
S O F T W A R E O D E V E L O P M E N T

BUYER’S
G U I D E

2.0

Contents
Why Should You Read This
Guide?� 2
Confined by the Iron Triangle� 4
The Agile Triangle Recognizes Your

True Goals� 5
New Triangle - New Tricks� 6

Fount of Value� 8
So What’s your problem?� 10
A Good Elevator Pitch Lifts Your
	 Project to Success� 10
Minimum viable product� 12
Do What’s Right by Your User � 15

Selecting Your Supplier� 16
Productivity Isn’t Measured by
	 the Hour� 18
Agile Agreements and Rates� 19
Great Energy Is Fueled by Trust� 20
Fight for Your Intellectual Rights� 21

Agile Development in a
Nutshell� 22
Backlog Is Your Project’s Backbone� 24

That’s Not All Folks� 24

Checklist for Purchasing
Software	� 26

Well Begun is Still Half
 Undone	� 28
Forget the Plan – Keep Planning	� 29
One Feature at a Time – Vertical Versus

Horizontal	� 30
Finish Before You’re Finished� 32
Why Adding Manpower Is a
 Bad Idea� 33

Checklist for Best Software
Development Practices	� 34

We Are in This Project
 Together� 36
Building Sustainable Trust� 37
Give Due Recognition to
 Your Supplier� 38

Thank You!� 39

4 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Why Should You
Read This Guide?

You don’t need exceptional skills to
master the art of buying software de-
velopment. You just need to reset your
thinking.

5

According to a study by Standish
Group, an international IT research
advisory firm, 67 percent of all software
projects are unsuccessful: either late,
over budget or fail to meet performance
criteria.

On these grounds, the James Cameron
film Titanic was a total failure,
overrunning its production schedule
by six months and doubling its original
budget to $200 million. Yet, Titanic
ended up being the highest-grossing
film worldwide for more than a decade.

Typically, software project
procurement starts with defining the
budget and the schedule before a single
line of code has been written. But
starting off this way, you’re ignoring
the core criteria for a successful project:
the intended use and feasibility of the
end product, user satisfaction, and the

roaring trade you’re looking to make
with your application.

It’s high time to bust the myth of
the 67 percent and to come up with
new ways of purchasing software
development. If you want to level up as
a software development buyer and if
you’re looking to invest in software that
will give you a competitive advantage
and higher proceeds, this quick guide
is perfect for you. On the following
pages, you’ll find practical advice and
hands-on tools for approaching your
next software development purchase
from a value perspective.

The first edition of this quick guide
was published in 2011. You are now
reading the second edition of this
manual, updated based on the feedback
we’ve since received.

W H Y S H O U L D YO U R E A D T H I S G U I D E ?

6 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Price

Time Features

Confined by the Iron Triangle

You have probably heard of the
Project Triangle. Its triple constraints
are cost, schedule, and scope. When
purchasing software projects, clients
often attempt to lock all three factors.

However, at the early stages of the
project, it is only really possible to
determine one, or at the most two, of
these factors. The dimension you lock
down will then cause the remaining
dimensions to bend and put a crunch on
your project.

If, for example, you lock your project’s
schedule, you will have to compromise
on product features and quality. In this

case, it would be wise to cut back on
features but all too often the first to be
sacrificed is quality.

Compromises on quality will also
inevitably decrease your product’s
ability to create value and cost you
satisfied, paying customers. Moreover,
your product’s technical debt increases
and you end up paying it off with

Compromises on quality
will inevitably decrease
your product’s ability to
create value and cost
you satisfied, paying
customers.

7

Value

Quality

Constraints

W H Y S H O U L D YO U R E A D T H I S G U I D E ?

interest later on.
The main issue with the Project

Triangle is that it doesn’t recognize
software quality nor generated value
as project objectives. Surely one
of your goals is to create value? An
alternative approach to software project
procurement, which acknowledges
these two dimensions, is the Agile
Project Triangle.

The Agile Triangle Recognizes
Your True Goals

 Jim Highsmith, the creator of agile
software development, introduces

TECHNICAL DEBT

Technical debt is the result of band-
aid fixes, solutions put together
with sticky tape, and developmental
shortcuts often caused by excessive
schedule pressure. Technical debt
increases the costs of maintenance
and further development. Unexpected
defects and issues brought on
by the repair work lead to cost
escalation and reduced predictability.
A lengthy revision, testing, and
integration phase following the
actual development phase is often
a symptom of technical debt and a
telling sign of poor methodology.

