g~

v-ﬁ—'_‘——w

= PROCEEDINGS
¥ of the FIRST
® SPACEBORNE
COMPUTER
SOFTWARE
WORKSHOP

20—22 SEPTEMBER 1966

SPONSORED BY THE AIR FORCE SPACE SYSTEMS DIVISION AND
THE AEROSPACE CORPORATION

HELD AT THE AEROSPACE CORPORATION, EL SEGUNDO, CALIFORNIA

PROCEEDINGS PUBLISHED BY SYSTEM DEVELOPMENT CORPORATION

2500 COLORADO AVE., SANTA MONICA, CALIF. ;

, * PROCEEDINGS OF THE FIRST
SPACEBORNE COMPUTER SOFTWARE WORKSHOP

Sponsored by the
Air Force Space Systems Division
and

The Aerospace Corporation

Held at the
Aerospace Corporation

El Segundo, California

on
20-22 September 1966

Proceedings published by the

System Development Corporation

The views, conclusions, and recommendations expressed in this document do
not necessarily reflect the official views or policies of agencies of the

United States Government.

This document was produced by System Development Corporation in performance
of Contract Number AF 19(628)-5166. Permission to quote from this document
or to reproduce it, wholly or in part, should be obtained in advance from
The Deputy For Technology, Space Systems Division, Air Force Systems Command.

m e e

oy

THEME

The United States Space Program is investing
an increasing proportion of its funds and reliance
on the digital computer; both on the ground and on
board the spacecraft. 1In the on~board case, this
has been made possible by the rapid advances in
miniaturization which have led to the achievement
of the computing power of a medium-sized general
purpose ground computer within the physical dimen-
sions of ‘a desk calculator. But what is the .
situation in the programming of these computers?
Has the software technclogy made a corresponding
advance to exploit the new hardware? What has
it done to minimize errors, effort, time and
cost? 1Is it helping to narrow the gap between
the application problem and the computer? What
potential has it acquired to influence the course
of future hardware development? '

The objectives of this workshop are: first,
to encourage the exchange of experiences and
ideas among spaceborne software specialists;
second, to assess the state of spaceborne
software in the context of software technology
as a whole; and third, to initiate a search
for definitions and guidelines for application
in future spaceborne software development.

iii

\4‘ — . B ‘ . .

CONTENTS

PREFACE

'SESSION 1 - OPENING SESSION

Session. Summary

Major M. A. Ikezawa
Air Force Space Systems Division

Aerospace Software in Perspective

L. J. Andrews
Aerospace Corporation

Software State of Art

T. B. Steel, Jr.
System Development Corporation

Current Trends in Aerospace Computation

Dr. B. W. Boehm
RAND Corporation

SESSION 2 - THE STATE OF SPACEBORNE SOFTWARE

" Session Summary

Dr. Walter A. Sturm
Aerospace Corporation

The Gemini Computer Software System
P. P. Mooney

Federal Systems Divislon
Space Systems -Division

*Software Aspects of the Maneuvering Ballistic Re~Entry Vehicle

P. L. Phipps
UNIVAC -Defense System Division

*This document was not available at the time of publication of the
proceedings. See note on referenced page.

13

29

31

49

e e R

- el

SESSION 4 - LANGUAGE AND PROCESSOR CONSIDERATIONS FOR SPACEBORNE SOFTWARE

Session Summary
Ralph B. Conn
Aerospace Corporation
San Bernardino Operations

*Language Features of the Apollo Guidance Computer

T. J. Lawton and C. Muntz
MIT Instrumentation Laboratory

Application of NELIAC to Aerospace Programming

Dr. G. Graham Murray
General Precision, Inc.

Considerations in Selecting a Spaceborne Programming Language

T. C. Spillman
IBM Federal Systems Division

Standardize the System, Not the Language!

M. I. Halpern
Lockheed Missile and Space Company

Phoenix Compiler Language and Software System

A, J. Stone
Hughes Aircraft Company

Effeciency Considerations of Problem-Oriented Processor Design

Vilas D. Henderson and E. L. Smith
Logicon, Inc.

Preliminary SDC Recommendations for a Common Spaceborne Programming
Language

L. J. Carey and W. E. Meyer

System Development Corporation

*This document was not available at the time of publication of the
proceedings. See note on referenced page.

vii

187

191

193

205

211

223

235

253

e B e B B

f—

e I

e B

 SUMMARY OF SESSION 1
by

Major M. A. Ikezawa
Air Force Space Systems Division

This session was intended to keynotg the workshop with a set of
observations by computer pergonalities from three institutions which
have worked closely with Air Force problems. It was also intentional
that the three speakers represent different subsets of the éomputer world.

The first speaker, Ladimer J. Andrews of the Aerospace Corporation,
provided the original stimulus- from which the idea of the workshop evolved.
The comments he made were meant to be a re-creation of that originallstimulus
which he provided about two years ago.

The second speaker, Thomas B. Steel, Jr., of the System Development
Corporation, provided a provocative critique of spaceborne programming
from a broader software viewpoint. His well articulated observations elicited
much comment during the workshqp.

The last speaker, Dr. Barry W. Boehm of the RAND Corporation, brought
out some implications of aerospace computation in general.

The session was opened by Col, D. V. Miller, Vice-Commander of the

Air Force Space Systems Division,

3
(page 4 blank)

_* S

— s

AERO/SPACE SOFTWARE IN PERSPECTIVE k
|

by
L. J. ANDREWS

Aerospace Corporation

INTRODUCTION

Several years ago it became apparent that the software costs associated with
aerospace equipment would soon approach the hardware costs. Order of magnitude
decreases in component costs coupled with more demanding and sophisticated
functional tasks has accelerated this tendency. What we would like to foresee

as an output from this workshop is an exposition of current software problems,

a dissemination of current practices, and inter-agency discussions leading to

the means and steps required to either effect a common usage of aerospace soft-
ware, or provide techniques for the expeditious generation and validation of
aerospace software. Whichever of these two approaches is favored certain

criteria of success are evident. Specifically, the actual cost of the generated
and validated program should be lower than present methods allow, the time to produce
the program and effect changes should be reduced, our confidence in the validity

of the flight program should be increased, the procedures or techniques used should
contribute to a growing body of knowledge, and the methods advocated should provide

a framework for orderly progress in keeping with state-of-the-art advances.

APPROACH
While it is not my intention to presuppose an outcome from this workshop, an
intriguing concept that satisfies the success criteria is that of an interservice

library of programs oriented toward the specialized needs of flight computers for

aircraft and space vehicles.

S—

. - —

N . - — 2 .

machine, with some difficulty, in a higher language that is very nearly machine
independent. This latter feature represents a formidable task especially when
the present specialization of aerospace computers is considered. But as in

vehicle and mission independence so also is progress being made toward machine

independence. Because of the tremendous strides being made in semiconductor
technology, the austere functional capability and the sparsity of parts formerly
required for reliability have been relaxed and near future flight machines are of

a much more general purpose nature. But beyond extending the sophistication of
airborne computers there are two trends in newer machine organizations that
considerably aid the cause. Paradoxically these trends are in opposite directioms.
The first is a trend to effect airborne and commercial instruction set compatibility
and the second is a trend to provide a problem-oriented machine instructions.

Both of these trends closely couple to the business of this workshop; the former
for the near term and the latter trend becoming of importance as the software goals,
the possibilities, and the detailed paths of progress become better defined. For
this reason we would like to anticipate that the results of this workshop, and
others to follow, can have a profound influence on machine organizations of the
future. To view this influence more pragmatically, a constant problem of the
machine manufacturer is to define a spectrum of requirements upon which to base

his next generation of airborne computers. Because the requirements for military
systems are usually not well known to industry far in advance, are subject to
redirection, (and is some cases vanish) the computer supplier has ample opportunity

to make very costly mistakes.

The concept of a modular library of programs tends to desensitize the mission
requirements from the machine organization to the benefit of both the supplier

and the customer. The notion is that the excellent measure of machine

' 7

— Wt - -

SOFTWARE STATE-OF-THE-ART

(A Summary of Mr. T. B. Steel's paper
by Mr. H. Tlger of the
System Development Corporation)

Software is more than just the computer program. It is the interfacing function
between hardware and skinware -- the latter, of course, being the man referred
to in man-machine relations. Software, then, means the programs, the procedures,

and the arrangement and format of input data.

The principal object of most software work is the object program. 1In this
respect, it is interesting to note a familiar comment that 857 of all NELIAC

code produced consists of the MELIAC compilers.

The language of software is the language used to communicate with the machine.
At first though, it would seem that our natural language would be ideal for

this. We are a long way from this stage at present.

The early languages used in programming were symbolic assembly languages with
a single, one-for-one representation of the binary machine code. This
permitted the user to defer or ignore details of assignment of locatiomns.

As more automated techniques developed more clerical and bookkeeping tasks

were performed for the programmer.

Next, languages became more like mathematical notation, such as FORTRAN.
By 1958, compilers were available which produced somewhat poor code. Then

came ALGOL and its derivatives -~ MAD, JOVIAL, NELIAC and others.

There have been many developments in the past ten years in procedure languages.
These are languages in which one describes the processing steps needed to solve
problems. That is, you solve the problem logically. That may change, and is

in the process of changing now, in a direction I will refer to a little later.

I would like to make some comments on language standardization. ALGOL has

generated many dialects, as have all the languages. There has not been

N o ﬁyk F—

‘4(/1 u : " A ' -

—— —— _— —

and guidance. Space will come to look more like ground-based systems.
In 5-10 years, we will have the equivalent of ground-based computers

in space.

In conclusion:

. The main differences between ground and space are

reliability and validation.

. The Information Processing community tolerates a wide

amount of unreliability.

. The costs of getting all the errors out is so high,

we can and do risk it.

. We need to get ways to check out systems.

. We need to be able to describe what we want to do.

. Automated checkout is needed.

. We need to be aware of the implications of failure.

11
(page 12 blank)

p— — —

SR Seee S

CURRENT TRENDS IN AEROSPACE COMPUTATION
AND SOME IMPLICATIONS

*
Barry Boehm

The RAND Corporation, Santa Monica, California

INTRODUCTION

ﬁ‘ ‘“ - -“ ‘ e q‘ . “ ‘- “’.i‘ -‘/ e l‘“ -‘.’l—- — - I. . . -J“ * e - ‘

In this talk, I will point out what appear to me to
be some salient trends in aerospace computation, and
indicate some possible windfalls or pitfalls which may
await the alert or unwary spaceborne software practitioner.

One trend which I wish I could guarantee is that

expressed -in a recent Los Angeles Times article [1],

citing salaries of $10,000 a year for beginning program-
mers and $25,000 a year for experienced ones, and quoting
the president of Digitek: 'The richest man on the earth
in the year 2000 will be a programmer."'r Although the
figures appear to be somewhat inflated, there's a trend

we'd all like to participate in!

*Any views expressed in this Paper are those of the
author. They should not be interpreted as reflecting the
views of The RAND Corporation or the official opinion or
policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff,

This Paper was presented at the SSD/Aerospace Work-
shop on Spaceborne Computer Software at Aerospace Corpora-
tion, El Segundo, California, 20 September 1966,

fIn one sense, this quote may be true because almost
everyone, rich or poor, may be '"programmers' by that time.
Even in its more straightforward interpretation, though,
the statement is worth a minute's thought: programmers are

often very close to fresh, critical information--a proximity

which has been the key to the development of many famous
fortunes,
13

1,000,000
s10 i ' ’
: . 100, 000
s Eoy
10,000 +
3 / 4
10¢ Millions 1.000 i 4’
of * M P
1 Additions Y LB
¢ per 3
Second 100 / i
' |
-le 10 ' i
l/ |
. 1
.0l¢ 1 i —
g 5
Lo
0016 . .1 - .
1955 60 65 70 75 1955 60 65 10 75

CosT
CPU/Storage cost tn dollars per million additions

COMPUTING POWER IN THE URITED STATES

Figure 1 Figure 2
'_.I
w
1,000,000 1,000
N '
100,000 100 “pe . .
| :
{
10,000 [} - ' e
1,000 1 _...~% .__“i [
|
; i i \
100 . N e .1 . _1 B .
10 .01
1955 60 65 70 75 1955 6 65 10 75
SPEED s1ze
CPU/Storage speed in thousands of additions CPU/Storage size in cubic feet

Figure 3 Figure &4

of these devices with each other and with CPU memories,
New terminal devices employing electronic and photo-
optical methods are being developed, providing an input-
output capability which is not only faster and more
reliasble than electromechanical devices, but often also,
as in the case of graphic input devices such as the light
pen and RAND Tablet, a more natural way to communicate.

Also, new methods of organizing CPUs are maturing,
particularly associative memories and multiprocessors.
The Westinghouse '"Solomon' computer will be capable of
performing approximately 1000 operations simultaneously;
Boeing's proposed Information Systems Simulator (ISS),
possibly 100,000 simultaneous operations,.

