
S32K1xx Clock Calculator Guide
How to use S32K1xx tool to easily calculate device frequency domains

by: NXP Semiconductor

1 Introduction
The S32K1xx is NXP’s 32-bit general purpose MCU family for automotive and
industrial applications. Our offer combines the latest 90nm technologies so that
customers will not have to compromise performance in exchange for low power
consumption. The S32K1xx is built upon the ARM Cortex-M4®, running at up
to 112 MHz. This device family consists of two subfamilies: S32K14x and the
S32K11x. The S32K14x series is the performance-grade line, comprising the
devices S32K142, S32K144, S32K146, and S32K148; while the S32K11x
(S32K116 and S32K118) is the low-cost sub-family for users who wish to
operate at a lower price point but with a reduced feature set. For simplcity's
sake, this application note will refer to the S32K1xx family as "S32K".

This device supports four clock oscillators and, in S32K14x, one system phase locked loop (SPLL) for a total of up to five clock
sources. There are also multiple input pins through which external clock signals can be driven into the MCU. Of the four oscillators,
there is a system oscillator (SOSC), a 48 MHz fast internal RC oscillator (FIRC), a 2-8 MHz slow internal RC oscillator (SIRC),
and a 128 kHz low power oscillator (LPO). The SOSC can source from either a signal driven into the EXTAL pin or a crystal
oscillator connected to the XTAL and EXTAL pins (henceforth referred as simply “XTAL”). EXTAL can support up to 50 MHz, while
there are two ranges that are allowed for the XTAL depending on configuration: 4-8 MHz or 8-40 MHz; FIRC can be trimmed to
48 MHz; SIRC can be either 2 MHz or 8 MHz. In addition, the SPLL on S32K14x devices supports frequencies from 90 MHz to
160 MHz. See the following table for a summary.

Table 1. S32K clock source frequencies

Clock Source Allowed Frequencies

FIRC 48 MHz

SIRC Selectable among 2 and 8 MHz

LPO 128 kHz

SPLL (S32K14x only) 90-160 MHz

SOSC Selectable between XTAL and EXTAL

XTAL Selectable ranges: 4-8 MHz and 8-40 MHz

EXTAL Up to 50 MHz

Clock setup is a necessary step in almost all applications. The S32K clock calculator seeks to complement the configuration
instructions in the reference manual by providing a graphical, interactive tool to help users find the correct register configuration
in order to achieve their desired clock frequencies.

Accompanying this application note is the clock calculator. You can download it from S32K1xx_Clock_Calculator.

Contents

1 Introduction..1

2 Clock calculator design...................... 2

3 Clock tool example use case:
Configure LPSPI to SPLL
BUS_CLK at 48 MHz and
peripheral clock at 24MHz FIRC
in RUN mode on S32K14x...............15

4 Conclusion... 31

5 Revision history.................................31

NXP Semiconductors Document Number: AN5408

Application Note Rev. 6, 09/2018

https://www.nxp.com/docs/en/application-note-software/AN5408SW.zip
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

The clock calculator makes use of macros to perform functions like resetting the spreadsheet to initial values, configuring all clock
frequencies to the maximum allowable settings, and copying generated code. Macros must be enabled in the user's MS Excel to
access these features. If macros are turned off however, the tool will still be able to calculate clock frequencies, but the
aforementioned features will be disabled. To turn on macros in MS Excel 2016, go to the Developer tab on the top toolbar and
click on Macro Security. A popup window will appear. In it, select Enable all macros.

Figure 1. Enabling macros

2 Clock calculator design

The S32K clock calculator takes the form of an interactive Microsoft Excel spreadsheet, organized into multiple tabs as shown in
the following figure.