8 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

the term Agile Triangle in his book
Agile Project Management. Its three
dimensions are value, quality, and
constraints. Constraints include
the three dimensions of the Project
Triangle: cost, schedule, and scope.

The key insight of the Agile Triangle
is that it recognizes quality and value as
project objectives.
Using this approach, you’ll have better
chances of succeeding in your software
project.

Instead of measuring your project’s
success based on the amount of
content, we advise you to rather focus
on the value delivered by the project.
If you assess the success of a project
by looking at the number of product
features, you’re likely to implement
features nobody needs. Unnecessary
functionality, in turn, impairs the user
experience and decreases the value of
your product.

The second dimension of the Agile
Triangle, quality, is also far too often
neglected in software projects. Practical
experience has shown that grasping
onto predetermined content and a fixed
schedule eventually leads to sacrificing
on quality.

It’s also crucial to understand both

the immediate and future impacts of
software quality. Poor quality might not
stand out right away, but it increases
your product’s technical debt. The
interest on this debt will fall due in your
continuation project, if not sooner.

New Triangle - New Tricks

The Agile Triangle provides you with
a fresh perspective on measuring the
success of software projects. Software
quality and the value your product
generates for its users are equally
important as the practical constraints.

The next chapters discuss the
dimensions of the Agile Triangle
from the perspective of software
project procurement. The tools we
introduce will help your supplier better
understand the value of your product,
and ensure that its implementation
is up to par and that your project is a
success.

The key insight of the
Agile Triangle is that
it focuses on quality
and value as project
objectives.

9W H Y S H O U L D YO U R E A D T H I S G U I D E ?

10 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Fount of
Value

Profit by striving for simplicity. Dig
deep into the core of your idea and
hold on to it with all your might. Just
say ‘no’ and increase the value of your
project by leaving out all gimmickry.

11F O U N T O F VA LU E

We would love to be able to tell you
the specific product features that
will generate value in your particular
project, but unfortunately we aren’t
able to do so with this quick guide. As
an expert in your own field, you must
take on that task yourself. We can,
however, give you tools to help you
outline and communicate that value for
yourself, your organization and your
suppliers.

Value is generated with simple solutions
to tangible problems. Simple solutions,
in turn, are based on a clear vision and
the ability to eliminate unnecessary
features. Simplicity is a demanding art
form, but more often than not, it will
maximize your return on investment.
Apple is a great example of cashing in

on simplicity. Their products are more
expensive and less complex than those
of their competitors, and yet they are
turning a huge profit.

Basecamp, a web development company
renowned for the usability of its
software, has a policy of rejecting every
new feature request offhand. They only
begin to consider implementing new
features after they have been suggested
by multiple sources.

Value is generated with
simple solutions to
tangible problems.

12 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

New York Times technology journalist
David Pogue’s lifehack for all project
managers is: “Whenever a programmer
asks you whether a new feature should
be added, your tasks is to say no!”

So What’s Your Problem?

Before you begin to ponder the value of
your product or its features, you should
define the problems you intend to solve.
This problem definition by Airbnb, a
company revolutionizing the world
of accommodation services, is a great
example:

⊲⊲ Price is an important concern for
customers booking travel online.

⊲⊲ Hotels leave you disconnected from
the city and its culture.

⊲⊲ No easy way exists to book a room
with a local or become a host.

After defining the need your product
is addressing, you then move on to
communicating your initial solution to
the supplier. The best way to start is to
craft an elevator pitch.

A Good Elevator Pitch Lifts Your
Project to Success

How do you initiate conversation
when you contact a potential supplier?
Do you hand them a wish list of features
and give the desired starting date?

How about starting your request for
quotation with an elevator pitch that
tells the supplier why your product is
a winner? This way, all operations are
based on the value generated for the
user, and the supplier is able to better
assess their ability to meet your needs.
Elevator pitches inspire and engage the
supplier in your project from the get-go.

A great elevator pitch is an asset in
internal and external communications,
helping you focus on the essentials. You
can also draw a hypothetical physical
package for your product and think
about the features you’d highlight on
the package.