RANGE OF APPLICATIONS

e B e B B B B B B I B T I I

A fundamental law of human nature is that people
are insatiable: no matter how much they have, they al-
ways need a little more, This law has many forms (e.g.,
Parkinson's Second Law: '"Expenditure rises to meet
income'"; Second law of Communications Economics: ''Demand
eventually exceeds channel capacity') and is at least as
old as Eve and the Garden of Eden. ’

It is certainly true so far for cbmputing power,
Every increase in computer capability is matched by an
increase in the number, size, and complexity of problems
people need to have solved. Today's computer is being
used to optimize processes, such as boost trajectories
and chemical reactions, which its predecessor of a few
years ago could barely simulate. And more complex pro-

cesses in biology and meteorology which were infeasible

17

: i o . _ ”‘ ‘ I

software remains essentially a handicraft industry.
Programs are produced, one at a time and with great
personal care, like Harris tweeds or fine musical instru-
ments; some indeed have considerable aesthetic appeal.*
The concept of interchangeable parts is little used;
indeed, there are very few programming standards upon
which to base interchangeability. Some significant
progress has been made on assemblers and compilers, but
even here provisions for the inevitable debugging phase
are primitive. Conversion of programs from one machine
to another can be extremely dreary and time-consuming
work., Programming documentation is spotty: many programs
are useless if their author isn't around to explain them,
and most operating systems operate at a fraction of their
power because people can't penetrate the murky documenta-
tion that surrounds them. 1Is it any wonder that software

is scrambling to keep up?

IMPLICATIONS: PROGRAMMING STANDARDS

In the current software situation, then, it is
evident that the individual, firm, or country which finds
more efficient ways of producing software will be in a
position of considerable advantage. Thus, there is a
strong need for more natural problem-oriented languages,
programming languages and operating systems with more
helpful debugging features, acceptable programming stan-

dards, and more understandable documentation.

*
Save your old hand-coded computer programs. Some

connoisseur in the year 2066 will pay a fortune for them.

19

Sheutt Memey

and leave the earth at a distance of exactly one astro-

nomical unit from the sun.

Some Guidelines

- S

Here are some guidelines which I have found most

useful in the programming process [8]:

—_—

1) Wherever possible, use machine-independent
programming languages;

2) Encourage logical simplicity over slight gains
in program efficiency;

3) Develop programs in modular form;
4) Document with frequent examples;

5) Anticipate the direction of extensions to
programs, and provide a clean, well-defined
interface for incorporating them into a program,

Reference 9 contains a number of further useful guide-

lines.

Documentation

Some automated aids to documentation are becoming
available, such as Raytheon's program analyzer and the
NOTS flowchart producer, but people are still the key
to good documentation. Anyone who has attempted to plow
through IBM's five~foot shelf of System 360 documentation
is aware that quantity is no substitute for quality. I
would like to suggest a rule which I have found fairly
successful. This is the

Golden Rule of Documentation: Document

unto others as you would have others
document unto you.

Think about it. How often do you use a double standard

for documentation?

\

21

P < ! - i ¢ ' A‘; L — e . . . - - - o MJ . .

ool RN pe—

= i s

*\ - m AL‘ L m‘ m‘ . <, m

i — ow ;E i — - " ./ . o

decided to make the computer less accessible to engineers.
The management found a marked tendency for engineers to
use old designs and their extrapolations because computer
programs were available to analyze them, rather than
inventing new designs. The computer software system,
often in very subtle ways, can stimulate mediocrity rather

than creativity.

What Can We Do About It?

There are no panaceas, but there is one discipline
being developed which can shed light on such problems.
This is systems analysis, best described in Ref. 10, but
difficult to summarize because it is less a body of stan-
dard techniques than a state of mind. The systems analysis
approach commits the analyst to a careful definition and
continuous re-examination of his project's goals, to en-
sure that the problem he solves is the appropriate one.
It also involves him in a continuous confirmation of the
relevance of his efforts to the achievement of his goals,
to guarantee that his solutions solve the problems he wants
them to solve,

The key words are continuous and relevance., It is all

too easy to abrogate one's responsibility for maintaining
relevance, somewhere along the line, and to find brilliant
solutions to the wrong problems. It is especially easy
for computer software specialists to do so, and especially
dangerous, as the software system's limitations quickly
become project limitations--often in a way that the user,

who is taking a lot on faith, doesn't fully recognize.

23

* ﬁ.ﬂnf il yl“/ P ‘I‘J ‘i. _ i = N o ~ ‘/Y ‘ P i \.m i] l _ «E o . I‘ xl-i il‘liﬁ -, - .- ‘ ‘I"Ii m

— e

10.

REFERENCES

Sederberg, Arelo, '"'Software: Hard Knock for Computer
Industry," Los Angeles Times, Sec. 1, pp. 1-3,
September 18, 1966.

Armer, Paul, '"Computer Aspects of Technological Change,
Automation, and Economic Progress,'" in Technology
and the American Economy, Appendix Vol. I, The
Outlook for Technological Change and Employment,

U.S. Government Printing Office, February 1966,
pp. I-205 through I-232; also, The RAND Corporation,
P-3478, November 1966.

Ware, W. H., Future Computer Technology and Its Impact,
The RAND Corporation, P-3279, March 1966.

Rajchman, J. A., "New Trends in Computer Memories,"
Electronic Design, Vol. 12, No, 1, January 6, 1964,
pp. 53-59.

Adams Associates, Inc., Computer Characteristics

Quarterly, July 1966.

Hobbs, L. C., "Impact of Hardware in the 1970's,"
Datamation, Vol. 12, No. 3, March 1966, pp. 36-44,

Baker, R.M.L., and M. W. Makemson, An Introduction to
Astrodynamics, Academic Press, New York, 1960,

Boehm, B. W., "Development and Usage of the ROCKET
Trajectory Program,' Proceedings, ICRPG Working
Group on Design Automation, Chemical Propulsion
Information Agency Publication No. 92, September
1965; also, The RAND Corporation, P-3187, August
1965.

Bemer, R. W., "Economics of Programming Production,"
Datamation, Vol. 12, No. 9, September 1966,
pp. 32-39.

Quade, E. S. (ed.), Analysis for Military Decisions,
Rand McNally, Chicago, 1964.

25
(page 26 blank)

f— — R St [|] B sy — — [rom—— [sl recu—] o ro—" —

SESSION 2

The State of Spaceborne Software

Chairman: Dr. Walter A. Sturm
Aerospace Corporation

27
(page 28 blank)

4 . 4‘ o

— - . ‘_

SUMMARY OF SESSION 2

by

Dr. Walter A. Sturm
Aerospace Corporation

The three case studies presented in this session included three basically
different types of digital computers, and different time periods as well.
All of the presentations were based on a general discussion of the systems'
organizations from the viewpoint of software development. The first paper
emphasized the development of the software itself, and the simulation tools;
the second paper stressed the application of the management tools which were
used to control the software development; the third paper described the

problems associated with validating the flight software.

The fourth paper summarized the data collected by SDC in the course of their
industry-wide survey. The main point was that spaceborne software develop-
ment encompasses a striking assemblage of individual problems, each of which

is familiar to the experienced programmer in one application or another.

29
(page 30 blank)

: - — } — ‘: ! l —— !

e B B e B

THE GEMINI COMPUTER SOFTWARE SYSTEM
by
P. P. MOONEY

IBM Federal Systems Division

INTRODUCTION

In March of 1962, IBM was awarded a contract for development of the Gemini digifal
computer and system integration of the Inertial Guidance System (IGS) which included
the computer, an inertial platform, a keyboard and display unit, and an incremental
velocity indicator. Sometime later in the program, an Auxiliary Tape Memory was

added to the system.

The computer developed by IBM performs guidance and navigation calculations, based
upon sensor inputs, for Ascent Guidance, Rendezvous, Orbit Navigation, Orbit
Determination, Orbit Prediction, Touchdown Predict and Re-entry. It also performs
calculations for astronaut display, receives telemetry commands from the ground

and sends IGS telemetry information to the ground.

All of these computations are done in real time and therefore, the programming of
the computer is a task which is complicated by the attendent problems associated
with a real-time system. The following sections in this paper will discuss the
Gemini computer briefly and the programming considerations emanating from the
resultant design. Then, some of the programming problems which were encountered
will be presented along with the solutions implemented to overcome them. Next,
will be a discussion of the Gemini software tools which were developed and used
very successfully in the course of developing the flight programs for 12 Gemini

flights.

THE GEMINI COMPUTER

The Gemini Computer is a general purpose, binary, fixed-point computer, designed

for missile or space vehicles. The memory is random access.

31

m ot o) ~ m‘ " < h ‘ - . a

T — " . < . t .

o B e B I

There are basically two types of words in the computer. Namely, an instruction

word and a data word. Instructions are 13 bits in length as shown in the figure

below:

Instruction Word

4 bits 9 bits

OP Code Operand Address

A data word is 26 bits long, occupying Syllables O and 1 of a word. All data is in

two's compliment so there is no real-sign bit.

Data Word

26 bits

Since all 4 of the operation code bits of the instruction are

operation codes in the computer. They are:

used there are 16

ARITHMETIC LOGICAL BRANCH

1/0

CLA SHF (SHIFT) HOP

ADD AND TRA
SUB TMI

RSU (REVERSE TNz
SUBTRACT)

MPY

DIV

SPQ (STORE
PRODUCT/
QUOTIENT)

STO

CLD (CLEAR DIS-
CRETE)

PRO (PROCESS I/0)

33

Sl L] |}] gy Wiy |] —) f——

S ——

P R e e

e B I

In order to solve this problem, the ATM was developed. It is a magnetic tape with

the following characteristics:

length - 525 feet
speed - 1% inches/second
capacity -~ approximately 100,000 13-bit words

Since the ATM was incorporated in the middle of the project, the basic ground rule
for interfacing with the computer was minimum hardware changes to the computer.
This placed the burden of reading from the tape upon the program. The tape and
computer run asynchronously so that the critical timing was accomplished within
the program. It was required to sense the information coming from the tape, and
perform the necessary logic to store the data and return to look for more data be-

fore it passes under the read heads.

Since there are no record markers on the tape, programs on the tape are identified
by a program word which proceeds each program. Again, it is up to the tape read
subroutine to recognize the proper program number in order to begin reading in-

formation from the tape into memory.

The design of the ATM has significant influence on the programming of the Gemini
Computer., Since Syllable 2 of the memory is Read Only, and cannot be written into
with data from the tape, it was necessary to make the best use of this part of mem-
ory by putting a Hardcore program in this area. That is, it is necessary to define
a set of fixed subroutines which do not change for the remainder of the project.

The reason for this will be shown later. Therefore, all subroutines such as trigon-
ometric, log, tape read, telemetry, and keyboard were judiciously chosen to be
placed in the Hardcore. These are all subroutines which are non-mission dependent

and will never change.

35

— —_— ., A_U,_ _—

These instructions will be in various subroutines which will naturally be in several
different sectors. Therefore, the Residual sector becomes full quite fast. In the
following section, is a discussion on how the Assembly Program greatly helps to
overcome the problem of sectorized memory, and how to effectively use the feature

of the Residual sector. But, it also requires work on the programmer to make maxi-
mum use of the Residual memory. This is done by time sharing many of the loca-
tions in that sector. That is, by use of the Psuedo Operation, SYN, a core location
in Residual sector can be used by several different modes or subroutines. It is up
to the programmer to know which variables to time share. But, by very judicious
choices and thorough testing of the program, this concept has been successfully

employed and helped to maximize the use of available memory.

Also, relative to data access is a consideration of how to allot data and instructions

in each sector. A typical sector layout is shown in the figure below:

Inst Inst

Inst Sector

Data

Syl 0 Syl 1 Syl 2

Since Syllable 2 is a Read Only portion of memory, it almost always contains in-
structions. Only through use of a special mode (Halfword Mode) data can be read

from Syllable 2. Syllable 0 and 1 can be either instructions or data as can be seen.

. By observing this typical layout, one can see that there are two considerations that

the programmer must be concerned with, First, how many locations to allow for

data. Unfortunately, this process could not be automated in the assembler because

the sequential execution of instructions is within a syllable until a HOP instruction is

encountered (otherwise the instruction address register will count up to 256 and reset

37

,vv‘ #_ WA —

,‘ i y@,{

— ,,”_ - , A

——— i

but allows absolute coding when desired by the programmer. In addition, it also pro-
vides the capability for several psuedo operations which significantly ease the task

for the programmer.

It is designed such that the programmer give minimum attention to the problems in-
herent in a sectorized memory. In addition, extensive post-processor and pre-proces-
sor information is provided on the printout to aid in optimizing the source program
as well as preventing unnecessary delays in searching through the listing during
critical test and simulation periods. Another of the very useful features of the
assembler is an Edit pass, which precedes each assembly. This allows the programmer
to make changes to the source program through correction cards, and makes effective

use of tape operation.

The unique feature of the Gemini assembly program that is the key to optimum mem-
ory usage, is the Automatic Storage Allocator which is accomplished between pass
one and pass two of the assembly process, The design of this concept relieves the
programmer from specifying which variables and constants must be put in the Resi-
dual sector, and which ones should be in the other sectors. It operates on a

priority scheme which arrives at the most optimum use of the Residual memory.

