
Oblivious Multi-Party Machine Learning on Trusted Processors

Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta∗, Sebastian Nowozin
Kapil Vaswani, Manuel Costa

Microsoft Research

Abstract

Privacy-preserving multi-party machine learning allows
multiple organizations to perform collaborative data an-
alytics while guaranteeing the privacy of their individ-
ual datasets. Using trusted SGX-processors for this task
yields high performance, but requires a careful selection,
adaptation, and implementation of machine-learning al-
gorithms to provably prevent the exploitation of any side
channels induced by data-dependent access patterns.

We propose data-oblivious machine learning algo-
rithms for support vector machines, matrix factorization,
neural networks, decision trees, and k-means cluster-
ing. We show that our efficient implementation based
on Intel Skylake processors scales up to large, realis-
tic datasets, with overheads several orders of magnitude
lower than with previous approaches based on advanced
cryptographic multi-party computation schemes.

1 Introduction
In many application domains, multiple parties would
benefit from pooling their private datasets, training pre-
cise machine-learning models on the aggregate data, and
sharing the benefits of using these models. For exam-
ple, multiple hospitals might share patient data to train
a model that helps in diagnosing a disease; having more
data allows the machine learning algorithm to produce a
better model, benefiting all the parties. As another ex-
ample, multiple companies often collect complementary
data about customers; sharing such data would allow ma-
chine learning algorithms to make joint predictions about
customers based on a set of features that would not other-
wise be available to any of the companies. This scenario
also applies to individuals. For example, some systems
learn an individual’s preferences to make accurate rec-
ommendations [9]; while users would like to keep their
data private, they want to reap the rewards of correlating
their preferences with those of other users.

Secure multi-party computation [17, 24, 44] and fully
homomorphic encryption [23] are powerful crypto-
graphic tools that can be used for privacy preserving ma-
chine learning. However, recent work [38, 47, 48, 54] re-
ports large runtime overheads, which limits their prac-

∗Work done while at Microsoft Research; affiliated with Max
Planck Institute for Software Systems (MPI-SWS), Germany.

tical adoption for compute-intensive analyses of large
datasets. We propose an alternative privacy-preserving
multi-party machine learning system based on trusted
SGX processors [45]. In our system, multiple parties
agree on a joint machine learning task to be executed on
their aggregate data, and on an SGX-enabled data cen-
ter to run the task. Although they do not trust one an-
other, they can each review the corresponding machine-
learning code, deploy the code into a processor-protected
memory region (called an enclave), upload their en-
crypted data just for this task, perform remote attestation,
securely upload their encryption keys into the enclave,
run the machine learning code, and finally download the
encrypted machine learning model. The model may also
be kept within the enclave for secure evaluation by all
the parties, subject to their agreed access control poli-
cies. Figure 1 provides an overview of our system.

While we rely on the processor to guarantee that only
the machine learning code inside the enclave has di-
rect access to the data, achieving privacy still requires
a careful selection, adaptation, and implementation of
machine-learning algorithms, in order to prevent the ex-
ploitation of any side channels induced by disk, net-
work, and memory access patterns, which may other-
wise leak a surprisingly large amount of data [39,49,70].
The robust property we want from these algorithms is
data-obliviousness: the sequence of memory references,
disk accesses, and network accesses that they perform
should not depend on secret data. We propose data-
oblivious machine learning algorithms for support vec-
tor machines (SVM), matrix factorization, neural net-
works, decision trees, and k-means clustering. Our data-
oblivious algorithms are based on careful elimination of
data-dependent accesses (SVM, neural networks and k-
means), novel algorithmic techniques (matrix factoriza-
tion) and deployment of platform specific hardware fea-
tures (decision trees). We provide strong, provable confi-
dentiality guarantees, similar to those achieved by purely
cryptographic solutions: we ensure that an attacker that
observes the sequence of I/O operations, including their
addresses and their encrypted contents, cannot distin-
guish between two datasets of the same size that yield
results of the same size.

We implemented and ran our algorithms on off-the-
shelf Intel Skylake processors, using several large ma-

1

Figure 1: Sample privacy-preserving multi-party machine
learning system. Multiple hospitals encrypt patient datasets,
each with a different key. The hospitals deploy an agreed-upon
machine learning algorithm in an enclave in a cloud data center
and share their data keys with the enclave. The enclave pro-
cesses the aggregate datasets and outputs an encrypted machine
learning model.

chine learning datasets. Our results show that our ap-
proach scales to realistic datasets, with overheads that
are several orders of magnitude better than with previous
approaches based on advanced cryptographic multi-party
computation schemes. On the other hand, our approach
trusts the processor to protect the confidentiality of its in-
ternal state, whereas these cryptographic approaches do
not rely on this assumption.

2 Preliminaries
Intel SGX SGX [45] is a set of new x86 instructions
that applications can use to create protected memory re-
gions within their address space. These regions, called
enclaves, are isolated from any other code in the system,
including operating system and hypervisor. The proces-
sor monitors all memory accesses to the enclaves: only
code running in an enclave can access data in the en-
clave. When inside the physical processor package (in
the processor’s caches), the enclave memory is available
in plaintext, but it is encrypted and integrity protected
when written to system memory (RAM). External code
can only invoke code inside the enclave at statically-
defined entry points. SGX also supports attestation and
sealing [2]: code inside an enclave can get messages
signed using a per-processor private key along with a di-
gest of the enclave. This enables other entities to verify
that these messages originated from a genuine enclave
with a specific code and data configuration.

Using SGX instructions, applications can set up fine-
grained trusted execution environments even in (poten-
tially) hostile or compromised hosts, but application de-
velopers who write code that runs inside enclaves are
still responsible for maintaining confidentiality of secrets
managed by the enclave. In this paper, we focus on guar-
anteeing that the machine learning algorithms that we

load into enclaves do not leak information through mem-
ory, disk, or network access patterns.

Adversary Model We assume the machine learning
computation runs in an SGX-enabled cloud data center
that provides a convenient ‘neutral ground’ to run the
computation on datasets provided by multiple parties.
The parties do not trust one another, and they are also
suspicious about the cloud provider. From the point of
view of each party (or any subset of parties), the adver-
sary models all the other parties and the cloud provider.

The adversary may control all the hardware in the
cloud data center, except the processor chips used in
the computation. In particular, the adversary controls
the network cards, disks, and other chips in the moth-
erboards. She may record, replay, and modify network
packets or files. The adversary may also read or modify
data after it left the processor chip using physical prob-
ing, direct memory access (DMA), or similar techniques.

The adversary may also control all the software in the
data center, including the operating system and hypervi-
sor. For instance, the adversary may change the page ta-
bles so that any enclave memory access results in a page
fault. This active adversary is general enough to model
privileged malware running in the operating or hypervi-
sor layers, as well as malicious cloud administrators who
may try to access the data by logging into hosts and in-
specting disks and memory.

We assume that the adversary is unable to physically
open and manipulate the SGX processor chips that run
the machine learning computation. Denial of-service and
side-channel attacks based on power and timing analy-
sis are outside our scope. We consider the implementa-
tion of the machine learning algorithms to be benign: the
code will never intentionally try to leak secrets from en-
claves. We assume that all parties agree on the machine
learning code that gets access to their datasets, after in-
specting the code or using automated verification [60]
to ascertain its trustworthiness. We assume that all par-
ties get access to the output of the machine learning
algorithm, and focus on securing its implementation—
limiting the amount of information released by its correct
output [19] is outside the scope of this paper.

Security Guarantees We are interested in designing
algorithms with strong provable security guarantees. The
attacker described above should not gain any side infor-
mation about sensitive data inputs. More precisely, for
each machine learning algorithm, we specify public pa-
rameters that are allowed to be disclosed (such as the
input sizes and the number of iterations to perform) and
we treat all other inputs as private. We then say that an
algorithm is data-oblivious if an attacker that interacts
with it and observes its interaction with memory, disk
and network learns nothing except possibly those public

2

parameters. We define this interaction as a trace execu-
tion τ of I/O events, each recording an access type (read
or write), an address, and some contents, controlled by
the adversary for all read accesses. Crucially, this trace
leaks accurate information about access to code as well
as data; for example, a conditional jump within an en-
clave may reveal the condition value by leaking the next
code address [70].

We express our security properties using a simulation-
based technique: for each run of an algorithm given some
input that yields a trace τ , we show that there exists
a simulator program given only the public parameters
that simulates the interaction of the original algorithm
with the memory by producing a trace τ ′ indistinguish-
able from τ . Intuitively, if the algorithm leaked any in-
formation depending on private data, then the simulator
(that does not have the data) would not be able to adapt
its behavior accordingly. Beside the public parameters,
the simulator may be given the result of the algorithm
(e.g., the machine learning model) in scenarios where
the result is revealed to the parties running the algo-
rithm. We rely on indistinguishability (rather than simple
trace equivalence τ ′= τ) to account for randomized algo-
rithms, and in particular for encryption. For instance, any
private contents in write events will be freshly encrypted
and thus (under some suitable semantic-encryption se-
curity assumption) will appear to be independently ran-
dom in both τ and τ ′, rather than equal. More precisely,
we define indistinguishability as usual in cryptography,
using a game between a system that runs the algorithm
(or the simulator) and a computationally bounded adver-
sary that selects the inputs, interacts with the system, ob-
serves the trace, and attempts to guess whether it inter-
acts with the algorithm or the simulator. The algorithm
is data-oblivious when such adversaries guess correctly
with probability at most 1

2 plus a negligible advantage.

3 Data-Oblivious Primitives
Our algorithms rely on a library of general-purpose
oblivious primitives. We describe them first and then
show how we use them in machine learning algorithms.

Oblivious assignments and comparisons These
primitives can be used to conditionally assign or com-
pare integer, floating point, or 256-bit vector variables.
They are implemented in x86-64 assembly, operating
solely on registers whose content is loaded from and
stored to memory using deterministic memory accesses.
The registers are private to the processor; their contents
are not accessible to code outside the enclave. As
such, evaluations that involve registers only are not
recorded in the trace τ , hence, any register-to-register
data manipulation is data-oblivious by default.