A good elevator pitch answers these key
questions:

⊲⊲ Who is the product made for?

⊲⊲ What needs does it address?

14 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

An MVP consists of
the key features that
resonate with users
and make the product
stand out from the
competition.

⊲⊲ What category does it belong to?

⊲⊲ How does it benefit its users?

⊲⊲ What sets it apart from other similar
products?

⊲⊲ What is the key differentiator?

⊲⊲ Why should users choose your
product over others?

Minimum viable product

A minimum viable product (MVP) is an
early version of your product which is
developed with just enough features to
validate the problem and its solution in
practice. MVPs are used to collect, and
learn from, analytics data and feedback
from real users. A successful software
project often starts with an MVP phase.

Your MVP functionality can be
derived from your elevator pitch.
The first version of your product to
be introduced in the market can be
built around that same functionality.
An MVP consists of the key features
that resonate with users and make the
product stand out from the competition.

MVP functionality sets a good
foundation for your RFQ and you
should review it with your supplier in
detail. This way value generation forms
the bedrock of your project. It is also
important to discuss other features and

potential future development plans
with your supplier.

It might be worthwhile to impose
a deadline for the MVP development
process. This forces you to carefully
reflect on the core functions of your
product or service.

On the other hand, an MVP should
also include the parts of the project that
entail the highest risk. Risky entities are
usually pushed back to the later phases
of development projects, when in fact
they are the very features that often set
the product apart and generate the most
value.

“I love complex software,” said no one
ever. But designing simple and intuitive
products is difficult. As mathematician
Blaise Pascal once quipped: “If I had
more time, I would have written a
shorter letter”. This statement neatly
embodies the paradox of simplicity:
developing easy to use technology

15F O U N T O F VA LU E

Start from the top left corner where the highest
value and risk reside. Then proceed to the top
right corner. And that is all you should do.

Where to start?

High Value
Low Risk

High Risk
Low Value Low Value

High Value
High Risk

Low Risk

16 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

⊲⊲ To-don’t list. For every feature or function you
select for implementation, select one that will not be
implemented.

⊲⊲ Play poker. Gather up your project’s key people,
give each one a set number of chips, and ask them
to place them on different functions. Functions with
the highest bets are the ones to be implemented
first.

⊲⊲ Product boxing. Design a hypothetical sales
package for your product and choose the features
you’d highlight on it.

⊲⊲ Bowling alley. Start by selecting a narrow target
group or part of the service and implement the basic
features of that section first.

Our best tips for cutting back on your product’s
functionality:

...And What to
Cut Out?

17F O U N T O F VA LU E

is hard while creating complicated
technology is easy.

Instead of producing software that
comes with a thousand-page-long
manual, we recommend designing
products that don’t need instructions.
Users will let you know what they want
(everything!) but it’s vital that you
figure out what they actually need.

Do What’s Right by Your User

Choosing a supplier with the best
coders won’t guarantee your project’s
success. Doing the right things is even
more important than having a world
class development team. Users demand
services with great usability and visual
style. Make sure that your supplier uses
both service designers and UX (user
experience) designers, in-house or as
partners.

Service designers work in close
cooperation with clients, end-users,
and the development team. Their job
is to ensure that the software design

caters to end-users’ needs and to help
the client develop their business model.
The latter is called business design.
Using methods like workshops and
facilitation, service designers help you
design world-class services.

UX designers ensure that the service
is both easy to use, and easy on the
eyes. This entails all the elements
that are visible to the end-user. The
terminology is still evolving, and you
might also come across terms such as UI
or CX design (user interface/customer
experience). Before your project starts,
make sure that you understand your
supplier’s approach - and that they are
doing the right things.

Doing the right things
is even more important
than having a world
class development
team.

18 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Selecting Your
Supplier

Get to know the people behind the
service. The road to success is pa-
ved with asking the right questions.
Select a supplier that is able to give
you convincing answers.

19S E L E C T I N G YO U R S U P P L I E R

The selection of a supplier is very
similar to employee recruitment. You
publish an ad, wait for replies, invite
a few applicants for an interview, and
make your final decision based on
recommendations, psychological tests
and the impression you got from the
interview.

Yet all too often, software suppliers
are selected only based on their written
replies, tenders, and résumés. For some
strange reason, buyers want to keep the
relationship distant up until their final
selection.

