors, and hence reside at fixed positions inside the channel structure. On the original
G80, the objects are:

Selector Address Engine
0x0020 0x00200 PGRAPH
0x0022 0x00220 PVP1
0x0024 0x00240 PME
0x0026 0x00260 PMPEG

On G84+ cards, they are:

Selector Address Present on Engine
0x0002 0x00020 all PGRAPH
0x0004 0x00040 VP2 PVP2
0x0004 0x00040 VP3- PPDEC
0x0006 0x00060 VP2 PMPEG
0x0006 0x00060 VP3- PPPP
0x0008 0x00080 VP2 PBSP
0x0008 0x00080 VP3- PVLD
0x000a 0x000a0 VP2 PCIPHER
0x000a 0x000a0 VP3 PSEC
0x000a 0x000a0 MCP89- PVCOMP
0x000c 0x000c0 GT215- PCOPY

Page tables

If paged DMA object is used, the virtual address is further looked up in page tables. The page tables are two-level.
Top level is 0x800-entry page directory, where each entry covers 0x20000000 bytes of virtual address space. The page
directory is embedded in the channel structure. It starts at offset 0x1400 on the original G80, at 0x200 on G84+. Each
page directory entry, or PDE, is 8 bytes long. The PDEs point to page tables and specify the page table attributes. Each
page table can use either small, medium [GT215-] or large pages. Small pages are 0x1000 bytes long, medium pages
are 0x4000 bytes long, and large pages are 0x10000 bytes long. For small-page page tables, the size of page table can
be artificially limitted to cover only 0x2000, 0x4000, or 0x8000 pages instead of full 0x20000 pages - the pages over
this limit will fault. Medium- and large-page page tables always cover full 0x8000 or 0x2000 entries. Page tables of
both kinds are made of 8-byte page table entries, or PTEs.

132 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: verify GT215 transition for medium pages

The PDEs are made of two 32-bit LE words, and have the following format:

word 0:

• bits 0-1: page table presence and page size

– 0: page table not present

– 1: large pages [64kiB]

– 2: medium pages [16kiB] [GT215-]

– 3: small pages [4kiB]

• bits 2-3: target specifier for the page table itself

– 0: VRAM

– 1: invalid, do not use

– 2: SYSRAM_SNOOP

– 3: SYSRAM_NOSNOOP

• bit 4: ??? [XXX: figure this out]

• bits 5-6: page table size [small pages only]

– 0: 0x20000 entries [full]

– 1: 0x8000 entries

– 2: 0x4000 entries

– 3: 0x2000 entries

• bits 12-31: page table linear address bits 12-31

word 1:

• bits 32-39: page table linear address bits 32-39

The page table start address has to be aligned to 0x1000 bytes.

The PTEs are made of two 32-bit LE words, and have the following format:

word 0:

• bit 0: page present

• bits 1-2: ??? [XXX: figure this out]

• bit 3: read-only flag

• bits 4-5: target specifier

– 0: VRAM

– 1: invalid, do not use

– 2: SYSRAM_SNOOP

– 3: SYSRAM_NOSNOOP

• bit 6: supervisor-only flag

• bits 7-9: log2 of contig block size in pages [see below]

2.7. Memory access and structure 133



nVidia Hardware Documentation, Release git

• bits 12-31: bits 12-31 of linear address [small pages]

• bits 14-31: bits 14-31 of linear address [medium pages]

• bits 16-31: bits 16-31 of linear address [large pages]

word 1:

• bits 32-39: bits 32-39 of linear address

• bits 40-46: storage type

• bits 47-48: compression mode

• bits 49-60: compression tag address

• bit 61: partition cycle

– 0: short cycle

– 1: long cycle

• bit 62 [G84-]: encryption flag

Contig blocks are a special feature of PTEs used to save TLB space. When 2^o adjacent pages starting on 2^o
page aligned bounduary map to contiguous linear addresses [and, if appropriate, contiguous tag addresses] and have
identical other attributes, they can be marked as a contig block of order o, where o is 0-7. To do this, all PTEs for that
range should have bits 7-9 set equal to o, and linear/tag address fields set to the linear/tag address of the first page in
the contig block [ie. all PTEs belonging to contig block should be identical]. The starting linear address need not be
aligned to contig block size, but virtual address has to be.

TLB flushes

The page table contents are cached in per-engine TLBs. To flush TLB contents, the TLB flush register 0x100c80
should be used:

MMIO 0x100c80:

• bit 0: trigger. When set, triggers the TLB flush. Will auto-reset to 0 when flush is complete.

• bits 16-19: VM engine to flush

A flush consists of writing engine << 16 | 1 to this register and waiting until bit 0 becomes 0. However, note that
G86 PGRAPH has a bug that can result in a lockup if PGRAPH TLB flush is initiated while PGRAPH is running, see
graph/g80-pgraph.txt for details.

User vs supervisor accesses

Todo: write me

Storage types

Todo: write me

134 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Compression modes

Todo: write me

VM faults

Todo: write me

2.7.9 G80:GF100 VRAM structure and usage

Contents

• G80:GF100 VRAM structure and usage

– Introduction

– Partition cycle

* Tag memory addressing

– Subpartition cycle

– Row/bank/column split

– Bank cycle

– Storage types

Introduction

The basic structure of G80 memory is similiar to other card generations and is described in Memory structure.

There are two sub-generations of G80 memory controller: the original G80 one and the GT215 one. The G80 memory
controller was designed for DDR2 and GDDR3 memory. It’s split into several [1-8] partitions, each of them having 64-
bit memory bus. The GT215 memory controller added support for DDR3 and GDDR5 memory and split the partitions
into two subpartitions, each of them having 32-bit memory bus.

On G80, the combination of DDR2/GDDR3 [ie. 4n prefetch] memory with 64-bit memory bus results in 32-byte
minimal transfer size. For that reason, 32-byte units are called sectors. On GT215, DDR3/GDDR5 [ie. 8n prefetch]
memory with 32-bit memory bus gives the same figure.

Next level of granularity for memory is 256-byte gobs. Memory is always assigned to partitions in units of whole gobs
- all addresses in a gob will stay in a single partition. Also, format dependent memory address reordering is applied
within a gob.

The final fixed level of VRAM granularity is a 0x10000-byte [64kiB] large page. While G80 VM supports using
smaller page sizes for VRAM, certain features [compression, long partition cycle] should only be enabled on per-large
page basis.

Apart from VRAM, the memory controller uses so-called tag RAM, which is used for compression. Compression is a
feature that allows a memory block to be stored in a more efficient manner [eg. using 2 sectors instead of the normal
8] if its contents are sufficiently regular. The tag RAM is used to store the compression information for each block:

2.7. Memory access and structure 135



nVidia Hardware Documentation, Release git

whether it’s compressed, and if so, in what way. Note that compression is only meant to save memory bandwidth, not
memory capacity: the sectors saved by compression don’t have to be transmitted over the memory link, but they’re still
assigned to that block and cannot be used for anything else. The tag RAM is allocated in units of tag cells, which have
varying size depending on the partition number, but always correspond to 1 or 2 large pages, depending on format.

VRAM is addressed by 32-bit linear addresses. Some memory attributes affecting low-level storage are stored together
with the linear address in the page tables [or linear DMA object]. These are:

• storage type: a 7-bit enumerated value that describes the memory purpose and low-level storage within a block,
and also selects whether normal or alternative bank cycle is used

• compression mode: a 2-bit field selecting whether the memory is:

– not compressed,

– compressed with 2 tag bits per block [1 tag cell per large page], or

– compressed with 4 tag bits per block [2 tag cells per large page]

• compression tag cell: a 12-bit index into the available tag memory, used for compressed memory

• partition cycle: a 1-bit field selecting whether the short [1 block] or long [4 blocks] partition cycle is used

The linear addresses are transformed in the following steps:

1. The address is split into the block index [high 24 bits], and the offset inside the block [low 8 bits].

2. The block index is transformed to partition id and partition block index. The process depends on whether the
storage type is blocklinear or pitch and the partition cycle selected. If compression is enabled, the tag cell index
is also translated to partition tag bit index.

3. [GT215+ only] The partition block index is translated into subpartition ID and subpartition block index. If
compression is enabled, partition tag bit index is also translated to subpartition tag bit index.

4. [Sub]partition block index is split into row/bank/column fields.

5. Row and bank indices are transformed according to the bank cycle. This process depends on whether the storage
type selects the normal or alternate bank cycle.

6. Depending on storage type and the compression tag contents, the offset in the block may refer to varying bytes
inside the block, and the data may be transformed due to compression. When the required transformed block
offsets have been determined, they’re split into the remaining low column bits and offset inside memory word.

Partition cycle

Partition cycle is the first address transformation. Its purpose is converting linear [global] addressing to partition index
and per-partition addressing. The inputs to this process are:

• the block index [ie. bits 8-31 of linear VRAM address]

• partition cycle selected [short or long]

• pitch or blocklinear mode - pitch is used when storage type is PITCH, blocklinear for all other storage types

• partition count in the system [as selected by PBUS HWUNITS register]

The outputs of this process are:

• partition ID

• partition block index

136 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Partition pre-ID and ID adjust are intermediate values in this process.

On G80 [and G80 only], there are two partition cycles available: short one and long one. The short one switches
partitions every block, while the long one switches partitions roughly every 4 blocks. However, to make sure addresses
don’t “bleed” between large page bounduaries, long partition cycle reverts to switching partitions every block near
large page bounduaries:

if partition_cycle == LONG and gpu == G80:
# round down to 4 * partition_count multiple
group_start = block_index / (4 * partition_count) * 4 * partition_count
group_end = group_start + 4 * partition_count - 1
# check whether the group is entirely within one large page
use_long_cycle = (group_start & ~0xff) == (group_end & ~0xff)

else:
use_long_cycle = False

On G84+, long partition cycle is no longer supported - short cycle is used regardless of the setting.

Todo: verify it’s really the G84

When short partition cycle is selected, the partition pre-ID and partition block index are calculated by simple division.
The partition ID adjust is low 5 bits of partition block index:

if not use_long_cycle:
partition_preid = block_index % partition_count
partition_block_index = block_index / partition_count
partition_id_adjust = partition_block_index & 0x1f

When long partition cycle is selected, the same calculation is performed, but with bits 2-23 of block index, and the
resulting partition block index is merged back with bits 0-1 of block index:

if use_long_cycle:
quadblock_index = block_index >> 2
partition_preid = quadblock_index % partition_count
partition_quadblock_index = quadblock_index / partition_count
partition_id_adjust = partition_quadblock_index & 0x1f
partition_block_index = partition_quadblock_index << 2 | (block_index & 3)

Finally, the real partition ID is determined. For pitch mode, the partition ID is simply equal to the partition pre-ID. For
blocklinear mode, the partition ID is adjusted as follows:

• for 1, 3, 5, or 7-partition GPUs: no change [partition ID = partition pre-ID]

• for 2 or 6-partition GPUs: XOR together all bits of partition ID adjust, then XOR the partition pre-ID with the
resulting bit to get the partition ID

• for 4-partition GPUs: add together bits 0-1, bits 2-3, and bit 4 of partition ID adjust, substract it from partition
pre-ID, and take the result modulo 4. This is the partition ID.

• for 8-partition GPUs: add together bits 0-2 and bits 3-4 of partition ID adjust, substract it from partition pre-ID,
and take the result modulo 8. This is the partition ID.

In summary:

if blocklinear or partition_count in [1, 3, 5, 7]:
partition_id = partition_preid

elif partition_count in [2, 6]:
xor = 0

(continues on next page)

2.7. Memory access and structure 137



nVidia Hardware Documentation, Release git

(continued from previous page)

for bit in range(5):
xor ^= partition_id_adjust >> bit & 1

partition_id = partition_preid ^ xor
elif partition_count == 4:

sub = partition_id_adjust & 3
sub += partition_id_adjust >> 2 & 3
sub += partition_id_adjust >> 4 & 1
partition_id = (partition_preid - sub) % 4

elif partition_count == 8:
sub = partition_id_adjust & 7
sub += partition_id_adjust >> 3 & 3
partition_id = (partition_preid - sub) % 8

Tag memory addressing

Todo: write me

Subpartition cycle

On GT215+, once the partition block index has been determined, it has to be further transformed to subpartition ID and
subpartition block index. On G80, this step doesn’t exist - partitions are not split into subpartitions, and “subpartition”
in further steps should be taken to actually refer to a partition.

The inputs to this process are:

• partition block index

• subpartition select mask

• subpartition count

The outputs of this process are:

• subpartition ID

• subpartition block index

The subpartition configuration is stored in the following register:

MMIO 0x100268: [GT215-]

• bits 8-10: SELECT_MASK, a 3-bit value affecting subpartition ID selection.

• bits 16-17: ???

• bits 28-29: ENABLE_MASK, a 2-bit mask of enabled subpartitions. The only valid values are 1 [only
subpartition 0 enabled] and 3 [both subpartitions enabled].

When only one subpartition is enabled, the subpartition cycle is effectively a NOP - subpartition ID is 0, and subparti-
tion block index is same as partition block index. When both subpartitions are enabled, The subpartition block index
is the partition block index shifted right by 1, and the subpartition ID is based on low 14 bits of partition block index:

if subpartition_count == 1:
subpartition_block_index = partition_block_index
subpartition_id = 0

else:
(continues on next page)

138 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

subpartition_block_index = partition_block_index >> 1
# bit 0 and bits 4-13 of the partition block index always used for
# subpartition ID selection
subpartition_select_bits = partition_block_index & 0x3ff1
# bits 1-3 of partition block index only used if enabled by the select
# mask
subpartition_select_bits |= partition_block_index & (subpartition_select_mask <<

→˓1)
# subpartition ID is a XOR of all the bits of subpartition_select_bits
subpartition_id = 0
for bit in range(14):

subpartition_id ^= subpartition_select_bits >> bit & 1

Todo: tag stuff?

Row/bank/column split

Todo: write me

Bank cycle

Todo: write me

Storage types

Todo: write me

2.7.10 G80 VRAM compression

Contents

• G80 VRAM compression

– Introduction

Todo: write me

2.7. Memory access and structure 139



nVidia Hardware Documentation, Release git

Introduction

Todo: write me

2.7.11 G80:GF100 P2P memory access

Contents

• G80:GF100 P2P memory access

– Introduction

– MMIO registers

Todo: write me

Introduction

Todo: write me

MMIO registers

Todo: write me

2.7.12 G80:GF100 BAR1 remapper

Contents

• G80:GF100 BAR1 remapper

– Introduction

– MMIO registers

Todo: write me

140 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Introduction

Todo: write me

MMIO registers

Todo: write me

2.7.13 GF100 virtual memory

Contents

• GF100 virtual memory

– Introduction

Todo: write me

Introduction

Todo: write me

2.7.14 GF100- VRAM structure and usage

Contents

• GF100- VRAM structure and usage

– Introduction

Todo: write me

Introduction

Todo: write me

2.7. Memory access and structure 141



nVidia Hardware Documentation, Release git

2.7.15 GF100 VRAM compression

Contents

• GF100 VRAM compression

– Introduction

Todo: write me

Introduction

Todo: write me

2.8 PFIFO: command submission to execution engines

Contents:

2.8.1 FIFO overview

Contents

• FIFO overview

– Introduction

– Overall operation

Introduction

Commands to most of the engines are sent through a special engine called PFIFO. PFIFO maintains multiple fully
independent command queues, known as “channels” or “FIFO”s. Each channel is controlled through a “channel
control area”, which is a region of MMIO [pre-GF100] or VRAM [GF100+]. PFIFO intercepts all accesses to that
area and acts upon them.

PFIFO internally does time-sharing between the channels, but this is transparent to the user applications. The engines
that PFIFO controls are also aware of channels, and maintain separate context for each channel.

The context-switching ability of PFIFO depends on card generation. Since NV40, PFIFO is able to switch between
channels at essentially any moment. On older cards, due to lack of backing storage for the CACHE, a switch is only
possible when the CACHE is empty. The PFIFO-controlled engines are, however, much worse at switching: they can
only switch between commands. While this wasn’t a big problem on old cards, since the commands were guaranteed
to execute in finite time, introduction of programmable shaders with looping capabilities made it possible to effectively
hang the whole GPU by launching a long-running shader.

142 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: check if it still holds on GF100

On NV1:NV4, the only engine that PFIFO controls is PGRAPH, the main 2d/3d engine of the card. In addition, PFIFO
can submit commands to the SOFTWARE pseudo-engine, which will trigger an interrupt for every submitted method.

The engines that PFIFO controls on NV4:GF100 are:

Id Present on Name Description
0 all SOFT-

WARE
Not really an engine, causes interrupt for each command, can be used to execute
driver functions in sync with other commands.

1 all PGRAPH Main engine of the card: 2d, 3d, compute.
2 NV31:G98

G200:MCP77
PM-
PEG

The PFIFO interface to VPE MPEG2 decoding engine.

3 NV40:G84 PME VPE motion estimation engine.
4 NV41:G84 PVP1 VPE microcoded vector processor.
4 VP2 PVP2 xtensa-microcoded vector processor.
5 VP2 PCI-

PHER
AES cryptography and copy engine.

6 VP2 PBSP xtensa-microcoded bitstream processor.
2 VP3- PPPP falcon-based video post-processor.
4 VP3- PPDEC falcon-based microcoded video decoder.
5 VP3 PSEC falcon-based AES crypto engine. On VP4, merged into PVLD.
6 VP3- PVLD falcon-based variable length decoder.
3 GT215- PCOPY falcon-based memory copy engine.
5 MCP89:GF100 PV-

COMP
falcon-based video compositing engine.

The engines that PFIFO controls on GF100- are:

Id Id Id Id Id Present
on

Name Description

GF100GK104GK208GK20AGM107
1f 1f 1f 1f 1f all SOFT-

WARE
Not really an engine, causes interrupt for each command,
can be used to execute driver functions in sync with other
commands.

0 0 0 0 0 all PGRAPHMain engine of the card: 2d, 3d, compute.
1 1 1 ? - GF100:GM107PPDEC falcon-based microcoded picture decoder.
2 2 2 ? - GF100:GM107PPPP falcon-based video post-processor.
3 3 3 ? - GF100:GM107PVLD falcon-based variable length decoder.
4,5 - - - - GF100:GK104PCOPY falcon-based memory copy engines.
- 6 5 ? 2 GK104: PVENC falcon-based H.264 encoding engine.
- 4,5.7 4,-

.6
? 4,-

.5
GK104: PCOPY Memory copy engines.

- - - ? 1 GM107: PVDEC falcon-based unified video decoding engine
- - - ? 3 GM107: PSEC falcon-based AES crypto engine, recycled

This file deals only with the user-visible side of the PFIFO. For kernel-side programming, see nv1-pfifo, nv4-pfifo,
g80-pfifo, or gf100-pfifo.

Note: GF100 information can still be very incomplete / not exactly true.

2.8. PFIFO: command submission to execution engines 143



nVidia Hardware Documentation, Release git

Overall operation

The PFIFO can be split into roughly 4 pieces:

• PFIFO pusher: collects user’s commands and injects them to

• PFIFO CACHE: a big queue of commands waiting for execution by

• PFIFO puller: executes the commands, passes them to the proper engine, or to the driver.

• PFIFO switcher: ticks out the time slices for the channels and saves / restores the state of the channels between
PFIFO registers and RAMFC memory.

A channel consists of the following:

• channel mode: PIO [NV1:GF100], DMA [NV4:GF100], or IB [G80-]

• PFIFO DMA pusher state [DMA and IB channels only]

• PFIFO CACHE state: the commands already accepted but not yet executed

• PFIFO puller state

• RAMFC: area of VRAM storing the above when channel is not currently active on PFIFO [not user-visible]

• RAMHT [pre-GF100 only]: a table of “objects” that the channel can use. The objects are identified by arbitrary
32-bit handles, and can be DMA objects [see NV3 DMA objects, NV4:G80 DMA objects, DMA objects] or
engine objects [see Puller - handling of submitted commands by FIFO and engine documentation]. On pre-G80
cards, individual objects can be shared between channels.

• vspace [G80+ only]: A hierarchy of page tables that describes the virtual memory space visible to engines while
executing commands for the channel. Multiple channels can share a vspace. [see Tesla virtual memory, GF100
virtual memory]

• engine-specific state

Channel mode determines the way of submitting commands to the channel. PIO mode is available on pre-GF100
cards, and involves poking the methods directly to the channel control area. It’s slow and fragile - everything breaks
down easily when more than one channel is used simultanously. Not recommended. See PIO submission to FIFOs for
details. On NV1:NV40, all channels support PIO mode. On NV40:G80, only first 32 channels support PIO mode. On
G80:GF100 only channel 0 supports PIO mode.

Todo: check PIO channels support on NV40:G80

NV1 PFIFO doesn’t support any DMA mode.

NV3 PFIFO introduced a hacky DMA mode that requires kernel assistance for every submitted batch of commands
and prevents channel switching while stuff is being submitted. See nv3-pfifo-dma for details.

NV4 PFIFO greatly enhanced the DMA mode and made it controllable directly through the channel control area.
Thus, commands can now be submitted by multiple applications simultaneously, without coordination with each other
and without kernel’s help. DMA mode is described in DMA submission to FIFOs on NV4.

G80 introduced IB mode. IB mode is a modified version of DMA mode that, instead of following a single stream
of commands from memory, has the ability to stitch together parts of multiple memory areas into a single command
stream - allowing constructs that submit commands with parameters pulled directly from memory written by earlier
commands. IB mode is described along with DMA mode in DMA submission to FIFOs on NV4.

GF100 rearchitectured the whole PFIFO, made it possible to have up to 3 channels executing simultaneously, and
introduced a new DMA packet format.

The commands, as stored in CACHE, are tuples of:

144 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• subchannel: 0-7

• method: 0-0x1ffc [really 0-0x7ff] pre-GF100, 0-0x3ffc [really 0-0xfff] GF100+

• parameter: 0-0xffffffff

• submission mode [NV10+]: I or NI

Subchannel identifies the engine and object that the command will be sent to. The subchannels have no fixed assign-
ments to engines/objects, and can be freely bound/rebound to them by using method 0. The “objects” are individual
pieces of functionality of PFIFO-controlled engine. A single engine can expose any number of object types, though
most engines only expose one.

The method selects an individual command of the object bound to the selected subchannel, except methods 0-0xfc
which are special and are executed directly by the puller, ignoring the bound object. Note that, traditionally, methods
are treated as 4-byte addressable locations, and hence their numbers are written down multiplied by 4: method 0x3f
thus is written as 0xfc. This is a leftover from PIO channels. In the documentation, whenever a specific method
number is mentioned, it’ll be written pre-multiplied by 4 unless specified otherwise.

The parameter is an arbitrary 32-bit value that accompanies the method.

The submission mode is I if the command was submitted through increasing DMA packet, or NI if the command was
submitted through non-increasing packet. This information isn’t actually used for anything by the card, but it’s stored
in the CACHE for certain optimisation when submitting PGRAPH commands.

Method execution is described in detail in DMA puller and engine-specific documentation.

Pre-NV1A, PFIFO treats everything as little-endian. NV1A introduced big-endian mode, which affects pushbuffer/IB
reads and semaphores. On NV1A:G80 cards, the endianness can be selected per channel via the big_endian flag. On
G80+ cards, PFIFO endianness is a global switch.

Todo: look for GF100 PFIFO endian switch

The channel control area endianness is not affected by the big_endian flag or G80+ PFIFO endianness switch. Instead,
it follows the PMC MMIO endianness switch.

Todo: is it still true for GF100, with VRAM-backed channel control area?

2.8.2 PIO submission to FIFOs

Contents

• PIO submission to FIFOs

– Introduction

– MMIO areas

– Channel submission area

– Free space determination

– RAMRO

2.8. PFIFO: command submission to execution engines 145



nVidia Hardware Documentation, Release git

Todo: write me

Introduction

Todo: write me

MMIO areas

Todo: write me

Channel submission area

Todo: write me

Free space determination

Todo: write me

RAMRO

Todo: write me

2.8.3 DMA submission to FIFOs on NV4

Contents

• DMA submission to FIFOs on NV4

– Introduction

– Pusher state

– Errors

– Channel control area

– NV4-style mode

– IB mode

146 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– The commands - pre-GF100 format

– The commands

* NV4 method submission commands

* NV4 control flow commands

* NV4 SLI conditional command

– GF100 commands

– The pusher pseudocode - pre-GF100

Introduction

There are two modes of DMA command submission: The NV4-style DMA mode and IB mode.

Both of them are based on a conception of “pushbuffer”: an area of memory that user fills with commands and tells
PFIFO to process. The pushbuffers are then assembled into a “command stream” consisting of 32-bit words that make
up “commands”. In NV4-style DMA mode, the pushbuffer is always read linearly and converted directly to command
stream, except when the “jump”, “return”, or “call” commands are encountered. In IB mode, the jump/call/return
commands are disabled, and command stream is instead created with use of an “IB buffer”. The IB buffer is a circular
buffer of (base,length) pairs describing areas of pushbuffer that will be stitched together to create the command stream.
NV4- style mode is available on NV4:GF100, IB mode is available on G80+.

Todo: check for NV4-style mode on GF100

In both cases, the command stream is then broken down to commands, which get executed. For most commands, the
execution consists of storing methods into CACHE for execution by the puller.

Pusher state

The following data makes up the DMA pusher state:

type name cards description
dmaobj dma_pushbuffer :GF100 1 the pushbuffer and IB

DMA object
b32 dma_limit :GF100 12 pushbuffer size limit
b32 dma_put all pushbuffer current end ad-

dress
b32 dma_get all pushbuffer current read

address
b11/12 dma_state.mthd all Current method
b3 dma_state.subc all Current subchannel
b24 dma_state.mcnt all Current method count
b32 dcount_shadow NV5: number of already-

processed methods in
cmd

bool dma_state.ni NV10+ Current command’s NI
flag
Continued on next page

2.8. PFIFO: command submission to execution engines 147



nVidia Hardware Documentation, Release git

Table 10 – continued from previous page
type name cards description
bool dma_state.lenp G80+ 3 Large NI command

length pending
b32 ref NV10+ reference counter [shared

with puller]
bool subr_active NV1A+ 2 Subroutine active
b32 subr_return NV1A+ 2 subroutine return ad-

dress
bool big_endian NV11:G80 1 pushbuffer endian

switch
bool sli_enable G80+ 1 SLI cond command en-

abled
b12 sli_mask G80+ 1 SLI cond mask
bool sli_active NV40+ SLI cond currently active
bool ib_enable G80+ 1 IB mode enabled
bool nonmain G80+ 3 non-main pushbuffer ac-

tive
b8 dma_put_high G80+ extra 8 bits for dma_put
b8 dma_put_high_rs G80+ dma_put_high read

shadow
b8 dma_put_high_ws G80+ 2 dma_put_high write

shadow
b8 dma_get_high G80+ extra 8 bits for dma_get
b8 dma_get_high_rs G80+ dma_get_high read

shadow
b32 ib_put G80+ 3 IB current end position
b32 ib_get G80+ 3 IB current read position
b40 ib_address G80+ 13 IB address
b8 ib_order G80+ 13 IB size
b32 dma_mget G80+ 3 main pushbuffer last

read address
b8 dma_mget_high G80+ 3 extra 8 bits for

dma_mget
bool dma_mget_val G80+ 3 dma_mget valid flag
b8 dma_mget_high_rs G80+ 3 dma_mget_high read

shadow
bool dma_mget_val_rs G80+ 3 dma_mget_val read

shadow

Errors

On pre-GF100, whenever the DMA pusher encounters problems, it’ll raise a DMA_PUSHER error. There are 6 types
of DMA_PUSHER errors:

1 means that this part of state can only be modified by kernel intervention and is normally set just once, on channel setup.
2 means that state only applies to NV4-style mode,
3 means that state only applies to IB mode.

148 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

id name reason
1 CALL_SUBR_ACTIVE call command while subroutine active
2 INVALID_MTHD attempt to submit a nonexistent special method
3 RET_SUBR_INACTIVE return command while subroutine inactive
4 INVALID_CMD invalid command
5 IB_EMPTY attempt to submit zero-length IB entry
6 MEM_FAULT failure to read from pushbuffer or IB

Apart from pusher state, the following values are available on NV5+ to aid troubleshooting:

• dma_get_jmp_shadow: value of dma_get before the last jump

• rsvd_shadow: the first word of last-read command

• data_shadow: the last-read data word

Todo: verify those

Todo: determine what happens on GF100 on all imaginable error conditions

Channel control area

The channel control area is used to tell card about submitted pushbuffers. The area is at least 0x1000 bytes long,
though it can be longer depending on the card generation. Everything in the area should be accessed as 32-bit integers,
like almost all of the MMIO space. The following addresses are usable:

addr R/W name description
0x40 R/W DMA_PUT dma_put, only writable when not in IB mode
0x44 R DMA_GET dma_get
0x48 R REF ref
0x4c R/W DMA_PUT_HIGH dma_put_high_rs/ws, only writable when not in IB
0x50 R/W ??? GF100+ only
0x54 R DMA_CGET 2 nv40+ only, connected to subr_return when subroutine active, dma_get

when inactive.
0x58 R DMA_MGET dma_mget
0x5c R DMA_MGET_HIGH dma_mget_high_rs, dma_mget_val_rs
0x60 R DMA_GET_HIGH dma_get_high_rs
0x88 R IB_GET 3 ib_get
0x8c R/W IB_PUT 3 ib_put

The channel control area is accessed in 32-bit chunks, but on G80+, DMA_GET, DMA_PUT and DMA_MGET are
effectively 40-bit quantities. To prevent races, the high parts of them have read and write shadows. When you read
the address corresponding to the low part, the whole value is atomically read. The low part is returned as the result of
the read, while the high part is copied to the corresponding read shadow where it can be read through a second access
to the other address. DMA_PUT also has a write shadow of the high part - when the low part address is written, it’s
assembled together with the write shadow and atomically written.

To summarise, when you want to read full DMA_PUT/GET/MGET, first read the low part, then the high part. Due to
the shadows, the value thus read will be correct. To write the full value of DMA_PUT, first write the high part, then
the low part.

2.8. PFIFO: command submission to execution engines 149



nVidia Hardware Documentation, Release git

Note, however, that two different threads reading these values simultanously can interfere with each other. For this
reason, the channel control area shouldn’t ever be accessed by more than one thread at once, even for reading.

On NV4:NV40 cards, the channel control area is in BAR0 at address 0x800000 + 0x10000 * channel ID. On NV40,
there are two BAR0 regions with channel control areas: the old-style is in BAR0 at 0x800000 + 0x10000 * channel
ID, supports channels 0-0x1f, can do both PIO and DMA submission, but does not have DMA_CGET when used in
DMA mode. The new-style area is in BAR0 at 0xc0000 + 0x1000 * channel ID, supports only DMA mode, supports
all channels, and has DMA_CGET. On G80 cards, channel 0 supports PIO mode and has channel control area at
0x800000, while channels 1-126 support DMA mode and have channel control areas at 0xc00000 + 0x2000 * channel
ID. On GF100, the channel control areas are accessed through selectable addresses in BAR1 and are backed by VRAM
or host memory - see GF100+ PFIFO for more details.

Todo: check channel numbers

NV4-style mode

In NV4-style mode, whenever dma_get != dma_put, the card read a 32-bit word from the pushbuffer at the address
specified by dma_get, increments dma_get by 4, and treats the word as the next word in the command stream. dma_get
can also move through the control flow commands: jump [sets dma_get to param], call [copies dma_get to subr_return,
sets subr_active and sets dma_get to param], and return [unsets subr_active, copies subr_return to dma_get]. The calls
and returns are only available on NV1A+ cards.

The pushbuffer is accessed through the dma_pushbuffer DMA object. On NV4, the DMA object has to be located in
PCI or AGP memory. On NV5+, any DMA object is valid. At all times, dma_get has to be <= dma_limit. Going past
the limit or getting a VM fault when attempting to read from pushbuffer results in raising DMA_PUSHER error of
type MEM_FAULT.

On pre-NV1A cards, the word read from pushbuffer is always treated as little-endian. On NV1A:G80 cards, the
endianness is determined by the big_endian flag. On G80+, the PFIFO endianness is a global switch.

Todo: What about GF100?

Note that pushbuffer addresses over 0xffffffff shouldn’t be used in NV4-style mode, even on G80 - they cannot be
expressed in jump commands, dma_limit, nor subr_return. Why dma_put writing supports it is a mystery.

The usual way to use NV4-style mode is:

1. Allocate a big circular buffer

2. [NV1A+] if you intend to use subroutines, allocate space for them and write them out

3. Point dma_pushbuffer to the buffer, set dma_get and dma_put to its start

4. To submit commands:

1. If there’s not enough space in the pushbuffer between dma_put and end to fit the command + a jump
command, submit a jump-to-beginning command first and set DMA_PUT to buffer start.

2. Read DMA_GET/DMA_CGET until you get a value that’s out of the range you’re going to write. If on
pre-NV40 and using subroutines, discard DMA_GET reads that are outside of the main buffer.

3. Write out the commands at current DMA_PUT address.

4. Set DMA_PUT to point right after the last word of commands you wrote.

150 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

IB mode

NV4-style mode, while fairly flexible, can only jump between parts of pushbuffer between commands. IB mode
decouples flow control from the command structure by using a second “master” buffer, called the IB buffer.

The IB buffer is a circular buffer of 8-byte structures called IB entries. The IB buffer is, like the pushbuffer, accessed
through dma_pushbuffer DMA object. The address of the IB buffer, along with its size, is normally specified on
channel creation. The size has to be a power of two and can be in range ???.

Todo: check the ib size range

There are two indices into the IB buffer: ib_get and ib_put. They’re both in range of 0..2^ib_order-1. Whenever no
pushbuffer is being processed [dma_put =dma_get], and there are unread entries in the IB buffer [ib_put!=ib_get], the
card will read an entry from IB buffer entry #ib_get and increment ib_get by 1. When ib_get would reach 2^ib_order,
it insteads wraps around to 0.

Failure to read IB entry due to VM fault will, like pushbuffer read fault, cause DMA_PUSHER error of type
MEM_FAULT.

The IB entry is made of two 32-bit words in PFIFO endianness. Their format is:

Word 0:

• bits 0-1: unused, should be 0

• bits 2-31: ADDRESS_LOW, bits 2-31 of pushbuffer start address

Word 1:

• bits 0-7: ADDRESS_HIGH, bits 32-39 of pushbuffer start address

• bit 8: ???

• bit 9: NOT_MAIN, “not main pushbuffer” flag

• bits 10-30: SIZE, pushbuffer size in 32-bit words

• bit 31: NO_PREFETCH (probably; use for pushbuffer data generated by the GPU)

Todo: figure out bit 8 some day

When an IB entry is read, the pushbuffer is prepared for reading:

dma_get[2:39] = ADDRESS
dma_put = dma_get + SIZE * 4
nonmain = NOT_MAIN
if (!nonmain) dma_mget = dma_get

Subsequently, just like in NV4-style mode, words from dma_get are read until it reaches dma_put. When that happens,
processing can move on to the next IB entry [or pause until user sends more commands]. If the nonmain flag is not
set, dma_get is copied to dma_mget whenever it’s advanced, and dma_mget_val flag is set to 1. dma_limit is ignored
in IB mode.

An attempt to submit IB entry with length zero will raise DMA_PUSHER error of type IB_EMPTY.

The nonmain flag is meant to help with a common case where pushbuffers sent through IB can come from two sources:
a “main” big circular buffer filled with immediately generated commands, and “external” buffers containing helper
data filled and managed through other means. DMA_MGET will then contain the address of the current position

2.8. PFIFO: command submission to execution engines 151



nVidia Hardware Documentation, Release git

in the “main” buffer without being affected by IB entries pulling data from other pushbuffers. It’s thus similiar to
DMA_CGET’s role in NV4-style mode.

The commands - pre-GF100 format

The command stream, as assembled by NV4-style or IB mode pushbuffer read, is then split into individual commands.
The command type is determined by its first word. The word has to match one of the following forms:

000CCCCCCCCCCC00SSSMMMMMMMMMMM00 increasing methods [NV4+]
0000000000000001MMMMMMMMMMMMXX00 SLI conditional [NV40+, if enabled]
00000000000000100000000000000000 return [NV1A+, NV4-style only]
0000000000000011SSSMMMMMMMMMMM00 long non-increasing methods [IB only]
001JJJJJJJJJJJJJJJJJJJJJJJJJJJ00 old jump [NV4+, NV4-style only]
010CCCCCCCCCCC00SSSMMMMMMMMMMM00 non-increasing methods [NV10+]
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ01 jump [NV1A+, NV4-style only]
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ10 call [NV1A+, NV4-style only]

Todo: do an exhaustive scan of commands

If none of the forms matches, or if the one that matches cannot be used in current mode, the INVALID_CMD
DMA_PUSHER error is raised.

The commands

There are two command formats the DMA pusher can use: NV4 format and GF100 format. All cards support the NV4
format, while only GF100+ cards support the GF100 format.

NV4 method submission commands

000CCCCCCCCCCC00SSSMMMMMMMMMMM00 increasing methods [NV4+]
010CCCCCCCCCCC00SSSMMMMMMMMMMM00 non-increasing methods [NV10+]
0000000000000011SSSMMMMMMMMMMM00 long non-increasing methods [IB only]

These three commands are used to submit methods. the MM..M field selects the first method that will be submitted.
The SSS field selects the subchannel. The CC..C field is mthd_count and says how many words will be submitted.
With the “long non-increasing methods” command, the method count is instead contained in low 24 bits of the next
word in the pushbuffer.

The subsequent mthd_count words after the first word [or second word in case of the long command] are the method
parameters to be submitted. If command type is increasing methods, the method number increases by 4 [ie. by 1
method] for each submitted word. If type is non-increasing, all words are submitted to the same method.

If sli_enable is set and sli_active is not set, the methods thus assembled will be discarded. Otherwise, they’ll be
appended to the CACHE.

Todo: didn’t mthd 0 work even if sli_active=0?

152 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

The pusher watches the submitted methods: it only passes methods 0x100+ and methods in 0..0xfc range that the
puller recognises. An attempt to submit invalid method in 0..0xfc range will cause a DMA_PUSHER error of type
INVALID_MTHD.

Todo: check pusher reaction on ACQUIRE submission: pause?

NV4 control flow commands

001JJJJJJJJJJJJJJJJJJJJJJJJJJJ00 old jump [NV4+]
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ01 jump [NV1A+]
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ10 call [NV1A+]
00000000000000100000000000000000 return [NV1A+]

For jumps and calls, J..JJ is bits 2-28 or 2-31 of the target address. The remaining bits of target are forced to 0.

The jump commands simply set dma_get to the target - the next command will be read from there. There are two
commands, since NV4 originally supported only 29-bit addresses, and used high bits as command type. NV1A
introduced the new jump command that instead uses low bits as type, and allows access to full 32 bits of address
range.

The call command copies dma_get to subr_return, sets subr_active to 1, and sets dma_get to the target. If subr_active
is already set before the call, the DMA_PUSHER error of type CALL_SUBR_ACTIVE is raised.

The return command copies subr_return to dma_get and clears subr_active. If subr_active isn’t set, it instead raises
DMA_PUSHER error of type RET_SUBR_INACTIVE.

NV4 SLI conditional command

0000000000000001MMMMMMMMMMMMXX00 SLI conditional [NV40+]

NV40 introduced SLI functionality. One of the associated features is the SLI conditional command. In SLI mode,
sister channels are commonly created on all cards in SLI set using a common pushbuffer. Since most of the commands
set in SLI will be identical for all cards, this saves resources. However, some of the commands have to be sent only to
a single card, or to a subgroup of cards. The SLI conditional can be used for that purpose.

The sli_active flag determines if methods should be accepted at the moment: when it’s set, methods will be accepted.
Otherwise, they’ll be ignored. SLI conditional command takes the encoded mask, MM..M, ands it with the per-card
value of sli_mask, and sets sli_active flag to 1 if result if non-0, to 0 otherwise.

The sli_enable flag determines if the command is available. If it’s not set, the command effectively doesn’t exist. Note
that sli_enable and sli_mask exist on both NV40:G80 and G80+, but on NV40:G80 they have to be set uniformly for
all channels on the card, while G80+ allows independent settings for each channel.

The XX bits in the command are ignored.

GF100 commands

GF100 format follows the same idea, but uses all-new command encoding.

2.8. PFIFO: command submission to execution engines 153



nVidia Hardware Documentation, Release git

000CCCCCCCCCCC00SSSMMMMMMMMMMMXX increasing methods [old]
000XXXXXXXXXXX01MMMMMMMMMMMMXXXX SLI conditional
000XXXXXXXXXXX10MMMMMMMMMMMMXXXX SLI user mask store [new]
000XXXXXXXXXXX11XXXXXXXXXXXXXXXX SLI conditional from user mask [new]
001CCCCCCCCCCCCCSSSXMMMMMMMMMMMM increasing methods [new]
010CCCCCCCCCCC00SSSMMMMMMMMMMMXX non-increasing methods [old]
011CCCCCCCCCCCCCSSSXMMMMMMMMMMMM non-increasing methods [new]
100VVVVVVVVVVVVVSSSXMMMMMMMMMMMM inline method [new]
101CCCCCCCCCCCCCSSSXMMMMMMMMMMMM increase-once methods [new]
110XXXXXXXXXXXXXXXXXXXXXXXXXXXXX ??? [XXX] [new]

Todo: check bitfield bounduaries

Todo: check the extra SLI bits

Todo: look for other forms

Increasing and non-increasing methods work like on older cards. Increase-once methods is a new command that works
like the other methods commands, but sends the first data word to method M, second and all subsequent data words to
method M+4 [ie. the next method].

Inline method command is a single-word command that submits a single method with a short [12-bit] parameter
encoded in VV..V field.

GF100 also did away with the INVALID_MTHD error - invalid low methods are pushed into CACHE as usual, puller
will complain about them instead when it tries to execute them.

The pusher pseudocode - pre-GF100

while(1) {
if (dma_get != dma_put) {

/* pushbuffer non-empty, read a word. */
b32 word;
try {

if (!ib_enable && dma_get >= dma_limit)
throw DMA_PUSHER(MEM_FAULT);

if (gpu < NV1A)
word = READ_DMAOBJ_32(dma_pushbuffer, dma_get, LE);

else if (gpu < G80)
word = READ_DMAOBJ_32(dma_pushbuffer, dma_get, big_

→˓endian?BE:LE);
else

word = READ_DMAOBJ_32(dma_pushbuffer, dma_get, pfifo_
→˓endian);

dma_get += 4;
if (!nonmain)

dma_mget = dma_get;
} catch (VM_FAULT) {

throw DMA_PUSHER(MEM_FAULT);

(continues on next page)

154 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

}
/* now, see if we're in the middle of a command */
if (dma_state.lenp) {

/* second word of long non-inc methods command - method count
→˓*/

dma_state.lenp = 0;
dma_state.mcnt = word & 0xffffff;

} else if (dma_state.mcnt) {
/* data word of methods command */
data_shadow = word;
if (!PULLER_KNOWS_MTHD(dma_state.mthd))

throw DMA_PUSHER(INVALID_MTHD);
if (!sli_enable || sli_active) {

CACHE_PUSH(dma_state.subc, dma_state.mthd, word, dma_
→˓state.ni);

}
if (!dma_state.ni)

dma_state.mthd++;
dma_state.mcnt--;
dcount_shadow++;

} else {
/* no command active - this is the first word of a new one */
rsvd_shadow = word;
/* match all forms */
if ((word & 0xe0000003) == 0x20000000 && !ib_enable) {

/* old jump */
dma_get_jmp_shadow = dma_get;
dma_get = word & 0x1fffffff;

} else if ((word & 3) == 1 && !ib_enable && gpu >= NV1A) {
/* jump */
dma_get_jmp_shadow = dma_get;
dma_get = word & 0xfffffffc;

} else if ((word & 3) == 2 && !ib_enable && gpu >= NV1A) {
/* call */
if (subr_active)

throw DMA_PUSHER(CALL_SUBR_ACTIVE);
subr_return = dma_get;
subr_active = 1;
dma_get = word & 0xfffffffc;

} else if (word == 0x00020000 && !ib_enable && gpu >= NV1A) {
/* return */
if (!subr_active)

throw DMA_PUSHER(RET_SUBR_INACTIVE);
dma_get = subr_return;
subr_active = 0;

} else if ((word & 0xe0030003) == 0) {
/* increasing methods */
dma_state.mthd = (word >> 2) & 0x7ff;
dma_state.subc = (word >> 13) & 7;
dma_state.mcnt = (word >> 18) & 0x7ff;
dma_state.ni = 0;
dcount_shadow = 0;

} else if ((word & 0xe0030003) == 0x40000000 && gpu >= NV10) {
/* non-increasing methods */
dma_state.mthd = (word >> 2) & 0x7ff;
dma_state.subc = (word >> 13) & 7;
dma_state.mcnt = (word >> 18) & 0x7ff;

(continues on next page)

2.8. PFIFO: command submission to execution engines 155



nVidia Hardware Documentation, Release git

(continued from previous page)

dma_state.ni = 1;
dcount_shadow = 0;

} else if ((word & 0xffff0003) == 0x00030000 && ib_enable) {
/* long non-increasing methods */
dma_state.mthd = (word >> 2) & 0x7ff;
dma_state.subc = (word >> 13) & 7;
dma_state.lenp = 1;
dma_state.ni = 1;
dcount_shadow = 0;

} else if ((word & 0xffff0003) == 0x00010000 && sli_enable) {
if (sli_mask & ((word >> 4) & 0xfff))

sli_active = 1;
else

sli_active = 0;
} else {

throw DMA_PUSHER(INVALID_CMD);
}

}
} else if (ib_enable && ib_get != ib_put) {

/* current pushbuffer empty, but we have more IB entries to read */
b64 entry;
try {

entry_low = READ_DMAOBJ_32(dma_pushbuffer, ib_address + ib_
→˓get * 8, pfifo_endian);

entry_high = READ_DMAOBJ_32(dma_pushbuffer, ib_address + ib_
→˓get * 8 + 4, pfifo_endian);

entry = entry_high << 32 | entry_low;
ib_get++;
if (ib_get == (1 << ib_order))

ib_get = 0;
} catch (VM_FAULT) {

throw DMA_PUSHER(MEM_FAULT);
}
len = entry >> 42 & 0x3fffff;
if (!len)

throw DMA_PUSHER(IB_EMPTY);
dma_get = entry & 0xfffffffffc;
dma_put = dma_get + len * 4;
if (entry & 1 << 41)

nonmain = 1;
else

nonmain = 0;
}
/* otherwise, pushbuffer empty and IB empty or nonexistent - nothing to do. */

}

2.8.4 Puller - handling of submitted commands by FIFO

Contents

• Puller - handling of submitted commands by FIFO

– Introduction

156 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– RAMHT and the FIFO objects

* NV4:GF100

* NV3

* NV1

– Puller state

– Engine objects

– Puller builtin methods

* Syncing with host: reference counter

* Semaphores

* Misc puller methods

Introduction

PFIFO puller’s job is taking methods out of the CACHE and delivering them to the right place for execution, or
executing them directly.

Methods 0-0xfc are special and executed by the puller. Methods 0x100 and up are forwarded to the engine object
currently bound to a given subchannel. The methods are:

Method Present on Name Description
0x0000 all OBJECT Binds an engine object
0x0008 GF100- NOP Does nothing
0x0010 G84- SEMAPHORE_ADDRESS_HIGHNew-style semaphore address high part
0x0014 G84- SEMAPHORE_ADDRESS_LOWNew-style semaphore address low part
0x0018 G84- SEMAPHORE_SEQUENCE New-style semaphore payload
0x001c G84- SEMAPHORE_TRIGGER New-style semaphore trigger
0x0020 G84- NOTIFY_INTR Triggers an interrupt
0x0024 G84- WRCACHE_FLUSH Flushes write post caches
0x0028 MCP89- ??? ???
0x002c MCP89- ??? ???
0x0050 NV10- REF_CNT Writes the ref counter
0x0060 NV1A:GF100 DMA_SEMAPHORE DMA object for semaphores
0x0064 NV1A- SEMAPHORE_OFFSET Old-style semaphore address
0x0068 NV1A- SEMAPHORE_ACQUIRE Old-style semaphore acquire trigger and payload
0x006c NV1A- SEMAPHORE_RELEASE Old-style semaphore release trigger and payload
0x0070 GF100- ??? ???
0x0074 GF100- ??? ???
0x0078 GF100- ??? ???
0x007c GF100- ??? ???
0x0080 NV40- YIELD Yield PFIFO - force channel switch
0x0100:0x2000 NV1:NV4 . . . Passed down to the engine
0x0100:0x0180 NV4:GF100 . . . Passed down to the engine
0x0180:0x0200 NV4:GF100 . . . Passed down to the engine, goes through

RAMHT lookup
0x0200:0x2000 NV4:GF100 . . . Passed down to the engine
0x0100:0x4000 GF100- . . . Passed down to the engine

2.8. PFIFO: command submission to execution engines 157



nVidia Hardware Documentation, Release git

Todo: missing the GF100+ methods

RAMHT and the FIFO objects

As has been already mentioned, each channel has 8 “subchannels” which can be bound to engine objects. On pre-
GF100 GPUs, these objects and DMA objects are collectively known as “FIFO objects”. FIFO objects and RAMHT
don’t exist on GF100+ PFIFO.

The RAMHT is a big hash table that associates arbitrary 32-bit handles with FIFO objects and engine ids. Whenever
a method is mentioned to take an object handle, it means the parameter is looked up in RAMHT. When such lookup
fails to find a match, a CACHE_ERROR(NO_HASH) error is raised.

NV4:GF100

Internally, a FIFO object is a [usually small] block of data residing in “instance memory”. The instance memory is
RAMIN for pre-G80 GPUs, and the channel structure for G80+ GPUs. The first few bits of a FIFO object determine
its ‘class’. Class is 8 bits on NV4:NV25, 12 bits on NV25:NV40, 16 bits on NV40:GF100.

The data associated with a handle in RAMHT consists of engine id, which determines the object’s behavior when
bound to a subchannel, and its address in RAMIN [pre-G80] or offset from channel structure start [G80+].

Apart from method 0, the engine id is ignored. The suitability of an object for a given method is determined by
reading its class and checking if it makes sense. Most methods other than 0 expect a DMA object, although a couple
of pre-G80 graph objects have methods that expect other graph objects.

The following are commonly accepted object classes:

• 0x0002: DMA object for reading

• 0x0003: DMA object for writing

• 0x0030: NULL object - used to effectively unbind a previously bound object

• 0x003d: DMA object for reading/writing

Other object classes are engine-specific.

For more information on DMA objects, see NV3 DMA objects, NV4:G80 DMA objects, or DMA objects.

NV3

NV3 also has RAMHT, but it’s only used for engine objects. While NV3 has DMA objects, they have to be bound
manually by the kernel. Thus, they’re not mentioned in RAMHT, and the 0x180-0x1fc methods are not implemented
in hardware - they’re instead trapped and emulated in software to behave like NV4+.

NV3 also doesn’t use object classes - the object type is instead a 7-bit number encoded in RAMHT along with engine
id and object address.

NV1

You don’t want to know how NV1 RAMHT works.

158 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Puller state

type name GPUs description
b24[8] ctx NV1:NV4 objects bound to subchannels
b3 last_subc NV1:NV4 last used subchannel
b5[8] engines NV4+ engines bound to subchannels
b5 last_engine NV4+ last used engine
b32 ref NV10+ reference counter [shared with pusher]
bool acquire_active NV1A+ semaphore acquire in progress
b32 acquire_timeout NV1A+ semaphore acquire timeout
b32 acquire_timestamp NV1A+ semaphore acquire timestamp
b32 acquire_value NV1A+ semaphore acquire value
dmaobj dma_semaphore NV11:GF100 semaphore DMA object
b12/16 semaphore_offset NV11:GF100 old-style semaphore address
bool semaphore_off_val G80:GF100 semaphore_offset valid
b40 semaphore_address G84+ new-style semaphore address
b32 semaphore_sequence G84+ new-style semaphore value
bool acquire_source G84:GF100 semaphore acquire address selection
bool acquire_mode G84+ semaphore acquire mode

GF100 state is likely incomplete.

Engine objects

The main purpose of the puller is relaying methods to the engines. First, an engine object has to be bound to a
subchannel using method 0. Then, all methods >=0x100 on the subchannel will be forwarded to the relevant engine.

On pre-NV4, the bound objects’ RAMHT information is stored as part of puller state. The last used subchannel is
also remembered and each time the puller is requested to submit commands on subchannel different from the last one,
method 0 is submitted, or channel switch occurs, the information about the object will be forwarded to the engine
through its method 0. The information about an object is 24-bit, is known as object’s “context”, and has the following
fields:

• bits 0-15 [NV1]: object flags

• bits 0-15 [NV3]: object address

• bits 16-22: object type

• bit 23: engine id

The context for objects is stored directly in their RAMHT entries.

On NV4+ GPUs, the puller doesn’t care about bound objects - this information is supposed to be stored by the engine
itself as part of its state. The puller only remembers what engine each subchannel is bound to. On NV4:GF100 When
method 0 is executed, the puller looks up the object in RAMHT, getting engine id and object address in return. The
engine id is remembered in puller state, while object address is passed down to the engine for further processing.

GF100+ did away with RAMHT. Thus, method 0 now takes the object class and engine id directly as parameters:

• bits 0-15: object class. Not used by the puller, simply passed down to the engine.

• bits 16-20: engine id

The list of valid engine ids can be found on FIFO overview. The SOFTWARE engine is special: all methods submitted
to it, explicitely or implicitely by binding a subchannel to it, will cause a CACHE_ERROR(EMPTY_SUBCHANNEL)

2.8. PFIFO: command submission to execution engines 159



nVidia Hardware Documentation, Release git

interrupt. This interrupt can then be intercepted by the driver to implement a “software object”, or can be treated as an
actual error and reported.

The engines run asynchronously. The puller will send them commands whenever they have space in their input queues
and won’t wait for completion of a command before sending more. However, when engines are switched [ie. puller
has to submit a command to a different engine than last used by the channel], the puller will wait until the last used
engine is done with this channel’s commands. Several special puller methods will also wait for engines to go idle.

Todo: verify this on all card families.

On NV4:GF100 GPUs, methods 0x180-0x1fc are treated specially: while other methods are forwarded directly to
engine without modification, these methods are expected to take object handles as parameters and will be looked up
in RAMHT by the puller before forwarding. Ie. the engine will get the object’s address found in RAMHT.

mthd 0x0000 / 0x000: OBJECT On NV1:GF100, takes the handle of the object that should be bound to the sub-
channel it was submitted on. On GF100+, it instead takes engine+class directly.

if (gpu < NV4) {
b24 newctx = RAMHT_LOOKUP(param);
if (newctx & 0x800000) {

/* engine == PGRAPH */
if (ENGINE_CUR_CHANNEL(PGRAPH) != chan)

ENGINE_CHANNEL_SWITCH(PGRAPH, chan);
ENGINE_SUBMIT_MTHD(PGRAPH, subc, 0, newctx);
ctx[subc] = newctx;
last_subc = subc;

} else {
/* engine == SOFTWARE */
while (!ENGINE_IDLE(PGRAPH))

;
throw CACHE_ERROR(EMPTY_SUBCHANNEL);

}
} else {

/* NV4+ GPU */
b5 engine; b16 eparam;
if (gpu >= GF100) {

eparam = param & 0xffff;
engine = param >> 16 & 0x1f;
/* XXX: behavior with more bitfields? does it forward the whole thing?

→˓ */
} else {

engine = RAMHT_LOOKUP(param).engine;
eparam = RAMHT_LOOKUP(param).addr;

}
if (engine != last_engine) {

while (ENGINE_CUR_CHANNEL(last_engine) == chan && !ENGINE_IDLE(last_
→˓engine))

;
}
if (engine == SOFTWARE) {

throw CACHE_ERROR(EMPTY_SUBCHANNEL);
} else {

if (ENGINE_CUR_CHANNEL(engine) != chan)
ENGINE_CHANNEL_SWITCH(engine, chan);

ENGINE_SUBMIT_MTHD(engine, subc, 0, eparam);
last_engine = engines[subc] = engine;

}
(continues on next page)

160 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

}

mthd 0x0100-0x3ffc / 0x040-0xfff: [forwarded to engine]

if (gpu < NV4) {
if (subc != last_subc) {

if (ctx[subc] & 0x800000) {
/* engine == PGRAPH */
if (ENGINE_CUR_CHANNEL(PGRAPH) != chan)

ENGINE_CHANNEL_SWITCH(PGRAPH, chan);
ENGINE_SUBMIT_MTHD(PGRAPH, subc, 0, ctx[subc]);
last_subc = subc;

} else {
/* engine == SOFTWARE */
while (!ENGINE_IDLE(PGRAPH))

;
throw CACHE_ERROR(EMPTY_SUBCHANNEL);

}
}
if (ctx[subc] & 0x800000) {

/* engine == PGRAPH */
if (ENGINE_CUR_CHANNEL(PGRAPH) != chan)

ENGINE_CHANNEL_SWITCH(PGRAPH, chan);
ENGINE_SUBMIT_MTHD(PGRAPH, subc, mthd, param);

} else {
/* engine == SOFTWARE */
while (!ENGINE_IDLE(PGRAPH))

;
throw CACHE_ERROR(EMPTY_SUBCHANNEL);

}
} else {

/* NV4+ */
if (gpu < GF100 && mthd >= 0x180/4 && mthd < 0x200/4) {

param = RAMHT_LOOKUP(param).addr;
}
if (engines[subc] != last_engine) {

while (ENGINE_CUR_CHANNEL(last_engine) == chan && !ENGINE_IDLE(last_
→˓engine))

;
}
if (engines[subc] == SOFTWARE) {

throw CACHE_ERROR(EMPTY_SUBCHANNEL);
} else {

if (ENGINE_CUR_CHANNEL(engine) != chan)
ENGINE_CHANNEL_SWITCH(engine, chan);

ENGINE_SUBMIT_MTHD(engine, subc, mthd, param);
last_engine = engines[subc];

}
}

Todo: verify all of the pseudocode. . .

Puller builtin methods

2.8. PFIFO: command submission to execution engines 161



nVidia Hardware Documentation, Release git

Syncing with host: reference counter

NV10 introduced a “reference counter”. It’s a per-channel 32-bit register that is writable by the puller and readable
through the channel control area [see DMA submission to FIFOs on NV4]. It can be used to tell host which commands
have already completed: after every interesting batch of commands, add a method that will set the ref counter to
monotonically increasing values. The host code can then read the counter from channel control area and deduce which
batches are already complete.

The method to set the reference counter is REF_CNT, and it simply sets the ref counter to its parameter. When it’s
executed, it’ll also wait for all previously submitted commands to complete execution.

mthd 0x0050 / 0x014: REF_CNT [NV10:]

while (ENGINE_CUR_CHANNEL(last_engine) == chan && !ENGINE_IDLE(last_engine))
;

ref = param;

Semaphores

NV1A PFIFO introduced a concept of “semaphores”. A semaphore is a 32-bit word located in memory. G84 also
introduced “long” semaphores, which are 4-word memory structures that include a normal semaphore word and a
timestamp.

The PFIFO semaphores can be “acquired” and “released”. Note that these operations are NOT the familiar P/V
semaphore operations, they’re just fancy names for “wait until value == X” and “write X”.

There are two “versions” of the semaphore functionality. The “old-style” semaphores are implemented by
NV1A:GF100 GPUs. The “new-style” semaphores are supported by G84+ GPUs. The differences are:

Old-style semaphores

• limitted addressing range: 12-bit [NV1A:G80] or 16-bit [G80:GF100] offset in a DMA object. Thus a special
DMA object is required.

• release writes a single word

• acquire supports only “wait for value equal to X” mode

New-style semaphores

• full 40-bit addressing range

• release writes word + timestamp, ie. long semaphore

• acquire supports “wait for value equal to X” and “wait for value greater or equal X” modes

Semaphores have to be 4-byte aligned. All values are stored with endianness selected by big_endian flag [NV1A:G80]
or by PFIFO endianness [G80+]

On pre-GF100, both old-style semaphores and new-style semaphores use the DMA object stored in dma_semaphore,
which can be set through DMA_SEMAPHORE method. Note that this method is buggy on pre-G80 GPUs and accepts
only write-only DMA objects of class 0x0002. You have to work around the bug by preparing such DMA objects [or
using a kernel that intercepts the error and does the binding manually].

Old-style semaphores read/write the location specified in semaphore_offset, which can be set by
SEMAPHORE_OFFSET method. The offset has to be divisible by 4 and fit in 12 bits [NV1A:G80] or 16 bits
[G80:GF100]. An acquire is triggered by using the SEMAPHORE_ACQUIRE mthd with the expected value as the
parameter - further command processing will halt until the memory location contains the selected value. A release is
triggered by using the SEMAPHORE_RELEASE method with the value as parameter - the value will be written into
the semaphore location.

162 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

New-style semaphores use the location specified in semaphore_address, whose low/high parts can be set
through SEMAPHORE_ADDRESS_HIGH and _LOW methods. The value for acquire/release is stored in
semaphore_sequence and specified by SEMAPHORE_SEQUENCE method. Acquire and release are triggered by
using the SEMAPHORE_TRIGGER method with the requested operation as parameter.

The new-style release operation writes the following 16-byte structure to memory at semaphore_address:

• 0x00: [32-bit] semaphore_sequence

• 0x04: [32-bit] 0

• 0x08: [64-bit] PTIMER timestamp [see ptimer]

The new-style “acquire equal” operation behaves exactly like old-style acquire, but uses semaphore_address instead
of semaphore_offset and semaphore_sequence instead of SEMAPHORE_RELEASE param. The “acquire greater or
equal” operation, instead of waiting for the semaphore value to be equal to semaphore_sequence, it waits for value that
satisfies (int32_t)(val - semaphore_sequence) >= 0, ie. for a value that’s greater or equal to semaphore_sequence in
32-bit wrapping arithmetic. The “acquire mask” operation waits for a value that, ANDed with semaphore_sequence,
gives a non-0 result [GF100+ only].

Failures of semaphore-related methods will trigger the SEMAPHORE error. The SEMAPHORE error has several
subtypes, depending on card generation.

NV1A:G80 SEMAPHORE error subtypes:

• 1: INVALID_OPERAND: wrong parameter to a method

• 2: INVALID_STATE: attempt to acquire/release without proper setup

G80:GF100 SEMAPHORE error subtypes:

• 1: ADDRESS_UNALIGNED: address not divisible by 4

• 2: INVALID_STATE: attempt to acquire/release without proper setup

• 3: ADDRESS_TOO_LARGE: attempt to set >40-bit address or >16-bit offset

• 4: MEM_FAULT: got VM fault when reading/writing semaphore

GF100 SEMAPHORE error subtypes:

Todo: figure this out

If the acquire doesn’t immediately succeed, the acquire parameters are written to puller state, and the read will be
periodically retried. Further puller processing will be blocked on current channel until acquire succeeds. Note that, on
G84+ GPUs, the retry reads are issued from SEMAPHORE_BG VM engine instead of the PFIFO VM engine. There’s
also apparently a timeout, but it’s not REd yet.

Todo: RE timeouts

mthd 0x0060 / 0x018: DMA_SEMAPHORE [O] [NV1A:GF100]

obj = RAMHT_LOOKUP(param).addr;
if (gpu < G80) {

if (OBJECT_CLASS(obj) != 2)
throw SEMAPHORE(INVALID_OPERAND);

if (DMAOBJ_RIGHTS(obj) != WO)
throw SEMAPHORE(INVALID_OPERAND);

if (!DMAOBJ_PT_PRESENT(obj))

(continues on next page)

2.8. PFIFO: command submission to execution engines 163



nVidia Hardware Documentation, Release git

(continued from previous page)

throw SEMAPHORE(INVALID_OPERAND);
}
/* G80 doesn't bother with verification */
dma_semaphore = obj;

Todo: is there ANY way to make G80 reject non-DMA object classes?

mthd 0x0064 / 0x019: SEMAPHORE_OFFSET [NV1A-]

if (gpu < G80) {
if (param & ~0xffc)

throw SEMAPHORE(INVALID_OPERAND);
semaphore_offset = param;

} else if (gpu < GF100) {
if (param & 3)

throw SEMAPHORE(ADDRESS_UNALIGNED);
if (param & 0xffff0000)

throw SEMAPHORE(ADDRESS_TOO_LARGE);
semaphore_offset = param;
semaphore_off_val = 1;

} else {
semaphore_address[0:31] = param;

}

mthd 0x0068 / 0x01a: SEMAPHORE_ACQUIRE [NV1A-]

if (gpu < G80 && !dma_semaphore)
/* unbound DMA object */
throw SEMAPHORE(INVALID_STATE);

if (gpu >= G80 && !semaphore_off_val)
throw SEMAPHORE(INVALID_STATE);

b32 word;
if (gpu < G80) {

word = READ_DMAOBJ_32(dma_semaphore, semaphore_offset, big_endian?BE:LE);
} else {

try {
word = READ_DMAOBJ_32(dma_semaphore, semaphore_offset, pfifo_

→˓endian);
} catch (VM_FAULT) {

throw SEMAPHORE(MEM_FAULT);
}

}
if (word == param) {

/* already done */
} else {

/* acquire_active will block further processing and schedule retries */
acquire_active = 1;
acquire_value = param;
acquire_timestamp = ???;
/* XXX: figure out timestamp/timeout business */
if (gpu >= G80) {

acquire_mode = 0;
acquire_source = 0;

}
}

164 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

mthd 0x006c / 0x01b: SEMAPHORE_RELEASE [NV1A-]

if (gpu < G80 && !dma_semaphore)
/* unbound DMA object */
throw SEMAPHORE(INVALID_STATE);

if (gpu >= G80 && !semaphore_off_val)
throw SEMAPHORE(INVALID_STATE);

if (gpu < G80) {
WRITE_DMAOBJ_32(dma_semaphore, semaphore_offset, param, big_endian?BE:LE);

} else {
try {

WRITE_DMAOBJ_32(dma_semaphore, semaphore_offset, param, pfifo_
→˓endian);

} catch (VM_FAULT) {
throw SEMAPHORE(MEM_FAULT);

}
}

mthd 0x0010 / 0x004: SEMAPHORE_ADDRESS_HIGH [G84:]

if (param & 0xffffff00)
throw SEMAPHORE(ADDRESS_TOO_LARGE);

semaphore_address[32:39] = param;

mthd 0x0014 / 0x005: SEMAPHORE_ADDRESS_LOW [G84:]

if (param & 3)
throw SEMAPHORE(ADDRESS_UNALIGNED);

semaphore_address[0:31] = param;

mthd 0x0018 / 0x006: SEMAPHORE_SEQUENCE [G84:]

semaphore_sequence = param;

mthd 0x001c / 0x007: SEMAPHORE_TRIGGER [G84:]

bits 0-2: operation

• 1: ACQUIRE_EQUAL

• 2: WRITE_LONG

• 4: ACQUIRE_GEQUAL

• 8: ACQUIRE_MASK [GF100-]

Todo: bit 12 does something on GF100?

op = param & 7;
b64 timestamp = PTIMER_GETTIME();
if (param == 2) {

if (gpu < GF100) {
try {

WRITE_DMAOBJ_32(dma_semaphore, semaphore_address+0x0,
→˓param, pfifo_endian);

WRITE_DMAOBJ_32(dma_semaphore, semaphore_address+0x4, 0,
→˓pfifo_endian);

WRITE_DMAOBJ_64(dma_semaphore, semaphore_address+0x8,
→˓timestamp, pfifo_endian); (continues on next page)

2.8. PFIFO: command submission to execution engines 165



nVidia Hardware Documentation, Release git

(continued from previous page)

} catch (VM_FAULT) {
throw SEMAPHORE(MEM_FAULT);

}
} else {

WRITE_VM_32(semaphore_address+0x0, param, pfifo_endian);
WRITE_VM_32(semaphore_address+0x4, 0, pfifo_endian);
WRITE_VM_64(semaphore_address+0x8, timestamp, pfifo_endian);

}
} else {

b32 word;
if (gpu < GF100) {

try {
word = READ_DMAOBJ_32(dma_semaphore, semaphore_address,

→˓pfifo_endian);
} catch (VM_FAULT) {

throw SEMAPHORE(MEM_FAULT);
}

} else {
word = READ_VM_32(semaphore_address, pfifo_endian);

}
if ((op == 1 && word == semaphore_sequence) || (op == 4 && (int32_t)(word

→˓- semaphore_sequence) >= 0) || (op == 8 && word & semaphore_sequence)) {
/* already done */

} else {
/* XXX GF100 */
acquire_source = 1;
acquire_value = semaphore_sequence;
acquire_timestamp = ???;
if (op == 1) {

acquire_active = 1;
acquire_mode = 0;

} else if (op == 4) {
acquire_active = 1;
acquire_mode = 1;

} else {
/* invalid combination - results in hang */

}
}

}

Misc puller methods

NV40 introduced the YIELD method which, if there are any other busy channels at the moment, will cause PFIFO to
switch to another channel immediately, without waiting for the timeslice to expire.

mthd 0x0080 / 0x020: YIELD [NV40:]

:: PFIFO_YIELD();

G84 introduced the NOTIFY_INTR method, which simply raises an interrupt that notifies the host of its execution. It
can be used for sync primitives.

mthd 0x0020 / 0x008: NOTIFY_INTR [G84:]

:: PFIFO_NOTIFY_INTR();

166 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: check how this is reported on GF100

The G84+ WRCACHE_FLUSH method can be used to flush PFIFO’s write post caches. [see Tesla virtual memory]

mthd 0x0024 / 0x009: WRCACHE_FLUSH [G84:]

:: VM_WRCACHE_FLUSH(PFIFO);

The GF100+ NOP method does nothing:

mthd 0x0008 / 0x002: NOP [GF100:]

/* do nothing */

2.9 PGRAPH: 2d/3d graphics and compute engine

Contents:

2.9.1 PGRAPH overview

Contents

• PGRAPH overview

– Introduction

– NV1/NV3 graph object types

– NV4+ graph object classes

– The NULL object

– The graphics context

* Channel context

* Graph object options

* Volatile state

– Notifiers

* NOTIFY method

* DMA_NOTIFY method

* NOP method

Introduction

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 167



nVidia Hardware Documentation, Release git

Todo: WAIT_FOR_IDLE and PM_TRIGGER

NV1/NV3 graph object types

The following graphics objects exist on NV1:NV4:

id vari-
ants

name description

0x01 all BETA sets beta factor for blending
0x02 all ROP sets raster operation
0x03 all CHROMA sets color for color key
0x04 all PLANE sets the plane mask
0x05 all CLIP sets clipping rectangle
0x06 all PATTERN sets pattern, ie. a small repeating image used as one of the inputs to a raster

operation or blending
0x07 NV3:NV4 RECT renders solid rectangles
0x08 all POINT renders single points
0x09 all LINE renders solid lines
0x0a all LIN renders solid lins [ie. lines missing a pixel on one end]
0x0b all TRI renders solid triangles
0x0c NV1:NV3 RECT renders solid rectangles
0x0c NV3:NV4 GDI renders Windows 95 primitives: rectangles and characters, with font read from

a DMA object
0x0d NV1:NV3 TEXLIN renders quads with linearly mapped textures
0x0d NV3:NV4 M2MF copies data from one DMA object to another
0x0e NV1:NV3 TEXQUAD renders quads with quadratically mapped textures
0x0e NV3:NV4 SIFM Scaled Image From Memory, like NV1’s IFM, but with scaling
0x10 all BLIT copies rectangles of pixels from one place in framebuffer to another
0x11 all IFC Image From CPU, uploads a rectangle of pixels via methods
0x12 all BITMAP uploads and expands a bitmap [ie. 1bpp image] via methods
0x13 NV1:NV3 IFM Image From Memory, uploads a rectangle of pixels from a DMA object to

framebuffer
0x14 all ITM Image To Memory, downloads a rectangle of pixels to a DMA object from

framebuffer
0x15 NV3:NV4 SIFC Stretched Image From CPU, like IFC, but with image stretching
0x17 NV3:NV4 D3D Direct3D 5 textured triangles
0x18 NV3:NV4 ZPOINT renders single points to a surface with depth buffer
0x1c NV3:NV4 SURF sets rendering surface parameters
0x1d NV1:NV3 TEXLIN-

BETA
renders lit quads with linearly mapped textures

0x1e NV1:NV3 TEXQUAD-
BETA

renders lit quads with quadratically mapped textures

Todo: check Direct3D version

168 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

NV4+ graph object classes

Not really graph objects, but usable as parameters for some object-bind methods [all NV4:GF100]:

class name description
0x0030 NV1_NULL does nothing
0x0002 NV1_DMA_R DMA object for reading
0x0003 NV1_DMA_W DMA object for writing
0x003d NV3_DMA read/write DMA object

Todo: document NV1_NULL

NV1-style operation objects [all NV4:NV5]:

class name description
0x0010 NV1_OP_CLIP clipping
0x0011 NV1_OP_BLEND_AND blending
0x0013 NV1_OP_ROP_AND raster operation
0x0015 NV1_OP_CHROMA color key
0x0064 NV1_OP_SRCCOPY_AND source copy with 0-alpha discard
0x0065 NV3_OP_SRCCOPY source copy
0x0066 NV4_OP_SRCCOPY_PREMULT pre-multiplying copy
0x0067 NV4_OP_BLEND_PREMULT pre-multiplied blending

Memory to memory copy objects:

class variants name description
0x0039 NV4:G80 NV3_M2MF copies data from one buffer to another
0x5039 G80:GF100 G80_M2MF copies data from one buffer to another
0x9039 GF100:GK104 GF100_M2MF copies data from one buffer to another
0xa040 GK104:GK110 GK20A GK104_P2MF copies data from FIFO to memory buffer
0xa140 GK110:GK20A GM107- GK110_P2MF copies data from FIFO to memory buffer

Context objects:

2.9. PGRAPH: 2d/3d graphics and compute engine 169



nVidia Hardware Documentation, Release git

class variants name description
0x0012 NV4:G84 NV1_BETA sets beta factor for blending
0x0017 NV4:G80 NV1_CHROMA sets color for color key
0x0057 NV4:G84 NV4_CHROMA sets color for color key
0x0018 NV4:G80 NV1_PATTERN sets pattern for raster op
0x0044 NV4:G84 NV1_PATTERN sets pattern for raster op
0x0019 NV4:G84 NV1_CLIP sets user clipping rectangle
0x0043 NV4:G84 NV1_ROP sets raster operation
0x0072 NV4:G84 NV4_BETA4 sets component beta factors for pre-multiplied blending
0x0058 NV4:G80 NV3_SURF_DST sets the 2d destination surface
0x0059 NV4:G80 NV3_SURF_SRC sets the 2d blit source surface
0x005a NV4:G80 NV3_SURF_COLOR sets the 3d color surface
0x005b NV4:G80 NV3_SURF_ZETA sets the 3d zeta surface
0x0052 NV4:G80 NV4_SWZSURF sets 2d swizzled destination surface
0x009e NV10:G80 NV10_SWZSURF sets 2d swizzled destination surface
0x039e NV30:NV40 NV30_SWZSURF sets 2d swizzled destination surface
0x309e NV40:G80 NV30_SWZSURF sets 2d swizzled destination surface
0x0042 NV4:G80 NV4_SURF2D sets 2d destination and source surfaces
0x0062 NV10:G80 NV10_SURF2D sets 2d destination and source surfaces
0x0362 NV30:NV40 NV30_SURF2D sets 2d destination and source surfaces
0x3062 NV40:G80 NV30_SURF2D sets 2d destination and source surfaces
0x5062 G80:G84 G80_SURF2D sets 2d destination and source surfaces
0x0053 NV4:NV20 NV4_SURF3D sets 3d color and zeta surfaces
0x0093 NV10:NV20 NV10_SURF3D sets 3d color and zeta surfaces

Solids rendering objects:

class variants name description
0x001c NV4:NV40 NV1_LIN renders a lin
0x005c NV4:G80 NV4_LIN renders a lin
0x035c NV30:NV40 NV30_LIN renders a lin
0x305c NV40:G84 NV30_LIN renders a lin
0x001d NV4:NV40 NV1_TRI renders a triangle
0x005d NV4:G84 NV4_TRI renders a triangle
0x001e NV4:NV40 NV1_RECT renders a rectangle
0x005e NV4:NV40 NV4_RECT renders a rectangle

Image upload from CPU objects:

170 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

class variants name description
0x0021 NV4:NV40 NV1_IFC image from CPU
0x0061 NV4:G80 NV4_IFC image from CPU
0x0065 NV5:G80 NV5_IFC image from CPU
0x008a NV10:G80 NV10_IFC image from CPU
0x038a NV30:NV40 NV30_IFC image from CPU
0x308a NV40:G84 NV40_IFC image from CPU
0x0036 NV4:G80 NV1_SIFC stretched image from CPU
0x0076 NV4:G80 NV4_SIFC stretched image from CPU
0x0066 NV5:G80 NV5_SIFC stretched image from CPU
0x0366 NV30:NV40 NV30_SIFC stretched image from CPU
0x3066 NV40:G84 NV40_SIFC stretched image from CPU
0x0060 NV4:G80 NV4_INDEX indexed image from CPU
0x0064 NV5:G80 NV5_INDEX indexed image from CPU
0x0364 NV30:NV40 NV30_INDEX indexed image from CPU
0x3064 NV40:G84 NV40_INDEX indexed image from CPU
0x007b NV10:G80 NV10_TEXTURE texture from CPU
0x037b NV30:NV40 NV30_TEXTURE texture from CPU
0x307b NV40:G80 NV40_TEXTURE texture from CPU

Todo: figure out wtf is the deal with TEXTURE objects

Other 2d source objects:

class variants name description
0x001f NV4:G80 NV1_BLIT blits inside framebuffer
0x005f NV4:G84 NV4_BLIT blits inside framebuffer
0x009f NV15:G80 NV15_BLIT blits inside framebuffer
0x0037 NV4:G80 NV3_SIFM scaled image from memory
0x0077 NV4:G80 NV4_SIFM scaled image from memory
0x0063 NV10:G80 NV5_SIFM scaled image from memory
0x0089 NV10:NV40 NV10_SIFM scaled image from memory
0x0389 NV30:NV40 NV30_SIFM scaled image from memory
0x3089 NV40:G80 NV30_SIFM scaled image from memory
0x5089 G80:G84 G80_SIFM scaled image from memory
0x004b NV4:NV40 NV3_GDI draws GDI primitives
0x004a NV4:G80 NV4_GDI draws GDI primitives

YCbCr two-source blending objects:

class variants name
0x0038 NV4:G80 NV4_DVD_SUBPICTURE
0x0088 NV10:G80 NV10_DVD_SUBPICTURE

Todo: find better name for these two

Unified 2d objects:

2.9. PGRAPH: 2d/3d graphics and compute engine 171



nVidia Hardware Documentation, Release git

class variants name
0x502d G80:GF100 G80_2D
0x902d GF100- GF100_2D

NV3-style 3d objects:

class variants name description
0x0048 NV4:NV15 NV3_D3D Direct3D textured triangles
0x0054 NV4:NV20 NV4_D3D5 Direct3D 5 textured triangles
0x0094 NV10:NV20 NV10_D3D5 Direct3D 5 textured triangles
0x0055 NV4:NV20 NV4_D3D6 Direct3D 6 multitextured triangles
0x0095 NV10:NV20 NV10_D3D6 Direct3D 6 multitextured triangles

Todo: check NV3_D3D version

NV10-style 3d objects:

class variants name description
0x0056 NV10:NV30 NV10_3D Celsius Direct3D 7 engine
0x0096 NV15:NV30 NV15_3D Celsius Direct3D 7 engine
0x0098 NV17:NV20 NV11_3D Celsius Direct3D 7 engine
0x0099 NV17:NV20 NV17_3D Celsius Direct3D 7 engine
0x0097 NV20:NV34 NV20_3D Kelvin Direct3D 8 SM 1 engine
0x0597 NV25:NV40 NV25_3D Kelvin Direct3D 8 SM 1 engine
0x0397 NV30:NV40 NV30_3D Rankine Direct3D 9 SM 2 engine
0x0497 NV35:NV34 NV35_3D Rankine Direct3D 9 SM 2 engine
0x3597 NV40:NV41 NV35_3D Rankine Direct3D 9 SM 2 engine
0x0697 NV34:NV40 NV34_3D Rankine Direct3D 9 SM 2 engine
0x4097 NV40:G80 !TC NV40_3D Curie Direct3D 9 SM 3 engine
0x4497 NV40:G80 TC NV44_3D Curie Direct3D 9 SM 3 engine
0x5097 G80:G200 G80_3D Tesla Direct3D 10 engine
0x8297 G84:G200 G84_3D Tesla Direct3D 10 engine
0x8397 G200:GT215 G200_3D Tesla Direct3D 10 engine
0x8597 GT215:MCP89 GT215_3D Tesla Direct3D 10.1 engine
0x8697 MCP89:GF100 MCP89_3D Tesla Direct3D 10.1 engine
0x9097 GF100:GK104 GF100_3D Fermi Direct3D 11 engine
0x9197 GF108:GK104 GF108_3D Fermi Direct3D 11 engine
0x9297 GF110:GK104 GF110_3D Fermi Direct3D 11 engine
0xa097 GK104:GK110 GK104_3D Kepler Direct3D 11.1 engine
0xa197 GK110:GK20A GK110_3D Kepler Direct3D 11.1 engine
0xa297 GK20A:GM107 GK20A_3D Kepler Direct3D 11.1 engine
0xb097 GM107- GM107_3D Maxwell Direct3D 12 engine

And the compute objects:

172 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

class variants name description
0x50c0 G80:GF100 G80_COMPUTE CUDA 1.x engine
0x85c0 GT215:GF100 GT215_COMPUTE CUDA 1.x engine
0x90c0 GF100:GK104 GF100_COMPUTE CUDA 2.x engine
0x91c0 GF110:GK104 GF110_COMPUTE CUDA 2.x engine
0xa0c0 GK104:GK110 GK20A:GM107 GK104_COMPUTE CUDA 3.x engine
0xa1c0 GK110:GK20A GK110_COMPUTE CUDA 3.x engine
0xb0c0 GM107:GM204 GM107_COMPUTE CUDA 4.x engine
0xb1c0 GM204:- GM200_COMPUTE CUDA 4.x engine

The NULL object

Todo: write me

The graphics context

Todo: write something here

Channel context

The following information makes up non-volatile graphics context. This state is per-channel and thus will apply to all
objects on it, unless software does trap-swap-restart trickery with object switches. It is guaranteed to be unaffected
by subchannel switches and object binds. Some of this state can be set by submitting methods on the context objects,
some can only be set by accessing PGRAPH context registers.

• the beta factor - set by BETA object

• the 8-bit raster operation - set by ROP object

• the A1R10G10B10 color for chroma key - set by CHROMA object

• the A1R10G10B10 color for plane mask - set by PLANE object

• the user clip rectangle - set by CLIP object:

– ???

• the pattern state - set by PATTERN object:

– shape: 8x8, 64x1, or 1x64

– 2x A8R10G10B10 pattern color

– the 64-bit pattern itself

• the NOTIFY DMA object - pointer to DMA object used by NOTIFY methods. NV1 only - moved to graph
object options on NV3+. Set by direct PGRAPH access only.

• the main DMA object - pointer to DMA object used by IFM and ITM objects. NV1 only - moved to graph
object options on NV3+. Set by direct PGRAPH access only.

• On NV1, framebuffer setup - set by direct PGRAPH access only:

2.9. PGRAPH: 2d/3d graphics and compute engine 173



nVidia Hardware Documentation, Release git

– ???

• On NV3+, rendering surface setup:

– ???

There are 4 copies of this state, one for each surface used by PGRAPH:

– DST - the 2d destination surface

– SRC - the 2d source surface [used by BLIT object only]

– COLOR - the 3d color surface

– ZETA - the 3d depth surface

Note that the M2MF source/destination, ITM destination, IFM/SIFM source, and D3D texture don’t count as
surfaces - even though they may be configured to access the same data as surfaces on NV3+, they’re accessed
through the DMA circuitry, not the surface circuitry, and their setup is part of volatile state.

Todo: beta factor size

Todo: user clip state

Todo: NV1 framebuffer setup

Todo: NV3 surface setup

Todo: figure out the extra clip stuff, etc.

Todo: update for NV4+

Graph object options

In addition to the per-channel state, there is also per-object non-volatile state, called graph object options. This state
is stored in the RAMHT entry for the object [NV1], or in a RAMIN structure [NV3-]. On subchannel switches and
object binds, the PFIFO will send this state [NV1] or the pointer to this state [NV3-] to PGRAPH via method 0. On
NV1:NV4, this state cannot be modified by any object methods and requires RAMHT/RAMIN access to change. On
NV4+, PGRAPH can bind DMA objects on its own when requested via methods, and update the DMA object pointers
in RAMIN. On NV5+, PGRAPH can modify most of this state when requested via methods. All NV4+ automatic
options modification methods can be disabled by software, if so desired.

The graph options contain the following information:

• 2d pipeline configuration

• 2d color and mono format

• NOTIFY_VALID flag - if set, NOTIFY method will be enabled. If unset, NOTIFY method will cause an
interrupt. Can be used by the driver to emulate per-object DMA_NOTIFY setting - this flag will be set on

174 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

objects whose emulated DMA_NOTIFY value matches the one currently in PGRAPH context, and interrupt
will cause a switch of the PGRAPH context value followed by a method restart.

• SUBCONTEXT_ID - a single-bit flag that can be used to emulate more than one PGRAPH context on one
channel. When an object is bound and its SUBCONTEXT_ID doesn’t match PGRAPH’s current SUBCON-
TEXT_ID, a context switch interrupt is raised to allow software to load an alternate context.

Todo: NV3+

See nv1-pgraph for detailed format.

Volatile state

In addition to the non-volatile state described above, PGRAPH also has plenty of “volatile” state. This state deals
with the currently requested operation and may be destroyed by switching to a new subchannel or binding a new
object [though not by full channel switches - the channels are supposed to be independent after all, and kernel driver
is supposed to save/restore all state, including volatile state].

Volatile state is highly object-specific, but common stuff is listed here:

• the “notifier write pending” flag and requested notification type

Todo: more stuff?

Notifiers

The notifiers are 16-byte memory structures accessed via DMA objects, used for synchronization. Notifiers are written
by PGRAPH when certain operations are completed. Software can poll on the memory structure, waiting for it to be
written by PGRAPH. The notifier structure is:

base+0x0: 64-bit timestamp - written by PGRAPH with current PTIMER time as of the notifier write. The timestamp
is a concatenation of current values of TIME_LOW and TIME_HIGH registers When big-endian mode is in
effect, this becomes a 64-bit big-endian number as expected.

base+0x8: 32-bit word always set to 0 by PGRAPH. This field may be used by software to put a non-0 value for
software-written error-caused notifications.

base+0xc: 32-bit word always set to 0 by PGRAPH. This is used for synchronization - the software is supposed to
set this field to a non-0 value before submitting the notifier write request, then wait for it to become 0. Since the
notifier fields are written in order, it is guaranteed that the whole notifier structure has been written by the time
this field is set to 0.

Todo: verify big endian on non-G80

There are two types of notifiers: ordinary notifiers [NV1-] and M2MF notifiers [NV3-]. Normal notifiers are written
when explicitely requested by the NOTIFY method, M2MF notifiers are written on M2MF transfer completion. M2MF
notifiers cannot be turned off, thus it’s required to at least set up a notifier DMA object if M2MF is used, even if the
software doesn’t wish to use notifiers for synchronization.

Todo: figure out NV20 mysterious warning notifiers

2.9. PGRAPH: 2d/3d graphics and compute engine 175



nVidia Hardware Documentation, Release git

Todo: describe GF100+ notifiers

The notifiers are always written to the currently bound notifier DMA object. The M2MF notifiers share the DMA
object with ordinary notifiers. The layout of the DMA object used for notifiers is fixed:

• 0x00: ordinary notifier #0

• 0x10: M2MF notifier [NV3-]

• 0x20: ordinary notifier #2 [NV3:NV4 only]

• 0x30: ordinary notifier #3 [NV3:NV4 only]

• 0x40: ordinary notifier #4 [NV3:NV4 only]

• 0x50: ordinary notifier #5 [NV3:NV4 only]

• 0x60: ordinary notifier #6 [NV3:NV4 only]

• 0x70: ordinary notifier #7 [NV3:NV4 only]

• 0x80: ordinary notifier #8 [NV3:NV4 only]

• 0x90: ordinary notifier #9 [NV3:NV4 only]

• 0xa0: ordinary notifier #10 [NV3:NV4 only]

• 0xb0: ordinary notifier #11 [NV3:NV4 only]

• 0xc0: ordinary notifier #12 [NV3:NV4 only]

• 0xd0: ordinary notifier #13 [NV3:NV4 only]

• 0xe0: ordinary notifier #14 [NV3:NV4 only]

• 0xf0: ordinary notifier #15 [NV3:NV4 only]

Todo: 0x20 - NV20 warning notifier?

Note that the notifiers always have to reside at the very beginning of the DMA object. On NV1 and NV4+, this
effectively means that only 1 notifier of each type can be used per DMA object, requiring mulitple DMA objects
if more than one notifier per type is to be used, and likely requiring a dedicated DMA object for the notifiers. On
NV3:NV4, up to 15 ordinary notifiers may be used in a single DMA object, though that DMA object likely still needs
to be dedicated for notifiers, and only one of the notifiers supports interrupt generation.

NOTIFY method

Ordinary notifiers are requested via the NOTIFY method. Note that the NOTIFY method schedules a notifier write on
completion of the method following the NOTIFY - NOTIFY merely sets “a notifier write is pending” state.

It is an error if a NOTIFY method is followed by another NOTIFY method, a DMA_NOTIFY method, an object bind,
or a subchannel switch.

In addition to a notifier write, the NOTIFY method may also request a NOTIFY interrupt to be triggered on PGRAPH
after the notifier write.

mthd 0x104: NOTIFY [all NV1:GF100 graph objects] Requests a notifier write and maybe an interrupt. The
write/interrupt will be actually performed after the next method completes. Possible parameter values are:

176 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

0: WRITE - write ordinary notifier #0 1: WRITE_AND_AWAKEN - write ordinary notifier 0, then
trigger NOTIFY

interrupt [NV3-]

2: WRITE_2 - write ordinary notifier #2 [NV3:NV4] 3: WRITE_3 - write ordinary notifier #3
[NV3:NV4] [. . . ] 15: WRITE_15 - write ordinary notifier #15 [NV3:NV4]

Operation::

if (!cur_grobj.NOTIFY_VALID) { /* DMA notify object not set, or needs to be swapped in by sw */
throw(INVALID_NOTIFY);

} else if ((param > 0 && gpu == NV1)

|| (param > 15 && gpu >= NV3 && gpu < NV4) || (param > 1 && gpu >= NV4)) {

/* XXX: what state is changed? */ throw(INVALID_VALUE);

} else if (NOTIFY_PENDING) { /* tried to do two NOTIFY methods in row / / XXX: what state is changed?
*/ throw(DOUBLE_NOTIFY);

} else { NOTIFY_PENDING = 1; NOTIFY_TYPE = param;

}

After every method other than NOTIFY and DMA_NOTIFY, the following is done:

if (NOTIFY_PENDING) {
int idx = NOTIFY_TYPE;
if (idx == 1)

idx = 0;
dma_write64(NOTIFY_DMA, idx*0x10+0x0, PTIMER.TIME_HIGH << 32 | PTIMER.TIME_LOW);
dma_write32(NOTIFY_DMA, idx*0x10+0x8, 0);
dma_write32(NOTIFY_DMA, idx*0x10+0xc, 0);
if (NOTIFY_TYPE == 1)

irq_trigger(NOTIFY);
NOTIFY_PENDING = 0;

}

if a subchannel switch or object bind is done while NOTIFY_PENDING is set, CTXSW_NOTIFY error is raised.

NOTE: NV1 has a 1-bit NOTIFY_PENDING field, allowing it to do notifier writes with interrupts, but lacks support
for setting it via the NOTIFY method. This functionality thus has to be emulated by the driver if needed.

DMA_NOTIFY method

On NV4+, the notifier DMA object can be bound by submitting the DMA_NOTIFY method. This functionality can
be disabled by the driver in PGRAPH settings registers if not desired.

mthd 0x180: DMA_NOTIFY [all NV4:GF100 graph objects] Sets the notifier DMA object. When submitted
through PFIFO, this method will undergo handle -> address translation via RAMHT.

Operation::

if (DMA_METHODS_ENABLE) { /* XXX: list the validation checks */ NOTIFY_DMA = param;

} else { throw(INVALID_METHOD);

}

2.9. PGRAPH: 2d/3d graphics and compute engine 177



nVidia Hardware Documentation, Release git

NOP method

On NV4+ a NOP method was added to enable asking for a notifier write without having to submit an actual method
to the object. The NOP method does nothing, but still counts as a graph object method and will thus trigger a notifier
write/interrupt if one was previously requested.

mthd 0x100: NOP [all NV4+ graph objects] Does nothing.

Operation:: /* nothing */

Todo: figure out if this method can be disabled for NV1 compat

2.9.2 The memory copying objects

Contents

• The memory copying objects

– Introduction

– M2MF objects

– P2MF objects

– Input/output setup

– Operation

Introduction

Todo: write me

M2MF objects

Todo: write me

P2MF objects

Todo: write me

Input/output setup

178 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: write me

Operation

Todo: write me

2.9.3 2D pipeline

Contents:

Overview of the 2D pipeline

Contents

• Overview of the 2D pipeline

– Introduction

– The objects

* Connecting the objects - NV1 style

* Connecting the objects - NV5 style

– Color and monochrome formats

* COLOR_FORMAT methods

* Color format conversions

* Monochrome formats

– The pipeline

* Pipeline configuration: NV1

* Clipping

* Source format conversion

* Buffer read

* Bitwise operation

* Chroma key

* The plane mask

* Blending

* Dithering

* The framebuffer

· NV1 canvas

2.9. PGRAPH: 2d/3d graphics and compute engine 179



nVidia Hardware Documentation, Release git

· NV3 surfaces

· Clip rectangles

– NV1-style operation objects

– Unified 2d objects

Introduction

On nvidia GPUs, 2d operations are done by PGRAPH engine [see graph/intro.txt]. The 2d engine is rather orthogonal
and has the following features:

• various data sources:

– solid color shapes (points, lines, triangles, rectangles)

– pixels uploaded directly through command stream, raw or expanded using a palette

– text with in-memory fonts [NV3:G80]

– rectangles blitted from another area of video memory

– pixels read by DMA

– linearly and quadratically textured quads [NV1:NV3]

• color format conversions

• chroma key

• clipping rectangles

• per-pixel operations between source, destination, and pattern:

– logic operations

– alpha and beta blending

– pre-multiplied alpha blending [NV4-]

• plane masking [NV1:NV4]

• dithering

• data output:

– to the framebuffer [NV1:NV3]

– to any surface in VRAM [NV3:G84]

– to arbirary memory [G84-]

The objects

The 2d engine is controlled by the user via PGRAPH objects. On NV1:G84, each piece of 2d functionality has its
own object class - a matching set of objects needs to be used together to perform an operation. G80+ have a unified
2d engine object that can be used to control all of the 2d pipeline in one place.

The non-unified objects can be divided into 3 classes:

• source objects: control the drawing operation, choose pixels to draw and their colors

• context objects: control various pipeline settings shared by other objects

180 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• operation objects: connect source and context objects together

The source objects are:

• POINT , LIN, LINE, TRI, RECT: drawing of solid color shapes

• IFC, BITMAP, SIFC, INDEX, TEXTURE: drawing of pixel data from CPU

• BLIT: copying rectangles from another area of video memory

• IFM, SIFM: drawing pixel data from DMA

• GDI: Drawing solid rectangles and text fonts

• TEXLIN, TEXQUAD, TEXLINBETA, TEXQUADBETA: Drawing textured quads

The context objects are:

• BETA: blend factor

• ROP: logic operation

• CHROMA: color for chroma key

• PLANE: color for plane mask

• CLIP: clipping rectangle

• PATTERN: repeating pattern image [graph/pattern.txt]

• BETA4: pre-multiplied blend factor

• SURF, SURF2D, SWZSURF: destination and blit source surface setup

The operation objects are:

• OP_CLIP: clipping operation

• OP_BLEND_AND: blending

• OP_ROP_AND: logic operation

• OP_CHROMA: color key

• OP_SRCCOPY_AND: source copy with 0-alpha discard

• OP_SRCCOPY: source copy

• OP_SRCCOPY_PREMULT: pre-multiplying copy

• OP_BLEND_PREMULT: pre-multiplied blending

The unified 2d engine objects are described below.

The objects that, although related to 2d operations, aren’t part of the usual 2d pipeline:

• ITM: downloading framebuffer data to DMA

• M2MF: DMA to DMA copies

• DVD_SUBPICTURE: blending of YUV data

Note that, although multiple objects of a single kind may be created, there is only one copy of pipeline state data in
PGRAPH. There are thus two usage possibilities:

• aliasing: all objects on a channel access common pipeline state, making it mostly useless to create several
objects of single kind

• swapping: the kernel driver or some other piece of software handles PGRAPH interrupts, swapping pipeline
configurations as they’re needed, and marking objects valid/not valid according to currently loaded configuration

2.9. PGRAPH: 2d/3d graphics and compute engine 181



nVidia Hardware Documentation, Release git

Connecting the objects - NV1 style

The objects were originally intended and designed for connecting with so-called patchcords. A patchcord is a dummy
object that’s conceptually a wire carrying some sort of data. The patchcord types are:

• image patchcord: carries pixel color data

• beta patchcord: carries beta blend factor data

• zeta patchcord: carries pixel depth data

• rop patchcord: carries logic operation data

Each 2d object has patchcord “slots” representing its inputs and outputs. A slot is represented by an object methods.
Objects are connected together by creating a patchcord of appropriate type and writing its handle to the input slot
method on one object and the output slot method on the other object. For example:

• source objects have an output image patchcord slot [BLIT also has input image slot]

• BETA context object has an output beta slot

• OP_BLEND_AND has two image input slots, one beta input slot, and one image output slot

A valid set of objects, called a “patch” is constructed by connecting patchcords appropriately. Not all possible con-
nections ara valid, though. Only ones that map to the actual hardware pipeline are allowed: one of the source objects
must be at the beginning, connected via image patchcord to OP_BLEND_*, OP_ROP_AND, or OP_SRCCOPY_*,
optionally connected further through OP_CLIP and/or OP_CHROMA, then finally connected to a SURF object rep-
resenting the destination surface. Each of the OP_* objects and source objects that needs it must also be connected to
the appropriate extra inputs, like the CLIP rectangle, PATTERN or another SURF, or CHROMA key.