We choose omove() and ogreater() as two repre-
sentative oblivious primitives. In conjunction, they en-

int max(int x, int y) {
 bool getX = ogreater(x, y);
 return omove(getX, x, y);
}

int max(int x, int y) {
 if (x > y) return x;
 else return y;
}

Non-oblivious Oblivious

Figure 2: Left: C++ function determining the maximum of two
integers using a non-oblivious if-else statement; right: oblivi-
ous variant of the function using oblivious primitives.

able the straightforward, oblivious implementation of the
max() function, as shown in Figure 2. In the oblivious
version of max(), ogreater() evaluates the guard x >

y and omove() selects either x or y, depending on that
guard. In our library, similar to related work [53], both
primitives are implemented with conditional instructions
cmovz and setg. For example, in simplified form,
omove() and ogreater() for 64-bit integers comprise
the following instructions:

mov rcx, x
mov rdx, y
cmp rcx, rdx
setg al
retn

omove()ogreater()

mov rcx, cond
mov rdx, x
mov rax, y
test rcx, rcx
cmovz rax, rdx
retn

On top of such primitives for native C++ types, our
library implements more complex primitives for user-
defined types. For example, most of our oblivious al-
gorithms rely on omoveEx(), an extended version of the
basic omove(), which can be used to conditionally as-
sign any type of variable; depending on the size of the
given type, omoveEx() iteratively uses the 64-bit integer
or 256-bit vector version of omove().

Oblivious array accesses Scanning entire arrays is a
commonly used technique to make data-dependent mem-
ory accesses oblivious. In the simplest case, we use
omoveEx() iteratively to access each element when ac-
tually just a single element is to be loaded or stored.1

However, our adversary model implies that, for enclave
code, the attacker can only observe memory accesses at
cache-line granularity. Accordingly, the x least signif-
icant bits2 of memory addresses are not recorded in a
trace τ . It is hence sufficient to scan arrays at cache-
line granularity rather than element or byte granularity.
We implement accordingly optimized array access prim-
itives that leverage AVX2 vector instructions [31]. In
particular, the vpgatherdd instruction can load each of
the eight 32-bit (4-byte) components of a 256-bit vector

1Dummy writes without actual effect are made to all but one el-
ement in case of a store. Modern processors treat such writes in the
same way as real writes and mark corresponding cache lines as dirty.

2The value of x depends on the actual hardware implementation; for
Skylake processors, where cache lines are 64 bytes long, x = 6.

3

256-bit vector register with 32-bit components

(c0 c1 c2 c3 c4 c5 c6 c7)

...

array in memory
cache line

...

Figure 3: Optimized array scanning using the vpgatherdd in-
struction; here, the value of interest is read into C4. The other
components perform dummy reads.

register from a different memory offset. Hence, by load-
ing each component from a different cache line, 4 bytes
can be read obliviously from an aligned 512-byte array
with a single instruction as depicted in Figure 3 (i.e.,
a 4-byte read is hidden among 8 cache lines accessed
via vpgatherdd). On top of this, the oget() primitive
is created, which obliviously reads an element from an
unaligned array of arbitrary form and size. oget() it-
eratively applies the vpgatherdd instruction in the de-
scribed way while avoiding out-of-bounds reads. De-
pending on the dynamic layout of the caches, oget()
can significantly speed-up oblivious array lookups (see
Section 6.6). The construction of oget() is conserva-
tive in the sense that it assumes (i) that the processor
may load vector components in arbitrary, possibly par-
allel order3 and (ii) that this order is recorded precisely
in τ . For cases where (i) or (ii) do not apply, e.g., for
software-only attackers, a further optimized version of
oget() is described in Appendix B.

Oblivious sorting We implement oblivious sorting by
passing its elements through a network of carefully ar-
ranged compare-and-swap functions. Given an input
size n, the network layout is fixed and, hence, the mem-
ory accesses fed to the functions in each layer of the net-
work depend only on n and not the content of the ar-
ray (as opposed to, e.g., quicksort). Hence, its memory
trace can be easily simulated using public parameter n
and fixed element size. Though there exists an optimal
sorting network due to Ajtai et al. [1], it incurs high con-
stants. As a result, a Batcher’s sorting network [7] with
running time of O(n(logn)2) is preferred in practice. Our
library includes a generic implementation of Batcher’s
sort for shuffling the data as well as re-ordering input
instances to allow for efficient (algorithm-specific) ac-
cess later on. The sorting network takes as input an array
of user-defined type and an oblivious compare-and-swap
function for this type. The oblivious compare-and-swap
usually relies on the ogreater() and omoveEx() prim-
itives described above.

3The implementation of the vpgatherdd instruction is
microarchiteture-specific and undocumented.

4 Machine Learning Algorithms
We describe five machine learning algorithms: four train-
ing and one prediction method, and their data-oblivious
counter-parts. The algorithms vary in the complexity
of access patterns, from randomly sampling the training
data to input-dependent accesses to the corresponding
model. Hence, we propose algorithm-specific mitigation
techniques that build on the oblivious primitives from the
last section.

4.1 K-Means

The goal of k-means clustering is to partition input data
points into k clusters such that each point is assigned to
the cluster closest to it. Data points are vectors in the
Euclidean space Rd . To implement clustering, we chose
a popular and efficient Lloyd’s algorithm [40, 41, 43].

During its execution, k-means maintains a list of k
points that represent the current cluster centroids: for
i = 1..k, the ith point is the mean of all points currently
assigned to the ith cluster. Starting from random cen-
troids, the algorithm iteratively reassigns points between
clusters: (1) for each point, it compares its distances to
the current k centroids, and assigns it to the closest clus-
ter; (2) once all points have been processed, it recom-
putes the centroids based on the new assignment. The
algorithm ends after a fixed number of iterations, or once
the clustering is stable, that is, in case points no longer
change their cluster assignments. Depending on the ap-
plication, k-means returns either the centroids or the as-
signment of data points to clusters.

Although the algorithm data flow is largely indepen-
dent of the actual points and clusters, its naive implemen-
tation may still leak much information in the conditional
update in (1)—enabling for instance an attacker to in-
fer some point coordinates from the final assignment, or
vice-versa—and in the recomputation (2)—leaking, for
instance, intermediate cluster sizes and assignments.

In the following, we treat the number of points (n),
clusters (k), dimension (d) and iterations (T) as pub-
lic. We consider efficient, streaming implementations
with, for each iteration, an outer loop traversing all points
once, and successive inner loops on all centroids for the
steps (1) and (2) above. For each centroid, in addition
to the d coordinates, we locally maintain its current clus-
ter size (in 0..n). To perform both (1) and (2) in a single
pass, we maintain both the current and the next centroids,
and we delay the division of coordinates by the cluster
size in the latter. Thus, for a given point, inner loop (1)
for i = 1..k maintains the (square of the) current minimal
distance δmin and its centroid index imin. And inner loop
(2) performs k conditional updates on the next centroids,
depending on i = imin. Finally, a single pass over cen-
troids recomputes their coordinates. An important detail
is to uniformly handle the special case of empty clus-

4

ters; another to select the initial centroids, for instance
by sampling random points from the shuffled dataset.

In our adapted algorithm, the “privacy overhead” pri-
marily consists of oblivious assignments to loop vari-
ables in (1), held in registers, and to the next centroids,
held in the cache. In particular, instead of updating
statistics for only the centroid that the point belongs
to, we make dummy updates to each centroid (using
our omoveEx() primitive). In the computation of new
centroids, we use a combination of ogreater() and
omoveEx() to handle the case of empty clusters. These
changes do not affect the algorithm’s time complexity: in
the RAM model the operations above can still be done in
O(T (nkd + kd)) = O(T nkd) operations.

Theorem 1. The adapted k-means algorithm runs in
time O(T nkd) and is data-oblivious, as there exists a
simulator for k-means that depends only on T , n, d,
and k.

Proof. The simulator can be trivially constructed as fol-
lows: given T , n, d and k, it chooses n random points
from R

d and simply runs the algorithm above for k cen-
troids and T iterations.

It is easy to see that the subroutine for finding the clos-
est centroid in the training algorithm can be also used to
predict the trained cluster that an input point belongs to.

4.2 Supervised Learning Methods

In supervised machine learning problems, we are given
a dataset D = {(xi,yi)}i=1..n of instances, where xi ∈X
is an observation and yi ∈ Y is a desired prediction. The
goal then is to learn a predictive model f : X →Y such
that f (xi) ≈ yi and the model generalizes to unseen in-
stances x ∈X . Many machine learning methods learn
such a model by minimizing an empirical risk objective
function together with a regularization term [65]:

min
w

Ω(w)+
1
n

n

∑
i=1

L(yi, fw(xi)). (1)

We will show secure implementations of support vector
machines (SVM) and neural networks, which are of the
form (1). Other popular methods such as linear regres-
sion and logistic regression are also instances of (1).

Most algorithms to minimize (1) operate iteratively on
small subsets of the data at a time. When sampling these
subsets, one common requirement for correctness is that
the algorithm should have access to a distribution of sam-
ples with an unbiased estimate of the expected value of
the original distribution. We make an important obser-
vation that an unbiased estimate of the expected value of
a population can be computed from a subset of indepen-
dent and identically distributed instances as well as from
a subset of pairwise-distinct instances.

Thus, we can achieve correctness and security by
adapting the learning algorithm as follows. Repeat-
edly, (1) securely shuffle all instances at random, us-
ing Batcher’s sort, for example, or an oblivious shuf-
fle [50]; (2) run the learning algorithm on the instances
sequentially, rather than randomly, either individually or
in small batches. Thus, the cost of shuffling is amortized
over all n instances. Next, we illustrate this scheme for
support vector machines and neural networks.

4.3 Support Vector Machines (SVM)

Support Vector Machines are a popular machine learning
model for classification problems. The original formula-
tion [12] applies to problems with two classes. Formally,
SVM specializes (1) by using the linear model fw(x) =
〈w,x〉, the regularization Ω(w) = λ

2 ‖w‖
2 for λ > 0, and

the loss function L(yi, fw(xi)) = max{0,1− yi fw(xi)}.
The SVM method is important historically and in prac-

tice for at least four separate reasons: first, it is easy to
use and tune and it performs well in practice; second, it
is derived from the principle of structural risk minimiza-
tion [65] and comes with excellent theoretical guarantees
in the form of generalization bounds; third, it was the first
method to be turned into a non-linear classifier through
application of the kernel trick [12, 56], fourth, the SVM
has inspired a large number of generalizations, for ex-
ample to the multi-class case [67], regression [61], and
general pattern recognition problems [63].

Here we only consider the linear (primal) case with
two classes, but our methods would readily extend to
multiple classes or support vector regression problems.
There are many methods to solve the SVM objective
and for its simplicity we adapt the state-of-the-art Pega-
sos method [58]. The algorithm proceeds in iterations
t = 1..T and, at each iteration, works on small subsets
of l training instances at a time, A(t). It updates a se-
quence of weight vectors w(1),w(2), . . . ,w(T) converging
to the optimal minimizer of the objective function (1).

