

 ZEBRA TECHNOLOGIES 1

Zebra FX Series Embedded C/CPP SDK User Guide

Linux

 Version 1.0.1

 ZEBRA TECHNOLOGIES 2

Table of Content

1.0 Introduction .. 3

2.0 Revision History .. 4

3.0 Pre-Requisites ... 5

4.0 SDK Install ... 6

4.1 Install C/C++ SDK debian package (Ubuntu 16.04) ... 6

4.2 Install Native C/C++ SDK tar file (Fedora/Ubuntu).. 7

5.0 Starting C/C++ SDK .. 10

6.0 C/C++ Sample Application Build and Debug ... 13

6.1 Building C/C++ Executable Binary File .. 14

6.2 Debug Embedded RFID C/C++ Application ... 17

6.3 Setup RFID C Remote Debug Configuration. ... 18

7.0 Embedded RFIDSample4App C/C++ Application from scratch ... 33

7.1 Creating a Workspace ... 33

7.2 Creating an Embedded RFIDSample4App C/C++ Project .. 35

7.3 Adding Source Files to Embedded RFIDSample4App C/C++ Project .. 42

7.4 Setup Cross Compiler and Library Environment for Embedded Native C/C++ Project 46

7.4 Build/Debug Embedded Native RFIDSample4App C/C++ Project. .. 58

8.0 Create Start and Stop Scripts of C/C++ Installation Package .. 59

9.0 Embedded Application Installation Package Creation .. 60

9.1 Embedded application package creation .. 60

9.2 Installation and Removal of application package On RFID reader using UI 61

ABOUT THIS GUIDE

 ZEBRA TECHNOLOGIES 3

1.0 Introduction

The ‘Zebra FXSeries Embedded C/CPP SDK User Guide Linux’ describes the detailed steps about how

to use the FX Series Embedded native C/CPP SDK to develop the RFID sample application from

scratch, debugging it and packaging it as debian package using Eclipse IDE based on Ubuntu

16.04/Fedora 27 (64 bits, x86) host and executing the RFID sample application in target

‘FX9600/FX7500’ Readers.

This user guide describes the following:

• Zebra Native C/C++ SDK in general describes how to create, build, and debug an embedded

C/C++ application.

• Embedded Sample RFID C/C++ Application from scratch, create, build and debug and how

to create debian package, how to create Start/Stop script files for the deployment of debian

package and install it through Web interface of target ‘Reader FX9600/FX7500’ from Ubuntu

16.04/Fedora 27 64bit x86 Host.

• Debian packaging of embedded C/C++ Linux SDK package for newer version.

Note: Uninstall any older Zebra SDK if installed on Linux host machine.

INTRODUCTION

 ZEBRA TECHNOLOGIES 4

2.0 Revision History

REV DESCRIPTION DATE AUTHOR

1.0 Steps and procedure to develop, debug and package

embedded application for Zebra C/C++ sample application

04-Jan-

2019

1.1 • Updated steps with added gdb support

• Modified steps for strict host key checking SCP for gdb file

transfer

09-Apr-

2019

1.2 Added C++ steps

Added scp key for Ubuntu server

Added Debian package creation

03-

May-

2019

1.3 Added Debian package installation process 24-

May-

2019

1.4

⚫ dos2unix conversion executed on script files in debian

installables

⚫ Updated the SDK file names in new format

⚫ Corrected hyphens to underscore in section 9 for

basicdebtest-2.0-1

⚫ Java 8 installation added in prerequisites

23-

June-

2019

1.5 ⚫ Modified the document in removable of repeated

build/debug steps in section 7.

⚫ Section 6 updated for C/C++ application compiler’s include

path, library path, libraries, compiler/linker flags.

⚫ Modified c/c++ application projects of SDK in single

workspace instead of individual workspace and user guide

contents are updated for same.

⚫ Procedure to execute RFID sample application at RFID

reader.