No GPU has ever supported connecting patchcords in hardware - the software must deal with all required processing
and state swapping. However, NV4:NV20 hardware knows of the methods reserved for these purpose, and raises a
special interrupt when they’re called. The OP_*, while lacking in any useful hardware methods, are also supported on
NV4:NV5.

Connecting the objects - NV5 style

A new way of connecting objects was designed for NV5 [but can be used with earlier cards via software emulation].
Instead of treating a patch as a freeform set of objects, the patch is centered on the source object. While context
objects are still in use, operation objects are skipped - the set of operations to perform is specified at the source object,
instead of being implid by the patchcord topology. The context objects are now connected directly to the source object
by writing their handles to appropriate source object methods. The OP_CLIP and OP_CHROMA functionality is
replaced by CLIP and CHROMA methods on the source objects: enabling clipping/color keying is done by connecting
appropriate context object, while disabling is done by connecting a NULL object. The remaining operation objects
are replaced by OPERATION method, which takes an enum selecting the operation to perform.

NV5 added support for the NV5-style connections in hardware - all methods can be processed without software
assistance as long as only one object of each type is in use [or they’re allowed to alias]. If swapping is required, it’s the
responsibility of software. The new methods can be globally disabled if NV1-style connections are desired, however.
NV5-style connections can also be implemented for older GPUs simply by handling the relevant methods in software.

Color and monochrome formats

Todo: write me

182 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

COLOR_FORMAT methods

mthd 0x300: COLOR_FORMAT [NV1_CHROMA, NV1_PATTERN] [NV4-] Sets the color format using NV1
color enum.

Operation:

cur_grobj.COLOR_FORMAT = get_nv1_color_format(param);

Todo: figure out this enum

mthd 0x300: COLOR_FORMAT [NV4_CHROMA, NV4_PATTERN] Sets the color format using NV4 color
enum.

Operation:

cur_grobj.COLOR_FORMAT = get_nv4_color_format(param);

Todo: figure out this enum

Color format conversions

Todo: write me

Monochrome formats

Todo: write me

mthd 0x304: MONO_FORMAT [NV1_PATTERN] [NV4-] Sets the monochrome format.

Operation:

if (param != LE && param != CGA6)
throw(INVALID_ENUM);

cur_grobj.MONO_FORMAT = param;

Todo: check

The pipeline

The 2d pipeline consists of the following stages, in order:

1. Image source: one of the source objects, or one of the three source types on the unified 2d objects [SOLID,
SIFC, or BLIT] - see documentation of the relevant object

2.9. PGRAPH: 2d/3d graphics and compute engine 183



nVidia Hardware Documentation, Release git

2. Clipping

3. Source color conversion

4. One of:

1. Bitwise operation subpipeline, soncisting of:

1. Optionally, an arbitrary bitwise operation done on the source, the destination, and the pattern.

2. Optionally, a color key operation

3. Optionally, a plane mask operation [NV1:NV4]

2. Blending operation subpipeline, consisting of:

1. Blend factor calculation

2. Blending

5. Dithering

6. Destination write

In addition, the pipeline may be used in RGB mode [treating colors as made of R, G, B components], or index mode
[treating colors as 8-bit palette index]. The pipeline mode is determined automatically by the hardware based on
source and destination formats and some configuration bits.

The pixels are rendered to a destination buffer. On NV1:NV4, more than one destination buffer may be enabled at a
time. If this is the case, the pixel operations are executed separately for each buffer.

Pipeline configuration: NV1

The pipeline configuration is stored in graph options and other PGRAPH registers. It cannot be changed by user-visible
commands other than via rebinding objects. The following options are stored in the graph object:

• the operation, one of:

– RPOP_DS - RPOP(DST, SRC)

– ROP_SDD - ROP(SRC, DST, DST)

– ROP_DSD - ROP(DST, SRC, DST)

– ROP_SSD - ROP(SRC, SRC, DST)

– ROP_DDS - ROP(DST, DST, SRC)

– ROP_SDS - ROP(SRC, DST, SRC)

– ROP_DSS - ROP(DST, SRC, SRC)

– ROP_SSS - ROP(SRC, SRC, SRC)

– ROP_SSS_ALT - ROP(SRC, SRC, SRC)

– ROP_PSS - ROP(PAT, SRC, SRC)

– ROP_SPS - ROP(SRC, PAT, SRC)

– ROP_PPS - ROP(PAT, PAT, SRC)

– ROP_SSP - ROP(SRC, SRC, PAT)

– ROP_PSP - ROP(PAT, SRC, PAT)

– ROP_SPP - ROP(SRC, PAT, PAT)

184 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– RPOP_SP - ROP(SRC, PAT)

– ROP_DSP - ROP(DST, SRC, PAT)

– ROP_SDP - ROP(SRC, DST, PAT)

– ROP_DPS - ROP(DST, PAT, SRC)

– ROP_PDS - ROP(PAT, DST, SRC)

– ROP_SPD - ROP(SRC, PAT, DST)

– ROP_PSD - ROP(PAT, SRC, DST)

– SRCCOPY - SRC [no operation]

– BLEND_DS_AA - BLEND(DST, SRC, SRC.ALPHA^2) [XXX check]

– BLEND_DS_AB - BLEND(DST, SRC, SRC.ALPHA * BETA)

– BLEND_DS_AIB - BLEND(DST, SRC, SRC.ALPHA * (1-BETA))

– BLEND_PS_B - BLEND(PAT, SRC, BETA)

– BLEND_PS_IB - BLEND(SRC, PAT, (1-BETA))

If the operation is set to one of the BLEND_* values, blending subpipeline will be active. Otherwise, the bitwise
operation subpipeline will be active. For bitwise operation pipeline, RPOP* and ROP* will cause the bitwise
operation stage to be enabled with the appropriate options, while the SRCCOPY setting will cause it to be
disabled and bypassed.

• chroma enable: if this is set to 1, and the bitwise operation subpipeline is active, the color key stage will be
enabled

• plane mask enable: if this is set to 1, and the bitwise operation subpipeline is active, the plane mask stage will
be enabled

• user clip enable: if set to 1, the user clip rectangle will be enabled in the clipping stage

• destination buffer mask: selects which destination buffers will be written

The following options are stored in other PGRAPH registers:

• palette bypass bit: determines the value of the palette bypass bit written to the framebuffer

• Y8 expand: determines piepline mode used with Y8 source and non-Y8 destination - if set, Y8 is upconverted
to RGB and the RGB mode is used, otherwise the index mode is used

• dither enable: if set, and several conditions are fullfilled, dithering stage will be enabled

• software mode: if set, all drawing operations will trap without touching the framebuffer, allowing software to
perform the operation instead

The pipeline mode is selected as follows:

• if blending subpipeline is used, RGB mode is selected [index blending is not supported]

• if bitwise operation subpipeline is used:

– if destination format is Y8, indexed mode is selected

– if destination format is D1R5G5B5 or D1X1R10G10B10:

* if source format is not Y8 or Y8 expand is enabled, RGB mode is selected

* if source format is Y8 and Y8 expand is not enabled, indexed mode is selected

2.9. PGRAPH: 2d/3d graphics and compute engine 185



nVidia Hardware Documentation, Release git

In RGB mode, the pipeline internally uses 10-bit components. In index mode, 8-bit indices are used.

See nv1-pgraph for more information on the configuration registers.

Clipping

Todo: write me

Source format conversion

Firstly, the source color is converted from its original format to the format used for operations.

Todo: figure out what happens on ITM, IFM, BLIT, TEX*BETA

On NV1, all operations are done on A8R10G10B10 or I8 format internally. In RGB mode, colors are converted using
the standard color expansion formula. In index mode, the index is taken from the low 8 bits of the color.

src.B = get_color_b10(cur_grobj, color);
src.G = get_color_g10(cur_grobj, color);
src.R = get_color_r10(cur_grobj, color);
src.A = get_color_a8(cur_grobj, color);
src.I = color[0:7];

In addition, pixels are discarded [all processing is aborted and the destination buffer is left untouched] if the alpha
component is 0 [even in index mode].

if (!src.A)
discard;

Todo: NV3+

Buffer read

In some blending and bitwise operation modes, the current contents of the destination buffer at the drawn pixel location
may be used as an input to the 2d pipeline.

Todo: document that and BLIT

Bitwise operation

Todo: write me

186 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Chroma key

Todo: write me

The plane mask

Todo: write me

Blending

Todo: write me

Dithering

Todo: write me

The framebuffer

Todo: write me

NV1 canvas

Todo: write me

NV3 surfaces

Todo: write me

Clip rectangles

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 187



nVidia Hardware Documentation, Release git

NV1-style operation objects

Todo: write me

Unified 2d objects

Todo: write me

0100 NOP [graph/intro.txt] 0104 NOTIFY [G80_2D] [graph/intro.txt] [XXX: GF100 methods] 0110
WAIT_FOR_IDLE [graph/intro.txt] 0140 PM_TRIGGER [graph/intro.txt] 0180 DMA_NOTIFY [G80_2D]
[graph/intro.txt] 0184 DMA_SRC [G80_2D] [XXX] 0188 DMA_DST [G80_2D] [XXX] 018c DMA_COND
[G80_2D] [XXX] [XXX: 0200-02ac] 02b0 PATTERN_OFFSET [graph/pattern.txt] 02b4 PATTERN_SELECT
[graph/pattern.txt] 02dc ??? [GF100_2D-] [XXX] 02e0 ??? [GF100_2D-] [XXX] 02e8 PAT-
TERN_COLOR_FORMAT [graph/pattern.txt] 02ec PATTERN_BITMAP_FORMAT [graph/pattern.txt] 02f0+i*4,
i<2 PATTERN_BITMAP_COLOR [graph/pattern.txt] 02f8+i*4, i<2 PATTERN_BITMAP [graph/pattern.txt]
0300+i*4, i<64 PATTERN_X8R8G8B8 [graph/pattern.txt] 0400+i*4, i<32 PATTERN_R5G6B5 [graph/pattern.txt]
0480+i*4, i<32 PATTERN_X1R5G5B5 [graph/pattern.txt] 0500+i*4, i<16 PATTERN_Y8 [graph/pattern.txt] [XXX:
0540-08dc] 08e0+i*4, i<32 FIRMWARE [graph/intro.txt] [XXX: GF100 methods]

2D pattern

Contents

• 2D pattern

– Introduction

– PATTERN objects

– Pattern selection

– Pattern coordinates

– Bitmap pattern

– Color pattern

Introduction

One of the configurable inputs to the bitwise operation and, on NV1:NV4, the blending operation is the pattern. A
pattern is an infinitely repeating 8x8, 64x1, or 1x64 image. There are two types of patterns:

• bitmap pattern: an arbitrary 2-color 8x8, 64x1, or 1x64 2-color image

• color pattern: an aribtrary 8x8 R8G8B8 image [NV4-]

The pattern can be set through the NV1-style *_PATTERN context objects, or through the G80-style unified 2d objects.
For details on how and when the pattern is used, see 2D pattern.

The graph context used for pattern storage is made of:

188 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• pattern type selection: bitmap or color [NV4-]

• bitmap pattern state:

– shape selection: 8x8, 1x64, or 64x1

– the bitmap: 2 32-bit words

– 2 colors: A8R10G10B10 format [NV1:NV4]

– 2 colors: 32-bit word + format selector each [NV4:G80]

– 2 colors: 32-bit word each [G80-]

– color format selection [G80-]

– bitmap format selection [G80-]

• color pattern state [NV4-]:

– 64 colors: R8G8B8 format

• pattern offset: 2 6-bit numbers [G80-]

PATTERN objects

The PATTERN object family deals with setting up the pattern. The objects in this family are:

• objtype 0x06: NV1_PATTERN [NV1:NV4]

• class 0x0018: NV1_PATTERN [NV4:G80]

• class 0x0044: NV4_PATTERN [NV4:G84]

The methods for this family are:

0100 NOP [NV4-] [graph/intro.txt] 0104 NOTIFY [graph/intro.txt] 0110 WAIT_FOR_IDLE [G80-] [graph/intro.txt]
0140 PM_TRIGGER [NV40-?] [XXX] [graph/intro.txt] 0180 N DMA_NOTIFY [NV4-] [graph/intro.txt] 0200
O PATCH_IMAGE_OUTPUT [NV4:NV20] [see below] 0300 COLOR_FORMAT [NV4-] [see below] 0304
BITMAP_FORMAT [NV4-] [see below] 0308 BITMAP_SHAPE [see below] 030c TYPE [NV4_PATTERN] [see be-
low] 0310+i*4, i<2 BITMAP_COLOR [see below] 0318+i*4, i<2 BITMAP [see below] 0400+i*4, i<16 COLOR_Y8
[NV4_PATTERN] [see below] 0500+i*4, i<32 COLOR_R5G6B5 [NV4_PATTERN] [see below] 0600+i*4, i<32
COLOR_X1R5G5B5 [NV4_PATTERN] [see below] 0700+i*4, i<64 COLOR_X8R8G8B8 [NV4_PATTERN] [see
below]

mthd 0x200: PATCH_IMAGE_OUTPUT [*_PATTERN] [NV4:NV20] Reserved for plugging an image patch-
cord to output the pattern into.

Operation: throw(UNIMPLEMENTED_MTHD);

Pattern selection

With the *_PATTERN objects, the pattern type is selected using the TYPE and BITMAP_SHAPE methods:

mthd 0x030c: TYPE [NV4_PATTERN]

Sets the pattern type. One of: 1: BITMAP 2: COLOR

Operation::

if (NV4:G80) { PATTERN_TYPE = param;

2.9. PGRAPH: 2d/3d graphics and compute engine 189



nVidia Hardware Documentation, Release git

} else { SHADOW_COMP2D.PATTERN_TYPE = param; if (SHADOW_COMP2D.PATTERN_TYPE ==
COLOR)

PATTERN_SELECT = COLOR;

else PATTERN_SELECT = SHADOW_COMP2D.PATTERN_BITMAP_SHAPE;

}

mthd 0x308: BITMAP_SHAPE [*_PATTERN]

Sets the pattern shape. One of: 0: 8x8 1: 64x1 2: 1x64

On unified 2d objects, use the PATTERN_SELECT method instead.

Operation::

if (param > 2) throw(INVALID_ENUM);

if (NV1:G80) { PATTERN_BITMAP_SHAPE = param;

} else { SHADOW_COMP2D.PATTERN_BITMAP_SHAPE = param; if
(SHADOW_COMP2D.PATTERN_TYPE == COLOR)

PATTERN_SELECT = COLOR;

else PATTERN_SELECT = SHADOW_COMP2D.PATTERN_BITMAP_SHAPE;

}

With the unified 2d objects, the pattern type is selected along with the bitmap shape using the PATTERN_SELECT
method:

mthd 0x02bc: PATTERN_SELECT [*_2D]

Sets the pattern type and shape. One of: 0: BITMAP_8X8 1: BITMAP_64X1 2: BITMAP_1X64 3:
COLOR

Operation::

if (param < 4) PATTERN_SELECT = SHADOW_2D.PATTERN_SELECT = param;

else throw(INVALID_ENUM);

Pattern coordinates

The pattern pixel is selected according to pattern coordinates: px, py. On NV1:G80, the pattern coordinates are equal
to absolute [ie. not canvas-relative] coordinates in the destination surface. On G80+, an offset can be added to the
coordinates. The offset is set by the PATTERN_OFFSET method:

mthd 0x02b0: PATTERN_OFFSET [*_2D] Sets the pattern offset. bits 0-5: X offset bits 8-13: Y offset

Operation: PATTERN_OFFSET = param;

The offset values are added to the destination surface X, Y coordinates to obtain px, py coordinates.

Bitmap pattern

The bitmap pattern is made of three parts:

• two-color palette

• 64 bits of pattern: each bit describes one pixel of the pattern and selects which color to use

190 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• shape selector: determines whether the bitmap is 8x8, 64x1, or 1x64

The color to use for given pattern coordinates is selected as follows:

b6 bit;
if (shape == 8x8)

bit = (py&7) << 3 | (px&7);
else if (shape == 64x1)

bit = px & 0x3f;
else if (shape == 1x64)

bit = py & 0x3f;
b1 pixel = PATTERN_BITMAP[bit[5]][bit[0:4]];
color = PATTERN_BITMAP_COLOR[pixel];

On NV1:NV4, the color is internally stored in A8R10G10B10 format and upconverted from the source format when
submitted. On NV4:G80, it’s stored in the original format it was submitted with, and is annotated with the format
information as of the submission. On G80+, it’s also stored as it was submitted, but is not annotated with format
information - the format used to interpret it is the most recent pattern color format submitted.

On NV1:G80, the color and bitmap formats are stored in graph options for the PATTERN object. On G80+, they’re
part of main graph state instead.

The methods dealing with bitmap patterns are:

mthd 0x300: COLOR_FORMAT [NV1_PATTERN] [NV4-]

Sets the color format used for subsequent bitmap pattern colors. One of: 1: X16A8Y8 2: X16A1R5G5B5
3: A8R8G8B8

Operation::

switch (param) { case 1: cur_grobj.color_format = X16A8Y8; break; case 2: cur_grobj.color_format
= X16A1R5G5B5; break; case 3: cur_grobj.color_format = A8R8G8B8; break; default:
throw(INVALID_ENUM);

}

mthd 0x300: COLOR_FORMAT [NV4_PATTERN]

Sets the color format used for subsequent bitmap pattern colors. One of: 1: A16R5G6B5 2:
X16A1R5G5B5 3: A8R8G8B8

Operation::

if (NV1:NV4) {

switch (param) { case 1: cur_grobj.color_format = A16R5G6B5; break; case 2: cur_grobj.color_format
= X16A1R5G5B5; break; case 3: cur_grobj.color_format = A8R8G8B8; break; default:
throw(INVALID_ENUM);

}

} else { SHADOW_COMP2D.PATTERN_COLOR_FORMAT = param; switch (param) {

case 1: PATTERN_COLOR_FORMAT = A16R5G6B5; break; case 2: PAT-
TERN_COLOR_FORMAT = X16A1R5G5B5; break; case 3: PATTERN_COLOR_FORMAT =
A8R8G8B8; break; default: throw(INVALID_ENUM);

}

}

mthd 0x2e8: PATTERN_COLOR_FORMAT [G80_2D]

2.9. PGRAPH: 2d/3d graphics and compute engine 191



nVidia Hardware Documentation, Release git

Sets the color format used for bitmap pattern colors. One of: 0: A16R5G6B5 1: X16A1R5G5B5 2:
A8R8G8B8 3: X16A8Y8 4: ??? [XXX] 5: ??? [XXX]

Operation::

if (param < 6) PATTERN_COLOR_FORMAT = SHADOW_2D.PATTERN_COLOR_FORMAT = param;

else throw(INVALID_ENUM);

mthd 0x304: BITMAP_FORMAT [*_PATTERN] [NV4-]

Sets the bitmap format used for subsequent pattern bitmaps. One of: 1: LE 2: CGA6

Operation::

if (NV4:G80) {

switch (param) { case 1: cur_grobj.bitmap_format = LE; break; case 2: cur_grobj.bitmap_format =
CGA6; break; default: throw(INVALID_ENUM);

}

} else {

switch (param) { case 1: PATTERN_BITMAP_FORMAT = LE; break; case 2: PAT-
TERN_BITMAP_FORMAT = CGA6; break; default: throw(INVALID_ENUM);

}

}

mthd 0x2ec: PATTERN_BITMAP_FORMAT [*_PATTERN]

Sets the bitmap format used for pattern bitmaps. One of: 0: LE 1: CGA6

Operation::

if (param < 2) PATTERN_BITMAP_FORMAT = param;

else throw(INVALID_ENUM);

mthd 0x310+i*4, i<2: BITMAP_COLOR [*_PATTERN] mthd 0x2f0+i*4, i<2: PATTERN_BITMAP_COLOR
[*_2D]

Sets the colors used for bitmap pattern. i=0 sets the color used for pixels corresponding to ‘0’ bits in the
pattern, i=1 sets the color used for ‘1’.

Operation::

if (NV1:NV4) { PATTERN_BITMAP_COLOR[i].B = get_color_b10(cur_grobj, param); PAT-
TERN_BITMAP_COLOR[i].G = get_color_b10(cur_grobj, param); PATTERN_BITMAP_COLOR[i].R
= get_color_b10(cur_grobj, param); PATTERN_BITMAP_COLOR[i].A = get_color_b8(cur_grobj,
param);

} else if (NV4:G80) { PATTERN_BITMAP_COLOR[i] = param; /* XXX: details */ CON-
TEXT_FORMAT.PATTERN_BITMAP_COLOR[i] = cur_grobj.color_format;

} else { PATTERN_BITMAP_COLOR[i] = param;

}

mthd 0x318+i*4, i<2: BITMAP [*_PATTERN] mthd 0x2f8+i*4, i<2: PATTERN_BITMAP [*_2D]

Sets the pattern bitmap. i=0 sets bits 0-31, i=1 sets bits 32-63.

Operation:: tmp = param; if (cur_grobj.BITMAP_FORMAT == CGA6 && NV1:G80) { /* XXX: check if also
NV4+ */

192 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

/* pattern stored internally in LE format - for CGA6, reverse bits in all bytes */

tmp = (tmp & 0xaaaaaaaa) >> 1 | (tmp & 0x55555555) << 1; tmp = (tmp & 0xcccccccc) >> 2 | (tmp
& 0x33333333) << 2; tmp = (tmp & 0xf0f0f0f0) >> 4 | (tmp & 0x0f0f0f0f) << 4;

} PATTERN_BITMAP[i] = tmp;

Color pattern

The color pattern is always an 8x8 array of R8G8B8 colors. It is stored and uploaded as an array of 64 cells in raster
scan - the color for pattern coordinates (px, py) is taken from PATTERN_COLOR[(py&7) << 3 | (px&7)]. There are
4 sets of methods that set the pattern, corresponding to various color formats. Each set of methods updates the same
state internally and converts the written values to R8G8B8 if necessary. Color pattern is available on NV4+ only.

mthd 0x400+i*4, i<16: COLOR_Y8 [NV4_PATTERN] mthd 0x500+i*4, i<16: PATTERN_COLOR_Y8 [*_2D]

Sets 4 color pattern cells, from Y8 source. bits 0-7: color for pattern cell i*4+0 bits 8-15: color for pattern
cell i*4+1 bits 16-23: color for pattern cell i*4+2 bits 24-31: color for pattern cell i*4+3

Operation:: PATTERN_COLOR[4*i] = Y8_to_R8G8B8(param[0:7]); PATTERN_COLOR[4*i+1] =
Y8_to_R8G8B8(param[8:15]); PATTERN_COLOR[4*i+2] = Y8_to_R8G8B8(param[16:23]); PAT-
TERN_COLOR[4*i+3] = Y8_to_R8G8B8(param[24:31]);

mthd 0x500+i*4, i<32: COLOR_R5G6B5 [NV4_PATTERN] mthd 0x400+i*4, i<32: PATTERN_COLOR_R5G6B5
[*_2D]

Sets 2 color pattern cells, from R5G6B5 source. bits 0-15: color for pattern cell i*2+0 bits 16-31: color
for pattern cell i*2+1

Operation:: PATTERN_COLOR[2*i] = R5G6B5_to_R8G8B8(param[0:15]); PATTERN_COLOR[2*i+1] =
R5G6B5_to_R8G8B8(param[16:31]);

mthd 0x600+i*4, i<32: COLOR_X1R5G5B5 [NV4_PATTERN] mthd 0x480+i*4, i<32: PAT-
TERN_COLOR_X1R5G5B5 [*_2D]

Sets 2 color pattern cells, from X1R5G5B5 source. bits 0-15: color for pattern cell i*2+0 bits 16-31:
color for pattern cell i*2+1

Operation:: PATTERN_COLOR[2*i] = X1R5G5B5_to_R8G8B8(param[0:15]); PATTERN_COLOR[2*i+1] =
X1R5G5B5_to_R8G8B8(param[16:31]);

mthd 0x700+i*4, i<64: COLOR_X8R8G8B8 [NV4_PATTERN] mthd 0x300+i*4, i<64: PAT-
TERN_COLOR_X8R8G8B8 [*_2D]

Sets a color pattern cell, from X8R8G8B8 source.

Operation:: PATTERN_COLOR[i] = param[0:23];

Todo: precise upconversion formulas

Context objects

Contents

• Context objects

2.9. PGRAPH: 2d/3d graphics and compute engine 193



nVidia Hardware Documentation, Release git

– Introducton

– BETA

– ROP

– CHROMA and PLANE

– CLIP

– BETA4

– Surface setup

* SURF

* SURF2D

* SURF3D

* SWZSURF

Introducton

Todo: write m

BETA

The BETA object family deals with setting the beta factor for the BLEND operation. The objects in this family are:

• objtype 0x01: NV1_BETA [NV1:NV4]

• class 0x0012: NV1_BETA [NV4:G84]

The methods are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_BETA_OUTPUT [NV4:NV20] 0300 BETA

mthd 0x300: BETA [NV1_BETA] Sets the beta factor. The parameter is a signed fixed-point number with a sign
bit and 31 fractional bits. Note that negative values are clamped to 0, and only 8 fractional bits are actually
implemented in hardware.

Operation:

if (param & 0x80000000) /* signed < 0 */
BETA = 0;

else
BETA = param & 0x7f800000;

mthd 0x200: PATCH_BETA_OUTPUT [NV1_BETA] [NV4:NV20] Reserved for plugging a beta patchcord to
output beta factor into.

Operation:: throw(UNIMPLEMENTED_MTHD);

194 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

ROP

The ROP object family deals with setting the ROP [raster operation]. The ROP value thus set is only used in the
ROP_* operation modes. The objects in this family are:

• objtype 0x02: NV1_ROP [NV1:NV4]

• class 0x0043: NV1_ROP [NV4:G84]

The methods are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_ROP_OUTPUT [NV4:NV20] 0300 ROP

mthd 0x300: ROP [NV1_ROP] Sets the raster operation.

Operation:

if (param & ~0xff)
throw(INVALID_VALUE);

ROP = param;

mthd 0x200: PATCH_ROP_OUTPUT [NV1_ROP] [NV4:NV20] Reserved for plugging a ROP patchcord to out-
put the ROP into.

Operation:

throw(UNIMPLEMENTED_MTHD);

CHROMA and PLANE

The CHROMA object family deals with setting the color for the color key. The color key is only used when enabled
in options for a given graph object. The objects in this family are:

• objtype 0x03: NV1_CHROMA [NV1:NV4]

• class 0x0017: NV1_CHROMA [NV4:G80]

• class 0x0057: NV4_CHROMA [NV4:G84]

The PLANE object family deals with setting the color for plane masking. The plane mask operation is only done when
enabled in options for a given graph object. The objects in this family are:

• objtype 0x04: NV1_PLANE [NV1:NV4]

For both objects, colors are internally stored in A1R10G10B10 format. [XXX: check NV4+]

The methods for these families are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_IMAGE_OUTPUT [NV4:NV20] 0300 COLOR_FORMAT [NV4-] 0304
COLOR

mthd 0x304: COLOR [*_CHROMA, NV1_PLANE] Sets the color.

Operation:

struct {
int B : 10;
int G : 10;
int R : 10;

(continues on next page)

2.9. PGRAPH: 2d/3d graphics and compute engine 195



nVidia Hardware Documentation, Release git

(continued from previous page)

int A : 1;
} tmp;
tmp.B = get_color_b10(cur_grobj, param);
tmp.G = get_color_g10(cur_grobj, param);
tmp.R = get_color_r10(cur_grobj, param);
tmp.A = get_color_a1(cur_grobj, param);
if (cur_grobj.type == NV1_PLANE)

PLANE = tmp;
else

CHROMA = tmp;

Todo: check NV3+

mthd 0x200: PATCH_IMAGE_OUTPUT [*_CHROMA, NV1_PLANE] [NV4:NV20] Reserved for plugging an
image patchcord to output the color into.

Operation:

throw(UNIMPLEMENTED_MTHD);

CLIP

The CLIP object family deals with setting up the user clip rectangle. The user clip rectangle is only used when enabled
in options for a given graph object. The objects in this family are:

• objtype 0x05: NV1_CLIP [NV1:NV4]

• class 0x0019: NV1_CLIP [NV4:G84]

The methods for this family are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_IMAGE_OUTPUT [NV4:NV20] 0300 CORNER 0304 SIZE

The clip rectangle state can be loaded in two ways:

• submit CORNER method twice, with upper-left and bottom-right corners

• submit CORNER method with upper-right corner, then SIZE method

To enable that, clip rectangle method operation is a bit unusual.

Todo: check if still applies on NV3+

Note that the clip rectangle state is internally stored relative to the absolute top-left corner of the framebuffer, while
coordinates used in methods are relative to top-left corner of the canvas.

mthd 0x300: CORNER [NV1_CLIP] Sets a corner of the clipping rectangle. bits 0-15: X coordinate bits 16-31: Y
coordinate

Operation:

ABS_UCLIP_XMIN = ABS_UCLIP_XMAX;
ABS_UCLIP_YMIN = ABS_UCLIP_YMAX;

(continues on next page)

196 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

ABS_UCLIP_XMAX = CANVAS_MIN.X + param.X;
ABS_UCLIP_YMAX = CANVAS_MIN.Y + param.Y;

Todo: check NV3+

mthd 0x304: SIZE [NV1_CLIP] Sets the size of the clipping rectangle. bits 0-15: width bits 16-31: height

Operation:

ABS_UCLIP_XMIN = ABS_UCLIP_XMAX;
ABS_UCLIP_YMIN = ABS_UCLIP_YMAX;
ABS_UCLIP_XMAX += param.X;
ABS_UCLIP_YMAX += param.Y;

Todo: check NV3+

mthd 0x200: PATCH_IMAGE_OUTPUT [NV1_CLIP] [NV4:NV20] Reserved for plugging an image patchcord
to output the rectangle into.

Operation:

throw(UNIMPLEMENTED_MTHD);

BETA4

The BETA4 object family deals with setting the per-component beta factors for the BLEND_PREMULT and SRC-
COPY_PREMULT operations. The objects in this family are:

• class 0x0072: NV4_BETA4 [NV4:G84]

The methods are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_BETA_OUTPUT [NV4:NV20] 0300 BETA4

mthd 0x300: BETA4 [NV4_BETA4] Sets the per-component beta factors. bits 0-7: B bits 8-15: G bits 16-23: R bits
24-31: A

Operation:

/* XXX: figure it out */

mthd 0x200: PATCH_BETA_OUTPUT [NV4_BETA4] [NV4:NV20] Reserved for plugging a beta patchcord to
output beta factors into.

Operation:

throw(UNIMPLEMENTED_MTHD);

Surface setup

2.9. PGRAPH: 2d/3d graphics and compute engine 197



nVidia Hardware Documentation, Release git

Todo: write me

SURF

Todo: write me

SURF2D

Todo: write me

SURF3D

Todo: write me

SWZSURF

Todo: write me

2D solid shape rendering

Contents

• 2D solid shape rendering

– Introduction

– Source objects

* Common methods

* POINT

* LINE/LIN

* TRI

* RECT

– Unified 2d object

– Rasterization rules

198 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

* Points and rectangles

* Lines and lins

* Triangles

Introduction

One of 2d engine functions is drawing solid [single-color] primitives. The solid drawing functions use the usual 2D
pipeline as described in graph/2d.txt and are available on all cards. The primitives supported are:

• points [NV1:NV4 and G80+]

• lines [NV1:NV4]

• lins [half-open lines]

• triangles

• upright rectangles [edges parallel to X/Y axes]

The 2d engine is limitted to integer vertex coordinates [ie. all primitive vertices must lie in pixel centres].

On NV1:G84 cards, the solid drawing functions are exposed via separate source object types for each type of primitive.
On G80+, all solid drawing functionality is exposed via the unified 2d object.

Source objects

Each supported primitive type has its own source object class family on NV1:G80. These families are:

• POINT [NV1:NV4]

• LINE [NV1:NV4]

• LIN [NV1:G84]

• TRI [NV1:G84]

• RECT [NV1:NV40]

Common methods

The common methods accepted by all solid source objects are:

0100 NOP [NV4-] [graph/intro.txt] 0104 NOTIFY [graph/intro.txt] 010c PATCH [NV4:?] [graph/2d.txt] 0110
WAIT_FOR_IDLE [G80-] [graph/intro.txt] 0140 PM_TRIGGER [NV40-?] [graph/intro.txt] 0180 N DMA_NOTIFY
[NV4-] [graph/intro.txt] 0184 N NV1_CLIP [NV5-] [graph/2d.txt] 0188 N NV1_PATTERN [NV5-] [NV1_*]
[graph/2d.txt] 0188 N NV4_PATTERN [NV5-] [NV4_* and up] [graph/2d.txt] 018c N NV1_ROP [NV5-]
[graph/2d.txt] 0190 N NV1_BETA [NV5-] [graph/2d.txt] 0194 N NV3_SURFACE [NV5-] [NV1_*] [graph/2d.txt]
0194 N NV4_BETA4 [NV5-] [NV4_* and up] [graph/2d.txt] 0198 N NV4_SURFACE [NV5-] [NV4_* and up]
[graph/2d.txt] 02fc N OPERATION [NV5-] [graph/2d.txt] 0300 COLOR_FORMAT [NV4-] [graph/solid.txt] 0304
COLOR [graph/solid.txt]

Todo: PM_TRIGGER?

2.9. PGRAPH: 2d/3d graphics and compute engine 199



nVidia Hardware Documentation, Release git

Todo: PATCH?

Todo: add the patchcord methods

Todo: document common methods

POINT

The POINT object family draws single points. The objects are:

• objtype 0x08: NV1_POINT [NV1:NV4]

The methods are:

0100:0400 [common solid rendering methods] 0400+i*4, i<32 POINT_XY 0480+i*8, i<16 POINT32_X 0484+i*8,
i<16 POINT32_Y 0500+i*8, i<16 CPOINT_COLOR 0504+i*8, i<16 CPOINT_XY

Todo: document point methods

LINE/LIN

The LINE/LIN object families draw lines/lins, respectively. The objects are:

• objtype 0x09: NV1_LINE [NV1:NV4]

• objtype 0x0a: NV1_LIN [NV1:NV4]

• class 0x001c: NV1_LIN [NV4:NV40]

• class 0x005c: NV4_LIN [NV4:G80]

• class 0x035c: NV30_LIN [NV30:NV40]

• class 0x305c: NV30_LIN [NV40:G84]

The methods are:

0100:0400 [common solid rendering methods] 0400+i*8, i<16 LINE_START_XY 0404+i*8, i<16 LINE_END_XY
0480+i*16, i<8 LINE32_START_X 0484+i*16, i<8 LINE32_START_Y 0488+i*16, i<8 LINE32_END_X
048c+i*16, i<8 LINE32_END_Y 0500+i*4, i<32 POLYLINE_XY 0580+i*8, i<16 POLYLINE32_X 0584+i*8, i<16
POLYLINE32_Y 0600+i*8, i<16 CPOLYLINE_COLOR 0604+i*8, i<16 CPOLYLINE_XY

Todo: document line methods

TRI

The TRI object family draws triangles. The objects are:

• objtype 0x0b: NV1_TRI [NV1:NV4]

200 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• class 0x001d: NV1_TRI [NV4:NV40]

• class 0x005d: NV4_TRI [NV4:G84]

The methods are:

0100:0400 [common solid rendering methods] 0310+j*4, j<3 TRIANGLE_XY 0320+j*8, j<3 TRIANGLE32_X
0324+j*8, j<3 TRIANGLE32_Y 0400+i*4, i<32 TRIMESH_XY 0480+i*8, i<16 TRIMESH32_X 0484+i*8,
i<16 TRIMESH32_Y 0500+i*16 CTRIANGLE_COLOR 0504+i*16+j*4, j<3 CTRIANGLE_XY 0580+i*8, i<16
CTRIMESH_COLOR 0584+i*8, i<16 CTRIMESH_XY

Todo: document tri methods

RECT

The RECT object family draws upright rectangles. Another object family that can also draw solid rectangles and
should be used instead of RECT on cards that don’t have RECT is GDI [graph/nv3-gdi.txt]. The objects are:

• objtype 0x0c: NV1_RECT [NV1:NV3]

• objtype 0x07: NV1_RECT [NV3:NV4]

• class 0x001e: NV1_RECT [NV4:NV40]

• class 0x005e: NV4_RECT [NV4:NV40]

The methods are:

0100:0400 [common solid rendering methods] 0400+i*8, i<16 RECT_POINT 0404+i*8, i<16 RECT_SIZE

Todo: document rect methods

Unified 2d object

Todo: document solid-related unified 2d object methods

Rasterization rules

This section describes exact rasterization rules for solids, ie. which pixels are considered to be part of a given solid.
The common variables appearing in the pseudocodes are:

• CLIP_MIN_X - the left bounduary of the final clipping rectangle. If user clipping rectangle [see graph/2d.txt]
is enabled, this is max(UCLIP_MIN_X, CANVAS_MIN_X). Otherwise, this is CANVAS_MIN_X.

• CLIP_MAX_X - the right bounduary of the final clipping rectangle. If user clipping rectangle is enabled, this is
min(UCLIP_MAX_X, CANVAS_MAX_X). Otherwise, this is CANVAS_MAX_X.

• CLIP_MIN_Y - the top bounduary of the final clipping rectangle, defined like CLIP_MIN_X

• CLIP_MAX_Y - the bottom bounduary of the final clipping rectangle, defined like CLIP_MAX_X

A pixel is considered to be inside the clipping rectangle if:

2.9. PGRAPH: 2d/3d graphics and compute engine 201



nVidia Hardware Documentation, Release git

• CLIP_MIN_X <= x < CLIP_MAX_X and

• CLIP_MIN_Y <= y < CLIP_MAX_Y

Points and rectangles

A rectangle is defined through the coordinates of its left-top corner [X, Y] and its width and height [W, H] in pixels.
A rectangle covers pixels that have x in [X, X+W) and y in [Y, Y+H) ranges.

void SOLID_RECT(int X, int Y, int W, int H) {
int L = max(X, CLIP_MIN_X);
int R = min(X+W, CLIP_MAX_X);
int T = max(Y, CLIP_MIN_Y);
int B = min(Y+H, CLIP_MAX_Y);
int x, y;
for (y = T; y < B; y++)

for (x = L; x < R; x++)
DRAW_PIXEL(x, y, SOLID_COLOR);

}

A point is defined through its X, Y coordinates and is rasterized as if it was a rectangle with W=H=1.

void SOLID_POINT(int X, int Y) {
SOLID_RECT(X, Y, 1, 1);

}

Lines and lins

Lines and lins are defined through the coordinates of two endpoints [X[2], Y[2]]. They are rasterized via a variant of
Bresenham’s line algorithm, with the following characteristics:

• rasterization proceeds in the direction of increasing x for y-major lines, and in the direction of increasing y for
x-major lines [ie. in the direction of increasing minor component]

• when presented with a tie in a decision whether to increase the minor coordinate or not, increase it.

• if rasterizing a lin, the X[1], Y[1] pixel is not rasterized, but calculations are otherwise unaffected

• pixels outside the clipping rectangle are not rasterized, but calculations are otherwise unaffected

Equivalently, the rasterized lines/lins match those constructed via the diamond-exit rule with the following character-
istics:

• a pixel is rasterized if the diamond inside it intersects the line/lin, unless it’s a lin and the diamond also contains
the second endpoint

• pixels outside the clipping rectangle are not rasterized, but calculations are otherwise unaffected

• pixel centres are considered to be on integer coordinates

• the following coordinates are considered to be contained in the diamond for pixel X, Y:

– abs(x-X) + abs(x-Y) < 0.5 [ie. the inside of the diamond]

– x = X-0.5, y = Y [ie. top vertex of the diamond]

– x = X, y = Y-0.5 [ie. leftmost vertex of the diamond]

[note that the edges don’t matter, other than at the vertices - it’s impossible to create a line touching them without
intersecting them, due to integer endpoint coordinates]

202 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

void SOLID_LINE_LIN(int X[2], int Y[2], int is_lin) {
/* determine minor/major direction */
int xmajor = abs(X[0] - X[1]) > abs(Y[0] - Y[1]);
int min0, min1, maj0, maj1;
if (xmajor) {

maj0 = X[0];
maj1 = X[1];
min0 = Y[0];
min1 = Y[1];

} else {
maj0 = Y[0];
maj1 = Y[1];
min0 = X[0];
min1 = X[1];

}
if (min1 < min0) {

/* order by increasing minor */
swap(min0, min1);
swap(maj0, maj1);

}
/* deltas */
int dmin = min1 - min0;
int dmaj = abs(maj1 - maj0);
/* major step direction */
int step = maj1 > maj0 ? 1 : -1;
int min, maj;
/* scaled error - real error is err/(dmin * dmaj * 2) */
int err = 0;
for (min = min0, maj = maj0; maj != maj1 + step; maj += step) {

if (err >= dmaj) { /* error >= 1/(dmin*2) */
/* error too large, increase minor */
min++;
err -= dmaj * 2; /* error -= 1/dmin */

}
int x = xmajor?maj:min;
int y = xmajor?min:maj;
/* if not the final pixel of a lin and inside the clipping

region, draw it */
if ((!is_lin || x != X[1] || y != Y[1]) && in_clip(x, y))

DRAW_PIXEL(x, y, SOLID_COLOR);
error += dmin * 2; /* error += 1/dmaj */

}
}

Triangles

Triangles are defined through the coordinates of three vertices [X[3], Y[3]]. A triangle is rasterized as an intersection
of three half-planes, corresponding to the three edges. For the purpose of triangle rasterization, half-planes are defined
as follows:

• the edges are (0, 1), (1, 2) and (2, 0)

• if the two vertices making an edge overlap, the triangle is degenerate and is not rasterized

• a pixel is considered to be in a half-plane corresponding to a given edge if it’s on the same side of that edge as
the third vertex of the triangle [the one not included in the edge]

2.9. PGRAPH: 2d/3d graphics and compute engine 203



nVidia Hardware Documentation, Release git

• if the third vertex lies on the edge, the triangle is degenerate and will not be rasterized

• if the pixel being considered for rasterization lies on the edge, it’s considered included in the half-plane if the
pixel immediately to its right is included in the half-plane

• if that pixel also lies on the edge [ie. edge is exactly horizontal], the original pixel is instead considered included
if the pixel immediately below it is included in the half-plane

Equivalently, a triangle will include exactly-horizontal top edges and left edges, but not exactly-horizontal bottom
edges nor right edges.

void SOLID_TRI(int X[3], int Y[3]) {
int cross = (X[1] - X[0]) * (Y[2] - Y[0]) - (X[2] - X[0]) * (Y[1] - Y[0]);
if (cross == 0) /* degenerate triangle */

return;
/* coordinates in CW order */
if (cross < 0) {

swap(X[1], X[2]);
swap(Y[1], Y[2]);

}
int x, y, e;
for (y = CLIP_MIN_Y; y < CLIP_MAX_Y; y++)

for (x = CLIP_MIN_X; x < CLIP_MAX_X; x++) {
for (e = 0; e < 3; e++) {

int x0 = X[e];
int y0 = Y[e];
int x1 = X[(e+1)%3];
int y1 = Y[(e+1)%3];
/* first attempt */
cross = (x1 - x0) * (y - y0) - (x - x0) * (y1 - y0);
/* second attempt - pixel to the right */
if (cross == 0)

cross = (x1 - x0) * (y - y0) - (x + 1 - x0) * (y1 - y0);
/* third attempt - pixel below */
if (cross == 0)

cross = (x1 - x0) * (y + 1 - y0) - (x - x0) * (y1 - y0);
if (cross < 0)

goto out;
}
DRAW_PIXEL(x, y, SOLID_COLOR);

out:
}

}

2D image from CPU upload

Contents

• 2D image from CPU upload

– Introduction

– IFC

– BITMAP

– SIFC

204 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– INDEX

– TEXTURE

Introduction

Todo: write me

IFC

Todo: write me

BITMAP

Todo: write me

SIFC

Todo: write me

INDEX

Todo: write me

TEXTURE

Todo: write me

BLIT object

Contents

• BLIT object

2.9. PGRAPH: 2d/3d graphics and compute engine 205



nVidia Hardware Documentation, Release git

– Introduction

– Methods

– Operation

Introduction

Todo: write me

Methods

Todo: write me

Operation

Todo: write me

Image to/from memory objects

Contents

• Image to/from memory objects

– Introduction

– Methods

– IFM operation

– ITM operation

Introduction

Todo: write me

Methods

206 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: write me

IFM operation

Todo: write me

ITM operation

Todo: write me

NV1 textured quad objects

Contents

• NV1 textured quad objects

– Introduction

– The methods

– Linear interpolation process

– Quadratic interpolation process

Introduction

Todo: write me

The methods

Todo: write me

Linear interpolation process

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 207



nVidia Hardware Documentation, Release git

Quadratic interpolation process

Todo: write me

GDI objects

Contents

• GDI objects

– Introduction

– Methods

– Clipped rectangles

– Unclipped rectangles

– Unclipped transparent bitmaps

– Clipped transparent bitmaps

– Clipped two-color bitmaps

Introduction

Todo: write me

Methods

Todo: write me

Clipped rectangles

Todo: write me

Unclipped rectangles

Todo: write me

208 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Unclipped transparent bitmaps

Todo: write me

Clipped transparent bitmaps

Todo: write me

Clipped two-color bitmaps

Todo: write me

Scaled image from memory object

Contents

• Scaled image from memory object

– Introduction

– Methods

– Operation

Introduction

Todo: write me

Methods

Todo: write me

Operation

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 209



nVidia Hardware Documentation, Release git

YCbCr blending objects

Contents

• YCbCr blending objects

– Introduction

– Methods

– Operation

Introduction

Todo: write me

Methods

Todo: write me

Operation

Todo: write me

2.9.4 NV1 graphics engine

Contents:

2.9.5 NV3 graphics engine

Contents:

NV3 3D objects

Contents

• NV3 3D objects

– Introduction

210 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: write me

Introduction

Todo: write me

2.9.6 NV4 graphics engine

Contents:

NV4 3D objects

Contents

• NV4 3D objects

– Introduction

Todo: write me

Introduction

Todo: write me

2.9.7 NV10 Celsius graphics engine

Contents:

NV10 Celsius 3D objects

Contents

• NV10 Celsius 3D objects

– Introduction

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 211



nVidia Hardware Documentation, Release git

Introduction

Todo: write me

2.9.8 NV20 Kelvin graphics engine

Contents:

NV20 Kelvin 3D objects

Contents

• NV20 Kelvin 3D objects

– Introduction

Todo: write me

Introduction

Todo: write me

2.9.9 NV30 Rankine graphics engine

Contents:

NV30 Rankine 3D objects

Contents

• NV30 Rankine 3D objects

– Introduction

Todo: write me

212 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Introduction

Todo: write me

2.9.10 NV40 Curie graphics engine

Contents:

NV40 Curie 3D objects

Contents

• NV40 Curie 3D objects

– Introduction

Todo: write me

Introduction

Todo: write me

2.9.11 G80 Tesla graphics and compute engine

Contents:

G80 PGRAPH context switching

Contents

• G80 PGRAPH context switching

– Introduction

Introduction

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 213



nVidia Hardware Documentation, Release git

G80 Tesla 3D objects

Contents

• G80 Tesla 3D objects

– Introduction

Todo: write me

Introduction

Todo: write me

G80 Tesla compute objects

Contents

• G80 Tesla compute objects

– Introduction

Todo: write me

Introduction

Todo: write me

Tesla CUDA processors

Contents:

Tesla CUDA ISA

Contents

• Tesla CUDA ISA

– Introduction

214 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

* Variants

* Warps and thread types

* Registers

* Memory

* Other execution state and resources

– Instruction format

* Other fields

* Predicates

* $c destination field

* Memory addressing

* Shared memory access

* Destination fields

* Short source fields

* Long source fields

* Opcode map

– Instructions

Introduction

This file deals with description of Tesla CUDA instruction set. CUDA stands for Completely Unified Device Archi-
tecture and refers to the fact that all types of shaders (vertex, geometry, fragment, and compute) use nearly the same
ISA and execute on the same processors (called streaming multiprocessors).

The Tesla CUDA ISA is used on Tesla generation GPUs (G8x, G9x, G200, GT21x, MCP77, MCP79, MCP89). Older
GPUs have separate ISAs for vertex and fragment programs. Newer GPUs use Fermi, Kepler2, or Maxwell ISAs.

Variants

There are seversal variants of Tesla ISA (and the corresponding multiprocessors). The features added to the ISA after
the first iteration are:

• breakpoints [G84:]

• new barriers [G84:]

• atomic operations on g[] space [G84:]

• load from s[] instruction [G84:]

• lockable s[] memory [G200:]

• double-precision floating point [G200 only]

• 64-bit atomic add on g[] space [G200:]

• vote instructions [G200:]

• D3D10.1 additions [GT215:]: - $sampleid register (for sample shading) - texprep cube instruction (for cubemap
array access) - texquerylod instruction - texgather instruction

2.9. PGRAPH: 2d/3d graphics and compute engine 215



nVidia Hardware Documentation, Release git

• preret and indirect bra instructions [GT215:]?

Todo: check variants for preret/indirect bra

Warps and thread types

Programs on Tesla MPs are executed in units called “warps”. A warp is a group of 32 individual threads executed
together. All threads in a warp share common instruction pointer, and always execute the same instruction, but have
otherwise independent state (ie. separate register sets). This doesn’t preclude independent branching: when threads in
a warp disagree on a branch condition, one direction is taken and the other is pushed onto a stack for further processing.
Each of the divergent execution paths is tagged with a “thread mask”: a bitmask of threads in the warp that satisfied
(or not) the branch condition, and hence should be executed. The MP does no work (and modifies no state) for threads
not covered by the current thread mask. Once the first path reaches completion, the stack is popped, restoring target
PC and thread mask for the second path, and execution continues.

Depending on warp type, the threads in a warp may be related to each other or not. There are 4 warp types, corre-
sponding to 4 program types:

• vertex programs: executed once for each vertex submitted to the 3d pipeline. They’re grouped into warps in a
rather uninteresting way. Each thread has read-only access to its vertex’ input attributes and write-only access
to its vertex’ output attributes.

• geometry programs: if enabled, executed once for each geometry primitive submitted to the 3d pipeline. Also
grouped into warps in an uninteresting way. Each thread has read-only access to input attributes of its primitive’s
vertices and per-primitive attributes. Each thread also has write-only access to output vertex attributes and
instructions to emit a vertex and break the output primitive.

• fragment programs: executed once for each fragment rendered by the 3d pipeline. Always dispatched in groups
of 4, called quads, corresponding to aligned 2x2 squares on the screen (if some of the fragments in the square
are not being rendered, the fragment program is run on them anyway, and its result discarded). This grouping
is done so that approximate screen-space derivatives of all intermediate results can be computed by exchanging
data with other threads in the quad. The quads are then grouped into warps in an uninteresting way. Each thread
has read-only access to interpolated attribute data and is expected to return the pixel data to be written to the
render output surface.

• compute programs: dispatched in units called blocks. Blocks are submitted manually by the user, alone or in
so-called grids (basically big 2d arrays of blocks with identical parameters). The user also determines how many
threads are in a block. The threads of a block are sequentially grouped into warps. All warps of a block execute
in parallel on a single MP, and have access to so-called shared memory. Shared memory is a fast per-block area
of memory, and its size is selected by the user as part of block configuration. Compute warps also have random
R/W access to so-called global memory areas, which can be arbitrarily mapped to card VM by the user.

Registers

The registers in Tesla ISA are:

• up to 128 32-bit GPRs per thread: $r0-$r127. These registers are used for all calculations (with the exception of
some address calculations), whether integer or floating-point.

The amount of available GPRs per thread is chosen by the user as part of MP configuration, and can be selected
per program type. For example, if the user enables 16 registers, $r0-$r15 will be usable and $r16-$r127 will
be forced to 0. Since the MP has a rather limitted amount of storage for GPRs, this configuration parameter
determines how many active warps will fit simultanously on an MP.

216 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

If a 16-bit operation is to be performed, each GPR from $r0-$r63 range can be treated as a pair of 16-bit registers:
$rXl (low half of $rX) and $rXh (high part of $rX).

If a 64-bit operation is to be performed, any naturally aligned pair of GPRs can be treated as a 64-bit register:
$rXd (which has the low half in $rX and the high half in $r(X+1), and X has to even). Likewise, if a 128-bit
operation is to be performed, any naturally aligned group of 4 registers can be treated as a 128-bit registers:
$rXq. The 32-bit chunks are assigned to $rX..(X+3) in order from lowest to highest.

• 4 16-bit address registers per thread: $a1-$a4, and one additional register per warp ($a7). These registers are
used for addressing all memory spaces except global memory (which uses 32-bit addressing via $r register file).
In addition to the 4 per-thread registers and 1 per-warp register, there’s also $a0, which is always equal to 0.

Todo: wtf is up with $a7?

• 4 4-bit condition code registers per thread: $c0-$c3. These registers can be optionally set as a result of some
(mostly arithmetic) instructions and are made of 4 individual bits:

– bit 0: Z - zero flag. For integer operations, set when the result is equal to 0. For floating-point operations,
set when the result is 0 or NaN.

– bit 1: S - sign flag. For integer operations, set when the high bit of the result is equal to 1. For floating-point
operations, set when the result is negative or NaN.

– bit 2: C - carry flag. For integer addition, set when there is a carry out of the highest bit of the result.

– bit 3: O - overflow flag. For integer addition, set when the true (infinite-precision) result doesn’t fit in the
destination (considered to be a signed number).

• A few read-only 32-bit special registers, $sr0-$sr8:

– $sr0 aka $physid: when read, returns the physical location of the current thread on the GPU:

* bits 0-7: thread index (inside a warp)

* bits 8-15: warp index (on an MP)

* bits 16-19: MP index (on a TPC)

* bits 20-23: TPC index

– $sr1 aka $clock: when read, returns the MP clock tick counter.

Todo: a bit more detail?

– $sr2: always 0?

Todo: perhaps we missed something?

– $sr3 aka $vstride: attribute stride, determines the spacing between subsequent attributes of a single vertex
in the input space. Useful only in geometry programs.

Todo: seems to always be 0x20. Is it really that boring, or does MP switch to a smaller/bigger stride
sometimes?

– $sr4-$sr7 aka $pm0-$pm3: MP performance counters.

2.9. PGRAPH: 2d/3d graphics and compute engine 217



nVidia Hardware Documentation, Release git

– $sr8 aka $sampleid [GT215:]: the sample ID. Useful only in fragment programs when sample shading is
enabled.

Memory

The memory spaces in Tesla ISA are:

• C[]: code space. 24-bit, byte-oriented addressing. The only way to access this space is by executing code from
it (there’s no “read from code space” instruction). There is one code space for each program type, and it’s
mapped to a 16MB range of VM space by the user. It has three levels of cache (global, TPC, MP) that need to
be manually flushed when its contents are modified by the user.

• c0[]-c15[]: const spaces. 16-bit byte-oriented addressing. Read-only and accessible from any program type in
8, 16, and 32-bit units. Like C[], it has three levels of cache. Each of the 16 const spaces of each program type
can be independently bound to one of 128 global (per channel) const buffers. In turn, each of the const buffers
can be independently bound to a range of VM space (with length divisible by 256) or disabled by the user.

• l[]: local space. 16-bit, byte-oriented addressing. Read-write and per-thread, accessible from any program type
in 8, 16, 32, 64, and 128-bit units. It’s directly mapped to VM space (although with heavy address mangling),
and hence slow. Its per-thread length can be set to any power of two size between 0x10 and 0x10000 bytes, or
to 0.

• a[]: attribute space. 16-bit byte-oriented addressing. Read-only, per-thread, accessible in 32-bit units only
and only available in vertex and geometry programs. In vertex programs, contains input vertex attributes. In
geometry programs, contains pointers to vertices in p[] space and per-primitive attributes.

• p[]: primitive space. 16-bit byte oriented addressing. Read-only, per-MP, available only from geometry pro-
grams, accessed in 32-bit units. Contains input vertex attributes.

• o[]: output space. 16-bit byte-oriented addressing. Write-only, per-thread. Available only from vertex and
geometry programs, accessed in 32-bit units. Contains output vertex attributes.

• v[]: varying space. 16-bit byte-oriented addressing. Read-only, available only from fragment programs, ac-
cessed in 32-bit units. Contains interpolated input vertex attributs. It’s a “virtual” construct: there are really
three words stored in MP for each v[] word (base, dx, dy) and reading from v[] space will calculate the value
for the current fragment by evaluating the corresponding linear function.

• s[]: shared space. 16-bit byte-oriented addressing. Read-write, per-block, available only from compute pro-
grams, accessible in 8, 16, and 32-bit units. Length per block can be selected by user in 0x40-byte increments
from 0 to 0x4000 bytes. On G200+, has a locked access feature: every warp can have one locked location in
s[], and all other warps will block when trying to access this location. Load with lock and store with unlock
instructions can thus be used to implement atomic operations.

• g0[]-g15[]: global spaces. 32-bit byte-oriented addressing. Read-write, available only from compute programs,
accessible in 8, 16, 32, 64, and 128-bit units. Each global space can be configured in either linear or 2d mode.
When in linear mode, a global space is simply mapped to a range of VM memory. When in 2d mode, low 16
bits of gX[] address are the x coordinate, and high 16 bits are the y coordinate. The global space is then mapped
to a blocklinear 2d surface in VM space. On G84+, some atomic operations on global spaces are supported.

Todo: when no-one’s looking, rename the a[], p[], v[] spaces to something sane.

Other execution state and resources

There’s also a fair bit of implicit state stored per-warp for control flow:

218 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 22-bit PC (24-bit address with low 2 bits forced to 0): the current address in C[] space where instructions are
executed.

• 32-bit active thread mask: selects which threads are executed and which are not. If a bit is 1 here, instructions
will be executed for the given thread.

• 32-bit invisible thread mask: useful only in fragment programs. If a bit is 1 here, the given thread is unused,
or corresponds to a pixel on the screen which won’t be rendered (ie. was just launched to fill a quad). Texture
instructions with “live” flag set won’t be run for such threads.

• 32*2-bit thread state: stores state of each thread:

– 0: active or branched off

– 1: executed the brk instruction

– 2: executed the ret instruction

– 3: executed the exit instruction

• Control flow stack. The stack is made of 64-bit entries, with the following fields:

– PC

– thread mask

– entry type:

* 1: branch

* 2: call

* 3: call with limit

* 4: prebreak

* 5: quadon

* 6: joinat

Todo: discard mask should be somewhere too?

Todo: call limit counter

Other resources available to CUDA code are:

• $t0-$t129: up to 130 textures per 3d program type, up to 128 for compute programs.

• $s0-$s17: up to 18 texture samplers per 3d program type, up to 16 for compute programs. Only used if linked
texture samplers are disabled.

• Up to 16 barriers. Per-block and available in compute programs only. A barrier is basically a warp counter: a
barrier can be increased or waited for. When a warp increases a barrier, its value is increased by 1. If a barrier
would be increased to a value equal to a given warp count, it’s set to 0 instead. When a barrier is waited for by
a warp, the warp is blocked until the barrier’s value is equal to 0.

Todo: there’s some weirdness in barriers.

2.9. PGRAPH: 2d/3d graphics and compute engine 219



nVidia Hardware Documentation, Release git

Instruction format

Instructions are stored in C[] space as 32-bit little-endian words. There are short (1 word) and long (2 words) instruc-
tions. The instruction type can be distinguished as follows:

word 0 word 1 instruction type
bits 0-1 bits 0-1
0 - short normal
1 0 long normal
1 1 long normal with join
1 2 long normal with exit
1 3 long immediate
2 - short control
3 any long control

Todo: you sure of control instructions with non-0 w1b0-1?

Long instructions can only be stored on addresses divisible by 8 bytes (ie. on even word address). In other words,
short instructions usually have to be issued in pairs (the only exception is when a block starts with a short instruction
on an odd word address). This is not a problem, as all short instructions have a long equivalent. Attempting to execute
a non-aligned long instruction results in UNALIGNED_LONG_INSTRUCTION decode error.

Long normal instructions can have a join or exit instruction tacked on. In this case, the extra instruction is executed
together with the main instruction.

The instruction group is determined by the opcode fields:

• word 0 bits 28-31: primary opcode field

• word 1 bits 29-31: secondary opcode field (long instructions only)

Note that only long immediate and long control instructions always have the secondary opcode equal to 0.

The exact instruction of an instruction group is determined by group-specific encoding. Attempting to execute an
instruction whose primary/secondary opcode doesn’t map to a valid instruction group results in ILLEGAL_OPCODE
decode error.

Other fields

Other fields used in instructions are quite instruction-specific. However, some common bitfields exist. For short
normal instructions, these are:

• bits 0-1: 0 (select short normal instruction)

• bits 2-7: destination

• bit 8: modifier 1

• bits 9-14: source 1

• bit 15: modifier 2

• bits 16-21: source 2

• bit 22: modifier 3

• bit 23: source 2 type

220 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bit 24: source 1 type

• bit 25: $a postincrement flag

• bits 26-27: address register

• bits 28-31: primary opcode

For long immediate instructions:

• word 0:

– bits 0-1: 1 (select long non-control instruction)

– bits 2-7: destination

– bit 8: modifier 1

– bits 9-14: source 1

– bit 15: modifier 2

– bits 16-21: immediate low 6 bits

– bit 22: modifier 3

– bit 23: unused

– bit 24: source 1 type

– bit 25: $a postincrement flag

– bits 26-27: address register

– bits 28-31: primary opcode

• word 1:

– bits 0-1: 3 (select long immediate instruction)

– bits 2-27: immediate high 26 bits

– bit 28: unused

– bits 29-31: always 0

For long normal instructions:

• word 0:

– bits 0-1: 1 (select long non-control instruction)

– bits 2-8: destination

– bits 9-15: source 1

– bits 16-22: source 2

– bit 23: source 2 type

– bit 24: source 3 type

– bit 25: $a postincrement flag

– bits 26-27: address register low 2 bits

– bits 28-31: primary opcode

• word 1:

– bits 0-1: 0 (no extra instruction), 1 (join), or 2 (exit)

2.9. PGRAPH: 2d/3d graphics and compute engine 221



nVidia Hardware Documentation, Release git

– bit 2: address register high bit

– bit 3: destination type

– bits 4-5: destination $c register

– bit 6: $c write enable

– bits 7-11: predicate

– bits 12-13: source $c register

– bits 14-20: source 3

– bit 21: source 1 type

– bits 22-25: c[] space index

– bit 26: modifier 1

– bit 27: modifier 2

– bit 28: unused

– bits 29-31: secondary opcode

Note that short and long immediate instructions have 6-bit source/destination fields, while long normal instructions
have 7-bit ones. This means only half the registers can be accessed in such instructions ($r0-$r63, $r0l-$r31h).

For long control instructions:

• word 0:

– bits 0-1: 3 (select long control instruction)

– bits 9-24: code address low 18 bits

– bits 28-31: primary opcode

• word 1:

– bit 6: modifier 1

– bits 7-11: predicate

– bits 12-13: source $c register

– bits 14-19: code address high 6 bits

Todo: what about other bits? ignored or must be 0?

Note that many other bitfields can be in use, depending on instruction. These are just the most common ones.

Whenever a half-register ($rXl or $rXh) is stored in a field, bit 0 of that field selects high or low part (0 is low, 1 is
high), and bits 1 and up select $r index. Whenever a double register ($rXd) is stored in a field, the index of the low
word register is stored. If the value stored is not divisible by 2, the instruction is illegal. Likewise, for quad registers
($rXq), the lowest word register is stored, and the index has to be divisible by 4.

Predicates

Most long normal and long control instructions can be predicated. A predicated instruction is only executed if a
condition, computed based on a selected $c register, evaluates to 1. The instruction fields involved in predicates are:

• word 1 bits 7-11: predicate field - selects a boolean function of the $c register

222 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• word 1 bits 12-13: $c source field - selects the $c register to use

The predicates are:

encoding name description condition formula
0x00 never always false 0
0x01 l less than (S & ~Z) ^ O
0x02 e equal Z & ~S
0x03 le less than or equal S ^ (Z | O)
0x04 g greater than ~Z & ~(S ^ O)
0x05 lg less or greater than ~Z
0x06 ge greater than or equal ~(S ^ O)
0x07 lge ordered ~Z | ~S
0x08 u unordered Z & S
0x09 lu less than or unordered S ^ O
0x0a eu equal or unordered Z
0x0b leu not greater than Z | (S ^ O)
0x0c gu greater than or unordered ~S ^ (Z | O)
0x0d lgu not equal to ~Z | S
0x0e geu not less than (~S | Z) ^ O
0x0f always always true 1
0x10 o overflow O
0x11 c carry / unsigned not below C
0x12 a unsigned above ~Z & C
0x13 s sign / negative S
0x1c ns not sign / positive ~S
0x1d na unsigned not above Z | ~C
0x1e nc not carry / unsigned below ~C
0x1f no no overflow ~O

Some instructions read $c registers directly. The operand CSRC refers to the $c register selected by the $c source field.
Note that, on such instructions, the $c register used for predicating is necessarily the same as the input register. Thus,
one must generally avoid predicating instructions with $c input.

$c destination field

Most normal long instructions can optionally write status information about their result to a $c register. The $c
destination is selected by $c destination field, located in word 1 bits 4-5, and $c destination enable field, located in
word 1 bit 6. The operands using these fields are:

• FCDST (forced condition destination): $c0-$c3, as selected by $c destination field.

• CDST (condition destination):

– if $c destination enable field is 0, no destination is used (condition output is discarded).

– if $c destination enable field is 1, same as FCDST.

Memory addressing

Some instructions can access one of the memory spaces available to CUDA code. There are two kinds of such
instructions:

2.9. PGRAPH: 2d/3d graphics and compute engine 223



nVidia Hardware Documentation, Release git

• Ordinary instructions that happen to be used with memory operands. They have very limitted direct address-
ing range (since they fit the address in 6 or 7 bits normally used for register selection) and may lack indirect
addressing capabilities.

• Dedicated load/store instructions. They have full 16-bit direct addressing range and have indirect addressing
capabilities.

The following instruction fields are involved in memory addressing:

• word 0 bit 25: autoincrement flag

• word 0 bits 26-27: $a low field

• word 1 bit 2: $a high field

• word 0 bits 9-16: long offset field (used for dedicated load/store instructions)

There are two operands used in memory addressing:

• SASRC (short address source): $a0-$a3, as selected by $a low field.

• LASRC (long address source): $a0-$a7, as selected by concatenation of $a low and high fields.

Every memory operand has an associated offset field and multiplication factor (a constant, usually equal to the access
size). Memory operands also come in two kinds: direct (no $a field) and indirect ($a field used).

For direct operands, the memory address used is simply the value of the offset field times the multiplication factor.

For indirect operands, the memory address used depends on the value of the autoincrement flag:

• if flag is 0, memory address used is $aX + offset * factor, where $a register is selected by SASRC (for
short and long immediate instructions) or LASRC (for long normal instructions) operand. Note that using $a0
with this addressing mode can emulate a direct operand.

• if flag is 1, memory address used is simply $aX, but after the memory access is done, the $aX will be in-
creased by offset * factor. Attempting to use $a0 (or $a5/a6) with this addressing mode results in
ILLEGAL_POSTINCR decode error.

Todo: figure out where and how $a7 can be used. Seems to be a decode error more often than not. . .

Todo: what address field is used in long control instructions?

Shared memory access

Most instructions can use an s[] memory access as the first source operand. When s[] access is used, it can be used in
one of 4 modes:

• 0: u8 - read a byte with zero extension, multiplication factor is 1

• 1: u16 - read a half-word with zero extension, factor is 2

• 2: s16 - read a half-word with sign extension, factor is 2

• 3: b32 - read a word, factor is 4

The corresponding source 1 field is split into two subfields. The high 2 bits select s[] access mode, while the low 4 or
5 bits select the offset. Shared memory operands are always indirect operands. The operands are:

• SSSRC1 (short shared word source 1): use short source 1 field, all modes valid.

224 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• LSSRC1 (long shared word source 1): use long source 1 field, all modes valid.

• SSHSRC1 (short shared halfword source 1): use short source 1 field, valid modes u8, u16, s16.

• LSHSRC1 (long shared halfword source 1): use long source 1 field, valid modes u8, u16, s16.

• SSUHSRC1 (short shared unsigned halfword source 1): use short source 1 field, valid modes u8, u16.

• LSUHSRC1 (long shared unsigned halfword source 1): use long source 1 field, valid modes u8, u16.

• SSSHSRC1 (short shared signed halfword source 1): use short source 1 field, valid modes u8, s16.

• LSSHSRC1 (long shared signed halfword source 1): use long source 1 field, valid modes u8, s16.

• LSBSRC1 (long shared byte source 1): use long source 1 field, only u8 mode valid.

Attempting to use b32 mode when it’s not valid (because source 1 has 16-bit width) results in ILLE-
GAL_MEMORY_SIZE decode error. Attempting to use u16/s16 mode that is invalid because the sign is wrong
results in ILLEGAL_MEMORY_SIGN decode error. Attempting to use mode other than u8 for cvt instruction with
u8 source results in ILLEGAL_MEMORY_BYTE decode error.

Destination fields

Most short and long immediate instructions use the short destination field for selecting instruction destination. The
field is located in word 0 bits 2-7. There are two common operands using that field:

• SDST (short word destination): GPR $r0-$r63, as selected by the short destination field.

• SHDST (short halfword destination): GPR half $r0l-$r31h, as selected by the short destination field.

Most normal long instructions use the long destination field for selecting instruction destination. The field is located
in word 0 bits 2-8. This field is usually used together with destination type field, located in word 1 bit 3. The common
operands using these fields are:

• LRDST (long register word destination): GPR $r0-$r127, as selected by the long destination field.

• LRHDST (long register halfword destination): GPR half $r0l-$r63h, as selected by the long destination field.

• LDST (long word destination):

– if destination type field is 0, same as LRDST.

– if destination type field is 1, and long destination field is equal to 127, no destination is used (ie. operation
result is discarded). This is used on instructions that are executed only for their $c output.

– if destination type field is 1, and long destination field is not equal to 127, o[] space is written, as a direct
memory operand with long destination field as the offset field and multiplier factor 4.

Todo: verify the 127 special treatment part and direct addressing

• LHDST (long halfword destination):

– if destination type field is 0, same as LRHDST.

– if destination type field is 1, and long destination field is equal to 127, no destination is used (ie. operation
result is discarded).

– if destination type field is 1, and long destination field is not equal to 127, o[] space is written, as a direct
memory operand with long destination field as the offset field and multiplier factor 2. Since o[] can only
be written with 32-bit accesses, the address is rounded down to a multiple of 4, and the 16-bit result is
duplicated in both low and high half of the 32-bit value written in o[] space. This makes it pretty much
useless.

2.9. PGRAPH: 2d/3d graphics and compute engine 225



nVidia Hardware Documentation, Release git

• LDDST (long double destination): GPR pair $r0d-$r126d, as selected by the long destination field.

• LQDST (long quad destination): GPR quad $r0q-$r124q, as selected by the long destination field.

Short source fields

Todo: write me

Long source fields

Todo: write me

Opcode map

Table 11: Opcode map
Pri-
mary
op-
code

short
nor-
mal

long
im-
me-
di-
ate

long
nor-
mal,
sec-
ondary
0

long
nor-
mal,
sec-
ondary
1

long
nor-
mal,
sec-
ondary
2

long
nor-
mal,
sec-
ondary
3

long
nor-
mal,
sec-
ondary
4

long
nor-
mal,
sec-
ondary
5

long
nor-
mal,
sec-
ondary
6

long
nor-
mal,
sec-
ondary
7

short
con-
trol

long
con-
trol

0x0 - - ld a[] mov
from
$c

mov
from
$a

mov
from
$sr

st o[] mov to
$c

shl to
$a

st s[] - dis-
card

0x1 mov mov mov ld c[] ld s[] vote - - - - - bra
0x2 add/subadd/subadd/sub - - - - - - - - call
0x3 add/subadd/subadd/sub - - set max min shl shr - ret
0x4 mul mul mul - - - - - - - - pre-

brk
0x5 sad - sad - - - - - - - - brk
0x6 mul+addmul+addmul+add mul+add mul+add mul+add mul+add mul+add mul+add mul+add - quadon
0x7 mul+addmul+addmul+add mul+add mul+add mul+add mul+add mul+add mul+add mul+add - quad-

pop
0x8 in-

terp
- interp - - - - - - - - bar

0x9 rcp - rcp - rsqrt lg2 sin cos ex2 - trap trap
0xa - - cvt i2i cvt i2i cvt i2f cvt i2f cvt f2i cvt f2i cvt f2f cvt f2f - joinat
0xb fadd fadd fadd fadd - fset fmax fmin presin/preex2- brkpt brkpt
0xc fmul fmul fmul - fslct fslct quadop - - - - bra

c[]
0xd - logic

op
logic
op

add $a ld l[] st l[] ld g[] st g[] red g[] atomic
g[]

- pre-
ret

0xe fmul+faddfmul+faddfmul+faddfmul+fadddfma dadd dmul dmin dmax dset - -
0xf tex-

auto/fetch
- tex-

auto/fetch
texbias texlod tex

misc
texc-
saa/gather

??? emit/restartnop/pmevent- -

226 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Instructions

The instructions are roughly divided into the following groups:

• Data movement instructions

• Integer arithmetic instructions

• Floating point instructions

• Transcendential instructions

• Double precision floating point instructions

• Control instructions

• Texture instructions

• Misc instructions

Data movement instructions

Contents

• Data movement instructions

– Introduction

– Data movement: (h)mov

– Condition registers

* Reading condition registers: mov (from $c)

* Writing condition registers: mov (to $c)

– Address registers

* Reading address registers: mov (from $a)

* Writing address registers: shl (to $a)

* Increasing address registers: add ($a)

– Reading special registers: mov (from $sr)

– Memory space access

* Const space access: ld c[]

* Local space access: ld l[], st l[]

* Shared space access: ld s[], st s[]

* Input space access: ld a[]

* Output space access: st o[]

– Global space access

* Global load/stores: ld g[], st g[]

* Global atomic operations: ld (add|inc|dec|max|min|and|or|xor) g[], xchg g[], cas g[]

* Global reduction operations: (add|inc|dec|max|min|and|or|xor) g[]

2.9. PGRAPH: 2d/3d graphics and compute engine 227



nVidia Hardware Documentation, Release git

Introduction

Todo: write me

Data movement: (h)mov

Todo: write me

[lanemask] mov b32/b16 DST SRC

lanemask assumed 0xf for short and immediate versions.

if (lanemask & 1 << (laneid & 3)) DST = SRC;

Short: 0x10000000 base opcode
0x00008000 0: b16, 1: b32
operands: S*DST, S*SRC1/S*SHARED

Imm: 0x10000000 base opcode
0x00008000 0: b16, 1: b32
operands: L*DST, IMM

Long: 0x10000000 0x00000000 base opcode
0x00000000 0x04000000 0: b16, 1: b32
0x00000000 0x0003c000 lanemask
operands: LL*DST, L*SRC1/L*SHARED

Condition registers

Reading condition registers: mov (from $c)

Todo: write me

mov DST COND

DST is 32-bit $r.

DST = COND;

Long: 0x00000000 0x20000000 base opcode
operands: LDST, COND

Writing condition registers: mov (to $c)

228 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: write me

mov CDST SRC

SRC is 32-bit $r. Yes, the 0x40 $c write enable flag in second word is
actually ignored.

CDST = SRC;

Long: 0x00000000 0xa0000000 base opcode
operands: CDST, LSRC1

Address registers

Reading address registers: mov (from $a)

Todo: write me

mov DST AREG

DST is 32-bit $r. Setting flag normally used for autoincrement mode doesn't
work, but still causes crash when using non-writable $a's.

DST = AREG;

Long: 0x00000000 0x40000000 base opcode
0x02000000 0x00000000 crashy flag
operands: LDST, AREG

Writing address registers: shl (to $a)

Todo: write me

shl ADST SRC SHCNT

SRC is 32-bit $r.

ADST = SRC << SHCNT;

Long: 0x00000000 0xc0000000 base opcode
operands: ADST, LSRC1/LSHARED, HSHCNT

Increasing address registers: add ($a)

2.9. PGRAPH: 2d/3d graphics and compute engine 229



nVidia Hardware Documentation, Release git

Todo: write me

add ADST AREG OFFS

Like mov from $a, setting flag normally used for autoincrement mode doesn't
work, but still causes crash when using non-writable $a's.

ADST = AREG + OFFS;

Long: 0xd0000000 0x20000000 base opcode
0x02000000 0x00000000 crashy flag
operands: ADST, AREG, OFFS

Reading special registers: mov (from $sr)

Todo: write me

mov DST physid S=0
mov DST clock S=1
mov DST sreg2 S=2
mov DST sreg3 S=3
mov DST pm0 S=4
mov DST pm1 S=5
mov DST pm2 S=6
mov DST pm3 S=7

DST is 32-bit $r.

DST = SREG;

Long: 0x00000000 0x60000000 base opcode
0x00000000 0x0001c000 S
operands: LDST

Memory space access

Const space access: ld c[]

Todo: write me

Local space access: ld l[], st l[]

Todo: write me

230 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Shared space access: ld s[], st s[]

Todo: write me

mov lock CDST DST s[]

Tries to lock a word of s[] memory and load a word from it. CDST tells
you if it was successfully locked+loaded, or no. A successfully locked
word can't be locked by any other thread until it is unlocked.

mov unlock s[] SRC

Stores a word to previously-locked s[] word and unlocks it.

Input space access: ld a[]

Todo: write me

Output space access: st o[]

Todo: write me

Global space access

Global load/stores: ld g[], st g[]

Todo: write me

Global atomic operations: ld (add|inc|dec|max|min|and|or|xor) g[], xchg g[], cas g[]

Todo: write me

Global reduction operations: (add|inc|dec|max|min|and|or|xor) g[]

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 231



nVidia Hardware Documentation, Release git

Integer arithmetic instructions

Contents

• Integer arithmetic instructions

– Introduction

– Addition/substraction: (h)add, (h)sub, (h)subr, (h)addc

– Multiplication: mul(24)

– Multiply-add: madd(24), msub(24), msubr(24), maddc(24)

– Sum of absolute differences: sad, hsad

– Min/max selection: (h)min, (h)max

– Comparison: set, hset

– Bitwise operations: (h)and, (h)or, (h)xor, (h)mov2

– Bit shifts: (h)shl, (h)shr, (h)sar

Introduction

Todo: write me

S(x): 31th bit of x for 32-bit x, 15th for 16-bit x.
SEX(x): sign-extension of x
ZEX(x): zero-extension of x

Addition/substraction: (h)add, (h)sub, (h)subr, (h)addc

Todo: write me

add [sat] b32/b16 [CDST] DST SRC1 SRC2 O2=0, O1=0
sub [sat] b32/b16 [CDST] DST SRC1 SRC2 O2=0, O1=1
subr [sat] b32/b16 [CDST] DST SRC1 SRC2 O2=1, O1=0
addc [sat] b32/b16 [CDST] DST SRC1 SRC2 COND O2=1, O1=1

All operands are 32-bit or 16-bit according to size specifier.

b16/b32 s1, s2;
bool c;
switch (OP) {

case add: s1 = SRC1, s2 = SRC2, c = 0; break;
case sub: s1 = SRC1, s2 = ~SRC2, c = 1; break;
case subr: s1 = ~SRC1, s2 = SRC2, c = 1; break;
case addc: s1 = SRC1, s2 = SRC2, c = COND.C; break;

}

(continues on next page)

232 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

res = s1+s2+c; // infinite precision
CDST.C = res >> (b32 ? 32 : 16);
res = res & (b32 ? 0xffffffff : 0xffff);
CDST.O = (S(s1) == S(s2)) && (S(s1) != S(res));
if (sat && CDST.O)

if (S(res)) res = (b32 ? 0x7fffffff : 0x7fff);
else res = (b32 ? 0x80000000 : 0x8000);

CDST.S = S(res);
CDST.Z = res == 0;
DST = res;

Short/imm: 0x20000000 base opcode
0x10000000 O2 bit
0x00400000 O1 bit
0x00008000 0: b16, 1: b32
0x00000100 sat flag
operands: S*DST, S*SRC1/S*SHARED, S*SRC2/S*CONST/IMM, $c0

Long: 0x20000000 0x00000000 base opcode
0x10000000 0x00000000 O2 bit
0x00400000 0x00000000 O1 bit
0x00000000 0x04000000 0: b16, 1: b32
0x00000000 0x08000000 sat flag
operands: MCDST, LL*DST, L*SRC1/L*SHARED, L*SRC3/L*CONST3, COND

Multiplication: mul(24)

Todo: write me

mul [CDST] DST u16/s16 SRC1 u16/s16 SRC2

DST is 32-bit, SRC1 and SRC2 are 16-bit.

b32 s1, s2;
if (src1_signed)

s1 = SEX(SRC1);
else

s1 = ZEX(SRC1);
if (src2_signed)

s2 = SEX(SRC2);
else

s2 = ZEX(SRC2);
b32 res = s1*s2; // modulo 2^32
CDST.O = 0;
CDST.C = 0;
CDST.S = S(res);
CDST.Z = res == 0;
DST = res;

Short/imm: 0x40000000 base opcode
0x00008000 src1 is signed
0x00000100 src2 is signed
operands: SDST, SHSRC/SHSHARED, SHSRC2/SHCONST/IMM

(continues on next page)

2.9. PGRAPH: 2d/3d graphics and compute engine 233



nVidia Hardware Documentation, Release git

(continued from previous page)

Long: 0x40000000 0x00000000 base opcode
0x00000000 0x00008000 src1 is signed
0x00000000 0x00004000 src2 is signed
operands: MCDST, LLDST, LHSRC1/LHSHARED, LHSRC2/LHCONST2

mul [CDST] DST [high] u24/s24 SRC1 SRC2

All operands are 32-bit.

b48 s1, s2;
if (signed) {

s1 = SEX((b24)SRC1);
s2 = SEX((b24)SRC2);

} else {
s1 = ZEX((b24)SRC1);
s2 = ZEX((b24)SRC2);

}
b48 m = s1*s2; // modulo 2^48
b32 res = (high ? m >> 16 : m & 0xffffffff);
CDST.O = 0;
CDST.C = 0;
CDST.S = S(res);
CDST.Z = res == 0;
DST = res;

Short/imm: 0x40000000 base opcode
0x00008000 src are signed
0x00000100 high
operands: SDST, SSRC/SSHARED, SSRC2/SCONST/IMM

Long: 0x40000000 0x00000000 base opcode
0x00000000 0x00008000 src are signed
0x00000000 0x00004000 high
operands: MCDST, LLDST, LSRC1/LSHARED, LSRC2/LCONST2

Multiply-add: madd(24), msub(24), msubr(24), maddc(24)

Todo: write me

addop [CDST] DST mul u16 SRC1 SRC2 SRC3 O1=0 O2=000 S2=0 S1=0
addop [CDST] DST mul s16 SRC1 SRC2 SRC3 O1=0 O2=001 S2=0 S1=1
addop sat [CDST] DST mul s16 SRC1 SRC2 SRC3 O1=0 O2=010 S2=1 S1=0
addop [CDST] DST mul u24 SRC1 SRC2 SRC3 O1=0 O2=011 S2=1 S1=1
addop [CDST] DST mul s24 SRC1 SRC2 SRC3 O1=0 O2=100
addop sat [CDST] DST mul s24 SRC1 SRC2 SRC3 O1=0 O2=101
addop [CDST] DST mul high u24 SRC1 SRC2 SRC3 O1=0 O2=110
addop [CDST] DST mul high s24 SRC1 SRC2 SRC3 O1=0 O2=111
addop sat [CDST] DST mul high s24 SRC1 SRC2 SRC3 O1=1 O2=000

addop is one of:

(continues on next page)

234 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

add O3=00 S4=0 S3=0
sub O3=01 S4=0 S3=1
subr O3=10 S4=1 S3=0
addc O3=11 S4=1 S3=1

If addop is addc, insn also takes an additional COND parameter. DST and
SRC3 are always 32-bit, SRC1 and SRC2 are 16-bit for u16/s16 variants,
32-bit for u24/s24 variants. Only a few of the variants are encodable as
short/immediate, and they're restricted to DST=SRC3.

if (u24 || s24) {
b48 s1, s2;
if (s24) {

s1 = SEX((b24)SRC1);
s2 = SEX((b24)SRC2);

} else {
s1 = ZEX((b24)SRC1);
s2 = ZEX((b24)SRC2);

}
b48 m = s1*s2; // modulo 2^48
b32 mres = (high ? m >> 16 : m & 0xffffffff);

} else {
b32 s1, s2;
if (s16) {

s1 = SEX(SRC1);
s2 = SEX(SRC2);

} else {
s1 = ZEX(SRC1);
s2 = ZEX(SRC2);

}
b32 mres = s1*s2; // modulo 2^32

}
b32 s1, s2;
bool c;
switch (OP) {

case add: s1 = mres, s2 = SRC3, c = 0; break;
case sub: s1 = mres, s2 = ~SRC3, c = 1; break;
case subr: s1 = ~mres, s2 = SRC3, c = 1; break;
case addc: s1 = mres, s2 = SRC3, c = COND.C; break;

}
res = s1+s2+c; // infinite precision
CDST.C = res >> 32;
res = res & 0xffffffff;
CDST.O = (S(s1) == S(s2)) && (S(s1) != S(res));
if (sat && CDST.O)

if (S(res)) res = 0x7fffffff;
else res = 0x80000000;

CDST.S = S(res);
CDST.Z = res == 0;
DST = res;

Short/imm: 0x60000000 base opcode
0x00000100 S1
0x00008000 S2
0x00400000 S3
0x10000000 S4
operands: SDST, S*SRC/S*SHARED, S*SRC2/S*CONST/IMM, SDST, $c0

(continues on next page)

2.9. PGRAPH: 2d/3d graphics and compute engine 235



nVidia Hardware Documentation, Release git

(continued from previous page)

Long: 0x60000000 0x00000000 base opcode
0x10000000 0x00000000 O1
0x00000000 0xe0000000 O2
0x00000000 0x0c000000 O3
operands: MCDST, LLDST, L*SRC1/L*SHARED, L*SRC2/L*CONST2, L*SRC3/L*CONST3, COND

Sum of absolute differences: sad, hsad

Todo: write me

sad [CDST] DST u16/s16/u32/s32 SRC1 SRC2 SRC3

Short variant is restricted to DST same as SRC3. All operands are 32-bit or
16-bit according to size specifier.

int s1, s2; // infinite precision
if (signed) {

s1 = SEX(SRC1);
s2 = SEX(SRC2);

} else {
s1 = ZEX(SRC1);
s2 = ZEX(SRC2);

}
b32 mres = abs(s1-s2); // modulo 2^32
res = mres+s3; // infinite precision
CDST.C = res >> (b32 ? 32 : 16);
res = res & (b32 ? 0xffffffff : 0xffff);
CDST.O = (S(mres) == S(s3)) && (S(mres) != S(res));
CDST.S = S(res);
CDST.Z = res == 0;
DST = res;

Short: 0x50000000 base opcode
0x00008000 0: b16 1: b32
0x00000100 src are signed
operands: DST, SDST, S*SRC/S*SHARED, S*SRC2/S*CONST, SDST

Long: 0x50000000 0x00000000 base opcode
0x00000000 0x04000000 0: b16, 1: b32
0x00000000 0x08000000 src sre signed
operands: MCDST, LLDST, L*SRC1/L*SHARED, L*SRC2/L*CONST2, L*SRC3/L*CONST3

Min/max selection: (h)min, (h)max

Todo: write me

min u16/u32/s16/s32 [CDST] DST SRC1 SRC2
max u16/u32/s16/s32 [CDST] DST SRC1 SRC2

(continues on next page)

236 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

All operands are 32-bit or 16-bit according to size specifier.

if (SRC1 < SRC2) { // signed comparison for s16/s32, unsigned for u16/u32.
res = (min ? SRC1 : SRC2);

} else {
res = (min ? SRC2 : SRC1);

}
CDST.O = 0;
CDST.C = 0;
CDST.S = S(res);
CDST.Z = res == 0;
DST = res;

Long: 0x30000000 0x80000000 base opcode
0x00000000 0x20000000 0: max, 1: min
0x00000000 0x08000000 0: u16/u32, 1: s16/s32
0x00000000 0x04000000 0: b16, 1: b32
operands: MCDST, LL*DST, L*SRC1/L*SHARED, L*SRC2/L*CONST2

Comparison: set, hset

Todo: write me

set [CDST] DST cond u16/s16/u32/s32 SRC1 SRC2

cond can be any subset of {l, g, e}.

All operands are 32-bit or 16-bit according to size specifier.

int s1, s2; // infinite precision
if (signed) {

s1 = SEX(SRC1);
s2 = SEX(SRC2);

} else {
s1 = ZEX(SRC1);
s2 = ZEX(SRC2);

}
bool c;
if (s1 < s2)

c = cond.l;
else if (s1 == s2)

c = cond.e;
else /* s1 > s2 */

c = cond.g;
if (c) {

res = (b32?0xffffffff:0xffff);
} else {

res = 0;
}
CDST.O = 0;
CDST.C = 0;
CDST.S = S(res);

(continues on next page)

2.9. PGRAPH: 2d/3d graphics and compute engine 237



nVidia Hardware Documentation, Release git

(continued from previous page)

CDST.Z = res == 0;
DST = res;

Long: 0x30000000 0x60000000 base opcode
0x00000000 0x08000000 0: u16/u32, 1: s16/s32
0x00000000 0x04000000 0: b16, 1: b32
0x00000000 0x00010000 cond.g
0x00000000 0x00008000 cond.e
0x00000000 0x00004000 cond.l
operands: MCDST, LL*DST, L*SRC1/L*SHARED, L*SRC2/L*CONST2

Bitwise operations: (h)and, (h)or, (h)xor, (h)mov2

Todo: write me

and b32/b16 [CDST] DST [not] SRC1 [not] SRC2 O2=0, O1=0
or b32/b16 [CDST] DST [not] SRC1 [not] SRC2 O2=0, O1=1
xor b32/b16 [CDST] DST [not] SRC1 [not] SRC2 O2=1, O1=0
mov2 b32/b16 [CDST] DST [not] SRC1 [not] SRC2 O2=1, O1=1

Immediate forms only allows 32-bit operands, and cannot negate second op.

s1 = (not1 ? ~SRC1 : SRC1);
s2 = (not2 ? ~SRC2 : SRC2);
switch (OP) {

case and: res = s1 & s2; break;
case or: res = s1 | s2; break;
case xor: res = s1 ^ s2; break;
case mov2: res = s2; break;

}
CDST.O = 0;
CDST.C = 0;
CDST.S = S(res);
CDST.Z = res == 0;
DST = res;

Imm: 0xd0000000 base opcode
0x00400000 not1
0x00008000 O2 bit
0x00000100 O1 bit
operands: SDST, SSRC/SSHARED, IMM
assumed: not2=0 and b32.

Long: 0xd0000000 0x00000000 base opcode
0x00000000 0x04000000 0: b16, 1: b32
0x00000000 0x00020000 not2
0x00000000 0x00010000 not1
0x00000000 0x00008000 O2 bit
0x00000000 0x00004000 O1 bit
operands: MCDST, LL*DST, L*SRC1/L*SHARED, L*SRC2/L*CONST2

238 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Bit shifts: (h)shl, (h)shr, (h)sar

Todo: write me

shl b16/b32 [CDST] DST SRC1 SRC2
shl b16/b32 [CDST] DST SRC1 SHCNT
shr u16/u32 [CDST] DST SRC1 SRC2
shr u16/u32 [CDST] DST SRC1 SHCNT
shr s16/s32 [CDST] DST SRC1 SRC2
shr s16/s32 [CDST] DST SRC1 SHCNT

All operands 16/32-bit according to size specifier, except SHCNT. Shift
counts are always treated as unsigned, passing negative value to shl
doesn't get you a shr.

int size = (b32 ? 32 : 16);
if (shl) {

res = SRC1 << SRC2; // infinite precision, shift count doesn't wrap.
if (SRC2 < size) { // yes, <. So if you shift 1 left by 32 bits, you DON'T get

→˓CDST.C set. but shift 2 left by 31 bits, and it gets set just fine.
CDST.C = (res >> size) & 1; // basically, the bit that got shifted out.

} else {
CDST.C = 0;

}
res = res & (b32 ? 0xffffffff : 0xffff);

} else {
res = SRC1 >> SRC2; // infinite precision, shift count doesn't wrap.
if (signed && S(SRC1)) {

if (SRC2 < size)
res |= (1<<size)-(1<<(size-SRC2)); // fill out the upper bits with 1's.

else
res |= (1<<size)-1;

}
if (SRC2 < size && SRC2 > 0) {

CDST.C = (SRC1 >> (SRC2-1)) & 1;
} else {

CDST.C = 0;
}

}
if (SRC2 == 1) {

CDST.O = (S(SRC1) != S(res));
} else {

CDST.O = 0;
}
CDST.S = S(res);
CDST.Z = res == 0;
DST = res;

Long: 0x30000000 0xc0000000 base opcode
0x00000000 0x20000000 0: shl, 1: shr
0x00000000 0x08000000 0: u16/u32, 1: s16/s32 [shr only]
0x00000000 0x04000000 0: b16, 1: b32
0x00000000 0x00010000 0: use SRC2, 1: use SHCNT
operands: MCDST, LL*DST, L*SRC1/L*SHARED, L*SRC2/L*CONST2/SHCNT

2.9. PGRAPH: 2d/3d graphics and compute engine 239



nVidia Hardware Documentation, Release git

Floating point instructions

Contents

• Floating point instructions

– Introduction

– Addition: fadd

– Multiplication: fmul

– Multiply+add: fmad

– Min/max: fmin, fmax

– Comparison: fset

– Selection: fslct

Introduction

Todo: write me

Addition: fadd

Todo: write me

add [sat] rn/rz f32 DST SRC1 SRC2

Adds two floating point numbers together.

Multiplication: fmul

Todo: write me

mul [sat] rn/rz f32 DST SRC1 SRC2

Multiplies two floating point numbers together

Multiply+add: fmad

Todo: write me

240 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

add f32 DST mul SRC1 SRC2 SRC3

A multiply-add instruction. With intermediate rounding. Nothing
interesting. DST = SRC1 * SRC2 + SRC3;

Min/max: fmin, fmax

Todo: write me

min f32 DST SRC1 SRC2
max f32 DST SRC1 SRC2

Sets DST to the smaller/larger of two SRC1 operands. If one operand is NaN,
DST is set to the non-NaN operand. If both are NaN, DST is set to NaN.

Comparison: fset

Todo: write me

set [CDST] DST <cmpop> f32 SRC1 SRC2

Does given comparison operation on SRC1 and SRC2. DST is set to 0xffffffff
if comparison evaluats true, 0 if it evaluates false. if used, CDST.SZ are
set according to DST.

Selection: fslct

Todo: write me

slct b32 DST SRC1 SRC2 f32 SRC3

Sets DST to SRC1 if SRC3 is positive or 0, to SRC2 if SRC3 negative or NaN.

Transcendential instructions

Contents

• Transcendential instructions

– Introduction

– Preparation: pre

2.9. PGRAPH: 2d/3d graphics and compute engine 241



nVidia Hardware Documentation, Release git

– Reciprocal: rcp

– Reciprocal square root: rsqrt

– Base-2 logarithm: lg2

– Sinus/cosinus: sin, cos

– Base-2 exponential: ex2

Introduction

Todo: write me

Preparation: pre

Todo: write me

presin f32 DST SRC
preex2 f32 DST SRC

Preprocesses a float argument for use in subsequent sin/cos or ex2
operation, respectively.

Reciprocal: rcp

Todo: write me

rcp f32 DST SRC

Computes 1/x.

Reciprocal square root: rsqrt

Todo: write me

rsqrt f32 DST SRC

Computes 1/sqrt(x).

242 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Base-2 logarithm: lg2

Todo: write me

lg2 f32 DST SRC

Computes log_2(x).

Sinus/cosinus: sin, cos

Todo: write me

sin f32 DST SRC
cos f32 DST SRC

Computes sin(x) or cos(x), needs argument preprocessed by pre.sin.

Base-2 exponential: ex2

Todo: write me

ex2 f32 DST SRC

Computes 2**x, needs argument preprocessed by pre.ex2.

Double precision floating point instructions

Contents

• Double precision floating point instructions

– Introduction

– Addition: dadd

– Multiplication: dmul

– Fused multiply+add: dfma

– Min/max: dmin, dmax

– Comparison: dset

Introduction

2.9. PGRAPH: 2d/3d graphics and compute engine 243



nVidia Hardware Documentation, Release git

Todo: write me

Addition: dadd

Todo: write me

Multiplication: dmul

Todo: write me

Fused multiply+add: dfma

Todo: write me

fma f64 DST SRC1 SRC2 SRC3

Fused multiply-add, with no intermediate rounding.

Min/max: dmin, dmax

Todo: write me

min f64 DST SRC1 SRC2
max f64 DST SRC1 SRC2

Sets DST to the smaller/larger of two SRC1 operands. If one operand is NaN,
DST is set to the non-NaN operand. If both are NaN, DST is set to NaN.

Comparison: dset

Todo: write me

set [CDST] DST <cmpop> f64 SRC1 SRC2

Does given comparison operation on SRC1 and SRC2. DST is set to 0xffffffff
if comparison evaluats true, 0 if it evaluates false. if used, CDST.SZ are
set according to DST.