Let us now consider in detail our implementation
of the algorithm, and the changes that make it data-
oblivious. We present the pseudo-code in Algorithm 1
where our changes are highlighted in blue, and indented
to the right. As explained in Section 4.2, SVM sam-
ples input data during training. Instead, we obliviously
(or privately) shuffle the data and process it sequentially.
The original algorithm updates the model using instances
that are mispredicted by the current model, A(t)

+ in Line 5
of the pseudo-code. As this would reveal the state of
the current model to the attacker, we make sure that
the computation depends on every instance of A(t). In
particular, we generate a modified set of instances in
B(t) which has the original (x,y) instance if x is mispre-
dicted and (x,0) otherwise, assigning either 0 or y using
our ogreater() and omove() primitives (see Figure 2).

5

Algorithm 1 SVM Original with changes (starting
with .) and additional steps required for the Oblivious
Version indicated in blue.

1: INPUT: I = {(xi,yi)}i=1,...,n, λ , T , l
2: INITIALIZE: Choose w(0) s.t. ‖w(0)‖ ≤ 1/

√
λ

3: Shuffle I
4: FOR t = 1,2, . . . ,T ×n/l
5: Choose A(t) ⊆ I s.t. |A(t)|= l

. Set A(t) to tth batch of l instances
6: Set A(t)

+ = {(x,y) ∈ A(t) : y〈wt ,x〉< 1}
. B(t) = {(x,1[y〈wt ,x〉< 1]y) : ∀(x,y) ∈ A(t)}

7: Set η = 1/λ t
8: Set ν = ∑

(x,y)∈A(t)
+

yx . ν = ∑(x,z)∈B(t) zx

9: Set v = (1−ηλ)w(t)+ η

l ν

10: Set c = 1 < 1√
λ
‖w‖

11: Set w(t+1) = min
{

1, 1√
λ
‖w‖

}
v

. Set w(t+1) =
(

c+(1− c)× 1√
λ‖w‖

)
v

12: OUTPUT w(t+1)

The second change is due to a Euclidean projection in
Line 11, where v is multiplied by the minimum of the
two values. In the oblivious version, we ensure that both
values participate in the update of the model, again us-
ing our oblivious primitives. The modifications above
are simple and, if the data is shuffled offline, asymptoti-
cally do not add overhead as the algorithm has to perform
prediction for every value in the sample. Otherwise, the
overhead of sorting is amortized as T is usually set to at
least one.

Theorem 2. The SVM algorithm described above runs
in time O(n(logn)2) and is data-oblivious, as there exists
a simulator for SVM that depends only on T , n, d, λ

and l, where d is the number of features in each input
instance.

The simulator can be constructed by composing a sim-
ulator for oblivious sorting and one that follows the steps
of Algorithm 1.

We note that the oblivious computation of a label in
the training algorithm (〈w,x〉 in Line 6 in Algorithm 1)
can be used also for the prediction phase of SVM.

4.4 Neural Networks

Feedforward neural networks are classic models for pat-
tern recognition that process an observation using a se-
quence of learned non-linear transformations [10]. Re-
cently, deep neural networks made significant progress
on difficult pattern recognition applications in speech, vi-
sion, and natural language understanding and the collec-
tive set of methods and models is known as deep learn-
ing [26].

Formally, a feedforward neural network is a sequence
of transformations f (x) = ft(. . . f2(f1(x))), where each
transformation fi is described by a fixed family of trans-
formations and a parameter wi to identify one particular
element in that family. Learning a neural network means
to find suitable parameters by minimization of the learn-
ing objective (1).

To minimize (1) efficiently in the context of neural
networks, we use stochastic gradient methods (SGD) on
small subsets of training data [26]. In particular, for
l� n, say l = 32, we compute a parameter gradient on
a subset S⊂ {1,2, . . . ,n}, |S|= l of the data as

∇wΩ(w)+
1
l ∑

i∈S
∇wL(yi, f (xi)). (2)

The expression above is an unbiased estimate of the gra-
dient of (1) and we can use it to update the parameters
via gradient descent. By repeating this update for many
subsets S we can find parameters that approximately min-
imize the objective. Instead, as for SVM, we use disjoint
subsets that are contiguous within the set of all (oblivi-
ously or privately) shuffled instances and iterate T times.

Because most neural networks densely process each
input instance, memory access patterns during training
and testing do not depend on the particular data instance.
There are two exceptions. First, the initialization of a
vector with |Y | ground truth labels depends on the true
label yi of the instance (recall that Y is the set of pos-
sible prediction classes or labels). In particular, the yith
entry is set, for example, to 1 and all other entries to 0.
We initialize the label vector and hide the true label
of the instance by using our oblivious comparison and
move operations. The second exception is due to special
functions that occur in certain fi, for example in tanh-
activation layers. Since special functions are relatively
expensive, they are usually evaluated using piecewise ap-
proximations. Such conditional computation may leak
parameter values and, in our adapted algorithm, we in-
stead compute the approximation obliviously using a se-
quence of oblivious move operations. Neither of these
changes affects the complexity of the algorithm.

The prediction counterpart of NN, similar to the k-
means and SVM algorithms, is a subroutine of the train-
ing algorithm. Hence, our changes can be also used to
make an oblivious prediction given a trained network.

4.5 Decision Tree Evaluation

Decision trees are common machine learning models for
classification and regression tasks [15, 51, 52]. In these
models, a tree is traversed from root to leaf node by per-
forming a simple test on a given instance, at each interior
node of the tree. Once a leaf node is reached, a simple
model stored at this node, for example a constant value,
is used as prediction.

6

Decision trees remain popular because they are non-
parametric: the size of the decision tree can grow with
more training data, providing increasingly accurate mod-
els. Ensembles of decision trees, for example in the form
of random forests [14] offer improved predictive perfor-
mance by averaging the predictions of many individual
tree models [16]. Decision trees illustrate a class of data
structures whose usage is highly instance-specific: when
evaluating the model, the path traversed from root to leaf
node reveals a large amount of information on both the
instance and the tree itself. To enable the evaluation of
decision tress without leaking side information, we adapt
the evaluation algorithm of an existing library for random
forests to make it data oblivious. We keep modifications
of the existing implementation at a minimum, relying on
the primitives of Section 3 wherever possible. Our target
tree evaluation algorithm operates on one instance x∈Rd

at a time. In particular, the trees are such that, at each in-
terior node, a simple decision stump is performed:

φ(x; j, t) =
{

left, if x(j)≤ t,
right, otherwise, (3)

where j ∈ {1, . . . ,d} and t ∈ R are learned parameters
stored at the interior tree node.

In order to conceal the path taken through a tree, we
modify the algorithm such that each tree layer is stored as
an array of nodes. During evaluation of an instance x, the
tree is traversed by making exactly one oblivious lookup
in each of these arrays. At each node, the lookup x(j) and
corresponding floating point comparison are done using
our oblivious primitives. In case a leaf is found early,
that is before the last layer of the tree was reached, its
ID is stored obliviously and the algorithm proceeds with
dummy accesses for the remaining layers of the tree. The
predictions of all trees in a random forest are accumu-
lated obliviously in an array; the final output is the pre-
diction with the largest weight.

Together, the described modifications guarantee data-
obliviousness both for instances and for trees (of the
same size, up to padding). The algorithmic overhead is
linear in the number of nodes n in a tree, i.e., O(n) for a
fixed d; we omit the corresponding formal development.

4.6 Matrix Factorization

Matrix factorization methods [55] are a popular set of
techniques for constructing recommender systems [32].
Given users and items to be rated, we take as input the
observed ratings for a fraction of user-item pairs, either
as explicit scores (“five stars”) or implicit user feedback.
As a running example, we consider a system to recom-
mend movies to viewers based on their experience.

Matrix factorization embeds users and items into a la-
tent vector space, such that the inner product of a user
vector with an item vector produces an estimate of the

rating a user would assign to the item. We can then use
this expected rating to propose novel items to the user.
While the individual preference dimensions in the user
and item vectors are not assigned fixed meanings, empir-
ically they often correspond to interpretable properties
of the items. For example, a latent dimension may corre-
spond to the level of action the movie contains.

Matrix factorization methods are remarkably effec-
tive [9] because they learn to transfer preference infor-
mation across users and items by discovering dimensions
of preferences shared by all users and items.

Let n be the number of users and m the number of
items in the system. We may represent all (known and
unknown) ratings as a matrix R ∈ Rn×m. The input con-
sists of M ratings ri, j with i ∈ 1..n and j ∈ 1..m, given by
users to the items they have seen (using the movies anal-
ogy). The output consists of U ∈ Rn×d and V ∈ Rm×d

such that R≈U V>; these two matrices may then be used
to predict unknown ratings ri, j as inner products 〈ui,v j〉.
Following [48], we refer to ui and v j as user and item
profiles, respectively.

The computation of U and V is performed by mini-
mizing regularized least squares on the known ratings:

min
1
M ∑(ri, j−〈ui,v j〉)2 +λ ∑‖ui‖2

2 +µ ∑‖v j‖2
2 (4)

where λ and µ determine the extent of regularization.
The function above is not jointly convex in U and V , but
becomes strictly convex in U for a fixed V , and strictly
convex in V for a fixed U .

We implement matrix factorization using a gradient
descent, as in prior work on oblivious methods [47, 48].
More efficient methods are now available to solve (4),
such as the so-called damped Wiberg method, as shown
in an extensive empirical evaluation [30], but they all in-
volve more advanced linear algebra, so we leave their
privacy-preserving implementation for future work.

Gradient descent This method iteratively updates U
and V based on the current prediction error on the input
ratings. The error is computed as ei, j = ri, j − 〈ui,v j〉,
and ui and v j are updated in the opposite direction of the
gradient as follows:

u(t+1)
i ← u(t)i + γ

[
∑ j ei, jv

(t)
j −λut

i

]
(5)

v(t+1)
j ← v(t)j + γ

[
∑i ei, ju

(t)
i −µvt

j

]
(6)

The descent continues as long as the error (4) decreases,
or for a fixed number of iterations (T). Each iteration
can be efficiently computed by updating U and V sequen-
tially. To update each user profile ui, we may for instance
use an auxiliary linked list of user ratings and pointers to
the corresponding movie profiles in V .