30-

April-

2020

REVISION HISTORY

 ZEBRA TECHNOLOGIES 5

3.0 Pre-Requisites

• Host Machine running with Ubuntu 16.04/Fedora 27 (64-bits x86)

• Host Machine with minimum of 8GB RAM (16GB recommended) preferred with 40GB free

space, Intel Core i7 CPU

• Installation files:

 Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux_V1.0.1.tar.gz

(tarred/compressed file) or

 ZebraFXSeriesEmbeddedSDKCCPPLinux_1.0.1.deb (debian package)

provided by Zebra.

• Target Machine ‘RFID Reader FX Series FX9600/FX7500’ with firmware Version 3.x.x or

higher

• Ensure that both target/host service port (22) is up

• Ensure latest Java (java 8) is installed in the host

• RFID API documentation (RFID3_SDK_C_Help.chm) in the doc folder can be viewed using

kchmviewer. This can be installed as below.

Ubuntu 16.04:

sudo apt-get update

sudo apt-get install kchmviewer

Fedora:

yum install kchmviewer-qt

PRE-REQUISITES

 ZEBRA TECHNOLOGIES 6

4.0 SDK Install
This section describes the steps involved for installing Zebra Native C/C++ SDK on Linux host Ubuntu

16.04 machine.

4.1 Install C/C++ SDK debian package (Ubuntu 16.04)
Note: Debian package installation is supported only with Ubuntu-Linux
Host machine used is Ubuntu-16.04

Download the deb file "ZebraFXSeriesEmbeddedSDKCCPPLinux_1.0.1.deb" from Zebra ftp site.

Install Command

• "sudo dpkg -i ZebraFXSeriesEmbeddedSDKCCPPLinux_1.0.1.deb"

Once installation is done, SDK will be installed in
/usr/share/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux directory
In Debian Zebra installed packages above path will become the default installation path

Using GUI browse to the new path

/usr/share/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux

Jump to Figure 4 in the section below and follow the same steps thereafter considering

/usr/share/Zebra-FXSeries-Embedded-Native-C-SDK-Linux

as the default install-path for Debian Zebra package installations only.

Note:

For removal of Debian zebra C/C++ package is required, then come out of the installation path

(/usr/share/Zebra-FXSeries…../) into some other directory and then use command

• “sudo dpkg -r zebrafxseriesembeddedsdkccpplinux”

This will remove the installed Debian Zebra C/C++ package from the default path.

Issue while installing deb package

Sometimes users may face the lock problem while trying to install using Debian package.

 dpkg: error: dpkg status database is locked by another process

Solution to unlock and install

First run:

 lsof /var/lib/dpkg/lock

Then make sure that process isn't running:

ps cax | grep PID

If it is running:

kill PID #wait kill -9 PID

C/C++ SDK INSTALL C/C++ SDK INSTALL

 ZEBRA TECHNOLOGIES 7

Make sure process is done:

ps cax | grep PID

Then remove the lock file:

sudo rm /var/lib/dpkg/lock

Let dpkg fix itself:

 sudo dpkg --configure -a

After this dpkg installation should work fine

4.2 Install Native C/C++ SDK tar file (Fedora/Ubuntu)

Tar file can be installed in Ubuntu/Fedora as follows.

Copy the Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux_V1.0.1.tar.gz file provided by Zebra in

any of the host machine directory; this will be the install base directory (i.e. <installation-path>).

Extract the tar file as shown below:

Figure 1: Tar File

Right-click on the tar file, and select Extract Here as shown in Figure 2.

 ZEBRA TECHNOLOGIES 8

Figure 2: Untar SDK

After successful extraction, the folder will be visible as shown below. Double-click the folder to see

that the respective folders are present.

Figure 3: Untarred Directory

Double-click on the untarred folder ‘Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux’

Verify that required directories are available as per following Figure 4.

 ZEBRA TECHNOLOGIES 9

Figure 4: SDK Base Directory

Double-click the eclipse directory to verify that required files are available as per Figure 5.

Figure 5: Eclipse Directory

Note:

Once installation is done, in case of non-Debian (using tar file) default installation, SDK will be

installed in, <installation-path>/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux folder.

 ZEBRA TECHNOLOGIES 10

5.0 Starting C/C++ SDK

To start the SDK double-click or right-click and select ‘Run’ on the eclipse executable file inside

eclipse directory as shown in Figure 6

Figure 6: Right-click on the Eclipse Executable File

The following eclipse will pop-up as per Figure 7 and later workspace window will be showcased as

per Figure 8.

