pennsylvania

DEPARTMENT OF TRANSPORTATION

LOCATION REFERENCING SYSTEM Introduction \& Technical Manual 2018 Edition

Roadway Inventory \& Testing Unit Asset Management Division Pennsylvania Department of Transportation

LOCATION REFERENCING SYSTEM Introduction \& Technical Manual

2018 Edition

Please direct questions or comments regarding this manual, the Location Referencing System, or any other related topic, to:

Janice Arellano, P.E.
Chief, Roadway Inventory \& Testing Unit
Pennsylvania Department of Transportation
907 Elmerton Avenue - BOMO Annex
Harrisburg, PA 17110
Telephone: 717-787-7294
FAX: 717-705-8921
Email: jarellano@pa.gov

Contents

1 Introduction
LRS Overview 2
LRS History 3
LRS SLD's 4
2 LRS Routing \& Segmentation
LRS Key 6
State Routes (SR's) 7
Non-tolled Pennsylvania Turnpike Routes 7
LRS Even/Odd Numbering Convention 8
Route Hierarchy 8
Numbering of Non-Traffic Routes (Quadrant SR's) 9
Interchanges 10
Wye's 11
Other SR Numbering Conventions 11
SR Segmentation 12
Segment Markers. 14
Null Segments 17
Turnback Null Segments 18
Interchange Segmentation 19
9000 Route segmentation 22
Offsets 23
3 LRS/RMS Codes
LRS Codes 25
Determining Intersection Types 26
RMS Intersection Coding and LRS Coding Equivalents. 27
RMS/LRS Intersection Code Conversion Table 31
RMS Signal Codes 32
4 Roadway Attribute Location Quick Guide
Event Point Location Guidelines 34
5 Graphical Illustration of Attribute Locations
Event Point Diagram Legend 40
Stand Alone Segments \& Segments on Other Signs 41
5-1: Segments (Without a Fixed Feature), Stand Alone Segment Signs 42
5-2: Municipal and County Boundaries 42
5-3: Mileposts 43
T-Intersections 44
5-4: Intersection of 2 Undivided SR's 45
5-5: Intersection of Divided (CR) and Undivided (TR) SR's 45
5-6: Intersection of Divided (CR) $\geq 20 \mathrm{ft}$ and Undivided (TR) SR's 46
5-7: Intersection of 2 Divided SR's 46
5-8: Intersection of 2 Divided SR's, one with a ≥ 20 ft barrier (CR) 47
5-9: Intersection of Divided SR's, (TR) with a ≥ 20 ft barrier 47
5-10: Intersection of Divided SR's, both with ≥ 20 ft Barriers 48
5-11: Intersection of an Undivided SR (CR) and an Undivided Local Road (TR) 48
5-12: Intersection of an Undivided SR and a Divided Local Road (TR) with a barrier of $\geq 20 \mathrm{ft}$ 49
5-13: Intersection of a Divided SR with a $\geq 20 \mathrm{ft}$ barrier and an Undivided Local Road (TR) 49
Cross Intersections 50
5-14: Intersection of Undivided SR's, both (CR's) 51
5-15: Intersection of a Divided and Undivided SR's 51
5-16: Intersection of a Divided SR, one with a barrier $\geq 20 \mathrm{ft}$ and an Undivided SR 52
5-17: Intersection of 2 Divided SR's, both (CR's) 52
5-18: Intersection of Divided SR's, with the SR being tested having a barrier $\geq \mathbf{2 0} \mathbf{f t}$ 53
5-19: Intersection of Divided SR's, with the intersecting SR having a barrier $\geq 20 \mathrm{ft}$ 53
5-20: Intersection of Divided SR's, both having a barrier $\geq \mathbf{2 0} \mathbf{f t}$ 54
5-21: Intersection of Turning SR's, both transitioning from Divided to Undivided 54
5-22: Intersection of Turning SR's, transitioning from Undivided to Divided with a $\mathbf{2 0} \mathbf{f t}$ barrier 55
5-23: Intersection of Turning SR's, with 3 of the intersection having a $\mathbf{2 0} \mathbf{f t}$ barrier 55
5-24: Intersection of Turning SR's 56
5-25: Intersection of an Undivided SR and Undivided Local Road 56
5-26: Intersection of a Divided SR having a $\geq 20 \mathrm{ft}$ barrier and an Undivided Local Road 57
Y-Intersections 58
5-27: Intersection of Undivided SR's 59
5-28: Intersection of Divided and Undivided SR's 59
5-29: Intersection of a Divided SR having a $\mathbf{2 0} \mathbf{f t}$ barrier and Undivided SR's 60
5-30: Intersection of Divided SR's 60
5-31: Intersection of Divided SR's with the SR being tested having a $\geq \mathbf{2 0} \mathbf{f t}$ barrier 61
5-32: Intersection of Divided SR's with the intersecting SR having a $\mathbf{2 0} \mathbf{f t}$ barrier 61
5-33: Intersection of Divided SR's with both SR's having a $\mathbf{2 0} \mathbf{~ f t ~ b a r r i e r ~}$ 62
5-34: Intersection of Undivided SR and Undivided Local Road 62
5-35: Intersection of Divided SR and an Undivided Local Road 63
5-36: Intersection of a Divided SR having a ≥ 20 ft barrier and Undivided Local Road 63
Modern Roundabouts and Nontraditional Intersections 64
5-37: Rotary, Roundabout or Traffic Slowing Intersections with a $\leq 20 f t$ Rotary Barrier 65
5-38: Rotary, Modern Roundabout or Traffic Slowing Intersections with a >20ft Rotary Barrier 66
5-39: Diverging Diamond Interchange (DDI) 71
Ramps and Other Intersection Types 73
5-40: Intersection of 2 SR's that are in Close Proximity to Each Other 74
5-41: Intersection of an Undivided SR with a partial one-way section and a Divided SR 74
5-42: Intersection of Undivided SR and Undivided Local Road that is on a Curve 75
5-43: Intersection of Undivided SR and a Skewed Local Road that is Paint Lined at a 90 Degree Angle. 75
5-44: Intersection of an Undivided SR and Local Roads that intersect in a V Formation 76
5-45: Intersection of Undivided SR and Skewed Undivided Local Roads 76
5-46: Intersection of 2 Undivided SR's where Each SR Overlaps the Other (Nulls Over) 77
5-47: Intersection of 2 Undivided SR's with one of the SR's having a Bidirectional Connector 78
5-48: Intersection of a Divided SR, Undivided SR and a Jughandle 79
5-49: Intersection of an Undivided SR with a Wye and a Divided SR having a $\mathbf{2 0} \mathbf{f t}$ barrier 80
5-50: Intersection of 2 Undivided SR's that Meet in a Wye Formation 81
5-51: Intersection of Mainline and Exit Ramp 82
5-52: Intersection of Mainline and Entrance Ramp 83
5-53: Intersection of Cross-Route and a Ramp with a Connector 84
5-54: Intersection of a Split SR and a Divided SR 85
5-55: Intersection of a Divided SR with a restricted Turning Lane 86
5-56: Intersection of Cross-Route and Ramps with Connectors 87
5-57: Intersection of 2 Undivided SR's with a Ramp and a Connector 88
5-58: Intersection of a Cross-Route and Ramps with Connectors 89
5-59: Intersection of 2 Divided Cross-Routes and Ramps within an Interchange 90
5-60: Intersection of 2 SR's within a Cloverleaf Interchange 92
5-61: Intersection of 2 SR's within a SPUI Interchange 94
5-62: At-Grade Bridge 95
5-63: State Owned Bridge and a Turnback Road 97
5-64: Overpasses 99
5-65: Single Track Railroad Crossing 101
5-66: Multiple Railroad Tracks Separated by 20ft or more 101
5-67: Multiple Railroad Tracks Separated by Less Than 20ft 101
5-68: Rest Area's 102
5-69: Truck Escape Ramps 102
5-70: Park and Rides 103
5-71: Tunnels 104
5-72: Divided Highway Start/End 105
5-73: V-Type Divided Highway Start/End 106
5-74: Divided Highway Connector's and Emergency Turnarounds 107
5-75: Drain Pipes 107
5-76: Overhead Sign Structure (Cantilever) 108
5-77: Overhead Sign Structure (Chord \& Truss) 108
5-78: Bridge Mounted Sign Structure 109
5-79: Points of Interest (POI) 110
6 RMS/LRS Connectors \& Coding
RMS/LRS Intersection Connectors 112
RMS/LRS Attribute Definitions 114
Roadway Information (RI) Record 114
Reference Code (RF) Record 117
Shoulder Types. 118
RMS/LRS Allowable Name Abbreviations 119
Numbered Street Names
LRS VEHICLE OVERVIEW120
LRS Van Description 122
Input Event Board Commands 125
Correcting and Editing an SLD 126
Function Key Description in the Edit Mode 127
The Memo Function (F1) Mode 127
The Node Editor 128
8 Quality Control and Assurance Reports
LRS Quality Commitment \& Quality Assurance Programs 130
QC Ratings 131
QC Reporting 131
District QC Report 132
Cover Letter: District \& County Scores 132
QC Cover 133
District Section 1: Rating Statistics 133
District Section 2: Accuracy Statistics 134
Individual County QC Report Cover 134
County QC Index 135
County Section 1: Rating Statistics 135
County Section 2: QC Rating by SR 136
County Section 3: Accuracy Statistics 136
County Section 4: Total SR Length Statistics 137
County Section 5: Segments with Length Problems 137
County Section 6: Comparison of LRS and RMS Feature Offsets 138
County Section 7: Segments with Signing Problems 138
County Section 8: Average Segments Accuracy Statistics 139
County Section 9: Average Feature Accuracy Statistics 139
County Section 10: County Comments Listing by SR 140
Codes Used for LRS QC testing 141
LRS Quality Assurance (QA) Program 142
LRS QA REPORTING 143
LRS QA Report Cover 143
LRS QA Index 144
LRS QA Section 1: Comment Listing 144
LRS QA Section 2: Comparison of Feature Offsets 145
LRS QA Section 3: Comparison of Segments and SR Length 145
LRS QA Section 4: Comparison of Field 1 and Field 2 Data 146
Testing Request Form 147
9 Updating RMS from LRS
RMS/LRS Corrections 149
LRS Tracking 150
LRS Segment Change Form 151
Proper Completion of an LRS Segment Change Form 152
Adding Segments 158
Transferring Segments 159
SR Documentation for Segment Changes 160
LRS QA/QC Completion Form 160
10 SR Signing
Segment Sign Introduction 163
Segment Sign Types, Dimensions and Character Spacing 163
Segment Sign Mounting 165
Segment Post Installation Requirements 165
Installation of SR Marker Signs 165
Segment Sign Placement 166
SR Segmentation 167
SR Signing at Intersections and on Specific Features 169
Real World Sign Placement 172
Sign Usage Descriptions 174
SR Segment Signing Example 177
Ordering SR Signs 178
Appendix
Divided Roadway FlowchartAppendix A

1 Introduction

LRS Overview ... 2
LRS History
LRS SLD's

1 Introduction

LRS Overview

PennDOT's Location Referencing System (LRS), implemented in 1987, is the system used to index and designate the State highway network, to define roadway lengths, locations, and route connectivity. The LRS was designed to bring Pennsylvania's State-owned roadway feature data into a verifiable, flexible, and constant engineering standard.

The Roadway Management System (RMS) is PennDOT's means for defining and monitoring the State-owned highway network, maintaining an inventory of the roadway features, conditions, and characteristics, and providing decision-makers with the information that is necessary for funding, business planning, project design, and maintenance programming. The Location Reference System (LRS) provides a framework for which all RMS data can be tied to true roadway locations. Data stored and managed in RMS includes roadway geometry information, traffic information, pavement and shoulder history, maintenance history, municipal and legislative boundaries, intersections, roadside features, structure locations, railroad crossings information, pavement testing, condition survey information (including guide rail and drainage features), and posting/bonding information. One of the primary uses of RMS is the annual allocation of highway maintenance funds.

RMS information is the basis for other PennDOT computer systems and programs. Many other PennDOT computer systems depend on information and data collected by LRS and then stored in RMS. Some of the current users of the LRS and RMS databases are described below.

- AHOPS Automated Highway Occupancy Permit System (e-Permitting)
- APRAS Automated Permit Routing \& Analysis System
- BMS2 Bridge Management System 2
- SAP PM Plant Maintenance
- CDART Crash Data Analysis and Retrieval Tool
- ECMS Engineering \& Construction Management System
- GIS Geographic Information System
- MPMS Multi-modal Project Management System
- HPMS Highway Performance Monitoring System
- RCRS Road Condition Reporting System
- SIMOS Sign Inventory Management \& Ordering System

With so many users dependent on LRS data, it is vital that the information be as accurate as possible, and that it properly reflects actual field conditions. Accurate segment markers are of obvious significance, since they are the tie between the database and the roadway. When segment marker signs are missing or improperly placed, the information we report may not be tied to the location we think it is. Signing is important to many people within PennDOT, including Pavement Testing and Distress Surveys, Design, Construction, Maintenance, Highway Occupancy Permits, Roadway Posting and Bonding, Tort Liability, Turnbacks, Planning and Programming, Traffic, Municipal Services, Utilities, Right of Way, Crash review and Analysis, and Emergency Management and customers outside PennDOT including the Federal Highway Administration, County 911 programs, State \& Local Police, Townships, Local Emergency Management, Consultants, Delivery Services (UPS, Fed Ex, etc.), Fire Departments, Utility Companies.

As with the LR System, the LRS also assigns numbers to all sections of State-owned highways.

However, unlike the old system, the LRS does not utilize a cumulative distance system; instead, each State Route (SR) is divided into specified sections called segments. The LRS identification number, called the LRS key is a unique series of numbers that identify the location of each point or feature along the route. The fourteen-digit number is an integral part of the Roadway Management System (RMS) where roadway data is stored, (the LRS key is explained in further detail in section 2).

LRS History

Prior to the LRS, the system for designating state owned highways was the Legislative Route (LR) system. LR numbers were assigned to sections of highway, which could vary from 2-5 digits with no specific order for the numbering within the county. Shown in (Figure 1-1), SR 0419 used to be made of 3 separate LR's, (LR 138, 137 and A-4668) within the town of Cornwall. The LR system used hardcover Straight-Line Diagram (SLD) booklets for referencing roadway data, distances, and roadway feature attribute locations. Distances were referenced by "stations" and were in an accumulative format. Updates or modifications of the old SLD's was not automated and consequently was very time consuming and cumbersome. As a result of this, over time this data became increasingly inaccurate, unreliable and did not reflect actual conditions in the field. The overall integrity of the LR system gradually deteriorated. A need for a more efficient, accurate, and flexible system became evident which resulted in the implementation of the current Location Referencing System (LRS), which replaced LR's with SR's in 1987.

Figure 1-1
LR map with new SR's in Red

LRS SLD's

The LRS also uses an SLD format. However, SLD's are generated and redistributed by the RMS and are more easily updated. The entire LRS database is easily accessible to RMS users and is more efficient and flexible than the old LR system. Information displayed on SLD's can be viewed in the RMS (Figure 1-2) or printed to hardcopy form. Additionally, SLD books and DVDs are refreshed and distributed annually to PennDOT District and County offices, as well as too many external entities. SLD books are available in hardcopy form (Figure1-3), or on CD-ROM (Figure 1-4).

Figure 1-2 RMS SLD

Figure 1-3
Annual SLD Refresh Hardcopy

Figure 1-4
Annual SLD Refresh CD-ROM

2 LRS Routing \& Segmentation

LRS Key 6
State Routes (SR's) 7
Non-tolled Pennsylvania Turnpike Routes 7
LRS Even/Odd Numbering Convention 8
Route Hierarchy 8
Numbering of non-traffic Routes (Quadrant SR's) 9
Interchanges 10
Wye's 11
Other SR Numbering Conventions. 11
SR Segmentation 12
Segment Markers 14
Null Segments 17
Turnback Null Segments 18
Interchange Segmentation 19
9000 Route Segmentation. 22
Offsets 23

2 Routing \& Segmentation

LRS Key

An LRS key is a unique fourteen-digit number that identifies the location of each specific point or feature along a State route. The first two digits of the key define the County, the next four digits identify the State Route (SR), the next four define the Segment, and the last four identify the Offset.

07/4016/0100/0857 is an example of an LRS key, which identifies:

07	/	4016	$/$	0100	/
County (CO)	State Route (SR)		Segment (SEG)		Offset

Each of Pennsylvania's sixty-seven counties is identified by a county number, as follows:

County	\#	County	\#
Adams	1	Elk	24
Allegheny	2	Erie	25
Armstrong	3	Fayette	26
Beaver	4	Forest	27
Bedford	5	Franklin	28
Berks	6	Fulton	29
Blair	7	Greene	30
Bradford	8	Huntingdon	31
Bucks	9	Indiana	32
Butler	10	Jefferson	33
Cambria	11	Juniata	34
Cameron	12	Lackawanna	35
Carbon	13	Lancaster	36
Centre	14	Lawrence	37
Chester	15	Lebanon	38
Clarion	16	Lehigh	39
Clearfield	17	Luzerne	40
Clinton	18	Lycoming	41
Columbia	19	McKean	42
Crawford	20	Mercer	43
Cumberland	21	Mifflin	44
Dauphin	22	Monroe	45
Delaware	23	Montgomery	46

County	$\#$
Montour	47
Northampton	48
Northumberland	49
Perry	50
Pike	51
Potter	52
Schuylkill	53
Snyder	54
Somerset	55
Sullivan	56
Susquehanna	57
Tioga	58
Union	59
Venango	60
Warren	61
Washington	62
Wayne	63
Westmoreland	64
Wyoming	65
York	66
Philadelphia	67

Figure 2-1
State Routes (SR's)
Pennsvlvania's Counties

State Routes (SR's) are identified by four-digit numbers. SR numbers are assigned as follows:

1. Traffic Routes, Interstates, US or PA Routes
2. Quadrant Routes (Non-Traffic Routes)
3. Relocated Traffic Routes
4. Interchanges
5. Wye's
6. Rest Areas
7. Truck Escape Ramps
8. Others
9. Park and Rides

0001-0999
1001-4999
6000-6999
8001-8999
9101-9199
9201-9299
9301-9399
9401-9499
9501-9599

Non-tolled Pennsylvania Turnpike Routes

Consists of non-tolled roads owned and maintained by the Pennsylvania Turnpike Commission. These roads are of special interest to the Pennsylvania Department of Transportation and they are assigned a 5000-series number to reference physical and administrative data related to the roadway. While these roads are not stored in the Roadway Management System (RMS), they are tracked internally by both the District and Central Office.

1. Non-tolled Pennsylvania Turnpike Routes

Figures 2-2 through 2-4 demonstrate SR numbers that are assigned based on Traffic Route numbers.

Figure 2-2
Interstate 81 (SR 0081)

Figure 2-3
U.S. Traffic Route 22 (SR 0022)

Figure 2-4
PA Traffic Route 934 (SR 0934)

LRS Even/Odd Numbering Convention

SR numbers that end with an even number are typically assigned to SR's that flow in the East/West direction, and ones that end in odd numbers are designated to SR's that flow in the North/South direction. This numbering convention applies to Interstate Routes (except those that are Beltways or Spurs), most Traffic Routes and Quadrant Routes (routes greater than 0999).