244 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Control instructions

Contents

• Control instructions

– Introduction

– Halting program execution: exit

– Branching: bra

– Indirect branching: bra c[]

– Setting up a rejoin point: joinat

– Rejoining execution paths: join

– Preparing a loop: prebrk

– Breaking out of a loop: brk

– Calling subroutines: call

– Returning from a subroutine: ret

– Pushing a return address: preret

– Aborting execution: trap

– Debugger breakpoint: brkpt

– Enabling whole-quad mode: quadon, quadpop

– Discarding fragments: discard

– Block thread barriers: bar

Introduction

Todo: write me

Halting program execution: exit

Todo: write me

exit

Actually, not a separate instruction, just a modifier available on all
long insns. Finishes thread's execution after the current insn ends.

Branching: bra

2.9. PGRAPH: 2d/3d graphics and compute engine 245



nVidia Hardware Documentation, Release git

Todo: write me

bra <code target>

Branches to the given place in the code. If only some subset of threads
in the current warp executes it, one of the paths is chosen as the active
one, and the other is suspended until the active path exits or rejoins.

Indirect branching: bra c[]

Todo: write me

Setting up a rejoin point: joinat

Todo: write me

joinat <code target>

The arugment is address of a future join instruction and gets pushed
onto the stack, together with a mask of currently active threads, for
future rejoining.

Rejoining execution paths: join

Todo: write me

join

Also a modifier. Switches to other diverged execution paths on the same
stack level, until they've all reached the join point, then pops off the
entry and continues execution with a rejoined path.

Preparing a loop: prebrk

Todo: write me

breakaddr <code target>

Like call, except doesn't branch anywhere, uses given operand as the
return address, and pushes a different type of entry onto the stack.

246 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Breaking out of a loop: brk

Todo: write me

break

Like ret, except accepts breakaddr's stack entry type, not call's.

Calling subroutines: call

Todo: write me

call <code target>

Pushes address of the next insn onto the stack and branches to given place.
Cannot be predicated.

Returning from a subroutine: ret

Todo: write me

ret

Returns from a called function. If there's some not-yet-returned divergent
path on the current stack level, switches to it. Otherwise pops off the
entry from stack, rejoins all the paths to the pre-call state, and
continues execution from the return address on stack. Accepts predicates.

Pushing a return address: preret

Todo: write me

Aborting execution: trap

Todo: write me

trap

Causes an error, killing the program instantly.

2.9. PGRAPH: 2d/3d graphics and compute engine 247



nVidia Hardware Documentation, Release git

Debugger breakpoint: brkpt

Todo: write me

brkpt

Doesn't seem to do anything, probably generates a breakpoint when enabled
somewhere in PGRAPH, somehow.

Enabling whole-quad mode: quadon, quadpop

Todo: write me

quadon

Temporarily enables all threads in the current quad, even if they were
disabled before [by diverging, exitting, or not getting started at all].
Nesting this is probably a bad idea, and so is using any non-quadpop
control insns while this is active. For diverged threads, the saved PC
is unaffected by this temporal enabling.

quadpop

Undoes a previous quadon command.

Discarding fragments: discard

Todo: write me

Block thread barriers: bar

Todo: write me

bar sync <barrier number>

Waits until all threads in the block arrive at the barrier, then continues
execution... probably... somehow...

Texture instructions

248 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Contents

• Texture instructions

– Introduction

– Automatic texture load: texauto

– Raw texel fetch: texfetch

– Texture load with LOD bias: texbias

– Texture load with manual LOD: texlod

– Texture size query: texsize

– Texture cube calculations: texprep

– Texture LOD query: texquerylod

– Texture CSAA load: texcsaa

– Texture quad load: texgather

Introduction

Todo: write me

Automatic texture load: texauto

Todo: write me

texauto [deriv] live/all <texargs>

Does a texture fetch. Inputs are: x, y, z, array index, dref [skip all
that your current sampler setup doesn't use]. x, y, z, dref are floats,
array index is integer. If running in FP or the deriv flag is on,
derivatives are computed based on coordinates in all threads of current
quad. Otherwise, derivatives are assumed 0. For FP, if the live flag
is on, the tex instruction is only run for fragments that are going to
be actually written to the render target, ie. for ones that are inside
the rendered primitive and haven't been discarded yet. all executes
the tex even for non-visible fragments, which is needed if they're going
to be used for further derivatives, explicit or implicit.

Raw texel fetch: texfetch

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 249



nVidia Hardware Documentation, Release git

texfetch live/all <texargs>

A single-texel fetch. The inputs are x, y, z, index, lod, and are all
integer.

Texture load with LOD bias: texbias

Todo: write me

texbias [deriv] live/all <texargs>

Same as texauto, except takes an additional [last] float input specifying
the LOD bias to add. Note that bias needs to be the same for all threads
in the current quad executing the texbias insn.

Texture load with manual LOD: texlod

Todo: write me

Does a texture fetch with given coordinates and LOD. Inputs are like
texbias, except you have explicit LOD instead of the bias. Just like
in texbias, the LOD should be the same for all threads involved.

Texture size query: texsize

Todo: write me

texsize live/all <texargs>

Gives you (width, height, depth, mipmap level count) in output, takes
integer LOD parameter as its only input.

Texture cube calculations: texprep

Todo: write me

Texture LOD query: texquerylod

Todo: write me

250 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Texture CSAA load: texcsaa

Todo: write me

Texture quad load: texgather

Todo: write me

Misc instructions

Contents

• Misc instructions

– Introduction

– Data conversion: cvt

– Attribute interpolation: interp

– Intra-quad data movement: quadop

– Intra-warp voting: vote

– Vertex stream output control: emit, restart

– Nop / PM event triggering: nop, pmevent

Introduction

Todo: write me

Data conversion: cvt

Todo: write me

cvt <integer dst> <integer src>
cvt <integer rounding modifier> <integer dst> <float src>
cvt <rounding modifier> <float dst> <integer src>
cvt <rounding modifier> <float dst> <float src>
cvt <integer rounding modifier> <float dst> <float src>

Converts between formats. For integer destinations, always clamps result
to target type range.

2.9. PGRAPH: 2d/3d graphics and compute engine 251



nVidia Hardware Documentation, Release git

Attribute interpolation: interp

Todo: write me

interp [cent] [flat] DST v[] [SRC]

Gets interpolated FP input, optionally multiplying by a given value

Intra-quad data movement: quadop

Todo: write me

quadop f32 <op1> <op2> <op3> <op4> DST <srclane> SRC1 SRC2

Intra-quad information exchange instruction. Mad as a hatter.
First, SRC1 is taken from the given lane in current quad. Then
op<currentlanenumber> is executed on it and SRC2, results get
written to DST. ops can be add [SRC1+SRC2], sub [SRC1-SRC2],
subr [SRC2-SRC1], mov2 [SRC2]. srclane can be at least l0, l1,
l2, l3, and these work everywhere. If you're running in FP, looks
like you can also use dox [use current lane number ^ 1] and doy
[use current lane number ^ 2], but using these elsewhere results
in always getting 0 as the result...

Intra-warp voting: vote

Todo: write me

PREDICATE vote any/all CDST

This instruction doesn't use the predicate field for conditional execution,
abusing it instead as an input argument. vote any sets CDST to true iff the
input predicate evaluated to true in any of the warp's active threads.
vote all sets it to true iff the predicate evaluated to true in all acive
threads of the current warp.

Vertex stream output control: emit, restart

Todo: write me

emit

GP-only instruction that emits current contents of $o registers as the

(continues on next page)

252 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

next vertex in the output primitive and clears $o for some reason.

restart

GP-only instruction that finishes current output primitive and starts
a new one.

Nop / PM event triggering: nop, pmevent

Todo: write me

Per-MP performance counters

Contents

• Per-MP performance counters

– Introduction

Introduction

Todo: write me

Vertex fetch: VFETCH

Contents

• Vertex fetch: VFETCH

• PCOUNTER signals

Todo: write me

PCOUNTER signals

Mux 0:

• 0x0e: geom_vertex_in_count[0]

• 0x0f: geom_vertex_in_count[1]

• 0x10: geom_vertex_in_count[2]

2.9. PGRAPH: 2d/3d graphics and compute engine 253



nVidia Hardware Documentation, Release git

• 0x19: CG_IFACE_DISABLE [G80]

Mux 1:

• 0x02: input_assembler_busy[0]

• 0x03: input_assembler_busy[1]

• 0x08: geom_primitive_in_count

• 0x0b: input_assembler_waits_for_fb [G200:]

• 0x0e: input_assembler_waits_for_fb [G80:G200]

• 0x14: input_assembler_busy[2] [G200:]

• 0x15: input_assembler_busy[3] [G200:]

• 0x17: input_assembler_busy[2] [G80:G200]

• 0x18: input_assembler_busy[3] [G80:G200]

Mux 2 [G84:]:

• 0x00: CG[0]

• 0x01: CG[1]

• 0x02: CG[2]

Pre-ROP: PROP

Contents

• Pre-ROP: PROP

• PCOUNTER signals

Todo: write me

PCOUNTER signals

• 0x00:

– 2: rop_busy[0]

– 3: rop_busy[1]

– 4: rop_busy[2]

– 5: rop_busy[3]

– 6: rop_waits_for_shader[0]

– 7: rop_waits_for_shader[1]

• 0x03: shaded_pixel_count. . . ?

• 0x15:

– 0-5: rop_samples_in_count_1

254 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– 6: rop_samples_in_count_0[0]

– 7: rop_samples_in_count_0[1]

• 0x16:

– 0-5: rasterizer_pixels_out_count_1

– 6: rasterizer_pixels_out_count_0[0]

– 7: rasterizer_pixels_out_count_0[1]

• 0x1a:

– 0-5: rop_samples_killed_by_earlyz_count

• 0x1b:

– 0-5: rop_samples_killed_by_latez_count

• 0x1c: shaded_pixel_count. . . ?

• 0x1d: shaded_pixel_count. . . ?

• 0x1e:

– 0: CG_IFACE_DISABLE [G80]

– 0: CG[0] [G84:]

– 1: CG[1] [G84:]

– 2: CG[2] [G84:]

Color raster output: CROP

Contents

• Color raster output: CROP

• PCOUNTER signals

Todo: write me

PCOUNTER signals

• 0x1:

– 0: CG_IFACE_DISABLE [G80]

– 2: rop_waits_for_fb[0]

– 3: rop_waits_for_fb[1]

2.9. PGRAPH: 2d/3d graphics and compute engine 255



nVidia Hardware Documentation, Release git

Zeta raster output: ZROP

Contents

• Zeta raster output: ZROP

• PCOUNTER signals

Todo: write me

PCOUNTER signals

• 0x1:

– 2: rop_waits_for_fb[0]

– 3: rop_waits_for_fb[1]

• 0x4:

– 1: CG_IFACE_DISABLE [G80]

2.9.12 Fermi graphics and compute engine

Contents:

Fermi macro processor

Contents

• Fermi macro processor

– Introduction

– Registers

Introduction

Todo: write me

Registers

Todo: write me

256 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

404400+i*4, i<8: REG[]
404420: OPCODE [at PC]
404424: PC
404428: NEXTPC
40442c: STATE

b0: ?
b4: ?
b8: ACTIVE
b9: PARM/MADDR?

404430: ??? 117ffff
404434: ??? 17ffff
404438: ??? 13ffff
404460: ??? 7f
404464: ??? 7ff
404468: WATCHDOG_TIMEOUT [30-bit]
40446c: WATCHDOG_TIME [30-bit]
404480: ??? 3
404488: MCACHE_CTRL
40448c: MCACHE_DATA
404490: TRAP

b0: TOO_FEW_PARAMS
b1: TOO_MANY_PARAMS
b2: ILLEGAL_OPCODE
b3: DOUBLE_BRANCH
b4: TIMEOUT
b29: ?
b30: CLEAR
b31: ENABLE

404494: TRAP_PC and something?
404498: 1/11/0
40449c: TRAP_OPCODE?
4044a0: STATUS [0000000f - idle]

Fermi context switching units

Contents:

Fermi context switching units

Todo: convert

Present on:

cc0: GF100:GK104

cc1: GK104:GK208

cc2: GK208:GM107

cc3: GM107:

BAR0 address:

HUB: 0x409000

GPC: 0x502000 + idx * 0x8000

2.9. PGRAPH: 2d/3d graphics and compute engine 257



nVidia Hardware Documentation, Release git

PMC interrupt line: ??? PMC enable bit: 12 [all of PGRAPH] Version:

cc0, cc1: 3

cc2, cc3: 5

Code segment size: HUB cc0: 0x4000 HUB cc1, cc2: 0x5000 HUB cc3: 0x6000 GPC cc0: 0x2000 GPC cc1, cc2:
0x2800 GPC cc3: 0x3800

Data segment size: HUB: 0x1000 GPC cc0-cc2: 0x800 GPC cc3: 0xc00

Fifo size: HUB cc0-cc1: 0x10 HUB cc2-cc3: 0x8 GPC cc0-cc1: 0x8 GPC cc2-cc3: 0x4

Xfer slots: 8

Secretful: no

Code TLB index bits: 8

Code ports: 1

Data ports:

cc0, cc1: 1

cc2, cc3: 4

IO addressing type: indexed

Core clock:

HUB: hub clock [GF100 clock #9]

GPC: GPC clock [GF100 clock #0] [XXX: divider]

The IO register ranges:

400/10000:500/14000 CC misc CTXCTL support [graph/gf100-ctxctl/intro.txt] 500/14000:600/18000 FIFO
command FIFO submission [graph/gf100-ctxctl/intro.txt] 600/18000:700/1c000 MC PGRAPH master control
[graph/gf100-ctxctl/intro.txt] 700/1c000:800/20000 MMIO MMIO bus access [graph/gf100-ctxctl/mmio.txt]
800/20000:900/24000 MISC misc/unknown stuff [graph/gf100-ctxctl/intro.txt] 900/24000:a00/28000 STRAND
context strand control [graph/gf100-ctxctl/strand.txt] a00/28000:b00/2c000 MEMIF memory interface
[graph/gf100-ctxctl/memif.txt] b00/2c000:c00/30000 CSREQ PFIFO switch requests [graph/gf100-ctxctl/intro.txt]
c00/30000:d00/34000 GRAPH PGRAPH status/control [graph/gf100-ctxctl/intro.txt] d80/36000:dc0/37000 ??? ??? -
related to MEMIF? [XXX] [GK104-]

Registers in CC range: 400/10000 INTR interrupt signals 404/101xx INTR_ROUTE falcon interrupt routing
40c/1030x BAR_REQMASK[0] barrier required bits 410/1040x BAR_REQMASK[1] barrier required bits 414/1050x
BAR barrier state 418/10600 BAR_SET[0] set barrier bits, barrier 0 41c/10700 BAR_SET[1] set barrier bits, barrier 1
420/10800 IDLE_STATUS CTXCTL subunit idle status 424/10900 USER_BUSY user busy flag 430/10c00 WATCH-
DOG watchdog timer 484/12100H ??? [XXX]

Registers in FIFO range: 500/14000 DATA FIFO command argument 504/14100 CMD FIFO command submission

Registers in MC range: 604/18100H HUB_UNITS PART/GPC count 608/18200G GPC_UNITS TPC/ZCULL count
60c/18300H ??? [XXX] 610/18400H ??? [XXX] 614/18500 RED_SWITCH enable/power/pause master control
618/18600G GPCID the id of containing GPC 620/18800 UC_CAPS falcon code and data size 698/1a600G ???
[XXX] 69c/1a700G ??? [XXX]

Registers in MISC range: 800/20000:820/20800 SCRATCH scratch registers 820/20000:820/21000 SCRATCH_SET
set bits in scratch registers 840/20000:820/21800 SCRATCH_CLEAR clear bits in scratch registers 86c/21b00 ???
related to strands? [XXX] 870/21c00 ??? [XXX] 874/21d00 ??? [XXX] 878/21e00 ??? [XXX] 880/22000 STRANDS
strand count 884/22100 ??? [XXX] 890/22400 ??? JOE? [XXX] 894/22500 ??? JOE? [XXX] 898/22600 ??? JOE?
[XXX] 89c/22700 ??? JOE? [XXX] 8a0/22800 ??? [XXX] 8a4/22900 ??? [XXX] 8a8/22a00 ??? [XXX] 8b0/22c00
??? [XXX] [GK104-] 8b4/22d00 ??? [XXX] [GK104-]

258 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Registers in CSREQ range: b00/2c000H CHAN_CUR current channel b04/2c100H CHAN_NEXT next channel
b08/2c200H INTR_EN interrupt enable? b0c/2c300H INTR interrupt b80/2e000H ??? [XXX] b84/2e100H ???
[XXX]

Registers in GRAPH range: c00/30000H CMD_STATUS some PGRAPH status bits? c08/30200H CMD_TRIGGER
triggers misc commands to PGRAPH? c14/305xxH INTR_UP_ROUTE upstream interrupt routing c18/30600H
INTR_UP_STATUS upstream interrupt status c1c/30700H INTR_UP_SET upstream interrupt trigger c20/30800H
INTR_UP_CLEAR upstream interrupt clear c24/30900H INTR_UP_ENABLE upstream interrupt enable [XXX: more
bits on GK104] c80/32000G VSTATUS_0 subunit verbose status c84/32100G VSTATUS_1 subunit verbose status
c88/32200G VSTATUS_2 subunit verbose status c8c/32300G VSTATUS_3 subunit verbose status c90/32400G TRAP
GPC trap status c94/32500G TRAP_EN GPC trap enable

Interrupts: 0-7: standard falcon intterrupts 8-15: controlled by INTR_ROUTE

[XXX: IO regs] [XXX: interrupts] [XXX: status bits]

[XXX: describe CTXCTL]

Signals

0x00-0x1f: engine dependent [XXX] 0x20: ZERO - always 0 0x21: ??? - bit 9 of reg 0x128 of corresponding IBUS
piece [XXX] 0x22: STRAND - strand busy executing command [graph/gf100-ctxctl/strand.txt] 0x23: ???, affected by
RED_SWITCH [XXX] 0x24: IB_UNK40, last state of IB_UNK40 bit, from DISPATCH.SUBCH reg 0x25: MMCTX
- MMIO transfer complete [graph/gf100-ctxctl/mmio.txt] 0x26: MMIO_RD - MMIO read complete [graph/gf100-
ctxctl/mmio.txt] 0x27: MMIO_WRS - MMIO synchronous write complete [graph/gf100-ctxctl/mmio.txt] 0x28:
BAR_0 - barrier #0 reached [see below] 0x29: BAR_1 - barrier #1 reached [see below] 0x2a: ??? - related to
PCOUNTER [XXX] 0x2b: WATCHDOG - watchdog timer expired [see below] 0x2c: ??? - related to MEMIF [XXX]
0x2d: ??? - related to MEMIF [XXX] 0x2e: ??? - related to MEMIF [XXX]

Fermi CUDA processors

Contents:

Fermi CUDA ISA

Contents

• Fermi CUDA ISA

– Introduction

* Variants

* Warps and thread types

* Registers

* Memory

* Other execution state and resources

– Instruction format

– Instructions

– Notes about scheduling data and dual-issue on GK104+

2.9. PGRAPH: 2d/3d graphics and compute engine 259



nVidia Hardware Documentation, Release git

* DUAL ISSUE

Introduction

This file deals with description of Fermi CUDA instruction set. CUDA stands for Completely Unified Device Archi-
tecture and refers to the fact that all types of shaders (vertex, tesselation, geometry, fragment, and compute) use nearly
the same ISA and execute on the same processors (called streaming multiprocessors).

The Fermi CUDA ISA is used on Fermi (GF1xx) and older Kepler (GK10x) GPUs. Older (Tesla) CUDA GPUs use
the Tesla ISA. Newer Kepler ISAs use the Kepler2 ISA.

Variants

There are two variants of the Fermi ISA: the GF100 variant (used on Fermi GPUs) and the GK104 variant (used on
first-gen Kepler GPUs). The differences are:

• GF100:

– surface access based on 8 bindable slots

• GK104:

– surface access based on descriptor structures stored in c[]?

– some new instructions

– texbar instruction

– every 8th instruction slot should be filled by a special sched instruction that describes dependencies and
execution plan for the next 7 instructions

Todo: rather incomplete.

Warps and thread types

Like on Tesla, programs are executed in warps.

There are 6 program types on Fermi:

• vertex programs

• tesselation control programs

• tesselation evaluation programs

• geometry programs

• fragment programs

• compute programs

Todo: and vertex programs 2?

260 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: figure out the exact differences between these & the pipeline configuration business

Registers

The registers in Fermi ISA are:

• up to 63 32-bit GPRs per thread: $r0-$r62. These registers are used for all calculations, whether integer or
floating-point. In addition, $r63 is a special register that’s always forced to 0.

The amount of available GPRs per thread is chosen by the user as part of MP configuration, and can be selected
per program type. For example, if the user enables 16 registers, $r0-$r15 will be usable and $r16-$r62 will
be forced to 0. Since the MP has a rather limitted amount of storage for GPRs, this configuration parameter
determines how many active warps will fit simultanously on an MP.

If a 64-bit operation is to be performed, any naturally aligned pair of GPRs can be treated as a 64-bit register:
$rXd (which has the low half in $rX and the high half in $r(X+1), and X has to even). Likewise, if a 128-bit
operation is to be performed, any naturally aligned group of 4 registers can be treated as a 128-bit registers:
$rXq. The 32-bit chunks are assigned to $rX..(X+3) in order from lowest to highest.

Unlike Tesla, there is no way to access a 16-bit half of a register.

• 7 1-bit predicate registers per thread: $p0-$p6. There’s also $p7, which is always forced to 1. Used for condi-
tional execution of instructions.

• 1 4-bit condition code register: $c. Has 4 bits:

– bit 0: Z - zero flag. For integer operations, set when the result is equal to 0. For floating-point operations,
set when the result is 0 or NaN.

– bit 1: S - sign flag. For integer operations, set when the high bit of the result is equal to 1. For floating-point
operations, set when the result is negative or NaN.

– bit 2: C - carry flag. For integer addition, set when there is a carry out of the highest bit of the result.

– bit 3: O - overflow flag. For integer addition, set when the true (infinite-precision) result doesn’t fit in the
destination (considered to be a signed number).

Overall, works like one of the Tesla $c0-$c3 registers.

• $flags, a flags register, which is just an alias to $c and $pX registers, allowing them to be saved/restored with
one mov:

– bits 0-6: $p0-$p6

– bits 12-15: $c

• A few dozen read-only 32-bit special registers, $sr0-$sr127:

– $sr0 aka $laneid: XXX

– $sr2 aka $nphysid: XXX

– $sr3 aka $physid: XXX

– $sr4-$sr11 aka $pm0-$pm7: XXX

– $sr16 aka $vtxcnt: XXX

– $sr17 aka $invoc: XXX

– $sr18 aka $ydir: XXX

2.9. PGRAPH: 2d/3d graphics and compute engine 261



nVidia Hardware Documentation, Release git

– $sr24-$sr27 aka $machine_id0-$machine_id3: XXX

– $sr28 aka $affinity: XXX

– $sr32 aka $tid: XXX

– $sr33 aka $tidx: XXX

– $sr34 aka $tidy: XXX

– $sr35 aka $tidz: XXX

– $sr36 aka $launcharg: XXX

– $sr37 aka $ctaidx: XXX

– $sr38 aka $ctaidy: XXX

– $sr39 aka $ctaidz: XXX

– $sr40 aka $ntid: XXX

– $sr41 aka $ntidx: XXX

– $sr42 aka $ntidy: XXX

– $sr43 aka $ntidz: XXX

– $sr44 aka $gridid: XXX

– $sr45 aka $nctaidx: XXX

– $sr46 aka $nctaidy: XXX

– $sr47 aka $nctaidz: XXX

– $sr48 aka $swinbase: XXX

– $sr49 aka $swinsz: XXX

– $sr50 aka $smemsz: XXX

– $sr51 aka $smembanks: XXX

– $sr52 aka $lwinbase: XXX

– $sr53 aka $lwinsz: XXX

– $sr54 aka $lpossz: XXX

– $sr55 aka $lnegsz: XXX

– $sr56 aka $lanemask_eq: XXX

– $sr57 aka $lanemask_lt: XXX

– $sr58 aka $lanemask_le: XXX

– $sr59 aka $lanemask_gt: XXX

– $sr60 aka $lanemask_ge: XXX

– $sr64 aka $trapstat: XXX

– $sr66 aka $warperr: XXX

– $sr80 aka $clock: XXX

– $sr81 aka $clockhi: XXX

262 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: figure out and document the SRs

Memory

The memory spaces in Fermi ISA are:

• C[]: code space. The only way to access this space is by executing code from it (there’s no “read from code
space” instruction). Unlike Tesla, the code segment is shared between all program types. It has three levels of
cache (global, GPC, MP) that need to be manually flushed when its contents are modified by the user.

• c0[] - c17[]: const spaces. Read-only and accessible from any program type in 8, 16, 32, 64, and 128-bit chunks.
Each of the 18 const spaces of each program type can be independently bound to a range of VM space (with
length divisible by 256) or disabled by the user. Cached like C[].

Todo: figure out the semi-special c16[]/c17[].

• l[]: local space. Read-write and per-thread, accessible from any program type in 8, 16, 32, 64, and 128-bit units.
It’s directly mapped to VM space (although with heavy address mangling), and hence slow. Its per-thread length
can be set to any multiple of 0x10 bytes.

• s[]: shared space. Read-write, per-block, available only from compute programs, accessible in 8, 16, 32, 64, and
128-bit units. Length per block can be selected by user. Has a locked access feature: every warp can have one
locked location in s[], and all other warps will block when trying to access this location. Load with lock and
store with unlock instructions can thus be used to implement atomic operations.

Todo: size granularity?

Todo: other program types?

• g[]: global space. Read-write, accessible from any program type in 8, 16, 32, 64, and 128-bit units. Mostly
mapped to VM space. Supports some atomic operations. Can have two holes in address space: one of them
mapped to s[] space, the other to l[] space, allowing unified addressing for the 3 spaces.

All memory spaces use 32-bit addresses, except g[] which uses 32-bit or 64-bit addresses.

Todo: describe the shader input spaces

Other execution state and resources

There’s also a fair bit of implicit state stored per-warp for control flow:

Todo: describe me

Other resources available to CUDA code are:

• $t0-$t129: up to 130 textures per 3d program type, up to 128 for compute programs.

2.9. PGRAPH: 2d/3d graphics and compute engine 263



nVidia Hardware Documentation, Release git

• $s0-$s17: up to 18 texture samplers per 3d program type, up to 16 for compute programs. Only used if linked
texture samplers are disabled.

• $g0-$g7: up to 8 random-access read-write image surfaces.

• Up to 16 barriers. Per-block and available in compute programs only. A barrier is basically a warp counter: a
barrier can be increased or waited for. When a warp increases a barrier, its value is increased by 1. If a barrier
would be increased to a value equal to a given warp count, it’s set to 0 instead. When a barrier is waited for by
a warp, the warp is blocked until the barrier’s value is equal to 0.

Todo: not true for GK104. Not complete either.

Instruction format

Todo: write me

Instructions

Todo: write me

Notes about scheduling data and dual-issue on GK104+

There should be one “sched instructions” at each 0x40 byte boundary, i.e. one for each group of 7 “normal” instruc-
tions. For each of these 7 instructions, “sched” containts 1 byte of information:

0x00 : no scheduling info, suspend warp for 32 cycles
0x04 : dual-issue the instruction together with the next one **
0x20 | n : suspend warp for n cycles before trying to issue the next instruction

(0 <= n < 0x20)
0x40 : ?
0x80 : ?

** obviously you can't use 0x04 on 2 consecutive instructions

If latency information is inaccurate and you encounter an instruction where its dependencies are not yet satisfied, the
instruction is re-issued each cycle until they are.

EXAMPLE sched 0x28 0x20: inst_issued1/inst_executed = 6/2 sched 0x29 0x20: inst_issued1/inst_executed = 5/2
sched 0x2c 0x20: inst_issued1/inst_executed = 2/2 for mov b32 $r0 c0[0] set $p0 eq u32 $r0 0x1

DUAL ISSUE

General constraints for which instructions can be dual-issued:

• not if same dst

• not if both access different 16-byte ranges inside cX[]

264 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• not if any performs larger than 32 bit memory access

• a = b, b = c is allowed

• g[] access can’t be dual-issued, ld seems to require 2 issues even for b32

• f64 ops seem to count as 3 instruction issues and can’t be dual-issued with anything (GeForce only ?)

SPECIFIC (a X b means a cannot be dual-issued with any of b) mov gpr X mov sreg X mov sreg add int X shift X
shift, mul int, cvt any, ins, popc mul int X mul int, shift, cvt any, ins, popc cvt any X cvt any, shift, mul int, ins, popc
ins X ins, shift, mul int, cvt any, popc popc X popc, shift, mul int, cvt any, ins set any X set any logop X slct X ld l X
ld l, ld s ld s X ld s, ld l

GF100 Fermi 3D objects

Contents

• GF100 Fermi 3D objects

– Introduction

Todo: write me

Introduction

Todo: write me

GF100 Fermi compute objects

Contents

• GF100 Fermi compute objects

– Introduction

Todo: write me

Introduction

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 265



nVidia Hardware Documentation, Release git

2.9.13 GK104 Kepler graphics and compute engine

Contents:

GK104 Kepler 3D objects

Contents

• GK104 Kepler 3D objects

– Introduction

Todo: write me

Introduction

Todo: write me

GK104 Kepler compute objects

Contents

• GK104 Kepler compute objects

– Introduction

Todo: write me

Introduction

Todo: write me

2.9.14 GM107 Maxwell graphics and compute engine

Contents:

266 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

GM107 Maxwell 3D objects

Contents

• GM107 Maxwell 3D objects

– Introduction

Todo: write me

Introduction

Todo: write me

GM107 Maxwell compute objects

Contents

• GM107 Maxwell compute objects

– Introduction

Todo: write me

Introduction

Todo: write me

Maxwell CUDA processors

Contents:

Maxwell CUDA ISA

Contents

• Maxwell CUDA ISA

– Introduction

2.9. PGRAPH: 2d/3d graphics and compute engine 267



nVidia Hardware Documentation, Release git

– Instructions

Introduction

This currently is not a complete reference of known functionality, but where behaviour not obvious from envy-
dis/gm107.c can be documented.

Some notes for reading this documentation:

• An instruction’s docs is split into three sections, the forms text, the description and the behaviour text.

• The first operand is usually the destination.

• The behaviour text uses the notation SRC<n>/DST, while the forms text does not.

• REG<n> is a reference to a register.

• CB<n> is a reference to the contents of a constant buffer.

• U<b>_<n> is a b-bit unsigned immediate value.

• S<b>_<n> is a b-bit signed immediate value.

• Some subtleties may lie in an instruction’s description if putting it in the behaviour text would be too verbose.

• add_with_carry(a, b) returns the sum of a and b using the carry flag, and writes the carry flag.

– It does not use and/or set the carry flag if the appropriate instruction flags are not specified.

• Instruction flags in between [ and ] are optional.

• The order of the flags (even in between [ and ]) is what is expected by envyas.

• The “carry flag” or “condition code” is not a instruction flag, but a register.

• The terms “condition code” and “carry flag” are used interchangeably, depending on which is clearest.

Instructions

The instructions are roughly divided into the following groups:

• Integer Arithmetic Instructions

Integer Arithmetic Instructions

Contents

• Integer Arithmetic Instructions

– Introduction

– Common Flags

* neg

* h0/h1

* x

268 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

* cc

– Addition: iadd3

– Multiply-add: xmad

Introduction

Common Flags

neg

Negate the operand.

h0/h1

An optional flag that can be either h0 or h1. With h1, the high 16 bits of the operand are used. With h0, the low 16
bits are used.

x

Use the condition code.

cc

Set the condition code.

Addition: iadd3

iadd3 [mode,x,cc] REG0 [neg,h0/h1] REG1 [neg,h0/h1] REG2 [neg,h0/h1] REG3
iadd3 [x,cc] REG0 [neg] REG1 [neg] CB2 [neg] REG3
iadd3 [x,cc] REG0 [neg] REG1 [neg] S20_2 [neg] REG3

Adds three integers. The flag mode may optionally be rs or ls.

switch (mode) {
case rs:

/* yes, the intermediate addition creates a 33-bit integer */
uint32_t intermediate = (uint33_t(SRC1) + uint33_t(SRC2)) >> 16;
DST = add_with_carry(intermediate, SRC3);
break;

case ls: DST = add_with_carry(((SRC1 + SRC2) << 16), SRC3); break;
default: DST = add_with_carry((SRC1 + SRC2), SRC3); break;

}

2.9. PGRAPH: 2d/3d graphics and compute engine 269



nVidia Hardware Documentation, Release git

Multiply-add: xmad

xmad [src1_type,src2_type,psl,mrg,cmode,x,cc] REG0 [h1] REG1 [h1] REG2 REG3
xmad [src1_type,src2_type,cmode,x,cc] REG0 [h1] REG1 [h1] REG2 CB3
xmad [src1_type,src2_type,psl,mrg,cmode,x,cc] REG0 [h1] REG1 [h1] CB2 REG3
xmad [src1_type,src2_type,psl,mrg,cmode,x,cc] REG0 [h1] REG1 S20_2 REG3

Multiplies two 16-bit integers and adds a 32 bit integer, along with a bunch of other stuff.

If one of src1_type or src2_type is set, the other must also be set. They can be s16 u16, u16 s16 or s16
s16.

The flag cmode may optionally be clo, chi, csfu or cbcc. The cbcc mode may not be specified for the constant
buffer forms.

uint32_t p_a = SRC1.h1 ? SRC1>>16 : SRC1&0xffff;
uint32_t p_b = SRC2.h1 ? SRC2>>16 : SRC2&0xffff;
if (src1_type == s16) p_a = sign_extend_from_16_to_32(p_a);
if (src2_type == s16) p_b = sign_extend_from_16_to_32(p_b);

uint32_t p = p_a * p_b;
if (psl) p <<= 16;

uint32_t c = SRC3;
switch (cmode) {

case clo: c = c & 0xffff; break;
case chi: c = c >> 16; break;
case cbcc: c += SRC2 << 16; break;
case csfu: {
if (p_a==0 || p_b==0) break;
//v & 0x80000000 -> as_twos_complement(v) < 0
if (p_a & 0x80000000) c -= 65536;
if (p_b & 0x80000000) c -= 65536;
break;

}
}

DST0 = add_with_carry(p, c);
if (mrg) DST0 = (DST0 & 0xffff) | (SRC2<<16);

2.9.15 Pipeline Bundles

Contents

• Pipeline Bundles

– Introduction

– Celsius/Kelvin/Rankine/Curie bundles

– Texture bundles

– Register combiner bundles

– ROP bundles

– RASTER bundles

270 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– Misc bundles

Introduction

By its nature, every stage of the graphics pipeline processes a different kind of data – the format of packets sent
between pipeline units varies greatly. However, there is a kind of data that is supported on most unit interconnections:
pipeline bundles. Bundles are used for data that needs to be passed unchanged through many stages of the pipeline
– most of them directly from the FE. Every unit in the pipeline will only recognize and act on a small subset of the
bundles, and pass through all other bundles.

Bundles have first appeared on Celsius, where they consist of a 6-bit bundle type and 32-bit bundle data. On Kelvin,
the bundle type space has been reorganized and extended to 9 bits. On Tesla, bundle types have been reorganized again
and extended to 16 bits.

Most bundles are so-called “state bundles” – their purpose is to pass pipeline configuration data from the FE to all
interested pipeline units. The pipeline units that need to know a particular piece of configuration data will watch for
the corresponding state bundle, updating its internal configuration registers when such a bundle passes through. In
some cases, units will recognize that no further units in the pipeline need a given state bundle and won’t pass it any
further, but usually state bundles travel unchanged from the FE right until the ROPs.

Before Tesla, state bundles usually contained packed state – many pieces of configuration affecting related units were
collected into a single bundle. The FE thus keeps a copy of the last value sent for every state bundle, which is
visible through MMIO. Whenever a method is processed that changes a piece of configuration, the relevant bits in
the correponding state bundle shadow register are updated, and the entire bundle is resubmitted through the pipeline.
The shadow registers are also used for context-switching – to save pipeline configuration, it’s enough to just dump
the shadow registers. On restore, writing the shadow registers will automatically submit the given bundle down the
pipeline, thus restoring the state of every unit involved.

Since Tesla, state bundles usually correspond directly to class methods, and the FE doesn’t need to keep track of most
of them (though some are tracked in shadow registers for pre-launch state validation purposes). Instead, state bundles
are context-switched by saving and restoring their copies kept on every involved pipeline unit.

Other bundles are used to trigger some kind of action in a pipeline unit that is different from the main mode of operation
(ie. rendering primitives): buffer clears, queries, and so on. These are called trigger bundles.

Celsius/Kelvin/Rankine/Curie bundles

Celsius Kelvin Rankine/Curie Type Used by Name
- 100[20] 000[20] state-ish RASTER? POLYGON_STIPPLE
14 020[8] 020[8] state RC? RC_FACTOR_A
15 028[8] 028[8] state RC? RC_FACTOR_B
10[2] 030[8] 030[8] state RC? RC_IN_ALPHA
16[2] 038[8] 038[8] state RC? RC_OUT_ALPHA
12[2] 040[8] 040[8] state RC? RC_IN_COLOR
18[2] 048[8] 048[8] state RC? RC_OUT_COLOR
- 050 050 state RC? RC_CONFIG
1a 051 051 state RC? RC_FINAL_A
1b 052 052 state RC? RC_FINAL_B
1c 053 053 state ROP? CONFIG_A
1d 054 054 state ROP? STENCIL_A
1e 055 055 state ROP? STENCIL_B
1f 056 056 state ASSM,ROP? CONFIG_B

Continued on next page

2.9. PGRAPH: 2d/3d graphics and compute engine 271



nVidia Hardware Documentation, Release git

Table 12 – continued from previous page
Celsius Kelvin Rankine/Curie Type Used by Name
- - 057 state RASTER? VIEWPORT_OFFSET
- - 058 state SHADER? PS_OFFSET
35* 059* 059 state ZCULL CLIPID_ID
31* 05a* 05a state ZCULL CLIPID_BASE
32* 05b* 05b state ZCULL CLIPID_LIMIT
33* 05c* 05c state ZCULL CLIPID_OFFSET
34* 05d* 05d state ZCULL CLIPID_PITCH
- 05e* 05e state RASTER? LINE_STIPPLE
- 05f? 05f state ROP? RT_ENABLE
23 060 060 state RC? FOG_COLOR
- 061[2] 061[2] state FOG_COEFF
2a 063 063 state ASSM POINT_SIZE
22 064 064 state RASTER? RASTER
- 065 065 state SHADER? TEX_SHADER_CULL_MODE
- 066 066 state SHADER? TEX_SHADER_MISC
- 067 067 state SHADER? TEX_SHADER_OP
- 068 068 state ??? FENCE_OFFSET
- 069 - state TEX? TEX_ZCOMP
- - 069 state
- 06a 06a state UNK1E68
- 06b[2] 06b[2] state RC? RC_FINAL_FACTOR
- 06d[2] 06d[2] state RASTER? CLIP_HV
- 000 06f state ROP? MULTISAMPLE
- 003[3] 070[3] state SHADER? TEX_UNK10
- 006[3] 073[3] state SHADER? TEX_UNK11
- 009[3] 076[3] state SHADER? TEX_UNK13
- 00c[3] 079[3] state SHADER? TEX_UNK12
- 00f[3] 07c[3] state SHADER? TEX_UNK15
- 012[3] 07f[3] state SHADER? TEX_UNK14
20 001 082 state ROP? BLEND
21 002 083 state ROP? BLEND_COLOR
2b[2] 019[2] 084[2] state RASTER? CLEAR_HV
- 01b 086 state RASTER? CLEAR_COLOR
- - 087 state ROP? STENCIL_C
- - 088 state ROP? STENCIL_D
- - 089 state RASTER? CLIP_PLANE_ENABLE
- - 08b[2] state RASTER? VIEWPORT_HV
- - 08d[2] state RASTER? SCISSOR_HV
- 091[8] 091[8] state RASTER? CLIP_RECT_HORIZ
- 099[8] 099[8] state RASTER? CLIP_RECT_VERT
36 0a1 0a1 state ZCULL? Z_CONFIG
37 0a2 0a2 state ZCULL? CLEAR_ZETA
38 - - state ZCULL? UNK3FC
27 0a3 0a3 state RASTER? DEPTH_RANGE_FAR
26 0a4 0a4 state RASTER? DEPTH_RANGE_NEAR
- 0a5[2] 0a5[2] state TEX? DMA_TEX
- 0a7[2] 0a7[2] state IDX DMA_VTX
25 0a9 0a9 state RASTER? POLYGON_OFFSET_UNITS
24 0aa 0aa state RASTER? POLYGON_OFFSET_FACTOR

Continued on next page

272 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 12 – continued from previous page
Celsius Kelvin Rankine/Curie Type Used by Name
- 0ab[3] 0ab[3] state SHADER? TEX_SHADER_CONST_EYE
- 0ae* - state
- - 0af state RANKINE_UNK0A40
2d* 0b0* 0b0 state ZCULL ZCULL_BASE
2e* 0b1* 0b1 state ZCULL ZCULL_LIMIT
2f* 0b2* 0b2 state ZCULL ZCULL_OFFSET
30* 0b3* 0b3 state ZCULL ZCULL_PITCH
- 0b4[4]* 0b4[4] state KELVIN_UNK1DC0
- 0b8* 0b8 state KELVIN_UNK1DBC
- - 0b9 state IDX PRIMITIVE_RESTART_ENABLE
- - 0ba state IDX PRIMITIVE_RESTART_INDEX
- - 0bb state RASTER? TXC_CYLWRAP
- - 0bc[8] state-ish SHADER? PS_PREFETCH_DATA
- - 0c4 state SHADER? PS_CONTROL
- - 0c5 state RASTER? TXC_ENABLE
- - 0c6 state? ???? apparently involved in clears
- - 0c7 state RASTER? WINDOW_OFFSET
00[2] 089[4] 100[10] state TEX? TEX_OFFSET
04[2] 081[4] 110[10] state TEX? TEX_FORMAT
- 06f[4] 120[10] state TEX? TEX_WRAP
06[2] 073[4] 130[10] state TEX? TEX_CONTROL
08[2] 077[4] 140[10] state TEX? TEX_PITCH
0a[2] 07b[2] - state TEX? TEX_UNK238
0e[2] 07d[4] 150[10] state TEX? TEX_FILTER
0c[2] 085[4] 160[10] state TEX? TEX_RECT
- 003[4] 170[10] state TEX? TEX_BORDER_COLOR
02[2] 08d[4] 180[10] state TEX? TEX_PALETTE
28[2] 01c[4] 190[10] state TEX? TEX_COLOR_KEY
- - 1dc trigger? ???? apparently involved in clears
- - 1f7 trigger? UNKA08
- - 1f8 trigger IDX PS_PREFETCH_TRIGGER
3f* 1f9* 1f9 trigger ZCULL INVALIDATE_ZCULL
- 1fb 1fb trigger ? FENCE_WRITE_B
- 1fc 1fc trigger ROP? ZPASS_COUNTER_READ
- 1fd 1fd trigger ROP? ZPASS_COUNTER_RESET
3e* 1fe* 1fe trigger ZCULL CLEAR_CLIPID_TRIGGER
3d* ? ? trigger ZCULL CLEAR_ZCULL_TRIGGER

Texture bundles

Todo: write me

TEX_OFFSET: A simple 32-bit texture offset. Should be aligned to 0x80 bytes.

TEX_FORMAT [NV10:NV20]:

• bit 1: DMA

– 0: A

– 1: B

2.9. PGRAPH: 2d/3d graphics and compute engine 273



nVidia Hardware Documentation, Release git

• bit 2: CUBE_MAP

• bit 3: CELSIUS_MTHD_TEX_UNK258 [NV17:NV20]

• bit 4: ORIGIN_ZOH

– 0: CENTER

– 1: CORNER

• bit 6: ORIGIN_FOH

• bits 7-11: FORMAT

• bits 12-15: MIPS - number of mipmap levels

• bits 16-19: SIZE_S - log2 of texture width, if not RECT

• bits 20-23: SIZE_T - log2 of texture height, if not RECT

• bits 24-26: WRAP_S

• bit 27: WRAP_S_CYL

• bits 28-32: WRAP_T

• bit 31: WRAP_T_CYL

On NV20, WRAP_* have been moved to a new TEX_WRAP bundle.

TEX_FORMAT [NV20:]:

• bit 1: DMA

– 0: A

– 1: B

• bit 2: CUBE_MAP

• bit 3: BORDER_TYPE [NV20:]

– 0: INCLUDED

– 1: CONST

• bit 4: ORIGIN_ZOH [NV20:NV30]

• bit 5: ORIGIN_FOH [NV20:NV30]

• bits 6-7: MODE [NV20:NV30]

– 1: 1D

– 2: 2D [also used for CUBE]

– 3: 3D

• bits 8-14: FORMAT [NV20:NV40]

• bits 8-15: FORMAT [NV40:]

• bits 16-19: MIPS - number of mipmap levels [NV20:]

• bits 20-23: SIZE_S - log2 of texture width, if not RECT

• bits 24-27: SIZE_T - log2 of texture height, if not RECT

• bits 28-31: SIZE_R - log2 of texture depth, if 3D

FORMAT can be one of:

274 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 0x00: ???

• 0x01: ???

• 0x02: ???

• 0x03: ???

• 0x04: ???

• 0x05: ???

• 0x06: ???

• 0x07: ???

• 0x08: ??? [:NV30]

• 0x09: ??? [:NV30]

• 0x0a: ??? [:NV30]

• 0x0b: ???

• 0x0c: ???_DXT

• 0x0e: ???_DXT

• 0x0f: ???_DXT

• 0x10: ???_RECT

• 0x11: ???_RECT

• 0x12: ???_RECT

• 0x13: ???_RECT

• 0x14: ???_RECT

• 0x15: ???_RECT

• 0x16: ???_RECT

• 0x17: ???_RECT

• 0x18: ???_RECT

• 0x19: ???_RECT [NV17:]

• 0x1a: ???_RECT [NV17:]

• 0x1b: ???_RECT [NV17:]

• 0x1c: ???_RECT [NV17:]

• 0x19: ??? [NV20:]

• 0x1a: ??? [NV20:]

• 0x1b: ???_RECT [NV20:]

• 0x1c: ???_RECT [NV20:]

• 0x1d: ???_RECT [NV20:]

• 0x1e: ???_RECT [NV20:]

• 0x1f: ???_RECT [NV20:]

• 0x20: ???_RECT [NV20:]

2.9. PGRAPH: 2d/3d graphics and compute engine 275



nVidia Hardware Documentation, Release git

• 0x24: ???_RECT_DXT [NV20:]

• 0x25: ???_RECT_DXT [NV20:]

• 0x26: ???_RECT [NV20:]

• 0x27: ??? [NV20:]

• 0x28: ??? [NV20:]

• 0x29: ??? [NV20:]

• 0x2a: ???_ZCOMP [NV20:]

• 0x2b: ???_ZCOMP [NV20:]

• 0x2c: ???_ZCOMP [NV20:]

• 0x2d: ???_ZCOMP [NV20:]

• 0x2e: ???_RECT_ZCOMP [NV20:]

• 0x2f: ???_RECT_ZCOMP [NV20:]

• 0x30: ???_RECT_ZCOMP [NV20:]

• 0x31: ???_RECT_ZCOMP [NV20:]

• 0x32: ??? [NV20:]

• 0x33: ??? [NV20:]

• 0x34: ???_RECT_DXT [NV20:]

• 0x35: ???_RECT [NV20:]

• 0x36: ???_RECT [NV20:]

• 0x37: ???_RECT [NV20:]

• 0x38: ??? [NV20:]

• 0x39: ??? [NV20:]

• 0x3a: ??? [NV20:]

• 0x3b: ??? [NV20:]

• 0x3c: ??? [NV20:]

• 0x3d: ???_RECT [NV20:]

• 0x3e: ???_RECT [NV20:]

• 0x3f: ???_RECT [NV20:]

• 0x40: ???_RECT [NV20:]

• 0x41: ???_RECT [NV20:]

• 0x42: ??? [NV25:]

• 0x43: ???_RECT [NV25:]

• 0x44: ??? [NV25:]

• 0x45: ??? [NV25:]

• 0x46: ???_RECT [NV25:]

• 0x47: ???_RECT [NV25:]

276 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 0x48: ???_RECT [NV25:]

• 0x49: ??? [NV25:]

• 0x4a: ???_RECT [NV30:]

• 0x4b: ???_RECT [NV30:]

• 0x4c: ???_RECT [NV30:]

• 0x4d: ???_RECT [NV30:]

• 0x4e: ??? [NV30:]

TEX_WRAP [NV20:]:

• bits 0-2: WRAP_S

• bit 4: WRAP_S_CYL [NV20:NV30]

• bits 4-7: ANISO_MIP_FILTER_OPTIMIZATION? [NV30:]

• bits 8-10: WRAP_T

• bit 12: WRAP_T_CYL [NV20:NV30]

• bit 12: EXPAND_NORMAL [NV30:]

• bits 13-14: RANKINE_TEX_WRAP_UNK24 [NV30:]

– 0: ???

– 1: ???

– 2: ???

• bits 16-18: WRAP_R

• bits 19-23: FILTER_OPT_TRILINEAR [NV30:]

• bits 24-27: GAMMA_DECREASE_FILTER? [NV30:]

• bits 28-31: ZCOMP [NV30:] – on NV20, this was a separate bundle instead.

• bit 20: WRAP_R_CYL [NV20:NV30]

• bit 24: WRAP_Q_CYL [NV20:NV30]

On Rankine, WRAP_*_CYL have been moved to a new TXC_CYLWRAP bundle.

WRAP can be one of:

• 1: REPEAT

• 2: MIRRORED_REPEAT

• 3: CLAMP_TO_EDGE

• 4: CLAMP_TO_BORDER

• 5: CLAMP

TEX_CONTROL:

• bit 0: COLOR_KEY_ENABLE?

• bits 1-3: ???

• bits 4-5: ANISOTROPY

• bits 6-17: MAX_LOD, in 4.8 fixed-point format

2.9. PGRAPH: 2d/3d graphics and compute engine 277



nVidia Hardware Documentation, Release git

• bits 18-29: MIN_LOD, in 4.8 fixed-point format

• bit 30: ENABLE - if set, this texture is active

• bit 31: ??? [NV40:]

TEX_PITCH:

• bits 0-1: S1_W [NV30:]

– 0: W

– 1: Z

– 2: Y

– 3: X

• bits 2-3: S1_Z [NV30:]

• bits 4-5: S1_Y [NV30:]

• bits 6-7: S1_X [NV30:]

• bits 8-9: S0_W [NV30:]

• bits 10-11: S0_Z [NV30:]

• bits 12-13: S0_Y [NV30:]

• bits 14-15: S0_X [NV30:]

• bits 16-31: PITCH

TEX_UNK238 (on Kelvin, only applies for first 2 textures) [:NV30]:

• bits 0-31: ???

TEX_FILTER:

• bits 0-12: LOD_BIAS, signed number in 5.8 fixed-point format

• bits 13-15: TEX_FILTER_UNK13 [NV20:]

• 0: UNK0

• 1: UNK1

• 2: UNK2

• 3: UNK3 [NV25:]

• bits 16-21: MINIFY [NV20:]

• bits 24-27: MAGNIFY [NV20:]

• bit 28: SIGNED_B [NV20:]

• bit 29: SIGNED_G [NV20:]

• bit 30: SIGNED_R [NV20:]

• bit 31: SIGNED_A [NV20:]

• bits 24-26: MINIFY [:NV20]

• bits 28-30: MAGNIFY [:NV20]

MINIFY can be one of:

• 1: NEAREST

278 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 2: LINEAR

• 3: NEAREST_MIPMAP_NEAREST

• 4: LINEAR_MIPMAP_NEAREST

• 5: NEAREST_MIPMAP_LINEAR

• 6: LINEAR_MIPMAP_LINEAR

• 7: ??? [NV20:]

And MAGNIFY can be:

• 1: NEAREST

• 2: LINEAR

• 4: ??? [NV20:]

TEX_RECT:

• bits 0-10: WIDTH [:NV20]

• bits 0-12: WIDTH [NV20:]

• btis 16-26: HEIGHT [:NV20]

• btis 16-28: HEIGHT [NV20:]

TEX_PALETTE:

• bit 0: DMA

– 0: A

– 1: B

• bits 2-3: ??? [NV20:]

• bits 6-31: OFFSET >> 6

TEX_ZCOMP [NV20:NV25]:

• bits 0-2: MODE – common for all textures, same values as ALPHA_FUNC

TEX_ZCOMP [NV25:NV30]:

• bits 0-2: TEX0_MODE

• bits 3-5: TEX1_MODE

• bits 6-8: TEX2_MODE

• bits 9-11: TEX3_MODE

On NV30, this bundle is gone and ZCOMP mode is in TEX_WRAP instead.

Register combiner bundles

Todo: write me

• RC_FACTOR_A

• RC_FACTOR_B

• RC_IN_ALPHA

2.9. PGRAPH: 2d/3d graphics and compute engine 279



nVidia Hardware Documentation, Release git

• RC_OUT_ALPHA

• RC_IN_COLOR

• RC_OUT_COLOR

• RC_CONFIG

• RC_FINAL_A

• RC_FINAL_B

• FOG_COLOR

• RC_FINAL_FACTOR

ROP bundles

Note: CONFIG_A, STENCIL_A and STENCIL_B predate bundles – they first appeared on NV4 as plain MMIO
registers. These early versions are described here as well.

CONFIG_A:

• bits 0-7: ALPHA_REF [:NV40] – moved to its own bundle on NV40

• bits 8-11: ALPHA_FUNC

On NV4:NV10, the values are:

– 1: NEVER

– 2: LESS

– 3: EQUAL

– 4: LEQUAL

– 5: GREATER

– 6: NOTEQUAL

– 7: GEQUAL

– 8: ALWAYS

On NV10 and up, they are:

– 0: NEVER

– 1: LESS

– 2: EQUAL

– 3: LEQUAL

– 4: GREATER

– 5: NOTEQUAL

– 6: GEQUAL

– 7: ALWAYS

• bit 12: ALPHA_FUNC_ENABLE

• bit 14: DEPTH_TEST_ENABLE

• bits 16-19: DEPTH_FUNC – has same values as ALPHA_FUNC

280 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bits 20-21: CULL_FACE [NV4:NV10]

– 1: NONE

– 2: FRONT

– 3: BACK

Since there is no FRONT_FACE setting on NV4, FRONT is always CW. This was moved to RASTER bundle
on Celsius.

• bit 22: DITHER_ENABLE

• bit 23: DEPTH_PERSPECTIVE_ENABLE [:NV40]

• bit 24: DEPTH_WRITE_ENABLE

• bit 25: STENCIL_WRITE_ENABLE [:NV40]

• bit 26: COLOR_MASK_A [:NV40] – moved to its own bundle on NV40, along with the following 3 bits.

• bit 27: COLOR_MASK_R [:NV40]

• bit 28: COLOR_MASK_G [:NV40]

• bit 29: COLOR_MASK_B [:NV40]

• bits 30-21: Z_FORMAT [NV4:NV10]

– 1: FIXED

– 2: FLOAT

This was moved to RASTER bundle on Celsius.

• bits 30-31: KELVIN_CONFIG_UNK28 [NV20:NV25]

– 0: ???

– 1: ???

– 2: ???

This was moved to CONFIG_B on NV25.

• bit 31: CELSIUS_UNK3F8 [NV17:NV20]

• bit 31: ??? [NV34, NV40:]

STENCIL_A:

• bit 0: STENCIL_ENABLE

• bit 1: STENCIL_BACK_ENABLE [NV30:]

• bits 4-7: STENCIL_FUNC – has same values as ALPHA_FUNC

• bits 8-15: STENCIL_FUNC_REF

• bits 16-23: STENCIL_FUNC_MASK

• bits 24-31: STENCIL_MASK

STENCIL_B:

• bits 0-3: STENCIL_OP_FAIL

– 1: KEEP

– 2: ZERO

2.9. PGRAPH: 2d/3d graphics and compute engine 281



nVidia Hardware Documentation, Release git

– 3: REPLACE

– 4: INCR

– 5: DECR

– 6: INVERT

– 7: INCR_WRAP

– 8: DECR_WRAP

• bits 4-7: STENCIL_OP_ZFAIL

• bits 8-11: STENCIL_OP_ZPASS

• bits 12-15: ??? [NV34, NV40:]

STENCIL_C [NV30:]:

• bits 0-7: STENCIL_BACK_MASK

• bits 8-11: STENCIL_BACK_OP_ZPASS

• bits 12-15: STENCIL_BACK_OP_ZFAIL

• bits 16-19: STENCIL_BACK_OP_FAIL

STENCIL_D [NV30:]:

• bits 0-7: STENCIL_BACK_FUNC_REF

• bits 8-15: STENCIL_BACK_FUNC_MASK

• bits 16-19: STENCIL_BACK_FUNC

CONFIG_B:

• bit 0: PROVOKING_VERTEX

– 0: LAST

– 1: FIRST

• bit 1: POINT_SPRITE_ENABLE [NV25:]

Todo: why is POINT_SMOOTH_ENABLE aliased here?

• bit 2: CELSIUS_CONFIG_UNK24

• bits 3-4: POINT_SPRITE_R_MODE [NV25:]

– 0: ZERO

– 1: R

– 2: S

• bit 4: ??? [NV10:NV20] – no method appears to affect this bit

• bit 5: SPECULAR_ENABLE – this is also stored in XF_MODE.

• bit 6: TEXTURE_PERSPECTIVE_ENABLE

• bit 7: SHADE_MODE

– 0: FLAT

– 1: SMOOTH

282 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bit 8: FOG_ENABLE – this is also stored in XF_MODE.

• bit 9: POINT_PARAMS_ENABLE – this is also stored in XF_MODE.

• bits 10-15: ??? [NV40:]

• bits 10-13: CELSIUS_CONFIG_UNK8 [NV10:NV30]

– 0: ???

– 1: ???

• bits 14-15: CELSIUS_CONFIG_UNK28 [NV17:NV20]

• bits 16-18: FOG_MODE [NV20:]

– 0: LINEAR

– 1: EXP

– 3: EXP2

– 4: UNK_0804

– 5: UNK_0802

– 7: UNK_0803

The low bit of this is also stored in XF_MODE. On Celsius, fog mode was stored in FE3D_MISC instead.

• bit 19: ??? [NV40:]

• bit 20: ZPASS_COUNTER_ENABLE [NV20:]

• bit 21: ??? [NV40:]

• bits 24-27: POINT_SPRITE_COORD_REPLACE [NV25:]

• bits 28-30: KELVIN_CONFIG_UNK28 [NV25:]

– 0: ???

– 1: ???

– 2: ???

– 3: ???

This was moved from CONFIG_A.

• bit 31: KELVIN_UNKA0C [NV25:]

BLEND:

• bits 0-2: BLEND_EQUATION

– 0: SUBTRACT

– 1: REVERSE_SUBTRACT

– 2: ADD

– 3: MIN

– 4: MAX

– 5: UNKF005 [NV20:]

– 6: UNKF006 [NV20:]

– 7: UNKF007 [NV25:]

2.9. PGRAPH: 2d/3d graphics and compute engine 283



nVidia Hardware Documentation, Release git

• bit 3: BLEND_FUNC_ENABLE [:NV40]

• bits 4-7: BLEND_FACTOR_SRC_0

– 0x0: ZERO

– 0x1: ONE

– 0x2: SRC_COLOR

– 0x3: ONE_MINUS_SRC_COLOR

– 0x4: SRC_ALPHA

– 0x5: ONE_MINUS_SRC_ALPHA

– 0x6: DST_ALPHA

– 0x7: ONE_MINUS_DST_ALPHA

– 0x8: DST_COLOR

– 0x9: ONE_MINUS_DST_COLOR

– 0xa: SRC_ALPHA_SATURATE

– 0xc: CONSTANT_COLOR

– 0xd: ONE_MINUS_CONSTANT_COLOR

– 0xe: CONSTANT_ALPHA

– 0xf: ONE_MINUS_CONSTANT_ALPHA

• bits 8-11: BLEND_FACTOR_DST_0

• bits 12-15: COLOR_LOGIC_OP_OP [NV15:]

– 0x0: CLEAR

– 0x1: AND

– 0x2: AND_REVERSE

– 0x3: COPY

– 0x4: AND_INVERSE

– 0x5: NOOP

– 0x6: XOR

– 0x7: OR

– 0x8: NOR

– 0x9: EQUIV

– 0xa: INVERT

– 0xb: OR_REVERSE

– 0xc: COPY_INVERTED

– 0xd: OR_INVERTED

– 0xe: NAND

– 0xf: SET

• bit 16: COLOR_LOGIC_OP_ENABLE [NV15:]

284 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bits 17-19: BLEND_EQUATION_1 [NV40:]

• bits 20-23: BLEND_FACTOR_SRC_1 [NV30:]

• bits 24-27: BLEND_FACTOR_DST_1 [NV30:]

• bit 28: BLEND_FUNC_ENABLE [NV40:]

• bits 29-31: ??? [NV40:]

BLEND_COLOR:

• bits 0-7: B

• bits 8-15: G

• bits 16-23: R

• bits 24-31: A

MULTISAMPLE:

• bit 0: MULTISAMPLE_ENABLE

• bit 4: ALPHA_TO_COVERAGE

• bit 8: ALPHA_TO_ONE

• bits 16-31: SAMPLE_COVERAGE

RASTER bundles

RASTER:

• bits 0-1: POLYGON_MODE_FRONT

– 0: FILL

– 1: POINT

– 2: LINE

• bits 2-3: POLYGON_MODE_BACK

• bit 4: POLYGON_STIPPLE_ENABLE [NV20:NV25]

On NV25, this was moved to LINE_STIPPLE bundle.

• bit 4: ??? [NV25:NV30]

• bit 4: RANKINE_UNK1450_UNK31 [NV30:NV40]

• bit 5: DEPTH_CLAMP_UNK8 [NV20:]

• bit 6: POLYGON_OFFSET_POINT_ENABLE

• bit 7: POLYGON_OFFSET_LINE_ENABLE

• bit 8: POLYGON_OFFSET_FILL_ENABLE

• bit 9: POINT_SMOOTH_ENABLE [:NV30]

• bit 10: LINE_SMOOTH_ENABLE

• bit 11: POLYGON_SMOOTH_ENABLE

• bits 12-20: LINE_WIDTH

• bits 21-22: CULL_FACE

2.9. PGRAPH: 2d/3d graphics and compute engine 285



nVidia Hardware Documentation, Release git

– 1: FRONT

– 2: BACK

– 3: FRONT_AND_BACK

• bit 23: FRONT_FACE

– 0: CW

– 1: CCW

• bit 24: LIGHT_TWO_SIDE_ENABLE [NV20:] – also stored in XF_MODE

• bits 25-27: CELSIUS_MTHD_UNK3F0 [NV20:]

– 0: UNK0

– 1: UNK1

– 2: UNK2

– 3: UNK3

– 4: UNK4

– 7: UNK0F

• bits 26-27: CELSIUS_MTHD_UNK3F0 [NV10:NV20]

– 0: UNK0

– 1: UNK1

– 2: UNK2

– 3: UNK3

• bit 28: CULL_FACE_ENABLE

• bit 29: Z_FORMAT

– 0: FIXED

– 1: FLOAT

• bits 30-31: CELSIUS_MTHD_UNK3F8 [NV10:NV20]

• bit 30: DEPTH_CLAMP_UNK0 [NV20:]

• bit 31: CLIP_RECT_MODE [NV20:]

– 0: ???

– 1: ???

Before NV20, this was stored in FE3D_MISC.

LINE_STIPPLE:

• bit 0: POLYGON_STIPPLE_ENABLE

• bit 1: LINE_STIPPLE_ENABLE

• bits 8-15: LINE_STIPPLE_FACTOR

• bits 16-31: LINE_STIPPLE_PATTERN

286 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Misc bundles

POINT_SIZE:

On NV10:NV25, this is a 9-bit fixed-point number – 6 integer bits and 3 fractional bits. On NV25:, it is a
float32.

2.9.16 XF: The vertex transform & lighting engine

Contents:

XF overview

Contents

• XF overview

– Introduction

– Structure and operation

– IDX2XF: the command interface

* IDX command wrapping

– VAB: vertex assembly buffer

* Celsius

* Kelvin and up

* The passthrough slot

* RDI access

* VAB command

Introduction

XF is a PGRAPH unit responsible for processing vertices before they are sent to the rasterizer. It first appeared on
NV10 – before that, there was no transform engine, and the user supplied raw vertex data directly to the rasterizer.
On G80, it has been replaced with unified shader architecture. Curiously, it has also been transplanted for use on
pre-Kepler Tegra GPUs.

The following versions of XF exist:

1. NV10: the original incarnation of XF. It is accompanied by the lighting engine, LT. Together, they perform
fixed-function transform & lighting on incoming vertices. Supported features:

• computes eye-space, clip-space and window-space position

• can transform via a weighted combination of two matrices

• supports several texgen modes:

– eye linear

– object linear

2.9. PGRAPH: 2d/3d graphics and compute engine 287



nVidia Hardware Documentation, Release git

– sphere map

– reflection map

– normal map

– emboss map

• performs texture matrix multiplication

• performs lighting calculations, making final primary and secondary colors out of position, normal, and
input colors. Infinite, local, and spot lights are supported.

• computes or passes the fog coordinate, with radial or planar distance calculations

• computes the point size based on distance

• all of the above can be disabled in favor of a simple bypass mode

2. NV15: Bugfix version of NV10.

3. NV20: Introduces support for programmability, aka vertex shaders. If enabled, fixed function processing is
disabled, and XF instead performs operations according to a user-provided program. Other features include:

• 16 input attributes that can be arbitrarily assigned when in programmable mode

• two-sided lighting is supported – all lighting calculations can be performed twice, with different parame-
ters, outputing two sets of primary and secondary colors.

• weighting supports up to 4 matrices and 4 weights

• 4 sets of output texture coordinates are supported, and each set now includes 4 components.

• more flexibility in light material specification (every material property can be independently assigned to
primary or secondary color)

4. NV25: Includes two XF units on GPU, for double processing power. Also has some minor changes in context
layout.

5. NV30:

• fixed-function viewport transform can now be performed in addition to programmable processing, avoding
the need to include it in program manually

• some fixed-function geometric calculations have been moved from LT to XF, for greater precision

• a new Rankine ISA (a proper superset of Kelvin ISA), featuring:

– condition code register and conditional execution

– branching and subroutine calls

– two address registers, which are now 4-component vectors

– transcendential functions with reasonable precision

– some minor new instructions

– “take absolute value” modifier on all sources

– bumped code and const memory size

• Kelvin ISA is supported as a compatibility mode, by converting instructions to the new format as they are
uploaded

• 8 sets of output texture coordinates are supported

• changed ordering of input and output attributes

288 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• up to 6 clip distances can be output by user program, or computed by fixed-function hardware

• bypass mode has been removed (but can be trivally emulated by a simple vertex program)

• to prevent infinite loops, a configurable timeout was added

6. NV34: Minor revision, removing support for alternate light attenuation mode

7. NV40:

• LT is no longer present, and all fixed-function work is now performed on the main XF engine

• Kelvin ISA is no longer supported

• Rankine ISA is supported as a compatibility mode

• a new Curie ISA is introduced, which is not a proper superset of the previous two:

– limitted texture lookup capability (only unfiltered linear 2D FP32 textures are supported)

– second condition code register

– address registers can be pushed/popped on the stack

– indirect addressing for inputs and outputs

– saturation modifier on outputs

• programs are stored internally in a special native ISA which is a proper superset of both Rankine and Curie
ISAs

• flexible mapping of output array to atttributes

• XF state is now specified by pipeline bundles, like most other pipeline state – XFMODE is gone

• individual XF units are now called VPEs are are more independent of each other

8. NV41: Rankine compatibility has been removed:

• the fixed-function mode is completely gone

• Rankine ISA is no longer supported

• Curie ISA is now used directly as the native ISA

9. NV43: Shortened XFCTX from 0x220 words to 0x1d4 words.

10. NV44: unknown changes from NV43.

11. Tegra: derived from Curie, but not much known.

Structure and operation

The XF complex is in the main pipeline after the IDX complex (for Kelvin, this means after the FD unit) and before
the VTX complex (aka the post-transform cache). It is made of the following parts:

1. IDX2XF: Input interface from the IDX complex (for Kelvin, from the FD unit). XF receives all sorts of com-
mands here.

2. XF2VTX: Output interface to the VTX complex. XF outputs processed vertices and passthrough data here. On
Celsius, also used to implement state readback for context switching. Note that no commands are emitted on
this interface – VTX instead takes commands directly from the IDX complex by a side FIFO (IDX2VTX) that
bypasses the XF complex. Data will only be consumed from here by VTX when it’s told what to expect via the
IDX2VTX interface.

2.9. PGRAPH: 2d/3d graphics and compute engine 289



nVidia Hardware Documentation, Release git

3. VAB: vertex attribute buffer. Serves as assembly space for data received on the IDX2XF interface. Has one
128-bit slot for every input vertex attribute, plus one extra “passthrough” slot for assembling state updates. Data
goes from here to IBUF or XFPR.

4. XFMODE [NV10:NV40] or bundle [NV40:] storage: Remembers the control bits for the whole XF complex.

5. One or more VPEs, which do the main load of vertex processing. Each one has:

1. XFPR [NV20:]: RAM containing user programs. Before NV40, shared between all VPEs.

2. XFCTX: RAM containing parameters for fixed-function processing and user programs. Made of 4-element
vectors of 32-bit floats. Before NV40, shared between all VPEs.

3. Several copies of input/output buffers (6 copies on NV10:NV40, ??? on NV40:), one for each inflight
vertex:

1. IBUF: contains input attributes of the vertex

2. TBUF: contains output attributes of the vertex (at least the subset computed before LT).

3. WBUF [NV10:NV30]: contains outputs to be consumed by the LT unit for lighting calculations, made
of 3-element vectors of 22-bit floating-point numbers.

4. VBUF [NV10:NV30]: a second buffer like WBUF.

5. UBUF [NV30:NV40]: like WBUF/VBUF on earlier GPUs, but now contains 5-element vectors.

6. STPOS [NV20:NV40]: a shadow copy of the first output attribute.

7. SIPOS [NV25:NV40?]: a shadow copy of the first input attribute ???

4. XFREG: Temporary register file.

5. Control unit – contains PC, condition code, address registers, call stack, and fixed-function program se-
quencer. Can control processing of up to 3 vertices at a time, in SMT fashion.

6. MLU: the multiplication execution unit. Can do 4 32-bit floating-point multiplies every cycle.

7. ALU: the addition execution unit. Can do 3 [NV10:NV20] or 4 [NV20:] 32-bit 2-input floating-point
sums, or a single 4-input sum every cycle. Can also do comparisons and other simple operations.

8. ILU: the inverse execution unit. Can do one approximate reciprocal or reciprocal square root per two
cycles. On NV20:, can also do low-precision exponential and logarithm approximations.

9. MFU [NV30:]: the multi-function unit. Can compute EX2, LG2, SIN, COS with reasonable precision.

6. The LT unit [NV10:NV40], computing final vertex colors in fixed-function mode (as well as point size and fog
before NV30). Uses a lower-precision 22-bit floating point format. Made of:

1. LTCTX: RAM containing parameters for fixed-function processing (like XFCTX). Made of 3-element
vectors of 22-bit floats. On NV25:NV30, split into two RAMs: LTCTX_A and LTCTX_B.

2. Control unit – steps through the LT microcode, processing up to 3 vertices at a time in SMT fashion.

3. MLU: can perform 3 float multiplications per cycle.

4. ALU: can perform 3 float additions or one 3-input sum per cycle.

5. MAC0 and MAC2: perform scalar float multiply-accumulate operations. On NV30:, MAC0 can only do
accumulate (no multiplication).

6. LTC0 (for MAC0) [NV10:NV30] and LTC2 (for MAC2): RAMs containing multiplication factors for the
MACs. Made of 22-bit floats.

7. LTC1 (for MAC0) and LTC3 (for MAC2): RAMs containing additive factors for the MACs. Made of
22-bit floats.

290 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

8. ILU: performs very approximate reciprocal, reciprocal square, and some misc operations.

9. LTREG: the temporary register file.

The VAB, XFCTX, XFPR, LTCTX, and LTC* RAMs need to be context-switched. On Celsius, this is done via the
readback functionality. On Kelvin and Rankine, they can be accessed via the RDI interface (done automatically by the
hardware context switch). On Curie, they can be context-switched by the context microcode.

All input/output and computation is performed on 32-bit or 22-bit floats – vertex attributes read from different formats
are converted by IDX, and output attributes that require different formats are converted by VTX. The 32-bit floats are
in IEEE single-precision format with some minor modifications:

• denormals are not supported (and are considered equal to 0).

• there is no distinction between QNaNs and SNaNs (since there are no traps in XF, all NaNs are effectively quiet).
Whenever a NaN is created, the value 0x7fffffff is used.

The 22-bit float format is used by computations in the LT unit, and works like the 32-bit float format with the low 10
bits cut off (and assumed to be 0).

Todo: NV25, NV30 have RAMs unaccounted for.

Todo: Curie still has switchable RAMs unaccounted for.

IDX2XF: the command interface

IDX2XF is the input interface to XF. IDX (or FD on Kelvin) can perform the following operations here:

• write command: contains a 4-bit command type, an address (10 to 14-bit, depending on GPU) and a 32-bit or
64-bit payload. Depending on the address, can update a piece of XF state, request a data passthru to XF2VTX
interface, or start a vertex state program.

• read command [Celsius only]: contains a command type and an address, like a write command. Requests a
readback of a piece of state to the XF2VTX interface. Used to implement context switching (badly), not used
otherwise.

• vertex trigger: starts processing a vertex, which will be output on the XF2VTX interface when fully processed.

The addresses for commands are usually constructed as follows:

• bits 0-1: always 0 (ie. all addresses are word-aligned).

• bits 2-3: select a 32-bit word in a 128-bit vector. 0 is the highest word (or the X component), while 3 is the
lowest word (or the W component).

• bits 4-9 [NV10:NV20], 4-11 [NV20:NV30], 4-12 [NV30:NV40], or 4-13 [NV40:]: select the 128-bit vector in
a space.

Read commands always target a 32-bit word, which will be read and delivered to XF2VTX interface. If the address is
not valid for reading, XF will ignore the read command and deliver nothing to VTX. This will cause VTX to hang, in
turn hanging FE3D, the PCI bus, the CPU, and the whole machine. Don’t do that.

Write commands can target a 32-bit word, or an aligned pair of 32-bit words. Since XF internal paths are mostly
128-bit wide, several write commands are usually needed to perform a single operation. Thus, for most commands,
writing to words 0-2 merely store the payload in the VAB passthrough slot, while writing to word 3 completes the
128-bit vector in the VAB and send it downstream.

2.9. PGRAPH: 2d/3d graphics and compute engine 291



nVidia Hardware Documentation, Release git

Note that XF is, in many ways, a big-endian creature (though not consistently so). Since most of the GPU follows
little-endian design, this leads to things looking reversed in many places (in particular, when RDI is accessed). You
have been warned. . .

The following command types exist:

• 0x0: NOP. Writes store the payload in VAB passthrough slot and do nothing. Not readable.

• 0x1: VAB. Writes or reads VAB words. Used by IDX to upload input vertex attributes.

• 0x2: XFPR [NV20:]. Writes program instructions to the XFPR RAM (possibly with ISA encoding conversion),
assembling them in VAB.

• 0x4: PARAM [NV20:NV41?]. Writes the VAB passthrough slot, does nothing else. Used together with RUN
command to pass a parameter to a vertex state program.

• 0x5: PASSTHRU. Passes its payload through VAB, IBUF and TBUF to the XF2VTX interface. This command
is used by IDX along with the BUNDLE command on the IDX2VTX interface to send bundles to the VTX
complex. Using it without the accompanying IDX2VTX command will desync and hang VTX, so don’t do that.
Not readable.

• 0x6: RUN [NV20:NV41?]. Starts execution of a vertex state program, copying its parameter from the
passthrough VAB slot to the IBUF. Meant to be used with the PARAM command. The low bits of the pay-
load contain starting PC of the vertex state program.

• 0x7: MODE [NV10:NV40]. Assembles a vector and sends it to the internal XFMODE storage. Not readable.

• 0x8: XTRA [NV30:NV41]. Assembles a vector and sends it to the extra XFPR RAM slots.

• 0x9: XFCTX. Assembles a vector and sends it through IBUF to XFCTX. Readable.

• 0xa: LTCTX. Assembles a vector and sends it through IBUF and WBUF/VBUF to LTCTX. Readable.

• 0xb: LTC0 [NV10:NV30]. Goes through IBUF and WBUF/VBUF to LTC0. Readable.

• 0xc: LTC1. Goes through IBUF and WBUF/VBUF/UBUF to LTC1. Readable.

• 0xd: LTC2. Likewise.

• 0xe: LTC3. Likewise.

• 0xf: SYNC. Performs a full XF barrier – waits for all pending vertices to be processed before processing any
more commands. Not readable.

XF commands will be emitted by IDX in the following circumstances:

• whenever vertex data is submitted by any means (through vertex buffers, inline data, or immediate mode), the
corresponding VAB write command will be sent to XF.

• whenever a bundle command is processed by IDX, the bundle will be submitted as payload in the PASSTHRU
command, and a corresponding bundle token will be emitted on IDX2VTX interface.

• a “submit XF command” IDX command is received on the FE2IDX interface, either from method execution or
from the PIPE MMIO register.

Todo: None of the above is certain on Curie.

IDX command wrapping

The FE can submit commands to XF by wrapping them in IDX commands and sending them on the FE2IDX interface.
When IDX sees such a wrapped command, it will be unwrap it at the last stage of processing and emit it on the IDX2XF

292 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

interface. This functionality is used by FE when executing methods that update XF context, and can be used by the
driver directly through the PIPE MMIO register as well.

On Celsius, the wrapped command addresses are:

• bits 0-9: XF address

• bits 10-13: XF command type

• bit 14: set to 1 (identifies wrapped XF command).

On Kelvin:

• bits 0-11: XF address

• bits 12-15: XF command type

• bit 16: set to 1.

On Rankine:

• bits 0-12: XF address

• bits 13-16: XF command type

• bit 17: set to 1.

On Curie:

• bits 0-13: XF address

• bits 14-17: XF command type

• target code: set to 3?

Todo: Figure out how this works on Curie.

VAB: vertex assembly buffer

VAB is the front gate to the XF complex. Its purpose is twofold:

1. Keeping track of the last submitted value of every input vertex attribute, whether it comes from immediate data,
inline data, or vertex buffer.

2. Assembling 32-bit or 64-bit input words into 128-bit vectors [NV10:NV40].

Whenever IDX signals that a vertex is to be processed, the contents of the VAB (except for the passthrough slot) are
copied to an IBUF slot for processing, and data for the next vertex can be loaded to the VAB while XF is working on
the previous one(s) in IBUF.

Celsius

On Celsius, VAB is made of 8 128-bit vectors, which are in turn made of 4 32-bit words. The first 7 vectors correspond
more or less to the first 7 vertex attributes recognized by IDX, while the last one is special:

• 0: OPOS, the object position.

• 1: COL0, the primary color. The X, Y, Z, W components correspond to R, G, B, A components of the color.

• 2: COL1F, the secondary color and fog coordinate. The first three components (X, Y, Z) correspond to R, G, B
components of the secondary color, while component W corresponds to the fog factor.

2.9. PGRAPH: 2d/3d graphics and compute engine 293



nVidia Hardware Documentation, Release git

• 3: TXC0, the texture 0 coordinates.

• 4: TXC1, the texture 1 coordinates.

• 5: NRML, the normal. Component W is effectively unused.

• 6: WGHT, the weight (used for transform matrix interpolation), stored in component X. Components Y, Z, W
are effectively unused.

• 7: PASS, the passthrough slot, used to assemble full vectors for commands other than VAB.

Kelvin and up

On Kelvin and Rankine, VAB is made of 17 128-bit vectors:

• 0-15: Generic input vertex attributes, corresponding directly to the ones used by IDX.

• 16: PASS, the passthrough slot.

On Curie, VAB is made of 16 128-bit vectors, corresponding directly to the input vertex attributes (there is no
passthrough slot).

If the fixed function transformation is used on Kelvin, the input attributes have the following interpretation:

• 0: OPOS.

• 1: WGHT, a vector of up to 4 weights used for transform matrix interpolation.

• 2: NRML (only X, Y, Z are used).

• 3: COL0.

• 4: COL1 (only X, Y, Z are used).

• 5: FOGC, the fog coordinate (only X is used).

• 6-8: not used.

• 9-12: TXC0-TXC3, the texture coordinates.

• 13-15: not used.

On Rankine and Curie, the interpretation for fixed-function is:

• 0: OPOS.

• 1: WGHT.

• 2: NRML.

• 3: COL0.

• 4: COL1.

• 5: FOGC.

• 6-7: not used.

• 8-15: TXC0-TXC7.

The passthrough slot

The passthrough slot is used by commands that upload data into XF (other than VAB commands) to assemble the
full 128-bit value from 32-bit or 64-bit pieces. All write commands of the relevant types write their payload to the
corresponding 32-bit component (or component pair) of the passthrough slot, then (on the final component, or for

294 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

some commands, on any component) send the value of the whole passthrough slot downstream. This includes the
following commands:

• NOP (though the written data is ignored in this case)

• SYNC (data is likewise ignored)

• XFPR

• PARAM (merely gathers the components, does not send them anywhere)

• RUN (doesn’t write the slot, merely reads the value left by the PARAM command)

• PASSTHRU

• XTRA

• MODE

• XFCTX

• LTC*

Todo: How are things assembled on Curie?

RDI access

On Kelvin and Rankine, VAB can be accessed through RDI as space 0x15. This space is made of 128-bit little-endian
quaadwords. When writing, a complete 128-bit quadword must be written at once, or data will be damaged. Note that
the 32-bit words inside quadwords are effectively in reverse order wrt IDX2XF commands (since IDX2XF transfers
the high word as word 0). In other words:

• bits 0-31 (RDI address 0x0 modulo 0x10): W component, IDX2XF word 3

• bits 32-63 (RDI address 0x4 modulo 0x10): Z component, IDX2XF word 2

• bits 64-95 (RDI address 0x8 modulo 0x10): Y component, IDX2XF word 1

• bits 96-127 (RDI address 0xc modulo 0x10): X component, IDX2XF word 0

VAB command

The VAB command (type 0x1) can be sent by IDX to write or read VAB slots. To simplify writing attributes shorter
than 4 components, the write command has some special behavior.

On Celsius, the write command works like this:

1. If component X or Y of slots 0, 1, 3, or 4 (OPOS, COL0, TXC*) is being written:

1. On NV15 and up, set component Y to 0.

2. Set component Z to 0.

3. Set component W to 0x3f800000 (1.0f).

2. Set the selected component(s) of the selected slot to the submitted value(s).

On Kelvin and up, the write command works like this:

1. If component X of any slot other than the passthrough one is being written:

1. Set component Y to 0.

2.9. PGRAPH: 2d/3d graphics and compute engine 295



nVidia Hardware Documentation, Release git

2. Set component Z to 0.

3. Set component W to 0x3f800000 (1.0f).

2. Set the selected component(s) of the selected slot to the submitted value(s).

XF context RAMs

Contents

• XF context RAMs

– XFCTX

– LTCTX

– LTC

– Context setting methods

XFCTX

Todo: intro?

NV10 NV20 NV30 Name
0x08+ 0x00+ 0x3c+ MATRIX_PROJ
- 0x04+ 0x40+ MATRIX_UNK440
0x00+ 0x08+ 0x44+ MATRIX_MV0
0x04+ 0x0c+ 0x48+ MATRIX_IMV0
0x0c+ 0x10+ 0x4c+ MATRIX_MV1
0x10+ 0x14+ 0x50+ MATRIX_IMV1
- 0x18+ 0x54+ MATRIX_MV2
- 0x1c+ 0x58+ MATRIX_IMV2
- 0x20+ 0x5c+ MATRIX_MV3
- 0x24+ 0x60+ MATRIX_IMV3
0x24 0x28 0x64 LIGHT_0_POSITION
0x25 0x29 0x65 LIGHT_1_POSITION
0x26 0x2a 0x66 LIGHT_2_POSITION
0x27 0x2b 0x67 LIGHT_3_POSITION
0x28 0x2c 0x68 LIGHT_4_POSITION
0x29 0x2d 0x69 LIGHT_5_POSITION
0x2a 0x2e 0x6a LIGHT_6_POSITION
0x2b 0x2f 0x6b LIGHT_7_POSITION
0x2c 0x30 0x6c LIGHT_0_SPOT_DIRECTION
0x2d 0x31 0x6d LIGHT_1_SPOT_DIRECTION
0x2e 0x32 0x6e LIGHT_2_SPOT_DIRECTION
0x2f 0x33 0x6f LIGHT_3_SPOT_DIRECTION
0x30 0x34 0x70 LIGHT_4_SPOT_DIRECTION
0x31 0x35 0x71 LIGHT_5_SPOT_DIRECTION

Continued on next page

296 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 13 – continued from previous page
NV10 NV20 NV30 Name
0x32 0x36 0x72 LIGHT_6_SPOT_DIRECTION
0x33 0x37 0x73 LIGHT_7_SPOT_DIRECTION
0x34 0x38 0x74 LIGHT_EYE_POSITION
0x35 - - CONST_REFLECT_TWO
0x36 - - CONST_SPHERE_Z_ONE
0x37 - - CONST_SPHERE_XY_HALF
0x38 0x39 0x75 FOG_PLANE
- 0x3a 0x76 VIEWPORT_SCALE
0x39 0x3b 0x77 VIEWPORT_TRANSLATE
0x3a - - CONST_WEIGHT_ONE
- 0x3c 0x78 KELVIN_UNK16E0
- 0x3d 0x79 KELVIN_UNK16F0
- 0x3e 0x7a KELVIN_UNK1700
- 0x3f 0x7b KELVIN_UNK16D0
0x14 0x40 0x7c TEX_0_GEN_S
0x15 0x41 0x7d TEX_0_GEN_T
0x16 0x42 0x7e TEX_0_GEN_R
0x17 0x43 0x7f TEX_0_GEN_Q
0x18+ 0x44+ 0x80+ MATRIX_TX0
0x1c 0x48 0x84 TEX_1_GEN_S
0x1d 0x49 0x85 TEX_1_GEN_T
0x1e 0x4a 0x86 TEX_1_GEN_R
0x1f 0x4b 0x87 TEX_1_GEN_Q
0x20+ 0x4c+ 0x88+ MATRIX_TX1
- 0x50 0x8c TEX_2_GEN_S
- 0x51 0x8d TEX_2_GEN_T
- 0x52 0x8e TEX_2_GEN_R
- 0x53 0x8f TEX_2_GEN_Q
- 0x54+ 0x90+ MATRIX_TX2
- 0x58 0x94 TEX_3_GEN_S
- 0x59 0x95 TEX_3_GEN_T
- 0x5a 0x96 TEX_3_GEN_R
- 0x5b 0x97 TEX_3_GEN_Q
- 0x5c+ 0x98+ MATRIX_TX3
- 0x60+ 0x9c+ USER
- - 0x00 TEX_4_GEN_S
- - 0x01 TEX_4_GEN_T
- - 0x02 TEX_4_GEN_R
- - 0x03 TEX_4_GEN_Q
- - 0x04+ MATRIX_TX4
- - 0x08 TEX_5_GEN_S
- - 0x09 TEX_5_GEN_T
- - 0x0a TEX_5_GEN_R
- - 0x0b TEX_5_GEN_Q
- - 0x0c+ MATRIX_TX5
- - 0x10 TEX_6_GEN_S
- - 0x11 TEX_6_GEN_T
- - 0x12 TEX_6_GEN_R
- - 0x13 TEX_6_GEN_Q

Continued on next page

2.9. PGRAPH: 2d/3d graphics and compute engine 297



nVidia Hardware Documentation, Release git

Table 13 – continued from previous page
NV10 NV20 NV30 Name
- - 0x14+ MATRIX_TX6
- - 0x18 TEX_7_GEN_S
- - 0x19 TEX_7_GEN_T
- - 0x1a TEX_7_GEN_R
- - 0x1b TEX_7_GEN_Q
- - 0x1c+ MATRIX_TX7
- - 0x20 USER_CLIP_PLANE_0
- - 0x21 USER_CLIP_PLANE_1
- - 0x22 USER_CLIP_PLANE_2
- - 0x23 USER_CLIP_PLANE_3
- - 0x24 USER_CLIP_PLANE_4
- - 0x25 USER_CLIP_PLANE_5
- - 0x26 POINT_PARAMS_A
- - 0x27 {x: POINT_PARAMS_B[0], y: POINT_PARAMS_C, z: POINT_PARAMS_D}
- - 0x28 LIGHT_0_DIRECTION
- - 0x29 LIGHT_1_DIRECTION
- - 0x2a LIGHT_2_DIRECTION
- - 0x2b LIGHT_3_DIRECTION
- - 0x2c LIGHT_4_DIRECTION
- - 0x2d LIGHT_5_DIRECTION
- - 0x2e LIGHT_6_DIRECTION
- - 0x2f LIGHT_7_DIRECTION
- - 0x30 LIGHT_0_HALF_VECTOR_ATTENUATION
- - 0x31 LIGHT_1_HALF_VECTOR_ATTENUATION
- - 0x32 LIGHT_2_HALF_VECTOR_ATTENUATION
- - 0x33 LIGHT_3_HALF_VECTOR_ATTENUATION
- - 0x34 LIGHT_4_HALF_VECTOR_ATTENUATION
- - 0x35 LIGHT_5_HALF_VECTOR_ATTENUATION
- - 0x36 LIGHT_6_HALF_VECTOR_ATTENUATION
- - 0x37 LIGHT_7_HALF_VECTOR_ATTENUATION
- - 0x38 LT_UNK17E0
- - 0x39 ???
- - 0x3a ???
- - 0x3b ???
0x3b - - [unused]

LTCTX

Todo: intro?

NV10 NV20 NV30 Name
0x00 0x00 0x00 LIGHT_0_AMBIENT_COLOR
0x01 0x01 0x01 LIGHT_0_DIFFUSE_COLOR
0x02 0x02 0x02 LIGHT_0_SPECULAR_COLOR
0x03 0x03 - LIGHT_0_HALF_VECTOR_ATTENUATION
0x04 0x04 - LIGHT_0_DIRECTION

Continued on next page

298 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 14 – continued from previous page
NV10 NV20 NV30 Name
- 0x05 0x03 LIGHT_0_BACK_AMBIENT_COLOR
- 0x06 0x04 LIGHT_0_BACK_DIFFUSE_COLOR
- 0x07 0x05 LIGHT_0_BACK_SPECULAR_COLOR
0x05 0x08 0x06 LIGHT_1_AMBIENT_COLOR
0x06 0x09 0x07 LIGHT_1_DIFFUSE_COLOR
0x07 0x0a 0x08 LIGHT_1_SPECULAR_COLOR
0x08 0x0b - LIGHT_1_HALF_VECTOR_ATTENUATION
0x09 0x0c - LIGHT_1_DIRECTION
- 0x0d 0x09 LIGHT_1_BACK_AMBIENT_COLOR
- 0x0e 0x0a LIGHT_1_BACK_DIFFUSE_COLOR
- 0x0f 0x0b LIGHT_1_BACK_SPECULAR_COLOR
0x0a 0x10 0x0c LIGHT_2_AMBIENT_COLOR
0x0b 0x11 0x0d LIGHT_2_DIFFUSE_COLOR
0x0c 0x12 0x0e LIGHT_2_SPECULAR_COLOR
0x0d 0x13 - LIGHT_2_HALF_VECTOR_ATTENUATION
0x0e 0x14 - LIGHT_2_DIRECTION
- 0x15 0x0f LIGHT_2_BACK_AMBIENT_COLOR
- 0x16 0x10 LIGHT_2_BACK_DIFFUSE_COLOR
- 0x17 0x11 LIGHT_2_BACK_SPECULAR_COLOR
0x0f 0x18 0x12 LIGHT_3_AMBIENT_COLOR
0x10 0x19 0x13 LIGHT_3_DIFFUSE_COLOR
0x11 0x1a 0x14 LIGHT_3_SPECULAR_COLOR
0x12 0x1b - LIGHT_3_HALF_VECTOR_ATTENUATION
0x13 0x1c - LIGHT_3_DIRECTION
- 0x1d 0x15 LIGHT_3_BACK_AMBIENT_COLOR
- 0x1e 0x16 LIGHT_3_BACK_DIFFUSE_COLOR
- 0x1f 0x17 LIGHT_3_BACK_SPECULAR_COLOR
0x14 0x20 0x18 LIGHT_4_AMBIENT_COLOR
0x15 0x21 0x19 LIGHT_4_DIFFUSE_COLOR
0x16 0x22 0x1a LIGHT_4_SPECULAR_COLOR
0x17 0x23 - LIGHT_4_HALF_VECTOR_ATTENUATION
0x18 0x24 - LIGHT_4_DIRECTION
- 0x25 0x1b LIGHT_4_BACK_AMBIENT_COLOR
- 0x26 0x1c LIGHT_4_BACK_DIFFUSE_COLOR
- 0x27 0x1d LIGHT_4_BACK_SPECULAR_COLOR
0x19 0x28 0x1e LIGHT_5_AMBIENT_COLOR
0x1a 0x29 0x1f LIGHT_5_DIFFUSE_COLOR
0x1b 0x2a 0x20 LIGHT_5_SPECULAR_COLOR
0x1c 0x2b - LIGHT_5_HALF_VECTOR_ATTENUATION
0x1d 0x2c - LIGHT_5_DIRECTION
- 0x2d 0x21 LIGHT_5_BACK_AMBIENT_COLOR
- 0x2e 0x22 LIGHT_5_BACK_DIFFUSE_COLOR
- 0x2f 0x23 LIGHT_5_BACK_SPECULAR_COLOR
0x1e 0x30 0x24 LIGHT_6_AMBIENT_COLOR
0x1f 0x31 0x25 LIGHT_6_DIFFUSE_COLOR
0x20 0x32 0x26 LIGHT_6_SPECULAR_COLOR
0x21 0x33 - LIGHT_6_HALF_VECTOR_ATTENUATION
0x22 0x34 - LIGHT_6_DIRECTION
- 0x35 0x27 LIGHT_6_BACK_AMBIENT_COLOR

Continued on next page

2.9. PGRAPH: 2d/3d graphics and compute engine 299



nVidia Hardware Documentation, Release git

Table 14 – continued from previous page
NV10 NV20 NV30 Name
- 0x36 0x28 LIGHT_6_BACK_DIFFUSE_COLOR
- 0x37 0x29 LIGHT_6_BACK_SPECULAR_COLOR
0x23 0x38 0x2a LIGHT_7_AMBIENT_COLOR
0x24 0x39 0x2b LIGHT_7_DIFFUSE_COLOR
0x25 0x3a 0x2c LIGHT_7_SPECULAR_COLOR
0x26 0x3b - LIGHT_7_HALF_VECTOR_ATTENUATION
0x27 0x3c - LIGHT_7_DIRECTION
- 0x3d 0x2d LIGHT_7_BACK_AMBIENT_COLOR
- 0x3e 0x2e LIGHT_7_BACK_DIFFUSE_COLOR
- 0x3f 0x2f LIGHT_7_BACK_SPECULAR_COLOR
0x28 - - ???
- 0x40 - LT_UNK17E0
0x29 0x41 0x30 LIGHT_MODEL_AMBIENT_COLOR
- 0x42 0x31 LIGHT_MODEL_BACK_AMBIENT_COLOR
0x2a 0x43 0x32 MATERIAL_FACTOR_RGB
- 0x44 0x33 MATERIAL_FACTOR_BACK_RGB
0x2b 0x45 - FOG_COEFF
0x2c - - CONST_ZERO
- 0x46 0x34 LT_UNK17D4
0x2d 0x47 - POINT_PARAMS_A
0x2e 0x48 - POINT_PARAMS_B
0x2f - - [unused]
- 0x49 - LT_UNK17EC
- - 0x35 ???
- - 0x36 VIEWPORT_TRANSLATE
- - 0x37 VIEWPORT_SCALE

LTC

Todo: intro?

