
Introduction
This technical note describes how to configure acceptance filters for CAN controllers embedded in SPC58x automotive
microcontrollers. The document describes the register configurations and provides some example to speed up the filter
configuration. These configurations can be adopted for all microcontrollers in this family with minor variances.

The examples in this document are based on SPC584Cx/SPC58ECx 32-bit MCU.

 SPC58x configuring CAN and CAN-FD filters

TN1348

Technical note

TN1348 - Rev 1 - March 2021
For further information contact your local STMicroelectronics sales office.

www.st.com

1 CAN overview

SPC584Cx/SPC58ECx has eight CAN instances embedded in two different subsystems as documented in the
device reference manual Section Appendix A Reference documents.
All the CAN controllers in the same subsystem will share resources like RAM memory, clock, etc.
Each CAN subsystem is constituded by the following major blocks:
• Modular CAN cores: the registers of the CAN module can be accessed using the Generic Slave Interface

(GSI). The peripheral GSI module acts as a request from each master.
• CAN-RAM arbiter: it is an additional logic for arbitration among the requests for the RAM access by the

various CAN controllers.
• SRAM: the CAN subsystem will interface with an external RAM using this interface, it is the SRAM.
• ECC controller: it contains the logic to compute and validate the correction code on the SRAM memory.

For the SRAM interface and memory organization refer to the device reference manual Section Appendix
A Reference documents.

TN1348
CAN overview

TN1348 - Rev 1 page 2/16

2 Filtering introduction

CAN filter logic allows you to configure the filters in various way. For example, the messages that pass the
acceptance filtering can be stored in Rx FIFO (0 or 1) or in dedicated rx buffers. Each filter can be configured
as an acceptance or rejection filter and can also be enabled or disabled. For acceptance filter, each filter list is
performed from item #0 to the first matching item in the filter list. Before using filters it is mandatory to configure
the starting address and the numbers of the filter to reserve part of message RAM. The figure below shows a view
of the shared memory map and the registers (hence the starting addresses for each section).

Figure 1. Message RAM configuration example

TN1348
Filtering introduction

TN1348 - Rev 1 page 3/16

3 Message RAM initialization

Before using any filter, it is mandatory to configure the relevant RAM area of the messages in which they will be
stored. To do this, the software application must write the offset (in words) from the message RAM base address
of each filter area. The number of filters for each area must be configured, so that the controller can understand
where each related filter memory area ends
In this document, as example four filters, will be configured for standard identifiers (11 bits) and four filters for
extended identifiers (29 bits), so, reserve a portion of message RAM to store 11-bit filters and another for 29-bit
filters. To configure the starting address of the standard id filter area, the software must write the FLSSA field of
the SIDFC register (Standard ID filter configuration register).
For extended ID filters it is necessary to write the FLESA field of the XIDFC register (Extended ID filter
configuration register). The FLSSA and FLESA fields should contain the memory offset "in words" from the RAM
base address of the message. This application configures four standard filters at offset zero and four extended
filters.

Figure 2. SIDFC register

For standard filter configuration:
• FLSSA = 0x0: the offset respect to message RAM base address is zero, so the area starts at the beginning

of the Message RAM.
• LSS = 4: this is the number of filters to configure. Each filter is composed by `one` 32 bits word.

In this configuration a portion of memory starting from offset zero and having a size of four words.

Note: the CAN controller has no control mechanism for configuring the message RAM, this means that the Developer
must be careful not to overlap the configured RAM areas.
The following figure shows how to configure a portion of memory to store extended identification filters.

Figure 3. XIDFC register

To configure the RAM area to store extended filters it is necessary to program the following values in the FLESA
and LSE fields.

TN1348
Message RAM initialization

TN1348 - Rev 1 page 4/16

• FLESA = 0x04: the offset in words respect to message RAM base address. This because in previous
configured filters area it has been reserved 0x04 words for standard ID filters and then the minimum usable
offset is 0x04.

• LSE = 4: this is the number of filters to configure. For extended ID a filter is composed by `two` 32 bits word.