Route Hierarchy

The following hierarchy was established to accommodate sections of roadway that were shared by multiple Traffic Routes:

1. Interstates
2. U.S. Traffic Routes
3. PA Traffic Routes
4. Quadrant Routes

The shared section of roadway must be designated according to the route with the higher hierarchy, (i.e. Figure 2-5, Interstate 83 has a higher ranking than US 322, in this case, the routes would be designated as SR 0083). If both routes are of equal route hierarchy, then the SR is assigned to the route with the lower number (Figures 2-6 through 2-7).

Figure 2-5
Interstate 83 \& U.S. 322 Traffic Routes (SR 0083)

Figure 2-6
U.S. Traffic Routes 22 \& 322 (SR 0022)

Figure 2-7
U.S. 22 \& PA 343 Traffic Routes (SR 0022)

Numbering of Non-Traffic Routes (Quadrant SR's)

Most non traffic route SR's are called "quadrant" routes, the exceptions are 8000 and 9000 SR's, which are mainly ramps or connectors. Counties in general are divided into a four-quadrant layout (as illustrated in Figures 2-8 \& 2-9); the quadrant routes are then designated according to their location within each quadrant. For example, quadrant 1 routes are located in the northeastern part of the county and are numbered from 1000 to 1999. Some SR's start in one quadrant and run through another quadrant, when this happens, the SR is numbered according to the quadrant that it began in. Quadrant routes also have a hierarchy with the lower SR number taking precedence over a higher numbered quadrant route.

Figure 2-8
Example Quadrant Layout within a County

Figure 2-9
Quadrant Layouts for a Group of Counties

Interchanges

An interchange is a road junction that typically uses grade separation, and one or more ramps, to permit traffic on at least one highway to pass through the junction without directly crossing any other traffic stream. It differs from a standard intersection, at which roads cross at grade. Interchanges are almost always used when at least one of the roads is a limited-access divided highway (expressway or freeway), though they may occasionally be used at junctions between two surface streets.

Interchanges are typically numbered sequentially. All ramps within an interchange have the same SR number. Odd numbers are given to interchanges along SR's in the North/South direction; even numbers are given to interchanges along SR's in the East/West direction (Figure 2-10).

Figure 2-10
Example of Interchange SR Numbering
Note that interchanges along I-81 (which runs North and South), are given sequential odd numbers. The interchanges in Cumberland County are SR's 8033, 8035, and 8037; then numbering restarts in

Dauphin County with SR's 8001, 8003, 8005, 8007, and 8009. Likewise, the interchanges along I-83 (which runs North and South) in Dauphin County are given the sequential odd numbers SR 8015, 8017, 8019, 8021, 8023, 8025, 8027, 8029 and 8031.

Wye's

A wye is a roadway that aids traffic flow at an at-grade intersection (Figure 2-11). A wye is separated from the mainline by some type of median, and must be at least 200 feet in length. If the length is less than 200 feet, then the roadway is to be designated as a connector (also referred to as a "leg").

Separate wye's located at the same at-grade intersection are typically designated with different SR numbers. Wye's are commonly given even SR numbers if the connecting SR is even numbered, or if the wye branches off the Northbound or Eastbound direction of a divided SR. Odd SR numbers are assigned if the connecting SR is odd numbered, or if the wye branches off the Southbound or the Westbound direction of a divided SR.

Figure 2-11
Example At-Grade Intersection with Wye's and Connectors

Other SR Numbering Conventions

The last three digits of a relocated Traffic Route are the same as the original Traffic Route, i.e. SR 214 becomes business SR 3214. Rest areas or truck escape ramps are given even numbers if they connect to the Northbound or Eastbound side of an SR, and odd numbers if they connect to the Southbound or Westbound side.

SR Segmentation

Every state route is divided into specified sections of roadway known as segments. Segments can vary in length, but the majority of them are approx. one-half mile in length. Where possible, segments typically start and end at easily identifiable physical features along the roadway such as intersections, bridges, overpasses or railroad tracks.

Since bridge structures are identified by their LRS key, each entire bridge must be contained within a single segment. Therefore, the segment length will equal the length of the bridge in cases where the bridge is longer than one-half mile.

SR's are segmented in the North or East direction, and will normally increase in increments of "tens". Segments are even numbered on undivided roadways, and in the Northbound or Eastbound direction of divided roadways. On the Southbound or Westbound side of divided roadways, there is a corresponding odd numbered segment. Interstate segments are associated with the mile posts.

Segment locations are identified in the field by segment marker signs, which are located according to the segment and offsets found in RMS. On the Southbound or Westbound side of divided roadways. segment markers are placed at the "high end" or "high offset" of the segment that you're going into. because that will correspond to the way you are traveling when you see the signs. Figures 2-12 through 2-14 illustrates segmentation and segment marker location.

Figure 2-12
Segmentation of an Undivided Roadway

Sequencing of forward and backwards facing signs are shown above in Figure 2-12. The forward signs are shown on the left with their corresponding back facing sign shown to the right. On an undivided roadway, the forward and backward signs are mounted on the same pole and are usually placed on the right side of the road in an Easterly or Northerly direction. In Figure 2-13, you will notice that the westbound signs, that are perpendicular to their corresponding eastbound signs, are signed with the segment you are traveling into, not the one you are leaving.

Figure 2-13
Segmentation of a Divided Roadway

Figure 2-14
Segmentation of an Interstate

Segment Markers

Segment markers allow for easy identification of the LRS segment locations on the state highway system. SR markers indicate the SR and segment numbers at the current location point at which the segment is affixed. Figures 2-15 and 2-16 are photographs of actual segment markers.

Figure 2-15
SR 3012, Segment 140

Figure 2-16
Intersection of SR's 3

Figure 2-17 represents the most common segment marker type. This marker defines the point that SR 1022, segment 0010 begins. This type of marker is found on an undivided highway or in the Northbound or Eastbound direction of a divided highway. Offset 0000 is located at the feature associated with the sign or at the point on the road that is perpendicular to the sign.

Figure 2-18 defines the point that SR 1022, segment 11 is entered. This type of marker is found in the Southbound or Westbound direction of a divided highway. It is also found on a one-way street that runs West or South. Markers for odd numbered segments are located at the "end" of the segment since that is the point that the segment is entered as the route is traveled. Therefore, the ending offset (highest offset value) is located at the feature associated with the sign or at the point on the road that is perpendicular to the sign.

Figure 2-17
SR 1022, Segment 10

Figure 2-18
SR 1022, Segment 11

Figure 2-19 illustrates the marker type used to identify the ending point of an SR. This type of marker is typically found at the end of an SR that doesn't connect to any other SR or a ramp. The ending offset (highest offset value), is located at the feature associated with the sign or at the point on the road that is perpendicular to the sign.

A segment marker indicating the end of the current segment is depicted in Figure 2-20. This type of marker is most commonly found at the end of a bridge or the point at which a section of an SR has been partially turned back. The ending offset (highest offset value), is located at the feature associated with the sign or at the point on the road that is perpendicular to the sign.

Figure 2-19
End SR 1022

Figure 2-20
End Segment, SR 1022

Ramp segment markers are represented in Figures 2-21 and 2-22. A "begin ramp" segment marker (Figure 2-21) is found at the beginning of any ramp; offset 0000 is located at the gore area associated with the sign. An "end ramp" segment marker (Figure 2-22) locates the ending point of a ramp with the ending offset (highest offset value) located at the gore area associated with the sign.

Figure 2-21
Begin SR 8022, Segment 500

Figure 2-22
End SR 8022, Segment 500

Figures 2-23 through 2-27 depict intersection markers. Figure 2-23 indicates the intersection with SR 1022 and that segment 10 is to the right. Offset 0000 is located at the point where SR 1022 and the traveled SR intersect. This type of marker is found at intersections of at least two divided or undivided SR's.

Figure 2-24 depicts the intersection with SR 1022, where segment 20 is to the right and segment 30 is to the left. Segment 30, offset 0000, and the ending offset (highest offset value) of segment 20 are located at the point where SR 1022 and the traveled SR intersect. This type of marker is found on intersections of at least two undivided SR's.

Figure 2-23
Intersection with SR 1022

Figure 2-24
Intersection with SR 1022

Figure 2-25 represents the intersection with SR 1022, which is divided with segment 21 to the right and segment 31 to the left. Segment 31, offset 0000, and the ending offset (highest offset value) of segment 21 are located at the point where SR 1022 and the traveled SR intersect. This type of marker is found on intersections with the Southbound or Westbound direction of a divided SR. Figure 2-26 indicates the intersection with divided SR 1022, where segment 30 is to the right and segment 21 is to the left. Segment 30 , offset 0000 and the ending offset (highest offset value) of segment 21 are located at the intersection of the traveled SR. This type of marker is found where the intersecting SR is divided on one side, and undivided on the other, of the traveled SR.

Figure 2-25
Intersection with SR 1022

Figure 2-26
Intersection with SR 1022

Figure 2-27 depicts the intersection with SR 1022, where segment 20 continues through the intersection. This type of marker is found on intersections with divided or undivided SR's.

Figure 2-27
SR Intersection with SR 1022

Figures 2-28 and 2-29 depict some other types of segment signs that are non-typical, but very useful. 2-28 is used to help locate a state-owned bridge that is located on a local road; this sign is usually found on an SR that intersects with the local road.

Figure 2-29 is found on the south or west side of a divided SR, this sign shows the total segment length of the segment you are entering. This sign is helpful for determining a starting reference point when there is no SLD available. Detailed information on SR segment marker installations can be found in the last section of this manual.

Figure 2-28
Turnback Road with a State-Owned Bridge

Figure 2-29
Total Segment Length of West or South Segment

Null Segments

When multiple SR's share a section of roadway, the SR assignment is based on the previously defined hierarchy. All the other SR's shared by that section have a "Null" section. Nulls are also used when a portion of a route is not State-owned. Since non-State roadways are not defined in the RMS, all null segments are given an arbitrary length of 100 feet. Null segment numbering always begins with a " 7 " followed by a number that is the next highest even or odd number (whether it's divided or undivided) in sequence to the previous segment prior to the null area. In Figure 2-30, SR 1057 contains null segment "7022" because it shares a section of roadway with SR 0049 before continuing onto segment 30.

Figure 2-30
Null Section for SR 1057 (Sharing Roadway with SR 0049)

Figures 2-31 \& 2-32 demonstrate actual locations of null segments, due to multiple routes designated on the same roadway.

Figure 2-31
Null Section for SR 0322
(Sharing Roadway with SR 0022)

Figure 2-32
Null Section for SR 0322
(Sharing Roadway with SR 0083)

Turnback Segments

Turnback segments are also used when ownership of an SR or a portion of an SR is "turned back" to a Municipality (Township, Borough, City, etc.). These nulls are referred to as Turnbacks. Often only part of an SR is turned back to a municipality while the other sections remain State-owned. For example, the State may continue to maintain ownership of the bridges along a route. Figure 2-33 illustrates a typical Turnback area where the state retains ownership of the bridges and the rest of the road becomes owned by the municipality.

Figure 2-33
Turnback SR with State Owned Bridges

Figures 2-34 \& 2-35 demonstrate actual locations of turnback segments. In these examples the roadways were turned back, but the State continues to own and maintain the bridges. Note that there are segment markers at each end of the bridge, indicating that the entire "non-turned back" segment is the bridge and that each bridge must have its own unique segment number.

Figure 2-34
Partial Turnback to Township with State-Owned Bridge

Figure 2-35
Partial Turnback to Township with State-Owned Bridge

Interchange Segmentation

The 8000 series SR number assigned to a specific interchange represents all the ramps at that interchange. Ramps within an interchange are segmented according to the mainline SR's involved. The higher priority mainline route (according to the previously defined route hierarchy) will establish the quadrant configuration for the interchange. Quadrants are defined according to the following convention (Figure 2-36):

Figure 2-36
Interchange Quadrants

Quadrants are always defined according to this convention, even if there are no ramps in a particular quadrant. Each ramp in a quadrant is assigned a specific segment number, according to the following table. Ramps are always given even segment numbers, preferably in increments of "tens."

Quadrant	Acceptable Segment Numbers	Preferred Segment Number Sequencing
1	$0010-0240$	$0010,0020,0030$, etc.
2	$0250-0490$	$0250,0260,0270$, etc.
3	$0500-0740$	$0500,0510,0520$, etc.
4	$0750-0990$	$0750,0760,0770$, etc.

Ideally, if there are multiple ramps within the same quadrant, then the most outward ramp is given the lowest segment number, and the others are numbered sequentially inward. Figures 2-37 \& 2-38 illustrate typical interchange quadrants and segmentation.

Figure 2-37
Ramp Quadrant Layout \& Segmentation

Figure 2-38
Ramp Quadrant Layout \& Segmentation
A ramp must be at least 200 feet in length to be given a unique segment number. If the length is less than 200 feet, then the roadway is to be designated as a connector (also referred to as a "leg").

Ramps should begin or end at intersections perpendicular to connecting roadways if there is a stop sign or traffic light. Additional legs that intersect with the ramp will be considered connectors (<200 feet) or additional segments (>200 feet). In the event there is no stop sign or traffic light, the leg with a yield sign should be the connector (<200 feet) or alternate segment (>200 feet). Figures 2-39 \& 240 illustrate typical ramps connecting to perpendicular intersections. Figure 2-39 illustrates the correct way to segment this type of ramp. Figure 2-40 illustrates the incorrect way to segment this type of ramp.

Figure 2-39
Ramp Segment with Connector (Correct)

9000 Route Segmentation

Wye's, rest areas, truck escape ramps, and other 9000 routes are always given even segment numbers, preferably in increments of "tens. 9000 routes cannot be bi-directional unless each direction of the route has its own segment (does not apply to park and rides). These routes are generally short in length, however, so segment number 10 is typically assigned to the entire route.

As stated previously, separate wyes located at the same at-grade intersection are typically designated with different SR numbers. However, they may all be given the same SR number, and each designated as unique segments, in the same manner that individual interchange ramps are designated. In these cases, designate segment numbers based on the same quadrant convention defined for interchange ramps.

If there are separated parking areas for cars and trucks within the same rest areas, then the parking area closest to the mainline is designated as segment 10, and the other is designated as segment 20. Figures 2-41 \& 2-42 illustrate typical rest area segmentation.

Figure 2-41
Rest Area with One Parking Area

Figure 2-42
Rest Area with Two Parking Areas

Offsets

The location of every roadway feature along a state route is referenced by an offset value, which identifies the distance in feet from the start of the segment to that particular feature. Any feature that exists at the segment start point has an offset value of zero. Offset values always increase in the North or East direction. Therefore, when travelling South or West, the route will decrease in segment and offset (Figure 2-43).

Figure 2-43
Offset of an SR that is Divided

3 LRS/RMS Codes

LRS Codes 25
Determining Intersection Types 26
RMS Intersection Coding and LRS Coding Equivalents 27
RMS/LRS Intersection Code Conversion Table 31
RMS Signal Codes 32

3 LRS／RMS Codes

LRS Codes

LRS Feature／Intersection Code Table

The following table defines all valid feature codes recognized by the current LRS van software．

（AL）	Y－Ahead Left Intersection	（PI）	Point of Interest
（AR）	Y－Ahead Right Intersection	（PB）	Point Back Intersection
（BG \uparrow ）	Bridge Begin	（RA）	Reference Ahead
（BG \downarrow ）	Bridge End	（RB）	Reference Back
（BL）	Y－Back Left Intersection	（RF）	Reference Point Label
（BR）	Y－Back Right Intersection	（RIT）	Roadway Information Begin
（CA）	Road Closed Ahead Intersection	（RI \downarrow ）	Roadway Information End
（CB \downarrow ）	County Name End	（RN）	Entrance Ramp
（CB \uparrow ）	County Name Begin	（RO）	Rotary Intersection
（CC）	Canned Comment	（RR）	Railroad Track
（CK）	Road Closed Back Intersection	（RS）	Roadside Rest
（CO）	Comment	（RX）	Exit Ramp
（CR）	Cross Intersection	（SG个）	Segment Begin
（DC）	Divided Connector	（SG \downarrow ）	Segment End
（DP）	Drainpipe	（SL¢）	Sound Wall Left Begin
（EB）	Ramp Entrance Both Directions	（SLね）	Sound Wall Left End
（ER）	Error or Unknown Feature Type	（SR个）	Sound Wall Right Begin
（IA）	Intersection Ahead	（SR \downarrow ）	Sound Wall Right End
（IB）	Intersection Back	（SS）	Sign Structure
（LN）	T－Left Entrance Ramp	（SX）	Signalized Pedestrian Crossing
（LX）	T－Left Exit Ramp	（TB \uparrow ）	Turnback Begin
（MB \downarrow ）	Municipality Name End	（TB \downarrow ）	Turnback End
（MB \uparrow ）	Municipality Name Begin	（TK）	Truck Escape Ramp
（MM）	Memo Comment	（TL）	T－Left Intersection
（MO）	RWIS Monitoring Site	（TR）	T－Right Intersection
（MP）	Milepost	（TS）	Traffic Light or Signal
（NC个）	Route name Begin	（TUT）	Tunnel Begin
（NC \downarrow ）	Route Name End	（TU \downarrow ）	Tunnel End
（N2个）	Second Route Name Begin	（WR¢）	Retaining Wall Right Begin
（N2 \downarrow ）	Second Route Name End	（WR \downarrow ）	Retaining Wall Right End
（N3个）	Third Route Name Begin	（WL个）	Retaining Wall Left Begin
（N3 \downarrow ）	Third Route Name End	（WL \downarrow ）	Retaining Wall Left End
（NL）	Entrance Ramp Left	（XB）	Ramp Exit Both Directions
（NR）	Entrance Ramp Right	（XL）	Exit Ramp Left
（OP）	Overpass	（XR）	Exit Ramp Right
（PA）	Point Ahead Intersection		

Figure 3－1
LRS Code Table

Determining Intersection Types

Intersection feature types in RMS and LRS are based on how many degrees of angle there are between the center of the road that you are traveling on and the center of the road that intersects with that road. The diagram represented in figure 3-2 shows the relationship between the center of the road and the degrees of angle used in determining the feature type. As an example, roads that have an intersection that is between 112.5° to 157.5° (green section) would be considered a Back-Right (BR). When trying to determine intersection types in the field this model should always be used as a guide.