NV10 NV20 NV30 Name
0.0x00 - - [const 1.0]
0.0x01 - - CONST_???
- 0.0x00 - ???
- 0.0x01 - ???
0.0x02 0.0x02 - MATERIAL_SHININESS_D
- 0.0x03 - MATERIAL_BACK_SHININESS_D
1.0x00 - - [const 0.0]
- 1.0x00 1.0x00 ???
1.0x01 1.0x01 1.0x01 MATERIAL_SHININESS_A
- 1.0x02 1.0x02 MATERIAL_BACK_SHININESS_A
- - 1.0x03 MATERIAL_SHININESS_D
- - 1.0x04 MATERIAL_BACK_SHININESS_D
1.0x02 1.0x03 - POINT_PARAMS_C
1.0x03 1.0x04 1.0x05 LIGHT_0_LOCAL_RANGE

Continued on next page

300 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 15 – continued from previous page
NV10 NV20 NV30 Name
1.0x04 1.0x05 1.0x06 LIGHT_1_LOCAL_RANGE
1.0x05 1.0x06 1.0x07 LIGHT_2_LOCAL_RANGE
1.0x06 1.0x07 1.0x08 LIGHT_3_LOCAL_RANGE
1.0x07 1.0x08 1.0x09 LIGHT_4_LOCAL_RANGE
1.0x08 1.0x09 1.0x0a LIGHT_5_LOCAL_RANGE
1.0x09 1.0x0a 1.0x0b LIGHT_6_LOCAL_RANGE
1.0x0a 1.0x0b 1.0x0c LIGHT_7_LOCAL_RANGE
1.0x0b 1.0x0c 1.0x0d LIGHT_0_SPOT_CUTOFF_0
1.0x0c 1.0x0d 1.0x0e LIGHT_1_SPOT_CUTOFF_0
1.0x0d 1.0x0e 1.0x0f LIGHT_2_SPOT_CUTOFF_0
1.0x0e 1.0x0f 1.0x10 LIGHT_3_SPOT_CUTOFF_0
1.0x0f 1.0x10 1.0x11 LIGHT_4_SPOT_CUTOFF_0
1.0x10 1.0x11 1.0x12 LIGHT_5_SPOT_CUTOFF_0
1.0x11 1.0x12 1.0x13 LIGHT_6_SPOT_CUTOFF_0
1.0x12 1.0x13 1.0x14 LIGHT_7_SPOT_CUTOFF_0
2.0x00 - - [const 1.0]
- 2.0x00 2.0x00 ???
2.0x01 2.0x01 2.0x01 MATERIAL_SHININESS_B
- 2.0x02 2.0x02 MATERIAL_BACK_SHININESS_B
2.0x02 2.0x03 2.0x03 MATERIAL_SHININESS_E
- 2.0x04 2.0x04 MATERIAL_BACK_SHININESS_E
2.0x03 2.0x05 - MATERIAL_SHININESS_F
- 2.0x06 - MATERIAL_BACK_SHININESS_F
2.0x04 2.0x07 2.0x05 LIGHT_0_SPOT_CUTOFF_1
2.0x05 2.0x08 2.0x06 LIGHT_1_SPOT_CUTOFF_1
2.0x06 2.0x09 2.0x07 LIGHT_2_SPOT_CUTOFF_1
2.0x07 2.0x0a 2.0x08 LIGHT_3_SPOT_CUTOFF_1
2.0x08 2.0x0b 2.0x09 LIGHT_4_SPOT_CUTOFF_1
2.0x09 2.0x0c 2.0x0a LIGHT_5_SPOT_CUTOFF_1
2.0x0a 2.0x0d 2.0x0b LIGHT_6_SPOT_CUTOFF_1
2.0x0b 2.0x0e 2.0x0c LIGHT_7_SPOT_CUTOFF_1
3.0x00 - - [const 0.0]
- 3.0x00 3.0x00 ???
3.0x01 3.0x01 - POINT_PARAMS_D
3.0x02 3.0x02 3.0x01 MATERIAL_SHININESS_C
- 3.0x03 3.0x02 MATERIAL_BACK_SHININESS_C
- - 3.0x03 MATERIAL_SHININESS_F
- - 3.0x04 MATERIAL_BACK_SHININESS_F
3.0x03 3.0x04 3.0x05 LIGHT_0_SPOT_CUTOFF_2
3.0x04 3.0x05 3.0x06 LIGHT_1_SPOT_CUTOFF_2
3.0x05 3.0x06 3.0x07 LIGHT_2_SPOT_CUTOFF_2
3.0x06 3.0x07 3.0x08 LIGHT_3_SPOT_CUTOFF_2
3.0x07 3.0x08 3.0x09 LIGHT_4_SPOT_CUTOFF_2
3.0x08 3.0x09 3.0x0a LIGHT_5_SPOT_CUTOFF_2
3.0x09 3.0x0a 3.0x0b LIGHT_6_SPOT_CUTOFF_2
3.0x0a 3.0x0b 3.0x0c LIGHT_7_SPOT_CUTOFF_2
3.0x0b 3.0x0c 3.0x0d MATERIAL_FACTOR_A
- 3.0x0d 3.0x0e MATERIAL_FACTOR_BACK_A

2.9. PGRAPH: 2d/3d graphics and compute engine 301



nVidia Hardware Documentation, Release git

Context setting methods

Todo: write me

XF mode selection

Contents

• XF mode selection

– Introduction

– XFMODE – Celsius

– XFMODE – Kelvin & Rankine

– Curie XF bundles

– Mode setting methods

Introduction

This document describes the mode bits controlling XF behavior. On NV10:NV40, such mode bits are gathered in
a 128-bit vector (or two vectors on Rankine) called XFMODE. XFMODE is loaded to XF via the IDX2XF MODE
command. FE3D keeps a MMIO-exposed shadow copy of the XFMODE vector(s), updating it as mode-affecting
methods are processed, and sending a copy to XF every time it changes. The shadow copy is also used for context
switching. Due to the word endianness mismatch between FE shadow copy / IDX2XF addresses and XF internal
commands, keeping track of the word positions can be rather confusing.

On NV40:, XFMODE no longer exists, and XF mode is instead controlled by state bundles like most other parts of the
pipeline.

XFMODE – Celsius

On Celsius, XFMODE is a single 128-bit vector, with the following fields:

• bits 0-31: XFMODE_A, the low word:

– bit 0: TEX_0_ENABLE - if set, coordinates for texture 0 will be computed. Otherwise, texture unit 0 will
be ignored.

– bit 1: TEX_0_MATRIX_ENABLE - if set, enabled transformation of texture 0 coordinates by texture
matrix. This must be set if texgen is used, or if perspective is disabled.

– bit 2: TEX_0_PERSPECTIVE - if set, the final texture 0 coordinates will be multiplied by the final 1/w.

– bits 3-5: TEX_0_GEN_S - selects how texture 0 coordinate s is generated.

– bits 6-8: TEX_0_GEN_T

– bits 9-11: TEX_0_GEN_R

– bits 12-13: TEX_0_GEN_Q

302 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– bit 14: TEX_1_ENABLE

– bit 15: TEX_1_MATRIX_ENABLE

– bit 16: TEX_1_PERSPECTIVE

– bits 17-19: TEX_1_GEN_S

– bits 20-22: TEX_1_GEN_T

– bits 23-25: TEX_1_GEN_R

– bits 26-27: TEX_1_GEN_Q

– bit 28: LIGHT_MODEL_LOCAL_VIEWER

– bit 29: LIGHTING_ENABLE

– bit 30: NORMALIZE_ENABLE

– bit 31: FOG_ENABLE

• bits 32-63: XFMODE_B, the high word:

– bits 0-1: LIGHT_MODE_0 - Selects how light 0 behaves. One of:

* 0: NONE - light is disabled. Note that if a light is disabled, all subsequent lights must be disabled as
well.

* 1: INFINITE

* 2: LOCAL

* 3: SPOTLIGHT

– bits 2-3: LIGHT_MODE_1 - Likewise for light 1.

– bits 4-5: LIGHT_MODE_2

– bits 6-7: LIGHT_MODE_3

– bits 8-9: LIGHT_MODE_4

– bits 10-11: LIGHT_MODE_5

– bits 12-13: LIGHT_MODE_6

– bits 14-15: LIGHT_MODE_7

– bits 16-17: FOG_COORD - Selects how fog coordinate is computed. One of:

* 0: PASS

* 1: DIST_RADIAL

* 2: DIST_ORTHOGONAL

* 3: DIST_ORTHOGONAL_ABS

– bit 18: LIGHT_MODEL_UNK2 - ???

– bit 19: LIGHT_MODEL_VERTEX_SPECULAR - ???

– bit 20: LIGHT_MODEL_SEPARATE_SPECULAR - ???

– bits 21-24: LIGHT_MATERIAL - ???

– bit 25: POINT_PARAMS_ENABLE - if set, XF&LT compute point size. Otherwise, constant point size
is used.

2.9. PGRAPH: 2d/3d graphics and compute engine 303



nVidia Hardware Documentation, Release git

– bit 27: WEIGHT_ENABLE - if set, eye space transformation matrices will be blended together using the
input weight.

– bit 28: BYPASS - if set, XF&LT are in bypass mode, and only a small set of computations will be per-
formed. Otherwise, full transform and lighting is enabled.

– bit 29: ORIGIN - selects viewport offset used in bypass mode. One of:

* 0: CORNER

* 1: CENTER

• bits 64-127: unused.

Where tex gen modes can be one of:

• 0: PASS - input coordinate is passed through.

• 1: EYE_LINEAR

• 2: OBJECT_LINEAR

• 3: SPHERE_MAP (only supported on s and t)

• 4: NORMAL_MAP (only supported on s, t, r)

• 5: REFLECTION_MAP (only supported on s, t, r)

• 6: EMBOSS_MAP (only supported on s of texture 1, but if used affects all coordinates)

The FE3D shadow copies are kept at:

• MMIO 0x400f40: XFMODE_B

• MMIO 0x400f44: XFMODE_A (writing this register causes the MODE command to be submitted to XF).

XFMODE – Kelvin & Rankine

On Kelvin, XFMODE consists of a single 128-bit vector:

• bits 0-31 aka word 3: XFMODE_T[0] (textures 0 and 1)

• bits 32-63 aka word 2: XFMODE_T[1] (textures 2 and 3)

• bits 64-95 aka word 1: XFMODE_A

• bits 96-127 aka word 0: XFMODE_B

On Rankine, XFMODE consists of two 128-bit vectors:

• vector 0:

– bits 0-31 aka word 3: XFMODE_A

– bits 32-63 aka word 2: XFMODE_B

– bits 64-95 aka word 1: XFMODE_C

– bits 96-127 aka word 0: unused

• vector 1:

– bits 0-31 aka word 3: XFMODE_T[0] (texture coordinates 0 and 1)

– bits 32-63 aka word 2: XFMODE_T[1] (texture coordinates 2 and 3)

– bits 64-95 aka word 1: XFMODE_T[2] (texture coordinates 4 and 5)

304 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– bits 96-127 aka word 0: XFMODE_T[3] (texture coordinates 6 and 7)

The words are as follows:

XFMODE_A:

• bits 0-1: LIGHT_MATERIAL_SPECULAR_BACK - one of:

• 0: NONE

• 1: COL0

• 2: COL1

• bits 2-3: LIGHT_MATERIAL_DIFFUSE_BACK

• bits 4-5: LIGHT_MATERIAL_AMBIENT_BACK

• bits 6-7: LIGHT_MATERIAL_EMISSION_BACK

• bits 8-15: PROGRAM_START_POS - index of the first program to be executed in PROGRAM_*
modes.

• bit 16: SPECULAR_ENABLE - ???

• bit 17: ???, Kelvin LIGHT_MODEL bit 17

• bit 18: LIGHT_MODEL_SEPARATE_SPECULAR - ???

• bits 19-20: LIGHT_MATERIAL_SPECULAR_FRONT

• bits 21-22: LIGHT_MATERIAL_DIFFUSE_FRONT

• bits 23-24: LIGHT_MATERIAL_AMBIENT_FRONT

• bits 25-26: LIGHT_MATERIAL_EMISSION_FRONT

• bit 27: NORMALIZE_ENABLE

• bit 28: LIGHT_MODEL_UNK2 - ???

• bit 29: LIGHT_TWO_SIDE_ENABLE

• bit 30: LIGHT_MODEL_LOCAL_VIEWER

• bit 31: LIGHTING_ENABLE

XFMODE_B:

• bits 0-1: LIGHT_MODE_0 - Selects how light 0 behaves. One of:

– 0: NONE - light is disabled. Note that if a light is disabled, all subsequent lights must be disabled as well.

– 1: INFINITE

– 2: LOCAL

– 3: SPOTLIGHT

• bits 2-3: LIGHT_MODE_1 - Likewise for light 1.

• bits 4-5: LIGHT_MODE_2

• bits 6-7: LIGHT_MODE_3

• bits 8-9: LIGHT_MODE_4

• bits 10-11: LIGHT_MODE_5

• bits 12-13: LIGHT_MODE_6

2.9. PGRAPH: 2d/3d graphics and compute engine 305



nVidia Hardware Documentation, Release git

• bits 14-15: LIGHT_MODE_7

• bit 16: VIEWPORT_TRANSFORM_SKIP [NV30:] – if set, the position output from vertex program is assumed
to already be in screen coordinates, and no viewport transform will be performed. Otherwise, it is assumed to
be in clip coordinates and will be transformed by fixed-function viewport transform.

• bit 17: ARITH_RULES [NV30:] – selects how various arithmetic operations behave.

– 0: LEGACY – semantics as in GL_NV_vertex_program, with various idiosyncracies (0 times NaN is 0,
-NaN < -Inf < -0 < 0 < Inf < NaN, etc).

– 1: MODERN – semantics as in GL_NV_vertex_program2, mostly following IEEE 754.

• bit 18: XFCTX_ACCESS – determines which XFCTX entries are accessible to the running programs:

– 0: USER_ONLY – only USER will be accessible by indirect accesses; only USER, VIEW-
PORT_TRANSLATE, and VIEWPORT_SCALE will be accessible by direct accesses.

– 1: FULL – all XFCTX entries are accessible.

• bit 19: FOG_ENABLE - if set, XF&LT computes the fog coord. Otherwise, fog computations are not performed.

• bit 20: ???, set by UNK9CC method.

• bit 21: FOG_MODE_EXP [NV20:NV30] - if set, one of the EXP fog modes is used. Otherwise, one of LINEAR
modes is used.

• bits 22-24: FOG_COORD [NV20:NV30] - selects how fog coordinate is computed. One of:

– 0: SPEC_ALPHA

– 1: DIST_RADIAL

– 2: DIST_ORTHOGONAL

– 3: DIST_ORTHOGONAL_ABS

– 4: FOG_COORD

• bits 22-23: FOG_COORD [NV30:] - selects how fog coordinate is computed. One of:

– 0: SPEC_ALPHA

– 1: DIST_RADIAL

– 2: DIST_ORTHOGONAL

– 3: FOG_COORD

• bit 25: POINT_PARAMS_ENABLE - if set, XF&LT compute point size. Otherwise, constant point size is used.

• bits 26-28: WEIGHT_MODE - selects how weighting works. One of:

– 0: NONE

– 1: 1

– 2: ???

– 3: ???

– 4: ???

– 5: ???

– 6: ???

• bit 29: XFCTX_WRITE_ENABLE – if set, vertex programs are allowed to write to XFCTX, but will execute
serially. If clear, writes are blocked, but vertices can be processed in parallel.

306 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bits 30-31: MODE – selects operating mode, one of:

– 0: FIXED – full fixed-function transform and lighting

– 1: BYPASS [NV20:NV30] – minimal computations performed

– 1: PROGRAM_V3 [NV40:] – vertex program is run, fixed-function computations disabled, third-
generation ISA features are supported.

– 2: PROGRAM_V1 – vertex program is run, fixed-function computations disabled, first-generation ISA
features are supported.

– 3: PROGRAM_V2 [NV30:] – like above, but second-generation ISA features are supported.

XFMODE_C (only on Rankine):

• bits 0-5: CLIP_PLANE_ENABLE_[0-5]

XFMODE_T (two instances on Kelvin, four on Rankine - each describes two textures):

• bit 0: TEX_0_ENABLE - if set, coordinates for texture 0/2/4/6 will be computed. Otherwise, texture unit 0/2/4/6
will be ignored.

• bit 1: TEX_0_MATRIX_ENABLE - if set, enabled transformation of texture 0/2/4/6 coordinates by texture
matrix.

• bit 2: TEX_0_R_ENABLE - if set, the r coordinate for texture 0/2/4/6 will be computed. Otherwise, it will be
ignored.

• bits 4-6: TEX_0_GEN_S - selects how texture 0/2/4/6 coordinate s is generated.

• bits 7-9: TEX_0_GEN_T

• bits 10-12: TEX_0_GEN_R

• bits 13-15: TEX_0_GEN_Q

• bit 16: TEX_1_ENABLE

• bit 17: TEX_1_MATRIX_ENABLE

• bit 18: TEX_1_R_ENABLE

• bits 20-22: TEX_1_GEN_S

• bits 23-25: TEX_1_GEN_T

• bits 26-28: TEX_1_GEN_R

• bits 29-31: TEX_1_GEN_Q

The supported texgen mode are the same as on Celsius.

On Kelvin, the FE3D shadow copies are kept at:

• MMIO 0x400fb4: XFMODE_B

• MMIO 0x400fb8: XFMODE_A

• MMIO 0x400fbc: XFMODE_T[1]

• MMIO 0x400fc0: XFMODE_T[0]

And on Rankine:

• MMIO 0x400fb4: (dummy 0 word)

• MMIO 0x400fb8: XFMODE_C

• MMIO 0x400fbc: XFMODE_B

2.9. PGRAPH: 2d/3d graphics and compute engine 307



nVidia Hardware Documentation, Release git

• MMIO 0x400fc0: XFMODE_A

• MMIO 0x400fc4: XFMODE_T[3]

• MMIO 0x400fc8: XFMODE_T[2]

• MMIO 0x400fcc: XFMODE_T[1]

• MMIO 0x400fd0: XFMODE_T[0]

Curie XF bundles

XF_A:

• bit 0: ???, set by UNK9CC method [NV40:NV41]

• bit 2: XFCTX_ACCESS [NV40:NV41]

• bits 3-4: LIGHT_MATERIAL_EMISSION_FRONT [NV40:NV41]

• bits 5-6: LIGHT_MATERIAL_AMBIENT_FRONT [NV40:NV41]

• bits 7-8: LIGHT_MATERIAL_DIFFUSE_FRONT [NV40:NV41]

• bits 9-10: LIGHT_MATERIAL_SPECULAR_FRONT [NV40:NV41]

• bits 11-12: LIGHT_MATERIAL_EMISSION_BACK [NV40:NV41]

• bits 13-14: LIGHT_MATERIAL_AMBIENT_BACK [NV40:NV41]

• bits 15-16: LIGHT_MATERIAL_DIFFUSE_BACK [NV40:NV41]

• bits 17-18: LIGHT_MATERIAL_SPECULAR_BACK [NV40:NV41]

• bits 19-21: FOG_COORD [NV40:NV41]

• bit 22: LIGHTING_ENABLE [NV40:NV41]

• bits 23-25: WEIGHT_MODE [NV40:NV41]

• bit 26: NORMALIZE_ENABLE [NV40:NV41]

• bit 28: VIEWPORT_TRANSFORM_SKIP

XF_LIGHT [NV40:NV41]:

• bits 0-1: LIGHT_MODE_0

• bits 2-3: LIGHT_MODE_1

• bits 4-5: LIGHT_MODE_2

• bits 6-7: LIGHT_MODE_3

• bits 8-9: LIGHT_MODE_4

• bits 10-11: LIGHT_MODE_5

• bits 12-13: LIGHT_MODE_6

• bits 14-15: LIGHT_MODE_7

• bit 16: LIGHT_MODEL_LOCAL_VIEWER

• bit 17: ???, Kelvin LIGHT_MODEL bit 17

• bit 18: LIGHT_MODEL_SEPARATE_SPECULAR - ???

XF_C:

308 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bits 0-9: PROGRAM_START_POS

• bit 27: ARITH_RULES

• bits 30-31: MODE

XF_D:

• bits 0-15: TIMEOUT

• bit 16: ??? set by UNK1EF8 bit 20

XF_TXC:

• bits 0-2: TEX_GEN_S [NV40:NV41] [only present for first 8 coords]

• bits 4-6: TEX_GEN_T [NV40:NV41] [only present for first 8 coords]

• bits 8-10: TEX_GEN_R [NV40:NV41] [only present for first 8 coords]

• bits 12-14: TEX_GEN_Q [NV40:NV41] [only present for first 8 coords]

• bit 16: TEX_MATRIX_ENABLE [NV40:NV41] [only present for first 8 coords]

• bit 17: ???

• bit 18: ???

• bit 19: ???

Todo: Incomplete list.

Mode setting methods

Todo: write me

XF instruction set

Contents

• XF instruction set

– Introduction

– Program execution environment

– Instruction encoding and storage

* RDI access

– Instruction execution

* Reading sources

* Writing outputs

* Output addresses

2.9. PGRAPH: 2d/3d graphics and compute engine 309



nVidia Hardware Documentation, Release git

– Instructions

– XFPR command

* Kelvin -> Rankine ISA conversion

* Rankine -> combined ISA conversion

* Curie -> combined ISA conversion

– Instruction upload methods

Introduction

XF uses a VLIW instruction set. Roughly, a single instruction can do all of the following:

1. Read one IBUF slot.

2. Read one XFCTX slot.

3. Read three source operands:

• each source can be independently selected from:

– the value read from the IBUF slot

– the value read from the XFCTX slot

– an arbitrary temporary register

• an arbitrary swizzle can be applied to each source component

• starting with NV30, each source can be optionally replaced with its absolute value

• each source can be optionally negated

4. Perform one vector operation (using sources #0, #1, and maybe #2) on the ALU+MLU.

5. Perform one scalar operation (using source #2) on ILU or SFU.

6. Perform an optional saturation on the results.

7. Write the results (with masking) to temporary registers.

8. Write the results (with masking) to either the output buffers or XFCTX [NV20:NV40].

9. Optionally, end vertex processing (and submit results downstream).

There are 5 instruction sets used by XF:

1. Celsius ISA: used internally by Celsius GPUs as microcode to perform the fixed-function processing. Not ac-
cessible in any way from the outside, so the encoding will not be described here, but the computation primitives
are roughly the same as later ISAs and will be described here.

2. Kelvin ISA: used natively by Kelvin GPUs to store the instructions in XFPR RAM. Can be uploaded by the user
through the Kelvin classes. Supported by Rankine GPUs in compatibility mode through dynamic translation to
Rankine ISA. Corresponds to GL_NV_vertex_program extension.

3. Rankine ISA: used natively by Rankine GPUs and can be uploaded through Rankine classes. Supported
by NV40:NV41 in compatibility mode through dynamic translation to the combined ISA. Corresponds to
GL_NV_vertex_program2 extension. Is a proper superset of the Kelvin ISA.

4. Curie ISA: used natively by NV41:G80 GPUs and can be uploaded through Curie classes. Sup-
ported by NV40:NV41 mode through dynamic translation to the combined ISA. Corresponds to
GL_NV_vertex_program3 extension. Is not a proper superset of the Rankine ISA.

310 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

5. Combined ISA: used natively by NV40:NV41 GPUs. Cannot be directly uploaded by the user. Is more or less
a sum of Rankine and Curie ISAs.

Program execution environment

The XF can execute the following kinds of programs:

1. Simple vertex programs. Started when IDX signals that a full vertex has been written to the VAB. The VAB
contents are copied to the IBUF beforehand, and when the program is done, outputs will be sent to VTX for
further processing by the graphics pipeline. Multiple vertex programs can be executing in parallel at a given
moment (up to 3 per VPE). The only effect of a simple vertex program is emitting a transformed vertex.

2. Vertex programs with side effects [NV20:NV40]. Started just like simple vertex programs (a global mode bit
determines whether a simple program or a program with side effects is launched), but can write to XFCTX in
addition to their normal powers, and nothing else can be happening on XF while one is running.

3. Vertex state programs [NV20:NV40]. Started by the RUN XF command. Their only input is a single vector
submitted beforehand by the PARAM XF command. They have no output, and their only possible effect is
updating XFCTX. Nothing else can be happening on XF while a vertex state program is being executed. Once
the program completes, XF moves on to the next input command, without submitting anything downstream.

Every program has the following private state while it’s executing:

1. IBUF, the input buffer, read only by the program. On Celsius, is made of 7 vectors. On Kelvin and up, is made
of 16 vectors. For vertex programs, contains a complete copy of VAB (except the passthrough slot) captured at
the moment of program start. For vertex state programs, only the first vector is usable, and it contains a copy of
VAB passthrough slot (which should have been set by XF PARAM command).

2. XFREG, the temporary register file. Made of 12 vector registers on Kelvin, 16 vector registers on Rankine, ???
vector registers on Curie. On Celsius, allegedly made of 8 vector registers, but it’s impossible to tell.

Starting with Kelvin, the register file is cleared to all-0 between executions. However, this clear is done after a
program execution, and after an XF reset.

3. AREG [NV20:], the address register file. On Kelvin, this is a single signed 9-bit integer register (or maybe
larger, it’s impossible to tell). On Rankine, contains 2 vector registers, each made of 4 components, where each
component is a 10-bit signed integer. On Curie, is likewise made of 2 4-component vector registers, where each
component is a ???-bit signed integer.

4. CREG [NV30:], the condition register file. On Rankine, this is a single 4-component vector register, where each
component is a 2-bit condition code. The codes are:

• U: unordered (result was a NaN)

• L: less than (result was negative)

• E: equal (result was a 0)

• G: greater than (result was positive)

On Curie, this contains 2 4-component vector registers, with the same structure.

5. PC: the program counter. Basically, a pointer in XFPR RAM. For vertex programs, initialized from the starting
PC in XFMODE or XF_PROG bundle. For vertex state program, the initial PC is sent as the payload of the
RUN command.

6. ICNT [NV30:]: the instruction counter. Counts the number of instructions executed by the program so far.
Initialized to 0 on program start. When it hits the timeout value, the program is forcibly stopped.

7. stack [NV30:]: an 8-slot call/return stack. On Curie, can also be used to push and pop address registers.

2.9. PGRAPH: 2d/3d graphics and compute engine 311



nVidia Hardware Documentation, Release git

8. TBUF: the main output buffer. Write only by the program, contains data to be sent to VTX once the program is
done. On Celsius, made of 5 float vectors. On Kelvin and up, made of 16 float vectors.

9. STPOS [NV20:NV40?]: shadow TBUF position. A single vector register that receives a copy of anything writ-
ten to TBUF slot 0 and can be read back by the program. Used on Kelvin to implement viewport transformation
transparently wrt user shaders.

10. WBUF [NV10:NV30]: one of the LT output buffers. Write only by the program, contains data to be sent to LT
once the program is done. Made of 17 3-component vectors of 22-bit floats. While it can be written by user
programs, it is only useful for fixed function processing.

11. VBUF [NV10:NV30]: the other LT output buffer. Like WBUF, except has 13 entries instead of 17.

12. UBUF [NV30:NV40]: the unified LT output buffer. Same purpose as WBUF and VBUF, but is made of 10
5-component vectors of 22-bit floats.

Todo: NV34 (and presumably all Kelvins and Rankines) have SIPOS, which is a copy of the first IBUF word with
unknown purpose.

In addition, all running programs have access to the following shared resources:

• mode bits (XFMODE or state bundles): control various aspects of XF operation.

• XFCTX: the context RAM. Contains state used by fixed-function transform, as well as parameters to user-
defined programs. Can be read by all types of programs, and can be written by vertex programs with side effects
and by vertex state programs.

• XFPR [NV20:]: the program code RAM. Contains the code of user-defined programs.

• XTRA [NV30:NV41]: ??? contains 2 vectors of 8 9-bit numbers.

• TIMEOUT [NV30:]: a 16-bit number specifying the maximal number of instructions that a single program is
allowed to execute. On Curie, this is part of the state bundles, but on Rankine it’s a standalone piece of state.

• XFTEX [NV40:]: 4 textures with limitted functionality available for sampling by programs.

Instruction encoding and storage

User-submitted instructions are stored in the XFPR RAM, which is:

• on Kelvin: a global array of 0x88 92-bit words in Kelvin ISA encoding.

• on Rankine: a global array of 0x118 112-bit words in Rankine ISA encoding.

• on NV40:NV41: a per-VPE array of 0x220 144-bit words in combined ISA encoding.

• on NV41:G80: a per-VPE array of 0x220 127-bit words in Curie ISA encoding.

On NV10:NV41, the XF unit also has instruction ROM with programs for fixed-function processing, but it is not
accessible in any way.

The instruction words are encoded as follows:

Kelvin Rankine combined Curie Field
0 0 0 0 END
1 1 1 1 XFCTX_INDEXED
2 - - - OUT_IS_SCA
3-10 2-10 2-6 2-6 OUT_ADDR

Continued on next page

312 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 16 – continued from previous page
Kelvin Rankine combined Curie Field
11 11 - - OUT_TARGET
12-15 - - - OUT_WM
- 12-15 132-135 - OUT_WM_VEC
- 16-19 128-131 - OUT_WM_SCA
- - 7-12 7-12 DST_SCA
24-27 20-23 13-16 13-16 DST_WM_VEC
20-23 112-116 - - DST
16-19 24-27 17-20 17-20 DST_WM_SCA
- - 111-116 111-116 DST_VEC
28-42 28-42 21-37 21-37 SRC2
43-57 43-57 38-54 38-54 SRC1
58-72 58-72 55-71 55-71 SRC0
73-76 73-76 72-75 72-75 IBUF_ADDR
- 77 - - ???
77-84 78-86 76-85 76-85 XFCTX_ADDR
85-88 87-91 86-90 86-90 OP_VEC
89-91 92-96 91-95 91-95 OP_SCA
- 97-98 96-97 96-97 ASRC_SWZ
- 99-106 98-105 98-105 CSRC_SWZ
- 107-109 106-108 106-108 COND_TEST
- 110 109 109 COND_ENABLE
- 111 110 110 CDST_WM
- 117 117 117 SRC0_ABS
- 118 118 118 SRC1_ABS
- 119 119 119 SRC2_ABS
- 120 120 120 ASRC
- 121 - - unused?
- - 121 121 CSRCDST
- - 122 122 SAT
- - 123 123 IBUF_INDEXED
- - 124 124 OUT_INDEXED
- ? 125 125 CDST_IS_VEC
- - 126 126 OUT_IS_VEC
- - 127 - WAS_CURIE

SRC* fields are further subdivided as follows:

Kelvin Rankine combined Curie Field
0-1 0-1 0-1 0-1 SRCx_MUX
2-5 2-5 2-7 2-7 SRCx_REG
6-13 6-13 8-15 8-15 SRCx_SWZ
14 14 16 16 SRCx_NEG

8-bit SWZ fields represent vector swizzles and are made of the following subfields:

• bits 0-1: W

• bits 2-3: Z

• bits 4-5: Y

• bits 6-7: X

2.9. PGRAPH: 2d/3d graphics and compute engine 313



nVidia Hardware Documentation, Release git

RDI access

Todo: write me

Instruction execution

Reading sources

Todo: write me

Writing outputs

Todo: write me

Output addresses

Todo: write me

Instructions

The vector opcodes are:

• 0x00: NOP

• 0x01: MOV

• 0x02: MUL

• 0x03: ADD

• 0x04: MAD

• 0x05: DP3

• 0x06: DPH

• 0x07: DP4

• 0x08: DST [NV20:]

• 0x09: MIN [NV20:]

• 0x0a: MAX [NV20:]

• 0x0b: SLT [NV20:]

• 0x0c: SGE [NV20:]

314 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 0x0d: ARL [NV20:]

• 0x0e: FRC [NV30:]

• 0x0f: FLR [NV30:]

• 0x10: SEQ [NV30:]

• 0x11: SFL [NV30:]

• 0x12: SGT [NV30:]

• 0x13: SLE [NV30:]

• 0x14: SNE [NV30:]

• 0x15: STR [NV30:]

• 0x16: SSG [NV30:]

• 0x17: ARR [NV30:]

• 0x18: ARA [NV30:]

• 0x19: TXL [NV40:]

The scalar opcodes are:

• 0x00: NOP

• 0x01: MOV

• 0x02: RCP

• 0x03: RCC

• 0x04: RSQ

• 0x05: EXP [NV20:]

• 0x06: LOG [NV20:]

• 0x07: LIT [NV20:]

• 0x08: ??? [NV30:]

• 0x09: BRA [NV30:]

• 0x0a: ??? [NV30:]

• 0x0b: CAL [NV30:]

• 0x0c: RET [NV30:]

• 0x0d: LG2 [NV30:]

• 0x0e: EX2 [NV30:]

• 0x0f: SIN [NV30:]

• 0x10: COS [NV30:]

• 0x11: ??? [NV40:]

• 0x12: ??? [NV40:]

• 0x13: PUSHA [NV40:]

• 0x14: POPA [NV40:]

2.9. PGRAPH: 2d/3d graphics and compute engine 315



nVidia Hardware Documentation, Release git

Todo: write me

XFPR command

Todo: write me

Kelvin -> Rankine ISA conversion

Todo: write me

Rankine -> combined ISA conversion

Todo: write me

Curie -> combined ISA conversion

Todo: write me

Instruction upload methods

Todo: write me

2.10 falcon microprocessor

Contents:

2.10.1 Introduction

falcon is a class of general-purpose microprocessor units, used in multiple instances on nvidia GPUs starting from
G98. Originally developed as the controlling logic for VP3 video decoding engines as a replacement for xtensa used
on VP2, it was later used in many other places, whenever a microprocessor of some sort was needed.

A single falcon unit is made of:

• the core microprocessor with its code and data SRAM [see Processor control]

316 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• an IO space containing control registers of all subunits, accessible from the host as well as from the code running
on the falcon microprocessor [see IO space]

• common support logic:

– interrupt controller [see Interrupt delivery]

– periodic and watchdog timers [see Timers]

– scratch registers for communication with host [see Scratch registers]

– PCOUNTER signal output [see Performance monitoring signals]

– some unknown other stuff

• optionally, FIFO interface logic, for falcon units used as PFIFO engines and some others [see FIFO interface]

• optionally, common memory interface logic [see Memory interface]. However, some engines have their own
type of memory interface.

• optionally, a cryptographic AES coprocessor. A falcon unit with such coprocessor is called a “secretful” unit.
[see Cryptographic coprocessor]

• any unit-specific logic the microprocessor is supposed to control

Todo: figure out remaining circuitry

The base falcon hardware comes in several different revisions:

• version 0: used on G98, MCP77, MCP79

• version 3: used on GT215+, adds a crude VM system for the code segment, edge/level interrupt modes, new
instructions [division, software traps, bitfield manipulation, . . . ], and other features

• version 4: used on GF119+ for some engines [others are still version 3]: adds support for 24-bit code addressing,
debugging and ???

• version 4.1: used on GK110+ for some engines, changes unknown

• version 5: used on GK208+ for some engines, redesigned ISA encoding

Todo: figure out v4 new stuff

Todo: figure out v4.1 new stuff

Todo: figure out v5 new stuff

The falcon units present on nvidia cards are:

• The VP3/VP4/VP5 engines [G98 and MCP77:GM107]:

– PVLD, the variable length decoder

– PPDEC, the picture decoder

– PPPP, the video post-processor

• the VP6 engine [GM107-]:

2.10. falcon microprocessor 317



nVidia Hardware Documentation, Release git

– PVDEC, the video decoder

• The VP3 security engine [G98, MCP77, MCP79, GM107-]:

– PSEC, the security engine

• The GT215:GK104 copy engines:

– PCOPY[0] [GT215:GK104]

– PCOPY[1] [GF100:GK104]

• The GT215+ daemon engines:

– PDAEMON [GT215+]

– PDISPLAY.DAEMON [GF119+]

– PUNK1C3 [GF119+]

• The Fermi PGRAPH CTXCTL engines:

– PGRAPH.CTXCTL ../graph/gf100-ctxctl/intro.txt

– PGRAPH.GPC[*].CTXCTL ../graph/gf100-ctxctl/intro.txt

• PVCOMP, the video compositing engine [MCP89:GF100]

• PVENC, the H.264 encoding engine [GK104+]

2.10.2 ISA

This file deals with description of the ISA used by the falcon microprocessor, which is described in Introduction.

Contents

• ISA

– Registers

* $flags register

· $p predicates

– Instructions

* Sized

* Unsized

– Code segment

– Invalid opcode handling

Registers

There are 16 32-bit GPRs, $r0-$r15. There are also a dozen or so special registers:

318 Chapter 2. nVidia hardware documentation

../graph/gf100-ctxctl/intro.txt
../graph/gf100-ctxctl/intro.txt


nVidia Hardware Documentation, Release git

Index Name Present on Description
$sr0 $iv0 all units Interrupt 0 vector
$sr1 $iv1 all units Interrupt 1 vector
$sr3 $tv all units Trap vector
$sr4 $sp all units Stack pointer
$sr5 $pc all units Program counter
$sr6 $xcbase all units Code xfer external base
$sr7 $xdbase all units Data xfer external base
$sr8 $flags all units Misc flags
$sr9 $cx crypto units Crypt xfer mode
$sr10 $cauth crypto units Crypt auth code selection
$sr11 $xtargets all units Xfer port selection
$sr12 $tstatus v3+ units Trap status

$flags register

$flags [$sr8] register contains various flags controlling the operation of the falcon microprocessor. It is split into the
following bitfields:

Bits Name Present on Description
0-7 $p0-$p7 all units General-purpose predicates
8 c all units Carry flag
9 o all units Signed overflow flag
10 s all units Sign/negative flag
11 z all units Zero flag
16 ie0 all units Interrupt 0 enable
17 ie1 all units Interrupt 1 enable
18 ??? v4+ units ???
20 is0 all units Interrupt 0 saved enable
21 is1 all units Interrupt 1 saved enable
22 ??? v4+ units ???
24 ta all units Trap handler active
26-28 ??? v4+ units ???
29-31 ??? v4+ units ???

Todo: figure out v4+ stuff

$p predicates

$flags.p0-p7 are general-purpose single-bit flags. They can be used to store single-bit variables. They can be set via
bset, bclr, btgl, and setp instructions. They can be read by xbit instruction, or checked by sleep and bra instructions.

Instructions

Instructions have 2, 3, or 4 bytes. First byte of instruction determines its length and format. High 2 bits of the first
byte determine the instruction’s operand size; 00 means 8-bit, 01 means 16-bit, 10 means 32-bit, and 11 means an
instruction that doesn’t use operand sizing. The set of available opcodes varies greatly with the instruction format.

2.10. falcon microprocessor 319



nVidia Hardware Documentation, Release git

The subopcode can be stored in one of the following places:

• O1: subopcode goes to low 4 bits of byte 0

• O2: subopcode goes to low 4 bits of byte 1

• OL: subopcode goes to low 6 bits of byte 1

• O3: subopcode goes to low 4 bits of byte 2

The operands are denoted as follows:

• R1x: register encoded in low 4 bits of byte 1

• R2x: register encoded in high 4 bits of byte 1

• R3x: register encoded in high 4 bits of byte 2

• RxS: register used as source

• RxD: register used as destination

• RxSD: register used as both source and destination

• I8: 8-bit immediate encoded in byte 2

• I16: 16-bit immediate encoded in bytes 2 [low part] and 3 [high part]

Sized

Sized opcodes are [low 6 bits of opcode]:

• 0x: O1 R2S R1S I8

• 1x: O1 R1D R2S I8

• 2x: O1 R1D R2S I16

• 30: O2 R2S I8

• 31: O2 R2S I16

• 34: O2 R2D I8

• 36: O2 R2SD I8

• 37: O2 R2SD I16

• 38: O3 R2S R1S

• 39: O3 R1D R2S

• 3a: O3 R2D R1S

• 3b: O3 R2SD R1S

• 3c: O3 R3D R2S R1S

• 3d: O2 R2SD

Todo: long call/branch

The subopcodes are as follows:

320 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

In-
struc-
tion

0x 1x 2x 30 31 34 36 37 38 39 3a 3b 3c 3d imm flg0 flg3+Cy-
cles

Present
on

De-
scrip-
tion

st 0 0 U - - 1 all
units

store

st
[sp]

1 1 U - - all
units

store

cmpu 4 4 4 U CZ CZ 1 all
units

un-
signed
com-
pare

cmps 5 5 5 S CZ CZ 1 all
units

signed
com-
pare

cmp 6 6 6 S N/A COSZ1 v3+
units

com-
pare

add 0 0 0 0 0 0 U COSZCOSZ1 all
units

add

adc 1 1 1 1 1 1 U COSZCOSZ1 all
units

add
with
carry

sub 2 2 2 2 2 2 U COSZCOSZ1 all
units

sub-
stract

sbb 3 3 3 3 3 3 U COSZCOSZ1 all
units

sub-
stract
with
bor-
row

shl 4 4 4 4 U C COSZ1 all
units

shift
left

shr 5 5 5 5 U C COSZ1 all
units

shift
right

sar 7 7 7 7 U C COSZ1 all
units

shift
right
with
sign

ld 8 8 U - - 1 all
units

load

shlc c c c c U C COSZ1 all
units

shift
left
with
carry

shrc d d d d U C COSZ1 all
units

shift
right
with
carry

ld
[sp]

0 0 U - - all
units

load

not 0 0 OSZ OSZ 1 all
units

bit-
wise
not

neg 1 1 OSZ OSZ 1 all
units

sign
nega-
tion

movf 2 2 OSZ N/A 1 v0
units

move

mov 2 2 N/A - 1 v3+
units

move

hswap 3 3 OSZ OSZ 1 all
units

swap
halves

clear 4 - - 1 all
units

set
to
0

setf 5 N/A OSZ 1 v3+
units

set
flags
from
value

2.10. falcon microprocessor 321



nVidia Hardware Documentation, Release git

Unsized

Unsized opcodes are:

• cx: O1 R1D R2S I8

• dx: O1 R2S R1S I8

• ex: O1 R1D R2S I16

• f0: O2 R2SD I8

• f1: O2 R2SD I16

• f2: O2 R2S I8

• f4: OL I8

• f5: OL I16

• f8: O2

• f9: O2 R2S

• fa: O3 R2S R1S

• fc: O2 R2D

• fd: O3 R2SD R1S

• fe: O3 R1D R2S

• ff: O3 R3D R2S R1S

The subopcodes are as follows:

Instruction cx dx ex f0 f1 f2 f4 f5 f8 f9 fa fc fd fe ff imm flg0 flg3+ cycles Present on Description
mulu 0 0 0 0 0 0 U - - 1 all units unsigned 16x16 -> 32 multiply
muls 1 1 1 1 1 1 S - - 1 all units signed 16x16 -> 32 multiply
sext 2 2 2 2 U SZ SZ 1 all units sign extend
extrs 3 3 3 U N/A SZ 1 v3+ units extract signed bitfield
sethi 3 3 H - - 1 all units set high 16 bits
and 4 4 4 4 4 4 U - COSZ 1 all units bitwise and
or 5 5 5 5 5 5 U - COSZ 1 all units bitwise or
xor 6 6 6 6 6 6 U - COSZ 1 all units bitwise xor
extr 7 7 7 U N/A SZ 1 v3+ units extract bitfield
mov 7 7 S - - 1 all units move
xbit 8 8 U - SZ 1 all units extract single bit
bset 9 9 U - - 1 all units set single bit
bclr a a U - - 1 all units clear single bit
btgl b b U - - 1 all units toggle single bit
ins b b U N/A - 1 v3+ units insert bitfield
xbit[fl] c c U - SZ all units extract single bit
div c c c U N/A - 30-33 v3+ units divide
mod d d d U N/A - 30-33 v3+ units modulus
??? e e U - - all units ??? IO port
iord f f U - - ~1-x all units read IO port
iowr 0 0 U - - 1-x all units write IO port asynchronous
iowrs 1 1 U N/A - 9-x v3+ units write IO port synchronous

Continued on next page

322 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 17 – continued from previous page
Instruction cx dx ex f0 f1 f2 f4 f5 f8 f9 fa fc fd fe ff imm flg0 flg3+ cycles Present on Description
xcld 4 - - all units code xfer to falcon
xdld 5 - - all units data xfer to falcon
xdst 6 - - all units data xfer from falcon
setp 8 8 - - all units set predicate
ccmd c 3c 3c - - crypto units crypto coprocessor command
bra 0x 0x S - - 5 all units branch relative conditional
bra 1x 1x S - - 5 all units branch relative conditional
jmp 20 20 4 U - - 4-5 all units branch absolute
call 21 21 5 U - - 4-5 all units call subroutine
sleep 28 U - - NA all units sleep until interrupt
add [sp] 30 30 1 S - - 1 all units add to stack pointer
bset[fl] 31 9 U - - all units set single bit
bclr[fl] 32 a U - - all units clear single bit
btgl[fl] 33 b U - - all units toggle single bit
ret 0 - - 5-6 all units return from subroutine
iret 1 - - all units return from interrupt handler
exit 2 - - all units halt microcontroller
xdwait 3 - - all units wait for data xfer
??? 6 - - all units ???
xcwait 7 - - all units wait for code xfer
trap 0 8 N/A - v3+ units trigger software trap
trap 1 9 N/A - v3+ units trigger software trap
trap 2 a N/A - v3+ units trigger software trap
trap 3 b N/A - v3+ units trigger software trap
push 0 - - 1 all units push onto stack
itlb 8 N/A - v3+ units drop TLB entry
pop 0 - - 1 all units pop from stack
mov[>sr] 0 - - all units move to special register
mov[<sr] 1 - - all units move from special register
ptlb 2 N/A - v3+ units lookup TLB by phys address
vtlb 3 N/A - v3+ units lookup TLB by virt address

Code segment

falcon has separate code and data spaces. Code segment, like data segment, is located in small piece of SRAM in the
microcontroller. Its size can be determined by looking at MMIO address falcon+0x108, bits 0-8 shifted left by 8.

Code is byte-oriented, but can only be accessed by 32-bit words from outside, and can only be modified in 0x100-byte
[page] units.

On v0, code segment is just a flat piece of RAM, except for the per-page secret flag. See v0 code/data upload registers
for information on uploading code and data.

On v3+, code segment is paged with virtual -> physical translation and needs special handling. See IO space for
details.

Code execution is started by host via MMIO from arbitrary entry point, and is stopped either by host or by the
microcode itself, see Halting microcode execution: exit, Processor execution control registers.

2.10. falcon microprocessor 323



nVidia Hardware Documentation, Release git

Invalid opcode handling

When an invalid opcode is hit, $pc is unmodified and a trap is generated. On v3+, $tstatus reason field is set to 8. v0
engines don’t have $tstatus register, but this is the only trap type they support anyway.

2.10.3 Arithmetic instructions

Contents

• Arithmetic instructions

– Introduction

– $flags result bits

– Pseudocode conventions

– Comparison: cmpu, cmps, cmp

– Addition/substraction: add, adc, sub, sbb

– Shifts: shl, shr, sar, shlc, shrc

– Unary operations: not, neg, mov, movf, hswap

– Loading immediates: mov, sethi

– Clearing registers: clear

– Setting flags from a value: setf

– Multiplication: mulu, muls

– Sign extension: sext

– Bitfield extraction: extr, extrs

– Bitfield insertion: ins

– Bitwise operations: and, or, xor

– Bit extraction: xbit

– Bit manipulation: bset, bclr, btgl

– Division and remainder: div, mod

– Setting predicates: setp

Introduction

The arithmetic/logical instructions do operations on $r0-$r15 GPRs, sometimes setting bits in $flags register according
to the result. The instructions can be “sized” or “unsized”. Sized instructions have 8-bit, 16-bit, and 32-bit variants.
Unsized instructions don’t have variants, and always operate on full 32-bit registers. For 8-bit and 16-bit sized instruc-
tions, high 24 or 16 bits of destination registers are unmodified.

$flags result bits

The $flags bits often affected by ALU instructions are:

324 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bit 8: c, carry flag. Set by addition instructions iff a carry out of the high bit (or, equivalently, unsigned overflow)
has occured. Likewise set by subtraction instructions iff a borrow into the high bit (or unsigned overflow) has
occured. Also used by shift instructions to store the last shifted out bit. Used as the less-than condition in old
comparisons.

• bit 9: o, signed overflow flag - set by addition, subtraction, comparison, and negation instructions if a signed
overflow occured. Set to 0 by some other instructions.

• bit 10: s, sign flag - set according to the high bit of the result by most arithmetic instructions.

• bit 11: z, zero flag - set iff the result was equal to 0 by most arithmetic instructions.

Also, a few ALU instructions operate on $flags register as a whole.

Pseudocode conventions

sz, for sized instructions, is the selected size of operation: 8, 16, or 32.

S(x) evaluates to (x >> (sz - 1) & 1), ie. the sign bit of x. If insn is unsized, assume sz == 32.

C(a, b, c), where a, b, c are booleans, is the carry flag for an addition where the two inputs have high bits of
a and b, and the result has a high bit of c. It is computed as follows:

bool C(bool a, bool b, bool c) {
// a and b both set - there is always carry out.
if (a && b)

return 1;
// One of a and b is set - there is carry out iff result has high
// bit 0.
if ((a || b) && !c)

return 1;
# Otherwise (a and b both clear), there is no possibility of carry
# out.
return 0;

}

Also, !C(a, !b, c) is the borrow flag for a subtraction where the two inputs have high bits of a and b, and the
result has a high bit of c.

Likewise, O(a, b, c) is similarly defined as the signed overflow flag for an addition:

bool O(bool a, bool b, bool c) {
return a == b && a != c;
// equivalent definition (check it yourself):
// return a ^ b ^ c ^ C(a, b, c);

}

Similarly, O(a, !b, c) is the signer overflow flag for subtraction.

Comparison: cmpu, cmps, cmp

Compare two values, setting flags according to results of comparison. cmp sets the usual set of 4 flags, and behaves
identically to a subtraction instruction that doesn’t write its destination register. cmpu sets only c and z, but otherwise
behaves like cmp - thus it is only useful for unsigned comparisons. cmps sets z normally, but sets c iff SRC1 is
less then SRC2 when treated as signed number (thus using unsigned condition codes to store the result of a signed
comparison instead).

2.10. falcon microprocessor 325



nVidia Hardware Documentation, Release git

cmpu/cmps are the only comparison instructions available on Falcon v0. Both of them set only the c and z flags, with
cmps setting c flag in an unusual way to enable signed comparisons while using unsigned flags and condition codes.
To do an unsigned comparison, use cmpu and the unsigned branch conditions [b/a/e]. To do a signed comparison,
use cmps, also with unsigned branch conditions.

The Falcon v3+ new cmp instruction sets the full set of flags. To do an unsigned comparison on v3+, use cmp and the
unsigned branch conditions. To do a signed comparison, use cmp and the signed branch conditions [l/g/e].

Instructions:

Name Description Present on Subopcode
cmpu compare unsigned all units 4
cmps compare signed all units 5
cmp compare v3+ units 6

Instruction class: sized

Execution time: 1 cycle

Operands: SRC1, SRC2

Forms:

Form Opcode
R2, I8 30
R2, I16 31
R2, R1 38

Immediates:

cmpu: zero-extended

cmps: sign-extended

cmp: sign-extended

Operation:

uint<sz>_t diff = SRC1 - SRC2;
$flags.z = (diff == 0);
if (op == cmps)

$flags.c = O(S(SRC1), !S(SRC2), S(diff)) ^ S(diff);
else if (op == cmpu)

$flags.c = !C(S(SRC1), !S(SRC2), S(diff));
else if (op == cmp) {

$flags.c = !C(S(SRC1), !S(SRC2), S(diff));
$flags.o = O(S(SRC1), !S(SRC2), S(diff));
$flags.s = S(diff);

}

Addition/substraction: add, adc, sub, sbb

Add or substract two values, possibly with carry/borrow. The full set of arithmetic flags is always written.

Instructions:

326 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Name Description Subopcode
add add 0
adc add with carry 1
sub substract 2
sbb substrace with borrow 3

Instruction class: sized

Execution time: 1 cycle

Operands: DST, SRC1, SRC2

Forms:

Form Opcode
R1, R2, I8 10
R1, R2, I16 20
R2, R2, I8 36
R2, R2, I16 37
R2, R2, R1 3b
R3, R2, R1 3c

Immediates: zero-extended

Operation:

uint<sz>_t res;
if (op == add)

res = SRC1 + SRC2;
else if (op == adc)

res = SRC1 + SRC2 + $flags.c;
else if (op == sub)

res = SRC1 - SRC2;
else if (op == sbb)

res = SRC1 - SRC2 - $flags.c;

if (op == add || op == adc) {
$flags.c = C(S(SRC1), S(SRC2), S(res));
$flags.o = O(S(SRC1), S(SRC2), S(res));

} else {
$flags.c = !C(S(SRC1), !S(SRC2), S(res));
$flags.o = O(S(SRC1), !S(SRC2), S(res));

}
DST = res;
$flags.s = S(res);
$flags.z = (res == 0);

Shifts: shl, shr, sar, shlc, shrc

Shift a value. For shl/shr, the extra bits “shifted in” are 0. For sar, they’re equal to sign bit of source. For shlc/
shrc, the first such bit is taken from carry flag, the rest are 0. On Falcon v3+, these instructions set all 4 arithmetic
flags - s and z are set as usual, o is always set to 0, and c is set to the value of the last shifted out bit, or 0 if the shift
count was 0. On Falcon v0, only c is set.

The shift count is always masked to 3 bits in case of 8-bit shift instructions, 4 bits in case of 16-bit shift instructions,
and 5 bits in case of 32-bit shift instructions.

2.10. falcon microprocessor 327



nVidia Hardware Documentation, Release git

Instructions:

Name Description Subopcode
shl shift left 4
shr shift right 5
sar shift right with sign bit 6
shlc shift left with carry in c
shrc shift right with carry in d

Instruction class: sized

Execution time: 1 cycle

Operands: DST, SRC1, SRC2

Forms:

Form Opcode
R1, R2, I8 10
R2, R2, I8 36
R2, R2, R1 3b
R3, R2, R1 3c

Immediates: truncated

Operation:

unsigned shcnt;
if (sz == 8)

shcnt = SRC2 & 7;
else if (sz == 16)

shcnt = SRC2 & 0xf;
else // sz == 32

shcnt = SRC2 & 0x1f;
uint<sz>_t res;
if (op == shl || op == shlc) {

res = SRC1 << shcnt;
if (op == shlc && shcnt != 0)

res |= $flags.c << (shcnt - 1);
if (shcnt == 0)

$flags.c = 0;
else

$flags.c = SRC1 >> (sz - shcnt) & 1;
} else { // shr, sar, shrc

res = SRC1 >> shcnt;
if (op == shrc && shcnt != 0)

res |= $flags.c << (sz - shcnt);
if (op == sar && S(SRC1))

res |= ~0 << (sz - shcnt);
if (shcnt == 0)

$flags.c = 0;
else

$flags.c = SRC1 >> (shcnt - 1) & 1;
}
DST = res;
if (falcon_version != 0) {

$flags.o = 0;
(continues on next page)

328 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

$flags.s = S(DST);
$flags.z = (DST == 0);

}

Unary operations: not, neg, mov, movf, hswap

not flips all bits in a value. neg negates a value. mov and movf move a value from one register to another. mov is the
v3+ variant, which just does the move. movf is the v0 variant, which additionally sets flags according to the moved
value. hswap rotates a value by half its size. All instructions except mov set 3 flags: s and z (which are set as usual),
as well as o (which is set iff signed overflow occured for neg, and always set to 0 for other instructions).

Instructions:

Name Description Present on Subopcode
not bitwise complement all units 0
neg negate a value all units 1
movf move a value and set flags v0 units 2
mov move a value v3+ units 2
hswap Swap halves all units 3

Instruction class: sized

Execution time: 1 cycle

Operands: DST, SRC

Forms:

Form Opcode
R1, R2 39
R2, R2 3d

Operation:

if (op == not) {
DST = ~SRC;
$flags.o = 0;

} else if (op == neg) {
DST = -SRC;
$flags.o = (DST == 1 << (sz - 1));

} else if (op == movf) {
DST = SRC;
$flags.o = 0;

} else if (op == mov) {
DST = SRC;

} else if (op == hswap) {
DST = SRC >> (sz / 2) | SRC << (sz / 2);
$flags.o = 0;

}
if (op != mov) {

$flags.s = S(DST);
$flags.z = (DST == 0);

}

2.10. falcon microprocessor 329



nVidia Hardware Documentation, Release git

Loading immediates: mov, sethi

mov sets a register to an immediate. sethi sets high 16 bits of a register to an immediate, leaving low bits untouched.
mov can be thus used to load small [16-bit signed] immediates, while mov+sethi can be used to load any 32-bit
immediate.

Instructions

Name Description Subopcode
mov Load an immediate 7
sethi Set high bits 3

Instruction class: unsized

Execution time: 1 cycle

Operands: DST, SRC

Forms:

Form Opcode
R2, I8 f0
R2, I16 f1

Immediates:

mov: sign-extended

sethi: zero-extended

Operation:

if (op == mov)
DST = SRC;

else if (op == sethi)
DST = DST & 0xffff | SRC << 16;

Clearing registers: clear

Sets a register to 0.

Instructions:

Name Description Subopcode
clear Clear a register 4

Instruction class: sized

Operands: DST

Forms:

Form Opcode
R2 3d

Operation:

330 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

DST = 0;

Setting flags from a value: setf

Sets z and s flags according to a value, sets o flag to 0.

Instructions:

Name Description Present on Subopcode
setf Set flags according to a value v3+ units 5

Instruction class: sized

Execution time: 1 cycle

Operands: SRC

Forms:

Form Opcode
R2 3d

Operation:

$flags.o = 0;
$flags.s = S(SRC);
$flags.z = (SRC == 0);

Multiplication: mulu, muls

Does a 16x16 -> 32 multiplication. The inputs are unsigned for mulu, signed for muls. Sets no flags.

Instructions:

Name Description Subopcode
mulu Multiply unsigned 0
muls Multiply signed 1

Instruction class: unsized

Operands: DST, SRC1, SRC2

Forms:

Form Opcode
R1, R2, I8 c0
R1, R2, I16 e0
R2, R2, I8 f0
R2, R2, I16 f1
R2, R2, R1 fd
R3, R2, R1 ff

Immediates:

2.10. falcon microprocessor 331



nVidia Hardware Documentation, Release git

mulu: zero-extended

muls: sign-extended

Operation:

s1 = SRC1 & 0xffff;
s2 = SRC2 & 0xffff;
if (op == muls) {

if (s1 & 0x8000)
s1 |= 0xffff0000;

if (s2 & 0x8000)
s2 |= 0xffff0000;

}
DST = s1 * s2;

Sign extension: sext

Does a sign-extension of low (X+1) bits of a value. Sets s and z flags according to the result. The second argument
is, after masking to 5 bits, the bit index (counting from LSB) which contains the new sign bit - the result will be equal
to the source with all bits higher than that replaced with a copy of the sign bit.

Instructions:

Name Description Subopcode
sext Sign-extend 2

Instruction class: unsized

Execution time: 1 cycle

Operands: DST, SRC1, SRC2

Forms:

Form Opcode
R1, R2, I8 c0
R2, R2, I8 f0
R2, R2, R1 fd
R3, R2, R1 ff

Immediates: truncated

Operation:

bit = SRC2 & 0x1f;
if (SRC1 & 1 << bit) {

DST = SRC1 & ((1 << bit) - 1) | -(1 << bit);
} else {

DST = SRC1 & ((1 << bit) - 1);
}
$flags.s = S(DST);
$flags.z = (DST == 0);

332 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Bitfield extraction: extr, extrs

Extracts a bitfield. The bitfield to extract is given as a pair of (low bit index, size in bits - 1) packed in a single 10-bit
source, with each part taking 5 bits. The value of the bitfield is returned in the low bits of the destination register.
extr extracts an unsigned bitfield, setting the remaining destination bits to 0, while extrs extracts a signed bitfield,
setting the remaining bits to a copy of the sign bit (ie. the highest bit of the bitfield).

Both instructions set s and z flags. While z is set as usual, s is set to the “fill” bit used for high bits of the destination
- thus it is always 0 for extr.

Instructions:

Name Description Present on Subopcode
extrs Extract signed bitfield v3+ units 3
extr Extract unsigned bitfield v3+ units 7

Instruction class: unsized

Execution time: 1 cycle

Operands: DST, SRC1, SRC2

Forms:

Form Opcode
R1, R2, I8 c0
R1, R2, I16 e0
R3, R2, R1 ff

Immediates: zero-extended

Operation:

int low = SRC2 & 0x1f;
int sizem1 = (SRC2 >> 5 & 0x1f);
uint32_t bf = (SRC1 >> low) & ((2 << sizem1) - 1);
bool fill_bit;
if (op == extr) {

fill_bit = 0;
} else if (op == extrs) {

// depending on the mask is probably a bad idea.
int signbit = (low + sizem1) & 0x1f;
fill_bit = SRC1 >> signbit & 1;

}
if (fill_bit)

bf |= -(2 << sizem1);
DST = bf;
$flags.s = fill_bit;
$flags.z = (DST == 0);

Bitfield insertion: ins

Inserts a bitfield, which is specified like for extr/extrs. Sets no flags.

Instructions:

2.10. falcon microprocessor 333



nVidia Hardware Documentation, Release git

Name Description Present on Subopcode
ins Insert a bitfield v3+ units b

Instruction class: unsized

Execution time: 1 cycle

Operands: DST, SRC1, SRC2

Forms:

Form Opcode
R1, R2, I8 c0
R1, R2, I16 e0

Immediates: zero-extended.

Operation:

low = SRC2 & 0x1f;
size = (SRC2 >> 5 & 0x1f) + 1;
if (low + size <= 32) { // nop if bitfield out of bounds - I wouldn't depend on
→˓it, though...

DST &= ~(((1 << size) - 1) << low); // clear the current contents of the
→˓bitfield

bf = SRC1 & ((1 << size) - 1);
DST |= bf << low;

}

Bitwise operations: and, or, xor

Ands, ors, or xors two operands. On Falcon v0, sets no flags. On Falcon v3, sets all flags - s and z are set as usual, c
and o are always set to 0.

Instructions:

Name Description Subopcode
and Bitwise and 4
or Bitwise or 5
xor Bitwise xor 6

Instruction class: unsized

Execution time: 1 cycle

Operands: DST, SRC1, SRC2

Forms:

Form Opcode
R1, R2, I8 c0
R1, R2, I16 e0
R2, R2, I8 f0
R2, R2, I16 f1
R2, R2, R1 fd
R3, R2, R1 ff

334 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Immediates: zero-extended

Operation:

if (op == and)
DST = SRC1 & SRC2;

if (op == or)
DST = SRC1 | SRC2;

if (op == xor)
DST = SRC1 ^ SRC2;

if (falcon_version != 0) {
$flags.c = 0;
$flags.o = 0;
$flags.s = S(DST);
$flags.z = (DST == 0);

}

Bit extraction: xbit

Extracts a single bit of a specified register. On Falcon v0, the bit is stored to bit 0 of DST, while other destination bits
are unmodified, and no flags are set. On Falcon v3+, the bit is stored to bit 0 of DST, all other bits of DST are set to 0,
s flag is set to 0, and z flag is set iff the extracted bit was 0 (behaving exactly like an extr instruction with size 1).
In both cases, the bit index is masked off to 5 bits.

Instructions:

Name Description Subopcode - opcodes c0, ff Subopcode - opcodes f0, fe
xbit Extract a bit 8 c

Instruction class: unsized

Execution time: 1 cycle

Operands: DST, SRC1, SRC2

Forms:

Form Opcode
R1, R2, I8 c0
R3, R2, R1 ff
R2, $flags, I8 f0
R1, $flags, R2 fe

Immediates: truncated

Operation:

if (falcon_version == 0) {
DST = DST & ~1 | (SRC1 >> bit & 1);

} else {
DST = SRC1 >> bit & 1;
$flags.s = 0;
$flags.z = (DST == 0);

}

2.10. falcon microprocessor 335



nVidia Hardware Documentation, Release git

Bit manipulation: bset, bclr, btgl

Set, clear, or flip a specified bit of a register. The requested bit index is masked off to 5 bits. No flags are set.

Instructions:

Name Description Subopcode - opcodes f0, fd, f9 Subopcode - opcode f4
bset Set a bit 9 31
bclr Clear a bit a 32
btgl Flip a bit b 33

Instruction class: unsized

Execution time: 1 cycle

Operands: DST, SRC

Forms:

Form Opcode
R2, I8 f0
R2, R1 fd
$flags, I8 f4
$flags, R2 f9

Immediates: truncated

Operation:

bit = SRC & 0x1f;
if (op == bset)

DST |= 1 << bit;
else if (op == bclr)

DST &= ~(1 << bit);
else // op == btgl

DST ^= 1 << bit;

Division and remainder: div, mod

Does unsigned 32-bit division / modulus. Sets no flags. If a division by 0 is requested, no exception happens - the
division result is always 0xffffffff in this case, and the modulus result is equal to the first source.

Instructions:

Name Description Present on Subopcode
div Divide v3+ units c
mod Take modulus v3+ units d

Instruction class: unsized

Execution time: 30-33 cycles

Operands: DST, SRC1, SRC2

336 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Forms:

Form Opcode
R1, R2, I8 c0
R1, R2, I16 e0
R3, R2, R1 ff

Immediates: zero-extended

Operation:

if (SRC2 == 0) {
dres = 0xffffffff;

} else {
dres = SRC1 / SRC2;

}
if (op == div)

DST = dres;
else // op == mod

DST = SRC1 - dres * SRC2;

Setting predicates: setp

Sets bit #SRC2 in $flags to bit 0 of SRC1. The bit index is masked off to 5 bits.

Instructions:

Name Description Subopcode
setp Set predicate 8

Instruction class: unsized

Execution time: 1 cycle

Operands: SRC1, SRC2

Forms:

Form Opcode
R2, I8 f2
R2, R1 fa

Immediates: truncated

Operation:

bit = SRC2 & 0x1f;
$flags = ($flags & ~(1 << bit)) | (SRC1 & 1) << bit;

2.10.4 Data space

2.10. falcon microprocessor 337



nVidia Hardware Documentation, Release git

Contents

• Data space

– Introduction

– The stack

– Pseudocode conventions

– Load: ld

– Store: st

– Push onto stack: push

– Pop from stack: pop

– Adjust stack pointer: add

– Accessing data segment through IO

Todo: document UAS

Introduction

Data segment of the falcon is inside the microcontroller itself. Its size can be determined by looking at UC_CAPS
register, bits 9-16 shifted left by 8.

The segment has byte-oriented addressing and can be accessed in units of 8, 16, or 32 bits. Unaligned accesses are not
supported and cause botched reads or writes.

Multi-byte quantities are stored as little-endian.

The stack

The stack is also stored in data segment. Stack pointer is stored in $sp special register and is always aligned to 4 bytes.
Stack grows downwards, with $sp pointing at the last pushed value. The low 2 bits of $sp and bits higher than what’s
needed to span the data space are forced to 0.

Pseudocode conventions

sz, for sized instructions, is the selected size of operation: 8, 16, or 32.

LD(size, address) returns the contents of size-bit quantity in data segment at specified address:

int LD(size, addr) {
if (size == 32) {

addr &= ~3;
return D[addr] | D[addr + 1] << 8 | D[addr + 2] << 16 | D[addr + 3] <

→˓< 24;
} else if (size == 16) {

addr &= ~1;
return D[addr] | D[addr + 1] << 8;

} else { // size == 8

(continues on next page)

338 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

return D[addr];
}

}

ST(size, address, value) stores the given size-bit value to data segment:

void ST(size, addr, val) {
if (size == 32) {

if (addr & 1) { // fuck up the written datum as penalty for unaligned
→˓access.

val = (val & 0xff) << (addr & 3) * 8;
} else if (addr & 2) {

val = (val & 0xffff) << (addr & 3) * 8;
}
addr &= ~3;
D[addr] = val;
D[addr + 1] = val >> 8;
D[addr + 2] = val >> 16;
D[addr + 3] = val >> 24;

} else if (size == 16) {
if (addr & 1) {

val = (val & 0xff) << (addr & 1) * 8;
}
addr &= ~1;
D[addr] = val;
D[addr + 1] = val >> 8;

} else { // size == 8
D[addr] = val;

}
}

Load: ld

Loads 8-bit, 16-bit or 32-bit quantity from data segment to register.

Instructions:

Name Description Subopcode - normal Subopcode - with $sp
ld Load a value from data segment 8 0

Instruction class: sized

Operands: DST, BASE, IDX

Forms:

Form Opcode
R1, R2, I8 10
R2, $sp, I8 34
R2, $sp, R1 3a
R3, R2, R1 3c

Immediates: zero-extended

Operation:

2.10. falcon microprocessor 339



nVidia Hardware Documentation, Release git

DST = LD(sz, BASE + IDX * (sz/8));

Store: st

Stores 8-bit, 16-bit or 32-bit quantity from register to data segment.

Instructions:

Name Description Subopcode - normal Subopcode - with $sp
st Store a value to data segment 0 1

Instruction class: sized

Operands: BASE, IDX, SRC

Forms:

Form Opcode
R2, I8, R1 00
$sp, I8, R2 30
R2, 0, R1 38
$sp, R1, R2 38

Immediates: zero-extended

Operation:

ST(sz, BASE + IDX * (sz/8), SRC);

Push onto stack: push

Decrements $sp by 4, then stores a 32-bit value at top of the stack.

Instructions:

Name Description Subopcode
push Push a value onto stack 0

Instruction class: unsized

Operands: SRC

Forms:

Form Opcode
R2 f9

Operation:

$sp -= 4;
ST(32, $sp, SRC);

340 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Pop from stack: pop

Loads 32-bit value from top of the stack, then incrments $sp by 4.

Instructions:

Name Description Subopcode
pop Pops a value from the stack 0

Instruction class: unsized

Operands: DST

Forms:

Form Opcode
R2 f2

Operation:

DST = LD(32, $sp);
$sp += 4;

Adjust stack pointer: add

Adds a value to the stack pointer.

Instructions:

Name Description Subopcode - opcodes f4, f5 Subopcode - opcode f9
add Add a value to the stack pointer. 30 1

Instruction class: unsized

Operands: DST, SRC

Forms:

Form Opcode
$sp, I8 f4
$sp, I16 f5
$sp, R2 f9

Immediates: sign-extended

Operation:

$sp += SRC;

Accessing data segment through IO

On v3+, the data segment is accessible through normal IO space through index/data reg pairs. The number of available
index/data pairs is accessible by UC_CAPS2 register. This number is equal to 4 on PDAEMON, 1 on other engines:

2.10. falcon microprocessor 341



nVidia Hardware Documentation, Release git

MMIO 0x1c0 + i * 8 / I[0x07000 + i * 0x200]: DATA_INDEX Selects the place in D[] accessed by DATA reg. Bits:

• bits 2-15: bits 2-15 of the data address to poke

• bit 24: write autoincrement flag: if set, every write to corresponding DATA register increments the address
by 4

• bit 25: read autoincrement flag: like 24, but for reads

MMIO 0x1c4 + i * 8 / I[0x07100 + i * 0x200]: DATA Writes execute ST(32, DATA_INDEX & 0xfffc, value); and
increment the address if write autoincrement is enabled. Reads return the result of LD(32, DATA_INDEX &
0xfffc); and increment if read autoincrement is enabled.

i should be less than DATA_PORTS value from UC_CAPS2 register.

On v0, the data segment is instead accessible through the high falcon MMIO range, see v0 code/data upload registers
for details.

2.10.5 Branch instructions

Contents

• Branch instructions

– Introduction

– $pc register

– Pseudocode conventions

– Conditional branch: bra

– Unconditional branch: jmp

– Subroutine call: call

– Subroutine return: ret

Todo: document ljmp/lcall

Introduction

The flow control instructions on Falcon include conditional relative branches, unconditional absolute branches, ab-
solute calls, and returns. Calls use the stack in data segment for storage for return addresses [see The stack]. The
conditions available for branching are based on the low 12 bits of $flags register:

• bits 0-7: p0-p7, general-purpose predicates

• bit 8: c, carry flag

• bit 9: o, signed overflow flag

• bit a: s, sign flag

• bit b: z, zero flag

c, o, s, z flags are automatically set by many ALU instructions, p0-p7 have to be explicitely manipulated. See $flags
result bits for more details.

342 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

When a branching instruction is taken, the execution time is either 4 or 5 cycles. The execution time depends on the
address of the next instruction to be executed. If this instruction can be loaded in one cycle (the instruction is contained
in a single aligned 32-bit memory block in the code section), 4 cycles will be necessary. If the instruction is split in
two blocks, 5 cycles will then be necessary.

$pc register

Address of the current instruction is always available through the read-only $pc special register.

Pseudocode conventions

$pc is usually automatically incremented by opcode length after each instruction - documentation for other kinds of
instructions doesn’t mention it explicitely for each insn. However, due to the nature of this category of instructions,
all effects on $pc are mentioned explicitely in this file.

oplen is the length of the currently executed instruction in bytes.

See also conventions for <data instructions.

Conditional branch: bra

Branches to a given location if the condition evaluates to true. Target is $pc-relative.

Instructions:

Name Description Present on Subopcode
bra pX if predicate true all units 00+X
bra c if carry all units 08
bra b if unsigned below all units 08
bra o if overflow all units 09
bra s if sign set / negative all units 0a
bra z if zero all units 0b
bra e if equal all units 0b
bra a if unsigned above all units 0c
bra na if not unsigned above all units 0d
bra be if unsigned below or equal all units 0d
bra always all units 0e
bra npX if predicate false all units 10+X
bra nc if not carry all units 18
bra nb if not unsigned below all units 18
bra ae if unsigned above or equal all units 18
bra no if not overflow all units 19
bra ns if sign unset / positive all units 1a
bra nz if not zero all units 1b
bra ne if not equal all units 1b
bra g if signed greater v3+ units 1c
bra le if signed less or equal v3+ units 1d
bra l if signed less v3+ units 1e
bra ge if signed greater or equal v3+ units 1f

Instruction class: unsized

Execution time: 1 cycle if not taken, 4-5 cycles if taken

2.10. falcon microprocessor 343



nVidia Hardware Documentation, Release git

Operands: DIFF

Forms:

Form Opcode
I8 f4
I16 f5

Immediates: sign-extended

Operation:

switch (cc) {
case $pX: // $p0..$p7

cond = $flags.$pX;
break;

case c:
cond = $flags.c;
break;

case o:
cond = $flags.o;
break;

case s:
cond = $flags.s;
break;

case z:
cond = $flags.z;
break;

case a:
cond = !$flags.c && !$flags.z;
break;

case na:
cond = $flags.c || $flags.z;
break;

case (none):
cond = 1;
break;

case not $pX: // $p0..$p7
cond = !$flags.$pX;
break;

case nc:
cond = !$flags.c;
break;

case no:
cond = !$flags.o;
break;

case ns:
cond = !$flags.s;
break;

case nz:
cond = !$flags.z;
break;

case g:
cond = !($flags.o ^ $flags.s) && !$flags.z;
break;

case le:
cond = ($flags.o ^ $flags.s) || $flags.z;
break;

(continues on next page)

344 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

case l:
cond = $flags.o ^ $flags.s;
break;

case ge:
cond = !($flags.o ^ $flags.s);
break;

}
if (cond)

$pc = $pc + DIFF;
else

$pc = $pc + oplen;

Unconditional branch: jmp

Branches to the target. Target is specified as absolute address. Yes, the immediate forms are pretty much redundant
with the relative branch form.

Instructions:

Name Description Subopcode - opcodes f4, f5 Subopcode - opcode f9
jmp Unconditional jump 20 4

Instruction class: unsized

Execution time: 4-5 cycles

Operands: TRG

Forms:

Form Opcode
I8 f4
I16 f5
R2 f9

Immediates: zero-extended

Operation:

$pc = TRG;

Subroutine call: call

Pushes return address onto stack and branches to the target. Target is specified as absolute address.

Instructions:

Name Description Subopcode - opcodes f4, f5 Subopcode - opcode f9
call Call a subroutine 21 5

Instruction class: unsized

Execution time: 4-5 cycles

2.10. falcon microprocessor 345



nVidia Hardware Documentation, Release git

Operands: TRG

Forms:

Form Opcode
I8 f4
I16 f5
R2 f9

Immediates: zero-extended

Operation:

$sp -= 4;
ST(32, $sp, $pc + oplen);
$pc = TRG;

Subroutine return: ret

Returns from a previous call.

Instructions:

Name Description Subopcode
ret Return from a subroutine 0

Instruction class: unsized

Execution time: 5-6 cycles

Operands: [none]

Forms:

Form Opcode
[no operands] f8

Operation:

$pc = LD(32, $sp);
$sp += 4;

2.10.6 Processor control

Contents

• Processor control

– Introduction

– Execution state

* The EXIT interrupt

346 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

* Halting microcode execution: exit

* Waiting for interrupts: sleep

* Processor execution control registers

– Accessing special registers: mov

– Processor capability readout

Todo: write me

Introduction

Todo: write me

Execution state

The falcon processor can be in one of three states:

• RUNNING: processor is actively executing instructions

• STOPPED: no instructions are being executed, interrupts are ignored

• SLEEPING: no instructions are being executed, but interrupts can restart execution

The state can be changed as follows:

From To Cause
any STOPPED Reset [non-crypto]
any RUNNING Reset [crypto]
STOPPED RUNNING Start by UC_CTRL
RUNNING STOPPED Exit instruction
RUNNING STOPPED Double trap
RUNNING SLEEPING Sleep instruction
SLEEPING RUNNING Interrupt

The EXIT interrupt

Whenever falcon execution state is changed to STOPPED for any reason other than reset (exit instruction, double trap,
or the crypto reset scrubber finishing), falcon interrupt line 4 is active for one cycle (triggering the EXIT interrupt if
it’s set to level mode).

Halting microcode execution: exit

Halts microcode execution, raises EXIT interrupt.

Instructions:

2.10. falcon microprocessor 347



nVidia Hardware Documentation, Release git

Name Description Subopcode
exit Halt microcode execution 2

Instruction class: unsized

Operands: [none]

Forms:

Form Opcode
[no operands] f8

Operation:

EXIT;

Waiting for interrupts: sleep

If the $flags bit given as argument is set, puts the microprocessor in sleep state until an unmasked interrupt is received.
Otherwise, is a nop. If interrupted, return pointer will point to start of the sleep instruction, restarting it if the $flags
bit hasn’t been cleared.

Instructions:

Name Description Subopcode
sleep Wait for interrupts 28

Instruction class: unsized

Operands: FLAG

Forms:

Form Opcode
I8 f4

Operation:

if ($flags & 1 << FLAG)
state = SLEEPING;

Processor execution control registers

Todo: write me

Accessing special registers: mov

Todo: write me

348 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Processor capability readout

Todo: write me

2.10.7 Code virtual memory

Contents

• Code virtual memory

– Introduction

– TLB operations: PTLB, VTLB, ITLB

* Executing TLB operations through IO

* TLB readout instructions: ptlb, vtlb

* TLB invalidation instruction: itlb

– VM usage on code execution

– Code upload and peeking

Introduction

On v3+, the falcon code segment uses primitive paging/VM via simple reverse page table. The page size is 0x100
bytes.

The physical<->virtual address mapping information is stored in hidden TLB memory. There is one TLB cell for each
physical code page, and it specifies the virtual address corresponding to it + some flags. The flags are:

• bit 0: usable. Set if page is mapped and complete.

• bit 1: busy. Set if page is mapped, but is still being uploaded.

• bit 2: secret. Set if page contains secret code. [see Cryptographic coprocessor]

Todo: check interaction of secret / usable flags and entering/exitting auth mode

A TLB entry is considered valid if any of the three flags is set. Whenever a virtual address is accessed, the TLBs
are scanned for a valid entry with matching virtual address. The physical page whost TLB matched is then used to
complete the access. It’s an error if no page matched, or if there’s more than one match.

The number of physical pages in the code segment can be determined by looking at UC_CAPS register, bits 0-8.
Number of usable bits in virtual page index can be determined by looking at UC_CAPS2 register, bits 16-19. Ie. valid
virtual addresses of pages are 0 .. (1 << (UC_CAPS2[16:19])) * 0x100.

The TLBs can be modified/accessed in 6 ways:

• executing code - reads TLB corresponding to current $pc

• PTLB - looks up TLB for a given physical page

• VTLB - looks up TLB for a given virtual page

2.10. falcon microprocessor 349



nVidia Hardware Documentation, Release git

• ITLB - invalidates TLB of a given physical page

• uploading code via IO access window

• uploading code via xfer

We’ll denote the flags of TLB entry of physical page i as TLB[i].flags, and the virtual page index as TLB[i].virt.

TLB operations: PTLB, VTLB, ITLB

These operations take 24-bit parameters, and except for ITLB return a 32-bit result. They can be called from falcon
microcode as instructions, or through IO ports.

ITLB(physidx) clears the TLB entry corresponding to a specified physical page. The page is specified as page index.
ITLB, however, cannot clear pages containing secret code - the page has to be reuploaded from scratch with non-secret
data first.

void ITLB(b24 physidx) {
if (!(TLB[physidx].flags & 4)) {

TLB[physidx].flags = 0;
TLB[physidx].virt = 0;

}
}

PTLB(physidx) returns the TLB of a given physical page. The format of the result is:

• bits 0-7: 0

• bits 8-23: virtual page index

• bits 24-26: flags

• bits 27-31: 0

b32 PTLB(b24 physidx) {
return TLB[physidx].flags << 24 | TLB[physidx].virt << 8;

}

VTLB(virtaddr) returns the TLB that covers a given virtual address. The result is:

• bits 0-7: physical page index

• bits 8-23: 0

• bits 24-26: flags, ORed across all matches

• bit 30: set if >1 TLB matches [multihit error]

• bit 31: set if no TLB matches [no hit error]

b32 VTLB(b24 virtaddr) {
phys = 0;
flags = 0;
matches = 0;
for (i = 0; i < UC_CAPS.CODE_PAGES; i++) {

if (TLB[i].flags && TLB[i].virt == (virtaddr >> 8 & ((1 << UC_CAPS2.
→˓VM_PAGES_LOG2) - 1))) {

flags |= TLB[i].flags;
phys = i;
matches++;

}

(continues on next page)

350 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

}
res = phys | flags << 24;
if (matches == 0)

res |= 0x80000000;
if (matches > 1)

res |= 0x40000000;
return res;

}

Executing TLB operations through IO

The three *TLB operations can be executed by poking TLB_CMD register. For PTLB and VTLB, the result will then
be visible in TLB_CMD_RES register:

MMIO 0x140 / I[0x05000]: TLB_CMD Runs a given TLB command on write, returns last value written on read.

• bits 0-23: Parameter to the TLB command

• bits 24-25: TLB command to execute

– 1: ITLB

– 2: PTLB

– 3: VTLB

MMIO 0x144 / I[0x05100]: TLB_CMD_RES Read-only, returns the result of the last PTLB or VTLB operation
launched through TLB_CMD.

TLB readout instructions: ptlb, vtlb

These instructions run the corresponding TLB readout commands and return their results.

Instructions:

Name Description Present on Subopcode
ptlb run PTLB operation v3+ units 2
vtlb run VTLB operation v3+ units 3

Instruction class: unsized

Operands: DST, SRC

Forms:

Form Opcode
R1, R2 fe

Operation:

if (op == ptlb)
DST = PTLB(SRC);

else
DST = VTLB(SRC);

2.10. falcon microprocessor 351



nVidia Hardware Documentation, Release git

TLB invalidation instruction: itlb

This instructions runs the ITLB command.

Instructions:

Name Description Present on Subopcode
itlb run ITLB operation v3+ units 8

Instruction class: unsized

Operands: SRC

Forms:

Form Opcode
R2 f9

Operation:

ITLB(SRC);

VM usage on code execution

Whenever instruction fetch is attempted, the VTLB operation is done on fetch address. If it returns no-hit or multihit
error, a trap is generated and the $tstatus reason field is set to 0xa [for no-hit] or 0xb [for multihit]. Note that, if the
faulting instruction happens to cross a page bounduary and the second page triggered a fault, the $pc register saved in
$tstatus wiill not point to the page that faulted.

If no error was triggered, flag 0 [usable] is checked. If it’s set, the access is finished using the physical page found by
VTLB. If usable isn’t set, but flag 1 [busy] is set, the fetch is paused and will be retried when TLBs are modified in
any way. Otherwise, flag 2 [secret] must be the only flag set. In this case, a switch to authenticated mode is attempted
- see Cryptographic coprocessor for details.

Code upload and peeking

Code can be uploaded in two ways: direct upload via a window in IO space, or by an xfer [see Code/data xfers to/from
external memory]. The IO registers relevant are:

MMIO 0x180 / I[0x06000]: CODE_INDEX Selects the place in code segment accessed by CODE reg.

• bits 2-15: bits 2-15 of the physical code address to poke

• bit 24: write autoincrement flag: if set, every write to corresponding CODE register increments the address
by 4

• bit 25: read autoincrement flag: like 24, but for reads

• bit 28: secret: if set, will attempt a switch to secret lockdown on next CODE write attempt and will mark
uploaded code as secret.

• bit 29: secret lockdown [RO]: if set, currently in secret lockdown mode - CODE_INDEX cannot be mod-
ified manually until a complete page is uploaded and will auto-increment on CODE writes irrespective of
write autoincrement flag. Reads will fail and won’t auto-increment.

• bit 30: secret fail [RO]: if set, entering secret lockdown failed due to attempt to start upload from not page
aligned address.

352 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bit 31: secret reset scrubber active [RO]: if set, the window isn’t currently usable because the reset scrubber
is busy.

See Cryptographic coprocessor for the secret stuff.

MMIO 0x184 / I[0x06100]: CODE Writes execute CST(CODE_INDEX & 0xfffc, value); and increment the address
if write autoincrement is enabled or secret lockdown is in effect. Reads return the contents of code segment at
physical address CODE_INDEX & 0xfffc and increment if read autoincrement is enabled and secret lockdown
is not in effect. Attempts to read from physical code pages with the secret flag will return 0xdead5ec1 instead of
the real contents. The values read/written are 32-bit LE numbers corresponding to 4 bytes in the code segment.

MMIO 0x188 / I[0x06200]: CODE_VIRT Selects the virtual page index for uploaded code. The index is sampled
when writing word 0 of each page.

CST is defined thus:

void CST(addr, value) {
physidx = addr >> 8;
// if secret lockdown needed for the page, but starting from non-0 address,

→˓fail.
if ((addr & 0xfc) != 0 && (CODE_INDEX.secret || TLB[physidx] & 4) && !CODE_

→˓INDEX.secret_lockdown)
CODE_INDEX.secret_fail = 1;

if (CODE_INDEX.secret_fail || CODE_INDEX.secret_scrubber_active) {
// nothing.

} else {
enter_lockdown = 0;
exit_lockdown = 0;
if ((addr & 0xfc) == 0) {

// if first word uploaded...
if (CODE_INDEX.secret || TLB[physidx].flags & 4) {

// if uploading secret code, or uploading code to
→˓replace secret code, enter lockdown

enter_lockdown = 1;
}
// store virt addr
TLB[physid].virt = CODE_VIRT;
// clear usable flag, set busy flag
TLB[physid].flags = 2;
if (CODE_INDEX.secret)

TLB[physid].flags |= 4;
}
code[addr] = value; // write 4 bytes to code segment
if ((addr & 0xfc) == 0xfc) {

// last word uploaded, page now complete.
exit_lockdown = 1;
// clear busy, set usable or secret
if (CODE_INDEX.secret)

TLB[physid].flags = 4;
else

TLB[physid].flags = 1;
}
if (CODE_INDEX.write_autoincrement || CODE_INDEX.secret_lockdown)

addr += 4;
if (enter_lockdown)

CODE_INDEX.secret_lockdown = 1;
if (exit_lockdown)

CODE_INDEX.secret_lockdown = 0;
}

2.10. falcon microprocessor 353



nVidia Hardware Documentation, Release git

In summary, to upload a single page of code:

1. Set CODE_INDEX to physical_addr | 0x1000000 [and | 0x10000000 if uploading secret code]

2. Set CODE_VIRT to virtual page index it should be mapped at

3. Write 0x40 words to CODE

Uploading code via xfers will set TLB[physid].virt = ext_offset >> 8 and TLB[physid].flags = (secret ? 6 : 2) right
after the xfer is started, then set TLB[physid].flags = (secret ? 4 : 1) when it’s complete. See Code/data xfers to/from
external memory for more information.

2.10.8 Interrupts

Contents

• Interrupts

– Introduction

– Interrupt status and enable registers

– Interrupt mode setup

– Interrupt routing

– Interrupt delivery

– Trap delivery

– Returning form an interrupt: iret

– Software trap trigger: trap

Introduction

falcon has interrupt support. There are 16 interrupt lines on each engine, and two interrupt vectors on the micropro-
cessor. Each of the interrupt lines can be independently routed to one of the microprocessor vectors, or to the PMC
interrupt line, if the engine has one. The lines can be individually masked as well. They can be triggered by hw events,
or by the user.

The lines are:

Line v3+ type Name Description
0 edge PERIODIC periodic timer
1 edge WATCHDOG watchdog timer
2 level FIFO FIFO data available
3 edge CHSW PFIFO channel switch
4 edge EXIT processor stopped
5 edge ??? [related to falcon+0x0a4]
6-7 edge SCRATCH scratch [unused by hw, user-defined]
8-9 edge by default - engine-specific
10-15 level by default - engine-specific

354 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: figure out interrupt 5

Each interrupt line has a physical wire assigned to it. For edge-triggered interrupts, there’s a flip-flop that’s set by
0-to-1 edge on the wire or a write to INTR_SET register, and cleared by writing to INTR_CLEAR register. For
level-triggered interrupts, interrupt status is wired straight to the input.

Interrupt status and enable registers

The interrupt and interrupt enable registers are actually visible as set/clear/status register triples: writing to the set
register sets all bits that are 1 in the written value to 1. Writing to clear register sets them to 0. The status register
shows the current value when read, but cannot be written.

MMIO 0x000 / I[0x00000]: INTR_SET
MMIO 0x004 / I[0x00100]: INTR_CLEAR
MMIO 0x008 / I[0x00200]: INTR [status]

A mask of currently pending interrupts. Write to SET to manually trigger
an interrupt. Write to CLEAR to ack an interrupt. Attempts to SET or CLEAR
level-triggered interrupts are ignored.

MMIO 0x010 / I[0x00400]: INTR_EN_SET
MMIO 0x014 / I[0x00500]: INTR_EN_CLEAR
MMIO 0x018 / I[0x00600]: INTR_EN [status]

A mask of enabled interrupts. If a bit is set to 0 here, the interrupt
handler isn't run if a given interrupt happens [but the INTR bit is still
set and it'll run once INTR_EN bit is set again].

Interrupt mode setup

MMIO 0x00c / I[0x00300]: INTR_MODE [v3+ only] Bits 0-15 are modes for the corresponding interrupt lines. 0
is edge trigered, 1 is level triggered.

Setting a sw interrupt to level-triggered, or a hw interrupt to mode it wasn’t meant to be set is likely a bad idea.

This register is set to 0xfc04 on reset.

Todo: check edge/level distinction on v0

Interrupt routing

MMIO 0x01c / I[0x00700]: INTR_ROUTING

• bits 0-15: bit 0 of interrupt routing selector, one for each interrupt line

• bits 16-31: bit 1 of interrupt routing selector, one for each interrupt line

For each interrupt line, the two bits from respective bitfields are put together to find its routing destination:

• 0: falcon vector 0

• 1: PMC HOST/DAEMON line

• 2: falcon vector 1

• 3: PMC NRHOST line [GF100+ selected engines only]

2.10. falcon microprocessor 355



nVidia Hardware Documentation, Release git

If the engine has a PMC interrupt line and any interrupt set for PMC irq delivery is active and unmasked, the corre-
sponding PMC interrupt input line is active.

Interrupt delivery

falcon interrupt delivery is controlled by $iv0, $iv1 registers and ie0, ie1, is0, is1 $flags bits. $iv0 is address of interrupt
vector 0. $iv1 is address of interrupt vector 1. ieX are interrupt enable bits for corresponding vectors. isX are interrupt
enable save bits - they store previous status of ieX bits during interrupt handler execution. Both ieX bits are always
cleared to 0 when entering an interrupt handler.

Whenever there’s an active and enabled interrupt set for vector X delivery, and ieX flag is set, vector X is called:

$sp -= 4;
ST(32, $sp, $pc);
$flags.is0 = $flags.ie0;
$flags.is1 = $flags.ie1;
$flags.ie0 = 0;
$flags.ie1 = 0;
if (falcon_version >= 4) {

$flags.unk16 = $flags.unk12;
$flags.unk1d = $flags.unk1a;
$flags.unk12 = 0;

}
if (vector 0)

$pc = $iv0;
else

$pc = $iv1;

Trap delivery

falcon trap delivery is controlled by $tv, $tstatus registers and ta $flags bit. Traps behave like interrupts, but are
triggered by events inside the UC.

$tv is address of trap vector. ta is trap active flag. $tstatus is present on v3+ only and contains information about last
trap. The bitfields of $tstatus are:

• bits 0-19 [or as many bits as required]: faulting $pc

• bits 20-23: trap reason

The known trap reasons are:

Reason Name Description
0-3 SOFTWARE software trap
8 INVALID_OPCODE invalid opcode
0xa VM_NO_HIT page fault - no hit
0xb VM_MULTI_HIT page fault - multi hit
0xf BREAKPOINT breakpoint hit

Whenever a trapworthy event happens on the uc, a trap is delivered:

if ($flags.ta) { // double trap?
EXIT;

}
$flags.ta = 1;

(continues on next page)

356 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

if (falcon_version != 0) // on v0, there's only one possible trap reason anyway [8]
$tstatus = $pc | reason << 20;

if (falcon_version >= 4) {
$flags.is0 = $flags.ie0;
$flags.is1 = $flags.ie1;
$flags.unk16 = $flags.unk12;
$flags.unk1d = $flags.unk1a;
$flags.ie0 = 0;
$flags.ie1 = 0;
$flags.unk12 = 0;

}
$sp -= 4;
ST(32, $sp, $pc);
$pc = $tv;

Todo: didn’t ieX -> isX happen before v4?

Returning form an interrupt: iret

Returns from an interrupt handler.

Instructions:

Name Description Subopcode
iret Return from an interrupt 1

Instruction class: unsized

Operands: [none]

Forms:

Form Opcode
[no operands] f8

Operation:

$pc = LD(32, $sp);
$sp += 4;
$flags.ie0 = $flags.is0;
$flags.ie1 = $flags.is1;
if (falcon_version >= 4) {

$flags.unk12 = $flags.unk16;
$flags.unk1a = $flags.unk1d;

}

Software trap trigger: trap

Triggers a software trap.

2.10. falcon microprocessor 357



nVidia Hardware Documentation, Release git

Instructions:

Name Description Present on Subopcode
trap 0 software trap #0 v3+ units 8
trap 1 software trap #1 v3+ units 9
trap 2 software trap #2 v3+ units a
trap 3 software trap #3 v3+ units b

Instruction class: unsized

Operands: [none]

Forms:

Form Opcode
[no operands] f8

Operation:

$pc += oplen; // return will be to the insn after this one
TRAP(arg);

2.10.9 Code/data xfers to/from external memory

Contents

• Code/data xfers to/from external memory

– Introduction

– xfer special registers

– Submitting xfer requests: xcld, xdld, xdst

– Waiting for xfer completion: xcwait, xdwait

– Submitting xfer requests via IO space

– xfer queue status registers

Introduction

The falcon has a builtin DMA controller that allows running asynchronous copies beteween falcon data/code segments
and external memory.

An xfer request consists of the following:

• mode: code load [external -> falcon code], data load [external -> falcon data], or data store [falcon data ->
external]

• external port: 0-7. Specifies which external memory space the xfer should use.

• external base: 0-0xffffffff. Shifted left by 8 bits to obtain the base address of the transfer in external memory.

• external offset: 0-0xffffffff. Offset in external memory, and for v3+ code segments, virtual address that code
should be loaded at.

358 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• local address: 0-0xffff. Offset in falcon code/data segment where data should be transferred. Physical address
for code xfers.

• xfer size: 0-6 for data xfers, ignored for code xfers [always effectively 6]. The xfer copies (4<<size) bytes.

• secret flag: Secret engines code xfers only. Specifies if the xfer should load secret code.

Todo: one more unknown flag on secret engines

Note that xfer functionality is greatly enhanced on secret engines to cover copying data to/from crypto registers. See
Cryptographic coprocessor for details.

xfer requests can be submitted either through special falcon instructions, or through poking IO registers. The requests
are stored in a queue and processed asynchronously.

A data load xfer copies (4<<$size) bytes from external memory port $port at address ($ext_base << 8) + $ext_offset
to falcon data segment at address $local_address. external offset and local address have to be aligned to the xfer size.

A code load xfer copies 0x100 bytes from external memory port $port at address ($ext_base << 8) + $ext_offset to
falcon code segment at physical address $local_address. Right after queuing the transfer, the code page is marked
“busy” and, for v3+, mapped to virtual address $ext_offset. If the secret flag is set, it’ll also be set for the page. When
the transfer is finished, The page flags are set to “usable” for non-secret pages, or “secret” for secret pages.

xfer special registers

There are 3 falcon special registers that hold parameters for uc-originated xfer requests. $xdbase stores ext_base for
data loads/stores, $xcbase stores ext_base for code loads. $xtargets stores the ports for various types of xfer:

• bits 0-2: port for code loads

• bits 8-10: port for data loads

• bits 12-14: port for data stores

The external memory that falcon will use depends on the particular engine. See ../graph/gf100-ctxctl/memif.txt for
GF100 PGRAPH CTXCTLs, Memory interface for the other engines.

Submitting xfer requests: xcld, xdld, xdst

These instruction submit xfer requests of the relevant type. ext_base and port are taken from $xdbase/$xcbase and
$xtargets special registers. ext_offset is taken from first operand, local_address is taken from low 16 bits of second
operand, and size [for data xfers] is taken from bits 16-18 of the second operand. Secret flag is taken from $cauth bit
16.

Instructions:

Name Description Subopcode
xcld code load 4
xdld data load 5
xdst data store 6

Instruction class: unsized

Operands: SRC1, SRC2

2.10. falcon microprocessor 359

../graph/gf100-ctxctl/memif.txt


nVidia Hardware Documentation, Release git

Forms:

Form Opcode
R2, R1 fa

Operation:

if (op == xcld)
XFER(mode=code_load, port=$xtargets[0:2], ext_base=$xcbase,

ext_offset=SRC1, local_address=(SRC2&0xffff),
secret=($cauth[16:16]));

else if (op == xdld)
XFER(mode=data_load, port=$xtargets[8:10], ext_base=$xdbase,

ext_offset=SRC1, local_address=(SRC2&0xffff),
size=(SRC2>>16));

else // xdst
XFER(mode=data_store, port=$xtargets[12:14], ext_base=$xdbase,

ext_offset=SRC1, local_address=(SRC2&0xffff),
size=(SRC2>>16));

Waiting for xfer completion: xcwait, xdwait

These instructions wait until all xfers of the relevant type have finished.

Instructions:

Name Description Subopcode
xdwait wait for all data loads/stores to finish 3
xcwait wait for all code loads to finish 7

Instruction class: unsized

Operands: [none]

Forms:

Form Opcode
[no operands] f8

Operation:

if (op == xcwait)
while (XFER_ACTIVE(mode=code_load));

else
while (XFER_ACTIVE(mode=data_load) || XFER_ACTIVE(mode=data_store));

Submitting xfer requests via IO space

There are 4 IO registers that can be used to manually submit xfer reuqests. The request is sent out by writing
XFER_CTRL register, other registers have to be set beforehand.

MMIO 0x110 / I[0x04400]: XFER_EXT_BASE Specifies the ext_base for the xfer that will be launched by
XFER_CTRL.

360 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

MMIO 0x114 / I[0x04500]: XFER_LOCAL_ADDRESS Specifies the local_address for the xfer that will be
launched by XFER_CTRL.