Figure 7: Eclipse Screen

STARTING SDK

 ZEBRA TECHNOLOGIES 11

As shown in Figure 8, click on the Browse button to select the workspace directory.

Figure 8: Workspace Popup

Select the workspace directory path as shown in Figure 9 below.

Select till C or C++ in case of C or C++ application respectively.

About default Eclipse Projects: Both debian package (i.e.

ZebraFXSeriesEmbeddedSDKCCPPLinux_1.0.4.deb) and tarred/compressed file (i.e. Zebra-FXSeries-

Embedded-SDK-C-CPP_Linux_V1.0.4.tar.gz) contains C application project as ‘RFIDSample4App-C’

and C++ application project as ‘RFIDSample4App-CPP’ under Eclipse workspace at folder

‘<installation-path>/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux/samples/workspace’.

Figure 9: Select Workspace Directory

 ZEBRA TECHNOLOGIES 12

Select the workspace of

‘[install-path]’/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux/workspace for C/C++ applications

and click OK.

After selection of workspace directory, click on Launch button as shown in figure 10.

Figure 10: Eclipse Launch

Once Eclipse opens up, please click on Project Explorer Tab as per Figure 11. The Figure 11, shows

both C application project ‘RFIDSample4App-C’ and C++ application project ‘RFIDSample4App-CPP’ .

The following steps like build, debug, packaging, deployment are based on C application project ‘

RFIDSample4App-C’ is as well as applicable to C++ application project ‘ RFIDSample4App-CPP’.

Figure 11: RFIDSample4Appp-C/ RFIDSample4Appp-CPP Projects

 ZEBRA TECHNOLOGIES 13

6.0 C/C++ Sample Application Build and Debug

This section describes build and debugging steps for C application project ‘RFIDSample4App-C’.

Note: If default perspective is not C/C++ in eclipse, then we can enable by 2 methods

Method 1:

Click on the following icon in eclipse.

Figure 12: C/C++ Perspective Icon

Method 2:

Click on open perspective.

Figure 13: Open Perspective Icon

Select C/C++ (default) and click Open.

Figure 14: C/C++ Selection View

C/C++ SAMPLE APPLICATION BUILD AND DEBUG

 ZEBRA TECHNOLOGIES 14

6.1 Building C/C++ Executable Binary File

This section explains the steps on how to clean and build c application binary executable

‘RFIDSample4App-C’. Select the project name ‘RFIDSample4App-C’ and go to menu ‘Project’ item

and select ‘Clean’.

Figure 15: Project Clean View

 ZEBRA TECHNOLOGIES 15

Note: Disable “Start a build immediately” checkbox.

Click on Clean button in clean popup which appears as per figure 16.

Figure 16: Project Clean Popup View

Select Project (RFIDSample4App-C) and go to Project menu and select Build Project.

Figure 17: Build Project View

 ZEBRA TECHNOLOGIES 16

After build the results are shown in the Console tab.

Figure 18: Project Details Window View

 ZEBRA TECHNOLOGIES 17

6.2 Debug Embedded RFID C/C++ Application

This section explains detailed steps on debugging RFID sample C application.

In the Project Explorer view, Right-click on the Project name RFIDSample4App-C and

click on Debug As -> Debug Configurations as shown in the figure 19

Figure 19: Project Debug View

 ZEBRA TECHNOLOGIES 18

6.3 Setup RFID C Remote Debug Configuration.

This section explains the steps on how to setup remote debug configuration on target ‘Reader

FX9600/FX7500’.

RFIDSample4App-C binary file built on Linux host machine from eclipse will be transferred to target’s

‘ /apps’ directory

To connect to target and transfer the built binary, new connection should be made between target

and host machine.

Follow the below steps to create new configuration as in figure 20.

Figure 20: Debug New Configuration.

 ZEBRA TECHNOLOGIES 19

Follow the below steps to select program ‘RFIDSample4App-C’ as shown in figure 21 (a). Similary

also shown for ‘RFIDSample4App-CPP’ program selection for CPP application at figure 21(b).