Figure 3-2
Intersection Angles

RMS Intersection Coding and LRS Coding Equivalents

$>$ AHEADL (Y-Ahead Left Intersection) - Identifies a road which intersects the mainline roadway at approximately a 315 degree angle. LRS Van Equivalent = AL

MATTERSTOWN RD	013264 FT	
(SR4008 SEG 0090/2596)	$0070 / 0063$	

> AHEADR (Y-Ahead Right Intersection) - Identifies a road which intersects the mainline roadway at approximately a 45 degree angle. LRS Van Equivalent = AR

| 008895 FT | 008895 FT BROWNS MILL RD
 $0040 / 0434$
 |
| :---: | :--- | :--- |

$>$ ALENTR (Ahead Left Enter) - Identifies a ramp entering unto the mainline roadway from the left at approximately a 315 degree angle. Most commonly found on limited access highways in the southbound or westbound direction, but can occur on any highway. (Gore Area may or may not exist.) LRS Van Equivalent NL

> ALEXIT (Ahead Left Exit) - Identifies a ramp exiting off the mainline roadway to the left at approximately a 315 degree angle. Most commonly found on limited access highways but can occur on any highway. (Gore Area may or may not exist.) LRS Van Equivalent = XL

> ARENTR (Ahead Right Entrance) - Identifies a ramp entering unto the mainline roadway from the right at approximately a 45 degree angle. Most commonly found on limited access highways in the southbound or westbound direction, but can occur on any highway. (Gore Area may or may not exist.) LRS Van Equivalent = NR

RAMP RD	012563 FT			
(SR8025 SEG	$0500 / 0879$)	$0063 / 0281$	\rightleftharpoons	

> AREXIT (Ahead Right Exit) - Identifies a ramp exiting off the mainline roadway to the right at approximately a 45 degree angle. Most commonly found on limited access highways but can occur on any highway. (Gore Area may or may not exist.) LRS Van Equivalent = XR

| | | 081343 FT RAMP A RD
 $0800 / 1738$ (SRB013 SEG 0010/0000) |
| :--- | :--- | :--- | :--- | :--- |

> BACKL (Y-Back Left Intersection) -Identifies a road which intersects the mainline roadway at a 225 degree angle. LRS Van Equivalent = BL

BARKDOLL LN (T397)	$010812 ~ F T$ $0050 / 1650$$\quad=$	010812 FT

$>$ BACKR (Y-Back Right Intersection) - Identifies a road which intersects the mainline roadway at a 135 angle. LRS Van Equivalent = BR
> BLENTR (Back Left Entrance) - Identifies a ramp entering onto the mainline roadway from the left approximately a 225 degree angle. Most commonly found on limited access highways but, can occur on any highway. (Gore Area may or may not exist.) LRS Van Equivalent=NL

$>$ BLEXIT (Back Left Exit) - Identifies a ramp exiting off of the mainline roadway to the left at approximately a 225 degree angle. Most commonly found on limited access highways in the southbound or westbound direction, but can occur on any highway. (Gore Area may or may not exist.) LRS Van Equivalent = XL

$>$ BRENTR (Back Right Entrance) - Identifies a ramp entering onto the mainline roadway from the right at approximately a 135 degree angle. Most commonly found on limited access highways but, can occur on any highway. (Gore Area may or may not exist.) LRS Van Equivalent = NR

> BREXIT (Back Right Exit) - Identifies a ramp exiting off the mainline roadway from the right at approximately a 135 degree angle. Most commonly found on limited access highways in the southbound or westbound direction, but can occur on any highway. (Gore Area may or may not exist.) LRS Van Equivalent = XR

$>$ CLOSEA (Closed Ahead) - Identifies a section of roadway that is closed permanently to traffic but the right-of-way is State-owned. LRS Van Equivalent = CA

001695 FT	001695 FT ROAD CLOSED $0010 / 1695$	ROAD CLOSED AHEAD

> CLOSEB (Closed Back) - Identifies a section of roadway that is closed permanently to traffic but the right-of-way is State-owned. LRS Van Equivalent = CK

003406 FT	003406 FT ROAD CLOSED $0010 / 3406$$\|$	ROAD CLOSED BACK

> CROSS (Cross Intersection) - Identifies a road which intersects the mainline roadway at a 90 and 270 degree angle. LRS Van Equivalent = CR

> DIVCON (Divided Connector) - Identifies a roadway or section of roadway which serves as a connection between opposing directions of travel of a SR. This attribute should be located in both directions to serve as an accurate cross reference for opposing directions. LRS Van Equivalent = DC

| CROSSOVER RD
 (CONN $)$ | 100065 FT | | 100293 FT |
| :--- | :--- | :--- | :--- | :--- |

> ENTRB (Entrance Both) - Identifies a ramp which is accessible from either direction of the mainline roadway with which it intersects. (This code is exclusively used on $8000 \& 9000$ series SR's.) LRS Van Equivalent = EB

> EXITB (Exit Both) - Identifies a ramp which exits onto the mainline roadway and permits access to either direction of roadway with which it intersects. (This code is exclusively used on 8000 \& 9000 series SR's.) LRS Van Equivalent = XB

000928 FT		000928 FT QUARRY RD $0500 / 0928$ (SR2005 SEG 0110/1607)

$>$ INTERA (Intersection Ahead) - A contiguous intersection positioned in front of a SR when another intersection is also present at this location. (At a null or turnback area the INTERA is the actual road being nulled over.) LRS Van Equivalent = IA

004108 FT	004108 FT WMB LENTZ HW
	INTER-AHD WM $0750 / 0897$

> INTERB (Intersection Back) - A contiguous intersection positioned behind a SR when another intersection is also present at this location. (At a null or turnback area the INTERB is the actual road being nulled over.) LRS Van Equivalent = IB

> POI (Point of Interest) - Identifies an intersection which is utilized by the Automated Permit Routing/Analysis System (APRAS). LRS Van Equivalent = PI

| 029659 FT | 029659 FT (APRA) B-D MINING |
| :---: | :---: | :---: | :---: |
| | $--\quad 0130 / 1956$ (PRDR) |

$>$ REFAHD (Reference Ahead) - A contiguous intersection positioned in front of a SR when no other intersection exists at this location. (At a null or turnback area the REFAHD is the actual road being nulled over.) LRS Van Equivalent = RA

> REFBAK (Reference Back) - A contiguous intersection positioned behind a SR when no other intersection exists at this location. (At a null or turnback area the REFBAK is the actual road being nulled over.) LRS Van Equivalent = RB
$>$ ROTARY (Rotary Intersection) - Identifies a circular intersection which has a center barrier diameter greater than 20 feet. Multiple roads may intersect at various angles. Often referred to as a roundabout, traffic circle or rotary. LRS Van Equivalent = RO

$>$ SPEDX (Signalized Pedestrian Crossing) - Identifies a traffic signal which is used for pedestrians to cross a state road where there are no intersecting streets. LRS Van Equivalent = SX

0431 -0972	侕!	Till	$\begin{aligned} & 111259 F T \\ & 0430 / 0970 \end{aligned}$	SIGNALIZED	MID	BLOCK	\times I

$>$ TLEFT (T-Left Intersection) - Identifies a road which intersects a SR at a 270 degree angle. LRS Van Equivalent = TL

KINSINGER RD (T455)	004078 FT		004078 FT

$>$ TLENTR (T-Left Entrance) - Identifies a ramp which enters the main roadway at a 270 degree angle. (No "Gore Area" present.) LRS Van Equivalent = LN

RAMP F RD	008093 FT		008103 FT (SR8024 SEG $0010 / 1809)$	$0051 / 0999$	$=$

$>$ TLEXIT (T-Left Exit) - Identifies a ramp which exits the main roadway at a 270 degree angle. (No "Gore Area" present.) LRS Van Equivalent = LX

$>$ TRENTR (T-Right Entrance) - Identifies a ramp which enters the main roadway at a 90 degree angle. (No "Gore Area" present.) LRS Van Equivalent = RN

| $0061 / 0022$
 009374 FT | $\mid-$ | $0060 / 0022$
 009400 FT RAMP G RD |
| :---: | :--- | :--- | :--- | :--- |

$>$ TREXIT (T-Right Exit) - Identifies a ramp which exits the main roadway at a 90 degree angle. (No "Gore Area" present.) LRS Van Equivalent = RX

| 009517 FT | $=$009517 FT RAMP RD
 $0050 / 1776$ (SR8020 SEG 0270/0000) |
| :---: | :--- | :--- |

$>$ TRIGHT (T-Right Intersection) - Identifies a road which intersects a SR at a 90 degree angle. LRS Van Equivalent = TR

| 018061 FT | 018061 FT ST0NE RD
 $0070 / 1784$
 (T464) |
| :--- | :--- | :--- |

RMS/LRS Intersection Code Conversion Table

Intersection coding in the LRS van software and the RMS is not identical. LRS is limited to a twocharacter intersection code while RMS utilizes up to a six-character code. The following table displays the intersection code conversion currently being utilized.

RMS CODE	LRS CODE
AHEADL	(AL)
AHEADR	(AR)
ALENTR	(NL)
ALEXIT	(XL)
ARENTR	(NR)
AREXIT	(XR)
BACKL	(BL)
BACKR	(BR)
BLENTR	(NL)
BLEXIT	(XL)
BRENTR	(NR)
BREXIT	(XR)
CLOSEA	(CA)
CLOSEB	(CK)
CROSS	(CR)
DIVCON	(DC)
ENTRB	(EB)
EXITB	(XB)
INTERA	(IA)
INTERB	(IB)
POI	(PI)
REFAHD	(RA)
REFBAK	(RB)
ROTARY	(RO)
SPEDX	(SX)
TLEFT	(TL)
TLENTR	(LN)
TLEXIT	(LX)
TRENTR	(RN)
TREXIT	(RX)
TRIGHT	(TR)

Figure 3-3
RMS to LRS Conversion Codes
*Note: Other codes that are used for structures in LRS are not shown in Figure 3-3; this table illustrates only codes that are utilized on the RMS Intersection Screen.

RMS Signal Codes

Signalized coding in the LRS van software and the RMS is not identical. RMS utilizes a one letter signal code whereas LRS uses one two 2 letter code with comments describing the type. The codes are entered in the Traffic light column of the intersection screen. The following are examples how RMS displays the signalized codes currently being utilized.
$>$ Traffic Signal - Identifies an intersection which utilizes automatically operated colored lights, typically red, amber, and green, for controlling the movement of traffic at road intersections.

RMS code = S

LRS SLD Display

RMS Intersection Display

> Blinking Signal - Identifies an intersection which utilizes blinking red or amber colored lights at road intersections. RMS code $=\mathbf{B}$

LRS SLD Display

RMS Intersection Display

4 Roadway Attribute Location Quick Guide

Event Point Location Guidelines34

4 Roadway Attribute Location Quick Guide

Event Point Location Guidelines

Due to the unique nature of each attribute, it is necessary to establish general guidelines which dictate event points for each type of feature. These guidelines will provide consistent statewide verification procedures which in turn will produce a uniform SLD database for the RMS. These event points will establish the location of each feature and dictate the assigned segment/offset value. Although it would be virtually impossible to describe every situation and attribute configuration that may exist in the field, adherence to these guidelines will allow for optimum statewide consistency. The following rules define proper event points for intersections and roadway features.

[^0]
* SEGMENTS

Segment start/ends are to be located according to the following criteria:
Feature associated with segment start/end:
Locate feature and segment start/end at same location using the associated feature's appropriate verification point. When measuring distance between two fixed features the measurement should always be taken between the location represented by the feature and not where the segment signs are located in the field. Segment breaks associated with bridges should be located at the bridge begin.

Stand-alone segments (no visible feature associated with segment) start/end:
Segment start/ends are to be located at the point where the roadway centerline and an "imaginary" line drawn perpendicular from the marker to the roadway centerline would meet. If the segment marker is missing then the segment start/end should be located th the appropriate RMS distance. Codes: ST, SE.

* INTERSECTIONS

All intersections, regardless of their configuration, are to be located at the point of intersection of the centerline of the intersecting roads. The only exceptions to this rule are ramps, wyes, rest areas, and jug handles, which are located at their gore areas (where pavement meets turf). Codes: AL, AR, BL, BR, CR, IA, IB, RO, TL, TR.

* RAMPS

Entrance and exit ramps are to be located by their gore area. Codes: EB, LN, LX, NL, NR, RN, RX, XB, XL, XR.

Where there is no gore area at the ramp intersection, the ramp is located at the intersecting road's edge of pavement. Codes: AL, AR, BL, BR, EB, LN, LX, RN, RX, XB.

* BRIDGES

All bridge data is extracted from the Bridge Management System (BMS). Each structure is identified by a unique fifteen digit BMS key, and a 14-digit Bridge ID that contains an LRS key (County number, SR number, Segment, Offset). The length of each structure is dictated by BMS and is to remain
unchanged unless a significant discrepancy is found. Both the start and end of the structure should be located; this will verify bridge lengths. The event points can vary depending on the type of structure and pavement which exists in the field. The location of the expansion dam, edge of parapet walls, or a visible change in surface, in most cases will serve as acceptable event points. Codes: BGB, BGE

* OVERPASSES

All overpass data is extracted from the Bridge Management System (BMS). Overpasses are to be located at the intersection of the centerline of the overpass and the centerline of the roadway. Multiple overpasses carrying opposing lanes of the same roadway are to be located separately only if BMS identifies the bridge as two separate structures. If BMS identifies the bridge as a single structure, then it should be represented as a single overpass. Code: OP.

* RAILROAD CROSSINGS

Railroad crossings at grade are to be located at the centerline intersection of the centerline of the tracks and the centerline of the roadway. Multiple tracks at grade which are separated by less than 20 feet are to be located at the intersection of the centerline of the multiple tracks and the centerline of the roadway. The number of tracks should be placed in the field 1. Multiple tracks at grade which are separated by more than 20 feet should be located individually. Code: RR.

* REST AREAS

Rest areas are to be treated the same as entrance and exit ramps using the "gore area" or centerline location whichever is more appropriate. Code: XR, XL, NR, NL, LN, LX, RN, RX. (RMS Code Equivalents \rightarrow ALEXIT, AREXIT, ALENTR, ARENTR, BLENTR, BRENTR, BLEXIT, BREXIT, TLENTR, TRENTR, TLEXIT, TREXIT)

* TRUCK ESCAPE RAMPS

Truck escape ramps are to be treated the same as exit ramps and should be located using the "gore area". Centerline intersection has been used in the past; however, the centerline point in many cases is "very" ambiguous. The "gore area" hopefully will represent a more defined location. Code: TK.
(RMS Code Equivalent \rightarrow AREXIT, ALEXIT)

* TUNNELS

The beginnings and endings of tunnels are to be located at the point where the roadway goes underground and where it re-emerges. Codes: TUB, TUE.

* DIVIDED HIGHWAY START/END

The start or end points of a divided highway are located at the points at which the divided roadway cross-section begins. This location is usually indicated by a fixed center barrier or multiple lane separations. These points also indicate the segment start or end points. For help determining if a road should be divided consult the Divided Roadway Flowchart (Appendix A).

* DIVIDED HIGHWAY CONNECTORS

Divided highway connectors are to be treated the same as intersections and should be located at the same intersection of the centerlines of the roadways. This attribute should be located in both directions to serve as an accurate cross reference for opposing directions. Code: DC. (RMS Code Equivalent \rightarrow DIVCON)

* MILEPOSTS

Mileposts are to be located at the point where the roadway centerline and an "imaginary" line drawn perpendicular from where the sign and roadway centerline would meet. On Interstates, in most cases
a Segment start/end will also occur at every milepost. Code: MP.

* COUNTY \& MUNICIPAL BOUNDARIES

County \& municipal boundaries are to be located at the point where the roadway centerline and an "imaginary" line drawn perpendicular from the sign to the roadway centerline would meet except for the special case described below.

If a county boundary occurs anywhere on a structure, the entire structure will be shown in the one county claiming maintenance responsibility for the structure. If the county being tested is responsible for the structure, then the entire structure should be included during verification. However, if the county being tested is not responsible for the structure then verification should exclude the bridge. Ignore the county line sign in this case.

Segment begin/end points must occur at a County boundary. Codes: CBB, CBE, MBB, MBE.

* COMMON STREET NAME CHANGES

Changes in the common name of a SR are to be located at the point where the signing in the field indicates. Presently, common street name changes occur only at segment begin/end points. Codes: NCB, NCE, N2B, N2E, N3B, N3E.

* DRAINAGE PIPES

Drainage Pipes are to be located at the inlet.
Code: DP.

* OVERHEAD SIGN STRUCTURES

All overhead sign data is extracted from the Bridge Management System (BMS). Overhead Sign Structures are to be located at the intersection of the centerline of the Sign Structure and the centerline of the roadway. This point will normally occur when positioned directly under the sign.
Code: SS.

* RETAINING WALLS AND SOUND WALLS

All walls are to be located at the point where the roadway centerline and an "imaginary" line drawn perpendicular from the wall to the roadway centerline would meet. Walls need to be located on both sides of a highway and elevation (above or below) needs to be identified. Code: SLB, SLE, SRB, SRE, WLB, WLE, WRB, WRE.

* MONITORING SITES

RWIS monitoring sites are to be located at the point where the roadway centerline and an "imaginary" line drawn perpendicular from where the monitor and roadway centerline would meet. Code: MO.

* SIGNALIZED PEDESTRIAN CROSSING

Signalized crossing are to be located at the point perpendicular to where the crossings meets the centerline of the highway. Code: SX.

* Traffic Signals

Traffic signals will be located at the same offset as the intersection that they are utilized for. Code: TS.

* Points of Interest

Points of Interest should always be located at the same position as the intersection that they are associated with.

5 Graphical Illustration of Attribute Locations

Event Point Diagram Legend 40
Stand Alone Segments \& Segments on Other Signs 41
5-1: Segments (Without a Fixed Feature), Stand Alone Segment Signs 42
5-2: Municipal and County Boundaries 42
5-3: Mileposts 43
T-Intersections 44
5-4: Intersection of 2 Undivided SR's 45
5-5: Intersection of Divided (CR) and Undivided (TR) SR’s 45
5-6: Intersection of Divided (CR) $\geq 20 \mathrm{ft}$ and Undivided (TR) SR's 46
5-7: Intersection of 2 Divided SR's 46
5-8: Intersection of 2 Divided SR's, one with a ≥ 20 ft barrier (CR) 47
5-9: Intersection of Divided SR's, (TR) with a ≥ 20 ft barrier. 47
5-10: Intersection of Divided SR's, both with ≥ 20 ft Barriers 48
5-11: Intersection of an Undivided SR (CR) and an Undivided Local Road (TR) 48
5-12: Intersection of an Undivided SR and a Divided Local Road (TR) with a barrier of $\mathbf{2 0} \mathbf{~ f t}$ 49
5-13: Intersection of a Divided SR with a $\geq 20 \mathrm{ft}$ barrier and an Undivided Local Road (TR) 49
Cross Intersections 50
5-14: Intersection of Undivided SR's, both (CR's) 51
5-15: Intersection of a Divided and Undivided SR's 51
5-16: Intersection of a Divided SR, one with a barrier $\geq 20 \mathrm{ft}$ and an Undivided SR 52
5-17: Intersection of 2 Divided SR's, both (CR's) 52
5-18: Intersection of Divided SR's, with the SR being tested having a barrier $\geq 20 \mathrm{ft}$ 53
5-19: Intersection of Divided SR's, with the intersecting SR having a barrier $\mathbf{2 0} \mathbf{~ f t .}$ 53
5-20: Intersection of Divided SR's, both having a barrier $\geq 20 \mathrm{ft}$ 54
5-21: Intersection of Turning SR's, both transitioning from Divided to Undivided 54
5-22: Intersection of Turning SR's, transitioning from Undivided to Divided with a $\geq \mathbf{2 0} \mathbf{f t}$ barrier 55
5-23: Intersection of Turning SR's, with 3 of the intersection having a $\geq 20 \mathrm{ft}$ barrier 55
5-24: Intersection of Turning SR's 56
5-25: Intersection of an Undivided SR and Undivided Local Road 56
5-26: Intersection of a Divided SR having a $\geq 20 \mathrm{ft}$ barrier and an Undivided Local Road 57
Y-Intersections 58
5-27: Intersection of Undivided SR's 59
5-28: Intersection of Divided and Undivided SR's 59
5-29: Intersection of a Divided SR having a $\mathbf{2 0} \mathbf{f t}$ barrier and Undivided SR's 60
5-30: Intersection of Divided SR's 60
5-31: Intersection of Divided SR's with the SR being tested having a $\geq 20 \mathrm{ft}$ barrier 61
5-32: Intersection of Divided SR's with the intersecting SR having a $\geq 20 \mathrm{ft}$ barrier 61
5-33: Intersection of Divided SR's with both SR's having a $\geq 20 \mathrm{ft}$ barrier 62
5-34: Intersection of Undivided SR and Undivided Local Road 62
5-35: Intersection of Divided SR and an Undivided Local Road 63
5-36: Intersection of a Divided SR having a $\geq 20 \mathrm{ft}$ barrier and Undivided Local Road 63
Modern Roundabouts and Traffic Slowing Intersections 64
5-37: Rotary, Roundabout or Traffic Slowing Intersections with a $\leq 20 \mathrm{ft}$ Rotary Barrier 65
5-38: Rotary, Modern Roundabout or Traffic Slowing Intersections with a >20ft Rotary Barrier 66
5-39: Diverging Diamond Interchange (DDI) 71
Ramps and Other Intersection Types 73
5-40: Intersection of 2 SR's that are in Close Proximity to Each Other 74
5-41: Intersection of an Undivided SR with a partial one-way section and a Divided SR 74
5-42: Intersection of Undivided SR and Undivided Local Road that is on a Curve 75
5-43: Intersection of Undivided SR and a Skewed Local Road that is Paint Lined at a 90 Degree Angle 75
5-44: Intersection of an Undivided SR and Local Roads that intersect in a V Formation 76
5-45: Intersection of Undivided SR and Skewed Undivided Local Roads 76
5-46: Intersection of 2 Undivided SR's where Each SR Overlaps the Other (Nulls Over) 77
5-47: Intersection of 2 Undivided SR's with one of the SR's having a Bidirectional Connector 78
5-48: Intersection of a Divided SR, Undivided SR and a Jughandle 79
5-49: Intersection of an Undivided SR with a Wye and a Divided SR having a $\mathbf{2 0} \mathbf{f t}$ barrier 80
5-50: Intersection of 2 Undivided SR's that Meet in a Wye Formation 81
5-51: Intersection of Mainline and Exit Ramp 82
5-52: Intersection of Mainline and Entrance Ramp 83
5-53: Intersection of Cross-Route and a Ramp with a Connector 84
5-54: Intersection of a Split SR and a Divided SR 85
5-55: Intersection of a Divided SR with a restricted Turning Lane 86
5-56: Intersection of Cross-Route and Ramps with Connectors 87
5-57: Intersection of 2 Undivided SR's with a Ramp and a Connector 88
5-58: Intersection of a Cross-Route and Ramps with Connectors 89
5-59: Intersection of 2 Divided Cross-Routes and Ramps within an Interchange 90
5-60: Intersection of 2 SR's within a Cloverleaf Interchange 92
5-61: Intersection of 2 SR's within a SPUI Interchange 94
5-62: At-Grade Bridge 95
5-63: State Owned Bridge and a Turnback Road 97
5-64: Overpasses 99
5-65: Single Track Railroad Crossing 101
5-66: Multiple Railroad Tracks Separated by 20ft or more 101
5-67: Multiple Railroad Tracks Separated by Less Than 20ft 101
5-68: Rest Area's 102
5-69: Truck Escape Ramps 102
5-70: Park and Rides 103
5-71: Tunnels 104
5-72: Divided Highway Start/End 105
5-73: V-Type Divided Highway Start/End 106
5-74: Divided Highway Connector's And Emergency Turnarounds 107
5-75: Drain Pipes 107
5-76: Overhead Sign Structure (Cantilever) 108
5-77: Overhead Sign Structure (Chord \& Truss) 108