MMIO 0x118 / I[0x04600]: XFER_CTRL Writing requests a new xfer with given params, reading shows the last
value written + two status flags

• bit 0: pending [RO]: The last write to XFER_CTRL is still waiting for place in the queue. XFER_CTRL
shouldn’t be written until this bit clears.

• bit 1: ??? [RO]

• bit 2: secret flag [secret engines only]

• bit 3: ??? [secret engines only]

• bits 4-5: mode

– 0: data load

– 1: code load

– 2: data store

• bits 8-10: size

• bits 12-14: port

Todo: figure out bit 1. Related to 0x10c?

MMIO 0x11c / I[0x04700]: XFER_EXT_OFFSET Specifies the ext_offset for the xfer that will be launched by
XFER_CTRL.

Todo: how to wait for xfer finish using only IO?

xfer queue status registers

The status of the xfer queue can be read out through an IO register:

MMIO 0x120 / I[0x04800]: XFER_STATUS

• bit 1: busy. 1 if any data xfer is pending.

• bits 4-5: ??? writable

• bits 16-18: number of data stores pending

• bits 24-26: number of data loads pending

Todo: bits 4-5

Todo: RE and document this stuff, find if there’s status for code xfers

2.10. falcon microprocessor 361



nVidia Hardware Documentation, Release git

2.10.10 IO space

Contents

• IO space

– Introduction

– Common IO register list

– Scratch registers

– Engine status and control registers

– v0 code/data upload registers

– IO space writes: iowr, iowrs

– IO space reads: iord

Introduction

Every falcon engine has an associated IO space. The space consists of 32-bit IO registers, and is accessible in two
ways:

• host access by MMIO areas in BAR0

• falcon access by io* instructions

The IO space contains control registers for the microprocessor itself, interrupt and timer setup, code/data space access
ports, PFIFO communication registers, as well as registers for the engine-specific hardware that falcon is meant to
control.

The addresses are different between falcon and host. From falcon POV, the IO space is word-addressable 0x40000-
byte space. However, most registers are duplicated 64 times: bits 2-7 of the address are ignored. The few registers that
don’t ignore these bits are called “indexed” registers. From host POV, the falcon IO space is a 0x1000-byte window in
BAR0. Its base address is engine-dependent. First 0xf00 bytes of this window are tied to the falcon IO space, while
last 0x100 bytes contain several host-only registers. On G98:GF119, host mmio address falcon_base + X is directed
to falcon IO space address X << 6 | HOST_IO_INDEX << 2. On GF119+, some engines stopped using the indexed
accesses. On those, host mmio address falcon_base + X is directed to falcon IO space address X. HOST_IO_INDEX
is specified in the host-only MMIO register falcon_base + 0xffc:

MMIO 0xffc: HOST_IO_INDEX bits 0-5: selects bits 2-7 of the falcon IO space when accessed from host.

Unaligned accesses to the IO space are unsupported, both from host and falcon. Low 2 bits of addresses should be 0
at all times.

Todo: document v4 new addressing

Common IO register list

Host Falcon Present on Name Description
0x000 0x00000 all units INTR_SET trigger interrupt
0x004 0x00100 all units INTR_CLEAR clear interrupt

Continued on next page

362 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 18 – continued from previous page
Host Falcon Present on Name Description
0x008 0x00200 all units INTR interrupt status
0x00c 0x00300 v3+ units INTR_MODE interrupt edge/level
0x010 0x00400 all units INTR_EN_SET interrupt enable set
0x014 0x00500 all units INTR_EN_CLR interrupt enable clear
0x018 0x00600 all units INTR_EN interrupt enable status
0x01c 0x00700 all units INTR_DISPATCH interrupt routing
0x020 0x00800 all units PERIODIC_PERIOD periodic timer period
0x024 0x00900 all units PERIODIC_TIME periodic timer counter
0x028 0x00a00 all units PERIODIC_ENABLE periodic interrupt enable
0x02c 0x00b00 all units TIME_LOW PTIMER time low
0x030 0x00c00 all units TIME_HIGH PTIMER time high
0x034 0x00d00 all units WATCHDOG_TIME watchdog timer counter
0x038 0x00e00 all units WATCHDOG_ENABLE watchdog interrupt enable
0x040 0x01000 all units SCRATCH0 scratch register
0x044 0x01100 all units SCRATCH1 scratch register
0x048 0x01200 all units FIFO_ENABLE PFIFO access enable
0x04c 0x01300 all units STATUS busy/idle status [falcon/io.txt]
0x050 0x01400 all units CHANNEL_CUR current PFIFO channel
0x054 0x01500 all units CHANNEL_NEXT next PFIFO channel
0x058 0x01600 all units CHANNEL_CMD PFIFO channel control
0x05c 0x01700 all units STATUS_MASK busy/idle status mask? [falcon/io.txt]
0x060 0x01800 all units VM_SUPERVISOR ???
0x064 0x01900 all units FIFO_DATA FIFO command data
0x068 0x01a00 all units FIFO_CMD FIFO command
0x06c 0x01b00 v4+ units FIFO_DATA_WR FIFO command data write
0x070 0x01c00 all units FIFO_OCCUPIED FIFO commands available
0x074 0x01d00 all units FIFO_ACK FIFO command ack
0x078 0x01e00 all units FIFO_LIMIT FIFO size
0x07c 0x01f00 all units SUBENGINE_RESET reset subengines [falcon/io.txt]
0x080 0x02000 all units SCRATCH2 scratch register
0x084 0x02100 all units SCRATCH3 scratch register
0x088 0x02200 all units PM_TRIGGER perfmon triggers
0x08c 0x02300 all units PM_MODE perfmon signal mode
0x090 0x02400 all units ??? ???
0x094 0x02500 v3+ units ??? ???
0x098 0x02600 v3+ units BREAKPOINT[0] code breakpoint
0x09c 0x02700 v3+ units BREAKPOINT[1] code breakpoint
0x0a0 0x02800 v3+ units ??? ???
0x0a4 0x02900 v3+ units ENG_CONTROL ???
0x0a8 0x02a00 v4+ units PM_SEL perfmon signal select [falcon/perf.txt]
0x0ac 0x02b00 v4+ units HOST_IO_INDEX IO space index for host [falcon/io.txt] [XXX: doc]
0x0b0 0x02c00 v5+ units ??? more breakpoints?
0x0b4 0x02d00 v5+ units ??? more breakpoints?
0x0b8 0x02e00 v5+ units ??? more breakpoints?
0x100 0x04000 all units UC_CTRL microprocessor control [falcon/proc.txt]
0x104 0x04100 all units UC_ENTRY microcode entry point [falcon/proc.txt]
0x108 0x04200 all units UC_CAPS microprocessor caps [falcon/proc.txt]
0x10c 0x04300 all units UC_BLOCK_ON_FIFO microprocessor block [falcon/proc.txt]
0x110 0x04400 all units XFER_EXT_BASE xfer external base

Continued on next page

2.10. falcon microprocessor 363



nVidia Hardware Documentation, Release git

Table 18 – continued from previous page
Host Falcon Present on Name Description
0x114 0x04500 all units XFER_FALCON_ADDR xfer falcon address
0x118 0x04600 all units XFER_CTRL xfer control
0x11c 0x04700 all units XFER_EXT_ADDR xfer external offset
0x120 0x04800 all units XFER_STATUS xfer status
0x124 0x04900 crypto units CX_STATUS crypt xfer status [falcon/crypt.txt]
0x128 0x04a00 v3+ units UC_STATUS microprocessor status [falcon/proc.txt]
0x12c 0x04b00 v3+ units UC_CAPS2 microprocessor caps [falcon/proc.txt]
0x130 0x04c00 v5+ units UC_CTRL_ALIAS microprocessor control [falcon/proc.txt]
0x134 0x04d00 v5+ units ??? ???
0x140 0x05000 v3+ units TLB_CMD code VM command
0x144 0x05100 v3+ units TLB_CMD_RES code VM command result
0x148 0x05200 v4+ units BRANCH_HISTORY_CTRL ???
0x14c 0x05300 v4+ units BRANCH_HISTORY_PC ???
0x150 0x05400 UNK31 units ??? ???
0x154 0x05500 UNK31 units ??? ???
0x158 0x05600 UNK31 units ??? ???
0x160 0x05800 UAS units UAS_IO_WINDOW UAS I[] space window [falcon/data.txt]
0x164 0x05900 UAS units UAS_CONFIG UAS configuration [falcon/data.txt]
0x168 0x05a00 UAS units UAS_FAULT_ADDR UAS MMIO fault address [falcon/data.txt]
0x16c 0x05b00 UAS units UAS_FAULT_STATUS UAS MMIO fault status [falcon/data.txt]
0x174 0x05d00 v5+ units ??? ???
0x178 0x05e00 v5+ units ??? ???
0x17c 0x05f00 v5+ units ??? ???
0x180 0x06000 v3+ units CODE_INDEX code access window addr
0x184 0x06100 v3+ units CODE code access window
0x188 0x06200 v3+ units CODE_VIRT_ADDR code access virt addr
0x1c0 0x07000 v3+ units DATA_INDEX[0] data access window addr
0x1c4 0x07100 v3+ units DATA[0] data access window
0x1c8 0x07200 v3+ units DATA_INDEX[1] data access window addr
0x1cc 0x07300 v3+ units DATA[1] data access window
0x1d0 0x07400 v3+ units DATA_INDEX[2] data access window addr
0x1d4 0x07500 v3+ units DATA[2] data access window
0x1d8 0x07600 v3+ units DATA_INDEX[3] data access window addr
0x1dc 0x07700 v3+ units DATA[3] data access window
0x1e0 0x07800 v3+ units DATA_INDEX[4] data access window addr
0x1e4 0x07900 v3+ units DATA[4] data access window
0x1e8 0x07a00 v3+ units DATA_INDEX[5] data access window addr
0x1ec 0x07b00 v3+ units DATA[5] data access window
0x1f0 0x07c00 v3+ units DATA_INDEX[6] data access window addr
0x1f4 0x07d00 v3+ units DATA[6] data access window
0x1f8 0x07e00 v3+ units DATA_INDEX[7] data access window addr
0x1fc 0x07f00 v3+ units DATA[7] data access window
0x200 0x08000 v4+ units DEBUG_CMD debuging command [falcon/debug.txt]
0x204 0x08100 v4+ units DEBUG_ADDR address for DEBUG_CMD [falcon/debug.txt]
0x208 0x08200 v4+ units DEBUG_DATA_WR debug data to write [falcon/debug.txt]
0x20c 0x08300 v4+ units DEBUG_DATA_RD debug data last read [falcon/debug.txt]
0x240 0x09000 v5+ units ??? ???
0xfe8 - GF100- v3 PM_SEL perfmon signal select [falcon/perf.txt]
0xfec - v0, v3 UC_SP microprocessor $sp reg [falcon/proc.txt]

Continued on next page

364 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 18 – continued from previous page
Host Falcon Present on Name Description
0xff0 - v0, v3 UC_PC microprocessor $pc reg [falcon/proc.txt]
0xff4 - v0, v3 UPLOAD old code/data upload
0xff8 - v0, v3 UPLOAD_ADDR old code/data up addr
0xffc - v0, v3 HOST_IO_INDEX IO space index for host [falcon/io.txt]

Todo: list incomplete for v4

Registers starting from 0x400/0x10000 are engine-specific and described in engine documentation.

Scratch registers

MMIO 0x040 / I[0x01000]: SCRATCH0
MMIO 0x044 / I[0x01100]: SCRATCH1
MMIO 0x080 / I[0x02000]: SCRATCH2
MMIO 0x084 / I[0x02100]: SCRATCH3

Scratch 32-bit registers, meant for host <-> falcon communication.

Engine status and control registers

MMIO 0x04c / I[0x01300]: STATUS Status of various parts of the engine. For each bit, 1 means busy, 0 means
idle. bit 0: UC. Microcode. 1 if microcode is running and not on a sleep insn. bit 1: ??? Further bits are
engine-specific.

MMIO 0x05c / I[0x01700]: STATUS_MASK A bitmask of nonexistent status bits. Each of bits 0-15 is set to 0 if
corresponding STATUS line is tied to anything in this particular engine, 1 if it’s unused. [?]

Todo: clean. fix. write. move.

MMIO 0x07c / I[0x01f00]: SUBENGINE_RESET When written with value 1, resets all subengines that this falcon
engine controls - that is, everything in IO space addresses 0x10000:0x20000. Note that this includes the memory
interface - using this register while an xfer is in progress is ill-advised.

v0 code/data upload registers

MMIO 0xff4: UPLOAD The data to upload, see below

MMIO 0xff8: UPLOAD_ADDR bits 2-15: bits 2-15 of the code/data address being uploaded. bit 20: target segment.
0 means data, 1 means code. bit 21: readback. bit 24: xfer busy [RO] bit 28: secret flag - secret engines only
[see falcon/crypt.txt] bit 29: code busy [RO]

This pair of registers can be used on v0 to read/write code and data segments. It’s quite fragile and should only be
used when no xfers are active. bit 24 of UPLOAD_ADDR is set when this is the case. On v3+, this pair is broken and
should be avoided in favor of the new-style access via CODE and DATA ports.

To write data, poke address to UPLOAD_ADDR, then poke the data words to UPLOAD. The address will auto-
increment as words are uploaded.

To read data or code, poke address + readback flag to UPLOAD_ADDR, then read the word from UPLOAD. This
only works for a single word, and you need to poke UPLOAD_ADDR again for each subsequent word.

2.10. falcon microprocessor 365



nVidia Hardware Documentation, Release git

The code segment is organised in 0x100-byte pages. On secretful engines, each page can be secret or not. Reading
from secret pages doesn’t work and you just get 0. Writing code segment can only be done in aligned page units.

To write a code page, write start address of the page + secret flag [if needed] to UPLOAD_ADDR, then poke multiple
of 0x40 words to UPLOAD. The address will autoincrement. The process cannot be interrupted except between pages.
The “code busy” flag in UPLOAD_ADDR will be lit when this is the case.

IO space writes: iowr, iowrs

Writes a word to IO space. iowr does asynchronous writes [queues the write, but doesn’t wait for completion], iowrs
does synchronous write [write is guaranteed to complete before executing next instruction]. On v0 cards, iowrs doesn’t
exist and synchronisation can instead be done by re-reading the relevant register.

Instructions:

Name Description Present on Subopcode
iowr Asynchronous IO space write all units 0
iowrs Synchronous IO space write v3+ units 1

Instruction class: unsized

Operands: BASE, IDX, SRC

Forms:

Form Subopcode
R2, I8, R1 d0
R2, 0, R1 fa

Immediates: zero-extended

Operation:

if (op == iowr)
IOWR(BASE + IDX * 4, SRC);

else
IOWRS(BASE + IDX * 4, SRC);

IO space reads: iord

Reads a word from IO space.

Instructions:

Name Description Present on Subopcode
??? ??? v3+ units e
iord IO space read all units f

Instruction class: unsized

Operands: DST, BASE, IDX

Forms:

366 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Form Subopcode
R1, R2, I8 c0
R3, R2, R1 ff

Immediates: zero-extended

Operation:

if (op == iord)
DST = IORD(BASE + IDX * 4);

else
???;

Todo: subop e

2.10.11 Timers

Contents

• Timers

– Introduction

– Periodic timer

– Watchdog timer

Introduction

Time and timer-related registers are the same on all falcon engines, except PGRAPH CTXCTLs which lack PTIMER
access.

You can:

• Read PTIMER’s clock

• Use a periodic timer: Generate an interrupt periodically

• Use a watchdog/one-shot timer: Generate an interrupt once in the future

Also note that the CTXCTLs have another watchdog timer on their own - see ../graph/gf100-ctxctl/intro.txt for more
information.

Periodic timer

All falcon engines have a periodic timer. This timer generates periodic interrupts on interrupt line. The registers
controlling this timer are:

MMIO 0x020 / I[0x00800]: PERIODIC_PERIOD A 32-bit register defining the period of the periodic timer, minus
1.

MMIO 0x024 / I[0x00900]: PERIODIC_TIME A 32-bit counter storing the time remaining before the tick.

2.10. falcon microprocessor 367

../graph/gf100-ctxctl/intro.txt


nVidia Hardware Documentation, Release git

MMIO 0x028 / I[0x00a00]: PERIODIC_ENABLE bit 0: Enable the periodic timer. If 0, the counter doesn’t
change and no interrupts are generated.

When the counter is enabled, PERIODIC_TIME decreases by 1 every clock cycle. When PERIODIC_TIME reaches
0, an interrupt is generated on line 0 and the counter is reset to PERIODIC_PERIOD.

Operation (after each falcon core clock tick):

if (PERIODIC_ENABLE) {
if (PERIODIC_TIME == 0) {

PERIODIC_TIME = PERIODIC_PERIOD;
intr_line[0] = 1;

} else {
PERIODIC_TIME--;
intr_line[0] = 0;

}
} else {

intr_line[0] = 0;
}

= PTIMER access =

The falcon engines other than PGRAPH’s CTXCTLs have PTIMER’s time registers aliased into their IO space. aliases
are:

MMIO 0x02c / I[0x00b00]: TIME_LOW Alias of PTIMER’s TIME_LOW register [MMIO 0x9400]

MMIO 0x030 / I[0x00c00]: TIME_HIGH Alias of PTIMER’s TIME_HIGH register [MMIO 0x9410]

Both of these registers are read-only. See ptimer for more information about PTIMER.

Watchdog timer

Apart from a periodic timer, the falcon engines also have an independent one-shot timer, also called watchdog timer.
It can be used to set up a single interrupt in near future. The registers are:

MMIO 0x034 / I[0x00d00]: WATCHDOG_TIME A 32-bit counter storing the time remaining before the interrupt.

MMIO 0x038 / I[0x00e00]: WATCHDOG_ENABLE bit 0: Enable the watchdog timer. If 0, the counter doesn’t
change and no interrupts are generated.

A classic use of a watchdog is to set it before calling a sensitive function by initializing it to, for instance, twice the
usual time needed by this function to be executed.

In falcon’s case, the watchdog doesn’t reboot the µc. Indeed, it is very similar to the periodic timer. The differences
are:

• it generates an interrupt on line 1 instead of 0.

• it needs to be reset manually

Operation (after each falcon core clock tick):

if (WATCHDOG_ENABLE) {
if (WATCHDOG_TIME == 0) {

intr_line[1] = 1;
} else {

WATCHDOG_TIME--;
intr_line[1] = 0;

}
} else {

(continues on next page)

368 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

intr_line[1] = 0;
}

2.10.12 Performance monitoring signals

Contents

• Performance monitoring signals

– Introduction

– Main PCOUNTER signals

– User signals

Todo: write me

Introduction

Todo: write me

Main PCOUNTER signals

The main signals exported by falcon to PCOUNTER are:

Todo: docs & RE, please

• 0x00: SLEEPING

• 0x01: ??? fifo idle?

• 0x02: IDLE

• 0x03: ???

• 0x04: ???

• 0x05: TA

• 0x06: ???

• 0x07: ???

• 0x08: ???

• 0x09: ???

• 0x0a: ???

• 0x0b: ???

2.10. falcon microprocessor 369



nVidia Hardware Documentation, Release git

• 0x0c: PM_TRIGGER

• 0x0d: WRCACHE_FLUSH

• 0x0e-0x13: USER

User signals

MMIO 0x088 / I[0x02200]: PM_TRIGGER A WO “trigger” register for various things. write 1 to a bit to trigger
the relevant event, 0 to do nothing.

• bits 0-5: ??? [perf counters?]

• bit 16: WRCACHE_FLUSH

• bit 17: ??? [PM_TRIGGER?]

MMIO 0x08c / I[0x02300]: PM_MODE bits 0-5: ??? [perf counters?]

Todo: write me

2.10.13 Debugging

Contents

• Debugging

– Breakpoints

Todo: write me

Breakpoints

Todo: write me

2.10.14 FIFO interface

Contents

• FIFO interface

– Introduction

– PFIFO access control

– Method FIFO

– Channel switching

370 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: write me

Introduction

Todo: write me

PFIFO access control

Todo: write me

Method FIFO

Todo: write me

Channel switching

Todo: write me

2.10.15 Memory interface

Contents

• Memory interface

– Introduction

– IO Registers

– Error interrupts

– Breakpoints

– Busy status

Todo: write me

2.10. falcon microprocessor 371



nVidia Hardware Documentation, Release git

Introduction

Todo: write me

IO Registers

Todo: write me

Error interrupts

Todo: write me

Breakpoints

Todo: write me

Busy status

Todo: write me

2.10.16 Cryptographic coprocessor

Contents

• Cryptographic coprocessor

– Introduction

– IO registers

– Interrupts

– Submitting crypto commands: ccmd

– Code authentication control

– Crypto xfer control

Todo: write me

372 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Introduction

Todo: write me

IO registers

Todo: write me

Interrupts

Todo: write me

Submitting crypto commands: ccmd

Todo: write me

Code authentication control

Todo: write me

Crypto xfer control

Todo: write me

2.11 Video decoding, encoding, and processing

Contents:

2.11.1 VPE video decoding and encoding

Contents:

2.11. Video decoding, encoding, and processing 373



nVidia Hardware Documentation, Release git

PMPEG: MPEG1/MPEG2 video decoding engine

Contents

• PMPEG: MPEG1/MPEG2 video decoding engine

– Introduction

– MMIO registers

– Interrupts

Todo: write me

Introduction

Todo: write me

MMIO registers

Todo: write me

Interrupts

Todo: write me

PME: motion estimation

Contents:

PVP1: video processor

Contents:

Scalar unit

Contents

• Scalar unit

374 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– Introduction

* Scalar registers

* Scalar to vector data bus

– Instruction format

* Opcodes

· Bad opcodes

* Source mangling

– Instructions

* Load immediate: mov

* Set high bits: sethi

* Move to/from other register file: mov

* Arithmetic operations: mul, min, max, abs, neg, add, sub, shr, sar

* Bit operations: bitop

* Bit operations with immediate: and, or, xor

* Simple bytewise operations: bmin, bmax, babs, bneg, badd, bsub

* Bytewise bit operations: band, bor, bxor

* Bytewise bit shift operations: bshr, bsar

* Bytewise multiplication: bmul

* Send immediate to vector unit: vec

* Send mask to vector unit and shift: vecms

* Send bytes to vector unit: bvec

* Bytewise multiply, add, and send to vector unit: bvecmad, bvecmadsel

Introduction

The scalar unit is one of the four execution units of VP1. It is used for general-purpose arithmetic.

Scalar registers

The scalar unit has 31 GPRs, $r0-$r30. They are 32 bits wide, and are usually used as 32-bit integers, but there are
also SIMD instructions treating them as arrays of 4 bytes. In such cases, array notation is used to denote the individual
bytes. Bits 0-7 are considered to be $rX[0], bits 8-15 are $rX[1] and so on. $r31 is a special register hardwired
to 0.

There are also 8 bits in each $c register belonging to the scalar unit. Most scalar instructions can (if requested) set
these bits according to the computation result. The bits are:

• bit 0: sign flag - set equal to bit 31 of the result

• bit 1: zero flag - set if the result is 0

• bit 2: b19 flag - set equal to bit 19 of the result

2.11. Video decoding, encoding, and processing 375



nVidia Hardware Documentation, Release git

• bit 3: b20 difference flag - set if bit 20 of the result is different from bit 20 of the first source

• bit 4: b20 flag - set equal to bit 20 of the result

• bit 5: b21 flag - set equal to bit 21 of the result

• bit 6: alt b19 flag (G80 only) - set equal to bit 19 of the result

• bit 7: b18 flag (G80 only) - set equal to bit 18 of the result

The purpose of the last 6 bits is so far unknown.

Scalar to vector data bus

In addition to performing computations of its own, the scalar unit is also used in tandem with the vector unit to perform
complex instructions. Certain scalar opcodes expose data on so-called s2v path (scalar to vector data bus), and certain
vector opcodes consume this data.

The data is ephemeral and only exists during the execution of a single bundle - the producing and consuming instruc-
tions must be located in the same bundle. If a consuming instruction is used without a producing instruction, it’ll read
junk. If a producing instruction is used without a consuming instruction, the data is discarded.

The s2v data consists of:

• 4 signed 10-bits factors, used for multiplication

• $vc selection and transformation, for use as mask input in vector unit, made of:

– valid flag: 1 if s2v data was emitted by proper s2v-emitting instruction (if false, vector unit will use an
alternate source not involving s2v)

– 2-bit $vc register index

– 1-bit zero flag or sign flag selection (selects which half of $vc will be used)

– 3-bit transform mode: used to mangle the $vc value before use as mask

The factors can alternatively be treated as two 16-bit masks by some instructions. In that case, mask 0 consists of bits
1-8 of factor 0, then bits 1-8 of factor 1 and mask 1 likewise consists of bits 1-8 of factors 2 and 3:

s2v.mask[0] = (s2v.factor[0] >> 1 & 0xff) | (s2v.factor[1] >> 1 & 0xff) << 8
s2v.mask[1] = (s2v.factor[2] >> 1 & 0xff) | (s2v.factor[3] >> 1 & 0xff) << 8

The $vc based mask is derived as follows:

def xfrm(val, tab):
res = 0
for idx in range(16):

# bit x of result is set if bit tab[x] of input is set
if val & 1 << tab[idx]:

res |= 1 << idx
return res

val = $vc[s2v.vcsel.idx]
# val2 is only used for transform mode 7
val2 = $vc[s2v.vcsel.idx | 1]

if s2v.vcsel.flag == 'sf':
val = val & 0xffff
val2 = val2 & 0xffff

else: # 'zf'

(continues on next page)

376 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

val = val >> 16 & 0xffff
val2 = val2 >> 16 & 0xffff

if s2v.vcsel.xfrm == 0:
# passthrough
s2v.vcmask = val

elif s2v.vcsel.xfrm == 1:
s2v.vcmask = xfrm(val, [2, 2, 2, 2, 6, 6, 6, 6, 10, 10, 10, 10, 14, 14, 14,

→˓ 14])
elif s2v.vcsel.xfrm == 2:

s2v.vcmask = xfrm(val, [4, 5, 4, 5, 4, 5, 4, 5, 12, 13, 12, 13, 12, 13, 12,
→˓ 13])
elif s2v.vcsel.xfrm == 3:

s2v.vcmask = xfrm(val, [0, 0, 2, 0, 4, 4, 6, 4, 8, 8, 10, 8, 12, 12, 14,
→˓ 12])
elif s2v.vcsel.xfrm == 4:

s2v.vcmask = xfrm(val, [1, 1, 1, 3, 5, 5, 5, 7, 9, 9, 9, 11, 13, 13, 13,
→˓ 15])
elif s2v.vcsel.xfrm == 5:

s2v.vcmask = xfrm(val, [0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14,
→˓ 14])
elif s2v.vcsel.xfrm == 6:

s2v.vcmask = xfrm(val, [1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13,
→˓ 13])
elif s2v.vcsel.xfrm == 7:

# mode 7 is special: it uses two $vc inputs and takes every second bit
s2v.vcmask = xfrm(val | val2 << 16, [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,

→˓22, 24, 26, 28, 30])

Instruction format

The instruction word fields used in scalar instructions are:

• bits 0-2: CDST - if < 4, index of the $c register to set according to the instruction’s result. Otherwise, an
indication that $c is not to be written (nVidia appears to use 7 in such case).

• bits 0-7: BIMMBAD - an immediate field used only in bad opcodes

• bits 0-18: IMM19 - a signed 19-bit immediate field used only by the mov instruction

• bits 0-15: IMM16 - a 16-bit immediate field used only by the sethi instruction

• bits 1-9: FACTOR1 - a 9-bit signed immediate used as vector factor

• bits 10-18: FACTOR2 - a 9-bit signed immediate used as vector factor

• bit 1: SIGN2 - determines if byte multiplication source 2 is signed

– 0: u - unsigned

– 1: s - signed

• bit 2: SIGN1 - likewise for source 1

• bits 3-10: BIMM: an 8-bit immediate for bytewise operations, signed or unsigned depending on instruction.

• bits 3-13: IMM: signed 13-bit immediate.

• bits 3-6: BITOP: selects the bit operation to perform

2.11. Video decoding, encoding, and processing 377



nVidia Hardware Documentation, Release git

• bits 3-7: RFILE: selects the other register file for mov to/from other register file

• bits 3-4: COND - if source mangling is used, the $c register index to use for source mangling.

• bits 5-8: SLCT - if source mangling is used, the condition to use for source mangling.

• bit 8: RND - determines byte multiplication rounding behaviour

– 0: rd - round down

– 1: rn - round to nearest, ties rounding up

• btis 9-13: SRC2 - the second source $r register, often mangled via source mangling.

• bits 9-13 (low 5 bits) and bit 0 (high bit): BIMMMUL - a 6-bit immediate for bytewise multiplication, signed or
unsigned depending on instruction.

• bits 14-18: SRC1 - the first source $r register.

• bits 19-23: DST - the destination $r register.

• bits 19-20: VCIDX - the $vc register index for s2v

• bit 21: VCFLAG - the $vc flag selection for s2v:

– 0: sf

– 1: zf

• bits 22-23 (low part) and 0 (high part): VCXFRM - the $vc transformation for s2v

• bits 24-31: OP - the opcode.

Opcodes

The opcode range assigned to the scalar unit is 0x00-0x7f. The opcodes are:

• 0x01, 0x11, 0x21, 0x31: bytewise multiplication: bmul

• 0x02, 0x12, 0x22, 0x32: bytewise multiplication: bmul (bad opcode)

• 0x04: s2v multiply/add/send: bvecmad

• 0x24: s2v immediate send: vec

• 0x05: s2v multiply/add/select/send: bvecmadsel

• 0x25: bytewise immediate and: band

• 0x26: bytewise immediate or: bor

• 0x27: bytewise immediate xor: bxor

• 0x08, 0x18, 0x28, 0x38: bytewise minimum: bmin

• 0x09, 0x19, 0x29, 0x39: bytewise maximum: bmax

• 0x0a, 0x1a, 0x2a, 0x3a: bytewise absolute value: babs

• 0x0b, 0x1b, 0x2b, 0x3b: bytewise negate: bneg

• 0x0c, 0x1c, 0x2c, 0x3c: bytewise addition: badd

• 0x0d, 0x1d, 0x2d, 0x3d: bytewise substract: bsub

• 0x0e, 0x1e, 0x2e, 0x3e: bytewise shift: bshr, bsar

• 0x0f: s2v send: bvec

378 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 0x41, 0x51, 0x61, 0x71: 16-bit multiplication: mul

• 0x42: bitwise operation: bitop

• 0x62: immediate and: and

• 0x63: immediate xor: xor

• 0x64: immediate or: or

• 0x45: s2v 4-bit mask send and shift: vecms

• 0x65: load immediate: mov

• 0x75: set high bits immediate: sethi

• 0x6a: mov to other register file: mov

• 0x6b: mov from other register file: mov

• 0x48, 0x58, 0x68, 0x78: minimum: min

• 0x49, 0x59, 0x69, 0x79: maximum: max

• 0x4a, 0x5a, 0x7a: absolute value: abs

• 0x4b, 0x5b, 0x7b: negation: neg

• 0x4c, 0x5c, 0x6c, 0x7c: addition: add

• 0x4d, 0x5d, 0x6d, 0x7d: substraction: sub

• 0x4e, 0x5e, 0x6e, 0x7e: shift: shr, sar

• 0x4f: the canonical scalar nop opcode

Todo: some unused opcodes clear $c, some don’t

Bad opcodes

Some of the VP1 instructions look like they’re either buggy or just unintended artifacts of incomplete decoding hard-
ware. These are known as bad opcodes and are characterised by using colliding bitfields. It’s probably a bad idea to
use them, but they do seem to reliably perform as documented here.

Source mangling

Some instructions perform source mangling: the source register(s) they use are not taken directly from a register index
bitfield in the instruction. Instead, the register index from the instruction is. . . “adjusted” before use. There are several
algorithms used for source mangling, most of them used only in a single instruction.

The most common one, known as SRC2S, takes the register index from SRC2 field, a $c register index from COND,
and $c bit index from SLCT. If SLCT is anything other than 4, the selected bit is extracted from $c and XORed into
the lowest bit of the register index to use. Otherwise (SLCT is 4), bits 4-5 of $c are extracted, and added to bits 0-1 of
the register index, discarding overflow out of bit 1:

if SLCT == 4:
adjust = $c[COND] >> 4 & 3
SRC2S = (SRC2 & ~3) | ((SRC2 + adjust) & 3)

else:

(continues on next page)

2.11. Video decoding, encoding, and processing 379



nVidia Hardware Documentation, Release git

(continued from previous page)

adjust = $c[COND] >> SLCT & 1
SRC2S = SRC2 ^ adjust

Instructions

Load immediate: mov

Loads a 19-bit signed immediate to the selected register. If you need to load a const that doesn’t fit into 19 signed bits,
use this instruction along with sethi.

Instructions:

Instruction Operands Opcode
mov $r[DST] IMM19 0x65

Operation:

$r[DST] = IMM19

Set high bits: sethi

Loads a 16-bit immediate to high bits of the selected register. Low 16 bits are unaffected.

Instructions:

Instruction Operands Opcode
sethi $r[DST] IMM16 0x75

Operation:

$r[DST] = ($r[DST] & 0xffff) | IMM16 << 16

Move to/from other register file: mov

Does what it says on the tin. There is $c output capability, but it always outputs 0. The other register file is selected
by RFILE field, and the possibilities are:

• 0: $v word 0 (ie. bytes 0-3)

• 1: $v word 1 (bytes 4-7)

• 2: $v word 2 (bytes 8-11)

• 3: $v word 3 (bytes 12-15)

• 4: ??? (NV41:G80 only)

• 5: ??? (NV41:G80 only)

• 6: ??? (NV41:G80 only)

• 7: ??? (NV41:G80 only)

380 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 8: $sr

• 9: $mi

• 10: $uc

• 11: $l (indices over 3 are ignored on writes, wrapped modulo 4 on reads)

• 12: $a

• 13: $c - read only (indices over 3 read as 0)

• 18: curiously enough, aliases 2, for writes only

• 20: $m[0-31]

• 21: $m[32-63]

• 22: $d (indices over 7 are wrapped modulo 8) (G80 only)

• 23: $f (indices over 1 are wrapped modulo 2)

• 24: $x (indices over 15 are wrapped modulo 16) (G80 only)

Todo: figure out the pre-G80 register files

Attempts to read or write unknown register file are ignored. In case of reads, the destination register is left unmodified.

Instructions:

Instruction Operands Opcode
mov [$c[CDST]] $<RFILE>[DST] $r[SRC1] 0x6a
mov [$c[CDST]] $r[DST] $<RFILE>[SRC1] 0x6b

Operation:

if opcode == 0x6a:
$<RFILE>[DST] = $r[SRC1]

else:
$r[DST] = $<RFILE>[SRC1]

if CDST < 4:
$c[CDST].scalar = 0

Arithmetic operations: mul, min, max, abs, neg, add, sub, shr, sar

mul performs a 16x16 multiplication with 32 bit result. shr and sar do a bitwise shift right by given amount, with
negative amounts interpreted as left shift (and the shift amount limitted to -0x1f..0x1f). The other operations do
what it says on the tin. abs, min, max, mul, sar treat the inputs as signed, shr as unsigned, for others it doesn’t
matter.

The first source comes from a register selected by SRC1, and the second comes from either a register selected by
mangled field SRC2S or a 13-bit signed immediate IMM. In case of abs and neg, the second source is unused, and
the immediate versions are redundant (and in fact one set of opcodes is used for mov to/from other register file instead).

Most of these operations have duplicate opcodes. The canonical one is the lowest one.

All of these operations set the full set of scalar condition codes.

2.11. Video decoding, encoding, and processing 381



nVidia Hardware Documentation, Release git

Instructions:

Instruction Operands Opcode
mul [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x41, 0x51
min [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x48, 0x58
max [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x49, 0x59
abs [$c[CDST]] $r[DST] $r[SRC1] 0x4a, 0x5a, 0x7a
neg [$c[CDST]] $r[DST] $r[SRC1] 0x4b, 0x5b, 0x7b
add [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x4c, 0x5c
sub [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x4d, 0x5d
sar [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x4e
shr [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x5e
mul [$c[CDST]] $r[DST] $r[SRC1] IMM 0x61, 0x71
min [$c[CDST]] $r[DST] $r[SRC1] IMM 0x68, 0x78
max [$c[CDST]] $r[DST] $r[SRC1] IMM 0x69, 0x79
add [$c[CDST]] $r[DST] $r[SRC1] IMM 0x6c, 0x7c
sub [$c[CDST]] $r[DST] $r[SRC1] IMM 0x6d, 0x7d
sar [$c[CDST]] $r[DST] $r[SRC1] IMM 0x6e
shr [$c[CDST]] $r[DST] $r[SRC1] IMM 0x7e

Operation:

s1 = sext($r[SRC1], 31)
if opcode & 0x20:

s2 = sext(IMM, 12)
else:

s2 = sext($r[SRC2], 31)

if op == 'mul':
res = sext(s1, 15) * sext(s2, 15)

elif op == 'min':
res = min(s1, s2)

elif op == 'max':
res = max(s1, s2)

elif op == 'abs':
res = abs(s1)

elif op == 'neg':
res = -s1

elif op == 'add':
res = s1 + s2

elif op == 'sub':
res = s1 - s2

elif op == 'shr' or op == 'sar':
# shr/sar are unsigned/signed versions of the same insn
if op == 'shr':

s1 &= 0xffffffff
# shift amount is 6-bit signed number
shift = sext(s2, 5)
# and -0x20 is invalid
if shift == -0x20:

shift = 0
# negative shifts mean a left shift
if shift < 0:

res = s1 << -shift
else:

(continues on next page)

382 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

# sign of s1 matters here
res = s1 >> shift

$r[DST] = res
# build $c result
cres = 0
if res & 1 << 31:

cres |= 1
if res == 0:

cres |= 2
if res & 1 << 19:

cres |= 4
if (res ^ s1) & 1 << 20:

cres |= 8
if res & 1 << 20:

cres |= 0x10
if res & 1 << 21:

cres |= 0x20
if variant == 'G80':

if res & 1 << 19:
cres |= 0x40

if res & 1 << 18:
cres |= 0x80

if CDST < 4:
$c[CDST].scalar = cres

Bit operations: bitop

Performs an arbitrary two-input bit operation on two registers, selected by SRC1 and SRC2. $c output works, but
only with a subset of flags.

Instructions:

Instruction Operands Opcode
bitop BITOP [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2] 0x42

Operation:

s1 = $r[SRC1]
s2 = $r[SRC2]

res = bitop(BITOP, s2, s1) & 0xffffffff

$r[DST] = res
# build $c result
cres = 0
# bit 0 not set
if res == 0:

cres |= 2
if res & 1 << 19:

cres |= 4
# bit 3 not set
if res & 1 << 20:

cres |= 0x10

(continues on next page)

2.11. Video decoding, encoding, and processing 383



nVidia Hardware Documentation, Release git

(continued from previous page)

if res & 1 << 21:
cres |= 0x20

if variant == 'G80':
if res & 1 << 19:

cres |= 0x40
if res & 1 << 18:

cres |= 0x80
if CDST < 4:

$c[CDST].scalar = cres

Bit operations with immediate: and, or, xor

Performs a given bitwise operation on a register and 13-bit immediate. Like for bitop, $c output only works partially.

Instructions:

Instruction Operands Opcode
and [$c[CDST]] $r[DST] $r[SRC1] IMM 0x62
xor [$c[CDST]] $r[DST] $r[SRC1] IMM 0x63
or [$c[CDST]] $r[DST] $r[SRC1] IMM 0x64

Operation:

s1 = $r[SRC1]

if op == 'and':
res = s1 & IMM

elif op == 'xor':
res = s1 ^ IMM

elif op == 'or':
res = s1 | IMM

$r[DST] = res
# build $c result
cres = 0
# bit 0 not set
if res == 0:

cres |= 2
if res & 1 << 19:

cres |= 4
# bit 3 not set
if res & 1 << 20:

cres |= 0x10
if res & 1 << 21:

cres |= 0x20
if variant == 'G80':

if res & 1 << 19:
cres |= 0x40

if res & 1 << 18:
cres |= 0x80

if CDST < 4:
$c[CDST].scalar = cres

384 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Simple bytewise operations: bmin, bmax, babs, bneg, badd, bsub

Those perform the corresponding operation (minumum, maximum, absolute value, negation, addition, substraction)
in SIMD manner on 8-bit signed or unsigned numbers from one or two sources. Source 1 is always a register selected
by SRC1 bitfield. Source 2, if it is used (ie. instruction is not babs nor bneg), is either a register selected by SRC2S
mangled bitfield, or immediate taken from BIMM bitfield.

Each of these instructions comes in signed and unsigned variants and both perform result clipping. Note that abs is
rather uninteresting in its unsigned variant (it’s just the identity function), and so is neg (result is always 0 or clipped
to 0.

These instruction have a $c output, but it’s always set to all-0 if used.

Also note that babs and bneg have two redundant opcodes each: the bit that normally selects immediate or register
second source doesn’t apply to them.

Instructions:

Instruction Operands Opcode
bmin s [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x08
bmax s [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x09
babs s [$c[CDST]] $r[DST] $r[SRC1] 0x0a
bneg s [$c[CDST]] $r[DST] $r[SRC1] 0x0b
badd s [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x0c
bsub s [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x0d
bmin u [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x18
bmax u [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x19
babs u [$c[CDST]] $r[DST] $r[SRC1] 0x1a
bneg u [$c[CDST]] $r[DST] $r[SRC1] 0x1b
badd u [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x1c
bsub u [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x1d
bmin s [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x28
bmax s [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x29
babs s [$c[CDST]] $r[DST] $r[SRC1] 0x2a
bneg s [$c[CDST]] $r[DST] $r[SRC1] 0x2b
badd s [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x2c
bsub s [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x2d
bmin u [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x38
bmax u [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x39
babs u [$c[CDST]] $r[DST] $r[SRC1] 0x3a
bneg u [$c[CDST]] $r[DST] $r[SRC1] 0x3b
badd u [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x3c
bsub u [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x3d

Operation:

for idx in range(4):
s1 = $r[SRC1][idx]
if opcode & 0x20:

s2 = BIMM
else:

s2 = $r[SRC2S][idx]

if opcode & 0x10:

(continues on next page)

2.11. Video decoding, encoding, and processing 385



nVidia Hardware Documentation, Release git

(continued from previous page)

# unsigned
s1 &= 0xff
s2 &= 0xff

else:
# signed
s1 = sext(s1, 7)
s2 = sext(s2, 7)

if op == 'bmin':
res = min(s1, s2)

elif op == 'bmax':
res = max(s1, s2)

elif op == 'babs':
res = abs(s1)

elif op == 'bneg':
res = -s1

elif op == 'badd':
res = s1 + s2

elif op == 'bsub':
res = s1 - s2

if opcode & 0x10:
# unsigned: clip to 0..0xff
if res < 0:

res = 0
if res > 0xff:

res = 0xff
else:

# signed: clip to -0x80..0x7f
if res < -0x80:

res = -0x80
if res > 0x7f:

res = 0x7f

$r[DST][idx] = res

if CDST < 4:
$c[CDST].scalar = 0

Bytewise bit operations: band, bor, bxor

Performs a given bitwise operation on a register and an 8-bit immediate replicated 4 times. Or, intepreted differently,
performs such operation on every byte of a register idependently. $c output is present, but always outputs 0.

Instructions:

Instruction Operands Opcode
and [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x25
or [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x26
xor [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x27

Operation:

386 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

for idx in range(4):
if op == 'and':

$r[DST][idx] = $r[SRC1][idx] & BIMM
elif op == 'or':

$r[DST][idx] = $r[SRC1][idx] | BIMM
elif op == 'xor':

$r[DST][idx] = $r[SRC1][idx] ^ BIMM

if CDST < 4:
$c[CDST].scalar = 0

Bytewise bit shift operations: bshr, bsar

Performs a bytewise SIMD right shift. Like the usual shift instruction, the shift amount is considered signed and
negative amounts result in left shift. In this case, the shift amount is a 4-bit signed number. Operands are as in usual
bytewise operations.

Instructions:

Instruction Operands Opcode
bsar [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x0e
bshr [$c[CDST]] $r[DST] $r[SRC1] $r[SRC2S] 0x1e
bsar [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x2e
bshr [$c[CDST]] $r[DST] $r[SRC1] BIMM 0x3e

Operation:

for idx in range(4):
s1 = $r[SRC1][idx]
if opcode & 0x20:

s2 = BIMM
else:

s2 = $r[SRC2S][idx]

if opcode & 0x10:
# unsigned
s1 &= 0xff

else:
# signed
s1 = sext(s1, 7)

shift = sext(s2, 3)

if shift < 0:
res = s1 << -shift

else:
res = s1 >> shift

$r[DST][idx] = res

if CDST < 4:
$c[CDST].scalar = 0

2.11. Video decoding, encoding, and processing 387



nVidia Hardware Documentation, Release git

Bytewise multiplication: bmul

These instructions perform bytewise fractional multiplication: the inputs and outputs are considered to be fixed-point
numbers with 8 fractional bits (unsigned version) or 7 fractional bits (signed version). The signedness of both inputs
and the output can be controlled independently (the signedness of the output is controlled by the opcode, and of the
inputs by instruction word flags SIGN1 and SIGN2). The results are clipped to the output range. There are two
rounding modes: round down and round to nearest with ties rounded up.

The first source is always a register selected by SRC1 bitfield. The second source can be a register selected by SRC2
bitfield, or 6-bit immediate in BIMMMUL bitfield padded with two zero bits on the right.

Note that besides proper 0xX1 opcodes, there are also 0xX2 bad opcodes. In case of register-register ops, these
opcodes are just aliases of the sane ones, but for immediate opcodes, a colliding bitfield is used.

The instructions have no $c output capability.

Instructions:

Instruction Operands Opcode
bmul s RND $r[DST] SIGN1 $r[SRC1] SIGN2 $r[SRC2] 0x01, 0x02
bmul u RND $r[DST] SIGN1 $r[SRC1] SIGN2 $r[SRC2] 0x11, 0x12
bmul s RND $r[DST] SIGN1 $r[SRC1] SIGN2 BIMMMUL 0x21
bmul u RND $r[DST] SIGN1 $r[SRC1] SIGN2 BIMMMUL 0x31
bmul s RND $r[DST] SIGN1 $r[SRC1] SIGN2 BIMMBAD 0x22 (bad opcode)
bmul u RND $r[DST] SIGN1 $r[SRC1] SIGN2 BIMMBAD 0x32 (bad opcode)

Operation:

for idx in range(4):
# read inputs
s1 = $r[SRC1][idx]
if opcode & 0x20:

if opcode & 2:
s2 = BIMMBAD

else:
s2 = BIMMMUL << 2

else:
s2 = $r[SRC2S][idx]

# convert inputs to 8 fractional bits - unsigned inputs are already ok
if SIGN1:

ss1 = sext(ss1, 7) << 1
if SIGN2:

ss2 = sext(ss2, 7) << 1

# multiply - the result has 16 fractional bits
res = ss1 * ss2

if opcode & 0x10:
# unsigned result
# first, if round to nearest is selected, apply rounding correction
if RND == 'rn':

res += 0x80
# convert to 8 fractional bits
res >>= 8
# clip
if res < 0:

(continues on next page)

388 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

res = 0
if res > 0xff:

res = 0xff
else:

# signed result
if RND == 'rn':

res += 0x100
# convert to 7 fractional bits
res >>= 9
# clip
if res < -0x80:

res = -0x80
if res > 0x7f:

res = 0x7f

$r[DST][idx] = res

Send immediate to vector unit: vec

This instruction takes two 9-bit immediate operands and sends them as factors to the vector unit. The first immediate
is used as factors 0 and 1, and the second is used as factors 2 and 3. $vc selection is sent as well.

Instructions:

Instruction Operands Opcode
vec FACTOR1 FACTOR2 $vc[VCIDX] VCFLAG VCXFRM 0x24

Operation:

s2v.factor[0] = s2v.factor[1] = FACTOR1
s2v.factor[2] = s2v.factor[3] = FACTOR2
s2v.vcsel.idx = VCIDX
s2v.vcsel.flag = VCFLAG
s2v.vcsel.xfrm = VCXFRM

Send mask to vector unit and shift: vecms

This instruction shifts a register right by 4 bits and uses the bits shifted out as s2v mask 0 after expansion (each bit is
replicated 4 times). The s2v factors are derived from that mask and are not very useful. The right shift is sign-filling.
$vc selection is sent as well.

Instructions:

Instruction Operands Opcode
vecms $r[SRC1] $vc[VCIDX] VCFLAG VCXFRM 0x45

Operation:

val = sext($r[SRC1], 31)
$r[SRC1] = val >> 4
# the factors are made so that the mask derived from them will contain

(continues on next page)

2.11. Video decoding, encoding, and processing 389



nVidia Hardware Documentation, Release git

(continued from previous page)

# each bit from the short mask repeated 4 times
f0 = 0
f1 = 0
if val & 1:

f0 |= 0x1e
if val & 2:

f0 |= 0x1e0
if val & 4:

f1 |= 0x1e
if val & 8:

f1 |= 0x1e0
s2v.factor[0] = f0
s2v.factor[1] = f1
s2v.factor[2] = s2v.factor[3] = 0
s2v.vcsel.idx = VCIDX
s2v.vcsel.flag = VCFLAG
s2v.vcsel.xfrm = VCXFRM

Send bytes to vector unit: bvec

Treats a register as 4-byte vector, sends the bytes as s2v factors (treating them as signed with 7 fractional bits). $vc
selection is sent as well. If the s2v output is used as masks, this effectively takes mask 0 from source bits 0-15 and
mask 1 from source bits 16-31.

Instructions:

Instruction Operands Opcode
bvec $r[SRC1] $vc[VCIDX] VCFLAG VCXFRM 0x0f

Operation:

for idx in range(4):
s2v.factor[idx] = sext($r[SRC1][idx], 7) << 1

s2v.vcsel.idx = VCIDX
s2v.vcsel.flag = VCFLAG
s2v.vcsel.xfrm = VCXFRM

Bytewise multiply, add, and send to vector unit: bvecmad, bvecmadsel

Figure out this one yourself. It sends s2v factors based on SIMD multiply & add, uses weird source mangling, and
even weirder source 1 bitfields.

Instructions:

Instruction Operands Opcode
bvecmad $r[SRC1] $r[SRC2]q $vc[VCIDX] VCFLAG VCXFRM 0x04
bvecmadsel $r[SRC1] $r[SRC2]q $vc[VCIDX] VCFLAG VCXFRM 0x05

Operation:

390 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

if SLCT== 4:
adjust = $c[COND] >> 4 & 3

else:
adjust = $c[COND] >> SLCT & 1

# SRC1 selects the pre-factor, which will be multiplied by source 3
if op == 'bvecmad':

prefactor = $r[SRC1] >> 11 & 0xff
elif op == 'bvecmadsel':

prefactor = $r[SRC1] >> 11 & 0x7f

s2a = $r[SRC2 | adjust]
s2b = $r[SRC2 | 2 | adjust]

for idx in range(4):
# this time source is mangled by OR, not XOR - don't ask me

if op == 'bvecmad'
midx = idx

elif op == 'bvecmadsel':
midx = idx & 2
if SLCT == 2 and $c[COND] & 0x80:

midx |= 1

# baseline (res will have 16 fractional bits, sources have 8)
res = s2a[midx] << 8
# throw in the multiplication result
res += prefactor * s2b[idx]
# and rounding correction (for round to nearest, ties up)
res += 0x40
# and round to 9 fractional bits
s2v.factor[idx] = res >> 7

s2v.vcsel.idx = VCIDX
s2v.vcsel.flag = VCFLAG
s2v.vcsel.xfrm = VCXFRM

Vector unit

Contents

• Vector unit

– Introduction

* Vector registers

– Instruction format

* Opcodes

– Multiplication, accumulation, and rounding

– Instructions

* Move: mov

2.11. Video decoding, encoding, and processing 391



nVidia Hardware Documentation, Release git

* Move immediate: vmov

* Move from $vc: mov

* Swizzle: vswz

* Simple arithmetic operations: vmin, vmax, vabs, vneg, vadd, vsub

* Clip to range: vclip

* Minimum of absolute values: vminabs

* Add 9-bit: vadd9

* Compare with absolute difference: vcmpad

* Bit operations: vbitop

* Bit operations with immediate: vand, vor, vxor

* Shift operations: vshr, vsar

* Linear interpolation: vlrp

* Multiply and multiply with accumulate: vmul, vmac

* Dual multiply and add/accumulate: vmac2, vmad2

* Dual linear interpolation: vlrp2

* Quad linear interpolation, part 1: vlrp4a

* Factor linear interpolation: vlrpf

* Quad linear interpolation, part 2: vlrp4b

Introduction

The vector unit is one of the four execution units of VP1. It operates in SIMD manner on 16-element vectors.

Vector registers

The vector unit has 32 vector registers, $v0-$v31. They are 128 bits wide and are treated as 16 components of 8 bits
each. Depending on element, they can be treated as signed or unsigned.

There are also 4 vector condition code registers, $vc0-$vc3. They are like $c for vector registers - each of them
has 16 “sign flag” and 16 “zero flag” bits, one of each per vector component. When read as a 32-word, bits 0-15 are
the sign flags and bits 16-31 are the zero flags.

Further, the vector unit has a singular 448-bit vector accumulator register, $va. It is made of 16 components, each of
them a 28-bit signed number with 16 fractional bits. It’s used to store intermediate unrounded results of multiply-add
computations.

Finally, there’s an extra 128-bit register, $vx, which works quite like the usual $v registers. It’s only read by vlrp4b
instructions and written only by special load to vector extra register instructions. The reasons for its existence are
unclear.

Instruction format

The instruction word fields used in vector instructions in addition to the ones used in scalar instructions are:

392 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bit 0: S2VMODE - selects how s2v data is used:

– 0: factor - s2v data is interpreted as factors

– 1: mask - s2v data is interpreted as masks

• bits 0-2: VCDST - if < 4, index of $vc register to set according to the instruction’s results. Otherwise, an
indication that $vc is not to be written (the canonical value for such case appears to be 7).

• bits 0-1: VCSRC - selects $vc input for vlrp2

• bit 2: VCSEL - the $vc flag selection for vlrp2:

– 0: sf

– 1: zf

• bit 3: SWZLOHI - selects how the swizzle selectors are decoded:

– 0: lo - bits 0-3 are component selector, bit 4 is source selector

– 1: hi - bits 4-7 are component selector, bit 0 is source selector

• bit 3: FRACTINT - selects whether the multiplication is considered to be integer or fixed-point:

– 0: fract: fixed-point

– 1: int: integer

• bit 4: HILO - selects which part of multiplication result to read:

– 0: hi: high part

– 1: lo: low part

• bits 5-7: SHIFT - a 3-bit signed immediate, used as an extra right shift factor

• bits 4-8: SRC3 - the third source $v register.

• bit 9: ALTRND - like RND, but for different instructions

• bit 9: SIGNS - determines if double-interpolation input is signed

– 0: u - unsigned

– 1: s - signed

• bit 10: LRP2X - determines if base input is XORed with 0x80 for vlrp2.

• bit 11: VAWRITE - determines if $va is written for vlrp2.

• bits 11-13: ALTSHIFT - a 3-bit signed immediate, used as an extra right shift factor

• bit 12: SIGND - determines if double-interpolation output is signed

– 0: u - unsigned

– 1: s - signed

• bits 19-22: CMPOP: selects the bit operation to perform on comparison result and previous flag value

Opcodes

The opcode range assigned to the vector unit is 0x80-0xbf. The opcodes are:

• 0x80, 0xa0, 0xb0, 0x81, 0x91, 0xa1, 0xb1: multiplication: vmul

• 0x90: linear interpolation: vlrp

2.11. Video decoding, encoding, and processing 393



nVidia Hardware Documentation, Release git

• 0x82, 0x92, 0xa2, 0xb2, 0x83, 0x93, 0xa3: multiplication with accumulation: vmac

• 0x84, 0x85, 0x95: dual multiplication with accumulation: vmac2

• 0x86, 0x87, 0x97: dual multiplication with addition: vmad2

• 0x96, 0xa6, 0xa7: dual multiplication with addition: vmad2 (bad opcode)

• 0x94: bitwise operation: vbitop

• 0xa4: clip to range: vclip

• 0xa5: minimum of absolute values: vminabs

• 0xb3: dual linear interpolation: vlrp2

• 0xb4: quad linear interpolation, part 1: vlrp4a

• 0xb5: factor linear interpolation: vlrpf

• 0xb6, 0xb7: quad linear interpolation, part 2: vlrp4b

• 0x88, 0x98, 0xa8, 0xb8: minimum: vmin

• 0x89, 0x99, 0xa9, 0xb9: maximum: vmax

• 0x8a, 0x9a: absolute value: vabs

• 0xaa: immediate and: vand

• 0xba: move: mov

• 0x8b: negation: vneg

• 0x9b: swizzle: vswz

• 0xab: immediate xor: vxor

• 0xbb: move from $vc: mov

• 0x8c, 0x9c, 0xac, 0xbc: addition: vadd

• 0x8d, 0x9d, 0xbd: substraction: vsub

• 0xad: move immediate: vmov

• 0x8e, 0x9e, 0xae, 0xbe: shift: vshr, vsar

• 0x8f: compare with absolute difference: vcmpad

• 0x9f: add 9-bit: vadd9

• 0xaf: immediate or: vor

• 0xbf: the canonical vector nop opcode

Multiplication, accumulation, and rounding

The most advanced vector instructions involve multiplication and the vector accumulator. The vector unit has two
multipliers (signed 10-bit * 10-bit -> signed 20-bit) and three wide adders (performing 28-bit addition): the first two
add the multiplication results, and the third adds a rounding correction. In other words, it can compute A + (B * C <<
S) + (D * E << S) + R, where A is 28-bit input, B, C, D, E are signed 10-bit inputs, S is either 0 or 8, and R is the
rounding correction, determined from the readout parameters. The B, C, D, E inputs can in turn be computed from
other inputs using one of the narrower ALUs.

The A input can come from the vector accumulator, be fixed to 0, or come from a vector register component shifted
by some shift amount. The shift amount, if used, is the inverse of the shift amount used by the readout process.

394 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

There are three things that can happen to the result of the multiply-accumulate calculations:

• written in its entirety to the vector accumulator

• shifted, rounded, clipped, and written to a vector register

• both of the above

The vector register readout process takes the following parameters:

• sign: whether the result should be unsigned or signed

• fract/int selection: if int, the multiplication is considered to be done on integers, and the 16-bit result is at bits
8-23 of the value added to the accumulator (ie. S is 8). Otherwise, the multiplication is performed as if the
inputs were fractions (unsigned with 8 fractional bits, signed with 7), and the results are aligned so that bits
16-27 of the accumulator are integer part, and 0-15 are fractional part.

• hi/lo selection: selects whether high or low 8 bits of the results are read. For integers, the result is treated as
16-bit integer. For fractions, the high part is either an unsigned fixed-point number with 8 fractional bits, or a
signed number with 7 fractional bits, and the low part is always 8 bits lower than the high part.

• a right shift, in range of -4..3: the result is shifted right by that amount before readout (as usual, negative means
left shift).

• rounding mode: either round down, or round to nearest. If round to nearest is selected, a configuration bit in
$uccfg register selects if ties are rounded up or down (to accomodate video codecs which switch that on frame
basis).

First, any inputs from vector registers are read, converted as signed or unsigned integers, and normalized if needed:

def mad_input(val, fractint, isign):
if isign == 'u':

return val & 0xff
else:

if fractint == 'int':
return sext(val, 7)

else:
return sext(val, 7) << 1

The readout shift factor is determined as follows:

def mad_shift(fractint, sign, shift):
if fractint == 'int':

return 16 - shift
elif sign == 'u':

return 8 - shift
elif sign == 's':

return 9 - shift

If A is taken from a vector register, it’s expanded as follows:

def mad_expand(val, fractint, sign, shift):
return val << mad_shift(fractint, sign, shift)

The actual multiply-add process works like that:

def mad(a, b, c, d, e, rnd, fractint, sign, shift, hilo):
res = a

if fractint == 'fract':
res += b * c + d * e

(continues on next page)

2.11. Video decoding, encoding, and processing 395



nVidia Hardware Documentation, Release git

(continued from previous page)

else:
res += (b * c + d * e) << 8

# rounding correction
if rnd == 'rn':

# determine the final readout shift
if hilo == 'lo':

rshift = mad_shift(fractint, sign, shift) - 8
else:

rshift = mad_shift(fractint, sign, shift)

# only add rounding correction if there's going to be an actual
# right shift
if rshift > 0:

res += 1 << (rshift - 1)
if $uccfg.tiernd == 'down':

res -= 1

# the accumulator is only 28 bits long, and it wraps
return sext(res, 27)

And the readout process is:

def mad_read(val, fractint, sign, shift, hilo):
# first, shift it to the position
rshift = mad_shift(fractint, sign, shift) - 8
if rshift >= 0:

res = val >> rshift
else:

res = val << -rshift

# second, clip to 16-bit signed or unsigned
if sign == 'u':

if res < 0:
res = 0

if res > 0xffff:
res = 0xffff

else:
if res < -0x8000:

res = -0x8000
if res > 0x7fff:

res = 0x7fff

# finally, extract high/low part of the final result
if hilo == 'hi':

return res >> 8 & 0xff
else:

return res & 0xff

Note that high/low selection, apart from actual result readout, also affects the rounding computation. This means that,
if rounding is desired and the full 16-bit result is to be read, the low part should be read first with rounding (which
will add the rounding correction to the accumulator) and then the high part should be read without rounding (since the
rounding correction is already applied).

396 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Instructions

Move: mov

Copies one register to another. $vc output supported for zero flag only.

Instructions:

Instruction Operands Opcode
mov [$vc[VCDST]] $v[DST] $v[SRC1] 0xba

Operation:

for idx in range(16):
$v[DST][idx] = $v[SRC1][idx]
if VCDST < 4:

$vc[VCDST].sf[idx] = 0
$vc[VCDST].zf[idx] = $v[DST][idx] == 0

Move immediate: vmov

Loads an 8-bit immediate to each component of destination. $vc output is fully supported, with sign flag set to bit 7
of the value.

Instructions:

Instruction Operands Opcode
vmov [$vc[VCDST]] $v[DST] BIMM 0xad

Operation:

for idx in range(16):
$v[DST][idx] = BIMM
if VCDST < 4:

$vc[VCDST].sf[idx] = BIMM >> 7 & 1
$vc[VCDST].zf[idx] = BIMM == 0

Move from $vc: mov

Reads the contents of all $vc registers to a selected vector register. Bytes 0-3 correspond to $vc0, bytes 4-7 to $vc1,
and so on. The sign flags are in bytes 0-1, and the zero flags are in bytes 2-3.

Instructions:

Instruction Operands Opcode
mov $v[DST] $vc 0xbb

Operation:

2.11. Video decoding, encoding, and processing 397



nVidia Hardware Documentation, Release git

for idx in range(4):
$v[DST][idx * 4] = $vc[idx].sf & 0xff;
$v[DST][idx * 4 + 1] = $vc[idx].sf >> 8 & 0xff;
$v[DST][idx * 4 + 2] = $vc[idx].zf & 0xff;
$v[DST][idx * 4 + 3] = $vc[idx].zf >> 8 & 0xff;

Swizzle: vswz

Performs a swizzle, also known as a shuffle: builds a result vector from arbitrarily selected components of two input
vectors. There are three source vectors: sources 1 and 2 supply the data to be used, while source 3 selects the mapping
of output vector components to input vector components. Each component of source 3 consists of source selector
and component selector. They select the source (1 or 2) and its component that will be used as the corresponding
component of the result.

Instructions:

Instruction Operands Opcode
vswz SWZLOHI $v[DST] $v[SRC1] $v[SRC2] $v[SRC3] 0x9b

Operation:

for idx in range(16):
# read the component and source selectors
if SWZLOHI == 'lo':

comp = $v[SRC3][idx] & 0xf
src = $v[SRC3][idx] >> 4 & 1

else:
comp = $v[SRC3][idx] >> 4 & 0xf
src = $v[SRC3][idx] & 1

# read the source & component
if src == 0:

$v[DST][idx] = $v[SRC1][comp]
else:

$v[DST][idx] = $v[SRC2][comp]

Simple arithmetic operations: vmin, vmax, vabs, vneg, vadd, vsub

Those perform the corresponding operation (minumum, maximum, absolute value, negation, addition, substraction)
in SIMD manner on 8-bit signed or unsigned numbers from one or two sources. Source 1 is always a register selected
by SRC1 bitfield. Source 2, if it is used (ie. instruction is not vabs nor vneg), is either a register selected by SRC2
bitfield, or immediate taken from BIMM bitfield.

Most of these instructions come in signed and unsigned variants and both perform result clipping. The exception is
vneg, which only has a signed version. Note that vabs is rather uninteresting in its unsigned variant (it’s just the
identity function). Note that vsub lacks a signed version with immediat: it can be replaced with vadd with negated
immediate.

$vc output is fully supported. For signed variants, the sign flag output is the sign of the result. For unsigned variants,
the sign flag is used as an overflow flag: it’s set if the true unclipped result is not in 0..0xff range.

Instructions:

398 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Instruction Operands Opcode
vmin s [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x88
vmax s [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x89
vabs s [$vc[VCDST]] $v[DST] $v[SRC1] 0x8a
vneg s [$vc[VCDST]] $v[DST] $v[SRC1] 0x8b
vadd s [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x8c
vsub s [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x8d
vmin u [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x98
vmax u [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x99
vabs u [$vc[VCDST]] $v[DST] $v[SRC1] 0x9a
vadd u [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x9c
vsub u [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x9d
vmin s [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xa8
vmax s [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xa9
vadd s [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xac
vmin u [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xb8
vmax u [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xb9
vadd u [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xbc
vsub u [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xbd

Operation:

for idx in range(16):
s1 = $v[SRC1][idx]
if opcode & 0x20:

s2 = BIMM
else:

s2 = $v[SRC2][idx]

if opcode & 0x10:
# unsigned
s1 &= 0xff
s2 &= 0xff

else:
# signed
s1 = sext(s1, 7)
s2 = sext(s2, 7)

if op == 'vmin':
res = min(s1, s2)

elif op == 'vmax':
res = max(s1, s2)

elif op == 'vabs':
res = abs(s1)

elif op == 'vneg':
res = -s1

elif op == 'vadd':
res = s1 + s2

elif op == 'vsub':
res = s1 - s2

sf = 0
if opcode & 0x10:

# unsigned: clip to 0..0xff
if res < 0:

(continues on next page)

2.11. Video decoding, encoding, and processing 399



nVidia Hardware Documentation, Release git

(continued from previous page)

res = 0
sf = 1

if res > 0xff:
res = 0xff
sf = 1

else:
# signed: clip to -0x80..0x7f
if res < 0:

sf = 1
if res < -0x80:

res = -0x80
if res > 0x7f:

res = 0x7f

$v[DST][idx] = res

if VCDST < 4:
$vc[VCDST].sf[idx] = sf
$vc[VCDST].zf[idx] = res == 0

Clip to range: vclip

Performs a SIMD range clipping operation: first source is the value to clip, second and third sources are the range
endpoints. Or, equivalently, calculates the median of three inputs. $vc output is supported, with the sign flag set if
clipping was performed (value equal to range endpoint is considered to be clipped) or the range is improper (second
endpoint not larger than the first). All inputs are treated as signed.

Instructions:

Instruction Operands Opcode
vclip [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] $v[SRC3] 0xa4

Operation:

for idx in range(16):
s1 = sext($v[SRC1][idx], 7)
s2 = sext($v[SRC2][idx], 7)
s3 = sext($v[SRC3][idx], 7)

sf = 0

# determine endpoints
if s2 < s3:

# proper order
start = s2
end = s3

else:
# reverse order
start = s3
end = s2
sf = 1

# and clip
res = s1

(continues on next page)

400 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

if res <= start:
res = start
sf = 1

if res >= end:
res = end
sf = 1

$v[DST][idx] = res

if VCDST < 4:
$vc[VCDST].sf[idx] = sf
$vc[VCDST].zf[idx] = res == 0

Minimum of absolute values: vminabs

Performs min(abs(a), abs(b)). Both inputs are treated as signed. $vc output is supported for zero flag only.
The result is clipped to 0..0x7f range (which only matters if both inputs are -0x80).

Instructions:

Instruction Operands Opcode
vminabs [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0xa5

Operation:

for idx in range(16):
s1 = sext($v[SRC1][idx], 7)
s2 = sext($v[SRC2][idx], 7)

res = min(abs(s1, s2))

if res > 0x7f:
res = 0x7f

$v[DST][idx] = res

if VCDST < 4:
$vc[VCDST].sf[idx] = 0
$vc[VCDST].zf[idx] = res == 0

Add 9-bit: vadd9

Performs an 8-bit unsigned + 9-bit signed addition (ie. exactly what’s needed for motion compensation). The first
source provides the 8-bit inputs, while the second and third are uniquely treated as vectors of 8 16-bit components (of
which only low 9 are actually used). Second source provides components 0-7, and third provides 8-15. The result is
unsigned and clipped. $vc output is supported, with sign flag set to 1 if the true result was out of 8-bit unsigned range.

Instructions:

Instruction Operands Opcode
vadd9 [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] $v[SRC3] 0x9f

2.11. Video decoding, encoding, and processing 401



nVidia Hardware Documentation, Release git

Operation:

for idx in range(16):
# read source 1
s1 = $v[SRC1][idx]

if idx < 8:
# 0-7: SRC2
s2l = $v[SRC2][idx * 2]
s2h = $v[SRC2][idx * 2 + 1]

else:
# 8-15: SRC3
s2l = $v[SRC3][(idx - 8) * 2]
s2h = $v[SRC3][(idx - 8) * 2 + 1]

# read as 9-bit signed number
s2 = sext(s2h << 8 | s2l, 8)

# add
res = s1 + s2

# clip
sf = 0
if res > 0xff:

sf = 1
res = 0xff

if res < 0:
sf = 1
res = 0

$v[DST][idx] = res

if VCDST < 4:
$vc[VCDST].sf[idx] = sf
$vc[VCDST].zf[idx] = res == 0

Compare with absolute difference: vcmpad

This instruction performs the following operations:

• substract source 1.1 from source 2

• take the absolute value of the difference

• compare the result with source 1.2

• if equal, set zero flag of selected $vc output

• set sign flag of $vc output to an arbitrary bitwise operation of s2v $vc input and “less than” comparison result

All inputs are treated as unsigned. If s2v scalar instruction is not used together with this instruction, $vc input defaults
to sign flag of the $vc register selected as output, with no transformation.

This instruction has two sources: source 1 is a register pair, while source 2 is a single register. The second register
of the pair is selected by ORing 1 to the index of the first register of the pair. Source 2 is selected by mangled field
SRC2S.

Instructions:

402 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Instruction Operands Opcode
vcmppad CMPOP [$vc[VCDST]] $v[SRC1]d $v[SRC2S] 0x8f

Operation:

if s2v.vcsel.valid:
vcin = s2v.vcmask

else:
vcin = $vc[VCDST & 3].sf

for idx in range(16):
ad = abs($v[SRC2S][idx] - $v[SRC1][idx])
other = $v[SRC1 | 1][idx]

if VCDST < 4:
$vc[VCDST].sf[idx] = sf
$vc[VCDST].zf[idx] = ad == bitop(CMPOP, vcin >> idx & 1, ad < other)

Bit operations: vbitop

Performs an arbitrary two-input bit operation on two registers. $vc output supported for zero flag only.

Instructions:

Instruction Operands Opcode
vbitop BITOP [$vc[CDST]] $v[DST] $v[SRC1] $v[SRC2] 0x94

Operation:

for idx in range(16):
s1 = $v[SRC1][idx]
s2 = $v[SRC2][idx]

res = bitop(BITOP, s2, s1) & 0xff

$v[DST][idx] = res
if VCDST < 4:

$vc[VCDST].sf[idx] = 0
$vc[VCDST].zf[idx] = res == 0

Bit operations with immediate: vand, vor, vxor

Performs a given bitwise operation on a register and an 8-bit immediate replicated for each component. $vc output
supported for zero flag only.

Instructions:

Instruction Operands Opcode
vand [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xaa
vxor [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xab
vor [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xaf

2.11. Video decoding, encoding, and processing 403



nVidia Hardware Documentation, Release git

Operation:

for idx in range(16):
s1 = $v[SRC1][idx]

if op == 'vand':
res = s1 & BIMM

elif op == 'vxor':
res = s1 ^ BIMM

elif op == 'vor':
res = s1 | BIMM

$v[DST][idx] = res
if VCDST < 4:

$vc[VCDST].sf[idx] = 0
$vc[VCDST].zf[idx] = res == 0

Shift operations: vshr, vsar

Performs a SIMD right shift, like the scalar bytewise shift instruction. $vc output is fully supported, with bit 7 of the
result used as the sign flag.

Instructions:

Instruction Operands Opcode
vsar [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x8e
vshr [$vc[VCDST]] $v[DST] $v[SRC1] $v[SRC2] 0x9e
vsar [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xae
vshr [$vc[VCDST]] $v[DST] $v[SRC1] BIMM 0xbe

Operation:

for idx in range(16):
s1 = $v[SRC1][idx]
if opcode & 0x20:

s2 = BIMM
else:

s2 = $v[SRC2][idx]

if opcode & 0x10:
# unsigned
s1 &= 0xff

else:
# signed
s1 = sext(s1, 7)

shift = sext(s2, 3)

if shift < 0:
res = s1 << -shift

else:
res = s1 >> shift

$v[DST][idx] = res

(continues on next page)

404 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

if VCDST < 4:
$vc[VCDST].sf[idx] = res >> 7 & 1
$vc[VCDST].zf[idx] = res == 0

Linear interpolation: vlrp

A SIMD linear interpolation instruction. Takes two sources: a register pair containing the two values to interpolate, and
a register containing the interpolation factor. The result is basically SRC1.1 * (SRC2 >> SHIFT) + SRC1.2

* (1 - (SRC2 >> SHIFT)). All inputs are unsigned fractions.

Instructions:

Instruction Operands Opcode
vlrp RND SHIFT $v[DST] $v[SRC1]d $v[SRC2] 0x90

Operation:

for idx in range(16):
val1 = $v[SRC1][idx]
val2 = $v[SRC1 | 1][idx]
a = mad_expand(val2, 'fract', 'u', SHIFT)
res = mad(a, val1 - val2, $v[SRC2][idx], 0, 0, RND, 'fract', 'u', SHIFT, 'hi')
$v[DST][idx] = mad_read(res, 'fract', 'u', SHIFT, 'hi')

Multiply and multiply with accumulate: vmul, vmac

Performs a simple multiplication of two sources (but with the full set of weird options available). The result is either
added to the vector accumulator (vmac) or replaces it (vmul). The result can additionally be read to a vector register,
but doesn’t have to be.

The instructions come in many variants: they can store the result in a vector register or not, have unsigned or signed
output, and register or immediate second source. The set of available combinations is incomplete, however: while the
$v-writing variants have all combinations available, there are no unsigned variants of register-register vmul with no
$v write, nor unsigned register-immediate vmac with no $v write. Also, unsigned register-immediate vmul with no
$v output is a bad opcode.

Instructions:

2.11. Video decoding, encoding, and processing 405



nVidia Hardware Documentation, Release git

Instruc-
tion

Operands Opcode

vmul s RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1] SIGN2
$v[SRC2]

0x80

vmul s RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1] SIGN2
BIMMMUL

0xa0

vmul u RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1] SIGN2
BIMMBAD

0xb0 (bad op-
code)

vmul s RND FRACTINT SHIFT HILO $v[DST] SIGN1 $v[SRC1]
SIGN2 $v[SRC2]

0x81

vmul u RND FRACTINT SHIFT HILO $v[DST] SIGN1 $v[SRC1]
SIGN2 $v[SRC2]

0x91

vmul s RND FRACTINT SHIFT HILO $v[DST] SIGN1 $v[SRC1]
SIGN2 BIMMMUL

0xa1

vmul u RND FRACTINT SHIFT HILO $v[DST] SIGN1 $v[SRC1]
SIGN2 BIMMMUL

0xb1

vmac s RND FRACTINT SHIFT HILO $v[DST] SIGN1 $v[SRC1]
SIGN2 $v[SRC2]

0x82

vmac u RND FRACTINT SHIFT HILO $v[DST] SIGN1 $v[SRC1]
SIGN2 $v[SRC2]

0x92

vmac s RND FRACTINT SHIFT HILO $v[DST] SIGN1 $v[SRC1]
SIGN2 BIMMMUL

0xa2

vmac u RND FRACTINT SHIFT HILO $v[DST] SIGN1 $v[SRC1]
SIGN2 BIMMMUL

0xb2

vmac s RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1] SIGN2
$v[SRC2]

0x83

vmac u RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1] SIGN2
$v[SRC2]

0x93

vmac s RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1] SIGN2
BIMMMUL

0xa3

Operation:

for idx in range(16):
# read inputs
s1 = $v[SRC1][idx]
if opcode & 0x20:

if op == 0x30:
s2 = BIMMBAD

else:
s2 = BIMMMUL << 2

else:
s2 = $v[SRC2][idx]

# convert inputs
s1 = mad_input(s1, FRACTINT, SIGN1)
s2 = mad_input(s2, FRACTINT, SIGN2)

# do the computation
if op == 'vmac':

a = $va[idx]
else:

a = 0
res = mad(a, s1, s2, 0, 0, RND, FRACTINT, op.sign, SHIFT, HILO)

(continues on next page)

406 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

# write result
$va[idx] = res
if DST is not None:

$v[DST][idx] = mad_read(res, FRACTINT, op.sign, SHIFT, HILO)

Dual multiply and add/accumulate: vmac2, vmad2

Performs two multiplications and adds the result to a given source or to the vector accumulator. The result is written
to the vector accumulator and can also be written to a $v register. For each multiplication, one input is a register
source, and the other is s2v factor. The register sources for the multiplications are a register pair. The s2v sources for
the multiplications are either s2v factors (one factor from each pair is selected according to s2v $vc input) or 0/1 as
decided by s2v mask.

The instructions come in signed and unsigned variants. Apart from some bad opcodes (which overlay SRC3 with mad
param fields), only $v writing versions have unsigned variants.

Instructions:

Instruc-
tion

Operands Opcode

vmad2
s

S2VMODE RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1]d
SIGN2 $v[SRC2]

0x84

vmad2
s

S2VMODE RND FRACTINT SHIFT HILO $v[DST] SIGN1
$v[SRC1]d SIGN2 $v[SRC2]

0x85

vmad2
u

S2VMODE RND FRACTINT SHIFT HILO $v[DST] SIGN1
$v[SRC1]d SIGN2 $v[SRC2]

0x95

vmac2
s

S2VMODE RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1]d 0x86

vmac2
u

S2VMODE RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1]
$v[SRC3]

0x96 (bad op-
code)

vmac2
s

S2VMODE RND FRACTINT SHIFT HILO # SIGN1 $v[SRC1]
$v[SRC3]

0xa6 (bad op-
code)

vmac2
s

S2VMODE RND FRACTINT SHIFT HILO $v[DST] SIGN1
$v[SRC1]d

0x87

vmac2
u

S2VMODE RND FRACTINT SHIFT HILO $v[DST] SIGN1
$v[SRC1]d

0x97

vmac2
s

S2VMODE RND FRACTINT SHIFT HILO $v[DST] SIGN1
$v[SRC1] $v[SRC3]

0xa7 (bad op-
code)

Operation:

for idx in range(16):
# read inputs
s11 = $v[SRC1][idx]
if opcode in (0x96, 0xa6, 0xa7):

# one of the bad opcodes
s12 = $v[SRC3][idx]

else:
s12 = $v[SRC1 | 1][idx]

s2 = $v[SRC2][idx]

(continues on next page)

2.11. Video decoding, encoding, and processing 407



nVidia Hardware Documentation, Release git

(continued from previous page)

# convert inputs
s11 = mad_input(s11, FRACTINT, SIGN1)
s12 = mad_input(s12, FRACTINT, SIGN1)
s2 = mad_input(s2, FRACTINT, SIGN2)

# prepare A value
if op == 'vmad2':

a = mad_expand(s2, FRACTINT, sign, SHIFT)
else:

a = $va[idx]

# prepare factors
if S2VMODE == 'mask':

if s2v.mask[0] & 1 << idx:
f1 = 0x100

else:
f1 = 0

if s2v.mask[1] & 1 << idx:
f2 = 0x100

else:
f2 = 0

else:
# 'factor'
cc = s2v.vcmask >> idx & 1
f1 = s2v.factor[0 | cc]
f2 = s2v.factor[2 | cc]

# do the operation
res = mad(a, s11, f1, s12, f2, RND, FRACTINT, sign, SHIFT, HILO)

# write result
$va[idx] = res
if DST is not None:

$v[DST][idx] = mad_read(res, FRACTINT, op.sign, SHIFT, HILO)

Dual linear interpolation: vlrp2

This instruction performs the following steps:

• read a quad register source selected by SRC1

• rotate the source quad by the amount selected by bits 4-5 of a selected $c register

• for each component:

– treat register 0 of the quad as function value at (0, 0)

– treat register 2 as value at (1, 0)

– treat register 3 as value at (0, 1)

– select a pair of factors from s2v input based on selected flag of selected $vc register

– treat the factors as a coordinate pair and interpolate function value at these coordinates

– write result to $v register and optionally $va

408 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

The inputs and outputs may be signed or unsigned. A shift and rounding mode can be selected. Additionally, there’s
an option to XOR register 0 with 0x80 before use as the base value (but not for the differences used in interpolation).
Don’t ask me.

Instructions:

Instruc-
tion

Operands Op-
code

vlrp2 SIGND VAWRITE RND SHIFT $v[DST] SIGNS LRP2X $v[SRC1]q
$c[COND] $vc[VCSRC] VCSEL

0xb3

Operation:

# a function selecting the factors
def get_lrp2_factors(idx):

if VCSEL == 'sf':
vcmask = $vc[VCSRC].sf

else:
vcmask = $vc[VCSRC].zf

cc = vcmask >> idx & 1;
f1 = s2v.factor[0 | cc]
f2 = s2v.factor[2 | cc]

return f1, f2

# determine rotation
rot = $c[COND] >> 4 & 3

for idx in range(16):
# read inputs, maybe do the xor
s10x = s10 = $v[(SRC1 & 0x1c) | ((SRC1 + rot) & 3)][idx]
s12 = $v[(SRC1 & 0x1c) | ((SRC1 + rot + 2) & 3)][idx]
s13 = $v[(SRC1 & 0x1c) | ((SRC1 + rot + 3) & 3)][idx]
if LRP2X:

s10x ^= 0x80

# convert inputs if necessary
s10 = mad_input(s10, 'fract', SIGNS)
s12 = mad_input(s12, 'fract', SIGNS)
s13 = mad_input(s13, 'fract', SIGNS)
s10x = mad_input(s10x, 'fract', SIGNS)

# do it
a = mad_expand(s10x, 'fract', SIGND, SHIFT)
f1, f2 = get_lrp2_factors(idx)
res = mad(a, s12 - s10, f1, s13 - s10, f2, RND, 'fract', SIGND, SHIFT, 'hi')

# write outputs
if VAWRITE:

$va[idx] = res
$v[DST][idx] = mad_read(res, 'fract', SIGND, SHIFT, 'hi')

Quad linear interpolation, part 1: vlrp4a

Works like the previous variant, but only outputs to $va and lacks some flags. Both outputs and inputs are unsigned.

2.11. Video decoding, encoding, and processing 409



nVidia Hardware Documentation, Release git

Instructions:

Instruction Operands Opcode
vlrp4a RND SHIFT # $v[SRC1]q $c[COND] $vc[VCSRC] VCSEL 0xb4

Operation:

rot = $c[COND] >> 4 & 3

for idx in range(16):

s10 = $v[(SRC1 & 0x1c) | ((SRC1 + rot) & 3)][idx]
s12 = $v[(SRC1 & 0x1c) | ((SRC1 + rot + 2) & 3)][idx]
s13 = $v[(SRC1 & 0x1c) | ((SRC1 + rot + 3) & 3)][idx]

a = mad_expand(s10, 'fract', 'u', SHIFT)
f1, f2 = get_lrp2_factors(idx)

$va[idx] = mad(a, s12 - s10, f1, s13 - s10, f2, RND, 'fract', 'u', SHIFT, 'lo
→˓')

Factor linear interpolation: vlrpf

Has similiar input processing to vlrp2, but instead uses source 1 registers 2 and 3 to interpolate s2v input. Result is
SRC2 + SRC1.2 * F1 + SRC1.3 * (F2 - F1).

Instructions:

Instruc-
tion

Operands Op-
code

vlrpf RND SHIFT # $v[SRC1]q $c[COND] $v[SRC2] $vc[VCSRC]
VCSEL

0xb5

Operation:

rot = $c[COND] >> 4 & 3

for idx in range(16):

s12 = $v[(SRC1 & 0x1c) | ((SRC1 + rot + 2) & 3)][idx]
s13 = $v[(SRC1 & 0x1c) | ((SRC1 + rot + 3) & 3)][idx]
s2 = sext($v[SRC2][idx], 7)

a = mad_expand(s2, 'fract', 'u', SHIFT)
f1, f2 = get_lrp2_factors(idx)

$va[idx] = mad(a, s12 - s13, f1, s13, f2, RND, 'fract', 'u', SHIFT, 'lo')

Quad linear interpolation, part 2: vlrp4b

Can be used together with vlrp4a for quad linear interpolation. First s2v factor is the interpolation coefficient for
register 1, and second factor is the interpolation coefficient for the extra register ($vx).

Alternatively, can be coupled with vlrpf.

410 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Instructions:

Instruc-
tion

Operands Op-
code

vlrp4b
u

ALTRND ALTSHIFT $v[DST] $v[SRC1]q $c[COND] SLCT
$vc[VCSRC] VCSEL

0xb6

vlrp4b
s

ALTRND ALTSHIFT $v[DST] $v[SRC1]q $c[COND] SLCT
$vc[VCSRC] VCSEL

0xb7

Operation:

for idx in range(16):
if SLCT == 4:

rot = $c[COND] >> 4 & 3
s10 = $v[(SRC1 & 0x1c) | ((SRC1 + rot) & 3)][idx]
s11 = $v[(SRC1 & 0x1c) | ((SRC1 + rot + 1) & 3)][idx]

else:
adjust = $c[COND] >> SLCT & 1
s10 = s11 = $v[src1 ^ adjust][idx]

f1, f2 = get_lrp2_factors(idx)

res = mad($va[idx], s11 - s10, f1, $vx[idx] - s10, f2, ALTRND, 'fract', op.
→˓sign, ALTSHIFT, 'hi')

$va[idx] = res
$v[DST][idx] = mad_read(res, 'fract', op.sign, ALTSHIFT, 'hi')

Branch unit

Contents

• Branch unit

– Introduction

– Branch registers

Todo: write me

Introduction

Todo: write me

Branch registers

2.11. Video decoding, encoding, and processing 411



nVidia Hardware Documentation, Release git

Todo: write me

Address unit

Contents

• Address unit

– Introduction

– The data store

* Address registers

– Instruction format

* Opcodes

– Instructions

* Set low/high bits: setlo, sethi

* Addition: add

* Bit operations: bitop

* Address addition: aadd

* Load: ldvh, ldvv, lds

* Load and add: ldavh, ldavv, ldas

* Store: stvh, stvv, sts

* Store and add: stavh, stavv, stas

* Load raw: ldr

* Store raw and add: star

* Load extra and add: ldaxh, ldaxv

Introduction

The address unit is one of the four execution units of VP1. It transfers data between that data store and registers,
controls the DMA unit, and performs address calculations.

The data store

The data store is the working memory of VP1, 8kB in size. Data can be transferred between the data store and $r/$v
registers using load/store instructions, or between the data store and main memory using the DMA engine. It’s often
treated as two-dimensional, with row stride selectable between 0x10, 0x20, 0x40, and 0x80 bytes: there are “load
vertical” instructions which gather consecutive bytes vertically rather than horizontally.

Because of its 2D capabilities, the data store is internally organized into 16 independently addressable 16-bit wide
banks of 256 cells each, and the memory addresses are carefully spread between the banks so that both horizontal and

412 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

vertical loads from any address will require at most one access to every bank. The bank assignments differ between
the supported strides, so row stride is basically a part of the address, and an area of memory always has to be accessed
with the same stride (unless you don’t care about its previous contents). Specifially, the translation of (address, stride)
pair into (bank, cell index, high/low byte) is as follows:

def address_xlat(addr, stride):
bank = addr & 0xf
hilo = addr >> 4 & 1
cell = addr >> 5 & 0xff
if stride == 0:

# 0x10 bytes
bank += (addr >> 5) & 7

elif stride == 1:
# 0x20 bytes
bank += addr >> 5

elif stride == 0x40:
# 0x40 bytes
bank += addr >> 6

elif stride == 0x80:
# 0x80 bytes
bank += addr >> 7

bank &= 0xf
return bank, cell, hilo

In pseudocode, data store bytes are denoted by DS[bank, cell, hilo].

In case of vertical access with 0x10 bytes stride, all 16 bits of 8 banks will be used by a 16-byte access. In all other
cases, 8 bits of all 16 banks will be used for such access. DMA transfers can make use of the full 256-bit width of the
data store, by transmitting 0x20 consecutive bytes at a time.

The data store can be accessed by load/store instructions in one of four ways:

• horizontal: 16 consecutive naturally aligned addresses are used:

def addresses_horizontal(addr, stride):
addr &= 0x1ff0
return [address_xlat(addr | idx, stride) for idx in range(16)]

• vertical: 16 addresses separated by stride bytes are used, also naturally aligned:

def addresses_vertical(addr, stride):
addr &= 0x1fff
# clear the bits used for y coord
addr &= ~(0xf << (4 + stride))
return [address_xlat(addr | idx << (4 + stride)) for idx in range(16)]

• scalar: like horizontal, but 4 bytes:

def addresses_horizontal_short(addr, stride):
addr &= 0x1ffc
return [address_xlat(addr | idx, stride) for idx in range(4)]

• raw: the raw data store coordinates are provided directly

Address registers

The address unit has 32 address registers, $a0-$a31. These are used for address storage. If they’re used to store data
store addresses (and not DMA command parameters), they have the following bitfields:

2.11. Video decoding, encoding, and processing 413



nVidia Hardware Documentation, Release git

• bits 0-15: addr - the actual data store address

• bits 16-29: limit - can store the high bounduary of an array, to assist in looping

• bits 30-31: stride - selects data store stride:

– 0: 0x10 bytes

– 1: 0x20 bytes

– 2: 0x40 bytes

– 3: 0x80 bytes

There are also 3 bits in each $c register belonging to the address unit. They are:

• bits 8-9: long address flags

– bit 8: sign flag - set equal to bit 31 of the result

– bit 9: zero flag - set if the result is 0

• bit 10: short address flag

– bit 10: end flag - set if addr field of the result is greater than or equal to limit

Some address instructions set either the long or short flags of a given $c register according to the result.

Instruction format

The instruction word fields used in address instructions in addition to the ones used in scalar instructions are:

• bit 0: for opcode 0xd7, selects the subopcode:

– 0: load raw: ldr

– 1: store raw and add: star

• bits 3-13: UIMM: unsigned 13-bit immediate.

Todo: list me

Opcodes

The opcode range assigned to the address unit is 0xc0-0xdf. The opcodes are:

• 0xc0: load vector horizontal and add: ldavh

• 0xc1: load vector vertical and add: ldavv

• 0xc2: load scalar and add: ldas

• 0xc3: ??? (xdld)

• 0xc4: store vector horizontal and add: stavh

• 0xc5: store vector vertical and add: stavv

• 0xc6: store scalar and add: stas

• 0xc7: ??? (xdst)

• 0xc8: load extra horizontal and add: ldaxh

414 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 0xc9: load extra vertical and add: ldaxv

• 0xca: address addition: aadd

• 0xcb: addition: add

• 0xcc: set low bits: setlo

• 0xcd: set high bits: sethi

• 0xce: ??? (xdbar)

• 0xcf: ??? (xdwait)

• 0xd0: load vector horizontal and add: ldavh

• 0xd1: load vector vertical and add: ldavv

• 0xd2: load scalar and add: ldas

• 0xd3: bitwise operation: bitop

• 0xd4: store vector horizontal and add: stavh

• 0xd5: store vector vertical and add: stavv

• 0xd6: store scalar and add: stas

• 0xd7: depending on instruction bit 0:

– 0: load raw: ldr

– 1: store raw and add: star

• 0xd8: load vector horizontal: ldvh

• 0xd9: load vector vertical: ldvv

• 0xda: load scalar: lds

• 0xdb: ???

• 0xdc: store vector horizontal: stvh

• 0xdd: store vector vertical: stvv

• 0xde: store scalar: sts

• 0xdf: the canonical address nop opcode

Todo: complete the list

Instructions

Set low/high bits: setlo, sethi

Sets low or high 16 bits of a register to an immediate value. The other half is unaffected.

Instructions:

Instruction Operands Opcode
setlo $a[DST] IMM16 0xcc
sethi $a[DST] IMM16 0xcd

2.11. Video decoding, encoding, and processing 415



nVidia Hardware Documentation, Release git

Operation:

if op == 'setlo':
$a[DST] = ($a[DST] & 0xffff0000) | IMM16

else:
$a[DST] = ($a[DST] & 0xffff) | IMM16 << 16

Addition: add

Does what it says on the tin. The second source comes from a mangled register index. The long address flags are set.

Instructions:

Instruction Operands Opcode
add [$c[CDST]] $a[DST] $a[SRC1] $a[SRC2S] 0xcb

Operation:

res = $a[SRC1] + $a[SRC2S]

$a[DST] = res

cres = 0
if res & 1 << 31:

cres |= 1
if res == 0:

cres |= 2
if CDST < 4:

$c[CDST].address.long = cres

Bit operations: bitop

Performs an arbitrary two-input bit operation on two registers, selected by SRC1 and SRC2. The long address flags
are set.

Instructions:

Instruction Operands Opcode
bitop BITOP [$c[CDST]] $a[DST] $a[SRC1] $a[SRC2] 0xd3

Operation:

res = bitop(BITOP, $a[SRC2], $a[SRC1]) & 0xffffffff

$a[DST] = res

cres = 0
if res & 1 << 31:

cres |= 1
if res == 0:

cres |= 2
if CDST < 4:

$c[CDST].address.long = cres

416 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Address addition: aadd

Adds the contents of a register to the addr field of another register. Short address flag is set.

Instructions:

Instruction Operands Opcode
aadd [$c[CDST]] $a[DST] $a[SRC2S] 0xca

Operation:

$a[DST].addr += $a[SRC2S]

if CDST < 4:
$c[CDST].address.short = $a[DST].addr >= $a[DST].limit

Load: ldvh, ldvv, lds

Loads from the given address ORed with an unsigned 11-bit immediate. ldvh is a horizontal vector load, ldvv is a
vertical vector load, and lds is a scalar load. Curiously, while register is ORed with the immdiate to form the address,
they are added to make $c output.

Instructions:

Instruction Operands Opcode
ldvh $v[DST] [$c[CDST]] $a[SRC1] UIMM 0xd8
ldvv $v[DST] [$c[CDST]] $a[SRC1] UIMM 0xd9
lds $r[DST] [$c[CDST]] $a[SRC1] UIMM 0xda

Operation:

if op == 'ldvh':
addr = addresses_horizontal($a[SRC1].addr | UIMM, $a[SRC1].stride)
for idx in range(16):

$v[DST][idx] = DS[addr[idx]]
elif op == 'ldvv':

addr = addresses_vertical($a[SRC1].addr | UIMM, $a[SRC1].stride)
for idx in range(16):

$v[DST][idx] = DS[addr[idx]]
elif op == 'lds':

addr = addresses_scalar($a[SRC1].addr | UIMM, $a[SRC1].stride)
for idx in range(4):

$r[DST][idx] = DS[addr[idx]]

if CDST < 4:
$c[CDST].address.short = (($a[SRC1].addr + UIMM) & 0xffff) >= $a[SRC1].limit

Load and add: ldavh, ldavv, ldas

Loads from the given address, then post-increments the address by the contents of a register (like the aadd instruction)
or an immediate. ldavh is a horizontal vector load, ldavv is a vertical vector load, and ldas is a scalar load.

2.11. Video decoding, encoding, and processing 417



nVidia Hardware Documentation, Release git

Instructions:

Instruction Operands Opcode
ldavh $v[DST] [$c[CDST]] $a[SRC1] $a[SRC2S] 0xc0
ldavv $v[DST] [$c[CDST]] $a[SRC1] $a[SRC2S] 0xc1
ldas $r[DST] [$c[CDST]] $a[SRC1] $a[SRC2S] 0xc2
ldavh $v[DST] [$c[CDST]] $a[SRC1] IMM 0xd0
ldavv $v[DST] [$c[CDST]] $a[SRC1] IMM 0xd1
ldas $r[DST] [$c[CDST]] $a[SRC1] IMM 0xd2

Operation:

if op == 'ldavh':
addr = addresses_horizontal($a[SRC1].addr, $a[SRC1].stride)
for idx in range(16):

$v[DST][idx] = DS[addr[idx]]
elif op == 'ldavv':

addr = addresses_vertical($a[SRC1].addr, $a[SRC1].stride)
for idx in range(16):

$v[DST][idx] = DS[addr[idx]]
elif op == 'ldas':

addr = addresses_scalar($a[SRC1].addr, $a[SRC1].stride)
for idx in range(4):

$r[DST][idx] = DS[addr[idx]]

if IMM is None:
$a[SRC1].addr += $a[SRC2S]

else:
$a[SRC1].addr += IMM

if CDST < 4:
$c[CDST].address.short = $a[SRC1].addr >= $a[SRC1].limit

Store: stvh, stvv, sts

Like corresponding ld* instructions, but store instead of load. SRC1 and DST fields are exchanged.