CAPABILITIES OF THE ASSEMBLER

In order to give a deeper appreciation of the Gemini Assembler, it is well to present
a more detailed discussion of the various capabilities which the assembler provides
to the programmer. The capabilities which are in the resultant assembler were
arrived at by implementing, where possible, as many of the useful features found in
FMS, by creative thinking on the part of the assembler designers, and by requests

and suggestions from the application programmers. Several of the ideas have been
carried over into the design of the assembly programs for the IBM Saturn V computer.

Similarly, it lacks some useful features such as MACRO's which would be very useful,

39

- e _—_ . —

— il‘ ‘

A bit table by sector showing the locations in memory used by

the program,

PSUEDO OPERATIONS

The Gemini Assembler provides several psuedo operations for the programmer.

ID Card - Printed on each page of the printout
Comments Cards - Information to be printed out at the place

in the listing indicated by the sequence number. For instance:
ARC TANGENT SUBROUTINE

Origin (ORG) - This code causes the succeeding instructions to
begin at the sector, syllable and word coded in the location field
of the card. (Similar to FMS.)

Reserve (RES) - By use of this psuedo operation, the assembler

is told how many locations within a syllable it may use for in-
structions before starting in the next syllable.

Block Started by Symbol (BSS) - This specifies a block of storage
which has the left-hand symbol of the BSS card as the symbolic
name of the first word in the block., The location field of the
BSS card tells how many locations to be reserved (similar to FMS).
Equate (EQU) - This psuedo operation specifies the sector syllable
and word to which the left-hand symbol of the psuedo operation is
to be assigned. (Similar to FMS,)

Decimal (DEC) and Octal (OCT) - These psuedo operations

define the value to assigned to left-hand symbol. (Similar to
FMS."

Synonomous (SYN) - The card specifies the names of variables

and constants in the location field which are to be assigned the
same memory location as the left-hand symbol of the card.

(Similar to FMS,) ,
Pointer (PTR) - This psuedo operation generates a 13-bit word
containing the Gemini memory address of the variable given in

the location field. This is very useful in setting up modified
address instructions symbolically.

41

T A

o B o T T T e e T e B B

—

Lo B I -

The next items to be assigned locations are those HOP constants which the program-
mer has defined. (Normally the assembler generates HOP constants. But the pro-

grammer can define his own for performing address modification.)

Then, the constant and literal lists are searched to assess their usage as deter-
mined during pass one. If they are used in more than one sector, they must be

duplicated and assigned locations for the appropriate sectors. If a sector over-
flows an attempt is made to place the remaining constants or literals in Residual,
Otherwise, the symbol becomes undefined. The variables that are time shared (SYN)
are also processed in the ASA phase. It should be noted here, that this phase of
the assembly process is done while tapes are being rewound from pass one, and

therefore, adds no time to the assembly process.

Pass two of the assembly follows immediately behind the ASA phase. It performs

the following tasks:

. Generates the necessary HOP instruction and HOP constants
from program continuity. (These were identified in pass one.)
. Completes the core'map for each instruction
. Encodes and writes out listing with error conditions
. Computes values for constants, HOP constants, literals,
and places them in core map
. Writes out on tape the core map, the variable, left-hand symbol

and constant names, and assigned address for use by the simulator.

SYSTEM DESCRIPTION AND OPERATION

The Gemini assembler system is a tape-oriented system, requiring two channels

on the 7094 II. A self-loading system tape containing the assembler and punch
program is the heart of the system., The output of the assembler is an eight-file
tape, which is used as input to the simulator and punch programs.

43

T P — -

—— pa— _— i 4 i

—— —— i

resulting from that operation. It also checks for any violations of programming
ground rules and overflow conditions. This gives the programmer diagnostic-
type information not available if the program were to be debugged on the Gemini

computer, The Simulator Program provides an accurate simulation of the functional

operation of the Gemini computer and associated I/0 equipment.

To greatly enhance the debugging and analysis task, the Gemini Simulator will
also output any or all the following information for a given simulation run made

on the 7090:

. Full trace - provides a printout of every executed instruction,
the contents of the accumulator resulting from that operation,
and any diagnostic-type information.

. Flow trace - prints out every executed TRA type instruction,
thereby providing a program flow debugging feature with mini-
mum printout,

. Store trace ~ prints out every executed STO instruction.

. Spot trace - gives a full trace over selected areas of the program
thereby providing a selective debugging feature with minimum
printout.

. Core dump - this gives an octal dump of all core locations at
any given instant of execution selected by control cards.

. Symbolic dump - this prints out all memory locations which
have been assigned a symbolic name together with the decimal

value of the contents of that location.

The simulator is used in one of two ways. Either as a static simulator or as a
dynamic simulator, As a static simulator it receives inputs on cards and computes

the outputs for a test case. these results are then printed out for analysis.

45

i

. A flexible system capable of providing good turn around time
from mission planning to program validation.

. Timely and effective documentation.

REFERENCES

1., Description of Gemini Digital Computer, IBM Technical Report No. 65-554-

0089, 22 November 1965.

2, IBM 7090 DPS Gemini Assembler and Punch Program Reference Manual,

IBM Technical Report No, 66-538-01, 4 January 1966.

3. The Gemini Simulator Reference Manual, IBM Technical Report No. 64-

542-011B, 15 March 1965,

47
(page 48 blank)

Maneuvering Ballistic

Re-Entry Vehicle

by

P. L. Phipps
UNIVAC Corporation

(This paper was not available at
the time of publication of the
proceedings.)

49
(page 50 blank)

- . . 1 Vot - ”-l. - ”‘l‘

—_— ,4,4

SOFTWARE ASPECTS OF THE TITAN III PROGRAM
by
FRANK R. TROEGER

Logicon, Inc,

A number of related launch vehicles go under the general
designation of Titan-III. The particular program to which this paper
refers is the inertially guided version of Titan-III, the Titan-IIIC. This
vehicle consists of a two stage core adapted from the Titan-II ICBM, to
which are strapped two large solid rocket motors, each capable of 1.2
million pounds of thrust. Atop the core is the third stage body, the
so-called transtage, whose special features include two restartable
main engines and a separate attitude control system for use during
coasting periods.

Development of the Titan-IIIC was begun approximately four years
ago. The objective of the program was to develop quickly and at reasonable
cost a capability to inject into earth orbit a variety of military payloads.
The key words of the program were to be versatility and quick reaction
capability.

Early studies of likely T-III missions had determined that a
self-contained inertial system was better suited to the guidance problem
than a ground-based radio system. As key components of such a system
and to be compatible with the broad objectives of the program, an all
attitude inertial measurement unit and an easily programmed random-access
computer were indicated. However, when it was shown that the already
existing Titan-II .guidance system could be adapted to be technically adequate
for the Titan-III missions, its lower developmental costs and smaller
schedule risks prevailed.

Except for the incorporation of an environmental control system
and for some minor modifications to the logic of the computer, the Titan-III
guidance system is essentially the same as that used in Titan-II. Its
principal subsystems are a three-gimbal inertial measurement unit (IMU)
built by the AC Electronics Division of General Motors, and a digital

computer built by the Federal Systems Division of IBM,
51

—_—

— . —_— X .

analog or bilevel data. This implies that the programmer must ensure

that words required to be telemetered appear in the accumulator at
specified word times. The problem is aggravated in certain missions
because of the need to compress bandwidth at altitudes in excess of

3000 miles, bringing with it a further 4 to 1 data reduction and telemetering
of only 8 words of every 64 appearing in the accumulator.

4) In multiplication, the least bit of both operands is truncated off
prior to initiation, thereby introducing a small bias in the product.
Furthermore, because of the algorithm used, there is the characteristic
that a multiplicand of zero may either form a product of zero or a LSB =1
depending upon the presence of a one in a particular bit of the multiplier.

There are a number of other hardware-imposed restrictions, that
together with those that have been listed place a premium upon the
programmer having had prior experience with this machine. As a rough
estimate, it probably takes six months to break in a new programmer for
this machine -- and it might be said that prior programming experience
on large general purpose machines does not significantly alter this
estimate.

It might be suggested that such an environment forms the ideal
justification for a compiler. This possibility was looked into more than
five years ago on the Titan-II program by both IBM and TRW. While it
was difficult to prove, at that time it was estimated that the efficiency
of compiled code ‘would be less than 80% that of good hand coding. This
factor plus the uncertain costs of developing such a compiler caused the
idea to be dropped. On Titan-III the idea has from time to time been
renewed, but the conclusion has been the same. The fact that much of
the time even with hand coding there has been a shortage of storage has
not added to the attractiveness of a compiler development.

There are a number of other hardware features which when coupled

with operational requirements tend to make the programmer's job a little

53

L

® SERIAL, BINARY, COMPLETE-VALUE, FIXED POINT
° 6000 RPM DRUM MEMORY
51 tracks - 9792 instructions

12 tracks - 768 fixed constants

3 tracks - 192 target constants

3 tracks - 192 words data storage

1 track - 8 word A revolver

1 track - 3 word F revolver

1 track - 2 word revolver - accumulator

3 tracks - M, P, Q revolvers

1 track - Accelerometer processor
° CONCURRENT ARITHMETIC - 25 BIT DATA WORD
add, subtract, transfer 6400 per second

multiply (24 bit accuracy) 533 1/3 per second
divide 128 per second
° INSTRUCTION REPERTOIRE
‘ 5 arithmetic : 4+, -, x, +, A

17 airborne output: 14 discretes, 3 dc analogs
3 conditional branch
7 transfer
1 attitude data processor
3 miscellaneous

1 instruction modify

TABLE I

TITAN-ITIT MGC CAPABILITIES

55

PR —

—_— — ,A‘ o— -

S50 EXHIBIT 62-165
FROGRAM 6?4/1 STP

PRIME PAYLOAD

R[O(I/REM[NTS

PRELIM_TRAJECTORY

[7-14 1A _12wks])
DETAILED MISSION SPEC.

FINAL_REF TRAVECTORY)

>A!-a'_< ACS FIMMCACCIUTC |
T ey ity M DETAILED EIR TEST PLAN

4HKS
ARELIM DISCREIES LIS

[Frr51acsPT3004%)

T-8.5 |MMC 160 45|
URAL BENOWS DA

A7 ARLTITEAL
DESIGN CYCLE

A7F ENCINEERING
HARDWARE DESIGN.

ETAILED ERROR ANAL.
7-1/ A |58
REVISED MISSION SPEC. |
101 A | 3
3 LINE DISCRETES LiST]
A(1 LI AcsP (B X)| 3
BASE LINE GUIDANCE LQUATIONS ___}

7-88 [ACSP /WK
"PROGRAM SPEC "
1 mec PROG. SPECIFICATION.
2. 2 :t!l/ PROFILE ¢ FLT. EGUATING |
3. R55. OF VARIBLES 5 CONSTAMS

FINAL PROGRAM SPEC)

18M
DLLIVER PROG. TAPE

DATA 800K

VEHICLE] [75: AECULIAR

AL comuﬂo&a

7-4 2WAS
VEH. ﬂ/f/”[/ﬁf/()ﬁ/ DA

7ol A | 7

7-2.014cs5P .2

DELIVER PARAMETER
& CALIBRATE TAPES.

]
|ors7em 7es7 0ssecrives|

7-20| MM C 60 0%3]
IA’G SAFETY TRAJEC |

[7=75TmmC 704y |

(7-7.5TAcsP3ws)
[WsTALL AP (ETR))

[7L/6HT 5im TAPE]

PRI FES m‘rs
PLREA =13

(=23 Tacsr/ev] omis) [7-3laposwon [/7] [71-.3TAcsP] 77]
040 mamam veRiFy) | PROGRAM VALIDATION | PROGRAM ¥ALIDATION)

6245
£VAL & RECOMMENDATID

[7-./ [590 [— |
PARBMETER TAPE ACEPTANCE

T-1.0|MMC | 2WAS
FRE-TEST TRAJECTOR)

QUICK LOOK ANALYSS

FIGURE 1.

MISSION PROGRAMMING

57

— A ‘A_,A. A

—— ,v ‘ ‘ —_ -

In an attempt to minimize the impact of such changes the plan calls for

the delivery of a '"check and balance" program package, thereby permitting
the equation-writer to assess the alternatives himself. This package also
permits a check on the general progress of programming and is an oppor-

tunity to call out misunderstandings if any exist.

59

Validation

Validation is really the answer to the question: is the MGC

software ready to fly? This prime question can be broken down into

three distinct criteria which can then be tested separately:

1) Are all mission and systems requirements accurately reflected

in the programming specification?

2) Are the requirements of the programming specification met

by the MGC coding?

3) Are all mission and systems requirements satisfied by the

MGC coding?

It should be noted that only the third criterion constitutes a completely

necessary and sufficient basis upon which to fly., While unlikely, there

may be subtle effects of MGC program mechanization which prevent criteria

1) and 2) from implying 3), The question might then be asked, why test to

anything but criterion 3)? This is the "black box'" approach to validation.