In this configuration a portion of memory starting from offset 0x04 (words) having a size of eight words (four
two-word filters). Therefore, the minimum offset for the next configurable memory area is 0x0C words.
All sections of the message RAM must be configured considering the number and size of the elements that will be
stored in the section without overlapping any sections.

Note: to convert a word offset into a byte offset, it is needed to multiply the word value by four.

TN1348
Message RAM initialization

TN1348 - Rev 1 page 5/16

4 Example of standard ID filters

After configuring the message RAM, you can configure the device filters.
Each filter element can be configured as:
• Range filter
• Double ID filter
• Classic filter
• Filter for dedicated rx buffer (single ID filter)

The following figure shows how to configure four different types of filters for standard identifiers (11-bit identifiers).
Use the following filter element register for STANDARD ID.

Figure 4. Filter element register

4.1 Range filter for RX FIFO0
Below an example of filtering to store the messages with identifiers in the range [0x16 , 0xF6] into the Receive
FIFO 0.
Register value (HEX): 0x081600F6
Register value (BIN): 00 001 00000010110 (00000) 00011110110

Note: in all the examples provided in this document, the bracketed bits are kept at the default value.
Fields values:

SFT -> `00` -> Range filter from SFID1 to SFID2

SFEC -> `001` -> Store in Rx FIFO 0 if filter matches

SFID1 -> `00000010110` -> First ID of standard ID filter element range (0x16)

SFID2 -> `00011110110` -> Second ID of standard ID filter element range (0xF6)

4.2 Double filter for RX FIFO1
Below is an example of a double ID filter to store messages identifiers 0 x 0A or 0 x FF into FIFO 1.
Register value (HEX): 0x500A00FF
Register value (BIN): 01 010 00000001010 (00000) 00011111111
Fields values:

SFT -> `01` -> Dual ID filter for SFID1 or SFID2

SFEC -> `010` -> Store in Rx FIFO 1 if filter matches

SFID1 -> `00000001010` -> First ID of standard dual ID filter element

SFID2 -> `00011111111` -> Second ID of standard dual ID filter element

TN1348
Example of standard ID filters

TN1348 - Rev 1 page 6/16

4.3 Rx dedicated buffer filtering
Below is an example to store messages with identification 0 x 7F0 into dedicated rx buffer #0.
Using a dedicated buffer, it is possible to filter only one message ID and that is the one written in the SFID1 field.
Register value (HEX): 0x3FF00000
Register value (BIN): 00 111 11111110000 (00000) 00 (000) 000000

SFT -> `00` -> this value isn`t important because filtering to store into dedicated RX
BUFFER and in this case SFT value is
 ignored (see SFEC field description case `111`)

SFEC -> `111` -> Store into dedicated rx buffer if filter matches

SFID1 -> `11111110000` -> standard ID that filter will accept (0x7F0)

SFID2[10, 9] -> `00` -> this field decides whether the received message is stored in an rx buffer or treated
as message A, B, or C of the debug message sequence. In this case, the software application wants to store the
message in an rx buffer.
SFID2[0,5] -> `000000` → index of the dedicated buffer rx where the corresponding message will be stored
(if N dedicated buffer rx has been configured, this index can be in the range [0, N -1]).
In this case the message is stored into dedicated buffer #0.

4.4 Classic filter for RX FIFO0
This example shows how to store the messages with identifier in the range [0x688, 0x68F] in the RX FIFO 0. For
a classic filter, an Identifier / Mask pair must be defined. The identifier must be written in SFID1 and the mask in
SFID2 fields of filter element. In a classic filter, the IDs messages that pass the filter are obtained by applying the
mask to the identifier as follows:
• this is the meaning of the filter bits -> 1 = must match (0 = don`t care);
• having a filter with a mask made up of all "1s", only one identifier will pass to the filter (the one that is written

in the SFID1 field) while a filter having a mask made up of all "0" all identifiers will pass the filter.