Yet you are hiring experts to work for
you. Résumés alone don’t tell you much
about the supplier’s level of expertise
or attitude. As a client, it’s worth your
while to get a feel of the supplier
organization, up close and personal.

SOFTWARE ACQUISITIONS
BASED ON GOOD VIBES?

Vesa Halonen has over 35
years of experience in various
leadership positions in successful
ICT companies. He believes that
the key to succeeding in expert
work is having a relaxed attitude
and compares it to scoring a
one-handed goal in ice hockey.
It can only be done by a player
who isn’t grasping their stick with
white knuckles. If you don’t get a
good and relaxed impression of
a supplier, don’t expect them to
deliver record results either.

As a client, it’s worth
your while to get a
feel of the supplier
organization, up close
and personal.

20 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Productivity Isn’t Measured by
the Hour

In traditional corporate culture,
raises are handed out to everyone
equally. If you deviate from this norm,
there’ll be the devil to pay.

When increased productivity earns
rewards only for those above middle
management, it’s not surprising that
people often still think of hours as units
of measure relating to, and charging
criteria for expert services.

It’s seemingly simple to compare
prospective suppliers by their hourly
rates. But a much smarter approach
would be to look at the results they are
able to achieve in an hour.

Look beyond the price tag and get
better results by following these
guidelines:

⊲⊲ Visit 2-3 suppliers and personally
interview the team they’re planning to
allocate for your project.

⊲⊲ Ask them to give examples of
previous products or services they’ve
developed.

⊲⊲ Ask them about similar projects
they have experience on: what was
achieved and how long did it take?
Compare the time spent to the results
achieved.

⊲⊲ Ensure that the supplier rewards all
their employees for achieving desired
results.

⊲⊲ Ensure that the supplier has adopted
widely used best practices for software
development, including centralized
version control, continuous integration,
and automated testing. You’ll find a
more extensive list of best practices for
software development at the end of this
guide (p. 34).

21S E L E C T I N G YO U R S U P P L I E R

Agile Agreements and Rates

Software development has
traditionally used two different pricing
principles: hourly rates and fixed
prices.

The problem with fixed pricing is that
it is inflexible in the face of change.
With a fixed price, you get what you
thought you needed, not what you
actually need.

The simplest and best-suited model
is hourly-based pricing. But when it
comes to software development, this
model has a poor reputation that often
limits its use. Clients assume hourly
rates to mean that the bar is open
and are afraid of risking a massive
hangover.

Fortunately, this possible lack of
confidence at the beginning of projects
is easy to dispel. Once the collaboration
proves to be smooth and trust between
the parties starts to build, it’s often
possible to switch to the more flexible
hourly rates.

Bypass the ‘problems’ of hourly
charging at the beginning of projects
with these nifty tricks:

⊲⊲ Satisfaction Guarantee. If your
supplier doesn’t achieve agreed-upon
results, they don’t get paid.

⊲⊲ Minimum viable product. Make an
initial agreement which only contains
the implementation of an MVP. Its
functionality may be limited enough to
allow fixed pricing.

⊲⊲ Carrot and stick. Get the best of
both worlds by using one of the
many pricing models developed to
combine the benefits of hourly rates
and fixed prices. One example is to
pay a predetermined bonus when
the project is finished under budget
and lower hourly rates for any work
exceeding the budget.

⊲⊲ Trial sprints. Collaborate with two
or more suppliers on a trial basis.
The Finnish Innovation Fund Sitra
chose the supplier for its website
project by ordering trial sprints* from
two different companies and based
their final decision on the results.
This method is commonly used in
architecture competitions, so why
wouldn’t it work in software design?

The problem with fixed
pricing is that it is
inflexible in the face of
change.

*A sprint is a two-week-long iterative
development phase.

Great Energy Is Fueled by Trust

Ricardo Semler, a successful
entrepreneur elected on several
occasions as the best executive CEO
in Latin America, relates the story of
a Brazilian manufacturing company
in his autobiography Maverick. The
company staff used to be body searched
daily to prevent theft. As the newly-
appointed CEO, Semler chose to trust
his employees and decided to put an end
to the practice. Yet the workers initially
protested this change. They were afraid
they would now be suspected whenever
a theft took place.