In certain applications it may have merit; on T-III we have not used it,

There are several reasons:

A

2)

In its pure state nothing is known about the innards of the
program, Consequently it is necessary to devise tests to
uncover all possible failure modes, For missions of the
duration and complexity of T-III, this Would be a horrendous
task, _

A lesson learned by our hardware brothers years ago is that
you can learn much more about how something will work - and
how it will fail - by opening it up than you can by probing it
from the outside, Double~whiskered diodes, solder balls,

graphite particles are all good examples.

On T-III a two pronged approach is taken to validation, Both AC

Electronics and Aerospace/Logicon have independent votes, Thus far there

has not been disagreement in their final recommendation to SSD. The methods

61

of the equation is checked automatically., These programs are valuable
tools in that they can handle relatively coarse coding. They are also relatively
inexpensive to run,

Both approaches are valuable, and it is interesting to note that they
tend to complement, not compete with one another., At any given point in a
validation,about the same number of errors have been found by each, It is as
though they were starting at opposite ends of the program, both working
toward the middle.

At both AC Electronicé and Aerospace/Logicon, closed-loop
interpretive simulations form the test of criterion 3). By the time these
tests are run, the program is well shaken down, and these runs constitute
merely final confidence tests,

The ground programs are handled in a somewhat different manner.
Simulations of the green-light countdown procedures are run by Aerospace/
Logicon to test the accuracy of the compensation for accelerometer and
gyro terms and to test the proper use of these values after the transition
into the flight program. AC Electronics relies primarily on lab tests of
the programs on an MGC and its related ground equipment., Again, it has

been found that the methods tend to compiement each other.

63

— - “"‘

A . i — -

-' ’ «'A .’ 4.,

”_ pR— . A»

"'“M ‘—H— : ‘/‘</

If the flight be unsuccessful, the cause may or may not be tracked
down. Regardless, the chances are that the failure will have software
impact. There may be the attempt to build in a capability to detect and
correct the failure. Or there may be the attempt to have the software
better adapt to the particular failure condition so that for a given mission
even if the prime objectives cannot be completely satisfied, there is the
opportunity to accomplish certain secondary objectives.

I cannot stress too strongly this particular facet of spacecraft
software design. In essence, this ability to apply some intelligence in
adapting to the conditions encountered is something relatively new to
unmanned systems. Credit for its incorporation into the T-III program
goes largely to R. V. Erilane of Aerospace. Certainly there was little
such capability applied to missile systems, derived rate for radar systems
having both range and range-rate is one of the few instances of adaption
in the face of malfunction.

Some people will argue that a set of guidance equations need only
perform adequately in the presence of parameter deviations less than +3 o
from nominal. Academically and statistically, this is a reasonable position.
But, talk to a propulsion engineer about the standard deviation in differential
thrust buildup of two engines, fired after some time in orbit. He may describe
what he hopes will happen, but he may also interject that once in a while one
engine may burp in coming on - but that really isn't a propulsion malfunction.
After a couple of thousand in-orbit firings of at least a couple of hundred
engines, he will have better data or maybe a better engine. Meanwhile though,
it sure would help if guidance could tolerate engine burps.. And yes, it would
be nice if the engines do fail to come on, that we go through say, one more
cycle; if that is unsuccessful, then try something else.

Note that here I am speaking of an adaptive ability that is quite
different from tha\t which has been more generally studied in the computer

field, viz.

65

! = f !

Case History

In the Titan-III program thus far there have been a number of flights
for which software developmeﬁt and software validation have been the major
elements in the critical path. Flight Plan II-1 was one such instance. Pre-
paring for an early February launch, a series of short-multiply errors was
found in the minor loop just a few déys before Christmas. The balance of
the airborne coding pivots on the coding of the minor loop. Thus a relatively
minor error resulted in more than 900 instruction changes. These changes
wefe coded within 10 days, and by resorting to validation ~running concurrent
with debugging, the flight date was met.

A somewhat different problem arose in the case of Flight Plan VII A.
Because of

a) the plane change (s) involved,

b) the high terminal accuracy required

c) the presence of IMU gimbal stops and

d) the need to point the telemetry antenna back at earth
this flight plan had always been considered quite complex. Difficulty in
freezing mission and payload requirements plus the desire to minimize
storage requirements led to late definition of the equations. Table III lists
the dates on which equation changes were incorporated into the program
specification. These dates are to be compared against the milestone dates
listed in the mission programming. For all intents and purposes, change 3
formed the baseline equations; this at T-6 months compéred to the T-9 date
in the mission programming chart. The addition of a requirement to toast
the solar cells of the payload (to keep them from being too cold to operate
wl;len the payload was released into orbit) was the largest single change from
that point. Gwen a normal-sized program, even that change would not have
been large, but IBM was already approaching 90% of total instruction capacity.
Past this point coding efficiency generally drops off so badly that this last 10%

is considered unusable space. Nonetheless IBM did manage to squeeze in the

67

- N R

&‘_ ,,

—

- R . - ey

DATE

15Feb65
24Marb65
5Apr65
9Apré5
11May65
8Junb5
16Junb65
21Junbé5
12Jul65
20Julb5
5Augb5
17Augb5s
27Augh5
2Sepb5
7Sepb5
290ctb5
4Novb65
16Nov65
7Decb5
9Decb5
14Decb5
21Decb6b5

CHANGE NUMBER

PRELIMINARY ISSUE OF BLK 1-4,20
BL -"INCOMPLETE

1

2 - MODIFIED FIXED POINT NAVIGATION

3 . COMPLETE ISSUE OF BASE LINE

4 - NEW DRIFT MATRIX

5 - MODIFIED BLK 16, 7, 9, 18

6 - REISSUE OF FIG, 1

7 - CORRECTED BLK 7, ADDED INITIALIZATIONS
8 - REVISED TOASTING LOGIC

9 - REVISED FIG. 1, BLK 5, 6, 8, 19
10 - REISSUE OF COMPLETE DOCUMENT
11 - IBM LOGIC CHANGES
12 - IBM SCALING CHANGES
13 - REVISED BLOCK 9
14 - FINAL CONSTANTS, PARAMETERS
15 - CHANGED 13 PARAMETERS, 1 CONSTANT
16 - CHANGED 34 PARAMETERS
17 - CHANGED 35 PARAMETERS, 4 CONSTANTS
18 - MODIFY BLK 9, FIG. 1, 4 PARAMETERS
19 - CHANGED 9 PARAMETERS
LAUNCH

MINOR ADDITIONS

TABLE III

FLIGHT PLAN VIT

69

I ——

el |] L]

_

ﬁ-ﬂ; —— R

./M‘A, " “"‘ ‘i ! pl —

—

Mode Sort and Idle
Sequence Check
Trouble Test

Common Routine

GGE Routine

Timing Margin

Punch

Count-down Steering
Ready

Target Track Sum Check
Data Load

Flight Equation Test
Vehicle Simulation Test

Hold

* Deleted for Flight Plan VII (1433)
¥ Modified to fit for Flight Plan VII

TABLE V

INSTRUCTION COUNT
GROUND PROGRAM

71

118
62
82
20
27
24

208
57

733

130

338

118

130
12

2059

- , 4 i R‘ - W :

L ‘4

solenoid valves. Further plans are being made to incorporate the function
of Stage O thrust vector control within the computer. Being new, the re-
quirements of such innovations are likely to be difficult to pin down. Not
only airborne requirements have to be established, but also the method of
pre-launch checkout. Until such requirements can mature, they are going
to be subject to change.

In addition to the problems of the new software functions, there is
likely to be a new problem with the old functions, namely there will likely
be 5 greater sense of freedom in requesting changes. Heretofore, the
nature of the computer tended to inhibit requests for all but essential
changes. In jest, it has frequently been said that what every mission planner
really wants is the capability to write up his mission requirements immediately
before launch and to have the computer convert these requirements into a
flight program on the spot. The fact of the matter is that as we begin to
develop both hardware and software capable of satisfying such desires, it
becomes increasingly difficult to convince people that we are not already
there.

In summary, it is not at all clear that the change to a new computer
will necessarily bring with it any marked improvements in software schedules,
cost, or quality. These improvements could be achieved by cutting back on
the new functional requirements imposed on the MGC, but only at the expense
of optimal system design, and only at the expense of the versatility and

flexibility that are‘key to the Titan-III program.,

73

uy _— —

— — p— [—

— I

h‘ - “" m

_ - N

A SUMMARY OF CURRENT SPACEBORNE SOFTWARE SYSTEMS

by

A. E. Tucker
System Development Corporation
Santa Monica, California

INTRODUCTION

This summary of current spaceborne software systems is based upon a state-of-
the-art survey conducted by the System Development Corporation (SDC) between
September of 1965 and March of 1966. This survey included a search of current
literature plus personal contacts with 19 different organizations which were
actively engaged in the spaceborne software field. The objectives of the
survey were to determine the nature of the products being produced, how these
products were being produced, and the problems being experienced in their

production.

Preliminary results and conclusions from the survey were published as Volume IV
of the working papers for this Workshop. Final results and conclusions are
expected to be published in December and will include material from this Workshop

where applicable.

The missile and space programs, for which software information was collected
during the survey, are listed in Figure 1. The level of detail of the data

collected on the software aspects of each of the programs listed was not the

-same. Time limitations did not allow a detailed study of every program. However,

based upon the availability of information, specific missile and space programs
were selected as baseline systems against which the data from other systems could
be compared. The principal baseline system for the survey was the Titan III

program.

Figure 2 presents the definition of a spaceborne software system used by SDC
in conducting the survey. Qualifying statements concerning this definition
are discussed in the working paper previously referenced and will not be presented

here.

75

<W Wi b - i b .

_4“4 —

— ——y

SN — " ﬁw“ U

A SPACEBORNE SOFTWARE SYSTEM INCLUDES ALL ACTIVITIES
INVOLVED IN PLANNING, DESIGNING, DEVELOPING, TESTING,
VALIDATING, AND DOCUMENTING THE DIGITAL COMPUTER
PROGRAMS THAT WILL BE USED BY THE DIGITAL COMPUTER ON

BOARD THE SPACE VEHICLE.

Figure 2. Definition of a Spaceborne Software System

77

s '

_— T

—— H ‘1

o o

— L:, w: S :w“

A simple explanation of this software system concept is as follows: From an
environment which defines requirements, capabilities and resources, a develop-
ment process is established to produce an end item. In producing the end item,

problem areas exist due to both the environment and the production process.

The preliminary survey results and conclusions I will present today will be
discussed in respect to the four basic areas of the conceptual software system.
The order in which they will be presented will be: (1) the development process;

(2) the end item; (3) the environment; and (4) problem areas.

THE DEVELOPMENT PROCESS

A. THE SIX DEVELOPMENT PHASES

Survey results indicated that the current spaceborne software development
process is composed of six distinct phases. Figure 4 presents these six
phases in their sequential order of performance. The activities performed

in each phase can be briefly summarized as follows:

1. Mission Planning

Mission planning is the phase in which the mission requirements for
the on-board data management system are established. 1In general,
these requirements are for a total missile or space project
irrespective of the number of flights within the project. Flight
specific mission specifications for the on-board data management
system are established on the basis of a project's general mission
requirements and the flight specific objectives. Flight specific

data management mission specifications normally include:

a. The objectives to be achieved;
b. The functions to be performed;

Data inputs--sources, rates and nature;

(¢]

d. Outputs--rates and accuracy;
e. Descriptions of the nominal flight path and mission phases;

f. Allowable tolerances from nominal conditions.

79

e G

L o

e —

_u‘ -

Mission specifications are generally first published as preliminary
documents in order to accommodate review by interfacing contractors.
Final mission specifications may be issued as new documents or as

modifications to the preliminary documents.

Formulation of Computer Program Requirements

The objective of this development phase is to define the digital
computer program specifications. These specifications generally

include the following:

All mathematical equations;

Functional units or blocks;

o P

Operational sequence;

a0

Initializing process;

I/0 operations;
. Timing operations;

Precision and scaling of all variables and constants;

[= N T]

Symbol definition;

i. A description of the total program.

Computer program specifications include both the flight program

and all supporting ground programs.

Computer Program Design and Development

This development phase includes the activities of computer program
design and design verification, coding, debugging and testing of
written code and the establishment of performance and acceptance
criteria for the written programs. The output of this activity

is a set of digital computer programs which constitute the total
software package necessary to achieve the on-board data processing
requirements of a specific flight. The total set of programs
include those necessary for in-flight functions plus those required

for pre-launch functions such as calibration, self-checking, etc.

81

o Ai‘ L — 'i"‘ _ﬁ m

i i)

oy

and Checkout is apparently considered by some organizations to be a
continuation of the validation phase or as an implementation phase

which follows the development.

The organizational structures employed in the development of space-
borne software were found to range from a single contractor having
total responsibility for all phases, to a set of four different
contractors each responsible for a specific phase, or phases, of the
process. Survey results did not appear to be affected by the
organizational structure being employed. No specific problem area
or characteristic of the development process could be directly

related to the organizational structure.

Figure 5 presents a composite view of the distribution of effort;
i.e., time and resources, expended in the spaceborne software develop-

ment and implementation process.