Obviously, these are the simplest filters. Below is an explanation of how to organize a range filter for the standard
ID in range [0x688, 0x68F] which stores received messages in RX FIFO 0.
This is a standard message filter, so we will give values to SFID1 = Identifier and SFID2 = Mask.
Register value (HEX): 0x8E8B07F8
Register value (BIN): 10 001 11010001011 00000 11111111000

SFT -> `10` -> Classic filter: SFID1 =
 filter, SFID2 = mask

SFEC -> `001` -> Store in Rx FIFO 0 if
 filter matches

SFID1 = 110 1000 1011 (Identifier
 0x68B)

SFID2 = 111 1111 1000 (Mask
 0x7F8)

Applying the mask to the identifier (a little bit) with the meaning of the mask bit (1 = must match 0 = don`t care) we
find the following range filter where the `X` symbol stands for zero or one.

Filter = 110 1000
 1XXX

Then, all standard messages in the range [0x688, 0x68F] will pass the filter.

TN1348
Rx dedicated buffer filtering

TN1348 - Rev 1 page 7/16

5 Extended ID filters configuration

The same filters types can be implemented also for extended identifiers (29-bit identifiers).

Figure 5. Extended filter element register

5.1 Range extended filter for RX FIFO0
In this example, this filter will store messages with identifiers in the range [0xFFFFF, 0x1FFFFFFF] in FIFO 0.
Below the register values:
F0 register value (HEX): 0x200FFFFF
F1 register value (HEX): 0xDFFFFFFF
FO register value (BIN): 001 00000000011111111111111111111
F1 register value (BIN): 11 (0) 11111111111111111111111111111
Fields values:

EFEC -> `001` -> Store in Rx FIFO 0 if filter matches

EFID1 ->
 `00000000011111111111111111111` -> First ID of extended ID filter element
range(0xFFFFF)

EFT -> `11` -> Range filter from SFID1 to SFID2

SFID2 ->`11111111111111111111111111111` -> Second ID of standard ID filter element range
 (0x1FFFFFFF)

5.2 Double ID filter for FIFO 1
In this example the dual ID filter will store messages having identifiers 0xAAAAA or 0xBBBBB into FIFO 1.
F0 register value (HEX): 0x400AAAAA
F1 register value (HEX): 0x400BBBBB
FO register value (BIN): 010 000000000 10101010101010101010
F1 register value (BIN): 01 (0) 00000000010111011101110111011
Fields values:

EFEC -> `010` -> Store in Rx FIFO 1 if filter matches

EFID1 -> `00000000010101010101010101010` -> First extended ID (0xAAAAA)

EFT -> `01` -> Dual ID filter for EFID1 or EFID2

TN1348
Extended ID filters configuration

TN1348 - Rev 1 page 8/16

EFID2 -> `00000000010111011101110111011` -> Second extended ID (0x000BBBBB)

5.3 Dedicated rx buffer
In this example the filtering will store messages having identifier 0x000AAAAA into dedicated rx buffer #1. Also in
this scenario, using the dedicated buffer only one message id can be filtered and it`s the one wrote into EFID1
field.
ID Filter for dedicated rx buffer (ID = 0x000AAAAA)
F0 register value (HEX): 0xE00AAAAA
F1 register value (HEX): 0x00000001
FO register value (BIN):

111 00000000010101010101010101010

F1 register value (BIN): 00 (0) 000000000000000000 00 (000) 000001
Fields values:

EFEC -> `111` -> Store into dedicated rx buffer if filter matches

EFID1 -> `00000000010101010101010101010` -> extended ID that filter will accept
 (0x000AAAAA)

EFT -> `00` -> this value isn`t important because filtering to store into dedicated RX
BUFFER and in this case EFT value is
 ignored (see EFEC field description case `111`)

EFID2[10, 9] -> `00` -> this field decides whether the received message is stored into an Rx
Buffer or treated as message A, B,
 or C of the debug message sequence. In this case software application wants to store
message into an Rx Buffer

EFID2[0,5] -> `000001` -> index of the dedicated rx buffer where the matching message will
be stored (if you configured N dedicated
 rx buffer this index can be in the range [0, N -1]). In this case the message is
stored into dedicated buffer #1