7

The gradient descent above runs in time Θ(T M) in the
RAM model, since all ratings are used at each iteration.
For a fixed number of iterations, the access pattern of the
algorithm does not depend on the actual values of the
input ratings. However, it still reveals much sensitive in-
formation about which user-item pairs appear in the input
ratings. For example, assuming they indicate which users
have seen which movies, it trivially reveals the popular-
ity of each movie, and the intersection of movie profiles
between users, during the gradient update (see [46] for
privacy implications of leaking movie ratings).

Our data-oblivious algorithm We design an algo-
rithm whose observable behaviour depends only on pub-
lic parameters n, m, M and T , and, hence, it can be sim-
ulated and does not reveal R. (We assume that d, λ , µ ,
and γ are public and do not depend on the input data.)

The high level idea is to use data structures that inter-
leave user and movie profiles. This interleaving allows
us to perform an update by sequentially reading and up-
dating these profiles in-place. Once all profiles have been
updated, some additional processing is required to inter-
leave them for the next iteration but, with some care, this
can also be implemented by sequential traversals of our
data structures. (An illustration of the algorithm can be
found in the Appendix.)

Our algorithm preserves the symmetry between users
and items. It maintains data structures U and V that cor-
respond to expanded versions of the matrices U and V .
Intuitively, every user profile in U is followed by the
movie profiles required to update it (that is, the profiles
for all movies rated by this user), and symmetrically ev-
ery movie profile in V is followed by its user profiles. We
use superscript notation U(t) and V(t) to distinguish these
data structures between iterations.

U stores n user tuples that embed the user profiles of
the original U , and M rating tuples that contain both
movie profiles and their ratings. All tuples have the same
size; they each include a user id, a movie id, a rating,
and a vector of d values. User tuples are of the form
(i,0,0,ui) with i ∈ 1..n; Rating tuples are of the form
(i, j,ri, j,v j). Hence, for each rating for j, we have a copy
of v j in a rating tuple. V symmetrically stores m item tu-
ples, of the form (0, j,0,v j), and M rating tuples, of the
form (i, j,ri, j,ui).

The precise ordering of tuples within U (and V) is ex-
plained shortly but, as long as the tuples of U are grouped
by user ids (i), and the user tuple precedes its rating tu-
ples, we can compute each u(t+1)

i according to Equa-
tion (5) by traversing U(t) once, in order. After an ini-
tial Setup, each iteration actually consists of three data-
oblivious phases:

• Update the user profiles ui within U(t) using Equa-
tion (5); let Ũ be the updated data structure;

• Extract U (t+1) from Ũ;
• Copy U (t+1) into the rating tuples of Ṽ to obtain

V(t+1) for the next iteration.

(We omit symmetric steps producing Ṽ, V (t+1), and
U(t+1).) The extraction step is necessary to compute the
prediction error and prepare U and V for the next itera-
tion. Without tweaking the tuple ordering, the only effi-
cient way of doing so would be to sort Ũ lexicographi-
cally (by j, then i) so that the updated user profiles appear
in the first n tuples (the approach taken in [48]). Obliv-
ious sorting at each iteration is expensive, however, and
would take O((M+n)(log(M+n))2) oblivious compare-
and-swap of pairs of d +3 elements.

Instead, we carefully place the user tuples in Ũ so that
they can be extracted in a single scan, outputting pro-
files at a fixed rate: one user profile every (M + n)/n
tuples, on average. Intuitively, this is achieved by inter-
leaving the tuples of users with many ratings with those
of users with few ratings—Section 4.7 explains how we
efficiently compute such a tuple ordering.

Setup phase: We first initialize the user and vector pro-
files, and fill U and V using the input ratings.

(1) We build a sequence LU (and symmetrically LV)
that, for every user, contains a pair of the user id i and
the count wi of the movies he has rated. To this end, we
extract the user ids from the input ratings (discarding the
other fields); we sort them; we rewrite them sequentially,
so that each entry is extended with a partial count and a
flag indicating whether the next user id changes; and we
sort them again, this time by flag then user id, to obtain
LU as the top n entries. (Directly outputting LU during the
sequential scan would reveal the counts.) For instance,
after the first sorting and rewriting, the entries may be of
the form (1,1,⊥),(1,2,⊥),(1,3,>),(2,1,⊥),

(2) We expand LU (and symmetrically LV) into a se-
quence IU of size M + n that includes, for every user i
with wi ratings, one tuple (i,0,⊥,k, `) for each k = 0..wi,
such that the values ` are ordered by the interleaving ex-
plained in Section 4.7.

(3) We construct U with empty user and rating pro-
files, as follows. Our goal is to order the input ratings ac-
cording to LU. To this end, we extend each input rating
with a user-rating sequence number k = 1..wi, thereby
producing M tuples (i, j,ri, j,k,⊥), and we append those
to IU. We sort those tuples by i then k then ri, j, so that
(i,0,⊥,k, `) is directly followed by (i, j,ri, j,k,⊥) for k =
1..wi; we sequentially rewrite those tuples so that they
become (, , , ,) directly followed by (i, j,ri, j,k, `); we
sort again by `; and we discard the last M dummy tuples
(, , , ,).

(4) We generate initial values for the user and item
profiles by scanning U and filling in ui and v j using two
pseudo-random functions (PRFs): one for uis and one

8

for v js. For each, user tuple (i,0,0,ui), we use the first
PRF on inputs (i− 1)d + 1, .., id to generate d random
numbers that we normalize and write to ui. For each, rat-
ing tuple (i, j,ri, j,v j), we use the second PRF on inputs
(j−1)d+1, .., jd to generate d random numbers that we
also normalize and write to v j. We then use the same two
PRFs for V: the first one for rating tuples and the second
one for item tuples.

Update phase: We compute updated user profiles (and
symmetrically item profiles) in a single scan, reading
each tuple of U (and symmetrically V) and (always)
rewriting its vector—that is, its last d values, storing ui
for user tuples and v j for rating tuples.

We use 4 loop variables u, δ , u◦, and δ ◦ each holding
a Rd vector, to record partially-updated profiles for the
current user and for user i◦. We first explain how u and δ

are updated for the current user (i). During the scan, upon
reading a user tuple (i,0,0,ui), as is always the case for
the first tuple, we set u to ui and δ to ui(1− λγ) and
we overwrite ui (to hide the fact that we scanned a user
tuple). Upon reading a rating tuple (i, j,ri, j,v j) for the
current user i, we update δ to γv j(ri, j−〈u,v j〉)+ δ and
overwrite v j with δ . Hence, the last rating tuple (before
the next user tuple) now stores the updated profile u(t+1)

i
for the current user i.

We now bring our attention to i◦, u◦, and δ ◦. Recall
that our interleaving of users in U splits the rating tuples
for some users. In such cases, if there are ratings left
to scan, the running value δ written to v j (before scan-
ning the next user) may not yet contain the updated user
profile. Accordingly, we use i◦, u◦, and δ ◦ to save the
state of the ‘split’ user while we process the next user,
and restore it later as we scan the next rating tuple of the
form (i◦, j,ri◦, j,v j). In the full version of the paper we
prove that a single state copy suffices during the expan-
sion of LU as we split at most one user at a time.

Extraction phase: The update leaves some of the val-
ues u(t+1)

i scattered within Ũ (and similarly for v(t+1)
j

within Ṽ). Similar to the update phase we can extract
all profiles by maintaining a state i◦ and u◦ for only one
user. We extract U while scanning Ũ. In particular, after
reading the last tuple of every chunk of size (M + n)/n
in Ũ we always append an entry to U . This entry is ei-
ther i◦ and u◦ or the content of the last tuple i and u.
Meanwhile, after reading every tuple of Ũ we write back
either the same entry or the profile that was written to U
last. This step ensures that user tuples contain the up-
dated u(t+1). We also update i◦ and u◦ on every tuple:
either performing a dummy update or changing the state
to the next (split) user.

This step relies on a preliminary re-ordering and inter-
leaving of users, such that the ith chunk of tuples always
contains (a copy of) a user profile, and all n user profiles

can be collected (details of the expansion properties that
are used here are described in the following section and
in the full version of the paper).
Copying phase: We finally propagate the updated user
profiles U (t+1) to the rating tuples in Ṽ, which still carry
(multiple copies of) the user profiles U (t). We update Ṽ
sequentially in chunks of size n, that is, we first update
the first n rows of V, then rows n+1 to 2n and so on until
all V is updated, each time copying from the same n user
profiles of U (t+1), as follows. (The exact chunk size is
irrelevant, but n is asymptotically optimal.)

Recall that each rating tuple of Ṽ is of the form
(i, j,ri, j,ut

i, `) where i 6= 0 and ` indicates the interleaved
position of the tuple in V. To each chunk of Ṽ, we ap-
pend the profiles of U (t+1) extended with dummy values,
of the form (i,0, ,u(t+1)

i ,); we sort those 2n tuples by i
then j, so that each tuple from U (t+1) immediately pre-
cedes tuples from (the chunk of) Ṽ whose user profile
must be updated by u(t+1)

i ; we perform all updates by
a linear rewriting; we sort again by `; and we keep the
first n tuples. Finally, V(t+1) is just the concatenation of
those updated chunks.

Theorem 3. Our matrix factorization algorithm runs
in time O

(
(M+ ñ)(log(M+ ñ))2 +T (M+ ñ)(log ñ)2

)
where ñ = max(n,m). It is data-oblivious, as there ex-
ists a simulator that depends only on T , M, n, m, and d
and produces the same trace.

Proof Outline. The Setup phase is the most expensive,
as it involves oblivious sorting on all the input ratings
at once, with a O((M + ñ)(log(M + ñ))2) run time. The
update phase runs in time O(M+n+m) since it requires
a single scan of U and V. The extraction phase similarly
runs in time O(M + n+m). The copying phase runs in
time O((M+m)(logn)2 +(M+n)(logm)2) due to (M+
m)/n sorts of U of size n and (M + n)/m sorts of V of
size m. Since all phases except Setup run T times, the
total run time is

O
(
(M+ ñ) log2(M+ ñ)+T (M+ ñ) log2 ñ

)
.

A simulator can be built from the public parameters
mentioned in the beginning of the algorithm. It executes
every step of the algorithm: it creates the interleaving
data structures that depend only on n, m, M and d and
updates them using the steps of the Setup once and runs
the Update, Extraction and Copy phases for T iterations.
As part of Setup, it invokes the simulator of the sequence
expansion algorithm described in the full version of the
paper.

4.7 Equally-Interleaved Expansion

We finally present our method for arranging tuples of U
and V in Matrix Factorization. We believe this method is

9

applicable to other data processing scenarios. For exam-
ple, Arasu and Kaushik [4] use a similar, careful arrange-
ment of tuples to obliviously answer database queries.