PER CENT OF EFFORT

PHASE (TIME AND RESOURCES)
!
1. MISSION PLANNING 10% §
2. FORMULATION OF COMPUTER REQUIREMENTS 30%
3. COMPUTER PROGRAM DESIGN AND DEVELOPMENT 45%
4. COMPUTER PROGRAM VALIDATION 13%
6. PRE-LAUNCH CHECKOUT

27
POST-LAUNCH EVALUATION

Figure 5. Distribution of Effort in the Development
and Implementation Process

The values given are averages from the survey data and do not represent
any one specific system. These average values are in good agreement
with estimated and predicted values that were available prior to

conducting the survey.

83

type simulations employed. Digital simulation programs for
the following items were generally found to exist for every

missile or space program surveyed:

a. The flight vehicle and its dynamics;
b. A space operating environment including an earth model;

c. Flight vehicle hardware and systems which interface with the

on-board data system;

d. The on-board computer.

The detail to which simulation programs were written appeared

to be a function of the software development phase in which

they were employed. In general, simulations utilized in the
Mission Planning phase are less detailed than those used in the
validation phase. It was evident during the survey that each
contractor or subcontractor engaged in spaceborne software
activities has developed his own particular set of simulation
programs to meet his specific needs. This observation leads

to the conclusion that considerable duplication of effort exists
in the total process. This apparent duplication of effort
results from the fact that the simulation tools produced, by
any one contractor, are tailored for operation in that
contractors large-scale data processing facility. In general
these simulation programs will not operate in another facility
without considerable modification. Thus, even though simulations
of the same type are performed by various contractors (or
different groups within a single contractor organization), each
is usually independently developed. The duplication of effort
is advantageous from a point of view providing a cross check on
results, but also leads to problems when variations in results

are due to differences in the simulation programs used.

85

- e - 1

,_ i "

I . gl _—

“Vm S_—

which will affect software development are being followed in the
development of these advanced machines. The first is that of
compatability in which the instruction set of the flight computer
will be identical to a sub-set of ground-based machines. Thus,

the software support tools available for the large ground-based
computers will, in general, be applicable for the spaceborne
computers. The second concept is that of micro-programmed computers
such as the Instruction Computer, currently under development by

the RCA Corporation. Both of these concepts will be discussed in

papers to be presented later in this Workshop.

3. Interleaved Activities

The third distinctive feature of the spaceborne software develop-
ment process is that of interleaved or concurrent activities. This
feature was very prominent throughout the survey. Concurrency in
activities is required to meet imposed schedules and in order to
incorporate changes which are constantly being introduced. To

allow the interleaving of activities within the total development
process, spaceborne software development is subjected to considerable

subdivision in terms of functional blocks and units.

The three distinctive features of the development process just discussed
represent areas for which substantial survey data was obtained and indicate
areas where significant problems are encountered. These problems will be

discussed later.

THE END ITEM

Figure 7 presents a listing of the distinctive features of the end item produced

by the development process.

87

Smeait) f—

_— . ‘ AA” _— - ——

’VAAM

SCIENTIFIC DATA PROCESSING AND COMPUTATION

In general, most of the functions currently being assigned to the on-
board computér, particularly for systems in the early state of development,
are engineering type computations. The extent to which this type of

data processing and computation exists was found to be directly related

to the evolutionary state of the particular missile or space program.
Following the initial development stage, the type of functions assigned

to the on-board computer continuously progress toward more purely data
processing functions while retaining the initial scientific type functions.
Examples of this are system and subsystem monitoring, signal conditioning,
operational mode options, etc. The point to be made here is that while
most current spaceborne software is initially oriented toward scientific
type processing, the mix between this type of processing and pure data
processing changes as more experience with the missile or space program

is obtained.

MACHINE LANGUAGE

This characteristic relates to the code by which the end product is written.
With few exceptions, the language in which today's spaceborne software is
written is the actual machine language or a symbolic language which is very
close to machine language and is assembled into machine code on a one-for-one

instruction basis.

SINGLE PERFORMANCE

While most of those involved in spaceborne software planning and development
stated that the on-board software for a particular missile or space program
was originally to be developed to meet all operational requirements with only
minor modifications and changes in constants, these same individuals stated
that this objective is rarely met and that a new end item is required for each
vehicle flight. While portions of a specific flight software package are used

on subsequent flights, significant changes or new requirements demand a flight

89

— 4 _— — p—— - —

—

1. SYSTEM ALIGNMENT, CALIBRATION

2. TARGET INSERTION, VERIFICATION (WEAPONS)
3. LAUNCH STATUS (GO -- NO GO)

4. NAVIGATION AND GUIDANCE

5. FLIGHT CONTROL

6. ARMING AND FUSING (WEAPONS)

7. SEPARATION ERROR CORRECTION

8. TUPPER STAGE BURN

9. VEHICLE STATUS AND MISSION CONTROL
10. SENSOR CONTROL

11. POSITION PREDICTION

12. MAN-MACHINE COMMUNICATION
13. DE-BOOST SEQUENCING

14. LANDING POINT PREDICTION

Figure 8. Current Spaceborne Computer Functions

The environmental sources for on-board computer functions are the original
project objectives, uncertainties in hardware design, and new requirements
established on the basis of previous experience. Figure 9 presents a
composite of the survey data percentages of the flight computer program

which is used to perform specific functions.

91

ﬁ .- | i . ﬁ‘“\i‘_ . i l ‘ ‘ “ A

-.,-AIIJ ‘ N ‘ ‘

1. THE ON-BOARD COMPUTER
2. THE GROUND-BASED COMPUTER

3. OTHER FLIGHT HARDWARE

Figure 10. Hardware Capabilities and Limitations

The On-Board Computer

The first of these is the on-board computer. Operational speed,
methods of timing, memory size, and instruction sets were identified
as the major on-board computer capabilities in respect to software.
While the operating speeds and timing capabilities of most currently
used on-board computers were reported as adequate to meet initial
project requirements, these same factors were identified as the
limiting factors in allowing the programmer to accommodate new

requirements.

It is apparent that the operational speeds of on-board computers
continue to increase with time. Sequentially addressed machines

are the slower of the systems currently in existence with randomly
addressed machines having speeds approaching those of ground-based
systems. Sequentially addressed machines contain an inherent timing
ability which in most cases is available to the programmer. The
newer randomly addressed type computers, although containing a clock
for operational use, do not generally provide the programmer with a
capability to establish timed program cycles. The inability to
establish adequate timing cycles is becoming a problem area as new

functions are required to be packed within a given time span.
The size of the available on-board memory and its relationship to

spaceborne software development is self-evident. The size of the

memories being carried into space today has substantially increased

93

_— A ‘ ﬁ ,4‘ . . — —— — S

o

3. Other Flight Hardware

As indicated previously, many times the flight hardware with which

the on-board data management system must interface is not completely
defined at the time software development must start. When this
condition exists, the software is developed on the basis of estimated
constants and variable ranges. In many cases, substantial changes

in the software are required when the actual hardware characteristics

are established.

ENVIRONMENTAL RESOURCES

Environmental resources constitute the third area of the spaceborne software
system environment. Resources can be divided into three types. These are

shown in Figure 11.

1. DOLLARS

2. TIME

3. MANPOWER

Figure 11. Environmental Resources

Dollar information per se was not collected during the survey. However,
dollar values can be inferred from the time and manpower information

collected.

Figure 12 presents time and manpower examples of specific end items produced
for the missile or space programs named. The figure presents the calendar
time versus the man months of effort used in the design, production, checkout,
and validation of the end item. These activities account for approximately

58% of the total time and effort required in spaceborne software development.

95

L T T I o R |

- — — 3 . "

_) L

V.A " "_/‘ . ai‘g

Keeping clearly in mind that the values indicated by the figure are for

a particular flight specific end item, an indication that the state of
development of a missile or space program affects the software development
can be seen. The Gemini and Titan III programs must be considered to be

in a substantially different state of development than the LEM and Saturn V

programs.

The availability of manpower to perform the programming for spaceborne
software was indicated as becoming a problem area. The shortage of avail-
able personnel is evident from the number of classified advertisements
requesting people for this type of activity. Those surveyed stated that
even an experienced programmer requires six months of training before he
is qualified for expert work. In addition, such an individual normally

performs this type of programming for only a two-year period.

PROBLEM AREAS

Having discussed current spaceborne software systems in respect to the development
process, the end item and the environment, let us turn our attention to the subject

of problem areas.

Figure 13 presents seven significant problem areas which were identified on the
basis of the survey results. All seven of the items listed should be recognized
as related to one or more of the points previously discussed. However, I would

like to briefly discuss them as they are listed.

1. CHANGING SPECIFICATIONS
2. AVAILABLE LEAD TIME
3. INSUFFICIENT MEMORY

4. PROGRAMMING INNOVATION REQUIRED TO ACCOMMODATE.
REQUIREMENTS

5. INCOMPLETE SPECIFICATIONS
6. LACK OF PROCESS DEFINITIONS AND CONTROLS

7. COMMUNICATIONS BETWEEN INTERFACING GROUPS

Figure 13. Spaceborne Software System Problem Areas

97

Laane I B

R N —

— S— - —_— ;

Aﬁ e - ,

It appears that currently spaceborne software program specifications are
established primarily by those oriented toward the functional hardware
systems. Such specifications require considerable modification to be

adequate for the design of the software.

F. LACK OF PROCESS DEFINITIONS AND CONTROLS

This problem area is concerned primarily with the management aspects of

the process. The starting and end points of the six phases of the

development process discussed are inadequately defined for managerial and

contractual purposes. Considerable effort is currently being devoted to

this problem area by attempting to define milestone procedures and activity

definitions for all of the major tasks involved.

G. COMMUNICATIONS BETWEEN INTERFACING GROUPS

This problem area is one which is common to all development processes

involving different groups. For current spaceborne software systems this

problem area is considered to result primarily from the lack of appropriate

documentation. 1In general, the documentation produced for those missile

and space programs which are in their early stages of development is meager,

sketchy, and incomplete. This situation does improve in the later stages

of development, but still constitutes a major problem area.

CONCLUSION

An unspecified objective of the SDC survey of spaceborne software systems was to

determine to what degree, if any, spaceborne software systems were unique.

I

L T T T |

believe you will agree that the individual items I have presented concerning the
environment, the development process, the end item and problem areas are not unique
and exist in one form or another in most software systems. However, it appears
that the combination of the elements and problem areas of current spaceborne
software systems, coupled with the limited physical constraints of the hardware

for which it is developed, does represent a degree of uniqueness.

99

— S r—— p— — RS Sa— po— IR —

L T T T B

SESSION 3

Hardware/Software Interaction

Chairman: Leon S. Levy
IBM Federal Systems
Division

101
(page 102 blank)

,“A) —

{

s R

p_—— ¥) p— —— Sieny i Tl

-

SUMMARY OF SESSION 3

by

L. S. Levy
IBM, Owego, N. Y.

The objectives of the hardware/software interactions session were twofold:

1. Assess the SOA of hardware/software interaction;

2. Evaluate current computer trends as a basis for new software
formulation.

The consensus was that in the past, constraints of weight and power were
severe and resulted in the design of machines which were difficult to
program. A major measure of relief for the programmer is provided by

the elimination of sequential access memories from the central processor
due to availability of random access memories with airborne physical
characteristics. Sequential bulk memories will still have system applica-
tion.

Environmental constraints which are still expected to influence
component selection and machine architecture include reliability and
radiation resistance. However, the dominant architectural factor in
the future will be ease of software implementation.

Since machine designs will be much more strongly influenced by software
characteristics, programmers and system analysts must assist in formulating
these characteristics. Projected features of the next generation space-
borne computers are extensive multiprogramming, use of higher order
programming languages, and on-line real time control.

In the future much more direct guidance of computer architectural require-
ments should proceed from computer programmers. However, it appears that
programmers will have to be motivated to provide this guidance. A
continuing, and more extensive, dialogue of hardware/software is needed
with more emphasis on programming desiderata and hardware potentialities.

103
(page 104 blank)

—_— p— _—

— A o a

N)

— P— —

""HISTORIC PERSPECTIVE: MACHINES AND PROGRAMMING CHARACTERISTICS"

By

D. B. Brosius
Data Systems Division
AUTONETICS

105

— e

A . e — P — —

— ——

_ _—

processing or computational center and to treat the otner elements of the system
as peripheral equipment which are adapted to tne computer interface. Thus, the
digital computer in the spaceborne system has been progressing from a nignly
specialized functional element designed toward its unique functions in a specific
application toward a highly flexible processing center adaptable to a variety of
applications. Progress along these lines has been mainly limited by the tech-
nology required to meet system constraints on physical size, weight, power
consumption, reliavility, and cost.

Guidance computers provide a clear illustration of the early phases of this
trend. The Autonetics developed D17 computer had approximately 2,700 words of
storage and functioned almost entirely as an element of the guidance and control
system. Yor the D37 computer, the memory was expanded to approximately 8,000
words, the increased storage being largely required to accomodate expanded
pre-launch functions particularly in the areas of communications, ground equip-
ment monitoring and control, and generally expanded system flexibility.