The inspections had replaced
interpersonal trust. People who distrust
each other will never be able to work
together effectively.

Peak performances require good
energy. Are you trying to compensate
for a lack of trust in your suppliers with
contracts and processes? How many of
your suppliers would you work with
based on trust alone – without a written
agreement?

23S E L E C T I N G YO U R S U P P L I E R

Fight for Your Intellectual Rights

When purchasing a software project,
be sure to secure the ownership of all
material related to the project (software
source code, documentation, graphics,
etc.). The terms and conditions of your
agreement should also state that all
intellectual property rights (IPR) will
be transferred to the client. Otherwise,
only your original supplier is able to
make future changes to the software.
This kind of vendor lock-in can make
software maintenance extremely
expensive.

Ownership of the IPR and the
source code gives you the possibility to
integrate third-party components to
the system and to freely develop your
software further.

Remember to also agree upon the use
of open source code. It is a good practice
to require a list of all open source
components. Your supplier should
also be able to guarantee that none of
the component licenses compromise
your business operations or limit the
distribution of your software.

24 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Agile Development
in a Nutshell

Do you speak the same language
as your supplier? Are you on the
same page? Are their operations
transparent enough? Or is your
project in danger of crashing off
the road in the first curve?

25AG I L E D E V E LO P M E N T I N A N U T S H E L L

The traditional approach to software
development is the waterfall model,
where the project flows through the
sequential phases of conception,
design, construction, and testing. With
this linear model, making changes
to the specifications is exceedingly
complicated and costly once the
implementation has started.

Since the beginning of the 21st
century, agile development has become
a strong contender to the waterfall
model. ‘Agile’ was quick to become a
bona fide buzzword, but people often
get excited about the term without
really understanding the concept. This
may cause unnecessary friction at the
beginning of a project.

The client might be further confused
by one supplier talking about Scrum,
another about Kanban, and a third one
about Lean. Peculiar-sounding roles,
such as Product Owner and Scrum
Master, may also pop up.

Simply put, agile development is a
method that allows for construction
to begin before the system is fully
specified down to the tiny details. For
obvious reasons, agile methodology
doesn’t work with, for example,
building construction. But it’s great
for software development as it allows
for both minor and major changes
to be made to the functions and the
architecture of the software throughout
the project.

Scrum and Kanban are ways of
managing agile projects. A professional
supplier is able to adapt their operations
to fit the needs of each project and
client. Ensure that the supplier
describes their operating model to you,
at the latest in their tender.

If you aren’t sure what a specific
term means, don’t hesitate to ask. It’s
not unusual that the definitions given
by your supplier and Wikipedia differ
significantly.

26 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Backlog Is Your Project’s
Backbone

A backlog is a prioritized list of
use cases and functions intended to
be implemented in your product. It
functions as the basis for a shared
vision of the project contents and helps
the client to review and prioritize the
implementation of the project. Backlogs
can be kept electronically or with Post-
Its on a task board.

Agile development at its core is
very simple: a developer picks a task
from the backlog and starts working
on it. When the task is completed, it’s
labeled as done and another task can
be selected. Repeat until the project is
finished!

The backlog often goes through
considerable changes during the
project. A diligently maintained backlog
is a prerequisite for agile project
management. Project implementation
is often split into one- or two-week-
long iteration periods (sprints). After
each iteration, the development team
and the client meet in sprint review
sessions to discuss the results of the
previous iteration and to plan for the
next one. Meeting face-to-face (at least
at the beginning of the project) boosts
communication.

Quick daily conference calls are also
something we highly recommend.
During these 5-10 minute meetings, the
client and the development team briefly
go through the previous day’s events
and possible issues that have emerged.
Many suppliers also use some type of an
online communication tool to allow the
client to follow and take part in their
internal discussions.

That’s Not All Folks

Agility and agile pricing models
are futile if the project is not
terminated after it no longer creates
value. Developing new features just
because you still have budget left is a
fundamental mistake. This problem is
often caused by corporate budgeting
practices: if you don’t spend your entire
budget, you’ll get less the next year.

This kind of thinking must change
for agile methods and pricing models to
prove their true value. The best practice

A diligently maintained
backlog is a prerequisite
for agile project
management.