5-78: Bridge Mounted Sign Structure .. 109
5-79: Points of Interest.. 110

5 Graphical Illustration of Attribute Locations

Event Point Diagram Legend

The following diagrams define proper event point locations for intersections and roadway features. When event point locations are affected by the Divisor Type, specific Divisor Types are defined on the diagrams. When no Divisor Types are specified, then all Divisor Types apply to the diagram.

LEGEND

Paint Lines	n11,
Divisor Type 1,2,4,5,8*	nes
Divisor Type 3,7*	亶
Verified SR Label	Verification for SR 0022
Event Point	\bigcirc
Event Point Location	SR 1001 SEG 0010/0000
Event Point Under Overpass	\bigcirc
Cross Route Label	SR 4006 MAIN ST
Cross Route Event Point	-
Cross Route Event Point Location	SR 4006 SEG 0010/0000
Feature Point (within photo's)	A
Feature Point Cross Route (within photo's)	
Non State Intersection	T678 CHEERY RD

* Divisor Type Definitions

DIVISOR TYPE CODE	DIVISOR TYPE DESCRIPTION
A	Positive Barrier-Flexible (HPMS)
B	Positive Barrier-Semi Rigid (HPMS)
C	Positive Barrier-Rigid (HPMS)
0	None
1	Paint Divided
2	Fixed Barrier (Man-made)
3	Earth Barrier
4	4' Width or Greater Painted Center
5	Curb
6	City Block
7	Natural Barrier (Trees, Fill, Etc.)
8	Mountable Curb

If the Divisor type is 3 or 7 and is equal to or greater than $20 f t$, then the verification points for the intersecting roads will be placed at individual separated offsets.

In each figure, an SLD is provided that defines the features illustrated in the drawing. In some cases, a photograph also accompanies the diagram to further define field conditions and/or event point locations. These photographs were not necessarily taken at the same location represented by the diagram or SLD; proper event point locations are represented but all features may not match. The Divided Roadway Flowchart (Appendix A) may be used to help determine when a road should be divided.

Stand Alone Segments \& Segments on Other Signs

5-1: Segments (Without a Fixed Feature), Stand Alone Segment Signs

Note: Accurate sign placement in the field is critical for standalone segment signs; they must be posted in the field at the exact footage specified. They should never be added onto an existing post for another type of sign unless the other sign post is less than 5 ft away from the specified seament offset.

Verification for SR 3015
LRS SLD Display
SR 3015 SEG 0040/0000

S>
704D: BZDZ
0030:2663

5-2: Municipal and County Boundaries

Verification for SR 1001

LRS SLD DISPLAY

5-3: Mileposts

Verification for SR 0081

Any Divisor Type

Northbound View

Southbound View

LRS SLD Display

T-Intersections

5-4: T-Intersections - Intersection of 2 Undivided SR's
Verification for SR 0225

LRS SLD Display
—— $>$ 0030:0732 TR SR 4001 0010:0000^PARK PL

5-5: T-Intersections - Intersection of Divided (CR) and Undivided (TR) SR's

Verification for SR 0119
Divisor (m) Type 1,2,4,5,8

LRS SLD Display

5-6: T-Intersections - Intersection of Divided (CR) $\geq 20 \mathrm{ft}$ and Undivided (TR) SR's
Verification for SR 0003
Divisor (圁) Type 3,7

LRS SLD Display

5-7: T-Intersections - Intersection of 2 Divided SR's
Verification for SR 1001

Divisor (m) Type 1, 2,4,5,8

LRS SLD Display

SR 2004 0021: 0000 acENTER ST

SR 2004 0020:0000^CENTER ST SR 2004 0021: $0000 \wedge$ CENTER ST SR 2004 0020:0000acENTER ST

5-8: T-Intersections - Intersection of 2 Divided SR's, one with a $\geq 20 \mathrm{ft}$ barrier (CR)
Verification for SR 0003
Divisor (橿) Type 3, 7
Divisor (m) Type 1, 2,4,5,8

LRS SLD Display

5-9: T-Intersections - Intersection of Divided SR's, (TR) with a ≥ 20 ft barrier
Verification for SR 1001

Divisor (\quad) Type 1,2,4,5,8

SR 1001 SEG 0250/0000 SR 2004 SEG 0010/0000 SR 1001 SEG 0251/0000

SR 2004 0011:0000aCENTER ST
SR 2004 0011:0000^CENTER ST

SR 2004 0010:0000^CENTER ST SR 2004 0010:0000aCENTER ST

5-10: T-Intersections - Intersection of Divided SR's, both with $\geq \mathbf{2 0} \mathbf{f t}$ Barriers
Verification for SR 1001

Divisor (■) Type 3,7

LRS SLD Display

5-11: T-Intersections - Intersection of an Undivided SR (CR) and an Undivided Local Road (TR)

Verification for SR 3002

LRS SLD Display ::\#: > 0070:0538 TR T605aFICKEL HILL RD

5-12: T-Intersections - Intersection of an Undivided SR and a Divided Local Road (TR) with a barrier of $\geq \mathbf{2 0} \mathbf{f t}$

Verification for SR 2011

LRS SLD Display

\square :::: > 0012:0599 TR T578^TNIN OAK PL

5-13: T-Intersections - Intersection of a Divided SR with a ≥ 20 ft barrier and an Undivided Local Road (TR)

Verification for SR 0004

LRS SLD Display

8861*8334 :

Cross Intersections

5-14: Intersection of Undivided SR's, both (CR's)

Verification for SR 0025

LRS SLD Display
\square ㄹ $>$ 0010:1601 CR SR 0033 0020:0555aMAPLE RD

5-15: Intersection of a Divided and Undivided SR's
Verification for SR 0022
Divisor (\sim) Type 1,2,4,5,8

LRS SLD Display

$>8018 \times 0300^{\circ}$

5-16: Intersection of a Divided SR, one with a barrier $\geq 20 \mathrm{ft}$ and an Undivided SR
Verification for SR 0022
Divisor (■) Type 3,7

5-17: Intersection of 2 Divided SR's, both (CR's)
Verification for SR 1001
Divisor ((\quad) Type 1,2,4,5,8

LRS SLD Display

.RF .CR 0020*0000.CR 0010*3388 RF CR CR

6224026I08086I0404
SR 3034 0020:1602aPAINE RD
SR 3034 0021:1603^PAINE RD 6224026I04046I0808
SR 3034 0021:1603^PAINE RD SR 3034 0020:1602^PAINE RD

5-18: Intersection of Divided SR's, with the SR being tested having a barrier $\geq \mathbf{2 0} \mathbf{~ f t}$

Verification for SR 1001
Divisor (■) Type 3,7
Divisor (m) Type 1,2,4,5,8

LRS SLD Display

5-19: Intersection of Divided SR's, with the intersecting SR having a barrier $\geq \mathbf{2 0} \mathbf{f t}$
Verification for SR 1001
Divisor (圁) Type 3,7
Divisor (\quad) Type 1,2,4,5,8

LRS SLD Display

5-20: Intersection of Divided SR's, both having a barrier ≥ 20 ft

Verification for SR 2001

Divisor (圁) Type 3,7

LRS SLD Display

SR 2001 SEG 0010/0554 SR 2004 SEG 0061/1201

SR 2001 SEG 0010/0500
SR 2004 SEG 0060/1200
SR 2001 SEG 0011/0507
SR 2004 SEG 0060/1112

5-21: Intersection of Turning SR's, both transitioning from Divided to Undivided
MAIN ST - SEG 30
Verification for SR 0422
Divisor ((\quad) Type 1, 2, 4, 5, 8

LRS SLD Display
SEG 50

.BL
.BL Ө060 : В080.AL 8050 :3165 BL

BL

AL SR 4005 0030: $0000 \triangle$ MAIN ST

5-22: Intersection of Turning SR's, with both transitioning from Undivided to Divided, with one SR having a barrier $\geq \mathbf{2 0} \mathbf{f t}$

Verification for SR 0491
Divisor (■) Type 3,7
Note: For this type of intersection, there should be a null on SR 1003 from the end of segment 40 to the start of segment 50

$$
\text { RAVEN ST - SEG } 50
$$

SR 0617 SEG 0060/0000 SR 0617 SEG 0061/0000

5-23: Intersection of Turning SR's, with 3 of the intersection having a $\mathbf{\geq} \mathbf{2 0} \mathbf{f t}$ barrier
Verification for SR 0491
Divisor (嘼) Type 3,7

LRS SLD Display

5-24: Intersection of Turning SR's
Verification for SR 0422
Divisor (\quad) Type 1,2,4,5,8
MAIN ST SEG 30
SR 0422 SEG 0061/0000
SR 4005 SEG 0030/0000
SR 0422 SEG 0060/0000 SR 4005 SEG 0030/0000

SEG 61
CHERRY ST
SEG 20

LRS SLD Display

5-25: Intersection of an Undivided SR and Undivided Local Road
Verification for SR 2031

LRS SLD Display

5-26: Intersection of a Divided SR having a ≥ 20 ft barrier and an Undivided Local Road
Verification for SR 1001
Divisor (■) Type 3,7 个

LRS SLD Display

CR T45GaLAKE RD

Y-Intersections

5-27 : Intersection of Undivided SR's

Verification for SR 0022

LRS SLD Display
 > 0010:0300 BR SR 3020 0010:0000aBLACK ST

5-28 : Intersection of Divided and Undivided SR's

Verification for SR 0061
Divisor (m) Type 1,2,4,5,8

LRS SLD Display

5-29: Intersection of a Divided SR having a $\geq 20 \mathrm{ft}$ barrier and Undivided SR's
Verification for SR 1001
Divisor (■) Type 3,7

LRS SLD Display

5-30 : Intersection of Divided SR's

Verification for SR 1001

Divisor ($\quad=$) Type 1,2,4,5,8

5-31: Intersection of Divided SR's with the SR being verified having a $\mathbf{\geq} \mathbf{2 0} \mathbf{f t}$ barrier
Verification for SR 1001

Divisor (■) Type 3,7
Divisor (\quad) Type 1,2,4,5,8

LRS SLD Display

5-32: Intersection of Divided SR's with the intersecting SR having a $\mathbf{\geq} \mathbf{2 0} \mathbf{f t}$ barrier
Verification for SR 1001
Divisor (■) Type 3,7

LRS SLD Display

5－33 ：Intersection of Divided SR＇s with both SR＇s having a $\geq 20 \mathrm{ft}$ barrier
Verification for SR 1001

LRS SLD Display
Divisor（■）Type 3，7

ZZ21＊ロZZロ
 ZZ21＊RZZロ

$>0 \square 2 \square * \square Z 46 \cdot B R$
 BR

SR 1Z13 GZ11：ZZZZaR IUER RD
SR 1013 RZ11：ZZ4ZaRIUER RD

SR 1Z13 RZ1Z：ZZZZaRIUER RD SR 1ロ13 RZ1Z：ZZ42ARIUER RD

5－34 ：Intersection of Undivided SR and Undivided Local Road

Verification for SR 1001

LRS SLD Display

5-35 : Intersection of Divided SR and an Undivided Local Road

Verification for SR 0022

Divisor (\quad) Type 1,2,4,5,8

LRS SLD Display
0191*0390

5-36 : Intersection of a Divided SR having a $\geq 20 \mathrm{ft}$ barrier and Undivided Local Road
Verification for SR 0003
Divisor (圁) Type 3,7

LRS SLD Display

Modern Roundabouts and Nontraditional Intersections

5-37 : Rotary or Traffic Slowing Intersections with a ≤ 20 ft Rotary Barrier

All intersecting roads in this type of rotary should be treated as if the rotary did not exist. The verifications points around the rotary should all be treated as if they were the same segments and offsets. The rotary intersection code (RO) should be used and the RO should be labeled as a TWP, BORO, CITY or PRDR type of intersection. The actual type of intersecting roads should also be added as if the rotary did not exist, (i.e. On SR 3001, the SR 0194 intersection would be a CR, and a BORO Rotary type of intersection would be added to that node).

Verification for SR 3001
SR 3001

TRAFFIC				STATE			OTHER NON-ST
-MAIN	INE--L	-- INTERSECT	-- EXIT		-ROUTE		
OFFSET	TYPE	ROADWAY NAME	TYPE NO.	CO	SR SEG.	OFF.	ROUTE
? 0000	CROSS	OLD STATE RD		66	01940030	0968	
? 0000	ROTARY	ABBOTTSTOWN - MAIN ST		66			BORO

5-38: Modern Roundabout Intersections with a >20ft Rotary Barrier

Whenever the diameter of the center barrier exceeds 20ft, the roundabout intersection should be treated as a divided section of roadway. Figures 5-38.1 and 5-38.2 show three state routes intersecting in the roundabout. The primary route is determined by route hierarchy. In this example, SR 116 is the primary route and will have Eastbound and Westbound segments that extend around the roundabout. Other routes that travel through the roundabout will have null segments. Intersecting routes with a raised barrier will also have divided segments.

Note: The roundabout on SR 116 creates SEG 0262 \& 0263

Figure 5-38.2
Divided barriers before and after the roundabout are included

All verification points within the roundabout should be treated as separate intersections, as if the roundabout did not exist (Figure 5-38.3). In addition to the typical intersection information, a rotary code (RO) should also be used at each intersection. The RO codes are entered to include offset, rotary code, municipality, street name, county number, and the TWP, BORO, CITY or PRDR representing the location of the intersection (Figure 5-38.4).

Note: Add ROTARY (RO) codes to all intersecting roads in the circle of the roundabout.

Figure 5-38.4
SR 116 segment 262 has two intersections inside the roundabout

Connectors are required to allow PennDOT's Automated Permit Routing Analysis System (APRAS) to function properly. Connections should be added to the primary roadway traveling through the roundabout. In the example shown in figure 5-38.5 the blue line represents the location of the connectors required to connect SR 116 westbound to SR 116 eastbound. The red line identifies the locations of the connectors for SR 116 eastbound to SR 116 westbound. Figure 5-38.6 illustrates how the connectors for segment 262 \& 263 (blue lines) are entered into RMS.

Note: Add connectors to connect the East and Westbound segments of the primary route

Figure 5-38.6
Connectors are entered EXACTLY as the corresponding connector in the adjacent segment

SR 116 has multiple intersections. Add all of the intersections at the correct offsets, including connectors. As mentioned previously, rotary codes are then added to every intersection and connector. Figure $5-38.7$ shows how segment 263 appears in RMS. The RO symbol will display at all connections inside the roundabout (Figure 5-38.8).

Figure 5-38.7
Segment 263 shown in RMS with RO codes at each intersection in the roundabout

Figure 5-38.8
SLD for SR 116 as it appears in RMS

Create divided segments for all other intersecting routes entering the roundabout with a raised barrier. In this example, SR 3059 and 3072 both have raised barriers requiring the dividing segments (Figure 5-38.9 through 5-38.11).

Figure 5-38.9
Create divided segments for intersecting SR's

Figure 5-38.10
SR 3059 as shown in RMS

Figure 5-38.11
SR 3072 as shown in RMS

5-39: Diverging Diamond Interchange (DDI)

Verification for SR 0019 Crossovers
All other intersections

LRS SLD Display

Ramps and Other Intersection Types

5-40: Intersection of 2 SR's that are in Close Proximity to Each Other
Verification for SR 4001
SR 4003 PARK DR

Note: Whenever intersecting SR's intersect at a distance of less than 40ft, they should be treated as one common intersection, if the distance between the 2
intersecting SR's, (points A and B) is 40 ft or greater, then the intersections should be located at different offsets.

LRS SLD Display

SR 4003 PARK DR

5-41: Intersection of an Undivided SR with a partial One-way Section and a Divided SR Verification for SR 1001

LRS SLD Display

5-42 : Intersection of Undivided SR and Undivided Local Road that is on a Curve
Verification for SR 2002

5-43: Intersection of Undivided SR and a Skewed Undivided Local Road that is Paint Lined at a 90 Degree Angle

Verification for SR 1001
Note: Event point, (BACKR) or (TRIGHT), is acceptable. However, the event code and location must correspond to the code used.

5-44: Intersection of an Undivided SR and Local Roads that intersect in a V Formation
Verification for SR 1001

Note: This intersection should be treated as one "COMMON" intersection if the distance between the 2 intersecting roads (\mathbf{A} and B) is less than 40ft., if they are greater than 40ft apart then they should be verified separately.