Until rather recently, tne vast majority of computers developed for space-
borne applications were characterized by serial logic, fixed point, two's
complement arithmetic, rotating memories, and a rather limited instruction set.
The wost sigrificant trend in the design of later machines has been the use of
random access core memories and nigh speed parallel logic. And in keepin, with
the generul trend of exranding capasbilities, instruction sets have been expanded
and features such as inaexing and indirect addressing nave become common.
Input/Output has remained rather specialized altnough features sucn as wired
interrupts allow a flexibility not previously available.

The following discussion of programming characteristics will be mainly
addressed to tne former class of computers but in general the impact of the
more recent trenas in computer aesign, while very significant to sof'tware

tecnniques, is largely a matter of degree.

PROGHAMMING CHARACTurISTICS
Programs for spacecorne applications typically involve several distinct
classes of program functions, In tne area of ground, or pre-launch functions,

tne following broad categories are involved.

107

Boeally f—

P _ - S ——

AA% et ?

4)

functions require special concern for program timing, but in
general all program routines must be placed in a real-time
framework. In many cases real-time requirements on particular
functions may be severe enough to require particular sopnisti-
cation on the pro;rammers part in order to satisfy tnem. This
is perticularly true of the guidance and control funciions where
timing requirements are directly relzted to system accuracy and

stability.

The program computations are tightly constrained by accuracy
requirements. Accuracy counstraints typically express tnemselves
in terms of the necessity for careful consideration of fixed
point scaling in program computations and tne possible need for
doutle precision accuracy in some computations. Aadditionally,
tne effect of truncation and round-off errors innerent in the
particular mechanizations being used must be evaluated. uverall
system accuracy constraints of course also generate prosram time

constraints, i.e., iteraticn cor solution rate requirements.

The programs are very closely tied to the electrical interface
between the computer and other sub-systems. Because of the
specialized aesign of spacevorne systems, the digital computer
forms an integral part of tuae total system hardware. For this
reason, the computer programs are typically concerned witn such
things as tne required pulse width of input/output signals,
control of external I/O multiplexors, rise time of 1/0 signals,
etc. A portion of tnis concern is expressed merely in terms of
further timing coustraints, much of it nowever results in con-
traints on overall program structiure; i.e., the order in wrich

functions are performed or the rate of function execution.

A further program characteristic arises from the specialized
nature of the spaceborne system; namely, while tne general nature

of programs for aifferent applications may be quite similar

functionally, the specific programming technigues and organization

109

L .= . R _ N o ‘ W‘,i . liif g . o . . l"

o

Coupled with the storage optimization problem are the critical timing
contraints indicated earlier. Generally speakiﬁg; one optimizes storage
requirements at the expense of program executions time and vice versa. dence,
in many cases the programmer is faced with the dilemma of resolving simult-
aneously a time optimization and a storage optimization program.

This type of concern is particularly great on rotating memory machines
because of the intimate relationship between storage allocation and program
timing.

Two examples of more specific constraints on program structure and

organization resulting from requirements of a particular system are transient

‘recovery and program anti-skip requirements.

A transient recovery constraint is required for some weapon system
applications. This type of consideration requires program structuring to adjust
program timing for time wnich is "lost" during transient conditions; more
specifically it requires a time compensation factor in the guidance computations
which is a function of computer down time due to transient conditions.

"Anti-gkip" requirements refer to a requirement for insuring that critical
program events, such as launch, or warhead arming do not occur unless the pre-
requesite sequence of prior events has been executed correctly. This type of
requirement is an extension of the considerations generally classed as flight
safety checks, the distinction mainly being that "anti-skip" is particularly
designed to protect against a computer failure which would cause jump or skip

in the program execution sequence.

SOFTWARE DEVELOPMENT
Having indicated the general characteristics of the machines and the
programming problems one further area remains for discussion. This area
involves the technigues concerned with the actual development of the software.
Generally speaking, there are four distinct functions involved in tne
development of a program:
1. Program Definition - the study and analysis involved in deter-

mining the program's functions and overall strvcture,

111

Bosacitl | P

Assembly, as indicated in the preceding discussion, largely refers to a
machine level assembler. In many cases, the assembly process may be restricted
to a strict translation requiring absolute memory allocation by the programmer.
Consistent witn the other elements of the system, the assembler is quite often
of a highly special purpose nature, proaucing data listings which are of unique
value for the particular system and programming problem.

In addition to language translation, a certain amount of program error
checking is done during the assembly process. This is generally limited to
detection of formatting and coding errors although many assemblers provide
partial program execution time tracing.

Checkout and verification of the program is accomplished using various

combinations of simulation tools and operational hardware. Initial checkout
is usually accomplished using a functional simulation at the computer level.
Various open and closed loop sub-system simulation levels may then be utilized
for particular sub-programs. The total ground phase of tne application is
generally verified using operational hardware and exercising the entire range
of operational functions. The airborne phase is typically verified using digital
or digital/analog closed loop simulation., This type of simulation may range
from a fully software implemented digital simulation to a hybrid simulation
utilizing a specially designed hardware site.

The need for a high degree of program confidence, particularly in the
flight phase, dictates a rather detailed, meticulous verification process which
adds significantly to program development time especially for prozram revisions

which in themselves may represent rather minor changes.

SUMMARY

In conclusion, both tne macnines and the programs developed in the past
have been highly special purpose in nature and highly specialized in design. The
software development has therefore represented a particularly specialized effort.
However, tne distinct trend toward more cap:sble, general purpose comyuters for
spaceborne applications promises to psrtially generalize the standardize the
programming effort in addition tc making possible the use of higher level soft-’
ware developmert aids. And, in fact, it is becoming necessary that the trend
toward more advanced software ternniques be accelerated in orcer to meet thne

growine demards on spsceborie softwane

113
(page 114 blank)

— — [] S—— == [r—— [re— I——— [[rasss— F—— o N —— PR— pa— ..v ,

SELECTION OF AN ORDER CODE
DURING MACHINE DESIGN

by

R. K. Draving
UNIVAC Defense Systems Division

115

There are other unique constraints that compound the design problems of an aerospace
computer. These occur from the necessity for having a 'fail-safe' device. One of

these constraints is often a possible requirement for redundancy, based purely upon the
limited MTBF of a nonredundant unit, Also, 'fail-safe'' presents a requirement for
nondestructive readout memory systems to protect a machine program and critical
constants from transients. This is obviously important because a transient which
changes a single bit within a several thousand-word program can destroy the performance
of the computer and possibly the system which it controls.

2. THEORETICAL DESIGN PLAN

Although rare in actual practice, one can construct a procedure based upon empirical
evidence which will formalize a design plan for a computer.1 The basic elements of such
a plan are illustrated in Figure 1. Each functional requirement of a space system can
be translated into a series of operational requirements for the controlling computer. In
the case illustrated the functional requirements may be those of a typical booster and
satellite guidance system. It is the purpose of the design analysis to translate these re-
quirements into actual hardware characteristics and to determine what hardware trade-
off s may be made while satisfying the operational requirements. One can take each of
the functional specifications and, by using a postulated and relatively unlimited general-
purpose computer vocabulary and utilizing indexing as needed, assign to éach function

a sequence of instructions. By knowing certain characteristics of each function certain
probabilities can be associated with decision functions as they arise and a set of quantities
can be determined which represents the required operational characteristics of the com-
puter. These are:

. Number of instructions executed
. Instruction distribution

. Input/output utilization

. Storage requirements

W DN =

A multitude of design tradeoffs may be taken at this stage bf the design. Each approach
must be evaluated on the basis of practical implementation. However, they all lead to
a number of computer parameters. One very important parameter is the order code to
be implemented. The order code is dependent in some measure upon other computer
parameters. It is the purpose of this paper to illustrate some of the factors and some
of the findings that have been associated with the order code itself.

117

‘ﬁ‘

— - “ — — P

3. TAILORING A REPERTOIRE

Order code selection requires a consideration of many factors. Some of these are pre-
sented in the following listings:

Instruction Word- Length

Perhaps one of the most important single factors in determining the instruction word-
length is the type of addressing to be utilized. There may be full addressing capability,
extension registers, and indexing., The operand word-length is also an important con-
sideration since there is a need for a modular relationship between the instructions and
operands to obtain efficient use of memory. The modularity of operands and instructions
assumes a random access electrically-alterable memory.

Operand Word- Length

Operand word-length is greatly affected by the problem to be solved. In general, an
operand word-length is more than sufficient for a typical instruction word. There are,
however, factors which can influence an order code. For example, it is not usually
efficient to design the operand word-length of a computer about the worst-case precision
requirements., Often it is more efficient to provide for double operand instructions to
provide greater precision,

Memory Size and Type

An important tradeoff can usually be made relating memory cost to the cost of providing
more capable instructions within the central processor. This is of particular importance
for complex electrically-alterable memories such as NDRO thin-film. It is important to
have a relatively extensive general-purpose central processor to obtain the greatest bit
efficiency within the memory. On the other hand, use of a low cost memory (e.g., a
fixed core rope) can provide an excellent tradeoff in terms of increased memory size
while reducing the complexity of the central processor. It should be noted, however,
that there are software implications inherent in the latter tradeoff.

System Application

Obviously the application of the order code to the system or problem to be solved is of
key importance. This, in fact, is the primary reason for tailoring. Implicit, however,

119

—_ . — —_— - .

ﬁ »M —

second assumes a basic set of instructions which is a subset of the total population set
which could just solve the given problem., Figure 2 shows the perturbation to a control
system problem typical of a ballistic missile in which the basic set of instructions is
perturbed by additional commands from the total population set. When an instruction
from the total population is used, a finite program savings resulted. Three system
cases were considered; one computer per program, 10 computers per program, and
100 computers per program. It can be seen that the greater the number of computers
per program the less cost savings that accrue. ¥ the savings of bits of memory are
taken into account we get a different result. (See Figure 3.) For the above comparisons
some relatively simple cost parameters were assumed as shown. The reader is
cautioned not to use the figures as any absolute approach. However, the techniques
employed combined with an appropriate criterion can be used as a tool in assessing the
value of a particular instruction., The precise vocabularies employed as a basic set
and as the total population, as well as the other assumptions, are presented in
reference 2.

4, INDEXING

The use of index registers can have a startling effect upon the efficiency of memory
storage. 3 Table 1 tabulates the size and running time of common matrix and vector
manipulations utilized for typical space missions. A general-purpose vocabulary was
used; however, in one case three index registers were assumed and in the other case
no index registers were assumed. Although these subroutines are highly iterative in
nature they do show an amazing change of total storage requirements made possible
by the simple capability of indexing as shown in the summary given in Table 2. It
should be noted, however, that in nonparallel computing systems such as a serial-
by-bit machine in which the indexing of operand and operand addresses requires times
comparable with short arithmetic operations, the additional time required for indexing
becomes a very significant factor in the design tradeoff.

5. SUBROUTINE CAPABILITY
Table 3 presents the program storage requirements that would be necessary if no sub-
routine capability were available to perform typical vector and matrix operations of a

control problem. Again, this illustrates typical mathematical subroutines characteristic
of space missions.

121

- — —

e T

MEMORY (EFFECTIVE TOTAL
IND EST SAVINGS [HDWE COST|SAVINGS
INSTRUCTION |s HC FI.I Fu.ls Fu.ls.lc 1/1 1/1 11
1f (A) - (Y) > 0 SKIP 6 255 95 570 2850 1026 M 3621
MEMORY EFFECTIVE TOTAL MEMORY EFFECTIVE TOTAL
SAVINGS HARDWARE SAVINGS SAVINGS HAROWARE SAVINGS
1011 COST 10/1 10/1 100/1 COST 100/1 100/1
10260 -1110 10560 102600 -11100 79950
TABLE 2
—] 2 R
1o | cxp | oEST Sy S3sii,s
e 1 W | w u 1 15,1 10/1
1€ (A) - (Y) >0 Sutg ¢ EECY W B -7 3¢21)220 10560
Yl—» & E) 80 s |13y -3 334 I 2329
Yo a B 1 200 | 2c0 3ecc 7
-Y=> A 1 139 o %0 287 92 -1cas 4250 scel [-reann 13¢5
(3) o (V)= 1 200 {200 | 12 3eC 3€0¢
(&) - (Y)=» A 1 200 | 200 1620 3C e’
Y-»C 1 20 | 20 160 3¢) <
“Y—Q 1 130 20 | 20 10 36 -122 822 3eC -1220 1920 secc{ | -122c 12772
(@ . (Y)-»Q 1 %0 | %0 250 50 [wcc]
(Q) - (Y)-»Q 1 0 | %0 | 20 90 52 sect)
Y= 2T 10, 1,2,3 3 95 200 | eco | 3coo 1023 -93% 3335 1087¢ -98%0 128%0 | 166270 | -93tC0 101470
1 (4) >0 Ju-g 2 160 175 | 3%0 | 1720 340 -360 2:10 B4CT -3¢20 3350 5000 | -3€0iC 37720
8° - 1—3°2 0 Juvp 1 180 175 1178 875 s -135 1010 1% -13%0 2225 31100 | -13%0 14375
8° 4 133°< 0 Junp 6 195 20 | 120 €00 216 -6l 661 21€0 -610 1210 21€c0 | -elco €700
Yo (P) + (3F) =t 4 170 100 | 4co 2000 720 ~%%0 2940 7208 -9500 7500 720CC | -52200 57C%0
T Y das,dLf 3 0 40 [120 ecc 216 -50 650 21€0 -14¢0 2060 21€2C | 5170 5ECO
(@=+Q 2's cozp. 2 35 4% 90 | 4% 162 -127 877 1620 -1270 1720 16200 | ~127CC 13140
(XQ)—+4Q 2's comp. 4 115 23 | 100 5C0 180 -6% 265 1eco -6%) 11%0 16000 | -65c0 70
SAT—»a 05 | 15C0 1] % 2% 90 1410 -11€0
WA= A 2 3 % | 100 5C0 180 -14a% 645 1820 -14%0 190 18000 | -14%0 14200
- Floatlng Folnt JLA)—»A 1| e 300 108 1742 1442
(Q) = 1 Set Flag % | 220 | 1100 9¢ 39¢C 39¢¢]
(Q,) = 0 Set Flag 53 | 1e9 2 297 -1201 3751 27| |-12010 16560 P44 58 A4 126420
1f (Q) = 1 Siips Test Flag | 225 | 112 405 297¢] 9K
1t (0“) = 0 Skip; Test Flag 7 | %0 1300 540 39¢C I9¢C”
(A) o (V)=>Y 145 | a3 | 2178 8 2098 780 | -48% 9000 T832c | -43% 70475
(A) - (V)=oy NN D . o 4% “40% | arn | ol
Y) - (Ab—oY "0 |00 {1000 | -0 un Q|] pma
N - 1=or < J160 1 aseig a0 - 0., R et
MU RS 330 | 4o . o s wlt
Coedeos N " VN y A SRS 7 SR X

Figure 3.