Figure 2. S32K1xx clock calculator setup

Clock sources (i.e. oscillators, SPLL, external input pins) propagate to the various clock domains from which the MCU modules
take their clocks. Most cells representing clock domain frequencies are not to be modified manually. The user is meant to enter
frequencies to the few select clock sources and all clock domain frequencies derive from these sources. Several clock domain
inputs are meant to be modified manually as they represent external clocks that are driven into the chip. There are also input cells
that set muxes and clock dividers. All cells that take user inputs have blue borders instead of black, shown below. Blocks that
require inputs also show the register fields that the blocks represent.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
2 NXP Semiconductors

Figure 3. Input cells vs. Output cells

There are limits to what frequencies can be entered to the input frequency cells. Values that are out of range will be rejected and
the user will receive an error message. Invalid clock domain frequencies that arise from valid input values and legal, but improper,
dividers will be shaded in red. This is explained in greater depth later in this application note.

Frequency values are linked across tabs, so BUS_CLK in the Tree tab will always be the same as BUS_CLK in the Module
Domains tab. Hyperlinks are provided to duplicate domain names to link back to their points of origin. For example, BUS_CLK
originates in Tree. So clicking the BUS_CLK textbox in Module Domains will take the user to BUS_CLK in Tree. Textboxes that
are links, when hovered over, will cause the mouse cursor to turn into a hand icon and a pop-up to appear, showing the address
of the destination, as shown in the following figure.

Figure 4. Clicking on a link

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 3

The following subsections will explain in depth the purpose of each tab.

2.1 Tree
Tree is the centerpiece of the tool. This tab is the starting point for all clock frequency calculations. It is organized to resemble the
S32K clock tree, as presented in the following figure.

Fast
IRC

Slow
IRC

DIV1

DIV2

DIV1

DIV2

OSC

SOSC

PLL

SPLLDIV1_CLK
SPLLDIV2_CLK

FIRCDIV1_CLK
FIRCDIV2_CLK

SCG

EXTAL

XTAL

PMC
LPO

128Khz

RTC

RTC

CLKOUT

÷ 2PREDIV Analog

SCG_CLKOUTCNFG[CLKOUTSEL]

Asynchronous
Peripheral
Sources

SCG_SOSCCFG[EREFS]

LPO128K_CLK

SIM_LPOCLKS[RTCCLKSEL]

SPLL_CLK

FIRC_CLK

SIRC_CLK

SOSC_CLK

SIM_LPOCLKS[LPOCLKSEL]

SIM_CHIPCTL[CLKOUTDIV]

SIM_CHIPCTL[CLKOUTSEL]

SIRCDIV1_CLK
SIRCDIV2_CLK

SOSCDIV1_CLK
SOSCDIV2_CLK

÷ 4

DIV

FLASH_CLK

BUS_CLK

CORE_CLK
SYS_CLK

LPO_CLK

LPO32K_CLK

LPO128K_CLK

LPO32K_CLK

00

01

10

11

100
011
010
001
000
101
110
111

00

01

10

11
RTC_CLKIN

0000

0110

0001

0010

0011

SCG_SLOW_CLK

0110

0011

0010

0001

LPO1K_CLK

RTC_CLK

VCO_CLK

SCG_SPLLDIV[SPLLDIV1]

SCG_SPLLDIV[SPLLDIV2]

DIV1

DIV2

SCG_FIRCDIV[FIRCDIV1]

SCG_FIRCDIV[FIRCDIV2]

DIV1

DIV2

SCG_SIRCDIV[SIRCDIV1]

SCG_SIRCDIV[SIRCDIV2]

SCG_CLKOUT

SCG_SOSCDIV[SOSCDIV1]

SCG_SOSCDIV[SOSCDIV2]

SCG_xCCR[DIVSLOW]

DIVSLOW

SCG_xCCR[DIVBUS]

DIVBUS

SCG_xCCR[DIVCORE]

DIVCORE
SPLL_CLK

System OSC
Clock Monitor
(Loss of clock)

System PLL
clock monitor
(Loss of lock)

(SOSC is monitored,
SIRC is module clock)

0

1

÷ 32

RTC_CLKOUT1 kHz Clock

RTC_CLK

SCG_xCCR[SCS]
(where x = R, V, or H)