LRS SLD Display

\square $>$ 0010:0078 $\frac{\mathrm{BR}}{\mathrm{AR}}$

T580 aCENTER RD ET T580aCENTER RD

5-45: Intersection of Undivided SR and Skewed Undivided Local Roads

Verification for SR 1001
Note: This intersection should be treated as one "common" intersection and the event point should be located at the center of this "common" intersection.

COPE RD

LRS SLD Display

5-46: Intersection of Two Undivided SR's where Each SR Overlaps the Other (Nulls Over)
Verification for SR 1005

Note: SR 1005 contains a 7054 segment that accounts for the portion that runs concurrently over SR 1002. The 7054 segment is known as a turnback or null segment.

LRS SLD Display

5-47: Intersection of Two Undivided SR's with one of the SR's having a Bidirectional

 ConnectorVerification for SR 2001

SR 2002 BEAVER RD
 SR 2002 SEG 0020/0180

Note: If the connector or leg between SR's is bi-directional, then both points at which the connector intersects the SR's will be labeled the same. In this example, the point where the connector intersects SR 2001 at (0040/2370) and where it intersects SR 2002, will both be labeled "CONN for SR 2001/2002 SH."

Connectors must be less than 200' in length, and are verified at centerline intersections. If the length is greater than or equal to 200', it will be considered a ramp instead of a connector and verified at the gore.

SR 2001 SEG 0040/2370

LRS SLD Display

5-48: Intersection of a Divided SR, Undivided SR and a Jughandle

LRS SLD Display

5-49: Intersection of an Undivided SR with a Wye and a Divided SR having a $\mathbf{2} \mathbf{2 0} \mathbf{f t}$ barrier

LRS SLD Display

5-50: Intersection of Two Undivided SR's that Meet in a Wye Formation
Verification for SR 4001

Note: All SR's that are constructed in this formation should contain a 9000 SR for the portion of roadway that is one way and considered a leg. If the total length of the leg or connector is less than 200ft it should be treated as a connection

LRS SLD Display

5-51: Intersection of Mainline and an Exit Ramp

Verification for SR 0022

Note: The preferred gore area is where the improved surface meets the "unimproved" surface (grass, earth, loose aggregate, etc.). If this point is not clearly defined, an alternate gore area (such as the start of shoulder as shown) may be used.

In some cases, there is no "unimproved" area. In these cases, the preferred gore area is where there is a distinct change in material (such as from concrete to bituminous).

ALTERNATE GORE

LRS SLD Display

5-52: Intersection of Mainline and an Entrance Ramp

Verification for SR 0022

Note: The preferred gore area is where the improved surface meets the "unimproved" surface (grass, earth, loose aggregate, etc.). If this point is not clearly defined, an alternate gore area may be used.

In some cases, there is no "unimproved" area, in these cases, the preferred gore area is where there is a distinct change in material (such as from concrete to bituminous).

LRS SLD Display

> $0840: 1073$ NR SR 8001 $0750: 1239$ ARAMP A-3 RD

5-53: Intersection of Cross-Route and a Ramp with a Connector

Verification for SR 0022

Note: Ramps shall begin or end at intersections perpendicular to connecting roadways when a stop sign or a traffic signal is present.

If a stop sign or traffic signal is not present, the connector shall be assigned to the leg containing a yield sign.

Although this is the preferred method, ramp segments must be consistent within the interchange.

LRS SLD Display

$0010: 2614 \mathrm{BR}$ FROM 8007/0750 SHACONN

$0010: 2480 \mathrm{TR}$ SR 8007 0750:1239aRAMP K RD

5-54: Intersection of a Split SR and a Divided SR

Verification for SR 3069
Divisor (느) Type 1,2,4,5,8

LRS SLD Display

$0071: 0248$0071:0000 回		0070:0429	AR - BL - CR - CR	SR 0022 SR 0022 SR 0022 SR 0022	$\begin{aligned} & 0750: 10 \\ & 0750: 10 \\ & 0751: 08 \\ & 0750: 08 \end{aligned}$	$\begin{aligned} & 03-\text { PENN } \\ & 03 \text {-PENN } \\ & \text { 22-PENN } \\ & \text { 22-PENN } \end{aligned}$	
		$\begin{aligned} & 0070: 0000 \\ & 0060: 2640 \end{aligned}$		SEGMENT	MARKERS	ONLY	
	[${ }^{\text {] }}>\times \times$	0060:0000		SEGMENT	MARKERS	ONLY	

5-55: Intersection of a Divided SR with a Restricted Turning Lane

Verification for SR 0220

LRS SLD Display

5-57: Intersection of Two Undivided SR's with a Ramp and a Connector

Verification for SR 1001

Note: Connectors must be less than 200' in length, and are verified at centerline intersections. If the length is greater than or equal to 200', it will be considered a ramp and verified at the gore.

LRS SLD Display

> 0040:0150 NR SR 9801 $0010: 8245$

0030:2456 AR TO 1002/日010 SHACONN

5-59: Intersection of 2 Divided Cross-Routes and Ramps within an Interchange
Verification for SR 0015
Divisor (蔮) Type 3,7
Note: When there are turning opportunities to the left on divided SR's, the roads that intersect from the left should always be included

5-59: Continued
LRS SLD Display

5-60: Intersection of Two SR's within a Cloverleaf Interchange
Verification for SR 0022

Divisor (зм) Type 1,2,4,5,8

LRS SLD Display

5-61: Intersection of Two SR's within a SPUI Interchange

SR 0066 SEG 0150/1350 /SR 8038 SEG 0022/0490
SR 8038 SEG 0262/0000 SR 8038 SEG 0512/0185 SR 8038 SEG 0762/0000

Divisor (■) Type 3,7
Note: Verification points for other entrance/exit ramps, bridge begin and end points, are to be located in the same manner as other interchange types.

SR 0066 SEG 0151/1350 SR 8038 SEG 0022/0490 SR 8038 SEG 0262/0000 SR 8038 SEG 0512/0185 SR 8038 SEG 0762/0000

LRS SLD Display

5-62: At-Grade Bridge

Verification for SR 1001

Note: Segment breaks which fall on at-grade bridges should be located at the bridge begin.

LRS SLD Display

$\left\{\begin{array}{l}>0020: 1576 \mathrm{BG} \downarrow \text { AT GRADEA01100100201564 } \\ >0020: 1564 \mathrm{BG} \uparrow \text { AT GRADEA01100100201564 }\end{array}\right.$

5-63: State Owned Bridge and a Turnback Road

Verification for SR 1001

Note: Intersection
features should still be shown on the bridge begin and end offsets.

5-63: Continued

LRS SLD Display

Note: All turnback areas are shown as nulls. All nulls are given an arbitrary length of 100', regardless of their actual length. Segment markers will be placed at both ends of each bridge shown. A segment that is predominantly bridge or structure will have a surface type of 98, reference data in the null area will always be "990000 0000 0000".

5-64: Overpasses
Verification for SR 1001

LRS SLD Display
$\xlongequal{\square}>0010: 0584 \frac{\mathrm{OP}}{\mathrm{CR}}+\mathrm{SR} 0022$ 0100:0000aUS 22/322

5-65: Single Track Railroad Crossing
Verification for SR 1001

LRS SLD Display

5-66: Multiple Railroad Tracks Separated by 20ft or more
Verification for SR 1001

SR 1001 SEG 0090/1600
LRS SLD Display

5-67: Multiple Railroad Tracks Separated by Less Than 20ft
Verification for SR 1001

LRS SLD Display
\square H H + 0090:1463 RR 4 TRACKSA592272U

5-68: Rest Area's
Verification for SR 0079

LRS SLD Display

5-69: Truck Escape Ramps

Verification for SR 0322

LRS SLD Display

SR 9302 SEG 0010/0329

5-70: Park and Rides

Verification for SR 9501

Note: Park and Rides shall be measured from the gore (or edge of pavement) of the parking lot entrance continuing (straight) to the edge of pavement at the opposite side of the parking lot. Pavement width will fluctuate based on the actual width of the pavement.

Unlike other 9000 SRs, Park and Rides use typical "SR to SR" intersection codes in lieu of "ramp intersection codes".

Note: Irregularly shaped Park and Rides shall be measured from the entrance to the exit following the most direct path.

5-71: Tunnels

Verification for SR 0279
Any Divisor Type

LRS SLD Display

5-72: Divided Highway Start/End

Verification for SR 1006

LRS SLD Display

5-73: V-Type Divided Highway Start/End

Verification for SR 0056
Note: Segment 220/3035 to 220/3368 will need to have a null inserted because it contains bidirectional traffic and a divided section that starts or ends at 2 different physical locations.

SR 0056 SEG 0220/3368
SR 0056 SEG 0225/0000 SR 4093 SEG 0010/0000 END OF NULL

SR $0056 \longrightarrow$

LRS SLD Display

5-74: Divided Highway Connector's and Emergency Turnarounds
Verification for SR 0080
Any Divisor Type

LRS SLD Display

5-75: Drain Pipes

Verification for SR 1001
Note

Note: The verification point for skewed pipes will be at a perpendicular line drawn from the inlet of the pipe to the centerline of the road.

SR 1001 SEG 0020/0000

LRS SLD Display

S>

5-76: Overhead Sign Structure (Cantilever)

Verification for SR 0081

LRS SLD Display

5-77: Overhead Sign Structure (Chord \& Truss)

Verification for SR 0300

SR 0300 SEG 0320/2800

LRS SLD Display $\frac{11}{11}$

5-78: Bridge Mounted Sign Structure
Verification for SR 0081
SR 0081 SEG 0671/1571

LRS SLD Display

5-79: Points of Interest (POI)

Verification for SR 0147
A POI is a point defined in RMS that locates a private driveway entrance or other intersection not defined by other feature codes.

POI records have been added to the RMS database as the result of the implementation of the Automated Permit Routing Analysis System (APRAS). APRAS was designed to automate and expedite the permit issuance of oversized and/or overweight vehicles. APRAS computes the correct route as well as the mileage, cost, etc. for the permit. For APRAS to operate correctly, the exact location that an oversized/overweight vehicle begins and ends on State-owned highways must be defined, even if the beginning or ending point is not at an intersection of State or local roads.

POI records are included on the intersection screen of the RMS database; in most cases they establish where a private driveway intersects a State-owned highway. POI records are to be located at the appropriate segment/offset on the SR that corresponds to their actual location. If POI is not directly located on an SR then it should be located with the appropriate intersection that would normally provide access to that point. If 2 or more POl's are needed at the same location, then the POI's need to be labeled with one common name for both POl's. Shown below are illustrate example POI records on the RMS Intersection screen:

Note: POI records should always be added with a private intersection showing the correct intersection feature type.

LRS SLD Display

$6 \quad$ RMS/LRS Connectors \& Coding

RMS/LRS Intersection Connectors 112
RMS/LRS Attribute Definitions 114
Roadway Information (RI) Record 114
Reference Code (RF) Record 117
Shoulder Types 118
RMS/LRS Allowable Name Abbreviations 119
Numbered Street Names 120

6 RMS/LRS Connectors and Coding

RMS/LRS Intersection Connectors

The following examples define how connectors are coded in the RMS. The data should be coded the same way in LRS pertaining to the Roadway Name Field and the other Non-State Route Field. These two fields correspond to Field 1 and Field 2 data in the LRS software. It is critical that connectors in interchanges contain names using the TO/FROM format in order for the Automated Permit Routing and Analysis System (APRAS) to connect the SR's properly.

Connectors must be less than 200' in length, and are verified at centerline intersections. If the length is greater than or equal to 200 ', it will be considered a ramp and verified at the gore.

Name all connectors in the Roadway Name field to reflect whether it is connecting from a route or to a route by including "TO" or "FROM," as well as the 4 digit SR number, (/) and a 4-digit segment. This information is to be entered for the mainline intersections and at intersections on the ramps.

If the connector between SR's is bi-directional, then both points at which the connector intersects the SR's should be labeled the same, i.e. CONN FOR SR 0989 and 2002 with the lower number SR first.

For any intersection with a "CONN" code in the Other Non-State Route field, the Roadway Name field should always start with either "TO" or "FROM," as well as the SR number and segment. The exceptions to this rule are connections to local, borough, township, city, or any other non-state road; in these cases, the field should start with "LC," for Local Connector.

If a connector leads to or from a ramp and a divided SR, and turning is permitted either onto or from that SR, code the intersecting segment number for the side of the divided SR that the connector intersects.

Example 1: Conn to a divided SR (3015, Figure 6-1) from a ramp (8005, segment 10, Figure 6-2)

Figure - 6-1

COUNTY NO/NAME: 22 / DAUPHIN
STATE ROUTE. . . : 3015
SEGMENT.......: 0091 DIRECTION: S

STREET NAME1: N PROGRESS AV
SEGMENT LENGTH......: 1966
NO. OF INTERSECTIONS: 07 \& LIGHTS: 01

TRAFFIC								$\begin{aligned} & \text { RAMP } \\ & \text { EXIT } \end{aligned}$	STATE				OTHER NON-ST
--MAINLINE--L										-R	OUTE		
	FFSET	TYPE			ROADWAY	NAME	TYPE	NO.	CO	SR	SEG.	OFF.	ROUTE
?	0361	TLEFT		G00SE	VALLEY RD				22				TWP
?	0908	AHEADL		FROM	8005/0010				22				CONN
?	1040	TLENTR	S	RAMP	E RD				22	8005	0010	1211	
?	1040	TRIGHT	S	VALLE	Y RD				22				T431
?	1040	TLEFT	S	TO 80	005/0020 SH				22				CONN
?	1161	BLEXIT		RAMP	F RD				22	8005	0020	0000	
?	1895	AHEADL		FROM	8005/0500	SH			22				CONN

Figure - 6-2

Example 3: Connection to a Local Road

Figure 6-3
Example 4: Bi-directional connection between 2 SR's

Figure - 6-4

RMS/LRS Attribute Definitions

Roadway Information (RI) Record

The roadway information (RI) record displayed on the SLD (Figure 6-5) indicates various roadway characteristics.

Figure 6-5

The $\mathbf{R I}$ record breaks down into 4 individual parts:

1. $(\mathrm{L})=$ Number of Lanes
2. $(\mathrm{S})=$ Surface type
3. (D) = Divisor type
4. $(F)=$ Facility type (Directional flow of traffic)
5. Lanes (L) (Figure 6-6): Undivided Roadways - Total number of travel lanes for roadway. Divided Roadways - Total number of travel lanes in direction of travel.

Figure 6-6
2. Surface Type (S): Predominant pavement surface type.

SURFACE TYPE CODE	SURFACE TYPE DESCRIPTION
20	Earth - Unimproved
30	Earth - Graded/Drained
40	Stabilized (Soil, Gravel Or Stone)
51	Bituminous Surface Treatment
52	Bituminous - Intermediate Type
61	Bituminous - High Type
62	Bituminous On PCC Base
71	Plain Portland Cement Concrete
72	Reinforced Portland Cement Concrete
73	Continuously Reinforced/Prestressed
74	Concrete Over Concrete - Bonded
75	Concrete Over Concrete - Unbonded
76	Concrete Over Bituminous
80	Brick/Block
98	Bridge Decks
99	** Undefined Surface Type **

3. Divisor Type (D): Type of divisor or barrier that separates travel lanes. Figures 6-7 through 6-14 illustrate the various divisor types.

DIVISOR TYPE CODE	DIVISOR TYPE DESCRIPTION
0	None
1	Paint Divided
2	Fixed Barrier (Man-made)
3	Earth Barrier
4	4' Width or Greater Painted Center
5	Curb
6	City Block
7	Natural Barrier (Trees, Fill, Etc.)
8	Mountable Curb

Figure 6-7 Type
1: Paint Divisor

Figure 6-8
Type 2: Fixed Barrier

Figure 6-9
Type 3: Earth Divisor

Figure 6-11
Type 7: Natural Barrier

Figure 6-13
Type 5: Curb

Figure 6-10
Type 4: 4' Width or Greater Paint Divisor

Figure 6-12
Type 8: Mountable Curb

Figure 6-14
Type 6: City Block
4. Facility Type (F): Permissible traffic flow for roadway.

Type 1 - One direction of travel (Divided roadway, One-way Street).
Type 2 - Two directions of travel (Undivided roadway).
Type 3 - Two directions of travel (State-owned right side only).
Type 4 - Two directions of travel (State-owned left side only).

Reference Code (RF) Record

Roadway geometry data can be displayed in LRS files in the form of an 18-digit Reference Code (RF) record. This data is segment specific, describes the predominate data for each segment, and appears only at the start of each segment. This data is always displayed in the North/East perspective.
Below is a breakdown of a sample (RF) code.

POSITION	DESCRIPTION
1,2	Surface Type (S)
3,4	Roadway Width
5,6	Total Number of Lanes (L)
7,8	Left Shoulder Type
9,10	Left Shoulder Paved Width
11,12	Left Shoulder Total Width
13,14	Right Shoulder Type
15,16	Right Shoulder Paved Width
17,18	Right Shoulder Total Width

Surface type and number of lanes will be the same as the data contained in the (RI) record.
612402060408060408 is an example RF record, defined as follows:

- Surface = 61
- Roadway width = 24'
- Total number of lanes = 02,
- Left shoulder type $=06$, Left shoulder paved width $=04$, Left shoulder total width $=08$
- Right shoulder type $=06$, Right shoulder paved width $=04$, Right shoulder total width $=$
- 08

The following illustration (Figure 6-15) shows how the measurements contained in the RF record are to be determined.

Figure 6-15
RF Codes

Shoulder Types

Predominant shoulder type:

CODE	SHOULDER TYPE
BS	BCBC SHOULDER
BW	BITUMINOUS WEDGE
CG	CURBED GUTTER
CU	CURB
D1	PLASTIC PIPE EDGE DRAIN
D2	POROUS CONC. PIPE EDGE DRAIN
D3	PVC PIPE EDGE DRAIN
D4	ABS PIPE EDGE DRAIN
D5	PERF. PLASTIC PIPE EDGE DRN
D6	CORR. STEEL COATED EDGE DR.
D7	CORR. ALUM. PIPE EDGE DR
D8	PRE-FAB EDGE DRAIN
FD	FULL DEPTH ROAD CONSTRUCTION
GR	GRAVEL SHOULDER
NO	NONE
PG	PAVED GUTTER
RB	RECYCLED PAVED SHOULDER
RC	ROLLER COMPACTED CONCRETE
RG	RUBBLE GUTTER
R3	R3 ROCK
SP	PAVED SHOULDERS, TYPE 1-SP
ST	STABILIZED SHOULDER
TS	TURF SHOULDER
UN	UNKNOWN PAVED SHOULDER
01	PAVED SHOULDERS, TYPE 1
03	PAVED SHOULDERS, TYPE 3
04	PAVED SHOULDERS, TYPE 4
06	PAVED SHOULDERS, TYPE 6
07	PAVED SHOULDERS, TYPE 7
1C	CONCRETE SHOULDERS, TYPE 1
1F	PAVED SHOULDERS, TYPE 1-F
1I	PAVED SHOULDERS, TYPE 1-I
1S	PAVED SHOULDERS, TYPE 1-S
2C	CONCRETE SHOULDERS, TYPE 2
6 F	PAVED SHOULDERS, TYPE 6-F
6 I	PAVED SHOULDERS, TYPE 6-I
6P	PAVED SHOULDERS, TYPE 6-SP
6S	PAVED SHOULDERS, TYPE 6-S
99	** STARTUP INITIAL VALUE **

RMS/LRS Allowable Name Abbreviations

To standardize naming conventions, and ensure consistency, the following table establishes abbreviations to be used for the ending portion of road names in RMS as well as LRS.