Figure 21(a): Select C application Program View

figure 21(b): Select CPP application program View

 ZEBRA TECHNOLOGIES 20

Select “New” as shown in figure 22

Figure 22: Debug Configuration New Connection View

In Create a new connection pop-up, choose connection type, select “SSH” from drop down and click

“OK”

Figure 23: SSH Connection View

 ZEBRA TECHNOLOGIES 21

Enter Details of the RFID Reader FX9600 /FX7500 target

Enter Connection Name “FX9600”

Enter RFID Reader IP address “xxx.xxx.xxx.xxx” in the Host field

Enter User name “rfidadm”

And select “Password based authentication” radio button and leave Password field empty as shown

in figure 24 and click “Finish” button

Figure 24: New Connection Window View

C/C++ SAMPLE APPLICATION BUILD AND DEBUG

 ZEBRA TECHNOLOGIES 22

Select Connection name, say FX9600 and provide the path of the RFID Reader target where the

binary executable needs to be saved on the Remote Absolute Path (“/apps/RFIDSample4App-C”) as

shown in Figure 25(a) for C application project (RFIDSample4App-C). Similarly applicable for C++

application project (RFIDSample4App-CPP) where the binary executable needs to be saved on the

Remote Absolute Path (“/apps/RFIDSample4App-CPP”) as shown n Figure 25(b).

Figure 25(a): New Connection Apply Window View for C application project

C/C++ SAMPLE APPLICATION BUILD AND DEBUG

 ZEBRA TECHNOLOGIES 23

Figure 25(b): New Connection Apply Window View for C++ application project

Command to execute before application run is explained below

Copy gdbserver file to the RFID Reader target board only for the first time for debugging.

The following command copies the gdbserver file from SDK samples directory from the Linux

Ubuntu/Fedora host machine onto the RFID reader target in /tmp directory

C/C++ SAMPLE APPLICATION BUILD AND DEBUG

 ZEBRA TECHNOLOGIES 24

for Ubuntu Desktop 16.04

“scp -oStrictHostKeyChecking=no -oUserKnownHostsFile=/dev/null <user>@<Linux-host-

IP>:/<installation path>/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux/samples/gdbserver

/tmp”

Note: for Ubuntu Server 16.04 edition use the command given below

“scp -oKexAlgorithms=+diffie-hellman-group1-sha1 -oStrictHostKeyChecking=no -

oUserKnownHostsFile=/dev/null <user>@<Linux-host-IP>:/<installation path>/Zebra-FXSeries-

Embedded-Native-SDK-C-CPP_Linux/samples/gdbserver /tmp”

Above command downloads gdbserver file from Linux Ubuntu/Fedora host machine (IP address

whose IP address is given in the command) then followed by samples directory path on Linux Host

Ubuntu/Fedora machine, "/tmp" directory specify the path on the RFID reader where gdbserver file

is downloaded.

Paste the above command given in bold in the “Commands to execute before application is run” box

and click Apply a shown below.

Figure 26: Commands to execute before application

Make sure “Gdbserver Settings” is set to /tmp/gdbserver

Figure 27: Debugger -> Debugger Options -> Gdb Server settings

 ZEBRA TECHNOLOGIES 25

Next select Debugger tab -> Debugger Options -> Main tab and click on Browse button

Figure 28: New Connection Debugger Window View

Make sure Cross GDB path is set properly

Navigate to “<install_path>/Zebra-FXSeries-Embedded-Native-SDK-C-

CPP_Linux_V1.0.4/tools/armhfp-gnueabi/bin“ directory and select the ARM cross gdb debugger

(“arm-montavista-linux-gnueabi-gdb”) as shown in the Figure 29 and click OK.

C/C++ SAMPLE APPLICATION BUILD AND DEBUG

 ZEBRA TECHNOLOGIES 26

Figure 29: GDB Debugger View

Click “Apply” button in Debug Configurations window

Next click on Debug button as shown in the Figure 30.

Figure 30: GDB Debugger Apply View

 ZEBRA TECHNOLOGIES 27

The following figures of 31, 32, 33 and 34 may be encountered while setting up the remote

connection for the first time with a fresh new Linux user. Click on “Yes”, “OK” buttons as shown

below.