SGG_TCLK

Figure 5. S32K Reference Manual clock tree

Figure 5 shows, in part, the diagram’s clock tool counterpart. Additions were made to the Tree diagram to reflect the nuances that
are not shown in the reference manual graphic. For the sake of simplicity, the reference manual graphic displays only the essential
features. This tool consolidates all clocking options into a single platform.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
4 NXP Semiconductors

Figure 6. Clock calculator tree

This tool’s version is obviously a lot more complex than in the reference manual. In fact the screenshot could only reasonably
display the top-left section of the diagram. The flow of the diagram generally goes from left to right. On the left are the S32K clock
sources and on the right are the clock domains. MCU modules run on one or more of these clock domains.

Clock domain frequency values are displayed in the outlined cells next to their labels. Most cells are not meant to be written to,
their values are dependent on the frequencies of preceding steps in the clock tree. Take BUS_CLK, for example: its value depends
on the system power mode, the core clock divider, the system clock selector, and the controller of the source selected by the
system clock selector. The system clock selector can choose either the SOSC, SIRC, FIRC, or the output of the SPLL. Now look
at one of the sources, the FIRC block. FIRC is trimmed to 48 MHz but the frequency that propagates depends on the next block,
FIRC Enable. Therefore the actual input frequency received by blocks that take the FIRC as a source is the FIRC frequency of
48 MHz, filtered by FIRC Enable. The same goes for SOSC, SIRC, and LPO. The SPLL output is configured in the SPLL tab.
BUS_CLK selects from these four clock sources by selecting the value of the System Clock Selector block. Then finally the
selected signal is divided by the core clock prescaler value and filtered by the system mode.

This tab also features two buttons, Reset and Max. They only have function when macros are enabled. Clicking on these buttons
with macros disabled will return an error. If macros are enabled, the Reset button will set all blocks to their reset value, as described
in the reference manual. The Max button sets all blocks in this tool to values that configure the system and auxiliary clock domains
to their respective maximum allowable frequencies. Below is a screenshot of the buttons.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 5

Figure 7. Buttons

2.2 Device select
The Device Select tab selects between the two S32K subfamilies. S32K11x lacks the SPLL, the HSRUN power mode, and several
modules compared to the S32K14x. Since this tool visualizes the fully featured S32K14x, when S32K11x is selected, S32K14x-
only features are turned off. This means that the SPLL output will be set to 0 and unavailable as a clock source, power mode
blocks will be shaded red if the HSRUN power mode is selected, and S32K-only peripherals will have their clocks zeroed out as
well.

Figure 8. S32K device select

2.3 Oscillator source control
S32K’s external oscillators have a comprehensive set of options that warrants a separate tab. These features are reflected in the
S32K clock calculator in the Oscillator Source Control tab. Oscillator Source Control contains the options for the SOSC and for
the LPO. Below is a screenshot of the tab.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
6 NXP Semiconductors

Figure 9. . Oscillator source control

For the system oscillator, this tab provides options for choosing the frequency range, enable/disabling the oscillator, and selecting
between XTAL and XTAL. The LPO control allows for frequency trimming, which is rated for 128 kHz, but can vary between 113
kHz and 139 kHz.

2.4 Power mode control
Since many clock domains are affected by the S32K system power mode, the power mode control options need its own tab. The
figure below shows the power mode control sheet.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 7

Figure 10. S32K power mode control

HSRUN and low power modes VLPR and VLPS need to be enabled in their own blocks, reflecting the S32K power management
design. The list of options for S32K Power Mode will change, based on the setting of HSRUN Enable and VLPR/VLPS Enable.
Note that S32K11x lacks an HSRUN mode, so if S32K11x is selected in the Device Select tab, the HSRUN Enable block has no
effect, and HSRUN will not be available.