36 Bit (Memory Savings Included)

123

— — - — -

Table 2. Trade~off Memory Storage for Indexing

In Matrix and Vector Operations

STORAGE

® NO INDEXING OR INSTRUCTION MODIFICATION
SETUP AND EXIT INSTRUCTIONS

SUBROUTINE INSTRUCTIONS

® INDEXING (EFFECTIVE OPERAND ADDRESSING
MODIFICATION)

SETUP (CALLING SEQUENCES ONLY)
INSTRUCTIONS

SUBROUTINE INSTRUCTIONS

MEMORY SAVINGS THROUGH USE OF INDEXING

14, 580
496

TOTAL 15,076

2,101
326

TOTAL 3,033

12,043

125

- —)

N —y S—

6. WORD LENGTH VERSUS BIT EFFICIENCY

A sample study was conducted by UNIVAC in programming a guidance simulation problem4

for representative computers having different word-lengths. ® The following machines
were used:

18-bits - UNIVAC 1218 Computer
24-bits - A 24-bit general-purpose computer
30-bits - UNIVAC 1206 Computer
36-bits - UNIVAC 1108 Computer

Although several options were available for writing the program on each machine (com-
piler versus assembler, fixed-point versus floating), the one chosen for comparison
presents each machine in its most favorable application. Figure 4 compares the number
of computational instructions needed to program a problem for various machines. There
is a continual reduction in the number of instructions as the more capable machine is
employed.

Figure 4 shows the bits required for the program by each computer. This graph is an
interesting demonstration of the efficiency of memory storage based upon the instruction
word-length, In contrast to Figure 4, Figure 5 shows an increasing number of bits
required for the larger instruction word-length computers for accomplishing the same
problem, Thus, the shorter word-length has a tendency for more efficient bit usage.

It is noted that the 1108 tends to reverse this trend, due somewhat to its large instruction
vocabulary and multiple accumulators. The trend, however, is reversed primarily
because of the powerful floating~point commands employed.

7. DESIGN TRENDS

The discussion to this point has been to show some design techniques utilized in the past
and to demonstrate the basic power of such fundamental concepts as indexing, sub-
routine capability and floating-point arithmetic. We have, however, recently observed
a significant trend in new computer designs. Two major aerospace computer manu-
facturers (viz., UNIVAC and IBM) are developing functional copies of proven surface
computers for airborne applications. The newest UNIVAC computer for avionics
applications (similar to those of complex spaceborne missions) is the UNIVAC 1830A.
This machine is a direct derivative of the UNIVAC 1206/1230 series of ruggedized
ground computers. We are also aware that IBM is developing functional copies of their

127

- :

m‘ - . '“, Nesissall “ - "qv i ‘.‘q- [

NUMBER OF BITS

9000 ﬁ

8000

7000 -

4 _— (FIXED POINT)

47— (FLOATING POINT)

6000
5000 |
4000
3000
2000 '
1000

0

18-BIT 24-BIT 30-BIT 36-BIT
1218/121% GPDC 1206/1230 1108

WORD LENGTH/COMPUTER

Figure 5. Comparison of Bits Required

129

PR .

L] | L] S —ani ! et Bl Wi

f—

Reference 1

Reference 2

Reference 3

Reference 4

Reference 5

REFERENCES

Design Techniques for a Real-Time Digital Control Computer,
by R. K. Draving, A. Kaplan, UNIVAC Division Sperry Rand
Corporation, and L. G. King, Bendix Systems Division,
National Electronics Convention, Dayton, Ohio; 1962,

Report for Subtask 15,1 of CCM 23 to Contract No. 64(694)-621,
dated 16 June 1966, by D. A. Jacobson, UNIVAC Division Sperry
Rand Corporation.

Detailed Organization Characteristics for Standardized Space
Guidance System Study (SSGS), STL Subcontract 3780S-SC,

13 April 1964, by B. J. Jansen, C. L, Firm, UNIVAC Division
Sperry Rand Corporation.

A Simplified Guidance Simulation Specification, G. A. Champine
dated 10 March 1965, UNIVAC internal document,

Computer Comparison using a Benchmark Program, 14 September
1965, by W. L. Smith, UNIVAC Division Sperry Rand Corporation.

131
(page 132 blank)

o

FACTORS OF THE MACHINE DESIGN
THAT INFLUENCE PROGRAMMING

by

Lindley S. Wilson
Aerospace Corporation
El Segundo, California

133

e “ il “ iy Py |] ‘ P

can be thought of as composed of three minor channels corresponding
to the three segments of each instruction cell in the channel.

The channel then is specifically indicated but selection of one

of the 64 peripheral positions is a function of time and is
determined by which one happens to be under the active read head

at the time the instruction is given.

Two constant channels are accessible to all instruction

" locations, but others are each accessible only to the instructions

in one or two bands. To make the constants more accessible time-
wise but complicating the programmer's task again, each "data
track" channel has multiple read heads and their spacing is not

the same on each channel. Frequently used constants are often
stored in many places to make them more accessible. Even so,

all too frequently, delay instructions must be used to hold the
machine idle until a desired constant swings round under an
available read head. To ease the access problem, but complicating
addressing still further, there are 5 two-word, 1 three-word, and

1 eight-word revolvers* or buffer registers. Some of these also
have multiple read heads accessing the long portion of the channel
outside the buffer proper. Thus, a piece of information may be
accessed by any one of several instructions in a channel. Note
that an instruction referencing a given word on the three-word

(or F) revolver on one drum revolution will reference the following
F revolver word on the next drum revolution. I might also mention
that the accumulator or S revolver is two words long so that the
primary read head references one accumulator word at even word
times and the other at odd word times. To make things functionally
easier but complicating them also, there are two auxiliary read

heads picking up accumulator words nine and sixteen word times

* A simple revolver consists of a complete channel on the drum
with a write head, and a read head which normally reads infor-
mation coming under it and transfers it to the write head a

Tew words upstream forming a cycle. The cycle can be interrupted

at any word time to enter new information through the write
head after which the cycling operation resumes. The old infor-
mation remains available as it passes across auxiliary read
heads on the long trip around to replacement under the write
head.

135

- . . N ” i

N

el e

indexed command may be slower than an unindexed command. Thus,
there is a tradeoff between time lost and space saved to be con-
sidered. For example, if storage considerations were paramount,

a matrix multiplication might use double indexing, whereas, if time
were more important, single indexing or no indexing might be used.
In other applications, like table look up where the argument and
its relative address can be made identical, indexing is very
effective in saving running time, storage and programming effort.
I'11 mention one more addressing problem that of setting the
return link for an interrupt or from a subroutine. Nearly all
machines under consideration make automatic provision for this
but in different degrees of sophistication. The drum computer
mentioned earlier has no automatic link back provision and
subroutine returns have to be preset each time before subroutine
entry. This is probably because the design of this machine is

so inimical to closed subroutines. Many machines automatically
set the return link in temporary storage whence the subroutines
must immediately store it in a safe place for reentry. Others
automatically store the link in a register and link back by an
indirect Jump. Another scheme requiring more storage but avoid-
ing conflict in the case of nested subroutines automatically stores
the link in the destination address and sends control to the next

sequential address and so on; there are many variations.

Timing Constraints

I call them timing problems though some of them might also
be classed as addressing, storage or speed constraints.

First there are timing constraints imposed by certain instruc
tions. Several machines have come out with a scheme which aliows
multiplication and division which often require several add times
for execution to be shared with shorter instructions. 1In one
version, the multiplier (or dividend) is initially in the ac-
cumulator which then becomes available for short instructions.

Several add times later, the string of short instructions must

137

_ o

enough so that no signals are lost represent another real time-
constraint. With a slow machine, this could mean a large portion

of running time. Auxiliary hardware which automatically samples

and accumulates sensor outputs can greatly increase machine

capacity.

Eccentric Instructions

Incomplete instructions or instructions with operating ex-
ceptions can also increase the programming burden and bring about
storage and/or time penalties. Divison sametimes occurs with the
quotient automatically rounded and no remainder. If it is desired
to know when a quotient exceeds a certain 1limit, this lack could
force an additional multiplication and comparison. This would also
be true when the remainder rather than the quotient was desired
as is occasionally the case. Multiplication yielding only the
most éignificant half of the product, is open to the same criticism.
These deficiencies also become important when double precision
arithmetic is required. The shift operation can be performed by
multiplication or division, and thus, is sometimes omitted. This
occurs more often in machines where multiplication or division
can be time shared (as mentioned above) so that the time penalty
involved depends upon the application. On one computer, which has
time sharing, there is also a shift command which is limited to 1

or 2 shifts. On a test routine involving only arithmetic operations

" with tight scaling requirements, 54 out of the total required 283

instructions would have been eliminated by a more adequate shift
command. This storage could also have been saved by using multiply
commands but only by taking a severe time penalty, since that
particular routine was not amenable to time sharing. A drum com-
puter in current use has no shift commands -- division by zero or
multiplication being used. A dangerous feature was introduced

here in that multiplication on this computer is in error by one
bit if (considering the multiplier an integer) the 2h bit of the

139

N -

i ‘ N

- - - .

inhibit its execution by a bit in the instruction code. Key
registers may be automatically stored and a return link unigue to
the interrupt set up. Other special instruction might be Tloating
point operations, square root, trig functions and radix conversion.
If large amounts of data are to be handled, block instructions and

list search oriented instructions might be useful.

Reliability

If reliability is insufficient, part of the running time may
be used up in diagnostic tests. When power is lost, discretes
and temporary storage may have to be restored when power comes on
and if possible, the program must be patched. Special programs
may be required to provide for all contingencies during input and

output.

Compatible Backup Hardware

One of the most important hardware constraints is lack of a
large compatible computer to do simulation, checkout, assembly
and.compiling operations. If the instruction set of the space-
borne computer is a subset of the large computer, simulation
should be very easy and the ruﬁning speeds should be very much

faster than if interpretive simulation is necessary.

SUMMARY AND CONCLUSIONS

Hardware constraints are very real and can cause an appreciable
penalty in programming effort. However, they must be considered in
the light of intended applications and compensating software. With
a large backup computer system and compensating software, most of
the constraints can be eliminated.

However, if storage and/or running time is tight, it may be
necessary to do very elegant and complicated coding which is beyond
the capability of present software languages. At this point,

hardware constraints on programming can be significant.

141
(page 142 blank)

— u, — —

i —

ADVANCED HARDWARE CHARACTERISTICS
‘ OF
AEROSPACE COMPUTERS*

By

D. L. Meginnity
Manager
Data Processing Systems Department
TRW Systems

*This is not a formal definitive paper on the subject matter but
an approximate recreation of the brief talk given by the author
to stimulate discussion at the '"Hardware/Software Interaction"
session of the '"'Spaceborne Computer Software Workshop' sponsored
by AFSSD and Aerospace Corporation, 20 - 22 September 1966.

143

Nossily s Wiy

- «_. _ _— _ —

of the basic scientific (data gathering) nature of the probes in this
category, some form of degraded performance of subsystems will probably

be tolerated. Therefore the concept of graceful degradation of performance

will also become a computer requirement as a partial substitute or
complement of extreme MIBF requirements., Sophisticated applications
of redundancy and self=-repair techniques will undoubtedly be used to

obtain the needed MTBF's.