Definition 1. A weighted list L is a sequence of pairs
(i,wi) with n elements i and integer weights wi ≥ 1.

An expansion I of L is a sequence of elements of length
∑

n
1 wi such that every element i occurs exactly wi times.

Definition 2. Let α = ∑wi/n be the average weight of L
and the jth chunk of I be the sub-sequence of dαe ele-
ments Ib(j−1)α+1c, . . . , Id jαe.

I equally interleaves L when all its elements can be
collected by selecting one element from each chunk.

For example, for L = (a,4),(b,1),(c,1), every chunk
has α = 2 elements. The expansion I = a,b,a,c,a,a
equally interleaves L, as its elements a, b, and c can be
chosen from its third, first, and second chunks, respec-
tively. The expansion I′ = a,a,a,a,b,c does not.

We propose an efficient method for generating equal
interleavings. Since it is used as an oblivious building
block, we ensure that it accesses L, I and intermediate
data structures in a manner that depends only on n and
M = ∑wi, not on the individual weights. (In matrix fac-
torization, M is the total number of input ratings.) We
adopt the terminology of Arasu and Kaushik [4], even if
our definitions and algorithm are different. (In compari-
son, our expansions do not involve padding, as we do not
require that copies of the same element are adjacent).

Given a weighted list L, we say that element i is heavy
when wi≥α , and light otherwise. The main idea is to put
at most one light element in every chunk, filling the rest
with heavy elements. We proceed in two steps: (1) we re-
order L so that each heavy element is followed by light
elements that compensate for it; (2) we sequentially pro-
duce chunks containing copies of one or two elements.

Step 1: Assume L is sorted by decreasing weights
(wi ≥ wi+1 for i ∈ [1,n− 1]), and b is its last heavy el-
ement (wb ≥ α > wb+1). Let δi be the sum of differ-
ences defined as ∑ j∈[1,i](w j−α) for heavy elements and
∑ j∈[b+1,i](α −w j) for light elements. Let S be L (obliv-
iously) sorted by δ j, breaking ties in favor of higher el-
ement indices. This does not yet guarantee that light el-
ements appear after the heavy element they compensate
for. To this end, we scan S starting from its last element
(which is always the lightest), swapping any light ele-
ment followed by a heavy element (so that, eventually,
the first element is the heaviest).

Step 2: We produce I sequentially, using two loop
variables: k, the latest heavy element read so far; and w,
the remaining number of copies of k to place in I. We
repeatedly read an element from the re-ordered list and
produce a chunk of elements. For the first element k1,
we produce α copies of k1, and we set k = k1 and

w = wk1 −α . For each light element ki, we produce wki

copies of ki and α−wki copies of k, and we decrement w
by α −wki . For each heavy element ki, we produce w
copies of k and α−w copies of ki, and we set k = ki and
w = wki − (α−w).

Continuing with our example sequence L above, a is
heavy, b and c are light, and we have δa = 2, δb = 1, and
δc = 2. Sorting L by δ yields (b,1),(a,4),(c,1). Swap-
ping heavy and light elements yields (a,4),(b,1),(c,1)
and we produce the expansion I = a,a,b,a,c,a.

In the full version of the paper we prove that the al-
gorithm is oblivious, always succeeds and runs in time
O(n(logn)2 +∑w).

5 Protocols
For completeness, we give an overview of the protocols
we use for running multi-party machine learning algo-
rithms in a cloud equipped with SGX processors. Our
protocols are standard, and similar to those used in prior
work for outsourcing computations [29,57]. For simplic-
ity, we describe protocols involving a single enclave.

We assume that each party agrees on the machine-
learning code, its public parameters, and the identities
of all other parties (based, for example, on their public
keys for signature). One of the parties sends this col-
lection of code and static data to the cloud data center,
where an (untrusted) code-loader allocates resources and
creates an enclave with that code and data.

Each party independently establishes a secure channel
with the enclave, authenticating themselves (e.g., using
signatures) and using remote attestation [2] to check the
integrity of the code and static data loaded into the en-
clave. They may independently interact with the cloud
provider to confirm that this SGX processor is part of that
data center. Each party securely uploads its private data
to the enclave, using for instance AES-GCM for con-
fidentiality and integrity protection. Each party uses a
separate, locally-generated secret key to encrypt its own
input data set, and uses its secure channel to share that
key with the enclave. The agreed-upon machine learning
code may also be optionally encrypted but we expect that
in the common case this code will be public.

After communicating with all parties, and getting the
keys for all the data sets, the enclave code runs the target
algorithm on the whole data set, and outputs a machine
learning model encrypted and integrity protected with a
fresh symmetric key. We note that denial-of-service at-
tacks are outside the threat model for this paper—the par-
ties or the data centre may cause the computation to fail
before completion. Conversely, any attempt to tamper
with the enclave memory (including its code and data)
would be caught as it is read by the SGX processor, and
hence the job completion guarantees the integrity of the
whole run. Finally, the system needs to guarantee that all

10

parties get access to the output. To achieve this, the en-
clave sends the encrypted output to every party over their
secure authenticated channel, and waits for each of them
to acknowledge its receipt and integrity. It then publishes
the output key, sending it to all parties, as well as to any
reliable third-party (to ensure its fair availability).

6 Evaluation
This section describes our experiments to evaluate the
overhead of running our machine learning algorithms
with privacy guarantees. We ran oblivious and non-
oblivious versions of the algorithms that decrypt and pro-
cess the data inside SGX enclaves, using off-the-shelf
Intel Skylake processors. Our results show that, in all
cases, the overhead of encryption and SGX protection
was low. The oblivious version of algorithms with ir-
regular data structures, such as matrix factorization and
decision trees, adds substantial overhead, but we find that
it is still several orders of magnitude better than previous
work based on advanced cryptography.

6.1 Datasets

We use standard machine learning datasets from the UCI
Machine Learning Repository.4 We evaluate matrix fac-
torization on the MovieLens dataset [28]. Table 1 sum-
marizes our datasets and configuration parameters.

The Nursery dataset describes the outcomes of the
Slovenian nursery admission process for 12,960 appli-
cations in the 1980s. Given eight socio-economic at-
tributes about the child and parents, the task is to clas-
sify the record into one out of five possible classes. We
use the 0/1 encoding of the attributes as we evaluate the
records on binary decision trees. Hence, each record in
the dataset is represented using 27 features.

The MNIST dataset is a set of 70,000 digitized
grayscale images of 28-by-28 pixels recording handwrit-
ten digits written by 500 different writers. The task is to
classify each image into one of ten possible classes.

The SUSY dataset comprises 5,000,000 instances pro-
duced by Monte Carlo simulations of particle physics
processes. The task is to classify, based on 18 observed
features, whether the particles originate from a process
producing supersymmetric (SUSY) particles or not.

The MovieLens datasets contain movie ratings (1–5):
100K ratings given by 943 users to 1682 movies.

The datasets were chosen either because they were
used in prior work on secure ML (e.g., Nursery in [13],
MovieLens in [47, 48]) or because they are one of the
largest in the UCI repository (e.g., SUSY), or because
they represent common benchmarks for particular algo-
rithms (e.g., MNIST for neural networks).

Our learning algorithms are iterative—the accuracy
(and execution time) of the model depends on the number

4https://archive.ics.uci.edu/ml/

of iterations. In our experiments, we fixed the number of
iterations a priori to a value that typically results in con-
vergence: 10 for k-means, 5 for neural network, 10 for
SVM, and 20 for matrix factorization.

6.2 Setup

The experiments were conducted on a single machine
with quad-core Intel Skylake processor, 8GB RAM, and
256GB solid state drive running Windows 10 enterprise.
This processor limits the amount of platform memory
that can be reserved for enclaves to 94MB (out of a to-
tal of 128MB of protected memory). Each benchmark
is compiled using the Microsoft C/C++ compiler ver-
sion 17.00 with the O2 flag (optimize for speed) and
linked against the Intel SGX SDK for Windows ver-
sion 1.1.30214.81. We encrypted and integrity protected
the input datasets with AES-GCM; we used a hardware-
accelerated implementation of AES-GCM based on the
Intel AES-NI instructions. We ran non-oblivious and
oblivious versions of our algorithms that decrypt and
process the binary data inside SGX enclaves. We com-
pare the run times with a baseline that processes the data
in plaintext and does not use SGX protection. Table 1
summarizes the relative run time for all the algorithms
(we report averages over five runs). Next we analyze the
results for each algorithm.

6.3 K-Means

We have implemented a streaming version of the k-
means clustering algorithm to overcome space con-
straints of enclaves. Our implementation partitions the
inputs into batches of a specified size, copies each batch
into enclave memory, decrypts it and processes each
point within the batch.

Table 1 shows the overheads for partitions of
size 1MB. The non-oblivious and oblivious versions
have overheads of 91% and 199% over baseline (6.8 sec-
onds). The overhead for the non-oblivious version is due
to the cost of copying encrypted data into the enclave and
decrypting it.

We observe similar overheads for longer executions.
The overheads decrease with the number of clusters
(34% with 30 clusters and 11% with 50 clusters for non-
oblivious version) and (154% for 30 clusters and 138%
for 50 clusters for oblivious version) as the cost of in-
put decryption is amortized over cluster computation.
By comparison, recent work [38] based on cryptographic
primitives reports 5 to 6 orders of magnitude slowdown
for k-means.

6.4 Neural Networks

We have implemented a streaming version of the algo-
rithm for training a convolution neural network (CNN)
on top of an existing library [20]. Table 1 shows the
overheads of training the network for the MNIST dataset.

11

Algorithm SGX+enc. SGX+enc.+obl. Dataset Parameters Input size # Instances
K-Means 1.91 2.99 MNIST k=10, d=784 128MB 70KCNN 1.01 1.03

SVM 1.07 1.08 SUSY k=2, d=18 307MB 2.25M
Matrix fact. 1.07 115.00 MovieLens n=943, m=1,682 2MB 100K

Decision trees 1.22 31.10 Nursery k=5, d=27 358KB 6.4K

Table 1: Relative run times for all algorithms with SGX protection + encryption, and SGX protection + encryption + data oblivi-
ousness, compared with a baseline that processes the data in plaintext without SGX protection. Parameters of the datasets used for
each algorithm are provided on the right, where d is the number of features, k is the number of classes, n is the number of users
and m is the number of movies in the MovieLens dataset.