Figure 31: Authentication 1

C/C++ SAMPLE APPLICATION BUILD AND DEBUG

 ZEBRA TECHNOLOGIES 28

Figure 32: Authentication 2

Figure 33: Authentication 3

Figure 34 : Authentication 4

The “Problem Occurred” error window will popup, click on “OK” as per the following figure 35.

 ZEBRA TECHNOLOGIES 29

Figure 35: Problem Occurred popup view

Now click the top left second button, Launch in ‘Debug’ mode

Figure 36: Launch in ‘Debug’ mode

The following console displays the password prompt

Figure 37.1: Password prompt

 ZEBRA TECHNOLOGIES 30

Enter your linux host user password in the console window password prompt

Figure 37.2: Enter Password

The Confirm Perspective Switch popup window will appear as per figure 36, click “Switch” button

Figure 38: Confirm Perspective Switch

C/C++ SAMPLE APPLICATION BUILD AND DEBUG

 ZEBRA TECHNOLOGIES 31

Right click RFIDSample4App-C’s pre defined break point address and click Resume for the debug to

continue as shown in the figure 39

Figure 39: Debug Console view

The application will halt at the pre-defined breakpoint

Next click on the resume button again

 ZEBRA TECHNOLOGIES 32

Figure 40.1: RFIDSample4App-C console breakpoint

The application output will be seen as per figure 40.2

Figure 40.2: RFIDSample4App output View

 ZEBRA TECHNOLOGIES 33

7.0 Embedded RFIDSample4App C/C++ Application from
scratch

This section describes the detailed steps to create embedded C/C++ RFIDSample4App from scratch.

The steps involved are:

• Create Workspace

• Create Project

• Add sources and header files

• Add header file include path, library path, libraries

• Add compiler and linker flag

• Clean and build steps

• Debug embedded C/C++ RFID application

• Creation of start and stop script for C/C++ installation package

NOTE :

Wherever the steps for C & C++ application project/workspace differ, it will be mentioned here with

step/screenshot of C application project/workspace first, followed by the step/screenshot for C++

application project/workspace. If not stated separately then one can assume the steps are same.

Figure xx(a) is for C application project/workspace and Figure xx(b) is for C++ application

project/workspace.

(Also for C project work with .c files and for C++ project work with .cpp files).

 The assumption is both C /C++ application project doesn’t belong to same workspace. It is show

both projects are under it own worrkspace.

7.1 Creating a Workspace

Navigate to ‘[installation-path]’/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux/eclipse/’.

Double-click on eclipse executable file.

Under Eclipse Launcher popup window, click on Browse for workspace as per figure 41.

EMBEDDED RFID C/C++ APPLICATION

 ZEBRA TECHNOLOGIES 34

Figure 41: Eclipse Launcher

Select the directory path where the RFID sample application has to be created from scratch.

The following figure 42 shows the creation of new directory for this.

Figure 42: Creating new workspace

The following figure 41 depicts selection of newly created directory as workspace directory.

Click on Launch

 ZEBRA TECHNOLOGIES 35

Figure 43: Eclipse Launcher

Following eclipse welcome screen shows up

Figure 44: Welcome to the Eclipse

Close this Welcome tab inside eclipse.

7.2 Creating an Embedded RFIDSample4App C/C++ Project

Create a new Project RFIDSample4App in the Eclipse

Select File->New->Project

Figure 45: C Eclipse IDE View

 ZEBRA TECHNOLOGIES 36

Expand C/C++ Folder and Select “C Project” and click “Next” button as shown in the figure 46(a)

Figure 46(a): New Project view for C application

Figure 46(b): New Project view for C++ application

 ZEBRA TECHNOLOGIES 37

In the C Project Window or C++ Project Window, as the case may be, enter the Project name as

“RFIDSample4App”

For Project Type select “Empty Project”

For Toolchain select “Cross GCC” and select “Next” button as shown in figure 49.