2.5 Module domains
The module domain tabs are an in-depth representation of the clocking for S32K modules. Where Tree leaves off at the clock
domain level, the Module Domain tab picks up and progresses to the module level. A screenshot of Module Domains is shown
in the figure below.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
8 NXP Semiconductors

Figure 11. Module domains

The clock domains are color-coded. Black lines are reserved for local clock nodes. For example, BUS_CLK branches out to LPSPI,
but is filtered through an LPSPI Clock Enable block. The arrow color after the block is changed to black to denote that the frequency
value associated with that black line applies only to LPSPI. As a rule of thumb, clock domains are represented with black lines if
all modules using it can fit within a single window without having to scroll.

2.6 SPLL
SPLL is a visual abstraction of the SPLL digital interface, as shown in the figure below.

Figure 12. SPLL control

The input source of SPLL is the SOSC. Then, from the source, the dividers and multipliers located in the SPLL tab are set in order
to achieve the SPLL output frequencies. The SPLL output frequencies are in turn propagated to the SPLL_CLK clock domain in
the Tree tab. As mentioned in the previous sections, S32K11x lacks a PLL, so if S32K11x is selected in Device Select, SPLL_CLK
will always be 0.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 9

2.7 spll clk
The tab spll_clk is a reference table for the user to find the appropriate SPLL dividers and multipliers to achieve the desired SPLL
frequency. Note that Columns A, B, and C of these tabs are frozen so if the table looks cut off, just scroll left or right.

SPLL frequencies are calculated from a reference frequency, a multiplier (MFD), and a prescaler (PREDIV). The SPLL reference
is not manually configurable because there are a finite number of input values the SPLL can take; the SPLL will be whatever
frequency SOSC is configured for. SPLL reference therefore comes from the Tree tab. Once the SPLL reference frequency is
selected, enter the desired SPLL output frequency. The reference table will then calculate the output frequency for each valid
MFD and PREDIV setting. Like in the other sections, frequencies are color-coded to define which values are valid and which are
not. Shading will change automatically once the output SPLL frequencies are calculated. MFD and PREDIV settings that achieve
the exact desired frequency will be shaded in green, values that exceed the desired frequency, but are within S32K hardware
specifications are marked in yellow, and frequencies that exceed the S32K hardware specification are colored red. Below is a
screenshot of the reference table.

Figure 13. SPLL_CLK reference table

2.8 Detailed module diagrams (RTC, SAI, QSPI, ENET,
FlexCAN)

Some modules such as the FlexCAN and QSPI have additions clock configuration options, which can get too large to fit into the
Module Domains tab. Therefore the modules RTC, SAI, QSPI, ENET, and FlexCAN each have their own dedicated sheet. The
following section shows the RTC. Its concept can be extrapolated to the other aforementioned peripherals. The RTC block inside
Module Domains is a hyperlink to the RTC Clocking tab, shown below.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
10 NXP Semiconductors

Figure 14. RTC module in module domains

The above figure shows that the module takes BUS_CLK, LPO1K_CLK, and RTC_CLK and outputs RTC_CLKOUT. RTC Clocking
houses the actual RTC setup options that process these three inputs to produce RTC_CLKOUT. Below is a screenshot of the
RTC Clocking tab.

Figure 15. S32K RTC clocking

2.9 Summary
Almost all blocks populating this clock calculator represent real register fields in silicon. The Summary tab collates all the
information from the rest of the clock calculator into a list of register values, a screenshot of which is shown in the following figure.
The values in the register summary are interactive, updating automatically when the associated block is changed. Registers listed
within Summary are only the ones whose values are affected by clock configuration, not every single register available in the SoC.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 11

Figure 16. Register summary table

The register values are displayed in either hexadecimal or binary format, where an “0x” header represents hexadecimal and “0b”
denotes binary. A capital “X” represents a “don’t care” bit/half-byte. These bits do affect the clock frequency so users can set these
values to the values that suit their purposes. Users can best utilize Summary by setting the configuration they want in the clock
calculator and then copying the resulting register value into code. For example, taking from the figure above, the register
SCG_SIRCCSR, should be set to 0x0XX00001. Assuming the “X” are “0”, the resulting S32DS C code would be "SCG->SIRCCSR
= 0x00000001;".