The low overheads (< 0.3%) reflect the observation that
the training algorithm is predominantly data oblivious,
hence running obliviously does not increase execution
time while achieving the same accuracy. We are aware
that state-of-the-art implementations use data-dependent
optimizations such as max pooling and adding noise;
finding oblivious algorithms that support these optimiza-
tions with good performance remains an open problem.

6.5 SVM

As described in Section 4.2, the correctness of supervised
learning methods requires that the input data instances be
independent and identically distributed. Our oblivious
SVM implementation achieves this by accessing a batch
of l data instances uniformly at random during each it-
eration. We implement random access by copying the
partition containing the instance into enclave memory,
decrypting the partition and then accessing the data in-
stance. In the experiments we set data partitions to be
of size 2KB and l = 20. In addition, we use condi-
tional move instructions to make data accesses within the
training algorithm oblivious. These modifications allow
us to process datasets much larger than enclave mem-
ory. Our evaluation (Table 1) shows that random ac-
cess adds a 7% overhead to the non-oblivious SVM algo-
rithm, whereas the additional overhead of the oblivious
algorithm is marginal.

6.6 Decision Tree Evaluation

For the Nursery dataset, we use an offline-trained ensem-
ble of 32 sparse decision trees (182KB) with 295–367
nodes/leaves each and depths ranging from 14 to 16 lay-
ers. For this dataset, as shown in Table 1, our oblivi-
ous classifier running inside an enclave has an average
overhead of 31.1x over the baseline (255ms vs. 10ms).
The oblivious implementation of the algorithm em-
ploys the oget() primitive (see Section 3) for all data-
dependent array lookups. Without this optimization, us-
ing omoveEx() for the element-granular scanning of ar-
rays instead, the overhead is much higher (142.27x on
average). We observe that our oblivious implementation
scales well to even very large trees. For example, for an

ensemble of 32 decision trees (16,860KB) with 30,497–
32,663 nodes/leaves and 35–45 layers each,5 the average
overhead is 63.16x over the baseline.

In comparison, prior work based on homomorphic
encryption [13] uses much smaller decision trees (four
nodes on four layers for the Nursery dataset), has higher
overheads and communication costs, and scales poorly
with increasing depth. Our experiments show that
smaller depth trees have much lower accuracy (82% for
depth 4 and 84% for depth 5). In contrast, our classifier
for the Nursery dataset achieves an accuracy of 98.7%.

6.7 Matrix Factorization

We measure the performance of our gradient descent on
the MovieLens dataset. We implemented both the base-
line algorithm and the oblivious algorithm of Section 4.6.
As for k-means, we stream the input data (once) into the
enclave to initialize the data structures, then we operate
on them in-place. We also implemented the oblivious
method of Nikolaenko et al. [48] to compare its overhead
with ours (see Section 7 for the asymptotic comparison).
We did not use garbled circuits, and merely implemented
their algorithm natively on Skylake CPUs.

In each experiment, we set the dimension of user and
vector profiles to d = 10, following previous implemen-
tations in [47, 48]. We experimented with fixed numbers
of iterations T = 1,10,20. With higher number of itera-
tions the prediction rate of the model improves. For ex-
ample, when using 90K instances for training, the mean
squared error of prediction on 10K test dataset drops
from 12.94 after 1 iteration, to 4.04 after 20 iterations,
to 1.06 after 100 iterations (with λ = µ = γ = 0.0001).

Table 1 reports the overheads for the MovieLens-100K
dataset. The oblivious version takes 49s, versus 0.43s
for the baseline, reflecting the cost of multiple oblivious
sorting for each of the T = 20) iterations. With smaller
number of iterations, the running times are 8.2s versus
0.03s for T = 1, and 27s versus 0.21s for T = 10. (As
a sanity check, a naive oblivious algorithm that accesses

5The numbers correspond to a random forest trained on the standard
Covertype dataset from the UCI repository.

12

T This work Previous work
1 8 14 (1.7x)

10 27 67 (2.4x)
20 49 123 (2.5x)

Table 2: Comparison of running times (in seconds) of oblivious
matrix factorization methods on the MovieLens dataset: our
work is the method in Section 4.6 and previous work is our im-
plementation of an algorithm in [48] without garbled circuits.
T is the number of algorithm iterations.

all entries in U and V to hide its random accesses runs in
1850s for T = 10.)

Table 2 compares the overheads of our oblivious algo-
rithm and the one of [48]. As expected, our method out-
performs theirs as the number of iterations grows, inas-
much as it sorts smaller data structures.

Comparison with cryptographic evaluations: We
are aware of two prior evaluations of oblivious matrix
factorization [47, 48]. Both solutions are based on gar-
bled circuits, and exploit their parallelism. Both only
perform one iteration (T = 1). Nikolaenko et al. (in
2013) report a run time of 2.9 hours for 15K ratings
(extracted from 100K MovieLens dataset) using two ma-
chines with 16 cores each. Nayak et al. (in 2015) report
a run time of 2048s for 32K ratings, using 32 processors.

6.8 Security Evaluation

We experimentally confirmed the data-obliviousness of
all enclave code for each of our algorithms, as follows.
We ran each algorithm in a simulated SGX environment6

and used Intel’s Pin framework [42] to collect runtime
traces that record all memory accesses of enclave code,
not only including our core algorithms, but also all stan-
dard libraries and SGX framework code. For each algo-
rithm, we collected traces for a range of different inputs
of the same size and compared code and data accesses at
cache-line granularity, simulating the powerful attacker
from Section 2. While we initially discovered deviations
in the traces due to implementation errors in our oblivi-
ous primitives and algorithmic modifications, we can re-
port that the final versions of all implementations pro-
duce uniform traces that depend only on the input size.

7 Related Work
Secure multi-party machine learning General cryp-
tographic approaches to secure multi-party computation

6For debugging purposes, the Intel SGX SDK allows for the cre-
ation of simulated SGX enclaves. Those simulated enclaves have
largely the same memory layout as regular SGX enclaves, but are not
isolated from the rest of the system. In simulation mode, SGX instruc-
tions are emulated in software inside and outside the enclave with a
high level of abstraction.

are based on garbled circuits, secret sharing and en-
cryption with homomorphic properties. Lindell and
Pinkas [36] survey these techniques with respect to data
mining tasks including machine learning. It is worth not-
ing that beside mathematical assumptions, some of the
above approaches also rely on (a subset of) computing
parties being honest when running the protocol as well
as non-colluding.

Garbled circuits [71] provide a mechanism for multi-
ple parties to compute any function on their joint inputs
without having to reveal the inputs to each other. So-
lutions based on garbled circuits have been tailored for
several specific machine learning tasks including matrix
factorization [48], and training of a decision tree [6, 35].
GraphSC [47] and ObliVM [38] are two recent program-
ming frameworks for secure computation using garbled
circuits. The former framework offers a paradigm for
parallel computation (e.g., MapReduce) and the latter
uses a combination of ORAM and garbled circuits.

Training of an SVM kernel [34] and construction of a
decision tree [18] have been proposed based on secret-
sharing and oblivious transfer.

Homomorphic encryption lets multiple parties encrypt
their data and request the server to compute a joint func-
tion by performing computations directly on the cipher-
texts. Bost et al. [13] study classification over encrypted
data in the model where the server performs classifica-
tion by operating on semi-homomorphic encrypted data;
whenever the server needs to perform operations not sup-
ported by the encryption, it engages in a protocol with a
party that can decrypt the data and perform the necessary
computation. Solutions based on fully-homomorphic en-
cryption have been proposed for training several ML al-
gorithms [27, 69] and for classifying decision trees [68].

Shokri and Shmatikov [59] describe a method for mul-
tiple parties to compute a deep neural network on joint
inputs. This method does not rely on cryptographic prim-
itives. It assumes that the parties train their own model
and do not share the data with each other, but exchange
intermediate parameters during training. Our model is
different as parties in our solution do not perform any
computation and do not learn anything about the train-
ing process; after the training they can either obtain the
model, if they agreed to, or use it for querying in a black-
box manner.

Privacy implications of revealing the output of a ma-
chine learning algorithm, i.e., the model, is orthogonal
to the focus of this paper; we refer the reader to Fredrik-
son et al. [21, 22] on this topic. As a remedy, differ-
ential privacy guarantees for the output of several ma-
chine learning algorithms have been studied by Blum et
al. [11].

Data-oblivious techniques Oblivious RAM
(ORAM) [25] is a general protection technique against

13

side-channels on memory accesses. Though recent
advances in this space [62] have significantly decreased
the ORAM overhead, there are cases where the default
solution does not always meet system requirements.
First, many ORAM solutions offer a tradeoff between
the size of the private memory and the overhead they
incur. In current CPUs, registers act as an equivalent
of processor’s private memory, however their number
is limited, e.g., even for the latest x86 generations, less
than 2KB can be stored in all general purpose and SIMD
registers combined. Second, ORAM does not hide the
number of accesses. That is, if this number depends
on a sensitive input (e.g., number of movies rated by
each user) then fake accesses need to be generated to
hide the real number of accesses. Finally, ORAM is
ideal for programs that make few accesses in a large
dataset. For algorithms that process data multiple
times, customized solutions often perform better (e.g.,
MapReduce [47, 49]). Machine learning algorithms fall
in the latter category as they need all input instances to
train and use the model.

Raccoon [53] and GhostRider [37] propose general
compiler techniques for protecting memory accesses of
a program. Some of the techniques they deploy are
ORAM and execution of both branches of if-else state-
ments. However, general techniques are less effective in
cases where an algorithm accesses data in a structured
way that can be exploited for greater efficiency. For ex-
ample, compiling matrix factorization using these tech-
niques is not trivial as the interleaving of the accesses
between internal data structures has to be also protected.
(The interleaving depends on sensitive information such
as rating counts per user and per movie which have to be
taken into account.)

Asymptotical comparison of individual algorithms
We now compare the asymptotic performance of our
data-oblivious algorithms to prior work. We evaluate the
overhead of obtaining oblivious properties only. That is,
we do not consider the cost of their secure implemen-
tation on SGX (our approach) or using garbled circuits
in [38, 47, 48] (though the latter is known to add large
run time overheads).

ObliVM [38] uses a streaming version of MapReduce
to perform oblivious k-means which is then compiled to
garbled circuits. The algorithm relies on oblivious sort-
ing to update the centroids at each iteration, resulting
in the running time of O

(
T (nkd +dn(logn)2)

)
(ignor-

ing conversion to garbled circuits). Since our algorithm
takes O(T nkd) time, the asymptotical comparison be-
tween the two depends on the relation between values k
and O((logn)2). Moreover, oblivious sorting incurs high
constants and our experiments confirmed that our simple
method was more efficient.