Instructions:

Instruction Operands Opcode
stvh $v[SRC1] [$c[CDST]] $a[DST] UIMM 0xdc
stvv $v[SRC1] [$c[CDST]] $a[DST] UIMM 0xdd
sts $r[SRC1] [$c[CDST]] $a[DST] UIMM 0xde

Operation:

if op == 'stvh':
addr = addresses_horizontal($a[DST].addr | UIMM, $a[DST].stride)
for idx in range(16):

DS[addr[idx]] = $v[SRC1][idx]
elif op == 'stvv':

addr = addresses_vertical($a[DST].addr | UIMM, $a[DST].stride)
for idx in range(16):

DS[addr[idx]] = $v[SRC1][idx]

(continues on next page)

418 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

elif op == 'sts':
addr = addresses_scalar($a[DST].addr | UIMM, $a[DST].stride)
for idx in range(4):

DS[addr[idx]] = $r[SRC1][idx]

if CDST < 4:
$c[CDST].address.short = (($a[DST].addr + UIMM) & 0xffff) >= $a[DST].limit

Store and add: stavh, stavv, stas

Like corresponding lda* instructions, but store instead of load. SRC1 and DST fields are exchanged.

Instructions:

Instruction Operands Opcode
stavh $v[SRC1] [$c[CDST]] $a[DST] $a[SRC2S] 0xc4
stavv $v[SRC1] [$c[CDST]] $a[DST] $a[SRC2S] 0xc5
stas $r[SRC1] [$c[CDST]] $a[DST] $a[SRC2S] 0xc6
stavh $v[SRC1] [$c[CDST]] $a[DST] IMM 0xd4
stavv $v[SRC1] [$c[CDST]] $a[DST] IMM 0xd5
stas $r[SRC1] [$c[CDST]] $a[DST] IMM 0xd6

Operation:

if op == 'stavh':
addr = addresses_horizontal($a[DST].addr, $a[DST].stride)
for idx in range(16):

DS[addr[idx]] = $v[SRC1][idx]
elif op == 'stavv':

addr = addresses_vertical($a[DST].addr, $a[DST].stride)
for idx in range(16):

DS[addr[idx]] = $v[SRC1][idx]
elif op == 'stas':

addr = addresses_scalar($a[DST].addr, $a[DST].stride)
for idx in range(4):

DS[addr[idx]] = $r[SRC1][idx]

if IMM is None:
$a[DST].addr += $a[SRC2S]

else:
$a[DST].addr += IMM

if CDST < 4:
$c[CDST].address.short = $a[DST].addr >= $a[DST].limit

Load raw: ldr

A raw load instruction. Loads one byte from each bank of the data store. The banks correspond directly to destination
register components. The addresses are composed from ORing an address register with components of a vector register
shifted left by 4 bits. Specifically, for each component, the byte to access is determined as follows:

• take address register value

2.11. Video decoding, encoding, and processing 419



nVidia Hardware Documentation, Release git

• shift it right 4 bits (they’re discarded)

• OR with the corresponding component of vector source register

• bit 0 of the result selects low/high byte of the bank

• bits 1-8 of the result select the cell index in the bank

This instruction shares the 0xd7 opcode with star. They are differentiated by instruction word bit 0, set to 0 in case
of ldr.

Instructions:

Instruction Operands Opcode
ldr $v[DST] $a[SRC1] $v[SRC2] 0xd7.0

Operation:

for idx in range(16):
addr = $a[SRC1].addr >> 4 | $v[SRC2][idx]
$v[DST][idx] = DS[idx, addr >> 1 & 0xff, addr & 1]

Store raw and add: star

A raw store instruction. Stores one byte to each bank of the data store. As opposed to raw load, the addresses
aren’t controllable per component: the same byte and cell index is accessed in each bank, and it’s selected by post-
incremented address register like for sta*. $c output is not supported.

This instruction shares the 0xd7 opcode with lda. They are differentiated by instruction word bit 0, set to 1 in case of
star.

Instructions:

Instruction Operands Opcode
star $v[SRC1] $a[DST] $a[SRC2S] 0xd7.1

Operation:

for idx in range(16):
addr = $a[DST].addr >> 4
DS[idx, addr >> 1 & 0xff, addr & 1] = $v[SRC1][idx]

$a[DST].addr += $a[SRC2S]

Load extra and add: ldaxh, ldaxv

Like ldav*, except the data is loaded to $vx. If a selected $c flag is set (the same one as used for SRC2S mangling),
the same data is also loaded to a $v register selected by DST field mangled in the same way as in vlrp2 family of
instructions.

Instructions:

Instruction Operands Opcode
ldaxh $v[DST]q [$c[CDST]] $a[SRC1] $a[SRC2S] 0xc8
ldaxv $v[DST]q [$c[CDST]] $a[SRC1] $a[SRC2S] 0xc9

420 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Operation:

if op == 'ldaxh':
addr = addresses_horizontal($a[SRC1].addr, $a[SRC1].stride)
for idx in range(16):

$vx[idx] = DS[addr[idx]]
elif op == 'ldaxv':

addr = addresses_vertical($a[SRC1].addr, $a[SRC1].stride)
for idx in range(16):

$vx[idx] = DS[addr[idx]]

if $c[COND] & 1 << SLCT:
for idx in range(16):

$v[(DST & 0x1c) | ((DST + ($c[COND] >> 4)) & 3)][idx] = $vx[idx]

$a[SRC1].addr += $a[SRC2S]

if CDST < 4:
$c[CDST].address.short = $a[SRC1].addr >= $a[SRC1].limit

DMA transfers

Contents

• DMA transfers

– Introduction

– DMA registers

Todo: write me

Introduction

Todo: write me

DMA registers

Todo: write me

FIFO interface

2.11. Video decoding, encoding, and processing 421



nVidia Hardware Documentation, Release git

Contents

• FIFO interface

– Introduction

– Method registers

– FIFO access registers

Todo: write me

Introduction

Todo: write me

Method registers

Todo: write me

FIFO access registers

Todo: write me

Introduction

Todo: write me

2.11.2 VP2/VP3 vµc processor

Contents:

Overview of VP2/VP3/VP4 vµc hardware

Contents

• Overview of VP2/VP3/VP4 vµc hardware

422 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– Introduction

– The MMIO registers - VP2

– The MMIO registers - VP3/VP4

– Interrupts

Introduction

vµc is a microprocessor unit used as the second stage of the VP2 [in H.264 mode only], VP3 and VP4 video decoding
pipelines. The same name is also used to refer to the instruction set of this microprocessor. vµc’s task is to read
decoded bitstream data written by VLD into the MBRING structure, do any required calculations on this data, then
construct instructions for the VP stage regarding processing of the incoming macroblocks. The work required of vµc is
dependent on the codec and may include eg. motion vector derivation, calculating quantization parameters, converting
macroblock type to prediction modes, etc.

On VP2, the vµc is located inside the PBSP engine [see vdec/vp2/pbsp.txt]. On VP3 and VP4, it is located inside the
PPDEC engine [see vdec/vp3/ppdec.txt].

The vµc unit is made of the following subunits:

• the vµc microcprocessor - oversees everything and does the calculations that are not performance-sensitive
enough to be done in hardware

• MBRING input and parsing circuitry - reads bitstream data parsed by the VLD

• MVSURF input and output circuitry - the MVSURF is a storage buffer attached to all reference pictures in
H.264 and to P pictures in VC-1, MPEG-4. It stores the motion vectors and other data used for direct prediction
in B pictures. There are two MVSURFs that can be used: the output MVSURF that will store the data of the
current picture, and the input MVSURF that should store the data for the first picture in L1 list [H.264] or the
last P picture [other codecs]

• VPRINGs output circuitry [VP2 only] - the VPRINGs are ring buffers filled by vµc with instructions for
various VP subunits. There are three VPRINGs: VPRING_DEBLOCK used for deblocking commands,
VPRIND_RESIDUAL used for the residual transform coefficients, and VPRINT_CTRL used for the motion
vectors and other control data.

• direct VP connection [VP3, VP4 only] - the VP3+ vµc is directly connected to the VP engine, instead of relying
on ring buffers in memory.

The MMIO registers - VP2

The vµc registers are located in PBSP XLMI space at addresses 0x08000:0x10000 [BAR0 addresses
0x103200:0x103400]. They are:

08000:0a000/103200:103280: DATA - vµc microprocessor data space [vdec/vuc/isa.txt]

0a000/103280: ICNT - executed instructions counter, aliased to vµc special register $sr15 [$icnt]

0a100/103284: WDCNT - watchdog count - when ICNT reaches WDCNT value and WDCNT is not equal to
0xffff, a watchdog interrupt is raised

0a200/103288: CODE_CONTROL - code execution control [vdec/vuc/isa.txt] 0a300/10328c: CODE_WINDOW
- code access window [vdec/vuc/isa.txt] 0a400/103290: H2V - host to vµc scratch register [vdec/vuc/isa.txt]
0a500/103294: V2H - vµc to host scratch register [vdec/vuc/isa.txt] 0a600/103298: PARM - sequence/picture/slice
parameters required by vµc

2.11. Video decoding, encoding, and processing 423



nVidia Hardware Documentation, Release git

hardware, aliased to vµc special register $sr7 [$parm]

0a700/10329c: PC - program counter [vdec/vuc/isa.txt] 0a800/1032a0: VPRING_RESIDUAL.OFFSET - the
VPRING_RESIDUAL offset 0a900/1032a4: VPRING_RESIDUAL.HALT_POS - the VPRING_RESIDUAL halt po-
sition 0aa00/1032a8: VPRING_RESIDUAL.WRITE_POS - the VPRING_RESIDUAL write position 0ab00/1032ac:
VPRING_RESIDUAL.SIZE - the VPRING_RESIDUAL size 0ac00/1032b0: VPRING_CTRL.OFFSET -
the VPRING_CTRL offset 0ad00/1032b4: VPRING_CTRL.HALT_POS - the VPRING_CTRL halt po-
sition 0ae00/1032b8: VPRING_CTRL.WRITE_POS - the VPRING_CTRL write position 0af00/1032bc:
VPRING_CTRL.SIZE - the VPRING_CTRL size 0b000/1032c0: VPRING_DEBLOCK.OFFSET - the
VPRING_DEBLOCK offset 0b100/1032c4: VPRING_DEBLOCK.HALT_POS - the VPRING_DEBLOCK halt po-
sition 0b200/1032c8: VPRING_DEBLOCK.WRITE_POS - the VPRING_DEBLOCK write position 0b300/1032cc:
VPRING_DEBLOCK.SIZE - the VPRING_DEBLOCK size 0b400/1032d0: VPRING_TRIGGER - flush/resume
triggers the for VPRINGs 0b500/1032d4: INTR - interrupt status 0b600/1032d8: INTR_EN - interrupt en-
able mask 0b700/1032dc: VPRING_ENABLE - enables VPRING access 0b800/1032e0: MVSURF_IN_OFFSET
- MVSURF_IN offset [vdec/vuc/mvsurf.txt] 0b900/1032e4: MVSURF_IN_PARM - MVSURF_IN parame-
ters [vdec/vuc/mvsurf.txt] 0ba00/1032e8: MVSURF_IN_LEFT - MVSURF_IN data left [vdec/vuc/mvsurf.txt]
0bb00/1032ec: MVSURF_IN_POS - MVSURF_IN position [vdec/vuc/mvsurf.txt] 0bc00/1032f0: MV-
SURF_OUT_OFFSET - MVSURF_OUT offset [vdec/vuc/mvsurf.txt] 0bd00/1032f4: MVSURF_OUT_PARM -
MVSURF_OUT parameters [vdec/vuc/mvsurf.txt] 0be00/1032f8: MVSURF_OUT_LEFT - MVSURF_OUT space
left [vdec/vuc/mvsurf.txt] 0bf00/1032fc: MVSURF_OUT_POS - MVSURF_OUT position [vdec/vuc/mvsurf.txt]
0c000/103300: MBRING_OFFSET - the MBRING offset 0c100/103304: MBRING_SIZE - the MBRING size
0c200/103308: MBRING_READ_POS - the MBRING read position 0c300/10330c: MBRING_READ_AVAIL - the
bytes left to read in MBRING

The MMIO registers - VP3/VP4

The vµc registers are located in PPDEC falcon IO space at addresses 0x10000:0x14000 [BAR0 addresses
0x085400:0x085500]. They are:

10000:11000/085400:085440: DATA - vµc microprocessor data space [vdec/vuc/isa.txt]

11000/085440: CODE_CONTROL - code execution control [vdec/vuc/isa.txt] 11100/085444: CODE_WINDOW -
code access window [vdec/vuc/isa.txt] 11200/085448: ICNT - executed instructions counter, aliased to vµc special

register $sr15 [$icnt]

11300/08544c: WDCNT - watchdog count - when ICNT reaches WDCNT value and WDCNT is not equal to
0xffff, a watchdog interrupt is raised

11400/085450: H2V - host to vµc scratch register [vdec/vuc/isa.txt] 11500/085454: V2H - vµc to host scratch register
[vdec/vuc/isa.txt] 11600/085458: PARM - sequence/picture/slice parameters required by vµc

hardware, aliased to vµc special register $sr7 [$parm]

11700/08545c: PC - program counter [vdec/vuc/isa.txt] 11800/085460: RPITAB - the address of refidx -> RPI trans-
lation table 11900/085464: REFTAB - the address of RPI -> VM address translation table 11a00/085468: BUSY - a
status reg showing which subunits of vµc are busy 11c00/085470: INTR - interrupt status 11d00/085474: INTR_EN
- interrupt enable mask 12000/085480: MVSURF_IN_ADDR - MVSURF_IN address [vdec/vuc/mvsurf.txt]
12100/085484: MVSURF_IN_PARM - MVSURF_IN parameters [vdec/vuc/mvsurf.txt] 12200/085488: MV-
SURF_IN_LEFT - MVSURF_IN data left [vdec/vuc/mvsurf.txt] 12300/08548c: MVSURF_IN_POS - MV-
SURF_IN position [vdec/vuc/mvsurf.txt] 12400/085490: MVSURF_OUT_ADDR - MVSURF_OUT address
[vdec/vuc/mvsurf.txt] 12500/085494: MVSURF_OUT_PARM - MVSURF_OUT parameters [vdec/vuc/mvsurf.txt]
12600/085498: MVSURF_OUT_LEFT - MVSURF_OUT space left [vdec/vuc/mvsurf.txt] 12700/08549c: MV-
SURF_OUT_POS - MVSURF_OUT position [vdec/vuc/mvsurf.txt] 12800/0854a0: MBRING_OFFSET - the
MBRING offset 12900/0854a4: MBRING_SIZE - the MBRING size 12a00/0854a8: MBRING_READ_POS - the
MBRING read position 12b00/0854ac: MBRING_READ_AVAIL - the bytes left to read in MBRING 12c00/0854b0:

424 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

??? [XXX] 12d00/0854b4: ??? [XXX] 12e00/0854b8: ??? [XXX] 12f00/0854bc: STAT - control/status register
[vdec/vuc/isa.txt] 13000/0854c0: ??? [XXX] 13100/0854c4: ??? [XXX]

Interrupts

Todo: write me

VP2/VP3/VP4 vµc ISA

Contents

• VP2/VP3/VP4 vµc ISA

– Introduction

– The delays

– The opcode format

– The code space and execution control

– The data space

– Instruction reference

* Data movement instructions: slct, mov

* Addition instructions: add, sub, subr, avgs, avgu

* Comparison instructions: setgt, setlt, seteq, setlep, setzero

* Clamping and sign extension instructions: clamplep, clamps, sext

* Division by 2 instruction: div2s

* Bit manipulation instructions: bset, bclr, btest

* Swapping reg halves: hswap

* Shift instructions: shl, shr, sar

* Bitwise instructions: and, or, xor, not

* Minmax instructions: min, max

* Predicate instructions: and, or, xor

* No operation: nop

* Long multiplication instructions: lmulu, lmuls

* Long arithmetic unary instructions: lsrr, ladd, lsar, ldivu

* Control flow instructions: bra, call, ret

* Memory access instructions: ld, st

– The scratch special registers

– The $stat special register

2.11. Video decoding, encoding, and processing 425



nVidia Hardware Documentation, Release git

* Sleep instruction: sleep

* Wait for status bit instructions: wstc, wsts

– The watchdog counter

* Clear watchdog counter instruction: clicnt

– Misc special registers

Introduction

This file deals with description of the ISA used by the vµc microprocessor, which is described in vdec/vuc/intro.txt.

The microprocessor registers, instructions and memory spaces are mostly 16-bit oriented. There are 3 ISA register
files:

• $r0-$r15, 16-bit general-purpose registers, for arithmetic and addressing

– $r0: read-only and hardwired to 0

– $r1-$r15: read/write

• $p0-$p15, 1-bit predicate registers, for conditional execution

– $p0: read/write

– $p1: read only and hardwired to !$p0

– $p2-$p14: read/write

– $p15: read-only and hardwired to 1

• $sr0-$sr63, 16-bit special registers

– $sr0/$asel: A neighbour read selection [VP2 only] [vdec/vuc/vreg.txt]

– $sr1/$bsel: B neighbour read selection [VP2 only] [vdec/vuc/vreg.txt]

– $sr2/$spidx: [sub]partition selection [vdec/vuc/vreg.txt]

– $sr3/$baddr: B neighbour read address [VP2 only] [vdec/vuc/vreg.txt]

– $sr3/$absel: A and B neighbour selection [VP3+ only] [vdec/vuc/vreg.txt]

– $sr4/$h2v: host to vµc scratch register [vdec/vuc/isa.txt]

– $sr5/$v2h: vµc to host scratch register [vdec/vuc/isa.txt]

– $sr6/$stat: a control/status register [vdec/vuc/isa.txt]

– $sr7/$parm: video parameters [vdec/vuc/vreg.txt]

– $sr8/$pc: program counter [vdec/vuc/isa.txt]

– $sr9/$cspos: call stack position [vdec/vuc/isa.txt]

– $sr10/$cstop: call stack top [vdec/vuc/isa.txt]

– $sr11/$rpitab: RPI lut pointer [VP2 only] [vdec/vuc/vreg.txt]

– $sr12/$lhi: long arithmetic high word [vdec/vuc/isa.txt]

– $sr13/$llo: long arithmetic low word [vdec/vuc/isa.txt]

– $sr14/$pred: alias of $p register file [vdec/vuc/isa.txt]

426 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– $sr15/$icnt: cycle counter [vdec/vuc/isa.txt]

– $sr16/$mvxl0: motion vector L0 X component [vdec/vuc/vreg.txt]

– $sr17/$mvyl0: motion vector L0 Y component [vdec/vuc/vreg.txt]

– $sr18/$mvxl1: motion vector L1 X component [vdec/vuc/vreg.txt]

– $sr19/$mvyl1: motion vector L1 Y component [vdec/vuc/vreg.txt]

– $sr20/$refl0: L0 refidx [vdec/vuc/vreg.txt]

– $sr21/$refl1: L1 refidx [vdec/vuc/vreg.txt]

– $sr22/$rpil0: L0 RPI [vdec/vuc/vreg.txt]

– $sr23/$rpil1: L1 RPI [vdec/vuc/vreg.txt]

– $sr24/$mbflags: macroblock flags [vdec/vuc/vreg.txt]

– $sr25/$qpy: luma quantiser and intra chroma pred mode [vdec/vuc/vreg.txt]

– $sr26/$qpc: chroma quantisers [vdec/vuc/vreg.txt]

– $sr27/$mbpart: macroblock partitioning schema [vdec/vuc/vreg.txt]

– $sr28/$mbxy: macroblock X and Y position [vdec/vuc/vreg.txt]

– $sr29/$mbaddr: macroblock address [vdec/vuc/vreg.txt]

– $sr30/$mbtype: macroblock type [vdec/vuc/vreg.txt]

– $sr31/$submbtype: submacroblock types [VP2 only] [vdec/vuc/vreg.txt]

– $sr31/???: ??? [XXX] [VP3+ only] [vdec/vuc/vreg.txt]

– $sr32/$amvxl0: A neighbour’s $mvxl0 [vdec/vuc/vreg.txt]

– $sr33/$amvyl0: A neighbour’s $mvyl0 [vdec/vuc/vreg.txt]

– $sr34/$amvxl1: A neighbour’s $mvxl1 [vdec/vuc/vreg.txt]

– $sr35/$amvyl1: A neighbour’s $mvyl1 [vdec/vuc/vreg.txt]

– $sr36/$arefl0: A neighbour’s $refl0 [vdec/vuc/vreg.txt]

– $sr37/$arefl1: A neighbour’s $refl1 [vdec/vuc/vreg.txt]

– $sr38/$arpil0: A neighbour’s $rpil0 [vdec/vuc/vreg.txt]

– $sr39/$arpil1: A neighbour’s $rpil1 [vdec/vuc/vreg.txt]

– $sr40/$ambflags: A neighbour’s $mbflags [vdec/vuc/vreg.txt]

– $sr41/$aqpy: A neighbour’s $qpy [VP2 only] [vdec/vuc/vreg.txt]

– $sr42/$aqpc: A neighbour’s $qpc [VP2 only] [vdec/vuc/vreg.txt]

– $sr48/$bmvxl0: B neighbour’s $mvxl0 [vdec/vuc/vreg.txt]

– $sr49/$bmvyl0: B neighbour’s $mvyl0 [vdec/vuc/vreg.txt]

– $sr50/$bmvxl1: B neighbour’s $mvxl1 [vdec/vuc/vreg.txt]

– $sr51/$bmvyl1: B neighbour’s $mvyl1 [vdec/vuc/vreg.txt]

– $sr52/$brefl0: B neighbour’s $refl0 [vdec/vuc/vreg.txt]

– $sr53/$brefl1: B neighbour’s $refl1 [vdec/vuc/vreg.txt]

– $sr54/$brpil0: B neighbour’s $rpil0 [vdec/vuc/vreg.txt]

2.11. Video decoding, encoding, and processing 427



nVidia Hardware Documentation, Release git

– $sr55/$brpil1: B neighbour’s $rpil1 [vdec/vuc/vreg.txt]

– $sr56/$bmbflags: B neighbour’s $mbflags [vdec/vuc/vreg.txt]

– $sr57/$bqpy: B neighbour’s $qpy [vdec/vuc/vreg.txt]

– $sr58/$bqpc: B neighbour’s $qpc [vdec/vuc/vreg.txt]

There are 7 address spaces the vµc can access:

• D[] - user data [vdec/vuc/isa.txt]

• PWT[] - pred weight table data, read-only. This space is filled when a packet of type 4 is read from the MBRING.
Byte-addressed, 0x200 bytes long, loads are in byte units.

• VP[] - VPRING output data, write-only. Data stored here will be written to VPRING_DEBLOCK and
VPRING_CTRL when corresponding commands are invoked. Byte-addressed, 0x400 bytes long. Stores are
in byte or word units depending on the address.

• MVSI[] - MVSURF input data [read-only] [vdec/vuc/mvsurf.txt]

• MVSO[] - MVSURF output data [write-only] [vdec/vuc/mvsurf.txt]

• B6[] - io address space? [XXX]

• B7[] - io address space? [XXX]

The vµc code resides in the code space, separate from the above spaces. The code space is a dedicated SRAM of
0x800 instruction words. An instruction word consists of 40 bits on VP2, 30 bits on VP3.

The delays

The vµc lacks interlocks - on every cycle when vµc microcprocessor is active and not sleeping/waiting, one instruction
begins execution. Most instructions finish in one cycle. However, when an instruction takes more than one cycle to
finish, vµc will continue to fetch and execute subsequent instructions even if they have dependencies on the current
instruction - it is thus required to manually insert nops in the code or schedule instructions to avoid such situations.

An X-cycle instruction happens in three phases:

• cycle 0: source read - the inputs to the instruction are gathered

• cycles 0..(X-1): result computation -

• cycle X: destination writeout - the results are stored into the destination registers

For example, add $r1 $r2 $r3 is a 1-cycle instruction. On cycle 0, the sources are read and the result is computed. On
cycle 1, in parallel with executing the next instruction, the result is written out to $r1.

The extra cycle for destination writeout means that, in general, it’s required to have at least 1 unrelated instruction
between writing a register and reading it. However, vµc implements store-to-load forwarding for some common cases
- the result value, which is already known on cycle (X-1), is transferred directly into the next instruction, if there’s a
match betwen the next instruction’s source register index and current instruction’s destination register index. Store-to-
load forwarding happens in the following situations:

• all $r register reads and writes

• all $p register reads and writes, except by accessing them through $pred special register

• $lhi/$llo register reads and writes done implicitely by long arithmetic instructions

Store-to-load forwarding does NOT happen in the following situations:

• $sr register reads and writes

Example 1:

428 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

:: add $r1 $r2 $r3 add $r4 $r1 $r5

No delay needed, store-to-load forwarding happens:

• cycle 0: $r2 and $r3 read, $r2+$r3 computed

• cycle 1: $r5 read, previous result read due to l-t-s forwarding match for $r1, prev+$r5 computed, previous
result written to $r1

• cycle 2: next instruction begins execution, insn 1 result written to $r5

Example 2 [missing delay]:

:: add $mvxl0 $r2 $r3 add $r4 $mvxl0 $r5

Delay needed, but not supplied - store-to-load forwarding doesn’t happen and old value is read:

• cycle 0: $r2 and $r3 read, $r2+$r3 computed

• cycle 1: $mvxl0 and $r5 read, $mvxl0+$r5 computed, previous result written to $mvxl0

• cycle 2: next instruction begins execution, insn 1 result written to $r5

Code is equivalent to:

$r4 = $mvxl0 + $r5;
$mvxl0 = $r2 + $r3;

Example 3 [proper delay]:

:: add $mvxl0 $r2 $r3 nop add $r4 $mvxl0 $r5

Delay needed and supplied:

• cycle 0: $r2 and $r3 read, $r2+$r3 computed

• cycle 1: nop executes, previous result written to $mvxl0

• cycle 2: new $mvxl0 and $r5 read, $mvxl0+$r5 computed

• cycle 3: next instruction begins execution, insn 2 result written to $r5

Code is equivalent to:

$mvxl0 = $r2 + $r3;
$r4 = $mvxl0 + $r5;

Since long-running instructions use execution units during their execution, it’s usually forbidden to launch other in-
structions using the same execution units until the first instruction is finished. When such execution unit conflict
happens, the old instruction is aborted.

It is possible that two instructions with different write delays will try to perform a register write in the same cycle
(e.g. ld-nop-mov sequence). If the write destinations are different, both writes will happen as expected. If the write
destinations are the same, destination carries the value of the last write.

The branch instructions take two cycles to finish - the instruction after the jump [the delay slot] is executed regardless
of whether the jump is taken or not.

The opcode format

The opcode bits are:

• 0-4: opcode selection [OP]

• 5-6, base opcodes: predicate output mode [POM]

2.11. Video decoding, encoding, and processing 429



nVidia Hardware Documentation, Release git

– 00: $p &= predicate output

– 01: $p |= predicate output

– 10: $p = predicate output

– 11: predicate output discarded

• 7, base opcodes: predicate output negation flag [PON]

• 5-7, special opcodes: special opcode class selection [OC]

– 000: control flow

– 001: io control

– 010: predicate manipulation

– 100: load/store

– 101: multiplication

• 8-11: source 1 [SRC1]

• 12-15: source 2 [SRC2]

• 16-19: destionation [DST]

• 8-18: branch target [BTARG]

• 20-23: predicate [PRED]

• 24-25: extra bits for immediate and $sr [EXT]

• 26: opcode type 0 [OT0]

• 27: source 2 immediate flag [IMMF]

• 28: opcode type 1 [OT1]

• 29: predicate enable flag [PE]

• 30-32: relative branch predicate [RBP] - VP2 only

• 33: relative branch predicate negation flag [RBN] - VP2 only

• 34-39: relative branch target [RBT] - VP2 only

On VP2, a single instruction word holds two instruction slots - the normal instruction slot in bits 0-29, and the relative
branch instruction slot in bits 30-39. When the instruction is executed, both instruction slots are executed simul-
tanously and independently.

The relative branch slot can hold only one type of instruction, which is the relative branch. The main slot can hold all
other types of instructions. It’s possible to encode two different jumps in one opcode by utilising both the branch slot
and the main instruction slot for a branch. The branch will take place if any of the two branch conditions match. If
both branch conditions match, the actual branch executed is the one in the main slot.

On VP3+, the relative branch slot no longer exists, and the main slot makes up the whole instruction word.

There are two major types of opcodes that can be stored in the main slot: base opcodes and special opcodes. The type
of instruction in the main slot is determined by OT0 and OT1 bits:

• OT0 = 0, OT1 = 0: base opcode, $r destination, $r source 1

• OT0 = 1, OT1 = 0: base opcode, $r destination, $sr source 1

• OT0 = 0, OT1 = 1: base opcode, $sr destination, $r source 1

• OT0 = 1, OT1 = 1: special opcode

430 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

For base opcodes, the OP bits determine the final opcode:

• 00000: slct [slct form] select

• 00001: mov [mov form] move

• 00100: add [binary form] add

• 00101: sub [binary form] substract

• 00110: subr [binary form] substract reverse [VP2 only]

• 00110: avgs [binary form] average signed [VP3+ only]

• 00111: avgu [binary form] average unsigned [VP3+ only]

• 01000: setgt [set form] set if greater than

• 01001: setlt [set form] set if less than

• 01010: seteq [set form] set if equal to

• 01011: setlep [set form] set if less or equal and positive

• 01100: clamplep [binary form] clamp to less or equal and positive

• 01101: clamps [binary form] clamp signed

• 01110: sext [binary form] sign extension

• 01111: setzero [set form] set if both zero [VP2 only]

• 01111: div2s [unary form] divide by 2 signed [VP3+ only]

• 10000: bset [binary form] bit set

• 10001: bclr [binary form] bit clear

• 10010: btest [set form] bit test

• 10100: hswap [unary form] swap reg halves

• 10101: shl [binary form] shift left

• 10110: shr [binary form] shift right

• 10111: sar [binary form] shift arithmetic right

• 11000: and [binary form] bitwise and

• 11001: or [binary form] bitwise or

• 11010: xor [binary form] bitwise xor

• 11011: not [unary form] bitwise not

• 11100: lut [binary form] video LUT lookup

• 11101: min [binary form] minimum [VP3+ only]

• 11110: max [binary form] maximum [VP3+ only]

For special opcodes, the OC bits determine the opcode class, and OP bits further determine the opcode inside that
class. The classes and opcodes are:

• OC 000: control flow

– 00000: bra [branch form] branch

– 00010: call [branch form] call

2.11. Video decoding, encoding, and processing 431



nVidia Hardware Documentation, Release git

– 00011: ret [simple form] return

– 00100: sleep [simple form] sleep

– 00101: wstc [immediate form] wait for status bit clear

– 00110: wsts [immediate form] wait for status bit set

• OC 001: io control

– 00000: clicnt [simple form] clear instruction counter

– 00001: ??? [XXX] [simple form]

– 00010: ??? [XXX] [simple form]

– 00011: ??? [XXX] [simple form]

– 00100: mbiread [simple form] macroblock input read

– 00101: ??? [XXX] [simple form]

– 00110: ??? [XXX] [simple form]

– 01000: mbinext [simple form] macroblock input next

– 01001: mvsread [simple form] MVSURF read

– 01010: mvswrite [simple form] MVSURF write

– 01011: ??? [XXX] [simple form]

– 01100: ??? [XXX] [simple form]

• OC 010: predicate manipulation

– xxx00: and [predicate form] and

– xxx01: or [predicate form] or

– xxx10: xor [predicate form] xor

– xxx11: nop [simple form] no operation

• OC 100: load/store

– xxxx0: st [store form] store

– xxxx1: ld [load form] load

• OC 101: long arithmetic

– 00000: lmulu [long binary form] long multiply unsigned

– 00001: lmuls [long binary form] long multiply signed

– 00010: lsrr [long unary form] long shift right with round

– 00100: ladd [long unary form] long add [VP3+ only]

– 01000: lsar [long unary form] long shift right arithmetic [VP3+ only]

– 01100: ldivu [long unary form] long divide unsigned [VP4 only]

All main slot opcodes can be predicated by an arbitrary $p register. The PE bit enables predication. If PE bit is 1, the
main slot instruction will only have an effect if the $p register selected by PRED field has value 1. Note that PE bit
also has an effect on instruction format - longer immediates are allowed, and the predicate destination field changes.

Note that, for some formats, opcode fields may be used for multiple purposes. For example, mov instruction with
PE=1 and IMMF=1 uses PRED bitfield both as the predicate selector and as the middle part of the immediate operand.

432 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Such formats should be avoided unless it can be somehow guaranteed that the value in the field will fit all purposes
it’s used for.

The base opcodes have the following operands:

• binary form: pdst, dst, src1, src2

• unary form: pdst, dst, src1

• set form: pdst, src1, src2

• slct form: pdst, dst, pred, src1, src2

• mov form: pdst, dst, lsrc

The operands and their encodings are:

• pdst: predicate destination - this operand is special, as it can be used in several modes. First, the instruction
generates a boolean predicate result. Then, if PON bit is set, this output is negated. Finally, it is stored to a $p
register in one of 4 modes:

– POM = 00: $p &= output

– POM = 01: $p |= output

– POM = 10: $p = output

– POM = 11: output is discarded

The $p output register is:

– PE = 0: $p register selected by PRED field

– PE = 1: $p register selected by DST field

• dst: main destination

– OT0 = 1 or OT1 = 0: $r register selected by DST field

– OT0 = 0 and OT1 = 1: $sr register selected by DST [low bits] and EXT [high bits] fields

• pred - predicate source

– all cases: $p register selected by PRED field

• src1: first source

– OT0 = 0 or OT1 = 1: $r register selected by SRC1 field,

– OT0 = 1 and OT1 = 0: $sr register selected by SRC1 [low bits] and EXT [high bits] fields.

• src2: second source

– IMMF = 0: $r register selected by SRC2 field

– IMMF = 1 and OT0 = OT1:. zero-extended 6-bit immediate value stored in SRC2 [low bits] and EXT
[high bits] fields.

– IMMF = 1 and OT0 != OT1: zero-extended 4-bit immediate value stored in SRC2 field.

• lsrc: long source

– IMMF = 0: $r register selected by SRC2 field

– IMMF = 1 and OT1 = 0:. zero-extended 14-bit immediate value stored in SRC1 [low bits], SRC2 [low
middle bits], PRED [high middle bits] and EXT [high bits] fields.

– IMMF = 1 and OT1 = 1:. zero-extended 12-bit immediate value stored in SRC1 [low bits], SRC2 [middle
bits] and PRED [high bits] fields

2.11. Video decoding, encoding, and processing 433



nVidia Hardware Documentation, Release git

The special opcodes have the following operands:

• simple form: [none]

• immediate form: imm4

• branch form: btarg

• predicate form: spdst, psrc1, psrc2

• store form: space[dst + src1 * 2], src2 [if IMMF is 0]

• store form: space[src1 + stoff], src2 [if IMMF is 1]

• load form: dst, space[src1 + ldoff] [if IMMF is 0]

• load form: dst, space[src1 + src2] [if IMMF is 1]

• long binary form: src1, src2

• long unary form: src2

The operands and their encodings are:

• src1, src2, dst: like for base opcodes

• imm4: 4-bit immediate

– all cases: 4-bit immediate stored in SRC2 field

• btarg: code address

– all cases: 11-bit immediate stored in BTARG field

• spdst: predicate destination

– PE = 0: $p register selected by PRED field

– PE = 1: $p register selected by DST field

• psrc1: predicate source 1, optionally negated

– all cases: $p register selected by SRC1 field, negated if bit 3 of OP field is set

• psrc2: predicate source 2, optionally negated

– all cases: $p register selected by SRC2 field, negated if bit 2 of OP field is set

• space: memory space selection, OP field bits 1-4:

– 0000: D[]

– 0001: PWT[] - ld only

– 0010: VP[] - st only

– 0100: MVSI[] - ld only

– 0101: MVSO[] - st only

– 0110: B6[]

– 0111: B7[]

• stoff: store offset

– PE = 0: 10-bit zero-extended immediate stored in DST [low bits], PRED [middle bits] and EXT [high bits]
fields

– PE = 1: 6-bit zero-extended immediate stored in DST [low bits] and EXT [high bits] fields

434 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• ldoff: load offset

– PE = 0: 10-bit zero-extended immediate stored in SRC2 [low bits], PRED [middle bits] and EXT [high
bits] fields

– PE = 1: 6-bit zero-extended immediate stored in SRC2 [low bits] and EXT [high bits] fields

The code space and execution control

The vµc executes instructions from dedicated code SRAM. The code SRAM is made of 0x800 cells, with each cell
holding one opcode. Thus, a cell is 40 bits wide on VP2, 30 bits wide on VP3+. The code space is addressed in opcode
units, with addresses 0-0x7ff. The only way to access the code space other than via executing instructions from it is
through the code port:

BAR0 0x103288 / XLMI 0x0a200: CODE_CONTROL [VP2] BAR0 0x085440 / I[0x11000]: CODE_CONTROL
[VP3+]

bits 0-10: ADDR, cell address to access by CODE_WINDOW bit 16: STATE, code execution control: 0
- code is being executed,

CODE_WINDOW doesn’t work, 1 - microprocessor is halted, CODE_WINDOW is enabled

BAR0 0x10328c / XLMI 0x0a300: CODE_WINDOW [VP2] BAR0 0x085444 / I[0x11100]: CODE_WINDOW
[VP3+]

Accesses the code space - see below

On VP3+, reading or writing the CODE_WINDOW register will cause a read/write of the code space cell selected by
ADDR, with the cell value taken from / appearing at bits 0-29 of CODE_WINDOW. ADDR is auto-incremented by 1
with each access.

On VP2, since code space cells are 40 bits long, accessing a cell requires two accesses to CODE_WINDOW. The cell
is divided into 32-bit low part and 8-bit high part. There is an invisible 1-bit flipflop that selects whether the high part
or the low part will be accessed next. The low part is accessed first, then the high part. Writing CODE_CONTROL
will reset the flipflop to the low part. Accessing CODE_WINDOW with the flipflop set to the low part will access
the low part, then switch the flipflop to the high part. Accessing CODE_WINDOW with the flipflop set to the high
part will access the high part [through bits 0-7 of CODE_WINDOW], switch the flipflop to the low part, and auto-
increment ADDR by 1. In addition, writes through CODE_WINDOW are buffered - writing the low part writes a
shadow register, writing the high part assembles it with the current shadow register value and writes the concatenated
result to the code space.

The STATE bit is used to control vµc execution. This bit is set to 1 when the vµc is reset. When this bit is changed
from 1 to 0, the vµc starts executing instructions starting from code address 0. When this bit is changed from 1 to 0,
the vµc execution is halted.

The data space

D[] is a read-write memory space consisting of 0x800 16-bit cells. Every address in range 0-0x7ff corresponds to one
cell. The D[] space is used for three purposes:

• to store general-purpose data by microcode/host and communicate between the microcode and the host

• to store the RPI table, a mapping from bitstream reference indices to hw surface indices [RPIs], used directly by
hardware [vdec/vuc/vreg.txt]

• to store the REF table, a mapping from RPIs to surface VM addresses, used directly by hardware [VP3+]
[vdec/vuc/vreg.txt]

On VP2, the D[] space can be accessed from the host directly by using the DATA window:

2.11. Video decoding, encoding, and processing 435



nVidia Hardware Documentation, Release git

BAR0 0x103200 + (i >> 6) * 4 [index i & 0x3f] / XLMI 0x08000 + i * 4, i < 0x800: DATA[i] [VP2] Accesses the
data space - low 16 bits of DATA[i] go to D[] cell i, high 16 bits are unused.

On VP3+, the DATA window also exists, but cells are accessed in pairs:

BAR0 0x085400 + (i >> 6) * 4 [index i & 0x3f] / I[0x10000 + i * 4], i < 0x400: DATA[i] [VP3+] Accesses the data
space - low 16 bits of DATA[i] go to D[] cell i*2, high 16 bits go to D[] cell i*2+1.

The D[] space can be both read and written via the DATA window.

Instruction reference

In the pseudocode, all intermediate computation results and temporary variables are assumed to be infinite-precision
signed integers: non-negative integers are padded at the left with infinite number of 0 bits, while negative integers are
padded with infinite number of 1 bits.

When assigning a result to a finite-precision register, any extra bits are chopped off. When reading a value from a
finite-precision register, it’s padded with infinite number of 0 bits at the left by default. A sign-extension read, where
the register value is padded with infinite number of copies of its MSB instead, is written as SEX(reg).

Operators used in the pseudocode behave as in C.

Some instructions are described elsewhere. They are:

• lut [vdec/vuc/vreg.txt]

• sleep [in $stat register description]

• wstc [in $stat register description]

• wsts [in $stat register description]

• clicnt [XXX]

• mbiread [vdec/vuc/vreg.txt]

• mbinext [vdec/vuc/vreg.txt]

• mvsread [vdec/vuc/mvsurf.txt]

• mvswrite [vdec/vuc/mvsurf.txt]

Data movement instructions: slct, mov

mov sets the destination to the value of the only source. slct sets the destination to the value of one of the sources, as
selected by a predicate.

Instruction: slct pdst, dst, pred, src1, src2 Opcode: base opcode, OP = 00000 Operation:

result = (pred ? src1 : src2);
dst = result;
pdst = result & 1;

Execution time: 1 cycle Predicate output: LSB of normal result

Instruction: mov pdst, dst, lsrc Opcode: base opcode, OP = 00001 Operation:

result = lsrc;
dst = result;
pdst = result & 1;

Execution time: 1 cycle Predicate output: LSB of normal result

436 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Addition instructions: add, sub, subr, avgs, avgu

add performs an addition of two 16-bit quantities, sub and subr perform substraction, subr with reversed order of
operands. avgs and avgu compute signed and unsigned average of two sources, rounding up. If predicate output is
used, the predicate is set to the lowest bit of the result.

Instructions:: add pdst, dst, src1, src2 OP=00100 sub pdst, dst, src1, src2 OP=00101 subr pdst, dst, src1, src2
OP=00110 [VP2 only] avgs pdst, dst, src1, src2 OP=00110 [VP3+ only] avgu pdst, dst, src1, src2 OP=00111
[VP3+ only]

Opcode: base opcode, OP as above Operation:

if (op == add) result = src1 + src2;
if (op == sub) result = src1 - src2;
if (op == subr) result = src2 - src1;
if (op == avgs) result = (SEX(src1) + SEX(src2) + 1) >> 1;
if (op == avgu) result = (src1 + src2 + 1) >> 1;
dst = result;
pdst = result & 1;

Execution time: 1 cycle Predicate output: LSB of normal result

Comparison instructions: setgt, setlt, seteq, setlep, setzero

setgt, setlt, seteq perform signed >, <, == comparison on two source operands and return the result as pdst. setlep
returns 1 if src1 is in range [0, src2]. All comparisons are signed 16-bit. setzero returns 1 if both src1 and src2 are
equal to 0.

Instructions:: setgt pdst, src1, src2 OP=01000 setlt pdst, src1, src2 OP=01001 seteq pdst, src1, src2 OP=01010 setlep
pdst, src1, src2 OP=01011 setzero pdst, src1, src2 OP=01111 [VP2 only]

Opcode: base opcode, OP as above Operation:

if (op == setgt) result = SEX(src1) < SEX(src2);
if (op == setlt) result = SEX(src1) > SEX(src2);
if (op == seteq) result = src1 == src2;
if (op == setlep) result = SEX(src1) <= SEX(src2) && SEX(src1) >= 0;
if (op == setzero) result = src1 == 0 && src2 == 0;
pdst = result;

Execution time: 1 cycle Predicate output: the comparison result

Clamping and sign extension instructions: clamplep, clamps, sext

clamplep clamps src1 to [0, src2] range. clamps, like the xtensa instruction of the same name, clamps src1 to [-(1
<< src2), (1 << src2) - 1] range, ie. to the set of (src2+1)-bit signed integers. sext, like the xteansa and falcon
instructions of the same name, replaces bits src2 and up with a copy of bit src2, effectively doing a sign extension
from a (src2+1)-bit signed number.

Instructions:: clamplep pdst, dst, src1, src2 OP=01100 clamps pdst, dst, src1, src2 OP=01101 sext pdst, dst, src1,
src2 OP=01110

Opcode: base opcode, OP as above Operation:

2.11. Video decoding, encoding, and processing 437



nVidia Hardware Documentation, Release git

if (op == clamplep) {
result = src1;
presult = 0;
if (SEX(src1) < 0) {

presult = 1;
result = 0;

}
if (SEX(src1) > SEX(src2)) {

presult = 1;
result = src2;

}
}
if (op == clamps) {

bit = src2 & 0xf;
result = src1;
presult = 0;
if (SEX(src1) < -(1 << bit)) {

result = -(1 << bit);
presult = 1;

}
if (SEX(src1) > (1 << bit) - 1) {

result = (1 << bit) - 1;
presult = 1;

}
}
if (op == sext) {

bit = src2 & 0xf;
presult = src1 >> bit & 1;
if (presult)

result = jrc1 | -(1 << bit);
else

result = src1 & ((1 << bit) - 1);
}
dst = result;
pdst = presult;

Execution time: 1 cycle Predicate output:

clamplep, clamps: 1 if clamping happened sext: 1 if result < 0

Division by 2 instruction: div2s

div2s divides a signed number by 2, rounding to 0.

Instructions:: div2s pdst, dst, src1 OP=01111 [VP3+ only]

Opcode: base opcode, OP as above Operation:

if (SEX(src1) < 0) {
result = (SEX(src1) + 1) >> 1;

} else {
result = src1 >> 1;

}
dst = result;
pdst = result < 0;

Execution time: 1 cycle Predicate output: 1 if result is negative

438 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Bit manipulation instructions: bset, bclr, btest

bset and bclr set or clear a single bit in a value. btest copies a selected bit to a $p register.

Instructions:: bset pdst, dst, src1, src2 OP=10000 bclr pdst, dst, src1, src2 OP=10001 btest pdst, src1, src2 OP=10010

Opcode: base opcode, OP as above Operation:

bit = src2 & 0xf;
if (op == bset) {

result = src1 | 1 << bit;
presult = result & 1;
dst = result;

}
if (op == bclr) {

dst = result = src1 & ~(1 << bit)
presult = result & 1;
dst = result;

}
if (op == btest) {

presult = src1 >> bit & 1;
}
pdst = presult;

Execution time: 1 cycle Predicate output:

bset, bclr: bit 0 of the result btest: the selected bit

Swapping reg halves: hswap

hswap, like the falcon instruction of the same name, rotates a value by half its size, which is always 8 bits for vµc.

Instructions:: hswap pdst, dst, src1 OP=10100

Opcode: base opcode, OP as above Operation:

result = src1 >> 8 | src1 << 8;
dst = result;
pdst = result & 1;

Execution time: 1 cycle Predicate output: bit 0 of the result

Shift instructions: shl, shr, sar

shl does a left shift, shr does a logical right shift, sar does an arithmetic right shift.

Instructions:: shl pdst, dst, src1, src2 OP=10101 shr pdst, dst, src1, src2 OP=10110 sar pdst, dst, src1, src2
OP=10111

Opcode: base opcode, OP as above Operation:

shift = src2 & 0xf;
if (op == shl) {

result = src1 << shift;
presult = result >> 16 & 1;

}
if (op == shr) {

(continues on next page)

2.11. Video decoding, encoding, and processing 439



nVidia Hardware Documentation, Release git

(continued from previous page)

result = src1 >> shift;
if (shift != 0) {

presult = presult = src1 >> (shift - 1) & 1;
} else {

presult = 0;
}

}
if (op == sar) {

result = SEX(src1) >> shift;
if (shift != 0) {

presult = presult = src1 >> (shift - 1) & 1;
} else {

presult = 0;
}

}
dst = result;
pdst = presult;

Execution time: 1 cycle Predicate output: the last bit shifted out

Bitwise instructions: and, or, xor, not

No comment.

Instructions:: and pdst, dst, src1, src2 OP=11000 or pdst, dst, src1, src2 OP=11001 xor pdst, dst, src1, src2
OP=11010 not pdst, dst, src1 OP=11011

Opcode: base opcode, OP as above Operation:

if (op == and) result = src1 & src2;
if (op == or) result = src1 | src2;
if (op == xor) result = src1 ^ src2;
if (op == not) result = ~src1;
dst = result;
pdst = result & 1;

Execution time: 1 cycle Predicate output: bit 0 of the result

Minmax instructions: min, max

These instructions perform the signed min/max operations.

Instructions:: min pdst, dst, src1, src2 OP=11101 [VP3+ only] max pdst, dst, src1, src2 OP=11110 [VP3+ only]

Opcode: base opcode, OP as above Operation:

if (op == min) which = (SEX(src2) < SEX(src1));
if (op == max) which = (SEX(src2) >= SEX(src1));
dst = (which ? src2 : src1);
pdst = which;

Execution time: 1 cycle Predicate output: 0 if src1 is selected as the result, 1 if src2 is selected

440 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Predicate instructions: and, or, xor

These instruction perform the corresponding logical ops on $p registers. Note that one of both inputs can be negates,
as mentioned in psrc1/psrc2 operand description.

Instructions:: and spdst, psrc1, psrc2 OP=xxx00 or spdst, psrc1, psrc2 OP=xxx01 xor spdst, psrc1, psrc2 OP=xxx10

Opcode: special opcode with OC=010, OP as above. Note that bits 2 and 3 of OP are used for psrc1 and psrc2
negation flags.

Operation:: if (op == and) spdst = psrc1 & psrc2; if (op == or) spdst = psrc1 | psrc2; if (op == xor) spdst = psrc1 ^
psrc2;

Execution time: 1 cycle

No operation: nop

Does nothing.

Instructions:: nop OP=xxx11

Opcode: special opcode with OC=010, OP as above. Operation:

/* nothing */

Execution time: 1 cycle

Long multiplication instructions: lmulu, lmuls

These instructions perform signed and unsigned 16x11 -> 32 bit multiplication. src1 holds the 16-bit source, while
low 11 bits of src2 hold the 11-bit source. The result is written to $lhi:$llo.

Instructions:: lmulu src1, src2 OP=00000 lmuls src1, src2 OP=00001

Opcode: special opcode with OC=101, OP as above Operation:

if (op == umul) {
result = src1 * (src2 & 0x7ff);

if (op == smul) {
/* sign extension from 11-bit number */
s2 = src2 & 0x7ff;
if (s2 & 0x400)

s2 -= 0x800;
result = SEX(src1) * s2;

}
$llo = result;
$lhi = result >> 16;

Execution time: 3 cycles Execution unit conflicts: lmulu, lmuls, lsrr, ladd, lsar, ldivu

Long arithmetic unary instructions: lsrr, ladd, lsar, ldivu

These instruction operate on the 32-bit quantity in $lhi:$llo. ladd adds a signed 16-bit quantity to it. lsar shifts it right
arithmetically by a given amount. ldivu does an unsigned 32/16 -> 32 division. lsrr divides it by 2^(src2 + 1), rounding
to nearest with ties rounded up.

2.11. Video decoding, encoding, and processing 441



nVidia Hardware Documentation, Release git

Instructions:: lsrr src2 OP=00010 ladd src2 OP=00100 [VP3+ only] lsar src2 OP=01000 [VP3+ only] ldivu src2
OP=01100 [VP4 only]

Opcode: special opcode with OC=101, OP as above Operation:

val = SEX($lhi) << 16 | $llo;
if (op == lsrr) {

bit = src2 & 0x1f;
val += 1 << bit;
val >>= (bit + 1);

}
if (op == ladd) val += SEX(src2);
if (op == lsar) val >>= src2 & 0x1f;
if (op == ldivu)

val &= 0xffffffff;
if (src2)

val /= src2;
else

val = 0xffffffff;
}
$llo = val;
$lhi = val >> 16;

Execution time: lsrr: 1 cycle ladd: 1 cycle lsar: 1 cycle ldivu: 34 cycles

Execution unit conflicts: lmulu, lmuls, lsrr, ladd, lsar, ldivu

Control flow instructions: bra, call, ret

Todo: write me

• Flow:

0x00: [bra TARGET]

bra IMM?

Branch to address. Delay: 1 instruction

0x02: [call TARGET]

call IMM?

XXX: stack and calling convention

0x03: [ret]

ret

TODO: delay (blob: 1) XXX: stack and calling convention

Memory access instructions: ld, st

These instructions load and store values from/to one of the memory spaces available to the vµc microprocessor. The
exact semantics of such operation depend on the space being accessed.

442 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Instructions:: st space[dst + src1 * 2], src2 OP=xxxx0 [if IMMF is 0] st space[src1 + stoff], src2 OP=xxxx0 [if
IMMF is 1] ld dst, space[src1 + ldoff] OP=xxxx1 [if IMMF is 0] ld dst, space[src1 + src2] OP=xxxx1 [if IMMF
is 1]

Opcode: Special opcode with OC=100, OP as above. Note that btis 1-4 of OP are used to select memory space.

Operation::

if (op == st) space.STORE(address, src2);

else dst = space.LOAD(address);

Execution time: ld: 3 cycles st: 1 cycle

The scratch special registers

The vµc has two 16-bit scratch registers that may be used for communication between vµc and the host [xtensa/falcon
code counts at the host in this case]. One of them is for host -> vµc direction, the other for vµc -> host.

The host -> vµc register is called $h2v. It’s RW on the host side, RO on vµc side. Writing this register causes bit 11 of
$stat register to light up and stay up until $h2v is read on vµc side.

$sr4/$h2v: host->vµc 16-bit scratch register. Reading this register will clear bit 11 of $stat. This register is read-only.

BAR0 0x103290 / XLMI 0x0a400: H2V [VP2] BAR0 0x085450 / I[0x11400]: H2V [VP3+]

A read-write alias of $h2v. Does not clear $stat bit 11 when read. Writing sets bit 11 of $stat

$stat bit 11: $h2v write pending. This bit is set when H2V is written by host, cleared when $h2v is read by vµc.

The vµc -> host register is called $v2h. It’s RW on the vµc side, RO on host side. Writing this register causes an
interrupt to be triggered.

$sr5/$v2h: vµc->host 16-bit scratch register, read-write. Writing this register will trigger V2H vµc interrupt.

BAR0 0x103294 / XLMI 0x0a500: V2H [VP2] BAR0 0x085454 / I[0x11500]: V2H [VP3+]

A read-only alias of $v2h.

The $stat special register

Every bit in this register performs a different function. All of them can be read. For the ones that can be written, value
0 serves as a noop, while value 1 triggers some operation.

$sr6/$stat: Control and status register.

• bit 0 [VP2]: VPRING_DEBLOCK buffer 0 write trigger [vdec/vuc/vpring.txt]

• bit 1 [VP2]: VPRING_DEBLOCK buffer 1 write trigger [vdec/vuc/vpring.txt]

• bit 2 [VP2]: VPRING_CTRL buffer 0 write trigger [vdec/vuc/vpring.txt]

• bit 3 [VP2]: VPRING_CTRL buffer 1 write trigger [vdec/vuc/vpring.txt]

• bit 0 [VP3+]: ??? [XXX]

• bit 1 [VP3+]: ??? [XXX]

• bit 2 [VP3+]: ??? [XXX]

• bit 3 [VP3+]: ??? [XXX]

• bit 4: ??? [XXX]

2.11. Video decoding, encoding, and processing 443



nVidia Hardware Documentation, Release git

• bit 5: mvsread done status [vdec/vuc/mvsurf.txt]

• bit 6: MVSURF_OUT full status [vdec/vuc/mvsurf.txt]

• bit 7: mvswrite busy status [vdec/vuc/mvsurf.txt]

• bit 8: ??? [XXX]

• bit 9: ??? [XXX]

• bit 10: macroblock input available [vdec/vuc/vreg.txt]

• bit 11: $h2v write pending [vdec/vuc/isa.txt]

• bit 12: watchdog triggered [vdec/vuc/isa.txt]

• bit 13 [VP4+?]: ??? [XXX]

• bit 14: user-controlled pulse PCOUNTER signal [vdec/vuc/perf.txt]

• bit 15: user-controlled continuousPCOUNTER signal [vdec/vuc/perf.txt]

Three special instructions are available that read $stat implicitely. sleep instruction switches to a low-power sleep
mode until bit 10 or bit 11 is set. wstc instruction does a busy-wait until a selected bit in $stat goes to 0, wsts likewise
waits until a selected bit goes to 1.

On VP3+, a read-only alias of $stat is available in the MMIO space:

BAR0 0x0854bc / I[0x12f00]: STAT Aliases $stat vµc register, read only.

Sleep instruction: sleep

This instruction waits until a full macroblock has been read from the MBRING [ie. $stat bit 10 is set] or host writes
$h2v register [ie. $stat bit 11 is set]. While this instruction is waiting, vµc microprocessor goes into a low power
mode, and sends 0 on its “busy” signal, thus counting as idle.

Instructions:: sleep OP=00100

Opcode: special opcode with OC=001, OP as above Operation:

while (!($stat & 0xc00)) idle();

Execution time: as long as necessary, at least 1 cycle, blocks subsequent instructions until finished

Wait for status bit instructions: wstc, wsts

These instructions wait for a given $stat bit to become 0 [wstc] or 1 [wsts]. Execution of all subsequent instructions is
delayed until this happens.

Instructions:: wstc imm4 OP=00101 wsts imm4 OP=00110

Opcode: special opcode with OC=001, OP as above Operation:

while (($stat >> imm4 & 1) != (op == wsts));

Execution time: as long as necessary, at least 1 cycle, blocks subsequent instructions until finished

444 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

The watchdog counter

Todo: write me

Clear watchdog counter instruction: clicnt

Todo: write me

Misc special registers

This section describes various special registers that don’t fit anywhere else.

$sr8/$pc: The program counter. When read, always returns the address of the instruction doing the read.

BAR0 0x10329c / XLMI 0x0a700: PC [VP2] BAR0 0x08545c / I[0x11700]: PC [VP3+]

A host-accessible alias of $pc. Shows the address of currently executing instruction.

$sr12/$lhi: long arithmetic high word register $sr13/$llo: long arithmetic low word register

These two registers together make a 32-bit quantity used in long arithmetic operations - see the documentation of long
arithmetic instructions for details. These registers may be read after long arithmetic instructions to get their results.
On VP3+, these registers may be written manually, on VP2 they’re read-only and only modifiable by long arithmetic
instructions.

$sr14/$pred: predicate register file alias

This register aliases the $p register file - bit X corresponds to $pX. The bits behave like the corresponding $p registers
- bit 15 is read-only and always 1, while bit 1 is read-only and is always the negation of bit 0.

VP2/VP3/VP4 vµc MVSURF

1. MVSURF format

2. MVSURF_OUT setup

3. MVSURF_IN setup

4. MVSO[] address space

5. MVSI[] address space

6. Writing MVSURF: mvswrite

7. Reading MVSURF: mvsread

Introduction

H.264, VC-1 and MPEG4 all support “direct” prediction mode where the forward and backward motion vectors for
a macroblock are calculated from co-located motion vector from the reference picture and relative ordering of the
pictures. To implement it in vµc, intermediate storage of motion vectors and some related data is required. This
storage is called MVSURF.

2.11. Video decoding, encoding, and processing 445



nVidia Hardware Documentation, Release git

A single MVSURF object stores data for a single frame, or for two fields. Each macroblock takes 0x40 bytes in the
MVSURF. The macroblocks in MVSURF are first grouped into macroblock pairs, just like in H.264 MBAFF frames.
If the MVSURF corresponds to a single field, one macroblock of each pair is just left unused. The pairs are then stored
in the MVSURF ordered first by X coordinate, then by Y coordinate, with no gaps.

The vµc has two MVSURF access ports: MVSURF_IN for reading the MVSURF of a reference picture [first picture
in L1 list for H.264, the most recent I or P picture for VC-1 and MPEG4], MVSURF_OUT for writing the MVSURF
of the current picture. Usage of both ports is optional - if there’s no reason to use one of them [MVSURF_IN in non-B
picture, or MVSURF_OUT in non-reference picture], it can just be ignored.

Both MVSURF_IN and MVSURF_OUT have to be set up via MMIO registers before use. To write data to MV-
SURF_OUT, it first has to be stored by the vµc into MVSO[] memory space, then the mvswrite instruction executed
[while making sure the previous mvswrite instruction, if any, has already completed]. Reading MVSURF_IN is done
by executing the mvsread instruction, waiting for its completion, then reading the MVSI[] memory space [or letting it
be read implicitly by the vµc fixed-function hardware].

Note that MVSURF_OUT writes in units of macroblocks, while NVSURF_IN reads in units of macroblock pairs - see
details below.

A single MVSURF entry, corresponding to a single macroblock, consists of:

• for the whole macroblock:

– frame/field flag [1 bit]: for H.264, 1 if mb_field_decoding_flag set or in a field picture; for MPEG4, 1 if
field-predicted macroblock

– inter/intra flag [1 bit]: 1 for intra macroblocks

• for each partition:

– RPI [5 bits]: the persistent id of the reference picture used for this subpartition and the top/bottom field
selector, if applicable - same as the $rpil0/$rpil1 value.

• for each subpartition of each partition:

– X component of motion vector [14 bits]

– Y component of motion vector [12 bits]

– zero flag [1 bit]: set if both components of motion vector are in -1..1 range and refIdx [not RPI] is 0 -
partial term used in H.264 colZeroFlag computation

For H.264, the RPI and motion vector are from the partition’s L0 prediction if present, L1 otherwise. Since vµc was
originally designed for H.264, a macroblock is always considered to be made of 4 partitions, which in turn are made
of 4 subpartitions each - if macroblock is more coarsely subdivided, each piece of data is duplicated for all covered
8x8 partitions and 4x4 subpartitions. Partitions and subpartitions are indexed in the same way as for $spidx.

MVSURF format

A single macroblock is represented by 0x10 32-bit LE words in MVSURF. Each word has the following format [i
refers to word index, 0-15]:

• bits 0-13, each word: X component of motion vector for subpartition i.

• bits 14-25, each word: Y component of motion vector for subpartition i.

• bits 26-30, word 0, 4, 8, 12: RPI for partition i>>2.

• bit 26, word 1, 5, 9, 13: zero flag for subpartition i-1

• bit 27, word 1, 5, 9, 13: zero flag for subpartition i

• bit 28, word 1, 5, 9, 13: zero flag for subpartition i+1

446 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bit 29, word 1, 5, 9, 13: zero flag for subpartition i+2

• bit 26, word 15: frame/field flag for the macroblock

• bit 27, word 15: inter/intra flag for the macroblock

MVSURF_OUT setup

The MVSURF_OUT has three different output modes:

• field picture output mode: each write writes one MVSURF macroblock and skips one MVSURF macroblock,
each line is passed once

• MBAFF frame picture output mode: each write writes one MVSURF macroblock, each line is passed once

• non-MBAFF frame picture output mode: each write writes one MVSURF macroblock and skips one mac-
roblock, each line is passed twice, with first pass writing even-numbered macroblocks, second pass writing
odd-numbered macroblocks

#===#===#===#
| | | | field: 0, 2, 4, 6, 8, 10 or 1, 3, 5, 7, 9, 11
| 0 | 2 | 4 |
| | | | MBAFF frame: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
+---+---+---+
| | | | non-MBAFF frame: 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11
| 1 | 3 | 5 |
| | | |
#===#===#===#
| | | |
| 6 | 8 |10 |
| | | |
+---+---+---+
| | | |
| 7 | 9 |11 |
| | | |
#===#===#===#

The following registers control MVSURF_OUT behavior:

BAR0 0x1032f0 / XLMI 0x0bc00: MVSURF_OUT_OFFSET [VP2] The offset of MVSURF_OUT from the start
of the MEMIF MVSURF port. The offset is in bytes and has to be divisible by 0x40.

BAR0 0x085490 / I[0x12400]: MVSURF_OUT_ADDR [VP3+] The address of MVSURF_OUT in falcon port #2,
shifted right by 8 bits.

BAR0 0x1032f4 / XLMI 0x0bd00: MVSURF_OUT_PARM [VP2] BAR0 0x085494 / I[0x12500]: MV-
SURF_OUT_PARM [VP3+]

bits 0-7: WIDTH, length of a single pass in writable macroblocks bit 8: MBAFF_FRAME_FLAG, 1 if
MBAFF frame picture mode enabled bit 9: FIELD_PIC_FLAG, 1 if field picture mode enabled

If neither bit 8 nor 9 is set, non-MBAFF frame picture mode is used. Bit 8 and bit 9 shouldn’t be set at the same time.

BAR0 0x1032f8 / XLMI 0x0be00: MVSURF_OUT_LEFT [VP2] BAR0 0x085498 / I[0x12600]: MV-
SURF_OUT_LEFT [VP3+]

bits 0-7: X, the number of writable macroblocks left in the current pass bits 8-15: Y, the number of passes
left, including the current pass

BAR0 0x1032fc / XLMI 0x0bf00: MVSURF_OUT_POS [VP2] BAR0 0x08549c / I[0x12700]: MV-
SURF_OUT_POS [VP3+]

2.11. Video decoding, encoding, and processing 447



nVidia Hardware Documentation, Release git

bits 0-12: MBADDR, the index of the current macroblock from the start of MVSURF.

bit 13: PASS_ODD, 1 if the current pass is odd-numbered pass

All of these registers are RW by the host. LEFT and POS registers are also modified by the hardware when it writes
macroblocks.

The whole write operation is divided into so-called “passes”, which correspond to a line of macroblocks [field, non-
MBAFF frame] or half a line [MBAFF frame]. When a macroblock is written to the MVSURF, it’s written at the
position indicated by POS.MBADDR, LEFT.X is decremented by 1, and POS.MBADDR is incremented by 1 [MBAFF
frame] or 2 [field, non-MBAFF frame]. If this causes LEFT.X to drop to 0, a new pass is started, as follows:

• LEFT.X is reset to PARM.WIDTH

• LEFT.Y is decreased by 1

• POS.PASS_ODD is flipped

• if non-MBAFF frame picture mode is in use:

– if PASS_ODD is 1, POS.MBADDR is decreased by PARM.WIDTH * 2 and bit 0 is set to 1

– otherwise [PASS_ODD is 0], POS.MBADDR bit 0 is set to 0

When either LEFT.X or LEFT.Y is 0, writes to MVSURF_OUT are ignored.

The MVSURF_OUT port has an output buffer of about 4 macroblocks - mvswrite will queue data into that buffer, and
it’ll auto-flush as MEMIF bandwidth allows. To determine whether the buffer is full [ie. if it’s safe to queue any more
data with mvswrite], use $stat bit 6:

$stat bit 6: MVSURF_OUT buffer full - no more space is available currently for writes, mvswrite instruction will be
ignored and shouldn’t be attempted until this bit drops to 0 [when MEMIF accepts more data].

MVSURF_IN setup

The MVSURF_OUT has two input modes:

• interlaced mode: used for field and MBAFF frame pictures, each read reads one macroblock pair, each line is
passed once

• progressive mode: used for non-MBAFF frame pictures, each read reads one macroblock pair, each line is
passed twice

#===#===#===#
| | | | interlaced: 0&1, 2&3, 4&5, 6&7, 8&9, 10&11
| 0 | 2 | 4 |
| | | | progressive: 0&1, 2&3, 4&5, 0&1, 2&3, 4&5, 6&7, 8&9, 10&11, 6&7, 8&9,
→˓10&11
+---+---+---+
| | | |
| 1 | 3 | 5 |
| | | |
#===#===#===#
| | | |
| 6 | 8 |10 |
| | | |
+---+---+---+
| | | |
| 7 | 9 |11 |
| | | |
#===#===#===#

448 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

The following registers control MVSURF_IN behavior:

BAR0 0x1032e0 / XLMI 0x0b800: MVSURF_IN_OFFSET [VP2] The offset of MVSURF_IN from the start of
the MEMIF MVSURF port. The offset is in bytes and has to be divisible by 0x40.

BAR0 0x085480 / I[0x12000]: MVSURF_IN_ADDR [VP3+] The address of MVSURF_IN in falcon port #2,
shifted right by 8 bits.

BAR0 0x1032e4 / XLMI 0x0b900: MVSURF_IN_PARM [VP2] BAR0 0x085484 / I[0x12100]: MV-
SURF_IN_PARM [VP3+]

bits 0-7: WIDTH, length of a single line in macroblock pairs bit 8: PROGRESSIVE, 1 if progressive
mode enabled, 0 if interlaced mode

enabled

BAR0 0x1032e8 / XLMI 0x0ba00: MVSURF_IN_LEFT [VP2] BAR0 0x085488 / I[0x12200]: MVSURF_IN_LEFT
[VP3+]

bits 0-7: X, the number of macroblock pairs left in the current line bits 8-15: Y, the number of lines left,
including the current line

BAR0 0x1032ec / XLMI 0x0bb00: MVSURF_IN_POS [VP2] BAR0 0x08548c / I[0x12300]: MVSURF_IN_POS
[VP3+]

bits 0-11: MBPADDR, the index of the current macroblock pair from the start of MVSURF.

bit 12: PASS, 0 for first pass, 1 for second pass

All of these registers are RW by the host. LEFT and POS registers are also modified by the hardware when it writes
macroblocks.

The read operation is divided into lines. In interlaced mode, each line is read once, in progressive mode each line
is read twice. A single read of a line is called a pass. When a macroblock pair is read, it’s read from the position
indicated by POS.MBPADDR, LEFT.X is decremented by 1, and POS.MBPADDR is incremented by 1. If this causes
LEFT.X to drop to 0, a new line or a new pass over the same line is started:

• LEFT.X is reset to PARM.WIDTH

• if progressive mode is in use and POS.PASS is 0:

– PASS is set to 1

– POS.MBPADDR is decreased by PARM.WIDTH

• otherwise [interlaced mode is in use or PASS is 1]:

– PASS is set to 0

– LEFT.Y is decremented by 1

When either LEFT.X or LEFT.Y is 0, reads from MVSURF_IN will fail and won’t affect MVSURF_IN registers in
any way.

The MVSURF_IN port has an input buffer of 2 macroblock pairs. It will attempt to fill this buffer as soon as it’s
possible to read a macroblock pair [ie. LEFT.X and LEFT.Y are non-0]. For this reason, LEFT must always be the
last register to be written when setting up MVSURF_IN. In addition, this makes it impossible to seamlessly switch to
a new MVSURF_IN buffer without reading the previous one until the end.

The MVSURF_IN always operates on units of macroblock pairs. This means that the following special handling is
necessary:

• field pictures: use interlaced mode, execute mvsread for each processed macroblock

• MBAFF frame pictures: use interlaced mode, execute mvsread for each processed macroblock pair [when start-
ing to process the first macroblock in pair].

2.11. Video decoding, encoding, and processing 449



nVidia Hardware Documentation, Release git

• non-MBAFF frame pictures: use progressive mode, execute mvsread for each processed macroblock

In all cases, Care must be taken to use the right macroblock from the pair in computations.

MVSO[] address space

MVSO[] is a write-only memory space consisting of 0x80 16-bit cells. Every address in range 0-0x7f corresponds to
one cell. However, not all cells and not all bits of each cell are actually used. The usable cells are:

• MVSO[i * 8 + 0], i in 0..15: X component of motion vector for subpartition i

• MVSO[i * 8 + 1], i in 0..15: Y component of motion vector for subpartition i

• MVSO[i * 0x20 + j * 8 + 2], i in 0..3, j in 0..3: RPI of partition i, j is ignored

• MVSO[i * 8 + 3], i in 0..15: the “zero flag” for subpartition i

• MVSO[i * 0x20 + 4], i in 0..15: macroblock flags, i is ignored:

– bit 0: frame/field flag

– bit 1: inter/intra flag

• MVSO[i * 0x20 + 5], i in 0..15: macroblock partitioning schema, same format as $mbpart register, i is ignored
[10 bits used]

If the address of some datum has some ignored fields, writing to any two addresses with only the ignored fields
differing will actually access the same data.

MVSI[] address space

MVSI[] is a read-only memory space consisting of 0x100 16-bit cells. Every address in range 0-0xff corresponds to
one cell. The cells are:

• MVSI[mb * 0x80 + i * 8 + 0], i in 0..15: X component of motion vector for subpartition i [sign extended to 16
bits]

• MVSI[mb * 0x80 + i * 8 + 1], i in 0..15: Y component of motion vector for subpartition i [sign extended to 16
bits]

• MVSI[mb * 0x80 + i * 0x20 + j * 8 + 2], i in 0..3, j in 0..3: RPI of partition i, j is ignored

• MVSI[mb * 0x80 + i * 8 + 3], i in 0..15: the “zero flag” for subpartition i

• MVSI[mb * 0x80 + i * 8 + 4 + j], i in 0..15, j in 0..3: macroblock flags, i and j are ignored:

– bit 0: frame/field flag

– bit 1: inter/intra flag

mb is 0 for the top macroblock in pair, 1 for the bottom macroblock.

If the address of some datum has some ignored fields, all addresses will alias and read the same datum.

Note that, aside of explicit loads from MVSI[], the MVSI[] data is also implicitely accessed by some fixed-function
vµc hardware to calculate MV predictors and other values.

450 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Writing MVSURF: mvswrite

Data is sent to MVSURF_OUT via the mvswrite instruction. A single invocation of mvswrite writes a single mac-
roblock. The data is gathered from MVSO[] space. mvswrite is aware of macroblock partitioning and will use the
partitioning schema to gather data from the right cells of MVSO[] - for instance, if 16x8 macroblock partitioning is
used, only subpartitions 0 and 8 are used, and their data is duplicated for all 8x8/4x4 blocks they cover.

This instruction should not be used if MVSURF_OUT output buffer is currently full - the code should execute a wstc
instruction on $stat bit 6 beforehand.

Note that this instruction takes 17 cycles to gather the data from MVSO[] space - in that time, MVSO[] contents
shouldn’t be modified. On cycles 1-16 of execution, $stat bit 7 will be lit up:

$stat bit 7: mvswrite MVSO[] data gathering in progress - this bit is set at the end of cycle 1 of mvswrite execution,
cleared at the end of cycle 17 of mvswrite execution, ie. when it’s safe to modify MVSO[]. Note that this means that
the instruction right after mvswrite will still read 0 in this bit - to wait for mvswrite completion, use mvswrite; nop;
wstc 7 sequence. This bit going back to 0 doesn’t mean that MVSURF write is complete - it merely means that data
has been gathered and queued for a write through the MEMIF.

If execution of this instruction causes the MVSURF_OUT buffer to become full, bit 6 of $stat is set to 1 on the same
cycle as bit 7.

Instructions: mvswrite

Opcode: special opcode, OP=01010, OPC=001 Operation:

b32 tmp[0x10] = { 0 };
if (MVSURF_OUT.no_space_left())

break;
$stat[7] = 1; /* cycle 1 */
if (MVSURF_OUT.full_after_next_mb())

$stat[6] = 1;
b2 partlut[4] = { 0, 2, 1, 3 };
b10 mbpart = MVSO[5];
for (i = 0; i < 0x10; i++) {

pidx = i >> 2;
pmask = partlut[mbpart & 3];
spmask = pmask << 2 | partlut[mbpart >> (pidx * 2 + 2) & 3];
mpidx = pidx & pmask;
mspidx = i & spmask;
tmp[i] |= MVSO[mspidx * 8 + 0] | MVSO[mspidx * 8 + 1] << 14;
tmp[(i & 0xc) | 1] |= MVSO[mspidx * 8 + 3] << (26 + (i & 3));

}
for (i = 0; i < 4; i++) {

pidx = i >> 2;
pmask = partlut[mbpart & 3];
mpidx = pidx & pmask;
tmp[i * 4] |= MVSO[mpidx * 0x20 + 2] << 26;

}
tmp[0xf] |= MVSO[4] << 26;
$stat[7] = 0; /* cycle 17 */
MVSURF_OUT.write(tmp);

Execution time: 18 cycles [submission to MVSURF_OUT port only, doesn’t include the time needed by MV-
SURF_OUT to actually flush the data to memory]

Execution unit conflicts: mvswrite

2.11. Video decoding, encoding, and processing 451



nVidia Hardware Documentation, Release git

Reading MVSURF: mvsread

Data is read from MVSURF_IN via the mvsread instruction. A single invocation of mvsread reads a single macroblock
pair. The data is storred into MVSI[] space.

Since MVSURF resides in VRAM, which doesn’t have a deterministic access time, this instruction may take an
arbitrarily long time to complete the read. The read is done asynchronously and a $stat bit is provided to let the
microcode know when it’s finished:

$stat bit 5: mvsread MVSI[] write done - this bit is cleared on cycle 1 of mvsread execution and set by the mvsread
instruction once data for a complete macroblock pair has been read and stored into MVSI[]. Note that this means that
the instruction right after mvsread may stil read 1 in this bit - to wait for mvsread completion, use mvsread ; nop ; wsts
5 sequence. Also note that if the read fails because one of MVSURF_IN_LEFT fields is 0, this bit will never become
1. Also, note that the initial state of this bit after vµc reset is 0, even though no mvsread execution is in progress.

Instructions: mvsread

Opcode: special opcode, OP=01001, OPC=001 Operation:

b32 tmp[2][0x10];
$stat[5] = 0; /* cycle 1 */
MVSURF_IN.read(tmp); /* arbitrarily long */
for (mb = 0; mb < 2; mb++) {

for (i = 0; i < 0x10; i++) {
MVSI[mb * 0x80 + i * 8 + 0] = SEX(tmp[mb][i][0:13]);
MVSI[mb * 0x80 + i * 8 + 1] = SEX(tmp[mb][i][14:25]);
MVSI[mb * 0x80 + i * 8 + 2] = tmp[mb][i&0xc][26:30];
MVSI[mb * 0x80 + i * 8 + 3] = tmp[mb][(i&0xc) | 1][26 + (i & 3)];
MVSI[mb * 0x80 + i * 8 + 4] = tmp[mb][15][26:27];

}
}
$stat[5] = 1;

Execution time: >= 37 cycles Execution unit conflicts: mvsread

VP2/VP3/VP4 vµc video registers

2. The video MMIO registers

3. $parm register

4. The RPIs and rpitab

5. Macroblock input: mbiread, mbinext

6. Table lookup instruction: lut

Introduction

Todo: write me

The video special registers

452 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: the following information may only be valid for H.264 mode for now

• $sr0: ??? controls $sr48-$sr58 (bits 0-6 when set separately) [XXX] [VP2 only]

• $sr1: ??? similar to $sr0 (bits 0-4, probably more) [XXX] [VP2 only]

• $sr2/$spidx: partition and subpartition index, used to select which [sub]partitions some other special registers
access:

– bits 0-1: subpartition index

– bits 2-3: partition index

Note that, for indexing purposes, each partition index is considered to refer to an 8x8 block, and each subpartition
index to 4x4 block. If partition/subpartition size is bigger than that, the indices will alias. Thus, for 16x8
partitioning mode, $spidx equal to 0-7 wil select the top partition, $spidx equal to 8-15 will select the bottom
one. For 8x16 partitioning, $spidx equal to 0-3 and 8-11 will select the left partition, 4-7 and 12-15 will select
the right partition.

• $sr3: ??? bits 0-4 affect $sr32-$sr42 [XXX] [VP2 only]

• $sr3: ??? [XXX] [VP3+ only]

• $sr4/$h2v: a scratch register to pass data from host to vµc [see vdec/vuc/intro.txt]

• $sr5/$v2h: a scratch register to pass data from vµc to host [see vdec/vuc/intro.txt]

• $sr6/$stat: some sort of control/status reg, writing 0x8000 alternates values between 0x8103 and 0 [XXX]

– bit 10: macroblock input available - set whenever there’s a complete macroblock available from MBRING,
cleared when mbinext instruction skips past the last currently available macroblock. Will break out of sleep
instruction when set.

– bit 11: $h2v modified - set when host writes H2V, cleared when $h2v is read by vµc, will break out of
sleep instruction when set.

– bit 12: watchdog hit - set 1 cycle after $icnt reaches WDCNT and it’s not equal to 0xffff, cleared when
$icnt or WDCNT is modified in any way.

• $sr7/$parm: sequence/picture/slice parameters required by vµc hardware [see vdec/vuc/intro.txt]

• $sr9/$cspos: call stack position, 0-8. Equal to the number of used entries on the stack.

• $sr10/$cstop: call stack top. Writing to this register causes the written value to be pushed onto the stack, reading
this register pops a value off the stack and returns it.

• $sr11/$rpitab: D[] address of refidx -> dpb index translation table [VP2 only]

• $sr15/$icnt: instruction/cycle counter (?: check nops, effect of delays)

• $sr16/$mvxl0: sign-extended mvd_l0[$spidx][0] [input]

• $sr17/$mvyl0: sign-extended mvd_l0[$spidx][1] [input]

• $sr18/$mvxl1: sign-extended mvd_l1[$spidx][0] [input]

• $sr19/$mvyl1: sign-extended mvd_l1[$spidx][1] [input]

• $sr20/$refl0: ref_idx_l0[$spidx>>2] [input]

• $sr21/$refl1: ref_idx_l1[$spidx>>2] [input]

• $sr22/$rpil0: dpb index of L0 reference picture for $spidx-selected partition

• $sr23/$rpil1: dpb index of L1 reference picture for $spidx-selected partition

2.11. Video decoding, encoding, and processing 453



nVidia Hardware Documentation, Release git

• $sr24/$mbflags:

– bit 0: mb_field_decoding_flag [RW]

– bit 1: is intra macroblock [RO]

– bit 2: is I_NxN macroblock [RO]

– bit 3: transform_size_8x8_flag [RW]

– bit 4: ??? [XXX]

– bit 5: is I_16x16 macroblock [RO]

– bit 6: partition selected by $spidx uses L0 or Bi prediction [RO]

– bit 7: partition selected by $spidx uses L1 or Bi prediction [RO]

– bit 8: mb_field_decoding_flag for next macroblock [only valid if $sr6 bit 10 is set] [RO]

– bit 9: mb_skip_flag for next macroblock [only valid if $sr6 bit 10 is set] [RO]

– bit 10: partition selected by $spidx uses Direct prediction [RO]

– bit 11: any partition of macroblock uses Direct prediction [RO]

– bit 12: is I_PCM macroblock [RO]

– bit 13: is P_SKIP macroblock [RO]

• $sr25/$qpy:

– bits 0-5: mb_qp_delta [input] / QPy [output] [H.264]

– bits 0-5: quantiser_scale_code [input and output] [MPEG1/MPEG2]

– bits 8-11: intra_chroma_pred_mode, values:

* 0: DC [input], DC_??? [output] [XXX]

* 1: horizontal [input, output]

* 2: vertical [input, output]

* 3: plane [input, output]

* 4: DC_??? [output]

* 5: DC_??? [output]

* 6: DC_??? [output]

* 7: DC_??? [output]

* 8: DC_??? [output]

* 9: DC_??? [output]

* 0xa: DC_??? [output]

• $sr26/$qpc:

– bits 0-5: QPc for Cb [output] [H.264]

– bits 8-13: QPc for Cr [output] [H.264]

• $sr27/$mbpart: - bits 0-1: macroblock partitioning type

– 0: 16x16

– 1: 16x8

454 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– 2: 8x16

– 3: 8x8

– bits 2-3: partition 0 subpartitioning type

– bits 4-5: partition 0 subpartitioning type

– bits 6-7: partition 0 subpartitioning type

– bits 8-9: partition 0 subpartitioning type

* 0: 8x8

* 1: 8x4

* 2: 4x8

* 3: 4x4

• $sr28/$mbxy:

– bits 0-7: macroblock Y position

– bits 8-15: macroblock X position

• $sr29/$mbaddr:

– bits 0-12: macroblock address

– bit 15: first macroblock in slice flag

• $sr30/$mbtype: macroblock type, for H.264:

– 0x00: I_NxN

– 0x01: I_16x16_0_0_0

– 0x02: I_16x16_1_0_0

– 0x03: I_16x16_2_0_0

– 0x04: I_16x16_3_0_0

– 0x05: I_16x16_0_1_0

– 0x06: I_16x16_1_1_0

– 0x07: I_16x16_2_1_0

– 0x08: I_16x16_3_1_0

– 0x09: I_16x16_0_2_0

– 0x0a: I_16x16_1_2_0

– 0x0b: I_16x16_2_2_0

– 0x0c: I_16x16_3_2_0

– 0x0d: I_16x16_0_0_1

– 0x0e: I_16x16_1_0_1

– 0x0f: I_16x16_2_0_1

– 0x10: I_16x16_3_0_1

– 0x11: I_16x16_0_1_1

– 0x12: I_16x16_1_1_1

2.11. Video decoding, encoding, and processing 455



nVidia Hardware Documentation, Release git

– 0x13: I_16x16_2_1_1

– 0x14: I_16x16_3_1_1

– 0x15: I_16x16_0_2_1

– 0x16: I_16x16_1_2_1

– 0x17: I_16x16_2_2_1

– 0x18: I_16x16_3_2_1

– 0x19: I_PCM

– 0x20: P_L0_16x16

– 0x21: P_L0_L0_16x8

– 0x22: P_L0_L0_8x16

– 0x23: P_8x8

– 0x24: P_8x8ref0

– 0x40: B_Direct_16x16

– 0x41: B_L0_16x16

– 0x42: B_L1_16x16

– 0x43: B_Bi_16x16

– 0x44: B_L0_L0_16x8

– 0x45: B_L0_L0_8x16

– 0x46: B_L1_L1_16x8

– 0x47: B_L1_L1_8x16

– 0x48: B_L0_L1_16x8

– 0x49: B_L0_L1_8x16

– 0x4a: B_L1_L0_16x8

– 0x4b: B_L1_L0_8x16

– 0x4c: B_L0_Bi_16x8

– 0x4d: B_L0_Bi_8x16

– 0x4e: B_L1_Bi_16x8

– 0x4f: B_L1_Bi_8x16

– 0x50: B_Bi_L0_16x8

– 0x51: B_Bi_L0_8x16

– 0x52: B_Bi_L1_16x8

– 0x53: B_Bi_L1_8x16

– 0x54: B_Bi_Bi_16x8

– 0x55: B_Bi_Bi_8x16

– 0x56: B_8x8

– 0x7e: B_SKIP

456 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– 0x7f: P_SKIP

• $sr31/$submbtype: [VP2 only]

– bits 0-3: sub_mb_type[0]

– bits 4-7: sub_mb_type[1]

– bits 8-11: sub_mb_type[2]

– bits 12-15: sub_mb_type[3]

• $sr31: ??? [XXX] [VP3+ only]

• $sr32-$sr40: ??? affected by $sr3, unko21, read only [XXX]

• $sr41-$sr42: ??? affected by $sr3, unko21, read only [XXX] [VP2 only]

• $sr48-$sr58: ??? affected by writing $sr0 and $sr1, unko22, read only [XXX]

Table lookup instruction: lut

Performs a lookup of src1 in the lookup table selected by low 4 bits of src2. The tables are codec-specific and generated
by hardware from the current contents of the video special registers.

Todo: recheck this instruction on VP3 and other codecs

Tables 0-3 are an alternate way of accessing H.264 inter prediction registers [$sr16-$sr23]. The table index is 1-bit.
Index 0 selects the l0 register, index 1 selects the l1 register. Table 0 is $mvxl* registers, 1 is $mvyl*, 2 is $refl*, 3 is
$rpil*.

Tables 4-7 behave like tables 0-3, except the lookup returns 0 if $mbtype is equal to 0x7f [P_SKIP].

Table 8, known as pcnt, is used to look up partition and subpartition counts. The index is 3-bit. Indices 0-3 return the
subpartition count of corresponding partition, while indices 4-7 return the partition count of the macroblock.

Tables 9 and 10 are indexed in a special manner: the index selects a partition and a subpartition. Bits 0-7 of the index
are partition index, bits 8-15 of the index are subpartition index. The partition and subpartition indices bahave as in
the H.264 spec: valid indices are 0, 0-1, or 0-3 depending on the partitioning/subpartitioning mode.

Table 9, known as spidx, translates indices of the form given above into $spidx values. If both partition and subpartition
index are valid for the current partitioning and subpartitioning mode, the value returned is the value that has to be poked
into $spidx to access the selected [sub]partition. Otherwise, junk may be returned.

Table 10, known as pnext, advances the partition/subpartition index to the next valid subpartition or partition. The
returned value is an index in the same format as the input index. Additionally, the predicate output is set if the
partition index was not incremented [transition to the next subpartition of a partition], cleared if the partition index
was incremented [transition to the first subpartition of the next partition].

Table 11, known as pmode, returns the inter prediction mode for a given partition. The index is 2-bit and selects the
partition. If index is less then pcnt[4] and $mbtype is inter-predicted, returns inter prediction mode, otherwise returns
0. The prediction modes are:

• 0 direct

• 1 L0

• 2 L1

• 3 Bi

Tables 12-15 are unused and always return 0. [XXX: 12 used for VC-1 on VP3]

2.11. Video decoding, encoding, and processing 457



nVidia Hardware Documentation, Release git

Instructions: lut pdst, dst, src1, src2 OP=11100

Opcode: base opcode, OP as above Operation:

/* helper functions */
int pcnt() {

switch ($mbtype) {
case 0: /* I_NxN */
case 0x19: /* I_PCM */

return 4;
case 1..0x18: /* I_16x16_* */

return 1;
case 0x20: /* P_L0_16x16 */

return 1;
case 0x21: /* P_L0_L0_16x8 */
case 0x22: /* P_L0_L0_8x16 */

return 2;
case 0x23: /* P_8x8 */
case 0x24: /* P_8x8ref0 */

return 4;
case 0x40: /* B_Direct_16x16 */
case 0x41: /* B_L0_16x16 */
case 0x42: /* B_L1_16x16 */
case 0x43: /* B_Bi_16x16 */

return 1;
case 0x44: /* B_L0_L0_16x8 */
case 0x45: /* B_L0_L0_8x16 */
case 0x46: /* B_L1_L1_16x8 */
case 0x47: /* B_L1_L1_8x16 */
case 0x48: /* B_L0_L1_16x8 */
case 0x49: /* B_L0_L1_8x16 */
case 0x4a: /* B_L1_L0_16x8 */
case 0x4b: /* B_L1_L0_8x16 */
case 0x4c: /* B_L0_Bi_16x8 */
case 0x4d: /* B_L0_Bi_8x16 */
case 0x4e: /* B_L1_Bi_16x8 */
case 0x4f: /* B_L1_Bi_8x16 */
case 0x50: /* B_Bi_L0_16x8 */
case 0x51: /* B_Bi_L0_8x16 */
case 0x52: /* B_Bi_L1_16x8 */
case 0x53: /* B_Bi_L1_8x16 */
case 0x54: /* B_Bi_Bi_16x8 */
case 0x55: /* B_Bi_Bi_8x16 */

return 2;
case 0x56: /* B_8x8 */

return 4;
case 0x7e: /* B_SKIP */

return 4;
case 0x7f: /* P_SKIP */

return 1;
/* in other cases returns junk */

}
}
int spcnt(int idx) {

if (pcnt() < 4) {
return 1;

} else if ($mbtype == 0 || $mbtype == 0x19) { /* I_NxN or I_PCM */
return ($mbflags[3:3] ? 1 : 4); /* transform_size_8x8_flag */

(continues on next page)

458 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

} else {
smt = $submbtype >> (idx * 4)) & 0xf;
/* XXX */

}
}
int mbpartmode_16x8() {

switch ($mbtype) {
case 0x21: /* P_L0_L0_16x8 */
case 0x44: /* B_L0_L0_16x8 */
case 0x46: /* B_L1_L1_16x8 */
case 0x48: /* B_L0_L1_16x8 */
case 0x4a: /* B_L1_L0_16x8 */
case 0x4c: /* B_L0_Bi_16x8 */
case 0x4e: /* B_L1_Bi_16x8 */
case 0x50: /* B_Bi_L0_16x8 */
case 0x52: /* B_Bi_L1_16x8 */
case 0x54: /* B_Bi_Bi_16x8 */

return 1;
default:

return 0;
}

}
int submbpartmode_8x4(int idx) {

smt = $submbtype >> (idx * 4) & 0xf;
switch(submbtype) {

/* XXX */
}

}
int mbpartpredmode(int idx) {

/* XXX */
}
/* end of helper functions */
table = src2 & 0xf;
if (table < 8) {

which = src1 & 1;
switch (table & 3) {

case 0: result = (which ? $mvxl1 : $mvxl0); break;
case 1: result = (which ? $mvyl1 : $mvyl0); break;
case 2: result = (which ? $refl1 : $refl0); break;
case 3: result = (which ? $rpil1 : $rpil0); break;

}
if ((table & 4) && $mbtype == 0x7f)

result = 0;
presult = result & 1;

} else if (table == 8) { /* pcnt */
idx = src1 & 7;
if (idx < 4) {

result = spcnt(idx);
} else {

result = pcnt();
}

} else if (table == 9 || table == 10) {
pidx = src1 & 7;
sidx = src1 >> 8 & 3;
if (table == 9) { /* spidx */

if (mbpartmode_16x8())
resp = (pidx & 1) << 1;

(continues on next page)

2.11. Video decoding, encoding, and processing 459



nVidia Hardware Documentation, Release git

(continued from previous page)

else
resp = (pidx & 3);

if (submbpartmode_8x4(resp >> 2))
ress = (sidx & 1) << 1;

else
ress = (sidx & 3);

result = resp << 2 | ress;
presult = result & 1;

} else { /* pnext */
if (pidx < 4) {

c = spcnt(idx);
} else {

c = pcnt();
}
ress = sidx + 1;
if (ress >= c) {

resp = (pidx & 3) + 1;
ress = 0;

} else {
resp = pidx & 3;

}
result = ress << 8 | resp;
presult = ress != 0;

}
} else if (table == 10) { /* pmode */

result = mbpartpredmode(src1 & 3);
presult = result & 1;

} else {
result = 0;
presult = 0;

}
dst = result;
pdst = presult;

Execution time: 1 cycle Predicate output:

Tables 0-9 and 11-15: bit 0 of the result Table 10: 1 if transition to next subpartition in a partition, 0 if

transition to next partition

VP2 vµc output

Contents

• VP2 vµc output

– Introduction

Introduction

Todo: write me

460 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

vµc performance monitoring signals

Contents

• vµc performance monitoring signals

– Introduction

Introduction

Todo: write me

2.11.3 VP2 video decoding

Contents:

VP2 xtensa processors

Todo: write me

Configured options:

• Code Density Option

• Loop Option

• 16-bit Integer Multiply Option

• Miscellaneous Operations Option: - InstructionCLAMPS = 0 - InstructionMINMAX = 1 - InstructionNSA = 0
- InstructionSEXT = 0

• Boolean Option

• Exception Option - NDEPC = 1 - ResetVector = 0xc0000020 - UserExceptionVector = 0xc0000420 - KernelEx-
ceptionVector = 0xc0000600 - DoubleExceptionVector = 0xc0000a00

• Interrupt Option - NINTERRUPT = 10 - INTTYPE[0]: Timer - INTTYPE[1]: Timer - INTTYPE[2]: Level -
INTTYPE[3]: XXX Level/Edge/WriteErr - INTTYPE[4]: NMI - INTTYPE[5]: Level - INTTYPE[6]: Level -
INTTYPE[7]: Level - INTTYPE[8]: Level - INTTYPE[9]: Level

• High-priority Interrupt Option - NLEVEL: 6 - LEVEL[0]: 1 - LEVEL[1]: 1 - LEVEL[2]: 2 - LEVEL[3]: 3
- LEVEL[4]: 7 - LEVEL[5]: 4 - LEVEL[6]: 5 - LEVEL[7]: 5 - LEVEL[8]: 5 - LEVEL[9]: 5 - EXCM-
LEVEL: 1 - NNMI: 1 - InterruptVector[2] = 0xc0000b40 - InterruptVector[3] = 0xc0000c00 - InterruptVec-
tor[4] = 0xc0000d20 - InterruptVector[5] = 0xc0000e00 - InterruptVector[6] = 0xc0000f00 - InterruptVector[7]
= 0xc0001000

• Timer Interrupt Option - NCOMPARE = 2 - TIMERINT[0]: 0 - TIMERINT[1]: 1

• Instruction Cache Option - InstCacheWayCount: 3 - InstCacheLineBytes: 0x20 - InstCacheBytes: 0x3000

• Instruction Cache Test Option

• Instruction Cache Index Lock Option

2.11. Video decoding, encoding, and processing 461



nVidia Hardware Documentation, Release git

• Data Cache Option - DataCacheWayCount: 2 - DataCacheLineBytes: 0x20 - DataCacheBytes: 0x1000 -
IsWriteback: Yes

• Data Cache Test Option

• Data Cache Index Lock Option

• XLMI Option - XLMIBytes = 256kB - XLMIPAddr = 0xcffc0000

• Region Protection Option

• Windowed Register Option - WindowOverflow4 = 0xc0000800 - WindowUnderflow4 = 0xc0000840 - Win-
dowOverflow8 = 0xc0000880 - WindowUnderflow8 = 0xc00008c0 - WindowOverflow12 = 0xc0000900 - Win-
dowUnderflow12 = 0xc0000940 - NAREG = 32

• Processor Interface Option

• Debug Option - DEBUGLEVEL = 6 - NIBREAK = 2 - NDBREAK = 2 - SZICOUNT = 32 - OCD: XXX

• Trace Port Option? [XXX]

VLD: variable length decoding

Contents

• VLD: variable length decoding

– Introduction

– The registers

– Reset

– Parameter and position registers

– Internal state for context selection

– Interrupts

– Stream input

– MBRING output

– Command and status registers

* Command 0: GET_UE

* Command 1: GET_SE

* Command 2: GETBITS

* Command 3: NEXT_START_CODE

* Command 4: CABAC_START

* Command 5: MORE_RBSP_DATA

* Command 6: MB_SKIP_FLAG

* Command 7: END_OF_SLICE_FLAG

* Command 8: CABAC_INIT_CTX

* Command 9: MACROBLOCK_SKIP_MBFDF

462 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

* Command 0xa: MACROBLOCK_LAYER_MBFDF

* Command 0xb: PRED_WEIGHT_TABLE

* Command 0xc: SLICE_DATA

Introduction

The VLD is the first stage of the VP2 decoding pipeline. It is part of PBSP and deals with decoding the H.264 bitstream
into syntax elements.

The input to the VLD is the raw H.264 bitstream. The output of VLD is MBRING, a ring buffer structure storing the
decoded syntax elements in the form of word-aligned packets.