5.4 Classic filter for rx FIFO1
In this example, the filter programming will store messages store with identifier in the range [0 x FFFFF, 0 x
1FFFFFF] into the rx FIFO 1. It is underatood that the masking method is the same as the standard ID filters.
Below is an explanation on how to program an extended ID range filter in rage [0 x FFFFF, 0 x 1FFFFFF] which
stores received messages in rx FIFO 1. This is a filter for extended messages, so we will give values to EFID1 =
Identifier and EFID2 = Mask
F0 register value (HEX): 0x400FFFFF
F1 register value (HEX): 0x9E0FFFFF
F0 register value (BIN): 010 00000000011111111111111111111
F1 register value (BIN): 10 (0) 11110000011111111111111111111

EFT > `10` -> Classic filter: EFID1 = filter, EFID2 = mask

EFEC -> `010` -> Store in Rx FIFO 1 if filter matches

EFID1 = 0 0000 0000 1111 1111 1111 1111 1111 (Identifier 0xFFFFF)

TN1348
Dedicated rx buffer

TN1348 - Rev 1 page 9/16

EFID2 = 1 1110 0000 1111 1111 1111 1111 1111 (Mask 0x1E0FFFFF)

Applying the mask to the identifier (a bit) with the meaning of the mask bit (1 = must correspond to 0 = don`t care)
we find the following range filter where the symbol `X` stands for zero or one.

Filter = 0 000X XXXX 1111 1111 1111 1111 1111

So, all extended messages in the range [0xFFFFF, 0x1FFFFFF] will pass the filter.

TN1348
Classic filter for rx FIFO1

TN1348 - Rev 1 page 10/16

Appendix A Reference documents
• SPC584Cx/SPC58ECx Reference manual
• SPC584Cx/SPC58ECx datasheet

TN1348
Reference documents

TN1348 - Rev 1 page 11/16

Appendix B Acronyms and abbreviations

Table 1. Acronyms

Abbreviation Complete name

CAN Controller area network

FD Flexible data rate

TN1348
Acronyms and abbreviations

TN1348 - Rev 1 page 12/16

Revision history

Table 2. Document revision history

Date Version Changes

01-Mar-2021 1 Initial release.

TN1348

TN1348 - Rev 1 page 13/16

Contents

1 CAN overview .2

2 Filtering introduction .3

3 Message RAM initialization .4

4 Example of standard ID filters. .6

4.1 Range filter for RX FIFO0. 6

4.2 Double filter for RX FIFO1 . 6

4.3 Rx dedicated buffer filtering . 7

4.4 Classic filter for RX FIFO0 . 7

5 Extended ID filters configuration .8

5.1 Range extended filter for RX FIFO0 . 8

5.2 Double ID filter for FIFO 1 . 8

5.3 Dedicated rx buffer . 9

5.4 Classic filter for rx FIFO1 . 9

Appendix A Reference documents. .11

Appendix B Acronyms and abbreviations. .12

Revision history .13

Contents .14

List of figures. .15

TN1348
Contents

TN1348 - Rev 1 page 14/16

List of figures
Figure 1. Message RAM configuration example . 3
Figure 2. SIDFC register . 4
Figure 3. XIDFC register . 4
Figure 4. Filter element register . 6
Figure 5. Extended filter element register. 8

TN1348
List of figures

TN1348 - Rev 1 page 15/16

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

TN1348

TN1348 - Rev 1 page 16/16

http://www.st.com/trademarks

	Introduction
	1 CAN overview
	2 Filtering introduction
	3 Message RAM initialization
	4 Example of standard ID filters
	4.1 Range filter for RX FIFO0
	4.2 Double filter for RX FIFO1
	4.3 Rx dedicated buffer filtering
	4.4 Classic filter for RX FIFO0

	5 Extended ID filters configuration
	5.1 Range extended filter for RX FIFO0
	5.2 Double ID filter for FIFO 1
	5.3 Dedicated rx buffer
	5.4 Classic filter for rx FIFO1

	Appendix A Reference documents
	Appendix B Acronyms and abbreviations
	Revision history
	Contents
	List of figures