27AG I L E D E V E LO P M E N T I N A N U T S H E L L

would be to agree that the client is
entitled to put an end to the project
after each sprint.

Does this sound harsh? In reality, a
well-maintained backlog and regular
meetings between the client and the
supplier give early indications that
the project is coming to an end. On the
other hand, swift changes in the client’s
line of business may suddenly render
the project irrelevant. In preparation
for such an event, the parties may wish
to agree upon a reasonable one-off
compensation.

28 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Define the problem your product aims to solve and clarify your goals.
Form an elevator pitch or design packaging for your product.

Define your preferred schedule. Do you intend to demo your product
at a specific event? Give a rough estimate of your budget or your
investment limit. This way you’re likely to get more comparable
tenders.

Don’t over-plan your project. Remember to leave room for creativity.
Your plans are likely to be updated during the tender process.

Ask for transparent workload estimates. It’s vital that you question
both the smallest and largest estimate, as they are always based on
assumptions before the actual development begins.

Checklist for
Purchasing Software

This checklist is designed to have your back
and to ensure you get what you ordered.
Secure your future and enhance your chances
to succeed by establishing the right framework
for your project.

29AG I L E D E V E LO P M E N T I N A N U T S H E L L

Meet and interview your developers in person to verify their ability to
collaborate with you on your project. Visit the office of your potential
partner to get a first-hand feel of the atmosphere.

Ensure that your supplier is capable of delivering fully finished func-
tions on a regular basis. Use the checklist for best software deve-
lopment practices (p. 36) and ask your supplier to give you concrete
examples of a previous project: how was it implemented, what did its
backlog look like, and how did it proceed?

Ask your supplier about their quality assurance. Ask them to specify
the methods they’ll be using in your project and monitor how they’re
realized during reviews.

Ask about your supplier’s warranty models. There is no such thing as
bug-free software.

Always ask your supplier to validate their technology choices. Ask
them: “Why?”. Ask five times if you have to. If you don’t get an intelli-
gible reply, it’s best to challenge the choice they’ve made.

Ensure that you’re able to further-develop the software with other
suppliers in the future. Demand ownership of the IPR and the source
code.

Demand a list of all open source code components and their licen-
ses, and obtain guarantees that you are free to use them in potential
future business models.

30 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Well Begun Is Still
Half Undone

At the end of a successful project,
you should have a finished
product on your hands, instead
of battling setbacks and schedule
overrun. Steer clear of software
development pitfalls with
continuous quality assurance.

31W E L L B E G U N I S S T I L L H A L F U N D O N E

A professional supplier is able to
start product development without
delay. Possible pre-study phases are
often telling signs of a lack of vision or
competence. Some new technologies
might, of course, require this but if
your supplier suggests scheduling time
for background research, it’s probably
wise to question their technology
choices.

You should get the first results in
about two weeks. A lot can be achieved
in that time. For example, we once
developed a mobile application for the
Finnish technology magazine Tekniikan
Maailma. Within the first two weeks,
we had developed an MVP version of
the app with all the predetermined
basic functionality and were able to
start reviewing the planned features.
As expected, those plans changed quite
a bit.

Forget the Plan – Keep Planning

Have you ever received a tender
describing a multistep process for
change management? History teaches
us that the only constant in software
development is change. Attempts to
control it with complex processes won’t
increase the value of your product.
Plans are best forgotten because they
won’t stand the test of time. Planning,
on the other hand, is always a good
idea. Keep on planning throughout the
project: what should and should not be
done next, by whom, and what should
their budget be. Planning is all the more
valuable as the project proceeds and you
have actual data to base your decisions
on.

32 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

One Feature at a Time – Vertical
Versus Horizontal

Software is often developed one
component at a time. Starting with
a database and completing that first
seems like a good foundation to build
on. Unfortunately, a mere database
– especially an empty one – rarely
generates any value for the client.

A better approach to product
development is to produce one feature
at a time, including both the back-end
and front-end implementation of that
feature. This means developing the
relevant parts of the database and user
interface simultaneously and avoiding
unnecessary work when user views or

databases are taken off the to-do list or
implemented differently than originally
planned.