The VLD only deals with parsing the NALs containing the slice data - the remaining NAL types are supposed to be
parsed by the host. Further, the hardware can only parse pred_weight_table and slice_data elements efficiently - the
remaining parts of the slice NAL are supposed to be parsed by the firmware controlling the VLD in a semi-manual
manner: the VLD provides commands that parse single syntax elements.

The following H.264 profiles are supported:

• Constrained Baseline

• Baseline [only in single-macroblock mode if FMO used - see below]

• Main

• Progressive High

• High

• Multiview High

• Stereo High

The limitations are:

• max picture width and height: 128 macroblocks

• max macroblocks in picture: 8192

Todo: width/height max may be 255?

There are two modes of operation that VLD can be used with: single-macroblock mode and whole-slice mode. In the
single-macroblock mode, parsing for each macroblock has to be manually triggered by the firmware. In whole-slice
mode, the firmware triggers processing of a whole slice, and the hardware automatically iterates over all macroblocks
in the slice. However, whole-slice mode doesn’t support Flexible Macroblock Ordering aka. slice groups. Thus,
single-macroblock mode has to be used for sequences with non-zero value of num_slice_groups_minus1.

The VLD keeps extensive hidden internal state, including:

• pred_weight_table data, to be prepended to the next emitted macroblock

• bitstream position, zero byte count [for escaping], and lookahead buffer

• CABAC valMPS, pStateIdx, codIOFfset, codIRange state

• previously decoded parts of macroblock data, used for CABAC and CAVLC context selection algorithms

• already queued but not yet written MBRING output data

2.11. Video decoding, encoding, and processing 463



nVidia Hardware Documentation, Release git

The registers

The VLD registers are located in PBSP XLMI space at addresses 0x00000:0x08000 [BAR0 addresses
0x103000:0x103200]. They are:

XLMI MMIO Name Description
0x00000 0x103000 PARM_0 parameters from sequence/picture parameter structs and the

slice header
0x00100 0x103004 PARM_1 parameters from sequence/picture parameter structs and the

slice header
0x00200 0x103008 MB_POS position of the current macroblock
0x00300 0x10300c COM-

MAND
writing executes a VLD command

0x00400 0x103010 STATUS shows busy status of various parts of the VLD
0x00500 0x103014 RESULT result of a command
0x00700 0x10301c INTR_EN interrupt enable mask
0x00800 0x103020 ??? ???
0x00900 0x103024 INTR interrupt status
0x00a00 0x103028 RESET resets the VLD and its registers to initial state
0x01000+i*0x100 0x103040+i*4 CONF[0:8] length and enable bit of stream buffer i
0x01100+i*0x100 0x103044+i*4 OFF-

SET[0:8]
offset of stream buffer i

0x02000 0x103080 BITPOS the bit position in the stream
0x04000 0x103100 OFFSET the MBRING offset
0x04100 0x103104 HALT_POS the MBRING halt position
0x04200 0x103108 WRITE_POS the MBRING write position
0x04300 0x10310c SIZE the MBRING size
0x04400 0x103110 TRIGGER writing executes MBRING commands

Todo: reg 0x00800

Reset

The engine may be reset at any time by poking the RESET register.

BAR0 0x103028 / XLMI 0x00a00: RESET Any write will cause the VLD to be reset. All internal state is reset to
default values. All user-writable registers are set to 0, except UNK8 which is set to 0xffffffff.

Parameter and position registers

The values of these registers are used by some of the VLD commands. PARM registers should be initialised with
values derived from sequence parameters, picture parameters, and slice header. MB_POS should be set to the address
of currently processed macroblock [for single-macroblock operation] or the first macroblock of the slice [for whole-
slice operation]. In whole-slice operation, MB_POS is updated by the hardware to the position of the last macroblock
in the parsed slice.

For details on use of this information by specific commands, see their documentation.

BAR0 0x103000 / XLMI 0x00000: PARM_0

• bit 0: entropy_coding_mode_flag - set as in picture parameters

464 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bits 1-8: width_mbs - set to pic_width_in_mbs_minus1 + 1

• bit 9: mbaff_frame_flag - set to (mb_adaptive_frame_field_flag && !field_pic_flag)

• bits 10-11: picture_structure - one of:

– 0: frame - set if !field_pic_flag

– 1: top field - set if field_pic_flag && !bottom_field_flag

– 2: bottom field - set if field_pic_flag && bottom_field_flag

• bits 12-16: nal_unit_type - set as in the slice NAL header [XXX: check]

• bit 17: constrained_intra_pred - set as in picture parameters [XXX: check]

• bits 18-19: cabac_init_idc - set as in slice header, for P and B slices

• bits 20-21: chroma_format_idc - if parsing auxiliary coded picture, set to 0, otherwise set as in sequence
parameters

• bit 22: direct_8x8_inference_flag - set as in sequence parameters

• bit 23: transform_8x8_mode_flag - set as in picture parameters

BAR0 0x103004 / XLMI 0x00100: PARM_1

• bits 0-1: slice_type - set as in slice header

• bits 2-14: slice_tag - used to tag macroblocks in internal state with their slices, for determining availability
status in CABAC/CAVLC context selection algorithms. See command description.

• bits 15-19: num_ref_idx_l0_active_minus1 - set as in slice header, for P and B slices

• bits 20-24: num_ref_idx_l1_active_minus1 - set as in slice header, for B slices

• bits 25-30: sliceqpy - set to (pic_init_qp_minus26 + 26 + slice_qp_delta)

BAR0 0x103008 / XLMI 0x00200: MB_POS

• bits 0-12: addr - address of the macroblock

• bits 13-20: x - x coordinate of the macroblock in macroblock units

• bits 21-28: y - y coordinate of the macroblock in macroblock units

• bit 29: first - 1 if the described macroblock is the first macroblock in its slice, 0 otherwise

Internal state for context selection

Both CAVLC and CABAC sometimes use decoded data of previous macroblocks in the slice to determine the decoding
algorithm for syntax elements of the current macroblock. The VLD thus stores this data in its internal hidden memory.

Todo: what macroblocks are stored, indexing, tagging, reset state

For each macroblock, the following data is stored:

• slice_tag

• mb_field_decoding_flag

• mb_skip_flag

• mb_type

2.11. Video decoding, encoding, and processing 465



nVidia Hardware Documentation, Release git

• coded_block_pattern

• transform_size_8x8_flag

• intra_chroma_pred_mode

• ref_idx_lX[i]

• mvd_lX[i][j]

• coded_block_flag for each block

• total_coeffs for each luma 4x4 / luma AC block

Todo: and availability status?

Additionally, the following data of the previous decoded macroblock [not indexed by macroblock address] is stored:

• mb_qp_delta

Interrupts

Todo: write me

BAR0 0x10301c / XLMI 0x00700: INTR_EN

• bit 0: UNK_INPUT_1

• bit 1: END_OF_STREAM

• bit 2: UNK_INPUT_3

• bit 3: MBRING_HALT

• bit 4: SLICE_DATA_DONE

BAR0 0x103024 / XLMI 0x00900: INTR

• bits 0-3: INPUT - 0: no interrupt pending - 1: UNK_INPUT_1 - 2: END_OF_STREAM - 3:
UNK_INPUT_3 - 4: SLICE_DATA_DONE

• bit 4: MBRING_FULL

Stream input

Todo: RE and write me

MBRING output

Todo: write me

466 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Command and status registers

Todo: write me

Command 0: GET_UE

Parameter: none

Result: the decoded value of parsed bitfield, or 0xffffffff if out of range

Parses one ue(v) element as defined in H.264 spec. Only elements in range 0..0xfffe [up to 31 bits in the bitstream] are
supported by this command. If the next bits of the bitstream are a valid ue(v) element in supported range, the element
is parsed, the bitstream pointer advances past it, and its parsed value is returned as the result. Otherwise, bitstream
pointer is not modified and 0xffffffff is returned.

Operation:

if (nextbits(16) != 0) {
int bitcnt = 0;
while (getbits(1) == 0)

bitcnt++;
return (1 << bitcnt) - 1 + getbits(bitcnt);

} else {
return 0xffffffff;

}

Command 1: GET_SE

Parameter: none

Result: the decoded value of parsed bitfield, or 0x80000000 if out of range

Parses one se(v) element as defined in H.264 spec. Only elements in range -0x7fff..0x7fff [up to 31 bits in the
bitstream] are supported by this command. If the next bits of the bitstream are a valid se(v) element in supported
range, the element is parsed, the bitstream pointer advances past it, and its parsed value is returned as the result.
Otherwise, bitstream pointer is not modified and 0x80000000 is returned.

Operation:

if (nextbits(16) != 0) {
int bitcnt = 0;
while (getbits(1) == 0)

bitcnt++;
int tmp = (1 << bitcnt) - 1 + getbits(bitcnt);
if (tmp & 1)

return (tmp+1) >> 1;
else

return -(tmp >> 1);
} else {

return 0x80000000;
}

2.11. Video decoding, encoding, and processing 467



nVidia Hardware Documentation, Release git

Command 2: GETBITS

Parameter: number of bits to read, or 0 to read 32 bits [5 bits]

Result: the bits from the bitstream

Given parameter n, returns the next (n?n:32) bits from the bitstream as an unsigned integer.

Operation:

return getbits(n?n:32);

Command 3: NEXT_START_CODE

Parameter: none

Result: the next start code found

Skips bytes in the raw bitstream until the start code [00 00 01] is found. Then, read the byte after the start code and
return it as the result. The bitstream pointer is advanced to point after the returned byte.

Operation:

byte_align();
while (nextbytes_raw(3) != 1)

getbits_raw(8);
getbits_raw(24);
return getbits_raw(8);

Command 4: CABAC_START

Parameter: none

Result: none

Skips bits in the bitstream until the current bit position is byte-aligned, then initialises the arithmetic decoding engine
registers codIRange and codIOffset, as per H.264.9.3.1.2.

Oprtation:

byte_align();
cabac_init_engine();

Command 5: MORE_RBSP_DATA

Parameter: none

Result: 1 if there’s more data in RBSP, 0 otherwise

Returns 0 if there’s a valid RBSP trailing bits element at the current bit position, 1 otherwise. Does not modify the
bitstream pointer.

Operation:

return more_rbsp_data();

468 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Command 6: MB_SKIP_FLAG

Parameter: none

Result: value of parsed mb_skip_flag

Parses the CABAC mb_skip_flag element. The SLICE_POS has to be set to the address of the macroblock to which
this element applies.

Operation:

return cabac_mb_skip_flag();

Command 7: END_OF_SLICE_FLAG

Parameter: none

Result: value of parsed end_of_slice_flag

Parses the CABAC end_of_slice_flag element.

Operation:

return cabac_terminate();

Command 8: CABAC_INIT_CTX

Parameter: none

Result: none

Initialises the CABAC context variables, as per H.264.9.3.1.1. slice_type, cabac_init_idc [for P/B slices], and sliceqpy
have to be set in the PARM registers for this command to work properly.

Operation:

cabac_init_ctx();

Command 9: MACROBLOCK_SKIP_MBFDF

Parameter: mb_field_decoding_flag presence [1 bit]

Result none

If parameter is 1, mb_field_decoding_flag syntax element is parsed. Otherwise, the value of mb_field_decoding_flag
is inferred from preceding macroblocks. A skipped macroblock with thus determined value of mb_field_decoding_flag
is emitted into the MBRING, and its data stored into internal state. SLICE_POS has to be set to the address of this
macroblock.

Operation:

if (param) {
if (entropy_coding_mode_flag)

this_mb.mb_field_decoding_flag = cabac_mb_field_decoding_flag();
else

this_mb.mb_field_decoding_flag = getbits(1);

(continues on next page)

2.11. Video decoding, encoding, and processing 469



nVidia Hardware Documentation, Release git

(continued from previous page)

} else {
this_mb.mb_field_decoding_flag = mb_field_decoding_flag_infer();

}
this_mb.mb_skip_flag = 1;
this_mb.slice_tag = slice_tag;
mbring_emit_macroblock();

Todo: more inferred crap

Command 0xa: MACROBLOCK_LAYER_MBFDF

Parameter: mb_field_decoding_flag presence [1 bit]

Result: none

If parameter is 1, mb_field_decoding_flag syntax element is parsed. Otherwise, the value of mb_field_decoding_flag
is inferred from preceding macroblocks. A macroblock_layer syntax structure is parsed from the bitstream, data for
the decoded macroblock is emitted into the MBRING, and stored into internal state. SLICE_POS has to be set to the
address of this macroblock.

Operation:

if (param) {
if (entropy_coding_mode_flag)

this_mb.mb_field_decoding_flag = cabac_mb_field_decoding_flag();
else

this_mb.mb_field_decoding_flag = getbits(1);
} else {

this_mb.mb_field_decoding_flag = mb_field_decoding_flag_infer();
}
this_mb.mb_skip_flag = 0;
this_mb.slice_tag = slice_tag;
macroblock_layer();

Command 0xb: PRED_WEIGHT_TABLE

Parameter: none

Result: none

Parses the pred_weight_table element, stores its contents in internal memory, and advances the bitstream to the end of
the element.

Operation:

Todo: write me

Command 0xc: SLICE_DATA

Parameter: none

470 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Result: none

Writes the stored pred_weight_table data to MBRING, parses the slice_data element, storing decoded data
into MBRING, halting when the RBSP trailing bit sequence is encountered. When done, raises the MAC-
ROBLOCKS_DONE interrupt. Bitstream pointer is updated to point to the RBSP traling bits. SLICE_POS has to
be set to the address of the first macroblock on slice before this command is called. When this command finishes,
SLICE_POS is updated to the address of the last macroblock in the parsed slice.

Operation:

if (entropy_coding_mode_flag) {
cabac_init_ctx();
byte_align();
cabac_init_engine();

}
mb_pos.first = 1;
first = 1;
skip_pending = 0;
end = 0;
bottom = 0;
while (1) {

if (slice_type == P || slice_type == B) {
if (entropy_coding_mode_flag) {

while (1) {
tmp = cabac_mb_skip_flag();
if (!tmp)

break;
skip_pending++;
if (!mbaff_frame_flag || bottom) {

end = cabac_terminate();
if (end)

break;
}
bottom = !bottom;

}
} else {

skip_pending = get_ue();
end = !more_rbsp_data();
bottom ^= skip_pending & 1;

}
} else {

skip_pending = 0;
}
while (1) {

if (!skip_pending)
break;

if (mbaff_frame_flag && bottom && skip_pending < 2)
break;

if (first) {
first = 0;

} else {
mb_pos_advance();

}
macroblock_skip_mbfdf(0);
skip_pending--;

}
if (end)

break;

(continues on next page)

2.11. Video decoding, encoding, and processing 471



nVidia Hardware Documentation, Release git

(continued from previous page)

if (first) {
first = 0;

} else {
mb_pos_advance();

}
if (mbaff_frame_flag) {

if (skip_pending) {
macroblock_skip_mbfdf(1);
mb_pos_advance();
macroblock_layer_mbfdf(0);
skip_pending = 0;

} else {
if (bottom) {

macroblock_layer_mbfdf(0);
} else {

macroblock_layer_mbfdf(1);
}

}
bottom = !bottom;

} else {
macroblock_layer_mbfdf(0);

}
if (entropy_coding_mode) {

if (mbaff_frame_flag && bottom)) {
end = 0;

} else {
end = cabac_terminate();

}
} else {

end = !more_rbsp_data();
}
if (end) break;

}
trigger_intr(SLICE_DATA_DONE);

MBRING format

Contents

• MBRING format

– Introduction

– Packet type 0: macroblock info

– Packet type 1: motion vectors

– Packet type 2: residual data

– Packet type 3: coded block mask

– Packet type 4: pred weight table

472 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Introduction

An invocation of SLICE_DATA VLD command writes the decoded data into the MBRING. The MBRING is a ring
buffer located in VM memory, made of 32-bit word oriented packets. Each packet starts with a header word, whose
high 8 bits signify the packet type.

An invocation of SLICE_DATA command writes the following packets, in order:

• pred weight table [packet type 4] - if PRED_WEIGHT_TABLE command has been invoked previously

• for each macroblock [including skipped] in slice, in decoding order:

– motion vectors [packet type 1] - if macroblock is not skipped and not intra coded

– macroblock info [packet type 0] - always

– residual data [packet type 2] - if at least one non-zero coefficient present

– coded block mask [packet type 3] - if macroblock is not skipped

Packet type 0: macroblock info

Packet is made of a header word and 3 or 6 payload words.

• Header word:

– bits 0-23: number of payload words [3 or 6]

– bits 24-31: packet type [0]

• Payload word 0:

– bits 0-12: macroblock address

• Payload word 1:

– bits 0-7: y coord in macroblock units

– bits 8-15: x coord in macroblock units

• Payload word 2:

– bit 0: first macroblock of a slice flag

– bit 1: mb_skip_flag

– bit 2: mb_field_coding_flag

– bits 3-8: mb_type

– bits 9+i*4 - 12+i*4, i < 4: sub_mb_type[i]

– bit 25: transform_size_8x8_flag

• Payload word 3:

– bits 0-5: mb_qp_delta

– bits 6-7: intra_chroma_pred_mode

• Payload word 4:

– bits i*4+0 - i*4+2, i < 8: rem_intra_pred_mode[i]

– bit i*4+3, i < 8: prev_intra_pred_mode_flag[i]

• Payload word 5:

2.11. Video decoding, encoding, and processing 473



nVidia Hardware Documentation, Release git

– bits i*4+0 - i*4+2, i < 8: rem_intra_pred_mode[i+8]

– bit i*4+3, i < 8: prev_intra_pred_mode_flag[i+8]

Packet has 3 payload words when macroblock is skipped, 6 when it’s not skipped. This packet type is present
for all macroblocks. The mb_type and sub_mb_type values correspond to values used in CAVLC mode for cur-
rent slice_type - thus for example I_NxN is mb_type 0 when decoding I slices, mb_type 5 when decoding P slices.
For I_NxN macroblocks encoded in 4x4 transform mode, rem_intra_pred_mode[i] and pred_intra_pred_mode_flag[i]
correspond to rem_intra4x4_pred_mode[i] and pred_intra4x4_pred_mode_flag[i] for i = 0..15. For I_NxN mac-
roblocks encoded in 8x8 transform mode, rem_intra_pred_mode[i] and pred_intra_pred_mode_flag[i] correspond to
rem_intra8x8_pred_mode[i] and pred_intra8x8_pred_mode_flag[i] for i = 0..3, and are unused for i = 4..15.

Packet type 1: motion vectors

Packet is made of two header words + 1 word for each motion vector.

• Header word:

– bits 0-23: number of motion vectors [always 0x20]

– bits 24-31: packet type [1]

• Second header word:

– bit i = bit 4 of ref_idx[i]

• Motion vector word i:

– bits 0-12: mvd[i] Y coord

– bits 13-27: mvd[i] X coord

– bits 28-31: bits 0-3 of ref_idx[i]

Indices 0..15 correspond to mvd_l0 and ref_idx_l0, indices 16-31 correspond to mvd_l1 and ref_idx_l1. Each index
corresponds to one 4x4 block, in the usual scan order for 4x4 blocks. Data is always included for all blocks - if
macroblock/sub-macroblock partition size greater than 4x4 is used, its data is duplicated for all covered blocks.

Packet type 2: residual data

Packet is made of a header word + 1 halfword for each residual coefficient + 0 or 1 halfwords of padding to the next
multiple of word size

• Header word:

– bits 0-23: number of residual coefficients

– bits 24-31: packet type [2]

• Payload halfword:

– bits 0-15: residual coefficient

For I_PCM macroblocks, this packet contains one coefficient for each pcm_sample_* element present in the bitstream,
stored in bitstream order.

For other types of macroblocks, this packet contains data for all blocks that have at least one non-zero coefficient.
If a block has a non-zero coefficient, all coefficients for this block, including zero ones, are stored in this packet.
Otherwise, The block is entirely skipped. The coefficients stored in this packet type are dezigzagged - their order
inside a single block corresponds to raster scan order. The blocks are stored in decoding order. The mask of blocks
stored in this packet is stored in packet type 3. If there are no non-zero coefficients in the whole macroblock, this
packet is not present.

474 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Packet type 3: coded block mask

Packet is made of a header word and a payload word.

• Header word:

– bits 0-23: number of payload words [1]

– bits 24-31: packet type [3]

• Payload word [4x4 mode]:

– bits 0-15: luma 4x4 blocks 0-15 [16 coords each]

– bit 16: Cb DC block [4 coords]

– bit 17: Cr DC block [4 coords]

– bits 18-21: Cb AC blocks 0-3 [15 coords each]

– bits 22-25: Cr AC blocks 0-3 [15 coords each]

• Payload word [8x8 mode]:

– bits 0-3: luma 8x8 blocks 0-3 [64 coords each]

– bit 4: Cb DC block [4 coords]

– bit 5: Cr DC block [4 coords]

– bits 6-9: Cb AC blocks 0-3 [15 coords each]

– bits 10-13: Cr AC blocks 0-3 [15 coords each]

• Payload word [intra 16x16 mode]:

– bit 0: luma DC block [16 coords]

– bits 1-16: luma AC blocks 0-15 [15 coords each]

– bit 17: Cb DC block [4 coords]

– bit 18: Cr DC block [4 coords]

– bits 19-22: Cb AC blocks 0-3 [15 coords each]

– bits 23-26: Cr AC blocks 0-3 [15 coords each]

• Payload word [PCM mode]: [all 0]

This packet stores the mask of blocks present in preceding packet of type 2 [if any]. The bit corresponding to a block
is 1 if the block has at least one non-zero coefficient and is stored in the residual data packet, 0 if all its coefficients
are zero and it’s not stored in the residual data packet. This packet type is present for all non-skipped macroblocks,
including I_PCM macroblocks - but its payload word is always equal to 0 for I_PCM.

Packet type 4: pred weight table

Packet is made of a header word and a variable number of table write requests, each request being two words long.

• Header word:

– bits 0-23: number of write requests

– bits 24-31: packet type [4]

• Request word 0: table index to write

2.11. Video decoding, encoding, and processing 475



nVidia Hardware Documentation, Release git

• Request word 1: data value to write

The pred weight table is treated as an array of 0x81 32-bit numbers. This packet is made of “write requests” which are
supposed to modify the table entries in the receiver.

The table indices are:

• Index i * 2, 0 <= i <= 0x1f:

– bits 0-7: luma_offset_l0[i]

– bits 8-15: luma_weight_l0[i]

– bit 16: chroma_weight_l0_flag[i]

– bit 17: luma_weight_l0_flag[i]

• Index i * 2 + 1, 0 <= i <= 0x1f:

– bits 0-7: chroma_offset_l0[i][1]

– bits 8-15: chroma_weight_l0[i][1]

– bits 16-23: chroma_offset_l0[i][0]

– bits 24-31: chroma_weight_l0[i][0]

• Index 0x40 + i * 2, 0 <= i <= 0x1f:

– bits 0-7: luma_offset_l1[i]

– bits 8-15: luma_weight_l1[i]

– bit 16: chroma_weight_l1_flag[i]

– bit 17: luma_weight_l1_flag[i]

• Index 0x40 + i * 2 + 1, 0 <= i <= 0x1f:

– bits 0-7: chroma_offset_l1[i][1]

– bits 8-15: chroma_weight_l1[i][1]

– bits 16-23: chroma_offset_l1[i][0]

– bits 24-31: chroma_weight_l1[i][0]

• Index 0x80:

– bits 0-2: chroma_log2_weight_denom

– bits 3-5: luma_log2_weight_denom

The requests are emitted in the following order:

• 0x80

• for 0 <= i <= num_ref_idx_l0_active_minus1: 2*i, 2*i + 1

• for 0 <= i <= num_ref_idx_l1_active_minus1: 0x40 + 2*i, 0x40 + 2*i + 1

The fields corresponding to data not present in the bitstream are set to 0, they’re not set to their inferred values.

VP2 command macro processor

476 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Contents

• VP2 command macro processor

– Introduction

– MMIO registers

– Control and status registers

– Interrupts

– FIFOs

– Commands

– Execution state and registers

* Code RAM

* Execution control

* Parameter registers

* Global registers

* Special registers

* The LUT

– Opcodes

* Command opcodes

* Data opcodes

* Destination write

Introduction

The VP2 macro processor is a small programmable processor that can emit vector processor commands when triggered
by special commands from xtensa. All vector commands first go through the macro processor, which checks whether
they’re in macro command range, and either passes them down to vector processor, or interprets them itself, possibly
launching a macro and submitting other vector commands. It is one of the four major blocks making up the PVP2
engine.

The macro processor has:

• 64-bit VLIW opcodes, controlling two separate execution paths, one primarily for processing/emitting com-
mands, the other for command parameters

• dedicated code RAM, 512 64-bit words in size

• 32 * 32-bit word LUT data space, RW by host and RO by the macro code

• 6 32-bit global [not banked] GPRs visible to macro code and host [$g0-$g5]

• 8 32-bit banked GPRs visible to macro code and host, meant for passing parameters - one bank is writable by
the param commands, the other is in use by macro code at any time [$p0-$p7]

• 3 1-bit predicates, with conditional execution [$p1-$p3]

• instruction set consisting of bit operations, shifts, and 16-bit addition

• no branch/loop capabilities

2.11. Video decoding, encoding, and processing 477



nVidia Hardware Documentation, Release git

• a 32-bit command path accumulator [$cacc]

• a 32-bit data path accumulator [$dacc]

• a 7-bit LUT address register [$lutidx]

• 15-bit command, 32-bit data, and 8-bit high data registers for command submission [$cmd, $data, $datahi]

• 64-entry input command FIFO

• 2-entry output command FIFO

• a single hardware breakpoint

MMIO registers

The macro processor registers occupy 0x00f600:0x00f700 range in BAR0 space, corresponding to 0x2c000:0x2e000
range in PVP2’s XLMI space. They are:

XLMI MMIO Name Description
0x2c000 0x00f600 CONTROL master control
0x2c100 0x00f608 STATUS detailed status
0x2c180 0x00f60c IDLE a busy/idle status
0x2c200 0x00f610 INTR_EN interrupt enable
0x2c280 0x00f614 INTR interrupt status
0x2c300 0x00f618 BREAKPOINT breakpoint address and enable
0x2c800:0x2c880 0x00f640 LUT[0:32] the LUT data
0x2c880:0x2c8a0 0x00f644 PARAM_A[0:8] $p bank A
0x2c900:0x2c920 0x00f648 PARAM_B[0:8] $p bank B
0x2c980:0x2c9a0 0x00f64c GLOBAL[0:8] $g registers
0x2cb80 0x00f65c PARAM_SEL $p bank selection switch
0x2cc00 0x00f660 RUNNING code execution in progress switch
0x2cc80 0x00f664 PC program counter
0x2cd00 0x00f668 DATAHI $datahi register
0x2cd80 0x00f66c LUTIDX $lutidx register
0x2ce00 0x00f670 CACC $cacc register
0x2ce80 0x00f674 CMD $cmd register
0x2cf00 0x00f678 DACC $dacc register
0x2cf80 0x00f67c DATA $data register
0x2d000 0x00f680 IFIFO_DATA input FIFO data
0x2d080 0x00f684 IFIFO_ADDR input FIFO command
0x2d100 0x00f688 IFIFO_TRIGGER input FIFO manual read/write trigger
0x2d180 0x00f66c IFIFO_SIZE input FIFO size limitter
0x2d200 0x00f670 IFIFO_STATUS input FIFO status
0x2d280 0x00f674 OFIFO_DATA output FIFO data
0x2d300 0x00f678 OFIFO_ADDR output FIFO command & high data
0x2d380 0x00f67c OFIFO_TRIGGER output FIFO manual read/write trigger
0x2d400 0x00f680 OFIFO_SIZE output FIFO size limitter
0x2d480 0x00f684 OFIFO_STATUS output FIFO status
0x2d780 0x00f6bc CODE_SEL selects high or low part of code RAM for code window
0x2d800:0x2e000 0x00f6c0:0x00f700 CODE a 256-word window to code space

Control and status registers

478 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Todo: write me

Interrupts

Todo: write me

FIFOs

Todo: write me

Commands

The macro processor processes commands in 0xc000-0xdfff range from the input FIFO, passing down all other com-
mands directly to the output FIFO [provided that no macro is executing at the moment]. The macro processor com-
mands are:

Command Name Description
0xc000+i*4 MACRO_PARAM[0:8] write to $p host register bank
0xc020+i*4 MACRO_GLOBAL[0:8] write to $g registers
0xc080+i*4 MACRO_LUT[0:32] write to given LUT entry
0xc100 MACRO_EXEC execute a macro
0xc200 MACRO_DATAHI write to $datahi register
0xd000+i*4 MACRO_CODE[0:0x400] upload half of a code word

Execution state and registers

Code RAM

The code RAM contains 512 opcodes. Opcodes are 64 bits long and are accessible by the host as pairs of 32-bit words.
Code may be read or written using MMIO window:

BAR0 0x00f6bc / XLMI 0x2d780: CODE_SEL 1-bit RW register. Writing 0 selects code RAM entries 0:0x100 to
be mapped to the CODE window, writing 1 selects code RAM entries 0x100:0x200.

BAR0 0x00f6c0 + (i >> 5) * 4 [index i & 0x1f] / XLMI 0x2d800 + i * 4, i < 0x200: CODE[i] The code window.
Reading or writing CODE[i] is equivalent to reading or writing low [if i is even] or high [if i is odd] 32 bits of
code RAM cell i >> 1 | CODE_SEL << 8.

They can also be written in pipelined manner by the MACRO_CODE command:

VP command 0xd000 + i * 4, i < 0x400: MACRO_CODE[i] Write the parameter to low [if i is even] or high [if i is
odd] 32 bits of code RAM cell i >> 1. If a macro is currently executing, execution of this command is blocked
until it finishes. Valid only on macro input FIFO.

2.11. Video decoding, encoding, and processing 479



nVidia Hardware Documentation, Release git

Execution control

Todo: write me

Parameter registers

Parameter registers server dual purpose: they’re meant for passing parameters to macros, but can also be used as GPRs
by the code. There are two banks of parameter registers, bank A and bank B. Each bank contains 8 32-bit registers. At
any time, one of the banks is in use by the macro code, while the other can be written by the host via MACRO_PARAM
commands for next macro execution. Each time a macro is launched, the bank assignments are swapped. The current
assignment is controlled by the PARAM_SEL register:

BAR0 0x00f65c / XLMI 0x2cb80: PARAM_SEL 1-bit RW register. Can be set to one of:

• 0: CODE_A_CMD_B - bank A is in use by the macro code, commands will write to bank B

• 1: CODE_B_CMD_A - bank B is in use by the macro code, commands will write to bank A

This register is toggled on every MACRO_EXEC command execution.

The parameter register banks can be accessed through MMIO registers:

BAR0 0x00f644 [index i] / XLMI 0x2c880 + i * 4, i < 8: PARAM_A[i] BAR0 0x00f648 [index i] / XLMI 0x2c900 +
i * 4, i < 8: PARAM_B[i]

These MMIO registers are mapped straight to corresponding parameter registers.

The bank not currently in use by code can also be written by MACRO_PARAM commands:

VP command 0xc000 + i * 4, i < 8: MACRO_PARAM[i] Write the command data to parameter register i of the
bank currently not assigned to the macro code. Execution of this command won’t wait for the current macro
execution to finish. Valid only on macro input FIFO.

The parameter registers are visible to the macro code as GPR registers 0-7.

Global registers

There are 6 normal global registers, $g0-$g5. They are simply 32-bit GPRs for use by macro computations. There are
also two special global pseudo-registers, $g6 and $g7.

$g6 is the LUT readout register. Any attempt to read from it will read from the LUT entry selected by $lutidx register.
Any attempt to write to it will be ignored.

$g7 is the special predicate register, $pred. Its 4 low bits are mapped to the four predicates, $p0-$p3. Any attempt to
read from this register will read the predicates, and fill high 28 bits with zeros. Any attempt to write this register will
write the predicates.

$p0 is always forced to 1, while $p1-$p3 are writable. The predicates are used for conditional execution in macro
code. In addition to access through $pred, the predicates can also be written by macro code individually as a result of
various operations.

All 8 global registers are accessible through MMIO and the command stream:

BAR0 0x00f64c [index i] / XLMI 0x2c980 + i * 4, i < 8: GLOBAL[i] These registers are mapped straight to corre-
sponding global registers.

VP command 0xc020 + i * 4, i < 8: MACRO_GLOBAL[i] Write the command data to global register i. If a macro
is currently executing, execution of this command is blocked until it finishes. Valid only on macro input FIFO.

480 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

The global registers are visible to the macro code as GPR registers 8-15.

Special registers

In addition to the GPRs, the macro code can use 6 special registers. There are 4 special registers belonging to the
command execution path, identified by a 2-bit index:

• 0: $cacc, command accumulator

• 1: $cmd, output command register

• 2: $lutidx, LUT index

• 3: $datahi, output high data register

There are also 2 special registers belonging to the data execution path, identified by a 1-bit index:

• 0: $dacc, data accumulator

• 1: $data, output data register

The $cacc and $dacc registers are 32-bit and can be read back by the macro code, and so are usable for general purpose
computations.

The $cmd, $data, and $datahi registers are write-only by the macro code, and their contents are submitted to the macro
output FIFO when a submit opcode is executed. $data is 32-bit, $datahi is 8-bit, mapping to bits 0-7 of written values.
$cmd is 15-bit, mapping to bits 2-16 of written values. The $datahi register is also used to fill the high data bits in
output FIFO whenever a command is bypassed from the input FIFO.

The $lutidx register is 5-bit and write-only by the macro code. It maps to bits 0-4 of written values. Its value selects
the LUT entry visible in $g6 pseudo-register.

All 6 special registers can be accessed through MMIO, and the $datahi register can be additionally set by a command:

MMIO 0x00f668 / XLMI 0x2cd00: DATAHI MMIO 0x00f66c / XLMI 0x2cd80: LUTIDX MMIO 0x00f670 /
XLMI 0x2ce00: CACC MMIO 0x00f674 / XLMI 0x2ce80: CMD MMIO 0x00f678 / XLMI 0x2cf00: DACC MMIO
0x00f67c / XLMI 0x2cf80: DATA

These registers map directly to corresponding special registers. For $cacc, $dacc, and $data, all bits are
valid. For $cmd, bits 2-16 are valid. For $lutidx, bits 0-4 are valid. For $datahi, bits 0-7 are valid.
Remaining bits are forced to 0.

VP command 0xc200: MACRO_DATAHI Sets $datahi to low 8 bits of the command data. If a macro is currently
executing, execution of this command is blocked until it finishes. Valid only on macro input FIFO.

The LUT

The LUT is a small indexable RAM that’s read-only by the macro code, but freely writable by the host. It’s made of
32 32-bit words. The LUT entry selected by $lutidx register can be read by macro code simply by reading from the
$g6 pseudo-register. The LUT can be accessed by the host through MMIO and the command stream:

BAR0 0x00f640 [index i] / XLMI 0x2c800 + i * 4, i < 32: LUT[i] These registers are mapped straight to corre-
sponding LUT entries.

VP command 0xc080 + i * 4, i < 32: MACRO_LUT[i] Write the command data to LUT entry i. If a macro is cur-
rently executing, execution of this command is blocked until it finishes. Valid only on macro input FIFO.

2.11. Video decoding, encoding, and processing 481



nVidia Hardware Documentation, Release git

Opcodes

The code opcodes are 64 bits long. They’re divided in several major parts:

• bits 0-2: conditional execution predicate selection.

– bits 0-1: PRED, the predicate to use [selected from $p0-$p3]

– bit 2: PNOT, selects whether the predicate is negated before use.

• bit 3: EXIT, exit flag

• bit 4: SUBMIT, submit flag

• bits 5-30: command opcode

• bits 31-32: PDST, predicate destination [selected from $p0-$p3]

• bits 33-63: data opcode

When a macro is launched, opcodes are executed sequentially from the macro start address until an opcode with the
exit flag set is executed. An opcode is executed as follows:

1. If the SUBMIT bit is set, the current values of $cmd, $data, $datahi are sent to the output FIFO.

2. Conditional execution status is determined: the predicate selected by PRED is read. If PNOT is set to 0, condi-
tional execution will be enabled if the predicate is set to 1. Otherwise [PNOT set to 1], conditional execution will
be enabled if the predicate is set to 0. Unconditional opcodes are simply opcodes using non-negated predicate
$p0 [PRED = 0, PNOT = 0].

3. If the SUBMIT bit is set, conditional execution is enabled, and ($cmd & 0x1fe80) == 0xb000 [ie. the sub-
mitted command was in 0xb000-0xb07c or 0xb100-0xb17c ranges, correnspoding to vector processor param
commands], $cmd is incremented by 4. This enables submitting several parameters in a row without having to
update the $cmd register.

4. If conditional execution is enabled, the command opcode is executed, and the command result, command pred-
icate result, and the C2D intermediate value are computed.

5. If conditional execution is enabled, the data opcode is executed, and the data result and data predicate result are
computed.

6. If conditional execution is enabled, the command and data results are written to their destination registers.

7. If the EXIT bit is set, macro execution halts.

Effectively, conditional execution affects all computations [including auto $cmd increment], but doesn’t affect submit
and exit opcodes.

Command opcodes

The command processing path is mainly meant for processing commands and data going to $lutidx/$datahi register,
but can also exchange data with the data processing path if needed.

The command opcode bitfields are:

• bits 5-9: CBFSTART - bitfield start [CINSRT_R, CINSRT_I, some data ops]

• bits 10-14: CBFEND - bitfield end [CINSRT_R, CINSRT_I, some data ops]

• bits 15-19: CSHIFT - shift count [CINSRT_R]

• bit 20: CSHDIR - shift direction [CINSRT_R]

• bits 15-20: CIMM6 - 6-bit unsigned immediate [CINSRT_I]

482 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bits 21-22: CSRC2 - selects command source #2 [CINSRT_I, CINSRT_R], one of:

– 0: ZERO, source #2 is 0

– 1: CACC, source #2 is current value of $cacc

– 2: DACC, source #2 is current value of $dacc

– 3: GPR, source #2 is same as command source #1

• bits 15-22: CIMM8 - 8-bit unsigned immediate [CEXTRADD8]

• bits 5-22: CIMM18 - 18-bit signed immediate [CMOV_I]

• bits 23-26: CSRC1 - selects command source #1 [CINSRT_R, CEXTRADD8, DSHIFT_R, DADD16_R]. The
command source #1 is the GPR with index selected by this bitfield.

• bits 27-28: CDST - the command destination, determines where the command result will be written; one of:

– 0: CACC

– 1: CMD

– 2: LUTIDX

– 3: DATAHI

• bits 29-30: COP - the command operation, one of:

– 0: CINSRT_R, bitfield insertion with shift, register sources

– 1: CINSRT_I, bitfield insertion with 6-bit immediate source

– 2: CMOV_I, 18-bit immediate value load

– 3: CEXTRADD8, bitfield extraction + 8-bit immediate addition

The command processing path computes four values for further processing:

• the command result, ie. the 32-bit value that will later be written to the command destination register

• the command predicate result, ie. the 1-bit value that may later be written to the destination predicate

• the C2D value, a 32-bit intermediate result used in some data opcodes

• the command bitfield mask [CBFMASK], a 32-bit value used in some command and data opcodes

The command bitfield mask is used by the bitfield insertion operations. It is computed from the command bitfield start
and end as follows:

if (CBFEND >= CBFSTART) {
CBFMASK = (2 << CBFEND) - (1 << CBFSTART); // bits CBFSTART-CBFEND are 1

} else {
CBFMASK = 0;

}

Since the CBFEND and CBFSTART fields conflict with CIMM18 field, the data ops using the command mask should
not be used together with the CMOV_I operation.

The CINSRT_R operation has the following semantics:

if (CSHDIR == 0) /* 0 is left shift, 1 is right logical shift */
shifted_source = command_source_1 << CSHIFT;

else
shifted_source = command_source_1 >> CSHIFT;

C2D = command_result = (shifted_source & CBFMASK) | (command_source_2 & ~CBFMASK);
command_predicate_result = (shifted_source & CBFMASK) == 0;

2.11. Video decoding, encoding, and processing 483



nVidia Hardware Documentation, Release git

The CINSRT_I operation has the following semantics:

C2D = command_result = (CIMM6 << CBFSTART & CBFMASK) | (command_source_2 & ~CBFMASK);
command_predicate_result = 0;

The CMOV_I operation has the following semantics:

C2D = command_result = sext(CIMM18, 17); /* sign-extend 18-bit immediate to 32 bits */
command_predicate_result = 0;

The CEXTRADD8 operation has the following semantics:

C2D = (command_source_1 & CBFMASK) >> CBFSTART;
command_result = ((C2D + CIMM8) & 0xff) | (C2D & ~0xff); /* add immediate to low 8
→˓bits of extracted value */
command_predicate_result = 0;

Data opcodes

The command processing path is mainly meant for processing command data, but can also exchange data with the
command processing path if needed.

The data opcode bitfields are:

• bits 33-37: DBFSTART - bitfield start [DINSRT_R, DINSRT_I, DSEXT]

• bits 38-42: DBFEND - bitfield end [DINSRT_R, DINSRT_I, DSEXT]

• bits 43-47: DSHIFT - shift count and SEXT bit position [DINSRT_R, DSEXT]

• bit 48: DSHDIR - shift direction [DINSRT_R, DSHIFT_R]

• bits 43-48: DIMM6 - 6-bit unsigned immediate [DINSRT_I]

• bits 33-48: DIMM16 - 16-bit immediate [DADD16_I, DLOGOP16_I]

• bit 49: C2DEN - enables double bitfield insertion, using C2D value [DINSRT_R, DINSRT_I, DSEXT]

• bit 49: DDSTSKIP - skips DDST write if set [DADD16_I]

• bit 49: DSUB - selects whether DADD16_R operation does an addition or substraction

• bits 49-50: DLOGOP - the DLOGOP16_I suboperation, one of:

– 0: MOV, result is set to immediate

– 1: AND, result is source ANDed with the immediate

– 2: OR, result is source ORed with the immediate

– 3: XOR, result is source XORed with the immediate

• bits 50-51: DSRC2 - selects data source #2 [DINSRT_R, DINSRT_I], one of:

– 0: ZERO, source #2 is 0

– 1: CACC, source #2 is current value of $cacc

– 2: DACC, source #2 is current value of $dacc

– 3: GPR, source #2 is same as data source #1

• bit 50: DHI2 - selects low or high 16 bits of second operand [DADD16_R]

• bit 51: DHI - selects low or high 16 bits of an operand [DADD16_I, DLOGOP16_I, DADD16_R]

484 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• bits 52-55: DSRC1 - selects data source #1 [DINSRT_R, DINSRT_I, DADD16_I, DLOGOP16_I, DSHIFT_R,
DSEXT, DADD16_R]. The data source #1 is the GPR with index selected by this bitfield.

• bits 33-55: DIMM23 - 23-bit signed immediate [DMOV_I]

• bits 56-59: DRDST - selects data GPR destination register. The GPR destination is the GPR with index selected
by this bitfield. The data result will be written here, along with the special register selected by DDST.

• bit 60: DDST - the data special register destination, determines where the data result will be written (along with
DRDST); one of:

– 0: DACC

– 1: DATA

• bits 61-63: DOP - the data operation, one of:

– 0: DINSRT_R, bitfield insertion with shift, register sources

– 1: DINSRT_I, bitfield insertion with 6-bit immediate source

– 2: DMOV_I, 23-bit immediate value load

– 3: DADD16_I, 16-bit addition with immediate

– 4: DLOGOP16_I, 16-bit logic operation with immediate

– 5: DSHIFT_R, shift by the value of a register

– 6: DSEXT, sign extension

– 7: DADD16_R, 16-bit addition/substraction with register operands

The data processing path computes three values:

• the data result, ie. the 32-bit value that will be written to the data destination registers

• the data predicate result, ie. the 1-bit value that will be written to the destination predicate

• the skip special destination flag, a 1-bit flag that disables write to the data special register if set

Not all data operations produce a predicate result. For ones that don’t, the command predicate result will be output
instead.

The DINSRT_R operation has the following semantics:

if (DBFEND >= DBFSTART) {
DBFMASK = (2 << DBFEND) - (1 << DBFSTART); // bits DBFSTART-DBFEND are 1

} else {
DBFMASK = 0;

}
if (DSHDIR == 0) /* 0 is left shift, 1 is right arithmetic shift */

shifted_source = data_source_1 << DSHIFT;
else

shifted_source = (-1 << 32 | data_source_1) >> DSHIFT;
data_result = (data_source_2 & ~DBFMASK) | (shifted_source & DBFMASK);
if (C2DEN)

data_result = (data_result & ~CBFMASK) | (C2D & CBFMASK);
data_predicate_result = (shifted_source & DBFMASK) == 0;
skip_special_destination = false;

The DINSRT_I operation has the following semantics:

2.11. Video decoding, encoding, and processing 485



nVidia Hardware Documentation, Release git

if (DBFEND >= DBFSTART) {
DBFMASK = (2 << DBFEND) - (1 << DBFSTART); // bits DBFSTART-DBFEND are 1

} else {
DBFMASK = 0;

}
data_result = (data_source_2 & ~DBFMASK) | (DIMM6 << DBFSTART & DBFMASK);
if (C2DEN)

data_result = (data_result & ~CBFMASK) | (C2D & CBFMASK);
data_predicate_result = command_predicate_result;
skip_special_destination = false;

The DMOV_I operation has the following semantics:

data_result = sext(DIMM23, 22); /* sign-extend 23-bit immediate to 32 bits */
data_predicate_result = command_predicate_result;
skip_special_destination = false;

The DADD16_I operation has the following semantics:

sum = ((data_source_1 >> (16 * DHI)) + DIMM16) & 0xffff;
data_result = (data_source_1 & ~(0xffff << (16 * DHI))) | sum << (16 * DHI);
data_predicate_result = sum >> 15 & 1;
skip_special_destionation = DDSTSKIP;

The DLOGOP16_I operation has the following semantics:

src = (data_source_1 >> (16 * DHI)) & 0xffff;
switch (DLOGOP) {

case MOV: res = DIMM16; break;
case AND: res = src & DIMM16; break;
case OR: res = src | DIMM16; break;
case XOR: res = src ^ DIMM16; break;

}
data_result = (data_source_1 & ~(0xffff << (16 * DHI))) | res << (16 * DHI);
data_predicate_result = (res == 0);
skip_special_destination = false;

The DSHIFT_R operation has the following semantics:

shift = command_source_1 & 0x1f;
if (DSHDIR == 0) /* 0 is left shift, 1 is right arithmetic shift */

data_result = data_source_1 << shift;
else

data_result = (-1 << 32 | data_source_1) >> shift;
data_predicate_result = command_predicate_result;
skip_special_destination = false;

The DSEXT operation has the following semantics:

bfstart = max(DBFSTART, DSHIFT);
if (DBFEND >= bfstart) {

DBFMASK = (2 << DBFEND) - (1 << bfstart); // bits bfstart-DBFEND are 1
} else {

DBFMASK = 0;
}
sign = data_source_2 >> DSHIFT & 1;
data_result = (data_source_2 & ~DBFMASK) | (sign ? DBFMASK : 0);

(continues on next page)

486 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

if (C2DEN)
data_result = (data_result & ~CBFMASK) | (C2D & CBFMASK);

data_predicate_result = sign;
skip_special_destination = false;

The DADD16_R operation has the following semantics:

src1 = (data_source_1 >> (16 * DHI)) & 0xffff;
src2 = (command_source_1 >> (16 * DHI2)) & 0xffff;
if (DSUB == 0)

sum = (src1 + src2) & 0xffff;
else

sum = (src1 - src2) & 0xffff;
data_result = (data_source_1 & ~(0xffff << (16 * DHI))) | sum << (16 * DHI);
data_predicate_result = sum >> 15 & 1;
skip_special_destionation = false;

Destination write

Once both command and data processing is done, the results are written to the destination registers, as follows:

• command_result is written to command special register selected by CDST.

• data_result is written to data special register selected by DDST, unless skip_special_destionation is true.

• data_result is written to GPR selected by DRDST. This can be effectively disabled by setting DRDST to $g6.

• data_predicate_result is written to predicate selected by PDST. This can be effectively disabled by setting PDST
to $p0.

Introduction

Todo: write me

2.11.4 VP3/VP4/VP5 video decoding

Contents:

VP3 MBRING format

Contents

• VP3 MBRING format

– Introduction

– type 00: Macro block header

* MPEG2

2.11. Video decoding, encoding, and processing 487



nVidia Hardware Documentation, Release git

* H.264

* Error

– type 01: Motion vector

* MPEG2

* H.264

– type 02: DCT coordinates

– type 03: PCM data

– type 04: Coded block pattern

* MPEG2

* H.264

– type 05: Pred weight table

– type 06: End of stream

– Macroblock

Introduction

The macroblock ring outputted from VLD is packet based, and aligned on 32-bit word size.

A packet has the header type in bits [24..31] and length in bits [0..23]. The data length is in words, and doesn’t include
the header itself.

type 00: Macro block header

MPEG2

The macro block header contains 4 data words:

• Word 0:

– [0:15] Absolute address in macroblock units, 0 based

• Word 1:

– [0:7] Y coord in macroblock units, 0 based

– [8:15] X coord in macroblock units, 0 based

• Word 2:

– [0] not_coded[??]

– [1] skipped[??]

– [3] quant

– [4] motion_forward

– [5] motion_backward

– [6] coded_block_pattern

– [7] intra

488 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– [26:26] dct_type

– [27:28] motion_type

* 0: field motion

* 1: frame-based motion

* 2: 16x8 field

* 3: dual prime motion

• Word 3:

– [6:7] motion_vector_count

– [8:12] quantiser_scale_code

H.264

• Payload word 0:

– bits 0-12: macroblock address

• Payload word 1:

– bits 0-7: y coord in macroblock units

– bits 8-15: x coord in macroblock units

• Payload word 2:

– bit 0: first macroblock of a slice flag

– bit 1: mb_skip_flag

– bit 2: mb_field_coding_flag

– bits 3-8: mb_type

– bits 9+i*4 - 12+i*4, i < 4: sub_mb_type[i]

– bit 25: transform_size_8x8_flag

• Payload word 3:

– bits 0-5: mb_qp_delta

– bits 6-7: intra_chroma_pred_mode

• Payload word 4:

– bits i*4+0 - i*4+2, i < 8: rem_intra_pred_mode[i]

– bit i*4+3, i < 8: prev_intra_pred_mode_flag[i]

• Payload word 5:

– bits i*4+0 - i*4+2, i < 8: rem_intra_pred_mode[i+8]

– bit i*4+3, i < 8: prev_intra_pred_mode_flag[i+8]

2.11. Video decoding, encoding, and processing 489



nVidia Hardware Documentation, Release git

Error

The macro block header contains 3 data words:

• Word 0:

– [0:15] Absolute address in macroblock units, 0 based

– [16] error flag, always set

• Word 1:

– [0:7] Y coord in macroblock units, 0 based

– [8:15] X coord in macroblock units, 0 based

• Word 2: all 0

type 01: Motion vector

MPEG2

Todo: Verify whether X or Y is in the lowest 16 bits. I assume X

The motion vector has a length of 4 data words, and contains a total of 8 PMVs with a size of 16 bits each. The motion
vectors are likely encoded in order of the spec with PMV[r][s][t].

The layout of each 16 bit PMV:

• [0:5] motion code

• [6:13] residual

• [14] motion_vertical_field_select

• [14:15] dmvector (0, 1, or 3)

motion_vertical_field_select and dmvector occupy same bits, but the mpeg spec makes them mutually exclusive, so
they don’t conflict.

H.264

Payload like VP2, except length is in 32-bit words.

type 02: DCT coordinates

A packet of this type is created for each pattern enabled in coded_block_pattern. This packet type is byte oriented,
rather than word oriented. It splits the coordinates up in chunks of 4 coordinates each, so 0..3 becomes 0, 4..7 becomes
1, 60..63 becomes chunk 15. The first 2 bytes contain a 16-bit bitmask indicating the presence of each chunk. If a
chunks bit is set it will be encoded further.

For each present chunk a 8-bit bitmask will be created, which contains the size of each coordinate in that chunk. 2
bits are used for each coordinate, indicating the size (0 = not present, 1 = 1 byte, 2 = 2 bytes). This is followed by all
coordinates present in this chunk, the last chunk is padded with 0s to align to word size.

For example: 0x10 0x00 0x40 0xff

490 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Chunk 4 (0x0010>>4)&1 has pos 3 (0x40 >> (2*3))&3 set to -1

type 03: PCM data

Payload length is 0x60 words. Packet is byte oriented, instead of word oriented. Payload is raw PCM data from
bitstream.

type 04: Coded block pattern

MPEG2

This packet puts coded_block_pattern in 1 data word.

H.264

Payload like VP2.

type 05: Pred weight table

Payload like VP2, except length is in 32-bit words.

type 06: End of stream

This header has no length, and signals the parser it’s done.

Macroblock

A macroblock is created in this order:

• motion vector (optional)

• macro block header

• DCT coordinates / PCM samples (optional, and repeated as many times as needed)

• coded_block_pattern (optional)

‘optional’ is relative to the MPEG spec. For example intra frames always require a coded_block_pattern.

Introduction

Todo: write me

2.12 Performance counters

Contents:

2.12. Performance counters 491



nVidia Hardware Documentation, Release git

2.12.1 NV10:NV40 signals

Contents

• NV10:NV40 signals

Todo: convert

=== NV10 signals ===

0x70: PGRAPH.PM_TRIGGER
0x87: PTIMER_TIME_B12 [bus/ptimer.txt]
0x80: trailer base

=== NV15 signals ===

0x70: PGRAPH.PM_TRIGGER
0x87: PTIMER_TIME_B12 [bus/ptimer.txt]
0x80: trailer base

=== NV1F signals ===

0x70: PGRAPH.PM_TRIGGER
0x86: HEAD0_VBLANK
0x87: HEAD1_VBLANK
0x80: trailer base

=== NV20 signals ===

domain 0 [nvclk]:
0xaa: HEAD0_VBLANK
0xa0: trailer base

domain 1 [mclk]:
0x20: trailer base

=== NV28 signals ===

domain 0 [nvclk]:
0xaa: HEAD0_VBLANK
0xa0: trailer base

domain 1 [mclk]:
0x20: trailer base

=== NV35 signals ===

domain 0 [nvclk]:
0xf8: HEAD0_VBLANK
0xf9: HEAD1_VBLANK
0xe0: trailer base

(continues on next page)

492 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

domain 1 [mclk]:
0x20: trailer base

=== NV31 signals ===

domain 0 [nvclk]:
0xf8: HEAD0_VBLANK
0xf9: HEAD1_VBLANK
0xe0: trailer base

domain 1 [mclk]:
0x20: trailer base

=== NV34 signals ===

domain 0 [nvclk]:
0xda: HEAD0_VBLANK
0xdb: HEAD1_VBLANK
0xe0: trailer base

domain 1 [mclk]:
0x20: trailer base

2.12.2 NV40:G80 signals

Contents

• NV40:G80 signals

– Introduction

Introduction

NV40 generation cards have the following counter domains:

• NV40 generation cards without turbocache:

– 0: host clock

– 1: core clock [PGRAPH front]

– 2: geometry[?] clock [PGRAPH back]

– 3: shader clock

– 4: memory clock

• NV40 generation with turbocache that are not IGPs:

– 0: host clock

– 1: core clock [PGRAPH front]

– 2: shader clock

– 3: memory clock

2.12. Performance counters 493



nVidia Hardware Documentation, Release git

• NV40 IGP:

– 0: host clock

– 1: core clock [PGRAPH probably]

– 2: core clock [shaders probably]

– 3: unknown, could be the memory interface

Todo: figure it out

Todo: find some, I don’t know, signals?

2.12.3 G80:GF100 signals

Contents

• G80:GF100 signals

– Introduction

– Host clock

– Core clock A

– Core clock B

– Shader clock

– Memory clock

– Core clock C

– Vdec clock (VP2)

– Vdec clock (VP3/VP4)

– Core clock D

Introduction

G80 generation cards have the following counter domains:

• G80:

– 0: host clock

– 1: core clock A

– 2: core clock B

– 3: shader clock

– 4: memory clock

• G84:GF100 except MCP7x:

– 0: host clock

494 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

– 1: core clock A

– 2: core clock B

– 3: shader clock

– 4: memory clock

– 5: core clock C

– 6: vdec clock

– 7: core clock D

• MCP7x:

– 0: host clock

– 1: core clock A

– 2: core clock B

– 3: shader clock

– 4: core clock C

– 5: vdec clock

– 6: core clock D

Todo: figure out roughly what stuff goes where

Todo: find signals.

2.12. Performance counters 495



nVidia Hardware Documentation, Release git

Host clock

sig-
nal

G80 G84 G86 G92 G94 G96 G98 G200 MCP77MCP79GT215GT216GT218MCP89documen-
tation

HOST_MEM_WR00 04 04 04 04 04 04 05 ?? ?? 1a 1a 1a ?? [XXX]
PCOUNTER.USER– – – – – – – – – – 2a-

2b
2a-
2b

2a-
2b

3a-
3b

pcounter/intro.txt

??? ?? ?? ?? ?? ?? ?? ?? 0a ?? ?? ?? ?? ?? ?? all PFIFO
engines
enabled
and idle???

??? ?? ?? ?? ?? ?? ?? 28 ?? ?? ?? ?? ?? ?? ?? happens
once with
PFIFO
write or
PDIS-
PLAY
access [not
PFIFO
read]

??? ?? ?? ?? ?? ?? ?? ?? 29 ?? ?? ?? ?? ?? ?? ??? on for
10%

??? ?? ?? ?? ?? ?? ?? ?? 2a ?? ?? ?? ?? ?? ?? ??? on for
10%

??? ?? ?? ?? ?? ?? ?? ?? 2b ?? ?? ?? ?? ?? ?? pcie ac-
tivity
wakeups
[long]?!?

??? ?? ?? ?? ?? ?? ?? ?? 2c ?? ?? ?? ?? ?? ?? pcie ac-
tivity
bursts?!?

??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 74 ?? ?? MMIO
reads?

HOST_MEM_RD1a 1f 1f 27 2a 2a 2a 2e ?? ?? 96 96 96 ?? [XXX]
??? 1c 21 ?? 29 ?? 2c ?? 30 ?? ?? ?? ?? 98 ?? triple

MMIO
read?

PBUS_PCIE_RD1d 22 22 2a 2d 2d 2d 31 ?? ?? 99 99 99 ?? [XXX]
PTI-
MER_TIME_B12

27 2c 2c 34 37 37 37 3b 53 53 a3 a3 a3 4a bus/ptimer.txt

PBUS_PCIE_TRANS29 2e 2e 36 39 39 39 3d ?? ?? a5 a5 a5 ?? [XXX]
PBUS_PCIE_WR2a 2f 2f 37 3a 3a 3a 3e ?? ?? a6 a6 a6 ?? [XXX]
PCOUNTER.TRAILER2e-

3f
4c-
5f

4c-
5f

4c-
5f

4c-
5f

4c-
5f

4c-
5f

6c-
7f

8c-
9f

8c-
9f

ec-
ff

ec-
ff

ec-
ff

8c-
9f

pcounter/intro.txt

Core clock A

signal G80 G84 G86 G92 G94 G96 G98 G200 MCP77 MCP79 GT215 GT216 GT218 MCP89 documentation
TPC.GEOM.MUX 10-16 00-06 00-06 00-06 00-06 00-06 00-06 ?? 00-06 00-06 00-06 00-06 00-06 00-06
ZCULL.??? 20-25 07-0c 07-0c 07-0c 07-0c 07-0c 07-0c 07-0c ?? ?? 07-0c 07-0c 07-0c ?? rasterized_tiles_*[0-5]

Continued on next page

496 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 20 – continued from previous page
signal G80 G84 G86 G92 G94 G96 G98 G200 MCP77 MCP79 GT215 GT216 GT218 MCP89 documentation
TPC.RAST.??? ?? 19 19 19 19 19 ?? ?? ?? ?? ?? ?? ?? ??
TPC.RAST.??? ?? 1a 1a 1a 1a 1a ?? ?? ?? ?? ?? ?? ?? ??
PREGEOM.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 2f ?? ?? flag 2?
PREGEOM.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 30 ?? ?? flag 2?
POSTGEOM.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 33 ?? ?? flag 2?
POSTGEOM.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 34 ?? ?? flag 2?
RATTR.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 37 37 ?? idle?
APLANE.CG – 31-33 31-33 31-33 31-33 31-33 31-33 ?? 39-3b 39-3b 39-3b 39-3b 39-3b 39-3b
RATTR.CG – 37-39 37-39 37-39 37-39 37-39 37-39 ?? 43-45 43-45 43-45 43-45 43-45 43-45
ZCULL.??? ?? ?? 4f 4f 4f 4f 4f ?? ?? ?? ?? ?? ?? ??
VFETCH.MUX 26-3f 66-7f 66-7f 66-7f 66-7f 66-7f 66-7f 46-5f 46-5f 46-5f 46-5f 46-5f 46-5f 46-5f
TPC.RAST.CG – ?? ?? ?? ?? ?? ?? ?? ?? ?? 60-62 60-62 60-62 60-62
PCOUNTER.USER – – – – – – – – – – 69-6a 69-6a 69-6a 69-6a pcounter/intro.txt
ZCULL.??? 6e ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
ZCULL.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? 75 ?? ?? ?? ??
ZCULL.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 77 ?? ?? idle?
APLANE.CG_IFACE_DISABLE 73 – – – – – – – – – – – – –
VATTR.??? 77-7b ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
VATTR.??? ?? 57 ?? 57 57 57 57 ?? 7d ?? ?? 7f 7f ??
VATTR.??? ?? 59 ?? 59 59 59 59 ?? 7f ?? ?? 81 81 ??
VATTR.??? 7c 5c 5c 5c 5c 5c 5c 82 ?? ?? 84 84 84 ?? geom_primitive_out_count
VATTR.??? 7d 5d 5d 5d 5d 5d 5d 83 ?? ?? 85 85 85 ?? geom_vertex_out_count
VATTR.CG_IFACE_DISABLE 7e – – – – – – – – – – – – –
STRMOUT.??? 7f 5e 5e 5e 5e 5e 5e 84 ?? ?? 86 86 86 ?? stream_out_busy[0]
STRMOUT.??? 80 5f 5f 5f 5f 5f 5f 85 ?? ?? 87 87 87 ?? stream_out_busy[1]
STRMOUT.??? 81 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
STRMOUT.??? ?? ?? ?? ?? ?? ?? ?? ?? 85 ?? ?? ?? ?? ??
CLIPID.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? 8a ?? 8c 8c ??
CLIPID.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? 8c ?? 8e 8e ??
RMASK.??? ?? ?? ?? ?? ?? ?? ?? ?? 8e ?? ?? ?? ?? ??
STRMOUT.CG_IFACE_DISABLE 82 – – – – – – – – – – – – –
TPC.GEOM.??? 8d 85 85 85 85 85 85 ?? ?? 91 93 93 93 93
TPC.GEOM.??? 8f 87 87 87 87 87 87 ?? ?? 93 95 95 95 95
TPC.GEOM.??? 91 89 89 89 89 89 89 ?? ?? 95 97 97 97 97
TPC.GEOM.??? 93 8b 8b 8b 8b 8b 8b ?? ?? 97 99 99 99 99
TPC.GEOM.??? ?? ?? ?? ?? ?? ?? ?? ?? 91 ?? ?? ?? ?? ??
TPC.GEOM.??? ?? ?? ?? ?? ?? ?? ?? ?? 93 ?? ?? ?? ?? ??
TPC.GEOM.??? ?? ?? ?? ?? ?? ?? ?? ?? 95 ?? ?? ?? ?? ??
RATTR.CG_IFACE_DISABLE 95 – – – – – – – – – – – – –
RATTR.??? 96 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
RATTR.??? 97 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
RATTR.??? 98 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
RATTR.??? 99 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
RATTR.??? ?? 8d 8d 8d 8d 8d 8d ?? 97 ?? ?? ?? ?? ??
TPC.RAST.??? 9b 92 92 92 92 92 92 ?? 9c 9e a0 a0 a0 a0
TPC.RAST.??? 9d 94 94 94 94 94 94 ?? 9e a0 a2 a2 a2 a2
ENG2D.??? ?? ?? 9b 9b 9b 9b 9b ?? ?? a7 ?? a9 ?? ??
ENG2D.??? ?? ?? 9d 9d 9d 9d 9d ?? ?? a9 ?? ab ?? ??
ENG2D.CG_IFACE_DISABLE a7 – – – – – – – – – – – – –

Continued on next page

2.12. Performance counters 497



nVidia Hardware Documentation, Release git

Table 20 – continued from previous page
signal G80 G84 G86 G92 G94 G96 G98 G200 MCP77 MCP79 GT215 GT216 GT218 MCP89 documentation
??? ae a4 a4 a4 a4 a4 a4 b0 ?? ?? b2 b2 b2 ?? setup_primitive_culled_count
VCLIP.??? b8 ae ?? ae ae ae ae ?? b8 ba ?? bc bc ??
VCLIP.??? ba b0 ?? b0 b0 b0 b0 ?? ba bc ?? be be ??
VCLIP.CG_IFACE_DISABLE bb – – – – – – – – – – – – –
DISPATCH.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ca ?? ?? idle?
PGRAPH.IDLE c8 bd bd bd bd bd bd c9 ?? c9 cb cb cb ?? graph/g80-pgraph.txt
PGRAPH.INTR ca bf bf bf bf bf bf cb ?? cb cd cd cd ?? graph/g80-pgraph.txt
CTXCTL.USER d2-d5 c7-ca c7-ca c7-ca c7-ca c7-ca c7-ca d3-d6 d1-d4 d3-d6 d5-d8 d5-d8 d5-d8 d5-d8 graph/g80-ctxctl.txt
TRAST.??? dc d2 d2 d2 d2 d2 d2 de ?? ?? e0 e0 e0 ?? setup_primitive_count
TRAST.??? dd d3 d3 d3 d3 d3 d3 df ?? ?? e1 e1 e1 ?? setup_point_count[0]
TRAST.??? de d4 d4 d4 d4 d4 d4 e0 ?? ?? e2 e2 e2 ?? setup_line_count[0]
TRAST.??? df d5 d5 d5 d5 d5 d5 e1 ?? ?? e3 e3 e3 ?? setup_triangle_count[0]
TRAST.??? e2 d8 d8 d8 d8 d8 d8 e4 ?? ?? e6 e6 e6 ?? setup_*_count[1]
TRAST.??? e3 d9 d9 d9 d9 d9 d9 e5 e3 e5 e7 e7 e7 ?? setup_*_count[2]
TRAST.??? e5 db db db db db db ?? e5 e7 ?? e9 e9 ??
TRAST.CG_IFACE_DISABLE e6 – – – – – – – – – – – – –
PCOUNTER.TRAILER ee-ff ec-ff ec-ff ec-ff ec-ff ec-ff ec-ff ec-ff ec-ff ec-ff ec-ff ec-ff ec-ff ec-ff pcounter/intro.txt

Core clock B

signal G80 G84 G86 G92 G94 G96 G98 G200 MCP77 MCP79 GT215 GT216 GT218 MCP89 documentation
PROP.MUX 00-07 00-07 00-07 00-07 00-07 00-07 00-07 00-07 00-07 00-07 00-07 00-07 00-07 00-07
PVPE.??? 3a ?? ?? ?? ?? ?? – ?? – – – – – –
CCACHE.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 2a ?? ?? idle?
CCACHE.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 2c ?? ?? idle?
TEX.??? 40 1a 1a 1a 1a 1a 1a 32 ?? ?? 3a 3a 3a ?? tex_cache_miss
TEX.??? 41 1b 1b 1b 1b 1b 1b 33 ?? ?? 3b 3b 3b ?? tex_cache_hit
TEX.??? 42 1c 1c 1c 1c 1c 1c 34 ?? ?? 3c 3c 3c ?? texture_waits_for_fb
VATTR.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? 3c ?? 49 ?? ??
VATTR.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? 3e ?? 4b ?? ??
STRMOUT.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? 46 ?? 4e ?? ??
STRMOUT.??? ?? ?? ?? ?? ?? ?? ?? ?? ?? 48 ?? 50 ?? ??
CBAR.MUX0 4a-4d 24-27 24-27 24-27 24-27 24-27 24-27 ?? 49-4c 49-4c 51-54 51-54 51-54 51-54
CBAR.MUX1 4e-51 28-2b 28-2b 28-2b 28-2b 28-2b 28-2b ?? 4d-50 4d-50 55-58 55-58 55-58 55-58
CROP.MUX 52-55 30-33 30-33 30-33 30-33 30-33 30-33 55-58 55-58 55-58 64-67 64-67 64-67 64-67
ENG2D.??? ?? ?? ?? 36-37 36-37 36-37 ?? ?? ?? ?? ?? ?? ?? ??
ZBAR.MUX 56-59 38-3b 38-3b 38-3b 38-3b 38-3b 38-3b ?? 68-6b 68-6b 70-73 70-73 70-73 70-73
??? 6d ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? memory access?
??? 5e ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? happens when reading memory through VGA window?
??? 64 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? memory read?
??? 68 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? memory write?
VCLIP.??? ?? ?? ?? ?? ?? ?? ?? ?? 64 ?? ?? 6c ?? ??
VCLIP.??? ?? ?? ?? ?? ?? ?? ?? ?? 65 ?? ?? 6d ?? ??
ZROP.MUX 6c-6f 44-47 44-47 44-47 44-47 44-47 44-47 74-77 74-77 74-77 7c-7f 7c-7f 7c-7f 7c-7f
TEX.??? 70-73 48-4b 48-4b 48-4b 48-4b 48-4b 48-4b 78-7b 78-7b 78-7b 80-83 80-83 80-83 80-83 texture_sample_level[0-3]
PCOUNTER.USER – – – – – – – – – – 9e-9f 9e-9f 9e-9f 9e-9f pcounter/intro.txt
??? 80 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? memory access?
PVPE.??? 89-a6 ?? ?? ?? ?? ?? – ?? – – – – – –

Continued on next page

498 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 21 – continued from previous page
signal G80 G84 G86 G92 G94 G96 G98 G200 MCP77 MCP79 GT215 GT216 GT218 MCP89 documentation
PROP.??? ab ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
MMU.CG_IFACE_DISABLE ac – – – – – – – – – – – – –
MMU.BIND ad – – – – – – – – – – – – – [on core clock D on G84:]
PFB.CG_IFACE_DISABLE b8 – – – – – – – – – – – – –
PFB.WRITE c3 – – – – – – – – – – – – – [on core clock D on G84:]
PFB.READ c4 – – – – – – – – – – – – – [on core clock D on G84:]
PFB.FLUSH c5 – – – – – – – – – – – – – [on core clock D on G84:]
ZCULL.CG – 58-5a 58-5a 58-5a 58-5a 58-5a 58-5a ?? 5d-5f 5d-5f 5d-5f 5d-5f 5d-5f 5d-5f
VATTR.CG – – – – – – – ?? 84-86 84-86 8c-8e 8c-8e 8c-8e 8c-8e [also on core C]
STRMOUT.CG – – – – – – – ?? 87-89 87-89 8f-91 8f-91 8f-91 8f-91 [also on core C]
CLIPID.CG – – – – – – – ?? 8a-8c 8a-8c 92-94 92-94 92-94 92-94
ENG2D.CG – 60-62 60-62 60-62 60-62 60-62 60-62 ?? 8d-8f 8d-8f 95-97 95-97 95-97 95-97
VCLIP.CG – – – – – – – ?? 90-92 90-92 98-9a 98-9a 98-9a 98-9a [also on core C]
RMASK.CG – – – – – – – ?? 93-95 93-95 a0-a2 a0-a2 a0-a2 a0-a2
TRAST.CG – 63-65 63-65 63-65 63-65 63-65 63-65 ?? 96-98 96-98 a3-a5 a3-a5 a3-a5 a3-a5
TEX.CG – 66-68 66-68 66-68 66-68 66-68 66-68 ?? 99-9b 99-9b a6-a8 a6-a8 a6-a8 a6-a8
TEX.CG_IFACE_DISABLE dd – – – – – – – – – – – – –
TEX.UNK6.??? df 7d 7d 7d 7d 7d 75 ?? ad ad b7 b7 b7 b7
CCACHE.CG_IFACE_DISABLE ea – – – – – – – – – – – – –
PSEC.PM_TRIGGER_ALT – – – – – – – – c4 c4 – – – – [on core clock C on G98]
PSEC.WRCACHE_FLUSH_ALT – – – – – – – – c5 c5 – – – – [on core clock C on G98]
PSEC.FALCON – – – – – – – – c6-d9 c6-d9 – – – – [on core clock C on G98]
PCOUNTER.TRAILER ee-ff 8c-9f 8c-9f 8c-9f 8c-9f 8c-9f 8c-9f ec-ff ec-ff ec-ff cc-df cc-df cc-df cc-df pcounter/intro.txt

Shader clock

• 0x00-0x03: MPC GROUP 0

• 0x04-0x07: MPC GROUP 1

• 0x08-0x0b: MPC GROUP 2

• 0x0c-0x0f: MPC GROUP 3

• [XXX]

• 0x13-0x14: PCOUNTER.USER [GT215:]

• 0x2e-0x3f: PCOUNTER.TRAILER [G80]

• 0x2c-0x3f: PCOUNTER.TRAILER [G84:]

Memory clock

MCP7x don’t have this set. MCP89 does.

2.12. Performance counters 499



nVidia Hardware Documentation, Release git

signal G80 G84 G86 G92 G94 G96 G98 G200 GT215GT216GT218MCP89docu-
menta-
tion

PFB.UNK6.CG_IFACE_DISABLE1a – – – – – – – – – – –
PFB.UNK6.CG – 14-

16
14-
16

14-
16

14-
16

14-
16

14-
16

?? 1a-
1c

1a-
1c

1a-
1c

??

PCOUNTER,USER – – – – – – – – 3b-
3c

3b-
3c

37-
38

6a-
6b

pcounter/intro.txt

PCOUNTER.TRAILER2e-
3f

4c-
5f

4c-
5f

4c-
5f

4c-
5f

4c-
5f

4c-
5f

6c-
7f

6c-
7f

6c-
7f

6c-
7f

ec-
ff

pcounter/intro.txt

500 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Core clock C

signal G84 G86 G92 G94 G96 G98 G200 MCP77MCP79GT215GT216GT218MCP89documen-
tation

PBSP.USER?? ?? – ?? ?? – 00-
07

– – – – – – [also on
core clock
D]

PVP2.USER?? ?? – ?? ?? – 08-
0f

– – – – – – [also on
core clock
D]

VCLIP.??? 20 20 20 20 20 20 ?? ?? ?? ?? ?? ?? ??
VCLIP.??? 21 21 21 21 21 21 ?? ?? ?? ?? ?? ?? ??
VATTR.CG 24-

26
24-
26

24-
26

24-
26

24-
26

24-
26

?? – – – – – – [also on
core B]

STR-
MOUT.CG

27-
29

27-
29

27-
29

27-
29

27-
29

27-
29

?? – – – – – – [also on
core B]

VCLIP.CG 2a-
2c

2a-
2c

2a-
2c

2a-
2c

2a-
2c

2a-
2c

?? – – – – – – [also on
core B]

VUC_IDLE ?? ?? ?? ?? ?? – 34 – – – – – – vdec/vuc/perf.txt
VUC_SLEEP?? ?? ?? ?? ?? – 36 – – – – – – vdec/vuc/perf.txt
VUC_WATCHDOG?? ?? ?? ?? ?? – 38 – – – – – – vdec/vuc/perf.txt
VUC_USER_PULSE?? ?? ?? ?? ?? – 39 – – – – – – vdec/vuc/perf.txt
VUC_USER_CONT?? ?? ?? ?? ?? – 3a – – – – – – vdec/vuc/perf.txt
PSEC.PM_TRIGGER_ALT– – – – – 37 – – – – – – – [this and

other PSEC
stuff on core
clock B on
MCP*]

PSEC.WRCACHE_FLUSH_ALT– – – – – 38 – – – – – – –
PSEC.FALCON– – – – – 39-

4c
– – – – – – –

PCOUNTER.USER– – – – – – – – – 10-
11

10-
11

10-
11

10-
11

pcounter/intro.txt

PCOPY.PM_TRIGGER_ALT– – – – – – – – – 1d 1d 1d 1d
PCOPY.WRCACHE_FLUSH_ALT– – – – – – – – – 1e 1e 1e 1e
PCOPY.FALCON– – – – – – – – – 1f-

32
1f-
32

1f-
32

1f-
32

fal-
con/perf.txt

PDAE-
MON.PM_TRIGGER_ALT

– – – – – – – – – 3e 3e 3e 3e

PDAE-
MON.WRCACHE_FLUSH_ALT

– – – – – – – – – 3f 3f 3f 3f

PDAE-
MON.FALCON

– – – – – – – – – 40-
53

40-
53

40-
53

40-
53

fal-
con/perf.txt

PCOUNTER.TRAILER4c-
5f

4c-
5f

4c-
5f

4c-
5f

4c-
5f

6c-
7f

6c-
7f

0c-
1f

0c-
1f

6c-
7f

6c-
7f

6c-
7f

6c-
7f

pcounter/intro.txt

2.12. Performance counters 501



nVidia Hardware Documentation, Release git

Vdec clock (VP2)

signal G84 G86 G92 G94 G96 G200 documentation
PVP2_USER_0 ?? ?? 00-07 ?? ?? 00-07 vdec/vp2/intro.txt
PVP2.CG_IFACE_DISABLE 28 28 28 28 r28 ?? what?
PCOUNTER.TRAILER ac-bf ac-bf ac-bf ac-bf ac-bf ac-bf pcounter/intro.txt

Vdec clock (VP3/VP4)

signal G98 MCP77 MCP79 GT215 GT216 GT218 MCP89 documenta-
tion

PCOUNTER.USER – – – 10-11 10-11 10-11 10-11 pcounter/intro.txt
PVLD.FALCON 10-

23
10-23 10-23 16-29 16-29 16-29 16-29 falcon/perf.txt

PPPP.FALCON 40-
53

40-53 40-53 2a-3d 2a-3d 2a-3d 2a-3d falcon/perf.txt

VUC_IDLE 5d ?? ?? ?? 88 ?? ?? vdec/vuc/perf.txt
VUC_SLEEP 5e ?? ?? ?? 89 ?? ?? vdec/vuc/perf.txt
VUC_WATCHDOG 5f ?? ?? ?? 8a ?? ?? vdec/vuc/perf.txt
VUC_USER_CONT 60 ?? ?? ?? 8b ?? ?? vdec/vuc/perf.txt
VUC_USER_PULSE 61 ?? ?? ?? 8c ?? ?? vdec/vuc/perf.txt
PPDEC.FALCON 8e-

a1
8e-a1 8e-a1 3e-51 3e-51 3e-51 3e-51 falcon/perf.txt

PVCOMP.FALCON – – – – – – 52-65 falcon/perf.txt
PVLD.??? ?? ?? ?? ?? 54-58 ?? ??
PPPP.??? ?? ?? ?? ?? 5f-7e ?? ??
PPDEC.XFRM.??? ?? ?? ?? ?? a0-a4 ?? ??
PPDEC.UNK580.??? ?? ?? ?? ?? ad-af ?? ??
PPDEC.UNK680.??? ?? ?? ?? ?? b6 ?? ??
PVLD.CRYPT.??? ?? ?? ?? ?? c0-c5 ?? ??
PCOUNTER.TRAILER ac-bf ac-bf ac-bf cc-df cc-df cc-df ec-ff pcounter/intro.txt

Core clock D

signal G84 G86 G92 G94 G96 G98 G200 MCP77 MCP79 GT215 GT216 GT218 MCP89 documentation
PBSP.USER ?? ?? 00-07 ?? ?? – – – – – – – – [also on core clock C]
PVP2.USER ?? ?? 08-0f ?? ?? – – – – – – – – [also on core clock C]
PFB.CG 10-12 10-12 10-12 10-12 10-12 00-02 ?? 00-02 00-02 00-02 00-02 00-02 00-02
??? ?? ?? ?? ?? ?? 07 ?? ?? ?? ?? ?? ?? ?? something related to MAGIC_FLUSH + PFIFO memory read?
MMU.CG 3a-3c 3a-3c 3a-3c 3a-3c 3a-3c 1d-1f ?? 24-26 24-26 1d-1f 1d-1f 1d-1f 30-32
PBSP.CG 5b-5d 3d-3f 63-65 5b-5d 5b-5d – ?? – – – – – –
??? ?? ?? ?? ?? ?? 22 ?? ?? ?? ?? ?? ?? ?? 16 * PFIFO host DMAobj load
??? ?? ?? ?? ?? ?? 23 ?? ?? ?? ?? ?? ?? ?? 16 * PFIFO host DMAobj load
??? ?? ?? ?? ?? ?? 24 ?? ?? ?? ?? ?? ?? ?? MAGIC_FLUSH + PFIFO memory read
??? ?? ?? ?? ?? ?? 2c ?? ?? ?? ?? ?? ?? ?? MAGIC_FLUSH + memory access
??? ?? ?? ?? ?? ?? 2e ?? ?? ?? ?? ?? ?? ?? MAGIC_FLUSH + memory access
??? ?? ?? ?? ?? ?? 30 ?? ?? ?? ?? ?? ?? ?? MAGIC_FLUSH [misses 1 sometimes?] + memory access
??? ?? ?? ?? ?? ?? 32 ?? ?? ?? ?? ?? ?? ?? MAGIC_FLUSH [misses 1 sometimes?] + memory access

Continued on next page

502 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Table 22 – continued from previous page
signal G84 G86 G92 G94 G96 G98 G200 MCP77 MCP79 GT215 GT216 GT218 MCP89 documentation
PCOUNTER.USER – – – – – – – – – 4f-50 3e-3f 3e-3f 1e-1f pcounter/intro.txt
MMU.BIND ?? 5a ?? ?? ?? 34 ?? 32 32 5d 5b 4b 50
PFB_WRITE ?? 6f ?? ?? ?? 4b 75 40 40 7d 7b 65 63 [XXX]
PFB_READ ?? 70 ?? ?? ?? 4c 76 41 41 7e 7c 66 64 [XXX]
PFB_FLUSH ?? 71 ?? ?? ?? 4d 77 42 42 7f 7d 67 65 [XXX]
PVLD.PM_TRIGGER_ALT – – – – – 65 – 6d 6f 9a 98 85 85
PVLD.WRCACHE_FLUSH_ALT – – – – – 66 – 6e 70 9b 99 86 86
PPPP.PM_TRIGGER_ALT – – – – – 71 – 79 7b a7 a5 92 92
PPPP.WRCACHE_FLUSH_ALT – – – – – 72 – 7a 7c a8 a6 93 93
PPDEC.PM_TRIGGER_ALT – – – – – 8c – 94 96 b4 b2 9f 9f
PPDEC.WRCACHE_FLUSH_ALT – – – – – 8d – 95 97 b5 b3 a0 a0
PVCOMP.PM_TRIGGER_ALT – – – – – – – – – – – – ac
PVCOMP.WRCACHE_FLUSH_ALT – – – – – – – – – – – – ad
IREDIR_STATUS – – – – – – – – – c6 c4 b1 be pm/pdaemon.txt
IREDIR_HOST_REQ – – – – – – – – – c7 c5 b2 bf pm/pdaemon.txt
IREDIR_TRIGGER_DAEMON – – – – – – – – – c8 c6 b3 c0 pm/pdaemon.txt
IREDIR_TRIGGER_HOST – – – – – – – – – c9 c7 b4 c1 pm/pdaemon.txt
IREDIR_PMC – – – – – – – – – ca c8 b5 c2 pm/pdaemon.txt
IREDIR_INTR – – – – – – – – – cb c9 b6 c3 pm/pdaemon.txt
MMIO_BUSY – – – – – – – – – cc ca b7 c4 pm/pdaemon.txt
MMIO_IDLE – – – – – – – – – cd cb b8 c5 pm/pdaemon.txt
MMIO_DISABLED – – – – – – – – – ce cc b9 c6 pm/pdaemon.txt
TOKEN_ALL_USED – – – – – – – – – cf cd ba c7 pm/pdaemon.txt
TOKEN_NONE_USED – – – – – – – – – d0 ce bb c8 pm/pdaemon.txt
TOKEN_FREE – – – – – – – – – d1 cf bc c9 pm/pdaemon.txt
TOKEN_ALLOC – – – – – – – – – d2 d0 bd ca pm/pdaemon.txt
FIFO_PUT_0_WRITE – – – – – – – – – d3 d1 be cb pm/pdaemon.txt
FIFO_PUT_1_WRITE – – – – – – – – – d4 d2 bf cd pm/pdaemon.txt
FIFO_PUT_2_WRITE – – – – – – – – – d5 d3 c0 ce pm/pdaemon.txt
FIFO_PUT_3_WRITE – – – – – – – – – d6 d4 c1 cf pm/pdaemon.txt
INPUT_CHANGE – – – – – – – – – d7 d5 c2 d0 pm/pdaemon.txt
OUTPUT_2 – – – – – – – – – d8 d6 c3 d1 pm/pdaemon.txt
INPUT_2 – – – – – – – – – d9 d7 c4 d2 pm/pdaemon.txt
THERM_ACCESS_BUSY – – – – – – – – – da d8 c5 d3 pm/pdaemon.txt
PCOUNTER.TRAILER ec-ff cc-df ec-ff ec-ff ec-ff ac-bf 8c-9f ac-bf ac-bf ec-ff ec-ff cc-df ec-ff pcounter/intro.txt

2.12.4 Fermi+ signals

Contents

• Fermi+ signals

– GF100

– GF116 signals

Todo: convert

2.12. Performance counters 503



nVidia Hardware Documentation, Release git

GF100

HUB domain 2:

• source 0: CTXCTL

– 0x18: ???

– 0x1b: ???

– 0x22-0x27: CTXCTL.USER

• source 1: ???

– 0x2e-0x2f: ???

HUB domain 6:

• source 1: DISPATCH

– 0x01-0x06: DISPATCH.MUX

• source 8: CCACHE

– 0x08-0x0f: CCACHE.MUX

• source 4: UNK6000

– 0x28-0x2f: UNK6000.MUX

• source 2:

– 0x36: ???

• source 5: UNK5900

– 0x39-0x3c: UNK5900.MUX

• source 7: UNK7800

– 0x42: UNK7800.MUX

• source 0: UNK5800

– 0x44-0x47: UNK5800.MUX

• source 6:

– 0x4c: ???

GPC domain 0:

• source 0x16:

– 0x02-0x09: GPC.TPC.L1.MUX

• source 0x19: TEX.MUX_C_D

– 0x0a-0x12: GPC.TPC.TEX.MUX_C_D

• source 0: CCACHE.MUX_A

– 0x15-0x19: GPC.CCACHE.MUX_A

• source 5:

– 0x1a-0x1f: GPC.UNKC00.MUX

• source 0x14:

– 0x21-0x28: GPC.TPC.UNK400.MUX

504 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• source 0x17:

– 0x31-0x38: GPC.TPC.MP.MUX

• source 0x13: TPC.UNK500

– 0x3a-0x3c: TPC.UNK500.MUX

• source 0xa: PROP

– 0x40-0x47: GPC.PROP.MUX

• source 0x15: POLY

– 0x48-0x4d: POLY.MUX

• source 0x11: FFB.MUX_B

– 0x4f-0x53: GPC.FFB.MUX_B

• source 0xe: ESETUP

– 0x54-0x57: GPC.ESETUP.MUX

• source 0x1a:

– 0x5b-0x5e: GPC.TPC.TEX.MUX_A

• source 0x18:

– 0x61-0x64: GPC.TPC.TEX.MUX_B

• source 0xb: UNKB00

– 0x66-0x68: GPC.UNKB00.MUX

• source 0xc: UNK600

– 0x6a: GPC.UNK600.MUX

• source 3: ???

– 0x6e: ???

• source 8: FFB.MUX_A

– 0x72: ???

– 0x74: ???

• source 4:

– 0x76-0x78: GPC.UNKD00.MUX

• source 6:

– 0x7c-0x7f: GPC.UNKC80.MUX

• source 0xd: UNK380

– 0x81-0x83: GPC.UNK380.MUX

• source 0x12:

– 0x84-0x87: GPC.UNKE00.MUX

• source 0xf: UNK700

– 0x88-0x8b: GPC.UNK700.MUX

• source 1: CCACHE.MUX_B

2.12. Performance counters 505



nVidia Hardware Documentation, Release git

– 0x8e: GPC.CCACHE.MUX_B

• source 0x1c:

– 0x91-0x93: GPC.UNKF00.MUX

• source 0x10: UNK680

– 0x95: GPC.UNK680.MUX

• source 0x1b: TPC.UNK300

– 0x98-0x9b: MUX

• source 2: GPC.CTXCTL

– 0x9c: ???

– 0xa1-0xa2: GPC.CTXCTL.TA

– 0xaf-0xba: GPC.CTXCTL.USER

• source 9: ???

– 0xbf: ???

PART domain 1:

• source 1: CROP.MUX_A

– 0x00-0x0f: CROP.MUX_A

• source 2: CROP.MUX_B

– 0x10-0x16: CROP.MUX_B

• source 3: ZROP

– 0x18-0x1c: ZROP.MUX_A

– 0x23: ZROP.MUX_B

• source 0: ???

– 0x27: ???

GF116 signals

[XXX: figure out what the fuck is going on]

HUB domain 0:

• source 0: ???

• source 1: ???

– 0x01-0x02: ???

HUB domain 1:

• source 0: ???

– 0x00-0x02: ???

• source 1: ???

• source 2: ???

– 0x13-0x14: ???

506 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• source 3: ???

– 0x16: ???

HUB domain 2:

• source 0: CTXCTL [?]

– 0x18: CTXCTL ???

– 0x22-0x25: CTXCTL USER_0..USER_5

• source 1: ???

– 0x2e-0x2f: ???

• 2: PDAEMON

– 0x14,0x15: PDAEMON PM_SEL_2,3

– 0x2c: PDAEMON PM_SEL_0

– 0x2d: PDAEMON PM_SEL_1

– 0x30: PDAEMON ???

HUB domain 3:

• source 0: PCOPY[0].???

– 0x00: ???

– 0x02: ???

– 0x38: PCOPY[0].SRC0 ???

• source 1: PCOPY[0].FALCON

– 0x17,0x18: PM_SEL_2,3

– 0x2e: PCOPY[0].FALCON ???

– 0x39: PCOPY[0].FALCON ???

• source 2: PCOPY[0].???

– 0x12: ???

– 0x3a: PCOPY[0].SRC2 ???

• source 3: PCOPY[1].???

– 0x05-0x07: ???

– 0x3b: PCOPY[1].SRC3 ???

• source 4: PCOPY[1].FALCON

– 0x19,0x1a: PM_SEL_2,3

– 0x34: PCOPY[1].FALCON ???

– 0x3c: PCOPY[1].FALCON ???

• source 5: PCOPY[1].???

– 0x14: ???

– 0x16: ???

– 0x3d: PCOPY[1].SRC5 ???

2.12. Performance counters 507



nVidia Hardware Documentation, Release git

• source 6: PPDEC.???

– 0x0c: ???

– 0x22: ???

– 0x24: ???

– 0x3e: ???

• source 7: PPPP.???

– 0x0a: ???

– 0x1d: ???

– 0x1f: ???

– 0x3f: ???

• source 8: PVLD.???

– 0x0e-0x10: ???

– 0x27: ???

– 0x29: ???

– 0x40: ???

HUB domain 4:

• 0: PPDEC.???

• 1: PPDEC.FALCON

• 2: PPPP.???

• 3: PPPP.FALCON

• 4: PVLD.???

• 5: PVLD.FALCON

HUB domain 4 signals:

• 0x00-0x03: PPPP.SRC2 ???

• 0x06-0x07: PPDEC.SRC0 ???

• 0x09: PVLD.SRC4 ???

• 0x0b: PVLD.SRC4 ???

• 0x0c,0x0d: PPPP.FALCON PM_SEL_2,3

• 0x0e,0x0f: PPDEC.FALCON PM_SEL_2,3

• 0x10,0x11: PVLD.FALCON PM_SEL_2,3

• 0x16-0x17: PPPP.FALCON ???

• 0x1c-0x1d: PPDEC.FALCON ???

• 0x1e: PVLD.FALCON ???

• 0x24-0x25: PPDEC.SRC0 ???

• 0x26: PPDEC.FALCON ???

• 0x27: PPPP.SRC2 ???

508 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

• 0x28: PPPP.FALCON ???

• 0x29: PVLD.SRC4 ???

• 0x2a: PVLD.FALCON ???

HUB domain 5 sources:

• 0: ???

HUB domain 5 signals:

• 0x00: SRC0 ???

• 0x05-0x06: SRC0 ???

• 0x09: SRC0 ???

• 0x0c: SRC0 ???

HUB domain 6 sources:

• 0: ???

• 1: ???

• 2: ???

• 3: ???

• 4: ???

• 5: ???

• 6: ???

• 7: ???

• 8: ???

HUB domain 6 signals:

• 0x0a-0x0b: SRC8 ???

• 0x36: SRC2 ???

• 0x39: SRC5 ???

• 0x45: SRC0 ???

• 0x47: SRC0 ???

• 0x4c: SRC6 ???

2.13 Display subsystem

Contents:

2.13.1 NV1 display subsystem

Contents:

2.13. Display subsystem 509



nVidia Hardware Documentation, Release git

2.13.2 NV3:G80 display subsystem

Contents:

VGA stack

Contents

• VGA stack

– Introduction

– MMIO registers

– Description

– Stack access registers

– Internal operation

Introduction

A dedicated RAM made of 0x200 8-bit cells arranged into a hw stack. NFI what it is for, apparently related to VGA.
Present on NV41+ cards.

MMIO registers

On NV41:G80, the registers are located in PBUS area:

• 001380 VAL

• 001384 CTRL

• 001388 CONFIG

• 00138c SP

They are also aliased in the VGA CRTC register space:

• CR90 VAL

• CR91 CTRL

On G80+, the registers are located in PDISPLAY.VGA area:

• 619e40 VAL

• 619e44 CTRL

• 619e48 CONFIG

• 619e4c SP

And aliased in VGA CRTC register space, but in a different place:

• CRA2 VAL

• CRA3 CTRL

510 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Description

The stack is made of the following data:

• an array of 0x200 bytes [the actual stack]

• a write shadow byte, WVAL [G80+ only]

• a read shadow byte, RVAL [G80+ only]

• a 10-bit stack pointer [SP]

• 3 config bits: - push mode: auto or manual - pop mode: auto or manual - manual pop mode: read before pop or
read after pop

• 2 sticky error bits: - stack underflow - stack overflow

The stack grows upwards. The stack pointer points to the cell that would be written by a push. The valid values for
stack pointer are thus 0-0x200, with 0 corresponding to an empty stack and 0x200 to a full stack. If stack is ever
accessed at position >= 0x200 [which is usually an error], the address wraps modulo 0x200.

There are two major modes the stack can be operated in: auto mode and manual mode. The mode settings are
independent for push and pop accesses - one can use automatic pushes and manual pops, for example. In automatic
mode, the read/write access to the VAL register automatically performs the push/pop operation. In manual mode, the
push/pop needs to be manually triggered in addition to accessing the VAL reg. For manual pushes, the push should be
triggered after writing the value. For pops, the pop should be triggered before or after reading the value, depending on
selected manual pop mode.

The stack also keeps track of overflow and underflow errors. On NV41:G80, while these error conditions are detected,
the offending access is still executed [and the stack pointer wraps]. On G80+, the offending access is discarded. The
error status is sticky. On NV41:G80, it can only be cleared by poking the CONFIG register clear bits. On G80+, the
overflow status is cleared by executing a pop, and the underflow status is cleared by executing a push.

Stack access registers

The stack data is read or written through the VAL register:

MMIO 0x001380 / CR 0x90: VAL [NV41:G80]

MMIO 0x619e40 / CR 0xa2: VAL [G80-] Accesses a stack entry. A write to this register stored the low 8 bits of
written data as a byte to be pushed. If automatic push mode is set, the value is pushed immediately. Otherwise,
it is pushed after PUSH_TRIGGER is set. A read from this register returns popped data [causing a pop in the
process if automatic pop mode is set]. If manual read-before-pop mode is in use, the returned byte is the byte
that the next POP_TRIGGER would pop. In manual pop-before-read, it is the byte that the last POP_TRIGGER
popped.

The CTRL register is used to manually push/pop the stack and check its status:

MMIO 0x001384 / CR 0x91: CTRL [NV41:G80]

MMIO 0x619e44 / CR 0xa3: CTRL [G80-]

• bit 0: PUSH_TRIGGER - when written as 1, executes a push. Always reads as 0.

• bit 1: POP_TRIGGER - like above, for pop.

• bit 4: EMPTY - read-only, reads as 1 when SP == 0.

• bit 5: FULL - read-only, reads as 1 when SP >= 0x200.

• bit 6: OVERFLOW - read-only, the sticky overflow error bit

• bit 7: UNDERFLOW - read-only, the sticky underflow error bit

2.13. Display subsystem 511



nVidia Hardware Documentation, Release git

= Stack configuration registers =

To configure the stack, the CONFIG register is used:

MMIO 0x001388: CONFIG [NV41:G80]

MMIO 0x619e48: CONFIG [G80-]

• bit 0: PUSH_MODE - selects push mode [see above]

– 0: MANUAL

– 1: AUTO

• bit 1: POP_MODE - selects pop mode [see above]

– 0: MANUAL

– 1: AUTO

• bit 2: MANUAL_POP_MODE - for manual pop mode, selects manual pop submode. Unused for auto pop
mode.

– 0: POP_READ - pop before read

– 1: READ_POP - read before pop

• bit 6: OVERFLOW_CLEAR [NV41:G80] - when written as 1, clears CTRL.OVERFLOW to 0. Always
reads as 0.

• bit 7: UNDERFLOW_CLEAR [NV41:G80] - like above, for CTRL.UNDERFLOW

The stack pointer can be accessed directly by the SP register:

MMIO 0x00138c: SP [NV41:G80]

MMIO 0x619e4c: SP [G80-] The stack pointer. Only low 10 bits are valid.