	ABBREVIATION
Alley	NAME
Avenue	AL
Boulevard	AV
By-Pass	BL
Bridge	BP
Circle	BR
Court	CR
Drive	CT
Extension	DR
Expressway	ET
Highway	EX
Lane	HW
Lot	LN
Public Institute	LT
Pike	PI
Place	PK
Park System	PL
Plot	PS
Park	PT
Parkway	PR
Plaza	PY
Road	PZ
Railroad	Township Road (No Name)
Row	RR
State Highway (No Name)	RO
Square	SH
Street	SQ
Terrace	ST
Tunnel	TE
Turnpike	TN
Trail	TP
Wye	TR
	YE

Numbered Street Names

All numbered street names should be spelled out in RMS. In most cases, directional prefixes are not to be included in the roadway name. The exception to this is when two separate (non-contiguous) roads with the same name need to be differentiated. The following examples established standard naming conventions for numbered street names.

NUMBERED NAME	STREET NAME
1ST	FIRST ST
2ND	SECOND ST
3RD	THIRD ST
4TH	FOURTH ST
4 and $1 / 2$	FOUR AND HALF ST
5 TH	FIFTH ST
6 TH	SIXTH ST
7TH	SEVENTH ST
8TH	EIGHTH ST
9TH	NINTH ST
10TH	TENTH ST
11TH	ELEVENTH ST
12 TH	TWELFTH ST
13TH	THIRTEENTH ST
14TH	FOURTEENTH ST
15TH	FIFTEENTH ST
16TH	SIXTEENTH ST
17TH	SEVENTEENTH ST
18TH	EIGHTEENTH ST
19TH	NINETEENTH ST
20TH	TWENTIETH ST
21ST	TWENTYFIRST ST
22ND	TWENTYSECOND ST
23RD	TWENTYTHIRD ST
24TH	TWENTYFOURTHST
25TH	TWENTYFIFTH ST
26TH	TWENTYSIXTH ST
27TH	TWENTYSEVENTHST
28TH	TWNETYEIGHTHST
29TH	TWENTYNINTH ST
30TH	THIRTIETH ST
31ST	THIRTYFIRST ST
32ND	THIRTYSECOND ST
40TH	FORTIETH ST
41ST	FORTYFIRST ST
42ND	FORTYSECOND ST
50TH	FIFTIETH ST
60TH	SIXTIETH ST
70TH	SEVENTIETH ST
80TH	EIGHTIETH ST
90TH	NINETIETH ST
100TH	ONE HUNDREDTH ST
101ST	ONE HUNDRED AND FIRST ST
102ND	ONE HUNDRED AND SECOND ST
200TH	TWO HUNDREDTH ST
201ST	TWO HUNDRED AND FIRST ST

7 LRS VEHICLE OVERVIEW

LRS Van Description 122
Input Event Board Commands 125
Correcting and Editing an SLD 126
Function Key Description in the Edit Mode 127
The Memo Function (F1) Mode 127
The Node Editor 128

7 LRS VEHICLE OVERVIEW

LRS Van Description

Specialized testing vans (Figure 7-1) are used to perform LRS verification, Quality Assurance, and Quality Commitment Testing. PennDOT currently maintains six LRS vans; four in the Bureau of Maintenance and Operations (BOMO), and one each in Engineering Districts 2-0, and 12-0.

Figure 7-1
LRS Testing Van
The electronic systems consist of an integrated combination of hardware and software that is designed to be installed and operated in a vehicle environment. The major system hardware consists of a backplane computer system, LCD monitor, compact computer keyboard, mouse, event keyboards, printer, GPS unit, data communication control box and appropriate interfaces. A Data Measurement Subsystem that is interfaced to a wheel mounted sensor detects movement of the vehicle and report the distances to the application software.

Figure 7-2
LRS Van view from Rear

Figure 7-3
LRS Van Operators view

Figure 7-4
Large and Small Input Event Boards

Figure 7-6
Power and Control Switches

Figure 7-5
Color Laser Printer

Figure 7-7
LCD Monitor for Driver

The system accepts a downloaded RMS file containing all roadway information as an input database for verification and outputs an RMS file containing all feature information, segment and offset values, as well as any comments made during verification. Vehicle location and roadway features are displayed on the computer monitor in a Straight Line Diagram (SLD) format, and the software accepts operator inputs verifying or modifying roadway feature locations. Collection and display is in real time including on-board analysis and instant recall of previously verified features. Routes can be tested in increasing or decreasing segment order, and may begin on a segment beginning, ending, or any permanent landmark feature.

During testing activities, the system will track and display the location of the test vehicle, and display upcoming pertinent roadway feature data for the current roadway section. During verification activities, the data will be displayed in SLD graphical format on the monitor.

The system will accept interactive operator inputs to support verification and modification of roadway feature data and locations as the test vehicle transverses over the actual roadway (Figure 7-8). The system is capable of performing verification at vehicle speeds of up to 60 mph , but usually testing protocols demand speeds of less than 15 mph to ensure accuracy. On board analysis and instant recall of previously verified features data is available at the completion of verification activities. Shown on the SLD screen are various informational fields that are used by the operator to help navigate and control the application software.

Figure 7-8
SLD in Testing Mode

Input Event Board Commands

The Event Keyboard (Figure 7-9) is the primary operator interface, along with the mouse, used during roadway feature verification activities. The event keyboard is interfaced to the computer through the distance measuring system and is equipped with the necessary keys associated with the verification process, as follows:

EVENTING KEYS:
(F1) [CMT]
(F2) [Edit]
(F3) [DMI on/off]
(F4) [Align]
(F5) [Add]
(F6) [Lock]
(F7) [Except]
(F8) [Verify]
(F9) [Skip]
(F10) [Exit]

Add a Comment
Go into Edit mode
Start/Stop distance count
Align to starting point
Add a node
Lock onto next feature
Problem needs corrected
Features are correct
Leave features at current offset
Exit the current screen

SPECIFIC ADD KEYS:
(SLB)
(SLE)
(SRS)
(SRE)
(WLS)
(WLE)
(WRS)
(WRE)
(BGS)
(BGE)
(SS)
(AL)
(DC)
(AR)
(TS)
(TL)
(CR)
(TR)
(MO)
(BL)
(RO)
(BR)
(EB)
(NL)
(MP)
(NR)
(XB)
(XL)
(OP)
(XR)
(LN)
(LX)
(DP)
(CO)
(RN)
(RX)
(RR)

Sound Wall Begin Left
Sound wall End left
Name Change End
Name Change Begin
Retaining Wall Start on Left
Retaining wall End on Left
Retaining Wall Start on Right
Retaining wall End on Right
Bridge Start
Bridge End
Over Head Sign Structure
Ahead Left Intersection
Divided Highway Connector
Ahead Right Intersection
Traffic Signal
T-Left Intersection
Cross Intersection
T-Right Intersection
Monitoring Sight
Back Left Intersection
Rotary Intersection
Back Right Intersection
Entrance Both; Enter a Ramp from Both Directions
Entrance Ramp on Left
Mileposts
Entrance Ramp on Right
Exit Both, Exit from a Ramp to Both Directions
Exit Ramp Left
Overpass
Exit Ramp Right
T-Left Entrance Ramp
T-Left Exit Ramp
Drainage Pipe
Comment
T-Right Entrance Ramp
T-Right Exit Ramp
Railroad Crossing

Figure 7-9
Input Event Board

MISCELLANEOUS KEYS: Alphabetic, Numeric and Navigation Keys.

Correcting and Editing an SLD

When performing LRS field testing, necessary corrections are done to the SLD in the edit mode screen of the LRS software, using numbered comment lines. It is recommended to note inconsistencies on a hardcopy SLD, as exemplified in Figure 7-10.

Figure 7-10
Inconsistencies are noted on SLD

After testing is completed, the notes made on the hardcopy SLD are to be transferred to the software's Edit Node screen. This is referred to as "Edit Mode." All corrections are made on comment lines (CO), memo lines (MM) or canned comment lines (CC). Multiple comment lines per node can be added.

Function Key Description in the Edit Mode

Comment or Memo function, used for making multiple lines of comments and for selecting predetermined comments from list boxes.

Companionize a node with a node on the opposite side of the highway.

The Memo Function (F1)

Whenever the F1 key is used either during testing or in Edit mode, the screen shown below (Figure 7-11) comes up. In the Enter Comment Statement area, comments can be added in the form of sentences or paragraph, just like you would type with a word processing program. The area in the middle and the right contains predefined comment statements called (CC) comments. Any of the CC comments can be selected, and they will then be added on as a new line for the current node.

Figure 7-11
Comment Statement Window

The Node Editor

By double clicking on a node or by hitting enter when you're at a particular node the Edit box shown below will come up (Figure 7-12). The primary purpose for the Node Editor is to manipulate features found at individual nodes. The Node Editor function commands are shown at the bottom of the Node Editor box and can be used to perform various modifications. In addition to using the function commands many commands can be performed by right clicking on the mouse at an individual feature.

Figure 7-12
Node Editor Functions
When corrections to the SR have been completed, the data should is saved. Each time the SLD extract file is saved, the file extension for the SR is increased by 1 ; for example:

Original file: 01SR0097.S01
First edit: 01SR0097.S02
Second edit: 01SR0097.S03
If more testing or corrections are necessary, the file with the greatest extension number is used to produce the final version containing a complete and corrected SR.

8 Quality Control and Assurance Reports

LRS Quality Commitment \& Quality Assurance Programs 130
QC Ratings. 131
QC Reporting 131
District QC Report 132
Cover Letter: District \& County Scores 132
QC Cover 133
District Section 1: Rating Statistics 133
District Section 2: Accuracy Statistics 134
Individual County QC Report Cover 134
County QC Index 135
County Section 1: Rating Statistics 135
County Section 2: QC Rating by SR 136
County Section 3: Accuracy Statistics 136
County Section 4: Total SR Length Statistics 137
County Section 5: Segments with Length Problems 137
County Section 6: Comparison of LRS and RMS Feature Offsets 138
County Section 7: Segments with Signing Problems. 138
County Section 8: Average Segments Accuracy Statistics 139
County Section 9: Average Feature Accuracy Statistics 139
County Section 10: County Comments Listing by SR. 140
Codes Used for LRS QC testing 141
LRS Quality Assurance (QA) Program 142
LRS QA REPORTING 143
LRS QA Report Cover 143
LRS QA Index 144
LRS QA Section 1: Comment Listing 144
LRS QA Section 2: Comparison of Feature Offsets 145
LRS QA Section 3: Comparison of Segments and SR Length 145
LRS QA Section 4: Comparison of Field 1 and Field 2 Data. 146
Testing Request Form 147

8 Quality Control and Assurance Reports

LRS Quality Commitment \& Quality Assurance Programs

The Bureau of Maintenance and Operations, Roadway Inventory \& Testing Unit performs Quality Commitment (QC) verification on all State-owned routes. The QC program begins in April of each year and concludes in November.

Five percent of each county's mileage is tested each year. Typically, half of the SR's selected for QC testing are Traffic routes and the other half are Quadrant routes, but the SR's are selected randomly within those categories.

The information that is verified, rated, and/or modified as part of the QC program is broken down into four categories.

SR LENGTH: The total length of a State Route measured in feet by summing the segment lengths of all undivided highways and both sides of divided highways.

SEGMENT LENGTH: The total length of a segment in feet from the beginning offset to the ending offset.

INTERSECTING FEATURE: The County, SR, Segment, and Offset value of the at-grade intersection, or the BMS structure key for bridges, and the intersection type code.

SEGMENT MARKER: The SR-Segment sign marking the beginning of a segment. For undivided roads, this includes both the ahead and back signs.

UNITS AND ACCURACY GOALS: The test unit and acceptable variance for each of the four categories is defined as follows:

QC Category	Test Unit	Acceptable Variance
SR Length	Feet	$\left(0.44 \%+80^{\prime}\right)$
Segment Length	Feet	40^{\prime}
Intersecting Feature	Off/Type	$40^{\prime} /$ None
Segment Marker	Each	None

Each County is given an annual QC rating, based on a composite of all SR's tested in the County. Four categories are evaluated for each SR. An overall rating, in the form of a percentage based on a maximum total of 100 points, is determined by weighting the percentage for each of the four evaluation categories as follows:

- SR LENGTH
- SEGMENT LENGTH
- INTERSECTING FEATURES
- SEGMENT MARKERS

QC Ratings

A breakdown of each QC category and result follows:

* SR LENGTH: The total length of a State Route measured in feet by summing the segment lengths of all undivided highways and the longest side of divided highways.
* SEGMENT LENGTH: The total length of a segment measured in feet.
* INTERSECTING FEATURE: The County, SR, Segment and Offset value of the at-grade intersection, or the BMS structure key for bridges, and the intersection type code.
* SEGMENT MARKER: The SR-Segment sign marking the beginning of a segment. For undivided roadways this includes both the ahead and back signs.

Each county is given an annual QC rating, based on a composite of all of the SR's tested in that county. The overall rating is determined by weighting the score for each of the four categories as follows:

```
    0.30 x SR LENGTH
+ 0.25 x SEGMENT LENGTH
+ 0.25 x INTERSECTING FEATURE
+ 0.20 x SEGMENT MARKER
```

An overall rating is then determined for each Engineering District, by accumulating the scores for all SR's in all counties in that District. Acceptance for a county or Engineering District is based on the following criteria:

Unsatisfactory		Satisfactory
Deficient	Needs Improvement	Meets Standard
$<\mathbf{8 0 \%}$	$\mathbf{8 0 \% - 9 2 \%}$	$>\mathbf{9 2 \%}$

QC Reporting

An annual LRS QA/QC Program Final Report is produced and distributed to PennDOT Executive staff and the Engineering Districts. This report analyzes each Engineering District's results as well as trends and supporting information.

Annual letters are sent to each District Engineer/District Administrator defining QC ratings and acceptance levels for each county, as well as the Engineering District overall.

Along with a copy of this letter, detailed QC reports for each tested SR are sent to each District RMS Coordinator, who is responsible for making necessary data adjustments by March 31st of the following year. Hardcopies of SLD's for the tested SR's, with corrections noted, are also provided.

A sample detailed QC report follows:

District QC Report

Cover Letter: District \& County Scores

pennsylvania

DEPARTMENT OF TRANSPORTATION
MEMO

DATE: July 11, 2017
subJect: $\quad 2017$ LRS Quality Commitment (QC) Program
TO: Joseph P. Dubovi, III, P.E., District Executive Engineering District 10-0
FROM: \quad ichard N. Roman, P.E., Director ist Bureau of Maintenance and Operations

Each year, we evaluate the accuracy of PennDOT's Location Referencing System (LRS) by testing a random 5% sample of State Routes in each county. The goal is to maintain greater than 92% accuracy between the data in the Roadway Management System (RM S) and actual locations in the field. The evaluation program, LRS-QC, tests the accuracy of four types of LRS data (SR Length, Segment Length, Feature, and Segment Marker), and the summary ratings for 2017 are as follows:

Armstrong	98.8%	Meets Standards
Butler	96.9%	Meets Standards
Clarion	99.2%	Meets Standards
Indiana	98.8%	Meets Standards
Jefferson	97.9%	Meets Standards

The overall rating for District $10-0$ is 98.3% indicating RMS data meets standards.
2017 detail reports for your District are sent to your RMS Coordinator. These reports list deficiencies which should be corrected, preferably within 90 days. Please notify Janice Arellano, P.E., RMS Administrator, in writing when they have been corrected so we can close-out this year's review.

Attachment

4950;JLA.jjla
cc: J. Michael Long, P.E., Chief, Asset Management Division, BOMO
Steven L Koser, P.E., Chief, Pav't Testing \& Asset Management Section, BOMO
Janice L. A rellano, P.E., Chief, Roadway Inventory and Testing Unit, BOMO
Colin R. McClenahen, Roadway Programs Manager 1, BOMO
Rodney L Iwin, Roadway Programs Manager 1, BOMO
Craig E. Alexander, Roadway Programs Technician Supervisor, BOMO
Brian P. McClenahen, Roadway Programs Specialist, BOMO
(wiattachments) Kathy L. Renosky, Roadway Programs Tech 1, District $10-0$

日 arean of Malnterance and Operations
wo North Ste et | Harisbing, PA $17120 \mid 717-781-6899$ | wnw pein idotgou

District Section 1: Rating Statistics

District Section 2: Accuracy Statistics

Individual County QC Report Cover

County QC Index

\square

County Section 1: Rating Statistics

note: feature nomber passed field is approxtmate due to rounding

[-_ mayette oonnty 2017 final rating

County Section 2: QC Rating by SR

County Section 3: Accuracy Statistics
(

County Section 4: Total SR Length Statistics

County Section 5: Segments with Length Problems

County Section 6: Comparison of LRS and RMS Feature Offsets

County Section 7: Segments with Signing Problems

County Section 8: Average Segments Accuracy Statistics

STATE ROUTE=1028

STATE ROUTE $=1049$

STATE ROUTE=1058

SEG. LENGTH DIFF. NFET	FREQUENCY	percent
0	2	9.1
1-20	15	68.2
21-40	5	22.7

County Section 9: Average Feature Accuracy Statistics

County Section 10: County Comments Listing by SR

Codes Used for LRS QC testing

When performing LRS QC testing, a standard set of fixed codes are used to label problems found while doing the testing. The codes can be seen on the final LRS SLD and in the comments section of the QC report. The codes are as follows:

S - Sign Error Codes

S1	Sign And Post Missing
S2	Post Present, Segment Paddle Missing
S3	Sign Not In Reasonable Proximity Of Feature
S4	Signs Are Reversed
S5	Sign Is On Wrong Feature
S6	Sign \# Does Not Match Segment
S7	Sign In Field But No Corresponding Segment In RMS
S8	Sign Pointed Wrong Direction

I- Intersection Error Codes

I1	Field 1 Data Incorrect
12	Field 2 Data Incorrect
13	Incorrect Intersection/Feature Code
14	Intersection/Feature Needs Added To RMS
15	Intersection/Feature Needs Removed From RMS
16	Intersection/Feature Needs Relocated

G - Other Error Codes

G1	Entire SR Not Signed
G2	Incorrect Divided Area Start Or End
G3	Divided Area Only 2 Travel Lanes
G4	Divided Area Needs Added
G5	Divided Area Needs Removed
G6	Null Needs Added, Deleted, Or Relocated
G7	One-Way Street Problem

LRS Quality Assurance (QA) Program

In addition to the Quality Commitment (QC) program, the Bureau of Maintenance and Operations, Asset Management Division, Roadway Inventory \& Testing Unit (RITU) performs Quality Assurance (QA) verification on State-owned routes, except those in Engineering Districts 2-0, and 12-0, who perform their own QA testing. Regardless of who does the field testing, each Engineering District is responsible for its own LRS completeness and maintenance with respect to the RMS.

Unlike the QC program, counties are not given ratings based on the results of the QA testing.
Furthermore, all of the QC categories are not evaluated as part of the QA program; SR's are verified for these three items:

FEATURE OFFSETS: The RMS offset values of features are compared to the field measured offset values.

SEGMENT AND SR LENGTHS: The total length of segments and SR's in RMS are compared to the field measured values.

FIELD 1 AND FIELD 2 DATA: The data contained in Field 1 and Field 2 of the LRS extract file is compared to the data obtained in the field. These fields contain Roadway Information (RI) data, Reference Code (RF) data, intersection data, common street names, township data, railroad crossing data, and bridge data.

QA TESTING:
Twenty percent of each county's mileage is tested each year. (SR's that are verified via the QC program are also considered in the QA program.) SR's to be tested are determined by the test teams, but it is recommended that half of the SR's tested are Traffic Routes and the other half are Quadrant Routes.