It’s also difficult to give feedback on
detached components. By postponing
feedback to the later phases of the
project, you risk distorting your
conception of the project’s overall
progress. Moreover, you will most likely
need to make changes to the finished
components. If worst comes to worst,
the database developer has moved on
to another project and making the
necessary changes will be exceedingly
difficult. In other words: your project
will run over schedule and budget.

33W E L L B E G U N I S S T I L L H A L F U N D O N E

WHAT YOU SEE AND WHAT YOU DON’T

A typical e-service comprises of a front-end and a back-end. The
parts that are visible to the user and performed on end-user devices
(e.g. web services or mobile apps) are called front-end.

Front-end communicates with back-end. Back-end typically compri-
ses of a database, the service’s business logic, and integrations to ot-
her systems. The back-end resides on at least one server, which is lo-
cated either in a server room or the cloud.

Your supplier will help you choose the best options for you and take
the project to production. When formulating your agreement with your
supplier, you should also discuss production support and service mo-
nitoring.

34 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Finish Before You’re Finished

Quality assurance is traditionally
done at the end of a project. Some of the
many problems with this approach have
already been covered in this guide. One
of them is the impossibility of setting
a reliable launch date for your product,
which causes needless stress for your
marketing and sales departments.

The biggest problem, however, is
the length of the feedback loop. When
defects are discovered at a late stage,
locating their source and repairing
them is difficult. We once witnessed a
project get stuck in the review phase
for well over a year. When they started
debugging the software, it led to new
defects being injected, and without
automatic unit testing, every cycle took
longer than expected.

Modern development methods
and tools allow for continuous and
efficient quality assurance throughout
the project, without slowing down
development. Automatic unit and
user interface testing, continuous
integration, and static code analysis are
good examples of continuous testing
methods. They allow defects to be
discovered in minutes instead of weeks,
and bug fixes take less time and effort.

Business-wise, this approach also
increases the efficiency of project
management. When quality assurance
is a continuous part of development,
you’re able to launch your product on
schedule instead of having an obscure
amount of work waiting for you at the
end of the project. The only thing you
might have to compromise on is the
number of product features, but as you
probably remember, we already talked
about the benefits of simplicity at the
beginning of this guide.

Ensure that your supplier is willing
and able to deliver complete features
regularly, and is committed to doing so
in your project. The checklist for best
software development practices on the
following page will help you do that.

If worst comes to worst,
the database developer
has moved on to another
project and making the
necessary changes will
be exceedingly difficult.

35

Why Adding Manpower Is a Bad
Idea

Both suppliers and clients often like
to use person-months as a method to
estimate project duration. This is done
by dividing the estimated number of
person-months by the number of team
members to get a rough schedule.

The only variable here is the number
of developers. That number has a habit
of increasing during the fine-tuning
and revision phases when the technical
debt accumulated during the project
starts to fall due. Fred Brooks, software
engineer and computer architect best
known for his work at IBM, made the
statement “Adding manpower to a
late software project makes it later”
in his book The Mythical Man-Month:
Essays on Software Engineering. After
a certain point, adding new members
to the team will only slow your
project down. That point is reached
surprisingly quickly.

Brooks offers several solutions to
this dilemma, the most radical – and
probably the most potent – being
elimination: do not develop the software
at all. Simplifying and narrowing
down functionality are effective
ways of increasing your product’s
value, speeding up your project, and

enhancing its chances to succeed. But
they are not silver bullets, and you will
need to reframe the problem, make
choices and learn to let
go of ideas.

W E L L B E G U N I S S T I L L H A L F U N D O N E

36 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

A Backlog is a prioritized list of the things that your project might entail,
divided into smaller sections. It should already be a part of the tenders
so that they are more easily comparable. The most vital features to be
developed first should be described in detail and broken down into
manageable tasks that can be completed in a few working days. Wit-
hout a backlog, there is no shared understanding of what the project is
going to entail and what the priorities are.

Version control is a method of documenting the changes made to the
source code. Its purpose is to ensure controlled development and help
maintain several development branches simultaneously. Examples of
popular version control systems are Git and Subversion.

Code review are excellent for reducing defects. Your supplier should
review all changes to prevent any lines of code from entering version
control without being checked first.

Checklist for Best
Software Development
Practices

The following list will help you ensure that
your partner is able to produce high-quality
software efficiently.

