VECTOR >

From Diagnostic Requirements to Communication

Standardization is the Trend in the Development of Automotive Electronics

A key aim of open architectures, configurable components and harmonized exchange formats is to let developers focus

more on the development and reuse of innovative and product differentiating functions. In recent years, a number of in-

dependent standards have been created, all of which have affected processes and tools for diagnostic development - in
particular ODX and AUTOSAR. At the same time, the systematic capture, management and tracking of requirements
took hold, which also had a significant impact on processes, methods and tools.ls it possible to do without one or more

standards? Is there a super-standard? Or can the standards and methods be combined with one another effectively and

efficiently?

Requirements Engineering

The development of a system starts with the requirements
from the user's perspective. The capture of requirements
marks the beginning of an iterative process (Figure 1), in
which requirements of a system are progressively made
more specific and precise. If the solution space for fulfilling
requirements is still large, the later specification describes
individual subsystems precisely and without ambiguities.

In practice, requirements differ in terms of how specific and
precise they are. Text-based requirements describe a sys-
tem property to be fulfilled in text form, usually incom-
pletely and purposely fuzzy, phrased or just in note form.
Specification requirements, on the other hand, are precise
and not only describe the requirement itself, rather they
also include the solution and leave very little freedom for

the specification. Formal languages are often used for the
description, which are appended to text-based require-
ments in files. Reference requirements contain a reference
to a specification, e.g. “as in the previous system". Techni-
cally, these reference requirements actually reference spec-
ifications in other databases or data management sys-
tems in many cases.

Ideally, requirements are defined as precisely as possible
from the start, but only as specifically as necessary. Un-
clear or ambiguous requirements lead to considerably in-
creased effort over the course of the development process,
because clarification means there is a need for additional
coordination, and it often results in a specification change.
In the least favorable case, the system implementation

may even need to be modified. On the other hand, require-



ments that are unnecessarily specific can often actually
obstruct the path to the quickest and most cost effective
solution. If aspects of a solution path are intermixed with
requirements early on, this unnecessarily reduces the solu-
tion space. Often, this also eliminates the opportunity for
re-use. Especially when requirements change over the course
of development, it is important to separate the substantial
requirements from relicts of earlier solution approaches.
During development, the totality of implementation prog-
ress for all requirements offers a good overview of the im-
plementation progress of the total system or of a subsys-
tem (maturity level tracking).

If you want to systematically exploit the advantages of a
requirements-driven process, then the process described
above must be applied to all subsystems, including those of
different development disciplines that are actually inde-
pendent. Naturally, this also applies to diagnostics.

Today, spreadsheet-oriented tools and databases are usu-
ally used to manage requirements. Here, requirements are
either not described formally, or they are only described
formally in part. These tools must be flexible enough to
capture and track all requirements — even those that are
very fuzzy.

Regarding the specification, various other tools have be-
come established in the various disciplines, e.g. modeling
and authoring tools, which usually generate a formal spec-
ification. In contrast to user requirements, precise defini-
tion of the content is the primary goal and not flexibility,
and this fundamental difference results in different, spe-
cialized tools. Consequently, classic requiremnent manage-
ment tools can only be used meaningfully up to a certain
level of detail. This also applies to diagnostics.

Specification

\ 7 v
ECU
Configuration

Tester
Parameterization

_Diagnostic Communication.

Standardized exchange formats are specially designed for a
specific discipline. ODX, for example, specifies data that is
relevant to the diagnostic tester. Exchange formats usually
use a formal data model that assures a consistent specifi-
cation that is complete in its details. On the other hand,
these formats are too restrictive for formulating fuzzy re-
quirements. Classic requirement management tools are
well-suited to describing text-based diagnostic require-
ments. The standardized data exchange format ODX,
meanwhile, would be unsuitable for describing or exchang-
ing these text-based requirements, because it is too formal

and precise.

ECU Software

Today, AUTOSAR (AUTomotive Open System ARchitecture)
is the reference architecture for ECU software in the auto-
motive industry. AUTOSAR standardizes the description of
individual component or vehicle functions and the descrip-
tion of the overall system.

The diagnostic software in AUTOSAR consists of the three
basic software modules DCM, DEM and FIM.

The DCM (Diagnostic Communication Manager) imple-
ments diagnostic communications according to UDS and
OBDII. The DEM (Diagnostic Event Manager) implements a
fault memory and manages fault status and supplemental
information on fault symptoms. In the case of active faults,
the FIM (Function Inhibition Manager) prevents execution
of certain functions and suppresses secondary errors.
DCM, DEM and FIM are configured by the ECU Configura-
tion Description (ECUC). Their contents are best under-
stood by illustrating how requirements relate to the config-
uration of software components.

Figure 1: Iterative development process



VECTOR D>

Fuzziness and flexibility, which are advantageous in captur-
ing requirements, must be avoided in configuring the ECU
software. The software must be described precisely and
unambiguously for all operating conditions that occur.
Significant contents of the diagnostic data that are rele-
vant to the software configuration include the diagnostic
services that can be called by an external diagnostic tester
with request/response and their parameters (service iden-
tifier, sub functions and data parameters). The length and
data type are relevant for all data parameters; constant
parameters also require a constant value. In UDS, access to
certain data packets may be restricted to certain sessions
or security levels. This information is also contained in the
configuration data, so that the software can assure con-
formance to the prescribed rules.