EXTREME ENVIRONMENTS

There are two extreme environments worth noting for future aero-
space computers. The first is nuclear radiation hardening; resistance
to both high' radiation rates and high integrated doses are important.
The requirements are generated by both military applications and general
scientific space probes. The other extreme environment will be for space
hardware to operate over extreme temperature environments (e.g., -150°C
to 200°C). 1In large part, of course, these temperature extremes would
be conditioned by other subsystems. However, there will be increasing
requirements for all spacecraft subsystems to operate over substantially

larger temperature ranges.

PHYSICAL CONSTRAINTS

There are no new physical constraints for aerospace computers but
size, weight, and power consumption will continue to be critical
factors in the feasibility of applying computers to future missions.
Significant reduction in these physical parameters will be required

before complex computers may be used for unmanned spacecraft.

FUNCTIONAL CHARACTERISTICS

The functional characteristics of future aerospace computers will
continue to span the spectrum from the very simple special purpose
processor to machines which in capability are only constrained by other
parameters (size, cost, reliability, etc.). This latter end of the

spectrum will continue to expand until computers equivalent to the

145

9T

FEATURE
RADIATION FUNCTIONAL
SIZE/WEIGHT POWER RESISTANCE RELIABILITY CAPABILITY LOW COST

APPLICATION

GP BOOSTER

GUIDANCE X X

UNMANNED

SPACECRAFT X X XX X XX X

MANNED

SPACECRAFT X X X X XX

STRATEGIC

MISSILE X X X X X X

TACTICAL

MISSILE XX XX

AIRCRAFT XX XX

X = SOMEWHAT IMPORTANT

XX = EXTREMELY IMPORTANT

TABIE I

IMPORTANCE OF FEATURES TO DIFFERENT MISSIONS

Thin film hybrid circuits using bi-polar semiconductors are large and

considerably more expensive than any of the above alternatives but the
better controlled passive elements facilitate design of high efficiency -
high output power circuits in a class impractical for monolithic contruc-
tion. Examples where hybrid circuits may be required are in the memory
electronics and for computer input-output applications. These techniques

are readily available for current design applications.

Thin film active circuits are in a relatively early stage of development

at a few research centers. The primary advantages expected of circuits
employing this technology are unusually favorable ratios of power to
speed and size. The current development problems are inability to con-
sistently produce films of sufficient uniformity and a poor under-
standing of experienced failure modes. This technology will most

probably not be sufficiently advanced to allow system application for

3 to 5 years.

Several companies are currently expending considerable research and

development efforts in the area of magnetic logic. This logic circuit

family is being developed specifically to yield immunity to radiation
several orders of magnitude more intense than can be tolerated by the

best semiconductor circuits currently available. Because of the elimina-
tion of transistors from these circuits, significant reliability
advantages are also predicted. The primary disadvantage is the relatively
slow speed of these devices, less than 1/10 the speed of standard DTL.
Further, these circuits are not readily available today and require some
further development. However, because of the unusually high interest

for military applications, magnetic logic circuits will probably be

available in the next few years.

MEMORY SYSTEMS

At the present moment Ferrite-cores still represent the major
storage element used in high-speed direct access storage systems. In

spaceborne computer applications, conventional 3-D organized coincident

current memories are being designed presently for 2 4s cycle time operation

and capacities of 250K bits per module. This type of memory system

149

as noted. It should be noted that the basic component technology
will afford a wide variety of computer designs for various missions;

the computers presented in Figures I through IV were chosen to illustrate

_ - _ - S —

p— N N 4“

— ‘A

some approximate limits of the possible design parameters.

151

AN SEER S R R SR M el B Sl Bl Bamenl Beestl el el S el

€qT

TYPE:

SPEED:

MEMORY

WEIGHT:

POWER:

MTBF:

COST:

AVAILABILITY:

FLEXIBLE MODULAR GP WITH HIGH INPUT/OUTPUT CAPABILITY
FOR ELINT, FIRE CONTROL ETC., DATA PROCESSING

4 pSEC ADD, 20 pSEC MULTIPLY

8K - 32K MODULAR PLUS BULK STORAGE
30 -50LB

100 W

1 YEAR

$20K - $30K

1970

FIGURE II

ATRCRAFT LOW COST COMPUTER

L T |

— — S Iy P _— " .) R \ , . , _— ——] —

) TYPE: FLEXIBLE MODULAR GP MULTIPROCESSOR WITH EXTREMELY
CAPABLE INPUT/OUTPUT FOR DATA MANAGEMENT AND

*g MISSION MANAGEMENT
@
z:; ° SPEED: 0.5 uSEC ADD, 3 uSEC MULTIPLY
O
g‘&) MEMORY : 50K - 100K MODULAR PLUS BULK STORAGE
®) WEIGHT: 70 - 90 LB
° POWER: 200 W
) MTBF: 10 YEARS (DEGRADED TO 1/4 MAXIMUM CAPACITY)
° COST: $400K - $500K
) AVAILABILITY: 1975
FIGURE IV

MANNED SPACECRAFT COMPUTER

_— A — R

——t -

A COMPATIBILITY SOLUTION - 4PI1

By R. B. Talmadge
IBM

Apart from their intended usage, spaceborne systems are distinguished
from ground systems by the fact that the operational environment,

that is, the environment in which the mission programs are executed,

is implemented on a computer which is physically distinct from the
computer upon which the support functions are implemented. The

physical separation has created special difficulties in system communication
and has somewhat retarded the use of sophisticated programming
techniques commonly found in other systems. There is therefore now a
strong movement to try to simplify the job of system design by specifying
use of spaceborne computers which are compatible with standard
commercial systems. This movement has resulted, for example, in a
spaceborne computer for the MOL program (an IBM 4 PI computer) which
is compatible to a System/360 machine. At least one other manufacturer
has produced a spaceborne computer which is compatible to a ground based

machine.

What is to be discussed here today is not the 4 PI computer itself, but some
of the rationale for compatibility, its use in overall system design now (as
exemplified by MOL), and what role it might play in the future. But first,
since compatibility is a relative term, let us be more specific: what we

are talking about is a spaceborne computer which is in all essential
programming aspects identical to a standard commercial computer. That is,
word sizes, data formats, and instruction formats are identical; and
instruction set variation, if it occurs, is strictly non-conflicting. The word
commercial is important here, for one purpose of compatibility is to permit
utilization of as much as possible of a standard, commercially supplied

system. The standard system represents a considerable investment in time

157

_— i — —

R N

a N .

7. A Simulation environment in which programs can be run

under conditions as nearly identical as possible to the operational

environment.

8. An Executive supervisor which co-ordinates activity between,

and exercises control over, the total set of functions.

These parts are not all distinguishable in existing systems. For almost
invariably the designers have made the tacit assumption that the operational
environment is identical to that in which the system processors work.

The system processors therefore not only produce code for operation in the
given computer, but the code uses linkages and communication conventions
designed for the executive supervisor. Hence, the distinction between
simulation environment, operational environment, and the executive

supervisor disappears.

Current systems in which the executive controls the first five functions
(which are support functions in any system) are generally not able to
support program execution within the time constraints required for
spaceborne applications. Recovery of an existing system therefore
dictates two possible courses of action. First, one could re-design the
executive supervisor to support spaceborne applications, and then modify
the existing system to conform to this design. Second, one could design
a spaceborne specific operational environment, implement it, and also
insert routines under the existing executive to provide the facilities necessary
to integrate this environment within the system. Compatibility makes the
first course possible, but it is neither practical nor palatable. It is not
practical because modification of the entire system is required; it is not
palatable because it defeats the purpose of recovering a standard system.
Clearly, such action would be distinctly inferior to an all new system

design in which the support computer was the same as the spaceborne computer.

159

Blaseniy [] —

‘4‘ -

N) N

For these purposes compatibility is a mixed blessing. On the one hand,

the fact that the programs can execute directly is almost sufficient

reason to let them do so, thereby speeding up the process of simulation.
However, this requires that the simulation programs be written in such

a way as to overlay portions of the executive (and the spaceborne programs)
in order to gain control at the proper time. The simulation routines are
therefore sensitive to changes of program location. If, on the other hand,
the spaceborne computer were not compatible, then a full interpretive
routine would have to be implemented in order to carry out instruction
execution. Such an interpretive program is not location sensitive, and in
many other ways actually simplifies implementation of the tasks involved.
Furthermore, in such a 'soft' simulation environment, the additional
execution time is of little consequence. In this area, therefore, compatibility
affects the possible course of action, but it is far from obvious in what

manner it should best be used, or if the effect is beneficial or detrimental.

It is in the area of program preparation that the effect of compatibility is
directly felt. If we consider only languages concerned with computation,
together with their associated language processors, then compatibility

should enable us to start with the output of these processors in preparing

programs for execution in the operational environment. The objective here is to

use the existing language processors, as well as all existing system functions,
in conjunction with a new preparation processor. The new processor will
accept as input program modules generated by the language processors,
together with statements by the programmer specifying operational
environment information, and will produce as output programs in the form
required for spaceborne operation. If this can be done, then the amount

of effort required is certainly smaller than that which would be required if one
had to modify the language processors. But more important, improvements
to the processors, or the development of additional processors, can be fitted

into the system without the necessity for any additional effort.

161

_AHA ,,: 7

[] [—] i ——

The crucial question for the operational environment is whether it

should be distinguished from the support environment. The simplest

answer (as we have seen, the usual answer) to this question is no.

But consider some characteristics of only a few examples of usage.

1. The Spaceborne System: data acquisition and real-time

control, absolute response times, many special devices.

2. Program preparation: large volumes of data accessed from

files, user oriented, no special response required.

3. Conversational Mode: wuser oriented in strictest sense,

moderate file access, variable response times.

4, Partial differential equations: almost no external communication,

raw computing power all important.

To suppose a single operational environment suitable for all these is
analogous to supposing a single structure is suitable as suspension
bridge, hotel and family residence. It can be done, but the structure is

not likely to be satisfactory in any function.

It is a measure of the immaturity of the computing world that so much

time (and money) is spent in seeking a single solution to problems which
can only have many solutions. Standardization is confused with uniqueness,
and use of a general purpose computer with general purpose usage. With a
slight change in attitude it would be possible to produce what is perhaps
the most important unwritten book on computing, call it "The Programming
System Design Handbook.'" One cannot predict its contents, but if we follow
our previous analogy it will function much like the Structural Engineer's
Handbook in making standardized techniques, conventions, and materials
available for design of a specific system. Compatibility can then be
achieved at the functional level, where its effect is significant, rather
than at the instruction set level, where its advantage is localized or its

effect actually detrimental.

163

m sromais “ ﬁa i m o m

R -

Pl e e

S

A MACHINE ORGANIZATION SOLUTION

THE VARIABLE INSTRUCTION COMPUTER

By

A, L, SPENCE

Radio Corporation of America

165

Wity ’ I - ; i i i

N —— —_— — 4 “‘m N

N

fmn S AEw s-.

As a result of the variable instruction concept and its implementation
we have achieved varying degrees of versatility, emulation and reliability.

VIC's Physical Characteristics

The Variable Instruction Computer consists of two physical units. Figure 1
shows a sketch of the Central Processor Unit which occupies a volume of 1.5 cu.
ft. and weighs 65 1lbs. Figure 2 is a sketch of the Main Memory Unit which
occupies a volume l.) cu. ft. and weighs 55 1lbs. with 8196 36 bit words of core.

VIC Organization

Fipgure 3 shows the VIC organization which is as follows:

The main memory contains two memory modules of [j096 38 bit words of
coincident current masnetic cores. It is expandable to a total of 32748 words
with four 4096 modules per box. The cycle time of the main memory is 3 usec
and an access time of 600 nsec. The main memory dissipates 190 watts for the
two modules and increases in increments of 20 watts for each memory module
added. There is a separate power supply for each memory module.

The hirh speed memory consists of two modules, each containing 256 38 bit
words. The memory element consists of two magnetic cores per bit, linear select.
A high speed memory address register, a high speed memory local register for
data and local control logic are present in each module.

The control module is made up of two Order Fegisters, two Variable Rescisters
and a Controller to sequence, code and direct the actions specified by these
registers. The order rerister contains the macro instruction being processede
The operation code portion of the macro instruction addresses the location in
high speed memory where the avpropriate micro instructions are located. The
contents of the specified high speed memory location, which consists of three
micro instructions, are transferred into the variable register where a sequence
counter steps through the processing of the three micros unless instructed to
jump or terminate by an end bit.

The arithmetic and logic module consists of a shift control device, a
function control device, an iteration counter, a cne step shifter, the arith-
metic and logic circuitry, and six registers W, X, Y, Wi, Xi’ Yi. The function
control device controls the process of the arithmetic and logic circuitry. The
iteration counter is generally used in the iterative mode in which it is desired
to repeat an algorithm formed in an iterative instruction such as MULTIPLY., The
one step shifter performs up to a 36 bit shift as specified by the shift control

device. The six registers provide temporary storage data during

167

e ———

—

are called the C1 field which specifies the arithmetic function to be
performed by the micro subroutine. It is this field which allows the
individual to vary the function of the micro subroutine to perform for
example, one's complement or two's complement addition. The C2 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>