37W E L L B E G U N I S S T I L L H A L F U N D O N E

Unit testing is a method of verifying that individual components and in-
terfaces function as they are meant to. Unit tests are a prerequisite for
automated testing and continuous quality assurance.

Integration testing ensures that the various software components
communicate properly with each other.

Corridor testing Test your software on a colleague next to you and ask
for feedback. This method is an easy and cost-efficient way to improve
quality.

User experience testing is a process of testing the system on real
users to ensure that the usability of your service meets requirements.
These tests also help you understand your target group’s future needs.

Continuous integration is a practice where the whole software is
tested after each new change to the system. It helps detect bugs im-
mediately and allows quick and painless fixes. As a result, continuous
integration keeps your technical debt in check and your development
in full swing. A testing and integration phase looming at the end of a
project plan often suggests that this practice is not being followed.

Continuous improvement is an integral part of high-quality software
development. Retrospectives are a widely used method. They are
regular meetings for reviewing the collaboration and development
processes and for making improvements to working methods.

Regular deliveries The progress of your project should be transpa-
rent. Regular deliveries on short intervals (less than a month) guarantee
that transparency. They provide a breeding ground for regular feed-
back and learning – software developers gain a better insight into their
client’s business and clients learn to better understand the potentials of
software development.

38 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

We Are in This
Project Together

A lack of trust leads to futile work.
Transparency, on the other hand, gene-
rates ownership. The key to successful
collaboration is simple: keep your com-
munication channels open throughout
the project – and after it has ended.

39W E A R E I N T H I S P R O J E C T TO G E T H E R

We sometimes come across clients
who aren’t personally invested in or
interested in using the projects they are
producing. Yet in the IT business, eating
your own dog food is a good principle to
follow, in more ways than one.

This simply means that the project
team members from both parties use
the product or service themselves
actively throughout the project,
preferably in its natural environment.
An hour of your time once every few
weeks is not enough.

Another great way of increasing your
project’s chances of succeeding is to
select a supplier whose employees are
already using similar software in their
daily lives.

Building Sustainable Trust

The trust between a client and a
supplier is best formed in face-to-face
meetings. Electronic devices make
communications easier, but there is no
better way to establish and maintain
trust than meeting in person.

The half-life of trust is said to be six
weeks. The less often the parties meet in
person, the more problems are brought
on by the erosion of trust. This lack
of trust is then compensated for with
extra work and efforts that don’t add the
value to the project, e.g. reporting.

40 S O F T WA R E D E V E LO P M E N T B U Y E R ’ S G U I D E

Give Due Recognition to Your
Supplier

We once discussed a potential joint
project with a representative of an UI
design company. When we asked for
portfolios and references from past
clients, there were none – each and
every client had refused them. Not
because they weren’t satisfied, but
because it just wasn’t customary.

We have heard a fair share of reasons
for refusing to give a public reference.
In our opinion, none of them outweigh
the positive effects and benefits of

giving recognition where it is due.
Just imagine: You work hard for

years delivering excellent results, but
everytime someone asks you what
you do, all you can say is that it’s
confidential. When your sense of pride
and accomplishment is deprived from
you, your sense of ownership in your
work will also diminish. Professional
pride is the greatest source of
motivation for high-class professionals
and something that should not be taken
away from them.

We would like to thank you for your time and attention. We hope you found
inspiration on the pages of this guide. The guidelines introduced in this guide
can be best put into practice by utilizing the checklists designed by us. We
are confident that they will help your company become one of the 33% of

companies who succeed in their software projects.

We welcome feedback on this guide and would be happy to hear your

Thank You!

Feel free to contact us:

california@vincit.com
www.vincit.com

MVP

You don’t need exceptional skills to master the art
of buying software development. You just need to
reset your thinking.

Typically, software project procurement starts with
the definition of the budget and the schedule before
a single line of code has been written. Starting off this
way, you’re ignoring the core criteria for a successful
project: the intended use and feasibility of the end
product, user satisfaction, and the roaring trade you’re
looking to make with your application.

If you want to level up as a software development
buyer, this quick guide is perfect for you. Our goal
is to offer you practical advice and hands-on tools
for approaching your next software development
purchase from a value perspective.

www.vincit.com9 789529 406050

ISBN 978-952-94-0605-0

ISBN 978-952-94-0605-0

Can a successful project
overrun its schedule and

double its budget?