Figure 49: New Project Select Type view

 ZEBRA TECHNOLOGIES 38

Select “Next” button in Figure 48

Figure 48: Create C or C++ Project View

EMBEDDED RFID C/C++ APPLICATION

 ZEBRA TECHNOLOGIES 39

Under C or C++ Project window, Set the following parameters.

 1. Cross Compiler Prefix -> “arm-montavista-linux-gnueabi-“.

 2. Click on Browse button to set the Cross-compiler path as shown in figure 49.

Figure 49: Project Finish Button view

Select “[Installation-path]/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux/tools/armhfp-

gnueabi/bin” directory and click OK

 ZEBRA TECHNOLOGIES 40

Figure 50: Cross Compiler Path Selection

 ZEBRA TECHNOLOGIES 41

Click on Finish button.

Figure 51: Cross Compiler Path Selection

Open Associated Perspective window may appear, click on Open Perspective button.

Figure 52: Open Perspective view

 ZEBRA TECHNOLOGIES 42

7.3 Adding Source Files to Embedded RFIDSample4App C/C++ Project

In this section source files will be added to RFIDSample4App project

Add “inc” and “src” directory

In the Project Explorer View, right-click on the project RFIDSample4App, Select->New->Folder.

Figure 53: RFID Folder Creation view

Select “RFIDSample4App”

Enter Folder name as “inc” as shown in the figure 52 and click “Finish” button.

Figure 54: RFID Folder Name view

 ZEBRA TECHNOLOGIES 43

Add “src” directory following same above steps as mentioned to add “inc” directory.

Similarly, create ‘’src” folder under “RFIDSample4App” project.

Add source files to “inc” and “src” directory

Right-click on “inc” directory, select New->File as shown in the figure 55

Figure 55: RFID inc view

Enter the File name as “common.h” the header file as shown in the figure 56 and

click “Finish” button.

Figure 56: common.h view

 ZEBRA TECHNOLOGIES 44

Similarly, add “common.c” and “RFIDSample4App.c” source files to “src” directory

Listing of files is shown below in the figure

List of Files added to project

Figure 57(a): List of Files in RFIDSample4App project for C application

Figure 57(b): List of Files in RFIDSample4App project for C++ application

 ZEBRA TECHNOLOGIES 45

Copy the source code from the samples C directory (from the untarred package

“[install-path]/Zebra-FXSeries-Embedded-Native-SDK-C-

CPP_Linux/samples/workspace/RFIDSample4App-C”,

copy the respective files from inc and src directories) provided and save it by clicking Save All.

Figure 58(a): Adding source files for C application

For C++ application project, copy the source code from the samples C++ directory (from the untarred

package “[install-path]/Zebra-FXSeries-Embedded-Native-SDK-C-

CPP_Linux/samples/workspace/RFIDSample4App-CPP”,

copy the respective files from inc and src directories) provided and save it by clicking Save All.

Figure 58(b): Adding source files for C++ application

 ZEBRA TECHNOLOGIES 46

7.4 Setup Cross Compiler and Library Environment for Embedded Native C/C++

Project

In the Project Explorer view, select RFIDSample4App project, click on Project->Properties

as shown in Figure 59.

Figure 59: Project Properties

In the Properties Window of RFIDSample4App project

Select and expand “C/C++ General“ in left panel

Click on “Path and Symbols”

Under “Includes” tab, Select “GNU C” as language for C application

Figure 60(a): Properties Window RFIDSample4App for C application

 ZEBRA TECHNOLOGIES 47

In the Properties Window of RFIDSample4App project

Select and expand “C/C++ General“ in left panel

Click on “Path and Symbols”

Under “Includes” tab, Select “GNU C++” as language for C++ application

Figure 60(b): Properties for RFIDSample4App for C++ application

NOTE: For C & C++ applications, rest of the steps will be similar except Language selection and until

further depicted. Hereby, continuing further description with C language selected for C application.

 Click “Add” button, which will pop up the “Add directory path” Window as shown below in the

figure

Click “workspace” button.