For the Engineering Districts in which RITU performs QA testing, one testing team is sent to one county, of one Engineering District for two weeks, and then rotated to another County in another Engineering District, etc. Therefore, a team visits each of the nine Engineering Districts involved in our QA program for two weeks once every four months, approximately. This schedule may vary based on the availability of testing personnel.

The order that counties will be selected for testing will be determined randomly, unless RITU is informed by a District RMS Coordinator that a particular county is preferred to be done first. When RITU testing crews are in a particular District, they will also be available, by request, to perform additional LRS testing on any new or problem routes. If additional routes or special request routes are required to be tested, an LRS Testing Request Form should be completed and sent to RITU.

LRS QA REPORTING

Whether the QA field testing is performed centrally or by Engineering District personnel, the results are sent to and analyzed by RITU. The analysis programs monitor the productivity of the testing, as well as the inconsistencies determined by the field testing. Reports defining these inconsistencies, along with hardcopy SLD's noting the corrections, are sent to each District RMS Coordinator, who is responsible for correcting all data in the RMS within three months from the time the reports and SLD's are delivered. RITU maintains a "dates file" to track all LRS related activities for each SR, from SLD file extract request date, through testing, reporting and correcting inconsistencies, and completion.

A sample detailed QA report that is sent to a District RMS Coordinator follows:

LRS QA Report Cover

\square

LRS QA Section 1: Comment Listing

	RMS QUALITY ASSURANCE ANALYSIS (VER. XSYS123)COMMENT LISTNG (1)					11:35 Thursday, January 26, 2017
	210	0000	0000	-	fost down and dmaged	
	220	2028 ${ }_{2028}^{208}$	$\begin{aligned} & 2009 \\ & 2009 \end{aligned}$	-19 -19	CONNECTOR $=$ AHEADL CONN-FOR 0036/0140 SH	
1005	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \\ & 0000 \\ & 2694 \\ & 2694 \\ & 2694 \\ & 2779 \\ & 2779 \\ & 2779 \\ & 2779 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \\ & 0000 \\ & 2009 \\ & 2694 \\ & 2694 \\ & 2694 \\ & 2809 \\ & 2809 \\ & 2809 \end{aligned}$	$\begin{aligned} & -0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	TESTED SEGMENT 90 TO eflect changes made to SR 1001 URE 0009 $\mathrm{N}-\mathrm{FOR}$ CHANGE CROSS aHEadL/BaCKR SR 1001 0110:1168-Ma NR DR	
3026	4	0000	0000	-	add tright boro-custer aL	
	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \\ & 0000 \\ & 0000 \\ & 0155 \\ & 0155 \\ & 0155 \end{aligned}$	0000 0000 0000 0161 0161 0161	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	SEGMENT $10 / 4$ SIGN AND POST MISS ING; RECOMMEND OMBINING SEGMENT 4 AND CHANGE CROSS TO TLEFT; LLLEY ONLY GOES TO THE LEFT	
	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} 2566 \\ 2565 \\ 2565 \end{array}\right) \end{aligned}$	$\begin{aligned} & 2563 \\ & 2563 \\ & 2563 \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \\ & -3 \end{aligned}$	Shement 80 sign missing DIRECTION OF SR 3026	
3029	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0496 \\ & 0496 \\ & 0495 \end{aligned}$	$\begin{aligned} & 0468 \\ & 0468 \\ & 0468 \end{aligned}$	$\begin{aligned} & -28 \\ & -28 \\ & -28 \end{aligned}$	MOVE NCB FULMER RD AND NCB SR 3029 SH FROM HERE TQ 0010:0521	
	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0008 \\ & 0000 \\ & 0000 \\ & 0000 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \\ & 0000 \\ & 0000 \\ & 0000 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	SEGMENT 50 SIGN MISSING THE 2 IN 3029 AND IN DIRECTION OF SR OF SR 3029	
3035	50	1567	1556	${ }^{-11}$	Tright $=$ thompson Ln	
3047	20	-0000	0000	\bigcirc	smemmar zoflo sign and	

LRS QA Section 2: Comparison of Feature Offsets

LRS QA Section 3: Comparison of Segments and SR Length

LRS QA Section 4: Comparison of Field 1and Field 2 Data

As stated with reference to the QC program, an annual LRS QA/QC Program Final Report is produced and distributed to PennDOT Executive staff and the Engineering Districts. This report analyzes each Engineering District's results as well as trends and supporting information. Regarding the QA program, this report will also identify the number of necessary corrections in each Engineering District, the number of corrections made within three months, the number made later, and the number not made at all. As stated, this report will be distributed to PennDOT Executive staff and the Engineering Districts.

Testing Request Form

*Nota: Fike must be renamed before saving \rightarrow Save As \quad Beset form \quad Print Form

Friction (skid), Roughness (IRI), Location Reference (LRS) and VideoLog Testing Request Form

Current Date:

Type of Test	County /State	SR (s)	$\begin{gathered} \text { From } \\ \text { Segment } \end{gathered}$	From Offset	If Non State Boad, Plase specify a starting location	To Segment	To Offset	$\|$If Non State Rzad, Please specify an ending location	Dir.	$\begin{aligned} & \text { Test } \\ & \text { Lane (s) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { Test } \\ \text { Miles } \\ \hline \end{array}$
$-$	\square								\square	\square	
$-$	\checkmark								$-$	-1	
$-$	$-$								$-$	$-$	
$-$	\checkmark								-1	$-$	
$-$	\square								-1	\checkmark	
$-$	\square								\square	\square	
$-$	\square								-1	\checkmark	
-1	-1								-1	-1	
$-$	\square								-1	-1	
\rightarrow	\rightarrow								\cdot	-1	

All testing requests of non state owned roads must include a map of the area's' to be tested.
The map can be emailed, faxed or mailed with this testing request form.

Additional Comments or Instructions For Any Type of the Testing:

Submit Requests To:
Janice L. Arellano, P.E.Chief, BOWO, Roadway Inventory \& Testing Section
Bursau of Má intenance \& Operations - BONO Annex
907 Elmerton Ave, Hartisburg, PA 17110
+Emall: Jarellano@pa_gov Phone: (717) 787-7294 Fax: (717) 787-6013 (Fawes must be confirmed by a phone call)
*Notes To submit or email this formuse the Save As button (at top), rename the file, save to a local folder and thenattach torecipients email.
Foradditional test ing request information orgeneral test ing questions pleasecall[717) $783-6843$ (M-F 7:00 AM to 3:00PM).
This form can be found on the Bureau of Waintenanceand Operation's Intranetweb site at: Bureaus
, Waintenance and Operationskoadway fuanagement \Roadway Inventory and Testing Section\Testing Request Forms\Friction-Roughness-LRS-VideoTesting Request Fom. pdf

This form can be found by using the link on the BOMO/RITU Intranet site and then by using the "Testing Request Forms" button. It can also be found at the following location on the shared drive:

9 Updating RMS from LRS

RMS/LRS Corrections 149
LRS Tracking 150
LRS Segment Change Form 151
Proper Completion of an LRS Segment Change Form 152
Adding Segments 158
Transferring Segments 159
SR Documentation for Segment Changes 160
LRS QA/QC Completion Form 160

9 Updating RMS from LRS

RMS/LRS Corrections

The procedure to test, determine inconsistencies, and make corrections from LRS QA/QC testing is defined as follows:

1. RITU analyzes field edited SLD extract files and generates a report defining inconsistencies between the RMS and field data.
2. RITU updates all offsets on the SR's and creates electronic copy SLD's with the new offsets.
3. Reports and updated copy of the SLD's are sent via electronic mail to the appropriate District RMS Coordinator.
4. The District RMS Coordinator makes the necessary corrections to the RMS data. The data that needs to be corrected may include all the following, bridges, intersections, boundaries, pavement variables, road names, traffic lights, railroad crossings, RMS administrative changes or any other inconsistencies stated on the tested SLD, QA/QC reports.

- If segment adjustments, deletions, additions, and/or address administrative changes are necessary (i.e. renaming a segment to a new number), the District RMS Coordinator completes and submits the LRS Segment Change Form to RITU for further processing (Figure 9-1).
- When submitting an LRS Segment Change Form it is required that a copy of the SLD be included along with any additional relevant documents, like maps.
- The RMS Coordinator is required to make notifications* and ensure Automated Permit Routing/Analysis System has temporary connectors added, if necessary prior to submitting the LRS Segment Change Form to RITU.
*All Districts are responsible for implementing and following a notification process when submitting RMS adjustment forms that meet any of the following criteria. State Route name changes, full or partial route reversals, vacations, abandonments, total turnbacks and any other change that would impact other systems using RMS data not limited to but including APRAS, RCRS, bridge units, local authorities, and property owners affected by the change.

In addition to the in-house notification procedure, the Districts are responsible for notifying organizations and individuals outside of PennDOT that may be affected by the upcoming SR adjustment. The Districts are responsible for maintaining a notification contact list that includes, but is not limited to, District and County personnel, local municipalities, EMAs, 911 centers, residents, businesses, postal authority, and others the District deems necessary. Notification must be made far enough in advance of the SR adjustments to allow for feedback from those affected by the change. The District shall also determine what method should be used to distribute the notification, such as a press release, electronic correspondence, certified mail or hand delivered flyers. The notification should
explain the change as well as the reason for the change. Contact RITU for guidance and questions.
5. RITU notifies the District RMS Coordinator and other necessary personnel** when adjustments, deletions, additions, and/or address administrative changes are completed through email.
**RITU is required to notify the Traffic Engineering Division's Signs Standards Specifications \& Manufacturing Section and Maintenance Performance Management Division's Maintenance Systems and Reporting Section prior to making any of the above listed adjustments.

RITU maintains a list of contacts for the circulation letters and requests the RMS Coordinators verify and/or update the circulation contact information every six months or as changes occur.
6. When all LRS corrections are completed, (excluding the noted exceptions on the form), an LRS QA/QA completion form is to be completed by the District RMS Coordinator and submitted to RITU (Figure 9-2).

LRS Tracking

The total number of days needed for the RMS Coordinator to make all necessary changes to RMS, including getting segment adjustments corrected, is tracked in a Crystal Reports database file. The database is used as part of an annual rating system to determine the number of roads that are corrected and signed off as they are completed throughout the year. This report is available for viewing at the following location:

http://pdprodsapbi.penndot.Icl:8080/BOE/CMC

Instructions for logging in and viewing the status of an individual SR can be acquired by contacting BOMO/Roadway Inventory and Testing Unit.

LRS Segment Change Form

Completing the LRS Segment change form for making changes in segment length's, adding, deleting, renaming and moving segments requires some preparation so that the appropriate parts of the segments and all data attached to them get changed or moved without losing data that you may still need.

Figure 9-1
LRS Segment Change Form
This form can be found at the following location:
P:\penndot shared\Bureau of Maintenance and Operations\Roadway Management Division\Roadway Inventory \& Testing\FormslLRS Segment Change Form.pdf

Choosing the correct segment adjustment method is vital to keeping RMS data attached with existing segments in RMS.

How to properly complete the method of changing or moving footage on the LRS Segment Change Form (located at the right-hand column of the top section):

Option 1: Increase in segment length only, (i.e. For SR 3088, increase segment 10 by 100 ft).
This option adds footage onto the end of the current segment; it does not affect the distance of the next segment in sequence. A typical reason for using this type of adjustment would be; a segment length has been extended due to new construction, the original configuration of an intersection has changed due to new traffic patterns, or any other condition that would cause the length of a segment to be increased.

Segment Change Form Entry:

For code (7, other) please explain:

For Segment Adjustments, Deletions and creating a New Segment from an Existing Segment						
Segment Number	Segment Action Required	Current Length (Feet)	New Length (Feet) (Feet)	$\begin{gathered} \hline \text { Change } \\ +/- \\ \text { (Feet) } \end{gathered}$	Justification Code \#	If you are doing Seament Lenath Changes Only select method 1,2 or 3 from the list below: For Adiust action of Adioining Seqments please select method $\underline{\underline{L}}$ or $\underline{\text { if }}$ applicable, otherwise leave Blank If you want to Create a New Seqment from an Existing Seqment select method 6:
10	Adjust	2250	2350	100	3	1- Increase in segment length only.
	\cdots				\cdots	-
	-				-	-
	\checkmark				-	-
	\checkmark				\checkmark	-
	\checkmark				\checkmark	-
	\checkmark				\checkmark	-
	-				-	-
	\checkmark				\cdots	-
	\cdot				\checkmark	-
	\cdot				-	-
	$\stackrel{+}{*}$				\checkmark	\square
	\checkmark				\cdots	\checkmark

Option 2: Remove footage from the beginning portion of the segment.
This option will remove distance starting from the beginning of a segment to a specified distance or offset within the segment. A typical reason for using this type of adjustment would be; a segment length has been decreased due to new construction, the original configuration of an intersection has changed due to new traffic patterns, or any other condition that would cause the length of a segment to be decreased. This type of adjustment creates a permanent loss of data that was contained within the affected section. When this option is used, all offsets that are still contained within the segment will be automatically decreased by the value of the deleted portion of the segment, (i.e. On SR 3092, Remove 80ft from the beginning of segment 0010).

Segment Change Form Entry:

Current Date: Jan 5,2010			County Number: 01				SR Number: 3092			
Requested By: John Smith District/Bureau: BOMO										
Source of Changes: LRS QA - If the source is from the LRS QA/QC, please enter test date shown on top of LRS SLD: Dec 1, 2009										
Please choose one justification code for each segment requiring a change. Please attach any other drawings, sketches, or documents as needed to explain changes. If you are adjusting the distance between 2 adjoining segments with method 4 or 5 , then you must include an SLD indicating how the movement should take place.										
Justification Codes For Segment Changes		(1) 20ft or > length change (5) Segment length reduction (over 4000 ft) (2) New construction or physical change in SR alignment (6) Route reversal (3) Segment being adjusted to sign location in field (7) Other (Explain Below) (4) Combining of short segment/segments (300 ft or less)								
For code (7, other) please explain:										
For Segment Adjustments, Deletions and creating a New Segment from an Existing Segment										
Segment Number	$\begin{aligned} & \text { Segment } \\ & \text { Action } \\ & \text { Required } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Current } \\ \text { Length } \\ \text { (Feet) } \end{array} \end{aligned}$	New Length (Feet)	$\begin{gathered} \hline \text { Change } \\ +/- \\ \text { (Feet) } \end{gathered}$	Justification Code \#	If you are doing Seament Lenath Changes Only, select method 1,2 or 3 from the list below: For Adjust action of Adioining Seaments please select method $\underline{4}$ or $\underline{5}$ if applicable, otherwise leave Blank If you want to Create a New Seament from an Existing Seqment select method 6:				
10	Adjust -	2250	2170	-80	3	2-Remove foota	e from beginning	portion of the segment.		\checkmark
	\square				\cdots					-
	-				-					-
	\checkmark				-					-
	-				\checkmark					-
	\checkmark				\checkmark					-
	-				\cdot					-
	-				-					-
	-				-					-
	\cdot				-					-
	\square				\checkmark					-
	\checkmark				-					-
	\cdot				-					-

Option 3: Remove footage from the ending portion of the segment.
This option will remove the footage specified from the ending portion of the segment. A typical reason for using this type of adjustment would be; a segment length has been decreased due to new construction, the original configuration of an intersection has changed due to new traffic patterns, or any other condition that would cause the length of a segment to be decreased. This type of adjustment creates a permanent loss of data that was contained within the affected section. Offsets of features that come before the section being removed are not affected by the change in footage, (i.e.
For SR 1008, remove 250 ft from the end of segment 0010).

Segment Change Form Entry:

Option 4: Move the Beginning portion of one segment into the End of the prior segment.
This option should always be used when 2 adjoining segments both need to have a change in footage. The reason for 2 adjoining segments to both be adjusted may include any of the following; a standalone segment sign being relocated to a permanent feature, a segment sign on the end of a bridge is getting moved to the beginning of the bridge, a sign may have been placed in the field at an incorrect offset, or any other change that needs to be made without losing the original data contained within the 2 existing segments. Typically, when moving footage between 2 adjoining segments, a decrease in one segment will cause an equal increase in the other segment (i.e. On SR 6013, Move the beginning 300 ft of segment 0020 into the end of segment 0010).

Segment Change Form Entry:

Option 5: Move Ending portion of segment into the Beginning of the next segment.
This option should always be used when 2 adjoining segments both need to have a change in footage. The reason for 2 adjoining segments to both be adjusted may include any of the following; a standalone segment sign being relocated to a permanent feature, a segment sign on the end of a bridge is getting moved to the beginning of the bridge, a sign may have been placed in the field at an incorrect offset, or any other change that needs to be made without losing the original data contained within the 2 existing segments. Typically, when moving footage between 2 adjoining segments a decrease in one segment will cause an equal increase in the other segment (i.e. For SR 4012, Move the ending 250 ft of segment 0010 into the beginning of segment 0020).

Segment Change Form Entry:

Current Date: Dec 13, 2017
Requested By: Fred Smith
Source of Changes: LRS OA - If the source is from the LRS OA/QC please enter test date shown on top of LRS SLD: Nov 27, 2017
Please choose one justification code for each segment requiring a change. Pleaseattach any other drawings, sketches, or documents as needed to explain changes. If you are adjust ing the distance between 2 adjoining segments with method 4 or 5 , then you must include an SLD indicating how the movement should take place.

Justification	(1) $20 f t$ or $>$ length change Codes For	(2) New construction or physical change in $S R$ alignment
Segment Changes	(3) Combining of short segment/segments (300 ft or less)	(5) Route reversal
	(4) Segment length reduction (over 4000 ft$)$	(6) Other (Explain Below)

For code (6 , other) please explain:

For Segment Adjust ments, Deletions and creating a New Segment froman Existing Segment							
Segment Number	$\begin{aligned} & \text { Segment } \\ & \text { Action } \\ & \text { Required } \end{aligned}$	Current Length (Feet)	New Length Feet)	$\begin{gathered} \text { Change } \\ +/- \\ (\text { Feet }) \end{gathered}$	Justification Code\#	If you are doing Seament Lenth Chanqes Only select method 1,2 or 3 from For adiustaction of adipining Serments phea se select method $\underline{4}$ or $\underline{5}$ if applicable, othen If you want to Createa New Seqment from an Existing Seqment select method	
10	Adjust	1550	1300	-250	3 -	5 - Move Ending portion of segment into the Beginning of the next segment.	-
20	Adjust	1560	1810	250	\cdots		
	-				-		
	-				-		-
	\cdot				-		,
	\checkmark				\cdot		,
	\cdot				-		
	-				-		
	-				-		
	-				\checkmark		
	\cdot				-		-
	-				-		
	\cdot				\cdots		

Option 6: Create a New segment from an Existing segment.
This option is used whenever you want to take part of one segment and create a totally new segment from that part. Typically, this option is used to reduce the size of a long segment by making it two segments (i.e. For SR 1043, create a new segment 0004 from existing segment 0010).

- For option 6, there are different ways that the Change Form could be completed. Shown below is an example of one way that would be considered acceptable.
- For this type of segment addition, the new segment part of the form does not have to be completed because the new segments geometry and other coding information would be the same as the original segment.