The second important aspect of the software configura-
tion data is that it links the diagnostic software to the
application. The parameters passed by diagnostic services
can be linked to variables or functions of the application
software. Software generators can then generate the rele-
vant calls.

Since AUTOSAR diagnostics is limited to the UDS and
OBDII protocols, the layout of diagnostic services of these
protocols is implicitly assumed and is not explicitly de-
scribed in the ECUC data.

The AUTOSAR ECUC data is stored in a standardized XML

format, which enables its processing in code generators.

Supplying Data to Diagnostic Testers

Diagnostic data used to parameterize generic testers must
contain all information relevant to the vehicle or its ECUs
from the perspective of diagnostic communication. A sig-
nificant difference compared to the configuration data

described above is the vehicle scope. Especially in the ser-

‘ MRLL-LING (AN delaStudio

Requirements

Specification

vice areaq, a single diagnostic tester needs to cover a large
number of different vehicles, models and variants over
many model years. The resulting volume of data requires
efficient mechanisms to avoid redundancy and to achieve
compact storage of the necessary data.

The specification character required for configuration is
not really necessary for parameterizing testers; on the con-
trary, it may even be advantageous for a parameterization
to contain multiple equivalent alternatives, because the
appropriate data can then be automatically selected at
runtime. When a diagnostic tester is connected to a vehicle,
it is often unclear which ECU variants and software levels
are installed in the vehicle under test.

In terms of content, the diagnostic tester data differs from
the configuration data in that conversion information is an
essential component. The compactly coded bus messages
and their parts are displayed as physical values with units
at the tester.

Examples of established data formats for parameterizing
diagnostic testers are the cdd format from Vector and the
ISO-standardized ODX format.

Example of a Tool Chain

During diagnostic development, the following tasks are
performed, which are supported by the tool chain shown in
Figure 2.

Defining, Gathering and Coordinating Requirements
IBM DOORS is widely used among automotive OEMs as a

tool for capturing and managing requirements.

Creating and Coordinating the Specification
Here, CANdelaStudio can be seamlessly integrated into the

requirements-driven process chain as an authoring tool for

DaVinci

Configurator
Pro
ECU Software

CANoe
CANape
Indigo

Diagnostic Tester

CANoe.DiVa

Validation Figure 2: Tool chain of

diagnostic development



specifying ECU diagnostics, because CANdelaStudio sup-
ports the capture and import/export of requirements. Di-
agnostic objects (diagnostic services, data objects, DTCs)
are generated at the press of a button from the require-
ments, which are already formally described. These objects
are each linked to an original requirement. In this way, the
user can have the imported requirements automatically
adapted and synchronized to match updated require-
ments, and if necessary the specification can be modified.
Closely interlinking requirements and specification is very
advantageous in the typically iterative process, because it
avoids duplicated efforts in creating and re-comparing the
specification data.

The finished diagnostic specification serves as the input to
subsequent steps in the process chain. CANdelaStudio
saves the native diagnostic specification in cdd format, and

an ODX file can also be exported at the press of a button.

Generating and Integrating ECU Software

DaVinci Configurator Pro is a tool for configuring and gen-
erating the AUTOSAR basic software and an ECU's RTE.
The user imports a diagnostic specification (ODX or cdd)
and generates an initial ECUC configuration from it. After-
wards, the user progressively supplements the configura-
tion for the ECU and makes it more specific and detailed. If
there is a new version of the diagnostic specification, it is
easy to re-import it, and the contents are automatically
merged with those of the previously created configuration.
The diagnostic software for the ECU is generated based on

the resulting configuration.

Testing ECU Diagnostic Software

CANoe.DiVa is used to test the diagnostic implementation
in the ECU at both the supplier and the OEM. CANoe.DiVa
generates an extensive set of ECU-specific test cases based

ECUC

Figure 3: Contentual similarities of the several description models

From Diagnostic Requirements to Communication

on the ECU descriptions in ODX or cdd format, which are then
automatically executed in CANoe. Test results are shown in
detail, and the user can comment on any test cases, or

group, sort and filter them according to various criteria.

Using ECU Diagnostics

CANoe, CANape or Indigo is used as the diagnostic tester, de-
pending on the application area. Having the CANdelaStudio
specification as a common source for tester parameteriza-
tion and ECU configuration ensures that the tester and

ECU software match one another.

Summary

The AUTOSAR and ODX standards that have appeared in
the diagnostics area in recent years complement one an-
other well and continue to be effective in meeting objec-
tives. Although they cover related contents, they have very
different areas of focus and overlap just slightly (Figure 3).
The operation area of the one standard cannot be covered
by the other. The AUTOSAR method is also compatible with
ODX.

In practice, however, there is still the challenge of assuring
consistency of the data described in the different stan-
dards over a distributed and usually iterative development
process. This challenge can be overcome by a well-defined
process, targeted data transfer and support by tools avail-
able on the market today.

Dr. Klaus Beiter

leads a development team for the Automotive Diagnostics
product line at the company Vector Informatik GmbH in

Stuttgart. He is a member of the ASAM/ISO ODX working
group.

Christoph Ratz
is the Director of the Diagnostics product line at the company
Vector Informatik GmbH in Stuttgart.