Summary also includes an overview of the clock domain frequencies. Since this tool consists of multiple interdependent
spreadsheets, it may be cumbersome for users to weave through them all to find a clock domain. This table provides a place
where all of them can be found. The table is organized by module, followed by the clock type (i.e. BIU clock, peripheral clock,
protocol clock, etc.), and finally the frequency, as currently configured. Below is a screenshot.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
12 NXP Semiconductors

Figure 17. Clock summary table

This tool also supports a degree of code generation. Summary provides two sample clock initialization functions, SysClk_Init for
configuring oscillators and PLLs and InitPeriClkGen for providing sources/dividers to auxiliary clocks. The dynamic C code in
these functions depend on depend on tool settings just like the register summary. These functions can be copy-pasted to a source
file via Ctrl+C/Ctrl+V or by clicking on the associated Copy Code button if macros are enabled. The following figure shows SysClk‐
_Init and its Copy Code button.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 13

Figure 18. Sample initialization code

2.10 Limits
Limits is the reference tab for all the color-coding rules. The values in its tables are based on the S32K datasheet and reference
manual and so should not be modified by the user. The following figure is a screenshot of the Limits tab.

Clock calculator design

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
14 NXP Semiconductors

Figure 19. S32K frequency limits

3 Clock tool example use case: Configure LPSPI to
SPLL BUS_CLK at 48 MHz and peripheral clock at
24MHz FIRC in RUN mode on S32K14x

The following sections will present an example application of the S32K clock calculator. This application note’s example will
configure the LPSPI bus interface clock to SPLL at 40 MHz and the LPSPI peripheral clock to FIRC at 24 MHz. It will not only
show the correct configurations but also how the tool responds if improper configurations are attempted.

When configuring clocks for a module, start by looking at the module block. For this example, find LPSPI0:2 within Module
Domains.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 15

Figure 20. LPSPI clocks

The module diagram shows that BUS_CLK drives the bus interface and either SOSCDIV2_CLK, SIRCDIV2_CLK,
FIRCDIV2_CLK, or SPLLDIV2_CLK drives the LPSPI peripheral engine clock. The LPSPI bus interface clock, BUS_CLK,is
currently 8 MHz; the LPSPI peripheral clock is 0 MHz, because the block LPSPI Per. Clk. Select conatins the value 0, meaning
no clock is selected. Configuring the clock calculator can be in any order, this example will start with BUS_CLK.

3.1 Set the device
First, make sure the correct S32K flavor is chosen. This example sets out to configure the S32K14x, so go to the Device Select
tab and change the device to S32K14x.

Figure 21. S32K14x selected

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
16 NXP Semiconductors

3.2 Set the power mode
Next make sure that the system is in Run mode. Go to the Power Mode Control tab and set the S32K Power Mode block to Run,
as in the next figure.

Figure 22. S32K in run mode

3.3 Configure BUS_CLK
Return to the Module Domains tab and click on BUS_CLK; it will take you to the BUS_CLK of Tree, shown below.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 17

Figure 23. BUS_CLK, Tree tab

Trace BUS_CLK all the way back to its point of origin. Start by tracing it to the Power Mode block, then the divider DIVBUS,
onward to DIVCORE, and, finally, System Clock Selector, whose current value is 2. The cell is a dropdown menu and the textbox
explains what each available value is associated with.

Since the goal is to configure BUS_CLK to SPLL, trace the SPLL back to its own source. SPLL sources from the SOSC. The
oscillators FIRC, SIRC, SOSC, and LPO are the point of origin for all clock domains. The figure below shows the trace-back from
SPLL back to the oscillators.