Segment Change Form Entry:

Adding Segments

Segment Adds are normally needed for newly constructed sections of highway, but they may also be used for less common situations like a reverse turnback of a municipal road, were a local road is given to the state and it becomes a new SR. Segment adds can also be useful to prebuild a section of highway that is currently being constructed and will soon be open to traffic. When prebuilding with segment adds, the entire section of highway can be constructed in RMS and kept closed until the actual time the road is open for travel. By prebuilding an SR, pavement, intersection, and other known data elements can be entered into RMS ahead of time to cut down on the necessity of having to rush to get it in when road is open to traffic. When requesting a Segment Add, it is critical that all indicated fields shown on the Change form for segment Add's, be completed in their entirety to ensure that the add is done without delay. An example of adding a new segment (50) to SR 2012 is shown below:

*Note: For an undivided SR with bidirectional traffic flow, the Direction field should always be entered as Both.

Segment Change Form Entry:

Current Date: Jan 6,2010		County Number: 04	SR Number:	2012
Requested By: Bob Smith		District/Bureau:	-	
Source of Changes: LRSQA		rce is from the LRS QA/QC,	r test date sho	wn on top
Please choose one justification code for each segment requiring a change. Please attach any other drawings, sketches, or documents as needed to explain changes. If you are adjusting the distance between 2 adjoining segments with method 4 or 5 , then you must include an SLD indicating how the movement should take place.				
Justification Codes For Segment Changes		hange or physical change in SR alig djusted to sign location in fie rt segment/segments (300 ft	$\begin{aligned} & \text { (5) } \mathrm{Seg} \\ & \text { (6) Rou } \\ & \text { (7) Oth } \end{aligned}$	ment te reve (Exp

For code (7, other) please explain:

Transferring Seqments

Segment transfers are used whenever you have an existing segment that is currently in RMS, but it needs to be renamed or relabeled to a different SR. Some examples of situations when segment transfers would be used are:

- A bypass is built around a town and the original traffic route that went through the town is now getting renamed to a quadrant SR.
- Someone decides to combine two SR's into one.
- A route reversal causes intersecting interchange ramps to be relabeled for a different quadrant.
Segment transfers can be done for an entire segment or for a part of a segment. If doing a partial segment, the (To) and (From) offsets must be specified (i.e. For SR 2039 transfer all of segment 10 and the first 200 ft of segment 20 to a new segment (0010) on SR (SR 2041).

The Adjusted Segment Length of SR 2039, segment 20 will be 2750 $-200=2550$

Start of segment 0010:0000

$$
\text { New length of } \mathbf{0 0 1 0}=\mathbf{2 6 4 0}+\mathbf{0 2 0 0}=\mathbf{2 8 4 0}
$$

Segment Change Form Entry:

SR Documentation for Segment Changes

Whenever you are working with more than one segment or on a project that will require multiple change forms, it is essential to provide as much detailed documentation as possible. At the very least, there should be a drawing or map showing how the new alignment will look. Often, a construction plan is submitted that is difficult to interpret. It is always preferred that some type of sketch or drawing is submitted with the changes, instead of the construction plans.

LRS QA/QC Completion Form

After all required RMS corrections are completed; the following form should be submitted to finalize the completion process:

LRS QA/QC Completion Form

Current Date:

Submitted By: District/Bureau:
The following Required" conditions must be met before this completion sheet can be submitted:
-All Intersection Changes (Additions, Deletions and Corrections) have been completed.
*All Segment Changes (Additions, Deletions and Length Corrections) have been completed.
*All Bridge Structure Roadway information has been updated (RMSNM236 screen).
The following conditions do not have to be completed at the time of submittal, but the process for completing these tasks must be started.
Are all segment signs correctly located? \square Yes \square No If No please explain:
Have all bridge Additions, Deletions and Corrections for Total Bridge Length been completed? \square Yes \square No If No please explain:

County	SR Number				

County	SR Number									

County	SR Number				

County	SR Number				

County	SR Number					

Any Additional Comments:

Figure 9-2
LRS QA/QC Completion Form
This form can be found at the following location:
P:Ipenndot shared\Bureau of Maintenance and Operations\Roadway Management Division\Roadway Inventory \& Testing\Forms\LRS Completion Form.pdf

SR Segment Signing

10 SR Signing

Segment Sign Introduction 163
Segment Sign Types, Dimensions and Character Spacing 163
Segment Sign Mounting 165
Segment Post Installation Requirements 165
Installation of SR Marker Signs 165
Segment Sign Placement 166
SR Segmentation 167
SR Signing at Intersections and on Specific Features 169
Real World Sign Placement 172
Sign Usage Descriptions 174
SR Segment Signing Example 177
Ordering SR Signs 178

10 SR Signing

Segment Sign Introduction

There are 2 different types of signs used to indicate a segment number, a 10 inch $\times 10$ inch sign and a 12 inch X 18 inch sign. Both types of signs have a white back ground with solid black numbering and lettering. The font that should be used is ARIAL. The exact dimensions of the numbering and lettering are shown in figure 10-1 through 10-4. The signs may be made of metal or plastic, although metal is preferred due to problems with the signs breaking in the winter, caused by plowed snow coming off the blade and breaking the brittle plastic signs. All of the specified dimensions, numbering, text, color, material and spacing of the signs should be strictly adhered to, in order to provide uniformity between signs in different counties and districts. A temporary sign that does not meet the exact sign specifications can be used until the permanent sign is ordered and replaced.

Segment Sign Types, Dimensions and Character Spacing
Sign Type 1: 10×10 Non-State Intersection and Feature Segment Sign
This type of sign is used to identify the beginning of the segment that you are entering, in the direction you are traveling. Typically, this type of sign will be found at segment changes on all of the following types of features:

Intersections with non-state roads, Ramps, Bridges, Overpasses, Railroad
 Crossings, Rest Areas, Truck Escape Ramps, Tunnels, Divided Highway Start/End, Divided Highway Connectors, Mileposts, County \& Municipal Boundaries, Drainage Pipes, Overhead Sign Structures.

This type of sign is also used at segment change locations without any identifiable feature (stand alone segments), where the segment sign location is determined by footage only.

Type-1 10x10 Segment Sign Specifications

Sign Type 2: 12×18 Intersection Single Segment Sign

Type 2 signs are used primarily at intersection locations where 2 or more state roads meet. Whenever there are two SR's intersecting, there should always be at least two type 2 signs shown at the intersection, usually of the same post. Type 2 signs are also used at special locations like an intersection of a state road and a twp road, where the twp road contains structures still owned by PennDOT (Turnback Bridges). For Turnback Bridges, the segment sign will have the SR number and the letters (BR) and an arrow indicating that there are state owned bridges on the road that the arrow points towards.

Figure 10-2
Type -2, 12×18 Single Segment Sign Specifications

Figure 10-3
Type-2, 12×18 Multi Segment Sign Specifications

Figure 10-4
Type-2, 12×18 Segment Sign Arrow Specifications

Segment Sign Mounting

- Fasten all Type-2 $12^{\prime \prime} \times 18^{\prime \prime}$ SR Marker and Type-1 $10 " \times 10$ " Segment Marker signs with antitheft nuts and bolts.
- Permanently scribe 1 inch numerals on back of all signs indicating the day, month and year of installation.
- Height - Fasten SR Marker and Segment Marker Signs to posts or supports with the top of the marker approximately 4 feet above the ground, except as follows:
- In business, commercial and residential districts where pedestrian movement is likely, tops of signs should be installed approximately 8 feet above the ground.
- Markers must be either perpendicular to or centered directly behind the stop sign.
- Markers are to be installed at least 1 foot below other signs or a minimum of 3 feet above the ground.
- Markers at bridges should be visible to approaching traffic. Segment Markers may be installed above bridge clearance signs.

Segment Post Installation Requirements

If an existing sign post is not used, follow these guidelines for installation of segment sign posts:

- Use $2.5 \mathrm{lb} . / \mathrm{ft}$. breakaway channel bar posts and $5 / 16$ " x 2 " galvanized, Grade 2 anchor bolts.
- Locate posts in the vicinity of physical features in accordance with this manual.
- Drive anchors with no more than 4 inch exposure above ground elevation.
- Use 4 foot posts, except in business, commercial and residential areas. In these areas where pedestrian movement is likely, 8 foot posts will be required.

Installation of SR Marker Signs

- The Type-1 10" x 10" SR sign should be used at all non-state road intersections and at feature locations (i.e. bridges, overpasses, railroad crossing, boundaries, pipes, etc)
- A Type-2 18 " x 12 " SR sign, will normally be erected at the beginning and end of all SR's and at intersections with other State Highways.
- Signs should be visible from within a vehicle on all State Highways that approach another State Highway.
- SR signs should be located to take advantage of existing sign posts or other supports, such as street sign posts.
- Signs should be installed on with existing signs or by themselves, at a point before crossing the centerlines of the intersections for the direction you're traveling.
- Segment markers installed with regulatory signs such as STOP, YIELD, speed limit, etc., cannot
be mounted facing the same direction as the regulatory sign. They can be mounted on the back or sides. For warning and guide signs, the segment markers can face the same direction. Segment markers need to be 12 inches below the other sign.
- Segment Signs should always be installed on the right side of the highway when traveling in the direction of increasing segment numbers (North or East).
- Segment Signs at physical features should be placed on existing sign supports that are within 20' of the physical feature, e.g. bridge clearance markers, stop signs, municipal boundary name signs.
Nodes in the vicinity of a physical feature should be located at the physical feature point and not at the Segment Marker Sign. However, nodes not defined by a physical feature will be assumed to be at the centerline of the highway, directly opposite the Segment Marker Sign. For Segment Markers not at a physical reference point, measure the distance from last physical feature with a distance measuring instrument (DMI) along the centerline of highway. SR Marker Signs located at the approach to turnback intersections should not be removed if the Department continues to maintain a structure.

Segment Sign Placement

The establishment of segment locations and lengths were determined in accordance with guidelines developed by PennDOT's Bureau of Maintenance and Operations. SR's are typically broken into approximately one-half mile segments. Ideally, segments should not be less than 200 feet or longer than 4000 feet in length.

Signs that are associated with mileposts, boundaries and sign structures should be located directly on the same sign post or sign structure support truss; these include all of the following features:

- Interstate and Traffic Route mile posts
- Interstate and Traffic Route $10^{\text {th }}$ mile posts (usually .5 sign)
- State/County Boundaries
- Municipal Boundaries

Figure 10-5
Mile Post with Segment Sign

Figure 10-6
Boundary with Segment Sign

Since signs cannot be erected at the exact center of intersections, they are to be located cater-corner (slanted across a polygon on a diagonal line) from the center point (Point found that represents the crossing of the centerline of both intersections) of all 4 way Intersections (Figure 10-7). Intersection signs should always be placed to the right and before the intersecting road, so that they can be clearly seen in a vehicle before crossing the intersection. The placement of the segment sign should be to an existing intersection sign post if possible.

Figure 10-7
4 Way Intersection Segment Sign Placement
Placement of segment signs should be to the right, corresponding to direction, (excepted as *Noted) and perpendicular to the center point (Point representing the crossing of the center of the roadway and the center of the intersecting road or feature) of all of the following features:

Note: When the placement of a sign to the right interferes, or falls on another road on the right, then the sign can be placed on the left side or at an alternate location on the road, perpendicular to the center point of the intersections, (i.e. Back Right Intersection).

- T and Y Intersections
- Bridges
- Overpasses
- Railroad Crossings
- Culverts
- Drainpipes
- Ramp Gores
- Divides Roadway Start/End Barriers or Lanes on divided roadways
- Sign Structures

SR Segmentation

Every state route is divided into specified sections of roadway known as segments. Segments can vary in length, but the majority of them are approximately one-half mile in length. Where possible, segments typically start and end at easily identifiable physical features along the roadway such as intersections, bridges, overpasses or railroad tracks.

Since bridge structures are identified by their LRS key, each entire bridge must be contained within a single segment. Therefore, the segment length will equal the length of the bridge in cases where the bridge is longer than one-half mile.

SR's are segmented in the North or East direction, and will normally increase in increments of ten. Segments are even numbered on undivided roadways, and in the Northbound or Eastbound direction of divided roadways. On the Southbound or Westbound side of divided roadways, there is a
corresponding odd numbered segment. Interstate segments are associated with the mile posts. Segment locations are identified in the field by segment marker signs, which are located according to the segment and offset found in RMS. On the Southbound or Westbound side of divided roadways, segment markers are placed at the "high end" or "high offset" of the segment that you're going into, because that will correspond to the way you are traveling when you see the signs. Figures 10-8 through 10-10 illustrates segmentation and segment marker location.

Figure 10-8
Segmentation of an Undivided Roadway
Sequencing of forward and backward facing signs are shown above in Figure 10-8. The forward signs are shown on the left with their corresponding back facing sign shown to the right. On an undivided roadway, the forward and backward signs are mounted on the same pole and are usually placed on the right side of the road in an Easterly or Northerly direction.

In Figure 10-9 you will notice that the westbound signs that are perpendicular to their corresponding eastbound signs, are signed with the segment you are traveling into, not the one you are leaving.

Figure 10-9
Segmentation of a Divided Roadway

Interstate milepost and SR segmentation signing can be complicated. Figure 10-10 illustrates the correct sequence of signing for a particular section of roadway. The westbound segments that are on the milepost will always correspond to the segment that you are entering when driving west.

Figure 10-10
Segmentation of an Interstate

On some interstates, there are bridge structures that will have a milepost location on the bridge with an accompanying segment located at the start of the structure, not mounted with the milepost sign. This situation occurs because SR segments cannot change in a structure. They must always occur at the beginning of the structure; therefore, the milepost and segment may not be mounted together.

Whenever an interstate is signed, it is important to keep the milepost exactly one mile apart. It may be necessary in some instance to reference the milepost location by measuring footage from the milepost in the prior state, district, or county to get an accurate placement.

SR Signing at Intersections and on Specific Features

All of the following illustrations represent correct sign placement for the feature or intersection that they are associated with:

Legend

Ideal Sign Placement - \(\begin{gathered}SRe

Segment\end{gathered}\)| SR |
| :---: |
| seg |
| sen |

Center Point to Sign Line - \qquad
Center Point -
Directional flow of SR being signed -

Acceptable Alternate Sign Placement
 Alternate Center Point to Sign Line -

Divided SR with a T-Right Intersection

Drainage Pipe and Culverts

Divided Road Start and End

Exit Ramp

Real World Sign Placement

The photographs shown on the next page represent examples of acceptable segment sign placement for different types of intersections and features.

Type-1 Signs

SR 1022 10

> This sign represents that you are entering segment 10
> Found on an undivided highway or on the EAST or NORTH side of a divided highway
$>$ Offset 0000 will start at the feature associated with the sign or at the point on the road that is perpendicular to the sign

SR 1022 END SR

$>$ This sign represents that you are at the ending point of an SR
> Found at the END of any State highway or Ramp
> The ending offset or high offset value will end at the feature associated with the sign or at the point on the road that is perpendicular to the sign

$>$ This sign represents that you are entering segment 11
> Found on the WEST or SOUTH side of a divided highway, can also be found on a one-way street that runs WEST or SOUTH
> The high segment offset will start at the feature associated with the sign or at the point on the road that is perpendicular to the sign

SR 1022
 END SEGMENT

$>$ This sign represents that you are at the end of the current segment of the SR you are on
> Found most commonly at the end of a bridge or municipal line on an SR that has been partially turned back
> The ending offset or high offset value will end at the feature associated with the sign

SR 8022

> This sign represents that you are at the beginning point of a ramp
> Offset 0000 will start at the gore area associated with the sign

SR 0322 501
 OFF 2135

$>$ This sign represents that you are at the high offset of segment 501
> This type of sign is used strictly on the WEST or SOUTH SIDE of a DIVIDED HIGHWAY
$>$ This sign gives you the high offset of the segment you're entering

Type-2 Signs

This sign represents that you are at an intersection and segment 10 is to your right
$>$ Offset 0000 will start at the intersection point of the road you are on and the road to your right
> This type of sign may be found on divided or undivided intersections of at least two SR's
> This sign represents that you are at an intersection and segment 20 is to your right and segment 30 is to your left
$>$ Segment 30 offset 0000 will start at the intersection point of the road you are on and the road to your left
$>$ Segment 20 at its high offset will start at the intersection point of the road you are on and the road to your right
> This type of sign may be found on an undivided intersection of at least 2 SR's

SR 1022 $21 \rightarrow$ -31

 SR 1022$>$ This sign represents that you are at an intersection of a divided highway and segment 21 is to your right and segment 31 is to your left
$>$ Segment 31 offset 0000 will start at the intersection point of the road you are on and the road to your left
$>$ Segment 21 at its high offset will start at the intersection point of the road you are on and the road to your right
> This type of sign may be found on divided intersections of at least 2 intersecting SR's
> This sign represents that you are at an intersection of a divided highway and segment 30 is to your left and segment 21 is to your right
> Segment 30 offset 0000 will start at the intersection point of the road you are on and the road to your left
$>$ Segment 21 at its high offset will start at the intersection point of the road you are on and the road to your right
> This type of sign may be found on divided intersections of at least 2 intersecting SR's

SR 1022

$20 \rightarrow$

SR 1007

BRIDGE

> This sign represents that you are at an intersection and segment 20 is to your right and left and that segment 20 does not start at the intersection
> This type of sign may be found on a divided or undivided intersections of at least 2 SR's
$>$ This sign represents that you are at an intersection of a state road and a local road
$>$ The bridge indicator means that there is a state-owned bridge on the local road that the arrow is pointing towards
> This type of sign is found on divided or undivided intersections of an SR and a local road

SR Segment Signing Example

An example of how a typical SR (1005) and the SR's that intersect it would be signed. Legend

Segment Change Point

Single Type-2 Sign
Back to Back Type-2 Signs

Single Type-1 Sign
Back to Back Type-1 Signs

Color coded direction that the segment signs are intended to be read or be positioned

Driving
West

Note: Arrows on the Blue or South signs are shown in a North perspective for illustration purposes.

Note: Color is not intended to be taken literally, all signs are white and with black characters

Ordering SR Signs

Sign Information:

1. Order the required $18 " \times 12$ " and $10 " \times 10$ " SRlsegment signs from current Traffic Sign Contract No. 4600008263 (contract number may change over time).
2. Central Sign Shop has blank $18^{\prime \prime} \times 12$ " and $10 " \times 10$ " SRlsegment signs available.

Ordering Specifications:

- 10x10-307942 nomenclature C1-2
- 18x12-307943 nomenclature C2-2

3. Characters on signs can be either stenciled or directly applied with prepositioned letters and numbers. To re-use SR signs, place white non-reflective and pressure- sensitive overlay on the sign then use direct-applied prepositioned letters and numbers.

Contact Information:

Location:	PennDOT Sign Shop Distribution Center
	21st \& Herr Streets, Harrisburg, PA 17033
Phone:	$(717) 787-6105$

The sign shop is currently a destination pickup for PennDOT's Pony Express delivery trucks.

This manual is produced by the Bureau of Maintenance \& Operations, Roadway Information \& Testing Unit (RITU). Any information found in this manual that seems to be in error, can be immediately addressed by contacting RITU directly at either of the following numbers:
(717) 783-6843
or
(717) 783-0172

If you would like to see additional information included in future publications of this manual, please use the same contact numbers shown above.

APPENDIX A:

Divided Roadway Flowchart

Divided Roadway Flowchart

[^0]: ${ }^{1}$ Note: Some 2 character LRS event codes have a (B) or (E) as a third character, this represents the beginning or end of the particular feature, these type of features are represented on the SLD as an up or down arrow.
 ${ }^{2}$ Note: Some LRS features like Bridges and Overpasses do not have an RMS code that gets entered into the RMS Intersection Screen. These features are entered on other RMS screens and will be shown on the RMS SLD screen only.