Internal operation

NV41:G80 VAL write:

if (SP >= 0x200)
CTRL.OVERFLOW = 1;

STACK[SP] = val;
if (CONFIG.PUSH_MODE == AUTO)

PUSH();

NV41:G80 PUSH:

SP++;

NV41:G80 VAL read:

if (SP == 0)
CTRL.UNDERFLOW = 1;

if (CONFIG.POP_MODE == AUTO) {
POP();
res = STACK[SP];

} else {
if (CONFIG.MANUAL_POP_MODE == POP_READ)

res = STACK[SP];

(continues on next page)

512 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

else
res = STACK[SP-1];

}

NV41:G80 POP:

SP--;

G80+ VAL write:

WVAL = val;
if (CONFIG.PUSH_MODE == AUTO)

PUSH();

G80+ PUSH:

if (SP >= 0x200)
CTRL.OVERFLOW = 1;

else
STACK[SP++] = WVAL;

CTRL.UNDERFLOW = 0;

G80+ VAL read:

if (CONFIG.POP_MODE == AUTO) {
POP();
res = RVAL;

} else {
if (CONFIG.MANUAL_POP_MODE == POP_READ || SP == 0)

res = RVAL;
else

res = STACK[SP-1];
}

G80+ POP:

if (SP == 0)
CTRL.UNDERFLOW = 1;

else
RVAL = STACK[--SP];

CTRL.OVERFLOW = 0;

2.13.3 G80 display subsystem

Contents:

PDISPLAY’s monitoring engine

Contents

• PDISPLAY’s monitoring engine

– Introduction

2.13. Display subsystem 513



nVidia Hardware Documentation, Release git

– falcon parameters

– MMIO registers

Todo: write me

Introduction

Todo: write me

falcon parameters

Present on:

v0: GF119:GK104

v1: GK104:GK110

v2: GK110+

BAR0 address: 0x627000

PMC interrupt line: 26 [shared with the rest of PDISPLAY], also INTR_HOST_SUMMARY bit 8

PMC enable bit: 30 [all of PDISPLAY]

Version:

v0,v1: 4

v2: 4.1

Code segment size: 0x4000

Data segment size: 0x2000

Fifo size: 3

Xfer slots: 8

Secretful: no

Code TLB index bits: 8

Code ports: 1

Data ports: 4

Version 4 unknown caps: 31, 27

Unified address space: no

IO adressing type: full

Core clock: ???

Fermi VM engine: none

Fermi VM client: HUB 0x03 [shared with rest of PDISPLAY]

514 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Interrupts:

Line Type Present on Name Description
12 level all PDISPLAY DISPLAY_DAEMON-routed interrupt
13 level all FIFO
14 level all ??? 520? 524 apparently not required
15 level v1- PNVIO DISPLAY_DAEMON-routed interrupt, but also 554?

Status bits:

Bit Name Description
0 FALCON Falcon unit
1 MEMIF Memory interface

IO registers: MMIO registers

Todo: more interrupts?

Todo: interrupt refs

Todo: MEMIF interrupts

Todo: determine core clock

MMIO registers

Address Present on Name Description
0x627000:0x627400 all N/A Falcon registers
0x627400 all ??? [alias of 610018]
0x627440+i*4 all FIFO_PUT
0x627450+i*4 all FIFO_GET
0x627460 all FIFO_INTR
0x627464 all FIFO_INTR_EN
0x627470+i*4 all RFIFO_PUT
0x627480+i*4 all RFIFO_GET
0x627490 all RFIFO_STATUS
0x6274a0 v1- ??? [ffffffff/ffffffff/0]
0x627500+i*4 all ???
0x627520 v1-? ??? interrupt 14
0x627524 v1- ??? [0/ffffffff/0]
0x627550 v1- ??? [2710/ffffffff/0]
0x627554 v1- ??? interrupt 15 [0/1/0]
0x627600:0x627680 all MEMIF Memory interface
0x627680:0x627700 all - [alias of 627600+]

2.13. Display subsystem 515



nVidia Hardware Documentation, Release git

Todo: refs

G80 VGA mutexes

Contents

• G80 VGA mutexes

– Introduction

– MMIO registers

– Operation

Introduction

Dedicated mutex support hardware supporting trylock and unlock operations on 64 mutexes by 2 clients. Present on
G80+ cards.

MMIO registers

On G80+, the registers are located in PDISPLAY.VGA area:

• 619e80 MUTEX_TRYLOCK_A[0]

• 619e84 MUTEX_TRYLOCK_A[1]

• 619e88 MUTEX_UNLOCK_A[0]

• 619e8c MUTEX_UNLOCK_A[1]

• 619e90 MUTEX_TRYLOCK_B[0]

• 619e94 MUTEX_TRYLOCK_B[1]

• 619e98 MUTEX_UNLOCK_B[0]

• 619e9c MUTEX_UNLOCK_B[1]

Operation

There are 64 mutexes and 2 clients. The clients are called A and B. Each mutex can be either unlocked, locked by
A, or locked by B at any given moment. Each of the clients has two register sets: TRYLOCK and UNLOCK. Each
register set contains two MMIO registers, one controlling mutexes 0-31, the other mutexes 32-63. Bit i of a given
register corresponds directly to mutex i or i+32.

Writing a value to the TRYLOCK register will execute a trylock operation on all mutexes whose corresponding bit
is set to 1. The trylock operation makes an unlocked mutex locked by the requesting client, and does nothing on an
already locked mutex.

Writing a value to the UNLOCK register will likewise execute an unlock operation on selected mutexes. The unlock
operation makes a mutex locked by the requesting client unlocked. It doesn’t affect mutexes that are unlocked or
locked by the other client.

516 Chapter 2. nVidia hardware documentation



nVidia Hardware Documentation, Release git

Reading a value from either the TRYLOCK or UNLOCK register will return 1 for mutexes locked by the requesting
client, 0 for unlocked mutexes and mutexes locked by the other client.

MMIO 0x619e80+i*4, i < 2: MUTEX_TRYLOCK_A Writing executes the trylock operation as client A, treating
the written value as a mask of mutexes to lock. Reading returns a mask of mutexes locked by client A. Bit j of
the value corresponds to mutex i*32+j.

MMIO 0x619e88+i*4, i < 2: MUTEX_UNLOCK_A Like MUTEX_TRYLOCK_A, but executes the unlock opera-
tion on write.

MMIO 0x619e90+i*4, i < 2: MUTEX_TRYLOCK_B Like MUTEX_TRYLOCK_A, but for client B.

MMIO 0x619e98+i*4, i < 2: MUTEX_UNLOCK_B Like MUTEX_UNLOCK_A, but for client B.

Todo: convert glossary

2.13. Display subsystem 517



nVidia Hardware Documentation, Release git

518 Chapter 2. nVidia hardware documentation



CHAPTER 3

nVidia Resource Manager documentation

Contents:

3.1 PMU

PMU is NVIDIA’s firmware for PDAEMON, used for DVFS and several other power-management related functions.

Contents:

3.1.1 SEQ Scripting ISA

Contents

• SEQ Scripting ISA

– Introduction

– SEQ conventions

* Stack layout

* Scratch layout

– Opcodes

– Memory

* SET last

* READ last register

* WRITE last register

* SET register(s)

519



nVidia Hardware Documentation, Release git

* WRITE OUT last value

* WRITE OUT

* READ OUT last value

* READ OUT last register

* WRITE OUT TIMESTAMP

– Arithmetic

* OR last

* AND last

* ADD last

* SHIFT-left last

* AND last value, register

* ADD OUT

* OR last value, register

* OR OUT last value

* ADD last value, OUT

* AND OUT last value

– Control flow

* EXIT

* COMPARE last value

* BRANCH EQ

* BRANCH NEQ

* BRANCH LT

* BRANCH GT

* BRANCH

* COMPARE OUT

– Miscellaneous

* WAIT

* WAIT STATUS

* WAIT BITMASK last

* IRQ_DISABLE

* IRQ_ENABLE

* FB PAUSE/RESUME

Introduction

NVIDIA uses PDAEMON for power-management related functions, including DVFS. For this they extended the
firmware, PMU, with a scripting language called seq. Scripts are uploaded through falcon data I/O.

520 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

SEQ conventions

Operations are represented as 32-bit opcodes, follwed by 0 or more 32-bit parameters. The opcode is encoded as
follows:

• Bit 0-7: operation

• Bit 31-16: total operation length in 32-bit words (# parameters + 1)

A script ends with 0x0. In the pseudo-code in the rest of this document, the following conventions hold:

• $r3 is reserved as the script program counter, aliased pc

• op aliases *pc & 0xffff

• params aliases (*pc & 0xffff0000) >> 16

• param[] points to the first parameter, the first word after *pc

• PMU reserves 0x5c bytes on the stack for general usage, starting at sp+0x24

• scratch[] is a pointer to scratchpad memory from 0x3e0 onward.

Stack layout

address Type Alias Description
0x00-0x20 u32[9] Callers $r[0]..$r[8]
0x24 u32 *packet.data Pointer to data structure
0x2a u16 in_words Number of words in the program.
0x2c u32 *in_end Pointer to the end of the program
0x30 u32 insn_len Length of the currently executed instruction
0x54 u32 *head_vert &(PDISPLAY.HEAD_STAT[0].VERT)+head_off
0x58 u32 head_off Offset for current HEAD from PDISPLAY[0]
0x5c u32 *in_start Pointer to the start of the program
0x62 u16 word_exit
0x64 u32 timestamp

Scratch layout

Type Name Description
u8 out_words Size of the out memory section, in 32-bit units
u24 Unused, padding
u32 *out_start Pointer to the out memory section
u8 flag_eq 1 if compare val_last == param
u8 flag_lt 1 if compare val_last < param
u16 Unused, padding
u32 val_last Holds the register last read or written. Can be set manually
u32 reg_last The value last read or written. Can be set manually
u32 val_ret Holds a return value written back to sp[80] after successful execution

Opcodes

XXX: Gaps are all sorts of exit routines. Not clear how the exit procedure works wrt status propagation.

3.1. PMU 521



nVidia Hardware Documentation, Release git

Opcode Params Description
0x00 1 SET last value
0x01 1 SET last register
0x02 1 OR last value
0x03 1 OR last register
0x04 1 AND last value
0x05 1 AND last register
0x06 1 ADD last value
0x07 1 ADD last register
0x08 1 SHIFT last value
0x09 1 SHIFT last register
0x0a 0 READ last register
0x0b 1 READ last register
0x0c 1 READ last register
0x0d 0 WRITE last register
0x0e 1 WRITE last register
0x0f 1 WRITE last register
0x10 0 EXIT
0x11 0 EXIT
0x12 0 EXIT
0x13 1 WAIT
0x14 2 WAIT STATUS
0x15 2 WAIT BITMASK last
0x16 1 EXIT
0x17 1 COMPARE last value
0x18 1 BRANCH EQ
0x19 1 BRANCH NEQ
0x1a 1 BRANCH LT
0x1b 1 BRANCH GT
0x1c 1 BRANCH
0x1d 0 IRQ_DISABLE
0x1e 0 IRQ_ENABLE
0x1f 1 AND last value, register
0x20 1 FB PAUSE/RESUME
0x21 2n SET register(s)
0x22 1 WRITE OUT last value
0x23 1 WRITE OUT indirect last value
0x24 2 WRITE OUT
0x25 2 WRITE OUT indirect
0x26 1 READ OUT last value
0x27 1 READ OUT indirect last value
0x28 1 READ OUT last register
0x29 1 READ OUT indirect last register
0x2a 2 ADD OUT
0x2b 1 COMPARE OUT
0x2c 1 OR last value, register
0x2d 2 XXX: Display-related
0x2e 1 WAIT
0x2f 0 EXIT
0x30 1 OR OUT last value

Continued on next page

522 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

Table 1 – continued from previous page
Opcode Params Description
0x31 1 OR OUT indirect last value
0x32 1 AND OUT last value
0x33 1 AND OUT indirect last value
0x34 1 WRITE OUT TIMESTAMP
0x35 1 WRITE OUT TIMESTAMP indirect
0x38 0 NOP
0x3b 1 ADD last value, OUT
0x3c 1 ADD last value, OUT indirect
other 0 EXIT

Memory

SET last

Set the last register/value in scratch memory.

Opcode: 0x00 0x01

Parameters: 1

Operation:

scratch[3 + (op & 1)] = param[0];

READ last register

Do a read of the last register and/or a register/offset given by parameter 1, and write back to the last value.

Opcode: 0x0a 0x0b 0x0c

Parameters: 0/1

Operation:

reg = 0;
if(op == 0xa || op == 0xc)

reg += scratch->reg_last;
if(op == 0xb || op == 0xc)

reg += param[0];

scratch->val_last = mmrd(reg);

WRITE last register

Do a write to the last register and/or a register/offset given by parameter 1 of the last value.

Opcode: 0x0d 0x0e 0x0f

Parameters: 0/1

Operation:

3.1. PMU 523



nVidia Hardware Documentation, Release git

reg = 0;
if(op == 0xd || op == 0xf)

reg += scratch->reg_last;
if(op == 0xe || op == 0xf)

reg += param[0];

mmwr_seq(reg, scratch->val_last);

SET register(s)

For each register/value pair, this operation performs a (locked) register write. through

Opcode: 0x21

Parameters: 2n for n > 0

Operation:

IRQ_DISABLE;
for (i = 0; i < params; i += 2) {

mmwr_unlocked(param[i],param[i+1]);
}
IRQ_ENABLE;
scratch->reg_last = param[i-2];
scratch->val_last = param[i-1];

WRITE OUT last value

Write a word to the OUT memory section, offset by the first parameter. For indirect read, the parameter points to an
8-bit value describing the offset of the address to write to.

Opcode: 0x22 0x23

Parameters: 1

Operation:

if (!out_start)
exit(pc);

idx = $param[0].u08;
if (idx >= out_words.u08)

exit(pc);

/* Indirect */
if (op & 0x1) {

idx = out_start[idx];
if (idx >= out_words.u08)

exit(pc);
}

out_start[idx] = scratch->val_last;

524 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

WRITE OUT

Write a word to the OUT memory section, offset by the first parameter. For indirect read, the parameter points to an
8-bit value describing the offset of the address to write to.

Opcode: 0x24 0x25

Parameters: 2

Operation:

if (!out_start)
exit(pc);

idx = $param[0].u08;
if (idx >= out_words.u08)

exit(pc);

/* Indirect */
if (op & 0x1) {

idx = out_start[idx];
if (idx >= out_words.u08)

exit(pc);
}

out_start[idx] = param[1];

READ OUT last value

Read a word from the OUT memory section, into the val_last location. Parameter is the offset inside the out page. For
indirect read, the parameter points to an 8-bit value describing the offset of the read out value.

Opcode: 0x26 0x27

Parameters: 1

Operation:

if (!out_start)
exit(pc);

idx = $param[0].u08;
if (idx >= out_words.u08)

exit(pc);

/* Indirect */
if (op & 0x1) {

idx = out_start[idx];
if (idx >= out_words.u08)

exit(pc);
}

scratch->val_last = out_start[idx];

READ OUT last register

Read a word from the OUT memory section, into the reg_last location. Parameter is the offset inside the out page. For
indirect read, the parameter points to an 8-bit value describing the offset of the read out value.

3.1. PMU 525



nVidia Hardware Documentation, Release git

Opcode: 0x28 0x29

Parameters: 1

Operation:

if (!out_start)
exit(pc);

idx = $param[0].u08;
if (idx >= out_words.u08)

exit(pc);

/* Indirect */
if (op & 0x1) {

idx = out_start[idx];
if (idx >= out_words.u08)

exit(pc);
}

scratch->reg_last = out_start[idx];

WRITE OUT TIMESTAMP

Write the current timestamp to the OUT memory section, offset by the first parameter. For indirect read, the parameter
points to an 8-bit value describing the offset of the address to write to.

Opcode: 0x34 0x35

Parameters: 2

Operation:

if (!out_start)
exit(pc);

idx = $param[0].u08;
if (idx >= out_words.u08)

exit(pc);

/* Indirect */
if (op & 0x1) {

idx = out_start[idx];
if (idx >= out_words.u08)

exit(pc);
}

call_timer_read(&value)
out_start[idx] = value;

Arithmetic

OR last

OR the last register/value in scratch memory.

Opcode: 0x02 0x03

Parameters: 1

526 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

Operation:

scratch[3 + (op & 1)] |= param[0];

AND last

AND the last register/value in scratch memory.

Opcode: 0x04 0x05

Parameters: 1

Operation:

scratch[3 + (op & 1)] &= param[0];

ADD last

ADD the last register/value in scratch memory.

Opcode: 0x06 0x07

Parameters: 1

Operation:

scratch[3 + (op & 1)] += param[0];

SHIFT-left last

Shift the last register/value in scratch memory to the left, negative parameter shifts right.

Opcode: 0x08 0x09

Parameters: 1

Operation:

if(param[0].s08 >= 0) {
scratch[3 + (op & 1)] <<= sex($param[0].s08);
break;

} else {
scratch[3 + (op & 1)] >>= -sex($param[0].s08);
break;

}

AND last value, register

AND the last value with value read from register.

Opcode: 0x1f

Parameters: 1

Operation:

3.1. PMU 527



nVidia Hardware Documentation, Release git

scratch->val_last &= mmrd(param[0]);

ADD OUT

ADD an immediate value to a value in the OUT memory region.

Opcode: 0x2a

Parameters: 2

Operation:

if (!out_start)
exit(pc);

idx = param[0];
if (idx >= out_len)

exit(pc);

out_start[idx] += param[1];

OR last value, register

OR the last value with value read from register

Opcode: 0x2c

Parameters: 1

Operation:

scratch->val_last |= mmrd(param[0]);

OR OUT last value

OR the contents of last_val with a value in the OUT memory region.

Opcode: 0x30 0x31

Parameters: 1

Operation:

if (!out_start)
exit(pc);

idx = param[0];
if (idx >= out_len)

exit(pc);

/* Indirect */
if (op & 0x1) {

idx = out_start[idx];
if (idx >= out_words.u08)

exit(pc);
}

out_start[idx] |= scratch->val_last;

528 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

ADD last value, OUT

Add a value in OUT to val_last.

Opcode: 0x3b 0x3c

Parameters: 1

Operation:

if (!out_start)
exit(pc);

idx = param[0];
if(idx >= out_len)

exit(pc);

/* Indirect
if(!op & 0x1) {

idx = out_start[idx];
if (idx >= out_words.u08)

exit(pc);
}
val_last += out_start[idx];

AND OUT last value

AND the contents of last_val with a value in the OUT memory region.

Opcode: 0x32 0x33

Parameters: 1

Operation:

if (!out_start)
exit(pc);

idx = param[0];
if (idx >= out_len)

exit(pc);

/* Indirect */
if (op & 0x1) {

idx = out_start[idx];
if (idx >= out_words.u08)

exit(pc);
}

out_start[idx] &= scratch->val_last;

Control flow

EXIT

Exit

Opcode: 0x10..0x12 0x16 0x2f

3.1. PMU 529



nVidia Hardware Documentation, Release git

Parameters: 0/1

Operation:

if(op == 0x16)
exit(param[0].s08);

else
exit(-1);

COMPARE last value

Compare last value with a parameter. If smaller, set flag_lt. If equal, set flag_eq.

Opcode: 0x17

Parameters: 1

Operation:

flag_eq = 0;
flag_lt = 0;

if(scratch->val_last < param[0])
flag_lt = 1;

else if(scratch->val_last == param[0])
flag_eq = 1;

BRANCH EQ

When compare resulted in eq flag set, branch to an absolute location in the program.

Opcode: 0x18

Parameters: 1

Operation:

if(flag_eq)
BRANCH param[0];

BRANCH NEQ

When compare resulted in eq flag unset, branch to an absolute location in the program.

Opcode: 0x19

Parameters: 1

Operation:

if(!flag_eq)
BRANCH param[0];

530 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

BRANCH LT

When compare resulted in lt flag unset, branch to an absolute location in the program.

Opcode: 0x1a

Parameters: 1

Operation:

if(flag_lt)
BRANCH param[0];

BRANCH GT

When compare resulted in lt and eq flag unset, branch to an absolute location in the program.

Opcode: 0x1b

Parameters: 1

Operation:

if(!flag_lt && !flag_eq)
BRANCH param[0];

BRANCH

Branch to an absolute location in the program.

Opcode: 0x1c

Parameters: 1

Operation:

target = param[0].s16;
if(target >= in_words)

exit(target);

word_exit = $r9.s16
target &= 0xffff;
target <<= 2;
pc = in_start + target;

if(pc >= in_end)
exit(in_end);

COMPARE OUT

Compare word in OUT with a parameter. If smaller, set flag_lt. If equal, set flag_eq.

Opcode: 0x2b

Parameters: 1

Operation:

3.1. PMU 531



nVidia Hardware Documentation, Release git

if(!out_start)
exit(pc);

idx = param[0];
if(idx >= out_words.u08)

exit(pc);

flag_eq = 0;
flag_lt = 0;

if(out_start[idx] < param[1])
flag_lt = 1;

else if(out_start[idx] == param[1])
flag_eq = 1;

Miscellaneous

WAIT

Waits for desired number of nanoseconds, synchronous for 0x2e.

Opcode: 0x13 0x2e

Parameters: 1

Operation:

if(op == 0x2e)
mmrd(0);

call_timer_wait_nf(param[0]);

WAIT STATUS

Shifts val_ret left by 1 position, and waits until a status bit is set/unset. Sets flag_eq and the LSB of val_ret on success.
The second parameter contains the timeout.The first parameter encodes the desired status.

Old blob

param[0] Test
0 UNKNOWN(0x01)
1 !UNKNOWN(0x01)
2 FB_PAUSED
3 !FB_PAUSED
4 HEAD0_VBLANK
5 !HEAD0_VBLANK
6 HEAD1_VBLANK
7 !HEAD1_VBLANK
8 HEAD0_HBLANK
9 !HEAD0_HBLANK
10 HEAD1_HBLANK
11 !HEAD1_HBLANK

New blob

532 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

In newer blobs (like 337.25), bit 16 encodes negation. Bit 8:10 the status type to wait for, and where applicable bit 0
chooses the HEAD.

param[0] Test
0x0 HEAD0_VBLANK
0x1 HEAD1_VBLANK
0x100 HEAD0_HBLANK
0x101 HEAD1_HBLANK
0x300 FB_PAUSED
0x400 PGRAPH_IDLE
0x10000 !HEAD0_VBLANK
0x10001 !HEAD1_VBLANK
0x10100 !HEAD0_HBLANK
0x10101 !HEAD1_HBLANK
0x10300 !FB_PAUSED
0x10400 !PGRAPH_IDLE

Todo: Why isn’t flag_eq unset on failure? Find out switching point from old to new format?

Opcode: 0x14

Parameters: 2

Operation OLD BLOB:

val_ret *= 2;
test_params[1] = param[0] & 1;
test_params[2] = I[0x7c4];

switch ((param[0] & ~1) - 2) {
default:

test_params[0] = 0x01;
break;

case 0:
test_params[0] = 0x04;
break;

case 2:
test_params[0] = 0x08;
break;

case 4:
test_params[0] = 0x20;
break;

case 6:
test_params[0] = 0x10;
break;

case 8:
test_params[0] = 0x40;
break;

}

if (call_timer_wait(&input_bittest, test_params, param[1])) {
flag_eq = 1;
val_ret |= 1;

}

Operation NEW BLOB:

3.1. PMU 533



nVidia Hardware Documentation, Release git

b32 func(b32 *) *f;
unk3ec[2] <<= 1;

test_params[2] = 0x1f100; // 7c4
test_params[1] = (param[0] >> 16) & 0x1;

switch(param[0] & 0xffff) {
case 0x0:

test_params[0] = 0x8;
f = &input_test
break;

case 0x1:
test_params[0] = 0x20;
f = &input_test
break;

case 0x100:
test_params[0] = 0x10;
f = &input_test
break;

case 0x101:
test_params[0] = 0x40;
f = &input_test
break;

case 0x300:
test_params[0] = 0x04;
f = &input_test
break;

case 0x400:
test_params[0] = 0x400;
f = &pgraph_test;
break;

default:
f = NULL;
break;

}

if(f && timer_wait(f, param, timeout) != 0) {
unk3e8 = 1;
unk3ec[2] |= 1;

}

WAIT BITMASK last

Shifts val_ret left by 1 position, and waits until the AND operation of the register pointed in reg_last and the first
parameter equals val_last. Sets flag_eq and the LSB of val_ret on success. The first parameter encodes the bitmask to
test. The second parameter contains the timeout.

Todo: Why isn’t flag_eq unset on failure?

Opcode: 0x15

Parameters: 2

Operation:

b32 seq_cb_wait(b32 parm) {
return (mmrd(last_reg) & parm) == last_val;

(continues on next page)

534 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

}

val_ret *= 2;
if (call_timer_wait(seq_cb_wait, param[0], param[1]))

break;

val_ret |= 1;
flag_eq = 1;

IRQ_DISABLE

Disable IRQs, increment reference counter irqlock_lvl

Opcode: 0x1f

Parameters: 1

Operation:

interrupt_enable_0 = interrupt_enable_1 = false;
irqlock_lvl++;

IRQ_ENABLE

Decrement reference counter irqlock_lvl, enable IRQs if 0.

Opcode: 0x1f

Parameters: 1

Operation:

if(!irqlock_lvl--)
interrupt_enable_0 = interrupt_enable_1 = true;

FB PAUSE/RESUME

If parameter 1, disable IRQs on PDAEMON and pause framebuffer (memory), otherwise resume FB and enable IRQs.

Opcode: 0x20

Parameters: 1

Operation:

if (param[0]) {
IRQ_DISABLE;

/* XXX What does this bit do? */
mmwrs(0x1610, (mmrd(0x1610) & ~3) | 2);
mmrd(0x1610);

mmwrs(0x1314, (mmrd(0x1314) & ~0x10001) | 0x10001);

(continues on next page)

3.1. PMU 535



nVidia Hardware Documentation, Release git

(continued from previous page)

/* RNN:PDAEMON.INPUT0_STATUS.FB_PAUSED */
while (!(RD(0x7c4) & 4));

mmwr_seq = &mmwr_unlocked;
} else {

mmwrs(0x1314, mmrd(0x1314) & ~0x10001);

while (RD(0x7c4) & 4);

mmwrs(0x1610, mmrd(0x1610) & ~0x33);
IRQ_ENABLE;

mmwr_seq = &mmwrs;
}

3.1.2 PMU microcode commands

Contents

• PMU microcode commands

– Introduction

* Sample Implementation

– Commands

– Command Status

– Error Codes

Introduction

Todo: write me

Sample Implementation

Example of setting up, running and handling potential error or timeout states.

Pseudocode:

// Define interface to Falcon
#define PDAEMON_SCRATCH0 0x10a040
#define PDAEMON_SCRATCH1 0x10a044

// Preparatory step
#define PUNITS_UNK008 0x022408

temp = nvkm_rd32(PUNITS_UNK008);
nvkm_wr32((PUNITS_UNK008, temp | 0x2);

(continues on next page)

536 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

(continued from previous page)

// Prepare and send PMU microcode command

command_id = NV_UCODE_CMD_COMMAND_EID; // 0x02
command_status = NV_UCODE_CMD_STS_NEW; // 0x01

command_packet = command_id & 0xFFFFFFF | command_status;

nvkm_wr32(PDAEMON_SCRATCH0, command_packet);

// Loop whilst awaiting response
for (i = 0; i < 50000; ++i) {
pmu_command_response = nvkm_rd32(PDAEMON_SCRATCH0);

pmu_command_response_status = pmu_command_response & 0xF0000000;

if (pmu_command_response_status == 0x30000000) // NV_UCODE_CMD_STS_COMPLETE
break;

if ( (pmu_command_response_status != 0x20000000) && // NV_UCODE_CMD_STS_PENDING
(pmu_command_response_status != 0x10000000) ) // NV_UCODE_CMD_STS_NEW

{
RESPONSE_UNK1 = 1;
break;

}

if (i == 50000-1)
RESPONSE_UNK2 = 1;

}

if (RESPONSE_UNK1 || RESPONSE_UNK2) {
// Handle timeouts

}
else {

pmu_error_code = nvkm_rd32(PDAEMON_SCRATCH1);
if (pmu_error_code & 0x7FFFFFFF) {
// Handle error code

}
if ( (pmu_error_code & 0x80000000) == 0x80000000) {
// getlog_cmd_do()

}

// Handle PMU command responses
}

Commands

XXX: Gaps expected. Based upon PMU microcode shipped with 390.67

3.1. PMU 537



nVidia Hardware Documentation, Release git

Opcode Name Description
0x00 NV_UCODE_CMD_COMMAND_NONE
0x01
0x02 NV_UCODE_CMD_COMMAND_EID EEPROM ID
0x03 NV_UCODE_CMD_COMMAND_ESI Structure Init
0x04 NV_UCODE_CMD_COMMAND_ERD Read EEPROM
0x05 NV_UCODE_CMD_COMMAND_EWR Write EEPROM
0x06 NV_UCODE_CMD_COMMAND_ESE Erase Sector
0x07 NV_UCODE_CMD_COMMAND_ECE Erase Chip
0x08 NV_UCODE_CMD_COMMAND_RRD Read priv register using PMU microcode
0x09 NV_UCODE_CMD_COMMAND_RWR Write priv register using PMU microcode
0x0a NV_UCODE_CMD_COMMAND_PREP
0x0b NV_UCODE_CMD_COMMAND_CLOSE
0x0c NV_UCODE_CMD_COMMAND_EPROT Set Software Protection
0x0d NV_UCODE_CMD_COMMAND_ERDSR Read Status Register
0x0e NV_UCODE_CMD_COMMAND_VV Verify VBIOS
0x0f NV_UCODE_CMD_COMMAND_ECID
0x10 NV_UCODE_CMD_COMMAND_LICVERIFY
0x11 NV_UCODE_CMD_COMMAND_BSI_INFO
0x12 NV_UCODE_CMD_COMMAND_HULKPROC
0x13 NV_UCODE_CMD_COMMAND_ARB
0x14 NV_UCODE_CMD_COMMAND_UNK14 Related to license file generation
0x15
0x16
0x17 NV_UCODE_CMD_COMMAND_OTP_READ
0x18 NV_UCODE_CMD_COMMAND_OTP_READLOCK

Command Status

Opcode Name Description
0x00 NV_UCODE_CMD_STS_NONE
0x01 NV_UCODE_CMD_STS_NEW
0x02 NV_UCODE_CMD_STS_PENDING
0x03 NV_UCODE_CMD_STS_COMPLETE

Error Codes

XXX: Gaps expected. Based upon PMU microcode shipped with 390.67

Opcode Name Description
0x00 NV_UCODE_ERR_CODE_CMD_NOERROR No error
0x01 NV_UCODE_ERR_CODE_CMD_TIMEOUT Timeout occurred waiting for PMU
0x02 NV_UCODE_ERR_CODE_CMD_DEPENDENCY May need other command to be issued first before carrying out this command
0x03 NV_UCODE_ERR_CODE_CMD_EID_RD_ERROR EEPROM ID process failed
0x04 NV_UCODE_ERR_CODE_CMD_ERD_BUF_WR_ERROR Cannot write more bytes than size of image buffer
0x05 NV_UCODE_ERR_CODE_CMD_EWR_BUF_RD_ERROR Cannot read more bytes than size of image buffer
0x06 NV_UCODE_ERR_CODE_CMD_UNSUPPORTED_GPU
0x07 NV_UCODE_ERR_CODE_CMD_UNSUPPORTED_COMMAND Invalid command

Continued on next page

538 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

Table 2 – continued from previous page
Opcode Name Description
0x08 NV_UCODE_ERR_CODE_CMD_UNSUPPORTED_PARAMETER Supplied parameter is invalid or out of range
0x09 NV_UCODE_ERR_CODE_CMD_SECURE_REV_LOCK_VIOLATION
0x0a NV_UCODE_ERR_CODE_LOAD_VBIOS_VERIFY_UCODE_FAIL
0x0b NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_DEBUG_FUSE_BOARD
0x0c NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_DEVID_FAIL
0x0d NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_CERT_NOT_FOUND
0x0e NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_CERT_PARSE_FAIL
0x0f NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_CERT_VERIFY_FAIL
0x10 NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_HAT_FAIL
0x11 NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_BIOS_SIG_FAIL
0x12 NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_HULK_INIT_FAIL
0x13 NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_HULK_KA_NOT_FOUND
0x14 NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_HULK_TYPE_INVALID
0x15 NV_UCODE_ERR_CODE_CMD_VBIOS_VERIFY_HULK_SIG_INVALID
0x16 NV_UCODE_ERR_CODE_CERT_UNKNOWN_ERROR
0x17 NV_UCODE_ERR_CODE_CERT_EXT_NOT_FOUND
0x18 NV_UCODE_ERR_CODE_CERT_SIGNATURE_NOT_FOUND
0x19 NV_UCODE_ERR_CODE_CERT_RSA1K_SIGNATURE_INVALID
0x1a NV_UCODE_ERR_CODE_CERT_EXT_NO_SUB_STRUCT_FOUND
0x1b NV_UCODE_ERR_CODE_CERT_UNSUPPORTED_VERSION
0x1c NV_UCODE_ERR_CODE_CERT_NO_EXTENSION_EXIST
0x1d NV_UCODE_ERR_CODE_CERT_T7QV1_PAYLOAD_SIZE_ERROR
0x1e NV_UCODE_ERR_CODE_CERT_T7_SW_FEATURE_PAYLOAD_SIZE_ERROR
0x1f NV_UCODE_ERR_CODE_CERT_T7_UNSUPPORTED_HW_STRUCT_VERSION
0x20 NV_UCODE_ERR_CODE_CERT_T7_EXTENSIONS_NUM_EXCEED_LIMIT
0x21 NV_UCODE_ERR_CODE_CERT_UGPU_PERSONALITY_MIS_MATCH
0x22 NV_UCODE_ERR_CODE_CERT_UNKNOWN_HULK_FEATURE
0x23 NV_UCODE_ERR_CODE_CERT_HULK_ECID_MISMATCH
0x24 NV_UCODE_ERR_CODE_CERT_HULK_ECID_ENCODING_UNKNOWN
0x25 NV_UCODE_ERR_CODE_ECID_ENCODING_ALGO_UNKNOWN
0x26 NV_UCODE_ERR_CODE_CERT_T7_REG_OVERRIDE_TYPE_UNKNOWN
0x27 NV_UCODE_ERR_CODE_LICVERIFY_UNSUPPORTED_LIC_TYPE
0x28 NV_UCODE_ERR_CODE_UNSUPPORTED_CONFIG
0x29 NV_UCODE_ERR_CODE_BSI_INFO_BRSS_INVALID
0x2a NV_UCODE_ERR_CODE_IMEM_TO_DMEM_COPY_INVALID_PARA
0x2b NV_UCODE_ERR_CODE_DERIVED_KEY_TYPE_INVALID
0x2c NV_UCODE_ERR_CODE_UCODE_NOT_IN_HS_MODE
0x2d NV_UCODE_ERR_CODE_VBIOS_DEVINIT_OFFSETS_INVALID
0x2e NV_UCODE_ERR_CODE_VBIOS_DEVINIT_SIG_INVALID
0x2f NV_UCODE_ERR_CODE_CERT_HULK_DEVID_MISMATCH
0x30 NV_UCODE_ERR_CODE_CERT_HULK_NO_ID_MATCH_FOUND
0x31 NV_UCODE_ERR_CODE_CERT_HULK_DATA_BUFFER_TOO_SMALL
0x32 NV_UCODE_ERR_CODE_CERT_HULK_INFOROM_NOT_FOUND
0x33 NV_UCODE_ERR_CODE_CERT_HULK_INFOROM_UL_GLOB_NOT_FOUND
0x34 NV_UCODE_ERR_CODE_CERT_HULK_INFOROM_HLK_OBJ_NOT_VALID
0x35 NV_UCODE_ERR_CODE_CERT_UGPU_LICENSE_PROCESSING_FAILED
0x36 NV_UCODE_ERR_CODE_UGPU_PROCESSING_FAILED_INVALID_ULF_OBJECT
0x37 NV_UCODE_ERR_CODE_UGPU_PROCESSING_FAILED_INVALID_UPR_OBJECT
0x38 NV_UCODE_ERR_CODE_CERT20_INTBLK_VDPA_HEADER_INVALID

Continued on next page

3.1. PMU 539



nVidia Hardware Documentation, Release git

Table 2 – continued from previous page
Opcode Name Description
0x39 NV_UCODE_ERR_CODE_CERT20_INTBLK_INT_SIG_HEADER_INVALID
0x3a NV_UCODE_ERR_CODE_CERT20_INTBLK_INT_SIG_CRYPTO_UNDEFINED
0x3b NV_UCODE_ERR_CODE_CERT20_VDPA_UNEXPECTED_MAJOR_TYPE
0x3c NV_UCODE_ERR_CODE_CERT20_VDPA_UNEXPECTED_MINOR_TYPE
0x3d NV_UCODE_ERR_CODE_CERT20_VDPA_ENTRY_SIZE_LARGER_THAN_DATA_BUFFER
0x3e NV_UCODE_ERR_CODE_CERT20_VDPA_UNEXPECTED_CODE_TYPE
0x3f NV_UCODE_ERR_CODE_CERT20_VDPA_NOT_FINALIZED
0x40 NV_UCODE_ERR_CODE_CERT20_VDPA_SIG_INVALID
0x41 NV_UCODE_ERR_CODE_CERT20_VDPA_ENTRY_NOT_FOUND
0x42 NV_UCODE_ERR_CODE_CERT20_VDPA_CERT_INTBLK_MISMATCH
0x43 NV_UCODE_ERR_CODE_CERT20_VDPA_ENTRY_FOUND_DATA_MISMATCH
0x44 NV_UCODE_ERR_CODE_CERT20_VDPA_DATA_INVALID
0x45 NV_UCODE_ERR_CODE_CERT20_VDPA_FLASH_SIZE_LARGER_THAN_EXPECTED
0x46 NV_UCODE_ERR_CODE_CERT20_VDPA_DEVID_MISMATCH
0x47 NV_UCODE_ERR_CODE_GPU_INITIALIZATION_TABLES_SIG_CHECK_FAILED Also known as NV_UCODE_ERR_CODE_VBIOS_DEVINIT_TABLES_SIG_INVALID
0x48 NV_UCODE_ERR_CODE_GPU_INITIALIZATION_SCRIPTS_SIG_CHECK_FAILED Also known as NV_UCODE_ERR_CODE_VBIOS_DEVINIT_SCRIPTS_SIG_INVALID
0x49
0x4a NV_UCODE_ERR_CODE_VERIFY_ENG_HULK_LICENSE_NOT_PRESENT
0x4b NV_UCODE_ERR_CODE_VERIFY_ENG_HULK_LICENSE_KA_NOT_FOUND
0x4c NV_UCODE_ERR_CODE_VERIFY_ENG_HULK_LICENSE_TYPE_INVALID
0x4d NV_UCODE_ERR_CODE_VERIFY_ENG_HULK_3AES_SIG_MISMATCH_WITH_GPU_FUSE
0x4e NV_UCODE_ERR_CODE_VERIFY_ENG_HULK_NO_3AES_SIG
0x4f NV_UCODE_ERR_CODE_VERIFY_ENG_HULK_LICENSE_HULK_AES_SIG_INVALID
0x50 NV_UCODE_ERR_CODE_VERIFY_ENG_HULK_LICENSE_NVF_ENG_AES_SIG_INVALID
0x51 NV_UCODE_ERR_CODE_CHECK_ERASE_LICENSE_ERASE_DISALLOWED
0x52 NV_UCODE_ERR_CODE_CMD_PREP_LICENSE_SIZE_OVERFLOW
0x53 NV_UCODE_ERR_CODE_CMD_EWR_NO_ERASE_NOT_PERMITTED
0x54 NV_UCODE_ERR_CODE_CMD_EWR_NO_VERIFY_NOT_PERMITTED
0x55 NV_UCODE_ERR_CODE_CMD_ESE_NOT_PERMITTED
0x56 NV_UCODE_ERR_CODE_CMD_ECE_NOT_PERMITTED
0x57 NV_UCODE_ERR_CODE_CERT20_VDPA_UNEXPECTED_INSTANCE
0x58 NV_UCODE_ERR_CODE_DEVID_MATCH_LIST_MORE_DEVIDS_THAN_BUFFERS
0x59 NV_UCODE_ERR_CODE_DEVID_MATCH_LIST_SIG_INVALID
0x5a NV_UCODE_ERR_CODE_DEVID_MATCH_LIST_DEVID_MATCH_FAILED
0x5b NV_UCODE_ERR_CODE_DEVID_MATCH_LIST_DEVID_NOT_FOR_THE_GPU
0x5c NV_UCODE_ERR_CODE_DEVID_MATCH_LIST_DEVID_OUT_OF_HAT_COVERAGE
0x5d NV_UCODE_ERR_CODE_PUSH_POLL_DMEM_COPY_BUFFER_OVERFLOW
0x5e NV_UCODE_ERR_CODE_PUSH_POLL_DMEM_COPY_DATA_OUT_OF_RANGE
0x5f NV_UCODE_ERR_CODE_CERT20_INTBLK_VDPA_BLOCK_OVERSIZE
0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69

Continued on next page

540 Chapter 3. nVidia Resource Manager documentation



nVidia Hardware Documentation, Release git

Table 2 – continued from previous page
Opcode Name Description
0x6a
0x6b
0x6c NV_UCODE_ERR_CODE_CMD_EWR_OK_TO_FLASH_CHECK_FAILED
0x6e NV_UCODE_ERR_CODE_HW_SPI_TIMEOUT
0x6f
0x70
0x71
0x72
0x73 NV_UCODE_ERR_CODE_CERT21_FMT_HAT_ENTRY_NUMBER_INVALID
0x74 NV_UCODE_ERR_CODE_CERT21_FMT_HAT_ENTRY_FOMMATTER_TOO_LONG
0x75 NV_UCODE_ERR_CODE_CERT21_FMT_FORMATTER_DATA_BLOCK_OVER_SIZE
0x76 NV_UCODE_ERR_CODE_CERT21_FMT_UNEXPECTED_FORMATTER_TYPE
0x77 NV_UCODE_ERR_CODE_CERT21_FMT_EXCEED_FORMATTER_LENGTH
0x78 NV_UCODE_ERR_CODE_EEPROM_OTP_DEVICE_UNSUPPORTED
0x79 NV_UCODE_ERR_CODE_EEPROM_OTP_ERASE_NOT_PRESENT
0x7a NV_UCODE_ERR_CODE_EEPROM_OTP_FACTORY_LOCK_NOT_PRESENT
0x7b NV_UCODE_ERR_CODE_EEPROM_OTP_FACTORY_REGION_NOT_PRESENT
0x7c NV_UCODE_ERR_CODE_EEPROM_OTP_USER_ADDRESS_OUT_OF_RANGE
0x7d NV_UCODE_ERR_CODE_EEPROM_OTP_FACTORY_ADDRESS_OUT_OF_RANGE
0x7f
0x80
0x81
0x82 NV_UCODE_ERR_CODE_PLAY_READY_PDUB_SIG_INVALID
0x83 NV_UCODE_ERR_CODE_PLAY_READY_PDUB_ENTRY_NOT_FOUND
0x84 NV_UCODE_ERR_CODE_PLAY_READY_EXIT_FOR_DEVINIT_NOT_RUN
0x85 NV_UCODE_ERR_CODE_PLAY_READY_PDUB_PRIV_CONN_STATE_MISMATCH
0x86 NV_UCODE_ERR_CODE_PLAY_READY_OTP_ENTRY_NOT_AVAILABLE
0x87 NV_UCODE_ERR_CODE_PLAY_READY_SEC2_MUTEX_ACQUIRE_FAILED
0x88 NV_UCODE_ERR_CODE_PLAY_READY_SEC2_MUTEX_RELEASE_FAILED
0x89 NV_UCODE_ERR_CODE_VERIFY_ENG_LICENSE_INCORRECT_TYPE
0x8a NV_UCODE_ERR_CODE_INVALID_FALCON
0x8b NV_UCODE_ERR_CODE_NUM_REPAIR_ENTRIES_EXCEEDS_MAX_ALLOWED
0x8c NV_UCODE_ERR_CODE_INVALID_REPAIR_OBJECT
0x8d NV_UCODE_ERR_CODE_BCRT2x_CERT_BUFFER_OVERFLOW
0x8e NV_UCODE_ERR_CODE_BCRT2x_HAT_ENTRIES_BUFFER_OVERFLOW
0x8f NV_UCODE_ERR_CODE_BCRT2x_HAT_HEADER_OVER_SIZE
0x90 NV_UCODE_ERR_CODE_BCRT2x_RSA_SIG_HEADER_OVER_SIZE
0x91
0x92 NV_UCODE_ERR_CODE_BCRT2X_CERT_BLOCK_VERSION_UNEXPECTED
0x93 NV_UCODE_ERR_CODE_BCRT2X_CERT_CONTROL_HEADER_OVERFLOW
0x94 NV_UCODE_ERR_CODE_BCRT2X_MAX_SECURITYZONE_REACHED
0x95 NV_UCODE_ERR_CODE_BCRT2X_SECURITYZONE_SIGNATURES_SIZE_CHECK_FAILED
0x96 NV_UCODE_ERR_CODE_BCRT2X_SECURITYZONE_SIG_STRUCT_SIZE_CHECK_FAILED
0x97 NV_UCODE_ERR_CODE_BCRT2X_SECURITYZONE_SIG_ZONE_NUM_INVALID
0x98 NV_UCODE_ERR_CODE_BCRT2X_SECURITYZONE_SIG_ALGO_INVALID
0x99 NV_UCODE_ERR_CODE_BCRT2X_SECURITYZONE_BUILT_IN_SEC_ZONE_MISSING
0x9a NV_UCODE_ERR_CODE_BCRT2X_SECURITYZONE_SIGNATURE_INVALID
0x9b NV_UCODE_ERR_CODE_BCRT2X_SECURITYZONE_SIG_NOT_FOUND
0x9c NV_UCODE_ERR_CODE_BCRT2X_VDPA_ENTRY_VERIFY_HASH_MISMATCH

Continued on next page

3.1. PMU 541



nVidia Hardware Documentation, Release git

Table 2 – continued from previous page
Opcode Name Description
0x9d NV_UCODE_ERR_CODE_BCRT2X_VDPA_INTBLK_ENTRIES_NUM_EXCEED_MAX

542 Chapter 3. nVidia Resource Manager documentation



CHAPTER 4

envydis and envyas documentation

Contents

• envydis and envyas documentation

– Using envydis and envyas

* Input format

* Input subranging

* Variant selection

* Output

* Output format

4.1 Using envydis and envyas

envydis reads from standard input and prints the disassembly to standard output. By default, input is parsed as
sequence space- or comma-separated hexadecimal numbers representing the bytes to disassemble.

envyas reads assembly from standard input and outputs to the filename specified by -o <filename>.

The options are:

4.1.1 Input format

-w
(envydis only) Instead of sequence of hexadecimal bytes, treat input as sequence of hexadecimal 32-bit words

-W
(envydis only) Instead of sequence of hexadecimal bytes, treat input as sequence of hexadecimal 64-bit words

543



nVidia Hardware Documentation, Release git

-i
(envydis only) Treat input as pure binary

4.1.2 Input subranging

-b <base>
(envydis only) Assume the start of input to be at address <base> in code segment

-d <discard>
(envydis only) Discard that many bytes of input before starting to read code

-l <limit>
(envydis only) Don’t disassemble more than <limit> bytes

4.1.3 Variant selection

-m <machine>
Select the ISA to disassemble/assemble. One of:

• [****] g80: tesla CUDA/shader ISA

• [*** ] gf100: fermi CUDA/shader ISA

• [** ] gk110: kepler GK110 CUDA/shader ISA

• [*** ] gm107: maxwell CUDA/shader ISA

• [** ] ctx: nv40 and g80 PGRAPH context-switching microcode

• [*** ] falcon: falcon microcode, used to power various engines on G98+ cards

• [****] hwsq: PBUS hardware sequencer microcode

• [****] xtensa: xtensa variant as used by video processor 2 [g84-gen]

• [*** ] vuc: video processor 2/3 master/mocomp microcode

• [****] macro: gf100 PGRAPH macro method ISA

• [** ] vp1: video processor 1 [nv41-gen] code

• [****] vcomp: PVCOMP video compositor microcode

Where the quality level is:

• [ ]: Bare beginnings

• [* ]: Knows a few instructions

• [** ]: Knows enough instructions to write some simple code

• [*** ]: Knows most instructions, enough to write advanced code

• [****]: Knows all instructions, or very close to.

-V <variant>
Select variant of the ISA.

For g80:

• g80: The original G80 [aka compute capability 1.0]

• g84: G84, G86, G92, G94, G96, G98 [aka compute capability 1.1]

• g200: G200 [aka compute capability 1.3]

544 Chapter 4. envydis and envyas documentation



nVidia Hardware Documentation, Release git

• mcp77: MCP77, MCP79 [aka compute capability 1.2]

• gt215: GT215, GT216, GT218, MCP89 [aka compute capability 1.2 + d3d10.1]

For gf100:

• gf100: GF100:GK104 cards

• gk104: GK104+ cards

For ctx:

• nv40: NV40:G80 cards

• g80: G80:G200 cards

• g200: G200:GF100 cards

For hwsq:

• nv17: NV17:NV41 cards

• nv41: NV41:G80 cards

• g80: G80:GF100 cards

For falcon:

• fuc0: falcon version 0 [G98, MCP77, MCP79]

• fuc3: falcon version 3 [GT215 and up]

• fuc4: falcon version 4 [GF119 and up, selected engines only]

• fuc5: falcon version 5 [GK208 and up, selected engines only]

• fuc6: falcon version 6 [GP102 and up, selected engines only]

For vuc:

• vp2: VP2 video processor [G84:G98, G200]

• vp3: VP3 video processor [G98, MCP77, MCP79]

• vp4: VP4 video processor [GT215:GF119]

-F <feature>
Enable optional ISA feature. Most of these are auto-selected by -V , but can also be specified manually. Can be
used multiple times to enable several features.

For g80:

• sm11: SM1.1 new opcodes [selected by g84, g200, mcp77, gt215]

• sm12: SM1.2 new opcodes [selected by g200, mcp77, gt215]

• fp64: 64-bit floating point [selected by g200]

• d3d10_1: Direct3D 10.1 new features [selected by gt215]

For gf100:

• gf100op: GF100:GK104 exclusive opcodes [selected by gf100]

• gk104op: GK104+ exclusive opcodes [selected by gk104]

For ctx:

• nv40op: NV40:G80 exclusive opcodes [selected by nv40]

• g80op: G80:GF100 exclusive opcodes [selected by g80, g200]

4.1. Using envydis and envyas 545



nVidia Hardware Documentation, Release git

• callret: call/ret opcodes [selected by g200]

For hwsq:

• nv17f: NV17:G80 flags [selected by nv17, nv41]

• nv41f: NV41:G80 flags [selected by nv41]

• nv41op: NV41 new opcodes [selected by nv41, g80]

For falcon:

• fuc0op: falcon version 0 exclusive opcodes [selected by fuc0]

• fuc3op: falcon version 3+ exclusive opcodes [selected by fuc3, fuc4, fuc5, fuc6]

• fuc4op: falcon version 4+ exclusive opcodes [selected by fuc4, fuc5, fuc6]

• fuc5op: falcon version 5+ exclusive opcodes [selected by fuc5, fuc6]

• fuc6op: falcon version 6+ exclusive opcodes [selected by fuc6]

• pc24: 24-bit PC opcodes [selected by fuc4]

• crypt: Cryptographic coprocessor opcodes [has to be manually selected]

For vuc:

• vp2op: VP2 exclusive opcodes [selected by vp2]

• vp3op: VP3+ exclusive opcodes [selected by vp3, vp4]

• vp4op: VP4 exclusive opcodes [selected by vp4]

-O <mode>
Select processor mode.

For g80:

• vp: Vertex program

• gp: Geometry program

• fp: Fragment program

• cp: Compute program

-S <stride>
Override stride length for ISA and variant (relevant in binary mode only).

-M <mapfile>
(envydis only) Load map file.

-u <value>
(envydis only) Set map file label value.

4.1.4 Output

-o <filename>
(envyas only) Output to filename

546 Chapter 4. envydis and envyas documentation



nVidia Hardware Documentation, Release git

4.1.5 Output format

-n
(envydis only) Disable output coloring

-q
(envydis only) Disable printing address + opcodes.

-a
(envyas only) Decorate output with human-readable section names and labels

-w
(envyas only) Output as a sequence of hexadecimal 32-bit words instead of bytes

-W
(envyas only) Output as a sequence of hexadecimal 64-bit words instead of bytes

-i
(envyas only) Output as pure binary

4.1. Using envydis and envyas 547



nVidia Hardware Documentation, Release git

548 Chapter 4. envydis and envyas documentation



CHAPTER 5

TODO list

Todo: map out the BAR fully

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/bars.rst,
line 88.)

Todo: RE it. or not.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/bars.rst,
line 133.)

Todo: It’s present on some NV4x

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/bars.rst,
line 144.)

Todo: figure out size

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/bars.rst,
line 184.)

Todo: figure out NV3

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/bars.rst,
line 185.)

549



nVidia Hardware Documentation, Release git

Todo: verify G80

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/bars.rst,
line 186.)

Todo: MSI

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/bars.rst,
line 203.)

Todo: are EVENTS variants right?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/hwsq.rst,
line 54.)

Todo: cleanup, crossref

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/hwsq.rst,
line 56.)

Todo: 8, 9, 13 seem used by microcode!

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/hwsq.rst,
line 278.)

Todo: check variants for 15f4, 15fc

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/hwsq.rst,
line 279.)

Todo: check variants for 4-7, some NV4x could have it

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/hwsq.rst,
line 280.)

Todo: check variants for 14, 15

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/hwsq.rst,
line 281.)

Todo: doc 1084 bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/hwsq.rst,
line 282.)

550 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: connect

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pbus.rst,
line 49.)

Todo: loads and loads of unknown registers not shown

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pbus.rst,
line 74.)

Todo: document other known stuff

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pbus.rst,
line 96.)

Todo: cleanup

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pbus.rst,
line 104.)

Todo: description, maybe move somewhere else

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pbus.rst,
line 183.)

Todo: verify that it’s host cycles

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pbus.rst,
line 192.)

Todo: nuke this file and write a better one - it sucks.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 23.)

551



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 39.)

Todo: wrong on NV3]

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 56.)

Todo: this register and possibly some others doesn’t get written when poked through actual PCI config accesses -
PBUS writes work fine

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 57.)

Todo: NV40 has something at 0x98

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 66.)

Todo: MCP77, MCP79, MCP89 stolen memory regs at 0xf4+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 67.)

Todo: very incomplete

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 74.)

Todo: is that all?

552 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 97.)

Todo: find it

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pci.rst,
line 103.)

Todo: more info

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pfuse.rst,
line 18.)

Todo: fill me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pfuse.rst,
line 31.)

Todo: unk bitfields

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 99.)

Todo: what is this? when was it introduced? seen non-0 on at least G92

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 108.)

Todo: there are cards where the steppings don’t match between registers - does this mean something or is it just a
random screwup?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 119.)

Todo: figure out the CS thing, figure out the variants. Known not to exist on NV40, NV43, NV44, C51, G71; known
to exist on MCP73

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 205.)

Todo: unknowns

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 240.)

553



nVidia Hardware Documentation, Release git

Todo: RE these three

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 302.)

Todo: change all this duplication to indexing

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 326.)

Todo: check

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 412.)

Todo: figure out unknown interrupts. They could’ve been introduced much earlier, but we only know them from
bitscanning the INTR_MASK regs. on GT215+.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 468.)

Todo: unknowns

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 501.)

Todo: document these two

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 503.)

Todo: verify variants for these?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pmc.rst,
line 513.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pring.rst,
line 9.)

Todo: write me

554 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pring.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pring.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pring.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/pring.rst,
line 39.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/prma.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/prma.rst,
line 44.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/prma.rst,
line 48.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/prma.rst,
line 52.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/prma.rst,
line 56.)

Todo: write me

555



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/prma.rst,
line 60.)

Todo: document that some day].

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/ptimer.rst,
line 29.)

Todo: figure these out

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/ptimer.rst,
line 215.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/ptimer.rst,
line 235.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/ptimer.rst,
line 239.)

Todo: document MMIO_FAULT_*

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/ptimer.rst,
line 241.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/punits.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/punits.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/bus/punits.rst,
line 23.)

Todo: write me

556 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pcodec.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pcodec.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pcodec.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay.rst,
line 35.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay.rst,
line 43.)

Todo: write me

557



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay-
daemon.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay-
daemon.rst, line 15.)

Todo: more interrupts?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay-
daemon.rst, line 88.)

Todo: interrupt refs

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay-
daemon.rst, line 89.)

Todo: MEMIF interrupts

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay-
daemon.rst, line 90.)

Todo: determine core clock

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay-
daemon.rst, line 91.)

Todo: refs

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pdisplay-
daemon.rst, line 121.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pkfuse.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pkfuse.rst,
line 15.)

Todo: write me

558 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/pkfuse.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/punk1c3.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/punk1c3.rst,
line 15.)

Todo: MEMIF interrupts

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/punk1c3.rst,
line 77.)

Todo: determine core clock

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/punk1c3.rst,
line 78.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/punk1c3.rst,
line 88.)

Todo: figure out unknowns

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/punk1c3.rst,
line 104.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/vga.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/vga.rst,
line 15.)

Todo: write me

559



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/vga.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/g80/vga.rst,
line 27.)

Todo: regs 0x1c-0xff

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 90.)

Todo: regs 0x1xx and 0x5xx

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 91.)

Todo: regs 0xf0xx

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 92.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 137.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 147.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 153.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 169.)

Todo: write me

560 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 173.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 179.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 185.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 187.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 296.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 310.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 319.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 344.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 346.)

Todo: some newer DACs have more functionality?

561



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pdac.rst,
line 376.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 42.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 61.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 65.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 69.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 73.)

Todo: unknowns

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 123.)

Todo: write me

562 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 127.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 133.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 137.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 141.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 145.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 149.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 153.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 157.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 161.)

Todo: write me

563



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 165.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 169.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/pfb.rst,
line 173.)

Todo: figure out what the fuck this engine does

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 30.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 34.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 47.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 67.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 117.)

Todo: write me

564 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 127.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 131.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 149.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 157.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 161.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 165.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv1/prm.rst,
line 169.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pcrtc.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pcrtc.rst,
line 15.)

Todo: write me

565



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pcrtc.rst,
line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pcrtc.rst,
line 25.)

Todo: complete me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pcrtc.rst,
line 32.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pcrtc.rst,
line 39.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pcrtc.rst,
line 47.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pramdac.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pramdac.rst,
line 15.)

Todo: complete me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pramdac.rst,
line 26.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pramdac.rst,
line 30.)

Todo: complete me

566 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pramdac.rst,
line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/ptv.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/ptv.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/ptv.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pvideo.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pvideo.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pvideo.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/pvideo.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/vga.rst,
line 9.)

Todo: write me

567



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/vga.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/vga.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/display/nv3/vga.rst,
line 27.)

Todo: document ljmp/lcall

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/branch.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/crypt.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/crypt.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/crypt.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/crypt.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/crypt.rst,
line 39.)

Todo: write me

568 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/crypt.rst,
line 47.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/crypt.rst,
line 55.)

Todo: document UAS

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/data.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/debug.rst,
line 7.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/debug.rst,
line 17.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/fifo.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/fifo.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/fifo.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/fifo.rst,
line 32.)

Todo: write me

569



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/fifo.rst,
line 41.)

Todo: figure out interrupt 5

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/intr.rst,
line 33.)

Todo: check edge/level distinction on v0

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/intr.rst,
line 85.)

Todo: didn’t ieX -> isX happen before v4?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/intr.rst,
line 196.)

Todo: figure out remaining circuitry

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/intro.rst,
line 35.)

Todo: figure out v4 new stuff

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/intro.rst,
line 48.)

Todo: figure out v4.1 new stuff

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/intro.rst,
line 49.)

Todo: figure out v5 new stuff

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/intro.rst,
line 50.)

Todo: document v4 new addressing

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/io.rst,
line 42.)

Todo: list incomplete for v4

570 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/io.rst,
line 159.)

Todo: clean. fix. write. move.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/io.rst,
line 196.)

Todo: subop e

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/io.rst,
line 318.)

Todo: figure out v4+ stuff

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/isa.rst,
line 67.)

Todo: long call/branch

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/isa.rst,
line 131.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/memif.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/memif.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/memif.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/memif.rst,
line 32.)

Todo: write me

571



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/memif.rst,
line 40.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/memif.rst,
line 48.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/perf.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/perf.rst,
line 15.)

Todo: docs & RE, please

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/perf.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/perf.rst,
line 58.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/proc.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/proc.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/proc.rst,
line 121.)

Todo: write me

572 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/proc.rst,
line 129.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/proc.rst,
line 137.)

Todo: check interaction of secret / usable flags and entering/exitting auth mode

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/vm.rst,
line 24.)

Todo: one more unknown flag on secret engines

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/xfer.rst,
line 33.)

Todo: figure out bit 1. Related to 0x10c?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/xfer.rst,
line 189.)

Todo: how to wait for xfer finish using only IO?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/xfer.rst,
line 194.)

Todo: bits 4-5

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/xfer.rst,
line 210.)

Todo: RE and document this stuff, find if there’s status for code xfers

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/falcon/xfer.rst,
line 212.)

Todo: check for NV4-style mode on GF100

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 27.)

Todo: verify those

573



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 107.)

Todo: determine what happens on GF100 on all imaginable error conditions

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 109.)

Todo: check channel numbers

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 171.)

Todo: What about GF100?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 195.)

Todo: check the ib size range

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 231.)

Todo: figure out bit 8 some day

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 257.)

Todo: do an exhaustive scan of commands

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 302.)

Todo: didn’t mthd 0 work even if sli_active=0?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 340.)

Todo: check pusher reaction on ACQUIRE submission: pause?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 347.)

Todo: check bitfield bounduaries

574 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 425.)

Todo: check the extra SLI bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 427.)

Todo: look for other forms

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/dma-
pusher.rst, line 429.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/g80-
pfifo.rst, line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/g80-
pfifo.rst, line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/g80-
pfifo.rst, line 25.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/g80-
pfifo.rst, line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/g80-
pfifo.rst, line 42.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/g80-
pfifo.rst, line 50.)

Todo: write me

575



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/g80-
pfifo.rst, line 56.)

Todo: document me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/g80-
pfifo.rst, line 60.)

Todo: document me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/g80-
pfifo.rst, line 64.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pfifo.rst, line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pfifo.rst, line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pfifo.rst, line 25.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pfifo.rst, line 29.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pfifo.rst, line 35.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pfifo.rst, line 43.)

Todo: write me

576 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pspoon.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pspoon.rst, line 14.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pspoon.rst, line 22.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/gf100-
pspoon.rst, line 30.)

Todo: check if it still holds on GF100

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/intro.rst,
line 32.)

Todo: check PIO channels support on NV40:G80

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/intro.rst,
line 129.)

Todo: look for GF100 PFIFO endian switch

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/intro.rst,
line 189.)

Todo: is it still true for GF100, with VRAM-backed channel control area?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/intro.rst,
line 194.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 126.)

Todo: document gray code

577



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 211.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 215.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 219.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 223.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 227.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 231.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 235.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 239.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 243.)

Todo: write me

578 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 247.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 253.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 257.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 261.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 267.)

Todo: document me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 271.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 279.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 283.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 287.)

Todo: write me

579



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 291.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 299.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 303.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 307.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 311.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 315.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 319.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 323.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 327.)

Todo: write me

580 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 331.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 337.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 341.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 349.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 357.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 365.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv1-
pfifo.rst, line 369.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv4-
pfifo.rst, line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv4-
pfifo.rst, line 21.)

Todo: write me

581



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv4-
pfifo.rst, line 25.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv4-
pfifo.rst, line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv4-
pfifo.rst, line 39.)

Todo: document me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv4-
pfifo.rst, line 43.)

Todo: document me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/nv4-
pfifo.rst, line 47.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/pcopy.rst,
line 114.)

Todo: describe PCOPY

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/pcopy.rst,
line 116.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/pio.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/pio.rst,
line 14.)

Todo: write me

582 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/pio.rst,
line 22.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/pio.rst,
line 28.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/pio.rst,
line 34.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/pio.rst,
line 42.)

Todo: missing the GF100+ methods

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/puller.rst,
line 50.)

Todo: verify this on all card families.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/puller.rst,
line 198.)

Todo: verify all of the pseudocode. . .

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/puller.rst,
line 303.)

Todo: figure this out

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/puller.rst,
line 424.)

Todo: RE timeouts

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/puller.rst,
line 433.)

Todo: is there ANY way to make G80 reject non-DMA object classes?

583



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/puller.rst,
line 450.)

Todo: bit 12 does something on GF100?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/puller.rst,
line 546.)

Todo: check how this is reported on GF100

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/fifo/puller.rst,
line 620.)

Todo: what were the GPIOs for?

(The original entry is located in Celsius, line 1.)

Todo: verify all sorts of stuff on NV2A

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 181.)

Todo: figure out NV34 3d engine changes

(The original entry is located in Rankine, line 1.)

Todo: more changes

(The original entry is located in Curie, line 1.)

Todo: figure out 3d engine changes

(The original entry is located in Curie, line 1.)

Todo: all geometry information unverified

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 234.)

Todo: any information on the RSX?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 236.)

584 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: geometry information not verified for G94, MCP77

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 277.)

Todo: figure out PGRAPH/PFIFO changes

(The original entry is located in Kepler, line 1.)

Todo: it is said that one of the GPCs [0th one] has only one TPC on GK106

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 341.)

Todo: what the fuck is GK110B? and GK208B?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 343.)

Todo: GK210

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 345.)

Todo: GK20A

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 347.)

Todo: GM20x, GP10x

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 349.)

Todo: another design counter available on GM107, another 4 on GP10x

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 351.)

Todo: TU117 one of the GPCs has only three TPCs (so 7 in total, not 8)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/gpu.rst,
line 353.)

585



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/blit.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/blit.rst,
line 19.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/blit.rst,
line 25.)

Todo: write m

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 11.)

Todo: check NV3+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 142.)

Todo: check if still applies on NV3+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 181.)

Todo: check NV3+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 198.)

Todo: check NV3+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 211.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 261.)

586 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 269.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 277.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 285.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ctxobj.rst,
line 293.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/dvd.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/dvd.rst,
line 19.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/dvd.rst,
line 25.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/gdi.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/gdi.rst,
line 19.)

587



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/gdi.rst,
line 25.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/gdi.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/gdi.rst,
line 37.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/gdi.rst,
line 43.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/gdi.rst,
line 49.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifc.rst,
line 11.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifc.rst,
line 19.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifc.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifc.rst,
line 35.)

588 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifc.rst,
line 43.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifc.rst,
line 51.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifm.rst,
line 14.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifm.rst,
line 20.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifm.rst,
line 26.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/ifm.rst,
line 32.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 183.)

Todo: figure out this enum

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 195.)

Todo: figure out this enum

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 203.)

589



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 209.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 215.)

Todo: check

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 225.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 353.)

Todo: figure out what happens on ITM, IFM, BLIT, TEX*BETA

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 362.)

Todo: NV3+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 385.)

Todo: document that and BLIT

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 395.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 401.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 407.)

590 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 413.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 419.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 425.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 431.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 437.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 443.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 448.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 456.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/intro.rst,
line 464.)

591



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/nv1-
tex.rst, line 16.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/nv1-
tex.rst, line 22.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/nv1-
tex.rst, line 28.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/nv1-
tex.rst, line 34.)

Todo: precise upconversion formulas

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/pattern.rst,
line 351.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/sifm.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/sifm.rst,
line 19.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/sifm.rst,
line 25.)

Todo: PM_TRIGGER?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/solid.rst,
line 65.)

592 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: PATCH?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/solid.rst,
line 67.)

Todo: add the patchcord methods

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/solid.rst,
line 69.)

Todo: document common methods

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/solid.rst,
line 71.)

Todo: document point methods

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/solid.rst,
line 92.)

Todo: document line methods

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/solid.rst,
line 125.)

Todo: document tri methods

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/solid.rst,
line 153.)

Todo: document rect methods

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/solid.rst,
line 176.)

Todo: document solid-related unified 2d object methods

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/2d/solid.rst,
line 182.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/bundles.rst,
line 169.)

593



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/bundles.rst,
line 442.)

Todo: why is POINT_SMOOTH_ENABLE aliased here?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/bundles.rst,
line 578.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/celsius/3d.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/celsius/3d.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/celsius/pgraph.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/celsius/pgraph.rst,
line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/celsius/pgraph.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/celsius/pgraph.rst,
line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/curie/3d.rst,
line 9.)

594 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/curie/3d.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/curie/pgraph.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/curie/pgraph.rst,
line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/curie/pgraph.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/curie/pgraph.rst,
line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/curie/pgraph.rst,
line 39.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/3d.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/3d.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/compute.rst,
line 9.)

595



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/compute.rst,
line 15.)

Todo: convert

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/ctxctl/intro.rst,
line 5.)

Todo: rather incomplete.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 43.)

Todo: and vertex programs 2?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 59.)

Todo: figure out the exact differences between these & the pipeline configuration business

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 61.)

Todo: figure out and document the SRs

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 161.)

Todo: figure out the semi-special c16[]/c17[].

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 179.)

Todo: size granularity?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 193.)

Todo: other program types?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 195.)

596 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: describe the shader input spaces

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 205.)

Todo: describe me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 212.)

Todo: not true for GK104. Not complete either.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 231.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 237.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/cuda/isa.rst,
line 243.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/macro.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/macro.rst,
line 19.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/pgraph.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/pgraph.rst,
line 21.)

597



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/pgraph.rst,
line 29.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/pgraph.rst,
line 35.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/pgraph.rst,
line 41.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/fermi/pgraph.rst,
line 47.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 13.)

Todo: WAIT_FOR_IDLE and PM_TRIGGER

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 15.)

Todo: check Direct3D version

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 56.)

Todo: document NV1_NULL

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 74.)

Todo: figure out wtf is the deal with TEXTURE objects

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 175.)

598 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: find better name for these two

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 205.)

Todo: check NV3_D3D version

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 228.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 283.)

Todo: write something here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 289.)

Todo: beta factor size

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 344.)

Todo: user clip state

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 346.)

Todo: NV1 framebuffer setup

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 348.)

Todo: NV3 surface setup

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 350.)

Todo: figure out the extra clip stuff, etc.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 352.)

599



nVidia Hardware Documentation, Release git

Todo: update for NV4+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 354.)

Todo: NV3+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 386.)

Todo: more stuff?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 405.)

Todo: verify big endian on non-G80

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 434.)

Todo: figure out NV20 mysterious warning notifiers

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 443.)

Todo: describe GF100+ notifiers

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 445.)

Todo: 0x20 - NV20 warning notifier?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 468.)

Todo: figure out if this method can be disabled for NV1 compat

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/intro.rst,
line 576.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kelvin/3d.rst,
line 9.)

600 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kelvin/3d.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kelvin/pgraph.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kelvin/pgraph.rst,
line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kelvin/pgraph.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kelvin/pgraph.rst,
line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kepler/3d.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kepler/3d.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kepler/compute.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/kepler/compute.rst,
line 15.)

601



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/m2mf.rst,
line 11.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/m2mf.rst,
line 19.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/m2mf.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/m2mf.rst,
line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/m2mf.rst,
line 39.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/maxwell/3d.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/maxwell/3d.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/maxwell/compute.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/maxwell/compute.rst,
line 15.)

602 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/dma.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/dma.rst,
line 19.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/dma.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/dma.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/dma.rst,
line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/dma.rst,
line 37.)

Todo: Lots of speculation here.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 276.)

Todo: lots of unknown bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 355.)

Todo: lots of unknown bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 370.)

603



nVidia Hardware Documentation, Release git

Todo: lots of unknown bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 383.)

Todo: Figure out what all that stuff does.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 433.)

Todo: bitfields

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 471.)

Todo: more bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 492.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 613.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 628.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 632.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 636.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 640.)

604 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 644.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 648.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 652.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 656.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 660.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 664.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 668.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 672.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 676.)

605



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 680.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 682.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 690.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 696.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 702.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 708.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/pgraph.rst,
line 714.)

Todo: figure out selecting the right part of SRC_COLOR for IFC/IFM/BITMAP

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 71.)

Todo: BLIT and source pixel discards

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 73.)

606 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: pseudocode, please

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 75.)

Todo: weird shit happens if blending is enabled and framebuffer is 8bpp.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 152.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 453.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 459.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 466.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 470.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 583.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 591.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 595.)

607



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 667.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 675.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/rop.rst,
line 679.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 41.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 45.)

608 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 49.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 53.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 57.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 61.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 69.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 73.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 77.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 81.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 89.)

609



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 97.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/nv1/xy.rst,
line 105.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/rankine/3d.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/rankine/3d.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/3d.rst,
line 10.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/3d.rst,
line 16.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pdma.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pdma.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pdma.rst,
line 23.)

610 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pdma.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pgraph.rst,
line 13.)

Todo: finish me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pgraph.rst,
line 25.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pgraph.rst,
line 108.)

Todo: figure out the bits, should be similiar to the NV1 options

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pgraph.rst,
line 125.)

Todo: check M2MF source

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pgraph.rst,
line 132.)

Todo: check

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pgraph.rst,
line 138.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pgraph.rst,
line 148.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pgraph.rst,
line 154.)

611



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/riva/pgraph.rst,
line 160.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/3d.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/3d.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/compute.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/compute.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/crop.rst,
line 8.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/ctxctl.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 19.)

612 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 34.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 50.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 58.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 72.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 88.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 103.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 117.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 132.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 149.)

613



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 158.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 173.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 189.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 211.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/control.rst,
line 219.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 55.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 73.)

614 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 96.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 116.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 134.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 155.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 185.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 193.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 201.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 220.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 227.)

615



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 239.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 246.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/data.rst,
line 253.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/double.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/double.rst,
line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/double.rst,
line 29.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/double.rst,
line 37.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/double.rst,
line 53.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/double.rst,
line 69.)

616 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/float.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/float.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/float.rst,
line 39.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/float.rst,
line 55.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/float.rst,
line 71.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/float.rst,
line 87.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/float.rst,
line 103.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/int.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/int.rst,
line 29.)

617



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/int.rst,
line 81.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/int.rst,
line 155.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/int.rst,
line 242.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/int.rst,
line 285.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/int.rst,
line 317.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/int.rst,
line 368.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/int.rst,
line 415.)

Todo: check variants for preret/indirect bra

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 45.)

Todo: wtf is up with $a7?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 134.)

618 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: a bit more detail?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 166.)

Todo: perhaps we missed something?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 170.)

Todo: seems to always be 0x20. Is it really that boring, or does MP switch to a smaller/bigger stride sometimes?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 176.)

Todo: when no-one’s looking, rename the a[], p[], v[] spaces to something sane.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 247.)

Todo: discard mask should be somewhere too?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 287.)

Todo: call limit counter

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 289.)

Todo: there’s some weirdness in barriers.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 306.)

Todo: you sure of control instructions with non-0 w1b0-1?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 329.)

Todo: what about other bits? ignored or must be 0?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 448.)

619



nVidia Hardware Documentation, Release git

Todo: figure out where and how $a7 can be used. Seems to be a decode error more often than not. . .

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 571.)

Todo: what address field is used in long control instructions?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 574.)

Todo: verify the 127 special treatment part and direct addressing

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 647.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 671.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/isa.rst,
line 676.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/misc.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/misc.rst,
line 24.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/misc.rst,
line 44.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/misc.rst,
line 58.)

620 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/misc.rst,
line 80.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/misc.rst,
line 98.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/misc.rst,
line 118.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/pm.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 22.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 43.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 58.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 74.)

621



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 88.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 101.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 107.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 115.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/texture.rst,
line 121.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/trans.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/trans.rst,
line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/trans.rst,
line 38.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/trans.rst,
line 52.)

622 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/trans.rst,
line 66.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/trans.rst,
line 81.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/cuda/trans.rst,
line 96.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/pgraph.rst,
line 20.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/pgraph.rst,
line 28.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/pgraph.rst,
line 36.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/pgraph.rst,
line 42.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/pgraph.rst,
line 48.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/pgraph.rst,
line 54.)

623



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/prop.rst,
line 8.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/vfetch.rst,
line 8.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tesla/zrop.rst,
line 8.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/3d.rst,
line 10.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/3d.rst,
line 16.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/pgraph.rst,
line 13.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/pgraph.rst,
line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/pgraph.rst,
line 29.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/pgraph.rst,
line 35.)

624 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/pgraph.rst,
line 41.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/pgraph.rst,
line 47.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/pgraph.rst,
line 53.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/tnt/pgraph.rst,
line 59.)

Todo: intro?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/ctx.rst,
line 13.)

Todo: intro?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/ctx.rst,
line 132.)

Todo: intro?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/ctx.rst,
line 223.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/ctx.rst,
line 296.)

Todo: NV25, NV30 have RAMs unaccounted for.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/intro.rst,
line 236.)

625



nVidia Hardware Documentation, Release git

Todo: Curie still has switchable RAMs unaccounted for.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/intro.rst,
line 238.)

Todo: None of the above is certain on Curie.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/intro.rst,
line 329.)

Todo: Figure out how this works on Curie.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/intro.rst,
line 366.)

Todo: How are things assembled on Curie?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/intro.rst,
line 466.)

Todo: NV34 (and presumably all Kelvins and Rankines) have SIPOS, which is a copy of the first IBUF word with
unknown purpose.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 154.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 258.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 267.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 273.)

Todo: write me

626 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 279.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 338.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 344.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 350.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 356.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 362.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/isa.rst,
line 368.)

Todo: Incomplete list.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/mode.rst,
line 359.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/graph/xf/mode.rst,
line 365.)

Todo: convert glossary

627



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/index.rst,
line 26.)

Todo: finish file

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/intro.rst,
line 345.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/g80-
gpio.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/g80-
gpio.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/g80-
gpio.rst, line 23.)

Todo: figure out what else is stored in the EEPROM, if anything.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv1-
peeprom.rst, line 31.)

Todo: figure out how the chip ID is stored in the EEPROM.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv1-
peeprom.rst, line 32.)

Todo: figure out wtf the chip ID is used for

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv1-
peeprom.rst, line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv10-
gpio.rst, line 9.)

Todo: write me

628 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv10-
gpio.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv10-
gpio.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv10-
gpio.rst, line 32.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv10-
gpio.rst, line 40.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv10-
gpio.rst, line 44.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/nv10-
gpio.rst, line 48.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pmedia.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pmedia.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pmedia.rst,
line 23.)

Todo: write me

629



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pmedia.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pnvio.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pnvio.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pnvio.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pnvio.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 27.)

Todo: write me

630 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 35.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 43.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 47.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 53.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 61.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 63.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 71.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/prom.rst,
line 75.)

Todo: RE me

631



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pstraps.rst,
line 304.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pstraps.rst,
line 310.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pstraps.rst,
line 316.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/io/pstraps.rst,
line 322.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
comp.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
comp.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
host-mem.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
host-mem.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
host-mem.rst, line 23.)

Todo: write me

632 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
host-mem.rst, line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
host-mem.rst, line 35.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
p2p.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
p2p.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
p2p.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
pfb.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
pfb.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
pfb.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
remap.rst, line 9.)

Todo: write me

633



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
remap.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
remap.rst, line 23.)

Todo: vdec stuff

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 28.)

Todo: GF100 ZCULL?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 29.)

Todo: check pitch, width, height min/max values. this may depend on binding point. check if 64 byte alignment still
holds on GF100.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 90.)

Todo: check bounduaries on them all, check tiling on GF100.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 124.)

Todo: PCOPY surfaces with weird gob size

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 125.)

Todo: wtf is up with modes 4 and 5?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 551.)

Todo: nail down MS8_CS24 sample positions

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 552.)

634 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: figure out mode 6

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 553.)

Todo: figure out MS8_CS24 C component

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 554.)

Todo: check MS8/128bpp on GF100.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 560.)

Todo: wtf is color format 0x1d?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 638.)

Todo: htf do I determine if a surface format counts as 0x07 or 0x08?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 721.)

Todo: which component types are valid for a given bitfield size?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 809.)

Todo: clarify float encoding for weird sizes

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 810.)

Todo: verify I haven’t screwed up the ordering here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 841.)

Todo: figure out the MS8_CS24 formats

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 933.)

635



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 939.)

Todo: figure out more. Check how it works with 2d engine.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 957.)

Todo: verify somehow.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 981.)

Todo: reformat

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 1033.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 1136.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
surface.rst, line 1142.)

Todo: kill this list in favor of an actual explanation

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vm.rst, line 45.)

Todo: PVP1

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vm.rst, line 309.)

Todo: PME

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vm.rst, line 310.)

636 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: Move to engine doc?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vm.rst, line 311.)

Todo: verify GT215 transition for medium pages

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vm.rst, line 518.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vm.rst, line 618.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vm.rst, line 624.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vm.rst, line 630.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vm.rst, line 636.)

Todo: verify it’s really the G84

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vram.rst, line 128.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vram.rst, line 187.)

Todo: tag stuff?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vram.rst, line 241.)

637



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vram.rst, line 247.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vram.rst, line 253.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/g80-
vram.rst, line 259.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
comp.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
comp.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
host-mem.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
host-mem.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
host-mem.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
host-mem.rst, line 27.)

638 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
host-mem.rst, line 36.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
p2p.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
p2p.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
p2p.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
vm.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
vm.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
vram.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/gf100-
vram.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
pdma.rst, line 9.)

639



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
pdma.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
pdma.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
pdma.rst, line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
pdma.rst, line 39.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
pdma.rst, line 45.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
surface.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
surface.rst, line 15.)

Todo: wtf is the password storage thing, and why is it located at an inconvenient and unmovable place?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
vram.rst, line 45.)

Todo: verify you cannot go between the two buffers by overflowing Y

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
vram.rst, line 90.)

640 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: figure out what RAMAU nad UNK2 are for

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv1-
vram.rst, line 152.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv10-
pfb.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv10-
pfb.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv10-
pfb.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv3-
dmaobj.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv3-
dmaobj.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv3-
pfb.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv3-
pfb.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv3-
pfb.rst, line 23.)

641



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv3-
vram.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv3-
vram.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv4-
dmaobj.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv4-
dmaobj.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv4-
vram.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv4-
vram.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv4-
vram.rst, line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv4-
vram.rst, line 25.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv40-
pfb.rst, line 9.)

642 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv40-
pfb.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv40-
pfb.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv44-
host-mem.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv44-
host-mem.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv44-
host-mem.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv44-
pfb.rst, line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv44-
pfb.rst, line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/nv44-
pfb.rst, line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pbfb.rst,
line 9.)

643



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pbfb.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pbfb.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pbfb.rst,
line 27.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pbfb.rst,
line 35.)

Todo: convert

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/peephole.rst,
line 58.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pffb.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pffb.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pffb.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pffb.rst,
line 31.)

644 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pmfb.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pmfb.rst,
line 15.)

Todo: fill me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pmfb.rst,
line 29.)

Todo: fill me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pmfb.rst,
line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pmfb.rst,
line 41.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pxbar.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pxbar.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/memory/pxbar.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 13.)

645



nVidia Hardware Documentation, Release git

Todo: check UNK005000 variants [sorta present on NV35, NV34, C51, MCP73; present on NV5, NV11, NV17,
NV1A, NV20; not present on NV44]

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 128.)

Todo: check PCOUNTER variants

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 129.)

Todo: some IGP don’t have PVPE/PVP1 [C51: present, but without PME; MCP73: not present at all]

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 130.)

Todo: check PSTRAPS on IGPs

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 131.)

Todo: check PROM on IGPs

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 132.)

Todo: PMEDIA not on IGPs [MCP73 and C51: not present] and some other cards?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 133.)

Todo: PFB not on IGPs

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 134.)

Todo: merge PCRTC+PRMCIO/PRAMDAC+PRMDIO?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 135.)

Todo: UNK6E0000 variants

646 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 136.)

Todo: UNK006000 variants

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 137.)

Todo: UNK00E000 variants

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 138.)

Todo: 102000 variants; present on MCP73, not C51

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 139.)

Todo: 10f000:112000 range on GT215-

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 208.)

Todo: verified accurate for GK104, check on earlier cards

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 274.)

Todo: did they finally kill off PMEDIA?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 275.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 307.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 313.)

Todo: RE me

647



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 319.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 325.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 331.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 335.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 339.)

Todo: NV4x? NVCx?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 345.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 349.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 353.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 357.)

Todo: RE me

648 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 361.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 367.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 371.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 375.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 379.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 383.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 387.)

Todo: RE me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/mmio.rst,
line 391.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/nv1-
paudio.rst, line 13.)

Todo: write me

649



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/nv1-
paudio.rst, line 21.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/nv1-
paudio.rst, line 29.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/nv1-
paudio.rst, line 35.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/nv1-
paudio.rst, line 41.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/nv1-
paudio.rst, line 47.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/nv1-
paudio.rst, line 53.)

Todo: wtf is with that 0x21x ID?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pciid.rst,
line 482.)

Todo: shouldn’t 0x03b8 support x4 too?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pciid.rst,
line 2212.)

Todo: convert

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/fermi.rst,
line 9.)

Todo: crossrefs

650 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 9.)

Todo: why? any others excluded? NV25, NV2A, NV30, NV36 pending a check

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 19.)

Todo: figure out what else happened on GF100

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 50.)

Todo: make it so

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 55.)

Todo: figure out interupt business

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 96.)

Todo: wtf is CYCLES_ALT for?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 138.)

Todo: C51 has no PCOUNTER, but has a7f4/a7f8 registers

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 176.)

Todo: MCP73 also has a7f4/a7f8 but also has normal PCOUNTER

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 178.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 186.)

Todo: complete me

651



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 205.)

Todo: PAUSED?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 334.)

Todo: unk bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 336.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 380.)

Todo: UNK8

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 459.)

Todo: check bits 16-20 on GF100

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 651.)

Todo: figure out how single event mode is supposed to be used on GF100+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 672.)

Todo: wtf is CYCLES_ALT?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 696.)

Todo: figure out what’s the deal with GF100 counters

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 768.)

Todo: figure out if there’s anything new on GF100

652 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 829.)

Todo: unk bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 933.)

Todo: more bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 946.)

Todo: GF100

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 948.)

Todo: threshold on GF100

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 1064.)

Todo: check if still valid on GF100

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 1192.)

Todo: figure out record mode setup for GF100

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/intro.rst,
line 1274.)

Todo: convert

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/nv10.rst,
line 9.)

Todo: figure it out

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/nv40.rst,
line 37.)

Todo: find some, I don’t know, signals?

653



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/nv40.rst,
line 39.)

Todo: figure out roughly what stuff goes where

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/tesla.rst,
line 44.)

Todo: find signals.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pcounter/tesla.rst,
line 46.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 9.)

Todo: figure out IOCLK, ZPLL, DOM6

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 38.)

Todo: figure out 4010, 4018, 4088

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 39.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 44.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 52.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 56.)

Todo: write me

654 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 60.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 68.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 76.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 84.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/g80-
clock.rst, line 92.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 9.)

Todo: how many RPLLs are there exactly?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 33.)

Todo: figure out where host clock comes from

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 34.)

Todo: VM clock is a guess

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 35.)

Todo: memory clock uses two PLLs, actually

655



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 36.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 48.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 52.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 60.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 68.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gf100-
clock.rst, line 76.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gt215-
clock.rst, line 9.)

Todo: figure out unk clocks

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gt215-
clock.rst, line 32.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gt215-
clock.rst, line 37.)

Todo: write me

656 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gt215-
clock.rst, line 45.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gt215-
clock.rst, line 49.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gt215-
clock.rst, line 53.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gt215-
clock.rst, line 73.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gt215-
clock.rst, line 81.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/gt215-
clock.rst, line 89.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 9.)

Todo: DLL on NV3

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 24.)

Todo: NV1???

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 25.)

Todo: write me

657



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 29.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 37.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 41.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 49.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 53.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 61.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv1-
clock.rst, line 65.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv40-
clock.rst, line 9.)

Todo: figure out where host clock comes from

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv40-
clock.rst, line 26.)

Todo: figure out 4008/shader clock

658 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv40-
clock.rst, line 27.)

Todo: figure out 4050, 4058

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv40-
clock.rst, line 28.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv40-
clock.rst, line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv40-
clock.rst, line 41.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv40-
clock.rst, line 45.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv40-
clock.rst, line 53.)

Todo: figure out what divisors are available

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv43-
therm.rst, line 57.)

Todo: figure out what divisors are available

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv43-
therm.rst, line 95.)

Todo: Make sure this clock range is safe on all cards

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv43-
therm.rst, line 111.)

Todo: There may be other switches.

659



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv43-
therm.rst, line 152.)

Todo: Document reg 15b8

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/nv43-
therm.rst, line 215.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/chsw.rst,
line 8.)

Todo: check the frequency at which PDAEMON is polling

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/counter.rst,
line 33.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/epwr.rst,
line 9.)

Todo: and unknown stuff.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/index.rst,
line 53.)

Todo: figure out additions

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/index.rst,
line 65.)

Todo: this file deals mostly with GT215 version now

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/index.rst,
line 67.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/io.rst,
line 9.)

Todo: reset doc

660 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/io.rst,
line 74.)

Todo: unknown v3+ regs at 0x430+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/io.rst,
line 75.)

Todo: 5c0+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/io.rst,
line 76.)

Todo: 660+

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/io.rst,
line 77.)

Todo: finish the list

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/io.rst,
line 78.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/perf.rst,
line 7.)

Todo: discuss mismatched clock thing

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/perf.rst,
line 9.)

Todo: figure out the first signal

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/perf.rst,
line 34.)

Todo: document MMIO_* signals

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/perf.rst,
line 35.)

Todo: document INPUT_*, OUTPUT_*

661



nVidia Hardware Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/perf.rst,
line 36.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/signal.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/signal.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/signal.rst,
line 23.)

Todo: figure out bits 7, 8

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/subintr.rst,
line 25.)

Todo: more bits in 10-12?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/subintr.rst,
line 26.)

Todo: what could possibly use PDAEMON’s busy status?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/pdaemon/user.rst,
line 17.)

Todo: check the possible dividers

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/ptherm.rst,
line 80.)

Todo: verify the priorities of each threshold (if two thresholds are active at the same time, which one is considered
as being active?)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/ptherm.rst,
line 132.)

662 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/ptherm.rst,
line 138.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/ptherm.rst,
line 143.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/ptherm.rst,
line 147.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/ptherm.rst,
line 155.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/pm/ptherm.rst,
line 163.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvcomp.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvcomp.rst,
line 15.)

Todo: status bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvcomp.rst,
line 87.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvcomp.rst,
line 97.)

663



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvcomp.rst,
line 99.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvcomp.rst,
line 107.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvdec.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvdec.rst,
line 15.)

Todo: status bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvdec.rst,
line 77.)

Todo: interrupts

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvdec.rst,
line 78.)

Todo: MEMIF ports

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvdec.rst,
line 79.)

Todo: core clock

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvdec.rst,
line 80.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvdec.rst,
line 90.)

664 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvdec.rst,
line 92.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvenc.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvenc.rst,
line 15.)

Todo: status bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvenc.rst,
line 100.)

Todo: interrupts

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvenc.rst,
line 101.)

Todo: MEMIF ports

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvenc.rst,
line 102.)

Todo: core clock

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvenc.rst,
line 103.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvenc.rst,
line 113.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvenc.rst,
line 117.)

665



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/pvenc.rst,
line 119.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/index.rst,
line 22.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/macro.rst,
line 96.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/macro.rst,
line 104.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/macro.rst,
line 112.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/macro.rst,
line 174.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pbsp.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pbsp.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pbsp.rst,
line 23.)

666 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pbsp.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pcipher.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pcipher.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pcipher.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pcipher.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pvp2.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pvp2.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pvp2.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/pvp2.rst,
line 31.)

667



nVidia Hardware Documentation, Release git

Todo: width/height max may be 255?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 42.)

Todo: reg 0x00800

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 94.)

Todo: what macroblocks are stored, indexing, tagging, reset state

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 171.)

Todo: and availability status?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 187.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 201.)

Todo: RE and write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 225.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 233.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 243.)

Todo: more inferred crap

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 451.)

668 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/vld.rst,
line 496.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp2/xtensa.rst,
line 5.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/index.rst,
line 21.)

Todo: Verify whether X or Y is in the lowest 16 bits. I assume X

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/mbring.rst,
line 118.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/ppdec.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/ppdec.rst,
line 15.)

Todo: interrupts

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/ppdec.rst,
line 137.)

Todo: more MEMIF ports?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/ppdec.rst,
line 138.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/ppdec.rst,
line 148.)

669



nVidia Hardware Documentation, Release git

Todo: unknowns

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/ppdec.rst,
line 173.)

Todo: fix list

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/ppdec.rst,
line 174.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/ppdec.rst,
line 180.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/ppdec.rst,
line 188.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 15.)

Todo: interrupts

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 123.)

Todo: more MEMIF ports?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 124.)

Todo: status bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 125.)

670 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 135.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 157.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 165.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 173.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 179.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 187.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 195.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 203.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 209.)

671



nVidia Hardware Documentation, Release git

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 217.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 225.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 233.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 239.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 247.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 256.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 264.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 270.)

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 278.)

672 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pppp.rst,
line 286.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/psec.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/psec.rst,
line 15.)

Todo: clock divider in 1530?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/psec.rst,
line 103.)

Todo: find out something about the GM107 version

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/psec.rst,
line 105.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/psec.rst,
line 115.)

Todo: update for GM107

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/psec.rst,
line 129.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvdec.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvdec.rst,
line 15.)

673



nVidia Hardware Documentation, Release git

Todo: interrupts

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvdec.rst,
line 70.)

Todo: VM engine/client

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvdec.rst,
line 71.)

Todo: MEMIF ports

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvdec.rst,
line 72.)

Todo: status bits

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvdec.rst,
line 73.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvdec.rst,
line 83.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvdec.rst,
line 92.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 15.)

Todo: MEMIF ports

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 130.)

674 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: unknowns

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 153.)

Todo: fix list

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 154.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 162.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 172.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 174.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 182.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vp3/pvld.rst,
line 190.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/index.rst,
line 19.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 13.)

675



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 22.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 58.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 62.)

Todo: figure these out

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 68.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 74.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 80.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 87.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 94.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 101.)

676 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 108.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 117.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 124.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 130.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 136.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 142.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 148.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 154.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 160.)

677



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 166.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 172.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 178.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 184.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 190.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 196.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 202.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pme/intro.rst,
line 210.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pmpeg.rst,
line 9.)

678 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pmpeg.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pmpeg.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pmpeg.rst,
line 31.)

Todo: list me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/address.rst,
line 144.)

Todo: complete the list

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/address.rst,
line 190.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/branch.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/branch.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/branch.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/dma.rst,
line 9.)

679



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/dma.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/dma.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/fifo.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/fifo.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/fifo.rst,
line 23.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/fifo.rst,
line 31.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/intro.rst,
line 42.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/intro.rst,
line 50.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/intro.rst,
line 56.)

680 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: incomplete for <G80

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/intro.rst,
line 130.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/intro.rst,
line 154.)

Todo: mov from $sr, $uc, $mi, $f, $d

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/intro.rst,
line 224.)

Todo: some unused opcodes clear $c, some don’t

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/scalar.rst,
line 238.)

Todo: figure out the pre-G80 register files

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvp1/scalar.rst,
line 351.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvpe.rst,
line 9.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvpe.rst,
line 15.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvpe.rst,
line 25.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vpe/pvpe.rst,
line 33.)

681



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vuc/intro.rst,
line 147.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vuc/isa.rst,
line 979.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vuc/isa.rst,
line 1130.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vuc/isa.rst,
line 1136.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vuc/perf.rst,
line 11.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vuc/vpring.rst,
line 11.)

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vuc/vreg.rst,
line 15.)

Todo: the following information may only be valid for H.264 mode for now

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vuc/vreg.rst,
line 21.)

Todo: recheck this instruction on VP3 and other codecs

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/hw/vdec/vuc/vreg.rst,
line 228.)

682 Chapter 5. TODO list



nVidia Hardware Documentation, Release git

Todo: write me

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/envytools/checkouts/latest/docs/nvrm/pmu/ucode-
cmds.rst, line 13.)

683



nVidia Hardware Documentation, Release git

684 Chapter 5. TODO list



CHAPTER 6

Indices and tables

• genindex

• search

685



nVidia Hardware Documentation, Release git

686 Chapter 6. Indices and tables



Index

Symbols
-F <feature>

command line option, 545
-M <mapfile>

command line option, 546
-O <mode>

command line option, 546
-S <stride>

command line option, 546
-V <variant>

command line option, 544
-W

command line option, 543, 547
-a

command line option, 547
-b <base>

command line option, 544
-d <discard>

command line option, 544
-i

command line option, 543, 547
-l <limit>

command line option, 544
-m <machine>

command line option, 544
-n

command line option, 547
-o <filename>

command line option, 546
-q

command line option, 547
-u <value>

command line option, 546
-w

command line option, 543, 547

C
command line option

-F <feature>, 545

-M <mapfile>, 546
-O <mode>, 546
-S <stride>, 546
-V <variant>, 544
-W, 543, 547
-a, 547
-b <base>, 544
-d <discard>, 544
-i, 543, 547
-l <limit>, 544
-m <machine>, 544
-n, 547
-o <filename>, 546
-q, 547
-u <value>, 546
-w, 543, 547

687


	Notational conventions
	Introduction
	Bit operations
	Sign extension
	Bitfield extraction

	nVidia hardware documentation
	nVidia GPU introduction
	GPU chips
	nVidia PCI id database
	PCI/PCIE/AGP bus interface and card management logic
	Power, thermal, and clock management
	GPU external device I/O units
	Memory access and structure
	PFIFO: command submission to execution engines
	PGRAPH: 2d/3d graphics and compute engine
	falcon microprocessor
	Video decoding, encoding, and processing
	Performance counters
	Display subsystem

	nVidia Resource Manager documentation
	PMU

	envydis and envyas documentation
	Using envydis and envyas

	TODO list
	Indices and tables
	Index