The algorithmic changes required to make SVM and
Neural Networks oblivious can be captured with auto-
mated tools for compiling code into its oblivious coun-
terpart. Instead of an oblivious shuffle or sort between
the iterations, these methods would place input instances
into an ORAM and then sample them by accessing the
ORAM. Since all n instances are accessed at each itera-
tion, the asymptotical cost of the two solutions remains
the same. However, such tools either use a backend that
would require careful adaption for the constrained SGX
environment (for example, GhostRider [37] defines its
own source language and ObliVM [38] translates code
into circuits) or they are not as optimized as our approach
(for example, Raccoon [53] always executes both code
paths of a secret-dependent conditional statement and its
described array scanning technique is less fine-tuned for
the x86 architecture than ours).

Our simple data-oblivious decision tree algorithm is
adequate for ad hoc tree evaluations, and scales up to
reasonably large forests. With larger irregular data struc-
tures, algorithms based instead on oblivious data struc-
tures [38, 66] may be more effective as they store data in
elaborate randomized data structures that avoid stream-
ing over all the tree leaves. Though their asymptoti-
cal performance dominates our approach — O((logn)2)
vs. O(n), assuming height of the tree of O(logn) —
as pointed out in [53] ORAM-based solutions improve
over the plain scanning of arrays only for larger n due
to the involved constants. Moreover, private mem-
ory of size O(logn) is assumed in [66] while as men-
tioned earlier, private memory for SGX is limited to
registers. Oblivious tree can be implemented also via
ORAM with constant private memory size [33], incur-
ring O((logn)3/ log logn) overhead.

Finally, oblivious matrix factorization for garbled cir-
cuits, rather than SGX processors, was considered in [48]
and [47]. Nikolaenko et al. [48] also rely on a data struc-
ture that combines both user and movie profiles: They
maintain a global matrix of size M+n+m with M rows
for the ratings, n rows for the users, and m rows for the
movies. Their updates are performed in several sequen-
tial passes, and synchronized using a sorting network on
the whole data structure. Hence, their algorithm runs
in time O

(
T (M+n+m)(log(M+n+m))2

)
, dominated

by the cost of sorting the rows of the matrix at every it-
eration. GraphSC [47] implements matrix factorization
using an oblivious parallel graph processing paradigm.
However, this method also relies on oblivious sorting of
M + n+m profiles, hence, asymptotically it incurs the
same cost. In comparison, our approach sorts on that
scale only during Setup and, besides, those costly op-
erations only sort user ids and ratings—not the larger
profiles in R

d . Then, asymptotically, our iterations are
more efficient due to a smaller logarithmic factor as we

14

sort fewer tuples at a time: O
(
T (M+ ñ)(log ñ)2

)
where

ñ = max(n,m). As we showed in the evaluation section
our method also outperforms [48] in practice.

Similar to prior oblivious matrix factorization tech-
niques [47,48], our method is easily parallelizable. First,
an oblivious sort that runs in time O(n(logn)2) sequen-
tially can run in time O((logn)2) with n parallel pro-
cesses. Besides, each row in our data structures U
and V can be processed independently, and aggregated
in time log(M + ñ), as in the method described in [47].
Even with parallel processing, our method is more effi-
cient, because the depth of the computation stays loga-
rithmic in ñ for our method and M in theirs [47, 48].

Secure hardware TrustedDB [5], Cipherbase [3], and
Monomi [64] use different forms of trusted hardware to
process database queries with privacy. Haven [8] runs
unmodified Windows applications in SGX enclaves, and
VC3 [57] proposes a cloud data analytics framework
based on SGX. None of these systems provides protec-
tion from side-channel attacks. These systems were eval-
uated using SGX emulators. In contrast, we are the first
to evaluate implementations of machine learning algo-
rithms on real SGX processors.

8 Conclusions
We presented a new practical system for privacy-
preserving multi-party machine learning. We propose
data-oblivious algorithms for support vector machines,
matrix factorization, decision trees, neural networks, and
k-means. Our algorithms provide strong privacy guar-
antees: they prevent exploitation of side channels in-
duced by memory, disk, and network accesses. Exper-
iments with an efficient implementation based on Intel
SGX Skylake processors show that our system provides
good performance on realistic datasets.

References
[1] AJTAI, M., KOMLÓS, J., AND SZEMERÉDI, E. An

O(n logn) sorting network. In ACM Symposium on
Theory of Computing (STOC) (1983).

[2] ANATI, I., GUERON, S., JOHNSON, S., AND
SCARLATA, V. Innovative technology for CPU
based attestation and sealing. In Workshop on
Hardware and Architectural Support for Security
and Privacy (HASP) (2013).

[3] ARASU, A., BLANAS, S., EGURO, K., KAUSHIK,
R., KOSSMANN, D., RAMAMURTHY, R., AND
VENKATESAN, R. Orthogonal security with Ci-
pherbase. In Conference on Innovative Data Sys-
tems Research (CIDR) (2013).

[4] ARASU, A., AND KAUSHIK, R. Oblivious
query processing. In International Conference on
Database Theory (ICDT) (2014).

[5] BAJAJ, S., AND SION, R. TrustedDB: A trusted
hardware-based database with privacy and data
confidentiality. In IEEE Transactions on Knowl-
edge and Data Engineering (2014).

[6] BARNI, M., FAILLA, P., KOLESNIKOV, V.,
LAZZERETTI, R., SADEGHI, A., AND SCHNEI-
DER, T. Secure evaluation of private linear branch-
ing programs with medical applications. In Euro-
pean Symposium on Research in Computer Security
(ESORICS) (2009).

[7] BATCHER, K. E. Sorting networks and their appli-
cations. In Spring Joint Computer Conf. (1968).

[8] BAUMANN, A., PEINADO, M., AND HUNT, G.
Shielding applications from an untrusted cloud with
Haven. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI) (2014).

[9] BELL, R. M., AND KOREN, Y. Lessons from
the Netflix prize challenge. ACM SIGKDD Explo-
rations Newsletter 9, 2 (2007).

[10] BISHOP, C. M. Neural networks for pattern recog-
nition. Oxford university press, 1995.

[11] BLUM, A., DWORK, C., MCSHERRY, F., AND
NISSIM, K. Practical privacy: The SuLQ frame-
work. In ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems (PODS)
(2005).

[12] BOSER, B. E., GUYON, I. M., AND VAPNIK,
V. N. A training algorithm for optimal margin clas-
sifiers. In Proceedings of the fifth annual workshop
on Computational learning theory (1992).

[13] BOST, R., POPA, R. A., TU, S., AND GOLD-
WASSER, S. Machine learning classification over
encrypted data. In Symposium on Network and Dis-
tributed System Security (NDSS) (2015).

[14] BREIMAN, L. Random forests. Machine Learning
45, 1 (2001).

[15] BREIMAN, L., FRIEDMAN, J. H., OLSHEN,
R. A., AND STONE, C. J. Classification and Re-
gression Trees. Wadsworth, 1984.

[16] CRIMINISI, A., SHOTTON, J., AND
KONUKOGLU, E. Decision forests: A uni-
fied framework for classification, regression,
density estimation, manifold learning and semi-
supervised learning. Foundations and Trends in
Computer Graphics and Vision 7, 2-3 (2012).

15

[17] C.YAO, A. Protocols for secure computations (ex-
tended abstract). In IEEE Symposium on Founda-
tions of Computer Science (FOCS) (1982).

[18] DE HOOGH, S., SCHOENMAKERS, B., CHEN, P.,
AND OP DEN AKKER, H. Practical secure de-
cision tree learning in a teletreatment application.
In Financial Cryptography and Data Security (FC)
(2014).

[19] DWORK, C., MCSHERRY, F., NISSIM, K., AND
SMITH, A. Calibrating noise to sensitivity in pri-
vate data analysis. In Theory of Cryptography Con-
ference (TCC) (2006).

[20] Fast CNN library. http://fastcnn.codeplex.

com/ (accessed 17/02/2016).

[21] FREDRIKSON, M., JHA, S., AND RISTENPART,
T. Model inversion attacks that exploit confidence
information and basic countermeasures. In ACM
Conference on Computer and Communications Se-
curity (CCS) (2015).

[22] FREDRIKSON, M., LANTZ, E., JHA, S., LIN, S.,
PAGE, D., AND RISTENPART, T. Privacy in phar-
macogenetics: An end-to-end case study of person-
alized warfarin dosing. In USENIX Security Sym-
posium (2014).

[23] GENTRY, C. Fully homomorphic encryption us-
ing ideal lattices. In ACM Symposium on Theory of
Computing (STOC) (2009).

[24] GOLDREICH, O., MICALI, S., AND WIGDERSON,
A. How to play any mental game. In ACM Sympo-
sium on Theory of Computing (STOC) (1987).

[25] GOLDREICH, O., AND OSTROVSKY, R. Soft-
ware protection and simulation on oblivious RAMs.
Journal of the ACM (JACM) 43, 3 (1996).

[26] GOODFELLOW, I., BENGIO, Y., AND
COURVILLE, A. Deep learning. Book in
preparation for MIT Press, 2016.

[27] GRAEPEL, T., LAUTER, K., AND NAEHRIG, M.
ML confidential: Machine learning on encrypted
data. In International Conference on Information
Security and Cryptology (ICISC) (2013).

[28] HARPER, F. M., AND KONSTAN, J. A. The
MovieLens datasets: History and context. In
ACM Transactions on Interactive Intelligent Sys-
tems (TiiS) (2015).

[29] HOEKSTRA, M., LAL, R., PAPPACHAN, P.,
ROZAS, C., PHEGADE, V., AND DEL CUVILLO,

J. Using innovative instructions to create trustwor-
thy software solutions. In Workshop on Hardware
and Architectural Support for Security and Privacy
(HASP) (2013).

[30] HYEONG HONG, J., AND FITZGIBBON, A. Se-
crets of matrix factorization: Approximations, nu-
merics, manifold optimization and random restarts.
In Proceedings of the IEEE International Confer-
ence on Computer Vision (2015).

[31] INTEL CORP. Intel 64 and IA-32 architectures soft-
ware developer’s manual—combined volumes: 1,
2a, 2b, 2c, 3a, 3b and 3c, 2013. No. 325462-048.

[32] KOREN, Y., BELL, R., AND VOLINSKY, C. Ma-
trix factorization techniques for recommender sys-
tems. Computer, 8 (2009).