Figure 61(a): Add Directory Path-workspace

 ZEBRA TECHNOLOGIES 48

Expand “RFIDSample4App” folder,

Select “inc” folder from workspace and

Click “OK”

Figure 61(b): inc folder selection from workspace

 ZEBRA TECHNOLOGIES 49

Ensure the directory is taken up correctly and “is a workspace path” gets enabled

Click “OK”

Figure 61(c): Added inc folder in workspace

 ZEBRA TECHNOLOGIES 50

Click “Add” button, which will pop up the “Add directory path” Window as shown below in the figure

Click “Filesystem” button.

Figure 61(d): Add Include Directory Path-File system

Add include path by navigating to

“[Installation-path]/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux/RFID_C_API/include”

directory as shown below in the figure. And click “OK” button.

 ZEBRA TECHNOLOGIES 51

Figure 62: RFID A API include path

Click “Ok” Button under Add directory path window

Figure 63: Add directory path-File system

 ZEBRA TECHNOLOGIES 52

Figure 64(a): C project include path view

Figure 64(b): C++ project include path view

To Add “Library Paths”, click on “Library Paths” tab as shown in the figure 65.

Add following Library paths

1. “[Installation-path]/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux/RFID_C_API/lib”

2. “[Installation-path]/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux/rootfs/usr/lib”

3. “[Installation-path]/Zebra-FXSeries-Embedded-Native-SDK-C-CPP_Linux/rootfs/lib”

 ZEBRA TECHNOLOGIES 53

Figure 65: Add library paths in C application and as well as the same applicable to C++ application.

Click Libraries tab, Click on Add button,

In the Pop Up “Add” Window

Enter “rfidapi32” as the library name as shown in the figure 66 and click OK button.

Figure 66: rfidapi32 view

Likewise add other set of libraries (gnutls, nettle, curl, xml2, ssl, ltk, crypto, ssh2, z, pthread, idn,

hogweed, gmp, unistring). Below are figure 67(a) and 67(b) shown after adding the list. This is

applicable to both C/C++ application.

 ZEBRA TECHNOLOGIES 54

Figure 67(a): library list view 1

Figure 67(b): library list view 2

In Properties Window for RFIDSample4App

Expand “C/C++ Build” section

Navigate to “C/C++ Build” ->Settings->Tool Settings->Cross Settings

Click “Cross Settings” as shown in the figure below

Make sure Prefix is “arm-montavista-gnueabi-“

Make sure Toolchain path is set to “[Installation-path]/Zebra-FXSeries-Embedded-Native-SDK-C-

CPP_Linux/tools/armhfp-gnueabi/bin”

Figure 68: Cross Settings

 ZEBRA TECHNOLOGIES 55

For C application, set Cross GCC Compiler flags:

In Settings->Tool Settings->Cross GCC Compiler->Miscellaneous-> Other flags,

enter extra flags of below as shown in Figure 69(a).

“ -c -fmessage-length=0 -DUNICODE -mfloat-abi=hard”

Figure 69(a): Cross GCC Compiler flag settings

 ZEBRA TECHNOLOGIES 56

For C application, set Cross GCC Linker flags:

In Settings->Tool Settings->Cross GCC Linker->Miscellaneous-> Linker flags,

enter extra flags of below as shown in Figure 69(b).

“-DUNICODE -mfloat-abi=hard”

Figure 69(b): Cross GCC linker flag settings

For C++ application, set Cross G++ Compiler flags:

In Settings->Tool Settings->Cross G++ Compiler->Miscellaneous-> Other flags,

enter extra flags of below as shown in Figure 69(c).

“ -c -fmessage-length=0 -DUNICODE -mfloat-abi=hard”

Figure 69(c): Cross G++ compiler flag settings

 ZEBRA TECHNOLOGIES 57

For C++ application, set Cross G++ Linker flags:

In Settings->Tool Settings->Cross G++ Linker->Miscellaneous-> Other flags,

enter extra cross linker flags of below as shown in Figure 69(d).

“ -DUNICODE -mfloat-abi=hard”

Figure 69(d): Cross G++ linker flag settings:

 ZEBRA TECHNOLOGIES 58

You may find this pop up, click “Yes” button on the Settings window.

Figure 70: Cross GCC Linker view

7.4 Build/Debug Embedded Native RFIDSample4App C/C++ Project.

 The building and debugging the C/C++ application project is applicable as mentioned in section

6.0.