Figure 24. SPLL to SOSC

3.3.1 Configure the oscillator
Now start going downstream, configuring from the oscillator down to BUS_CLK. To give the SPLL a source, start with the SOSC.
Click on the SOSC_CLK textbox to forward to the Oscillator Source Control sheet. SOSC_CLK can come from either the external

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
18 NXP Semiconductors

oscillator XTAL or a signal driven into a pin, EXTAL. XTAL is application-dependent and can be any value between 4 MHz and 8
MHz or 8 MHz and 40 MHz, depending on XTAL configuration. EXTAL must be under 50 MHz. Set the SOSC Range block to 3
to select the 8-40 MHz range, shown in the next figure. The 4-8/8-40 MHz SOSC block can now take any value between 8 and
40 MHz.

Figure 25. SOSC set to high range

This tool has a safeguard to prevent invalid values from being entered. The figure below shows an attempt to enter 7 MHz to the
SOSC frequency cell. A dialog box appears notifying the user that the value is not accepted when he/she tries to click away from
the cell.

Figure 26. Invalid frequency input

Set the SOSC frequency to 8 MHz. Trace forward from the 4-8/8-40 MHz SOSC block to SOSC Enable. Set SOSC Enable to 1
to enable the 8 MHz SOSC to propagate downstream, shown below.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 19

Figure 27. SOSC Turned On

Next, configure Ext. Ref. Select to 1 to select XTAL over EXTAL. SOSC_CLK will be sourced from the system oscillator at 8 MHz
rather than the EXTAL pin. See below.

Figure 28. SOSC_CLK configured to follow external oscillator at 40 MHz

3.3.2 Configure SPLL
Now that SOSC_CLK is set to 8 MHz, go back to Tree and follow SOSC_CLK to the SPLL block, as seen in the next figure.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
20 NXP Semiconductors

Figure 29. SPLL

Click on the SPLL block to forward automatically to the SPLL tab. This is the tab that sets up the SPLL_CLK frequency. The Input
Clock block of the figure below shows that SPLL detects the 8 MHz SOSC_CLK as its source frequency.

Figure 30. SPLL Calculator

Configure the dividers to achieve 96 MHz; this frequency will be divided to 48 MHz later. The correct configuration can be achieved
by trial and error, but the S32K clock calculator provides a lookup table in the spll_clk tab, shown below.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 21

Figure 31. spll_clk reference table

The SPLL reference field is the frequency of the SPLL input, in this case the 8 MHz SOSC. Set the target frequency. This example
will target 96 MHz. The values and shading in the lookup table will automatically change to fit these new settings. In the figure
below, the table has changed and circled is the modified field.

Figure 32. spll_clk table with new settings

The cell shaded green means there is a divider combination that can achieve exactly 96 MHz given an input frequency of 8 MHz.
In this case, a MFD of 8 and a PREDIV value of 0 will do the job. However, it is worth noting what happens if the output SPLL
frequency is out of range.

In the following figure, the SPLL has been configured so that the output frequency is 188 MHz. This obviously exceeds the
maximum hardware spec of 160 MHz. The associated voltage controlled oscillator (VCO) frequency, which can be back-calculated
from SPLL_CLK also exceeds the maximum VCO spec of 320 MHz. Therefore, the output is crosshatched and shaded red.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
22 NXP Semiconductors

Figure 33. When SPLL_CLK exceeds VCO and PLL spec

Now let’s configure the SPLL correctly. Turn on the SPLL in the SPLL tab by setting the SPLL Enable block to 1, and then set
Prediv to 0 and Multiplier to 8. As shown in the next figure, the output SPLL_CLK is 96 MHz and the cell remains unshaded,
meaning the configuration fits within spec.