[33] KUSHILEVITZ, E., LU, S., AND OSTROVSKY, R.
On the (in)security of hash-based oblivious RAM
and a new balancing scheme. In ACM-SIAM Sym-
posium on Discrete Algorithms (SODA) (2012).

[34] LAUR, S., LIPMAA, H., AND MIELIKÄINEN,
T. Cryptographically private support vector ma-
chines. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2006).

[35] LINDELL, Y., AND PINKAS, B. Privacy preserving
data mining. Journal of Cryptology (2000).

[36] LINDELL, Y., AND PINKAS, B. Secure multi-
party computation for privacy-preserving data min-
ing. IACR Cryptology ePrint Archive (2008).

[37] LIU, C., HARRIS, A., MAAS, M., HICKS, M. W.,
TIWARI, M., AND SHI, E. Ghostrider: A
hardware-software system for memory trace obliv-
ious computation. In International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2015).

[38] LIU, C., WANG, X. S., NAYAK, K., HUANG, Y.,
AND SHI, E. ObliVM: A programming framework
for secure computation. In IEEE Symposium on Se-
curity and Privacy (S&P) (2015).

[39] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND
LEE, R. B. Last-level cache side-channel attacks
are practical. In IEEE Symposium on Security and
Privacy (S&P) (2015).

[40] LLOYD, S. P. Least squares quantization in
PCM’S. Bell Telephone Labs Memo (1957).

[41] LLOYD, S. P. Least squares quantization in PCM.
IEEE Transactions on Information Theory 28, 2
(1982).

16

http://fastcnn.codeplex.com/
http://fastcnn.codeplex.com/

[42] LUK, C.-K., COHN, R., MUTH, R., PATIL, H.,
KLAUSER, A., LOWNEY, G., WALLACE, S.,
REDDI, V. J., AND HAZELWOOD, K. Pin: Build-
ing customized program analysis tools with dy-
namic instrumentation. In ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation (PLDI) (2005).

[43] MACQUEEN, J. Some methods for classifica-
tion and analysis of multivariate observations. In
Berkeley Symposium on Mathematics, Statistics
and Probability, Vol. 1 (1967).

[44] MALKHI, D., NISAN, N., PINKAS, B., AND
SELLA, Y. Fairplay: a secure two party com-
putation system. In USENIX Security Symposium
(2004).

[45] MCKEEN, F., ALEXANDROVICH, I., BERENZON,
A., ROZAS, C., SHAFI, H., SHANBHOGUE, V.,
AND SAVAGAONKAR, U. Innovative instructions
and software model for isolated execution. In Work-
shop on Hardware and Architectural Support for
Security and Privacy (HASP) (2013).

[46] NARAYANAN, A., AND SHMATIKOV, V. Robust
de-anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy (S&P) (2008).

[47] NAYAK, K., WANG, X. S., IOANNIDIS, S.,
WEINSBERG, U., TAFT, N., AND SHI, E.
GraphSC: Parallel secure computation made easy.
In IEEE Symposium on Security and Privacy (S&P)
(2015).

[48] NIKOLAENKO, V., IOANNIDIS, S., WEINSBERG,
U., JOYE, M., TAFT, N., AND BONEH, D.
Privacy-preserving matrix factorization. In ACM
Conference on Computer and Communications Se-
curity (CCS) (2013).

[49] OHRIMENKO, O., COSTA, M., FOURNET, C.,
GKANTSIDIES, C., KOHLWEISS, M., AND
SHARMA, D. Observing and preventing leakage
in MapReduce. In ACM Conference on Computer
and Communications Security (CCS) (2015).

[50] OHRIMENKO, O., GOODRICH, M. T., TAMAS-
SIA, R., AND UPFAL, E. The Melbourne shuffle:
Improving oblivious storage in the cloud. In Inter-
national Colloquium on Automata, Languages and
Programming (ICALP), vol. 8573. Springer, 2014.

[51] QUINLAN, J. R. Induction of decision trees. Ma-
chine Learning 1, 1 (1986).

[52] QUINLAN, J. R. C4.5: Programs for Machine
Learning. Morgan Kaufmann, 1993.

[53] RANE, A., LIN, C., AND TIWARI, M. Raccoon:
Closing digital side-channels through obfuscated
execution. In USENIX Security Symposium (2015).

[54] RASTOGI, A., HAMMER, M. A., AND HICKS, M.
Wysteria: A programming language for generic,
mixed-mode multiparty computations. In IEEE
Symposium on Security and Privacy (S&P) (2014).

[55] SARWAR, B., KARYPIS, G., KONSTAN, J., AND
RIEDL, J. Application of dimensionality reduction
in recommender system – A case study. Tech. rep.,
DTIC Document, 2000.

[56] SCHÖLKOPF, B., AND SMOLA, A. J. Learning
with kernels: support vector machines, regulariza-
tion, optimization, and beyond. MIT press, 2002.

[57] SCHUSTER, F., COSTA, M., FOURNET, C.,
GKANTSIDIS, C., PEINADO, M., MAINAR-RUIZ,
G., AND RUSSINOVICH, M. VC3: Trustworthy
data analytics in the cloud using sgx. In IEEE Sym-
posium on Security and Privacy (S&P) (2015).

[58] SHALEV-SHWARTZ, S., SINGER, Y., SREBRO,
N., AND COTTER, A. Pegasos: Primal estimated
sub-gradient solver for SVM. Mathematical pro-
gramming 127, 1 (2011).

[59] SHOKRI, R., AND SHMATIKOV, V. Privacy-
preserving deep learning. In ACM Conference
on Computer and Communications Security (CCS)
(2015).

[60] SINHA, R., COSTA, M., LAL, A., LOPES, N., SE-
SHIA, S., RAJAMANI, S., AND VASWANI, K. A
design and verification methodology for secure iso-
lated regions. In ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion (PLDI) (2016).

[61] SMOLA, A. J., AND SCHÖLKOPF, B. A tutorial on
support vector regression. Statistics and computing
14, 3 (2004).

[62] STEFANOV, E., VAN DIJK, M., SHI, E.,
FLETCHER, C. W., REN, L., YU, X., AND DE-
VADAS, S. Path ORAM: an extremely simple
oblivious RAM protocol. In ACM Conference
on Computer and Communications Security (CCS)
(2013).

[63] TSOCHANTARIDIS, I., JOACHIMS, T., HOF-
MANN, T., AND ALTUN, Y. Large margin methods
for structured and interdependent output variables.
In Journal of Machine Learning Research (2005).

17

[64] TU, S., KAASHOEK, M. F., MADDEN, S., AND
ZELDOVICH, N. Processing analytical queries over
encrypted data. In International Conference on
Very Large Data Bases (VLDB) (2013).

[65] VAPNIK, V. N., AND VAPNIK, V. Statistical learn-
ing theory, vol. 1. Wiley New York, 1998.

[66] WANG, X. S., NAYAK, K., LIU, C., CHAN, T.,
SHI, E., STEFANOV, E., AND HUANG, Y. Obliv-
ious data structures. In ACM Conference on Com-
puter and Communications Security (CCS) (2014).

[67] WESTON, J., AND WATKINS, C. Support vector
machines for multi-class pattern recognition. In
ESANN (1999).

[68] WU, D. J., FENG, T., NAEHRIG, M., AND
LAUTER, K. Privately evaluating decision trees
and random forests. IACR Cryptology ePrint
Archive (2015).

[69] XIE, P., BILENKO, M., FINLEY, T., GILAD-
BACHRACH, R., LAUTER, K. E., AND NAEHRIG,
M. Crypto-nets: Neural networks over encrypted
data. CoRR abs/1412.6181 (2014).

[70] XU, Y., CUI, W., AND PEINADO, M. Controlled-
channel attacks: Deterministic side channels for
untrusted operating systems. In IEEE Symposium
on Security and Privacy (S&P) (2015).

[71] YAO, A. C. How to generate and exchange secrets
(extended abstract). In IEEE Symposium on Foun-
dations of Computer Science (FOCS) (1986).

A Illustration of Oblivious Matrix Factor-
ization from Section 4.6

256-bit vector register with 32-bit components

(c0 c1 c2 c3 c4 c5 c6 c7)

... ...

array in memory
cache line

Figure 4: Optimized array scanning using the 256-bit vector
instruction vpgatherdd

B Optimized Array Scanning
The oget() primitive can be further optimized using
vpgatherdd as follows. We make sure that a certain
number of components of the vector register load values
that span two cache lines. (This can be done by load-
ing two bytes from one cache line and two bytes from
the next one, recall that each component loads 4 bytes.)
Hence, up to 16 cache lines can potentially be touched
with a single instruction.

We assign components to cache lines in a careful man-
ner. The first few components request addresses within
dummy cache lines or cache lines that contain the values
of interest (whose addresses should be kept secret). The
values of interest are loaded into the remaining compo-
nents. The concept is depicted in Figure 4 where com-
ponents C0 and C2-C6 request dummy cache lines, C1
requests the cache lines that contain the desired value
which is loaded into C7. In this configuration, four
bytes are read obliviously from a memory region of size
7 · 2 · 64 bytes = 896 bytes with a single vpgatherdd

instruction. The method easily generalizes when more
bytes (e.g., 8 bytes using C6 and C7) are to be read.

This technique can significantly increase throughput
(up to 2x in some micro-benchmarks outside enclaves on
recent Intel Skylake processors). However, it requires
that vpgatherdd appears as a truly atomic operation
or, at least, that the hardware loads dummy components
before secret ones (and those are then loaded from the
cache). Though this may be true in a software-only at-
tacker model, it is not the case in the powerful threat
model in Section 2. Hence, our implementation relies
on the conservative oget() from Section 3.

18

	1 Introduction
	2 Preliminaries
	3 Data-Oblivious Primitives
	4 Machine Learning Algorithms
	4.1 K-Means
	4.2 Supervised Learning Methods
	4.3 Support Vector Machines (SVM)
	4.4 Neural Networks
	4.5 Decision Tree Evaluation
	4.6 Matrix Factorization
	4.7 Equally-Interleaved Expansion

	5 Protocols
	6 Evaluation
	6.1 Datasets
	6.2 Setup
	6.3 K-Means
	6.4 Neural Networks
	6.5 SVM
	6.6 Decision Tree Evaluation
	6.7 Matrix Factorization
	6.8 Security Evaluation

	7 Related Work
	8 Conclusions
	A Illustration of Oblivious Matrix Factorization from Section 4.6
	B Optimized Array Scanning