 ZEBRA TECHNOLOGIES 59

8.0 Create Start and Stop Scripts of C/C++ Installation Package

Creating Start and Stop Scripts for C/C++ Installation Package

1. Copy start_sampleapp.sh and stop_sampleapp.sh from: [Embedded SDK Install folder]/Zebra-

FXSeries-Embedded-Native-SDK-C-CPP_Linux/samples/sampleScripts/c_c++/ into the build directory,

which is the application directory (i.e., /apps)

2. Rename the script files start_sampleapp.sh and stop_sampleapp.sh to start_appname.sh and

stop_appname.sh with the executable file name (existing as “RFIDSample4App”) as appname.elf OR

appname.

3. Replace line /apps/%sampleapp% & in start_appname.sh with /apps/appname.elf & or

/apps/appname & (same as the executable name).

4. Replace the line EXECUTABLE_NAME=%sampleapp% in stop_appname.sh with

EXECUTABLE_NAME=appname.elf or EXECUTABLE_NAME=appname (same as the executable name).

START AND STOP SCRIPTS FOR RFID INSTALLATION PACKAGE

 ZEBRA TECHNOLOGIES 60

9.0 Embedded Application Installation Package Creation

9.1 Embedded application package creation
To create an FX RFID Reader Embedded Application, install package on Ubuntu 16.04 OS based host

system, follow the steps

1. Create the Debian package directory structure as shown below

RFIDSample4App_2.0.1

├── DEBIAN

│ └── control

├── RFIDSample4App (any C/C++ executable file)

├── start_RFIDSample4App.sh

└── stop_RFIDSample4App.sh

Inside RFIDSample4App_2.0.1 directory there are

1 directory and 4 files

In the above directory structure, 2.0.1 is the version

“RFIDSample4App” is the build directory name. It contains one directory “DEBIAN” with single

control file is explained later.

“RFIDSample4App” directory contains start and stop script along with executable file (C/C++).

2. Example details of control File

=============

Package: RFIDSample4App

Version: 2.0.1

Section: base

Priority: optional

Architecture: all

Maintainer: name <email@address.com>

EMBEDDED APPLICATION INSTALLATION PACKAGE CREATION

 ZEBRA TECHNOLOGIES 61

Description: Basic Debian Test

=============

Create control file containing the following fields to be updated as shown above

1. Package

2. Version

3. Priority

4. Architecture

5. Maintainer

6. Description

For further details please refer https://www.debian.org/doc/debian-policy/ch-controlfields.html

3. Create Start and Stop scripts for the embedded application in [Build folder], which is the

application folder as mentioned in section 8.

4. Ensure that dpkg-deb is installed on the host

5. Go to the parent directory of folder ‘RFIDSample4App_2.0.1/’.

6 Run the below command

dpkg-deb --build -Zgzip RFIDSample4App_2.0.1

deb package will be created in the parent directory

7. Using web UI, install the deb package on the RFID reader

NOTE: Ensure execution permission is provided for the file, the Start and Stop script. If not, use the

chmod +x command to change permission of files.

NOTE: The name of the package and name of the application are the same.

NOTE: Package, Version, and Maintainer are mandatory. There are many optional fields in the

control file.

9.2 Installation and Removal of application package On RFID reader using UI

Below listed steps will help in installing and uninstalling application package on RFID reader

Once login to web console of RFID reader

Step 1: Application -> Install New Package -> Browse (Select the created deb package).

https://www.debian.org/doc/debian-policy/ch-controlfields.html

 ZEBRA TECHNOLOGIES 62

Step 2: Application package should be listed in List of installed apps as shown in figure below.

Step 3: Click on Start or Stop circular button to Start or Stop the application executable.

Step 4: To Uninstall or remove application package, click on uninstall button in the figure below.

Figure 71: User Application Page

Login to Reader through remote terminal/console as user ‘rfidadm’ and execute RFID Sample

application as ‘/apps/RFIDSample4App. Note: The using of start and stop circular button/auto start

is not applied to RFID sample C/C++ application since it will be executed as background process,

which requries user inputs from console.