Figure 34. SPLL_CLK configured to 96 MHz

Go back to Tree to observe that the SPLL_CLK frequency is now 96 MHz.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 23

Figure 35. SPLL_CLK propagated to Tree

3.3.3 Finish Setting BUS_CLK
BUS_CLK is one of the system clocks. So, follow the SPLL_CLK signal down to System Clock Selector. SIRC_CLK is the current
source of the system clocks. Change the value of System Clock Selector to 6 for the system clocks to follow SPLL_CLK, shown
below.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
24 NXP Semiconductors

Figure 36. System Clock changed to FMPLL

After this, follow the system clock output to DIVCORE. The max frequency of CORE_CLK and SYS_CLK is 48 MHz in Run mode,
so set DIVCORE from 0 to 1. This will divide the 96 Mhz signal by 2, thereby setting CORE_CLK and SYS_CLK to 48 MHz as well
as the input to the DIVBUS block, whose output is BUS_CLK. See the figure below.

Figure 37. DIVCORE at 2

The user input for these fields is not the desired divider but the bitfield value that one would have to enter to achieve the desired
divider. That is why the DIVCORE block description states “/(1+(0…15))” rather than simply “/1…16”. The user provides a value
between 0 and 15, to which the hardware automatically adds 1 to calculate a divider that is between 1 and 16.

If, for example, DIVCORE is left at 0, which corresponds to a divider of 1, CORE_CLK and SYS_CLK would be 96 MHz, which
would exceed their maximum allowable frequency of 48 MHz. The tool will highlight their cells red to signify that such a frequency
is not allowed, shown below.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 25

Figure 38. System clocks when frequency exceeds spec

Set DIVCORE back to 1 and leave DIVBUS at 0 in order to keep BUS_CLK at 48 MHz. BUS_CLK has now been configured to
48 MHz SPLL, as seen in the figure below.

Figure 39. BUS_CLK correctly configured

3.4 Configure LPSPI Peripheral Clock, FIRCDIV2_CLK
LPSPI follows BUS_CLK for its bus interface clock, but the peripheral clock can be SOSCDIV2_CLK, SIRCDIV2_CLK,
FIRCDIV2_CLK, or SPLLDIV2_CLK. This example will set the peripheral clock to FIRCDIV2_CLK at 24 MHz. Go to the 48 MHz
FIRC block in Tree. S32K’s FIRC can only be trimmed to 48 MHz, so leave the 48 MHz FIRC block value at 0 and set FIRC Enable
to 1 to make the signal propagate, as shown below.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
26 NXP Semiconductors

Figure 40. FIRC at 48 MHz

Trace the FIRC clock signal to the FIRCDIV2 block in Tree and set the block to 2. This enables FIRCDIV2_CLK and divides the
60 MHz FIRC signal by 2, thus achieving an FIRCDIV2_CLK domain of 24 MHz. See the following figure.

Figure 41. FIRCDIV2_CLK set to 30 MHz

3.5 Configure LPSPI clocks
Go back to the Module Domains tab. Set the LPSPI Clock Enable block to 1 to enable the BUS_CLK signal.The LPSPI bus
interface clock is now the 48 MHz BUS_CLK. Configure the LPSPI peripheral clock to FIRCDIV2_CLK, setting the value of the
LPSPI Per. Clk. Select block to 3. The LPSPI configuration will look like the following figure.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 27

Figure 42. LPSPI final configuration

3.6 Observe the registers
The final register summary table, as displayed in Summary, is shown in the figure below. Note that most of these registers would
not have to be written in code to achieve the setup that this example just configured. For example, the register PCC_FlexIO would
not have to be included, since the FlexIO module was untouched. Registers that would have to be written would be ones like
SCG_FIRCDIV and PCC_LPSPIx (the “x” means the LPSPI instance of your choice).

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
28 NXP Semiconductors

Figure 43. Register summary after configuration

3.7 Copy the code
SysClk_Init and InitPeriClkGen provides dynamic clock generation C code. The code will configure the clocks to the settings as
configured in this clock calculator. It can be copied and pasted to a source file. The following figure shows SysClk_Init as configured
by this example. The solid-bordered highlight around the function means that the code has been copied with the Copy Code
button; a regular Ctrl+C causes a dashed-bordered highlight. In both cases, the code can be pasted into a source with a regular
Ctrl+V.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 29

Figure 44. SysClk_Init after example

So, to summarize, this example has achieved its goal: a bus interface clock whose signal is driven by the BUS_CLK at 48 MHz.
BUS_CLK comes from an 8 MHz SOSC driving an SPLL that produces an output of 96 MHz, and from there the SPLL driving
BUS_CLK at 48 MHz. And finally a peripheral clock driven by a 24 MHz FIRCDIV2_CLK whose source is divided from a 48 MHz
FIRC.

Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
30 NXP Semiconductors

4 Conclusion

This application note gives an overview of the S32K interactive clock calculator. It seeks to aid clock configuration in the form of
a graphical tool so that a user can more easily visualize the device’s clock signals’ propagation. There are similar clock calculators
for other NXP products, including the MPC574xP and MPC574xG. Visit the NXP website to find more of these tools.

5 Revision history

Revision Number Date Substantive changes

1 05/2017 • In Summary on page 11 added the text "Summary aslo
includes.......is a screenshot" and added Figure 17. on page 13.

• Updated the S32K14x_Clock_Calculator sheet, please see the
attachment.

2 08/2017 • In Introduction added the texts "The clock calculator........Enable
all macros" and "Attached to this.........the attachment". Added
figure Enabling macros and Finding the tool.

• In Tree on page 4 added the text "This tab also.....of the buttons"
and added figure Buttons.

• Changed the section name from "RTC clocking" to "Detailed
module diagrams (RTC, SAI, QSPI, ENET, FlexCAN)" and
updated the section.

• In Summary added the text "This tool also...... Copy code button"
and added figure Sample initialization code

• Added section Copy the Code.

• Added the updated S32K14x_Clock_Calculator_Rev3

3 11/2017 Updated the associated S32K14x_Clock_Calculator file.

4 01/2018 Updated the associated S32K14x_Clock_Calculator file.

Table continues on the next page...

Conclusion

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
NXP Semiconductors 31

http://www.nxp.com

Table continued from the previous page...

Revision Number Date Substantive changes

5 08/2018 • Added information for S32K11x family.

• Updated Introduction on page 1

• Added Device select on page 6

• Added Set the device on page 16

• Changed the name to Clock tool example use case: Configure
LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at
24MHz FIRC in RUN mode on S32K14x on page 15

• Updated SPLL Calculator, When SPLL_CLK exceeds VCO and
PLL spec, SPLL_CLK propagated to Tree and SPLL_CLK
configured to 96 MHz.

• Updated Register summary table.

• Updated S32K RTC clocking.

• Updated SPLL control.

• Updated S32K power mode control.

• Updated Clock calculator tree and Buttons.

• Updated S32K1xx clock calculator setup.

6 09/2018 Updated the associated S32K14x_Clock_Calculator file.

Revision history

S32K1xx Clock Calculator Guide , Rev. 6, 09/2018
32 NXP Semiconductors

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

Ⓒ 2018 NXP B.V.

Document Number: AN5408
Rev. 6, 09/2018

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Clock calculator design
	2.1 Tree
	2.2 Device select
	2.3 Oscillator source control
	2.4 Power mode control
	2.5 Module domains
	2.6 SPLL
	2.7 spll clk
	2.8 Detailed module diagrams (RTC, SAI, QSPI, ENET, FlexCAN)
	2.9 Summary
	2.10 Limits

	3 Clock tool example use case: Configure LPSPI to SPLL BUS_CLK at 48 MHz and peripheral clock at 24MHz FIRC in RUN mode on S32K14x
	3.1 Set the device
	3.2 Set the power mode
	3.3 Configure BUS_CLK
	Configure the oscillator
	Configure SPLL
	Finish Setting BUS_CLK

	3.4 Configure LPSPI Peripheral Clock, FIRCDIV2_CLK
	3.5 Configure LPSPI clocks
	3.6 Observe the registers
	3.7 Copy the code

	4 Conclusion
	5 Revision history

